
Chapter 4
Three Experiments

To set up the remainder of this article let us pose three problems. They incorpo-
rate various issues arising from basic analysis to simulation to applied modelling.
Their seemingly ambiguous dynamics expose remarkably well our current state of
knowledge concerning the robustness of nonsmooth models. The problems are: a
classic example of ambiguity from seminal texts; a two-gene regulatory system with
seemingly ambiguous activation of genes; and an investment game where players’
seemingly steady behaviour destabilizes a company’s trading.

To solve these systems we must decide how to handle a discontinuous term like
step(σ), in particular, to decide what value to assign to step(0). We can do this
in a number of different ways, which we call implementations. We will make a
preliminary definition of these here, to be refined in Chap. 5, along with six test
implementations that we use for simulations in this article.

Definition 4.1. Given a system in which a parameter switches according to an ideal
rule ν = step(σ), we define an implementation of the switch as a rule that forms a
transition layer |σ| ≤ ε and determines the selection of modes ν = 0 and ν = 1 within
it. In |σ| > ε the modes are assigned uniquely according to ν = step(σ). For our
purposes here this can involve one or more of the following six test implementations:

• smoothing—the switch is enacted by replacing νwith a smooth monotonic func-
tion φε(σ) satisfying φε(σ)→ step(σ) as ε→ 0;
• hysteresis—the switch is enacted by mapping ν : {0 or 1} �→ 1 at σ = +ε, and
ν : {0 or 1} �→ 0 at σ = −ε;
• time delay—the switch is enacted by mapping ν : 0 ↔ 1 a time δt = ε after

crossing σ = 0, that is, ν = step(σ(t − ε));
• time stepping—the rule ν = step(σ) is evaluated only at discrete time steps
δt = ε;
• noisy time delay—as in time delay, but with the delay chosen randomly between

0 < δt < ε each time a switch occurs;
• spatial noise—as in smoothing, but the state is also perturbed by adding random

translations of a size smaller than some κ � 1 at time steps δt = α � 1.
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In each case ε is a small positive constant. To consider a system with multiple
switches we introduce parameters νi = step(σi) for i = 1, 2, ..., which switch at
thresholds σi = 0, and in the case of smoothing, hysteresis, or time delay, involve
different small quantities εi, i = 1, 2, . . . associated with each threshold.

We have expressed the switch in terms of ν = step(σ) without loss of generality,
and could instead have used any other discontinuous function, such as λ = sign(σ)
for which the implementations follow directly via the relation λ = 2ν − 1.

Of course one may consider other implementations besides those above, for in-
stance perturbations that increase the dimension of the system. The list above will
be sufficient for this exploratory study, but there are certainly extensions to be made,
and perhaps a more general but less explicit formulation will be found. We will not
consider the implementation that is provided by using event detection in compu-
tational software, because this requires an additional decision to be made of what
dynamics to impose on σ = 0, a decision we are not yet ready to make.

4.1 Filippov’s Convexity Paradox

The following problem is adapted from one posed by Filippov in section 7 example
134 of [51]. Consider a planar system

(
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)
, (4.1)

where λ = sign(x), and assuming λ ∈ [−1,+1] when x = 0. Whatever the flow in
this system, the vector field for x � 0 simply points towards x = 0, so the flow is
attracted to the discontinuity at x = 0 and must remain there. All that remains is to
find its speed of motion along x = 0.

In Fig. 4.1(i–vi) we simulate (4.1) using the test implementations of the switch
set out in Definition 4.1. Smoothing the discontinuity (and then simulating using
some standard numerical integration package), we obtain the trajectory in portrait (i)
of Fig. 4.1. Simply discretizing Eqs. (4.1) instead gives the portrait (ii). Introducing
hysteresis or delay in the switch yields similarly (iii)–(iv), while a noisy delay yields
(v). In (vi) we see two examples of what happens with a combination of such effects,
as we smooth Eqs. eq. (4.1), discretize them, and then introduce spatial noise: for
small enough noise the simulation agrees with (ii–v), for large noise it agrees with
(i), up to random variations. The sizes of these perturbations are described in the
figure caption.

All show motion along the discontinuity threshold, but some result in motion
upward at a speed ẏ ≈ 5/24, while others evolve downward at a speed ẏ ≈ −1/6
(we will see why these specific values of the speed arise). Implemented with noise,
either type of solution can be obtained for sufficiently large or small amplitude of
random perturbations.
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Fig. 4.1 The system from Fig. 7.1 simulated from a point in x < 0, where the switch implementa-
tion is: (i) smooth, (ii) time stepping, (iii) hysteretic, (iv) time-delayed, (v) with a noisy time delay,
or (vi) with spatial noise (large or small noise, slightly displaced for clarity). Simulated using (4.1)
and Definition 4.1 with ε = 0.1. In (v) we use κ = α = 0.1 for small noise and κ = 0.2, α = 0.01,
for large noise. Similar results are obtained for any initial conditions and any choice of smoothing
function

This was essentially this problem posed by Filippov, but considering only an
idealized system (i.e., not considering such implementations), to highlight issues
of uniqueness of solutions to (4.1). Filippov’s theory, taken as a whole, allows for
all of the different outcomes in Fig. 4.1, but his most commonly accepted concept
of ‘sliding’ along the discontinuity threshold favours the outcomes in (ii)–(v), in
contradiction to the outcome of smoothing in (i).

Given such a simple system as (4.1), the contrasting results in Fig. 4.1 reveal
somewhat of a conceptual pickle in the state of understanding of nonsmooth dy-
namical theory, one that will become more pronounced over the next couple of ex-
amples. Distinguishing between the different possibilities and when to expect them
is vital for applications, and moreover is achievable given recent advances, such
as [18, 79, 83, 129, 131, 132]. These have provided hints of conditions to distin-
guish between alternative behaviours, but rigorous results are piecemeal, lengthy,
and technical, even in the simplest cases when one smooths a discontinuity [111] or
adds hysteresis [18].

One might be concerned that we can hope at all to develop a serious theory of
nonsmooth models in the light of such contrary results. We will show that these
are each correct and reconcilable within definite perturbative contexts. We will
also show that these pale against other indeterminacies that have come to light in
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recent years, not limited to speed or direction of motion along the threshold, but
also whether solutions evolve along the threshold at all or simply cross through it.

4.2 On or Off Genes

An example studied in [117] concerns a model of two genes responsible for produc-
ing proteins with concentrations xi, which obey

(
ẋ1

ẋ2

)
=

(
ν1 + ν2 − 2ν1ν2 − γ1x1

1 − ν1ν2 − γ2x2

)
:= fν1ν2 (x1, x2), (4.2)

where νi = step(xi − θi) for some positive constants θ1, θ2, γ1, γ2, for which we as-
sume 0 < γiθi < 1. The switching of each νi models the (de-)activation of the ith

protein production as its concentration xi passes a threshold value θi, as we intro-
duced in Sect. 1.3. It will be convenient to express the right-hand side as a planar
vector field fν1ν2 (x1, x2), as sketched in Fig. 4.2(top-left).
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Fig. 4.2 A two-gene system switching between four modes (top-left), and its flow simulated from
a point in x1 < θ1, x2 < θ2, in (i–v). The solution evolves onto the discontinuity threshold x1 = θ1,
and proceeds onto the threshold x2 = θ2, where it then remains approximately. The switch is
modelled as: (i) smooth (substituting νi with νi = x1/εi

i /(θ
1/εi

i + x1/εi

i ) for small constants εi), (ii)
time stepping, (iii) hysteretic, (iv) time-delayed, or (v) with a noisy time delay. Simulated from
(4.2) for parameters θ1 = θ2 = 1, γ2 = 0.9, γ1 = 0.4, and implemented with ε1 = ε2 = α = κ = 0.2
(as described in Definition 4.1)

The range of behaviours that are possible at the discontinuity thresholds is less
obvious than in Sect. 4.1. Clearly the half-lines x1 = θ1, x2 > θ2, and x2 = θ2,
x1 > θ1 are attracting, so motion can only proceed along the thresholds there, and
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solutions can only escape those portions at the point x1−θ1 = x2−θ2 = 0 where they
intersect. Elsewhere, on x1 = θ1, x2 > θ2, and x2 = θ2, x1 > θ1, it can be shown that
solutions cross these thresholds transversally (see [82, 117]). Let us focus solely on
what happens at x1 − θ1 = x2 − θ2 = 0 after motion along x1 − θ1 = 0 < x2 − θ2.

Similarly to Sect. 4.1 we simulate the system by implementing the two dis-
continuities in the manner of Definition 4.1. The results are shown in Fig. 4.2
for parameter values given in the caption. In all cases the solution evolves onto
the threshold x1 = θ1, x2 > θ2, travels downward until reaching the intersection
x1 − θ1 = x2 − θ2 = 0, and ‘rounds the corner’ onto the threshold x2 = θ2, x1 > θ1.
(In fact the solution continues towards an equilibrium state at x1 ≈ θ2γ2/γ1, x2 ≈ θ2,
not shown). The outcome appears to be robust to the method of implementation.

For a different set of parameters, however, we obtain the contradictory behaviours
shown in Fig. 4.3. This is despite the vector fields outside the discontinuity thresh-
olds xi = θi being qualitatively unchanged. Implemented by smoothing, time step-
ping, or time delay, the solution now sticks upon reaching x1 − θ1 = x2 − θ2 = 0.
With hysteresis the solution rounds the corner as before; however, isolated param-

x2

x1

x2

x1

x2

x1

x2

x1

x2

x1

x1

x2

x1

x2

sm
oo

th

hy
st

er
et

ic

tim
e 

de
la

y

sp
at

ia
l n

oi
se

sp
at

ia
l n

oi
se

di
sc

re
te

f11

f 01

f 00

(i) (ii)

(iii) (iv) (v) (vi)

x2=θ2

x1=θ1

f10

Fig. 4.3 As in Fig. 4.2 except γ1 = 0.6. The solution evolves onto the discontinuity threshold
x1 = θ1, along which it evolves onto x1 = θ1, x2 = θ2, where it then remains (approximately), for
all implementations except the last—noisy solutions can either stick (v) for κ 	 0.02, or round
the corner (vi) for κ � 0.02, while near κ ≈ 0.02 intermittency is seen, with repeated simulations
showing either behaviour

eter values ε1 � ε2 can be found for which the hysteretic solution does stick to
x1 − θ1 ≈ x2 − θ2 ≈ 0, for example, ε1 = 0.01, ε2 = 0.02 (not shown). Implement-
ing with noise we are able to see both behaviours: sticking at the origin for small
enough noise, rounding the corner for larger noise, and in between, an intermittency
whereby repeated simulations may show either behaviour due to the randomness of
perturbations.
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These contrary results can be explained, and a context to do so is provided in
the following sections. In short they hinge on the existence or not of an attractor at
x1−θ1 = x2−θ2 = 0 and its stability under perturbation. Re-considering the literature
in the light of the results above, one recognizes hints towards them in studies such
as [117] and [2]. In [117] the dynamics at the threshold is studied assuming the
quantities νi are actually smooth ‘Hill’ functions, φεi

i (xi) = x1/εi

i /(θ
1/εi

i +x1/εi

i ), which
tend to step(xi − θi) as εi → 0 [70].

Even if solutions stick robustly to the intersection x1− θ1 = x2− θ2 = 0, their fate
might still not be obvious, as the following example shows.

4.3 Jittery Investments

Consider a game in which two players each buy and sell stocks in a company, de-
noting the amounts they own as x1 and x2, measured relative to some desirable asset
level xi = 0, and let the stocks owned by the company itself be z. The system and
phenomenon we describe below extend readily to more players and companies. The
rules we assign will be simple to illustrate the mathematical phenomenon at work,
but there is very little special about how they are chosen, and one could certainly im-
prove the game with more realistic trading rules and other players with more defined
roles without destroying the phenomenon.

Let xi purchase stocks at a rate c, and sell them back to the company at a rate −γi

only if xi > 0, so

ẋi =

{
c − γi if xi > 0 ,
c if xi < 0 .

If 0 < c < γi, then each player is attracted towards their respective threshold xi = 0.
Let us express this in terms of a switching multiplier νi = step(xi) simply as

ẋi = c−γiνi. Nonlinear terms can be used to introduce strategic choices, for example,
we may add an increased rate of buying ρi in response to competition from other
players in the form

ẋi = c − γiνi − ρiν1ν2 , i = 1, 2. (4.3)

The company’s level of self-owned stocks is then fed and depleted by the two play-
ers, giving

ż = −2c + γ1ν1 + γ2ν2 − ρ11ν1ν2 + ρ00(1 − ν1)(1 − ν2) , (4.4)

where we also give the company its own strategic terms, namely an increase in
selling off to other parties at rate ρ11 if both players are selling at the same time, or
an increase in buying back shares from other parties at rate ρ00 if both players are
buying at the same time.
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We will denote the right-hand side of the three-dimensional vector field defined
by (4.3)–(4.4) as fν1ν2 , so

(ẋ1, ẋ2, ż) = fν1ν2 (4.5)

:=
(

c − γ1ν1 − ρ1ν1ν2 , c − γ2ν2 − ρ2ν1ν2 ,

− 2c + γ1ν1 + γ2ν2 − ρ11ν1ν2 + ρ00(1 − ν1)(1 − ν2)
)
,

and we assume γi + ρi > c > 0 for i = 1, 2.
The piecewise-constant vector field is sketched in the (x1, x2) plane in Fig. 4.4,

and again appears extremely simple: the flow evolves onto the thresholds x1 = 0
and x2 = 0, where it must remain. The simulations in Fig. 4.4 reveal that for any
implementation (i)–(v), solutions evolve towards the intersection x1 = x2 = 0 and
remain there for all later times.
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Fig. 4.4 An investment game with four modes. The vector field is sketched (top-left), and its
flow is simulated in (i–v) from a point in x1 < 0 < x2 by the different implementations from
Definition 4.1. The solution evolves onto the discontinuity threshold x1 = 0, then towards the
intersection with the second discontinuity threshold x2 = 0, where it remains (approximately),
regardless of implementation, and for any parameter values (given γi + ρi > c > 0 for i = 1, 2)

Thereafter only the company’s holdings, z, may fluctuate, so we must ask how
this is affected by the investment dynamics of the two players. As in Sects. 4.1 and
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4.2, our task reduces to determining the speed of motion along the discontinuity
threshold, in this case the rate of change of z on x1 = x2 = 0.

We find a rather different phenomenon, with more erratic variability, than in
Sects. 4.1 and 4.2.

The result of simulations for the implementations using smoothing, hysteresis,
time delay, or time stepping is shown in Fig. 4.5, for two different games (i.e., two
sets of parameters). The speed ż is plotted for different ratios of the implementa-
tion parameters εi, which are defined as (ε1, ε2) = ε(cos ωπ2 , sin ωπ2 ). Note for time
stepping there is only one ε parameter (the time step) so the graph is a horizontal
line.
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Fig. 4.5 The company’s rate of change ż for noise-free implementations of the investment game.
Left: using c = 1, γ1 = 1.4, γ2 = 1.8, ρ1 = 0.5, ρ2 = 0.5, ρ11 = 1, ρ00 = 3. Right: using c = 0.5,
γ1 = 1.1, γ2 = 1.4, ρ1 = 0.4, ρ2 = 0, ρ11 = 2, ρ00 = 0.4

First note, alarmingly, how the two different approaches we might favour in com-
puter simulations—time stepping or smoothing—give markedly different rates of
change for z. Note also how the delayed or hysteretic implementations depend er-
ratically on the relative size of delay/hysteresis across x1 = 0 and x2 = 0, i.e., the
ratio ω.

The two different games in Fig. 4.5 exhibit markedly different behaviour. The
behaviour outside x1 = x2 = 0 does not change significantly between these parame-
ter values, remaining always pointing ‘inwards’ towards the origin. Despite this the
speed of motion along x1 = x2 = 0 changes, both between the two parameter sets,
and as we vary the implementation parameter ε2/ε1 = tan ωπ2 . We could plot similar
graphs with any of the parameters c, γi, ρi, on the horizontal axis in place of ω, and
obtain similarly erratic curves.

The noisy implementations are missing from Fig. 4.5. The same two games are
implemented with noisy delay or spatial noise (see Definition 4.1) in Fig. 4.6. Coun-
terintuitively, the outcome is less erratic in the noisy conditions of Fig. 4.6 than in
the regular conditions of Fig. 4.5. Noise appears to push the value of ż towards the
deterministic value obtained under smoothing. The significant random fluctuations
are a result of the noise amplitude needing to be large to dampen the erratic varia-
tions in Fig. 4.5.
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Fig. 4.6 Noisy implementations corresponding to Fig. 4.5

In Sects. 4.1 and 4.2 the implementation could push a system between two differ-
ent possible behaviours. Here we see a wide range of erratically varying behaviours,
and not only do different implementations select entirely different outcomes from
within this set, but changing the parameters of the implementation itself, even
slightly, selects vastly different behaviours. Different aspects of these rather strik-
ing results began emerging across a number of investigations [5, 6, 78, 84]. The
erratic and sensitive dependence in the case of hysteresis was first studied in [6],
and extended to other implementations in [84], contrasting with the more regular
and predictable dynamics resulting from smoothing [5, 78].

The issues involved in the practical modelling of discontinuities clearly involve
a number of factors. To begin addressing them we first need a qualitative way to
characterize such behaviour, to which we turn now.
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