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Abstract  Plant diseases contribute 10–16% losses in global harvests each year, 
costing an estimated US$ 220 billion. Abundant use of chemicals such as bacteri-
cides, fungicides, and nematicides to control plant diseases are causing adverse 
effects to many agroecosystems. Precision plant protection offers a non-destructive 
means of managing plant diseases based on the concept of spatio-temporal variabil-
ity. Global Navigation Satellite  System (GNSS)  and Geographic Information 
System (GIS) allow for assessment of field heterogeneity due to disease problems 
and can enable site-specific intervention. Similarly, hyperspectral remote sensing is 
a cutting-edge spectral approach for plant diseases detection. The main aim of pre-
cision plant protection is to significantly reduce the injudicious use of chemical 
inputs and hence the adverse impact of chemicals to the environment. This chapter 
provides some insights into the deployment of site- and time-specific approaches to 
manage plant disease problems in a balanced and optimized manner.
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13.1  �Introduction

13.1.1  �Plant Disease Management

Crop stress represents a major challenge in agricultural production. Stress sources 
are classified into two categories: biotic and abiotic. Biotic stresses are caused by 
diseases (Carter and Knapp 2001), insect pests (Riedell et  al. 2000) and weeds 
(Pinter et al. 2003), while abiotic stresses are caused by physical factors such as 
water deficit (Steele et al. 2008), salinity overload (Pinter et al. 2003), and nutrient 
deficiency (Blackmer et al. 1995). Particularly, plant diseases result in changes in 
crop physiology (transpiration, photosynthesis), morphology (tissue shape or color) 
and crop density (West et al. 2010). Changes in host plants are also caused by hyper-
sensitive reactions (Chaerle 2004) and cell wall degradation (Blackburn 2007).

At present, plant diseases represent a major threat to the global economy. Severe 
economic losses have been incurred in the agriculture industry due to diseases. 
Therefore, effective disease monitoring and early detection system should be facili-
tated to reduce their incidence and spread (Martinelli et  al. 2014). It has been 
reported that many developed countries have established disease surveillance sys-
tem. In developing countries, however, where dense populations reside and exten-
sive agricultural operations take place, disease surveillance systems are lacking 
(Lemon et  al. 2007). Precision agriculture could be a very useful and effective 
approach to enable disease surveillance at the field scale.

13.1.2  �Precision Agriculture vis-à-vis Plant Protection

Precision agriculture comprises management strategies that use information tech-
nology to process high resolution spatial and temporal data related to crop produc-
tion. From tillage to harvesting, precision agriculture provides different packages of 
operations to reduce inputs, increase profits, and protect the environment. Recently, 
under the umbrella of precision agriculture, a new branch popularly known as “pre-
cision plant protection” has emerged. Precision plant protection means taking the 
right action in the right place at the right time, to protect plants from biotic and 
abiotic stresses. Precision plant protection comprises disease management strate-
gies based on precision agriculture tools. Remote sensing, Geographic Information 
System (GIS) and Global Navigation Satellite System (GNSS), Unmanned Aerial 
Vehicle (UAV) and machine learning techniques such as Artificial Neural Network 
(ANN), with Partial Least Square (PLS) are the major drivers being applied.

Oerke et  al. (2010) showed that the strategies for precision plant protection 
should be planned on the basis of information obtained from the previous crops. 
Only then, a proper precision plant protection program can be implemented. Over 
the last decade, most studies focused on the application of remote sensing for early 
disease detection (Lee et al. 2010). Some examples include diseases caused by fungi 
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(West et al. 2010), viruses (Grisham et al. 2010; Krezhova et al. 2015) and viroids 
(Beltrán-Peña et al. 2014; Golhani et al. 2017a, b, 2019a; Selvaraja et al. 2013). 
Rumpf et al. (2010) highlighted the use of different data mining techniques with 
hyperspectral data for plant disease detection.

13.2  �Orange Spotting Disease in Malaysia

Orange Spotting (OS) is an emerging disease of oil palm (Elaeis guineensis Jacq.; 
Arecaceae) in Malaysia. Coconut cadang-cadang viroid (CCCVd) is the causal 
agent of OS disease. CCCVd is one of the known species of viroids, which thus far 
have only been found in plants. They are single-stranded, low molecular weight, 
circular RNAs between 246 and 401 nucleotides that lack a protective protein coat 
(Diener 1999). Recent reports indicate that OS disease can result in an epidemic that 
could bring significant economic losses to oil palm production in Malaysia. In 2006, 
for the first time, three CCCVd variants (OP297, OP293, and OP270) were reported in 
an asymptomatic oil palm in Malaysia. This was the first incident outside the 
Philippines in a species other than coconut palm (Vadamalai et al. 2006). Then, Wu 
et al. (2013) reported the first incident of a variant of CCCVd (OP246) with clear 
orange color spots. In a recent investigation, an oil palm variant (OP293) showed low 
accumulation of viroid load with no symptoms, 1  year after inoculation 
(Thanarajoo 2014).

Selvaraja et al. (2013) reported OS disease has similar foliar symptoms to that of 
potassium deficiency in oil palm. Symptomatic separability between OS disease 
and potassium deficiency is also very difficult to achieve via visual assessment. It 
proves that symptom expression is not a necessary outcome of CCCVd infection. It 
is challenging to scout for healthy palms from the diseased palms due to the lack of 
visible symptoms. It is believed that the use of hyperspectral sensor (spectroradiom-
eter) can serve as a useful tool for preliminary screening of CCCVd infected seed-
lings, at the nursery stage. Therefore, it is important to identify OS disease at an 
early stage, most preferably at the leaf scale (nursery stage). The current approach 
of remote sensing can serve as a useful tool for preliminary screening of CCCVd 
infected seedlings.

Real-time detection of OS disease has become possible now using a spectroradi-
ometer. Existing molecular marker techniques typically take a longer time 
(3–6 months), from sampling to laboratory analysis, for detection of CCCVd infec-
tion. Instead, precision plant protection may provide rapid and non-invasive detec-
tion of OS disease. Recently, Golhani et al. (Golhani et al. 2017a, b; 2019a, b) used 
an Analytical Spectral Device (ASD) spectroradiometer for non-invasive detection 
of OS disease in oil palm. In this research, oil palm seedlings were inoculated with 
a CCCVd oil palm variant (OP246). The research was designed to observe the spec-
tral changes between CCCVd-inoculated and healthy oil palm seedlings followed 
by the development of spectral signatures, selection of red edge wavebands, selec-
tion of red edge indices and development of an Orange Spotting Disease Index 
(OSDI) using red edge parameters.
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13.3  �Objectives

The main objective of this chapter is to discuss major drivers of precision agricul-
ture in the context of precision plant protection. This chapter describes hyperspec-
tral remote sensing in general and Visible/Near-infrared (VNIR) spectroscopy and 
Spectral Disease Index (SDI) in particular. The advantages of UAV, GIS and GNSS 
are also discussed. Few machine learning techniques are also reviewed. In addition, 
a successful case study on OS disease detection comprising the use of remote sens-
ing and machine learning techniques is reported.

13.4  �Major Drivers in Precision Plant Protection

13.4.1  �Remote Sensing

In order to efficiently apply remote sensing in precision plant protection, it is very 
important to understand the fundamental interaction of radiant energy with the earth 
surface (Huete 1989). The radiant energy (electromagnetic radiation) propagates 
through the atmosphere to the earth surface in the form of electromagnetic waves. 
These waves are well distributed across the electromagnetic spectrum comprising 
several spectral regions, viz. ultraviolet, blue, green, red, red edge and Near-infrared 
(NIR) (Fig. 13.1). The electromagnetic radiation interacts with the atmosphere in 
different ways via absorption, transmission, diffusion, scattering, and reflection. In 
this process, approximately 40% of the solar flux is received by the earth surface 
(Lacis and Hansen 1974).

The spectral composition of solar flux interacting with the earth surface provides 
information about the physical properties of soil, water, and vegetation. In vegeta-
tion (plant leaf and canopy), the reflectance from radiation results in diffuse and 
specular characteristics. Spectral diffusion takes place due to multiple scattering, 
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Fig. 13.1  The electromagnetic spectrum showing different segments of the spectrum comprising 
γ rays, X rays, ultraviolet, visible light, infrared, microwaves, and radio waves
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depending on the different physical and structural design of the leaves. The topog-
raphy of the cuticular wax and hair at the leaf surface affects specular characteristics 
of leaf reflectance. In remote sensing, spectral signatures are developed from leaf 
reflectance, which is often found to be sensitive to these changes. Light is scattered 
in all directions when interacting with unhealthy plant tissue, while the light is scat-
tered in a diffused manner when interacting with healthy tissues, next to small 
symptomatic tissue present in the epidermis layer. Thomas et al. (2017) has recently 
studied plant-pathogen interaction using hyperspectral imaging reflectance and 
transmission measurements.

The measurement of reflectance has a significant role in detecting crop diseases 
as well as in quantifying the complex spatio-temporal dynamics of plant-pathogen 
interactions. Mahlein (2010) investigated foliar sugar beet diseases (Cercospora leaf 
spot, sugar beet rust, and powdery mildew) at the canopy and leaf scales using spec-
tral signatures derived from hyperspectral sensors. The term “hyperspectral” refers 
to the use of hundred over contiguous narrow spectral bands. Hyperspectral sensors 
can be either active or passive. The sensor system equipped with its own source of 
radiation is called an active sensor, while sensors that depend on solar radiation are 
called passive sensors. Thus, the basic mechanism of remote sensing completely 
depends on the type of sensors (active or passive) being employed (Schellber 
et al. 2008).

13.4.2  �Hyperspectral Remote Sensing

Hyperspectral remote sensing is also known as reflectance spectroscopy. 
Hyperspectral wavebands measure the reflectance from the leaf surface. On the 
basis of the percentage of reflectance of wavebands, different types of stress such as 
diseases, nutrient deficiency, and water scarcity can be differentiated at their corre-
sponding spectral regions. Clevers et al. (2004) reported that leaf pigments domi-
nate in the visible region (400–700 nm), while cell structure and leaf water contents 
dominate in the NIR (700–1000 nm) and Short-wave infrared (SWIR, 1000–2500 nm) 
regions, respectively. Changes in reflectance characteristics have been observed due 
to alterations in plant biochemistry and cellular composition of leaves. Unhealthy 
vegetation (senescent and stressed) has more reflection in the red region and lower 
reflectance in the NIR region (Li et al. 2005). In a landmark study, Knipling (1970) 
stated that low reflectance in the NIR region has been often associated with an 
advanced stage of disease attack, where the breakdown of leaf cells has taken place.

A practical hyperspectral sensor is the hand-held variant (called a spectroradiom-
eter), which is available within a spectral range of 400–1100 nm (Visible/NIR or 
VNIR) and 400–2500 nm (Visible-NIR-SWIR). Slonecker (2011) recommends a 
multiscale spectroradiometer for laboratory-to-field scale experiments. Hand-held 
spectroradiometers can be used repeatedly in order to understand changes in spec-
tral reflectance of plants. They are also called non-invasive crop sensors and 

13  Precision Agriculture Technologies for Management of Plant Diseases



264

classified into imaging and non-imaging sensors, depending on their detection spec-
ifications. These sensors are primarily used for real-time stress detection.

According to Kuska and Mahlein (2018), hyperspectral sensors are potentially 
powerful tools in protecting crops against diseases. Hyperspectral sensors can facil-
itate a proximate and objective detection. Thomas et  al. (2018) mentioned that 
hyperspectral sensors can play an important role for measuring pathogen-induced 
changes. They showed that hyperspectral sensors are practically diagnostic as well 
as valuable for disease investigation at different scales, from the tissue to the canopy 
level. Several recent studies have included early disease detection using hyperspec-
tral imaging sensors (Mahlein 2016), disease forecasting from meteorological 
parameters (Grinn-Gofroń et  al. 2019), disease warning (Gillespie and Sentelhas 
2008), and estimation of disease stages using the Spectral Disease Index (SDI) 
(Ashourloo et al. 2016).

13.4.3  �Visible/Near-Infrared (VNIR) Spectroscopy

The VNIR region is being widely explored in the field of precision plant protection. 
As an effort to increase the effectiveness of the VNIR region for studying plant 
diseases, different wavebands within this range have been examined. Ayala-Silva 
and Beyl (2005) described an unambiguous relationship between VNIR region and 
green parts of the plants. The maximum absorption was found in the blue 
(400–500 nm) and red (600–700 nm) regions via chlorophyll content, while maxi-
mum reflection was found in NIR region due to scattering in leaf mesophyll. VNIR 
spectra typically characterize the baseband frequency range of organic compounds, 
therefore they give potentially pertinent and inherent information about an object 
(Zhao 2012). Several recent studies (Ashourloo et al. 2016; Mahlein 2016; Rumpf 
et  al. 2009) have explained the importance of the VNIR range in discriminating 
diseased plants.

Also, there is evidence of qualitative and quantitative changes of chlorophyll 
content in the course of plant growth, coupled with biotic and abiotic stresses. 
Merzlyak et al. (2003) developed algorithms for pigment analysis within the VNIR 
region. They showed that two spectral wavebands (550 nm and 700 nm) were more 
sensitive to chlorophyll content. According to Chappelle et al. (1992), chlorophyll 
absorption is reduced when plant growth is under stress due  to the effect of bio-
stressors. Carter and Miller (1994) demonstrated the importance of spectral wave-
bands and spectral ratios within 690–700 nm, which can provide early detection 
of stress-induced chlorosis.
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13.4.4  �Spectral Disease Index (SDI)

An SDI is developed from a combination of disease sensitive hyperspectral wave-
bands represented as a waveband ratio (Golhani et al. 2018). The SDI has the poten-
tial to discriminate and differentiate between diseased and healthy plants. 
Development of SDI comprises different methods of algebraic or mathematical 
analyses such as normalizing, differentiation, summation, and linear combinations. 
The preferred methods for development of SDI are continuum-removal and band 
ratioing.

Mahlei et al. (2013) described how each disease affects the leaf reflectance spec-
trum in a specific way. Therefore, an SDI should be developed based on the progres-
sion of disease symptoms and their spectral characteristics. Ashourloo et al. (2014) 
developed two SDIs on the basis of disease progression for detection of leaf rust in 
wheat. Most of the SDIs have been developed with a general interest to diagnose a 
plant disease at an early stage. As a matter of fact, different SDIs represent specific-
ity, sensitivity and severity of the vegetation at different stages of infection. In gen-
eral, a combination of red and NIR wavebands are used for the development of the 
vegetation index.

Clevers et al. (2004) and Broge and Leblanc (2001) reported that the common 
vegetation indices developed from combinations of red and NIR wavebands have 
also been useful for plant stress detection, such as Normalized Difference Vegetation 
Index (NDVI) (Rouse et al. 1974). For a very long time, NDVI has served as a plant 
stress indicator. However, recent studies conceptually differ from this notion. Most 
vegetation indices and spectral ratios provide information about a specific phenom-
enon only, such as crop vitality and greenness, which are not widely tested for dis-
ease diagnosis. Jimenez and Landgrebe (1999) reported that the selection of optimal 
wavebands for crop stress detection is very important. For development of SDI, 
wavebands must be free from redundant information without losing the ability for 
discrimination and class separability.

13.4.5  �Unmanned Aerial Vehicle (UAV)

Over the years, the idea of developing vegetation indices has been popularized with 
the use of different airborne and satellite imageries. Processing airborne or satellite 
imageries is time consuming and very costly. Using an advanced  hyperspectral 
camera onboard an UAV can be comparably more useful at the field scale. UAV 
allows for lower flight altitude and light-weight platform for hyperspectral camera. 
Recently, Behmann et al. (2018) described the disadvantage of not providing high-
quality correction signals.
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13.4.6  �Geographic Information System (GIS) and Global 
Navigation Satellite System (GNSS)

For precision plant protection, GIS can play an important role in managing plant 
diseases in the field. A GIS usually needs GNSS coordinates, soil, crop, weather 
data and satellite imageries to serve as a decision support system. These data inputs 
are processed using several data analysis tools. Currently, GIS has emerged as a 
valuable tool to achieve the goal of precision plant protection. For plant disease 
management, GIS can be employed from field scale up to country scale. Remotely 
sensed vegetation indices with GIS can result in good outcomes for on-site plant 
disease assessment. GIS can provide an environment for utilizing the indices for 
studying crop health. For example, the application of NDVI data with phenological 
characteristics of plants can assess the suitability of remote sensing for estimating 
biotic and abiotic stress. This approach has become popular for analysis of pheno-
logical phenomena to facilitate disease detection, monitoring and diagnosis (Bolton 
and Friedl 2013; Chen et  al. 2012; Granados-Ramírez et  al. 2004). Damm et  al. 
(2015) reported that NDVI along with photochemical reflectance index and sun-
induced chlorophyll fluorescence can measure plant functional properties and detect 
infected vegetation canopies.

13.5  �Machine Learning Techniques

13.5.1  �Artificial Neural Network (ANN)

In recent years, there has been an increasing interest in applying ANN techniques 
for plant disease management. ANN techniques are capable of processing informa-
tion similar to the way neurons process information in a human brain (Wasukar 
2014). ANN requires a series of mathematical expressions, commonly referred to as 
algorithms. ANN is applicable for non-parametric regression, non-linear function, 
clustering, and data classification. Typically, ANN first analyzes the sample data 
and then makes a prediction from them (Paydipati 2004). Recently, Golhani et al. 
(2018) summarized relevant details of ANN mechanism, types, models, and classi-
fiers in the context of plant disease detection using hyperspectral data. Basically, 
hyperspectral data provide near-continuous narrow-bands, which are helpful in 
developing spectral signatures and SDIs. The use of hyperspectral data has estab-
lished ANN as an essential tool, particularly for large volume data processing. ANN 
has a powerful discriminating capability for plant disease classification, as it com-
bines the best trainer sets for accurate classification (Golhani et al. 2018). For exam-
ple, Zhu et  al. (2016) processed the hyperspectral image for presymptomatic 
detection and classification of tobacco mosaic virus in tobacco leaves using back 
propagation neural network and PLS (see below).
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13.5.2  �Partial Least Square (PLS)

PLS is an extension of econometric path modeling which was developed during the 
late 1970s (Wold 1975). PLS was developed for solving chemometric problems, 
specifically for analyzing multivariate chemometric data (Martens 2001). Sundberg 
(1999) highlighted that PLS is appropriate for explaining a dependent factor where 
independent variables are also defined. Major advantages of PLS are the ability to 
reduce matrix dimensions, ability to find the number of relevant components, and 
ability to identify latent structure models in the data matrix (Helland 2001; 
Lingjaerde and Christophersen 2000). Therefore, PLS is known as a technique for 
analyzing spectroscopic data (Balabin and Smirnov 2011). PLS regression helps in 
obtaining stress sensitive wavebands from the VNIR spectrum. Van Maanen and Xu 
(2003) pointed out that an accurate regression model may reveal distinguished spec-
tral patterns either before or after disease infection. Principally, PLS regression 
establishes the relationship between the independent variables (spectra) and the 
dependent variables (attribute information) (Indahl 2014). This method is superfi-
cially similar to principal component analysis where principal components are 
extracted from independent variables, and a regression model is established to pre-
dict the attribute information of unknown samples. PLS is often referred to as the 
analysis of multi co-linearity spectral data comprising a high degree of co-linearity 
among neighboring wavebands (Jones et al. 2010).

13.5.3  �Cluster Analysis

Cluster analysis allows for grouping within spectral samples, also called dendro-
gram. A dendrogram is represented as a tree of spectral data which does not only 
identify similar groups of variables but successfully merges them (Ahmed et  al. 
2010; Iounousse et al. 2015). Krafft et al. (2009) explained that reflectance spectra 
are just like fingerprints which have different types of pattern. Cluster analysis 
works like a key to classify the pattern of fingerprints. In cluster analysis, the differ-
ence between subsets of clusters is minimized whereas the difference between 
groups of clusters is maximized. Lee et al. (2005) investigated a range of applica-
tions of cluster analysis for studying hardness and proximate constitutes of maize 
kernel. They organized a total of 248 maize samples into 7 and 10 subgroups by 
cluster analysis. The groups resulting from cluster analysis had unique physical and 
chemical properties showing the different levels of hardness measurement. In a 
recent study, Golhani et al. (2017a) demonstrated the use of a spectroradiometer for 
reflectance measurement and cluster analysis to construct dendrograms of measured 
data. Their study was focused on a real-time screening of CCCVd-inoculated seed-
lings at the leaf scale.
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13.6  �Case Study of OS Detection

13.6.1  �Experiment Details

13.6.1.1  �Experiment Setup for Years 2015 and 2017

A research group comprising experts of precision agriculture, viroids and ANN has 
conducted a study to screen CCCVd-inoculated oil palm seedlings in a glass house. 
A highly infective CCCVd variant (OP246) was used to inoculate three-months-old 
oil palm seedlings under a  glasshouse facility in the Universiti Putra Malaysia 
(UPM), at Serdang, Selangor, Malaysia. Fifteen inoculated and ten healthy oil palm 
seedlings were evaluated throughout a 4-month experiment. The study was designed 
for two experimental years, 2015 and 2017. Reflectance data collected in the year of 
2015 were used for calibration while data collected in 2017 were used for validation.

13.6.1.2  �Reflectance Measurement at the Leaf Scale

The reflectance of inoculated and healthy seedlings were collected fortnightly from 
15 through 120 days after inoculation (dai) using a spectroradiometer with hyper-
spectral capacity. A VNIR range spectroradiometer (325–1075  nm), ASD 
FieldSpec-2, was used in 2015. While a full range spectroradiometer (350  nm 
−2500 nm), FieldSpec®4, was used in 2017. Spectroradiometers were employed at 
leaf scale using an ASD plant-probe containing a 100 W halogen reflectorized lamp. 
A 10 mm diameter portion of an oil palm leaf was clipped using the leaf-clip holder 
during spectral measurement. A total of twenty spectral readings were collected and 
averaged from each oil palm seedling.

13.6.1.3  �SPAD Measurement

The chlorophyll content is a key indicator to assess the stress caused by OS disease 
in oil palm seedlings. Chlorophyll content was measured using a Minolta SPAD-502 
(Konica Minolta, Inc. Japan), popularly known as SPAD meter, which measures 
chlorophyll content non-destructively at leaf scale within the range 0–100. The 
SPAD meter was used to measure chlorophyll content from the oil palm seedlings 
throughout the experiment. It measures a chlorophyll absorbance based on absor-
bance data collected at 650 nm and 940 nm (Castro and Sanchez-Azofeifa 2008). 
The chlorophyll content is measured in just a fraction of a second when a leaf is 
clamped between two Light Emitting Diodes (LEDs) positioned at the tip of the 
SPAD meter (Benetoli da Silva et al. 2012). The readings of chlorophyll content 
were taken between 10:00 am and noon, recording an average of five SPAD read-
ings from the midrib of the third leaf of each seedling. SPAD readings were mea-
sured at an interval of 15 days through 120 dai.
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13.7  �Orange Spotting (OS) Detection

This case study was aimed at investigating reflectance data of Coconut cadang-
cadang viroid (CCCVd)-inoculated seedlings at the VNIR region of the spectrum, 
especially at the red edge region (680–780 nm), located between the far red and the 
Near-infrared (NIR) wavelengths. The red edge region is able to extract precise and 
detailed information on crop stress. In the first step of this work, sensitive and insen-
sitive wavebands were identified within the red edge region using cluster analysis. 
In the second step, the VNIR region was investigated using PLS for selecting the 
efficient wavebands, while four red edge indices were also evaluated using ANN. In 
the third and final step, the work generated a spectral index specifically for OS dis-
ease, i.e., OSDI by focusing on the red edge and twenty noble red edge parameters 
(Li et al. 2016). Details are given below.

13.7.1  �Selection of Spectral Signature Using Cluster Analysis

Multivariate statistical techniques are widely applied to analyze hyperspectral 
remote sensing data. The application of hyperspectral data has been rapidly increas-
ing thus far with the help of multivariate statistical technique such as cluster analy-
sis. We used cluster analysis to extract the relevant spectral signature from reflectance 
of healthy and inoculated seedlings. This process typically involves identification of 
sensitive wavebands within the reflectance spectra, followed by determination of 
reflectance sensitivity.

Technically, cluster analysis produces groups of similar spectral reflectance. 
Similar reflectance spectra are closer to each other than dissimilar spectra. Joining 
these groups or clusters progressively results in a tree-like structure known as den-
drogram. The scale at the top of the dendrogram is the normalized Euclidean dis-
tance among observations or clusters (Köksal 2011). By this process, reflectance 
spectra were archived from each interval of inoculation (i.e., days after inoculation, 
dai) of inoculated oil palm seedlings corresponding to 15, 30, 45 and 60 dai. At the 
same intervals, the reflectance of control seedlings was also collected. The dendro-
grams obtained from spectral readings of inoculated and healthy seedlings were 
used to compute the minimum Euclidean distance measured within each interval of 
spectral measurement. For example, Fig. 13.2a,b shows the dendrograms obtained 
from spectral readings of inoculated and healthy seedlings, measured at 30 dai, in 
which the nearest clusters based on minimum Euclidean distance were selected. 
Cluster A was found to be the nearest in both dendrograms. Its member spectra were 
averaged. As such, dendrograms of different inoculation intervals (15, 30, 45, 60 
dai) were identified and their mean spectra were averaged to get the representative 
spectral signatures of inoculated and control oil palm seedlings (Fig. 13.3).

The representative spectra of inoculated and control seedlings were plotted 
against the VNIR region, specifically to understand changes in the red edge region. 
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It was observed that the beginning point of red edge (680 nm), which is a relative 
chlorophyll absorption maxima, and a second point (754  nm), which is the first 
steep slope, were located in the red edge region (680–780 nm). This region has less 
reflectance due to chlorophyll absorption, while the NIR region is typically charac-
terized by a high percentage of reflectance, due to the scattering of light in the 
intercellular mesophyll volume of leaves. Finally two spectral bands, 680 nm and 
754 nm, were identified. A sharp change was also observed between 680 nm and 
754 nm, which characterized a transition from chlorophyll absorption to leaf scat-
tering in the red edge region.

Fig. 13.2  Dendrogram structure of spectral reflectance obtained from fifteen inoculated (30 V1.
mn  – 30  V15.mn, a) and fifteen control seedlings (30C1.mn  – 30C15.mn, b) at 30  days after 
inoculation
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Reflectance Sensitivity (RS), as proposed by Riedell et al. (2000), was applied to 
derive stress-sensitive and insensitive wavebands from these corresponding repre-
sentative spectra (Fig. 13.3). As a result, an appreciable increase in RS (20%) was 
observed at 680 nm, while RS decreased up to 18% at 754 nm. To the authors’ 
knowledge, these two red edge wavebands have not been previously studied for OS 
disease diagnosis in oil palm. These selected wavebands will be useful to screen 
infected seedlings prior to destructive sampling for biomolecular investigation. It is 
recommended that these wavebands be employed for evaluation of existing red edge 
indices and/or development of an SDI. This study provides a useful lead for canopy 
level diagnosis of OS disease in mature oil palm stands.

13.7.2  �Estimating Chlorophyll Content Using PLS

The VNIR region (400–1050 nm) appears as most sensitive to chlorophyll stress. In 
this study, PLS regression was used to estimate chlorophyll content specifically 
from VNIR reflectance of CCCVd-inoculated and healthy oil palm seedlings. 
Information about chlorophyll stress could aid in diagnostics and decision-making 
for OS detection. Non-destructive estimation of chlorophyll content can be helpful 
in precision plant protection. In the PLS regression, independent and dependent 
variables need to be pre-defined before executing the program. For this, VNIR spec-
tra were selected as independent variables and SPAD meter readings were selected 
as dependent variables. A Matlab freeware tool, Interval Partial Least-Squares 
Regression (iPLS), was used for estimating the chlorophyll content. Raw spectral 
data were pre-processed using first-order derivative, Savitzky-Golay (SG) 

Fig. 13.3  Representative spectra of control and inoculated seedlings
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smoothing, Multiplicative Scatter Correction (MSC) and Standard Normal 
Transformation (SNV) methods.

Five datasets were prepared including the raw dataset. For each dataset, 80 sam-
ples were selected, in which 60 calibration samples were obtained from CCCVd-
inoculated seedlings and 20 prediction samples were obtained from healthy oil palm 
seedlings. MSC pre-processed spectra gave outstanding performance with a root 
mean square error of prediction of 3.70% and a correlation coefficient for prediction 
of 0.72. Thirty sensitive wavebands (601–630  nm) were identified from VNIR 
reflectance using MSC pre-processed spectra. See technical and experimental 
details in Golhani et al. (2019b).

13.7.3  �Selection of Red Edge Wavebands Using Artificial 
Neural Network (ANN)

A Multilayer Perceptron Neural Network (MLPNN) model was used to establish a 
relationship between red edge bands and spectral indices. Two spectral bands 
(700 nm and 768 nm) were identified from reflectance spectra of CCCVd-inoculated 
and healthy seedlings. The bands were used for evaluation of spectral indices, 
namely: simple ratio, red edge normalized difference vegetation index, two-band 
enhanced vegetation index 2 (EVI 2). In MLPNN model, identified spectral bands 
were used as input, and values of spectral indices were used as target. The EVI 2 
resulted as best spectral index which resulted in zero errors at the training, testing, 
and validation datasets. In this work, the highest coefficient of correlation (r = 1) 
was recorded by EVI 2. Golhani et al. (2019a) mentioned that identified spectral 
bands and spectral index could be evaluated, using airborne or space-borne hyper-
spectral sensor platforms, for detection of OS disease in mature oil palm stands.

13.7.4  �Development of Orange Spotting Disease Index (OSDI)

The main purpose of this biennial experiment was to develop the OSDI, which 
could specifically be used for early detection of OS disease at the leaf scale. The 
OSDI was developed from reflectance spectra obtained from inoculated and healthy 
oil palm seedlings. It is believed that the OSDI values will give a reliable indication 
of OS disease, prior to confirmation by biomolecular marker techniques.

During the first experimental year (2015), twenty-four red edge parameters 
which were developed from First Derivative Reflectance (FDR) of the electromag-
netic spectrum were used to develop the OSDI. Then, the OSDI values were verified 
with a repeated experiment in 2017. In Fig. 13.4, mean reflectance (30–120 dai) of 
diseased and healthy FDR was plotted in the red edge region. Four red edge param-
eters, viz. Red Edge Position (REP), mid-point (P), Right-side peak area (RSDR), 
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and Left-side peak area (LSDR), were studied to observe basic changes between 
diseased and healthy spectral signatures. In both spectra, reflectance increased in 
LSDR region between 680 nm and mid-point P nm, and decreased in RSDR region 
between P nm and 780 nm. REP was found at 700 nm, which could not be shifted 
towards shorter or longer wavelengths. This figure, while preliminary, suggested the 
need for exploration on other red edge parameters in order to find the most tangible 
criterion for comparison. Yang et al. (2010) mentioned that reflectance around the 
REP has been found to be most sensitive to plant stress.

Finally, a simple ratio representing the sum of the FDR of the right side – Red 
Edge Point (REP) to the sum of the FDR of the left side – REP of the red edge 
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Fig. 13.4  A spectral plot of average spectra of healthy and diseased oil palm seedlings within 
the red edge region (680–780 nm) showing red edge parameters, viz. REP, LSDR, mid-point (P), 
and RSDR
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region, was identified as OSDI. The validation results showed a strong correlation 
(r  =  0.96) between OSDI values from  experimental years of 2015 and 2017 
(Fig. 13.5). In the future, OSDI values will be analyzed using ANN. OSDI is the 
first spectral index developed for detection of both symptomatic and asymptomatic 
OS-infected oil palms, at the leaf scale.

13.8  �Conclusion

In this chapter, important drivers in precision agriculture have been discussed. A 
case study on OS detection was described. A precision approach to plant protection 
will expedite disease control and save financial resources and valuable time. In the 
shown case study, an attempt of quantifying reflectance data was made to augment 
effectiveness of OS phytopathometry appraisal in oil palm. Basically, CCCVd dam-
ages oil palm seedlings by crippling the chlorophyll apparatus. This case study 
showed that selected red edge wavebands, red edge indices, with the newly devel-
oped OSDI, are good predictors of chlorophyll stress caused by viroid attack. 
Development of the OSDI is the best outcome from this attempt, although to date, 
the newly developed OSDI has only been tested under a glasshouse environment. 
The verification of OSDI values under a wide range of growing conditions is recom-
mended. Future work should be directed at investigating the efficacy of OSDI for 
diagnosis of OS disease at the canopy scale.
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