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Abstract We study the boundary value problem for the mixed type equation with
a singular coefficient and nonlocal integral first-kind condition. We establish the
uniqueness criterion and prove the solution existence and stability theorems. The
solution of the problem is constructed explicitly and the proof of convergence of the
series in the class of regular solutions is derived.

Keywords Mixed type equation · Singular coefficient · Nonlocal integral
condition · Uniqueness · Existence · Stability · Fourier–Bessel series

MSC2010 35M12

1 Introduction

Let D = {(x, y)| 0 < x < l,−α < y < β} be a rectangular domain of coordinate
plane Oxy, where l, α, β are given positive real numbers. We introduce denotation:
D+ = D ∩ {y > 0} and D− = D ∩ {y < 0}.

In the domain D we consider the elliptic-hyperbolic equation

Lu ≡ uxx + (sgn y)uyy + p

x
ux = 0, (1)

where p ≥ 1 is a given positive real number.
Boundary value problems for mixed type equations are one of the most important

topics of the modern theory of partial differential equations. Mathematical models of
heat transfer in capillary-porous media, formation of a temperature field, movement
of a viscous fluid and many others leads to the problems for equations of this type.
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Interest in the degenerate equations is caused not only by the need to solve
applied problems, but also by the intense development of the theory of mixed
type equations. The first boundary value problem for degenerate partial differential
equations of elliptic type with variable coefficients was initially studied in [1].
The research of equations which contains the Bessel differential operator holds a
special place in this theory. The study of this class of equations was begun by Euler,
Poisson, Darboux and was continued in the theory of generalized axisymmetric
potential [1–4]. The equations of the three main classes containing the Bessel
operator, according to the [5], are called B-elliptic, B-hyperbolic and B-parabolic,
respectively. The boundary value problems for parabolic equations with the Bessel
operator are studied in [6, 7], a rather complete review of the papers, devoted to
boundary value problems for elliptic equations with singular coefficients is given in
monograph [8]. An extensive study of B-hyperbolic equations is presented in [9].
The papers [10–16] are also devoted to the study of boundary value problems for
singular equations.

In this paper we study the following nonlocal problem with first-kind integral
condition when p ≥ 1 for Eq. (1) in the domain D.

Statement of the Problem Let p ≥ 1. We need to find function u(x, y) which
satisfies the following conditions:

u(x, y) ∈ C1(D) ∩ C2(D+ ∪ D−), (2)

Lu(x, y) ≡ 0, (x, y) ∈ D+ ∪ D−, (3)

u(x, β) = ϕ(x), u(x,−α) = ψ(x), 0 ≤ x ≤ l, (4)

l∫

0

xpu(x, y) dx = A = const, −α ≤ y ≤ β, (5)

where A is a given real number, ϕ(x), ψ(x) are given smooth enough functions,
which satisfy conditions

l∫

0

xpϕ(x) dx =
l∫

0

xpψ(x) dx = A. (6)

The boundary value problem (2)–(6) has nonlocal boundary conditions on the
sides of the rectangle D. When p ≥ 1 in the domain of ellipticity D+ of Eq. (1),
due to [1], the segment x = 0 is free of boundary condition in the class of
bounded solutions. By dividing the variables it is easy to show that in the domain of
hyperbollicity D− of the Eq. (1) there is valid equation

ux(0, y) = 0, −α ≤ y ≤ β. (7)
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Nonlocal problems for different classes of differential equations are studied in
the works [17–24]. The integral condition (5) was introduced in [25] for the heat
equation. The boundary value problems with (5)-type integral condition have been
studied in [26–28].

2 Uniqueness

Let’s represent the solution (1) as

x−p ∂

∂x

(
xp ∂u

∂x

)
+ (sgn y)uyy = 0.

Let’s multiply it by xp and integrate it over the x variable with fixed y ∈
(−α, 0) ∪ (0, β) on interval from ε to l − ε, where ε > 0 is a number small
enough. As a result we will get

l−ε∫

ε

∂

∂x

(
xp ∂u

∂x

)
dx + (sgn y)

l−ε∫

ε

xpuyy dx,

or

(
xp ∂u

∂x

)∣∣∣∣
l−ε

ε

+ (sgn y)
d2

dy2

l−ε∫

ε

xpu(x, y) dx = 0.

At ε → 0, due to the conditions (2) and (5) we will get the local boundary
condition

ux(l, y) = 0, −α ≤ y ≤ β. (8)

In what follows we will consider the problem (2)–(4), (8) instead of (2)–(6).
We will look for particular solutions of the Eq. (1) which are not equal to zero

in the domain D+ ∪ D− and which satisfy the conditions (2) and (8) in the form
u(x, y) = X(x)Y (y). By substituting this product into the Eq. (1) and the condition
(8), we will get the following spectral problem with respect to X(x)

X′′(x) + p

x
X′(x) + λ2X(x) = 0, 0 < x < l, (9)

|X(0)| < +∞, X′(l) = 0, (10)

where λ2 is a separation constant.
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The general solution of Eq. (9) has the form

X̃(x) = C1x
1−p

2 Jp−1
2

(λx) + C2x
1−p

2 Yp−1
2

(λx),

where Jν(ξ), Yν(ξ) are the first-kind and second-kind Bessel functions respectively,
ν = (p − 1)/2, C1, C2 are arbitrary constants.

We put C2 = 0 so the function satisfies the first condition from (10). Since the
eigenfunctions of the spectral problem are determined to within a constant factor,
we set C1 = 1. Thus, the solution of the Eq. (9), which satisfies the first condition
from (10), has the form

X̃(x) = x
1−p

2 Jp−1
2

(λx).

Let’s note that this function satisfies the condition (7). By substituting the
function X̃(x) into the second condition from (10) we will get

λ0 = 0,

X̃′(l) =
(
x

1−p
2 Jp−1

2
(λx)

)′
x

∣∣∣
x=l

= −l
1−p

2 Jp+1
2

(λl),

and now we can obtain

Jp+1
2

(μ) = 0, μ = λl. (11)

It is known [29, p. 530] that function Jν(ξ) with ν > −1 has a countable set of
real zeros. We denote the n–th root of the (11) equation by μn with given p and find
the eigenvalues λn = μn/l of the problem (9) and (10). According to [30, p. 317]
there is valid assimptotic formula for the zeros of the Eq. (11) when n is big enough

μn = λnl = πn + π

4
p + O

(
1

n

)
. (12)

Let’s note that when λ0 = 0 the spectral problem (9) and (10) has constant
eigenfunction which we will take as one. Thus, the system of eigenfunctions of the
problem (9) and (10) has the form

X̃0(x) = 1, λ0 = 0, (13)

X̃n(x) = x
1−p

2 Jp−1
2

(μnx

l

)
= x

1−p
2 Jp−1

2
(λnx), n ∈ N, (14)

where eigenvalues λn are determined as zeros of the Eq. (11).
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Let’s note that the system of eigenfunctions (13) and (14) of the problem (9) and
(10) is orthogonal in the space L2[0, l] with a weight xp and also forms a complete
system in this space [31, p. 343].

For further calculations we will use an orthonormal system of functions:

Xn(x) = 1

||X̃n(x)||X̃n(x), n = 0, 1, 2, . . . , (15)

where

||X̃n(x)||2 =
l∫

0

ρ(x) X̃2
n(x) dx, ρ(x) = xp. (16)

Let u(x, y) be a solution of the problem (2)–(4), (8). Let’s introduce the functions

un(y) =
l∫

0

u(x, y)xpXn(x) dx, n = 0, 1, 2, . . . , (17)

based on which we consider an auxiliary functions of the form

un,ε(y) =
l−ε∫

ε

u(x, y)xpXn(x) dx, n = 1, 2, . . . , (18)

where ε > 0 is a number small enough. Let’s differentiate the Eq. (18) over the y

variable twice with y ∈ (−α, 0) ∪ (0, β) and with respect to Eq. (1), we will get the
equation

u′′
n,ε(y) =

l−ε∫

ε

uyy(x, y)xpXn(x) dx = −(sgn y)

l−ε∫

ε

(
uxx + p

x
ux

)
xpXn(x) dx =

=−(sgn y)

l−ε∫

ε

∂

∂x
(xpux)Xn(x) dx = −(sgn y)

⎡
⎢⎣xpuxXn(x)

∣∣∣l−ε

ε
−

l−ε∫

ε

xpuxX′
n(x) dx

⎤
⎥⎦ .

(19)
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From (18), due to Eq. (9), we can obtain

un,ε(y) = − 1

λ2
n

l−ε∫

ε

u(x, y)xp
[
X′′

n(x) + p

x
X′

n(x)
]

dx =

= − 1

λ2
n

l−ε∫

ε

u(x, y)
d

dx

(
xpX′

n(x)
)

dx = − 1

λ2
n

⎡
⎣u(x, y)xpX′

n(x)

∣∣∣l−ε

ε
−

l−ε∫

ε

xpuxX
′
n(x) dx

⎤
⎦ ,

and, thus,

l−ε∫

ε

xpuxX′
n(x) dx = λ2

nun,ε(y) + u(x, y)xpX′
n(x)

∣∣∣l−ε

ε
.

By substituting this expression into (19) we will have

u′′
n,ε(y) = −(sgn y)

[
xpuxXn(x)

∣∣∣l−ε

ε
− λ2

nun,ε(y) − u(x, y)xpX′
n(x)

∣∣∣l−ε

ε

]
.

By virtue of (2) in the last equation, we can pass to the limit as ε → 0, from
which, according to the conditions (8) and (10) we obtain the following differential
equation that we will use to find the functions (17)

u′′
n(y) − (sgn y)λ2

nun(y) = 0, y ∈ (−α, 0) ∪ (0, β). (20)

It’s general solution has the form

un(y) =
{

ane
λny + bne

−λny, y > 0,

cn cos λny + dn sin λny, y < 0,
(21)

where an, bn, cn, dn are arbitrary constants which must be defined.
Now we will pick the constants an, bn, cn and dn in (21) with respect to (2)

such that the conjugation conditions un(0+) = un(0−), u′
n(0+) = u′

n(0−) are
satisfied. Those conditions are satisfied when an = (cn + dn)/2, bn = (cn − dn)/2,
n = 1, 2, . . .. By substituting the values found in (21) we will have

un(y) =
{

cnch λny + dnsh λny, y > 0,

cn cos λny + dn sin λny, y < 0.
(22)
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Now let’s substitute (17) into the boundary conditions (4):

un(β) =
l∫

0

ϕ(x)xpXn(x) dx = ϕn, un(−α) =
l∫

0

ψ(x)xpXn(x) dx = ψn.

(23)
Based on (22) and (23) we can obtain a system for finding the constants cn and

dn:

{
cnch λnβ + dnsh λnβ = ϕn,

cn cos λnα − dn sin λnα = ψn,
(24)

which has the unique solution

cn = ϕn sin λnα + ψnsh λnβ

sin λnα ch λnβ + cos λnα sh λnβ
, dn = ϕn cos λnα − ψnch λnβ

sin λnα ch λnβ + cos λnα sh λnβ
,

(25)

if for all n ∈ N the determinant of the system (24) is non-zero:

�n(α, β) = sin λnα ch λnβ + cos λnα sh λnβ �= 0. (26)

By substituting the values we found (25) into (22) we will find the final form of
the functions

un(y) =
{�−1

n (α, β) (ϕn�n(α, y) + ψnsh λn(β − y)) , y > 0,

�−1
n (α, β) (ϕn sin λn(α + y) + ψn�n(−y, β)) , y < 0.

(27)

Similarly, we find

u0(y) = αϕ0 + βψ0

α + β
+ ϕ0 − ψ0

α + β
y, y ∈ (−α, 0) ∪ (0, β), (28)

u0(β) = l−
p+1

2
√

p + 1

l∫

0

ϕ(x)xpdx = ϕ0, u0(−α) = l−
p+1

2
√

p + 1

l∫

0

ψ(x)xpdx = ψ0.

(29)

When the condition (26) is satisfied, the problem (2)–(4), (8) has the unique
solution. Indeed, let ϕ(x) = ψ(x) ≡ 0 and �n(α, β) �= 0. Then it follows
from (23) and (29) that ϕn = ψn ≡ 0, n = 0, 1, 2, . . ., and it follows from
(27) and (28) that un(y) = 0 for all n ∈ N0 = N ∪ {0}. Due to (17) we have



678 N. V. Zaitseva

l∫

0

u(x, y)xpXn(x) dx = 0. Hence, as the system (15) is complete in the space

L2[0, l] with weight xp, u(x, y) = 0 almost everywhere on the interval x ∈ [0, l]
and for all y ∈ [−α, β]. As according to (2) function u(x, y) ∈ C(D), then
u(x, y) ≡ 0 in D.

Let’s suppose that for some values p, l, α, β and some n = m the condition
(26) is not satisfied. When ϕ(x) = ψ(x) ≡ 0 and �m(α, β) = 0 the system (24) is
equivalent to one of the equations (let it be the first one)

cmch λmβ + dmsh λmβ = 0,

which has an infinite set of solutions

{
−dm

sh λmβ

ch λmβ
, dm

}
. By substituting the values

we found into (22) we get

um(y) =
{

d̃m (sh λmy ch λmβ − sh λmβ ch λmy) , y ≥ 0,

d̃m (ch λmβ sin λmy − sh λmβ cos λmy) , y ≤ 0,

where d̃m is an arbitrary non-zero constant.
Thus the homogenous problem (2)–(4), (8) has the non-zero solution

um(x, y) =
{

d̃m (sh λmy ch λmβ − sh λmβ ch λmy)Xm(x), y ≥ 0,

d̃m (ch λmβ sin λmy − sh λmβ cos λmy) Xm(x), y ≤ 0,
(30)

where the functions Xm(x) are determined by (15). It is easy to prove that the built
function (30) satisfies all the conditions (2)–(4), (8) when ϕ(x) = ψ(x) ≡ 0.

Let’s find out for which values of the parameters p, l, α, β the condition (26) is
violated. We represent �n(α, β) as

�n(α, β) = √
ch 2λnβ sin(μnα̃ + γn), (31)

where μn = λnl, α̃ = α/l, γn = arcsin
sh λnβ√
ch 2λnβ

→ π

4
at n → +∞.

This representation shows that �n(α, β) = 0, if sin(μnα̃ + γn) = 0, that is, if

α̃ = πk − γn

μn

, k = 1, 2, . . . . (32)

Thus we proved

Theorem 1 If the solution of the problem (2)–(4), (8) exists, then it is unique if and
only if the condition (26) is satisfied for all n ∈ N.
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3 Existence

As according to (31) the expression �n(α, β) has a countable set of zeros, we
examine the values of this expression, included in the denominators of the formula
(27) when n is big enough.

Lemma 1 If α̃ = a/b is a rational number, a, b are mutually prime numbers and

p �= 1

a
(4bd − b − 4r), r = 1, b − 1, d ∈ Z, then there exists constants C0 > 0,

n0 ∈ N such that for all n > n0 there is valid inequality

|�n(α, β)| ≥ C0e
λnβ . (33)

Proof Let’s substitute (14) into (31):

�n(α, β) = √
ch 2λnβ sin

(
πnα̃ + π

4
pα̃ + γn + O

(
1

n

))
.

Let α̃ = a/b, a, b ∈ N, (a, b) = 1. Let’s divide na by b. According to the
division theorem we have

na = bq + r, q ∈ N0, 1 ≤ r ≤ b − 1.

Then

�n(α, β) = √
ch 2λnβ (−1)q sin

(
πr

b
+ πa

4b
p + γn + O

(
1

n

))
=

= eλnβ

√
2

√
1 + ch − 4λnβ (−1)q sin

(
πr

b
+ πa

4b
p + π

4
− εn + O

(
1

n

))
,

where εn > 0 and εn → 0 at n → +∞. Thus there is a number n0, such that for
any n > n0 there is valid inequality

|�n(α, β)| ≥ eλnβ

2
√

2

∣∣∣sin
(πr

b
+ πa

4b
p + π

4

)∣∣∣ = C0e
λnβ.

In order to get C0 > 0 it is necessary that

πr

b
+ πa

4b
p + π

4
�= πd, d ∈ Z,

hence

p �= 1

a
(4bd − b − 4r), d ∈ Z. (34)

The condition (34) is satisfied for any irrational value p ≥ 1. ��
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Lemma 2 If for n > n0 the condition (33) is satisfied, then there are valid estimates

|un(y)| ≤ C1(|ϕn| + |ψn|), y ∈ [−α, β], (35)

|u′
n(y)| ≤ C2n(|ϕn| + |ψn|), y ∈ [−α, β], (36)

|u′′
n(y)| ≤ C3n

2(|ϕn| + |ψn|), y ∈ [−α, 0), (37)

|u′′
n(y)| ≤ C4n

2(|ϕn| + |ψn|), y ∈ (0, β], (38)

where Ci are positive constants (here and further).

Proof From formula (27) with respect to (33) we can get

|un(y)| ≤ 1

|�n(α, β)| (|ϕn|(sh λnβ + ch λnβ) + |ψn|sh λnβ) ≤

≤ 1

C0eλnβ
(|ϕn|(sh λnβ + ch λnβ) + |ψn|sh λnβ) ≤ C̃1(|ϕn| + |ψn|), y ≥ 0,

|un(y)| ≤ 1

C0eλnβ
(|ϕn| + |ψn|(sh λnβ + ch λnβ)) ≤ C̃2(|ϕn| + |ψn|), y ≤ 0,

where C̃i are positive constants (here and further). By denoting C1 = max {C̃1, C̃2}
we get the estimate (35) for all n > n0 and y ∈ [−α, β].

Let’s calculate the derivative u′
n(y) based on (27) and with respect to (33) and

formula (12):

|u′
n(y)| ≤ n

C0eλnβ
(|ϕn|(ch λnβ + sh λnβ) − |ψn|ch λnβ) ≤ C̃3n(|ϕn|+|ψn|), y ≥ 0,

|u′
n(y)| ≤ n

C0eλnβ
(|ϕn| − |ψn|(sh λnβ + ch λnβ)) ≤ C̃4n(|ϕn| + |ψn|), y ≤ 0.

Form those inequalities we can obtain the estimate (36) for all n > n0 and y ∈
[−α, β], where C2 = max {C̃3, C̃4}.

The validity of the estimates (37) and (38) follows from the equalities (12), (20)
and the estimate (35). ��
Lemma 3 For n big enough and for all x ∈ [0, l] there are valid estimates:

|Xn(x)| ≤ C5, |X′
n(x)| ≤ C6n, |X′′

n(x)| ≤ C7n
2.

Proof of this lemma can be found in [32].
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Lemma 4 If functions ϕ(x), ψ(x) ∈ C2[0, l] and there exists the derivatives
ϕ′′′(x), ψ ′′′(x) which has finite variation on [0, l], and

ϕ′(0) = ϕ′′(0) = ψ ′(0) = ψ ′′(0) = ϕ′(l) = ψ ′(l) = 0,

then there are valid estimates:

|ϕn| ≤ C8/n4, |ψn| ≤ C9/n4.

Proof of this lemma can be found in [32].
Based on the found particular solutions (15), (27) and (28), if the conditions

(26) and (33) are satisfied, the solution of the problem (2)–(4), (8) is defined as a
Fourier–Bessel series

u(x, y) = u0(y)X0(x) +
∞∑

n=1

un(y)Xn(x). (39)

We will consider the following series together with the series (39):

uy(x, y) = u′
0(y)X0(x)+

∞∑
n=1

u′
n(y)Xn(x), ux(x, y) =

∞∑
n=1

un(t)X
′
n(x); (40)

uyy(x, y) =
∞∑

n=1

u′′
n(y)Xn(x), uxx(x, y) =

∞∑
n=1

un(y)X′′
n(x). (41)

According to Lemmas 2 and 3, for any (x, y) ∈ D the series (39)

and (40) are majorized, correspondingly, by the series C10

∞∑
n=1

(|ϕn| + |ψn|),

C11

∞∑
n=1

n (|ϕn| + |ψn|), and the series (41) for any (x, y) ∈ D+ ∪D− are majorized

by the series C12

∞∑
n=1

n2 (|ϕn| + |ψn|), which, in turn, according to Lemma 4, are

estimates by the number series C13

∞∑
n=1

n−2. Consequently, by virtue of Weierstrass

M-test, the series (39) and (40) converges uniformly in the bounded domain D and
the series (41) converges uniformly in the bounded domains D+ and D−. Thus we
have built the function u(x, y) which is defined by the series (39) and satisfies all
the (2)–(4), (8) problem conditions.

If for numbers α̃ in Lemma 1, for some natural n = m = m1, . . . ,mk , where
1 ≤ m1 < . . . < mk ≤ n0, k ∈ N, there is �m(α, β) = 0 satisfied, then for
the solvability of the problem (2)–(4), (8) it is necessary and sufficient to fulfill the
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conditions

ψmch λmβ − ϕm cos λmα = 0, m = m1, . . . ,mk. (42)

In this case, the solution of the problem (2)–(4), (8) is determined by the series

u(x, y) =
⎛
⎝m1−1∑

n=1

+ · · · +
mk−1∑

n=mk−1+1

+
∞∑

n=mk+1

⎞
⎠un(y)Xn(x) +

∑
n=1

um(x, y),

(43)

where m takes the values m1, . . . ,mk , and the function um(x, y) is determined by
the formula (30). If the lower limit is greater than the upper limit in some sums, then
these sums should be considered equal to zero.

Thus, we proved

Theorem 2 Let functions ϕ(x) and ψ(x) satisfy the Lemma 4 conditions and the
condition (33) is satisfied for n > n0. Then there exists the unique solution u(x, y)

of the problem (2)–(4), (8) determined by the series (39), if �n(α, β) �= 0 for all
n = 1, n0; if �m(α, β) = 0 with some m = m1, . . . ,mk ≤ n0, the problem has a
solution determined by (43), if and only if the conditions (42) are satisfied.

Theorem 3 Let functions ϕ(x) and ψ(x) satisfy the Lemma 4 conditions and the
conditions (6) and the inequality (33) is valid for all n > n0. Then there exists
the unique solution u(x, y) of the problem (2)–(6) determined by the series (39), if
�n(α, β) �= 0 for all n = 1, n0; if �m(α, β) = 0 with some m = m1, . . . ,mk ≤ n0,
the problem has a solution determined by (43), if and only if the conditions (42) are
satisfied.

Proof Let u(x, y) be a solution of the problem (2)–(4), (8) and functions ϕ(x) and
ψ(x) satisfies the theorem conditions. Then the Eq. (1) is valid everywhere on set
D+ ∪ D−. Let’s multiply the Eq. (1) by xp and integrate it over the x variable with
y ∈ (−α, 0) ∪ (0, β) fixed on interval from ε to l −ε, where ε > 0 is small enough.
As a result we will get

(
xp ∂u

∂x

)∣∣∣∣
l−ε

ε

+ (sgn y)

l−ε∫

ε

xpuyy(x, y) dx = 0. (44)

By passing to the limit as ε → 0 and with respect to conditions (2) and (8), we have

l∫

0

uyy(x, t)xp dx = 0.
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By integrating the last equation over the y variable twice we have

l∫

0

u(x, y)xp dx = K1y + K2, K1, K2 = const. (45)

By putting y = β and then y = −α in the Eq. (45) and with respect to the conditions
(4) and (6) we get

l∫

0

u(x, β)xp dx =
l∫

0

ϕ(x)xp dx = K1β + K2 = A,

l∫

0

u(x,−α)xp dx =
l∫

0

ψ(x)xp dx = −αK1 + K2 = A,

and thus we can find the values of the constants K1 = 0 and K2 = A. Then from
the formula (45) we have

l∫

0

u(x, y)xp dx = A,

which means that the condition (5) is satisfied.
Now let u(x, y) be a solution of the problem (2)–(6). Then from the Eq. (44) we

can obtain

(
xp ∂u

∂x

)∣∣∣∣
l−ε

ε

+ (sgn y)
d2

dy2

l−ε∫

ε

xpu(x, y) dx = 0.

By passing to limit as ε → 0 and according to conditions (2) and (5) we obtain the
local second-kind boundary condition ux(l, y) = 0.

Thus, we showed that when the conditions (6) are satisfied, the conditions (5)
and (8) are equivalent. This means that the problems (2)–(6) and (2)–(4), (8) are
also equivalent. ��
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4 Stability

Theorem 4 For the solution of the problem (2)–(6) there is valid estimate

||u(x, y)|| ≤ C14(||ϕ(x)|| + ||ψ(x)||),

where ||f (x)||2 =
l∫

0

ρ(x)|f (x)|2dx, ρ(x) = xp.

Proof According to the formula (39) with respect to the estimate (35) we can
calculate

||u||2 =
l∫

0

xpu2(x, y) dx =
l∫

0

xp
∞∑

n=0

un(y)Xn(x)

∞∑
m=0

um(y)Xm(x) dx =

=
∞∑

n=0

u2
n(y) = u2

0(y) +
∞∑

n=1

u2
n(y) ≤ C15(ϕ

2
0 + ψ2

0 ) + 2C2
1

∞∑
n=1

(
|ϕn|2 + |ψn|2

)
≤

≤ C15(ϕ
2
0 + ψ2

0 ) + 2C2
1

( ∞∑
n=1

ϕ2
n +

∞∑
n=1

ψ2
n

)
= C14

(
||ϕ||2 + ||ψ||2

)
.
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