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Chapter 6
Soil Microbes and Plant Health
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Sajid Mahmood Nadeem, and Maqshoof Ahmad

Abstract  Soil microbial community is crucial for plant health. They all represent a 
second much larger genome associated to plants. Microbes vary in their number and 
diversity which is in order of tens of thousands species in fertile agricultural soils. 
In general, soil microbial communities include bacteria, fungi, algae, protozoa, 
nematodes, and microarthropods. Most of them are neutral in relation to their effects 
on plants. They are important players of the food web as they utilize most of the 
carbon released by roots as rhizodeposits. Less than ten percent of the total rhizo-
sphere microbes exert beneficial or harmful effects on plants. Pathogenic microor-
ganisms in soil include fungi, oomycetes, bacteria, and nematodes while the 
beneficial microbial community consists of symbiotic, associative symbiotic and 
free-living plant growth promoting bacteria (PGPB), arbuscular mycorrhizal fungi 
and algae. Recent research in plant-microbe interactions showed that host specific 
microbial species are associated with different plant species in the same soil. The 
number and diversity of beneficial and deleterious microorganisms depend on the 
quality and quantity of root exudates which, along with soil physico-chemical prop-
erties, give shape to the rhizosphere microbial community structure. This chapter 
highlights the importance of rhizosphere microbial communities in relation to plant 
growth. Recent advances on soil-plant-microbe interactions in a balanced and opti-
mized manner are discussed.
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6.1  �Introduction

To meet the food requirement of rapidly growing world population it is very diffi-
cult to develop new high yielding crop varieties, having resistance to biotic and 
abiotic stresses. Our crops still require fertilizers because nutrients may become 
inaccessible or may be insufficient in soil. Recent work clearly revealed that micro-
organisms reduce the use of agricultural inputs regarding inorganic fertilizers. 
Microorganisms, due to their excessive gene pool, are very useful for soil reactions, 
i.e. by recycling nutrients needed for plant growth (Li et al. 2017).

Microbial communities of diverse groups are important for agricultural produc-
tivity (Sharma et al. 2008). Microorganisms from different genera such as Bacillus, 
Pseudomonas, Rhizobium, Azospirillum, have been reported for their potential in 
enhancing both above and belowground plant biomass, being useful tools for sus-
tainable agriculture (Igiehon and Babalola 2018).

The rhizosphere is the region of the soil environment that is maintained by bor-
der cells and exudates released by roots (Moe 2013; Igiehon and Babalola 2017). 
Plants produced mucilages, rhizodeposits, nutrients, and exudates which attract and 
serve as food sources for microorganisms living in the rhizosphere. Plants different 
developmental stages control and shape the structure of rhizosphere communities 
(Hou and Babalola 2013; Chaparro et  al. 2013). The difference in rhizosphere 
microbial community structure is induced by the changes in nature and chemistry of 
metabolites exuded by roots, at different growth stages.

Plants release exudates that have an effect on the diversity of microorganisms 
and invertebrates living in the rhizosphere. Root exudates are responsible for 
increasing their populations in the rhizophere by increasing availability of C as a 
source of food and energy (Aira et al. 2010) These microorganisms in turn can also 
affect plants by releasing growth regulatory substances. In this view, the rhizosphere 
organisms are considered as an external environment for plants (Philippot et  al. 
2013; Spence et al. 2014).

The physical, chemical and biological properties of rhizospheric soil differ with 
those of the surrounding soil (Kim et al. 2010), as the number of microorganisms 
and invertebrates found in the rhizosphere are greater compared to bulk soil. The 
rhizosphere communities are the second set of genome present in plants and per-
form several roles for growth and development (Nihorimbere et al. 2011). Soil and 
rhizosphere microorganisms are affected by many factors such as type of soil, cli-
mate, plant species and management practices (Jeffrey et al. 2010).

6.2  �Rhizosphere and Root Exudates

Soil is sometimes considered just as a source of nutrients. However, it is a complex 
ecosystem holding bacteria, protists, fungi, and animals (Muller et al. 2016). The 
rhizosphere area varies with plant species and soil. The term rhizosphere was first 
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used by Lorentz Hiltner (Hartmann et al. 2008) for the immediate area of soil influ-
enced by the plant roots. It generally covers a 2 mm distance from the root surface, 
known as the rhizoplane. However, its influence can be found up to 10  mm 
(Hartmann et al. 2008; Niu et al. 2012). The microbial population in the rhizosphere 
may vary from thousands to million cells (Nihorimbere et al. 2011). The plant nutri-
ents and exudates are the principle component that changes the microclimate of the 
rhizosphere (Shukla et  al. 2013). Soil microorganisms are C dependent, so they 
grow well in soil having high amounts of amino acids, organic acids, sugars that are 
exuded by the plants (Bais et al. 2006).

The presence of microbes in the rhizosphere depends on number of factors such 
as: (1) plant genotype (Bulgarelli et  al. 2012), (2) plant developmental stage 
(Chaparro et al. 2013), (3) plant hormones (Carvalhais et al. 2013), (4) composition 
of root exudates (Badri et  al. 2013), (5) exposure to disease-suppressive soils 
(Mendes et al. 2011).

Plant roots release in the rhizosphere a wide variety of chemical compounds that 
attract soil microorganisms (Huang et al. 2014), that are known as exudates. Root 
exudates are the products of photosynthesis (Hayat et al. 2017), and include amino 
acids, organic acids, sugars, enzymes, hormones, mucilage, root cells and C (Dennis 
et al. 2010). Uren described that about 50% of C fixed by plant is devoted to the 
root, with 15% respired by the plant and 10% released by the roots as debris (exu-
dates) including border cells (Jones et al. 2009). The compounds released by roots 
are not organic in nature and may be classified according to their functions such as 
excretions (H+, CO2, HCO3, ethylene) involved in internal metabolism and secre-
tions (siderophores, enzymes, mucilage, H+, electrons) required for external pro-
cesses (Uren 2007).

The rhizosphere is an area of high microbial activity. Several studies reported the 
effects of roots on microbial process (Kaiser et al. 2010). The roots release higher 
organic compounds in the rhizosphere due to the microbial biomass whose activities 
are higher in the rhizosphere than in bulk soil (Jones et al. 2009).

Studies on the microbiome of different plant species revealed that specific exu-
dates perform specific functions, shaping the plant-microbe interaction (Hartmann 
et al. 2009). They include flavonoids involved in the process of symbiosis between 
rhizobia and legumes (Abdel-Lateif et al. 2012), sugars and amino acids acting as 
chemoattractants for microorganisms (Somers et al. 2004) and strigolactones, that 
enhance branching of mycorrhizal hyphae (Akiyama et  al. 2005). Plants attract 
nematodes, which carry rhizobia toward roots thus contributing to the nodulation 
process (Horiuchi et al. 2005). The exudates have both positive and negative effects 
on plants, however, depending on which type of microorganisms are attracted 
(Hayat et al. 2017).

6  Soil Microbes and Plant Health



114

6.3  �Microbial Number and Diversity

In the rhizosphere, there is more cycling of nutrients as well as availability. The 
solubility of toxic metals also makes it a different microenvironment from bulk soil 
(Neumann et al. 2009). The type and composition of organic compounds released 
by roots, i.e. sugars, carbohydrates, nucleotides, vitamins, flavonoids, and stimula-
tors, strongly affect the diversity of species proliferating in the rhizosphere (Dotaniya 
et al. 2013; Ueno et al. 2007).

The rhizosphere higher amount of nutrients as compared to bulk soil, confer 
biological and chemical properties due to a large number of macro- and micro-
organisms which develop a variety of interactions among each other and with roots 
(Kapoor and Sachdeva 2013). The relationship between plant and microorganisms 
may be classified as mutualistic, commensalistic or parasitic (Aira et  al. 2010; 
Schirawski and Perlin 2018).

The microbial diversity decreases as the distance from the rhizoplane increases 
(Chowdhury et al. 2009). It also decreases after long term exposure to older roots, 
as compared to bulk soil. In general, the bacterial diversity follows the following 
trend: bulk soil < apical region < basal region (Dennis et al. 2008). According to 
Hartmann et al. (2009), the root secretions exert both stimulatory as well as inhibi-
tory effects on the microbial community structure and composition. Exudates such 
as amino acids, organic acids, and carbohydrates have positive effects on chemotac-
tic responses of bacteria. On the other hand roots also release secondary metabolites 
that inhibit the growth of bacterial and fungal pathogens such as chitosans, jasmonic 
and salicylic acids (Walker et al. 2003). Plants also release different antibacterial 
compounds such as ellagic acid, chebulagic acid and norwogonin, that decrease the 
bacterial number (Miyasaki et al. 2013).

6.4  �Plant Microbe Interactions

As agricultural production needs to be doubled in coming year to feed the increas-
ing population of the world, there is also need to reduce the use of chemical fertil-
izers. To achieve this goal, it is necessary to explore the interaction between plants 
and microbes, so that microorganisms can be used as biofertilizers, biopesticides as 
well as bioherbicides (Igiehon and Babalola 2017).

6.4.1  �Beneficial Interactions

Plant-associated microorganisms use different mechanisms for influencing and 
modulating the plant health (Huang et al. 2014). The PGPB Bacillus amyloliquefa-
ciens can successfully be used to enhance drought resistance of plants (Su et al. 
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2017). PGPB isolated from plants growing in metal contaminated soil have the abil-
ity to survive at high concentration of zinc and cadmium and can be used for phy-
toremediation of contaminated sites (Montalbán et al. 2017). Some PGPB protect 
plants from soil borne diseases by producing toxic compounds (Muller et al. 2013).

Under water deficient conditions, arbuscular mycorrhizal (AM) fungi change the 
plant water relationship and improve their resistance to water stress (Birhane et al. 
2012). AM fungi are well known for their potential to facilitate nutrient uptake, 
particularly phosphorus, by crops growing in phosphorus deficient soils (Mohammadi 
et al. 2011), i.e. Phragmites australis (Liang et al. 2018) or the AM Rhizophagus 
irregularis that improves plant growth enhancing Verticillium wilt resistance in cot-
ton (Zhang et al. 2018).

Algae enhance soil fertility and promote plant growth by supplying growth pro-
moting substances. The application of algal extract Oscillatoria sp. and Spirogyra 
sp. increased seed germination, seedling growth, and number of leaves, and height 
of Medicago sativa (Brahmbhatt and Kalasariya 2015). In another study, 
Shariatmadari et al. (2013) reported that improvement in plant growth parameters 
by the application of algal extract was due to the presence of growth promoting 
substances such as phytohormones.

Actinomycetes are also important soil microorganism contributing a higher pro-
portion of soil biomass. They are capable of producing large quantities of antibiot-
ics, extracellular enzymes, organic acids, bioactive compounds, phytohormones and 
other secondary metabolites. Several isolates of actinomycetes have been found to 
promote plant growth via direct and indirect mechanisms (Singh et  al. 2018). 
Sreevidya et  al. (2016) reported that four isolates of actinomycetes significantly 
increased the yield of chickpea. The PGPB Streptomyces spp. can be used as biofer-
tilizers, as they help to release nutrients from the complex organic compounds 
(Vurukonda et al. 2018).

Soil protozoa also affect plant growth by influencing the beneficial potential of 
PGPB (Weidner et al. 2017).

6.4.2  �Negative Interactions

Microorganisms regulate host populations everywhere in the soil environment. 
They may be pathogenic and may cause diseases in plants. In such interactions, 
pathogens grow and multiply inside the plant by causing various kind of diseases, 
and can also move from diseased to healthy plants (Abdul-Kareem 2012).

The pathogenic fungi feed on plant tissues and weaken their defense systems. 
One of the mechanisms exploited to survive in the host plant is the secretion of 
effector proteins which interact with plant proteins thereby disturbing their normal 
function. Recently, effector proteins were identified in fungal pathogens important 
for Indian agriculture, such as Microbotryum lychnidis-dioicae (Kuppireddy et al. 
2017) and Fusarium proliferatum (Gao et al. 2018). These effector proteins cause 
destructive tomato diseases by producing dark brown necrotic spots leading to death 
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of the entire plant. The infection on wheat during different growth stages by 
Fusarium culmorum has also been reported by Spanic et al. (2018). Fungal phyto-
pathogens reduce the plant yield although their abundance may decrease in suppres-
sive soils (Lobmann et al. 2016).

Viral infections in plants have also been reported in species of Chenopodium and 
Nicotiana grown in common gardens. Viral infections develop necrotic spots and 
cause reduction in above ground biomass (Kollmann et al. 2007). Changes in the 
growth and physiological parameters of pepper as affected by Tobacco mosaic virus 
have also been studied. The viral infection causes stunting, necrosis, deformation 
and defoliation in plants which resulted in reduction of fruit production (Pazarlar 
et al. 2013). In another study, incidence of Cucumber green mottle mosaic virus, 
Squash mosaic virus and melon necrotic spot virus was observed which resulted in 
10–15% yield reduction (Ling et al. 2014). Cucumber green mottle mosaic virus is 
a virus disease of cucurbits which can be transmitted via pollen to healthy plants 
(Liu et  al. 2013). Viral diseases in cotton are major cause of yield reduction. 
According to an estimate, about 30% reduction in cotton is due to cotton leaf curl 
virus (Hassan et al. 2016).

Yellow vein mosaic disease (YVMD) caused by begomoviruses is the most dev-
astating disease of okra affecting both quality and yield of crops (Sanwal et  al. 
2016; Venkataravanappa et al. 2017). Another important problem in tomato produc-
tion caused by a virus is the tomato leaf curl, whose causal agent also belongs to the 
begomovirus group (Moriones et al. 2017). Microorganisms responsible for food 
spoilage such are yeasts, moulds and bacteria (Rawat 2015).

6.4.3  �Plants as Habitat for Microbial Population

The rhizosphere contains beneficial microorganisms, i.e. rhizobia and AM fungi, 
which establish associations with the roots, provide fixed nitrogen and nutrients and 
get in exchange carbon-based compounds. On the other hand, the plants exposed to 
a wide range of pathogens, such as bacteria, fungi and viruses, evolved several 
defense mechanisms (Biswas et  al. 2016). The roots are covered by layers of 
microbes in the rhizosphere, and even seed may also contain microorganisms. These 
complex communities modulate the plant growth, health and development, seed 
germination, plant ecology and productivity (Chen et al. 2018).

The microorganisms found in association with medicinal plants might be 
involved in release of secondary metabolite from medicinal plant (Chen et al. 2018). 
In another study Sanchez-Lopez et al. (2018) investigated whether microorganisms 
can be transmitted from one generation to another. They isolated Methylobacterium 
sp. from seeds of pioneer Crotalaria pumila growing in metal contaminated soil. 
The seeds associated microbial isolates were capable to colonize the plant up to 
three generations, including root cortical cells as well as xylem. In another study, 
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the bacterial diversity, plant exudates and physico-chemical properties of rhizo-
sphere soil from young and old tea plants were compared. Although the 
physico-chemical properties remained similar, changes were observed in catechin 
and microbial distribution (Arafat et al. 2017).

6.5  �Microbes and Plants Growth

Plants affect microbial diversity as the microbiome lives in close association with 
roots, xylem, stems and leaves. On the other hand, these microorganisms also influ-
ence plant health and productivity (Bogino et al. 2013). Microorganisms have been 
used to enhance crop productivity and soil health as well as for bioremediation of 
contaminated soils, wastewater treatment and recycling of industrial waste (Ahmad 
et al. 2011). They play a vital role in nutrients mobility and uptake by plants, pro-
moting growth and protecting plants from diseases (Table 6.1). Fundamental pro-
cesses include phosphate and sulphate solubilization, nitrogen fixation, 
denitrification, siderophore production, signal transduction, immune modulation, 
pathogens control (Prakash et al. 2015). Microorganisms also decompose organic 
matter and get C and energy for their own growth (Rillig et al. 2007). In anaerobic 
conditions, microbes immobilize 20–40% of C in the substrate, the remaining being 
released into the atmosphere (Zak et al. 2000; Rajendiran et al. 2012). Studies rec-
ommended the use of microbial-based fertilizers for sustainable agriculture and 
environment safety, instead of chemical fertilizers alone (Prakash et al. 2015).

Microorganisms-based fertilizers, along with compost, decrease the negative 
effect of chemical fertilizers and further enhance the quality of crops, as suggested 
by the enhancement of β-carotene, Brix degrees and vitamin C content reported in 
tomatoes (El Kiyum 2017). The PGPB colonize roots influencing the plant growth 
and development (Hayat et al. 2017). The interaction of PGPB with their rhizobial 
counterparts could result in the enhancement of nodulation efficiency (Guiñazú 
et al. 2010). Plants release amino acids, carbohydrates, vitamins and lipids, through 
roots thus enhancing microbial activities in soil. PGPB enhance geochemical 
cycling of essential nutrients, particularly nitrogen, phosphorus and micronutrients 
such as copper, zinc, iron, manganese in soil for plant growth and development 
(Dotaniya and Vasudev 2015). Plant growth promotion by addition of microorgan-
isms in soil i.e., Pseudomonads as well as phytohormones productions have been 
documented (Nassal et al. 2018).

PGPB promote plant growth and crop yields by producing growth hormones, 
increasing plant nutrient availability, and of microbes that can act as biocontrol 
agent against pathogens (Dotaniya and Vasudev 2015; Jacoby et  al. 2017). 
Inoculation of plants with AM increased efficiency of water use, plant biomass and 
chlorophyll content, even under metal stress (Andrade et al. 2015).

6  Soil Microbes and Plant Health
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Table 6.1  Impact of microbial inoculation on crop growth

Growth 
condition Crop Response Reference

(a) Impact of bacterial inoculation on crop growth
Lab studies Rice (Oryza sativa) Inoculation significantly 

increased germination, root and 
shoot length, and plant vigor

Vandana et al. 
(2018)

Lab studies Inoculation suppressed 
economically important crop 
pathogens

Shakeel et al. 
(2015)

Field 
experiment

Improved all quality parameters Choudhary et al. 
(2013)

Pot study Maize (Zea mays) Enhanced plant growth and yield 
parameters by suppressing fungal 
pathogens

Akhtar et al. 
(2018)

Lab and field 
conditions

Significantly affected root-system 
architecture

Vacheron et al. 
(2018)

Greenhouse 
and field 
conditions

Inoculation increased plant height 
and dry weight

Jarak et al. (2012)

Field and pot 
experiment

Improved shoot and root length, 
root dry weight, yield cob weight 
and P uptake

Baig et al. (2014)

Field 
experiments

Wheat (Triticum 
aestivum)

significantly increased macro and 
micro nutrients and grain total 
biomass yields

Turan et al. 
(2018)

Greenhouse 
conditions

Inoculation significantly 
increased plant biomass, at all 
stages

Nguyen et al. 
(2019)

Field 
experiment

Improved plant height, number of 
spikelets per spike and grain yield

Sial et al. (2018)

Lab conditions Tomato (Solanum 
lycopersicum)

Significantly increased stem 
height and root mass

Cendales et al. 
(2017)

Growth 
chamber

Suppressed soil-borne diseases 
and promoted plant growth

Qiano et al. 
(2017)

Pot 
experiments

Improved fruit quality by 
increasing carbohydrates, sugar 
and ascorbic acid

Pishchik et al. 
(2018)

Field 
experiment 
under salt 
stress

Cotton (Gossypium 
hirsutum L.)

Increased seed germination, total 
shoot, root dry weight and yield 
under salt stress

Pulatov et al. 
(2016)

Field 
experiment

Enhanced yield Alavo et al. 
(2015)

Field 
experiment

Improved plant growth by 
increasing phytohormone 
production

Pindi et al. (2014)

(continued)
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Table 6.1  (continued)

Growth 
condition Crop Response Reference

Pot study Chickpea (Cicer 
arietinum L.)

Enhanced plant height, leaf area 
leaf and stem weight, pod number 
and weight

Gopalakrishnan 
et al. (2015)

Pot study Increased fresh and dry biomass Goswami et al. 
(2013)

Field study Hungarian vetch (Vicia 
pannonica)

Increased dry matter, crude 
protein ADF, NDF macro and 
micro nutrients

Yolcu et al. 
(2012)

Greenhouse 
conditions

Radish (Raphanus 
sativus)

Increased photosynthetic 
pigments, free amino acids, 
proline, phytohormones and N, P, 
K+ content

Mohamed and 
Gomaa (2012)

Culture media Banana (Musa 
acuminate)

Enhanced fresh and dry weight, 
plant height, stem thickness and 
modified roots architecture

Martin et al. 
(2015)

Field study Strawberry (Fragaria 
ananassa)

Increased yield per plant Pirlak and Murat 
(2009)

Glass house 
conditions

Sorghum (Sorghum 
bicolor)

Bacterial strains showed 
enhanced plant growth 
parameters, chlorophyll, 
carbohydrates, phosphorus 
nitrogen and other nutrients

Kumar et al. 
(2012)

Control 
conditions

Thale cress 
(Arabidopsis thaliana)

Improved shoot length and rosette 
diameter

Schwachtje et al. 
(2012)

Pots study Poinsettia (Euphorbia 
pulcherrima)

Increased number of leaves, leaf 
area and volume of roots

Zulueta-
Rodriguez et al. 
(2014)

Field study Castor (Ricinus 
communis L.)

Significantly increased leaf 
biomass, number of leaves, root 
and shoot length, stem base 
diameter and leaf moisture 
content

Sandilya et al. 
(2017)

(b) Impact of mycorrhizal inoculation on crop growth.
Metal stress 
(Pot 
experiment)

Rice (Oryza sativa) Decreased metal uptake Zhang et al. 
(2011)

Pot experiment Carrot (Daucus carota) 
sorghum (Sorghum 
bicolor)

Improved plant growth Kim et al. (2017)

 Field 
conditions

Artichoke (Cynara 
cardunculus)

Improved yield Colonna et al. 
(2015)

Pot study Red amaranth 
(Amaranthus cruentus) 
and spinach (Spinacia 
oleracea)

Improved growth and yield Ghosh et al. 
(2017a, b)

(continued)
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6.6  �Soil Microbes as Biocontrol Agent

Soil microorganisms act as biopesticides and protect plants from pathogens by pro-
ducing a range of different metabolites (Table 6.2). They possess several mode of 
actions such as the production of antibiotics, biosurfactants, cell wall degrading 
enzymes, chitinase, glucanase, toxins, siderophores and induction of systemic resis-
tance in plants (Perez-Montano et  al. 2014; Kumar and Singh 2015). Disease-
causing organisms including bacteria, fungi, and nematodes causing severe soil 
borne diseases negatively affect all crops. Among pathogenic microbes, fungi are 
responsible for huge losses in economically important crops (Perez-Montano 
et al. 2014).

In these conditions (PGPB) and fungi interact in a complex system. Bacterial 
strains often encountered in the rhizosphere that can act as biocontrol agents belong 
to different genera such as Acetobacter, Azotobacter, Bacillus, Pseudomonas, 
Paenibacillus, Streptomyces (Berg and Smalla 2009; Kumar and Singh 2015). Some 
strains such as Pseudomonas aeruginosa, Ochrobactrum lupine, Novosphingobium 
and Pentaromativorans spp. have shown a disease management capacity vs Tomato 
Cucumber mosaic and bacterial spot (Dashti et  al. 2012; Hahm et  al. 2012). 

Table 6.1  (continued)

Growth 
condition Crop Response Reference

Poly bags Chilli (Capsicum 
annuum)

Increased plant growth and yield 
parameters, chlorophyll, and 
nutrient uptake

Elahi et al. (2012)

Field 
experiments

Melon (Cucumis melo) 
watermelon (Citrullus 
lanatus)

Significantly increased plant 
growth with higher nutrient 
content

Ortas (2012)

Green house Finger millet (Eleusine 
coracana)

Highest growth parameters were 
observed.

Patil et al. (2013)

 In vitro 
experiments

Banana (Musa 
acuminata)

Superior biocontrol potential for 
disease management

Ganesan et al. 
(2009)

In vivo 
experiment

Mango (Mangifera 
indica)

Inoculation significantly control 
stem end rot disease

Suhanna et al. 
(2013)

Field 
conditions

Brazilian fern tree 
(Schizolobium 
parahyba)

Increased wood yield Cely et al. (2016)

Greenhouse 
and field 
conditions

Red sage (Salvia 
miltiorrhiza)

Improved root growth and boosts 
the secondary metabolism

Zhou et al. (2018)

Field study Gum trees (Eucalyptus 
sp.)

Inoculation positively affected 
stem diameter, stem length, and 
the fresh and dry biomass

Vitorino et al. 
(2016)

Pot experiment Cucumber (Cucumis 
sativus)

increased plant height, stem 
diameter, dry weight, and macro 
and micro nutrient

Chen et al. (2017)
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Table 6.2  Metabolites used in biocontrol produced by microbial strains

Species Biocontrol potential Reference

Bacteria
Acinetobacter Chitinase Krithika and 

Chellaram (2016)
Achromobacter sp. 
Achromobacter xylosoxidans, 
Achromobacter xylosoxidans

HCN production Ngoma et al. (2013)

Alcaligenes sp. Siderophores Patel et al. (2018)
Alcaligenes sp. Siderophores Sayyed and Patel 

(2011)
Pseudomonas strains HCN, siderophores Sandilya et al. (2017)
Pseudomonas sp. Siderophores, HCN, lipase, protease Ghodsalavi et al. 

(2013)
Pseudomonas sp. Antibiotics 2,4 DAPG Asadhi et al. (2013)
Pseudomonas aeruginosa Antibiotic, siderophores, HCN 

production
Uzair et al. (2018)

Pseudomonas putida HCN production, siderophores 
production

Vandana et al. (2018)
Bacillus cereus

Pseudomonas brassicacearum Secondary metabolites Andersson (2012)
Pseudomonas fluorescens Protease, chitinase, glucanases Ruchi et al. (2012)
Pseudomonas fluorescens Antibiotics 

2,4-diacetylphloroglucinol
Weller et al. (2012)

Pseudomonas aureofaciens Siderophores Chaiharn et al. (2009)
Bacillus firmus

Bacillus subtilis Chitinase and HCN Shakeela et al. (2017)
Bacillus cereus Chitinase Ajayi et al. (2016)
Bacillus anthracis Siderophores, pectinase, chitinase Pandya et al. (2015)
Paenibacillus taichungensis

Paenibacillus xylanilyticus

Bacillus thuringiensis Siderophores, phenols, HCN 
production chitinase activity

Ahmed et al. (2014)
Pseudomonas fluorescens

Pseudomonas poae

Bacillus sp. Chitinase activity Han et al. (2014)
Paenibacillus sp.

Bacillus cereus Surfactin type lipopeptide Jourdan et al. (2009)
Pseudomonas, Bacillus, 
Pantoea and Serratia

Siderophores production, protease, 
HCN production

Etminani and Harighi 
(2018)

Pseudomonas, Bacillus, 
Brevundimonas, Azotobacter, 
Enterobacter

HCN, Lipase, protease Patel and Desai (2015)

Pseudomonas, Bacillus subtilis 
sp.

lipase, amylase, chitinase, HCN Bhatt and Vyas (2014)

Klebsiella sp.
Cronobacter malonaticus
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Table 6.2  (continued)

Species Biocontrol potential Reference

Rhizobium nepotum Siderophore Ghorpade and Gupta 
(2016)

Rhizobium Siderophore Datta and Chakrabartty 
(2013)

Herbaspirillum seropedicae Siderophore, chitinase Trovero et al. (2018), 
Rosconi et al. (2015)

Streptomyces sp. Antibiotics, volatile organic 
Compounds

Vurukonda et al. 
(2018)

Streptomyces sp. Secondary metabolite. Singh et al. (2016)
Streptomyces spp. Siderophore, cellulase, lipase, 

protease, chitinase, hydrocyanic acid 
and β-1,3-glucanase

Sreevidya et al. (2016), 
Gopalakrishnan et al. 
(2014, 2015)

Streptomyces, Bordetella, 
Achromobacter

Antibiotics Abbas et al. (2014)

Streptomyces spp. Siderophores Franco-Correa et al. 
(2010); Lee et al. 
(2012)

Klebsiella, Enterobacter, 
Pantoea

HCN, chitinase, ammonia, cellulose, 
pectinase

Rodrigues et al. (2016)

Fungi
Trichoderma sp. Siderophore Srivastava et al. (2018)
Trichoderma sp. Activated salicylic acid (SA) and 

jasmonic acid
Martínez-Medina et al. 
(2016)

Trichoderma sp. Harzianic acid Vinale et al. (2013)
Trichoderma spp. Siderophore Ghosh et al. (2017a, b)
Beauveria spp.
Metarhizium spp.
Trichoderma harzianum Activated salicylic and jasmonic 

acids
Alkooranee et al. 
(2017)

Trichoderma brevicompactum 
Trichoderma virens

β-1,3-glucanase and β-1,4- glucanase Ayoubi et al. (2014)

Trichoderma asperellum Siderophore Weizhen and Lei 
(2013)

Trichoderma harzianum, 
T. reesei

Siderophore Lehner et al. (2013)

Trichoderma atroviride Regulates salicylic and jasmonic 
acids, and ethylene

Salas-Marina et al. 
(2011)

Trichoderma virens, 
Trichoderma atroviride

Activate salicylic and jasmonic acids 
defense signalling pathway

Contreras-Cornejo 
et al. (2011)

Trichoderma viride, Aspergillus 
flavus, Curvularia lunata, 
Rhizopus stolonifer

Antibiotics Makut and Owolewa 
(2011)

Penicillium sp. Endoglucanase, β-glucosidase, Santa-Rosa et al. 
(2017)

(continued)
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Pseudomonas spp. have been reported for their potential against Rhizoctonia solani 
and Phytophthora capsici (Arora et al. 2008). Trichoderma and Sebacinales spp. are 
well known to control foliar, fruit and root pathogens, or even invertebrates such as 
nematodes (Shoresh et al. 2010). Endophytic fungi also have antimicrobial activi-
ties and play an important role in the regulation, or even suppression, of plant dis-
eases, i.e. powdery mildew in wheat (Xiang et al. 2016).

PGPB release different lytic enzymes to compete with pathogens such as chitin-
ases, glucanases, proteases (Viterbo et al. 2002). They produce chitinases and glu-
canases that degrade the fungal cell wall (Kumar et al. 2010). Fungi from several 
groups, including Acremonium sp. Hansfordia pulvinata, Sarocladium implicatum, 
Simplicillium lanosoniveum and Lecanicillium lecanii are efficient in controlling 
other phytopathogenic fungi by producing enzymes, proteases, lipases and antifun-
gal metabolites that inhibit the germination of pathogens’ propagules.

Soil microbes also produce antibiotics such as guanidylfungin A, nigericin, gel-
danamycin, controlling other disease-causing species (Trejo-Estrada et al. 1998). 
They can also produce alkaloids which are highly reactive and active, including 
alkaloids, festuklavine and elimoklavine (Bekemakhanova and Shemshura 2001) 
Antibiotics are low molecular weight organic compounds produced by specific 
groups of microorganisms. Beneficial Pseudomonas spp. can inhibit disease devel-
opment by producing DAPG (diacetyl-phloroglucinol) and HCN (Hydrogen caya-
nide) (Junaid et al. 2013). Microbes can even produce hydrogen cyanide to protect 
plants from pathogens, as reported by Martinez-Viveros et al. (2010). Various anti-
biotics produced by microbes have been reported, such as amphisin A, kanosamine, 
A, zwittermicin, oomycin A, oligomycin, cyclic lipopeptides, 2,4-diacetyl 

Table 6.2  (continued)

Species Biocontrol potential Reference

Penicillium echinulatum Endoglucanases, xylanases, and 
β-glucosidases

Schneider et al. (2014)

Penicillium echinulatum Cellulases, xylanases Ritter et al. (2013)
Penicillium simplicisssum, 
Acremonium sp.

Chitinase, β-1, 3-glucanase, amylase, 
Siderophore

Potshangbam et al. 
(2017)

Aspergillus terreus Chitinase Krishnaveni and 
Ragunathan (2014)

Phoma sp. Volatile compounds Naznin et al. (2014)
Cladosporium sp.
Ampelomyces sp.
Phoma sp. Volatile compounds Naznin et al. (2013)
Ralstonia solanacearum Volatile compounds Tahir et al. (2017)
Pseudozyma aphidis Extracellular metabolites Barda et al. (2015)
Beauveria Bassiana, 
Metarhizium anisopliae, 
Paecilomyces sp.

Amylases, cellulases, esterases, 
lipases, proteases, gelatin, caseinase, 
pectinase

Fernandes et al. (2012)

Talaromyces wortmannii FS2 Volatile compounds Yamagiwa et al. (2011)
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phloroglucinol, hydrogen cyanide, pyoluteorin, phenazine, pyrrolnitrin, and xantho-
baccin (Hitendra et al. 2017).

Siderophores are iron chelating compounds produced by microorganisms in iron 
deficient conditions. These siderophores chelate iron by converting it into com-
plexed forms that cannot be used by other microorganisms in Fe deficient condi-
tions. This is an important mechanisms in biological control by microorganisms, as 
it deprives other competing plant pathogenic fungi and bacteria. There are three 
different groups of siderophores which have been reported, namely catecholate sid-
erophores, hydroxamate siderophores, and mixed siderophores (Vellasamy 
et al. 2015).

PGPB also trigger the plant defense mechanisms prior to infection, and in this 
way reduce the disease incidence. The induction of a systematic resistance results 
by the modulation of salicylic acid, jasmonic acid and ethylene pathways in the 
plants. PGPB from several genera including Pseudomonas, B. amyloliquifaciens, 
B. subtilis, B. pasteurii, B. cereus, B. pumilus, B. mycoides, and B. sphaericus 
reduce the severity of various diseases on many plants (Choudhary et al. 2007).

Some cyanobacteria and algal extracts were also found as efficient biocontrol 
agents because they produce antibacterial and antifungal metabolites. They can be 
applied to activate plant resistance mechanisms such as induced systematic resis-
tance (Shunmugam et al. 2015).

Finally, also beneficial fungi may improve plant growth and contribute in con-
trolling their diseases. Species from genera Aspergillus, Penicillium, Phoma, 
Piriformospora, Fusarium, and Trichoderma have been reported for inducing sys-
tematic resistance in plants (Hossain et  al. 2017), and systematic resistance and 
suppression of anthracnose in cucumber (Elsharkawy et al. 2015).
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