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Preface

This volume Transmutation Operators and Applications consists of invited papers
gathered in the following three parts:

Part I. Transmutations, Integral Equations, and Special Functions.
Part II. Transmutations in ODEs, Forward and Inverse Problems.
Part III. Transmutations for Partial and Fractional Differential Equations.

The papers in the volume are contributed by experts in transmutation theory and

related topics and demonstrate the vitality and importance of this theory and its rich
connections with applications in pure mathematics and applied sciences.

Given below is the list of all contributions followed by short abstracts to each

paper.

Part I: Transmutations, Integral Equations, and Special Functions

Vladislav V. Kravchenko (Mexico), Sergey M. Sitnik (Russia). Some recent
developments in the transmutation operator approach.

This is an editorial introduction paper. It introduces basic notions and results
of transmutation theory and gives a brief historical survey with some important
references.

* Amin Boumenir, Vu Kim Tuan (USA). Transmutation operators and their appli-

cations.

The authors approach the subject of transmutations from the operator theoretic
point of view and use them to compare general differential operators and Krein’s
type of strings. They also examine their existence, construction, and various
applications to inverse and computational spectral theory.

Lyubov Britvina (Russia). Hankel generalized convolutions with the associated
Legendre functions in the kernel and their applications.

This investigation is devoted to finding the existence conditions, bound-

ary properties, and applications of convolution operators for the v-th order
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Hankel transform
o0
Hu[f](X)=ff(t)Ju(xt)tdt, xeRy.
0

The generalized convolutions defined by the Parseval type equalities

Hy[h1](x) = x7"Hyu [f1(0)Hu[g](x) .
Hy[h2](x) = x7"Hy[f1(x)Hu[g](x)

are considered in spaces L|(R,, «/tdt) and Ly(R,, tdt). Properties and esti-
mates for the convolution kernel are investigated. Also integral operators are con-
sidered related to generalized convolutions for the Hankel transform H,[ f](x).
Watson’s type theorems for convolution operators are proved, and integral
operators with nonsymmetric kernels are studied. Some applications to solving
integral equations are given.

Djurdje Cvijovi¢ (Serbia), Tibor K. Pogdny (Croatia). Second type Neumann
series related to Nicholson’s and to Dixon—Ferrar formula.

The second type Neumann series are considered whose building blocks are
Nicholson’s and to the Dixon—Ferrar formulae for Jvz(x) + sz(x). Related
closed-form double definite integral expressions are established by using the
associated Dirichlet’s series Cahen’s Laplace integral for the Nicholson’s case.
However, using Dixon—Ferrar formula a double definite integral expression is
again obtained. Certain open problems are posed in the last section of the chapter.
Sh. T. Karimov (Uzbekistan), S. M. Sitnik (Russia). On some generalizations of
multidimensional generalized Erdélyi—Kober operators and their applications.

The authors investigate the composition of a multidimensional generalized
Erdélyi—Kober operator with differential operators of high order. In particular,
with powers of the differential Bessel operator. Applications of proved properties
to solving the Cauchy problem for a multidimensional polycaloric equation with
a Bessel operator are shown. An explicit formula for solving the formulated
problem is constructed. In the appendix, we briefly describe a general context for
transmutations and integral transforms used in this paper. Such a general context
is formed by integral transforms composition method (ITCM).

D. B. Karp (Vietnam, Russia), E. G. Prilepkina (Russia). Alternative approach to
Miller—Paris transformations and their extensions.

The paper deals with Miller—Paris transformations which are extensions of
Euler’s transformations for the Gauss hypergeometric functions to generalized
hypergeometric functions of higher order having integral parameter differences
(IPD). In our recent work, we computed the degenerate versions of these
transformations corresponding to the case when one parameter difference is equal
to a negative integer. The purpose of this paper is to present an independent
new derivation of both the general and the degenerate forms of Miller—Paris
transformations. In doing so, we employ the generalized Stieltjes transform
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representation of the generalized hypergeometric functions and some partial
fraction expansions. This approach leads to different forms of the characteristic
polynomials; one of them appears noticeably simpler than the original form
due to Miller and Paris. Two extensions are further presented of the degenerate
transformations to the generalized hypergeometric functions with additional free
parameters and additional parameters with negative integral differences.

e S. P. Khekalo, V. V. Meshcheryakov, K. O. Politov (Russia). Transmutation
operators for ordinary Dunkl-Darboux operators.

The study is developed of transmutation operators for differential-difference
operators, analogous to Dunkl operator. The basis for the study of operators’
properties is the intertwining operator and Darboux transformations theories.

e A. A. Larin (Russia). Theorems on restriction of Fourier—Bessel and multidimen-
sional Bessel transforms to spherical surfaces.

The paper deals with problems of L,-summability with a weight over
spherical surface of Fourier—Bessel and n-dimensional Bessel transforms for
functions from some weighted spaces. The results have applications to PDE
theory. Results of this paper may be applied in transmutation theory, for example,
for estimating solutions of singular B-elliptic PDEs.

e V. I. Makovetsky, S. M. Sitnik, (Russia). Necessary condition for the existence of
an intertwining operator and classification of transmutations on its basis.

The authors study second-order ordinary differential operators with functional
coefficients for all derivatives and the Volterra integral operator with a definite
kernel. Results of the paper establish a hyperbolic equation and additional
conditions that allow one to construct a kernel according to the ODE. The
statements of the paper show the possibility of splitting the ODE into classes
according to the type of the kernel of the Volterra operator. Examples are
considered related to ODE with Poschl-Teller type potentials, Bessel functions
with complex arguments, and Euler’s relation for hypergeometric functions.

e V. F. Molchanov (Russia). Polynomial quantization on line bundles.

We expand polynomial quantization on G/H to the case when a represen-
tation of the group G on functions on G/H is induced by a character of the
subgroup H. As it is well known, the main content of the representation theory
is based on intertwining operators—intertwining transforms, transmutations. In
this paper, we focus on the Berezin transform. It connects symbols of different
types.

* A. B. Muravnik (Russia). Fourier—Bessel transforms of measures and qualitative
properties of solutions of singular differential equations.

In this paper, we review a number of results about the Fourier—Bessel
transformation of nonnegative functions. For the specified case, weighted Lo-
norms of the spherical mean of | f |> are estimated by its weighted L-norms;
note that such a phenomenon does not take place in the general case, i.e., without
the requirement of the nonnegativity of f. Moreover, unlike the classical case
of the Fourier transform, this phenomenon takes place for one-variable functions
as well: weighted Lo-norms of the Fourier—Bessel transform are estimated by
its weighted L,-norms. Those results are applied to the investigation of singular
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differential equations containing Bessel operators acting with respect to selected
spatial variables (the so-called special variables); equations of such kind arise in
models of mathematical physics with degenerative heterogeneities and in axially
symmetric problems. The proposed approach provides a priori estimates for
weighted Loo-norms of the solutions (for ordinary differential equations) and
of weighted spherical means of the squared solutions (for partial differential
equations).

e E. L. Shishkina (Poland). Inversion of hyperbolic B-potentials.

The paper is devoted to the study of the fractional integral operator which
is a negative real power of the singular wave operator generated by Bessel
operator and its inverse using weighted generalized functions. Such operators
are called hyperbolic B-potentials. Boundedness, Green, and inversion formulas
were proved for hyperbolic B-potentials here.

e S. M. Sitnik (Russia), O. V. Skoromnik (Belorussia). One-dimensional and
multi-dimensional integral transforms of Buschman—Erdélyi type with Legendre
functions in kernels.

This paper consists of two parts. In the first part we give a brief sur-
vey of results on Buschman—Erdélyi operators, which are transmutations for
the Bessel singular operator. Main properties and applications of Buschman—
Erdélyi operators are outlined. In the second part of the paper we consider
multi-dimensional integral transforms of Buschman—FErdélyi type with Legendre
functions in kernels. Complete proofs are given in this part, main tools are based
on Mellin transform properties and usage of Fox H-functions.

* Viadimir B. Vasilyev (Russia). Distributions, non-smooth manifolds, transmuta-
tions, and boundary value problems.

The author discusses the problem of constructing the theory of pseudo-
differential equations on manifolds with a non-smooth boundary. Using special
factorization principle and transmutation operators, we consider some general
boundary value problems for elliptic pseudo-differential equations in canonical
non-smooth manifolds.

Part II: Transmutations in ODEs, Forward and Inverse Problems

* Sergey Buterin (Russia). On a transformation operator approach in the inverse
spectral theory of integral and integro-differential operators.

A brief survey is given on using transformation operators in the inverse
spectral theory of integral and integro-differential operators possessing a con-
volutional term to be recovered. The central place of this approach is occupied
by reducing the inverse problem to solving some nonlinear equation, which can
be solved globally. We illustrate this scheme on several examples, among which
there are: one-dimensional perturbation of the convolution operator, Sturm-—
Liouville type integro-differential operators and an integro-differential Dirac
system.

e Ahmed Fitouhi, Wafa Binous (Tunisia). Expansion in terms of appropriate
functions and transmutation.
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This work presents and summarizes the main steps of the work of Fitouhi et al.
on the expansions in series of appropriate functions, namely the Bessel functions
of the first kind for second-order differential Bessel perturbed operators. By
changing functions or variables, we can reduce the operators associated with
certain polynomials and special functions to the operators considered like the
Jacobi polynomials and the Whittaker functions. Taking into account that the
principal part of these operators is closely related to the function of Bessel and
that the latter verify recursive relations, we show that their eigenfunctions can be
developed in series of Bessel functions which induce two integral representations
of Mehler and Sonine type. These representations suggest to define transmutation
operators with the second derivative operator for the first one and with the Bessel
operator for the second. This new approach is different from that studied by
Levitan, Marchenko, Sitnik, and many other authors. It allows in particular to
give a series development of the kernels of the transmutation operator and its
inverse. In the same direction, further work on the expansion in polynomials
of Laguerre and Gegenbauer concerning the perturbed operators with discrete
spectrum operators has been the subject of other works but the study of related
transmutations is not up to date.

e A.V. Glushak (Russia). Transmutation operators as a solvability concept of
abstract singular equations.

One of the methods of studying differential equations is the transmutation
operators method. Detailed study of the theory of transmutation operators
with applications may be found in the literature. Application of transmutation
operators establishes many important results for different classes of differential
equations including singular differential equations with the Bessel operator

d> kd

By = ,
k dt2+tdt

k e R.

For example, singular PDE named Euler—Poisson—Darboux equation (EPD) has
the form

%u(r,x)  kou(t,x)

— n
972 . o =Au(t,x), k>0, xeR",

where A is the space-variable Laplace operator. In previous papers, singular
EPD equation was reduced to a simpler wave equation (with k = 0) using the
appropriate transmutation operator. In this case, the formulas for the solution are
written using spherical means acting by spatial variables.
In this paper, transmutation operators are used in more general case when in

EPD equation the space-variable Laplace operator is replaced by some abstract
operator acting in Banach space. Also some other abstract singular equations will
be studied by this method.

* llyes Karoui, Wafa Binous, Ahmed Fitouhi (Tunisia). On the Bessel-Wright
operator and transmutation with applications.
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In this paper, we summarize and complete the study of the Bessel-Wright
operator and the transmutation operator recently introduced by A. Fitouhi with
coauthors. Special motivation is given for the translation operator and the wavelet
transform and for the resolution of the associated wave and heat equation.

e L. A. Khvostchinskaya (Belorussia). On a method of solving integral equations
of Carleman type on the pair of segments.

The method is considered to solve integral equations of Carleman type on
the pair of adjacent and disjoint segments. The problem is reduced to boundary
problem of Riemann with piecewise constant matrix and four and five singular
points. The solution is expressed via the solution of a differential equation of the
Fuchs class in which it was possible to define all the parameters.

e S. M. Sitnik, O. Yaremko, N. Yaremko (Russia). Transmutation operators and
boundary value problems in mechanics.

Transmutation operators method is used to solve and study boundary value
problems. In this paper, several ways to obtain transformation operators are
considered: the finite integral transforms, Neumann series, the Fourier trans-
forms, and reflection techniques. The finite integral transform technique leads
to solution in the form of a composition of the Fourier sine transform and inverse
finite integral transform. The Neumann series technique implies decomposition
of the solution in power series of the shift operator. The Fourier transform
technique provides transition to the Fourier images and comparison with the
model boundary value problem. Reflection technique involves a consistent
approach to the solution as a reflection from the borders. In all cases, the solution
of the boundary value problem is obtained as an expansion in the solutions of
the model boundary value problem. In some cases, the sum of a series can be
calculated in elementary functions. New formulas have been found for solving
the Dirichlet problem in a three-dimensional layer.

e V. A. Yurko (Russia). Solution of inverse problems for differential operators with
delay.

Non-self-adjoint second-order differential operators with a constant delay are
studied. We establish properties of the spectral characteristics and investigate the
inverse problem of recovering operators from their spectra. For this nonlinear
inverse problem, the uniqueness theorem is proved and an algorithm for con-
structing the global solution is provided.

Part I1I: Transmutations, Integral Equations, and Special Functions

* M. Al-Kandari (Kuwait), L. A.-M. Hannaa, Yu. F. Luchko (Germany). Transmuta-
tions of the composed Erdélyi-Kober fractional operators and their applications.
This chapter provides a survey of an important class of transmutations for the
composed Erdélyi—Kober fractional operators and some of their applications. The
transmutations are given in a closed form as the generalized Obrechkoff—Stiltjes
integral transforms. They translate the composed Erdélyi—Kober fractional opera-
tors to multiplication with a power function. These transmutations can be applied
for treating the linear fractional integro-differential equations containing both the
right- and the left-hand side Erdélyi—Kober fractional derivatives. The equations
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of this type are subject of active research in fractional calculus of variations
and by determination of the scale-invariant solutions of the partial differential
equations of fractional order to mention only a few of many relevant research
areas.

e V. E. Fedorov, Aliya A. Abdrakhmanova (Russia). Distributed order equations in
Banach spaces with sectorial operators.

We study the Cauchy problem for a class of solved with respect to the
distributed Gerasimov—Caputo derivative inhomogeneous equations in Banach
spaces with a linear unbounded operator, generating an analytic in a sector
resolving family of operators. The unique solvability theorem for the Cauchy
problem was proved; the form of the solution is found. These results were applied
to the research of the Cauchy problem and the Showalter—Sidorov problem for
linear inhomogeneous equations in Banach spaces with a degenerate operator
at the distributed order derivative. In the case of the generation by the pair of
operators (at unknown function and its distributed order derivative) of an analytic
resolving family of the corresponding degenerate homogeneous equation, we
obtain the theorems of the existence of a unique solution to such problems and
derive the form of the solution. Abstract results for the degenerate equation are
used for research of initial boundary value problems as to their unique solvability
for a class of distributed order in time equations with polynomials of self-adjoint
elliptic differential operator with respect to the spatial variables.

* Mark M. Malamud (Russia). Transformation operators for fractional order
ordinary differential equations and their applications.

The survey is concerned with triangular transformation operators for frac-
tional order « = n — & ordinary differential equations. We discuss the
existence of transformation operators in the case of holomorphic coefficients.
Similarity between such operators and the simplest fractional differentiation D
is discussed too.

Applications to the unique determination of the operator from n spectra of
boundary value problems are given. Applications to the completeness property
of certain boundary value problems for such equations is discussed too.

e Marina V. Plekhanova, Guzel D. Baybulatova (Russia). Strong solutions of
semilinear equations with lower fractional derivatives.

We find conditions of a unique strong solution existence for the Cauchy prob-
lem to solved with respect to the highest fractional Gerasimov—Caputo derivative
semilinear fractional order equation in a Banach space with nonlinear operator,
depending on the lower Gerasimov—Caputo derivatives. Then the generalized
Showalter—Sidorov problem for semilinear fractional order equation in a Banach
space with a degenerate linear operator at the highest order fractional derivative is
researched in the sense of strong solution. The nonlinear operator in this equation
depends on time and on lower fractional derivatives. The corresponding unique
solvability theorem was applied to study of linear degenerate fractional order
equation with depending on time linear operators at lower fractional derivatives.
Applications of the abstract results are demonstrated on examples of initial-
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boundary value problems to partial differential equations with time-fractional
derivatives.

e I P. Polovinkin, M. V. Polovinkina (Russia). Mean value theorems and properties
of solutions of linear differential equations.

This paper describes an accompanying distributions technique that allows
to obtain mean value formulas for linear homogeneous partial differential
equations. One of these formulas can be interpreted as a generalization of the
Asgeirsson principle for the string vibration equation into the case of an arbitrary
natural order. In addition, this mean value formula is an exact difference scheme
for a two-dimensional linear homogeneous equation with a symbol factorized up
to linear factors.

* Arsen Pskhu (Russia). Transmutations for multi-term fractional operators.

In this paper, we construct a transmutation operator for fractional multi-
term differential operators. The constructed operator intertwines multi-term
differential operators and the operator of first-order differentiation and allows
us to find explicit representations of solutions for initial and boundary value
problems for fractional multi-term evolution type differential equations. As an
example, we find solutions to a boundary value problem for the multi-term
fractional diffusion equation in an unbounded domain.

e E. L. Shishkina (Poland), S. M. Sitnik (Russia). Fractional Bessel integrals and
derivatives on semi-axes.

In this paper, we study fractional powers of the Bessel differential operator.
The fractional powers are defined explicitly in the integral form without the use
of integral transforms in its definitions. Some general properties of the fractional
powers of the Bessel differential operator are proved and some are listed. Among
them are different variations of definitions, relations with the Mellin and Hankel
transforms, group property, evaluation of resolvent integral operator in terms of
the Wright, or generalized Mittag—Leffler functions. At the end, some topics are
indicated for further study and possible generalizations. Also the aim of the paper
is to attract attention and give references to not widely known results on fractional
powers of the Bessel differential operator. This class of fractional operators is in
close connection with transmutation theory and classic transmutational operators.
We also study connections of Bessel fractional operators with different kinds of
integral transforms.

e Marina V. Shitikova (Russia). The fractional derivative expansion method in
nonlinear dynamics of structures: a memorial essay.

The history of formulation of the efficient method for studying the nonlinear
dynamic response of structures, damping features of which depend on natural
frequencies of vibrations, is presented. This technique is the modified version
of the method of multiple scales. This memorial essay is dedicated to the bright
memory of two great scientists, Ali Hasan Nayfeh and Yury Rossikhin, who had
gone away one after another in 2 days, March 27 and 29, 2017.

* N. V. Zaitseva (Russia). Boundary value problem with integral condition for the
mixed type equation with a singular coefficient.
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We study the boundary value problem for the mixed type equation with a
singular coefficient and nonlocal integral first-kind condition. We establish the
uniqueness criterion and prove the solution existence and stability theorems. The
solution of the problem is constructed explicitly, and the proof of convergence of
the series in the class of regular solutions is derived.

Queretaro, Mexico Vladislav V. Kravchenko
Belgorod, Russia Sergei M. Sitnik
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Part I
Transmutations, Integral Equations
and Special Functions



Some Recent Developments )
in the Transmutation Operator Approach @&

Vladislav V. Kravchenko and Sergei M. Sitnik

Abstract This is a brief overview of some recent developments in the transmutation
operator approach to practical solution of mathematical physics problems. It
introduces basic notions and results of transmutation theory, and gives a brief
historical survey with some important references. Mainly applications to linear
ordinary and partial differential equations and to related boundary value and spectral
problems are discussed.

Linear second order differential equations arise in innumerable models and prob-
lems of mathematics, physics, engineering, chemistry, biology and even social
sciences. While linear ordinary differential equations of first order are easily solved,
and the method of their solution is taught to students even of specialities not
particularly close to mathematics, the situation of linear ordinary second order
differential equations with variable coefficients is pretty much different. No general
method for their solution in a closed form is known. On one hand this resembles
the situation that had been occurring throughout centuries that separated the full
understanding by the antique mathematicians of the algebraic quadratic equations
from the epoch of N. Tartaglia, G. Cardano and L. Ferrari when finally algebraic
equations of third and fourth orders succumbed to the efforts of mathematicians. On
the other hand, the problem of a closed form solution of linear ordinary second order
differential equations with variable coefficients is not even contemplated among
the most important mathematical problems (of the century or millennium), perhaps
because it is not expected to be solved ever.

One of the approaches used at all times is to reduce the difficult problem to a
simpler one. Since linear second order equations with constant coefficients admit

V. V. Kravchenko ()

Department of Mathematics, Center for Research and Advanced Studies, National Polytechnic
Institute, Queretaro, Mexico

e-mail: vkravchenko@math.cinvestav.edu.mx

S. M. Sitnik
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4 V. V. Kravchenko and S. M. Sitnik

such a closed-form solution, a natural idea is to relate solutions of the equation with
constant coefficients to solutions of the equation with variable coefficients via an
operator which is called a transmutation operator. Consider the second order linear
differential expression

2

d
Li=— " ,+4() (1)

with g being an L;-function defined on a finite interval. The equation
Ly(x) = Ay(x), 1€eC )

is called the one-dimensional Schrodinger equation or very often the Sturm-—
Liouville equation, taking into account that a large variety of linear ordinary second
order equations reduce to this form by a Liouville transformation.

A transmutation operator is sought to relate L to the simplest linear second order

expression B := — ddxzz by the formula
LT =TB.

If T is linear and invertible its knowledge allows one to solve (2) at least formally.
Indeed, one can look for a solution of (2) in the form y = T v, where v is a solution
of the equation Bv = Av (whose general solution is of course v(x) = cj sin Vax +
¢2cos+/Ax). Then Ly = LTv = T Bv = ATv = Ay, thus y is a solution of (2).

This idea in the theory of linear differential equations appeared in 1938 in the
work [18] by J. Delsarte and later on it was developed in [1, 8-11, 19, 29, 47—
51, 60, 62] and in many other publications. In particular, for Eq.(2) with the
Sturm-Liouville operator (1) in [53] it was proved that such an operator T exists and
even possesses some wonderful properties. Namely, it can be realized in the form of
a linear Volterra integral operator of second kind with a continuous integral kernel.
Hence T is invertible and its inverse 7! admits the same form of a linear Volterra
integral operator of second kind. Additionally, such T can be chosen to preserve the
initial conditions fulfilled by the solutions. In [53] also applications to generalized
positive definite functions were proposed. Similarly in [46] such transmutations
were constructed on semi-axis with applications to inverse and scattering problems.
Also transmutations for the Bessel operator

&> ¢ d

B, :=
¢ dx2+xdx

3)
of Sonine and Poisson types were introduced into the theory (cf. [8—11, 29, 33, 49,
62] together with transmutations for the permuted Bessel operator

PR L N 4
= X
dx?  x dx 9
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which were widely applied, cf. [62-64]. A new class of Buschman-Erdélyi trans-
mutations was studied in [29, 59, 61, 62]. For applications to special radial
Schrodinger equation and construction of Jost solutions cf. [26, 27]. A general
method for constructing transmutations from basic integral transforms called Inte-
gral Transform Composition Method (ITCM) was developed in [22, 28, 29, 62].
Transmutations for problems with Stark potentials were considered in [25] and
with quantum oscillator potential in [52]. Interesting problems in transmutation
theory in connection with fractional powers of Bessel operators were studied in
[58]. In papers of E. Shishkina transmutations were applied to Euler—Poisson—
Darboux equations [24, 57] and to the potential theory [54-56]. Applications of
transmutations to problems in mechanics were considered in [68]. Connections of
transmutation theory and generalized analytic functions were studied in [3, 35, 67].
Starting from the paper of V. Stashevskaya [64] a line of studying transmutations
based on Paley—Wiener theory was developed in [13, 65, 66]. Applications of Sonine
and Poisson type transmutations to pseudo differential and PDE equations were
considered in [29, 33]. Applications to hyper-Bessel equations based on Obreshkov
transform were studied in [20, 34]. Special representations of transmutation kernels
via Bessel function series were developed in [14].

An important property of the Volterra-type transmutation operator related to (1)
or (4) consists in the fact that the coefficient g often called the potential, can be easily
found whenever the integral kernel of the transmutation operator 7 happens to be
known. This together with other attractive properties converted the transmutation
operators into one of the main theoretical tools of spectral theory and especially of
the theory of inverse spectral problems developed in the works of V. A. Marchenko,
I. M. Gel’fand and B. M. Levitan and of many other mathematicians. During that
classical period in transmutation theory many famous problems were studied with
the aid of this technique, among them: the inverse problem by a spectral function
data via the Marchenko equation, the inverse scattering problem by a scattering data
via the Gelfand—Levitan equation, Gelfand—Levitan trace formulas and many other.
We refer to the books [1, 8-10, 23, 47, 48, 50, 51, 69] presenting this important and
extremely beautiful piece of modern mathematics.

Attempts to convert the transmutation operators of this kind into practical tools
for solving different problems of mathematical physics have been made for decades.
Many applications to problems of mathematical physics were considered in [8—
11]. We mention a series of publications of R. Gilbert with coauthors (referring
to [2] and references therein) in which transmutation operators were used for
solving acoustic wave propagation problems in inhomogeneous media, the work
of D. Colton (see [15]) in which with the aid of transmutation operators complete
systems of solutions for parabolic PDEs with variable coefficients were introduced
and applied to solution of initial-boundary value problems. In those works the
integral kernels of the transmutation operators were computed numerically by
the successive approximation method whose implementation complicates since
the iterations involve two-dimensional integrals. In [4] the transmutation operator
kernel was approximated by a partial sum of its trigonometric series, however based
on this method solution of linear ODEs does not seem practical.
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In a series of recent publications [5-7, 12, 30, 32,41, 44, 45] the idea from [2] and
[15] to obtain complete systems of solutions of PDEs with variable coefficients as
images of complete systems of solutions of PDEs with constant coefficients under
the action of an appropriate transmutation operator was further developed based on
the observation known since the work of M. K. Fage (see the book [21]) and called in
[7] the mapping property of the transmutation operator, which indicates what are the
images of integer nonnegative powers of the independent variable under the action
of the transmutation operator. They result to be so-called formal powers arising from
spectral parameter power series (SPPS) representations of solutions of linear ODEs
(see [31, 38]) and for their computation an efficient recurrent integration procedure
is developed. Thus, some complete systems of solutions for classes of PDEs can
be constructed without knowledge of the transmutation operator itself but simply
computing the formal powers.

Another advancement in the efficient construction of the integral transmutation
kernels was reported in [39, 40, 42, 43] for transmutation operators with boundary
conditions in the origin (according to the terminology used by B. M. Levitan), and in
[17, 37] for the transmutation operators with boundary conditions at infinity. Based
on the proposed representations for the integral transmutation kernels new practical
and efficient methods were developed for solution of forward [17, 39, 40, 43] and
inverse spectral and scattering problems [16, 36, 37]. In the case of the forward
problems large sets of spectral data can be computed with a nondeteriorating
accuracy due to the possibility of convenient uniform estimates for the approximate
solutions. Meanwhile the approach developed for solving the inverse problems leads
to a direct reduction of the problem to a corresponding system of linear algebraic
equations. This new and promising area of the transmutation operator theory and
applications is still in its beginning, attracting attention of researchers from different
applied fields.

In general, the diversity of the topics associated with the transmutation operator
theory and, in particular, of those considered in the present volume reveals the
importance of the transmutation operators in a large number of fields as well as
their intrinsic interconnections and applications.
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type of strings. We also examine their existence, construction, and their various
applications to inverse and computational spectral theory.
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1 Introduction

The idea of transmutation operators or transformation operators V such that
L,V =VLy, (D

where L; are differential operators goes back to Delsartes, Gelfand, Levitan,
Marchenko, Faddeev, et al. in the early 1950s, who established some fundamental
ideas. In this survey we recall the main results obtained by the authors around this
subject, with a focus on the operator and spectral theory point of view and with
applications to inverse spectral problems as well as computational spectral theory.
Note that relation (1) does not mean that the operators L and L are similar as their
spectra may be totally different.

In all that follows, we denote by L;, fori = 1, 2, self-adjoint operators acting in
the separable Hilbert spaces H;, and usually L; are differential operators. Assume
that their spectra o; are simple, and denote their “eigenfunctions” by y; (1), i.e.

Liyi() = hyi(h)  for A€oy 2
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One easy way to define a transmutation V/, is by pairing their eigenfunctions
y(A) =Vyi(A) fori € o1 Noy. 3)

In what space would (3) hold will be clarified below, as eigenfunctionals y; (1)
would exist only when A € o;, and y; (A) € H; only when A is an eigenvalue,
and y; (A) ¢ H; if A is in the continuous part of the spectrum.

We shall adopt the following definition for a transmutation

Definition 1 We say that V is a transmutation Ly — L if

[i] V : HH — Hj and Dom(V) = H;
[ii] Theset Q2 :={f € Dom(V) and L;f € Dom(V)}is dense in H|
[iii]] LoV (f) = VL (f) holds for any f € Q.

The above definition agrees with the definition of a transformation operator as
given in [60], except for its boundedness. Below we examine the questions of
existence, reconstruction, and domains of these transmutations. When a section is
dealing with one operator only we shall use L instead of L;.

If the operator V is invertible, then L, = VL vV~ and this helps reconstruct the
operator L from the knowledge of both L and V. This idea became an essential
tool in the solution of the inverse spectral problem by the Gelfand Levitan theory, see
[46, 61, 64]. Further concepts and applications of transmutations can be found in the
books by Begehr and Gilbert, Carroll, Katrakhov and Sitnik, Levitan, Marchenko,
and Trimeche, to name a few, see [4, 38-41, 52, 59, 60, 63, 64, 70, 72].

We briefly outline the main sections in this survey. Section 2 is about the
existence and reconstruction of transmutations, Sect.3 is about transmutations
between two Krein strings, and finally Sect.4 is devoted to their applications in
the area of differential equations and spectral theory.

2 Existence and Construction of Transmutations

2.1 Classical Transmutations

It is well known that when dealing with the Sturm Liouville operators

f@Haf@, xz0 o [0, 120

L =
2DE =0 w0y = npo) =0, £10) =0,

“)
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then, for ¢ € Ll’l""[O, o0), and ¢g(x), h € R, there exists a Volterra type
transmutation, V = 1 4 K, that maps their eigensolutions

y2(x, X)) = cos (x\/)») + /x K (x,t)cos (tx/)») drt. (®)]

0

In case we change the boundary conditions in (4) to f(0) = 0, then the pairing
between the normalized eigensolutions is also a Volterra type integral operator

sin (x\/)\) . /x LD sin (t\/)\) " ©
0

y2(x, A) = JA A

Recall that when Fadeev condition holds, fooo(l +x) |g(x)|dx < oo, see [42, 75],
we have Jost solutions

y2(x, 1) = exp (iX\/)») +foo H(x, 1) exp (itx/k) dr. 7

If it is also known that when the kernels K and L are C? smooth, they additionally
satisfy a system of partial differential equations, for example

Kix(x,t) — Ky (x,t) = q(x)K (x, 1), 0<t<ux,
K(x,x)=h+, [ q)dt, (®)
K; (x,0)=0.

We recall the following proposition that can be found in [60, 61, 64, 65].

Proposition 2 Assume that K (x, t) € C?, then K is the kernel of the transmutation
(5) if and only if it is a solution of (8).

However the smoothness adds more restrictions on the potential g. Below we
look for alternative ways to show the existence of the kernels K and L in (5) and

(6).

2.2 Transmutations by Paley—Wiener Theorem

One can prove the existence of the kernel L in (6) by using the Paley—Wiener
theorem, instead of solving the hyperbolic system such as (8) which is much more
difficult and also requires smoothness. Recall that

o

PW, = {F entire: / [F(M)?dh <00 and F (L) =0 (elm’\lx)}, x>0,
—0o0

)
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then the Paley—Wiener theorem states, [78]

FePW, & F) = f()e " dr, where f € L? (—x, x). (10)

—X

Let the normalized eigensolution y (x, A) of (4) with y(0, 1) = 0, i.e. h = oo, be
the solution of the IVP

= (6 1)+ )y (8 = hy (x.4) an
y(0,1) =0 and y’ (0,A) =1,
and so y is also a solution of the integral equation
sin (xA Tsin((x — 1) A
yor, a2y = +/ OB 0y d. (12)
A 0 A
Define the Picard iterations by
sin (x))
Jo(x,2) = ;
A
Tsin((x —1)A)
falr, 1) = L4 @ e forn =1,
0
to obtain, [42], that for each x > 0,
X 1 * t "
W) < C [TmA|x / Nl dt ,
[fn (x, )] = |4 x U, 1Jr|Mth()l
which means that the solution of (12), and also (11), is given by the sum
YOR) =D fa (1), (13)

n>0
which converges absolutely and uniformly in any compact domain of the complex

plane provided xg(x) € L119¢[0, 00). Tt is readily seen that from (13) we have

- ( 1
Ay(x, A7) —sin(xA) = O

d )\’ ’)\’2 P )\’ :0 |Im)\\x ,
|)»|) an y(x, A%) —sin (xA) (e )

which, by (9), implies that Ay(x, A2) — sin (xA) € PW, and by (10), and the
fact that Ay(x, A%) — sin (x1) is an odd function of A, we have the existence of
L(x,.) € L? (0, x) such that

X
Ay(x, %) — sin (xA) = / L(x,1)sin (tA)dt forx > 0Oand A € C,
0

which is (6).
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Proposition 3 Let y (x, 1) be a solution to (11) where xq(x) € L119¢[0, 00), then
there exists L (x,.) € L* (0, x) such that

sin (x«/)») x sin (t«/)»)
y(x,A) = i +/ L(x,t) /i dt for x > 0. (14)
0

We now examine the spaces that contain those eigenfunctionals, so that for
example the mapping generated by (14) makes sense.

2.3 Rigged Hilbert Spaces

How to find the domain of a transmutation, for example say V defined by (5)? First
observe that cos(x+/A) ¢ H = L%*(0, 00) because the spectrum o7 = [0, 00) is
continuous. It is shown in [47], when A € o, then eigenfunctionals would grow
slowly, y(x,A) = O (x3/ 2+e ), whereas when A ¢ o, then the eigensolutions would
grow faster. In general, if A € o, then there exists a Weyl sequence &, € H such that
&, ]l = 1 and L, — A&, — 0. Obviously if {§,} happens to be compact in H then
A belongs to the discrete spectrum, i.e. is an eigenvalue, while if {£,} is not compact
in H, then A belongs to the continuous spectrum. Since we are using self-adjoint
operators, there is no residual spectrum.

In 1955, Gelfand and Kostuychenko came up with Gelfand’s Rigged spaces,
to show that eigenfunctions are generalized functions in the case of continuous
spectrum. To this end assume that a subspace ®; is dense in H; and compactly
embedded in H;, i.e. ®; — H;, such as for example Sobolev spaces, and is also
invariant under L;, i.e. L; : ®; — ®;. Then the identification of the dual of the
Hilbert space H] = H; leads to the triplet

O > H < @, (15)

and so a Weyl sequence {&,} would either converge in H; and if not, then certainly
in @, see [47]. Therefore it follows that the transmutation V in (3) in fact maps

Vi) - D).

Note that V is also densely defined, since {yi (M)}, e, is a complete set of
eigenfunctionals in ®/. Using the duality of the spaces and embedding (15) for
the two spaces we obtain the following

Vv

<I>’l — @’2
U U
H, H,
U U

O «— CI>2
V,
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Note that due to the densities ®; i = H;, the operator V' can be extended by
closure, as an operator V' : Hy —> Hj. Also the operators L; can be extended to
L CD’ — CD’ which then allows to see the transmutation relation V L1 L2 V,
to hold in the dual spaces. Below we shall show that a dual relation also holds in H;,
namely LV’ = V’'L,, where V' is extended to an operator acting Hy —> H].

We can easily construct the spaces ®; in case o; = R. Use the rigged spaces
S — L2 <> §’, where S is the Schwartz space of rapidly decreasing functions, to
define <I> =Fi (S).

The first application of the above diagram using Gelfand’s rigged spaces for
transmutations is the Gelfand-Levitan theory, [5, 47], see Sect. 4.1.

2.4 Transmutation with Distinct Spectra

We now examine (3) in the case o1 and o7 are distinct, with the possibility that o1 N
07 = . The question is then: How can we still generate a transmutation V and still
make sense of (3)? Recall that in case when A and B are finite matrices satisfying
VA = BV, and if A € o4, then there exists w # 0, such that Aw = Aw and so
AVw = BVw which means o4 C opg which contradicts the fact that o4 Nop = @.
To avoid these finite matrices counterexamples, which are possible only when o; are
finite, we shall consider o to be an infinite set with a finite accumulation point, see
[20, 23-25, 47].

In this section we assume

L; is a self-adjoint operator acting in H; : ®; — H; — <I>;,
with ®; C Dom (L;), and L;®; C ®;. (16)

Let O be an open connected domain containing the real line. Then o1 Uoa C O.
Consider the space of analytic functions in O

c= { Fanalyticin O : (1+ M) F () € L}, mL%Z}. (17)

We can define an operator £ := L%l NnC — L%z N C, since analytic functions
defined on o7 can be extended uniquely over o3. It remains to define the sets
Bi = {f € H;:F; (f)€C}. The following proposition can be found in [24,
Theorem 3.1]

Proposition 4 Let (16) hold, with C given by (17), T; = O (A/Sf), with B; € R,
and let o1 be an infinite set with a finite accumulation point. Then there exists an
operator W : By — By, defined by

EFL (/M) =F W)  for febBi,
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which transmutes L;,
LoW =WL, inB;. (18)

Proof We have the following diagram connecting the various operators and
defining the transmutation W

Fi(freccL: 5 Fi(frecc Ly
Fit V7!
f e B 7 Wf el

To see (18) use, for f € By,
Fo (LaWf) (1) = AF2 (WF) () = AEF; (f) (W) = EAF; (f) ()
=EF1(L1f)(A) =F2 (WL f) (A,
which implies that

WL f =L,Wf for febB.

2.5 Transmutation with Disjoint Spectra

In the previous section we saw how to construct a transmutation in case o had
a finite accumulation point, which was sufficient to imply the uniqueness of the
analytic extension by the operator E. Observe that (18) can also be seen as the
homogeneous part of an operator equation in X

X — XL, =7, (19)

where Y, Lj and L, are given operators. When L1 and L, are bounded operators,
one can prove the existence and uniqueness of a solution X, see [1, 3, 66],

1
X = ,/(Lz — D7y (@, — a7 dx,
27‘[[ r

and (19) has a unique solution if and only if (18) has the trivial solution only.
Observe that Eq.(18), in the simple case when L; and L, are finite matrices
with disjoint spectra, has the trivial solution only W = 0, see also the Sylvester-
Rosenblum theorem [3]. It is also known that if L and L, are unbounded operators,
then uniqueness may not hold, see also examples using the shift operator in[3]. If
we define the linear operator 712 by

T12(X) = Lo X — XL,
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then (19) becomes
(X)) =Y.

Thus the existence and uniqueness of a solution X to (17) is equivalent to the
invertibility of the operator 717. It turns out that the spectrum of t1; always contains
the direct sum o2 — o1, [1], and so if o1 N oy # @ then 717 is not invertible. In other
words, any nontrivial bounded operator solution W for (18) must belong to the null
space of the operator 712. We now define the interpolation operator which connects
both transforms F, (f) (1) and F7 (f) (1), [20].

Definition 5 J is an interpolation operator, (1.0.) if

[1] J is a densely closed linear operator L%l N L%z.
[2] Theset S := {F € Dom(J) and A F (1) € Dom(J)} is dense in L%l.
[3] Forany F € § wehave AJ(F)() =J AF)).

If J is a sampling operator in the classical sense then condition [3] AJ (F) () =
J (LF) (1) is obvious; as shown by the following simple example of an interpolation
operator.

Example: Let 01 = Z where Z is the set of integers and o2 = {A,} where A, ¢ Z
and thus o1 N op = @. The Shannon-Whittaker-Kotelnikov sampling theorem, [78],
allows us to write down a mapping explicitly for F € PW,

sin(7r (n — n))

Fw =3 Fm™ " "

nez

for Y |F(n)* < oo. (20)

nez

Thus take the space L12"1 where the measure I'1 () = [A] represents the greatest
integer function in A. If {F(n)},cz is given then {F(A,)},cz can be obtained
explicitly, from

sin(rw (A, — k))
J(F)(Ap) = F(k . 21
(F)(hn) ;; © o @1)

A mapping L%l N le"z can now be defined by the operation in (21) and by (20)
we in fact have J(F)(A,) = F(A,). It remains to see that condition /3] then holds
since for AF(.) € L%l we have

JAF(Q) ) = knF(hp) = hnJ (F)(An).

We have the following main result
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Proposition 6 Assume that L; are unbounded self adjoint operators acting in H;

with spectral functions I'; fori = 1,2, let J be a linear operator L%l A L%z and
define

W=F"JF. (22)

Then W is a transmutation operator if and only if J is an 1.O.

We end this section by recalling that A. Zayed posed the problem of sampling
at shifted integers, which was solved by constructing a transmutation between
Laguerre operators, see [10].

3 Transmutation for Strings

3.1 Transmutation for Strings

We are concerned now with the existence and representation of transmutation
operators between two Krein strings S; and S, which are respectively defined by

Si) == aif). 0<x <L, o3
bf'(0) —af (0) =0,
where dM;(x), for i = 1,2, are Stieltjes measures, i.e. M;(x) is a real valued

function, continuous from the right, nondecreasing and normalized by M;(0+) = 0,
[45, 57]. The string S; models the vibration of a string and M; (x) can be seen as its
mass between 0 and x, while L is its total length. The constants a, b are real with
a® + b* # 0, and describe how the strings are tied down at the origin. Observe that
M; can include jumps and d”i; f(x) denotes the usual right derivative at a point x.
Recall that S;, defined by (23) is a symmetric operator, acting in the Hilbert spaces,
see [50, 57]

L
Ly, = {f measurable: || f]13, = /0 | f ()P dM;(x) < oo} )
Let us denote by y; the normalized eigensolutions of the initial value problems

Si (i (x, 1)) = Ayi(x, 1),
{yi(o, ) =b, y/(0,1) =a. (24)

Note also that in general, a string such as S; cannot be reduced to a Sturm—Liouville
equation such as (4), [50]. Also the Liouville transformation cannot be used unless
M; is C3 and is strictly increasing. For applications and numerical methods of
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the string we refer to [37, 41, 42, 45, 58, 60, 67, 73]. To avoid any ambiguity

about the division by zero, M.G. Krein interpreted the initial value problem

JA‘fL_(X) dd;y(x) = f(x), y(0) = b, y'(0) = a, when f € L%w,-f as an integral

equation

X t
y(X)=ﬂX+b—/0 /Of(é)dMi(é)dt- (25)

For a self-adjoint extension, we need to examine the right end point. In case the
length is infinite, L = oo, it is well known that operator S; is in the limit point case
at x = oo if and only if fooo x2dM; (x) = oo, see [57, p. 70]. In all that follows
we assume that we are in the limit point case, otherwise we must add a boundary
condition at x = oo to make S; in (23) self-adjoint. In case the length is finite,
L < oo, the type of a boundary condition to be added at x = L depends on the
presence of a jump of the mass at x = L, which is called “heavy mass”, see [45].

When S; is self-adjoint, its eigensolutions, (24), form the kernel of the transform
associated with S;

-7_—1_
L%,,_ — in,

i

where
Fi(SH) :/o Syi(x,\)dM;(x)  and  f(x) foi(f)(?»)yi(x,k)dl"i(?»),

and the spectral function I'; is non decreasing, right continuous, o; =supp dI; is
the spectrum of S; and the Parseval relation, for any f, g € L%w,- yields

(e.¢]
fo J(x)g(x)dM(x) = /E(f)()»)}'i(g)(?»)dl"i ).
We now introduce a notation used to compare Stieltjes measures, see [35]
dl'i(A) = 0 dI'x (L)) as A — oo,
if for all measurable functions with respect to dI"1, and dI"
o (e.¢]
/ | f(W)]dlT1(A) < c/ | f(A)|dT2(X) holds for large N.
N N
The fact that dT"; is absolutely continuous with respect to dI'», is denoted by

dT'} <« dT'; and means there exists g € Lllﬂ’zl”" such that dT'1 (L) = g(AM)dT2(X).
Similarly Ty <«2/°° 4T, means that g € L3 while dI'y <™ dI
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means esssup; cquppar,&(A) < 00 and finally the cut-off function is defined by
g = { x if x>0 .

0if x <O
When integrating functions of two variables with respect to one of the variable, we
shall indicate it by labeling the measure. For example f(x, t) € LIZWl () means

IIf(x,t)II?Wl(tF/O |f (O dM (1) < oo

In all that follows we assume that the strings in (23) have infinite lengths,
M;(0+) = 0, L = oo, and are self-adjoint. To this end we need either

o0
/ xszi(x)zoo for i = 1,2 (LP case at x = 00),
0

or fooo xsz,- (x) < oo, limit circle case at x = oo, but then we must add a
boundary condition there.

The normalized eigenfunctions of S;, see (23) and (25), satisfy the integral
equation

yi(x,2) —ax —b = —)»/OO(X — D4 yi(t, M)dM; (1).
0

2
M; ()

F; transform, belongs to L%i. Therefore, by the Parseval relation we get

For any fixed x, we have (x — )4y € L and so _i (yi(x,A) —ax — b), asits

/ )\12 lyi (x, 1) —ax — b|>dT;(}) = /x(x —0%dM;t) for x>0. (26)
0

Similar relations hold for the transform JF; associated with operator S; and its
spectral function I';. Using the above relation we have

Proposition 7 For all x > 0 we deduce

@) (i, 2) —ax —b) € Lf..

(i) [ b yi(x,n) —ax —b*dTi() = [5 (x — )2dM; (1).
(iii) The set i (yi(x, A) —ax — b) is complete in L%i.

We now prove the existence of a transmutation by pairing between two eigenso-
lutions of S; and Sp

Proposition 8 Assume that dT'1(A) = O (dT'2 (X)) as A — oo, then for each
x > 0 there exists H(x, .) € L%Vll such that

y2(x, ) = y1(x, 1) +)»/0 H(x, 0)y1(t, M)d M (1). 27)
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To this end use the fact that
dyy (x, 1) = —ay1(x, \d M (x)

to recast (27) into an operator form

ya(x, A) =y1(x,?»)—/0 H(x,ndy, (1, ). (28)

To find the domain of the integral operator in (28) that maps y1(., A) = y2(., A),
we need to examine the integrability of the kernel H. For that purpose we have the
following proposition, which by itself is of independent interest.

Theorem 9 Let dT'y < dTI'y, then

”H()C, t)”M[(t) <c H (-x - t)+HM1(t)+M2(t) . (29)

In all that follows by ¢ we denote a universal constant, that can be distinct in
different places.
In terms of integrals (29) means that

foo |H(x,0)?dM (1) < c/x (x —1)2d [My + Ma] (1).
0 0

Corollary 10 Ifdl'y <% dT'y and dM| <*° d M, then

I1H e, Dllag iy < ¢l = D4l pgy ) - (30)

Thus the norm of H (x, -) satisfies the inequality

1H Gx. D)l agy ) < exy/Ma(x).
We now state the converse of Theorem 9.
Theorem 11 Assume that

(i) y2(x, ) = y1(x, ) + A fo o Hx, )yi(t, NdM (1),
(i) I1H (x, O)llpy o) = ¢ 1 = D+ llagy )
(iii) dM) <> dM,,

then dI'y «* dTIs.
Combining Proposition 8, Theorems 9, 11 and Corollary 10 we arrive at

Theorem 12 Let dM| <*° d M, then

y2(x, 2) = y1(x, 2) + A/O H(x,0)yi1(t, 1) dM1 (1),

with — ||H (x, D) llm ) < el = D llmy0)

if and only if dT'1 <*° dT.
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Under the assumption that I'y grows slowly at A = 0, we can prove the square
integrability of H (-, t) with respect to d M1(x).

Proposition 13 Let dI'y <K dI'y and dM; <*° dM,. If moreover,

I )ledl"l()») < oo for some € > 0, then [;° |H (x, NDIZdM (1) € L%,Il(x).

Proposition 14 Assume that dT'1 = O (dI'2) as A — 00, then for each fixed x >
0, f— fooo H(x,t) f(t)dM,(t) defines a bounded functional on L%/II'

We now show that (27) can be used to define an integral operator in L%,Il . More
precisely we have

Proposition 15 Assume dI'1 = O (dI'2) as A — oo, ZB € L%’zloc ,dMy, =

O (dM>3) as x — 00, then the operator L%\/Il — L%,[l

g—>/0 H(x,0)S1g()d M (1)

is densely defined in L%\/Il .

We now obtain a sufficient condition for the integral operator in (27), which we
denote by HI, to be compact

Proposition 16 Assume that dT'y <°° dT'a, then H is a compact operator from
L3, into Ly, if

/Oo /X (x — )2 dM>(1)dM> (x) < 0o and /oo /X (x — > dM; (H)dM>(x) < 0o.
0 0 0 0
(1)

Proposition 17 Assume that dM; <*'°¢ dM» and dT'1(X) = O (dT2) as 1 — oo.
Then H* : L%,[l — L%,Il, which is defined by

H*(f)(1) = fo H(x, 1) f () d M (x),

is densely defined, and for any f € C,.

3.2 Adding a Potential
We now extend the above construction to include operators, for i = 1, 2, such as
{Siq(yn(x) = o ) + Gy (D) =), 0 <x < oo,

Yi0,2) = b, ¥/(0,1) = a,
(32)
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where the potential ¢; € Lﬁj”"(o, 00). The classical Sturm—Liouville problem

corresponds to particular case when M (x) = x,i.e. Sy (y;)(x) = —dd;z yilx,A)+
q(x)yi(x,2) = Ayi(x, 1).
Equation (32) is equivalent to

yi(x, 1) =ax +b +/ (x = 1) qi@®)yi (t, NdM; (1) +A/ (x — 1) yi(t, dM; (@).
0 0
(33)

The addition of a potential changes dramatically the spectrum from being mainly
positive to possibly covering the whole real line. Thus the support of the spectral
function is a subset of the real line.

We now show that a transmutation between the strings Si, and Sy, exists under
minimal conditions dI"1 (A) = O (dI'2(1)) as A — F00.

Proposition 18 Assume that dT'{(A) = O (d['2(})) as . — 00, then there exists

Hy(x,t) € L%,[l ) such that for x > 0

»(x, A) = yi(x, 4) +)~f0 Hy (x, )y1(t, A)d M (1).

Proposition 19 Assume that limc—o p} = ki # 0, lim_o D23 = ko # 0,
and spectrum of S1 is bounded from below. If 0 < o1 < «ap then there exists
Hy(x,-) € L%VI] (0, x) such that for x > 0

»(x, A) = yi(x, 4) +)~f0 Hy (x, )y1(t, A)d M (1).

Proof We only need to show that conditions of Proposition 18 hold. First when
A — —o0, dI'1(A) = 0 and so the condition dT'1(X) = O (dI'2(})) is trivially
verified. However when A — oo, we have two separate cases, see [51]: if

o

a #0 then Fi()\)zcl)\”t“i +0()\‘+‘1i> as A — 00,

2+a; 2+a;
a=0 then I'i(A) =ciA*% + 0 ()»”“i) as A — oQ.

(Xl*(X
i.e. 3{:; ~ c) (He)(+0) <« ooas A — o0.
O

. . . a @
Since 0 < a1 < ap implies It < It

We now present explicit examples which show that the representation of the
transmutations cannot be in general triangular or close to unity, see [48].
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3.3 Examples

Many examples of all kinds of spectra, for various potentials, can be found in
[45, 71]. The purpose of the following examples is to illustrate two essential
facts of transmutations for strings, which makes all the difference from the usual
transmutations for Sturm—Liouville operators (5). The first is that one should have
the parameter A in the integral. Secondly the upper bound may not be just x as in
the Gelfand-Levitan theory.

Example 1 Let M1(x) = x and Ma(x) = ,ozx, a=1, b =0, p > 1. Then for

x > 0, we have

+ dr
eI = A0 A, (5,1 — o 2, 3) = Ay, ),

[S1]
y1(0,2) =1, y(0,4) =0, y2(0,2) = 1, y5(0, ») = 0.

The eigenfunctionals of the strings are
yi(x,A) = cos(x\/)\) and y(x, ) = cos(,ox\/)\) forx > 0,
and their spectral functions, [64], are given by

p dir

1
dri() = R
Jr

d
/g \/)\.+

Thus by Proposition 18, the transmutation exists

and dIM(A) =

oo
cos(,ox\/)L) = cos(x\/)L) + A/ H(x,1t) cos(t\/)\)dt.
0
Computing the kernel H, we obtain

Hx,t) = 711 /Ooo )1\ (cos (pX\/A) — cos(x\/k)) cos (tx/)») ji

1 —1 —1
:min{p; X, '02 x+t}sign|:'02 x+t:|

1 —1 —1
+min{p;|— X, '02 x—t}sign['o2 x—t:|.

One can verify that H(x,t) = 0ift > px,but H(x,t) = px —t # 0if t < px, but
close to px. Therefore we deduce an explicit form of the type

cos(px+v/A) = cos(xv/A) + A / ” H(x, 1) cos(tv/A)dt. (34)
0
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Here we notice that the multiplier A is needed because for any fixed x > 0 we
have cos(px+/A) — cos(x+/A) ¢ L%/H while the integral on the right hand side

px

H(x,1)cos(tv/ ) dt € Lﬁ

Thus the role of A is to ensure that )l\ (cos(,ox«/)\) — cos(x\/)\)) € L2

As for the upper bound in the integral (34), it cannot be just x as in the
transmutation used by Gelfand-Levitan. It is easily seen that since the growth type
of cos(px \/A) —cos(x \/A) as a function of /A is px, when p > 1 the Paley—Wiener
theorem implies that the support of the transform must be included in [—px, px]
and the fact that the transform is even, reduces it to [0, px].

Example 2 Consider transmuting the strings when ¢, 8 > 0,

s 1]{ —x%y](x, 1) = Ay1(x, A), x>0,
10,0) =1 y1(0,2) =0,

[ ]{ —x Pyl 0) =@, h), x>0,
y2(0,2) =1 y5(0,2) =0.

Their eigensolutions are the well known Bessel functions

i) = et (VY (;fxz?’> and  y2(x,4) = (WYY (2” Z?‘>.
+a o

2+ B
The spectral functions are [51],
a+l B+l
I'(A) =~ Ciiet2 and Th(X) = CaAf+2 as A — oo.

This leads to the following conclusion.

Corollary 20 If 8 > o > O then there exists a transmutation such that

o0
V206, ) = yi(x. A) + A / Hx, Dy, )%,
0

In terms of Bessel functions the above relation becomes

CZ()‘-)\/XYI (22:_/);3 2§ﬁ>_c1()\)\/xyl (zzi)h 2?()

o0 N
Tt | HG, Oty o ( Vi )t“dt.
0 2+a 2+O{
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An interesting particular case is when « = 1, i.e. ¢(x, X) = cos (x\/)\) , thus for
B > 1 we have

CZ(A)\/XYZJIrﬁ (22;{);3)(2;/3> = cos (x\/)\) +A/()OO H(x,1t)cos (tx/k) dt.

4 Applications

4.1 The Gelfand-Levitan Theory

Since transforms are defined by the eigenfunctionals y; (A) , we need to use duality
bracket <, > ¢ ¢’, thus for L; we write

Fi(f)W) =< [, yi(h) >¢,xp; and f=/]'"i(f) M)yi(M)dTi (1),

where I'; is the spectral measure associated with L;, fori = 1, 2. Recall that I'; is
a right continuous nondecreasing function, i.e. a Stieljes measure, o; = suppdl},
with jumps at the eigenvalues A, defined by

1

Lo ) =T () = Iy G2

n

As the transmutation maps eigenfunctionals, it also induces a map on the transforms

F2(f) D) =< f. () >a,xa,=< [, VY1) >¢,xe,=< V' f, y1(d) > @) x®

=F (V' f)) for f € ds. (35)

This leads to the first Gelfand-Levitan theory. Assume that dI'; is a locally
absolutely continuous measure with respect to dI'2, i.e. o1 C 02, and there exists a
1,loc

g € L,r, such that dI'y = g(A)dI"2, then we have the following proposition, see
[5].

Proposition 21 Assume that V is a transmutation between L1 and Ly, defined by
(3), then it satisfies

dr

dI‘; (Ly) = VV' in®). (36)

Proof Use Parseval identity to write, for f, g € ®», where (.,.); is the inner product
in H;,
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/ Fi(VIf) G)F1 (V') WdT1 () = (V'f, Vg), =< f. VV'g >g,xa) -
On the other hand we have
/ Fi(V'f) )Fi (V'g) WdTy () = / F2 (f) WF2(g) WdT1 (1)
dr
= / F(H®) . 0)F2 () )T )
2
dr
= / Fr (/) 0)F ( e (L) g) ()dT5 ()
2
dr dr
- (f, ary &2 g) =<y, L8 >arx0; -
Since f € @, is arbitrary we deduce (36) which is the nonlinear integral equation in

the Gelfand-Levitan theory. Observe that (36) makes it obvious that V is a bounded
operator Hy — Hj if and only if supjll:; (1) is bounded. This follows from the

fact that V' is unitary equivalent to the multiplication operator by \/ ZB (A) in the

space of transforms.
Note that the operator can also be written as

dr
dl“; (L2) f(x) = /fz (f) ) y2(0)dT1 (A) = (F(x), f),

which covers the general case when dI'y is not abs-dI';.
For example when oo C o1, we can define the kernel F(x) = f 2 (x,A) 2 (., A)
dT' (1) € @, and the operator

o, — D)

f—Ffx)=<f Fx)>.

Proposition 22 Assume that y> (L) in (3) is defined for . € o1, and the kernel
f v (x,A) y2 (., M)dT1 (L) € @), then we have the factorization

F=VV' ind)

This factorization is nothing else than the non linear equation in [46, 61, 64, 65].
Given T, the existence of a triangular or Volterra type operator V, simply follows
from how close is I from the identity operator, see the topic of factorization of
operators close to identity in [48].
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4.2 Gelfand-Levitan Revisited

We are now concerned with the conditions for the solvability of the inverse spectral

problem for the singular Sturm-Liouville (S-L) operator

L(y)=—=y"(x, ) +q@)y@x, 1) =iy, ), x€l0,00), 37)
y/(ov )") - hy(ov )") = Os

where g € L1190, 00), ¢(x) and h are real. Recall that in the celebrated 1951 paper
by Gelfand and Levitan [46], the necessary and sufficient conditions were stated
separately. To close the gap, in 1953, [55], M.G. Krein announced two necessary
and sufficient conditions for p to be a spectral function which he then revised by
adding a third condition in 1957, [56]. Few years later, Gasymov and Levitan in
1964 closed the gap of the 1951 result by showing that two conditions only are
necessary and sufficient for the solvability of the inverse spectral problem. To state
these conditions denote by o (1) := p(A) — 727\/)\+ , where A+ = max (0, A) and

Fir(fHyr) = fooo f(x)cos (x\/ A) dx the classical Fourier cosine transform.
Theorem 23 (Gelfand-Levitan-Gasymov) (G-L-G) For a monotone increasing

function p to be a spectral function of (37) where q has m locally integrable
derivatives it is necessary and sufficient that

[A] Existence: For any f € L*(0, o0) with compact support
[1F@0P a0 =0 = =0 ac (38)

[B] Smoothness: The sequence of functions Py (x) = fivoo cos (x\/ A) do (A),

converges boundedly in every finite interval to a function ® that has m + 1
locally integrable derivatives and ®(0) = —h.

The 1957 M.G.Krein’s result is also stated below.
Theorem 24 (M. G. Krein) In order for p to be the spectral function of

Ly):=—=y"(x,\)+q(x)yx,A)=2ry(x,2), 0<x<l,
y/(os )") - hy(os )") = 07

for a given l it is necessary and sufficient that
. 00 l—cos(t\/k) . .
(1) The function I1(t) = f_oo A dp (i), where O <t < 21, is finite and has
two absolute continuous derivatives on every interval [0, r], where r < 2I.
(2) II'(0) = 1.
(3) l}em infsup N (R) /<R > 1/m, where N(R) represents the number of points in
—> 00

the spectrum that are also contained in the interval [0, R].
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The 1953 result included only the first two conditions and the third condition was
added in 1957 as a correction. The issue of whether Krein’s type result needed two
or three conditions was settled down by Yavryan, [76], in 1992. He re-examined
Krein’s 1957 result and showed, by using directional functionals, that the third
condition follows from the first two. Thus as in the Gelfand-Levitan-Gasymov
theory only two conditions are needed in Krein’s result. The major differences,
in both theorem is in the required smoothness and whether the measure used is
p or o. We need also to mention that in his book, [64, Theorem 2.3.1, p. 142],
Marchenko has a similar theorem that falls in between Gelfand-Levitan and Krein
theorems, where the smoothness condition is: ¥ (x) = (1%;2(”), R) should be
at least three times continuously differentiable. Note here that W uses X instead of
A/ while R is a distribution, and the reconstructed potential is only continuous. It
is clear that the Gelfand-Levitan-Gasymov paper gives the best smoothness, namely
g € L™°¢(0, 00). The authors revisited the Gelfand-Levitan-Gasymov theorem and
showed that in fact only one, namely the second condition is needed, see [31].

Theorem 25 (Gelfand-Levitan-Gasymov Revisited) For a monotone increasing
function p to be the spectral function of a problem (37) where q has m locally
integrable derivatives it is necessary and sufficient that the sequence of functions
®y converges boundedly to a function ® that has m + 1 locally integrable
derivatives.

Observe that Yavryan’s proof dealt with Krein’s approach only and covered the
regular case while ours applied the Gelfand-Levitan approach which was for the
singular case. At the end [76], Yavryan pointed out that the proof can be extended
to the half line case but gave no details.

4.3 Transmutation Between Orthogonal Polynomials

Is it possible to transmute an orthogonal polynomial system, o.p.s. for short, into
another o.p.s? In other words, under what conditions can we find a transmutation
operator V such that

gn(x) =V (pa(x)), n=0,

where g, (x) and p, (x) form o.p.s. Stirling and Tchebyshev may have been the first
ones who addressed a similar question, where recurrence relations and connection
coefficients were sought between systems of polynomials, see [2]. For example can
we transmute Legendre polynomials into Laguerre or Hermite polynomials, and
what shape would the transmutation V have?

In all that follows P and Q denote two self-adjoint operators acting respectively
in the separable Hilbert spaces Hp and Hg. Let us assume that op = {A,},>; and
o9 = {un},> are simple spectra, that is, dim(N(P — Ay1q)) = dim(N(Q —
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Unlg)) = 1 and where P(p,) = A, p, and Qg,, = w,q, denote the eigenfunctions
of P and Q forn > 0.
Eigenfunctions expansion for f € Hp and ¢ € Hp leads to

f=Y alfimgn,  ¢=Y_ B npa,

n=0 n>0

where a(f.n) = (frqn), ! o0 B@.1) = (fip),
product on the Hilbert spaces.

We now focus on the case when the spectra are different and have no finite
accumulation points, see [28].

There are several instances where we can still find a relation between o.p.s. and
yet their spectra are disjoint. The Mehler formula exhibits a such situation

1H2 and (., .) is the inner
Pn

2 % cos(n+ !
qn(0) = f (n 4 2)n 0<6<m.
7w Jo /2cosn—2cosf
Indeed, we have a transmutation defined by
F()©) =" /9 : Fd
" Jo J2cosn —2cosf D

The g, (0) := P,(cos(0)), where P,(x) is the Legendre polynomial of degree n, are
the eigenfunctions of the self-adjoint operator

-1 d du
= in 6 , 0<@6 ,
QW)= Gho a6 [Sm d@} U=z

acting in L2[(0, 7r), sin(@)d@]. The second system of eigenfunctions is defined by
pn(x) ;= cos (n + é) x and is associated with the operator

P .= ;iz, 0<x<m,
f'(0) = f(x) =0,
which is self-adjoint in L2(0, 7). The spectra are given by

2
op .= {n(n + 1)}n20 ’ 00 = : <n + ;) } ’

n>0

and are obviously disjoint and have no accumulation points.
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Thus let us assume, in general, that we are given two o.p.s generated by two
self-adjoint operators P, Q such that op # o, and related by an operator V

V(pn) = qn, where n > 0.

We further assume that we can interpolate both spectra, i.e. we can find mappings a
and b such that

a:op —> N b:og - N
a(hp) =n b(un) = n.

In other words a is the inverse of mapping n — A, and similarly for b, see [28]

Proposition 26 Assume that a(A,) = b(u,) = n forn > 0, and Vp,, = q,, then
there exists a transmutation V such that

Va(P) = b(Q)V. (39)

Remark The functions a, and b are not always needed. Sometimes we can find a
direct relation between the eigenvalues

(M) = i,

and consequently (39) reduces to V§(P) = QV.

Let us denote the linear operator acting in Hgp, defined through the Fourier
coefficients

SQF =Y lanl*llpall a(f, n)qn,

n>0

where

fi=>_alf.n)g.

n>0

It is clear that

IS(Q)1| = sup llgn Il pull 2.

n>0

‘We now have a factorization result
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Proposition 27 Let V be such that g, = V py, then
S(Q) =VV*, (40)

where V* is the adjoint of V.

Remark S(Q) is bounded if and only if V is also bounded.

4.3.1 Example
Consider the singular differential operator defined by
x(1 =x)y"(x) +[c—(a+b+ Dx]y (x) —aby(x) =0, 0<x<l.
If ¢ > 2, then we are in the limit point case, and its solution is then given by
y(x) = 2F1 (a, b; c; x).

Thus if we choose a or b to be a nonpositive integer then the solution is a polynomial
in x. We now introduce two self-adjoint operators, defined by

/
9

0<x <1,

Qv = [~ ] (0 -0 Ry )

/
’

Py(x) = [(1 — x)kz—fxf—l]_1 ((1 _ x)1+k2—cxcy’(x))

O0<x<l,

and acting respectively in L2((0, 1), (1 — x)fi=cxe=1 gx) and L2((0, 1), (1 —
x)kz"'x"’ldx), k1 # k2, and where

L%((0, 1), w(x)dx) : {f measurable : fol | F P wx)dx < oo} )
It is easily seen that
gn(x) = 2F1 (=n, k1 +n; c; x)
satisfy x(1 — x)y” + [c — (k1 + Dx]y + n(k; + n)y = 0 and consequently
Qqn(x) = pngn(x),
where

pn = —n(n + ki), n=0.
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Similarly
pn(x) = 2F1 (=n, k2 +n;¢; x)
are eigenfunctions of P, i.e.
Ppn(x) = A pn(x),
where
A= —n(n + ko), n>0.

We now work out a transmutation. What is the simplest operator V mapping p, —
gn? that is

2B (—=n, ky +n;c;x) — 2F1(—n, ki +n;c; x).

Observe that a hypergeometric function 2 F; (a, b; ¢; x) is an analytic functions of
its arguments, and since it is a finite sum then

d
2F1 (—n, ki +n;¢; x) = exp [(kl — k2) ab:| 2Fi1(—n, ka+n;c; x).
Thus we have the transmutation defined by
14 (k1 — k2) 0
= ex — ,
p| (K1 2 ap

which is a differential operator of infinite order. Next we need to define V for at
least a dense subspace of L2((0, 1), (1 —x)2=<x¢~14x). To this end observe that
we need only to define the action of V on polynomials since they are dense in
L2((0, 1), (1 —x)R2=<xc~1dx). We recall that

n
f=) cap (41)
k=0
form a dense subspace in L2((0, 1), (1 — x)k2—cxc=lgx) and

n
Vf= chCIk~
k=0
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Thus V is densely defined. The interpolating functions are as follows

—k2 + \/kﬁ + 4
a(ip) = ) =n,

and

kK 4
b(uy) = =n.

2
Then the transmutation condition

Va®P) =bQV

is translated into the following relation

97—kt JG 4P ki + [+ 4Q 3
exp | (k2 — k1) = exp | (ko — k1) )
ob 2 2 ab

Remark In case k» > ¢ — 1, then x* € L%((0,1), (1 — x)*=<x“~ldx), and
we could define V directly on polynomials. For example, we can use generating
functions to express x” in terms of 2 F1(—n, ky 4+ n; c; x).

4.4 Direct Reconstruction of the Spectral Function

We now show how we can reconstruct these kernels and also the spectral function,
see [7, 8, 19, 30]. Let y be a solution of

{_y//(-xv)")+q(x)y(x1)"):)"y(xs)")v (42)

y(0,2) =1 and y’ (0,1) = h,

where g € Ll’l”C[O, oo) and g (x), h € R. We then have the classical transmutation
and its inverse

y(x, L) = cos (x\/)\> + /x k(x,t)cos (t\/)\> dt,
0

cos (xx/k) = y(x,A) + fx H(x,0)y(t, \d.
0
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If we assume that the spectral function dT" is abs- d \/ A continuous then we have

w dTl

2 2 (x)=1+/0 H(t,O)cos(tx/)\)dt. (43)

Thus to reconstruct dI', we only need a method to reconstruct H. To this end recall
that it follows from (42), that we also have

y(x,A) =cos (xx/k> + /x o <(x . I)Jk)q(t)y(t, Adt,

0 VA

and thus we have a direct connection between H and ¢,

. » sin ((x _ t)\/)\)
/ H(x, )y, Mt = —/ gy, Ndi  for A eC.
0 0 «/A
(44)

In order to find a formula for H we need to remove the A from the right hand side.
To this end denote by £ = —D? + ¢ (x) the differential expression, and so we have

Ly(x,A) = ry(x, ),
and let

(=D" 41

==, =03

where x; = x if x > 0 and 0 otherwise. Thus if ¢ € C*°[0, c0), and q(k) 0 =0
for all k > 0, we can recast (44) as

/x H(x,t)y(t, A)dt = — Z/x g(Oan (x — 1) A y(r, \dt
0 0

n>0

= Z/X gan (x —1) L"y(t, Mdt
0

n>0

=- fo L' [gWan (x — 0] y(t, Wt

n>0

The partial sums do collapse as it is seen from

Y rg®a(x —n1=Lay x - 1)
k=0
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and so we deduce that
LHa, (x—1) — H(x,1).

Proposition 28 Assume that g € C*®[0, 00), and ¢® (0) = 0 for all k > 0, then
2 n+1 5
H(x,7) = lim —(—D +q(t)) an(x— 1) in L2, (0,x). (45)
n—0o0

On the other hand we have

/cos (xx/)»> cos (m/)\) (Z ddl}i) - 1) d <i JA) = H(x,1)+ H(t, x)

+/0 H(x. m)H(n, t)dn.

Taking the inverse cosine transform yields

cos (x«/k) [Z ddl:;);) - 1] = /: H(x, 1) cos (t«/k) dt + /)-{oo H(t, x) cos (tx/k) dt

+ /x H(x,n) foo H(, 1) cos (r«/x) dr dn.
0 t

Letting x — 0T, we get (43), where H now can be computed by taking the limit in
(45).

4.5 The Lieb and Thirring Constant

Lieb and Thirring [62] have shown that the sum of the moments of the negative
eigenvalues —A; < —Ap < --- <0 (if any) of the Schrodinger operator —A — V on
L? (R?) is bounded by

SO = Ly [ (V-0 46)
R4

where V_(x) := max{V (x), 0}. One of the challenges is to find the smallest possible
constant L, 4, known as the sharp constant in (46). For the sake of simplicity we
shall restrict ourselves to eigenvalue inequalities in the case d = 1.

It is well known that if d = 1 then (46) cannot hold for y < 1/2. For the limit
case y = 1/2, Hundertmark, Lieb, and Thomas [49] have shown that if V_ €
L' (R), then

S Vi =L [ v )
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where Li,2,1 = ; is a sharp constant. The main tool used in deriving (47) is the
Birman-Schwinger principle which relates negative eigenvalues of the Schrodinger
operator with eigenvalues of a certain integral operator. If V is continuous, V (x) —
0as |x| — oo and fR V (x)dx exists (possibly conditionally), Schmincke [68] uses
the commutation method to obtain the lower bound for the sum of the negative
eigenvalues

! foo V)ydx <> Vi, (48)

4/

and here }1 is a sharp constant.
If we also assume that (1 + |x|)V(x) € L' (R), then Schmincke’s inequality (48)
follows at once from the Faddeev—Zakharov trace formula [77]

/oo Vdx=4) i+ N /ooln(l IR (k)|?)dk, (49)

since the reflection coefficient of the operator H satisfies R(k) € [0, 1].
A well known fact in the spectral theory of operators is that negative eigenvalues
depend on the self-adjoint extensions. Also if a Lieb-Thirring inequality holds, it
must do so for all isospectral operators, since it does not make use of the energy
of the bound states. Thus to shed some light on these hidden connections we shall
study the sum of the negative eigenvalues, y = 1/2, of the Schrodinger operator
on the half-line and under the sole condition that g € L' (0, 00). Thus consider the
one-dimensional self-adjoint Schrodinger operator on the half line
{H@%=—W@JJ—ﬂﬂﬂLM=>%ﬂLM, xe©00 g
y'(0,A) — hy(0,1) =0, where h,g(x) € R.

Leta; =1/ fooo ly(x, —1;)|* dx be the norming constant, which represent the jump
size of the spectral function [60] at —A ;. One of the main results of [] is the identity

o0 o0 N N
/0 qN(x)dx=/O qo(X)dx =2 aj +4> 1/, 51
j=1 j=1

where qo is obtained from gy by removing all N negative eigenvalues. The
appearance of the norming constants «; in the formula distinguishes (51) from
the Faddeev—Zakharov trace formula (49) and brings out a new relation between
isospectral operators. We then prove that if go generates no negative eigenvalues,
then the estimate

/ do(¥)dx < ho (52)
0
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holds, which yields the Schmincke inequality for the half-line

1 [ h
4/0 q(x)dx—4<z\/kj. (53)

Theorem 29 Assume that gy € L'(0, 00), and qq is obtained from qn by removing
all negative eigenvalues of Hy. Then gy € L'(0, 00), and we have the identity

00 00 N N
/0 gn(x)dx =/O go(x)dx —2Za, +4Z\/A~,~. (54)
j=1 j=1

Proposition 30 Assume that gy € L' (0, 00), then formula (54) becomes

1 [ 1 e al N
4/0 qzv(x)dx—4h1v§—4/z::loej+;\/xj <;\/Aj. (55)

Assume additionally that the Faddeev condition holds we obtain a formula for
product of eigenvalues

Proposition 31 Assume that (1 + x)gn(x) € L'(0, 00) then

o0 ATV, A;
/0 x (qn () — go(x)) dx =1n( #N"l 2">.

j=1%;

For more details see [36, 62, 68, 74].

4.6 Gelfand-Levitan for the String

In the 1950s, [57], M.G. Krein proposed a method based on the theory of functions,
to recover the mass of a string from its vibrating frequencies. Recall that if M (x)
represents the mass of the string in the interval [0, x), then M is a nondecreasing
function and the oscillations of the string are described by the eigensolutions of the
symmetric operator

—d dt
L:

= , 0, 56
AM(x)dx+' (56)

where dd; is the right derivative. Krein could recover the function M, [57,
Theorem 11.1], from the knowledge of its spectral function p, which is also a
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nondecreasing, right continuous function, if

1
/0 ! +)Ldp()») < 00. 67

He first established that if p is a continued fraction then M is a step function
and most importantly he found an algorithm to explicitly compute the location
and size of the jumps in M from those fractions. These special strings are the
so called Stieltjes strings. He then shows that if p satisfies (57), then the string
can be approximated by a sequence of Stieltjes strings, and the corresponding step
functions of the mass also converge to the original mass. Not only was the condition
(57) easy to verify, continued fractions lead to an algebraic set of rules, which
allowed for an effective and explicit recovery of the mass M (x) in certain cases. This
approach had many far reaching applications in function theory, moments problem,
integral equations, and prediction theory, see [45] and the references therein. There
are many striking differences between both methods, that lead to following basic
question:

Is it possible to recover the mass of the string in (56) by using a Gelfand-Levitan
theory?

The answer would be a first step towards bridging both methods, and would
help clarify many questions in inverse spectral problems. Recall that the G-L theory
compares two close operators, with identical principle part, i.e. —D*> — —D?+
q (x), which explains why their spectral functions are close as A — oo. On the other
hand, a key idea in the spectral theory of the string, is the behavior of the spectral

function p(X) as A — oo depends of the behavior of the mass M (x) as x — 0.

. 2 . . 1
Observe that the spectral function for — xla fx , on [0, co) is precisely p = corF a2,

where the £ accounts for either the Dirichlet or Neumann boundary conditions at

1
AEat , then the

which leads to following question:

x = 0. Thus, in the spirit of the G-L theory if we are given p ~ ¢,

1 q?
X% dx?
Statement of the Problem Given a nondecreasing, right continuous function, p (1)
subject to

principal part of the operator must be —

1
,()()»)Nco,)»liw2 as A — o0, «o>-—I,

find a function g such that p(}) is the spectral function associated with a self-adjoint
extension of an operator defined by

—1d*f
X% dx?

Lf = +qx)f, x > 0. (58)

Clearly the eigensolutions of the unperturbed operator, i.e. y” + Ax%y = 0 can
be expressed by Bessel functions, which in turn, help provide explicit conditions on
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the spectral function of (58). This means a direct extension of the G-L theory, to
more general operators defined by (58), since their analysis corresponds precisely
to the special case @ = 0. Recall that the analysis in [46] is based on the properties
of a solution of a certain linear integral equation, where the kernel

F(x,t) = f_oo cosxv/A costv/ado(h), ol =pQ) — i/u.

1+ !
The Bessel functions allow growth p(A) ~ coh “2 o > —1, that is

limy_ o Inp(A)/In(k) € (0,2), whereas the original G-L theory, which
corresponds to « = 0, means that Alim Inp(X)/In(X) € {1/2, 3/2}.
— 00
We now outline the algorithm. Given p ~ cA%, where T € (0,2) we solve

T=1%£ a}rz for @ > —1, and the sign &= would indicate the boundary condition, say
Dirichlet or Neuman. G-L theory would recover a potential g such that p matches

-l -1
Ly = — Ly := <o gy

x® dx? a0,

the spectral function of L1 and then by using a special transformation operator

-1 d? -1 42

Li= X% dx? g = Ly:= w(x) dx?’

The operator L3 represents a string with mass M (x) = f(f w(n)dn. We feel that
our method is not only closer in spirit to the original G-L theory but also provides a
generalization, see [6, 9, 22].

4.6.1 The Transformation Operator

For our purpose we only need to express the eigenfunctionals ¢ (x, A) in terms of
the eigenfunctionals y(x, 1) and this is achieved with the help of the transformation
operator. As in [46], we shall use a Volterra operator to connect solutions, i.e.

X
ot =+ [ K@owe e d, x=0 (59)
0
X
oGy =g+ [ HG e .
0
The kernels of the above transformation operators are defined in the following sector

Q::{(x,t)eR2:O<t<x, O<x<oo].

Let us try to find some conditions on K in the Neumann case.
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Proposition 32 Assume that K € C2(Q), q € C[0,00), @ #0, ¢ > —1, then

X

o(x.2) = yn(x, 1) + / K (e, 0)yn (6, )%di (60)
0

is a solution of L1¢(x, A) = Ap(x, A) if and only if

oK) = LKu(r ) =qK (), 0<i1<ux,
g(x)=2x"2 4 (x2 K (x, x)), (61)
K;(x,0) =0.

For further details we refer to [22, 43-45, 50, 51, 53, 54, 57, 58, 73].

4.7 Sampling and Transmutation

Shannon sampling formula helps reconstruct entire functions in PW, from their
sampled values over Z

sin (TA — ni)
F()=) F) (62)
(A —nm)
nez
Using Kramer’s theorem, [78], you can generate a sampling theorem whose
sampling points are the eigenvalues of a Sturm-Liouville problem. It remains to

see that given any sequence {i,},>0 such that
2 c . Y 1 T 1
W, are distincts, w, =n+" +o and o, >0, a, = _ +o (63)
n n 2 n

then u% are the eigenvalues of the Sturm-Liouville problem

{ ='W + a0y (e ) =Py d),  0<x <, 64)

The transmutation representation of the solution is given by

y(x, u) = cos (xu)~|—/x K(x,t)cos(tp)dt. (65)
0

which could be reconstructed by the Gelfand-Levitan theory from the sequence
{,u%, ay }n> o> Where o, are the norming constants. The following irregular sampling
theorem can be found in [12, Proposition 4], where P W is the Paley—Wiener space
of even functions.
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Proposition 33 Assume that {it,, oy}, > satisfy (63), then for F € PW;, we have

F ()= F (1ta) Su (1)

n>0

where Sy (1) = o [o ¥, )y (x, wydx

It is shown that the sampling functions S, do not depend of the norming
constants, {«, } which are used only in the Gelfand-Levitan construction. For further
detail we refer to [12, 21, 29, 32-34, 37, 69].

4.8 Computational Spectral Theory

Transmutations allow the use of the sampling theorem to compute eigenvalues of
Sturm-Liouville operators. Basically, it helps represent the characteristic function
explicitly by a sampling series, which can then be approximated for computational
purposes. For the sake of simplicity, consider the eigenvalues of (64), where g €
L(0, ). The characteristic function then is

A(p) = y' (., ) + Hy(m, j1)
= —usin(rp) + (H 4+ K(w, w)) cos(m ) + /ﬂ (HK(m,t) + Kx(,t))cos (tp) dt
0
= G(p) + S(w)

where G is a known function given by

G(u) = —psin(ru) + {H +h+ ; f q(x)dx} cos(mr )
0
while
S(p) = /” (HK (, 1) + K, (7, 1)) cos (tp) dt
0

is unknown. Observe that S € PW¢ and so by Shannon’s sampling theorem, (21),
we have

sin (TA — nw)

S = Z S(n)

= (mA — nm)

To compute the samples S(n), we use the fact that

S(n) = A(n) — G(n)
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where the values of {A(n)},>¢ are computed numerically by integrating the initial
value problem from (64), while G (n) is given a known formula. Thus we have

A = G + 1AM — Gy T T, (66)

= (mA —nm)

One can truncate the series to obtain guaranteed error bounds and to approximate
the roots of A, see [13]. For further detail we refer to [11, 13-18, 26, 27, 34].
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transform
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1 Introduction

The Hankel transform is the most extensively studied area of the theory of Bessel
transforms. When we are dealing with problems that show circular symmetry,
Hankel transform may be very useful (see, for, example, [1, 2]). Laplace’s partial
differential equation in cylindrical coordinates can be transformed into an ordinary
differential equation by using the Hankel transform. Because the Hankel transform
is the two-dimensional Fourier transform of a circularly symmetric function, it
plays an important role in optical data processing. Also it is known (cf. [3-5]) the
transform (1.1) is a particular case of Mellin‘s convolution type transform.

In this investigation we will consider existence conditions, boundary properties
and applications of convolution operators for the Hankel transform.

Let f(¢) be a function defined for t € R. The v-th order Hankel transform of
f(¢) is defined as [3, 6]

Hu[f](X)=/f(t)Ju(xt)tdt, x €Ry, (1.1)
0

where J, (z) is the Bessel function [6, 7] of the first kind of order v, Re v > —1/2.
The most important special cases of the Hankel transform correspond to v = 0 and
v=1.

Here we will consider transform (1.1) in weight Lebesgue spaces L1 (R, +/tdt)
and Ly (R4, tdt) with the norms

W FllL . vear = / |f () |Vidt < oo,
0

1/2

o0
1 F 1Ly Ry rdry = / lf(OPtdt ] < oo.
0

As known [3] the Hankel transform H,[f](x) of the function f(t) €
Li(Ry, «/tdt) multiplied by /x belongs to the space Co(R;) of bounded
continuous functions vanishing at infinity. Under some additional conditions the
inversion formula holds. For instance, it does if f(¢) is a function of bounded
variation on any finite interval (0, R).

In the case of Ly (R, tdt)-space we should define the Hankel transform in the
mean-square convergence sense, namely

N
Fo(®) = Hulf1(0) = Lim. / F@O (et tdt,

1/N
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and familiar Plancherel’s theorem [3] says that Hy,: Lo(R4, tdt) — La(R4, xdx)
is an isometric isomorphism with the reciprocal formula

N
f0)=Lim, / H,[ £1(x)Jy (xt) x dx,

1/N

and Parseval’s equality

[Hy fll,@® e xdx) = L@y tdr)- (1.2)

Various generalized convolutions generated by the Hankel transform and other
integral transforms can be constructed by using the definition of generalized con-
volution or polyconvolution introduced by V.A. Kakichev [8, 9]. The corresponding
results can be found, for example, in [8—14]

Let Ay, Az and A3 be linear operators, Aj: M; — N;, j = 1,2 and
Asz: M3 < Nz. Assume that some weight function «(x) exists such that for all
functions (A1 f)(x) € Ny and (A2k)(x) € Na the product a(x)(A1 f)(x)(A2k)(x)
belongs to the space N3.

Definition 1.1 The generalized convolution, or polyconvolution, of functions
f(@) € My and k(t) € Mj, under A, Az, Az, with weight function a(x), is

the function h(f) € M3 denoted by ( fa * kAZ)A (t) for which the factorization
property ?

(Ash)(x) = A3 [(fAl ks, ) } (x) = () (A1) (A2K) ()

A3
is valid.

The classical convolution for the Hankel transform was first introduced by Ya.l.
Zhitomirskii [15] in 1955. He constructed the convolution using the translation
operator which was first introduced and studied by B.M. Levitan in 1949 [16] (see
also [17]). Also this classical convolution and corresponding translation operator
were investigated by L.I. Hirschman, D.T. Haimo, FM. Cholowinski [18-20]. In
this context, it is important to note a large amount of research by I.A. Kipriyanov,
L.N. Lyakhov, S.M. Sitnik, E.L. Shishkina, S.S. Platonov and others authors (see,
for example, [21-24]).

In 1967 V.A. Kakichev [8] constructed this convolution by using Definition 1.1.

The explicit expression of this convolution is

(f*k) ()= tv /sinz"s
W /AT +1/2)
0

® k(x/tz—i—rz -2t coss) .
x | f(r) ' dt ds. (1.3)
0/ (t2 + 12 — 2tt cos s)v/2
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If f(t), k(t) € Li(Ry,+/tdt), Re v > 1/2 then polyconvolution (1.3) of
functions f(r) and k() with the weight function o (x) = x ™" exists [14].

A number of convolution constructions involving the Hankel transform was
derived by N.X. Thao and N.T. Hai [14]. Some polyconvolutions obtained by the
author were exhibited in [10—13]. The results presented in these papers are based on
the Kakichev approach to the notion of the polyconvolution.

If one of the functions in the convolution ( fa ?kkAz)A (t), say the func-
3

tion k(¢), is fixed, then one can study the transform of convolution type:
Arf o £(faSha),
A3

where L is an operator. The function k() is called the kernel of the transform A.
Integral transforms related to various convolution constructions was considered
in papers [25-30]
This paper is a continuation of the investigation of convolution operators and
their applications given in [10]. Here we consider two generalized convolutions
defined by the Parseval type equalities

) = (fu * k) @)= Hvl[x”HAf](x)HM[k](x)}(r) (1.4)

hao) = (fo ¥ k,L)M (1) = H,:l[x—”Hv[f](x)H,L[k](x)}m (1.5)

Note that the first convolution /1(¢) is commutative and the second convolu-
tion &7 (t) is not commutative.

We study their mapping properties. Integral operators related to these convolu-
tions are constructed and their existence and boundary properties are found. Also
we give some applications to the corresponding class of convolution equations.

2 Properties and Estimates for the Convolution’s Kernel

Let us consider the function

e ¢]

Quy(u,vit) = /xl_”.]ﬂ(xu)]u(xv)]v(xt) dx. 2.1
0

This function defines both convolutions (1.4)—(1.5). We notice that the function
Qv (u, v t) is symmetrical relative to permutations of variables u and v, that is,
Quv(,v;it) = Q.0 (v, u; t). Therefore, the estimates and formulas below are
valid when these variables are rotated.
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Using the asymptotic expansion of Bessel functions of the first kind (see, for
example, [7])

2 TV T
Io(y) = \/ny cos(y= " =71 ) + 007, y = +oc,
Hh()=0(@("), y = 0+,

we can easily show that a positive number C; which is independent of y € (0, 00)
such that

IVyhWI < C1, Vy € (0, 00)

exists. The function y="J,(y) € Li(R4) forRev > 1/2andRe 4 > Rev — 1 and
bounded function for Re u > Re v > —1/2, i.e.

Yy T < Ca, vy € (0, 00) 2.2)

Therefore, for Rev > 1/2

N N
C2
1., (u, v; )] = /xl_”JM(xu)JM(xv)Jv(xt)dx < Jl /x_”Jv(xt) dx
’ uv
0 0
2 1 % _
_ Cl tRev / vaJv(x) Iy < tRev 1
 Juv - Juv
0

where C is independent of ¢, u, v and N.
Similarly, for Re v > 1/2 and Re u > Re v — 1 we obtain the estimate

uRe v—1

Jivo

N .
N, v )] <

where C is also independent of 7, u, v and N.
Thus, the function ., (u, v; t) defined by expression (2.1) exists. Moreover,
this function can be presented as [31], formula 2.12.42.11

Quy(u,v;t) =0, 0<t<|u—v|;

v—1

= (\u/l;) . Pli/_zl_/;(coss) sin” 125, u—vl<t<u+v;
T
2(uv v—1 .

_ _\/ (;/l/ziv sin| (u — v)n:|e(2v—1)m/2
T

x V¥ }L/ff/‘;(coshr) sinh* =12y t>u+v,
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where P; x), Ql‘i (x) are the associated Legendre functions of the first and second
kind, respectively, Re © > —1,Rev > —1/2,¢,u, v > 0, and

W2 4+ 2 — 2 2 w22
COSs = , coshr = ,
2uv 2uv

On the other hand, the function €2,.,(u, v; t) is the Hankel transform of the
product of the Bessel functions, i.e.

Qv v; 1) = Hy [x 7V T (xu) I (xv)] (1) (2.3)
=H, [xf"JM(xv)Jv(xt)] (u). (2.4)

Therefore, / 192,.,(u, v; t) belongs to the space Cyp(R) of bounded continuous
functions vanishing att — oo as whenRev > 1/2,Reu > Rev — 1

uRe v—1
1™ T @) T G|y ey < €
Jv
Similarly, when Re v > 1/2, Re u > Re v — 1 we have the estimate
vRe v—1
||x7v-]p,(xv)-]v(xz‘)||L1(]R+,\/xdx) <C i
and /u.,(u, v; 1) belongs to the space Co(IRy) as function of variable u. This
statement can also be obtained using a similar estimate for Re v > 1/2
tRe v—1

||x_VJ,LL('xv)JV('Xt)||L1(R+,\/xdx) S C JU .

From the equalities (2.3)—(2.4) we obtain

XV ey T (xv) = Hy ' [ @, v; 0] (1)

= /tJv(xt) Quv(u, vy t)dt,
0
XV Gy Jy(et) = Hy [ Qe (u, v; )] ()

o]

=/vlﬂ(xv) Qv vit)dv.
0
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Forv > 1/2,v — u < 1/2 we get accordingly the following estimates using the
formula 2.12.31.2 from [31]

2 — 2
||Q,u;v(u7 v; t)||L2(R+,tdt) = ||x VJ,U.(XM)J/L(XU)l|L2(]R+,x,1x)

u2v71

<Cuy
mvo

2 - 2
(12,0 (1, v; t)||L2(R+,tdt) = ||x UJ,L(xu)J,,(xt)||L2(R+’xdx)

u2v—1

S C/,L,l) ¢ ’

2 — 2
||Q,LL;U(M7 v; t)”Lz(RJr,tdt) = |lx VJM(XM)JIL(XIN|L2(R+,xdx)

t2v71
S Cl) )
u
where C,,,, and C,, are independent of u and ¢, the parameters v and p are real.
The function 2., (, v; t) define two polyconvolutions (1.4)—(1.5), which can
be presented by form

hy(t) =//uvf(u)g(v)$2mv(u, v; t)dudv, (2.5)
00

ha(t) =//uvf(u)g(v)§2mv(t, v; u)dudv. (2.6)
00

3 Mapping Properties of the Generalized Convolutions

The following theorems gives the existence conditions and mapping properties of
polyconvolutions (2.5) and (2.6).
In space L1 (R, v/tdt) the corresponding convolutions we investigate in[10-13]

Theorem 3.1 Suppose that f(t),k(t) € Li(Ry, /tdt) andRev > 1/2, Re u >
(2Rev —3) /4. Then the function h1(t) exists and the following factorization relation
is valid

H,[h11(x) = x"Hu[ F100)Hu[k1(x) € L1(Ry, V/xdx).
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Theorem 3.2 Suppose that f(t),k(t) € Li(Ry, +/tdt) andRev > 1/2, Re u >
Re v — 1. Then the function h(t) exists and the factorization relation

Hy[h2](x) = x"Hu[ f10)Hu[K1(x) € L1(Ry, v/xdx)

is valid.
Now we find the existence conditions in other weight Lebesgue spaces.

Theorem 3.3 Let f(t) € Li(Ry,+/tdt), k(1) € Lo(Ry,tdt) andv > 0, p >
—1/2, then the generalized convolution (1.4) of the functions f(t) and k(t) exists.

Proof Using the definition of generalized convolution (1.4) and the definition of
the Hankel transform (1.1), we obtain

hi(t) = /Hu[f](X)Hu[k](X)Ju(xt)xl_”dx 3.1

0
=/xl_”dx//f(u)k(v)]u(xt)]u(xu)Jﬂ(xv)uvdudv.
0 0 0

Let us prove the existence of the polyconvolution /1(¢). Applying Schwarz’s
inequality we get

lh())* < / |V/XHL[£100| [Hp[k1(x)[2xdx / x T HLf1(0)] T2 (xt)dx
0 0

o0 o
< C/ |Hﬂ[k](x)|2xdx/x_2” J2(xt)dx
0 0

< " NIk &, rar)- (3.2)

Here we used Parseval’s equality (1.2) and the formula 2.12.31.2 from [31].

Therefore, the convolution A (¢) exists for all fixed € R, and the function /1 (¢)
is bounded continuous on R .

Changing the order of integration in (3.1) by virtue of (3.2) and using defini-
tion (2.1) we obtain

hi (1) =/
0
/

\8

f(k(v)uv dudv / XV () Iy (xv) y (xt) dx
0

uvf (u)g ()2, (u, v; t) dudv.

o—y <
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We found the explicit form (2.5) for the polyconvolution /1(¢). Theorem 3.3 is
proved. O

The following assertion can be proved in a similar way.

Theorem 3.4 Let f(t) € L1(Ry, /tdt), k(t) € Ly(Ry, tdt) andv > 0, v — pu <
1/2, then the generalized convolution (1.5) of the functions f (t) and k(t) exists. The
explicit form for the polyconvolution h» (t) is defined by (2.6).

Theorem 3.5 Let f(1),k(t) € Lo(R4, tdt) and Rep > Rev > —1/2, then the
generalized convolution (1.4) of the functions f(t) and k(t) exists.

Proof Indeed, calling again Schwarz’s inequality and using (2.2) we find

(D) < f|Hv[f](x)|2|x*”JM(xt)|xdxf|HM[k](x)|2|x*”JM(xt)|xdx
0 0

< Constr?™ [[1,17160 P [ M, 110 dx
0 0

_ 2Rev 2 2
= Constt™™ N FIIL,®  ran) KU, ran)-

Appealing to Fubini’s theorem we represent convolution (1.4) by the equal-
ity (2.5) completing the proof of Theorem 3.5. O

The following theorem is proving in same manner.

Theorem 3.6 Let f(t),k(t) € Lo(R4, tdt) and Rev > —1/2, Reu > —1/2, then
the generalized convolution (1.5) of the functions f(t) and k(t) exists.

In next section we construct integral transforms related to the generalized
convolutions (2.5)—(2.6).

4 Integral Transforms Related to the Hankel Polyconvolution

We involve the following differential operators (cf. [32])

d \"  _ k
Nm,v =t (Idl) Y s S,],Cn’v = [Nm,—va,v+m] s (41)
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which possess the properties:
@ Spy=5Sn_»=Smy
d? N 1d 7"
dt?  tdt 12
(b) Nm, :I:v+kmNm, j:v+(k—1)m--~Nm,:|:v+mNm,:|:v = Nm(k+1), v+km -

where S, , = S,Lv =S, = [

It should be noted that some special cases of these operators are involved, for
instance, in various equations of elasticity theory.

Using properties (a) and (b), it is readily verified that all well-known differential
operators related to Hankel transform can be expressed in terms of Ny, +, and Sy, .
Therefore, we restrict ourselves to operators (4.1).

Further, we assume that a function is differentiable enough times at all t € R
when the differential operators (4.1) are applied to it.

The main result is presented in the following theorems.

Theorem 4.1 If f(t), k(t) € Lo(R4, tdt) and Rep > Rev > —1/2, and

-V xV "
k, * k) Hn=H , - 2m. 42
(ke * ki) © u[rg(x)} 1) = 3 ane (42)
where x € Ry;a, € R, Vm = 0,1,...,n,a0, a, # 0; and we assume that

rn_z(x) € Lo(Ry, tdt); n > 1. Then the formula

g0 = Y (1" anSno (ke ¥ fu) O, 1eRy (43)

m=0

defines almost everywhere a function g(t) € La(R4., tdt), such that

gl LaRy tary = N LoRy 1dr)- (4.4)

Moreover, the inversion formula

n

FO = 3 anSn (ke ¥ &) O, 1Ry (4.5)

m=0
holds almost everywhere.

Proof Since k(t) € Lo(R, tdt), Rew > Rev > —1/2 then we have

(ku ¥ kﬂ) (1) = /xl_”HM[k](x)HM[k](x)Jv(xt) dx, 1eR,.
0
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Hence, condition (4.2) can be written in the form

')
/xl—v
0

From the uniqueness property of the Hankel transform it follows that

v

X
ra (x)

H,L[k](x)‘2 Jy(xt)ydx =H, |: :| @, teRy.

2 v
XV Hﬂ[k](x)‘ - r2x(x) . (4.6)
Consequently,
‘Hﬂ[k](x)‘ = . VxeR,. 4.7)
3 (X)

Conditions (4.2) and (4.7) are equivalent in the space Lo (R, tdt).
Ifrls(r) € Lr(Ry,tdt),l =0,1,...,2m then [32]

SmaHuls1) = Hy [(=D"2s0)] (o).

Therefore, for r,,(¢)s(¢) € L2(R4, tdt) we obtain

Z(_l)mamSm,vHv[s](x) =H, [ (1)s ()] (x) . (4.8)

m=0

Formula (4.7) shows that x~Vr,(x)H,[k](x) is bounded. Thus, we have
x 7 rn (OHLK]1()HL[f1(x) € La(R4,tdt). We apply formula (4.8) with
s(x) = x7"Hyl[k]1(x)H,[ f1(x) then

m=0

80 = (DS [ F1 R0 JGx1) da
0

o]

= /x1_”rn(x)HM[k](x)HM[f](x) Jy(xt)ydx, teR; 4.9)
0

is defines almost everywhere. Moreover, g(t) € Lo(R4, tdt).
Now the Parseval identity (1.2) for the Hankel transform along with Eq. (4.7)
gives

N8O Loy rary = 11X~ ra COHLKICOHLLF 1O Lo (R4 xdx)
= Hu L1 oy xdx) = ILf Ol L2®y 1an)-

Therefore, formula (4.4) is proved.
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On the other hand, formula (4.9) is equivalent to the following relation
Hy[g1(x) = x " ra COHLIKIOHL[f1(x) . x € Ry
Combining with (4.6) we obtain
Hyu[f1(x) = x7"ry (0)Hu[k1(0)Hy [gl(x),  x € Ry .

Consequently, we arrive at the inversion formula for transform (4.3)

o]

f@) = /x1_”rn(x)HM[k](x)Hv[g](x) Ju(xt)dx
0

= 1" S f 1V H K0, [81(x) J(xt) dx
m=0 0

- Xn:(—nmamsm,ﬂ (k,L ¥ gv>'u ().

m=0

Theorem 4.1 is proved. O

The following theorem is proving in same manner.
Theorem 4.2 If f(t),k(t) € Lo(R4, tdt) and Rev > —1/2, Rep > —1/2 and

n

(ku ¥ k”)u (t) = H, [r;(:)] Com) =) amx®,

m=0

where x € Ry;a, € R, Ym = 0,1,...,n,a0, a, # 0, and we assume that
r72(x) € Ly(Ry, tdt); n > 1. Then

n
%
80 = 3 "anSuu (b ¥ f) O, 1eRy
m=0 ’
defines almost everywhere a function g(t) € Lo(Ry, tdt), such that
gLy ®y rary = 1 UL Ry rdr)-
Moreover, the inversion formula

FO =3 anSn (ke ¥ gi) ©

m=0

holds.
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We note, that integral transforms with unsymmetrical kernels can be constructed
in the same manner. The results are presented in following theorems.

Theorem 4.3 Let ki(x) and hi(x) be bounded functions on Ry such that
ki(x)hi(x) = 1.

k) =H, [kal(x) } C =Y anx™,
m=0

n(X)

I
pr(x) =Y bpx™™,
m=0

fi(t) = H,, [xvhl(x)]

p1(x)

where~x teKJr;am, bn € R, Ym; ag, an, bo, by Z0; n, [ > 1.
Ifk(t), h(t), f(t) € Lo(R4, tdt), Rew > Rev > —1/2 Then the formula

g0 = Y (=1 "anSno (e ¥ fu) O, 1eRy

m=0

defines almost everywhere a function g(t) € Ly(Ry, tdt). Moreover, the inversion
formula

I
PO =Y 0"buSup (b ¥ g0) @, 1eRy
m=0 "
holds almost everywhere.

The proof of Theorem 4.3 is similar to the proof Theorem 4.1, where condi-
tion (4.6) is replaced by

- - 2k (x)h
Hy [k H,[R1 () = ' r (lx()x;z(jc()X)' *4-10)

Also we can construct transforms with unsymmetrical kernels related to poly-
convolution (2.6).

Theorem 4.4 Let ki(x) and hi(x) be bounded functions on Ry such that
ki(x)hi(x) = 1.

= _ kal (-x) _ " 2m
k(t) = H, [ () i| , Ip(x) = mE:Oamx ,
I
~ xVhi(x) om
h = Hl) B = bm s
® [ p1(x) } 0= 2 b

where x € Ry ; am, by € R, Ym; ag, an, by, by Z0; n, [ > 1.
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If k(1), h(1), f(1) € La(Ry,tdt), Rev > —1/2, Reuw > —1/2. Then the
formula

80 = 2V anSn (o ¥ fu) 0. 1eRy

m=0

defines almost everywhere a function g(t) € Lr(Ry, tdt). Moreover, the inversion
formula

/

FO = 3 S (e ¥ ga) @) 1Ry

m=0
holds almost everywhere.

The following two convolution transforms can be constructed in the same
manner. The convergence of integrals follows from the equality of the orders for
the polynomials r, (x) and p, (x).

Theorem 4.5 Let ki(x) and hi(x) be bounded functions on Ry such that
ki(x)hi(x) = 1.

k() = H,, [x:k(lg)} C o= an®
" m=0

) &

h(t) = H,L[ on(2) } on (x) _mX:;)bmx ,

where~x € I~R+;am, bn € R, Ym; ag, an, by, by #0; n > 1.
Ifk(t), h(t), f(t) € Lo(R4, tdt), Reu > Rev > —1/2. Then the formula

g0 = D" S (R ¥ fu) 0, reRs

m=0

defines almost everywhere a function g(t) € Ly(Ry, tdt). Moreover, the inversion
formula

FO =30 anSup (h ¥ g0) @) 1Ry

m=0

holds almost everywhere.
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Theorem 4.6 Let ki(x) and hi(x) be bounded functions on Ry such that
ki(x)hi(x) = 1.

n

k(o) = H, [kal(x)] ) = Y anx™,

In(X) =0

~ _ thl(x) _ " 2m
h(t>—Hu[ on(%) } pn(X)—W;bmx ,

whereﬂx € I@Jr;am, bn € R, Ym; ag, an, bo, by Z0; n > 1.
If k), h(t), f(t) € Lo(Ry,tdt), Rev > —1/2, Reu > —1/2. Then the
formula

80 = 21" buSu (o ¥ fu) (0. 1eRy

m=0

defines almost everywhere a function g(t) € Lr(Ry, tdt). Moreover, the inversion
formula

FO = Y0 S (b ¥ g) @, reRy

m=0
holds almost everywhere.

Now we consider some examples of integral transforms with unsymmetrical
kernels related to polyconvolutions (2.5)—(2.6). Each of these transforms is a linear
integral equation and the inversion formula is the solution of this equation.

S Examples

Here t € Ry, the operator S,,,, has been introduced above (see formula (4.1)),

d> 1d

S1y = — .
W= et e

A function f (¢) satisfies conditions of Theorems 4.1-4.6.
We use the following denotations for Bessel functions [6, 7]:

e J,(2) is the Bessel function of the first kind of order v.

e Y,(z) is the Bessel function of the second kind of order v, also called the
Neumann function.

e [,(z) is the modified Bessel function of the first kind of order v.
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e K,(z) is the modified Bessel function of the second kind or the Macdonald
function of order v.

. Hv(l)(z) is the Bessel function of the third kind of order v, also known as the
Hankel function of the first kind.

In first examples we consider the case n = 1 and we use the denotations 1 (x) =
r(x) and pi(x) = p(x).

Example Letk; = 1, hy = 1, r(x) = a> + x> and p = b* + x? then (see [31],
formula 2.12.4.28)