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Preface

As mathematics is applied to model ever new problems in engineering and the life
sciences, increasing use is being made of systems that switch between different sets
of equations on distinct domains. To find their dynamics requires the discontinuity
between domains to be resolved or ‘regularized’ in some way, and there exist a
range of methods to do so. Some preserve the ideal character of the discontinuity as
a piecewise-smooth system (giving, e.g. ‘impact’ or ‘switching’ dynamics), while
others blur the discontinuity by smoothing it out, or introducing overshoots due to
deterministic or stochastic delays.

Despite exciting new applications and major theoretical advances, it remains un-
clear how widely applicable nonsmooth models are, or in what sense they approxi-
mate discontinuities in real-world systems. It is even unclear how to correctly sim-
ulate or solve nonsmooth systems, or how robust such solutions are to perturbation.
To move closer towards these goals, here we survey one of the main approaches to
modelling nonsmooth dynamics, and look at how loosening some of its rigourous
but idealized framework allows us to probe its modelling assumptions. We also draw
together a range of phenomena that characterize the sensitivity and robustness of
nonsmooth dynamical models.

Bristol, UK Mike R. Jeffrey

v



Contents

1 Mathematics for a Nonsmooth World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 What Are Discontinuities Hiding? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Control Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Sticky Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 The Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 1930–2010: Nonsmooth Dynamics’ Linear Age . . . . . . . . . . . . . . . . . . . . 15

3 Discontinuities to Model Missing Knowledge . . . . . . . . . . . . . . . . . . . . . . 21

4 Three Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1 Filippov’s Convexity Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 On or Off Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Jittery Investments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Layers and Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1 Linear Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Nonlinear Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Hidden Terms: The ‘Ghosts’ of Switching . . . . . . . . . . . . . . . . . . . . . . 41

6 Ideal and Non-ideal Sliding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1 Sliding Perspective I: The Piecewise-Smooth System. . . . . . . . . . . . . 47
6.2 Sliding Perspective II: Hybrid Implementations . . . . . . . . . . . . . . . . . 49
6.3 Sliding Perspective III: Smoothed Implementations . . . . . . . . . . . . . . 52

7 The Three Experiments Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.1 Filippov’s Paradox Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2 Genes Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.3 Investments Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8 Further Curiosities of Hidden Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.1 The Phenomenon of Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.2 Hidden Oscillations and Chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

vii



viii Contents

9 Closing Remarks: Open Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A Nonsmooth Models as Asymptotic Series . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.1 The General Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.2 The Example of the Error Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B Simple Examples of Hulls, Canopies, and Indexing . . . . . . . . . . . . . . . . . 89

C Deriving the Hidden Terms in Lemma 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . 91

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



Chapter 1
Mathematics for a Nonsmooth World

A system may be said to exhibit nonsmooth dynamics if the laws that govern its
behaviour change markedly at certain thresholds. Those changes might represent
decisions, physical switches, boundaries of solid objects, or changes in modes of
contact. Here we look at the current understanding of nonsmooth dynamics as a
means of approximation, and how it allows us to model novel phenomena beyond
the scope of smooth dynamical systems.

Recent years have seen a huge growth in both the theory and applications of
nonsmooth dynamics. The decision of an investor to change their trading tactics, of
a predator to change their prey, of a neuron to fire or a cell to divide, are all forms
of nonsmooth dynamics. When you apply the brakes in your car or collide with a
wall, or when you abandon your regular commute in favour of your travel apps’
suggested alternative, these all induce nonsmooth dynamics of some kind, and have
led the discipline far beyond its original home in contact mechanics and electronic
control. We review some example applications in Chap. 2.

Nonsmooth dynamical systems are often invoked with a notable degree of un-
ease, a lingering discomfort of the conceptual difficulties of marrying together dif-
ferentiable and discontinuous change. By very definition, the far-reaching theorems
of differentiable dynamical systems do not apply to nonsmooth events. All we know
about stability, attraction, bifurcations, and chaos have to be re-written for these
nonsmooth, or more precisely piecewise-smooth, dynamical systems.

The last 40 years have seen leaps forward in tackling these challenges. Propelled
forward largely by the separate works of A. F. Filippov, M. A. Teixeira, and M.I. Fei-
gin, we are discovering how to rigorously extend the ideas of stability—which are so
important to differentiable dynamical systems—to thresholds where differentiability
fails. The translation of Filippov’s book [51] stands as the most extensive develop-
ment of singularity theory and qualitative dynamics for ’differential equations with
discontinuous right-hand sides’, formalizing the important notion of sliding along
a discontinuity, itself the culmination of decades of work in the Russian literature
such as [3, 4, 7, 50, 108], and sparking off V. I. Utkin’s widely known “variable
structure systems” for electronic control, see, e.g., [127, 146, 147]. Teixeira’s body
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2 1 Mathematics for a Nonsmooth World

of work, [138, 139] to [140], has led the way into higher dimensions and exploring
the connection to singular perturbed systems. While these contributed primarily to
local dynamics, Feigin introduced the notion of C-bifurcations in [44, 48] to de-
scribe global bifurcation of orbits grazing a discontinuity. These advances directly
led to the recent explosion in theories concerning regularization of discontinuities,
equivalence classes of similar systems and bifurcations between them, and the exis-
tence of limit cycles; we discuss these to some extent in Chap. 2.

Despite the growth in applications and advances in theory, nagging and impor-
tant problems about the uniqueness of nonsmooth models refuse to go away. The
solutions of equations like

(a) dx
dt =

√
|x| or (b) dx

dt = 2 + x
|x| (1.1)

evolve into and out of the point x = 0 in finite time, but do they pass through x = 0
or can they stop there? Non-differentiable situations like these are created easily by
writing step functions, inverse functions, or IF statements in computational code,
and such terms arise commonly in applications, but the behaviour they result in can
vary hugely depending on how the resulting discontinuity is handled. It turns out that
we can utilize such non-uniqueness to obtain useful solutions and increase the reach
of our mathematical models. These are the less well explored issues of nonsmooth
dynamics that this article attempts to address.

The often overlooked fact is that if discontinuous quantities appear in a differ-
ential equation, then its dynamical behaviour is necessarily non-unique. Standard
texts on dynamical systems tend to highlight examples like (1.1) as warnings to
avoid nonsmooth systems. Filippov and his contemporaries’ work showed that so-
lutions to discontinuous problems exist and can be studied just as meaningfully as
differentiable systems, but the tendency remained to attempt to find conditions that
banish non-uniqueness. A currently popular trend of smoothing out discontinuities
(to ‘regularize’ them), particularly following [136], makes it clear that nonsmooth-
ness is intimately tied to the concept of singular perturbations, yet regularizations
are still largely studied with the aim of banishing non-uniqueness. As discussed in
[81, 82], the link to singular perturbations actually points to non-uniqueness having
a more important role, and [79, 81] proposed how this can and should be utilized to
avoid misleading analysis, and to express the different behaviours made possible by
discontinuous quantities. Starting with Sect. 1.1 we shall begin further teasing out
the connection to singular perturbations and non-unique limits.

At stake is our entire understanding of what a discontinuity constitutes as an
approximation. Are nonsmooth systems a legitimate modelling tool or an un-
mathematical fudge? Are they reliable, and what kinds of perturbation are they
robust to? Our aim is to bring these open questions to the fore and to help begin
formulating them in a useful way. It would be premature to attempt to answer these
questions definitively, instead we introduce a framework in a largely informal man-
ner, aiming at helping to move the discussion forward.

We will reveal how sensitive nonsmooth models are to real world non-idealities,
particularly perturbations that delay or randomize the way a quantity switches in
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value. Such non-idealities result in complex solutions that are not expressible in
closed form, but can still be brought within the powerful concepts set out by Fil-
ippov by loosening some of the key definitions—such as that of sliding along a
discontinuity threshold—that have been instrumental to progress in the study of sta-
bility and bifurcations in nonsmooth models.

Before getting into these issues, let us spend the rest of Chap. 1 introducing some
key ideas and applications of nonsmooth dynamics.

1.1 What Are Discontinuities Hiding?

Suppose that the variation of a quantity x in a system appears to exhibit behaviour
that is discontinuous across the threshold x = 0, and we model this with a discon-
tinuous function F(x), writing ẋ = F(x) where

F(x) =

⎧
⎪⎪⎨
⎪⎪⎩

a0(x) if x > 0 ,

b0(x) if x < 0 .
(1.2)

We can assume for now that a0 and b0 are smooth functions defined at least on the
closure of their domains in (1.2), i.e., up to and including the threshold x = 0. Given
that our model provides no clear unambiguous value for F(x) at x = 0, how should
we solve the system at the discontinuity?

We may look to a letter written by George Gabriel Stokes to his fiancée in 1857
for inspiration:

When the cat’s away the mice may play. You are the cat and I am the mouse. I have been
doing what I guess you won’t let me do when we are married, sitting up till 3 o’clock in
the morning fighting hard against a mathematical difficulty. Some years ago I attacked an
integral of Airy’s, and after a severe trial reduced it to a readily calculable form. But there
was one difficulty about it which, though I tried till I almost made myself ill, I could not get
over . . . the discontinuity of arbitrary constants. [95]

Thus it became known, much as it pained Stokes to discover, that the asymptotic
expansion of integrals and differential equations could contain discontinuous quan-
tities. Imagine we are trying to model a quantity whose rate of change obeys ẋ = F,
and we know that F satisfies some relation D[t, x, F; ε] = 0 in terms of some small
parameter ε, where D represents an integral, or ordinary, partial, stochastic, or other
differential operation on F with respect to x and t (we given an example below, and
a few others are given in section 5 of [81]). In effect Stokes showed that in attempt-
ing to solve such a relation D[t, x, F; ε] = 0, even if D was differentiable in each
of its arguments, we could find that F has a different asymptotic approximation in
different regimes, for example, that F behaves as

F(x) =

⎧
⎪⎪⎨
⎪⎪⎩

A
(
x, s(x); ε

)
for x � +ε ,

B
(
x, s(x); ε

)
for x � −ε ,

(1.3)
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where ε > 0 is small and

A(x, s; ε) =
∞∑

n=0

an(x; ε)sn & B(x, s; ε) =
∞∑

n=0

bn(x; ε)sn , (1.4)

in terms of smooth functions an(x; ε) and bn(x; ε) which remain regular for ε → 0,
so that

an(x) = an(x; 0) & bn(x) = bn(x; 0) (1.5)

are regular functions. The expansion variable s is a function of x and some small
parameter ε such that s = O (ε/x), typically just s = ε/x, or a term like s = e−|x|/ε

that is exponentially small in ε.
The problem confronting Stokes was to solve a differential equation εF′′ = xF

(our “D[t, x, F; ε] = 0”) for small ε, which described the diffraction of light near a
caustic, for example, a rainbow. A similar but more convenient example is

ε2F′′ = −xF′ , (1.6)

where F′ ≡ ∂F
∂x , and we will take convenient boundary conditions F = c and εF′ =√

2/π at x = 0. (Recall that in our problem of interest F we also have ẋ = F
alongside this). The solution to (1.6) in this case is an integral,

F(x) = c + Erf
(

x√
2ε

)

=

{
c + 1 for x � +ε
c − 1 for x � −ε

}
−

√
2
π

e−x2/2ε2
∞∑

p=0

(−1)p(2p−1)!!
(x/ε)2p+1 , (1.7)

where Erf is the standard error function [1], and the second line expands its asymp-
totic form for large |x|/ε (which we derive in Appendix A). Note that letting c = 3,
for example, ignoring the higher order term and then setting ε = 0, we may write
this as ẋ = 2 + x

|x| , i.e., the system in our earlier example (1b).
Since the appearance of such Stokes discontinuities is well understood, the sug-

gestion was made in [81] that we might consider a nonsmooth system like (1.2) to
in fact be an attempt to model a system with discontinuous asymptotics given by
(1.3). Unlike the ideal fields of fundamental physics, however, in the messy worlds
of engineering, biology, climate, and so on, one rarely possesses such ideal models
as the Airy integral that Stokes had in his possession from which to derive (1.3), and
must instead be content with observations leading directly to empirical models with
forms like (1.2).

We can, however, use this association with asymptotics to refine the model (1.2)
without access to the unknown laws behind it. We shall see that we have not done
badly with (1.2), as it constitutes the leading order behaviour of (1.4).

A function with a Stokes discontinuity can be expressed as a uniform asymptotic
expansion valid for all x, for example, from (1.3) it is obvious that we can write



1.1 What Are Discontinuities Hiding? 5

F(x) = νA(x, s; ε) + (1 − ν)B(x, s; ε) , (1.8)

in terms of a quantity ν that equals 1 for x � ε and 0 for x � ε. In (1.7), for
example, we may write F(x) = c − 1 + 2ν + O (ε/x) (see Appendix A for the exact
expression in the form of (1.8)). The term ν must therefore be asymptotically a step
function, which we may write here as

ν =

{
1 − s for x � +ε
s for x � −ε

}
+ O

(
s2
)
, (1.9)

without loss of generality. (Universal forms for the multiplier ν are known for certain
classes of equations, see particularly [16]). Using (1.9) we can eliminate s from
these expressions altogether, as s ∼ 1 − ν in x � +ε and s ∼ ν in x � −ε.
Substituting these into (1.4) and (1.8), we obtain a series that can be factorized as

F(x) = νa0(x; ε) + (1 − ν)b0(x; ε) + ν(1 − ν)G(x; ν, ε) . (1.10)

The first two terms are the leading order approximations in the regions x � +ε and
x � −ε. The higher order terms, which are small for all |x| � ε, go into the term
ν(ν − 1)G, where G is a series made up of the remaining functions an and bn for
n ≥ 1. We provide finer details of this derivation in Appendix A.

Now, however, there is no explicit mention of s in (1.11), and any remaining
dependence on the small parameter ε is regular by (1.5). That is, if we let ε → 0 in
(1.9), we obtain a series expansion for F in polynomials of ν,

F(x) = νa0(x) + (1 − ν)b0(x) + ν(1 − ν)G(x; ν) . (1.11)

and ν by (1.9) becomes exactly a discontinuous step function. The leading order of
the expansion is linear in ν, which produces (1.2), while the higher order terms are
nonlinear in ν and are zero almost everywhere! That is, since ν equals 1 or 0 for
x > 0 or x < 0, the term ν(ν− 1)G vanishes for all x ≷ 0. We call this a hidden term.
We even obtain a formula for G (whose derivation we give in Appendix A), namely

G(x; ν) =
∞∑

n=0

{an+1(x)(1 − ν)n + bn+1(x)νn} , (1.12)

(recalling (1.5)). The expansion (1.7), for example, becomes

F(x) = c − 1 + 2ν + O (ν(1 − ν)) . (1.13)

We shall obtain other examples of the expansion (1.11), where different hidden
terms (1.12) represent different smooth systems which all give the same discon-
tinuous modes (1.2) in the limit ε→ 0.

Thus in (1.11) we have a series expansion, about a discontinuity at x = 0, in
polynomials of a discontinuous quantity ν, that approximates about the known val-
ues of a function F(x) in the regions x > 0 and x < 0. In some sense this is contrary
to the most familiar kind of polynomial approximation where, knowing how F(x)
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behaves in the vicinity of a point x = 0 near which F is sufficiently smooth, we
might attempt to model its variation in the form

F(x) ≈ F(0) + xF′(x) + 1
2 x2F′′(0) + . . . , (1.14)

with each higher order typically bringing a smaller correction to the model of F(x).
If instead F(x) is discontinuous at a point x = 0, and an expansion like (1.14)
is impossible, but we can instead base an approximation on an expansion of the
general form (1.11).

The ‘expansion variable’ in (1.11) is a discontinuous quantity ν, which we call
a switching multiplier. It has a dual identity, being a piecewise-constant 0 in x < 0
and 1 in x > 0, but taking values ν ∈ [0, 1] at the discontinuity. We capture this by
writing

ν = step(x) , (1.15a)

where the right-hand side is essentially the Heaviside step function, but with a set
of values at x = 0,

step(x) =

{
1 if x > 0
0 if x < 0

}
, step(0) ∈ [0, 1] . (1.15b)

We will use the definition (1.15b) throughout this work. Despite writing (1.15a) we
will not write ν explicitly as a function of x (i.e., we will not write it as ν(x)), partly to
avoid unnecessary clutter, but more importantly because this becomes inappropriate
at the discontinuity, where x alone does not determine ν, and we will instead have
to treat ν itself as a dynamic variable over the interval [0, 1].

The number of terms we retain in series approximations like (1.11) or (1.14)
depend on how much information we possess to model F. In a series like (1.14),
expanding to linear order in x is sufficient to model local behaviour around a zero
F(0) = 0, while nonlinear terms are needed to model non-local behaviour or changes
of stability. The series (1.11) is similar, in that expanding to linear order in ν is
sufficient to model local zeros of F at the discontinuity, but nonlinear terms are
needed to capture non-local phenomena and changes of stability. To understand why,
we will first have to derive the induced dynamics that occurs as ν switches value
across the discontinuity interval or ‘layer’ 0 ≤ ν ≤ 1. Even before we introduce this
(in Chap. 5), we can show how nonlinear terms augment the range of behaviours
possible in a model with a simple example.

Consider a particle that collides with a wall at some time t = τ, switching its
velocity from u = 2 to u = −1 in the process. This implies that the kinetic energy
K = 1

2 mu2 of the particle decreases from K = 2m to 1
2 m during the collision (the

left graph in Fig. 1.1). Now let us assume that we can write u = 2 − 3ν, where ν is
a step function taking values ν = 0 for t < τ and ν = 1 for t > τ, with ν ∈ [0, 1]
at t = τ. The quantity ν might be just a mathematical convenience, but it might
also relate to some other physical quantity, such as an angular momentum imparted
to the particle during collision, or a voltage induced by the collision if the wall is
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made of a dielectric elastomer. Substituting this expression for u into the kinetic
energy now gives K = 1

2 m(2 − 3ν)2, but this function can explore a range of values
0 ≤ K ≤ 2m during the collision (see right graph in Fig. 1.1). The nonlinearity in ν
allows a larger range of energies to be modelled than the 1

2 m ≤ K ≤ 2m suggested
by the original model.

t=τ

K=   (2−3ν)2K=   (4−3ν) Km_
2

m_
2

ν=0 ν=1 ν=0 ν=1

2m

m/2
0

2m

m/2
0

2m

m/2
0t

0                1ν

K
2m

m/2
0

0                1ν

t=τ t

Fig. 1.1 Allowed values of kinetic energy through a discontinuity: linear (left) versus nonlinear
(right) model. The upper right figures show the graph of K against ν between 0 and 1, during
collision

It is important to respect nonlinearity in discontinuous quantities, just as we re-
spect nonlinearity in continuous variables. In the second model above the energy is
given by K = 1

2 m(2−3ν)2 = 1
2 m

(
4−3ν+9ν(ν−1)

)
. Only the first part, K = 1

2 m(4−3ν),
is visible outside the collision, while the nonlinear term ν(ν−1) vanishes everywhere
except at the collision. In other words the nonlinear term is hidden except where ν
transitions between 0 and 1.

The hidden term is able to sneak in to these equations because of the discontinuity
at t = τ. The loss of differentiability in Eqs. (1.1) invites similar hidden terms, see
[61] for examples similar to (1a) and [81] for examples similar to (1b).

The issue of nonlinearity becomes more pressing in the context of multiple dis-
continuous quantities, say ν1 = step(x1) and ν2 = step(x2). The problem of handling
multiple discontinuities has come to the fore particularly in models of genetic reg-
ulation, which we will discuss in Sect. 1.3, where discontinuous terms νi = step(xi)
can represent the action of numerous genes labelled i = 1, . . . , n. Nonlinear phenom-
ena then arise through multi-linear terms such as ν1ν2, for example, which appears
indistinguishable from 1

2 (ν1+ν2) in the regions where ν1 = ν2 with value 0 or 1, just
as the term ν21 appears indistinguishable from ν1.

In the traditional literature on nonsmooth dynamics, the subject of nonlinear de-
pendence on discontinuous quantities has received only brief attention, usually as
counterexamples showing that nonlinear terms lie outside the theory that Filippov
set out in [51]. In section 1.1. of [148], for example, Utkin shows that the system
ẋ1 = λx1 + 0.3x2, ẋ2 = 4λ3x1 − 0.7x1, with λ = sign

(
x1(x1 + x2)

)
, displays different

dynamics along x1 + x2 = 0 depending on whether one respects the λ3 term as being
distinct from λ. We explore a simplification of this example in Sect. 4.1.

We have argued here that if ẋ = F and F is discontinuous, then (1.11) provides
a series expansion in terms of a switching multiplier ν. To assume that nonsmooth
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behaviour can be expressed in such closed form expressions as (1.11) is, however,
still a huge idealization of the practical processes that typically accompany discon-
tinuity, whether in electronics, mechanics, biological regulation, or numerous other
disciplines where nonsmooth models are growing in prominence. We will there-
fore have three main themes in this article: to review the ‘linear age’ of nonsmooth
dynamics in Chap. 2, to explore nonlinear or ‘hidden’ dynamics in Chap. 3

1.2 Control Switching

The principles of nonsmooth dynamics are well illustrated by a 1934 paper by Nikol-
sky, using discontinuous control to automatically stabilize a ship’s heading [109].

If the ship is heading at some angle x from its desired course, an automatic con-
trol is applied that switches its rudder between left and right extremes, imparting a
torque ±M, illustrated in Fig. 1.2.

x crossing sliding

D

Fig. 1.2 Steering by discontinuous control, aiming along a headingD

The equation of motion can be written as

I ẍ = νM −Gẋ , ν = sign(σ(x, ẋ, t)) , (1.16)

where I ẍ is the angular acceleration and Gẋ represents hydrodynamic damping. The
control problem is essentially to design the function σ(x, ẋ, t) that determines where
switching occurs, with the aim of attaining the heading x = 0 as a stable dynamical
behaviour.

In dynamical terms, the problem is simply to choose σ so that the system (1.16)
has an attractor at x = ẋ = 0. Traditional dynamical systems theory, however, deals
with differentiable systems, and can neither tell us how to solve (1.16) across σ = 0,
nor how to understand its qualitative dynamics in terms of flows or attractors.

Yet what happens at σ = 0 is seemingly quite simple. From (1.16) we can see
that with a large enough speed |ẋ| � M/G, the torque I ẍ = ±M −Gẋ remains in the
same direction as the ± sign switches. This describes what happens as we switch
the rudder directly between its ‘±’ settings. ‘Solving’ (1.16) is simply a matter of
concatenating solutions of the two differentiable systems I ẍ = ±M −Gẋ on the half
spaces σ > 0 and σ < 0. We call this crossing of the discontinuity threshold σ = 0.
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For small speeds |ẋ| � M/G, on the other hand, the torque I ẍ = ±M − Gẋ
changes sign as the ± sign switches. In this situation the rudder controller can begin
chattering across σ = 0 between the ‘±’ settings. If we can choose σ so that this
chattering decays towards σ = 0, then the discontinuity set becomes attractive. If
this leads to motion along a small neighbourhood of σ = 0 then it is known as
sliding along the discontinuity; we will formalize the notion of sliding in Chap. 6.

Note that we have not yet even defined the switching function σ. An obvious
choice is to take σ = −x, then the boat will always steer back towards x = 0 from
either side. A more efficient solution is to letσ = −x−βẋ for β > 0, which anticipates
that x will overshoot the desired heading based on the current rate of change ẋ, and
so switches earlier.

Before we leave this example we can use it to illustrate some more novel features
of nonsmooth dynamics. Simulating the flow in the (x, ẋ) phase plane using σ =
−x − βẋ, in Fig. 1.3(i) we see how the flow spirals in around a fused focus, until
it hits the discontinuity threshold σ = 0, and then slides along the surface until
reaching a fixed point at the origin (shown inset). This is what happens for β > 0.
For β = 0 the size of the region of sliding shrinks to zero and solutions spiral in
via infinitely many crossings. For β < 0 things are very different, as a discontinuity-
induced bifurcation turns the fixed point unstable, and an attracting limit cycle grows
out from the origin, reminiscent of an Andronov-Hopf bifurcation in differentiable
systems. A central interest of nonsmooth dynamics over the last four decades has
been the classification of fixed points and bifurcations like these, as can be found in
[35, 51, 82, 93].

.x

.σ = 0(i) (ii) (iii)
1

0

−1

−1        0      1

1

0

−1

−1        0      1

1

0

−1

−1        0      1x

.σ = 0 .σ = 0

Fig. 1.3 Phase portrait of the boat steering control, taking the example σ = −x − βẋ. (i) Shows a
solution spiralling in and then sliding to fixed points, (ii) shows a solution spiralling in via infinitely
many crossings, (ii) shows two solutions spiralling towards an attracting limit cycle. Simulated for
I = G = M = 1, and β values (i) 0.1, (ii) 0, (iii) −0.5

We have skipped over how we handled the discontinuity to obtain the simulations
in Fig. 1.3, and for good reason, as our aim here will be to bring to the fore various
overlooked subtleties of such simulations. This problem brings us to consider the
value of ν = sign(0) with care.



10 1 Mathematics for a Nonsmooth World

Letting σ = −x − βẋ, there exists a special value, ν = sign(0) = (βG − I)ẋ/βM,
for which (1.16) re-arranges to βẍ + ẋ = 0, which implies σ̇ = 0. This means
motion proceeds along σ = 0, so this is the value of ν = sign(0) that gives sliding
dynamics. Note that this particular sliding solution cannot exist for β = 0 (because
the proposed value of ν is singular), which is the case in Fig. 1.3(ii).

But is this the only possibility for the value of sign(0)? Let us say sliding does
occur in Fig. 1.3(ii), i.e., that there exists motion along σ = x = 0 even if β =
0. Looking at Fig. 1.3(ii) we can immediately see that such motion would not be
stable to any perturbation that kicked it away from σ = 0: the vector field would
immediately carry it off around the fused focus. In physical terms, while on σ = 0
the rudder would seem to stick in its intermediate position, perhaps due to some
mechanical jamming, despite the controller seemingly wanting to select one of its
‘±’ positions (since the arrows in σ ≷ 0 point unambiguously through σ = 0). If we
tap the rudder out of its jammed sliding position, normal control (motion in σ ≷ 0)
will be resumed.

Anomalous behaviour like this brings us into the nonlinear age of nonsmooth
systems theory because, as we shall see, nonlinear dependence on the discontinuous
quantity ν makes such behaviour possible.

There is a simple table-top experiment you can do to find sign(0) in a similar
problem involving friction. Place a small object on a surface that you can incline. If
the object slips left or right along the surface it experiences a friction force sign(ẋ)F,
where ẋ is its velocity relative to the surface and F is (approximately) constant.
While the object sits at rest, stuck to the surface, the friction force is sign(0)F.

Now incline the surface as far as possible just before the object begins to slip, and
tap the object gently down the slope. There is a downward gravitational force on the
object, balanced by the friction force, and therefore the quantity sign(0)F now gives
us just a measure of the fixed weight on the block. Once the object slips the friction
force will be F up the slope. If | sign(0)| < 1, then since | sign(0)F| < F friction
will overcome gravity, and the object will return to rest, just as the boat rudder was
attracted onto σ = 0 in Fig. 1.3(i). If | sign(0)| > 1 then gravity will overwhelm
friction and the object will carry on slipping, implying that the sticking state was
somehow unstable, like the boat rudder jamming on σ = 0 in Fig. 1.3(ii).

This unstable form of sticking happens if the coefficient of friction is larger dur-
ing stick than during slip (a larger static than kinetic coefficient), making it unstable
to small ‘tapping’ perturbations. As for the ship, such anomalous sticking requires
a nonlinear approach to modelling with discontinuities.

The concepts used at the end of the twentieth century to describe dynamics at a
discontinuity bore remarkable similarity to those in Nikolsky’s work and others of
the time. The major change since then has been the growing introduction of ideas
from singular perturbation theory, which we outline and extend in this article.

In this section we have seen the two key motivations for nonsmooth models over
the past century: control switching and discontinuous contact forces. Much of the
pre-1960s work on electromechanical control such as [7, 52, 92, 101, 109, 143]
remained somewhat obscure until efforts to systematize the application to electronic
control by Utkin in [146, 147, 148], and until Filippov’s work to systematize the
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theory in [50, 51]. The kind of aeronautic control envisaged by Irmgard Flügge-Lotz
in [52], for example, has found more practical aeronautical control applications such
as [118, 127, 128, 153].

The application to modelling of contact forces in frictional stick-slip motion and
impacts has both ensured the continued use of nonsmooth models, but perhaps also
held back their advancement. Though the origins and properties of friction have
been well understood through works like [19, 137], how to model dry-friction in
dynamical models remains a subject of continuing study, see, for example, [13, 15,
26, 32, 72, 90, 115, 116, 121, 142, 151, 152] for a sample of just some of the various
multiple scale and nonlinear factors involved. The kind of applications of interest
are challenging in themselves, for example, in geological events such as earthquakes
[113, 120], or ice flow [42, 126], or in automotive and industrial contexts of rotor
vibration, gear rattle, brake wear, drill-string vibrations, see, e.g., [9, 10, 20, 30, 77,
85, 87, 105, 106, 119]. Particular challenges arise in systems with multiple points
of contact, see, e.g., [9, 10, 22, 25, 27, 154]. Multiple points of contact create new
issues because they create multiple sources of discontinuity, an issue we will visit
several times from Chap. 4 onward.

1.3 Sticky Genes

Some of the most exciting applications opening up in nonsmooth dynamics involve
living systems, from their social networks to their inner regulatory processes. An
area particularly rich in models is that of gene regulatory networks, which are col-
lections of molecular components, consisting of DNA, RNA, and proteins, that in-
teract in an organic cell to direct growth and development of living organisms. Genes
switch abruptly on or off, activating different processes via the expression of pro-
teins.

A common model (see, e.g., [103, 117]) for the varying concentration xi of a
given protein labelled i is

ẋi = Bi(ν1, ν2, . . . ) − γi xi , i = 1, 2, . . . (1.17)

where γi is a decay constant, and Bi is a Boolean expression in terms of discontin-
uous ‘on/off’ quantities νi = 0 or 1. Switching typically occurs as certain threshold
values of protein concentrations, some σi(x1, x2, . . . ) = 0, are reached.

To introduce some basic concepts, consider a trivially simple one-gene regulatory
model with a protein concentration x varying as

ẋ = bν − x , ν = step(x − θ) . (1.18)

The gene activation occurs at the threshold x = θ. Let us assume 0 < b < θ. Then we
have ẋ < 0 everywhere up to the discontinuity, suggesting that x tends to zero, its
rate merely jumping from ẋ = b − x to ẋ = −x as x descends through x = θ (noting
that b − θ is negative).
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This behaviour is verified if we express ν as the limit of a smooth sigmoidal
function, say

ν = lim
p→∞

xp

θp + xp
. (1.19)

This function is monotonic, ensuring at x = θ that ẋ = b − θ remains in the range
−θ < b − θ < 0, and hence x is always decreasing.

We can easily obtain contradictory behaviour to this, however. Contrast this with
a model that represents the discontinuity by a different limiting function, say ẋ =
bν̂ − x, where

ν̂ = lim
p→∞

xp

θp + xp
+

c(θx)p

(θp + xp)2
, (1.20)

for some k > g > 0. This is purely for demonstration, but could, for example, model
a burst of over-production of the protein at the moment switching takes place. Again
assume 0 < b < θ. It is quite easy to show that ẋ now becomes positive for x
sufficiently close to θ, if b/4θ > c/(1 + c)2. As x decreases through the threshold it
then becomes stuck at x = θr1/p, for some r that is a function of b, c, θ, satisfying
r1/p → 1 as p→ ∞.

This is the same kind of anomalous sticking that we described in Sect. 1.2 due to
a jammed rudder or static friction. Because we derived the discontinuous quantities
from smooth functions in this case, we are able to see what causes the anomaly.
Both models (1.19) and (1.20) are identical in the sense that ν = step(x − θ) and
ν̂ = step(x − θ), for x � θ at least, but they differ in the value they assign to step(0)
at the discontinuity threshold x = θ. More precisely, if 0 ≤ ν ≤ 1 then at x = θ the
switch in (1.19) permits only −θ ≤ ẋ ≤ b − θ, while (1.20) permits the wider range
−θ ≤ ẋ ≤ b

4c (1+ c)2 − θ if b(1+ c)2 > 4cθ, similar to the collision models in Fig. 1.1
in Sect. 1.1.

Manipulating the expressions in (1.19) and (1.20) before taking the limit p→ ∞,
we can show that the two switching rules are related by

ν̂ = ν + cν(1 − ν) . (1.21)

The last term vanishes when ν = 0 or 1, i.e., it is a hidden term as introduced in
Sect. 1.1, making the models indistinguishable for x � θ. The behaviour it induces,
such as the anomalous sticking above, is called hidden dynamics. Note that ν(1−ν) is
still of the Boolean form compatible with gene models, but describes a contribution
turned ‘off’ in both states x > 0 and x < 0.

We see here that a nonlinear dependence on the discontinuous quantity ν pro-
duces non-trivial behaviour. Nonlinearity arises more naturally when we consider
multi-gene systems where several Boolean multipliers ν1, ν2, ... may multiply each
other, each turning on/off the production of a protein x1, x2, .... For instance take
a growth rate ẋ1 = a + bν1 + cν2 + dν1ν2 dependent on discontinuous quantities
ν1 = step(x1) and ν2 = step(x2). The rate coefficients b and c are activated across
the sets x1 = 0 and x2 = 0. The coefficient d is only activated on the half-lines
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x1 = 1 < x2 and x2 = 1 < x1, and its bilinear term +dν1ν2 can result in non-trivial
dynamics where the two thresholds intersect, at x1 = x2 = 0.

Two important elements to be explored in this article are suggested by the gene
problem. One is how we model switches. In (1.19) and (1.20) they are the limit of
smooth sigmoidal functions, but we must also consider switches that are the limit of
other processes across the threshold x = θ, involving factors such as small hysteresis
or time delay or stochasticity. The robustness of nonsmooth models to perturbations
of these kinds has been long discussed (see, e.g., [65, 123, 125]), but never clearly
formulated, a gap we aim to fill here by formulating implementations of switching.

The second element is the nature of the dynamical object responsible for slid-
ing/sticking on the discontinuity, namely whether it is a simple attractor, or a com-
plex set exhibiting nonlinear behaviour. We will loosen the rigid standard notion of
sliding/sticking considerably by looking afresh at some toy cases and applications.

As for friction, there is an accepted model for the physics behind gene activation,
in this case the so-called Hill function, a sigmoidal curve that describes concen-
trations of substances during binding to receptors, originating from the study of
oxygen molecules binding to haemoglobin [70]. Because activation typically occurs
abruptly, the sigmoid Hill curve approaches a step function. There have been many
interesting studies into the ramifications of nonsmooth behaviour in gene networks,
particularly concerning sliding along, and attractors on, the activation thresholds
that result from using either sigmoidal or step function models, for example, in
[24, 33, 41, 88, 94, 103, 104, 117, 135], and many novel dynamical phenomena
have been discovered. Nonsmooth models using step function are in many ways
simpler, but have been hampered by a lack of theory for systems with multiple dis-
continuities, so in resolving issues of stability at the activation thresholds authors
have tended to revert to sigmoidal functions. With a proper formulation we can
observe all of the same behaviours whether we use discontinuous step functions
or smooth sigmoids. Using discontinuous models simplifies the stability analysis,
however, and helps in beginning to ask how robust these models are to the choice of
activation function.

In living organisms the number of gene activation switches can number in the
thousands, but is rarely known exactly, as discussed in [122]. Interest in large gene
networks naturally tends to focus on statistical measures of dynamics across the
network, and concern itself less with the novel dynamics that could be happening
local to the various discontinuity sets.

1.4 The Plan

The rather basic notions explored in this section turn out to be important steps in
probing the mathematical foundations of nonsmooth dynamics, leading us to ask
how we describe the set σ = 0 as a mathematical object in order to model practical-
ities of switching in applications.
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We will dig a little deeper into the history and key concepts of nonsmooth dy-
namics in Chap. 2. The difficulty of modelling practical nonsmooth behaviour, and
its issues of uniqueness, are discussed informally in Chap. 3 before we set out in
search of ways to characterize it mathematically.

In Chap. 4 we set out three paradigmatic systems which, though simple and ideal,
exhibit complex dynamics revealing some novel problems of practical modelling of
dynamics at discontinuities. We then turn to the different concepts of sliding re-
quired to understand these problems, setting out basic principles in Chap. 5 and
extending some standard concepts in Chap. 6, in a way that makes sense of per-
turbations away from idealized discontinuity. In Chap. 7 these ideas are applied to
resolve the ambiguities arising from Chap. 4.

The concepts from Chap. 6 open the door to countless novel phenomena that
remain to be discovered, and we sketch out a few recent steps in this direction in
Chap. 8. Some concluding remarks are made in Chap. 9.



Chapter 2
1930–2010: Nonsmooth Dynamics’
Linear Age

By a nonsmooth system, we typically mean a system of ordinary differential equa-
tions in x ∈ Rn, dependent on some discontinuous parameter ν,

ẋ = F(x; ν) , ν = step(σ(x)) , (2.1)

or defined on disjoint regions,

ẋ =

⎧
⎪⎪⎨
⎪⎪⎩

f1(x) if σ(x) > 0 ,

f0(x) if σ(x) < 0 .
(2.2)

The first form is often associated with the application to electronic controllers by V.
I. Utkin [146, 147], while the latter was tackled in a more general way by A. F. Fil-
ippov [50, 51] using differential inclusions. In fact Utkin and Filippov’s works both
mainly concern the same situation, as Utkin himself discussed recently in [149],
namely when F is linear in ν such that

ẋ = F(x; ν) = νf1(x) + (1 − ν)f0(x) . (2.3)

A discontinuity may also be introduced by applying some map

x �→ R(x) on σ(x) = 0 , (2.4)

at the discontinuity, for example, a restitution law ẋ �→ −rẋ during an impact (see,
e.g., [35]), or a drop in mass m �→ m/2 during cellular mitosis (see, e.g., [43]).

With an explicit expression (2.3) in terms of a discontinuous term ν, Filippov
showed that a very substantial theory of qualitative dynamics was possible. The
partial solutions in σ > 0 or σ < 0 are described by standard dynamical systems
theory, and the task of nonsmooth dynamics is to study the effect of concatenating
those solutions at σ = 0, and to find any solutions that may evolve along σ = 0.

For solutions that traverse the discontinuity transversally there has been con-
siderable progress in extending notions of stability from differentiable systems. To
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characterize the stability of orbits as they cross a discontinuity one may use the
saltation matrix (see, e.g., [35, 97]), to describe bifurcations in an orbit’s intersec-
tion with the discontinuity one has the discontinuity mappings (see [35, 110]), and
to study the separation of orbits to establish connections between manifolds or ex-
istence of limit cycles one may extend the idea of Melnikov functions (see, e.g.,
[12, 62, 91], though at present there are large and increasing number of papers in-
vestigating this line of study). There is also work ongoing to extend other powerful
tools, such as those of inverse integrating factors [23].

A particular area of interest has been the study of oscillations in the presence
of impact or other discontinuous control actions. Two key problems concern the
number of co-existing limit cycles that a given class of systems may contain, or
studying how this number changes via global bifurcations.

The question of the number of limit cycles in a system follows in the spirit
of Hilbert’s 16th problem [69]. For nonsmooth systems this was dealt a decisive
blow with the demonstration that even a piecewise-linear system can have arbitrarily
many limit cycles, depending on the shape of the discontinuity threshold [99, 112].
Say (ẋ, ẏ) = (−y, ν), where ν = sign(σ(x, y)). For σ = x this system is a fused centre,
similar to the phase portraits in Fig. 1.3 except every orbit is a closed cycle, so this
has infinitely many periodic orbits, but they are not limit cycles. If we tilt this to
σ = x − y, there are no closed cycles at all, similar to Fig. 1.3(i). But if we oscil-
late the discontinuity threshold by letting, say, σ = x − 1

2 sin(y), then every point
(x, y) = (0, nπ) on σ = 0 for any integer n generates a limit cycle, in an alternating
attracting (even n) repelling (odd n) sequence, and therefore infinitely many in num-
ber. A considerable literature exists restricting to simpler discontinuity thresholds,
allowing multiple thresholds, or (to a lesser extent) allowing the vector fields to be
nonlinear, with applications to electronic controllers and impact oscillators among
the most studied, see, e.g., [29, 35, 150] for a more detailed review.

The bifurcation of limit cycles has a similarly rich literature. The most important
realization has been that the ‘hard’ character of the discontinuity can actually be
exploited to characterize global bifurcations by their local geometry near σ = 0.
The study began in earnest with Feigin’s study of C-bifurcations (the ‘C’ coming
from the Russian word sxivat~ for solutions that ‘sew’ through a discontinuity
threshold in [44, 45, 46, 47, 48]).

Figure 2.1(i) illustrates two distinct types of limit cycle, one which exists as
a smooth cycle in the subsystem ẋ = f0(x), the other which passes transversally
(‘sews’) through a discontinuity threshold σ = 0, with portions passing through
both ẋ = f0(x) and ẋ = f1(x). The intermediary case is a smooth cycle in the
subsystem ẋ = f0(x) that grazes the surface tangentially. Although the dynamics
is global, the only substantive change occurs in the local geometry near grazing,
Fig. 2.1(middle), which stretches trajectories apart according to a square root scal-
ing. This creates a square root in the global return map to some section Π taken
through the flow, Fig. 2.1(right). If an orbit gains or loses segments of sliding in
such a bifurcation, then one obtains return maps that are locally piecewise linear
or of power 3/2. These local forms are described by discontinuity mappings, and
have been derived generally for the lowest codimension grazing bifurcations involv-
ing impact or sliding [21, 34, 35, 60, 110].
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Fig. 2.1 A sewing or ‘C’ bifurcation, the local geometry near the discontinuity threshold, and the
map induced on the return surface Π

The most well-studied nonsmooth maps are the square root map like that in
Fig. 2.1(iii), piecewise-linear continuous maps x �→ a + x(b + c step(x)), and maps
with a gap x �→ a + bx + (1 + cx) step(x). The bifurcations undergone by their
fixed points and periodic orbits exhibit considerable complexity, some key results
of which can be traced through the papers [8, 11, 53, 56, 57, 73, 89, 100, 110, 114,
130, 133]. Most notable perhaps is the typical form taken by sequences of bifurca-
tions of periodic orbits. For differentiable maps, an important result is the universal-
ity of the period doubling sequence by which a limit cycle bifurcates into eventual
chaos, Fig. 2.2(i). By contrast, nonsmooth maps are almost unrestricted in the kinds
of sequences they can exhibit, with the potential for periodic orbits to be appear of
almost arbitrary period, or to jump suddenly to chaos. Figure 2.2(ii) shows a period
incrementing sequence, interrupted by jumps to chaos, in a square root map.

(ii)(i)1

0.5

0 2          3         4σ

x

x
0.2

0             0.1σ

x

0

Fig. 2.2 (i) Period doubling cascade to chaos in a differentiable map, showing periodic attractors
of the logistic map x �→ σx(1− x). (ii) Period incrementing with windows of chaos in a nonsmooth
map, showing periodic attractors of the square root map x �→ 3

5 x+
√
σ − x step(σ− x) (from [35])

It remains an open problem to establish in general how nonsmooth flows and
their global return maps are related, in particular how singularities and bifurcations
of a grazing flow are related to the gradients, gaps, or power laws of return maps,
especially in higher dimensions. As well as the power laws associated with graz-
ing, it is known that sliding regions create horizontal or vertical branches in a map,
as is illustrated in Fig. 2.3. If the discontinuity set is attracting, then many initial
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Fig. 2.3 Attracting or repelling sliding in a nonsmooth flow results in horizontal or vertical
branches in return maps. Attracting: all points entering the depicted region with a coordinate
xn ∈ [b, c] maps to an outgoing coordinate xn+1 = a. Repelling: a point entering the depicted
region with a coordinate xn = a maps to a set of outgoing coordinates xn+1 ∈ [b, c]

conditions collapse onto the same sliding trajectory, resulting in a horizontal branch
in a return map. Conversely if the discontinuity set is repelling, then any one initial
condition in sliding explodes into a continuous family of trajectories outside sliding,
resulting in a vertical branch in a return map.

The connection of nonsmooth maps to grazing flows has re-enlivened their study,
after they received much attention in the 1970s for their connection to homoclinic
bifurcations in differentiable flows, in generating robust chaos, and for their impor-
tance in ergodic theory, leading to such prototypes as the tent map, the doubling
map or dyadic transformation, the border collision normal form, and the Lozi map.
A survey of this topic would be too large to include here, but as a starting point and
for some connections to more recent theory the reader may begin with [54, 59, 63].

The main tools necessary to study purely ‘sewing’ type behaviour—which evolves
transversally through a discontinuity threshold—are given by the various methods
mentioned above: a saltation matrix to describe how an orbit crosses a discontinuity,
a Poincaré map describing how orbits return to a discontinuity, Melnikov methods
to describe splitting between such returning orbits, and the discontinuity mappings
associated with grazing. Henceforth we will be concerned mainly with far more
troublesome issues related to the phenomenon of sliding, that is, evolution along
discontinuities.

Filippov proposed in [51] that we study systems like (2.1) or (2.2) by forming a
differential inclusion, making the system continuous but set-valued at σ(x) = 0, by
saying that ẋ lies in a connected set that contains the values of both f0(x) and f1(x)
when σ(x) = 0 (assuming the domains of f0 and f1 can be extended to such a point
on the discontinuity threshold). By placing further assumptions of convexity and
continuity on this set (section 4 of [51]), Filippov was able to prove that solutions
existed, and even that they vary continuously with parameters and initial conditions.
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Filippov’s solutions, however, belonged to sets of possible solutions, with no cri-
teria to select one solution over any other. He did offer one argument that provides
unique solutions under certain conditions of stability, given by forming the differ-
ential inclusion from the smallest possible convex set that contains f0(x) and f1(x)
(see section 4 part 1a of [51]). This is simply the family of vector fields generated
by the right-hand side of (2.3) as ν varies over ν ∈ [0, 1], and constitutes the linear
formulation of the nonsmooth problem.

Having a definite form (2.3) for the vector field allows us to solve for motion on
σ = 0 as follows. At any x on σ = 0, if there exists some ν such that σ̇ = 0, then
this gives sliding motion along σ = 0. Substituting that ν back into (2.3) gives the
sliding vector field. If there exists no such ν, then crossing (or ‘sewing’) must occur.
We already found such dynamics for the boat and genes of Sects. 1.2 and 1.3.

Being differentiable, the subsystems on σ > 0 and σ < 0 can exhibit equi-
libria within their respective domains. The sliding vector field on σ = 0 can also
possess its own sliding equilibria. These have been given various names in differ-
ent contexts, but I find them misleading in the wrong contexts. The term ‘switched
equilibria’ is sometimes found, but we wish here to distinguish equilibria on the
switching threshold that do or do not involve sliding. The term ‘pseudo-equilibria’
is very common, but ‘pseudo’ may suggest that they are somehow artificial, which
they are not. Sliding equilibria are not, in particular, to be confused with ‘virtual
equilibria’, which are points where f1 = 0 in σ < 0 or f0 = 0 in σ > 0, outside the
domains of those vector fields as defined by (2.2)—these can influence dynamics
via their drag on the nearby flow, but they do not exist as states of the system (2.2),
and therefore are truly artificial. We shall use the term ‘sliding equilibria’ which
more accurately identifies them with the sliding dynamics.

Bifurcations can occur in which equilibria become sliding equilibria or vice
versa, or pairs of equilibria and sliding equilibria co-annihilate, known as bound-
ary equilibrium bifurcations [35]. Partial classifications exist for planar systems
[35, 51], but one must be careful, because in attempting to form such classifica-
tions it is easy to miss less intuitive cases like that in Fig. 2.4, see [74]. Boundary
equilibrium bifurcations allow steady states of the system to be created on or off the
discontinuity set, or to change stability, and in doing so create periodic orbits as we
saw in Fig. 1.3.

a>0 a=0 a<0
y

x
Fig. 2.4 A boundary equilibrium bifurcation in the system ẋ = x+y−a−ν, ẏ = y−2ν, ν = step(x).
A repelling node in x > 0 becomes an attracting sliding node on x = 0 as a changes sign
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There is much to be done in such systems classifying both local and global bifur-
cations, particularly in systems with multiple switches or more than two dimensions.
For more detailed reviews of the state of the art in recent years the reader may also
see, e.g., [29, 150]. But bifurcations, oscillations, and chaos are not the whole story.
Like the dynamics of smooth systems around the middle of the twentieth century,
nonsmooth dynamics is embarking upon its nonlinear age, with all the novel phe-
nomena made possible by nonlinear dependence on discontinuous quantities like ν,
and the difference between terms like ν, ν2, ν3, ... when ν = step(σ).



Chapter 3
Discontinuities to Model Missing
Knowledge

If the theory of differentiable dynamical systems entered its nonlinear age with the
discovery of bifurcations and chaos, then nonsmooth dynamics’ nonlinear age will
be characterized by tackling issues of determinacy. Loss of determinacy is an in-
escapable feature of nonsmooth systems, but it requires more explicit expression if
it is to be turned to more useful modelling.

When integrating a function that involves something like a step function, the
value step(0) at the discontinuity does not affect the value of the integral, provided
the argument of the step function is monotonic over the integral path (see, e.g., chap-
ter 1 of [51]). In a dynamic problem of the form d

dt x = F(x; step(t)), for instance,
solutions may be written as

x(t) = x(τ) +
∫ t

τ

ds F
(
x(s); step(s)

)

= x(τ) +
∫ 0

τ

ds F
(
x(s); 0

)
+

∫ t

0
ds F

(
x(s); 1

)
,

assuming τ < 0 < t, whose existence is provided by Carathéodory’s theorem (ex-
tending Peano’s existence theorem to non-differentiable systems of ordinary differ-
ential equations, see, e.g., [28, 51, 67]). The step function simply divides the inte-
gral in two, and the value of step(0) does not affect the right-hand side. In a dynamic
problem of the form ẋ = F(x; step(σ(x))) for some function σ, however, where the
discontinuity threshold is the set D = {x : σ(x) = 0}, when seeking solutions of the
Carathéodory form,

x(t) = x(a) +
∫ t

a
ds F

(
x(s); step

(
σ(x(s))

))
,

the value of the step function becomes essential, because the argumentσ(x(s)) could
remain at zero for a non-vanishing interval of s values. The existence of sets of
Carathéodory type solutions to problems of the form (2.2) was covered rigorously
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in [51], but in order to use those solutions for the purposes of modelling, we require
a more explicit way to characterize them, to distinguish the different dynamics they
make possible.

Mixed up in this problem is the understanding of what ‘nonsmoothness’ rep-
resents as an approximation. Nonsmooth systems are idealized in the sense that
they take abrupt transitions, and represent them as discontinuities occurring at def-
inite hypersurfaces in space. In what applied contexts is this a suitable model of
abrupt change, and what physical or living processes can it faithfully represent?
What are the implications of regularizing a discontinuity to obtain a well-defined
system, and does it matter how we regularize? Should we obtain similar behaviour
whether we smooth the discontinuity out, or numerically calculate the state x(t) by
interpolating between time intervals t, t + δ1, t + δ2, . . . ? What happens if the true
system actually lies a short distance δx away, or suffers a time lag δt, shifting x(t) to
x(t− δt)+ δx(t− δt), and does it matter whether these perturbations are simple func-
tions or stochastic processes? Should all such implementations of switching give
similar perturbations of the nonsmooth model, and if not, how do we make sense of
them as approximations of some underlying physics? Various such problems have
been discussed in the literature in a somewhat fragmented manner. Filippov’s for-
mulation in [51] used differential inclusions, while a recent trend to smooth the dis-
continuity has followed the approach introduced in [136] (and extended to include
hidden dynamics in [31, 111]). The discontinuity’s implementation is considered
with spatio-temporal delays or ‘chatter’ in [2, 6, 129, 148], or with stochasticity in
[132].

Part of the difficulty of developing a theory of how discontinuities affect dynam-
ics may be in our lack of understanding of what causes them. They tend to be used
when we have incomplete knowledge of the underlying processes when some abrupt
transition occurs, so we apply different set of equations under different conditions,
in different regions of state or parameter space. A way to clarify what a discontinu-
ity represents in a model might be to separate out those that are passive, active, or
dynamic in origin.

A passive discontinuity is simply a change in the physical parameters defining
a system, such as density, conductivity, or reflectivity, which jump across the inter-
face between different materials. A discontinuity in refractive index, for example, is
responsible for light bending as it passes between air and water. The jump in density
between air and metal allows a hammer to swing freely through the air, and yet im-
part a force when it contacts with a nail. To precisely understand the frictional and
impact contact forces between such media requires a microscale understanding of
their interfaces, but such a level of detail can hardly be useful in a large scale model
of the dynamics of the bodies themselves, so we approximate using, among other
simplifications, discontinuities.

An active discontinuity is imposed upon a system as a means of control. Ex-
amples might be switches or valves made of mechanical, electronic, biological, or
chemical parts, opening and closing different channels that drive or starve different
parts of a system. Or they may be decisions made by individuals or groups about
how to govern institutions, how to invest, or what causes to support. How we model
such discontinuities depends on whether they are imposed instantaneously, grad-
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ually, or via a series of sub-processes. With potentially so many complex factors
involved, the more detailed the model the less general would be any results obtained
from it.

A dynamic discontinuity is induced by some small and/or fast scale change in
stability, a jump from one stable attractor or pattern to another. The transition may
be too abrupt to be easily observed itself, but manifests as a large scale change
in behaviour, such as a financial crash, a change in heart rhythm, the collapse of
a structure, or onset of turbulence. Of our three categories, these have the most
comprehensible origins in the form of bifurcations or phase transitions, for which we
have well developed mathematical theory, such as the asymptotic theory discussed
in Sect. 1.1, particularly as concerns Stokes discontinuities and shocks [14, 16, 39,
68, 71].

These distinctions are not definitive, nor are they unique. For example, if a per-
son makes a decision actively, then this may actually be the result of some dynamic
phase transition across networks of neurons in the brain. But they illustrate the dif-
ferent features that discontinuities are called upon to approximate, the huge com-
plexity that is disguised by writing |x|, step(x), or other conditional statements, in
a systems of differential equations. We must formulate nonsmooth dynamics in a
way that is explicit enough to explore the assumptions behind using such terms, and
robust enough to start relaxing those assumptions.

Such issues were already in the minds of the pioneers of nonsmooth theory. It is
worth recounting Filippov’s own thoughts from section 8 of [51] on what nonsmooth
models are and what they aspire to:

1. Differential equations with discontinuous right-hand sides are often used as a
simplified mathematical description of some physical systems. The choice of
one or another way of definition of the right-hand side of the equation on a sur-
face of discontinuity . . . depends on the character of the motion of the physical
system near this surface.

2. Suppose that outside a certain neighbourhood of a surface of discontinuity of
the function F(t, x) the motion obeys the equation ẋ = F(t, x). In this neighbour-
hood the law of motion may not be completely known. Suppose the motion in
this neighbourhood may proceed only in two regimes, and switching over from
one regime to the other has a retardation, the value of which is known only to
be small.

3. Using these incomplete data, we should choose the way of defining the right-
hand side of the equation of the surface of discontinuity, so that a sufficiently
small width of the neighbourhood the motions of the physical system differ
arbitrarily little from the solutions of the equation ẋ = F(t, x) defined in the
way we have chosen1.

The subtle problem Filippov himself poses here has been largely overlooked in the
advancing theory of nonsmooth dynamics. Here we will loosen the main concepts
of nonsmooth dynamics in a way that allows us to probe these issues more deeply.

1In the original text this appears as one continuous passage, but for emphasis we have broken it
into three items.
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If discontinuities were all known to be of the dynamic kind, then nonsmooth dy-
namics would be just a direct extension of nonlinear dynamics and singular pertur-
bations. Instead, the dominant influence in the development of nonsmooth dynamics
has been of the active kind, from electronic and mechanical control, through to bi-
ological regulation, where we often have incomplete knowledge of the processes
behind the discontinuity. In the next two sections we use these applications to intro-
duce some basic concepts.

A lack of a way to quantify and ultimately reconcile such different approaches
to handling discontinuity remains the ‘elephant in the room’ for nonsmooth dynam-
icists. Nevertheless, given the successes of these different lines of study we should
now be able to form a more general picture. To do so we shall have to slightly
loosen some of the standard concepts of nonsmooth dynamics. What we will show
here is that the different behaviours that are possible at a discontinuity can be distin-
guished explicitly. We will also show that in regularizing the discontinuity one may
unwittingly single out only one of the many possible behaviours, such that different
treatments of the discontinuity giving contradictory dynamics.

The path to a general theory is laid by forming a common framework to describe
how solutions ‘handle’ or implement a discontinuity (less restrictive than attempt-
ing to ‘regularize’ the discontinuity), along with recognizing a common set of be-
haviours that such implementations give rise to.

Our first steps towards formalizing such a framework here culminate in a conjec-
ture that can be paraphrased as:

solutions of a system of ordinary differential equations with a discontinuity along a thresh-
old D, lie ε-close to solutions of a similar system in which discontinuity occurs in some
regionDε, such thatDε → D as ε→ 0.

Such a conjecture cannot be expected to hold without adequately specifying how
switching takes place across Dε between differentiable regimes outside Dε. Filip-
pov’s own work (see, e.g., sections 8–12 of [51]) considered ε-perturbations away
from the ideal discontinuous equations to prove the existence of solutions, and that
they travel along the convex hull of the nearby vector fields (we will look at this hull
in Sect. 5.1), leading to sets or ‘funnels’ of possible solutions. Here we will look at
how to model specific vector fields and solutions among those possibilities, to find
to what extent we can obtain a well-defined and robust model. We shall show that
non-idealities, no matter how small, play a crucial and fascinating role.



Chapter 4
Three Experiments

To set up the remainder of this article let us pose three problems. They incorpo-
rate various issues arising from basic analysis to simulation to applied modelling.
Their seemingly ambiguous dynamics expose remarkably well our current state of
knowledge concerning the robustness of nonsmooth models. The problems are: a
classic example of ambiguity from seminal texts; a two-gene regulatory system with
seemingly ambiguous activation of genes; and an investment game where players’
seemingly steady behaviour destabilizes a company’s trading.

To solve these systems we must decide how to handle a discontinuous term like
step(σ), in particular, to decide what value to assign to step(0). We can do this
in a number of different ways, which we call implementations. We will make a
preliminary definition of these here, to be refined in Chap. 5, along with six test
implementations that we use for simulations in this article.

Definition 4.1. Given a system in which a parameter switches according to an ideal
rule ν = step(σ), we define an implementation of the switch as a rule that forms a
transition layer |σ| ≤ ε and determines the selection of modes ν = 0 and ν = 1 within
it. In |σ| > ε the modes are assigned uniquely according to ν = step(σ). For our
purposes here this can involve one or more of the following six test implementations:

• smoothing—the switch is enacted by replacing νwith a smooth monotonic func-
tion φε(σ) satisfying φε(σ)→ step(σ) as ε→ 0;
• hysteresis—the switch is enacted by mapping ν : {0 or 1} �→ 1 at σ = +ε, and
ν : {0 or 1} �→ 0 at σ = −ε;
• time delay—the switch is enacted by mapping ν : 0 ↔ 1 a time δt = ε after

crossing σ = 0, that is, ν = step(σ(t − ε));
• time stepping—the rule ν = step(σ) is evaluated only at discrete time steps
δt = ε;
• noisy time delay—as in time delay, but with the delay chosen randomly between

0 < δt < ε each time a switch occurs;
• spatial noise—as in smoothing, but the state is also perturbed by adding random

translations of a size smaller than some κ � 1 at time steps δt = α � 1.
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In each case ε is a small positive constant. To consider a system with multiple
switches we introduce parameters νi = step(σi) for i = 1, 2, ..., which switch at
thresholds σi = 0, and in the case of smoothing, hysteresis, or time delay, involve
different small quantities εi, i = 1, 2, . . . associated with each threshold.

We have expressed the switch in terms of ν = step(σ) without loss of generality,
and could instead have used any other discontinuous function, such as λ = sign(σ)
for which the implementations follow directly via the relation λ = 2ν − 1.

Of course one may consider other implementations besides those above, for in-
stance perturbations that increase the dimension of the system. The list above will
be sufficient for this exploratory study, but there are certainly extensions to be made,
and perhaps a more general but less explicit formulation will be found. We will not
consider the implementation that is provided by using event detection in compu-
tational software, because this requires an additional decision to be made of what
dynamics to impose on σ = 0, a decision we are not yet ready to make.

4.1 Filippov’s Convexity Paradox

The following problem is adapted from one posed by Filippov in section 7 example
134 of [51]. Consider a planar system

(
ẋ
ẏ

)
=

(
− 1

2 − λ
1
3 + λ

3

)
, (4.1)

where λ = sign(x), and assuming λ ∈ [−1,+1] when x = 0. Whatever the flow in
this system, the vector field for x � 0 simply points towards x = 0, so the flow is
attracted to the discontinuity at x = 0 and must remain there. All that remains is to
find its speed of motion along x = 0.

In Fig. 4.1(i–vi) we simulate (4.1) using the test implementations of the switch
set out in Definition 4.1. Smoothing the discontinuity (and then simulating using
some standard numerical integration package), we obtain the trajectory in portrait (i)
of Fig. 4.1. Simply discretizing Eqs. (4.1) instead gives the portrait (ii). Introducing
hysteresis or delay in the switch yields similarly (iii)–(iv), while a noisy delay yields
(v). In (vi) we see two examples of what happens with a combination of such effects,
as we smooth Eqs. eq. (4.1), discretize them, and then introduce spatial noise: for
small enough noise the simulation agrees with (ii–v), for large noise it agrees with
(i), up to random variations. The sizes of these perturbations are described in the
figure caption.

All show motion along the discontinuity threshold, but some result in motion
upward at a speed ẏ ≈ 5/24, while others evolve downward at a speed ẏ ≈ −1/6
(we will see why these specific values of the speed arise). Implemented with noise,
either type of solution can be obtained for sufficiently large or small amplitude of
random perturbations.



4.1 Filippov’s Convexity Paradox 27

y

x

y

x

y

x

y

x

y

x

y

x

sm
oo

th
ed

(i) (ii) (iii)

(iv) (v) (vi)

hy
st

er
et

ic

tim
e 

de
la

y

no
is

y 
de

la
y

di
sc

re
te

sp
at

ia
l n

oi
se

small
noise

large
noise

Fig. 4.1 The system from Fig. 7.1 simulated from a point in x < 0, where the switch implementa-
tion is: (i) smooth, (ii) time stepping, (iii) hysteretic, (iv) time-delayed, (v) with a noisy time delay,
or (vi) with spatial noise (large or small noise, slightly displaced for clarity). Simulated using (4.1)
and Definition 4.1 with ε = 0.1. In (v) we use κ = α = 0.1 for small noise and κ = 0.2, α = 0.01,
for large noise. Similar results are obtained for any initial conditions and any choice of smoothing
function

This was essentially this problem posed by Filippov, but considering only an
idealized system (i.e., not considering such implementations), to highlight issues
of uniqueness of solutions to (4.1). Filippov’s theory, taken as a whole, allows for
all of the different outcomes in Fig. 4.1, but his most commonly accepted concept
of ‘sliding’ along the discontinuity threshold favours the outcomes in (ii)–(v), in
contradiction to the outcome of smoothing in (i).

Given such a simple system as (4.1), the contrasting results in Fig. 4.1 reveal
somewhat of a conceptual pickle in the state of understanding of nonsmooth dy-
namical theory, one that will become more pronounced over the next couple of ex-
amples. Distinguishing between the different possibilities and when to expect them
is vital for applications, and moreover is achievable given recent advances, such
as [18, 79, 83, 129, 131, 132]. These have provided hints of conditions to distin-
guish between alternative behaviours, but rigorous results are piecemeal, lengthy,
and technical, even in the simplest cases when one smooths a discontinuity [111] or
adds hysteresis [18].

One might be concerned that we can hope at all to develop a serious theory of
nonsmooth models in the light of such contrary results. We will show that these
are each correct and reconcilable within definite perturbative contexts. We will
also show that these pale against other indeterminacies that have come to light in
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recent years, not limited to speed or direction of motion along the threshold, but
also whether solutions evolve along the threshold at all or simply cross through it.

4.2 On or Off Genes

An example studied in [117] concerns a model of two genes responsible for produc-
ing proteins with concentrations xi, which obey

(
ẋ1

ẋ2

)
=

(
ν1 + ν2 − 2ν1ν2 − γ1x1

1 − ν1ν2 − γ2x2

)
:= fν1ν2 (x1, x2), (4.2)

where νi = step(xi − θi) for some positive constants θ1, θ2, γ1, γ2, for which we as-
sume 0 < γiθi < 1. The switching of each νi models the (de-)activation of the ith

protein production as its concentration xi passes a threshold value θi, as we intro-
duced in Sect. 1.3. It will be convenient to express the right-hand side as a planar
vector field fν1ν2 (x1, x2), as sketched in Fig. 4.2(top-left).
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Fig. 4.2 A two-gene system switching between four modes (top-left), and its flow simulated from
a point in x1 < θ1, x2 < θ2, in (i–v). The solution evolves onto the discontinuity threshold x1 = θ1,
and proceeds onto the threshold x2 = θ2, where it then remains approximately. The switch is
modelled as: (i) smooth (substituting νi with νi = x1/εi

i /(θ
1/εi

i + x1/εi

i ) for small constants εi), (ii)
time stepping, (iii) hysteretic, (iv) time-delayed, or (v) with a noisy time delay. Simulated from
(4.2) for parameters θ1 = θ2 = 1, γ2 = 0.9, γ1 = 0.4, and implemented with ε1 = ε2 = α = κ = 0.2
(as described in Definition 4.1)

The range of behaviours that are possible at the discontinuity thresholds is less
obvious than in Sect. 4.1. Clearly the half-lines x1 = θ1, x2 > θ2, and x2 = θ2,
x1 > θ1 are attracting, so motion can only proceed along the thresholds there, and



4.2 On or Off Genes 29

solutions can only escape those portions at the point x1−θ1 = x2−θ2 = 0 where they
intersect. Elsewhere, on x1 = θ1, x2 > θ2, and x2 = θ2, x1 > θ1, it can be shown that
solutions cross these thresholds transversally (see [82, 117]). Let us focus solely on
what happens at x1 − θ1 = x2 − θ2 = 0 after motion along x1 − θ1 = 0 < x2 − θ2.

Similarly to Sect. 4.1 we simulate the system by implementing the two dis-
continuities in the manner of Definition 4.1. The results are shown in Fig. 4.2
for parameter values given in the caption. In all cases the solution evolves onto
the threshold x1 = θ1, x2 > θ2, travels downward until reaching the intersection
x1 − θ1 = x2 − θ2 = 0, and ‘rounds the corner’ onto the threshold x2 = θ2, x1 > θ1.
(In fact the solution continues towards an equilibrium state at x1 ≈ θ2γ2/γ1, x2 ≈ θ2,
not shown). The outcome appears to be robust to the method of implementation.

For a different set of parameters, however, we obtain the contradictory behaviours
shown in Fig. 4.3. This is despite the vector fields outside the discontinuity thresh-
olds xi = θi being qualitatively unchanged. Implemented by smoothing, time step-
ping, or time delay, the solution now sticks upon reaching x1 − θ1 = x2 − θ2 = 0.
With hysteresis the solution rounds the corner as before; however, isolated param-
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Fig. 4.3 As in Fig. 4.2 except γ1 = 0.6. The solution evolves onto the discontinuity threshold
x1 = θ1, along which it evolves onto x1 = θ1, x2 = θ2, where it then remains (approximately), for
all implementations except the last—noisy solutions can either stick (v) for κ � 0.02, or round
the corner (vi) for κ � 0.02, while near κ ≈ 0.02 intermittency is seen, with repeated simulations
showing either behaviour

eter values ε1 � ε2 can be found for which the hysteretic solution does stick to
x1 − θ1 ≈ x2 − θ2 ≈ 0, for example, ε1 = 0.01, ε2 = 0.02 (not shown). Implement-
ing with noise we are able to see both behaviours: sticking at the origin for small
enough noise, rounding the corner for larger noise, and in between, an intermittency
whereby repeated simulations may show either behaviour due to the randomness of
perturbations.
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These contrary results can be explained, and a context to do so is provided in
the following sections. In short they hinge on the existence or not of an attractor at
x1−θ1 = x2−θ2 = 0 and its stability under perturbation. Re-considering the literature
in the light of the results above, one recognizes hints towards them in studies such
as [117] and [2]. In [117] the dynamics at the threshold is studied assuming the
quantities νi are actually smooth ‘Hill’ functions, φεi

i (xi) = x1/εi

i /(θ
1/εi

i +x1/εi

i ), which
tend to step(xi − θi) as εi → 0 [70].

Even if solutions stick robustly to the intersection x1− θ1 = x2− θ2 = 0, their fate
might still not be obvious, as the following example shows.

4.3 Jittery Investments

Consider a game in which two players each buy and sell stocks in a company, de-
noting the amounts they own as x1 and x2, measured relative to some desirable asset
level xi = 0, and let the stocks owned by the company itself be z. The system and
phenomenon we describe below extend readily to more players and companies. The
rules we assign will be simple to illustrate the mathematical phenomenon at work,
but there is very little special about how they are chosen, and one could certainly im-
prove the game with more realistic trading rules and other players with more defined
roles without destroying the phenomenon.

Let xi purchase stocks at a rate c, and sell them back to the company at a rate −γi

only if xi > 0, so

ẋi =

{
c − γi if xi > 0 ,
c if xi < 0 .

If 0 < c < γi, then each player is attracted towards their respective threshold xi = 0.
Let us express this in terms of a switching multiplier νi = step(xi) simply as

ẋi = c−γiνi. Nonlinear terms can be used to introduce strategic choices, for example,
we may add an increased rate of buying ρi in response to competition from other
players in the form

ẋi = c − γiνi − ρiν1ν2 , i = 1, 2. (4.3)

The company’s level of self-owned stocks is then fed and depleted by the two play-
ers, giving

ż = −2c + γ1ν1 + γ2ν2 − ρ11ν1ν2 + ρ00(1 − ν1)(1 − ν2) , (4.4)

where we also give the company its own strategic terms, namely an increase in
selling off to other parties at rate ρ11 if both players are selling at the same time, or
an increase in buying back shares from other parties at rate ρ00 if both players are
buying at the same time.
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We will denote the right-hand side of the three-dimensional vector field defined
by (4.3)–(4.4) as fν1ν2 , so

(ẋ1, ẋ2, ż) = fν1ν2 (4.5)

:=
(

c − γ1ν1 − ρ1ν1ν2 , c − γ2ν2 − ρ2ν1ν2 ,

− 2c + γ1ν1 + γ2ν2 − ρ11ν1ν2 + ρ00(1 − ν1)(1 − ν2)
)
,

and we assume γi + ρi > c > 0 for i = 1, 2.
The piecewise-constant vector field is sketched in the (x1, x2) plane in Fig. 4.4,

and again appears extremely simple: the flow evolves onto the thresholds x1 = 0
and x2 = 0, where it must remain. The simulations in Fig. 4.4 reveal that for any
implementation (i)–(v), solutions evolve towards the intersection x1 = x2 = 0 and
remain there for all later times.
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Fig. 4.4 An investment game with four modes. The vector field is sketched (top-left), and its
flow is simulated in (i–v) from a point in x1 < 0 < x2 by the different implementations from
Definition 4.1. The solution evolves onto the discontinuity threshold x1 = 0, then towards the
intersection with the second discontinuity threshold x2 = 0, where it remains (approximately),
regardless of implementation, and for any parameter values (given γi + ρi > c > 0 for i = 1, 2)

Thereafter only the company’s holdings, z, may fluctuate, so we must ask how
this is affected by the investment dynamics of the two players. As in Sects. 4.1 and
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4.2, our task reduces to determining the speed of motion along the discontinuity
threshold, in this case the rate of change of z on x1 = x2 = 0.

We find a rather different phenomenon, with more erratic variability, than in
Sects. 4.1 and 4.2.

The result of simulations for the implementations using smoothing, hysteresis,
time delay, or time stepping is shown in Fig. 4.5, for two different games (i.e., two
sets of parameters). The speed ż is plotted for different ratios of the implementa-
tion parameters εi, which are defined as (ε1, ε2) = ε(cos ωπ2 , sin ωπ2 ). Note for time
stepping there is only one ε parameter (the time step) so the graph is a horizontal
line.
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Fig. 4.5 The company’s rate of change ż for noise-free implementations of the investment game.
Left: using c = 1, γ1 = 1.4, γ2 = 1.8, ρ1 = 0.5, ρ2 = 0.5, ρ11 = 1, ρ00 = 3. Right: using c = 0.5,
γ1 = 1.1, γ2 = 1.4, ρ1 = 0.4, ρ2 = 0, ρ11 = 2, ρ00 = 0.4

First note, alarmingly, how the two different approaches we might favour in com-
puter simulations—time stepping or smoothing—give markedly different rates of
change for z. Note also how the delayed or hysteretic implementations depend er-
ratically on the relative size of delay/hysteresis across x1 = 0 and x2 = 0, i.e., the
ratio ω.

The two different games in Fig. 4.5 exhibit markedly different behaviour. The
behaviour outside x1 = x2 = 0 does not change significantly between these parame-
ter values, remaining always pointing ‘inwards’ towards the origin. Despite this the
speed of motion along x1 = x2 = 0 changes, both between the two parameter sets,
and as we vary the implementation parameter ε2/ε1 = tan ωπ2 . We could plot similar
graphs with any of the parameters c, γi, ρi, on the horizontal axis in place of ω, and
obtain similarly erratic curves.

The noisy implementations are missing from Fig. 4.5. The same two games are
implemented with noisy delay or spatial noise (see Definition 4.1) in Fig. 4.6. Coun-
terintuitively, the outcome is less erratic in the noisy conditions of Fig. 4.6 than in
the regular conditions of Fig. 4.5. Noise appears to push the value of ż towards the
deterministic value obtained under smoothing. The significant random fluctuations
are a result of the noise amplitude needing to be large to dampen the erratic varia-
tions in Fig. 4.5.
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Fig. 4.6 Noisy implementations corresponding to Fig. 4.5

In Sects. 4.1 and 4.2 the implementation could push a system between two differ-
ent possible behaviours. Here we see a wide range of erratically varying behaviours,
and not only do different implementations select entirely different outcomes from
within this set, but changing the parameters of the implementation itself, even
slightly, selects vastly different behaviours. Different aspects of these rather strik-
ing results began emerging across a number of investigations [5, 6, 78, 84]. The
erratic and sensitive dependence in the case of hysteresis was first studied in [6],
and extended to other implementations in [84], contrasting with the more regular
and predictable dynamics resulting from smoothing [5, 78].

The issues involved in the practical modelling of discontinuities clearly involve
a number of factors. To begin addressing them we first need a qualitative way to
characterize such behaviour, to which we turn now.



Chapter 5
Layers and Implementations

Consider a dynamical system modelled by an equation ẋ = f(x), where the function
f(x) is smooth except at some discontinuity threshold D. Let the space of x be di-
vided by D into open regions Ri, where i ∈ ZN with ZN denoting a set of N indices
or modes. Let f(x) take a different functional form fi(x) on each region Ri, so

ẋ = fi(x) if x ∈ Ri, i ∈ ZN . (5.1)

We assume that the functions fi(x) are smooth in x over the closure Ri of each region
Ri. A solution of such a system is depicted crossing a discontinuity threshold in
Fig. 5.1(i), with (ii) showing its tangent vectors following the discontinuous vector
field, and therefore changing direction abruptly at D. Note that (5.1) does not yet
define ẋ for x ∈ D.

Fig. 5.1 (i) A trajectory crossing a discontinuity threshold D, such that (ii) its tangent vectors are
f0 and f1 either side of the discontinuity, and (iii) lie in a connected set G (their endpoints forming
a curve connecting f0 to f1 as depicted) at a point xD on the discontinuity

To study how solutions of this system will behave at D, we need to know how
the tangent vector ẋ switches between the different vectors fi(x) that it encounters
near a point x ∈ D. We will do this by saying that ẋ sweeps continuously through
some set of values as x crossesD, as shown in Fig. 5.1(iii), and expressed as
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ẋ ∈ G(x) where G(x) ⊃
{

fi(x) if x ∈ Ri, i ∈ ZN

}
, (5.2)

where G(x) is a connected set that varies smoothly with x.
This does not fully defineG(x) itself, and we will look into specific ways of doing

so in the following sections. In particular we will look at how different choices for
G(x) relate to different modelling assumptions. All (5.2) tells us is that if x lies on
the discontinuity threshold, then ẋ takes a set of values G(x) that interpolates in
some way between any fi(x) for which x lies on the boundary of Ri, for any i ∈ ZN .
If x lies inside a region Ri and therefore outside the discontinuity threshold, then
G(x) needs to contain only fi(x), and it makes sense to define G(x) in such a way
that it reduces to the right-hand side of (5.1) for x � D.

Before going on to define G(x) more closely, first let us extend (5.2) to describe
our main topic of interest, that of perturbations of the idealized system.

Consider a system where a switch takes place over an ε-neighbourhood of the
thresholdD, which we call the switching layerDε. We can then refine Definition 4.1
as follows.

Definition 5.1. An implementation of the system (5.1) assigns a rule that defines
(discrete or continuous) trajectories x(t) through any point x and satisfies

ẋ ∈ Gε(x) such that Gε(x) =
⋃

u∈Bε(x)

G(u) (5.3)

on a layer Dε for some ε > 0, such that Dε ⊃ D and Dε → D as ε → 0, where
Bε(x) denotes a ball of radius ε about x.

An implementation may represent a more physically precise model of switch-
ing than the idealized system described by (5.1)–(5.2), or a method of simulating
a model described by (5.1)–(5.2). In any case, one of the first goals of piecewise-
smooth systems theory should then be to discover for what classes of implementa-
tions the following holds.

Conjecture 1. Solutions of the implementation (5.3) lie ε-close to solutions of the
piecewise-smooth system given by (5.2).

We shall see that (1) is too imprecise to hold as stated, but the concepts above
permit a more complete statement.

Conjecture 2. For a given implementation, there exists a set G such that solutions
of the implementation (5.3) lie ε-close to solutions of the piecewise-smooth system
given by (5.2).

The next few sections are essentially an exploration of these statements, obtain-
ing insight into the classes of systems that (5.2) represents as a modelling paradigm.
We proceed qualitatively. Rigorous proofs of the conjecture have been achieved so
far only in such limited conditions that they have narrow applicability (but we will
discuss these as we explore some of the implementations below). Alas a general
proof of either conjecture would seem to be premature, most likely requiring a gen-
eral representation of implementations that is far more explicit about their workings
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than Definition 4.1 or Definition 5.1, and relating broad classes of implementations
to explicit forms for Gε(x). Our modest aim here will instead be to gain insight
into the dynamics of such implementations, with an eye to better formulating and
proving these conjectures in the future.

We will also not prove that solutions to the dynamical systems above exist. A
knowledge of the most general form of G or Gε that guarantees the existence of
solutions (beyond the convex and upper semi-continuous sets studied by Filippov
in [51]) would help further reveal the kinds of system that can be modelled, but is
beyond our ambitions here.

The concept of an implementation is related but not identical to the concept of a
regularization. The purpose of regularization is, as the term suggests, to achieve reg-
ularity, in this case to make a discontinuous problem well-posed under certain lim-
ited conditions, usually with the aim of obtaining unique solutions. In analysis, for
example, regularization is usually achieved with some kind of smoothing [31, 136],
or in electronics usually with some kind of hysteresis or delay that ensures a finite
interval of motion between each switching event [134, 148]. An implementation, on
the other hand, merely seeks to render a system solvable without any expectation of
uniqueness.

5.1 Linear Switching

A natural choice for the form of the set in (5.2) is to take the convex hull, which we
call F , of the vector fields across a discontinuity.

Definition 5.2. The linear switching system corresponding to (5.1) is given by

ẋ ∈ F (x) (5.4)

where F (x) = hull
{

fi(x) ∀ i : x ∈ Ri, i ∈ ZN

}
,

where hull {Q} denotes the convex hull of the set {Q} (sometimes written as co{Q}
or conv{Q}). Solutions of (5.4) will be called linear solutions of (5.1).

This is often referred to as a Filippov system, but for our purposes here we use
the term linear system to highlight that we can express F as a linear function of
switching multipliers μi, in the following way.

An explicit expression for the hull is given by a linear combination of the vector
fields fi(x),

F (x) =
N∑

i=1

μifi(x) such that
N∑

i=1

μi = 1 , (5.5a)

where
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μi =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if x ∈ Ri ,

0 if x � Ri ,

[0, 1] if x ∈ δRi ,

(5.5b)

where δRi = Ri/Ri denotes the boundary of Ri. So μi is a step function that is 1 on
Ri and 0 outside, and set-valued on the boundary. Note that, because the μi’s sum
to unity, if μi = 1 for some i, then μ j = 0 for all j � i. For the sake of defining the
hull we let μi = [0, 1] on δRi, but in Chap. 5 we will look at ways to assign specific
values to μi ∈ [0, 1] for each i ∈ ZN , and hence assign specific values from the hull
(5.5a) to ẋ.

As we said for the discontinuous quantity ν following (1.15) in Sect. 1.1, we will
not make the x-dependence of μi explicit by writing μi(x), but must remember that
it is a piecewise-constant for x � D and is set-valued for x ∈ D where, as the
coefficients μi vary over the intervals [0, 1], the right-hand side of (5.5a) explores all
values in the convex hull.

The hull is the smallest convex set that contains all of the fis from (5.1). Ex-
tensive theory for such convex system was developed in [51], starting with the
proof that solutions exist if F is non-empty, bounded, closed, convex, and upper
semi-continuous. Moreover, making use of a set Fδ that lies δ-close to F , such that
F ⊂ Fδ and F0 = F , in [4, 51] it is proven that a solution exists through a point
xδ that is δ-close to x, and that the limit of a convergent sequence of solutions of
(5.4) is itself a solution of (5.4). Most commonly the term Filippov system refers to
a system where a point x ∈ D can lie on the boundary of two regions R1 and R2

only, in which case the linear solutions of Definition 5.2 are mostly unique (except
at certain singularities). They are no longer unique if x ∈ D can lie on the boundary
of more than two regions.

We refer the reader to [51] for the full theory of convex solutions rather than
restating it here, because it is rather lengthy, and although a natural choice math-
ematically, the system (5.4) is actually a strong restriction of the possible systems
allowed by (5.2). There is no physical or dynamical reason in general that restricts
a system to follow a vector field lying in the convex hull F . At the same time, in
associating one switching multiplier μi with each vector field fi, the model (5.5a)
contains somewhat more multipliers than are necessary to continuously transition
between all of the modes fi, and instead it is possible to define sets that are both
more general, and yet involve less unknown multipliers. This will matter when, in
order to study solutions in detail, we come to fix the values of these multipliers by
dynamical or physical considerations.

5.2 Nonlinear Switching

A common way that models like (5.1) arise in practice is when a function F depends
on a number of discontinuous quantities. Let these quantities be a set of switching
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multipliers ν1, . . . , νm, defined without loss of generality as

ν j = step
(
σ j(x)

)
for σ j � 0 , (5.6)

recalling the definition (1.15), in terms of smooth scalar functions σi(x) for i =
1, . . . ,m. We then write G(x) in (5.2) as

G(x) = F(x; ν1, . . . , νm) , (5.7a)

where

ν j =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if σ j(x) > 0 ,

0 if σ j(x) < 0 ,

[0, 1] if σ j(x) = 0 .

(5.7b)

Similarly to the hull (5.5), for the sake of defining G(x) we let ν j = [0, 1] on σ j = 0,
but in Chap. 5 we will look at ways to assign specific values to ν j ∈ [0, 1] for each
j = 1, . . . ,m, and hence assign specific values from the set (5.8) to ẋ.

The right-hand side of (5.7a) is then set-valued on D due to the set-valuedness
of (5.7b) at σ j = 0, but taking a unique value if σ j � 0 for all j = 1, . . . ,m. We may
assume the σ js and F to be defined for all x (or one may restrict these domains and
the differentiability of these functions as a problem requires, but our analysis will
mainly be local).

For (5.8) to correspond to (5.1) and (5.2) there must be a direct correspondence
between each fi(x) and each F(x; ν1, . . . , νm) outside D, that is when σ j � 0 for all
j = 1, . . . ,m. The simplest way this happens is if G(x) is a convex canopy of the
fields fi(x).

Definition 5.3. The set G(x) is a convex canopy of the vector fields fi(x) indexed by
i ∈ ZN in (5.1) if it is expressible in the form (5.7a) in terms of switching multipliers
ν1, . . . , νm, given by (5.7b), such that N = 2m, and such that: F has continuous
dependence on x and on the ν j s, and there is a one-to-one correspondence between
each of the N functions fi with i ∈ ZN , and the 2m vector fields F(x; ν1, . . . , νm) in
which each ν j takes value 0 or 1.

We then write the following.

Definition 5.4. The nonlinear switching system corresponding to (5.1) is given by

ẋ ∈ G(x) where G(x) = F(x; ν1, . . . , νm) , (5.8)

where F depends smoothly on x and on switching multipliers ν j as defined in (5.7b).
Solutions of (5.8) will be called nonlinear solutions of (5.1).

The correspondence required in Definition 5.3 can be achieved by associating
each i ∈ ZN with a binary string i1 . . . im of 0s and 1s, by either
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(a) i = 1 +
m∑

j=1

2 j−1i j or (b) i = i1 . . . im , (5.9)

where (a) simply numbers regions so i ∈ ZN = {1, 2, . . . ,N}, while (b) identifies i as
the binary string i = i1i2 . . . im itself.

The simplest example of a canopy is then given by writing

G(x) =
2m∑

i=1

μifi(x) where μi =

m∏

j=1

ν
i j

j (1 − ν j)
1−i j , (5.10)

with i and i1 . . . im related by either rule in (5.9). Thus when all σ js are non-
vanishing, G(x) has a unique value fi(x). If any σ j vanishes, then the corresponding
multiplier ν j is set-valued, each μi either vanishes or is set-valued, and hence G is
set-valued.

The canopy given by (5.10) is typically a subset of the hull in (5.5a), that is
G(x) ⊆ F (x). In fact the canopy is typically a lower dimensional set, as rather than
N − 1 coefficients μi in the hull (5.5a), we now have only m − 1 coefficients ν j, with
N = 2m. Canopies still given by (5.7a) but taking values outside the hull (5.5a) are
also possible if F includes hidden terms, which we will come to in Sect. 5.3.

Although the expression (5.10) may look somewhat opaque at first, it is easy
to expand for any given m and the resulting expressions are rather easier to under-
stand. For convenience we give the cases m = 1 in the different indexing systems in
Appendix B.

This system now consists of m discontinuity thresholds D j that comprise the
discontinuity surfaceD,

D j =
{
x ∈ Rn : σ j(x) = 0

}
and (5.11)

D = {x ∈ Rn : σ1(x) . . . σm(x) = 0} ,

and clearly this assumes that the discontinuity surface is a manifold expressible as a
union of submanifoldsD = D1 ∪ · · · ∪ Dm.

The convex canopy of the vector fields fi is a natural choice for a set interpo-
lating between the fields fi, as just the multi-linear interpolation between the fi’s in
terms of the coefficients ν j, in some ways more natural than the convex hull (5.5a)
which is strictly linear in it coefficients μi but requires a larger number of them. As
such the expression (5.10) result has been arrived at independently from different
viewpoints by several authors, perhaps first in [5] as a way of ‘blending’ the fields
fi to seek unique motion along D, as well as in [37, 38] as a way of facilitating
computation, in [78, 81] as a study of nonlinearity in switching, and in [98, 141] to
derive equivalence classes of regularized systems.

Functions like F(x; ν1, . . . , νm) appear naturally in many applications, wherever a
physical parameter ν j jumps in value as some scalar quantity σ j crosses a threshold.
The ‘three experiments’ in Chap. 4 took this form, and in electronic control this is
familiar as Utkin’s formulation of variable structure systems (see, e.g., [127, 148]).
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5.3 Hidden Terms: The ‘Ghosts’ of Switching

The expression (5.10) for G is allowed to have nonlinear dependence on the switch-
ing multipliers ν j = step(σ j). Let us now ask what this nonlinearity signifies, and
how this relates to the problem of defining the value of step(0).

Consider that we have a vector field that behaves as ẋ = F(x; step(σ(x))) for
σ � 0, and a modelling parameter that behaves as ν = step(σ(x)). Can we simply
assume that an adequate model is given by ẋ = F(x; ν)? What is the difference if we
instead model this as ẋ = F(x; νp) for some p ∈ N, since we can also write νp =

step(σ(x))? This will have non-trivial consequences on the discontinuity threshold,
where ν varies over the interval [0, 1].

The difference between any monomial νp and the linear term ν can be written as

νp − ν = ν(ν − 1)
p−2∑

r=0

νr for p ≥ 2 . (5.12)

This is what we called in Sect. 1.1 a hidden term, since it vanishes for all σ � 0,
as highlighted by the factorization on the right-hand side where either ν or ν − 1
vanishes if ν is 0 or 1. The hidden term need not vanish inside the switching layer,
however, where 0 ≤ ν ≤ 1. Let us now write this more formally.

Definition 5.5. A hidden term H(x; ν) associated with a discontinuity threshold D
vanishes everywhere outside D. If x ∈ D at a point where D is an intersection
D1 ∩ · · · ∩ Dm of manifoldsD j =

{
x ∈ Rn : σ j(x) = 0

}
, then we can write this as

H(x; ν)σ1(x) . . . σm(x) = 0 for any x . (5.13)

That is, either some σ j = 0 and x lies on the discontinuity threshold, or σ j � 0 for
all j in which case H(x; ν) = 0.

Using hidden terms we can distinguish between different systems such as ẋ =
F(x; ν) and ẋ = F(x; h(ν)), where h is any function of ν that behaves like h(ν) =
step(σ(x)), for example, h(ν) = νp for p ∈ N.

More generally we have the following.

Lemma 5.3. If a system ẋ = F(x; ν) can be expressed in terms of a multiplier ν =
step(σ(x)) for some smooth function σ, such that F is k-times differentiable with
respect to ν, then we can decompose it into the convex combination of the fields
f0(x) ≡ F(x; 0) and f1(x) ≡ F(x; 1), plus a k-times differentiable hidden term H(x; ν),
as

ẋ = F(x; ν) = νf1(x) + (1 − ν)f0(x) +H(x; ν) . (5.14)

Proof. The result is straightforward from Definition 5.5. It is clear from (5.14) that
F(x; 0) ≡ f0(x) and F(x; 1) ≡ f1(x), and therefore that H(x; 0) and H(x; 1) must
vanish, so H is a hidden term. The differentiability of H with respect to ν follows
directly from that of F. ��
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More useful than the result itself is to use this to derive an expression for H. If F is
k-times differentiable with respect to ν, then we can expand it as a polynomial

ẋ = F(x; ν) =
k∑

r=0

cr(x)νr , (5.15)

for some vector fields cr(x). We can express the first two of these, c0 and c1, in terms
of the vector fields f0 and f1 either side of the discontinuity by evaluating F at ν = 0

and ν = 1. Using (5.15) this gives f0(x) = F(x; 0) = c0 and f1(x) = F(x; 1) =
k∑

r=0

cr,

which re-arranges to c0 = f0 and c1 = f1 − f0−
k∑

p=2

cp. Substituting these into (5.15)

we obtain (5.14), where

H(x; ν) =
k∑

p=2

cp(x)(νp − ν) = ν(ν − 1)
k∑

p=2

p−2∑

r=0

cp(x)νr , (5.16)

using the identity (5.12) to extract the factor ν(ν − 1) in H. Thus H is a hidden term
since H(x; 0) = H(x; 1) = 0, and hence H(x; ν)σ(x) = 0 for all x.

Nonlinear dependence on discontinuous multipliers therefore gives us a way to
characterize different systems that appear the same almost everywhere, but differ
at a discontinuity threshold, distinguished via hidden terms. The result generalizes
easily to several switching multipliers ν j simply by forming a multi-variable poly-
nomial expansion in powers of ν j.

The hidden term (5.16) has a slightly different formula to that we obtained in
(1.11)–(1.12) in Sect. 1.1, but they are consistent. We developed (1.11) as an infinite
series for a scalar problem ẋ = F(x) with switching threshold x = 0, so to see the
equivalence we need to merely make the scalars x, F, an, bn, into vectors x,F, an,bn,

let the threshold be at σ(x) = 0, and truncate the series at O
(
νk

)
. Clearly then the

linear part of the series in (1.11) and (5.14) is equivalent with f1(x) = a0(x) and
f0(x) = b0(x). The hidden terms are both of the form

H(x; ν) = ν(1 − ν)G(x; ν) where G(x; ν) =
k−2∑

r=0

dr(x) , (5.17)

with coefficients dr(x) related to cr in (5.16) and ar(x), br(x), in (1.12), by

dr(x) = −
k∑

p=r+2

cp(x) = br+1(x) + (−1)r
k−2∑

p=r

p!
r!(p−r)!) ap+1(x) . (5.18)

Thus we are beginning to see how different modelling approaches lead to the same
fundamental form for the expansion of a piecewise-smooth function (5.14), with a
hidden term H = ν(1 − ν)G, and it is only the function G we obtain that changes.
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We will see a few more forms for G yet in Sect. 6.3, obtained by considering imple-
mentations that smooth the discontinuity in different ways.

Such in-depth analysis of dynamics at the discontinuity becomes particularly
necessary if solutions dwell upon the discontinuity threshold for significant intervals
of time, as seen in all of the examples in Chap. 4. That motion is known as sliding
along the discontinuity, and it is one of the oldest and most important notions in
nonsmooth dynamics. To deal with the various behaviours in Chap. 4 associated
with nonlinearity of the vector field or with the implementation of the discontinuity,
we need to significantly expand that standard concept of sliding. We shall do this in
Chap. 6, before applying these ideas specifically to the prototypes from Chap. 4.



Chapter 6
Ideal and Non-ideal Sliding

Sliding—motion along the discontinuity threshold—is central to the most novel
phenomena of nonsmooth dynamics. The theory was largely developed in Filip-
pov’s work [51], but seems to originate in earlier Russian texts, perhaps first from
G. N. Nikol’skii [109] (see also discussion in [4, 107, 148]). The standard definition
would describe sliding as motion along an ideal threshold D. We shall define it as
follows.

Definition 6.1. A solution of an implementation (5.3) of a piecewise-smooth system
(5.1) is said to slide if it evolves inside the layer Dε for a time Δt = O (1) (i.e., a
time not vanishing as ε→ 0).

This allows us to discuss sliding in implementations as well as in the ideal dis-
continuous system. Intuitively, sliding occurs because solutions tend towards some
invariant set in the layer Dε around the discontinuity threshold D. More precisely
we can state the following.

Lemma 6.1. Consider system (5.1) on an open region W, defined piecewise on re-
gions Ri =

{
x ∈ Rn : i = step(σ(x)), σ � 0

}
in terms of vector fields fi that are

differentiable on σ ≥ −ε (for i = 1) and σ ≤ +ε (for i = 0), and a scalar function
σ differentiable for all x. Take an implementation of (5.1) on W according to Def-
inition 5.1. If the discontinuity threshold D = {x : σ = 0} is either attracting or
repelling with respect to the vector fields fi for σ → 0 on W, and the vector fields
fi have non-vanishing components normal to D for σ → 0 on W, then there exists
some E > 0 such that the layer Dε, where σ = O (ε), is invariant inside W for
0 < ε < E.

Proof. The attractivity of D implies f1(x) · ∇σ < 0 < f0(x) · ∇σ, and repulsivity
of D implies the opposite signs, given that the normal components fi · ∇σ are non-
vanishing, evaluated at x as σ → 0. Since f0(x) and f1(x) are differentiable, at any
point x ∈ W on σ = 0, there exists Ẽ(x) > 0 such that f1(u) · ∇σ < 0 < f0(u) · ∇σ
for all u such that |u · ∇σ| < Ẽ(x). Let Ẽ(x) be the largest such value at each x, and
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let E be the infimum of all Ẽ(x) for x ∈ D∩W. Then for any ε < E the vector fields
satisfy f1(x) · ∇σ < 0 for x such that σ < +ε, and f0(x) · ∇σ > 0 for x such that
σ > −ε, therefore the region |σ(x)| < ε is invariant. ��

This suggests that if we can define a switching multiplier (some μ or ν), and a
dynamics on it in the switching layer, then sliding constitutes an invariant of the dy-
namics confined to the layer, when the dynamics would otherwise carry trajectories
through the layer. Even if we cannot define the layer dynamics in closed form, we
can still consider the attracting or repelling objects it forms that constitute sliding.

Lemma 6.1 treats only the case when D is attracting or repelling with respect
to the flows outside it, but attractivity/repulsivity is neither necessary nor sufficient
for sliding to take place. The extension of Lemma 6.1 to a discontinuity thresholdD
formed by the intersection of manifoldsD1∩· · ·∩Dm, for example, is quite straight-
forward, this also has been mainly considered only under conditions of uniformly
attraction ofD with respect to the surrounding flows, e.g., in [5, 38].

The situation in general is greatly more complicated. The discontinuity threshold
D need not be attracting or repelling for sliding to occur (as we saw in the example
of ‘sticky genes’ in Sect. 1.3, see also [81]). Moreover, an intersection of manifolds
D1∩· · ·∩Dm can be attracting without the individual thresholdsD j being attracting,
for example, if the flow spirals around a point x1 = x2 = 0 by crossing through
discontinuity thresholds x1 = 0 and x2 = 0 (see, e.g., [36, 51]). The permutations are
enormous and no substantial accounting of the possibilities has been made. Perhaps
the most ambitious steps in this direction are in [66], where the authors classify the
behaviours a solution can exhibit once it enters an intersection in a planar system.

The only general statement that can be made is that if the set G from (5.2) has
an intersection with the tangent space TD of the discontinuity threshold at a given
point x ∈ D,

G(x) ∩ TD(x) � ∅ , (6.1)

then sliding motion is possible in (5.1). Similarly if the set Gε of a given implemen-
tation from (5.3) has an intersection with the tangent space TD of the discontinuity
threshold at a given point x ∈ D,

Gε(x) ∩ TD(x) � ∅ , (6.2)

then sliding motion is possible in the implementation of (5.1). A solution arriving at
Dε evolves onto some attractor that lies in Dε, on which solutions x(t) evolve in a
direction ε-close to the tangent space toD. Thus we formalize the notion of sliding
more precisely as follows.

Definition 6.2. A solution x(t) of (5.1) is said to slide along the discontinuity thresh-
oldD if ẋ(t) ∈ G(x)∩TD(x). A solution x(t) of an implementation of (5.1) is said to
slide along the discontinuity threshold D (more strictly along the layer Dε approx-
imatingD) if ẋ(t) ∈ Gε(x) ∩ TD(x).
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By saying ẋ(t) ∈ Gε(x) ∩ TD(x), we mean that the tangent vector along a trajectory,
ẋ(t), which must lie in Gε(x), lies tangent to the discontinuity thresholdD, implying
that x(t) evolves alongDε as t changes.

To find out whether sliding will occur in either situation requires a look at the
dynamics, to find out whether the vector fields in the sets (6.1) and (6.2) possess
attractors or repellers in the layer that can be followed by any solutions x(t). We
explore the different approaches to this over Sects. 6.1 and 6.3.

The experiments in Chap. 4 show sliding under the implementations from Def-
inition 4.1. In each case sliding occurs in a layer Dε j

j that forms an order ε j-

neighbourhood around an ideal discontinuity threshold D j =
{
x : σ j(x) = 0

}
. Re-

gardless of implementation, the attractivity of the layer implies the existence of local
attractors inside it. The effects of Lemma 6.1 are seen in Figs. 4.1 to 7.4, with slid-
ing occurring along the threshold x = 0 in Fig. 4.1, the thresholds x1 = 0 < x2

and x2 = 0 < x1 in Figs. 4.2 and 4.3, and the threshold x1 = 0 < x2 in Figs. 4.4,
4.5, and 4.6. With smoothing, these attractors are normally hyperbolic manifolds or
equilibria. With hysteresis, the attractors are cycles oscillating between the bound-
aries x1 = ±ε1 and x2 = ±ε2, therefore reducible to return maps on those surfaces.
For time stepping or delay the attractors can be bounded within definite ε1 and ε2

neighbourhoods of x1 = 0 and x2 = 0, respectively, and are described by piecewise-
smooth two-dimensional maps on the plane.

Before returning to look at these experiments again closely, we need to build up
a more general picture of the dynamics inside the switching layer that result from
these definitions of layers, implementations, and sliding.

6.1 Sliding Perspective I: The Piecewise-Smooth System

Given the description of a piecewise-smooth system in terms of switching multipli-
ers, as given by (5.2) with (5.8), we can analyse dynamics at the discontinuity as
follows.

In (1.15) we defined the multipliers ν j = step(σ j) only as taking values ν j ∈ [0, 1]
at σ j = 0. We shall now ask how each ν j varies across the interval [0, 1] and derive
dynamics on them induced by the vector fields in σ j � 0. (Clearly outside the
discontinuity surface the ν js are piecewise-constant and so obey ν̇ j = 0 for any j).

On a discontinuity threshold D j, we can treat each ν j as a ‘blow-up’ variable of
the discontinuity set σ j = 0. This is done by letting σ j = ε jν j for some small ε j ≥ 0,
so that the discontinuity occurs across an interval σ j ∈ [0, ε j]→ 0 as ε j → 0. (This
method is developed in [79, 81] but is essentially just a scaling of the quantity σ j

that maps its values on σ j ∈ [0, ε] → 0 to values ν j ∈ [0, 1], and has no doubt
been used earlier, e.g., in [148]. The term ‘blow-up’ itself appears to originate from
singular perturbation literature [40]). We then use this to find the dynamics of ν j on
the interval ν j ∈ [0, 1].
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At a point where D is a codimension m manifold, let x|D ∈ R
n−m denote the

space of x restricted to D. The multipliers ν j in (5.10) lie on intervals [0, 1], so the
dynamics onD can be said to take place inside a switching layer

Dε = {
( ν1, . . . , νm, x|D ) ∈ [0, 1]m × Rn−m }

. (6.3)

For economy of nomenclature we use the term ‘switching layer’ to describe both
the parameterization of D given by (6.3) in the piecewise-smooth system, and the
region aroundD given by (5.3) in the implementation, each with an associated small
parameter ε. The concepts are closely related, and one may refer to the ‘switching
layer of the piecewise-smooth system’ or the ‘switching layer of the implementa-
tion’ if necessary to avoid confusion.

At a point on a discontinuity threshold where σ1 = · · · = σm = 0 for some m ≥ 1,
let us take local coordinates x = (X, x), where X = (σ1, . . . , σm) and x ∈ R

n−m, so
xD = (0, . . . , 0, x). We then obtain onD a switching layer

Dε =
{

( ν1, . . . , νm, x ) ∈ [0, 1]m × Rn−m
}
, (6.4)

with each multiplier ν j constituting the blow-up variable of the set σ j = 0, as some
small parameter ε j → 0+. The switching layer is n dimensional, and differentiating
σ j = ε jν j according to ẋ = F(x; ν1, . . . , νm) in these coordinates, given σ̇ j = F ·
∇σ j = F j, we have

ε jν̇ j = σ̇ j = F j(ε1ν1, . . . , εmνm, x; ν1 . . . , νm)

= F j(0, . . . , 0, x; ν1 . . . , νm) + O (ε1, . . . , εm) . (6.5)

Neglecting the higher order term for ε j → 0, we obtain a well-defined layer system
on X = (0, . . . , 0),

ε jν̇ j = F j(0, . . . , 0, x; ν1, . . . , νm) , j = 1, . . . ,m, (6.6a)

ẋ = F(0, . . . , 0, x; ν1, . . . , νm) , (6.6b)

up to terms of order ε1, . . . , εm, on the right-hand side. We recall that in this notation
F = (F, F) and F = (F1, . . . , Fm) = (F · ∇σ1, . . . ,F · ∇σm).

In deriving this system we have fixed a very simple relationship between ν j and
σ j, namely a linear (if singular as ε j → 0) mapping. We can do this without loss
of generality because, through hidden terms, we are able to express any more com-
plex functional relationship between some switching multiplier ν j and the switching
function σ j using nonlinearity.

Say, for example, a vector field has a component F j = 1 + step(σ j), representing
perhaps the reaction force from an object stuck to a surface with σ j = 0, and say
that F j is known to pass through zero twice as the function σ j changes sign. Clearly
the function F j = 1 + ν j does not satisfy this, as ν j ∈ [0, 1] implies 1 + ν j ∈ [1, 2].
The function F j = 1 + ν j − rν j(1 − ν j), however, varies over F j ∈ [ 1

4 (6 − r−1 − r), 2]
for r > 1, and if, say, F j is known to vanish at some ν j = k, then r = (1+ k)/(1− k)k
provides this.
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With the dynamics at a discontinuity thresholdD thus described by (6.6), sliding
occurs if there exist fix points of (6.6a). These are sets of points satisfying ν̇ j = 0,
and they generate sliding manifolds

M =
{

(x, ν1, . . . , νm) ∈ Rn−m × [0, 1]m such that
F j(0, . . . , 0, x; ν1, . . . , νm) = 0, j = 1, . . . ,m

}
, (6.7)

which are invariant wherever they are normally hyperbolic (see [81]). (Recall that
x|D = (0, . . . , 0, x) denotes x restricted toD, and F · ∇σ j = F j).

OnM the dynamics takes the form of a sliding mode, given by

0 = F j(0, . . . , 0, x; ν1, . . . , νm) , j = 1, . . . ,m, (6.8a)

ẋ = F(0, . . . , 0, x; ν1, . . . , νm) , (6.8b)

Because (6.7) consists of m equations F1 = · · · = Fm = 0, in m unknowns given
by the switching multipliers ν1, . . . , νm, they typically define a well-defined setM
inside a given switching layer. This set may consist of branches of different stability
(determined by considering the eigenvalues of the matrix ∂(F1, . . . , Fm)/∂(ν1, . . . , νm)),
connected by non-hyperbolic points (where those eigenvalues have zero real part).

In a system of many switches ν j = step(σ j), a solution may evolve between
places where the discontinuity threshold D consists of an intersection of m differ-
ent submanifolds D j, as defined in (5.11). On each different such region of D for
different m, we first blow up each D j into a switching layer, then derive the sliding
modes, which occupy local sliding manifoldsM of dimension R

n−m.
If there is nonlinear dependence on the multipliers ν j, then there may exist multi-

ple equilibria, periodic or complex attractors, undergoing bifurcations and any other
nonlinear phenomena inside the switching layer.

We will apply these ideas later when we look at some examples of linear versus
nonlinear dynamics on the discontinuity threshold.

6.2 Sliding Perspective II: Hybrid Implementations

We define an implementation as hybrid if it cannot be expressed by means of a set of
ordinary differential equations alone, but instead is given by a hybrid of the system

ẋ = fi(x) if x ∈ Rεi , i ∈ ZN , (6.9)

along with a map

ẋ = fi(x) with i �→
⎧
⎪⎪⎨
⎪⎪⎩

i if event(x; ε) = false ,

Ψ (x; i) if event(x; ε) = true ,
(6.10)
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with ZN as before being some discrete set of N labels, and with the regions Rεi
obeying Rεi ⊃ Ri, such that the switching layer Dε is formed by the overlap of two
or more regions Rεi , though R0

i = Ri.
The system evolves as ẋ = fi(x) until a condition ‘event(x; ε)’ is satisfied, then i is

updated to a new mode Ψ (x; i). The hysteretic, delay, stochastic, and time-stepping
implementations in Definition 4.1 are all of this type. Typically in such situations
there is an implementation layer Dε on which the system may exist in more than
one mode i, and its dynamics therefore depends not only on its state x but also
on the current mode, which therefore appears in the update map Ψ (x; i). In other
implementations the dynamics in Dε is instead governed by a transition rule that
only depends on x, i.e., the state lies in a transition ‘mode’ and not in any mode i.

Let Ω ⊂ Dε be a set of points inside the switching layer on which ‘event(x; ε) =
true’ is satisfied, and let x1, x2, . . . denote a set of points inside Ω visited by x(t) at
times t1, t2, . . . . Integrating between these provides a map

xn = Φ(xn−1; ε) where Φ : Ω �→ Ω . (6.11)

We have been deliberately vague in defining the set Ω and map Φ, as the form of
both depends on the implementation. In Chap. 7 we will see how these definitions
apply to the ‘experiments’ from Chap. 4. Still, with these definitions we can derive
some useful results, in particular without knowing the map (6.11) explicitly, we can
derive some implications for the dynamics in the switching layer.

For sliding to occur, the map Φ must have an invariant set on Ω, but that set need
not be unique, and by implication the sliding dynamics need not be unique.

According to the map (6.11), x(t) evolves in increments along each field fi, e.g.,

xn = xn−1 + fi(xn−1)Δt + O
(
Δt2

)
(6.12)

if xn−1 ∈ Ωi(xn−1, x0, tn−1) .

The mode i selected at each time increment can depend not only on the current state
xn−1, but is also typically history dependent, depending on the initial state x0 and the
current time tn−1. The regions Ωi ⊂ Ω may therefore overlap. Because this selection
has discontinuities wherever the mode i changes, this raises the possibility that at-
tractors of the map can bifurcate in a far more arbitrary manner than in continuous
or differentiable maps, able to make abrupt jumps in topology and periodicity (as in
Fig. 2.2(ii), for example).

We can also derive the effect of an attractor on the system’s dynamics. Let x(t)
evolve along an ε-infinitesimal neighbourhood of the discontinuity thresholds for a
time interval [0,T ], switching between modes i ∈ ZN = {1, 2, . . . ,m}, at a sequence
of times t1, t2, . . . , tr, where 0 = t0 < t1 < t2 < · · · < tr = T . Thus x(t) evolves along
a different vector field fi in mode i ∈ ZN on each time interval [t j−1, t j] for some
i = {1, . . . ,m} and j ∈ {1, . . . , r}. Let μi denote the total proportion of the time T
spent evolving along fi,
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μi =
1
T

r∑

n=1

{
tn − tn−1 if xn ∈ Rn ,
0 if xn � Rn .

(6.13)

Let γi(xi) = 1 if xn is currently in mode fi and γi(xi) = 0 otherwise. Then the total

change in x(t) over the time increment T =
r∑

n=1

(tn − tn−1) is

Δx
T
=

1
T

r∑

n=1

Δxn−1

=
1
T

r∑

n=1

γi(xn−1)fi(xn−1)(tn − tn−1) + O
(
Δt2

)

=
∑

i=1

μifi(x) + O (T ) , (6.14)

where μi ≥ 0 and
∑N

i=1 μi = 1. In the limit T → 0 this gives an effective equation of
motion,

ẋ = Fco(x; μ1, . . . , μN) :=
∑

i=1

μifi(x) . (6.15)

Comparing to (5.5a), we see that as the coefficients μi vary over [0, 1] the effective
vector field Fco traces out the convex hull F (x) of the fi’s.

Using these effective equations of motion we can understand a basic separation
of scales that distinguishes motion across and along the discontinuity threshold.
Assume that x evolves along an ε-neighbourhood of the intersection of discontinuity
thresholds σ1 = · · · = σm = 0. Define scaled coordinates x = (u, v, . . . ,w, x), where
u = σ1/ε, v = y/ε, . . . , w = σm/ε, and x ∈ Rn−m. Let Fco = (Fco

u , . . . , F
co
w , F

co), then
ẋ = Fco becomes

εu̇ = Fco
u (εu, . . . , εw, x; μ1, . . . , μm)

= Fco
u (0, . . . , 0, x; μ1, . . . , μm) + O (ε) ,

...
...

εẇ = Fco
v (εu, . . . , εw, x; μ1, . . . , μm)

= Fco
w (0, . . . , 0, x; μ1, . . . , μm) + O (ε) , (6.16a)

ẋ = Fco(εu, . . . , εw, x; μ1, . . . , μm)

= Fco(0, . . . , 0, x; μ1, . . . , μm) + O (ε) . (6.16b)

(Here part (a) labels the fast equations ε ˙[ ] = ... and (b) the slow equation ẋ = ...).
The (u, . . . ,w) coordinates therefore evolve on a fast timescale τ = t/ε. Denoting
the derivative with respect to τ by a prime, the system instead becomes
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u′ = Fco
u (0, . . . , 0, x; μ1, . . . , μm) + O (ε) ,

...
...

w′ = Fco
w (0, . . . , 0, x; μ1, . . . , μm) + O (ε) , (6.17a)

x′ = O (ε) . (6.17b)

When we simulate the system on the τ-timescale, the variables (u, . . . ,w) evolve
across the O (ε) space of the switching layer, while the variables x remain quasi-
static.

To identify the coefficients μi in (6.14), we therefore simulate (6.17) for a time
interval T , keeping x fixed. If the time interval T can be taken long enough that
the coefficients μi as calculated by (6.13) reach a steady state, their values define
an effective equation of motion (6.15) at any given x. If one of the μi takes a value
of unity, with all μ j�i = 0, then the system is determined to have crossed the dis-
continuity threshold. If one or more μi settle to steady values between 0 and 1, then
the simulation of the fast (u, . . . ,w) subsystem of (6.17) must have reach a steady
state or other attractor inside the switching layer, and is said to be sliding along the
discontinuity.

The maps (6.11) and their invariants may not in general have any closed form
expression that can be determined from the system (5.1), but must be discovered by
simulation and approximated.

Although (6.16) is similar formally to (6.6), the latter describes a continuous
flow on σ1 = · · · = σm = 0, while the former describes a hybrid implementation
that jumps between the 2m different modes specified by (6.16) when each μ j takes a
value 0 or 1 in the neighbourhood of σ1 = · · · = σm = 0.

6.3 Sliding Perspective III: Smoothed Implementations

If switching is implemented by a smooth process, then we can proceed by steps that
are actually very similar to Sect. 6.1. This has the advantage that the analysis then
follows standard methods of singular perturbation theory, but this familiarity dis-
guises unobvious ambiguities that accompany smoothing. Though we can describe
these to some extent here, we are still learning what kind of dynamics, and more
specifically what kind of singularities, persists under smoothing.

We begin with the system ẋ = F(x; ν1, . . . , νm) in terms of switching multi-
pliers ν j = step(σ j). To smooth the discontinuity we simply make the replace-
ment ν j �→ φε j (σ j), where φε j (σ j) is a smooth monotonic function, satisfying
φε j (σ j) = step(σ j) + O

(
ε j

)
for |σ j| ≥ ε j.

Observe that for |σ j| ≥ ε j this definition gives φε j (σ j) = φ1(σ j/ε j), so let assume
this also holds for |σ j| < ε. The dynamics of the quantity ν j is found simply by
differentiating and applying the chain rule, ν̇ j = ε

−1
j (∂φε j/∂σ j)σ̇ j = ε̂

−1
j ẋ · ∇σ j =

ε̂−1
j F · ∇σ j = ε̂ jF j, where ε̂ j = ε j(∂φε j/∂σ j)−1.
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The result is formally that in (6.5)–(6.6), except that the definition of ν j now
differs and, more crucially, the small quantity ε̂ j is now a function of σ j. We have

ε̂ j(σ j)ν̇ j = F j(0, . . . , 0, x; ν1 . . . , νm) + O (ε1, . . . , εm) , (6.18a)

ẋ = F(0, . . . , 0, x; ν1, . . . , νm) + O (ε1, . . . , εm) . (6.18b)

By the definition of φε j the quantity ε̂ j is non-zero on the layer, where |σ j| < ε j. We
can refine this if we limit the derivative of φε j away from zero, for example, choose
φε j such that ∂φε j/∂σ j > K for |σ j| < 1 − εp

j , for fixed K > 0 and p ≥ 1 such

that ε j/K → 0 as ε j → 0. Then ε̂ j behaves as a small quantity ε̂ j/K = O
(
ε j

)
for

σ j ∈ [−1 + εp
j ,+1 − εp

j ].
We see that this is analogous to the system (6.6) obtained by piecewise-smooth

methods, and in fact they can be shown to be equivalent in the limit ε1, ε2 → 0, see
[81].

Equations of the form (6.18) can be found in singular perturbation studies of
climate and gene regulation, e.g., [96, 103]. An equivalent form in common use
when using Sotomayor–Teixeira regularization [136] is to define a parameter u j =

σ j/ε j, to obtain instead

ε ju̇ j = F j(0, . . . , 0, x; ν1 . . . , νm) + O (ε1, . . . , εm) , (6.19a)

ẋ = F(0, . . . , 0, x; ν1, . . . , νm) + O (ε1, . . . , εm) . (6.19b)

In either case (6.18) or (6.19), analysis proceeds using standard concepts from
geometric singular perturbation theory, see, e.g., [49, 86]. If we assume all of the
ε js are of the same order, that is every ratio εi/ε j is non-vanishing as εi, ε j → 0 for
i, j = 1, . . . ,m, then the analysis is closely analogous to that of the piecewise-smooth
system in Sect. 6.1. The switching layer of the implementation is given as in (6.4)
treating the ν j as variables, or the same expression with ν j replaced by u j in the
alternative variables. The slow-fast system has a critical manifold, corresponding
precisely to the sliding manifold M in (6.7), where the fast ν j subsystem (6.6a)
vanishes. According to Fenichel’s theory [49], whereverM is normally hyperbolic
with respect to the fast ν j subsystem, for ε j > 0, there exists an invariant manifold
Mε j in an ε j-neighbourhood of M. The dynamics on M is precisely the sliding
dynamics (6.8), and moreover the dynamics onMε j is topologically equivalent to
(6.8).

If all of the ε js are of different orders, then the dynamics in the switching layer
will be more intricate, involving a separation onto more timescales, but still falls
under standard methods of singular perturbation theory. The case ε j = ε

j
1 for j =

1, . . . ,m, for instance, falls under Fenichel’s analysis in [49]. The author is not aware
of any studies to date applying such many timescale dynamics to piecewise-smooth
problems.

The Sotomayor–Teixeira approach of replacing the switching multipliers ν j by
smooth (but non-analytic) functions φε j (σ j) can be weakened so that the functions
φε j (σ j) are analytic. It is then impossible for these functions to be constant outside
the switching layer, so they require defining to φε j (σ j) = step(σ j) + E where E is
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small, for example, E = O
(
ε j

)
or O

(
ε j/σ j

)
or O

(
e−σ j/ε j

)
. This is often the case

in applications. One example is in [96], where φε j (σ j) = 1
2 +

1
2 arctan(σ j/ε) =

step(σ j)+O
(
ε j/σ j

)
. Another example is in [103, 117], where φε j (σ j) = Z(σ j+1) =

step(σ j)+O(σ
1/ε j

j

)
in terms of the Hill function Z(w) = 1/(1+w−1/ε j ) [70]. Both of

these functions are analytic and are asymptotic to step(σ j) for large argument.
Good examples of these methods applied to genetic models like that of Sect. 4.2

can be found in [41, 76, 102, 103, 117]. They tell a story similar to that obtained
by piecewise-smooth analysis, but an appreciation of possible hidden terms would
bring more insight into the robustness of these studies. Hill functions as a class are
sometimes used without rigorous justification from the biology, and in such cases
the possible differences between alternate sigmoid functions can be calculated as
hidden terms, including representing the different between Hill functions of different
stiffnesses (different powers 1/ε j).

Hidden terms survive when we smooth a discontinuity, and have the interpreta-
tion that they vanish (asymptotically at least) outside the discontinuity threshold. If
we smooth by replacing ν j �→ φε j (σ j) = step(σ j) + E(ε j), then the term ν(ν − 1)
which from (5.16) typically characterizes hidden terms, simplifies to

ν(ν − 1) �→ 2 sign(σ j)E(ε j) + e2(ε j) .

Hence the hidden term is of order E(ε j), vanishing (asymptotically) outside the
discontinuity threshold with E.

Hidden terms therefore allow us to distinguish between different kinds or rates of
switching according to different methods of smoothing. For instance, consider the
one-dimensional system

ẋ = F(x; ν(r)) = a(x) + νb(x) , (6.20)

defined in terms of a switching multiplier

ν = ν(r) := lim
ε→0
φε(r)(x) , (6.21)

for different smooth functions φε(1)(x), φε(2)(x), . . . , such that ν(r) → step(x) for any
r. Does it matter how we choose the function φε(r), or do we always obtain the same
piecewise-smooth system (6.20) in the limit ε→ 0?

As examples consider the following sigmoid quantities

φε(0)(x) = 1
2 +

x/ε

2
√

1+(x/ε)2
(6.22a)

φε(1)(x) = 1
2 +

x/ε

2
√

1+(x/ε)2
+

A(x)

2(1+(x/ε)2)k , (6.22b)

φε(2)(x) = 1
2 +

1
π

arctan(x/ε) , (6.22c)

φε(3)(x) = 1
2 +

1
2 tanh(x/ε) , (6.22d)

where k > 0 and A(x) is a smooth function of x.
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We will show the following.

Lemma 6.2. We can write each system ẋ = F(x; ν(r)) from (6.20) as

ẋ = F(x; ν(r)) = F(x; step(x)) + Hε(r)(x) , (6.23)

an asymptotic expansion whose tail satisfies Hε(r)(x) → 0 as ε → 0 for x � 0. This
can be re-written in an ε-independent form as

ẋ = F(x; ν(r)) = F(x; ν(0)) + H(r)(x; ν(0)) , (6.24)

with hidden terms satisfying H(r)(x; 0) = H(r)(x; 1) = 0, but with H(r)(x; ν) begin
non-vanishing in the layer |x| < ε for r = 1, 2, 3.

Proof. The proof is directly by asymptotic expansion and straightforward calcu-
lations, so for brevity we place some of the details in Appendix C. The expan-
sions of the sigmoid functions φε(r) for large argument all take the form φε(r)(x) =
step(x) + O (ε/x) (the precise expressions are given in Appendix C, and in fact for
r = 3 the error is O

(
e−ε/x

)
). Substituting these into (6.20) gives (6.23) with the tail

of the expansion given by Hε(r)(x) = O (ε/x).
This means that the systems (6.20) with (6.21) and (6.22) are equivalent for

x � 0. For x = 0, however, these asymptotic series diverge. To compare the dif-
ferent systems at x = 0, the second part of the theorem instead seeks a form of the
expansions that is independent of ε, by expressing them all in terms of ν(0).

To do this we first rearrange (6.22a) to find that

x/ε = (φε(0) − 1
2 )/

√
φε(0)(1 − φ

ε
(0)) ,

followed by substituting this into the expressions in (6.22) and then into (6.20).
To obtain (6.24) for r = 1 is then just a matter of algebra. To obtain (6.24) for
r = 2, 3, it is better to substitute into the asymptotic expansions for each φε(r), thus
expressing them in terms of φε(0). We then replace φε(0) with ν(0). The algebra is set
out in Appendix C, giving (6.24) for r = 1, 2, 3, with

H(1)(x; ν) = (4h)kA(x)b(x) , (6.25a)

H(2)(x; ν) =
{
h C1(2ν − 1) +

√
hC2(2ν − 1)

}
b(x) , (6.25b)

H(3)(x; ν) =
{
h C1(2ν − 1) + e−|2ν−1|/

√
h C3(2ν − 1)

}
b(x) , (6.25c)

where h = ν(1 − ν) ,

in terms of functions Ci(2ν − 1) that are finite valued for all ν ∈ [0, 1], given in
Appendix C. Clearly H(r)(x; 0) = H(r)(x; 1) = 0 in each case. These expressions are
now independent of ε and therefore remain well-defined in terms of ν(0) as ε→ 0.

��

Compare the hidden terms in (6.25) with the expression (5.12) in (5.3). Note how
the term “ν(1− ν)” appears throughout the hidden terms H(r)(x; ν) in (6.25), but also
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demonstrates more general forms that hidden terms can take than we derived by
polynomial expansion in (5.16).

This merely demonstrates that a piecewise-defined function corresponds not to
one unique function of a switching multiplier ν or limiting smooth function φε(x),
but a whole class of such functions. Comparing to (5.3) we see that the difference
between the alternate smoothings F(x; ν(r)) lies in hidden terms.

Our interest, of course, concerns the dynamical implications of these hidden
terms, left behind from the asymptotic approximations above. It should be quite
clear that they can affect the system’s dynamics. There are examples in [78, 79, 81,
83] of hidden terms deciding whether solutions slide along or cross through a dis-
continuity threshold. The anomalous sliding we described in Sects. 1.2 and 1.3 came
from hidden terms, and more generally that can take all manner of non-trivial forms.
An interesting example is given by taking (6.22b) and letting A(x) be a matrix. The
following example shows how this can destabilize an equilibrium under smoothing.
Consider the piecewise-linear problem

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ
ẏ
ż

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ + ν

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3
ay + z
az − y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , ν = step(x) , (6.26)

for a < 0, which has sliding modes satisfying ν = 1/3, with an attracting focus
equilibrium at y = z = 0. If we smooth this system by replacing ν with φε(0), then
we obtain a topologically equivalent system, with an attracting focus equilibrium on
an invariant manifold, where φε(0) = 1/3. Consider instead smoothing by replacing ν
with φε(1), and let

A = c

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1/3 0 0
0 a −1
0 1 a

⎞
⎟⎟⎟⎟⎟⎟⎟⎠ , (6.27)

for small c > 0. As this is now a smooth system it succumbs to standard stability
analysis. The system has an equilibrium at (x, y, z) = (x∗, 0, 0), where φ(0)(x∗/ε) =
1
3+

8c
27+O

(
c2

)
. This has eigenvalues − 3

ε
(1− 4c

9 )φ′(0)(x∗/ε) and 1
3 (a±i)+ 8c

27 (3+a+3a2±i)

to order c2. This implies that for

−3a

8[(a + 1)2 − 5
3 a]
< c < 9

4 ,

the equilibrium will de-stabilize in the (y, z) directions, becoming a saddle-focus as
depicted in Fig. 6.1.
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x
z
y

c=0 c=1

Fig. 6.1 A focus destabilized by smoothing

In this section we have seen some of the less obvious complexity of switching
and sliding dynamics when considered from different viewpoints, expressed through
layers, nonlinearity, and implementations. Let us now return to see what insight
these give us into the ambiguities of the examples in Chap. 4.



Chapter 7
The Three Experiments Revisited

We now apply the framework of Chaps. 5 and 6 to make sense of the numerical
experiments in Sects. 4.1 and 4.3.

7.1 Filippov’s Paradox Revisited

First let us analyse the system (4.1) from the piecewise-smooth perspective. We
could use the multiplier λ = sign(x) from the original problem, but for consistency
with the previous sections we will use ν = 1

2 +
1
2λ = step(x). In terms of ν (4.1)

becomes
(

ẋ
ẏ

)
=

(
1
2 − 2ν

1
3 + (2ν − 1)3

)
,

where ν = step(x) for x � 0 and ν ∈ [0, 1] for x = 0. Expressing this in the form of
(5.14) from (5.3), we have

(
ẋ
ẏ

)
= ν

(
− 3

2
4
3

)
+ (1 − ν)

(
1
2
− 2

3

)
+H(ν) , (7.1)

where H(ν) = ν(ν − 1)

(
0

4(2ν − 1)

)
. We need only concern ourselves with the dy-

namics on x = 0.
Following Sect. 6.1, we first blow up the discontinuity threshold

D =
{
(x, y) ∈ R2 : x = 0

}
,

into a switching layer
Dε = {(ν, y) ∈ [0, 1] × R} ,
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by defining x = εν → 0 as ε → 0+. Substituting x = εν into (7.1), on x = 0 for
ε→ 0+ this gives a two-timescale dynamical system

(
εν̇
ẏ

)
=

(
1
2 − 2ν
− 2

3 + 2ν

)
+ ν(ν − 1)

(
0

4(2ν − 1)

)
, (7.2)

for ν ∈ (0, 1). Upon reaching x = 0, motion in (7.2) is dominated by the fast ν
dynamics on the timescale t/ε, which is given, rescaling t/ε = τ and denoting the
fast τ time derivative with a prime, by

(
ν′

y′

)
=

(
1
2 − 2ν
O (ε)

)
, ν ∈ (0, 1) . (7.3)

This tells us that ν contracts fast toward an invariant set ν = 1/4 (where ν̇ = 0),
which according to Sect. 6.1 defines a sliding manifoldM = {(ν, y) ∈ [0, 1] × R :
ν = 1/4}.

Finally, onM the dynamics is given by substituting ν = 1/4 back into the vec-
tor field (7.2), with the result (ν̇, ẏ) = (0, 5/24), giving the solution depicted in
Fig. 7.1(i). (Substituting ν = 1/4 directly into (7.1) gives, equivalently, (ẋ, ẏ) =
(0, 5/24)).

y

x

y

x

cu
bi

c

(i) (ii)

lin
ea

r

Fig. 7.1 A piecewise-constant vector field switching between two modes, showing the dynamics
implied by piecewise-smooth analysis in (i) the nonlinear expression or (ii) the linear expression
excluding hidden terms

If we neglect the hidden term, however, by setting H ≡ 0 to obtain a linear
switching (or ‘Filippov’) system, when we substitute ν = 1/4 into (7.2) (or directly
into (7.1)) we obtain (ν̇, ẏ) = (0,−1/6) (or (ẋ, ẏ) = (0,−1/6)), giving the solution
depicted in Fig. 7.1(ii).

Comparing these to Fig. 4.1, it appears that the smooth implementation follows
the nonlinear dynamics of Fig. 7.1(i), while the time stepping, hysteretic, and de-
layed implementations follow the linear dynamics of Fig. 7.1(ii). A noisy implemen-
tation appears to be able to follow either the linear or nonlinear dynamics for small
enough or large enough noise amplitude, respectively. Let us analyse these ‘test
implementations’ (as defined in Definition 4.1) using the concepts from Chap. 6.
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Following Sect. 6.3, to implement the switch by smoothing (7.1), we replace ν =
step(x) with a smooth monotonic function φ(x/ε) for some small ε > 0, such that
lim
ε→0
φ(x/ε) = step(x), giving

(
ẋ
ẏ

)
=

(
1
2 − 2ν

− 2
3 + 2φ( x

ε
)

)
+ φ( x

ε
)(φ( x

ε
) − 1)

(
0

4(2φ( x
ε
) − 1)

)
. (7.4)

For |x| > ε this vector field is just the piecewise-constant field illustrated in Fig. 7.1.
To analyse the neighbourhood x ∼ ε define a fast variable u = x/ε, giving a two
timescale system

(
εu̇
ẏ

)
=

(
1
2 − 2φ(u)
− 2

3 + 2φ(u)

)
+ φ(u)(φ(u) − 1)

(
0

4(2φ(u) − 1)

)
(7.5)

on the layerDε (the region |x| < ε). Scaling time by ε yields the fast system
(

u′

y′

)
=

(
1
2 − 2φ(u)
O (ε)

)
, ν ∈ (0, 1) . (7.6)

This defines a critical manifold M̃ =
{
(u, y) ∈ R2 : φ(u) = 1/4

}
, such that M̃ and

the dynamics (u̇, ẏ) = (0, 5/24) on it are topologically equivalent to the sliding
manifold M and its sliding dynamics. We thus obtain the dynamics depicted in
Fig. 7.1(i), consistent with the nonlinear piecewise-smooth system. The reader may
easily verify that neglecting the hidden term (i.e., setting H ≡ 0), and then smooth-
ing the linear switching system, we instead obtain (u̇, v̇) = (0,−1/6) consistent with
Fig. 7.1(ii).

Now let us implement the switch by discretizing the system (7.1). For x � 0
the vector field is piecewise-constant and, having zero measure, a fixed time-step
numerical method is unlikely to hit x = 0 instead evolving in increments of

(xn, yn) = (xn−1, yn−1) + vΔt, (7.7a)

where

v =

⎧
⎪⎪⎨
⎪⎪⎩

( 1
2 ,−

2
3 ) if x < 0 ,

(− 3
2 ,

4
3 ) if x > 0 ,

(7.7b)

with Δt = tn − tn−1. These will step repeatedly back and forth across x = 0 over a
layerDε, where ε = Δt. Following Sect. 6.2, we can derive the effective vector field

(xn − x0, yn − y0)/Δt) = μ( 1
2 ,−

2
3 ) + (1 − μ)(− 3

2 ,
4
3 ) . (7.8)

From this we can see that if the solution slides along x = 0 then, by solving xn−x0 =

0, we should find μ = 1
4 . Simulations indeed yield μ ≈ 1/4, calculated from (6.13)

as the proportion of time spent evolving in the ν = 1 mode. Substituting μ ≈ 1/4
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back into the yn equation implies a speed of sliding motion of ẏ = (yn−y0)/Δt = − 1
6 ,

in agreement with the ‘linear’ sliding motion in Fig. 7.1(ii).
This is a rather crude numerical integration method, however, and a more pre-

cise simulation scheme might detect when a solution enters the layer |x| < ε, then
switch to the layer system (7.2) on Dε. Provided the time step Δt is small enough,
specifically Δt < ε, we solve

νn =
1
2 −

Δt
2ε +

1
2 (1 − Δt

ε
)λn−1

= 1
4 + (ν0 − 1

4 )(1 − Δt
ε

)n ε→0−−−→ 1
4 (7.9)

yn = yn−1 + ( 1
3 + (2νn−1 − 1)3)Δt

= y0 +
n
3Δt + Δt

n−1∑

i=0

(
− 1

2 + (2ν0 − 1
2 )(1 − Δt

ε
)i
)3

= y0 +
5n
24Δt + εP

ε→0−−−→ y0 +
5n
24Δt (7.10)

for Δt < ε, where

P = (2ν0 − 1
2 )

⎧
⎪⎪⎨
⎪⎪⎩

3
4 −

3
2

2ν0−
1
2

2−Δt
ε

+
2ν0−

1
2

3− 3Δt
ε
+
Δt2

ε2

⎫
⎪⎪⎬
⎪⎪⎭ .

Thus ẏ ≈ (y − y0)/nΔt = 5
24 , and while we have not provided this simulation here, it

is clear that it would agree with the ‘nonlinear’ sliding in Fig. 7.1(i).
For Δt > ε the series in (7.10) does not converge, instead νn diverges until it

leaves the layer as νn � [0, 1], after which we can consider λn as switching between
±1. If xn stays in the neighbourhood of xn = 0, the proportion of time μ spent in
xn < 0 versus the proportion of time spent in xn > 0, must be such that over long
times xn ≈ 0, so Δx ≈ ν(− 3

2 ) + (1 − ν) 1
2 , implying ν = 1

4 (as above), but then
Δy ≈ ν 4

3 − (1 − ν)( 2
3 ) = − 1

6 nΔt, hence ẏ ≈ − 1
6 , giving again the ‘linear’ sliding in

Fig. 7.1(ii).
Thus a fine numerical simulation would find the nonlinear behaviour of Fig. 7.1(i),

while a crude simulation would find the linear behaviour of Fig. 7.1(ii). We could
smooth the system first, giving (7.2), and only then discretize, and then we obtain
a similar result, namely that for a large time step Δt � ε solutions ‘chatter’ across
the switching layer Dε, which is now the ε-neighbourhood of x = 0, following the
linear behaviour above. For a small time step Δt � ε solutions are able to evolve
into the layer and approximate the nonlinear behaviour.

Implementing the switch using hysteresis between the two modes in x ≷ 0,
where switching takes place at some x = ±ε, results in a very simple result to
the large time-stepping implementation above. The time taken to travel from x = −ε
to x = +ε with ν = 0 is δt− = 4, and for the return with ν = 1 is δt+ = 4, giving
maps yn = yn−1 − 2

3δt
− and yn = yn−1 +

4
3δt
+. Concatenating these, the second return

map to the surface x = −ε (or any other surface x = constant in the implemen-
tation layer) is yn = yn−1 − 8

9 , in a time step Δt = δt+ + δt− = 16/3. Hence the
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speed of motion along the y direction is (yn − yn−1)/Δt = − 8
9/

16
3 = −1/6, giving

the dynamics in Fig. 4.1(iii). This fits with the linear piecewise-smooth system as
shown in Fig. 7.1(ii). The rigorous proof that the approximation in fact takes the
form x = O (ε), ẏ = − 1

6 + O (ε), is a lengthy exercise, a general proof of which is in
[18].

The analysis considering delayed or stochastic implementations is rather longer
and more complex, but similar in outcome. One may also combine different imple-
mentations in a single model (assigning a different constant ε to each), and investi-
gate whether linear or nonlinear effects prevail depending on which implementation
dominates. Analytic studies are in some cases able to derive precise asymptotic bal-
ances that define where any implementation dominates, but only small steps in this
direction have been taken, e.g., in [18, 83]. Much work remains to be done in this
direction, but these elements reveal how detailed an understanding of the switch
implementation can be found, and how this generally fits either with the linear or
nonlinear regimes of the piecewise-smooth theory.

In hindsight, it may look as if it should be a simple matter to distinguish between
the two behaviours in Fig. 7.1, and the practical situations in which one or other is
more appropriate. The literature in this area tells a different story. Filippov’s inten-
tion with (4.1) was to demonstrate the dangers of considering non-convex switching,
but restricting the inclusion in (5.2) to being convex essentially prevents us from
resolving non-trivial behaviour by considering nonlinearity in the layer. Filippov
seems not to have been averse to considering non-convex sets, but was clear to warn
that analysing them would need an approach going beyond that which he set out in
[51].

Having revealed the deeper modelling that is possible in one of the simplest and
yet important behaviours of nonsmooth systems—the most basic sliding—we can
turn to more complex scenarios where similar ambiguities have more novel and less
obvious implications.

7.2 Genes Revisited

In the two-gene regulatory system from Sect. 4.2, applying the piecewise-smooth
analysis outlined in Sect. 6.1 to the system (4.2), the dynamics in the switching
layers is given by

• on x2 = θ2, (
ẋ1

ε2ν̇2

)
=

(
ν1 + ν2 − 2ν1ν2 − γ1x1

1 − ν1ν2 − γ2θ2

)
, (7.11)

with ν1 = step(x1 − θ1) and ν2 ∈ (0, 1). On x1 < θ1 where ν1 = 0 the fast system
is constant (and positive), so no sliding occurs. On x1 > θ1 the fast ν2 subsystem
has fixed points defining a sliding manifold

M = {(x1, ν2) ∈ R × [0, 1] : ν2 = 1 − γ2θ2} .
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OnM the dynamics is ẋ2 = γ2θ2−γ1x1, suggesting the sliding flow on x2−θ2 =
0 < x1 − θ1 has an equilibrium at x1 = γ2θ2/γ1, easily shown to be an attractor.
• on x1 = θ1, (

ε1ν̇1
ẋ2

)
=

(
ν1 + ν2 − 2ν1ν2 − γ1θ1

1 − ν1ν2 − γ2x2

)
, (7.12)

with ν1 ∈ (0, 1) and ν2 = step(x2 − θ2). This layer will be of less interest, but the
reader may show that sliding takes place on x1 − θ1 = 0 ≷ x2 − θ2, and evolves
towards x1 = θ1, x2 = θ2, if we assume γ1θ1 < γ2θ2.
• at their intersection x1 − θ1 = x2 − θ2 = 0,

(
ε1ν̇1
ε2ν̇2

)
=

(
ν1 + ν2 − 2ν1ν2 − γ1θ1

1 − ν1ν2 − γ2θ2

)
, (7.13)

with (ν1, ν2) ∈ (0, 1) × (0, 1). This entire planar flow is fast, and possesses a
sliding manifoldM =

{
(ν1, ν2) ∈ [0, 1]2 : νi = ν∗i

}
, where

{
ν∗1
ν∗2

}
= 1

2 +
1
2 (1 + γ1θ1 − 2γ2θ2)

{
1
1

}
± 1

2

√
d

{
−1
1

}
,

where d = ( 1
2γ1θ1 − γ2θ2)2 + γ1θ1 − γ2θ2. This only exists where d > 0 and

(ν∗1, ν
∗
2) ∈ (0, 1)2. The two branches ofM are an attracting focus and a saddle,

which as d passes from positive to negative, disappear in a saddle-node bifurca-
tion.

The resulting phase portraits are sketched in Fig. 7.2.
The result is that if d < 0 then there is a unique global attractor, at x1 =

(1 − γ2θ2)/γ1, x2 = 0, and solutions may slide along or cross through the various
discontinuity thresholds before reaching it. If d > 0, then there is also an attractor

Fig. 7.2 Dynamics of a two-gene model, with switches at x1 = θ1 and x2 = θ2. These thresholds
are blown up to reveal the dynamics in the layers ν1 ∈ (0, 1) and ν2 ∈ (0, 1). For d > 0 there exist a
focus and a node in the layer at x1 = θ1, x2 = θ2, for d < 0 these disappear. These are sketched for
parameter values θ1 = θ2 = 1, γ2 = 0.9, and γ1 = 0.6 (left), γ1 = 0.4 (right)
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at the intersection x1 = θ1, x2 = θ2, and many initial conditions, in particular any
initial state with x1 < θ1 (found by closer inspection of the phase portrait), will be-
come stuck at x1 = θ1, x2 = θ2, in a sliding mode. This explains the results seen in
Figs. 4.2 and 4.3, with sticking at the intersecting if d > 0, and evolution through it
if d < 0.

The existence of sliding at x1 = θ1, x2 = θ2, in this example, but only for d >
0, means that whether or not solutions can cross through the intersection of the
discontinuity thresholds depends on the system parameters. The change between
d > 0 and d < 0 has no significant effect on the fields outside the thresholds, so the
change in the dynamics this can only be seen by analysing the switching layer.

From the analysis in Sect. 7.1 we can expect that implementing the switch by
smoothing gives dynamics that follows this piecewise-smooth behaviour on x1−θ1 =
0 � x2 − θ2 and x2 − θ2 = 0 � x1 − θ1. Since there are no hidden terms here, there is
only one outcome to consider. On the intersection x1− θ1 = x2− θ2 = 0 is a different
story, however, as here the bi-linear term ν1ν2 makes things non-trivial.

If we smooth the system following Sect. 6.3, by replacing each ν j with a smooth
function φ

ε j

(i)(x j − θ j), then on the switching layer of the smoothing, given by

Dε1,ε2 = {(u1, u2) ∈ (−1,+1) × (−1,+1)} ,

we obtain in terms of a fast variable ui = (xi − θi)/εi,
(
ε1u̇1

ε2u̇2

)
=

(
φε1

1 (u1) + φε2
2 (u2) − 2φε1

1 (u1)φε2
2 (u2) − γ1θ1

1 − φε1
1 (u1)φε2

2 (u2) − γ2θ2

)
. (7.14)

We can readily see that this has equilibria closely corresponding to those of the
piecewise-smooth system, at (u1, u2) such that φεi

i (ui) = ν∗i , existing only for d > 0.
Thus the two behaviours seen with the smooth implementation in Figs. 4.2(i) and
4.3(i) are consistent with the two piecewise-smooth flows in Fig. 7.2.

The picture for hybrid implementations is rather more complicated. The convex
hull (5.5a) says on x1 = θ1, x2 = θ2 only that

(
ẋ1

ẋ2

)
= μ11

(
−γ1θ1
−γ2θ2

)
+ μ10

(
1 − γ1θ1
1 − γ2θ2

)
(7.15)

+ μ01

(
1 − γ1θ1
1 − γ2θ2

)
+ μ00

(
−γ1θ1

1 − γ2θ2

)
,

for some μi j such that μ11 + μ01 + μ10 + μ00 = 1 and 0 ≤ μi j ≤ 1. This contains
families of vector fields that may carry solutions across the point x1 = θ1, x2 = θ2,
and also contains the zero vector field

(
0
0

)
∈ μ11

(
−γ1θ1
−γ2θ2

)
+ μ10

(
1 − γ1θ1
1 − γ2θ2

)

+ μ01

(
1 − γ1θ1
1 − γ2θ2

)
+ μ00

(
−γ1θ1

1 − γ2θ2

)
,
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which permits solutions to come to rest at xi = θi. Both are allowed by (7.15) and
there is no way, based on the convex set, to select one possibility over any other.

The hybrid implementations cannot be solved analytically, but we can simulate
them numerically and focus on their behaviour in the switching layers. Let us take
the two examples of delay and hysteresis, the former of which showed behaviour
depending on the parameters in Sect. 4.2, the latter seeming to ‘round the corner’
independent of parameters.

We implement a time delay at the discontinuity by defining the switching mul-
tipliers as νi = step (xi(t − ε)) for ε = 0.2, as in Figs. 4.2 and 4.3. The simulations
are shown in Fig. 7.3 for γ1 = 0.4 and 0.6, which correspond to d = −0.01 and
0.06. Consistent with the piecewise-smooth approach, for d < 0 the solution rounds
the corner from the ε layer around x1 to that around x2 = θ2, eventually finding an
attractor at x1 ≈ θ1 + θ2γ2/γ1, x2 ≈ θ2. For d > 0, instead the solution finds an
attractor in the ε layer around x1 − θ1 = x2 − θ2 = 0, in this case a periodic cycle
(whose period appears to be a multiple of 3 for these parameters). For other initial
conditions solutions are still able to find a co-existing attractor at x1 ≈ θ1 + θ2γ2/γ1,
x2 ≈ θ2.

1.2
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0.8

  0.6             1                1.4                      x1

1.1

x2

1
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  0.7               0.8                0.9                1                                      x1
2.15               2.18               2.21              2.24                                          x1

1.5

x2

1

0.5

  0.5              1               1.5               2                                    x1

d>0 d<0

Fig. 7.3 A finer detail simulation of time delay implementations Figs. 4.2(vi) and 4.3(vi), with
γ1 = 0.4 (left) and γ1 = 0.6 (right), showing solutions from several initial conditions. Approximate
switching layersDε of the implementation are shaded. Left: solutions evolve either to an attractor
at the intersection around xi ≈ θi, or an attractor along x1 − θ1 > 0 ≈ x2 − θ2. Right: all solutions
evolve to an attractor along x1 − θ1 > 0 ≈ x2 − θ2

We implement hysteresis at the discontinuity by switching νi as 0 �→ 1 at xi =

θi + ε, and 1 �→ 0 at xi = θi − ε, with ε = 0.2 as in Figs. 4.2 and 4.3. The simulations
are shown in Fig. 7.4 for γ1 = 0.4 and 0.6, again corresponding to d = −0.01
and 0.06. The results of hysteresis are evidently not consistent with the piecewise-
smooth approach, because regardless of the sign of d the solution rounds the corner
from the ε layer around x1 to that around x2 = 0, eventually finding an attractor at
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x1 ≈ γ2θ2/γ1, x2 ≈ 0. As stated in Sect. 4.2 there are isolated parameter values for
which a hysteretic attractor forms in the ε layer around x1 = x2 = 0, but these are
not typical.

Fig. 7.4 A finer detail simulation of hysteretic delay implementations Figs. 4.2(iii) and 4.3(iii),
with γ1 = 0.4 (left) and γ1 = 0.6 (right), showing solutions from several initial conditions, along
with approximate switching layers Dε shown shaded. In both cases all solutions evolve to an
attractor along x1 > θ1, x2 ≈ θ2

The exploration of other implementations is left to more focussed future work,
hopefully driven by closer insight and experimental data concerning such non-
idealities in the biological application. There is clearly much more precise mod-
elling that can be achieved, though by perturbing around piecewise-smooth models
it seems this can be done without overly complicating the models, or having unrea-
sonable knowledge of the biophysical processes involved.

7.3 Investments Revisited

Lastly let us return to the game from Sect. 4.3. The system is such that solutions are
attracted to the surfaces x1 = 0 and x2 = 0 (or their neighbourhood), and then to their
intersection. So our only interest lies in finding the dynamics in the neighbourhood
of the intersection x1 = x2 = 0.

The system (4.5) is in the form of (5.10). Treated as a piecewise-smooth system,
we can use the methods of Sect. 6.1 to find that sliding modes exist in the layer
(ν1, ν2) ∈ (0, 1) × (0, 1), and lie at (ν1, ν2) = (ν∗1, ν

∗
2) such that

{
ν∗1, ν

∗
2
}
=

{ √
d−γ1γ2+c(ρ2−ρ1)

2γ1ρ2
,
√

d−γ1γ2−c(ρ2−ρ1)
2γ2ρ1

}
, (7.16)
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where d = 4cγ1γ2ρ2 + (γ1γ2 + cρ1 − cρ2)2. We then substitute these values into the
third component in (4.5) to find the speed of growth or decline of the company’s
holdings z in the sliding mode. For the parameters in the left of Fig. 4.5 the result is{
ν∗1, ν

∗
2

}
= {0.611, 0.475}, implying ż = 0.033, and for the parameters in the right of

Fig. 4.5 the result is
{
ν∗1, ν

∗
2

}
= {0.402, 0.357}, implying ż = −0.191.

If we smooth the discontinuity, replacing each νi by φεi (xi) for some smooth
monotonically increasing φεi , we find a similar attractor corresponding to a sliding
mode at (ν1, ν2) such that

{φε1 (ν1), φε2 (ν2)} = {
ν∗1, ν

∗
2
}
.

Substituting these values into the third component in (4.5) gives the correspond-
ing speed of growth or decline of the company’s holdings z, plotted as the curve
labelled ‘smooth’ in Fig. 4.5. For the two sets of parameters the result is the same
pair of values, ż = 0.033 (left graph) and ż = −0.191 (right graph) as found in the
piecewise-smooth system.

These two results are in exact agreement. Filippov’s convex theory, however,
gives an extremely different result. The hull of the vector field at x1 = x2 = 0,
applying (5.5a), is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ1

ẋ2

ż

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ = μ00f00 + μ01f01 + μ10f10 + μ11f11 , (7.17)

with a normalization condition μ00 + μ01 + μ10 + μ11 = 1. To obtain the convex hull
of all possible vector fields, we let each μi j vary over its set [0, 1]. The boundaries
of the hull correspond to vectors tangent to the intersection x1 = x2 = 0 when the
vector fields in (7.17) are some (ẋ1, ẋ2, ż) = (0, 0, F3), with F3 taking possible values
(found by solving ẋ1 = ẋ2 = 0 in (7.17))

Fi j
3 = f i j

3 + ( f i+1, j
3 − f i j

3 , f i, j+1
3 − f i j

3 ) ·
(
μi+1, j

μi, j+1

)
(7.18)

where
(
μi+1, j

μi, j+1

)
= −

(
f i+1, j
1 − f i j

1 f i, j+1
1 − f i j

1

f i+1, j
2 − f i j

2 f i, j+1
2 − f i j

2

)−1

.

(
f i j
1

f i j
2

)

where i, j ∈ {0, 1} and the indices i + 1, j, and i, j + 1 are taken modulo 2. This
formula creates 8 possible values of Fi j

3 , only two of which are valid limits of the
hull, corresponding to the greatest and least values for which the coefficients μi

satisfy (μi+1, j, μi, j+1, 1 − μi+1, j − μi, j+1) ∈ [0, 1]3. The formula gives:

• −0.330 ≤ ż ≤ 0.453 for the parameter set that gives the left of Fig. 4.4, from
{μ00, μ11} = {0.441, 0.435} ⇒ ż = F10

3 = 0.453 and {μ01, μ10} = {0.345, 0.490}
⇒ ż = F11

3 = −0.330.
• −0.543 ≤ ż ≤ 0.075 for the parameter set that gives the right of Fig. 4.4, from
{μ10, μ01} = {0.455, 0.357} ⇒ ż = F00

3 = 0.075 and {μ11, μ00} = {0.333, 0.643}
⇒ ż = F01

3 = −0.543.
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The different hybrid implementations should all follow dynamics within this hull
as set out in Sect. 6.2. Before looking at the speed of motion along z let us look at
the dynamics in the (x1, x2) plane.
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Fig. 7.5 A solution that evolves onto x1 ≈ 0 and then onto x1 ≈ x2 ≈ 0, whose neighbourhood is
shown magnified, simulated with ε1 = ε2 for the parameter values in Fig. 4.5(left). [Fainter curves
indicate transient of the solution for 0 ≤ t ≤ 25, dark curves indicate 25 < t ≤ 50, indicating an
attractor]
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Fig. 7.6 As for Fig. 7.5, but simulated for the parameter values in Fig. 4.5(right)

In each simulation the flow finds an attractor in the neighbourhood of x1 = x2 =

0. If implemented by smoothing, then the attractor is a simple point (in the (x1, x2)
plane), and otherwise, it is a more complex object whose extent in the x1 and x2

directions are of order ε1 and ε2, respectively. Hysteresis or time delay tends to lead
to periodic or chaotic attractors.
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As we change parameters within a given implementation, as we do from Figs. 7.5
and 7.6, the attractors undergo bifurcations. As remarked from the general form of
such maps following (6.12), the fact they are only piecewise-differentiable permits
these bifurcations to result in arbitrary changes in topology and period.

A jump in the form of the attractor is accompanied by a jump in the coefficients
μi, corresponding to the time proportions spent in each mode i = 00, 01, 10, 11.
These are calculated using (6.13), and then by (6.15) they lead to jumps in the speed
of motion ż along x1 ≈ x2 ≈ 0.

If we vary parameters continuously, we see numerous such jumps. One may
choose any parameter in the system to observe this, but in Sect. 4.3 we chose the
ratio ε2/ε1, which describes the relative stiffness of the implementations of the
switches ν1 and ν2. (The absolute values of ε1 and ε2 are arbitrary as the system
is piecewise-constant).

By varying the ratio ε2/ε1 and keeping track of the sliding attractors, it becomes
clear how the complexity in the company’s motion ż in Fig. 4.5 stems from the com-
plexity of the sliding attractors. Figure 7.7 shows a plot of ż against ω = ε2/ε1

for implementations by delay or hysteresis, along with the sliding attractors on four
adjacent branches. The graphs in Fig. 4.5 show curves that consisting of smooth
segments between sharp kinks, and each smooth segment is associated with a quali-
tatively different attractor. The examples shown demonstrate continuous changes of
topology and/or periodicity, as well as sudden jumps to very high period.
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+ε2
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−ε2

Fig. 7.7 Hysteresis ω = 0.37, 0.38, 0.39, 0.40, delay ω = 0.42, 0.433, 0.45, 0.5, for parameter val-
ues in Fig. 4.5(left)
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Figure 7.7 is just a close-up on the region 0.3 < ω < 0.6 of the larger plot in
Fig. 4.5, over which we see the full extent of how erratically ż varies with ω. The
surprise of Fig. 4.5 is that the various implementations lie not just inside the hull,
but explore its entirety, so erratic is the variation in ż. The smooth and time-stepping
implementations are not dependent on the ratio ε2/ε1 for this system (this happens
because the vector field is piecewise-constant).

Ultimately the only way to understand the variations in ż quantitatively is to
study the maps (6.11), and being piecewise-constant, defined over four (possibly
overlapping) regions on which the map is continuous, they are neither simple to
express in a closed form, nor solvable in general. They may, however, be reducible
in dimension, as is the case with hysteresis or delay.

Since in hysteresis the switch is implemented only at the boundaries xiεi of
the switching layer, a map can be derived on that boundary, and will therefore be
only one dimensional. We can coordinatize the switching layer boundary Dε1,ε2 =

{(x1, x2) : |xi| ≤ εi}, by defining some ξ ∈ [0, 1) such that ξ = 0, 1
4 ,

1
2 ,

3
4 , corre-

spond to the corners of Dε1,ε2 (see inset images in Fig. 7.8. The dynamics then
takes the form of a circle map ξn = ξn−1 + Ψ (ξn−1) where Ψ : Dε1,ε2 �→ Dε1,ε2 .
The map is piecewise linear, with discontinuities due to the pre-images or images
of the map lying on the corners, namely at ξ = 0, 1

4 ,
1
2 ,

3
4 , and at ξ values for which

Ψ (ξ) = 0, 1
4 ,

1
2 ,

3
4 . As shown in [6], the second return map Ψ2 is a continuous, but is

still an eight-branch piecewise linear circle map. There are in fact two such maps,
which we can think of as the clockwise and anti-clockwise maps around the circle,
corresponding to the same dynamics.

The maps are calculated in Fig. 7.8 for two attractors from Fig. 7.7 (the attractor
are shown upper right of each map). With only a slight change in the map between
(i) and (ii), in which a part of the attractor touches one of the vertices in the map
(i.e., the solution touches a corner of the layer Dε1,ε2 ), the attractor jumps abruptly
between high and low period. Note how the high period attractor nonetheless retains
a ghost of the low period attractor.
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Fig. 7.8 The one-dimensional piecewise linear circle maps on the boundary of Dε1 ,ε2 for the hys-
teretic implementation of the investment game, calculated for two of the attractors from Fig. 7.7
with (i) ω = 0.37, (ii) ω = 0.38. The two (equivalent) clockwise and anti-clockwise maps are
shown by full and dashed lines, along with their attractors shaded red and yellow, respectively.
The corresponding attractor in the (x1, x2) plane is shown upper right of each map, including the ξ
coordinatization around the boundary ofDε1 ,ε2
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Bifurcations in piecewise linear maps like these are called border collisions.
A great deal has been understood about border collision at a single discontinuity
boundary, see, e.g., [56, 114, 130], and even how they respond to stochastic pertur-
bation of the boundary [55], but for maps with many discontinuities there are no
general patterns known concerning the bifurcations possible.

The map inside the layer is less simple for the case of delay, though it can in
principle still be reduced to a one-dimensional map. The domain of that map, where
switching occurs, is essentially the time-delayed image of the discontinuity thresh-
olds x1 = 0 and x2 = 0. In Fig. 7.9 we plot out these discontinuity sets, by mark-
ing points in the plane where the vector field switches between the modes fi, for
two of the attractors of the delay implementation from Fig. 7.7. Its shape is rather
complicated by solutions that cross the surfaces xi = 0 more than once during the
delay time. The corresponding attractor is shown to the upper right of each plot.
The high period attractor is seen to largely fill the enclosure of the map’s domain.
The bifurcations between attractors occur as the solution touches vertices of the
one-dimensional domain.
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+ε2

x2 x2 

−ε2

(i) (ii)

−ε1                     +ε1

+ε2

−ε2

Fig. 7.9 The domain of the one-dimensional map of switching in the delay implementation of the
investment game, calculated for two of the attractors from Fig. 7.7 with (i) ω = 0.42, (ii) ω = 0.45.
The attractors are overlaid on these domains to the upper right of each plot

The only studies of such maps to date are perhaps those for hysteresis in [6, 84].
For stochastic implementations the dimension of the map will not generally be re-
ducible in such a manner. The simulations in Fig. 4.6 suggest a tendency for noise to
produce less erratic variation than hysteresis or delay, concentrated loosely around
the attractor (7.16) derived by piecewise-smooth analysis or by smoothing. This
was partly explained by numerically studying the probability density functions of a
stochastic implementation in [84]. In Fig. 4.6 we simulate noise simply by adding
random perturbations. If the problem is formulated more rigorously as a stochastic
differential equation,

dx(t) = F(x(t))dt + dW(t, ε1, ε2), (7.19)

where W(t, ε1, ε2) is a Brownian motion, the solutions form a smoother ż curve than
those in Fig. 4.6, and that curve lies close to the ż graph of the piecewise-smooth
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system. Also as shown in [84], the probability density function then peaks at a value
approximately consistent with the sliding attractor.

Even for the two player investment game, which takes the simplest form possible
being only three dimensional and piecewise-constant, the resulting maps describ-
ing dynamics in the switching layer are one or two dimensional, with discontinuity
thresholds that are themselves not simple (except in the case of hysteresis). They are
therefore challenging to study exactly, having periodic behaviours corresponding to
complex sliding attractors.

Nevertheless the quantitative behaviour of such systems is consistent, and pro-
ceeds in terms of sliding attractors inside switching layers, either of the blow-up or
the implementation, and the overall result is clear. The dynamics at the intersection
of two switches is unique as a piecewise-smooth system, or a smooth system, both
evolving towards a sliding attractor (7.16). If switching is implemented by some
hybrid process, the dynamics lies inside Filippov’s convex hull (7.17), inside which
it evolves to some sliding attractor. This attractor may be periodic or chaotic, and
typically persists over only limited intervals of parameters, undergoing bifurcations
in between that lead to abrupt changes in dynamics. The incompletely understood
feature of these behaviours is how densely that dynamics will explore the convex set
of all possibilities—Fig. 4.5 and other simulations, such as those in [6, 84], suggest
a tendency to explore the entirety of the hull as parameters vary.



Chapter 8
Further Curiosities of Hidden Dynamics

Sections 4.3 and 7.3 introduced us to complex sliding modes as non-trivial attractors
in the switching layer. The complexity arose due to non-idealities of the implemen-
tation, but it can also occur in ideal piecewise-smooth models due to hidden terms
creating non-trivial sliding attractors. We give a brief overview here of a few exam-
ples presented in [82].

8.1 The Phenomenon of Jitter

In the simulations throughout Chap. 4, as the hybrid implementations attempt to fol-
low sliding motion along the discontinuity thresholds, they exhibit slightly irregular
motion which may be termed chatter. In the investment game we saw a much more
violent behaviour associated with the non-ideality of implemented sliding, and we
call this jitter. It arises if the attracting states in the switching layer responsible for
sliding have multiple stable branches, or undergo bifurcations, that result in erratic
variations or ‘jitter’ in the sliding dynamics.

Bifurcations in the sliding attractor (examples of which we saw in Figs. 7.5 and
7.6) cause dramatic changes in the times spent in each mode fK , such that the speed
of travel along the discontinuity threshold changes in an erratic or ‘jittery’ manner.

The phenomenon also occurs when the attractor responsible for sliding has mul-
tiple branches or is chaotic, examples of which are given below for one or three
discontinuity thresholds.

An illustration of jitter with one switch is given by the planar system
(

ẋ
ẏ

)
=

(
y − 8λ + sin(10πλ)

1 + 4
5 cos(4πλ)

)
, (8.1)

with λ = sign(x), as illustrated in Fig. 8.1(left), with the dynamics in the switching
layer on x = 0 being
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(
ελ̇
ẏ

)
=

(
y − 8λ + sin(10πλ)

1 + 4
5 cos(4πλ)

)
, (8.2)

for ε→ 0.
The invariant manifold on which sliding occurs is given by y−8λ+sin(10πλ) = 0,

depicted in Fig. 8.1. It has turning points between attracting and repelling branches
at every λ such that cos(10πλ) = 4/5π. The sliding dynamics is given by

xl

.

1.5

1.0

0.5

0
t0            5            10           15 20

Fig. 8.1 Jitter in sliding motion, due to hidden jumps between branches of the sliding attractor.
The piecewise-smooth flow is sketched along with the layer system (left). The jitter reveals itself
in the vector field component ẋ2(t) (plotted right), which shows irregular jumps in sliding speed
along the discontinuity threshold

0 = y − 8λ + sin(10πλ)
ẏ = 1 + 4

5 cos(4πλ)

}
: λ ∈ (−1,+1) . (8.3)

At each turning point a jump occurs to the next attracting branch of the sliding
attractor, and because the ẏ component depends on λ, this incurs an accompanying
jump in ẏ as simulated in Fig. 8.1(right). Thus the sliding solution evolves in bursts
or ‘jitters’ along the discontinuity threshold, its vector field undergoing repeated
jumps.

8.2 Hidden Oscillations and Chaos

If the attractors responsible for sliding can only be found by inspecting the dynamics
inside the switching layer, and cannot be inferred solely from the modes fK that exist
outside the discontinuity thresholds, and we describe them as hidden attractors. The
attractors involved can be much more complicated than those seen so far above,
made of (possibly multiple-branch) invariant manifolds, as the following example
shows.
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Consider the one-switch system

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ
ẏ
ż

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y − cx
−λp − by + a cos t

k(λ − z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (8.4)

where λ = sign(x), for constants a, b, c, some odd power p, and a large positive
constant k, as proposed in [80]. The switching layer on x = 0 is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ελ̇
ẏ
ż

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y
−λp − by + a cos t

k(λ − z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (8.5)

The ideal piecewise-smooth system, with ε→ 0, has a stable periodic orbit satisfy-
ing λ = a1/p cos1/p t, and z closely tracks this oscillating value of λ. For ε > 0 and
p > 1 the system may exhibit chaos, for example, with p = 3 the (λ̇, ẏ) system is
a Duffing oscillator [144, 145], and the chaotic attractor consists of oscillations of
order ε around λ ∼ a1/p cos1/p t. This implies that chaos will only reveal itself under
non-ideal implementations. Figure 8.2 plots z(t) for a simulation of (8.4) for large
k, implemented by smoothing for some small ε. A chaotic oscillation shrinks with
ε towards the regular cycle with amplitude a1/p for p = 3. By contrast, for p = 1,
there is only the simple periodic orbit with amplitude a.

0.5

0

−0.5

480                           490                           500

p=3, e=10−5

p=3, e=10−2

p=1

t

z

Fig. 8.2 Simulations of z(t) from (8.4) for constants p = 3, a = 0.15, b = 0.05, c = 0.1, k = 104,
and a smoothing implementation that replaces λ with λε = tanh(x/ε), for ε = 10−2 or ε = 10−5.
If we ‘linearize’ (8.4) by replacing λ3 with λ we obtain the simple smaller oscillation (for any
implementation)

Nonlinearities, therefore, manifest in two ways here, through the amplitude of
the oscillation λ ∼ a1/p cos1/p t originating in the hidden power of the switching
multiplier λp = sign(x) in (8.4), and through the chaos introduced by non-ideal
implementation for ε > 0.

This is a contrived example that demonstrates nonlinearity by ‘hiding’ a Duffing
oscillator inside the switching layer. An earlier example from [103], again motivated
by genetic regulatory models, showed how a Lorenz attractor could be hidden inside
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the switching layer in a three-switch system. A slightly extended four-dimensional
version of that model is

ẏ1 = 10(ν2 − ν1) − 75y1 ,

ẏ2 = 2(2ν1 − 1)(7 − 15ν3) − ν2 + 1
2 − 75y2 ,

ẏ3 = 15(2ν1 − 2)(2ν2 − 1) − 8
3ν3 − 75y3 ,

ẏ4 = μ(ν1 − y4) ,

(8.6)

where λ j = sign(x j) for j = 1, 2, 3. This is based on the genetic models we saw
already in Sects. 1.3 and 4.2, modelling protein concentrations x j = y j +

1
4 , released

by genes that switch production on/off at discontinuity thresholds yi = 0. The in-
dividual switching layer systems on y1 = 0, y2 = 0, y3 = 0 are uninteresting. The
origin y1 = y2 = y3 = 0 is a global attractor, and there the switching layer dynamics
is given by

ε1λ̇1 = 10(ν2 − ν1) ,
ε2λ̇2 = 2(2ν1 − 1)(7 − 15ν3) − ν2 + 1

2 ,

ε3λ̇3 = 15(2ν1 − 2)(2ν2 − 1) − 8
3ν3 ,

ẏ4 = μ(ν1 − y4) .

(8.7)

If we let ε1 = ε2 = ε3, this has a Lorenz attractor inside the layer (λ1, λ2, λ3) ∈
(0, 1) × (0, 1) × (0, 1). As shown in Fig. 8.3, while the protein concentrations yi col-
lapse to yi = 0 (i), the multipliers ν j enter into chaos (ii), and the coupled protein
concentration y4 following ν1 likewise enters into chaos (iii).
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Fig. 8.3 Jitter in the system (8.6). As y1, y2, y3, collapse to zero (i), the switching multipliers ν j

enter a Lorenz attractor (ii) in the switching layer around y1 = y2 = y3 = 0, to which the variable
y4 is coupled (iii)



8.2 Hidden Oscillations and Chaos 79

Such examples are intended only to hint at the range of behaviours that are
possible in piecewise-smooth models, through stability changes, bifurcations, and
chaos, affecting the attractors that constitute sliding, given nonlinear dependence on
switching multipliers and their hidden effect inside the switching layer.



Chapter 9
Closing Remarks: Open Challenges

We have proposed here that piecewise-smooth dynamics can move forward, both in
theory and application, by embracing a few less idealized notions, chiefly: switching
layers as a blurring of ideal discontinuity thresholds, sliding attractors as a gener-
alization of sliding modes, and nonlinear switching as a more general model of
dynamics at a discontinuity. These elements allow us to distinguish between ideal
piecewise-smooth analysis, and the results of implementing the discontinuity by a
range of practically motivated processes. By bringing such non-idealities together
as perturbations we may at last begin moving beyond Filippov’s ‘linear’ theory and
begin to fulfil his own larger vision.

Nonsmooth models are popular because they:

1. permit an intuitive geometric description of abrupt change;
2. reduce unsolvable problems to piecewise-solvable sub-problems;
3. give an idealized expression of switching.

Despite their simplicity and idealization, however, they:

1′. are sometimes numerically unstable in ways not fully understood;
2′. are often difficult and messy to analyze, case specific, and subject to a curse of

dimensionality (see [58]);
3′. suffer from non-uniqueness.

In short, what nonsmooth systems gain in qualitative simplicity, they lose in analytic
simplicity, generality, and determinacy. Nevertheless they have become ever more
popular because of their wide applications and seeming ease of implementation.
We have highlighted phenomena that reveal some unappreciated dangers of such
models, while at the same time facilitating more detailed modelling and analysis.

The uncertainties of nonsmooth models present much greater modelling freedom
than is currently taken advantage of. They are an admission of a lack of knowledge
of the precise processes involved in a transition, leaving space in our equations to
avoid over-modelling of aspects we cannot fix based on available data. They offer a
ground-level model, the leading order of some more sophisticated approximation, to
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which we can add nonlinearities and implementations in a manner consistent with
empirical data.

In this way, nonsmooth differential equations occupy a middle ground between
differentiable equations on the one hand, and stochastic differential equations on
the other hand, one fully deterministic and the other entirely non-deterministic. In-
stead, piecewise-smooth systems are almost deterministic, being differentiable in the
neighbourhoods of almost all points in space, except at the discontinuity, where in-
determinacy enters the picture, with many outcomes that can be studied via switch-
ing layers and hidden dynamics.

The peculiar outcome of the investment game says something fundamental about
the mathematics of dynamic choice. The interaction of two players’ decisions leads
to volatile behaviour in the overall system, and this arises despite, and actually di-
rectly because, the investor’s own dynamics fall onto an attractor. That volatility is
breathed life by the incremental details of how each player’s decisions are imple-
mented.

The phenomenon of jitter reveals a surprising aspect of sliding dynamics, that de-
spite providing a robust state of motion on a discontinuity threshold, it can neverthe-
less be responsible for very irregular behaviour. Jitter should not be confused with
chatter, which is an entirely different phenomenon, its less technical usage mean-
ing just the irregular jumping to-and-fro across the discontinuity threshold seen in
Figs. 4.2, 4.3, and 7.1, and its more technical usage meaning a Zeno convergence of
infinite impacts in finite time (see, e.g., [75]).

The definition of an implementation (5.3) of the system (5.1) is a simplification
of Seidman’s solution concept. In [124] Seidman loosens Filippov’s definition of
the convex set F (x) in a way that permits less idealized discontinuity thresholds,
proving the existence of solutions when the set F ε(x) contains all values that the
vector field attains in an ε-neighbourhood of x. This is a subtle change to Filippov’s
definition, but means that the discontinuity need only be defined as taking place in
some ε-neighbourhood of a threshold, and ẋ need not have a unique, or indeed any,
value at every point x in the neighbourhood, provided it has a value at some points
in the neighbourhood. This is suggestive of a more general interpretation of nons-
mooth dynamics as a modelling methodology, and suggests how to more formally
define solutions through the switching layers of implementation introduced here.
(The definition also has the advantage of extending to infinite dimensional systems,
see [124]). The definition of switching layers bears some resemblance to boundary
layers, to ‘inflation’ of differential equations (see [64]), and perhaps to other similar
analytical methods or implementation techniques, any of which may bring welcome
insights to aid in our further understanding of modelling with nonsmooth dynamics.

We summarize our main conclusion as follows. Given a piecewise-defined sys-
tem (5.1), the inclusion (5.2) can be formed to prove the existence of solutions (us-
ing Filippov’s theory [51]), but to specify or simulate them we need a more explicit
formulation. Many applications are naturally described by (5.10) because they con-
tain certain discontinuous parameters, such as currents being activated, or physical
constants changing across material interfaces. Smoothing implementations as we
discussed in Sect. 6.3 are exactly described by (5.10) and give dynamics similar to
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the piecewise-smooth system. Hybrid implementations of switching, of the types
discussed in Sect. 6.2, turn out to be best described by the convex hull (5.5a), and
if multiple switches are involved can exhibit great variation inside the hull, though
noise tends to push the system towards the piecewise-smooth ideal. Switching layers
provide a starting point to analyze such dynamics in detail.



Appendix A
Nonsmooth Models as Asymptotic Series

In Sect. 1.1 we sketched the derivation of a piecewise-smooth system, with leading
order (1.2) and series approximation (1.11) for ν = step(x), from an asymptotic
expansion with limiting behaviours (1.3) and uniform expression (1.11) in which
ν ∼ step(x). We flesh out the details of that derivation here. We then also show how
to derive the asymptotics of the error function, as the method is worth illustrating,
and derive the corresponding expression in the form (1.3).

A.1 The General Expression

First let us derive the expansion (1.3) as a general model for a piecewise-smooth
system. Starting from (1.8), where ν is asymptotic to a step function, we can write
(1.9) without loss of generality. Just as we noted that s might represent an expansion
term x/ε or e−ε/|x|, we may consider more specialized forms for ν provided they are
asymptotic to the step function. These will change the precise expression of higher
order terms, but not their general form.

Re-arranging (1.9) to write s in terms of ν for either ±x � ε separately, we have

s =

⎧
⎪⎪⎨
⎪⎪⎩

1 − ν + O
(
(1 − ν)2

)
for x � +ε ,

ν + O
(
ν2

)
for x � −ε .

(A.1)

Substituting these two limiting behaviours for s into the series (1.4) as appropriate
gives for each term of the series

an(x; ε)sn = an(x; ε)
(
1 − ν + O

(
(1 − ν)2

))n

=
(
an(x; ε) + O

(
(1 − ν)2

))
(1 − ν)n

bn(x; ε)sn = bn(x; ε)
(
ν + O

(
ν2

))n

=
(
bn(x; ε) + O

(
ν2

))
νn ,
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yielding

A(x, s; ε) =
∞∑

n=0

ãn(x; ε)(1 − ν)n & B(x, s; ε) =
∞∑

n=0

b̃n(x; ε)νn , (A.2)

where ã0 = a0, b̃0 = b0, and for n ≥ 1, ãn = an + O (1 − ν), b̃n = bn + O (ν).
Substituting these into (1.8) gives

F(x) = ν
∞∑

n=0

ãn(x; ε)(1 − ν)n + (1 − ν)
∞∑

n=0

b̃n(x; ε)νn

= νa0(x; ε) + (1 − ν)b0(x; ε) + ν(1 − ν)G(x; ν; ε) (A.3a)

where

G(x; ν; ε) =
∞∑

n=0

{
ãn+1(x; ε)(1 − ν)n + b̃n+1(x; ε)νn

}
, (A.3b)

where ãn and b̃n are asymptotic to an and bn. Letting ε → 0 and defining an(x) =
an(x; 0), bn(x) = bn(x; 0), we have finally

F(x) = νa0(x) + (1 − ν)b0(x) + ν(1 − ν)G(x; ν) (A.4a)

where

G(x; ν) =
∞∑

n=0

{an+1(x)(1 − ν)n + bn+1(x)νn} . (A.4b)

A.2 The Example of the Error Function

As an example we took F as given by the differential equation ε2F′′ = −xF′ in (1.6).
In this case F is known to be given by the Error function, with well-known asymp-
totics. For more complicated systems we would have to solve for F approximately,
and a typical method would be roughly as follows.

We can integrate ε2F′′ = −xF′ once quite simply, giving ε2 log(F′/F′0) = − 1
2 x2,

where F′ = F′0 at x = 0. Exponentiating gives F′ = F′0 e−x2/2ε2
, and multiplying

through by dx then gives dF = F′0 e−x2/2ε2
dx. We can then integrate one more time,

∫ F

0
dF = F′0

∫ x

0
e−ξ

2/2ε2
dξ

= F′0

{∫ ∞ sign(x)

0
−

∫ ∞ sign(x)

x

}
e−ξ

2/2ε2
dξ . (A.5a)



A Nonsmooth Models as Asymptotic Series 87

We have split the integral into two infinite pieces that are more readily calculated
than the integral from 0 to x, with the ‘sign’ just ensuring that the integration contour
passes through x = 0 only once. The left-hand side just evaluates to F − F0 (where
F = F0 at x = 0). On the right-hand side the first integral evaluates simply as
±ε
√
π/2 for x ≷ 0, while the second must be tackled by a sequence of partial

integrals.
The partial integration involves first treating the integrand e−ξ

2/2ε2
as the product

u.v′ = ( 1
ξ
).(ξ e−ξ

2/2ε2
), which equals (uv)′ − u′v = [− 1

ξ
e−ξ

2/2ε2
]′ − 1

ξ2
e−ξ

2/2ε2
, giving

an integrable first term and a remaining last term, which must again be tackled by
partial integration. We proceed iteratively, on each successive integration taking the
last term, of the form 1

ξr
e−ξ

2/2ε2
, written as u.v′ = ( 1

ξr+1 ).(ξ e−ξ
2/2ε2

), which equals

(uv)′ − u′v = [− 1
ξr+1 e−ξ

2/2ε2
]′ − r+2

ξr+2 e−ξ
2/2ε2

, giving a series of integral terms and
remainders

F−F0
εF′0
=

√
π
2 sign(x) +

r∑

p=0

[ (−1)p(2p−1)!!
(ξ/ε)p+1 e−ξ

2/2ε2
]∞x

− (2p − 1)!!

∫ ∞

x

(−1)r(r+2)
ξr+2 e−ξ

2/2ε2
dξ

=

√
π
2 sign(x) − e−x2/2ε2

∞∑

p=0

(−1)p(2p−1)!!
(x/ε)2p+1 , (A.5b)

obtained by performed an infinite sequence of such partial integrations.
With F0 = c and εF′0 =

√
π/2 from the example (1.6), we may write this as

F = c + sign(x) −
√

2
π

e−x2/2ε2
∞∑

p=0

(−1)p(2p−1)!!
(x/ε)2p+1

= νA(x, s; ε) + (1 − ν)B(x, s; ε) , (A.6)

where

A(x, s; ε) = c + 1 −
√

2
π

e−x2/2ε2
∞∑

p=0

(−1)p(2p−1)!!
(x/ε)2p+1 , (A.7)

B(x, s; ε) = c − 1 −
√

2
π

e−x2/2ε2
∞∑

p=0

(−1)p(2p−1)!!
(x/ε)2p+1 , (A.8)

with ν = step(x).
The error function has particular importance as the universal mechanism of

jumps in quantities in the asymptotic theory of Stokes discontinuities [17]. For more
detailed theory and asymptotic methods behind the brief analysis summarized above
for such integrals, see [39], and for a particularly readable account of these type of
partial integration methods to obtain series expansions, see [68].



Appendix B
Simple Examples of Hulls, Canopies,
and Indexing

It is a rather straightforward exercise to expand the hull or canopy expressions from
Chap. 5 to make sense of their formulae for general number of regions N and number
of switching thresholds m. To aid the reader let us expand the first two, using either
of the indexing systems in (5.9).

For N = 2 and m = 1, the hull (5.5a) and canopy (5.7a) give expressions

F (x) = μ0f0(x) + μ1f1(x) ,

G(x) = (1 − ν1)f0(x) + ν1f1(x) ,

using the binary indexing from (5.9)(b) (which is trivial since m = 1), but these are
identical since μ0 = 1− μ1 by the normalization condition in (5.5a). (The numerical
indexing from (5.9)(a) just increases the indices of μi and fi here by 1). This does
not mean that there is no distinction between linear and nonlinear switching systems
for m = 1, however, as we could include hidden terms in the formula for G(x)
proportional to ν1(1 − ν1), as we introduce in Sect. 5.3.

For N = 4 and m = 2 these become

F (x) = μ1f1(x) + μ2f2(x) + μ3f3(x) + μ4f4(x) ,

G(x) = (1 − ν2)[(1 − ν1)f1(x) + ν1f2(x)] + ν2[(1 − ν1)f3(x) + ν1f4(x)] ,

in the numerical indexing (5.9)(a). These are no longer identical even though we
can eliminate one μi, say μ1 = 1 − μ2 − μ3 − μ4, by the normalization condition. In
the binary indexing (5.9)(b) these look like

F (x) = μ00f00(x) + μ10f10(x) + μ01f01(x) + μ11f11(x) ,

G(x) = (1 − ν2)[(1 − ν1)f00(x) + ν1f10(x)] + ν2[(1 − ν1)f01(x) + ν1f11(x)] ,
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with μ00 = 1 − μ10 − μ01 − μ11. Now there is an immediate difference between the
hull, which depends linearly on the μis, and the canopy which depends bi-linearly
on the ν js.

We could go on. What matters more, of course, is what we do with these formu-
lae, and what dynamics they permit.



Appendix C
Deriving the Hidden Terms in Lemma 6.2

Taking the functions in (6.25) and expanding for large |x|/ε gives

x/ε√
1+(x/ε)2

= sign(x){1 − 1
2 ( εx )2 + · · · + (−1)nΓ(

1
2+n)

√
πΓ(1+n)

( εx )2n + . . . } , (C.1a)

arctan(x/ε) = π2 sign(x) − εx +
1
3 ( εx )3 + · · · + (−1)n

2n+1 ( εx )2n+1 + . . . , (C.1b)

tanh(x/ε) = sign(x){1 − 2 e−2|x|/ε + · · · + 2(−1)n e−2n|x|/ε + . . . } . (C.1c)

Introduce functions

c1(x) = x/ε√
1+(x/ε)2

− sign(x) , (C.2a)

c2(x) = 2
π

arctan(x/ε) − sign(x) , (C.2b)

c3(x) = tanh(x/ε) − sign(x) (C.2c)

such that

2
π

arctan(x/ε) − x/ε√
1+(x/ε)2

= c2(x) − c1(x) , (C.3a)

tanh(x/ε) − x/ε√
1+(x/ε)2

= c3(x) − c1(x) . (C.3b)

Hence the functions ci(x) are themselves discontinuous at x = 0 but their differences
are continuous functions.

We can use φε(0) from (6.22a) to substitute

x/ε = (φε(0)(x) − 1
2 )/

√
φε(0)(x)(1 − φε(0)(x)) ,

and hence express each ci in terms of φε(0),
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c1(x) = sign(x)

{
1
2 ( εx )2 − · · · − (−1)nΓ(

1
2+n)

√
πΓ(1+n)

( εx )2n + . . .

}

:= φε(0)(x)(1 − φε(0)(x))C1(1 − 2φε(0)(x)) (C.4a)

c2(x) = 2
π

{
− εx +

1
3 ( εx )3 + · · · + (−1)n

2n+1 ( εx )2n+1 + . . .
}

:=
√
φε(0)(x)(1 − φε(0)(x))C2(1 − 2φε(0)(x)) (C.4b)

c3(x) = sign(x)
{
−2 e−2|x|/ε + · · · + 2(−1)n e−2n|x|/ε + . . .

}

:= e−|1−2φε(0)(x)|/
√
φε(0)(x)(1−φε(0)(x)) C3(1 − 2φε(0)(x)) (C.4c)

in terms of functions

C1(h) = 2 sign(h)
h2

{
1 − · · · − 2(−1)nΓ(

1
2+n)

√
πΓ(1+n)

( 1−h2

h2 )n−1 + . . .

}
, (C.5a)

C2(h) = 4
πh

{
−1 + · · · + (−1)n

2n+1 (
√

1−h2

h )2n + . . .
}
, (C.5b)

C3(h) = 2 sign(h)
{
−1 + · · · + (−1)n e−2(n−1)|h|/

√
1−h2
+ . . .

}
. (C.5c)

The functions Ci inherit the boundedness of the functions ci, along with the discon-
tinuity which is now at h = 0.
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