
Chapter 2
1930–2010: Nonsmooth Dynamics’
Linear Age

By a nonsmooth system, we typically mean a system of ordinary differential equa-
tions in x ∈ Rn, dependent on some discontinuous parameter ν,

ẋ = F(x; ν) , ν = step(σ(x)) , (2.1)

or defined on disjoint regions,

ẋ =

⎧
⎪⎪⎨
⎪⎪⎩

f1(x) if σ(x) > 0 ,

f0(x) if σ(x) < 0 .
(2.2)

The first form is often associated with the application to electronic controllers by V.
I. Utkin [146, 147], while the latter was tackled in a more general way by A. F. Fil-
ippov [50, 51] using differential inclusions. In fact Utkin and Filippov’s works both
mainly concern the same situation, as Utkin himself discussed recently in [149],
namely when F is linear in ν such that

ẋ = F(x; ν) = νf1(x) + (1 − ν)f0(x) . (2.3)

A discontinuity may also be introduced by applying some map

x �→ R(x) on σ(x) = 0 , (2.4)

at the discontinuity, for example, a restitution law ẋ �→ −rẋ during an impact (see,
e.g., [35]), or a drop in mass m �→ m/2 during cellular mitosis (see, e.g., [43]).

With an explicit expression (2.3) in terms of a discontinuous term ν, Filippov
showed that a very substantial theory of qualitative dynamics was possible. The
partial solutions in σ > 0 or σ < 0 are described by standard dynamical systems
theory, and the task of nonsmooth dynamics is to study the effect of concatenating
those solutions at σ = 0, and to find any solutions that may evolve along σ = 0.

For solutions that traverse the discontinuity transversally there has been con-
siderable progress in extending notions of stability from differentiable systems. To
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characterize the stability of orbits as they cross a discontinuity one may use the
saltation matrix (see, e.g., [35, 97]), to describe bifurcations in an orbit’s intersec-
tion with the discontinuity one has the discontinuity mappings (see [35, 110]), and
to study the separation of orbits to establish connections between manifolds or ex-
istence of limit cycles one may extend the idea of Melnikov functions (see, e.g.,
[12, 62, 91], though at present there are large and increasing number of papers in-
vestigating this line of study). There is also work ongoing to extend other powerful
tools, such as those of inverse integrating factors [23].

A particular area of interest has been the study of oscillations in the presence
of impact or other discontinuous control actions. Two key problems concern the
number of co-existing limit cycles that a given class of systems may contain, or
studying how this number changes via global bifurcations.

The question of the number of limit cycles in a system follows in the spirit
of Hilbert’s 16th problem [69]. For nonsmooth systems this was dealt a decisive
blow with the demonstration that even a piecewise-linear system can have arbitrarily
many limit cycles, depending on the shape of the discontinuity threshold [99, 112].
Say (ẋ, ẏ) = (−y, ν), where ν = sign(σ(x, y)). For σ = x this system is a fused centre,
similar to the phase portraits in Fig. 1.3 except every orbit is a closed cycle, so this
has infinitely many periodic orbits, but they are not limit cycles. If we tilt this to
σ = x − y, there are no closed cycles at all, similar to Fig. 1.3(i). But if we oscil-
late the discontinuity threshold by letting, say, σ = x − 1

2 sin(y), then every point
(x, y) = (0, nπ) on σ = 0 for any integer n generates a limit cycle, in an alternating
attracting (even n) repelling (odd n) sequence, and therefore infinitely many in num-
ber. A considerable literature exists restricting to simpler discontinuity thresholds,
allowing multiple thresholds, or (to a lesser extent) allowing the vector fields to be
nonlinear, with applications to electronic controllers and impact oscillators among
the most studied, see, e.g., [29, 35, 150] for a more detailed review.

The bifurcation of limit cycles has a similarly rich literature. The most important
realization has been that the ‘hard’ character of the discontinuity can actually be
exploited to characterize global bifurcations by their local geometry near σ = 0.
The study began in earnest with Feigin’s study of C-bifurcations (the ‘C’ coming
from the Russian word sxivat~ for solutions that ‘sew’ through a discontinuity
threshold in [44, 45, 46, 47, 48]).

Figure 2.1(i) illustrates two distinct types of limit cycle, one which exists as
a smooth cycle in the subsystem ẋ = f0(x), the other which passes transversally
(‘sews’) through a discontinuity threshold σ = 0, with portions passing through
both ẋ = f0(x) and ẋ = f1(x). The intermediary case is a smooth cycle in the
subsystem ẋ = f0(x) that grazes the surface tangentially. Although the dynamics
is global, the only substantive change occurs in the local geometry near grazing,
Fig. 2.1(middle), which stretches trajectories apart according to a square root scal-
ing. This creates a square root in the global return map to some section Π taken
through the flow, Fig. 2.1(right). If an orbit gains or loses segments of sliding in
such a bifurcation, then one obtains return maps that are locally piecewise linear
or of power 3/2. These local forms are described by discontinuity mappings, and
have been derived generally for the lowest codimension grazing bifurcations involv-
ing impact or sliding [21, 34, 35, 60, 110].
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Fig. 2.1 A sewing or ‘C’ bifurcation, the local geometry near the discontinuity threshold, and the
map induced on the return surface Π

The most well-studied nonsmooth maps are the square root map like that in
Fig. 2.1(iii), piecewise-linear continuous maps x �→ a + x(b + c step(x)), and maps
with a gap x �→ a + bx + (1 + cx) step(x). The bifurcations undergone by their
fixed points and periodic orbits exhibit considerable complexity, some key results
of which can be traced through the papers [8, 11, 53, 56, 57, 73, 89, 100, 110, 114,
130, 133]. Most notable perhaps is the typical form taken by sequences of bifurca-
tions of periodic orbits. For differentiable maps, an important result is the universal-
ity of the period doubling sequence by which a limit cycle bifurcates into eventual
chaos, Fig. 2.2(i). By contrast, nonsmooth maps are almost unrestricted in the kinds
of sequences they can exhibit, with the potential for periodic orbits to be appear of
almost arbitrary period, or to jump suddenly to chaos. Figure 2.2(ii) shows a period
incrementing sequence, interrupted by jumps to chaos, in a square root map.
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Fig. 2.2 (i) Period doubling cascade to chaos in a differentiable map, showing periodic attractors
of the logistic map x �→ σx(1− x). (ii) Period incrementing with windows of chaos in a nonsmooth
map, showing periodic attractors of the square root map x �→ 3

5 x+
√
σ − x step(σ− x) (from [35])

It remains an open problem to establish in general how nonsmooth flows and
their global return maps are related, in particular how singularities and bifurcations
of a grazing flow are related to the gradients, gaps, or power laws of return maps,
especially in higher dimensions. As well as the power laws associated with graz-
ing, it is known that sliding regions create horizontal or vertical branches in a map,
as is illustrated in Fig. 2.3. If the discontinuity set is attracting, then many initial
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Fig. 2.3 Attracting or repelling sliding in a nonsmooth flow results in horizontal or vertical
branches in return maps. Attracting: all points entering the depicted region with a coordinate
xn ∈ [b, c] maps to an outgoing coordinate xn+1 = a. Repelling: a point entering the depicted
region with a coordinate xn = a maps to a set of outgoing coordinates xn+1 ∈ [b, c]

conditions collapse onto the same sliding trajectory, resulting in a horizontal branch
in a return map. Conversely if the discontinuity set is repelling, then any one initial
condition in sliding explodes into a continuous family of trajectories outside sliding,
resulting in a vertical branch in a return map.

The connection of nonsmooth maps to grazing flows has re-enlivened their study,
after they received much attention in the 1970s for their connection to homoclinic
bifurcations in differentiable flows, in generating robust chaos, and for their impor-
tance in ergodic theory, leading to such prototypes as the tent map, the doubling
map or dyadic transformation, the border collision normal form, and the Lozi map.
A survey of this topic would be too large to include here, but as a starting point and
for some connections to more recent theory the reader may begin with [54, 59, 63].

The main tools necessary to study purely ‘sewing’ type behaviour—which evolves
transversally through a discontinuity threshold—are given by the various methods
mentioned above: a saltation matrix to describe how an orbit crosses a discontinuity,
a Poincaré map describing how orbits return to a discontinuity, Melnikov methods
to describe splitting between such returning orbits, and the discontinuity mappings
associated with grazing. Henceforth we will be concerned mainly with far more
troublesome issues related to the phenomenon of sliding, that is, evolution along
discontinuities.

Filippov proposed in [51] that we study systems like (2.1) or (2.2) by forming a
differential inclusion, making the system continuous but set-valued at σ(x) = 0, by
saying that ẋ lies in a connected set that contains the values of both f0(x) and f1(x)
when σ(x) = 0 (assuming the domains of f0 and f1 can be extended to such a point
on the discontinuity threshold). By placing further assumptions of convexity and
continuity on this set (section 4 of [51]), Filippov was able to prove that solutions
existed, and even that they vary continuously with parameters and initial conditions.
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Filippov’s solutions, however, belonged to sets of possible solutions, with no cri-
teria to select one solution over any other. He did offer one argument that provides
unique solutions under certain conditions of stability, given by forming the differ-
ential inclusion from the smallest possible convex set that contains f0(x) and f1(x)
(see section 4 part 1a of [51]). This is simply the family of vector fields generated
by the right-hand side of (2.3) as ν varies over ν ∈ [0, 1], and constitutes the linear
formulation of the nonsmooth problem.

Having a definite form (2.3) for the vector field allows us to solve for motion on
σ = 0 as follows. At any x on σ = 0, if there exists some ν such that σ̇ = 0, then
this gives sliding motion along σ = 0. Substituting that ν back into (2.3) gives the
sliding vector field. If there exists no such ν, then crossing (or ‘sewing’) must occur.
We already found such dynamics for the boat and genes of Sects. 1.2 and 1.3.

Being differentiable, the subsystems on σ > 0 and σ < 0 can exhibit equi-
libria within their respective domains. The sliding vector field on σ = 0 can also
possess its own sliding equilibria. These have been given various names in differ-
ent contexts, but I find them misleading in the wrong contexts. The term ‘switched
equilibria’ is sometimes found, but we wish here to distinguish equilibria on the
switching threshold that do or do not involve sliding. The term ‘pseudo-equilibria’
is very common, but ‘pseudo’ may suggest that they are somehow artificial, which
they are not. Sliding equilibria are not, in particular, to be confused with ‘virtual
equilibria’, which are points where f1 = 0 in σ < 0 or f0 = 0 in σ > 0, outside the
domains of those vector fields as defined by (2.2)—these can influence dynamics
via their drag on the nearby flow, but they do not exist as states of the system (2.2),
and therefore are truly artificial. We shall use the term ‘sliding equilibria’ which
more accurately identifies them with the sliding dynamics.

Bifurcations can occur in which equilibria become sliding equilibria or vice
versa, or pairs of equilibria and sliding equilibria co-annihilate, known as bound-
ary equilibrium bifurcations [35]. Partial classifications exist for planar systems
[35, 51], but one must be careful, because in attempting to form such classifica-
tions it is easy to miss less intuitive cases like that in Fig. 2.4, see [74]. Boundary
equilibrium bifurcations allow steady states of the system to be created on or off the
discontinuity set, or to change stability, and in doing so create periodic orbits as we
saw in Fig. 1.3.

a>0 a=0 a<0
y

x
Fig. 2.4 A boundary equilibrium bifurcation in the system ẋ = x+y−a−ν, ẏ = y−2ν, ν = step(x).
A repelling node in x > 0 becomes an attracting sliding node on x = 0 as a changes sign
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There is much to be done in such systems classifying both local and global bifur-
cations, particularly in systems with multiple switches or more than two dimensions.
For more detailed reviews of the state of the art in recent years the reader may also
see, e.g., [29, 150]. But bifurcations, oscillations, and chaos are not the whole story.
Like the dynamics of smooth systems around the middle of the twentieth century,
nonsmooth dynamics is embarking upon its nonlinear age, with all the novel phe-
nomena made possible by nonlinear dependence on discontinuous quantities like ν,
and the difference between terms like ν, ν2, ν3, ... when ν = step(σ).


	2 1930–2010: Nonsmooth Dynamics' Linear Age

