
Chapter 3
Discontinuities to Model Missing
Knowledge

If the theory of differentiable dynamical systems entered its nonlinear age with the
discovery of bifurcations and chaos, then nonsmooth dynamics’ nonlinear age will
be characterized by tackling issues of determinacy. Loss of determinacy is an in-
escapable feature of nonsmooth systems, but it requires more explicit expression if
it is to be turned to more useful modelling.

When integrating a function that involves something like a step function, the
value step(0) at the discontinuity does not affect the value of the integral, provided
the argument of the step function is monotonic over the integral path (see, e.g., chap-
ter 1 of [51]). In a dynamic problem of the form d

dt x = F(x; step(t)), for instance,
solutions may be written as

x(t) = x(τ) +
∫ t

τ

ds F
(
x(s); step(s)

)

= x(τ) +
∫ 0

τ

ds F
(
x(s); 0

)
+

∫ t

0
ds F
(
x(s); 1

)
,

assuming τ < 0 < t, whose existence is provided by Carathéodory’s theorem (ex-
tending Peano’s existence theorem to non-differentiable systems of ordinary differ-
ential equations, see, e.g., [28, 51, 67]). The step function simply divides the inte-
gral in two, and the value of step(0) does not affect the right-hand side. In a dynamic
problem of the form ẋ = F(x; step(σ(x))) for some function σ, however, where the
discontinuity threshold is the set D = {x : σ(x) = 0}, when seeking solutions of the
Carathéodory form,

x(t) = x(a) +
∫ t

a
ds F
(
x(s); step

(
σ(x(s))

))
,

the value of the step function becomes essential, because the argumentσ(x(s)) could
remain at zero for a non-vanishing interval of s values. The existence of sets of
Carathéodory type solutions to problems of the form (2.2) was covered rigorously
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in [51], but in order to use those solutions for the purposes of modelling, we require
a more explicit way to characterize them, to distinguish the different dynamics they
make possible.

Mixed up in this problem is the understanding of what ‘nonsmoothness’ rep-
resents as an approximation. Nonsmooth systems are idealized in the sense that
they take abrupt transitions, and represent them as discontinuities occurring at def-
inite hypersurfaces in space. In what applied contexts is this a suitable model of
abrupt change, and what physical or living processes can it faithfully represent?
What are the implications of regularizing a discontinuity to obtain a well-defined
system, and does it matter how we regularize? Should we obtain similar behaviour
whether we smooth the discontinuity out, or numerically calculate the state x(t) by
interpolating between time intervals t, t + δ1, t + δ2, . . . ? What happens if the true
system actually lies a short distance δx away, or suffers a time lag δt, shifting x(t) to
x(t− δt)+ δx(t− δt), and does it matter whether these perturbations are simple func-
tions or stochastic processes? Should all such implementations of switching give
similar perturbations of the nonsmooth model, and if not, how do we make sense of
them as approximations of some underlying physics? Various such problems have
been discussed in the literature in a somewhat fragmented manner. Filippov’s for-
mulation in [51] used differential inclusions, while a recent trend to smooth the dis-
continuity has followed the approach introduced in [136] (and extended to include
hidden dynamics in [31, 111]). The discontinuity’s implementation is considered
with spatio-temporal delays or ‘chatter’ in [2, 6, 129, 148], or with stochasticity in
[132].

Part of the difficulty of developing a theory of how discontinuities affect dynam-
ics may be in our lack of understanding of what causes them. They tend to be used
when we have incomplete knowledge of the underlying processes when some abrupt
transition occurs, so we apply different set of equations under different conditions,
in different regions of state or parameter space. A way to clarify what a discontinu-
ity represents in a model might be to separate out those that are passive, active, or
dynamic in origin.

A passive discontinuity is simply a change in the physical parameters defining
a system, such as density, conductivity, or reflectivity, which jump across the inter-
face between different materials. A discontinuity in refractive index, for example, is
responsible for light bending as it passes between air and water. The jump in density
between air and metal allows a hammer to swing freely through the air, and yet im-
part a force when it contacts with a nail. To precisely understand the frictional and
impact contact forces between such media requires a microscale understanding of
their interfaces, but such a level of detail can hardly be useful in a large scale model
of the dynamics of the bodies themselves, so we approximate using, among other
simplifications, discontinuities.

An active discontinuity is imposed upon a system as a means of control. Ex-
amples might be switches or valves made of mechanical, electronic, biological, or
chemical parts, opening and closing different channels that drive or starve different
parts of a system. Or they may be decisions made by individuals or groups about
how to govern institutions, how to invest, or what causes to support. How we model
such discontinuities depends on whether they are imposed instantaneously, grad-
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ually, or via a series of sub-processes. With potentially so many complex factors
involved, the more detailed the model the less general would be any results obtained
from it.

A dynamic discontinuity is induced by some small and/or fast scale change in
stability, a jump from one stable attractor or pattern to another. The transition may
be too abrupt to be easily observed itself, but manifests as a large scale change
in behaviour, such as a financial crash, a change in heart rhythm, the collapse of
a structure, or onset of turbulence. Of our three categories, these have the most
comprehensible origins in the form of bifurcations or phase transitions, for which we
have well developed mathematical theory, such as the asymptotic theory discussed
in Sect. 1.1, particularly as concerns Stokes discontinuities and shocks [14, 16, 39,
68, 71].

These distinctions are not definitive, nor are they unique. For example, if a per-
son makes a decision actively, then this may actually be the result of some dynamic
phase transition across networks of neurons in the brain. But they illustrate the dif-
ferent features that discontinuities are called upon to approximate, the huge com-
plexity that is disguised by writing |x|, step(x), or other conditional statements, in
a systems of differential equations. We must formulate nonsmooth dynamics in a
way that is explicit enough to explore the assumptions behind using such terms, and
robust enough to start relaxing those assumptions.

Such issues were already in the minds of the pioneers of nonsmooth theory. It is
worth recounting Filippov’s own thoughts from section 8 of [51] on what nonsmooth
models are and what they aspire to:

1. Differential equations with discontinuous right-hand sides are often used as a
simplified mathematical description of some physical systems. The choice of
one or another way of definition of the right-hand side of the equation on a sur-
face of discontinuity . . . depends on the character of the motion of the physical
system near this surface.

2. Suppose that outside a certain neighbourhood of a surface of discontinuity of
the function F(t, x) the motion obeys the equation ẋ = F(t, x). In this neighbour-
hood the law of motion may not be completely known. Suppose the motion in
this neighbourhood may proceed only in two regimes, and switching over from
one regime to the other has a retardation, the value of which is known only to
be small.

3. Using these incomplete data, we should choose the way of defining the right-
hand side of the equation of the surface of discontinuity, so that a sufficiently
small width of the neighbourhood the motions of the physical system differ
arbitrarily little from the solutions of the equation ẋ = F(t, x) defined in the
way we have chosen1.

The subtle problem Filippov himself poses here has been largely overlooked in the
advancing theory of nonsmooth dynamics. Here we will loosen the main concepts
of nonsmooth dynamics in a way that allows us to probe these issues more deeply.

1In the original text this appears as one continuous passage, but for emphasis we have broken it
into three items.
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If discontinuities were all known to be of the dynamic kind, then nonsmooth dy-
namics would be just a direct extension of nonlinear dynamics and singular pertur-
bations. Instead, the dominant influence in the development of nonsmooth dynamics
has been of the active kind, from electronic and mechanical control, through to bi-
ological regulation, where we often have incomplete knowledge of the processes
behind the discontinuity. In the next two sections we use these applications to intro-
duce some basic concepts.

A lack of a way to quantify and ultimately reconcile such different approaches
to handling discontinuity remains the ‘elephant in the room’ for nonsmooth dynam-
icists. Nevertheless, given the successes of these different lines of study we should
now be able to form a more general picture. To do so we shall have to slightly
loosen some of the standard concepts of nonsmooth dynamics. What we will show
here is that the different behaviours that are possible at a discontinuity can be distin-
guished explicitly. We will also show that in regularizing the discontinuity one may
unwittingly single out only one of the many possible behaviours, such that different
treatments of the discontinuity giving contradictory dynamics.

The path to a general theory is laid by forming a common framework to describe
how solutions ‘handle’ or implement a discontinuity (less restrictive than attempt-
ing to ‘regularize’ the discontinuity), along with recognizing a common set of be-
haviours that such implementations give rise to.

Our first steps towards formalizing such a framework here culminate in a conjec-
ture that can be paraphrased as:

solutions of a system of ordinary differential equations with a discontinuity along a thresh-
old D, lie ε-close to solutions of a similar system in which discontinuity occurs in some
regionDε, such thatDε → D as ε→ 0.

Such a conjecture cannot be expected to hold without adequately specifying how
switching takes place across Dε between differentiable regimes outside Dε. Filip-
pov’s own work (see, e.g., sections 8–12 of [51]) considered ε-perturbations away
from the ideal discontinuous equations to prove the existence of solutions, and that
they travel along the convex hull of the nearby vector fields (we will look at this hull
in Sect. 5.1), leading to sets or ‘funnels’ of possible solutions. Here we will look at
how to model specific vector fields and solutions among those possibilities, to find
to what extent we can obtain a well-defined and robust model. We shall show that
non-idealities, no matter how small, play a crucial and fascinating role.
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