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Preface

This volume Transmutation Operators and Applications consists of invited papers
gathered in the following three parts:

• Part I. Transmutations, Integral Equations, and Special Functions.
• Part II. Transmutations in ODEs, Forward and Inverse Problems.
• Part III. Transmutations for Partial and Fractional Differential Equations.

The papers in the volume are contributed by experts in transmutation theory and
related topics and demonstrate the vitality and importance of this theory and its rich
connections with applications in pure mathematics and applied sciences.

Given below is the list of all contributions followed by short abstracts to each
paper.

Part I: Transmutations, Integral Equations, and Special Functions

• Vladislav V. Kravchenko (Mexico), Sergey M. Sitnik (Russia). Some recent
developments in the transmutation operator approach.

This is an editorial introduction paper. It introduces basic notions and results
of transmutation theory and gives a brief historical survey with some important
references.

• Amin Boumenir, Vu Kim Tuan (USA). Transmutation operators and their appli-
cations.

The authors approach the subject of transmutations from the operator theoretic
point of view and use them to compare general differential operators and Krein’s
type of strings. They also examine their existence, construction, and various
applications to inverse and computational spectral theory.

• Lyubov Britvina (Russia). Hankel generalized convolutions with the associated
Legendre functions in the kernel and their applications.

This investigation is devoted to finding the existence conditions, bound-
ary properties, and applications of convolution operators for the ν-th order

v



vi Preface

Hankel transform

Hν[f ](x) =
∞∫

0

f (t)Jν(xt) t dt , x ∈ R+ .

The generalized convolutions defined by the Parseval type equalities

Hν[h1](x) = x−νHμ[f ](x)Hμ[g](x) ,
Hμ[h2](x) = x−νHν[f ](x)Hμ[g](x)

are considered in spaces L1(R+,
√
tdt) and L2(R+, tdt). Properties and esti-

mates for the convolution kernel are investigated. Also integral operators are con-
sidered related to generalized convolutions for the Hankel transform Hν[f ](x).
Watson’s type theorems for convolution operators are proved, and integral
operators with nonsymmetric kernels are studied. Some applications to solving
integral equations are given.

• Djurdje Cvijović (Serbia), Tibor K. Pogány (Croatia). Second type Neumann
series related to Nicholson’s and to Dixon–Ferrar formula.

The second type Neumann series are considered whose building blocks are
Nicholson’s and to the Dixon–Ferrar formulae for J 2

ν (x) + Y 2
ν (x). Related

closed-form double definite integral expressions are established by using the
associated Dirichlet’s series Cahen’s Laplace integral for the Nicholson’s case.
However, using Dixon–Ferrar formula a double definite integral expression is
again obtained. Certain open problems are posed in the last section of the chapter.

• Sh. T. Karimov (Uzbekistan), S. M. Sitnik (Russia). On some generalizations of
multidimensional generalized Erdélyi–Kober operators and their applications.

The authors investigate the composition of a multidimensional generalized
Erdélyi–Kober operator with differential operators of high order. In particular,
with powers of the differential Bessel operator. Applications of proved properties
to solving the Cauchy problem for a multidimensional polycaloric equation with
a Bessel operator are shown. An explicit formula for solving the formulated
problem is constructed. In the appendix, we briefly describe a general context for
transmutations and integral transforms used in this paper. Such a general context
is formed by integral transforms composition method (ITCM).

• D. B. Karp (Vietnam, Russia), E. G. Prilepkina (Russia). Alternative approach to
Miller–Paris transformations and their extensions.

The paper deals with Miller–Paris transformations which are extensions of
Euler’s transformations for the Gauss hypergeometric functions to generalized
hypergeometric functions of higher order having integral parameter differences
(IPD). In our recent work, we computed the degenerate versions of these
transformations corresponding to the case when one parameter difference is equal
to a negative integer. The purpose of this paper is to present an independent
new derivation of both the general and the degenerate forms of Miller–Paris
transformations. In doing so, we employ the generalized Stieltjes transform
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representation of the generalized hypergeometric functions and some partial
fraction expansions. This approach leads to different forms of the characteristic
polynomials; one of them appears noticeably simpler than the original form
due to Miller and Paris. Two extensions are further presented of the degenerate
transformations to the generalized hypergeometric functions with additional free
parameters and additional parameters with negative integral differences.

• S. P. Khekalo, V. V. Meshcheryakov, K. O. Politov (Russia). Transmutation
operators for ordinary Dunkl–Darboux operators.

The study is developed of transmutation operators for differential–difference
operators, analogous to Dunkl operator. The basis for the study of operators’
properties is the intertwining operator and Darboux transformations theories.

• A. A. Larin (Russia). Theorems on restriction of Fourier–Bessel and multidimen-
sional Bessel transforms to spherical surfaces.

The paper deals with problems of Lq -summability with a weight over
spherical surface of Fourier–Bessel and n-dimensional Bessel transforms for
functions from some weighted spaces. The results have applications to PDE
theory. Results of this paper may be applied in transmutation theory, for example,
for estimating solutions of singular B-elliptic PDEs.

• V. I. Makovetsky, S. M. Sitnik, (Russia). Necessary condition for the existence of
an intertwining operator and classification of transmutations on its basis.

The authors study second-order ordinary differential operators with functional
coefficients for all derivatives and the Volterra integral operator with a definite
kernel. Results of the paper establish a hyperbolic equation and additional
conditions that allow one to construct a kernel according to the ODE. The
statements of the paper show the possibility of splitting the ODE into classes
according to the type of the kernel of the Volterra operator. Examples are
considered related to ODE with Pöschl–Teller type potentials, Bessel functions
with complex arguments, and Euler’s relation for hypergeometric functions.

• V. F. Molchanov (Russia). Polynomial quantization on line bundles.
We expand polynomial quantization on G/H to the case when a represen-

tation of the group G on functions on G/H is induced by a character of the
subgroup H . As it is well known, the main content of the representation theory
is based on intertwining operators—intertwining transforms, transmutations. In
this paper, we focus on the Berezin transform. It connects symbols of different
types.

• A. B. Muravnik (Russia). Fourier–Bessel transforms of measures and qualitative
properties of solutions of singular differential equations.

In this paper, we review a number of results about the Fourier–Bessel
transformation of nonnegative functions. For the specified case, weighted L∞-
norms of the spherical mean of |f̂ |2 are estimated by its weighted L1-norms;
note that such a phenomenon does not take place in the general case, i.e., without
the requirement of the nonnegativity of f . Moreover, unlike the classical case
of the Fourier transform, this phenomenon takes place for one-variable functions
as well: weighted L∞-norms of the Fourier–Bessel transform are estimated by
its weighted L2-norms. Those results are applied to the investigation of singular
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differential equations containing Bessel operators acting with respect to selected
spatial variables (the so-called special variables); equations of such kind arise in
models of mathematical physics with degenerative heterogeneities and in axially
symmetric problems. The proposed approach provides a priori estimates for
weighted L∞-norms of the solutions (for ordinary differential equations) and
of weighted spherical means of the squared solutions (for partial differential
equations).

• E. L. Shishkina (Poland). Inversion of hyperbolic B-potentials.
The paper is devoted to the study of the fractional integral operator which

is a negative real power of the singular wave operator generated by Bessel
operator and its inverse using weighted generalized functions. Such operators
are called hyperbolic B-potentials. Boundedness, Green, and inversion formulas
were proved for hyperbolic B-potentials here.

• S. M. Sitnik (Russia), O. V. Skoromnik (Belorussia). One-dimensional and
multi-dimensional integral transforms of Buschman–Erdélyi type with Legendre
functions in kernels.

This paper consists of two parts. In the first part we give a brief sur-
vey of results on Buschman–Erdélyi operators, which are transmutations for
the Bessel singular operator. Main properties and applications of Buschman–
Erdélyi operators are outlined. In the second part of the paper we consider
multi-dimensional integral transforms of Buschman–Erdélyi type with Legendre
functions in kernels. Complete proofs are given in this part, main tools are based
on Mellin transform properties and usage of Fox H -functions.

• Vladimir B. Vasilyev (Russia). Distributions, non-smooth manifolds, transmuta-
tions, and boundary value problems.

The author discusses the problem of constructing the theory of pseudo-
differential equations on manifolds with a non-smooth boundary. Using special
factorization principle and transmutation operators, we consider some general
boundary value problems for elliptic pseudo-differential equations in canonical
non-smooth manifolds.

Part II: Transmutations in ODEs, Forward and Inverse Problems

• Sergey Buterin (Russia). On a transformation operator approach in the inverse
spectral theory of integral and integro-differential operators.

A brief survey is given on using transformation operators in the inverse
spectral theory of integral and integro-differential operators possessing a con-
volutional term to be recovered. The central place of this approach is occupied
by reducing the inverse problem to solving some nonlinear equation, which can
be solved globally. We illustrate this scheme on several examples, among which
there are: one-dimensional perturbation of the convolution operator, Sturm–
Liouville type integro-differential operators and an integro-differential Dirac
system.

• Ahmed Fitouhi, Wafa Binous (Tunisia). Expansion in terms of appropriate
functions and transmutation.



Preface ix

This work presents and summarizes the main steps of the work of Fitouhi et al.
on the expansions in series of appropriate functions, namely the Bessel functions
of the first kind for second-order differential Bessel perturbed operators. By
changing functions or variables, we can reduce the operators associated with
certain polynomials and special functions to the operators considered like the
Jacobi polynomials and the Whittaker functions. Taking into account that the
principal part of these operators is closely related to the function of Bessel and
that the latter verify recursive relations, we show that their eigenfunctions can be
developed in series of Bessel functions which induce two integral representations
of Mehler and Sonine type. These representations suggest to define transmutation
operators with the second derivative operator for the first one and with the Bessel
operator for the second. This new approach is different from that studied by
Levitan, Marchenko, Sitnik, and many other authors. It allows in particular to
give a series development of the kernels of the transmutation operator and its
inverse. In the same direction, further work on the expansion in polynomials
of Laguerre and Gegenbauer concerning the perturbed operators with discrete
spectrum operators has been the subject of other works but the study of related
transmutations is not up to date.

• A.V. Glushak (Russia). Transmutation operators as a solvability concept of
abstract singular equations.

One of the methods of studying differential equations is the transmutation
operators method. Detailed study of the theory of transmutation operators
with applications may be found in the literature. Application of transmutation
operators establishes many important results for different classes of differential
equations including singular differential equations with the Bessel operator

Bk = d2

dt2
+ k

t

d

dt
, k ∈ R.

For example, singular PDE named Euler–Poisson–Darboux equation (EPD) has
the form

∂2u(t, x)

∂t2
+ k

t

∂u(t, x)

∂t
= �u(t, x), k > 0, x ∈ R

n,

where � is the space-variable Laplace operator. In previous papers, singular
EPD equation was reduced to a simpler wave equation (with k = 0) using the
appropriate transmutation operator. In this case, the formulas for the solution are
written using spherical means acting by spatial variables.

In this paper, transmutation operators are used in more general case when in
EPD equation the space-variable Laplace operator is replaced by some abstract
operator acting in Banach space. Also some other abstract singular equations will
be studied by this method.

• Ilyes Karoui, Wafa Binous, Ahmed Fitouhi (Tunisia). On the Bessel–Wright
operator and transmutation with applications.
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In this paper, we summarize and complete the study of the Bessel–Wright
operator and the transmutation operator recently introduced by A. Fitouhi with
coauthors. Special motivation is given for the translation operator and the wavelet
transform and for the resolution of the associated wave and heat equation.

• L. A. Khvostchinskaya (Belorussia). On a method of solving integral equations
of Carleman type on the pair of segments.

The method is considered to solve integral equations of Carleman type on
the pair of adjacent and disjoint segments. The problem is reduced to boundary
problem of Riemann with piecewise constant matrix and four and five singular
points. The solution is expressed via the solution of a differential equation of the
Fuchs class in which it was possible to define all the parameters.

• S. M. Sitnik, O. Yaremko, N. Yaremko (Russia). Transmutation operators and
boundary value problems in mechanics.

Transmutation operators method is used to solve and study boundary value
problems. In this paper, several ways to obtain transformation operators are
considered: the finite integral transforms, Neumann series, the Fourier trans-
forms, and reflection techniques. The finite integral transform technique leads
to solution in the form of a composition of the Fourier sine transform and inverse
finite integral transform. The Neumann series technique implies decomposition
of the solution in power series of the shift operator. The Fourier transform
technique provides transition to the Fourier images and comparison with the
model boundary value problem. Reflection technique involves a consistent
approach to the solution as a reflection from the borders. In all cases, the solution
of the boundary value problem is obtained as an expansion in the solutions of
the model boundary value problem. In some cases, the sum of a series can be
calculated in elementary functions. New formulas have been found for solving
the Dirichlet problem in a three-dimensional layer.

• V. A. Yurko (Russia). Solution of inverse problems for differential operators with
delay.

Non-self-adjoint second-order differential operators with a constant delay are
studied. We establish properties of the spectral characteristics and investigate the
inverse problem of recovering operators from their spectra. For this nonlinear
inverse problem, the uniqueness theorem is proved and an algorithm for con-
structing the global solution is provided.

Part III: Transmutations, Integral Equations, and Special Functions

• M. Al-Kandari (Kuwait), L. A.-M. Hannaa, Yu. F. Luchko (Germany). Transmuta-
tions of the composed Erdélyi-Kober fractional operators and their applications.

This chapter provides a survey of an important class of transmutations for the
composed Erdélyi–Kober fractional operators and some of their applications. The
transmutations are given in a closed form as the generalized Obrechkoff–Stiltjes
integral transforms. They translate the composed Erdélyi–Kober fractional opera-
tors to multiplication with a power function. These transmutations can be applied
for treating the linear fractional integro-differential equations containing both the
right- and the left-hand side Erdélyi–Kober fractional derivatives. The equations
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of this type are subject of active research in fractional calculus of variations
and by determination of the scale-invariant solutions of the partial differential
equations of fractional order to mention only a few of many relevant research
areas.

• V. E. Fedorov, Aliya A. Abdrakhmanova (Russia). Distributed order equations in
Banach spaces with sectorial operators.

We study the Cauchy problem for a class of solved with respect to the
distributed Gerasimov–Caputo derivative inhomogeneous equations in Banach
spaces with a linear unbounded operator, generating an analytic in a sector
resolving family of operators. The unique solvability theorem for the Cauchy
problem was proved; the form of the solution is found. These results were applied
to the research of the Cauchy problem and the Showalter–Sidorov problem for
linear inhomogeneous equations in Banach spaces with a degenerate operator
at the distributed order derivative. In the case of the generation by the pair of
operators (at unknown function and its distributed order derivative) of an analytic
resolving family of the corresponding degenerate homogeneous equation, we
obtain the theorems of the existence of a unique solution to such problems and
derive the form of the solution. Abstract results for the degenerate equation are
used for research of initial boundary value problems as to their unique solvability
for a class of distributed order in time equations with polynomials of self-adjoint
elliptic differential operator with respect to the spatial variables.

• Mark M. Malamud (Russia). Transformation operators for fractional order
ordinary differential equations and their applications.

The survey is concerned with triangular transformation operators for frac-
tional order α = n − ε ordinary differential equations. We discuss the
existence of transformation operators in the case of holomorphic coefficients.
Similarity between such operators and the simplest fractional differentiationDα0
is discussed too.

Applications to the unique determination of the operator from n spectra of
boundary value problems are given. Applications to the completeness property
of certain boundary value problems for such equations is discussed too.

• Marina V. Plekhanova, Guzel D. Baybulatova (Russia). Strong solutions of
semilinear equations with lower fractional derivatives.

We find conditions of a unique strong solution existence for the Cauchy prob-
lem to solved with respect to the highest fractional Gerasimov–Caputo derivative
semilinear fractional order equation in a Banach space with nonlinear operator,
depending on the lower Gerasimov–Caputo derivatives. Then the generalized
Showalter–Sidorov problem for semilinear fractional order equation in a Banach
space with a degenerate linear operator at the highest order fractional derivative is
researched in the sense of strong solution. The nonlinear operator in this equation
depends on time and on lower fractional derivatives. The corresponding unique
solvability theorem was applied to study of linear degenerate fractional order
equation with depending on time linear operators at lower fractional derivatives.
Applications of the abstract results are demonstrated on examples of initial-
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boundary value problems to partial differential equations with time-fractional
derivatives.

• I. P. Polovinkin, M. V. Polovinkina (Russia). Mean value theorems and properties
of solutions of linear differential equations.

This paper describes an accompanying distributions technique that allows
to obtain mean value formulas for linear homogeneous partial differential
equations. One of these formulas can be interpreted as a generalization of the
Asgeirsson principle for the string vibration equation into the case of an arbitrary
natural order. In addition, this mean value formula is an exact difference scheme
for a two-dimensional linear homogeneous equation with a symbol factorized up
to linear factors.

• Arsen Pskhu (Russia). Transmutations for multi-term fractional operators.
In this paper, we construct a transmutation operator for fractional multi-

term differential operators. The constructed operator intertwines multi-term
differential operators and the operator of first-order differentiation and allows
us to find explicit representations of solutions for initial and boundary value
problems for fractional multi-term evolution type differential equations. As an
example, we find solutions to a boundary value problem for the multi-term
fractional diffusion equation in an unbounded domain.

• E. L. Shishkina (Poland), S. M. Sitnik (Russia). Fractional Bessel integrals and
derivatives on semi-axes.

In this paper, we study fractional powers of the Bessel differential operator.
The fractional powers are defined explicitly in the integral form without the use
of integral transforms in its definitions. Some general properties of the fractional
powers of the Bessel differential operator are proved and some are listed. Among
them are different variations of definitions, relations with the Mellin and Hankel
transforms, group property, evaluation of resolvent integral operator in terms of
the Wright, or generalized Mittag–Leffler functions. At the end, some topics are
indicated for further study and possible generalizations. Also the aim of the paper
is to attract attention and give references to not widely known results on fractional
powers of the Bessel differential operator. This class of fractional operators is in
close connection with transmutation theory and classic transmutational operators.
We also study connections of Bessel fractional operators with different kinds of
integral transforms.

• Marina V. Shitikova (Russia). The fractional derivative expansion method in
nonlinear dynamics of structures: a memorial essay.

The history of formulation of the efficient method for studying the nonlinear
dynamic response of structures, damping features of which depend on natural
frequencies of vibrations, is presented. This technique is the modified version
of the method of multiple scales. This memorial essay is dedicated to the bright
memory of two great scientists, Ali Hasan Nayfeh and Yury Rossikhin, who had
gone away one after another in 2 days, March 27 and 29, 2017.

• N. V. Zaitseva (Russia). Boundary value problem with integral condition for the
mixed type equation with a singular coefficient.
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We study the boundary value problem for the mixed type equation with a
singular coefficient and nonlocal integral first-kind condition. We establish the
uniqueness criterion and prove the solution existence and stability theorems. The
solution of the problem is constructed explicitly, and the proof of convergence of
the series in the class of regular solutions is derived.

Queretaro, Mexico Vladislav V. Kravchenko
Belgorod, Russia Sergei M. Sitnik
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Some Recent Developments
in the Transmutation Operator Approach

Vladislav V. Kravchenko and Sergei M. Sitnik

Abstract This is a brief overview of some recent developments in the transmutation
operator approach to practical solution of mathematical physics problems. It
introduces basic notions and results of transmutation theory, and gives a brief
historical survey with some important references. Mainly applications to linear
ordinary and partial differential equations and to related boundary value and spectral
problems are discussed.

Linear second order differential equations arise in innumerable models and prob-
lems of mathematics, physics, engineering, chemistry, biology and even social
sciences. While linear ordinary differential equations of first order are easily solved,
and the method of their solution is taught to students even of specialities not
particularly close to mathematics, the situation of linear ordinary second order
differential equations with variable coefficients is pretty much different. No general
method for their solution in a closed form is known. On one hand this resembles
the situation that had been occurring throughout centuries that separated the full
understanding by the antique mathematicians of the algebraic quadratic equations
from the epoch of N. Tartaglia, G. Cardano and L. Ferrari when finally algebraic
equations of third and fourth orders succumbed to the efforts of mathematicians. On
the other hand, the problem of a closed form solution of linear ordinary second order
differential equations with variable coefficients is not even contemplated among
the most important mathematical problems (of the century or millennium), perhaps
because it is not expected to be solved ever.

One of the approaches used at all times is to reduce the difficult problem to a
simpler one. Since linear second order equations with constant coefficients admit
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such a closed-form solution, a natural idea is to relate solutions of the equation with
constant coefficients to solutions of the equation with variable coefficients via an
operator which is called a transmutation operator. Consider the second order linear
differential expression

L := − d2

dx2 + q(x) (1)

with q being an L2-function defined on a finite interval. The equation

Ly(x) = λy(x), λ ∈ C (2)

is called the one-dimensional Schrödinger equation or very often the Sturm–
Liouville equation, taking into account that a large variety of linear ordinary second
order equations reduce to this form by a Liouville transformation.

A transmutation operator is sought to relate L to the simplest linear second order

expression B := − d2

dx2 by the formula

LT = TB.

If T is linear and invertible its knowledge allows one to solve (2) at least formally.
Indeed, one can look for a solution of (2) in the form y = T v, where v is a solution
of the equation Bv = λv (whose general solution is of course v(x) = c1 sin

√
λx +

c2 cos
√
λx). Then Ly = LT v = T Bv = λT v = λy, thus y is a solution of (2).

This idea in the theory of linear differential equations appeared in 1938 in the
work [18] by J. Delsarte and later on it was developed in [1, 8–11, 19, 29, 47–
51, 60, 62] and in many other publications. In particular, for Eq. (2) with the
Sturm–Liouville operator (1) in [53] it was proved that such an operator T exists and
even possesses some wonderful properties. Namely, it can be realized in the form of
a linear Volterra integral operator of second kind with a continuous integral kernel.
Hence T is invertible and its inverse T −1 admits the same form of a linear Volterra
integral operator of second kind. Additionally, such T can be chosen to preserve the
initial conditions fulfilled by the solutions. In [53] also applications to generalized
positive definite functions were proposed. Similarly in [46] such transmutations
were constructed on semi-axis with applications to inverse and scattering problems.
Also transmutations for the Bessel operator

Bc := d2

dx2 + c

x

d

dx
(3)

of Sonine and Poisson types were introduced into the theory (cf. [8–11, 29, 33, 49,
62] together with transmutations for the permuted Bessel operator

L := d2

dx2 + c

x

d

dx
+ q(x) (4)
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which were widely applied, cf. [62–64]. A new class of Buschman-Erdélyi trans-
mutations was studied in [29, 59, 61, 62]. For applications to special radial
Schrödinger equation and construction of Jost solutions cf. [26, 27]. A general
method for constructing transmutations from basic integral transforms called Inte-
gral Transform Composition Method (ITCM) was developed in [22, 28, 29, 62].
Transmutations for problems with Stark potentials were considered in [25] and
with quantum oscillator potential in [52]. Interesting problems in transmutation
theory in connection with fractional powers of Bessel operators were studied in
[58]. In papers of E. Shishkina transmutations were applied to Euler–Poisson–
Darboux equations [24, 57] and to the potential theory [54–56]. Applications of
transmutations to problems in mechanics were considered in [68]. Connections of
transmutation theory and generalized analytic functions were studied in [3, 35, 67].
Starting from the paper of V. Stashevskaya [64] a line of studying transmutations
based on Paley–Wiener theory was developed in [13, 65, 66]. Applications of Sonine
and Poisson type transmutations to pseudo differential and PDE equations were
considered in [29, 33]. Applications to hyper-Bessel equations based on Obreshkov
transform were studied in [20, 34]. Special representations of transmutation kernels
via Bessel function series were developed in [14].

An important property of the Volterra-type transmutation operator related to (1)
or (4) consists in the fact that the coefficient q often called the potential, can be easily
found whenever the integral kernel of the transmutation operator T happens to be
known. This together with other attractive properties converted the transmutation
operators into one of the main theoretical tools of spectral theory and especially of
the theory of inverse spectral problems developed in the works of V. A. Marchenko,
I. M. Gel’fand and B. M. Levitan and of many other mathematicians. During that
classical period in transmutation theory many famous problems were studied with
the aid of this technique, among them: the inverse problem by a spectral function
data via the Marchenko equation, the inverse scattering problem by a scattering data
via the Gelfand–Levitan equation, Gelfand–Levitan trace formulas and many other.
We refer to the books [1, 8–10, 23, 47, 48, 50, 51, 69] presenting this important and
extremely beautiful piece of modern mathematics.

Attempts to convert the transmutation operators of this kind into practical tools
for solving different problems of mathematical physics have been made for decades.
Many applications to problems of mathematical physics were considered in [8–
11]. We mention a series of publications of R. Gilbert with coauthors (referring
to [2] and references therein) in which transmutation operators were used for
solving acoustic wave propagation problems in inhomogeneous media, the work
of D. Colton (see [15]) in which with the aid of transmutation operators complete
systems of solutions for parabolic PDEs with variable coefficients were introduced
and applied to solution of initial-boundary value problems. In those works the
integral kernels of the transmutation operators were computed numerically by
the successive approximation method whose implementation complicates since
the iterations involve two-dimensional integrals. In [4] the transmutation operator
kernel was approximated by a partial sum of its trigonometric series, however based
on this method solution of linear ODEs does not seem practical.
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In a series of recent publications [5–7, 12, 30, 32, 41, 44, 45] the idea from [2] and
[15] to obtain complete systems of solutions of PDEs with variable coefficients as
images of complete systems of solutions of PDEs with constant coefficients under
the action of an appropriate transmutation operator was further developed based on
the observation known since the work of M. K. Fage (see the book [21]) and called in
[7] the mapping property of the transmutation operator, which indicates what are the
images of integer nonnegative powers of the independent variable under the action
of the transmutation operator. They result to be so-called formal powers arising from
spectral parameter power series (SPPS) representations of solutions of linear ODEs
(see [31, 38]) and for their computation an efficient recurrent integration procedure
is developed. Thus, some complete systems of solutions for classes of PDEs can
be constructed without knowledge of the transmutation operator itself but simply
computing the formal powers.

Another advancement in the efficient construction of the integral transmutation
kernels was reported in [39, 40, 42, 43] for transmutation operators with boundary
conditions in the origin (according to the terminology used by B. M. Levitan), and in
[17, 37] for the transmutation operators with boundary conditions at infinity. Based
on the proposed representations for the integral transmutation kernels new practical
and efficient methods were developed for solution of forward [17, 39, 40, 43] and
inverse spectral and scattering problems [16, 36, 37]. In the case of the forward
problems large sets of spectral data can be computed with a nondeteriorating
accuracy due to the possibility of convenient uniform estimates for the approximate
solutions. Meanwhile the approach developed for solving the inverse problems leads
to a direct reduction of the problem to a corresponding system of linear algebraic
equations. This new and promising area of the transmutation operator theory and
applications is still in its beginning, attracting attention of researchers from different
applied fields.

In general, the diversity of the topics associated with the transmutation operator
theory and, in particular, of those considered in the present volume reveals the
importance of the transmutation operators in a large number of fields as well as
their intrinsic interconnections and applications.
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Transmutation Operators and Their
Applications

Amin Boumenir and Vu Kim Tuan

Abstract We approach the subject of transmutations from the operator theoretic
point of view and use them to compare general differential operators, and Krein’s
type of strings. We also examine their existence, construction, and their various
applications to inverse and computational spectral theory.
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1 Introduction

The idea of transmutation operators or transformation operators V such that

L2V = VL1, (1)

where Li are differential operators goes back to Delsartes, Gelfand, Levitan,
Marchenko, Faddeev, et al. in the early 1950s, who established some fundamental
ideas. In this survey we recall the main results obtained by the authors around this
subject, with a focus on the operator and spectral theory point of view and with
applications to inverse spectral problems as well as computational spectral theory.
Note that relation (1) does not mean that the operatorsL1 and L2 are similar as their
spectra may be totally different.

In all that follows, we denote by Li, for i = 1, 2, self-adjoint operators acting in
the separable Hilbert spaces Hi, and usually Li are differential operators. Assume
that their spectra σi are simple, and denote their “eigenfunctions” by yi(λ), i.e.

Liyi(λ) = λyi(λ) for λ ∈ σi. (2)
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One easy way to define a transmutation V, is by pairing their eigenfunctions

y2(λ) = Vy1(λ) for λ ∈ σ1 ∩ σ2. (3)

In what space would (3) hold will be clarified below, as eigenfunctionals yi(λ)
would exist only when λ ∈ σi , and yi (λ) ∈ Hi only when λ is an eigenvalue,
and yi (λ) /∈ Hi if λ is in the continuous part of the spectrum.

We shall adopt the following definition for a transmutation

Definition 1 We say that V is a transmutation L2 → L1 if

[i] V : H1 −→ H2 and Dom(V ) = H1
[ii] The set 	 := {f ∈ Dom(V ) and L1f ∈ Dom(V )} is dense in H1

[iii] L2V (f ) = VL1 (f ) holds for any f ∈ 	.
The above definition agrees with the definition of a transformation operator as

given in [60], except for its boundedness. Below we examine the questions of
existence, reconstruction, and domains of these transmutations. When a section is
dealing with one operator only we shall use L instead of Li.

If the operator V is invertible, then L2 = VL1V
−1 and this helps reconstruct the

operator L2 from the knowledge of both L1 and V. This idea became an essential
tool in the solution of the inverse spectral problem by the Gelfand Levitan theory, see
[46, 61, 64]. Further concepts and applications of transmutations can be found in the
books by Begehr and Gilbert, Carroll, Katrakhov and Sitnik, Levitan, Marchenko,
and Trimeche, to name a few, see [4, 38–41, 52, 59, 60, 63, 64, 70, 72].

We briefly outline the main sections in this survey. Section 2 is about the
existence and reconstruction of transmutations, Sect. 3 is about transmutations
between two Krein strings, and finally Sect. 4 is devoted to their applications in
the area of differential equations and spectral theory.

2 Existence and Construction of Transmutations

2.1 Classical Transmutations

It is well known that when dealing with the Sturm Liouville operators

L2(f )(x) =
{

−f ′′(x)+ q(x)f (x), x ≥ 0,

f ′(0)− hf (0) = 0,
and L1(f ) =

{
−f ′′(x), x ≥ 0,

f ′(0) = 0,

(4)
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then, for q ∈ L1,loc[0,∞), and q(x), h ∈ R, there exists a Volterra type
transmutation, V = 1 + K, that maps their eigensolutions

y2(x, λ) = cos
(
x
√
λ
)

+
∫ x

0
K(x, t) cos

(
t
√
λ
)
dt. (5)

In case we change the boundary conditions in (4) to f (0) = 0, then the pairing
between the normalized eigensolutions is also a Volterra type integral operator

y2(x, λ) =
sin

(
x
√
λ
)

√
λ

+
∫ x

0
L(x, t)

sin
(
t
√
λ
)

√
λ

dt. (6)

Recall that when Fadeev condition holds,
∫ ∞

0 (1 + x) |q(x)|dx < ∞, see [42, 75],
we have Jost solutions

y2(x, λ) = exp
(
ix

√
λ
)

+
∫ ∞

x

H(x, t) exp
(
it

√
λ
)
dt. (7)

If it is also known that when the kernels K and L are C2 smooth, they additionally
satisfy a system of partial differential equations, for example

⎧⎨
⎩
Kxx(x, t)−Ktt (x, t) = q(x)K(x, t), 0 < t < x,
K(x, x) = h+ 1

2

∫ x
0 q(t)dt,

Kt (x, 0) = 0.
(8)

We recall the following proposition that can be found in [60, 61, 64, 65].

Proposition 2 Assume thatK(x, t) ∈ C2, thenK is the kernel of the transmutation
(5) if and only if it is a solution of (8).

However the smoothness adds more restrictions on the potential q. Below we
look for alternative ways to show the existence of the kernels K and L in (5) and
(6).

2.2 Transmutations by Paley–Wiener Theorem

One can prove the existence of the kernel L in (6) by using the Paley–Wiener
theorem, instead of solving the hyperbolic system such as (8) which is much more
difficult and also requires smoothness. Recall that

PWx =
{
F entire:

∫ ∞

−∞
|F(λ)|2 dλ <∞ and F (λ) = O

(
e|Imλ|x

)}
, x > 0,

(9)
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then the Paley–Wiener theorem states, [78]

F ∈ PWx ⇔ F (λ) =
∫ x

−x
f (t)e−itλdt, where f ∈ L2 (−x, x) . (10)

Let the normalized eigensolution y (x, λ) of (4) with y(0, λ) = 0, i.e. h = ∞, be
the solution of the IVP

{−y ′′ (x, λ)+ q(x)y (x, λ) = λy (x, λ) ,
y (0, λ) = 0 and y ′ (0, λ) = 1,

(11)

and so y is also a solution of the integral equation

y(x, λ2) = sin (xλ)

λ
+

∫ x

0

sin ((x − t) λ)
λ

q(t)y(t, λ2) dt. (12)

Define the Picard iterations by

f0(x, λ) = sin (xλ)

λ
,

fn(x, λ) =
∫ x

0

sin ((x − t) λ)
λ

q(t) fn−1(t, λ)dt for n ≥ 1,

to obtain, [42], that for each x > 0,

|fn (x, λ)| ≤ C x

1 + |λ| x e
|Imλ|x 1

n!
(∫ x

0

t

1 + |λ| t |q(t)| dt
)n
,

which means that the solution of (12), and also (11), is given by the sum

y(x, λ2) =
∑
n≥0

fn (x, λ) , (13)

which converges absolutely and uniformly in any compact domain of the complex
plane provided xq(x) ∈ L1,loc[0,∞). It is readily seen that from (13) we have

λy(x, λ2)− sin (xλ) = O
(

1

|λ|
)

and λy(x, λ2)− sin (xλ) = O
(
e|Imλ|x

)
,

which, by (9), implies that λy(x, λ2) − sin (xλ) ∈ PWx and by (10), and the
fact that λy(x, λ2) − sin (xλ) is an odd function of λ, we have the existence of
L(x, .) ∈ L2 (0, x) such that

λy(x, λ2)− sin (xλ) =
∫ x

0
L(x, t) sin (tλ) dt for x > 0 and λ ∈ C,

which is (6).
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Proposition 3 Let y (x, λ) be a solution to (11) where xq(x) ∈ L1,loc[0,∞), then
there exists L (x, .) ∈ L2 (0, x) such that

y(x, λ) =
sin

(
x
√
λ
)

√
λ

+
∫ x

0
L(x, t)

sin
(
t
√
λ
)

√
λ

dt for x > 0. (14)

We now examine the spaces that contain those eigenfunctionals, so that for
example the mapping generated by (14) makes sense.

2.3 Rigged Hilbert Spaces

How to find the domain of a transmutation, for example say V defined by (5)? First
observe that cos(x

√
λ) �∈ H = L2(0,∞) because the spectrum σ1 = [0,∞) is

continuous. It is shown in [47], when λ ∈ σ, then eigenfunctionals would grow
slowly, y(x, λ) = O (

x3/2+ε), whereas when λ /∈ σ, then the eigensolutions would
grow faster. In general, if λ ∈ σ , then there exists a Weyl sequence ξn ∈ H such that
‖ξn‖ = 1 and Lξn − λξn → 0. Obviously if {ξn} happens to be compact in H then
λ belongs to the discrete spectrum, i.e. is an eigenvalue, while if {ξn} is not compact
in H, then λ belongs to the continuous spectrum. Since we are using self-adjoint
operators, there is no residual spectrum.

In 1955, Gelfand and Kostuychenko came up with Gelfand’s Rigged spaces,
to show that eigenfunctions are generalized functions in the case of continuous
spectrum. To this end assume that a subspace �i is dense in Hi and compactly
embedded in Hi, i.e. �i ↪→ Hi , such as for example Sobolev spaces, and is also
invariant under Li , i.e. Li : �i → �i . Then the identification of the dual of the
Hilbert space H ′

i = Hi leads to the triplet

�i ↪→ Hi ↪→ �′
i , (15)

and so a Weyl sequence {ξn} would either converge in Hi and if not, then certainly
in �′

i , see [47]. Therefore it follows that the transmutation V in (3) in fact maps

V : �′
1 → �′

2.

Note that V is also densely defined, since {y1 (λ)}λ∈σ1
is a complete set of

eigenfunctionals in �′
1. Using the duality of the spaces and embedding (15) for

the two spaces we obtain the following

�′
1

V−→ �′
2

∪ ∪
H1 H2

∪ ∪
�1 ←−

V ′ �2
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Note that due to the densities �i
Hi = Hi, the operator V ′ can be extended by

closure, as an operator V ′ : H2 −→ H1. Also the operators Li can be extended to
L̃i : �′

i −→ �′
i , which then allows to see the transmutation relation V L̃1 = L̃2 V,

to hold in the dual spaces. Below we shall show that a dual relation also holds inHi ,
namely L1V

′ = V ′L2, where V ′ is extended to an operator acting H2 −→ H1.

We can easily construct the spaces �i in case σi = R. Use the rigged spaces
S ↪→ L2

i
↪→ S′, where S is the Schwartz space of rapidly decreasing functions, to

define�i = Fi (S) .
The first application of the above diagram using Gelfand’s rigged spaces for

transmutations is the Gelfand-Levitan theory, [5, 47], see Sect. 4.1.

2.4 Transmutation with Distinct Spectra

We now examine (3) in the case σ1 and σ2 are distinct, with the possibility that σ1 ∩
σ2 = ∅. The question is then: How can we still generate a transmutation V and still
make sense of (3)? Recall that in case when A and B are finite matrices satisfying
VA = BV , and if λ ∈ σA, then there exists w �= 0, such that Aw = λw and so
λVw = BVw which means σA ⊂ σB which contradicts the fact that σA ∩ σB = ∅.
To avoid these finite matrices counterexamples, which are possible only when σi are
finite, we shall consider σ1 to be an infinite set with a finite accumulation point, see
[20, 23–25, 47].
In this section we assume

Li is a self-adjoint operator acting in Hi : �i ↪→ Hi ↪→ �′
i ,

with �i ⊂ Dom (Li) , and Li�i ⊂ �i. (16)

Let O be an open connected domain containing the real line. Then σ1 ∪ σ2 ⊂ O.
Consider the space of analytic functions in O

C =
{
F analytic in O : (1 + |λ|) F (λ) ∈ L2

1
∩ L2

2

}
. (17)

We can define an operator E := L2
1

∩ C → L2
2

∩ C, since analytic functions
defined on σ1 can be extended uniquely over σ2. It remains to define the sets
Bi = {f ∈ Hi : Fi (f ) ∈ C}. The following proposition can be found in [24,
Theorem 3.1]

Proposition 4 Let (16) hold, with C given by (17), i = O
(
λβi

)
, with βi ∈ R,

and let σ1 be an infinite set with a finite accumulation point. Then there exists an
operatorW : B1 → B2, defined by

EF1 (f ) (λ) = F2 (Wf ) (λ) for f ∈ B1,
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which transmutes Li ,

L2W = WL1 in B2. (18)

Proof We have the following diagram connecting the various operators and
defining the transmutationW

F1 (f ) ∈ C ⊂ L2
1

E−→ F1 (f ) ∈ C ⊂ L2
2

F1 ↑ ↓ F−1
2

f ∈ B1 −→
W

Wf ∈ B2

.

To see (18) use, for f ∈ B1,

F2 (L2Wf ) (λ) = λF2 (Wf ) (λ) = λEF1 (f ) (λ) = EλF1 (f ) (λ)

= EF1 (L1f ) (λ) = F2 (WL1f ) (λ),

which implies that

WL1f = L2Wf for f ∈ B1.

2.5 Transmutation with Disjoint Spectra

In the previous section we saw how to construct a transmutation in case σ1 had
a finite accumulation point, which was sufficient to imply the uniqueness of the
analytic extension by the operator E. Observe that (18) can also be seen as the
homogeneous part of an operator equation in X

L2X −XL1 = Y, (19)

where Y, L1 and L2 are given operators. When L1 and L2 are bounded operators,
one can prove the existence and uniqueness of a solution X, see [1, 3, 66],

X = 1

2πi

∫


(L2 − λI)−1 Y (L1 − λI)−1 dλ,

and (19) has a unique solution if and only if (18) has the trivial solution only.
Observe that Eq. (18), in the simple case when L1 and L2 are finite matrices
with disjoint spectra, has the trivial solution only W = 0, see also the Sylvester-
Rosenblum theorem [3]. It is also known that if L1 and L2 are unbounded operators,
then uniqueness may not hold, see also examples using the shift operator in[3]. If
we define the linear operator τ12 by

τ12(X) := L2X −XL1,
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then (19) becomes

τ12(X) = Y.

Thus the existence and uniqueness of a solution X to (17) is equivalent to the
invertibility of the operator τ12. It turns out that the spectrum of τ12 always contains
the direct sum σ2 − σ1, [1], and so if σ1 ∩ σ2 �= ∅ then τ12 is not invertible. In other
words, any nontrivial bounded operator solutionW for (18) must belong to the null
space of the operator τ12.We now define the interpolation operator which connects
both transforms F2 (f ) (λ) and F1 (f ) (λ), [20].

Definition 5 J is an interpolation operator, (I.O.) if

[1] J is a densely closed linear operator L2
1

J−→ L2
2

.

[2] The set S := {F ∈ Dom(J ) and λF(λ) ∈ Dom(J )} is dense in L2
1

.
[3] For any F ∈ S we have λJ (F ) (λ) = J (λF) (λ).

If J is a sampling operator in the classical sense then condition [3] λJ (F ) (λ) =
J (λF) (λ) is obvious; as shown by the following simple example of an interpolation
operator.

Example: Let σ1 = Z where Z is the set of integers and σ2 = {λn} where λn /∈ Z

and thus σ1 ∩ σ2 = ∅. The Shannon-Whittaker-Kotelnikov sampling theorem, [78],
allows us to write down a mapping explicitly for F ∈ PWπ

F(μ) :=
∑
n∈Z
F(n)

sin(π(μ− n))
π(μ− n) for

∑
n∈Z

|F(n)|2 <∞. (20)

Thus take the space L2
1

where the measure 1(λ) = [λ] represents the greatest
integer function in λ. If {F(n)}n∈Z is given then {F(λn)}n∈Z can be obtained
explicitly, from

J (F )(λn) :=
∑
k∈Z
F(k)

sin(π(λn − k))
π(λn − k) . (21)

A mapping L2
1

J−→ L2
2

can now be defined by the operation in (21) and by (20)
we in fact have J (F )(λn) = F(λn). It remains to see that condition [3] then holds
since for λF(.) ∈ L2

1
we have

J (λF(.)) (λn) = λnF(λn) = λnJ (F )(λn).

We have the following main result
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Proposition 6 Assume that Li are unbounded self adjoint operators acting in Hi

with spectral functions i for i = 1, 2, let J be a linear operator L2
1

J→ L2
2

and
define

W = F−1
1 J F2. (22)

ThenW is a transmutation operator if and only if J is an I.O.

We end this section by recalling that A. Zayed posed the problem of sampling
at shifted integers, which was solved by constructing a transmutation between
Laguerre operators, see [10].

3 Transmutation for Strings

3.1 Transmutation for Strings

We are concerned now with the existence and representation of transmutation
operators between two Krein strings S1 and S2, which are respectively defined by

{
Si (f ) = − d

dMi(x)
d+
dx+f (x), 0 < x < L,

bf ′(0)− af (0) = 0,
(23)

where dMi(x), for i = 1, 2, are Stieltjes measures, i.e. Mi(x) is a real valued
function, continuous from the right, nondecreasing and normalized byMi(0+) = 0,
[45, 57]. The string Si models the vibration of a string andMi(x) can be seen as its
mass between 0 and x, while L is its total length. The constants a, b are real with
a2 + b2 �= 0, and describe how the strings are tied down at the origin. Observe that
Mi can include jumps and d+

dx+f (x) denotes the usual right derivative at a point x.
Recall that Si , defined by (23) is a symmetric operator, acting in the Hilbert spaces,
see [50, 57]

L2
Mi

=
{
f measurable: ||f ||2Mi =

∫ L

0
|f (x)|2 dMi(x) <∞

}
.

Let us denote by yi the normalized eigensolutions of the initial value problems

{
Si (yi(x, λ)) = λyi(x, λ),
yi(0, λ) = b, y ′

i (0, λ) = a. (24)

Note also that in general, a string such as S1 cannot be reduced to a Sturm–Liouville
equation such as (4), [50]. Also the Liouville transformation cannot be used unless
Mi is C3 and is strictly increasing. For applications and numerical methods of
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the string we refer to [37, 41, 42, 45, 58, 60, 67, 73]. To avoid any ambiguity
about the division by zero, M.G. Krein interpreted the initial value problem
−d
dMi(x)

d+
dx+ y(x) = f (x), y(0) = b, y ′(0) = a, when f ∈ L2

Mi
, as an integral

equation

y(x) = ax + b −
∫ x

0

∫ t

0
f (ξ)dMi(ξ)dt. (25)

For a self-adjoint extension, we need to examine the right end point. In case the
length is infinite, L = ∞, it is well known that operator Si is in the limit point case
at x = ∞ if and only if

∫ ∞
0 x2dMi(x) = ∞, see [57, p. 70]. In all that follows

we assume that we are in the limit point case, otherwise we must add a boundary
condition at x = ∞ to make Si in (23) self-adjoint. In case the length is finite,
L < ∞, the type of a boundary condition to be added at x = L depends on the
presence of a jump of the mass at x = L, which is called “heavy mass”, see [45].

When Si is self-adjoint, its eigensolutions, (24), form the kernel of the transform
associated with Si

L2
Mi

Fi→ L2
i
,

where

Fi (f )(λ) =
∫ ∞

0
f (x)yi (x, λ)dMi(x) and f (x) =

∫
Fi (f )(λ)yi (x, λ)di (λ),

and the spectral function i is non decreasing, right continuous, σi =supp di is
the spectrum of Si and the Parseval relation, for any f, g ∈ L2

Mi
yields

∫ ∞

0
f (x)g(x)dM1(x) =

∫
Fi (f )(λ)Fi (g)(λ)di(λ).

We now introduce a notation used to compare Stieltjes measures, see [35]

d1(λ) = O (d2 (λ)) as λ → ∞,

if for all measurable functions with respect to d1, and d2

∫ ∞

N

|f (λ)| d1(λ) ≤ c
∫ ∞

N

|f (λ)| d2(λ) holds for large N.

The fact that d1 is absolutely continuous with respect to d2, is denoted by
d1 � d2 and means there exists g ∈ L1,loc

2
such that d1(λ) = g(λ)d2(λ).

Similarly d1 �2,loc d2 means that g ∈ L
2,loc
2

while d1 �∞ d2



Transmutation Operators and Their Applications 21

means esssupλ∈supp d2
g(λ) < ∞ and finally the cut-off function is defined by

x+ =
{
x if x ≥ 0
0 if x < 0

.

When integrating functions of two variables with respect to one of the variable, we
shall indicate it by labeling the measure. For example f (x, t) ∈ L2

M1(t)
means

||f (x, t)||2M1(t)
=

∫ ∞

0
|f (x, t)|2 dM1(t) <∞.

In all that follows we assume that the strings in (23) have infinite lengths,
Mi(0+) = 0, L = ∞, and are self-adjoint. To this end we need either

∫ ∞

0
x2dMi(x) = ∞ for i = 1, 2 ( LP case at x = ∞),

or
∫ ∞

0 x2dMi(x) < ∞, limit circle case at x = ∞, but then we must add a
boundary condition there.

The normalized eigenfunctions of Si , see (23) and (25), satisfy the integral
equation

yi(x, λ)− ax − b = −λ
∫ ∞

0
(x − t)+yi(t, λ)dMi(t).

For any fixed x, we have (x − t)+ ∈ L2
Mi(t)

, and so − 1
λ (yi(x, λ)− ax − b) , as its

Fi transform, belongs to L2
i
. Therefore, by the Parseval relation we get

∫
1

λ2
|yi(x, λ)− ax − b|2 di(λ) =

∫ x

0
(x − t)2dMi(t) for x ≥ 0. (26)

Similar relations hold for the transform F2 associated with operator S2 and its
spectral function 2. Using the above relation we have

Proposition 7 For all x ≥ 0 we deduce

(i) 1
λ (yi(x, λ)− ax − b) ∈ L2

i
.

(ii)
∫ 1
λ2 |yi(x, λ)− ax − b|2 di(λ) = ∫ x

0 (x − t)2dMi(t).
(iii) The set 1

λ (yi(x, λ)− ax − b) is complete in L2
i

.

We now prove the existence of a transmutation by pairing between two eigenso-
lutions of S1 and S2

Proposition 8 Assume that d1(λ) = O (d2 (λ)) as λ → ∞, then for each
x > 0 there exists H(x, .) ∈ L2

M1
such that

y2(x, λ) = y1(x, λ)+ λ
∫ ∞

0
H(x, t)y1(t, λ)dM1(t). (27)
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To this end use the fact that

dy+
1 (x, λ) = −λy1(x, λ)dM1(x)

to recast (27) into an operator form

y2(x, λ) = y1(x, λ)−
∫ ∞

0
H(x, t)dy+

1 (t, λ). (28)

To find the domain of the integral operator in (28) that maps y1(., λ)→ y2(., λ),

we need to examine the integrability of the kernel H . For that purpose we have the
following proposition, which by itself is of independent interest.

Theorem 9 Let d1 �∞ d2, then

‖H(x, t)‖M1(t) ≤ c ∥∥(x − t)+
∥∥
M1(t)+M2(t)

. (29)

In all that follows by c we denote a universal constant, that can be distinct in
different places.
In terms of integrals (29) means that

∫ ∞

0
|H(x, t)|2 dM1(t) ≤ c

∫ x

0
(x − t)2 d [M1 +M2] (t).

Corollary 10 If d1 �∞ d2 and dM1 �∞ dM2 then

‖H(x, t)‖M1(t) ≤ c ‖(x − t)+‖M2(t)
. (30)

Thus the norm of H(x, ·) satisfies the inequality

‖H(x, t)‖M1(t) ≤ cx√M2(x).

We now state the converse of Theorem 9.

Theorem 11 Assume that

(i) y2(x, λ) = y1(x, λ)+ λ
∫ ∞

0 H(x, t)y1(t, λ)dM1(t),

(ii) ‖H(x, t)‖M1(t) ≤ c ‖(x − t)+‖M2(t)
,

(iii) dM1 �∞ dM2 ,

then d1 �∞ d2.

Combining Proposition 8, Theorems 9, 11 and Corollary 10 we arrive at

Theorem 12 Let dM1 �∞ dM2 then

y2(x, λ) = y1(x, λ)+ λ
∫ ∞

0
H(x, t)y1(t, λ) dM1(t),

with ‖H(x, t)‖M1(t) ≤ c‖(x − t)+‖M2(t),

if and only if d1 �∞ d2.
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Under the assumption that 1 grows slowly at λ = 0, we can prove the square
integrability of H (·, t) with respect to dM1(x).

Proposition 13 Let d1 �∞ d2 and dM1 �∞ dM2. If moreover,∫ ε
0

1
λ2 d1(λ) <∞ for some ε > 0, then

∫ ∞
0 |H(x, t)|2 dM1(t) ∈ L2

M1(x)
.

Proposition 14 Assume that d1 = O (d2) as λ → ∞, then for each fixed x >
0, f → ∫ ∞

0 H(x, t)f (t)dM1(t) defines a bounded functional on L2
M1

.

We now show that (27) can be used to define an integral operator in L2
M1
. More

precisely we have

Proposition 15 Assume d1 = O (d2) as λ → ∞, d1
d2

∈ L
2,loc
2

, dM1 =
O (dM2) as x → ∞, then the operator L2

M1
→ L2

M1

g →
∫ ∞

0
H(x, t)S1g(t)dM1(t)

is densely defined in L2
M1
.

We now obtain a sufficient condition for the integral operator in (27), which we
denote by H, to be compact

Proposition 16 Assume that d1 �∞ d2, then H is a compact operator from
L2
M1

into L2
M1

if

∫ ∞

0

∫ x

0
(x − t)2 dM2(t)dM2(x) <∞ and

∫ ∞

0

∫ x

0
(x − t)2 dM1(t)dM2(x) < ∞.

(31)

Proposition 17 Assume that dM1 �2,loc dM2 and d1(λ) = O (d2) as λ → ∞.
Then H

∗ : L2
M1

→ L2
M1
, which is defined by

H
∗(f )(t) =

∫ ∞

0
H(x, t)f (x)dM1(x),

is densely defined, and for any f ∈ Co.

3.2 Adding a Potential

We now extend the above construction to include operators, for i = 1, 2, such as

{
Siq(yi )(x) := − d

dMi(x)
d+
dx+ yi(x, λ) + qi(x)yi (x, λ) = λyi(x, λ), 0 < x <∞,

yi (0, λ) = b, y′
i (0, λ) = a,

(32)
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where the potential qi ∈ L
2,loc
Mi

(0,∞). The classical Sturm–Liouville problem

corresponds to particular case whenM1(x) = x, i.e. S1q(yi)(x) := − d2

dx2 yi(x, λ)+
q(x)yi(x, λ) = λyi(x, λ).
Equation (32) is equivalent to

yi(x, λ) = ax + b +
∫ x

0
(x − t) qi(t)yi (t, λ)dMi(t) + λ

∫ x

0
(x − t) yi (t, λ)dMi (t).

(33)

The addition of a potential changes dramatically the spectrum from being mainly
positive to possibly covering the whole real line. Thus the support of the spectral
function is a subset of the real line.

We now show that a transmutation between the strings S1q and S2q exists under
minimal conditions d1(λ) = O (d2(λ)) as λ → ±∞.
Proposition 18 Assume that d1(λ) = O (d2(λ)) as λ → ±∞, then there exists
Hq(x, t) ∈ L2

M1(t)
such that for x ≥ 0

y2(x, λ) = y1(x, λ)+ λ
∫ ∞

0
Hq(x, t)y1(t, λ)dM1(t).

Proposition 19 Assume that limx→0
DM1
Dxα1 = k1 �= 0, limx→0

DM2
Dxα2 = k2 �= 0,

and spectrum of S1 is bounded from below. If 0 < α1 ≤ α2 then there exists
Hq(x, ·) ∈ L2

M1
(0, x) such that for x ≥ 0

y2(x, λ) = y1(x, λ)+ λ
∫ ∞

0
Hq(x, t)y1(t, λ)dM1(t).

Proof We only need to show that conditions of Proposition 18 hold. First when
λ → −∞, d1(λ) = 0 and so the condition d1(λ) = O (d2(λ)) is trivially
verified. However when λ→ ∞, we have two separate cases, see [51]: if

a �= 0 then i(λ) = c1λ
αi

1+αi + o
(
λ

αi
1+αi

)
as λ→ ∞,

a = 0 then i(λ) = c1λ
2+αi
1+αi + o

(
λ

2+αi
1+αi

)
as λ → ∞.

Since 0 < α1 ≤ α2 implies α1
1+α1

≤ α2
1+α2

i.e. d1
d2

≈ cλ
α1−α2

(1+α1)(1+α2) <∞ as λ → ∞.
��

We now present explicit examples which show that the representation of the
transmutations cannot be in general triangular or close to unity, see [48].
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3.3 Examples

Many examples of all kinds of spectra, for various potentials, can be found in
[45, 71]. The purpose of the following examples is to illustrate two essential
facts of transmutations for strings, which makes all the difference from the usual
transmutations for Sturm–Liouville operators (5). The first is that one should have
the parameter λ in the integral. Secondly the upper bound may not be just x as in
the Gelfand–Levitan theory.

Example 1 Let M1(x) = x and M2(x) = ρ2x, a = 1, b = 0, ρ > 1. Then for
x ≥ 0, we have

[S1]

{
− d
dx

d+
dx+ y1(x, λ) = λy1(x, λ),

y1(0, λ) = 1, y ′
1(0, λ) = 0,

and [S2]

{
− d

ρ2dx

d+
t

dx+ y2(x, λ) = λy2(x, λ),

y2(0, λ) = 1, y ′
2(0, λ) = 0.

The eigenfunctionals of the strings are

y1(x, λ) = cos(x
√
λ) and y2(x, λ) = cos(ρx

√
λ) for x ≥ 0,

and their spectral functions, [64], are given by

d1(λ) = 1

π

dλ√
λ+

and d2(λ) = ρ

π

dλ√
λ+
.

Thus by Proposition 18, the transmutation exists

cos(ρx
√
λ) = cos(x

√
λ)+ λ

∫ ∞

0
H(x, t) cos(t

√
λ)dt.

Computing the kernel H, we obtain

H(x, t) = 1

π

∫ ∞

0

1

λ

(
cos

(
ρx

√
λ
)

− cos(x
√
λ)
)

cos
(
t
√
λ
) dλ√

λ

= min

{
ρ + 1

2
x,

∣∣∣∣ρ − 1

2
x + t

∣∣∣∣
}

sign

[
ρ − 1

2
x + t

]

+ min

{
ρ + 1

2
x,

∣∣∣∣ρ − 1

2
x − t

∣∣∣∣
}

sign

[
ρ − 1

2
x − t

]
.

One can verify thatH(x, t) = 0 if t > ρx, butH(x, t) = ρx − t �= 0 if t < ρx, but
close to ρx. Therefore we deduce an explicit form of the type

cos(ρx
√
λ) = cos(x

√
λ)+ λ

∫ ρx

0
H(x, t) cos(t

√
λ)dt. (34)
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Here we notice that the multiplier λ is needed because for any fixed x > 0 we
have cos(ρx

√
λ)− cos(x

√
λ) /∈ L2√

λ+ while the integral on the right hand side

∫ ρx

0
H(x, t) cos(t

√
λ)dt ∈ L2√

λ+ .

Thus the role of λ is to ensure that 1
λ

(
cos(ρx

√
λ)− cos(x

√
λ)
)

∈ L2√
λ+ .

As for the upper bound in the integral (34), it cannot be just x as in the
transmutation used by Gelfand-Levitan. It is easily seen that since the growth type
of cos(ρx

√
λ)−cos(x

√
λ) as a function of

√
λ is ρx, when ρ > 1 the Paley–Wiener

theorem implies that the support of the transform must be included in [−ρx, ρx]
and the fact that the transform is even, reduces it to [0, ρx].
Example 2 Consider transmuting the strings when α, β > 0,

[S1]

{−x−αy ′′
1 (x, λ) = λy1(x, λ), x > 0,

y1(0, λ) = 1 y ′
1(0, λ) = 0,

[S2]

{−x−βy ′′
2 (x, λ) = λy2(x, λ), x > 0,

y2(0, λ) = 1 y ′
2(0, λ) = 0.

Their eigensolutions are the well known Bessel functions

y1(x, λ) = c1(λ)
√
xY 1

2+α

(
2
√
λ

2 + α x
2+α

2

)
and y2(x, λ) = c2(λ)

√
xY 1

2+β

(
2
√
λ

2 + β x
2+β

2

)
.

The spectral functions are [51],

1(λ) ≈ C1λ
α+1
α+2 and 2(λ) ≈ C2λ

β+1
β+2 as λ→ ∞.

This leads to the following conclusion.

Corollary 20 If β ≥ α > 0 then there exists a transmutation such that

y2(x, λ) = y1(x, λ)+ λ
∫ ∞

0
H(x, t)y1(t, λ)t

αdt.

In terms of Bessel functions the above relation becomes

c2(λ)
√
xY 1

2+β

(
2
√
λ

2 + β x
2+β

2

)
= c1(λ)

√
xY 1

2+α

(
2
√
λ

2 + α x
2+α

2

)

+ λc1(λ)

∫ ∞

0
H(x, t)

√
tY 1

2+α

(
2
√
λ

2 + α t
2+α

2

)
tαdt.
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An interesting particular case is when α = 1, i.e. ϕ(x, λ) = cos
(
x
√
λ
)
, thus for

β ≥ 1 we have

c2(λ)
√
xY 1

2+β

(
2
√
λ

2 + β x
2+β

2

)
= cos

(
x
√
λ
)

+ λ
∫ ∞

0
H(x, t) cos

(
t
√
λ
)
dt.

4 Applications

4.1 The Gelfand-Levitan Theory

Since transforms are defined by the eigenfunctionals yi (λ) , we need to use duality
bracket<,>�×�′ , thus for Li we write

Fi (f ) (λ) =< f, yi(λ) >�i×�′
i

and f =
∫

Fi (f ) (λ)yi(λ)di (λ) ,

where i is the spectral measure associated with Li, for i = 1, 2. Recall that i is
a right continuous nondecreasing function, i.e. a Stieljes measure, σi = supp di,
with jumps at the eigenvalues λn defined by

i (λn)− i
(
λ−
n

) = 1

‖yi (λn)‖2
i

.

As the transmutation maps eigenfunctionals, it also induces a map on the transforms

F2 (f ) (λ) =< f, y2(λ) >�2×�′
2
=< f, Vy1(λ) >�2×�′

2
=< V ′f, y1(λ) >�1×�′

1

= F1
(
V ′f

)
(λ) for f ∈ �2. (35)

This leads to the first Gelfand-Levitan theory. Assume that d1 is a locally
absolutely continuous measure with respect to d2, i.e. σ1 ⊂ σ2, and there exists a
g ∈ L1,loc

d2
such that d1 = g(λ)d2, then we have the following proposition, see

[5].

Proposition 21 Assume that V is a transmutation between L1 and L2, defined by
(3), then it satisfies

d1

d2
(L2) = VV ′ in �′

2. (36)

Proof Use Parseval identity to write, for f, g ∈ �2,where (.,.)i is the inner product
in Hi ,
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∫
F1

(
V ′f

)
(λ)F1 (V ′g) (λ)d1 (λ) = (

V ′f, V ′g
)

1 =< f, V V ′g >�2×�′
2
.

On the other hand we have
∫

F1
(
V ′f

)
(λ)F1

(
V ′g

)
(λ)d1 (λ) =

∫
F2 (f ) (λ)F2 (g) (λ)d1 (λ)

=
∫

F2 (f ) (λ)
d1

d2
(λ)F2 (g) (λ)d2 (λ)

=
∫

F2 (f ) (λ)F2

(
d1

d2
(L2) g

)
(λ)d2 (λ)

=
(
f,
d1

d2
(L2) g

)
=< f, d1

d2
(L2) g >�2×�′

2
.

Since f ∈ �2 is arbitrary we deduce (36) which is the nonlinear integral equation in
the Gelfand-Levitan theory. Observe that (36) makes it obvious that V ′ is a bounded
operator H2 −→ H1 if and only if sup d1

d2
(λ) is bounded. This follows from the

fact that V ′ is unitary equivalent to the multiplication operator by
√
d1
d2
(λ) in the

space of transforms.
Note that the operator can also be written as

d1

d2
(L2) f (x) =

∫
F2 (f ) (λ) y2(λ)d1 (λ) = 〈F(x), f 〉 ,

which covers the general case when d1 is not abs-d2.

For example when σ2 ⊂ σ1,we can define the kernel F(x) = ∫
y2 (x, λ) y2 (., λ)

d1 (λ) ∈ �′
2 and the operator

�2 −→ �′
2

f −→ Ff (x) =< f, F(x) > .

Proposition 22 Assume that y2 (λ) in (3) is defined for λ ∈ σ1, and the kernel∫
y2 (x, λ) y2 (., λ)d1 (λ) ∈ �′

2, then we have the factorization

F = VV ′ in �′
2

This factorization is nothing else than the non linear equation in [46, 61, 64, 65].
Given F, the existence of a triangular or Volterra type operator V , simply follows
from how close is F from the identity operator, see the topic of factorization of
operators close to identity in [48].
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4.2 Gelfand-Levitan Revisited

We are now concerned with the conditions for the solvability of the inverse spectral
problem for the singular Sturm–Liouville (S–L) operator

{
L (y) := −y ′′(x, λ)+ q(x)y(x, λ) = λy(x, λ), x ∈ [0,∞),
y ′(0, λ)− hy(0, λ) = 0,

(37)

where q ∈ L1,loc[0,∞), q(x) and h are real. Recall that in the celebrated 1951 paper
by Gelfand and Levitan [46], the necessary and sufficient conditions were stated
separately. To close the gap, in 1953, [55], M.G. Krein announced two necessary
and sufficient conditions for ρ to be a spectral function which he then revised by
adding a third condition in 1957, [56]. Few years later, Gasymov and Levitan in
1964 closed the gap of the 1951 result by showing that two conditions only are
necessary and sufficient for the solvability of the inverse spectral problem. To state
these conditions denote by σ (λ) := ρ(λ) − 2

π

√
λ+ , where λ+ = max (0, λ) and

F1 (f ) (λ) = ∫ ∞
0 f (x) cos

(
x
√
λ
)
dx the classical Fourier cosine transform.

Theorem 23 (Gelfand-Levitan-Gasymov) (G-L-G) For a monotone increasing
function ρ to be a spectral function of (37) where q has m locally integrable
derivatives it is necessary and sufficient that

[A] Existence: For any f ∈ L2(0,∞) with compact support

∫
|F1(f )(λ)|2 dρ(λ) = 0 ⇒ f = 0 a.e. (38)

[B] Smoothness: The sequence of functions �N (x) := ∫ N
−∞ cos

(
x
√
λ
)
dσ (λ) ,

converges boundedly in every finite interval to a function � that has m + 1
locally integrable derivatives and�(0) = −h.

The 1957 M.G.Krein’s result is also stated below.

Theorem 24 (M. G. Krein) In order for ρ to be the spectral function of

{
L (y) := −y ′′(x, λ)+ q(x)y(x, λ) = λy(x, λ), 0 < x < l,
y ′(0, λ)− hy(0, λ) = 0,

for a given l it is necessary and sufficient that

(1) The function�(t) = ∫ ∞
−∞

1−cos
(
t
√
λ
)

λ
dρ(λ), where 0 ≤ t ≤ 2l, is finite and has

two absolute continuous derivatives on every interval [0, r], where r < 2l.
(2) �′(0) = 1.
(3) lim inf

R→∞ sup N (R) /
√
R ≥ l/π , where N(R) represents the number of points in

the spectrum that are also contained in the interval [0, R].
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The 1953 result included only the first two conditions and the third condition was
added in 1957 as a correction. The issue of whether Krein’s type result needed two
or three conditions was settled down by Yavryan, [76], in 1992. He re-examined
Krein’s 1957 result and showed, by using directional functionals, that the third
condition follows from the first two. Thus as in the Gelfand-Levitan-Gasymov
theory only two conditions are needed in Krein’s result. The major differences,
in both theorem is in the required smoothness and whether the measure used is
ρ or σ. We need also to mention that in his book, [64, Theorem 2.3.1, p. 142],
Marchenko has a similar theorem that falls in between Gelfand-Levitan and Krein
theorems, where the smoothness condition is: �(x) =

(
1−cos(λx)

λ2 , R
)

should be

at least three times continuously differentiable. Note here that � uses λ instead of√
λ while R is a distribution, and the reconstructed potential is only continuous. It

is clear that the Gelfand-Levitan-Gasymov paper gives the best smoothness, namely
q ∈ L1,loc(0,∞). The authors revisited the Gelfand-Levitan-Gasymov theorem and
showed that in fact only one, namely the second condition is needed, see [31].

Theorem 25 (Gelfand-Levitan-Gasymov Revisited) For a monotone increasing
function ρ to be the spectral function of a problem (37) where q has m locally
integrable derivatives it is necessary and sufficient that the sequence of functions
�N converges boundedly to a function � that has m + 1 locally integrable
derivatives.

Observe that Yavryan’s proof dealt with Krein’s approach only and covered the
regular case while ours applied the Gelfand-Levitan approach which was for the
singular case. At the end [76], Yavryan pointed out that the proof can be extended
to the half line case but gave no details.

4.3 Transmutation Between Orthogonal Polynomials

Is it possible to transmute an orthogonal polynomial system, o.p.s. for short, into
another o.p.s? In other words, under what conditions can we find a transmutation
operator V such that

qn(x) = V (pn(x)) , n ≥ 0,

where qn(x) and pn(x) form o.p.s. Stirling and Tchebyshev may have been the first
ones who addressed a similar question, where recurrence relations and connection
coefficients were sought between systems of polynomials, see [2]. For example can
we transmute Legendre polynomials into Laguerre or Hermite polynomials, and
what shape would the transmutation V have?

In all that follows P and Q denote two self-adjoint operators acting respectively
in the separable Hilbert spaces HP and HQ. Let us assume that σP = {λn}n≥1 and
σQ = {μn}n≥1 are simple spectra, that is, dim(N(P − λnId)) = dim(N(Q −
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μnId)) = 1 and where P(pn) = λnpn and Qqn = μnqn denote the eigenfunctions
of P and Q for n ≥ 0.

Eigenfunctions expansion for f ∈ HQ and φ ∈ HP leads to

f =
∑
n≥0

α(f, n)qn, φ =
∑
n≥0

β(φ, n)pn,

where α(f, n) := (f, qn)
1

||qn||2 , β(φ, n) = (f, pn)
1

||pn||2 and (., .) is the inner

product on the Hilbert spaces.
We now focus on the case when the spectra are different and have no finite

accumulation points, see [28].
There are several instances where we can still find a relation between o.p.s. and

yet their spectra are disjoint. The Mehler formula exhibits a such situation

qn(θ) := 2

π

∫ θ

0

cos(n+ 1
2 )η√

2 cosη − 2 cos θ
dη, 0 ≤ θ ≤ π.

Indeed, we have a transmutation defined by

F (f ) (θ) := 2

π

∫ θ

0

1√
2 cosη − 2 cos θ

f (η)dη.

The qn(θ) := Pn(cos(θ)), where Pn(x) is the Legendre polynomial of degree n, are
the eigenfunctions of the self-adjoint operator

Q(u) := −1

sin θ

d

dθ

[
sin θ

du

dθ

]
, 0 < θ < π,

acting in L2[(0, π), sin(θ)dθ ]. The second system of eigenfunctions is defined by

pn(x) := cos
(
n+ 1

2

)
x and is associated with the operator

{
P := −d2

dx2 , 0 < x < π,

f ′(0) = f (π) = 0,

which is self-adjoint in L2(0, π). The spectra are given by

σP := {n(n+ 1)}n≥0 , σQ :=
{ (

n+ 1

2

)2
}

n≥0

,

and are obviously disjoint and have no accumulation points.
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Thus let us assume, in general, that we are given two o.p.s generated by two
self-adjoint operators P, Q such that σP �= σQ, and related by an operator V

V (pn) = qn, where n ≥ 0.

We further assume that we can interpolate both spectra, i.e. we can find mappings a
and b such that

a : σP → N

a(λn) = n
b : σQ → N

b(μn) = n.

In other words a is the inverse of mapping n → λn, and similarly for b, see [28]

Proposition 26 Assume that a(λn) = b(μn) = n for n ≥ 0, and Vpn = qn, then
there exists a transmutation V such that

V a(P) = b(Q)V . (39)

Remark The functions a, and b are not always needed. Sometimes we can find a
direct relation between the eigenvalues

δ(λi) = μi,

and consequently (39) reduces to V δ(P) = QV.

Let us denote the linear operator acting in HQ, defined through the Fourier
coefficients

S(Q)f :=
∑
n≥0

‖qn‖2‖pn‖−2α(f, n)qn,

where

f :=
∑
n≥0

α(f, n)qn.

It is clear that

||S(Q)|| = sup
n≥0

‖qn‖2‖pn‖−2.

We now have a factorization result
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Proposition 27 Let V be such that qn = Vpn, then

S(Q) = VV ∗, (40)

where V ∗ is the adjoint of V.

Remark S(Q) is bounded if and only if V is also bounded.

4.3.1 Example

Consider the singular differential operator defined by

x(1 − x)y ′′(x)+ [c − (a + b + 1)x] y ′(x)− aby(x) = 0, 0 < x < 1.

If c > 2, then we are in the limit point case, and its solution is then given by

y(x) = 2F1 (a, b; c; x).

Thus if we choose a or b to be a nonpositive integer then the solution is a polynomial
in x. We now introduce two self-adjoint operators, defined by

Qy(x) :=
[
(1 − x)k1−cxc−1

]−1 (
(1 − x)1+k1−cxcy ′(x)

)′
, 0 < x < 1,

Py(x) :=
[
(1 − x)k2−cxc−1

]−1 (
(1 − x)1+k2−cxcy ′(x)

)′
, 0 < x < 1,

and acting respectively in L2((0, 1), (1 − x)k1−cxc−1 dx) and L2((0, 1), (1 −
x)k2−cxc−1dx), k1 �= k2, and where

L2((0, 1),w(x)dx) :
{
f measurable :

∫ 1

0
|f (x)|2w(x)dx <∞

}
.

It is easily seen that

qn(x) = 2F1 (−n, k1 + n; c; x)

satisfy x(1 − x)y ′′ + [c− (k1 + 1)x]y + n(k1 + n)y = 0 and consequently

Qqn(x) = μnqn(x),

where

μn = −n(n+ k1), n ≥ 0.
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Similarly

pn(x) = 2F1 (−n, k2 + n; c; x)

are eigenfunctions of P, i.e.

Ppn(x) = λnpn(x),

where

λn = −n(n+ k2), n ≥ 0.

We now work out a transmutation. What is the simplest operator V mapping pn →
qn? that is

2F1(−n, k2 + n; c; x)→ 2F1(−n, k1 + n; c; x).

Observe that a hypergeometric function 2F1 (a, b; c; x) is an analytic functions of
its arguments, and since it is a finite sum then

2F1 (−n, k1 + n; c; x) = exp

[
(k1 − k2)

∂

∂b

]
2F1(−n, k2 + n; c; x).

Thus we have the transmutation defined by

V := exp

[
(k1 − k2)

∂

∂b

]
,

which is a differential operator of infinite order. Next we need to define V for at
least a dense subspace of L2((0, 1), (1 − x)k2−cxc−1dx). To this end observe that
we need only to define the action of V on polynomials since they are dense in
L2((0, 1), (1 − x)k2−cxc−1dx).We recall that

f =
n∑
k=0

ckpk (41)

form a dense subspace in L2((0, 1), (1 − x)k2−cxc−1dx) and

Vf =
n∑
k=0

ckqk.
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Thus V is densely defined. The interpolating functions are as follows

a(λn) =
−k2 +

√
k2

2 + 4λn

2
= n,

and

b(μn) =
−k1 +

√
k2

1 + 4μn

2
= n.

Then the transmutation condition

V a(P) = b(Q)V

is translated into the following relation

exp

[
(k2 − k1)

∂

∂b

] −k2 +
√
k2

2 + 4P

2
=

−k1 +
√
k2

1 + 4Q

2
exp

[
(k2 − k1)

∂

∂b

]
.

Remark In case k2 > c − 1, then xn ∈ L2((0, 1), (1 − x)k2−cxc−1dx), and
we could define V directly on polynomials. For example, we can use generating
functions to express xn in terms of 2F1(−n, k2 + n; c; x).

4.4 Direct Reconstruction of the Spectral Function

We now show how we can reconstruct these kernels and also the spectral function,
see [7, 8, 19, 30]. Let y be a solution of

{−y ′′ (x, λ)+ q(x)y (x, λ) = λy (x, λ) ,
y (0, λ) = 1 and y ′ (0, λ) = h, (42)

where q ∈ L1,loc[0,∞) and q(x), h ∈ R. We then have the classical transmutation
and its inverse

y(x, λ) = cos
(
x
√
λ
)

+
∫ x

0
k(x, t) cos

(
t
√
λ
)
dt,

cos
(
x
√
λ
)

= y(x, λ)+
∫ x

0
H(x, t)y(t, λ)dt.
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If we assume that the spectral function d is abs- d
√
λ continuous then we have

π

2

d

d
√
λ
(λ) = 1 +

∫ ∞

0
H(t, 0) cos

(
t
√
λ
)
dt. (43)

Thus to reconstruct d, we only need a method to reconstructH. To this end recall
that it follows from (42), that we also have

y(x, λ) = cos
(
x
√
λ
)

+
∫ x

0

sin
(
(x − t)√λ

)
√
λ

q(t)y(t, λ)dt,

and thus we have a direct connection between H and q,

∫ x

0
H(x, t)y(t, λ)dt = −

∫ x

0

sin
(
(x − t)√λ

)
√
λ

q(t)y(t, λ)dt for λ ∈ C.

(44)

In order to find a formula for H we need to remove the λ from the right hand side.
To this end denote by L = −D2 + q(x) the differential expression, and so we have

Ly(x, λ) = λy(x, λ),

and let

an (x − t) = (−1)n

(2n+ 1)! (x − t)2n+1+ ,

where x+ = x if x > 0 and 0 otherwise. Thus if q ∈ C∞[0,∞), and q(k) (0) = 0
for all k ≥ 0, we can recast (44) as

∫ x

0
H(x, t)y(t, λ)dt = −

∑
n≥0

∫ x

0
q(t)an (x − t) λn y(t, λ)dt

= −
∑
n≥0

∫ x

0
q(t)an (x − t) Lny(t, λ)dt

= −
∑
n≥0

∫ x

0
Ln [q(t)an (x − t)] y(t, λ)dt.

The partial sums do collapse as it is seen from

n∑
k=0

Lk [q(t)ak (x − t)] = Ln+1an (x − t) ,
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and so we deduce that

Ln+1an (x − t) −→ H (x, t) .

Proposition 28 Assume that q ∈ C∞[0,∞), and q(k) (0) = 0 for all k ≥ 0, then

H(x, t) = lim
n→∞ −

(
−D2 + q(t)

)n+1
an (x − t) in L2

dt (0, x) . (45)

On the other hand we have
∫

cos
(
x
√
λ
)

cos
(
t
√
λ
)(π

2

d(λ)

d
√
λ

− 1

)
d

(
2

π

√
λ

)
= H(x, t)+H(t, x)

+
∫ x

0
H(x, η)H(η, t)dη.

Taking the inverse cosine transform yields

cos
(
x
√
λ
) [π

2

d(λ)

d
√
λ

− 1

]
=

∫ x

0
H(x, t) cos

(
t
√
λ
)
dt +

∫ ∞

x

H(t, x) cos
(
t
√
λ
)
dt

+
∫ x

0
H(x, η)

∫ ∞

t

H(η, t) cos
(
t
√
λ
)
dt dη.

Letting x → 0+, we get (43), where H now can be computed by taking the limit in
(45).

4.5 The Lieb and Thirring Constant

Lieb and Thirring [62] have shown that the sum of the moments of the negative
eigenvalues −λ1 ≤ −λ2 ≤ · · · ≤ 0 (if any) of the Schrödinger operator −�−V on
L2

(
R
d
)

is bounded by

∑
λ
γ
i ≤ Lγ,d

∫
Rd

(V−(x))γ+d/2dx, (46)

where V−(x) := max{V (x), 0}. One of the challenges is to find the smallest possible
constant Lγ,d, known as the sharp constant in (46). For the sake of simplicity we
shall restrict ourselves to eigenvalue inequalities in the case d = 1.

It is well known that if d = 1 then (46) cannot hold for γ < 1/2. For the limit
case γ = 1/2, Hundertmark, Lieb, and Thomas [49] have shown that if V− ∈
L1 (R), then

∑√
λi ≤ L1/2,1

∫ ∞

−∞
V−(x) dx, (47)
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where L1/2,1 = 1
2 is a sharp constant. The main tool used in deriving (47) is the

Birman-Schwinger principle which relates negative eigenvalues of the Schrödinger
operator with eigenvalues of a certain integral operator. If V is continuous, V (x)→
0 as |x| → ∞ and

∫
R
V (x)dx exists (possibly conditionally), Schmincke [68] uses

the commutation method to obtain the lower bound for the sum of the negative
eigenvalues

1

4

∫ ∞

−∞
V (x) dx ≤

∑√
λi, (48)

and here 1
4 is a sharp constant.

If we also assume that (1 + |x|)V (x) ∈ L1 (R), then Schmincke’s inequality (48)
follows at once from the Faddeev–Zakharov trace formula [77]

∫ ∞

−∞
V (x) dx = 4

∑√
λi + 1

π

∫ ∞

−∞
ln(1 − |R(k)|2)dk, (49)

since the reflection coefficient of the operatorH satisfies R(k) ∈ [0, 1].
A well known fact in the spectral theory of operators is that negative eigenvalues

depend on the self-adjoint extensions. Also if a Lieb-Thirring inequality holds, it
must do so for all isospectral operators, since it does not make use of the energy
of the bound states. Thus to shed some light on these hidden connections we shall
study the sum of the negative eigenvalues, γ = 1/2, of the Schrödinger operator
on the half-line and under the sole condition that q ∈ L1(0,∞). Thus consider the
one-dimensional self-adjoint Schrödinger operator on the half line

{
H(y) := −y ′′(x, λ)− q(x)y(x, λ) = −λy(x, λ), x ∈ (0,∞),
y ′(0, λ)− hy(0, λ) = 0, where h, q(x) ∈ R.

(50)

Let αj = 1/
∫ ∞

0 |y(x,−λi)|2 dx be the norming constant, which represent the jump
size of the spectral function [60] at −λj . One of the main results of [] is the identity

∫ ∞

0
qN(x)dx =

∫ ∞

0
q0(x)dx − 2

N∑
j=1

αj + 4
N∑
j=1

√
λj , (51)

where q0 is obtained from qN by removing all N negative eigenvalues. The
appearance of the norming constants αj in the formula distinguishes (51) from
the Faddeev–Zakharov trace formula (49) and brings out a new relation between
isospectral operators. We then prove that if q0 generates no negative eigenvalues,
then the estimate

∫ ∞

0
q0(x)dx ≤ h0 (52)
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holds, which yields the Schmincke inequality for the half-line

1

4

∫ ∞

0
q(x)dx − h

4
<

∑√
λj . (53)

Theorem 29 Assume that qN ∈ L1(0,∞), and q0 is obtained from qN by removing
all negative eigenvalues of HN . Then q0 ∈ L1(0,∞), and we have the identity

∫ ∞

0
qN(x)dx =

∫ ∞

0
q0(x)dx − 2

N∑
j=1

αj + 4
N∑
j=1

√
λj . (54)

Proposition 30 Assume that qN ∈ L1(0,∞), then formula (54) becomes

1

4

∫ ∞

0
qN(x)dx − 1

4
hN ≤ −1

4

N∑
j=1

αj +
N∑
j=1

√
λj <

N∑
j=1

√
λj . (55)

Assume additionally that the Faddeev condition holds we obtain a formula for
product of eigenvalues

Proposition 31 Assume that (1 + x)qN(x) ∈ L1(0,∞) then

∫ ∞

0
x (qN(x)− q0(x)) dx = ln

(
4
∏N
j=1 λj∏N
j=1 α

2
j

)
.

For more details see [36, 62, 68, 74].

4.6 Gelfand-Levitan for the String

In the 1950s, [57], M.G. Krein proposed a method based on the theory of functions,
to recover the mass of a string from its vibrating frequencies. Recall that if M(x)
represents the mass of the string in the interval [0, x), then M is a nondecreasing
function and the oscillations of the string are described by the eigensolutions of the
symmetric operator

L := −d
dM(x)

d+

dx+ , x > 0, (56)

where d+
dx+ is the right derivative. Krein could recover the function M , [57,

Theorem 11.1], from the knowledge of its spectral function ρ, which is also a
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nondecreasing, right continuous function, if

∫ ∞

0

1

1 + λdρ(λ) <∞. (57)

He first established that if ρ is a continued fraction then M is a step function
and most importantly he found an algorithm to explicitly compute the location
and size of the jumps in M from those fractions. These special strings are the
so called Stieltjes strings. He then shows that if ρ satisfies (57), then the string
can be approximated by a sequence of Stieltjes strings, and the corresponding step
functions of the mass also converge to the original mass. Not only was the condition
(57) easy to verify, continued fractions lead to an algebraic set of rules, which
allowed for an effective and explicit recovery of the massM(x) in certain cases. This
approach had many far reaching applications in function theory, moments problem,
integral equations, and prediction theory, see [45] and the references therein. There
are many striking differences between both methods, that lead to following basic
question:

Is it possible to recover the mass of the string in (56) by using a Gelfand-Levitan
theory?

The answer would be a first step towards bridging both methods, and would
help clarify many questions in inverse spectral problems. Recall that the G-L theory
compares two close operators, with identical principle part, i.e. −D2 → −D2+
q(x),which explains why their spectral functions are close as λ → ∞. On the other
hand, a key idea in the spectral theory of the string, is the behavior of the spectral
function ρ(λ) as λ → ∞ depends of the behavior of the mass M(x) as x → 0.

Observe that the spectral function for − 1
xα

d2

dx2 on [0,∞) is precisely ρ = cαλ1± 1
α+2 ,

where the ± accounts for either the Dirichlet or Neumann boundary conditions at

x = 0. Thus, in the spirit of the G-L theory if we are given ρ ∼ cαλ1± 1
α+2 , then the

principal part of the operator must be − 1
xα

d2

dx2 which leads to following question:

Statement of the Problem Given a nondecreasing, right continuous function, ρ(λ)
subject to

ρ(λ) ∼ cαλ1± 1
α+2 as λ → ∞, α > −1,

find a function q such that ρ(λ) is the spectral function associated with a self-adjoint
extension of an operator defined by

Lf := −1

xα

d2f

dx2 + q(x)f, x > 0. (58)

Clearly the eigensolutions of the unperturbed operator, i.e. y ′′ + λxαy = 0 can
be expressed by Bessel functions, which in turn, help provide explicit conditions on



Transmutation Operators and Their Applications 41

the spectral function of (58). This means a direct extension of the G-L theory, to
more general operators defined by (58), since their analysis corresponds precisely
to the special case α = 0. Recall that the analysis in [46] is based on the properties
of a solution of a certain linear integral equation, where the kernel

F(x, t) =
∫ ∞

−∞
cos x

√
λ cos t

√
λ dσ(λ), σ (λ) = ρ(λ)− 2

π

√
λ+.

The Bessel functions allow growth ρ(λ) ∼ cαλ
1± 1

α+2+ , α > −1, that is
limλ→∞ lnρ(λ)/ ln(λ) ∈ (0, 2), whereas the original G-L theory, which
corresponds to α = 0, means that lim

λ→∞ lnρ(λ)/ ln(λ) ∈ {1/2, 3/2}.
We now outline the algorithm. Given ρ ∼ cλτ+, where τ ∈ (0, 2) we solve

τ = 1± 1
α+2 for α > −1, and the sign ± would indicate the boundary condition, say

Dirichlet or Neuman. G-L theory would recover a potential q such that ρ matches

L2 := −1

xα

d2

dx2 → L1 := −1

xα

d2

dx2 + q(x),

the spectral function of L1 and then by using a special transformation operator

L1 := −1

xα

d2

dx2 + q(x)→ L3 := −1

w(x)

d2

dx2 .

The operator L3 represents a string with mass M(x) = ∫ x
0 w(η)dη. We feel that

our method is not only closer in spirit to the original G-L theory but also provides a
generalization, see [6, 9, 22].

4.6.1 The Transformation Operator

For our purpose we only need to express the eigenfunctionals ϕ(x, λ) in terms of
the eigenfunctionals y(x, λ) and this is achieved with the help of the transformation
operator. As in [46], we shall use a Volterra operator to connect solutions, i.e.

ϕ(x, λ) = yN(x, λ)+
∫ x

0
K(x, t)yN(t, λ)t

α dt, x > 0, (59)

yN(x, λ) = ϕ(x, λ)+
∫ x

0
H(x, t)ϕ(t, λ)tα dt.

The kernels of the above transformation operators are defined in the following sector

	 :=
{
(x, t) ∈ R

2 : 0 < t < x, 0 < x <∞
}
.

Let us try to find some conditions on K in the Neumann case.
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Proposition 32 Assume that K ∈ C2(	), q ∈ C[0,∞), α �= 0, α > −1, then

ϕ(x, λ) = yN(x, λ)+
∫ x

0
K(x, t)yN(t, λ)t

αdt (60)

is a solution of L1ϕ(x, λ) = λϕ(x, λ) if and only if

⎧⎨
⎩

1
xα
Kxx(x, t)− 1

tα
Ktt (x, t) = q(x)K(x, t), 0 < t < x,

q(x) = 2x− α
2 d
dx
(x

α
2K(x, x)),

Kt (x, 0) = 0.
(61)

For further details we refer to [22, 43–45, 50, 51, 53, 54, 57, 58, 73].

4.7 Sampling and Transmutation

Shannon sampling formula helps reconstruct entire functions in PWπ from their
sampled values over Z

F (λ) =
∑
n∈Z
F(n)

sin (πλ− nπ)
(πλ− nπ) (62)

Using Kramer’s theorem, [78], you can generate a sampling theorem whose
sampling points are the eigenvalues of a Sturm–Liouville problem. It remains to
see that given any sequence {μn}n≥0 such that

μ2
n are distincts, μn = n+ γ

n
+ o

(
1

n

)
and αn > 0, αn = π

2
+ o

(
1

n

)
(63)

then μ2
n are the eigenvalues of the Sturm–Liouville problem

{−y ′′(x, μ)+ q(x)y(x, μ) = μ2y(x, λ), 0 < x < π,
y ′(0, μ)− hy(0, μ) = 0, y ′(π,μ)+Hy(π,μ) = 0.

(64)

The transmutation representation of the solution is given by

y(x,μ) = cos (xμ)+
∫ x

0
K(x, t) cos (tμ) dt. (65)

which could be reconstructed by the Gelfand-Levitan theory from the sequence{
μ2
n, αn

}
n≥0, where αn are the norming constants. The following irregular sampling

theorem can be found in [12, Proposition 4], where PWe
π is the Paley–Wiener space

of even functions.
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Proposition 33 Assume that {μn, αn}n≥0 satisfy (63), then for F ∈ PWe
π , we have

F (μ) =
∑
n≥0

F (μn) Sn (μ)

where Sn (μ) = 1
αn

∫ π
0 y(x, μn)y(x, μ)dx

It is shown that the sampling functions Sn do not depend of the norming
constants, {αn} which are used only in the Gelfand-Levitan construction. For further
detail we refer to [12, 21, 29, 32–34, 37, 69].

4.8 Computational Spectral Theory

Transmutations allow the use of the sampling theorem to compute eigenvalues of
Sturm–Liouville operators. Basically, it helps represent the characteristic function
explicitly by a sampling series, which can then be approximated for computational
purposes. For the sake of simplicity, consider the eigenvalues of (64), where q ∈
L(0, π). The characteristic function then is

�(μ) = y′(π,μ)+Hy(π,μ)

= −μ sin(πμ)+ (H +K(π,π)) cos(πμ)+
∫ π

0
(HK(π, t)+Kx(π, t)) cos (tμ) dt

= G(μ)+ S(μ)

whereG is a known function given by

G(μ) = −μ sin(πμ)+
{
H + h+ 1

2

∫ π

0
q(x)dx

}
cos(πμ)

while

S(μ) =
∫ π

0
(HK(π, t)+Kx(π, t)) cos (tμ) dt

is unknown. Observe that S ∈ PWe
π and so by Shannon’s sampling theorem, (21),

we have

S (λ) =
∑
n∈Z
S(n)

sin (πλ− nπ)
(πλ− nπ)

To compute the samples S(n), we use the fact that

S(n) = �(n)−G(n)
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where the values of {�(n)}n≥0 are computed numerically by integrating the initial
value problem from (64), while G(n) is given a known formula. Thus we have

�(μ) = G(μ)+
∑
n∈Z

[�(n)−G(n)] sin (πλ− nπ)
(πλ− nπ) . (66)

One can truncate the series to obtain guaranteed error bounds and to approximate
the roots of �, see [13]. For further detail we refer to [11, 13–18, 26, 27, 34].
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Abstract This investigation is devoted to finding the existence conditions, bound-
ary properties and applications of convolution operators for the ν-th order Hankel
transform

Hν[f ](x) =
∞∫

0

f (t)Jν(xt) t dt , x ∈ R+ .

The generalized convolutions defined by the Parseval type equalities

Hν[h1](x) = x−νHμ[f ](x)Hμ[g](x) ,
Hμ[h2](x) = x−νHν[f ](x)Hμ[g](x)
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√
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1 Introduction

The Hankel transform is the most extensively studied area of the theory of Bessel
transforms. When we are dealing with problems that show circular symmetry,
Hankel transform may be very useful (see, for, example, [1, 2]). Laplace’s partial
differential equation in cylindrical coordinates can be transformed into an ordinary
differential equation by using the Hankel transform. Because the Hankel transform
is the two-dimensional Fourier transform of a circularly symmetric function, it
plays an important role in optical data processing. Also it is known (cf. [3–5]) the
transform (1.1) is a particular case of Mellin‘s convolution type transform.

In this investigation we will consider existence conditions, boundary properties
and applications of convolution operators for the Hankel transform.

Let f (t) be a function defined for t ∈ R+. The ν-th order Hankel transform of
f (t) is defined as [3, 6]

Hν[f ](x) =
∞∫

0

f (t)Jν(xt) t dt , x ∈ R+ , (1.1)

where Jν(z) is the Bessel function [6, 7] of the first kind of order ν, Re ν > −1/2.
The most important special cases of the Hankel transform correspond to ν = 0 and
ν = 1.

Here we will consider transform (1.1) in weight Lebesgue spaces L1(R+,
√
tdt)

and L2(R+, tdt) with the norms

||f ||L1(R+,
√
tdt) =

∞∫

0

|f (t)|√tdt <∞,

||f ||L2(R+,tdt) =
⎛
⎝

∞∫

0

|f (t)|2tdt
⎞
⎠

1/2

<∞.

As known [3] the Hankel transform Hν[f ](x) of the function f (t) ∈
L1(R+,

√
tdt) multiplied by

√
x belongs to the space C0(R+) of bounded

continuous functions vanishing at infinity. Under some additional conditions the
inversion formula holds. For instance, it does if f (t) is a function of bounded
variation on any finite interval (0, R).

In the case of L2(R+, tdt)-space we should define the Hankel transform in the
mean-square convergence sense, namely

Fν(x) = Hν[f ](x) = l.i.m.
N→∞

N∫

1/N

f (t)Jν(xt) t dt,
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and familiar Plancherel’s theorem [3] says that Hν : L2(R+, tdt) → L2(R+, xdx)
is an isometric isomorphism with the reciprocal formula

f (t) = l.i.m.
N→∞

N∫

1/N

Hν[f ](x)Jν(xt) x dx,

and Parseval’s equality

||Hνf ||L2(R+,xdx) = ||f ||L2(R+,tdt). (1.2)

Various generalized convolutions generated by the Hankel transform and other
integral transforms can be constructed by using the definition of generalized con-
volution or polyconvolution introduced by V.A. Kakichev [8, 9]. The corresponding
results can be found, for example, in [8–14]

Let A1, A2 and A3 be linear operators, Aj : Mj → Nj , j = 1, 2 and
A3 : M3 ↔ N3. Assume that some weight function α(x) exists such that for all
functions (A1f )(x) ∈ N1 and (A2k)(x) ∈ N2 the product α(x)(A1f )(x)(A2k)(x)

belongs to the space N3.

Definition 1.1 The generalized convolution, or polyconvolution, of functions
f (t) ∈ M1 and k(t) ∈ M2, under A1, A2, A3, with weight function α(x), is

the function h(t) ∈ M3 denoted by
(
fA1

α∗ kA2

)
A3
(t) for which the factorization

property

(A3h)(x) = A3

[(
fA1

α∗ kA2

)
A3

]
(x) = α(x)(A1f )(x)(A2k)(x)

is valid.

The classical convolution for the Hankel transform was first introduced by Ya.I.
Zhitomirskii [15] in 1955. He constructed the convolution using the translation
operator which was first introduced and studied by B.M. Levitan in 1949 [16] (see
also [17]). Also this classical convolution and corresponding translation operator
were investigated by I.I. Hirschman, D.T. Haimo, F.M. Cholowinski [18–20]. In
this context, it is important to note a large amount of research by I.A. Kipriyanov,
L.N. Lyakhov, S.M. Sitnik, E.L. Shishkina, S.S. Platonov and others authors (see,
for example, [21–24]).

In 1967 V.A. Kakichev [8] constructed this convolution by using Definition 1.1.
The explicit expression of this convolution is

(
f ∗ k) (t) = tν

2ν
√
π(ν + 1/2)

π∫

0

sin2ν s

×
∞∫

0

f (τ)
k
(√
t2 + τ 2 − 2tτ cos s

)
(
t2 + τ 2 − 2tτ cos s

)ν/2 τ ν+1 dτ ds. (1.3)
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If f (t), k(t) ∈ L1(R+,
√
tdt), Re ν > 1/2 then polyconvolution (1.3) of

functions f (t) and k(t) with the weight function α(x) = x−ν exists [14].
A number of convolution constructions involving the Hankel transform was

derived by N.X. Thao and N.T. Hai [14]. Some polyconvolutions obtained by the
author were exhibited in [10–13]. The results presented in these papers are based on
the Kakichev approach to the notion of the polyconvolution.

If one of the functions in the convolution
(
fA1

α∗ kA2

)
A3
(t), say the func-

tion k(t), is fixed, then one can study the transform of convolution type:

A : f → L
(
fA1

α∗ kA2

)
A3
,

where L is an operator. The function k(t) is called the kernel of the transform A.
Integral transforms related to various convolution constructions was considered

in papers [25–30]
This paper is a continuation of the investigation of convolution operators and

their applications given in [10]. Here we consider two generalized convolutions
defined by the Parseval type equalities

h1(t) =
(
fμ

−ν∗ kμ
)
ν
(t) = H−1

ν

[
x−νHμ[f ](x)Hμ[k](x)

]
(t) (1.4)

h2(t) =
(
fν

−ν∗ kμ
)
μ
(t) = H−1

μ

[
x−νHν[f ](x)Hμ[k](x)

]
(t) (1.5)

Note that the first convolution h1(t) is commutative and the second convolu-
tion h2(t) is not commutative.

We study their mapping properties. Integral operators related to these convolu-
tions are constructed and their existence and boundary properties are found. Also
we give some applications to the corresponding class of convolution equations.

2 Properties and Estimates for the Convolution’s Kernel

Let us consider the function

	μ;ν(u, v; t) =
∞∫

0

x1−νJμ(xu)Jμ(xv)Jν(xt) dx. (2.1)

This function defines both convolutions (1.4)–(1.5). We notice that the function
	μ;ν(u, v; t) is symmetrical relative to permutations of variables u and v, that is,
	μ;ν(u, v; t) = 	μ;ν(v, u; t). Therefore, the estimates and formulas below are
valid when these variables are rotated.
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Using the asymptotic expansion of Bessel functions of the first kind (see, for
example, [7])

Jν(y) =
√

2

πy
cos

(
y − πν

2
− π

4

)
+O(y−3/2), y → +∞,

Jν(y) = O(yν), y → 0+,

we can easily show that a positive number C1 which is independent of y ∈ (0,∞)
such that

|√yJν(y)| < C1, ∀y ∈ (0,∞)

exists. The function y−νJμ(y) ∈ L1(R+) for Re ν > 1/2 and Re μ > Re ν − 1 and
bounded function for Re μ ≥ Re ν ≥ −1/2, i.e.

|y−νJμ(y)| < C2, ∀y ∈ (0,∞) (2.2)

Therefore, for Re ν > 1/2

|	Nμ;ν(u, v; t)| =
∣∣∣∣∣∣
N∫

0

x1−νJμ(xu)Jμ(xv)Jν(xt) dx

∣∣∣∣∣∣ ≤ C2
1√
uv

N∫

0

∣∣∣∣x−νJν(xt)
∣∣∣∣ dx

≤ C2
1 t

Re ν−1

√
uv

∞∫

0

∣∣∣∣x−νJν(x)
∣∣∣∣ dx ≤ C tRe ν−1

√
uv

,

where C is independent of t, u, v and N .
Similarly, for Re ν > 1/2 and Re μ > Re ν − 1 we obtain the estimate

|	Nμ;ν(u, v; t)| ≤ C uRe ν−1

√
tv

,

where C is also independent of t, u, v and N .
Thus, the function 	μ;ν(u, v; t) defined by expression (2.1) exists. Moreover,

this function can be presented as [31], formula 2.12.42.11

	μ;ν(u, v; t) = 0 , 0 < t < |u− v| ;
= (uv)ν−1

√
2πtν

P
1/2−ν
μ−1/2(cos s) sinν−1/2 s , |u− v| < t < u+ v ;

= −
√

2(uv)ν−1

π3/2tν
sin

[
(μ− ν)π

]
e(2ν−1)πi/2

× vν Q1/2−ν
μ−1/2(cosh r) sinhν−1/2 r , t > u+ v ,
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where Pνμ(x) , Q
ν
μ(x) are the associated Legendre functions of the first and second

kind, respectively, Re μ > −1, Re ν > −1/2, t, u, v > 0, and

cos s = u2 + v2 − t2
2uv

, cosh r = t2 − u2 − v2

2uv
,

On the other hand, the function 	μ;ν(u, v; t) is the Hankel transform of the
product of the Bessel functions, i.e.

	μ;ν(u, v; t) = Hν
[
x−νJμ(xu)Jμ(xv)

]
(t) (2.3)

= Hμ
[
x−νJμ(xv)Jν(xt)

]
(u). (2.4)

Therefore,
√
t	μ;ν(u, v; t) belongs to the space C0(R+) of bounded continuous

functions vanishing at t → ∞ as when Re ν > 1/2, Re μ > Re ν − 1

||x−νJμ(xu)Jμ(xv)||L1(R+,
√
xdx) ≤ Cu

Re ν−1

√
v
.

Similarly, when Re ν > 1/2, Re μ > Re ν − 1 we have the estimate

||x−νJμ(xv)Jν(xt)||L1(R+,
√
xdx) ≤ C v

Re ν−1

√
t

and
√
u	μ;ν(u, v; t) belongs to the space C0(R+) as function of variable u. This

statement can also be obtained using a similar estimate for Re ν > 1/2

||x−νJμ(xv)Jν(xt)||L1(R+,
√
xdx) ≤ C t

Re ν−1
√
v
.

From the equalities (2.3)–(2.4) we obtain

x−νJμ(xu)Jμ(xv) = H−1
ν

[
	μ;ν(u, v; t)

]
(x)

=
∞∫

0

tJν(xt)	μ;ν(u, v; t) dt,

x−νJμ(xu)Jν(xt) = H−1
μ

[
	μ;ν(u, v; t)

]
(x)

=
∞∫

0

vJμ(xv)	μ;ν(u, v; t) dv.
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For ν > 1/2, ν − μ < 1/2 we get accordingly the following estimates using the
formula 2.12.31.2 from [31]

||	μ;ν(u, v; t)||2L2(R+,tdt) = ||x−νJμ(xu)Jμ(xv)||2L2(R+,xdx)

≤ Cμ,ν u
2ν−1

v
,

||	μ;ν(u, v; t)||2L2(R+,tdt) = ||x−νJμ(xu)Jν(xt)||2L2(R+,xdx)

≤ Cμ,ν u
2ν−1

t
,

||	μ;ν(u, v; t)||2L2(R+,tdt) = ||x−νJμ(xu)Jμ(xt)||2L2(R+,xdx)

≤ Cν t
2ν−1

u
,

where Cμ,ν and Cν are independent of u and t , the parameters ν and μ are real.
The function 	μ;ν(u, v; t) define two polyconvolutions (1.4)–(1.5), which can

be presented by form

h1(t) =
∞∫

0

∞∫

0

uvf (u)g(v)	μ;ν(u, v; t) du dv, (2.5)

h2(t) =
∞∫

0

∞∫

0

uvf (u)g(v)	μ;ν(t, v; u) du dv. (2.6)

3 Mapping Properties of the Generalized Convolutions

The following theorems gives the existence conditions and mapping properties of
polyconvolutions (2.5) and (2.6).

In space L1(R+,
√
tdt) the corresponding convolutions we investigate in[10–13]

Theorem 3.1 Suppose that f (t) , k(t) ∈ L1(R+,
√
tdt) and Re ν > 1/2, Re μ >

(2Reν−3)/4. Then the function h1(t) exists and the following factorization relation
is valid

Hν[h1](x) = x−νHμ[f ](x)Hμ[k](x) ∈ L1(R+,
√
xdx).
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Theorem 3.2 Suppose that f (t) , k(t) ∈ L1(R+,
√
tdt) and Re ν > 1/2, Re μ >

Re ν − 1. Then the function h2(t) exists and the factorization relation

Hμ[h2](x) = x−νHν[f ](x)Hμ[k](x) ∈ L1(R+,
√
xdx)

is valid.

Now we find the existence conditions in other weight Lebesgue spaces.

Theorem 3.3 Let f (t) ∈ L1(R+,
√
tdt), k(t) ∈ L2(R+, tdt) and ν > 0, μ >

−1/2, then the generalized convolution (1.4) of the functions f (t) and k(t) exists.

Proof Using the definition of generalized convolution (1.4) and the definition of
the Hankel transform (1.1), we obtain

h1(t) =
∞∫

0

Hμ[f ](x)Hμ[k](x)Jν(xt) x1−ν dx (3.1)

=
∞∫

0

x1−ν dx
∞∫

0

∞∫

0

f (u)k(v)Jν(xt)Jμ(xu)Jμ(xv) uv dudv .

Let us prove the existence of the polyconvolution h1(t). Applying Schwarz’s
inequality we get

|h1(t)|2 ≤
∞∫

0

|√xHμ[f ](x)| |Hμ[k](x)|2xdx
∞∫

0

x−2ν|√xHμ[f ](x)| J 2
ν (xt)dx

≤ C
∞∫

0

|Hμ[k](x)|2xdx
∞∫

0

x−2ν J 2
ν (xt)dx

≤ Ct2ν−1||k||2L2(R+,tdt). (3.2)

Here we used Parseval’s equality (1.2) and the formula 2.12.31.2 from [31].
Therefore, the convolution h1(t) exists for all fixed t ∈ R+ and the function h1(t)

is bounded continuous on R+.
Changing the order of integration in (3.1) by virtue of (3.2) and using defini-

tion (2.1) we obtain

h1(t) =
∞∫

0

∞∫

0

f (u)k(v)uv dudv

∞∫

0

x1−νJμ(xu)Jμ(xv)Jν(xt) dx

=
∞∫

0

∞∫

0

uvf (u)g(v)	μ;ν(u, v; t) du dv.
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We found the explicit form (2.5) for the polyconvolution h1(t). Theorem 3.3 is
proved. ��

The following assertion can be proved in a similar way.

Theorem 3.4 Let f (t) ∈ L1(R+,
√
tdt), k(t) ∈ L2(R+, tdt) and ν > 0, ν − μ <

1/2, then the generalized convolution (1.5) of the functions f (t) and k(t) exists. The
explicit form for the polyconvolution h2(t) is defined by (2.6).

Theorem 3.5 Let f (t), k(t) ∈ L2(R+, tdt) and Reμ ≥ Reν > −1/2, then the
generalized convolution (1.4) of the functions f (t) and k(t) exists.

Proof Indeed, calling again Schwarz’s inequality and using (2.2) we find

|h2(t)|2 ≤
∞∫

0

∣∣Hν[f ](x)∣∣2∣∣x−νJμ(xt)
∣∣ x dx

∞∫

0

∣∣Hμ[k](x)∣∣2∣∣x−νJμ(xt)
∣∣ x dx

≤ Const t2Reν

∞∫

0

∣∣Hν[f ](x)∣∣2x dx
∞∫

0

∣∣Hμ[k](x)∣∣2x dx

= Const t2Reν ||f ||2L2(R+,tdt)||k||2L2(R+,tdt).

Appealing to Fubini’s theorem we represent convolution (1.4) by the equal-
ity (2.5) completing the proof of Theorem 3.5. ��

The following theorem is proving in same manner.

Theorem 3.6 Let f (t), k(t) ∈ L2(R+, tdt) and Reν > −1/2, Reμ > −1/2, then
the generalized convolution (1.5) of the functions f (t) and k(t) exists.

In next section we construct integral transforms related to the generalized
convolutions (2.5)–(2.6).

4 Integral Transforms Related to the Hankel Polyconvolution

We involve the following differential operators (cf. [32])

Nm,ν = tν
(
d

t dt

)m
tm−ν , Skm,ν = [

Nm,−νNm,ν+m
]k
, (4.1)
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which possess the properties:

(a) Skm,ν = Skm,−ν = Skm,ν ,
where Sn,ν = S1

n,ν = Sn1,ν =
[
d2

dt2
+ 1

t

d

dt
− ν2

t2

]n
.

(b) Nm,±ν+kmNm,±ν+(k−1)m...Nm,±ν+mNm,±ν = Nm(k+1),±ν+km .

It should be noted that some special cases of these operators are involved, for
instance, in various equations of elasticity theory.

Using properties (a) and (b), it is readily verified that all well-known differential
operators related to Hankel transform can be expressed in terms ofNm,±ν and Sm,ν .
Therefore, we restrict ourselves to operators (4.1).

Further, we assume that a function is differentiable enough times at all t ∈ R+
when the differential operators (4.1) are applied to it.

The main result is presented in the following theorems.

Theorem 4.1 If f (t), k(t) ∈ L2(R+, tdt) and Reμ ≥ Reν > −1/2, and

(
kμ

−ν∗ kμ
)
ν
(t) = Hν

[
xν

r2
n(x)

]
, rn(x) =

n∑
m=0

amx
2m , (4.2)

where x ∈ R+ ; am ∈ R , ∀m = 0, 1, . . . , n , a0, an �= 0 ; and we assume that
r−2
n (x) ∈ L2(R+, tdt) ; n ≥ 1. Then the formula

g(t) =
n∑
m=0

(−1)mamSm,ν
(
kμ

−ν∗ fμ
)
ν
(t), t ∈ R+ (4.3)

defines almost everywhere a function g(t) ∈ L2(R+, tdt), such that

||g||L2(R+,tdt) = ||f ||L2(R+,tdt). (4.4)

Moreover, the inversion formula

f (t) =
n∑
m=0

(−1)mamSm,μ
(
kμ

−ν∗ gν
)
μ
(t), t ∈ R+ (4.5)

holds almost everywhere.

Proof Since k(t) ∈ L2(R+, tdt), Reμ ≥ Reν > −1/2 then we have

(
kμ

−ν∗ kμ
)
ν
(t) =

∞∫

0

x1−νHμ[k](x)Hμ[k](x)Jν(xt) dx , t ∈ R+ .
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Hence, condition (4.2) can be written in the form

∞∫

0

x1−ν
∣∣∣Hμ[k](x)

∣∣∣2 Jν(xt) dx = Hν

[
xν

r2
n(x)

]
(t) , t ∈ R+ .

From the uniqueness property of the Hankel transform it follows that

x−ν
∣∣∣Hμ[k](x)

∣∣∣2 = xν

r2
n(x)

. (4.6)

Consequently,

∣∣∣Hμ[k](x)
∣∣∣ = xν∣∣∣rn(x)

∣∣∣ , ∀x ∈ R+ . (4.7)

Conditions (4.2) and (4.7) are equivalent in the space L2(R+, tdt).
If t l s(t) ∈ L2(R+, tdt), l = 0, 1, . . . , 2m then [32]

Sm,νHν[s](x) = Hν
[
(−1)mt2ms(t)

]
(x) .

Therefore, for rn(t)s(t) ∈ L2(R+, tdt) we obtain

n∑
m=0

(−1)mamSm,νHν[s](x) = Hν [rn(t)s(t)] (x) . (4.8)

Formula (4.7) shows that x−νrn(x)Hμ[k](x) is bounded. Thus, we have
x−νrn(x)Hμ[k](x)Hμ[f ](x) ∈ L2(R+, tdt). We apply formula (4.8) with
s(x) = x−νHμ[k](x)Hμ[f ](x) then

g(t) =
n∑
m=0

(−1)mamSm,ν

∞∫

0

x1−νHμ[k](x)Hμ[f ](x) Jν(xt) dx

=
∞∫

0

x1−νrn(x)Hμ[k](x)Hμ[f ](x) Jν(xt) dx , t ∈ R+ (4.9)

is defines almost everywhere. Moreover, g(t) ∈ L2(R+, tdt).
Now the Parseval identity (1.2) for the Hankel transform along with Eq. (4.7)

gives

||g(t)||L2(R+,tdt) = ||x−νrn(x)Hμ[k](x)Hμ[f ](x)||L2(R+,xdx)

= ||Hμ[f ](x)||L2(R+,xdx) = ||f (t)||L2(R+,tdt).

Therefore, formula (4.4) is proved.
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On the other hand, formula (4.9) is equivalent to the following relation

Hν[g](x) = x−νrn(x)Hμ[k](x)Hμ[f ](x) , x ∈ R+ .

Combining with (4.6) we obtain

Hμ[f ](x) = x−νrn(x)Hμ[k](x)Hν[g](x) , x ∈ R+ .

Consequently, we arrive at the inversion formula for transform (4.3)

f (t) =
∞∫

0

x1−νrn(x)Hμ[k](x)Hν[g](x) Jμ(xt) dx

=
n∑
m=0

(−1)mamSm,μ

∞∫

0

x1−νHμ[k](x)Hν[g](x) Jμ(xt) dx

=
n∑
m=0

(−1)mamSm,μ
(
kμ

−ν∗ gν
)
μ
(t) .

Theorem 4.1 is proved. ��
The following theorem is proving in same manner.

Theorem 4.2 If f (t), k(t) ∈ L2(R+, tdt) and Reν > −1/2, Reμ > −1/2 and

(
kν

−ν∗ kν
)
ν
(t) = Hν

[
xν

r2
n(x)

]
, rn(x) =

n∑
m=0

amx
2m ,

where x ∈ R+ ; am ∈ R , ∀m = 0, 1, . . . , n , a0, an �= 0 ; and we assume that
r−2
n (x) ∈ L2(R+, tdt) ; n ≥ 1. Then

g(t) =
n∑
m=0

(−1)mamSm,μ
(
kν

−ν∗ fμ
)
μ
(t), t ∈ R+

defines almost everywhere a function g(t) ∈ L2(R+, tdt), such that

||g||L2(R+,tdt) = ||f ||L2(R+,tdt).

Moreover, the inversion formula

f (t) =
n∑
m=0

(−1)mamSm,μ
(
kν

−ν∗ gμ
)
μ
(t)

holds.
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We note, that integral transforms with unsymmetrical kernels can be constructed
in the same manner. The results are presented in following theorems.

Theorem 4.3 Let k1(x) and h1(x) be bounded functions on R+ such that
k1(x)h1(x) ≡ 1.

k̃(t) = Hμ

[
xνk1(x)

rn(x)

]
, rn(x) =

n∑
m=0

amx
2m ,

h̃(t) = Hμ

[
xνh1(x)

ρl(x)

]
, ρl(x) =

l∑
m=0

bmx
2m ,

where x ∈ R+ ; am, bm ∈ R , ∀m ; a0, an, b0, bl �= 0 ; n, l ≥ 1.
If k̃(t), h̃(t), f (t) ∈ L2(R+, tdt), Reμ ≥ Reν > −1/2 Then the formula

g(t) =
n∑
m=0

(−1)mamSm,ν
(
k̃μ

−ν∗ fμ
)
ν
(t), t ∈ R+

defines almost everywhere a function g(t) ∈ L2(R+, tdt). Moreover, the inversion
formula

f (t) =
l∑

m=0

(−1)mbmSm,μ
(
h̃μ

−ν∗ gν
)
μ
(t), t ∈ R+

holds almost everywhere.

The proof of Theorem 4.3 is similar to the proof Theorem 4.1, where condi-
tion (4.6) is replaced by

Hμ[k̃](x)Hμ[h̃](x) = x2νk1(x)h1(x)

rn(x)ρl(x)
. (4.10)

Also we can construct transforms with unsymmetrical kernels related to poly-
convolution (2.6).

Theorem 4.4 Let k1(x) and h1(x) be bounded functions on R+ such that
k1(x)h1(x) ≡ 1.

k̃(t) = Hν

[
xνk1(x)

rn(x)

]
, rn(x) =

n∑
m=0

amx
2m ,

h̃(t) = Hν

[
xνh1(x)

ρl(x)

]
, ρl(x) =

l∑
m=0

bmx
2m ,

where x ∈ R+ ; am, bm ∈ R , ∀m ; a0, an, b0, bl �= 0 ; n, l ≥ 1.
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If k̃(t), h̃(t), f (t) ∈ L2(R+, tdt), Reν > −1/2, Reμ > −1/2. Then the
formula

g(t) =
n∑
m=0

(−1)mamSm,μ
(
k̃ν

−ν∗ fμ
)
μ
(t), t ∈ R+

defines almost everywhere a function g(t) ∈ L2(R+, tdt). Moreover, the inversion
formula

f (t) =
l∑

m=0

(−1)mbmSm,μ
(
h̃ν

−ν∗ gμ
)
μ
(t), t ∈ R+

holds almost everywhere.

The following two convolution transforms can be constructed in the same
manner. The convergence of integrals follows from the equality of the orders for
the polynomials rn(x) and ρn(x).

Theorem 4.5 Let k1(x) and h1(x) be bounded functions on R+ such that
k1(x)h1(x) ≡ 1.

k̃(t) = Hμ

[
xνk1(x)

rn(x)

]
, rn(x) =

n∑
m=0

amx
2m ,

h̃(t) = Hμ

[
xνh1(x)

ρn(x)

]
, ρn(x) =

n∑
m=0

bmx
2m ,

where x ∈ R+ ; am, bm ∈ R , ∀m ; a0, an, b0, bn �= 0 ; n ≥ 1.
If k̃(t), h̃(t), f (t) ∈ L2(R+, tdt), Reμ ≥ Reν > −1/2. Then the formula

g(t) =
n∑
m=0

(−1)mbmSm,ν
(
k̃μ

−ν∗ fμ
)
ν
(t), t ∈ R+

defines almost everywhere a function g(t) ∈ L2(R+, tdt). Moreover, the inversion
formula

f (t) =
n∑
m=0

(−1)mamSm,μ
(
h̃μ

−ν∗ gν
)
μ
(t), t ∈ R+

holds almost everywhere.
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Theorem 4.6 Let k1(x) and h1(x) be bounded functions on R+ such that
k1(x)h1(x) ≡ 1.

k̃(t) = Hν

[
xνk1(x)

rn(x)

]
, rn(x) =

n∑
m=0

amx
2m ,

h̃(t) = Hν

[
xνh1(x)

ρn(x)

]
, ρn(x) =

n∑
m=0

bmx
2m ,

where x ∈ R+ ; am, bm ∈ R , ∀m ; a0, an, b0, bn �= 0 ; n ≥ 1.
If k̃(t), h̃(t), f (t) ∈ L2(R+, tdt), Reν > −1/2, Reμ > −1/2. Then the

formula

g(t) =
n∑
m=0

(−1)mbmSm,μ
(
k̃ν

−ν∗ fμ
)
μ
(t), t ∈ R+

defines almost everywhere a function g(t) ∈ L2(R+, tdt). Moreover, the inversion
formula

f (t) =
n∑
m=0

(−1)mamSm,μ
(
h̃ν

−ν∗ gμ
)
μ
(t), t ∈ R+

holds almost everywhere.

Now we consider some examples of integral transforms with unsymmetrical
kernels related to polyconvolutions (2.5)–(2.6). Each of these transforms is a linear
integral equation and the inversion formula is the solution of this equation.

5 Examples

Here t ∈ R+, the operator Sm,ν has been introduced above (see formula (4.1)),

S1,ν = d2

dt2
+ 1

t

d

dt
− ν2

t2
.

A function f (t) satisfies conditions of Theorems 4.1–4.6.
We use the following denotations for Bessel functions [6, 7]:

• Jν(z) is the Bessel function of the first kind of order ν.
• Yν(z) is the Bessel function of the second kind of order ν, also called the

Neumann function.
• Iν(z) is the modified Bessel function of the first kind of order ν.
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• Kν(z) is the modified Bessel function of the second kind or the Macdonald
function of order ν.

• H
(1)
ν (z) is the Bessel function of the third kind of order ν, also known as the

Hankel function of the first kind.

In first examples we consider the case n = 1 and we use the denotations r1(x) =
r(x) and ρ1(x) = ρ(x).
Example Let k1 ≡ 1, h1 ≡ 1, r(x) = a2 + x2 and ρ = b2 + x2 then (see [31],
formula 2.12.4.28)

k̃ = aνKν(at), h̃ = bνKν(bt).

The integral transforms with these kernels are written as

g(t) = b2
(
k̃ν

−ν∗ fμ
)
μ
(t) − S1,μ

(
k̃ν

−ν∗ fμ
)
μ
(t)

= f (t)+ (b2 − a2)

⎡
⎣Kμ(at)

t∫

0

f (τ)Iμ(aτ)τdτ + Iμ(at)
∞∫

t

f (τ)Kμ(aτ)τdτ

⎤
⎦ ,

f (t) = a2
(
h̃ν

−ν∗ gμ
)
μ
(t)− S1,μ

(
h̃ν

−ν∗ gμ
)
μ
(t)

= g(t) + (a2 − b2)

⎡
⎣Kμ(bt)

t∫

0

g(τ)Iμ(bτ)τdτ + Iμ(bt)
∞∫

t

g(τ)Kμ(bτ)τdτ

⎤
⎦ .

Here a �= b.

Analogously we obtain reciprocal formulas in following

Example Let k1 ≡ 1, h1 ≡ 1, r(x) = x2 − a2 and ρ = x2 − b2. Then (see [6],
chap. XIII, par. 13.53, formula 4)

k̃ = −π
2
aνYν(at), h̃ = −π

2
bνYν(bt).

And the integral transform can be written in form (a �= b)

g(t) = −b2
(
k̃ν

−ν∗ fμ
)
μ
(t)− S1,μ

(
k̃ν

−ν∗ fμ
)
μ
(t)

= f (t)+ πi

2
(b2 − a2)

⎡
⎣H(1)μ (at)

t∫

0

f (τ )Jμ(aτ )τdτ + Jμ(at)
∞∫

t

f (τ )H(1)μ (aτ )τdτ

⎤
⎦ ,
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f (t) = −a2
(
h̃ν

−ν∗ gμ
)
μ
(t)− S1,μ

(
h̃ν

−ν∗ gμ
)
μ
(t)

= g(t)+ πi

2
(a2 − b2)

⎡
⎣H(1)μ (bt)

t∫

0

g(τ )Jμ(bτ )τdτ + Jμ(bt)
∞∫

t

g(τ )H(1)μ (bτ )τdτ

⎤
⎦ .

Finally, we consider

Example Let k1 ≡ 1, h1 ≡ 1, r(x) = x2 + a2 and ρ = x2 − b2. Then we obtain

k̃ = aνKν(at), h̃ = −π
2
bνYν(bt)

and (a �= b)

g(t) = −b2
(
k̃ν

−ν∗ fμ
)
μ
(t)− S1,μ

(
k̃ν

−ν∗ fμ
)
μ
(t)

= f (t)− (a2 + b2)

⎡
⎣Kμ(at)

t∫

0

f (τ )Iμ(aτ )τdτ + Iμ(at)
∞∫

t

f (τ )Kμ(aτ )τdτ

⎤
⎦ ,

f (t) = a2
(
h̃ν

−ν∗ gμ
)
μ
(t)− S1,μ

(
h̃ν

−ν∗ gμ
)
μ
(t)

= g(t)+ πi

2
(a2 + b2)

⎡
⎣H(1)μ (bt)

t∫

0

g(τ )Jμ(bτ )τdτ + Jμ(bt)
∞∫

t

g(τ )H(1)μ (bτ )τdτ

⎤
⎦ .

In the similar manner we can construct the other convolution transforms by using
Theorems 4.3–4.6 and presented examples.
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Djurdje Cvijović and Tibor K. Pogány

Dedicated to Gradimir V. Milovanović to his 70th birthday
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Abstract The second type Neumann series are considered which building blocks
are Nicholson’s and the Dixon–Ferrar formulae for J 2

ν (x)+ Y 2
ν (x). Related closed

form double definite integral expressions are established by using the associated
Dirichlet’s series Cahen’s Laplace integral for the Nicholson’s case. However,
using Dixon–Ferrar formula a double definite integral expression is again obtained.
Certain Open Problems are posed in the last section of the chapter.
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1 Introduction to Nicholson’s Formula

Special functions play an important role among others in the theory of transmuta-
tions; they are also very useful in many applications, combining special functions
and transmutation theory [10, 17, 31]. In turn, this work is a contribution to the use
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Atomic Physics Laboratory, Vinča Institute of Nuclear Sciences, Belgrade, Serbia
e-mail: djurdje@vin.bg.ac.rs

T. K. Pogány (�)
Faculty of Maritime Studies, University of Rijeka, Rijeka, Croatia

Institute of Applied Mathematics, Óbuda University, Budapest, Hungary
e-mail: poganj@pfri.hr

© Springer Nature Switzerland AG 2020
V. V. Kravchenko, S. M. Sitnik (eds.), Transmutation Operators and Applications,
Trends in Mathematics, https://doi.org/10.1007/978-3-030-35914-0_4

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35914-0_4&domain=pdf
mailto:djurdje@vin.bg.ac.rs
mailto:poganj@pfri.hr
https://doi.org/10.1007/978-3-030-35914-0_4
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of special functions in an important area of the classical analysis which deals with
infinite series of Neumann type, see for instance the monumental monograph’s parts
[35, Chapters XVI–XIX] and the recently published book [7] devoted completely to
here discussed topic.

One of the most celebrated mathematical formula from ancient times is the
Pythagoras’ theorem a2 + b2 = c2 which trigonometrical form is

sin2 x + cos2 x = 1.

On the other hand the famous Nicholson’s formula for "(x) > 0 reads [20, p. 234]

B2
ν (x) := J 2

ν (x)+ Y 2
ν (x) = 8

π2

∫ ∞

0
K0(2x sinh t) cosh(2νt) dt , (1)

where Jν, Yν stand for the Bessel functions of the first and second kind, respectively,
of the orders ν, whileKη denotes the modified Bessel function of the second kind of
the order η; specially, regarding (1) there holds (among other numerous equivalent
expressions for this function) [8, p. 19]:

K0(z) =
∫ ∞

0

cos(zy)√
1 + y2

dy, z > 0 . (2)

The formula (1) is the elegant generalization of both previously listed formulae.
Indeed, having in mind that

J 1
2
(x) =

√
2

π x
sin x and Y 1

2
(x) =

√
2

π x
cos x ,

we have

B2
1
2
(x) = π x

2
· 8

π2

∫ ∞

0
K0(2x sinh t) cosh t dt

= 2

π

∫ ∞

0
K0(s) ds = 2

π
· π

2
= 1,

by which we arrive at the ‘sine-squared + cosine-squared = 1’ identity.
The next result about B2

ν (x) is the Dixon–Ferrar formula [11, p. 142]

B2
ν (x) = 8 cos(νπ)

π2

∫ ∞

0
K2ν(2x sinh t) dt, "(x) > 0, |"(ν)| < 1

2
. (3)
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It is worth to be mention that this integral is in fact a corollary of the more general
Watson’s determinant1 relation [11, p. 141, Eq. (60)]

Wν,μ(x) :=
∣∣∣∣Jν(x) Jμ(x)Yν(x) Yμ(x)

∣∣∣∣ = 4 sin(ν − μ)π
π2

∫ ∞

0
Kν−μ(2x sinh t) e−(μ+ν)t dt .

which holds true for all "(x) > 0, |"(μ− ν)| < 1.
The Bessel functions Jν, Yν and the modified Bessel functionKν play inevitable

roles in physics, pure and applied mathematics and engineering sciences. For
instance, the product Pν(x) := Iν(x)Kν(x) is part of certain applications, e.g.
consult the articles [29, 30] concerning the hydrodynamic and hydromagnetic
instability of cylindrical models; the paper of Hasan [15] discussed the electrogravi-
tational instability of non–oscillating streaming fluid cylinder under the influence of
selfgravitating, capillary and electrodynamic forces. Links to different kind proofs
and use of the monotonicity of Pν(x) are given by Baricz and Pogány in [4],
where an exhaustive references list is given therein. Also compare [1, 13, 21, 23].
Moreover, Klimek and McBride [18] prove that a Dirac operator, regarding to
Atiyah–Patodi–Singer–like boundary conditions on the solid torus, has a bounded
inverse, which is in fact compact operator. In [32, 33] van Heijster et al. investigated
the existence, stability and interaction of localized structures in a one–dimensional
generalized FitzHugh–Nagumo type model. Further, van Heijster and Sandstede
[34] study existence and stability issues of radially symmetric solutions in the planar
variant of this model. Finally, Baricz and Pogány [4] have focused to closed integral
representations for the first and second type Neumann series for the modified Bessel
functions Iν and Kμ which appear in related Chebyshev–type discrete inequalities
in the manner of such results established together with Jankov and Süli in a set of
articles [3, 5, 6, 27]. However, a thorough overview of the related results can be
found in the monograph by Baricz, Jankov Maširević and Pogány [7], see chapter 2.

The first type Neumann series was introduced in [27] (also see [5, 7]) as

Nμν (x) :=
∑
n≥1

an Zν+μn(x) ,

where Z denotes a cylinder function. The second type Neumann–series was
introduced by Baricz and Pogány in the book chapter [4] in the form

Gμ,τν,η
[
Z(1), Z(2)

]
(x) :=

∑
n≥1

an Z
(1)
ν+μn(x) Z

(2)
η+τn(x) ,

which is discussed in detail in [4] for the case G1
ν[I,K] (we quote the identical

parameters here, and in what follows, only once). The rule that the Neumann series

1Instead of the determinant form, we will use the most popular cross–product expression
Jν(x)Yμ(x) − Jμ(x)Yν (x) throughout.
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of cylinder functions of the first type are built by one cylinder function, while in
the case when products of two (or more) special functions are the building blocks
we deal with second type series. This nomenclature has been followed in the above
mentioned monograph [7] too.

Our main goal in this work is to establish several integral representation formulae
for the second type Neumann series which terms are Nicholson or Dixon–Ferrar
input squared sums; in other words

N μ
ν

[
J, Y

]
(x) :=

∑
n≥1

anB
2
ν+μn(x) =

∑
n≥1

an
[
J 2
ν+μn(x)+ Y 2

ν+μn(x)
]
.

The main derivation tools consist from Cahen’s Laplace integral formula for
Dirichlet series [9, p. 97] (see also Perron’s memoir [22]) and the Euler–Maclaurin
summation formula [27, p. 2365] adapted to our considerations.

Here and in what follows, [a] and {a} = a−[a] denote the integer and fractional
part of some a, respectively.

2 Preparation: Euler–Maclaurin Summation Formula,
Dirichlet Series and Cahen’s Formula

Consider the real-valued function x #→ ax = a(x) and suppose that a ∈ C1[k,m],
k,m ∈ Z, k < m. The classical Euler–Maclaurin summation formula states that [19,
p. 539, 296]

m∑
j=k
aj =

∫ m

k

a(x)dx + 1

2

(
ak + am

) +
∫ m

k

(
x − [x] − 1

2

)
a′(x)dx.

On introducing the kind of a differential operator

dx := 1 + {x} d

dx
,

obvious transformations yield the following condensed form of the Euler–Maclaurin
formula2 [27, p. 2365, Eq. (3)]

m∑
j=k+1

aj =
∫ m

k

(
a(x)+ {x}a′(x)

)
dx =

∫ m

k

dx a(x) dx. (4)

This formula has been used in another purposes for instance in [28].

2The formula was discovered independently by Leonhard Euler and Colin Maclaurin around 1735.
Euler needed it to compute slowly converging infinite series, while Maclaurin used it to calculate
integrals.
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Our next main mathematical tool is the Dirichlet series of the λn–type

Da(s) :=
∑
n≥1

an e−λns , "(s) > 0 , (5)

where

0 < λ1 < λ2 < · · · < λn → ∞ as n → ∞ .

For λn = n, (5) becomes the power series

Da(s) :=
∑
n≥1

an e−ns , "(s) > 0 ,

and for λn = lnn, we have series of the form

Da(s) :=
∑
n≥1

an n
−s , "(s) > 0 ,

which is called ordinary Dirichlet series.
In this note we deal with series of the form (5) where s is real variable. We also

need a variant of closed integral form representation of Dirichlet series, see [14],
[16, C. §V]. The result is the widely known Cahen’s formula [9, p. 97], [14]

Da(s) = s
∫ ∞

0
e−s tAa(t) dt , s > 0 . (6)

The articles [24–26] contain certain special cases of (6) specifying among others
an = 1. However, the so–called counting sum

Aa(t) =
∑
n : λn≤t

an

we find by the Euler–Maclaurin summation formula (4) (see [24, 26, 27]), assuming
that a := a(x)

∣∣
N
, a ∈ C1[0,∞) we sum up Aa(t) completing the closed form

integral representation of Dirichlet series Da(s) without any sums. Namely

Aa(t) =
[λ−1(t)]∑
n=1

an =
∫ [λ−1(t)]

0
du a(u) du ,

as by assumption λ is monotone with an unique inverse λ−1 being λ|N = (λn).
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3 Main Results: Accessum per Definitionem

Bearing in mind the previously declared nomenclature it follows that

N μ
ν

[
J, Y

]
(x) = Gμν [J, J ](x)+ Gμν [Y, Y ](x)

=
∑
n≥1

anJ
2
μn+ν (x)+

∑
n≥1

anY
2
μn+ν (x), (7)

therefore we can approach the integral expression for N μ
ν

[
J, Y

]
(x) in at least two

main directions:

(i) finding the integral form for Gμν [Z,Z](x), where Z ∈ {J, Y } and then apply
(7), or

(ii) to exploit either Nicholson’s or the Dixon–Ferrar formulae in expressing B2
ν .

The reason why we cannot apply Nicholson’s formula (1) in the case (i) directly is
that the term

cosh 2(μn+ ν)t = O(e2|μ|tn), t > 0, n→ ∞

in the integrand does not permit to transform N
μ
ν

[
J, Y

]
(x) into an absolutely

convergent Dirichlet series.
In turn, choosing the termwise consideration of B2

ν (x) = J 2
ν (x)+ Y 2

ν (x) we can
achieve our first main integral representation result.

Theorem 1 Let a ∈ C1(R+) and let a|N = (an)n∈N. For all μ, ν > −1/2 and for
all

|x| < 2

e
min

(
e,
μ

l

)
, l :=

(
lim sup
n→∞

n
√|an|
n2μ

)1/(2μ)

.

we have the integral representation

Gμν [J, J ](x) = −μ
∫ ∞

1

∫ [w]

0

∂

∂w

[
Γ 2(μw + ν + 1/2) J 2

μw+ν(x)
]

× du
a(u)

Γ 2(μu+ ν + 1/2)
dwdu. (8)

Proof Consider the integral representation formula [12, 8.411 Eq.(10)]

Jν(z) =
(
z/2

)ν
√
π Γ (ν + 1/2)

∫ 1

−1
cos(zt)(1 − t2)ν−1/2dt,
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which holds true for all z ∈ C, "{ν} > −1/2. Applying this integral form of Jν to
(7) we get

Gμν [J, J ](x) =
∑
n≥1

anJ
2
μn+ν(x) . (9)

Precisely,

Gμν [J, J ](x) = 4

π

(x
2

)2ν
∫ 1

0

∫ 1

0

cos(xt) cos(xs)

[(1 − t2)(1 − s2)]1/2−ν D1(t, s) dt ds,

with the Dirichlet series

D1(t, s) =
∑
n≥1

an

Γ 2(μn+ ν + 1/2)
exp

{
−n ln

(
4

x2(1 − t2)(1 − s2)

)μ}
.

Because Γ (z) = √
2π zz−1/2e−z(1 + O(z−1)

)
, |z| → ∞, we see that D1(t, s) is

absolutely convergent for all x ∈ R and t, s ∈ (−1, 1) such that

|x|(1 − t2)(1 − s2) ≤ |x| < 2μ

e

(
lim sup
n→∞

n
√|an|
n2μ

)−1/(2μ)

= 2μ

e l
. (10)

Furthermore, for D1(t) there holds the Cahen’s Laplace integral when the Dirichlet
exponent

ln

(
4

x2(1 − t2)(1 − s2)

)μ
> 0 .

In this case we can take |x| < 2 and t, s ∈ (−1, 1), since the required positivity
condition is satisfied when

4

x2(1 − t2)(1 − s2)
≥ 4

x2 > 1.

Hence, the x–domain becomes the stated

|x| < 2

e
min

(
e, μ l−1

)
.

Thus, for all such x we deduce by the Cahen’s formula (6) that

D1(t, s) = μ ln
4

x2(1 − t2)(1 − s2)

∫ ∞

0

(x2(1 − t2)(1 − s2)

4

)μwA1(w) dw;
(11)
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where

A1(w) :=
[w]∑
j=1

aj

Γ 2(μj + ν + 1/2)

denotes the counting function, see [16, V] or [28, §4, §6]. Now, it remains to sum
the A1(w) by the Euler–Maclaurin formula (4) cf. [28, Lemma 1]:

A1(w) =
∫ [w]

0
du

a(u)

Γ 2(μu+ ν + 1/2)
du. (12)

Putting A1(w) and D1(t, s) from (12) and (11) into (9), we get

Gμν [J, J ](x) = −2μx

π

∫ ∞

0

∫ [w]

0
du

a(u)

Γ 2(μu+ ν + 1/2)

×
{∫ 1

0

∫ 1

0
cos(xt) cos(xs)

[x2

4
(1 − t2)(1 − s2)

]ν+μw−1/2

× ln
[x2

4
(1 − t2)(1 − s2)

]
dtds

}
dw du. (13)

For the inner ts–integral Ix(ρ), say, where ρ = μw + ν − 1/2, there holds

∫
Ix(ρ) dρ =

(x2

4

)ρ [∫ 1

0
cos(tx)(1 − t2)ρ dt

]2

= π

2x
Γ 2(ρ + 1)

[
Jρ+1/2(x)

]2
, (14)

provided the Fourier cosine transform of (1 − t2)ρ 1[0,1](t)3:

∫ 1

0
cos(tx)(1 − t2)ρ dt =

√
π

2
Γ (ρ + 1)

(2

x

)ρ+1/2
Jρ+1/2(x) .

By (14) we finally have

Ix = π

2x

∂

∂w

[
Γ (μw + ν + 1/2) Jμw+ν(x)

]2
. (15)

Substituting (15) into (13) we arrive at the stated integral expression (8), remarking
that the integration domain reduces to [1,∞) as [w] vanishes for all w ∈ [0, 1). ��

3Here, and in what follows 1A denotes the indicator function of the set A.
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Theorem 2 Let a ∈ C1(R+) and a|N = {an}n∈N. Then for all x ∈ (0, 2) ∩ Ia ,
where

Ia :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
0,

2μ

el

)
, −1/2 < ν ≤ 1/2(2μ

e
L,

2μe

l

)
, 1/2 < ν ≤ 3/2(4μ

e
L,
μe

l

)
, ν > 3/2

, (16)

and

l :=
(

lim sup
n→∞

|an|1/n n−2μ
)1/(2μ)

,

L :=
(

lim sup
n→∞

|an|1/n n2μ
)1/(2μ)

,

there holds

Gμν [Y, Y ](x) = μ
∫ ∞

1

∫ [w]

0
du

a(u)

Γ 2(μu+ ν + 1/2)

× ∂

∂w

[
Γ 2(μw + ν + 1/2) Y 2

μw+ν(x)
]

dw du , (17)

when (an)n∈N satisfies

{
l · L < 1, ν ∈ (−1/2, 3/2]
l · L < 4−μ, ν > 3/2

. (18)

Proof We focus to G
μ
ν [Y, Y ](x), built by Bessel Yν+μn(x) terms. Firstly, let us

establish the x–region of convergence and the related parameter constraints upon ν.
The Gubler–Weber formula reads [35, p. 165]

Yν(z) = 2 (z/2)ν

Γ (ν + 1/2)
√
π

(∫ 1

0

sin(zt) dt

(1 − t2)1/2−ν −
∫ ∞

0

e−zt dt

(1 + t2)1/2−ν

)
, (19)

from which evidently follows that

Yν(x) ≤ 2 (x/2)ν

Γ (ν + 1/2)
√
π

(∫ 1

0

sin(xt) dt

(1 − t2)1/2−ν +
∫ ∞

0

e−xt dt

(1 + t2)1/2−ν

)
,

where x > 0 and ν > −1/2.
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We have the following estimates [5, pp. 957–958]

Yν(x)− (x/2)ν

Γ (ν + 1)
≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(x/2)ν−1

√
π Γ (ν + 1/2)

, −1/2 < ν ≤ 1/2

(x/2)ν−1

√
π Γ (ν + 1/2)

+ 2νΓ (ν)

π xν
, 1/2 < ν ≤ 3/2

xν−1

√
2π Γ (ν + 1/2)

+ 22ν−3/2Γ (ν)

πxν
, ν > 3/2

.

Hence, by the Arithmetic Mean—Quadratic Mean inequality

Y 2
ν (x) ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2(x/2)2ν

Γ 2(ν + 1)
+ 2(x/2)2ν−2

π Γ 2(ν + 1/2)
, −1/2 < ν ≤ 1/2

3(x/2)2ν

Γ 2(ν + 1)
+ 3(x/2)2ν−2

π Γ 2(ν + 1/2)
+ 3 · 22νΓ 2(ν)

π2 x2ν , 1/2 < ν ≤ 3/2

3(x/2)2ν

Γ 2(ν + 1)
+ 3x2ν−2

2π Γ 2(ν + 1/2)
+ 3 · 42νΓ 2(ν)

8π2x2ν
, ν > 3/2

;

(20)

also compare [2].
Firstly, the case −1/2 < ν ≤ 1/2 results in the estimate

|Gμν [Y, Y ](x)| ≤ 2
(x

2

)2ν∑
n≥1

|an|
Γ 2(μn+ ν + 1)

(x
2

)2μn

+ 2

π

(x
2

)2ν−2 ∑
n≥1

|an|
Γ 2(μn+ ν + 1/2)

(x
2

)2μn
.

By the Cauchy–Hadamard theorem the uniform convergence occurs when 0 < x <
2μ/(e l) since the positivity of the argument x.

Next, for 1/2 < ν ≤ 3/2 we have

|Gμν [Y, Y ](x)| ≤ 3
(x

2

)2ν∑
n≥1

|an|
Γ 2(μn+ ν + 1)

(x
2

)2μn

+ 3

π

(x
2

)2ν−2 ∑
n≥1

|an|
Γ 2(μn+ ν + 1/2)

(x
2

)2μn

+ 3

π2

(2

x

)2ν∑
n≥1

|an|Γ 2(μn+ ν)
( 2

x

)2μn
. (21)

Obviously the first and the second power series in (21) converge uniformly for 0 <
x < 2μ/(e l), while the third series is uniformly convergent for all x > (2μ/e)L.
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Consequently, the interval of uniform convergence becomes

I ′
a =

(
2μ

eL
,

2μ

e l

)
,

provided l · L < 1. This implies that the necessary condition for convergence of
Nν,μ[J, Y ](x) is lim sup

n→∞
|an|1/n < 1.

In the case ν > 3/2 we have by (20) that

∣∣Gμν [Y, Y ](x)∣∣ ≤ 3
(x

2

)2ν∑
n≥1

|an|
Γ 2(μn+ ν + 1)

(x
2

)2μn

+ 3 x2ν−2

2π

∑
n≥1

|an| x2μn

Γ 2(μn+ ν + 1/2)

+ 3

8π2

( 4

x

)2ν∑
n≥1

|an|Γ 2(μn+ ν)
( 4

x

)2μn ;

in fact our present right–hand–side expression only modestly differs from the
previously discussed bound (21). So, by virtue of the same approach we show that
the first two series converge in 0 < x < 2μ/(e l) and 0 < x < μ/(e l) respectively,
while the third series converges uniformly for all x > (4μ/e)L. This yields the
x–domain of uniform convergence

I ′′
a =

(
4μ

eL
,
μ

e l

)
.

The domain I ′′
a is not empty if it necessarily holds 4 l · L < 1. Then the coefficients

an satisfy

lim sup
n→∞

|an|1/n < 4−μ

for convergence of Gμν [Y, Y ](x). Collecting these cases we get (16) and (18).
Now, let us focus on the integral representation for Gμν [Y, Y ](x), where x ∈ I ′′

a .
By the Gubler–Weber formula (19) we have

Gμν [Y, Y ](x) = 4

π

(x
2

)2ν∑
n≥1

an

Γ 2(μn+ ν + 1/2)

(x
2

)2μn

×
(∫ 1

0

sin(xt) dt

(1 − t2)1/2−μn−ν −
∫ ∞

0

e−xt dt

(1 + t2)1/2−μn−ν

)2

, (22)
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which can be presented in the form of a linear combination of sums Nj(x), j =
1, 2, 3 say, (up to the multiplicative prefix terms):

N1(x) =
∑
n≥1

an(x/2)2μn

Γ 2(μn+ ν + 1/2)

∫ 1

0

∫ 1

0

sin(xt) sin(xs) dtds

[(1 − t2)(1 − s2)]1/2−μn−ν

=
∫ 1

0

∫ 1

0

sin(xt) sin(xs)

[(1 − t2)(1 − s2)]1/2−ν D11(t, s) dtds

N2(x) =
∑
n≥1

an(x/2)2μn

Γ 2(μn+ ν + 1/2)

∫ 1

0

∫ ∞

0

sin(xt)e−sx dtds

[(1 − t2)(1 + s2)]1/2−μn−ν

=
∫ 1

0

∫ ∞

0

sin(xt)e−sx

[(1 − t2)(1 + s2)]1/2−ν D12(t, s) dtds

N3(x) =
∑
n≥1

an(x/2)2μn

Γ 2(μn+ ν + 1/2)

∫ ∞

0

∫ ∞

0

e−(t+s)x dtds

[(1 + t2)(1 + s2)]1/2−μn−ν

=
∫ ∞

0

∫ ∞

0

e−(t+s)x

[(1 + t2)(1 + s2)]1/2−ν D22(t, s) dtds;

with the associated Dirichlet series

D11(t, s) =
∑
n≥1

an

Γ 2(μn+ ν + 1/2)
exp

{
−nμ ln

4

x2(1 − t2)(1 − s2)

}
,

D12(t, s) =
∑
n≥1

an

Γ 2(μn+ ν + 1/2)
exp

{
−nμ ln

4

x2(1 − t2)(1 + s2)

}
,

D22(t, s) =
∑
n≥1

an

Γ 2(μn+ ν + 1/2)
exp

{
−nμ ln

4

x2(1 + t2)(1 + s2)

}
,

(23)

respectively. The first Dirichlet series D11(t, s) we treat in the usual way. The
Dirichlet exponent should be positive of the whole domain, that means

x2(1 − t2)(1 − s2)

4
≤ x2

4
< 1 ,

which holds for all |x| < 2 and all (t, s) ∈ [0, 1]2, consequently x ∈ (0, 2).
Next, the Dirichlet series converges for all |x| < 2μ/(e l), compare (10). Ergo,
the convergence domain for x turns out to be x ∈ (0, 2μ/(e l)). Now, with the aid
of the Cahen’s formula (6), we have

D11(t, s) = μ ln
4

x2(1 − t2)(1 − s2)

∫ ∞

0

[
x2

4
(1 − t2)(1 − s2)

]μw
A1(w) dw,
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where the counting function is solved around (11). Collecting these expressions we
deduce that

N1(x) = −μ
(

2

x

)2ν−1 ∫ ∞

0

∫ [w]

0
du

a(u)

Γ 2(μu+ ν + 1/2)

×
(∫ 1

0

∫ 1

0
sin(xt) sin(xs)

[
x2(1 − t2)(1 − s2)

4

]μw+ν−1/2

× ln
x2(1 − t2)(1 − s2)

4
dt ds

)
dw du .

Integrating with respect to ρ := μw + ν − 1/2 the ts-integral I11(w), say, we get
the squared Fourier sine transform of (1 − t2)ρ 1[0,1](t), viz.

∫
I11(ρ) dρ =

(
x2

4

)ρ [∫ 1

0
sin(xt) (1 − t2)ρ dt

]2

= π

x
Γ 2(ρ + 1/2)H2

ρ+1/2(x) ,

where Hα(x) stands for the Struve function of the order α. Thus,

I11(x) = π

x

∂

∂w
Γ 2(μw + ν + 1/2)H2

μw+ν(x) .

Finally, we infer

N1(x) = −μπ
4

(
2

x

)2ν ∫ ∞

0

∫ [w]

0
du

a(u)

Γ 2(μu+ ν + 1/2)

× ∂

∂w

[
Γ 2(μw + ν + 1/2)H2

μw+ν(x)
]

dw du . (24)

In the continuation we repeat the previous steps in obtaining the integral expressions
for N2(x) and N3(x). By the way, mutatis mutandis D12(t, s) = D11(t, is) and
D22(t, s) = D11(it, is), but the lines of the consideration are the same as in the
previous case. However, in both remaining cases exactly the same counting function
A1(w) occurs, see the structure of (23). Similarly to the procedure applied in proof
of [5, Theorem 2.4.] we conclude that

N2(x) = −μπ
4

(
2

x

)2ν ∫ ∞

0

∫ [w]

0
du

a(u)

Γ 2(μu+ ν + 1/2)

× ∂

∂w

[
Γ 2(μw + ν + 1/2)Hμw+ν(x)

(
Hμw+ν(x)− Yμw+ν (x)

)]
dwdu . (25)
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By the double-use of the Laplace transform we achieve the integral form

N3(x) = −μπ
4

(
2

x

)2ν ∫ ∞

0

∫ [w]

0
du

a(u)

Γ 2(μu+ ν + 1/2)

× ∂

∂w

[
Γ 2(μw + ν + 1/2)

(
Hμw+ν(x)− Yμw+ν(x)

)2
]

dwdu . (26)

Building now the desired linear combination from all three integral representations
(24)–(26), associated with (22) we arrive at the stated result (17). ��

The relation (7) connects the results of Theorem 1 and Theorem 2. So, the
final form of the second type Neumann series which consists from Nicholson–type
building blocks is

Theorem 3 Consider the same parameter space as in Theorem 1. and Theorem 2.
Then we have

N μ
ν

[
J, Y

]
(x) =

∑
n≥1

an
[
J 2
μn+ν (x)+ Y 2

μn+ν (x)
]

= −μ
∫ ∞

1

∫ [w]

0

∂

∂w

[
Γ 2(μw + ν + 1/2)

(
J 2
μw+ν(x)+ Y 2

μw+ν (x)
)]

× du
a(u)

Γ 2(μu+ ν + 1/2)
dw du . (27)

4 Main Results: The Dixon–Ferrar Formula

The second type Neumann series of building functions coming from the Bessel
functions family contain two ore more special functions product(s) in the general
term, which summing indices occur exclusively in the parameter(s) of these
functions. This time the Nicholson type B2

ν (x) = J 2
ν (x) + Y 2

ν (x) functions are
considered.

A different approach in finding the integral representation for the Neumann series
N

μ
ν

[
J, Y

]
(x) would enabled by the Dixon–Ferrar formula (3) which reads

B2
ν (x) = 8 cos(νπ)

π2

∫ ∞

0
K2ν(2x sinh t) dt, "(x) > 0, |"(ν)| < 1

2
. (28)

Unfortunately the Dixon–Ferrar formula is useless for our purposes, being the orders
of the Bessel functions Jν, Yν included into Neumann series

N μ
ν

[
J, Y

]
(x) =

∑
n≥1

an
[
J 2
μn+ν(x)+ Y 2

μn+ν (x)
]
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outside of the parametric space, which is evidently |"(ν)| < 1/2, for any positive
integer n ≥ n∗ = n∗(μ, ν) = [(1 − 2ν)/(2μ)] where [·] notices the integer part
operator. However, in we consider the partial sum of a Neumann series of the form

N ∗[J, Y ](x) :=

[
1−2ν

2μ

]
∑
n=1

an
[
J 2
μn+ν(x)+ Y 2

μn+ν (x)
]
,

we could express this finite sum in the form of an integral via the more convenient
tool, which is the Dixon–Ferrar formula (3).

Theorem 4 For all x > 0 and μ, ν > 0; 0 ≤ n∗ = (1 − 2ν)/(2μ) < 1, we have

N ∗[J, Y ](x) = 8

π3/2

∫ ∞

0

∫ [
1−2ν

2μ

]

0

K0(2xs)

(1 + s2)ν−1/2

× du
a(u) cosπ(μu+ ν)Γ (μu+ ν + 1/2)

(1 + s2)μu
ds du . (29)

Proof Detecting that the partial sum N ∗[J, Y ](x) is defined for any positive x,
and for the quoted parameter space the Dixon–Ferrar formula (3) there holds, we
clearly deduce

N ∗[J, Y ](x) = 8

π

∫ ∞

0

n∗∑
n=1

an cosπ(μn+ ν)K2(μn+ν)(2x sinh t) dt

= 8

π3/2

(
2

x

)2ν ∫ ∞

0

∫ ∞

0

cos(2xs sinh t)

(1 + s2)ν−1/2 A∗
2(s) dt ds,

where the counting function

A∗
2(s) =

n∗∑
n=1

an
cosπ(μn+ ν) Γ (μn+ ν + 1/2)

(1 + s2)μn

takes, by the Euler–Maclaurin summation formula (4), the following integral form:

A∗
2(s) =

∫ n∗

0
du
a(u) cosπ(μu+ ν) Γ (μu+ ν + 1/2)

(1 + s2)μu
du .

In turn, we point out that here all summation–integration–integration order ex-
changes are legitimate and by the special case of the Basset formula (2), see e.g.
[35, p. 172, Eq. (1)]

K0(z) =
∫ ∞

0
cos(z sinh t) dt =

∫ ∞

0

cos(zy)√
1 + y2

dy, z > 0,

obvious steps lead to the asserted expression (29). ��
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5 Discussion: Open Problems

The methodology used in getting integral representations for such series when the
included special functions except one are incorporated into the coefficients belongs
to Baricz and Pogány who treated such kind series in the book chapter [4]. However,
in this work we have not used this derivation method, we give the advantage to the
several times previously applied ‘classical’ approach developed in a set of articles,
see the corresponding references list in [7, pp. 27–86, Chapter 2].

The proving procedure of our main result includes integral representations for
Bessel functions of the first and second kind Jν, Yν , respectively, modified Bessel
function of the second kind Kν which occurs in the famous Dixon–Ferrar formula,
Struve function Hν (which ‘mysteriously’ disappeared from the final result in
Theorem 3), the Cahen’s Laplace integral formula for the Laplace integral form of
the Dirichlet series and finally, the Euler–Maclaurin summation method were used.

Finally, we mention some of plethora of possible further related research
directions which could include

(iii) Schlömilch series;
(iv) Kapteyn series;
(v) Dini series of the Nicholson and/or Dixon–Ferrar type functions and their

counterparts from the Bessel and alike members form these functions class;
and

(vi) the inverse problem: assuming that there holds the integral representation (27)
of the second type Neumann series, describe the class of functions consisting
from a = a(x) which restriction a(x)

∣∣
n∈N = (an).

Acknowledgements T.K. Pogány acknowledges the support given by the NAWA project PROM
PPI/PRO/2018/1/00008 and thanks to the Department of Mathematical Physics, The Henryk
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On Some Generalizations
of the Properties of the Multidimensional
Generalized Erdélyi–Kober Operators
and Their Applications

Sh. T. Karimov and S. M. Sitnik

Abstract In this paper we investigate the composition of a multidimensional
generalized Erdélyi–Kober operator with differential operators of high order. In
particular, with powers of the differential Bessel operator. Applications of proved
properties to solving the Cauchy problem for a multidimensional polycaloric
equation with a Bessel operator are shown. An explicit formula for solving the
formulated problem is constructed. In the appendix we briefly describe a general
context for transmutations and integral transforms used in this paper. Such a general
context is formed by integral transforms composition method (ITCM).

Keywords Fractional integrals and derivatives · Multidimensional Erdélyi–Kober
operators · Bessel differential operator · Multidimensional polycaloric equation ·
Cauchy problem
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1 Introduction

Various modifications and generalizations of the classical Riemann–Liouville op-
erators of fractional integration and differentiation are widely used in theory and
applications. Such modifications include, particularly, the Erdélyi–Kober operators
[1, 2]. These operators turned to be very useful in application to integral and
differential equations as well as in other issues of science and technology [3, 4].
Their various modifications, generalizations, and applications can be found in works
of Erdélyi [5, 6], Sneddon [7, 8], and Kyriakova [9].
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One-dimensional generalized Erdélyi–Kober operator with the Bessel function
in the kernel and its applications were considered by Lowndes [10, 11].

Modifications of fractional integration of Erdélyi–Kober type for two and many
variables have been studied in [12–18] and others. A survey of some studies on this
topic can be found in [3, 4, 9].

In [18] a multidimensional generalized Erdélyi–Kober operator was introduced
in the form

Jλ

(
α

η

)
f (x) = Jλ1,λ2,...,λn

(
α1, α2, . . . , αn

η1, η2, . . . , ηn

)
f (x)

= J x1
λ1
(η1, α1)J

x2
λ2
(η2, α2) · · · J xnλn (ηn, αn)f (x)

=
[
n∏
k=1

2x−2(αk+ηk)
k

(αk)

] x1∫

0

x2∫

0

. . .

xn∫

0

n∏
k=1

[
t
2ηk+1
k

(
x2
k − t2k

)αk−1

× J̄αk−1

(
λ

√
x2
k − t2k

)]
f (t1, t2, . . . , tn)dt1dt2 . . . dtn, (1.1)

where λ, α, η ∈ Rn, αk > 0, ηk ≥ −1/2, k = 1, n; (α) is the Euler gamma
function; J̄ν(z) is Bessel-Clifford function expressed through the Bessel function
Jν(z), using the formula J̄ν(z) = (ν + 1)(z/2)−νJν(z) and J xkλk (ηk, αk) is a
particular Erdélyi–Kober integral of αk-order of kth variable

J
xk
λk
(ηk, αk)f (x) = 2x−2(αk+ηk)

k

(αk)

xk∫

0

(x2
k − t2)αk−1J̄αk−1

(
λk

√
x2
k − t2

)

×t2ηk+1f (x1, x2, . . . , xk−1, t, xk+1, . . . , xn)dt.

In this paper we also study the basic properties of the operator (1.1) and show
that the inverse operator has the form

J−1
λ

(
α

η

)
f (x) = Jiλ

( −α
η + α

)
f (x)

= 2n−|m|
[
n∏
k=1

x
−2ηk
k

(mk − αk)
(

1

xk

∂

∂xk

)mk] x1∫

0

x2∫

0

. . .

xn∫

0

n∏
k=1

[
t
2(ηk+αk)+1
k

×
(
x2
k − t2k

)mk−1−αk
Īmk−1−αk

(
λ

√
x2
k − t2k

)]
f (t1, t2, . . . , tn)dt1dt2 . . . dtn,

(1.2)
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where αk > 0, mk = [αk] + 1, ηk ≥ −1/2, k = 1, n, Īν(z) = (ν +
1)(z/2)−νIν(z), Iν(z) is the Bessel function of the imaginary argument. m =
(m1, m2, . . . , mn) is a multi-index, and |m| = m1 +m2 + . . . +mn is its length.

Taking into account J̄ν(0) = 1, in the limit for λk → 0, k = 1, n, we obtain

J0

(
α

η

)
f (x) = J0,0,...,0

(
α1, α2, . . . , αn

η1, η2, . . . , ηn

)
f (x)

=
n∏
k=1

[
2x−2(αk+ηk)
k

(αk)

] x1∫

0

x2∫

0

. . .

xn∫

0

n∏
k=1

[
t
2ηk+1
k

(
x2
k − t2k

)αk−1
]
f (t)dt1 . . . dtn,

(1.3)

This operator is a multidimensional analog of the ordinary (not generalized)
Erdélyi–Kober operator. In this case, the inverse operator (1.2) takes the following
form:

J−1
0

(
α

η

)
f (x) = 2n−|m|

[
n∏
k=1

x
−2ηk
k

(mk − αk)
(

1

xk

∂

∂xk

)mk]

x1∫

0

x2∫

0

. . .

xn∫

0

n∏
k=1

[
t
2(ηk+αk)+1
k

(
x2
k − t2k

)mk−1−αk]
f (t1, t2, . . . , tn)dt1dt2 . . . dtn.

(1.4)

In addition, in [18] the following theorem is proved:

Theorem 1.1 Let αk > 0, ηk ≥ −1/2; f (x) ∈ C2(	n); lim
xk→0

x
2ηk+1
k fxk (x) = 0,

k = 1, n. Then the transmutation formula holds:

(B
xk
ηk+αk + λ2

k)Jλ

(
α

η

)
f (x) = Jλ

(
α

η

)
Bxkηk f (x), k = 1, n,

in particular, if λk = 0, k = 1, n, then

B
xk
ηk+αk J0

(
α

η

)
f (x) = J0

(
α

η

)
Bxkηk f (x), k = 1, n,

where 	n =
n∏
k=1
(0, bk) = (0, b1) × (0, b2) × . . . × (0, bn) be the Cartesian

product, bk > 0, k = 1, n.
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This Theorem implies

Corollary 1.1 Suppose that the conditions of Theorem 1.1 are satisfied. Then

n∑
k=1

[
B
xk
ηk+αk + λ2

k

]
Jλ

(
α

η

)
f (x) = Jλ

(
α

η

)
n∑
k=1

[
Bxkηk

]
f (x),

in particular, if ηk = −1/2, k = 1, n, then

n∑
k=1

[
B
xk
αk−1/2 + λ2

k

]
Jλ

(
α

−1/2

)
f (x) = Jλ

(
α

−1/2

)
�f (x),

where �f (x) ≡
n∑
k=1

[
∂2f (x)/∂x2

k

]
is the multidimensional Laplace operator.

Similarly, we can prove the validity of the following theorem.

Theorem 1.2 Let αk > 0, ηk ≥ −1/2, k = 1, n, f (x) ∈ C2n(	n),

x
2ηk+1
k B

xk
ηk f (x) are integrable in a neighborhood of xk = 0 and lim

xk→0
x

2ηk+1
k fxk (x)

= 0, k = 1, n. Then

n∏
k=1

(B
xk
ηk+αk + λ2

k)Jλ

(
α

η

)
f (x) = Jλ

(
α

η

)
n∏
k=1

Bxkηk f (x),

in particular, if ηk = −1/2, k = 1, n, then

n∏
k=1

[
B
xk
αk−(1/2) + λ2

k

]
Jλ

(
α

−1/2

)
f (x) = Jλ

(
α

−1/2

)
∂2nf (x)

∂x2
1∂x

2 . . . ∂x2
n

.

The proof of Theorem 1.2 is analogous to the proof of Theorem 1.1.
In this paper, these properties are generalized for an iterated Bessel differential

operator of high order. The results obtained are applied to the investigation of
problems for higher-order multi-dimensional partial differential equations with
singular coefficients.

In the appendix we briefly describe a general context for transmutations and
integral transforms used in this paper. Such a general context is formed by integral
transforms composition method (ITCM), cf. [19–21].
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2 Generalization of the Properties of the Generalized
Erdelyi–Kober Operator

Let
[
B
xk
ηk

]0 = E, where E is the unit operator,
[
B
xk
ηk

]mk = [
B
xk
ηk

]mk−1 [
B
xk
ηk

]
is the

mk th power of the operator Bxkηk , k = 0, n.

Theorem 2.1 Let αk > 0, ηk ≥ −1/2; f (x) ∈ C2m0(	n); x2ηk+1
k

[
B
xk
ηk

]pk+1
f (x)

functions are integrable in a neighborhood of the origin and lim
xk→0

x
2ηk+1
k (∂/∂xk)[

B
xk
ηk

]pk f (x) = 0, pk = 0,mk − 1, k = 1, n. Then

[
B
xk
ηk+αk + λ2

k

]mk
Jλ

(
α

η

)
f (x) = Jλ

(
α

η

)[
Bxkηk

]mk
f (x), k = 1, n, (2.1)

where m0 = max{m1,m2, . . . ,mn}.
We note that Theorem 2.1 is also true in the case when some or all of the λk =

0, k = 1, n.

Proof Theorem 2.1 can be proved by the method of mathematical induction on
mk, k = 1, n. We arbitrarily fix k ∈ N, where N is the set of natural numbers.
The proof of (2.1) for a fixed k and mk = 1 is given in Theorem 1.1. Assume that
equality (2.1) holds formk = lk and prove that it holds for mk = lk + 1.

From equality

[
B
xk
ηk+αk + λ2

k

]lk+1
Jλ

(
α

η

)
f (x) =

[
B
xk
ηk+αk + λ2

k

] [
B
xk
ηk+αk + λ2

k

]lk
Jλ

(
α

η

)
f (x)

by the induction hypothesis, if the conditions of Theorem 2.1 are satisfied, we have

[
B
xk
ηk+αk + λ2

k

] [
B
xk
ηk+αk + λ2

k

]lk
Jλ

(
α

η

)
f (x)

=
[
B
xk
ηk+αk + λ2

k

]
Jλ

(
α

η

)[
Bxkηk

]lk
f (x).

In the last equality, applying Theorem 1.1 to the functions
[
B
xk
ηk

]lk f (x), under the

conditions lim
xk→0

x
2ηk+1
k (∂/∂xk)

[
B
xk
ηk

]lk f (x) = 0, k = 1, n, we obtain the validity

of formula (2.1). ��
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Corollary 2.1 Suppose that the conditions of Theorem 2.1 are satisfied. Then

n∑
k=1

[
B
xk
ηk+αk + λ2

k

]mk
Jλ

(
α

η

)
f (x) = Jλ

(
α

η

)
n∑
k=1

[
Bxkηk

]mk
f (x),

in addition, if f (x) ∈ C2|m|(	n), then

n∏
k=1

[
B
xk
ηk+αk + λ2

k

]mk
Jλ

(
α

η

)
f (x) = Jλ

(
α

η

)
n∏
k=1

[
Bxkηk

]mk
f (x). (2.2)

Theorem 2.2 Let αk > 0, ηk ≥ −1/2, q ∈ N; f (x) ∈ C2q(	n); the functions
x

2ηk+1
k

[
B
xk
ηk

]l+1
f (x) are integrable in a neighborhood of the origin and

lim
xk→0

x
2ηk+1
k

∂

∂xk

[
Bxkηk

]l
f (x) = 0, l = 0, q − 1, k = 1, n.

Then

[
n∑
k=1

(
B
xk
ηk+αk + λ2

k

)]q
Jλ

(
α

η

)
f (x) = Jλ

(
α

η

)[
n∑
k=1

Bxkηk

]q
f (x).

This Theorem is proved using the polynomial formula

[
n∑
k=1

(
B
xk
ηk+αk + λ2

k

)]q
=

∑
|m|=q

q!
m!

n∏
k=1

(
B
xk
ηk+αk + λ2

k

)mk

and with the use of equality (2.2), where m! = m1!m2! . . . mn!
Corollary 2.2 Suppose that the conditions of Theorem 2.1 are satisfied. Then for
ηk = −1/2, k = 1, n,

[
n∑
k=1

(
B
xk
αk−1/2 + λ2

k

)]q
Jλ

(
α

−1/2

)
f (x) = Jλ

(
α

−1/2

)
�qf (x),

in particular, for λk = 0, we have the equality

�
q
BJ0

(
α

−1/2

)
f (x) = J0

(
α

−1/2

)
�qf (x).

Let L(y) be a linear differential operator of order l ∈ N independent of variable
x = (x1, x2, . . . , xn) in the variable y = (y1, y2, . . . , ys) ∈ Rs.
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Theorem 2.3 Let αk > 0, ηk ≥ −1/2, k = 1, n, q ∈ N; f (x, y) ∈ C2q,lq
x,y (	n ×

	s), the functions x
2ηk+1
k

[
B
xk
ηk

]j+1
f (x, y) are integrable in a neighborhood of

the origin and lim
xk→0

x
2ηk+1
k (∂/∂xk)

[
B
xk
ηk

]j
f (x, y) = 0, j = 0, q − 1, k = 1, n.

Then

[
L(y) ±

n∑
k=1

(
B
xk
ηk+αk + λ2

k

)]q
J
(x)
λ

(
α

η

)
f (x, y)

= J (x)λ
(
α

η

)[
L(y) ±

n∑
k=1

Bxkηk

]q
f (x, y),

where the superscripts in the operators mean the variables by which these operators
operate.

Proof Using the binomial formula, we obtain

[
L(y) ±

n∑
k=1

(
B
xk
ηk+αk + λ2

k

)]q
J
(x)
λ

(
α

η

)
f (x, y)

=
q∑
j=0

C
j
q (±1)j

(
L(y)

)q−j [ n∑
k=1

(
B
xk
ηk+αk + λ2

k

)]j
J
(x)
λ

(
α

η

)
f (x, y),

C
j

k = k!/[j !(k − j)!] is binomial coefficients.
Next, applying Theorem 2.2, we have

J
(x)
λ

(
α

η

) q∑
j=0

C
j
q (±1)j

(
L(y)

)q−j [ n∑
k=1

Bxkηk

]j
f (x, y)

= J (x)λ
(
α

η

)[
L(y) ±

n∑
k=1

Bxkηk

]q
f (x, y).

��
Corollary 2.3 Suppose that the conditions of Theorem 2.3 are satisfied. If

L(y) = −
ω+σ∑
k=ω+1

(
B
xk
ηk+αk + λ2

k

)
,
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where x = (x1, x2, . . . , xω), y = (xω+1, xω+2, . . . , xω+σ ), ω + σ = n, then

[
ω∑
k=1

(
B
xk
ηk+αk + λ2

k

)
−

ω+σ∑
k=ω+1

(
B
xk
ηk+αk + λ2

k

)]q
Jλ

(
α

η

)
f (x)

= Jλ
(
α

η

)[
ω∑
k=1

Bxkηk −
ω+σ∑
k=ω+1

Bxkηk

]q
f (x), ω + σ = n.

Let [Dxkηk ]0 = E, D
xk
ηk ≡ x

−2ηk
k

(
1

xk

∂

∂xk

)
x

2ηk
k and [Dxkηk ]mk = [Dxkηk ]mk−1D

xk
ηk

the degree of an operator D
xk
ηk that is representable in the form [Dxkηk ]mk =

x
−2ηk
k

(
1

xk

∂

∂xk

)mk
x

2ηk
k , mk be nonnegative integers, k = 1, n.

Theorem 2.4 If αk > 0, ηk ≥ −(1/2), k = 1, n, f (x) ∈ Cm0(	n), the
functions x

2ηk+1
xk [Dxkηk ] lk+1f (x) are integrable in a neighborhood of the origin

and lim
xk→0

x
2ηk
k [Dxkηk ] lkf (x) = 0, lk = 0,mk − 1, k = 1, n, then

[Dxkηk+αk ]mkJλ
(
α

η

)
f (x) = Jλ

(
α

η

)
[Dxkηk ]mkf (x), k = 1, n, (2.3)

where m0 = max{m1,m2, . . . ,mn}.
Proof This Theorem is also proved using the method of mathematical induction
on mk, k = 1, n. Arbitrarily fix k ∈ N. The proof of formula (2.3) for mk = 1,
k = 1, n is given in [22, 23], according to which we have

[Dxkηk+αk ]Jλ
(
α

η

)
f (x) = Jλ

(
α

η

)
[Dxkηk ]f (x), k = 1, n. (2.4)

Suppose that (2.3) holds formk = lk and we prove that it holds for mk = lk + 1.

[Dxkηk+αk ]lk+1Jλ

(
α

η

)
f (x) = [Dxkηk+αk ][Dxkηk+αk ]lk Jλ

(
α

η

)
f (x). (2.5)

By the induction hypothesis, if the conditions of Theorem 2.4 are satisfied, we have

[Dxkηk+αk ]lk Jλ
(
α

η

)
f (x) = Jλ

(
α

η

)
[Dxkηk ]lk f (x).
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Then the equality (2.5) takes the form

[Dxkηk+αk ]lk+1Jλ

(
α

η

)
f (x) = [Dxkηk+αk ]Jλ

(
α

η

)
[Dxkηk ]lkf (x).

Further, applying formula (2.4) to the functions [Dxkηk ]lk f (x), under the

conditions lim
xk→0

x
2ηk
k [Dxkηk ] lkf (x) = 0, we obtain the validity of formula (2.3). ��

Corollary 2.4 Suppose that the conditions of Theorem 2.4 are satisfied, then

n∏
k=1

[Dxkηk+αk ]mkJλ
(
α

η

)
f (x) = Jλ

(
α

η

)
n∏
k=1

[Dxkηk ]mkf (x).

Theorem 2.5 Let 0 < αk < 1, ηk ≥ −1/2; g(x) ∈ C2p(	n); ∂

∂xk

[
B
xk
ηk+αk

]l
g(x)

are integrable in a neighborhood of the origin and lim
xk→0

x
2(ηk+αk)+1
k

∂

∂xk

[
B
xk
ηk+αk

]l
g(x) = 0, l = 0, p − 1, p ∈ N, k = 1, n. Then

[
Bxkηk − λ2

k

]p
J−1
λ

(
α

η

)
g(x) = J−1

λ

(
α

η

)[
B
xk
ηk+αk

]p
g(x), k = 1, n,

or

[
Bxkηk

]p
J−1
λ

(
α

η

)
g(x) = J−1

λ

(
α

η

)[
B
xk
ηk+αk + λ2

k

]p
g(x), k = 1, n,

in particular, if λk = 0, then

[
Bxkηk

]p
J−1

0

(
α

η

)
g(x) = J−1

0

(
α

η

)[
B
xk
ηk+αk

]p
g(x), k = 1, n.

The proof of the Theorem 2.5 is analogous to the proof of Theorem 2.1.

Corollary 2.5 Suppose that the conditions of Theorem 2.5 are satisfied, then

[
n∑
k=1

(
Bxkηk − λ2

k

)]p
J−1
λ

(
α

η

)
g(x) = J−1

λ

(
α

η

)[
n∑
k=1

B
xk
ηk+αk

]p
g(x),

or

[
n∑
k=1

Bxkηk

]p
J−1
λ

(
α

η

)
g(x) = J−1

λ

(
α

η

)[
n∑
k=1

(
B
xk
ηk+αk + λ2

k

)]p
g(x).
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If the conditions lim
xk→0

x
2αk
k

∂

∂xk

[
B
xk
αk−(1/2)

]l
g(x) = 0, l = 0, p − 1, k = 1, n,

are satisfied, then the last equality for λk = 0, ηk = −(1/2), k = 0,m− 1, implies
the validity of equality

�pJ−1
0

(
α

−1/2

)
g(x) = J−1

0

(
α

−1/2

)
�
p
Bg(x) (2.6)

where �p =
[
n∑
k=1

∂2

∂x2
k

]p
is pth power of the multidimensional Laplace operator,

and

�
p
B =

[
n∑
k=1

(
B
xk
αk−(1/2)

)]p
=

[
n∑
k=1

(
∂2

∂x2
k

+ 2αk
xk

∂

∂xk

)]p
.

We note that the Theorems proved allow us to reduce higher-order equations with
singular coefficients to polyharmonic, polycaloric, and polywave equations, and
thereby to establish and investigate the correct initial and boundary value problems
for such equations.

3 Applications

The results obtained are applicable to the construction of the solution of the
analogue of the Cauchy problem for a multidimensional polycaloric equation with
the Bessel operator.

Singular parabolic equations with Bessel operator belong to the class of equations
degenerating on the boundary of the domain with respect to the space variables.
These equations are often encountered in applications. Thus, in the mathematical
simulation of numerous problems of heat transfer in immobile media (solids), the
problems of diffusion boundary layer [24], and the problems of propagation of heat
in process of injection of hot liquids in oil pools [25], we get singular parabolic
equations with Bessel operator.

Degenerating equations and equations with singular coefficients form an impor-
tant field of the contemporary theory of partial differential equations. Numerous
works are devoted to the study of these equations. In this field, an important place
is occupied by the initial and boundary-value problems for parabolic equations with
Bessel operator. The theory of classical solutions to the Cauchy problem for singular
parabolic equations of the second order was developed in [26–30]. The Cauchy
problem for singular parabolic equations in the classes of distributions and in the
classes of generalized functions of the type S′ was studied in [31, 32]. However,
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the initial and boundary value problems for equations with Bessel operators of high
orders are studied quite poorly.

In the domain 	 = {(x, t) : x ∈ Rn+, t ∈ R1+}, where x =
(x1, x2, . . . , xn) be a point of the n-dimensional Euclidean space Rn, Rn+ ={
x ∈ Rn : xk > 0, k = 1, n

}
, we consider the problem of finding the solution

u(x, t) of the equation

Lmγ (u) ≡
(
∂

∂t
−�B

)m
u(x, t) = 0, (x, t) ∈ 	, (3.1)

satisfying the initial conditions

∂ku

∂tk

∣∣∣∣
t=0

= ϕk(x), x ∈ Rn+, k = 0,m− 1 (3.2)

and homogeneous boundary conditions

∂2k+1u

∂x2k+1
j

∣∣∣∣∣
xj=0

= 0, t > 0, j = 1, n, k = 0,m− 1, (3.3)

where�B =
n∑
k=1
B
xk
γk , B

xk
γk = ∂2/∂x2

k+[(2γk+1)/xk](∂/∂xk) is the Bessel operator

acting on variable xk; γ = (γ1, γ2, . . . , γn) ∈ Rn, γk ∈ R, γk > −1/2, k = 1, n,
m is a natural number; ϕk(x), k = 0,m− 1 given differentiable functions.

We note that in the problems of the general theory of partial differential equations
containing the Bessel operator with one or more variables, the main investigation
apparatus is the corresponding integral Fourier–Bessel transform. Unlike traditional
methods, here we apply the properties of the multidimensional Erdélyi–Kober
operator to solve the problem.

Suppose that the solution of the Eq. (3.1) satisfying conditions (3.2) and (3.3)
exists. We seek this solution in the form

u(x, t) = J (x)0

(
α

η

)
U(x, t), (3.4)

where α, η ∈ Rn, αk = γk + (1/2) > 0, ηk = −(1/2), k = 1, n, and U(x, t)

is an unknown function differentiable sufficiently many times, and J (x)0

(
α

η

)
is

a multidimensional Erdélyi–Kober operator of fractional order (1.3) acting on a
variable x ∈ Rn.

Substituting (3.4) into the boundary conditions (3.3), and then into Eq. (3.1) and
the initial conditions (3.2), and using Theorem 2.3 for L(t) ≡ ∂/∂t, we arrive at the
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problem of determination of the solution U(x, t) of the equation

(
∂

∂t
−�

)m
U(x, t) = 0, (x, t) ∈ 	, (3.5)

satisfying the initial conditions

∂kU

∂tk

∣∣∣∣
t=0

= �k(x), x ∈ Rn, k = 0,m− 1, (3.6)

and the homogeneous boundary conditions

∂2k+1U

∂x2k+1
j

∣∣∣∣∣
xj=0

= 0, t > 0, j = 1, n, k = 0,m− 1, (3.7)

where �k(x) = J−1
0

(
α

η

)
ϕk(x), ηk = −(1/2), (k = 0,m− 1), J−1

0

(
α

η

)
is the

inverse operator (1.4).
By using the boundary conditions (3.7), we extend the functions�k(x) evenly to

xk < 0, (k = 0,m− 1) and denote the extended functions by �̃k(x). Then in the
domain 	̃ = {(x, y) : x ∈ Rn, t > 0} we obtain the problem of finding a solution
of Eq. (3.5) satisfying the initial conditions

∂kU

∂tk

∣∣∣∣
t=0

= �̃k(x), x ∈ R, k = 0,m− 1, (3.8)

We introduce the notationW0(x, t) = U(x, t) and Wk(x, t) =
(
∂

∂t
−�

)k
W0.

In this notation, the problem (3.5) and (3.8) is equivalent to the problem of
determination the functions Wk(x, t), k = 0,m− 1, satisfying the system of
equations

⎧⎪⎪⎨
⎪⎪⎩

∂Wk

∂t
−�Wk = Wk+1, (x, t) ∈ 	̃, k = 0,m− 2,

∂Wm−1

∂t
−�Wm−1 = 0, (x, t) ∈ 	̃

(3.9)

with the initial conditions

Wk(x, 0) = Fk(x), x ∈ Rn, k = 0,m− 1, (3.10)
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where

Fk(x) =
k∑
j=0

(−1)k−jCjk�
k−j �̃j (x), k = 0,m− 1. (3.11)

For the solution of problem (3.9) and (3.10), we use the following lemma.

Lemma 3.1 If g(x) ∈ L1(R
n), then the equality

t∫

0

dτ(
2
√
π(t − τ))n

∫

Rn

exp

[
− |x − y|2

4(t − τ)

]⎧⎨
⎩

1(
2
√
πτ

)n
∫

Rn

g(η) exp

[
− (y − η)2

4τ

]
dη

⎫⎬
⎭ dy

= t(
2
√
πt

)n
∫

Rn

g(η) exp

[
−|η − x|2

4t

]
dy. (3.12)

Proof In view of the uniform convergence of the improper integrals on the left-
hand side of equality (3.12), we can change the order of integration with respect to
η and y. Then we take the inner integral by the formula [33]

+∞∫

−∞
exp

[
−pξ2 − qξ

]
dξ =

√
π

p
exp

(
q2

4p

)
, Rep > 0,

we obtain

n∏
j=1

+∞∫

−∞
exp

[
− (xj − yj )2

4(t − τ ) − (yj − ηj )2
4τ

]
dyj

=
[

2

√
π√
t

√
τ (t − τ )

]n
exp

[
−|η − x|2

4t

]
. (3.13)

Substituting (3.13) into the left-hand side of (3.12), after reducing such terms, we
obtain the assertion of Lemma 3.1. ��

We now successively solve each equation in system (3.9) starting from the last
equation. By using the initial conditions (3.10) and Lemma 3.1, we determine the
solution of problem (3.9) and (3.10). In view of the relationW0(x, t) = U(x, t), we
obtain the solution of problem (3.5)–(3.7) in the form

U(x, t) =
(

2
√
πt

)−n m−1∑
k=0

tk

k!
∫

Rn

Fk(s) exp

[
−|s − x|2

4t

]
ds, (3.14)

where Fk(x) (k = 0,m− 1) are known functions given by equalities (3.11).
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In view of the evenness of the functions Fk(x), k = 0,m− 1, we can rewrite
equality (3.14) in the form

U(x, t) =
m−1∑
k=0

tk

k!Uk(x, t), (3.15)

where

Uk(x, t) =
∫

Rn+

Fk(s)G(x, t, s)ds, (3.16)

G(x, s, t) =
n∏
j=1

G0(xj , sj , t),

G0(xj , sj , t) = 1

2
√
πt

{
exp

[
− (sj − xj )2

4t

]
+ exp

[
− (sj + xj )2

4t

]}
.

To analyze the behavior of the functions Fk(x), k = 0,m− 1, it is necessary to
perform certain transformations. To this end, we prove the following lemma:

Lemma 3.2 Suppose that the functions ϕj (x) ∈ C2(m−j)−1(Rn+), j = 0,m− 1,
are continuous and bounded, and that all derivatives of the functions ϕj(x), up to
the order 2(m− j)−1, j = 0,m− 1 inclusively, are equal to zero for xk = 0, k =
1, n. Then the equalities

lim
xk→0

x
2αk
k

∂

∂xk

[
B
xk
αk−(1/2)

]l
ϕj (x) = 0, k = 1, n, l = 0,m− 1, j = 0,m− 1,

(3.17)

lim
xk→0

[Bxkγk ]iϕj−i (x) = 0, k = 1, n, i = 0, j , j = 0,m− 1, (3.18)

are true.

Proof By induction, we can prove the following equality:

(
1

x

d

dx

)p
h(x) =

p∑
j=1

(−1)j+1Apj
h(p−j+1)(x)

xp+j−1
, (3.19)

where Apj are constants given by the recurrence relations

A(p+1)1 = Ap1 = 1, p ≥ 1, A(p+1)j = (p+ j−1)Ap(j−1)+Apj, p ≥ 2, j = 2, p,

A(p+1)(p+1) = (2p − 1)App = (2p − 1)!!, p ≥ 1.
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We rewrite (3.17) in the form

lim
xk→0

H(x) = lim
xk→0

x
2αk
k

∂

∂xk

[
B
xk
αk−(1/2)

]l
ϕj (x)

= lim
xk→0

x
1+2αk
k

l∑
q=0

C
q
l (2αk)

l−q
(

1

xk

∂

∂xk

)l−q+1 ∂2qϕj (x)

∂x
2q
k

Taking (3.19) into account, we have

lim
xk→0

H(x)

=
l∑
q=0

C
q
l (2αk)

l−q
l−q+1∑
j=1

(−1)j+1A(l−q+1)j lim
xk→0

∂l−q−j+2ϕj (x)/∂x
l−q−j+2
k

x
l−q+j−1−2αk
k

Applying the L’Hospital rule l − q + j times [34] to the last equality and taking
into account the condition of the Lemma 3.2, we obtain

lim
xk→0

∂l−q−j+2ϕj (x)/∂x
l−q−j+2
k

x
l−q+j−1−2αk
k

=
lim
xk→0

x
1+2αk
k [∂2l+2qϕj (x)/∂x

2l+2q
k ]

(l − q + j)! = 0.

This proves of (3.17). Equality (3.18) is proved similarly. ��
We now transform the functions Fk(x), k = 0,m− 1. By virtue of Lemma 3.2,

the functions �k(x) satisfy all conditions of Theorem 2.5. Therefore, taking into
account formula (2.6), equality (3.11) for xk > 0, k = 1, n can be represented in
the form

Fk(x) = J−1
0

(
α

−1/2

)
fk(x), k = 0,m− 1, (3.20)

where

fk(x) =
k∑
j=0

(−1)jCjk�
j
Bϕk−j (x), k = 0,m− 1. (3.21)

Taking into account the form of the inverse operator (1.4) formj = 1, j = 1, n,
equality (3.20) can be represented as Fk(x) = [∂n/(∂x1∂x2 . . . ∂xn)]F̄k(x), where

F̄k(x) =
n∏
j=1

[
1

(1 − αj )
] x1∫

0

x2∫

0

. . .

xn∫

0

n∏
j=1

[
(x2
j − s2

j )
−αj s2αj

j

]
fk(s)ds1ds2 . . . dsn.
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We note that, by Lemma 3.2, it follows from (3.21) that the functions fk(x),
k = 0,m− 1 for xj ≥ 0, are continuous, bounded, and fk(x)|xj=0 = 0, so that
from the last equality we have

F̄k(x)
∣∣
xj=0 = 0, j = 1, n, k = 0,m− 1. (3.22)

Taking (3.22) into account in (3.16), we integrate by parts. Then, substituting in
this equality the value of the functions F̄k(x), we obtain

Uk(x, t) = −
n∏
j=1

[
1

(1 − αj )
] ∫

Rn+

fk(s)

n∏
j=1

[
s

2αj
j G1(xj , sj , t)

]
ds, (3.23)

where

G1(xj , sj , t) =
+∞∫

sj

(y2
j − s2

j )
−αj ∂
∂yj
G0(xj , yj , t)dyj . (3.24)

Let us calculate the integral (3.24). Applying the formula [33, p. 451]

+∞∫

0

e−aλ2
cos(bλ)dλ =

√
π

4a
exp

[
− b

2

4a

]
, Re a > 0,

functionG0(xj , yj , t) can be represented in the form

G0(xj , yj , t) = 2

π

+∞∫

0

e−tλ2
cos(xjλ) cos(yjλ)dλ.

We find the derivative with respect to yj and substitute the obtained expression
for the function G0y in (3.24). Then we use the uniform convergence of integrals
and change the order of integration. Taking the inner integral with the help of the
Mehler–Sonine formula [35, p. 93], we get

G1(xj , sj , t)

= −2(1/2)−αj√
π

(1 − αj )s(1/2)−αj

+∞∫

0

e−tλ2
λαj+(1/2)Jαj−(1/2)(λsj ) cos(xjλ)dλ.

(3.25)
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Now, substituting (3.23) into (3.15), and its in (3.4), after changing the order of
integration, we obtain

u(x, t) = −
n∏
j=1

⎡
⎣ 2x

1−2αj
j

(αj )(1 − αj )

⎤
⎦m−1∑
k=0

tk

k!
∫

Rn+

fk(s)

n∏
j=1

s
2αj
j G2(xj , sj , t)ds

(3.26)

where

G2(xj , sj , t) =
xj∫

0

(x2
j − ξ2

j )
αj−1 G1(ξj , sj , t)dξj (3.27)

We substitute the expression (3.25) for the function G1 in (3.27) and change the
order of integration. Then, using the Poisson formula [35, p. 93], we compute the
inner integral. As a result, we find

G2(xj , sj , t)

= −1

2
(αj )(1 − αj )

(
sj

xj

)(1/2)−αj ∞∫

0

e−tλ2
Jαj−(1/2)(sj λ)Jαj−(1/2)(xjλ)λdλ.

Further, taking into account the following formula [35, p. 60]

∞∫

0

e−tλ2
Jν(sλ)Jν(xλ)λdλ = 1

2t
e−

x2+s2
4t Iν

(xs
2t

)
,

Re ν > −1, Re t > 0, we have

G2(xj , sj , t) = − 1

4t
(αj )(1 − αj )

(
sj

xj

)(1/2)−αj
e−

x2
j
+s2
j

4t Iαj−(1/2)
(xj sj

2t

)
.

(3.28)

Substituting (3.28) into (3.26) and taking into account both and αj = γj+1/2 <
1, γj > −1/2, j = 1, n, we find the final form of the solution of the Eq. (3.1) for∣∣γj ∣∣ < 1/2, j = 1, n, satisfying conditions (2.5) and (2.6):

u(x, t) = 1

(2t)n

n∏
j=1

x
−γj
j

m−1∑
k=0

tk

k!
∫

Rn+

fk(s)G(x, s, t)ds, (3.29)
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where fk(x) =
k∑
j=0
(−1)jCjk�

k−j
B ϕj (x),

G(x, s, t) =
n∏
j=1

{
s
γj+1
j exp

[
−x

2
j + s2

j

4t

]
Iγj

(xj sj
2t

)}

=
n∏
j=1

[
s
γj+1
j Iγj

(xj sj
2t

)]
exp

[
−|x|2 + |s|2

4t

]
, |x|2 =

n∑
j=1

x2
j . (3.30)

A direct verification shows that the following theorem holds.

Theorem 3.1 Let
∣∣γj ∣∣ < 1/2, j = 1, n, and the functions ϕj (x) ∈

C2(m−j)−1(Rn+), j = 0,m− 1 are continuous, bounded, and all derivatives of
the functions ϕj (x), up to the order 2(m − j) − 1, j = 0,m− 1 inclusively, are
equal to zero for xk = 0, k = 1, n. Then the function u(x, t), defined by (3.29), is
a classical solution of equation Lmγ (u) = 0, satisfying conditions (3.2) and (3.3).

Appendix: Integral Transform Composition Method (ITCM)
in Transmutation Theory: How It Works

In the appendix we briefly describe a general context for transmutations and
integral transforms used in this paper. Such a general context is formed by integral
transforms composition method (ITCM).

Below we give a brief survey and outline some applications of the integral
transforms composition method (ITCM) for obtaining transmutations via integral
transforms. It is possible to derive wide range of transmutation operators by
this method. Classical integral transforms are involved in the integral transforms
composition method (ITCM) as basic blocks, among them are Fourier, sine and
cosine-Fourier, Hankel, Mellin, Laplace and some generalized transforms. The
ITCM and transmutations obtaining by it are applied to deriving connection
formulas for solutions of singular differential equations and more simple non-
singular ones. We consider well-known classes of singular differential equations
with Bessel operators, such as classical and generalized Euler–Poisson–Darboux
equation and the generalized radiation problem of A. Weinstein. Methods of this
paper are applied to more general linear partial differential equations with Bessel
operators, such as multivariate Bessel-type equations, GASPT (Generalized Axially
Symmetric Potential Theory) equations of Weinstein, Bessel-type generalized wave
equations with variable coefficients,ultra B-hyperbolic equations and others. So
with many results and examples the main conclusion of this paper is illustrated:
the integral transforms composition method (ITCM) of constructing transmutations
is very important and effective tool also for obtaining connection formulas and
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explicit representations of solutions to a wide class of singular differential equations,
including ones with Bessel operators.

What is ITCM and How It Works?

In transmutation theory explicit operators were derived based on different ideas and
methods, often not connecting altogether. So there is an urgent need in transmutation
theory to develop a general method for obtaining known and new classes of
transmutations.

In this section we give such general method for constructing transmutation
operators. We call this method integral transform composition method or shortly
ITCM. The method is based on the representation of transmutation operators
as compositions of basic integral transforms. The integral transform composition
method (ITCM) gives the algorithm not only for constructing new transmutation
operators, but also for all now explicitly known classes of transmutations, including
Poisson, Sonine, Vekua-Erdelyi-Lowndes, Buschman-Erdelyi, Sonin-Katrakhov
and Poisson-Katrakhov ones, cf. [36–45, 63–65] as well as the classes of elliptic,
hyperbolic and parabolic transmutation operators introduced by Carroll [37–39].

The formal algorithm of ITCM is the next. Let us take as input a pair of arbitrary
operators A,B, and also connecting with them generalized Fourier transforms
FA,FB , which are invertible and act by the formulas

FAA = g(t)FA, FBB = g(t)FB, (A.1)

where t is a dual variable, g is an arbitrary function with suitable properties. It is
often convenient to choose g(t) = −t2 or g(t) = −tα , α ∈ R.

Then the essence of ITCM is to obtain formally a pair of transmutation operators
P and S as the method output by the next formulas:

S = F−1
B

1

w(t)
FA, P = F−1

A w(t)FB (A.2)

with arbitrary function w(t). When P and S are transmutation operators intertwin-
ing A and B:

SA = BS, PB = AP. (A.3)

A formal checking of (A.3) can be obtained by direct substitution. The main
difficulty is the calculation of compositions (A.2) in an explicit integral form, as
well as the choice of domains of operators P and S.
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Let us list the main advantages of Integral Transform Composition Method
(ITCM).

• Simplicity—many classes of transmutations are obtained by explicit formulas
from elementary basic blocks, which are classical integral transforms.

• ITCM gives by a unified approach all previously explicitly known classes of
transmutations.

• ITCM gives by a unified approach many new classes of transmutations for
different operators.

• ITCM gives a unified approach to obtain both direct and inverse transmutations
in the same composition form.

• ITCM directly leads to estimates of norms of direct and inverse transmutations
using known norm estimates for classical integral transforms on different
functional spaces.

• ITCM directly leads to connection formulas for solutions to perturbed and
unperturbed differential equations.

An obstacle for applying ITCM is the next one: we know acting of classical
integral transforms usually on standard spaces like L2, Lp,C

k , variable exponent
Lebesgue spaces [46] and so on. But for application of transmutations to differential
equations we usually need some more conditions hold, say at zero or at infinity. For
these problems we may first construct a transmutation by ITCM and then expand it
to the needed functional classes.

Let us stress that formulas of the type (A.2) of course are not new for integral
transforms and its applications to differential equations. But ITCM is new when
applied to transmutation theory! In other fields of integral transforms and connected
differential equations theory compositions (A.2) for the choice of classical Fourier
transform leads to famous pseudo-differential operators with symbol functionw(t).
For the choice of the classical Fourier transform and the function w(t) = (±it)−s
we obtain fractional integrals on the whole real axis, for w(t) = |x|−s we obtain
M.Riesz potential, for w(t) = (1 + t2)−s in formulas (A.2) we obtain Bessel
potential and for w(t) = (1 ± it)−s - modified Bessel potentials [3].

The next choice for ITCM algorithm,

A = B = Bν, FA = FB = Hν, g(t) = −t2, w(t) = jν(st) (A.4)

leads to generalized translation operators of Delsart [47–49], for this case we have to
choose in ITCM algorithm defined by (A.1)–(A.2) the above values (A.4) in which
Bν is the Bessel operator, Hν is the Hankel transform, jν is the normalized (or
“small”) Bessel function. In the same manner other families of operators commuting
with a given one may be obtained by ITCM for the choice A = B,FA = FB with
arbitrary functions g(t), w(t) (generalized translation commutes with the Bessel
operator). In case of the choice of differential operator A as quantum oscillator
and connected integral transform FA as fractional or quadratic Fourier transform
[50] we may obtain by ITCM transmutations also for this case [43]. It is possible
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to apply ITCM instead of classical approaches for obtaining fractional powers of
Bessel operators [43, 51–54].

Direct applications of ITCM to multidimensional differential operators are
obvious, in this case t is a vector and g(t), w(t) are vector functions in (A.1)–
(A.2). Unfortunately for this case we know and may derive some new explicit
transmutations just for simple special cases. But among them are well-known and
interesting classes of potentials. In case of using ITCM by (A.1)–(A.2) with Fourier
transform and w(t)—positive definite quadratic form we come to elliptic Riesz
potentials [3, 55]; with w(t)—indefinite quadratic form we come to hyperbolic
Riesz potentials [3, 55, 56]; with w(x, t) = (|x|2 − it)−α/2 we come to parabolic
potentials [3]. In case of using ITCM by (A.1)–(A.2) with Hankel transform
and w(t) - quadratic form we come to elliptic Riesz B-potentials [57, 58] or
hyperbolic Riesz B-potentials [59]. For all above mentioned potentials we need
to use distribution theory and consider for ITCM convolutions of distributions, for
inversion of such potentials we need some cutting and approximation procedures, cf.
[56, 59]. For this class of problems it is appropriate to use Schwartz or/and Lizorkin
spaces for probe functions and dual spaces for distributions.

So we may conclude that the method we consider in the paper for obtaining
transmutations—ITCM is effective, it is connected to many known methods and
problems, it gives all known classes of explicit transmutations and works as a tool
to construct new classes of transmutations. Application of ITCM needs the next
three steps.

Step 1. For a given pair of operators A,B and connected generalized Fourier
transforms FA,FB define and calculate a pair of transmutations P, S by basic
formulas (A.1)–(A.2).

Step 2. Derive exact conditions and find classes of functions for which transmu-
tations obtained by step 1 satisfy proper intertwining properties.

Step 3. Apply now correctly defined transmutations by steps 1 and 2 on proper
classes of functions to deriving connection formulas for solutions of differential
equations.

The next part of this article is organized as follows. First we illustrate step 1 of
the above plan and apply ITCM for obtaining some new and known transmutations.
For step 2 we prove a general theorem for the case of Bessel operators, it is enough
to solve problems to complete strict definition of transmutations. And after that we
give an example to illustrate step 3 of applying obtained by ITCM transmutations to
derive formulas for solutions of a model differential equation.

Application of ITCM to Index Shift B–Hyperbolic
Transmutations

In this section we apply ITCM to obtain integral representations for index shift
B-hyperbolic transmutations. It corresponds to step 1 of the above plan for ITCM
algorithm.
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Let us look for the operator T transmuting the Bessel operator Bν into the same
operator but with another parameter Bμ. To find such a transmutation we use ITCM
with Hankel transform. Applying ITCM we obtain an interesting and important
family of transmutations, including index shift B-hyperbolic transmutations, “de-
scent” operators, classical Sonine and Poisson-type transmutations, explicit integral
representations for fractional powers of the Bessel operator, generalized translations
of Delsart and others.

So we are looking for an operator T (ϕ)ν,μ such that

T (ϕ)ν,μBν = BμT (ϕ)ν,μ (A.5)

in the factorized due to ITCM form

T (ϕ)ν,μ = H−1
μ

(
ϕ(t)Hν

)
, (A.6)

whereHν is a Hankel transform. Assuming ϕ(t) = Ctα , C ∈ R does not depend on
t and T (ϕ)ν,μ = T (α)ν,μ we can derive the following theorem.

Theorem A.1 Let f be a proper function for which the composition (A.6) is
correctly defined,

Re(α + μ+ 1) > 0, Re
(
α + μ− ν

2

)
< 0.

Then for transmutation operator T (α)ν,μ obtained by ITCM and such that

T (α)ν,μBν = BμT (α)ν,μ

the next integral representation is true

(
T (α)ν,μf

)
(x)

= C 2α+3(
α+μ+1

2 )

(
μ+1

2 )

[x−1−μ−α

(−α
2 )

×
∫ x

0
f (y)2F1

(α + μ+ 1

2
,
α

2
+ 1; ν + 1

2
; y

2

x2

)
yνdy + (ν+1

2 )

(
μ+1

2 )(
ν−μ−α

2 )

×
∫ ∞

x

f (y)2F1

(α + μ+ 1

2
,
α + μ− ν

2
+ 1; μ+ 1

2
; x

2

y2

)
yν−μ−α−1dy

]
.

(A.7)

where 2F1 is the Gauss hypergeometric function.
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Corollary A.1 Let f ∈ L2(0,∞), α = −μ; ν = 0. For μ > 0 we obtain the
operator

(
T
(−μ)

0,μ f
)
(x) = 2(μ+1

2 )√
π(μ/2)

x1−μ
∫ x

0
f (y)(x2 − y2)

μ
2 −1dy, (A.8)

such that

T
(−μ)

0,μ D2 = BμT (−μ)0,μ (A.9)

and T (−μ)0,μ 1 = 1,

The operator (A.8) is the well-known Poisson operator (see [47]). We will use
conventional symbol

Pμx f (x) = C(μ)x1−μ
∫ x

0
f (y)(x2 − y2)

μ
2 −1dy, (A.10)

Pμx 1 = 1, C(μ) = 2(μ+1
2 )√

π(
μ
2 )
.

We remark that if u = u(x, t), x, t ∈ R, u(x, 0) = f (x) and ut (x, 0) = 0, then

Pμt u(x, t)|t=0 = f (x), ∂

∂t
Pμt u(x, t)

∣∣∣
t=0

= 0. (A.11)

Indeed, we have

Pμt u(x, t)|t=0 = C(μ)t1−μ
∫ t

0
u(x, y)(t2 − y2)

μ
2 −1dy

∣∣∣
t=0

= C(μ)
∫ 1

0
u(x, ty)|t=0(1 − y2)

μ
2 −1dy = f (x)

and

∂

∂t
Pμt u(x, t)

∣∣∣
t=0

= C(μ)
∫ 1

0
ut (x, ty)|t=0(1 − y2)

μ
2 −1dy = 0.

Corollary A.2 For f ∈ L2(0,∞), α=ν−μ; −1 < Re ν < Reμ we obtain the first
“descent” operator

(
T (ν−μ)ν,μ f

)
(x) = 2(μ+1

2 )

(
μ−ν

2 )( ν+1
2 )
x1−μ

∫ x

0
f (y)(x2 − y2)

μ−ν
2 −1yνdy. (A.12)
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such that

T (ν−μ)ν,μ Bν = BμT (ν−μ)ν,μ , T (ν−μ)ν,μ 1 = 1.

Corollary A.3 Let f ∈ L1,w with the weight function w(y) = |y|Re ν−Reμ, α = 0,
−1 < Reμ < Re ν. In this case we obtain the second “descent” operator:

(
T (0)ν,μf

)
(x) = 2(ν − μ)

2(
ν−μ

2 )

∫ ∞

x

f (y)(y2 − x2)
ν−μ

2 −1y dy. (A.13)

In [44] the formula (A.13) was obtained as a particular case of Buschman-Erdelyi
operator of the third kind but with different constant:

(
T (0)ν,μf

)
(x) = 21− ν−μ

2

(
ν−μ

2 )

∫ ∞

x

f (y)y
(
y2 − x2

) ν−μ
2 −1

dy. (A.14)

As might be seen in the form (A.13) as well as (A.14) the operator T (0)ν,μ does not
depend on the values ν and μ but only on the difference between ν and μ.

Corollary A.4 Let f ∈ L2(0,∞), Re(α+ ν + 1) > 0, Reα < 0. If we take μ = ν
in (A.7) we obtain the operator

(
T (α)ν,ν f

)
(x) = 2α+3(α+ν+1

2 )

(−α
2 )(

ν+1
2 )

[
x−1−ν−α

∫ x

0
f (y)

× 2F1

(α + ν + 1

2
,
α

2
+ 1; ν + 1

2
; y

2

x2

)
yνdy

+
∫ ∞

x

f (y)2F1

(α + ν + 1

2
,
α

2
+ 1; ν + 1

2
; x

2

y2

)
y−α−1dy

]

(A.15)

which is an explicit integral representation of the negative fractional power α of the
Bessel operator: Bαν .

So it is possible and easy to obtain fractional powers of the Bessel operator by
ITCM. For different approaches to fractional powers of the Bessel operator and its
explicit integral representations cf. [9, 43, 51–54, 60–62].
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Theorem A.2 If we apply ITCM with ϕ(t) = j ν−1
2
(zt) in (A.6) and with μ = ν

then the operator

(
T (ϕ)ν,ν f

)
(x)

= νT zx f (x) = H−1
ν

[
j ν−1

2
(zt)Hν[f ](t)](x)

= 2ν( ν+1
2 )√

π(4xz)ν−1(ν2 )

∫ x+z

|x−z|
f (y)y[(z2 − (x − y)2)((x + y)2 − z2)] ν2 −1dy

(A.16)

coincides with the generalized translation operator (see [47–49]), for which the next
properties are valid

νT zx (Bν)x = (Bν)z νT zx , (A.17)

νT zx f (x)|z=0 = f (x), ∂

∂z

νT zx f (x)

∣∣∣
z=0

= 0. (A.18)

More frequently used representation of generalized translation operator νT xz is
(see [47–49])

νT zx f (x) = C(ν)
∫ π

0
f (

√
x2 + z2 − 2xz cosϕ) sinν−1 ϕdϕ, (A.19)

C(ν) =
( ∫ π

0
sinν−1 ϕdϕ

)−1 = (ν+1
2 )√

π (ν2 )
.

It is easy to see that it is the same as ours.
So it is possible and easy to obtain generalized translation operators by ITCM,

and its basic properties follows immediately from ITCM integral representation.

Application of Transmutations Obtained by ITCM to Integral
Representations of Solutions to Hyperbolic Equations with
Bessel Operators

Let us solve the problem of obtaining transmutations by ITCM (step 1) and justify
integral representation and proper function classes for it (step 2). Now consider
applications of these transmutations to integral representations of solutions to
hyperbolic equations with Bessel operators (step 3). For simplicity we consider
model equations, for them integral representations of solutions are mostly known.
More complex problems need more detailed and spacious calculations. But even for
these model problems considered below application of the transmutation method
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based on ITCM is new, it allows more unified and simplified approach to hyperbolic
equations with Bessel operators of EPD/GEPD types.

Standard approach for solving differential equations is to find its general solution
first, and then substitute given functions to find particular solutions. Here we will
show how to obtain general solution of EPD type equation using transmutation
operators.

Proposition A.3 A general solution of the equation

∂2u

∂x2 = (Bμ)tu, u = u(x, t;μ) (A.20)

for 0 < μ < 1 is represented in the form

u =
∫ 1

0

�(x + t (2p − 1))

(p(1 − p))1−μ
2
dp + t1−μ

∫ 1

0

�(x + t (2p − 1))

(p(1 − p))μ/2 dp, (A.21)

with a pair of arbitrary functions�,� .

Proof First, we consider the wave equation when a = 1,

∂2u

∂t2
= ∂2u

∂x2 . (A.22)

A general solution to this equation has the form

F(x + t)+G(x − t), (A.23)

where F and G are arbitrary functions. Applying operator (A.10) (obtained by
ITCM) by variable t we obtain that one solution to the Eq. (A.20) is

u1 = 2C(μ)
1

tμ−1

∫ t

0
[F(x + z)+G(x − z)](t2 − z2)

μ
2 −1 dz.

Let us transform the resulting general solution as follows

u1 = C(μ)

tμ−1

∫ t

−t
F (x + z)+ F(x − z)+G(x + z)+G(x − z)

(t2 − z2)1−μ
2

dz.

Introducing a new variable p by formula z = t (2p − 1) we obtain

u1 =
∫ 1

0

�(x + t (2p − 1))

(p(1 − p))1−μ
2
dp,
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where

�(x + z)= [F(x + z)+F(x − z)+G(x + z)+G(x − z)]

is an arbitrary function.
It is easy to see that if u(x, t;μ) is a solution of (A.20) then t1−μu(x, t; 2−μ) is

also a solution. Therefore the second solution to (A.20) is

u2 = t1−μ
∫ 1

0

�(x + t (2p − 1))

(p(1 − p))μ/2 dp,

where � is an arbitrary function, not coinciding with �. Summing u1 and u2 we
obtain general solution to (A.20) of the form (A.21). From the (A.21) we can see
that for summable functions� and � such a solution exists for 0 < μ < 1. ��

Now we derive a general solution to GEPD type equation by transmutation
method.

Proposition A.4 A general solution to the equation

(Bν)xu = (Bμ)tu, u = u(x, t; ν,μ) (A.24)

for 0 < μ < 1, 0 < ν < 1 is

u = 2(ν+1
2 )√

π(ν2 )

(
x1−ν

∫ x

0
(x2 − y2)

ν
2 −1dy

∫ 1

0

�(y + t (2p − 1))

(p(1 − p))1−μ
2
dp

+ t1−μx1−ν
∫ x

0
(x2 − y2)

ν
2 −1dy

∫ 1

0

�(y + t (2p − 1))

(p(1 − p))μ/2 dp.
) (A.25)

Proof Applying the Poisson operator (A.10) (again obtained by ITCM) with index
ν by variable x to the (A.21) we derive general solution (A.25) to the Eq. (A.24). ��

Now let apply transmutations for finding general solution to GEPD type equation
with spectral parameter.

Proposition A.5 A general solution to the equation

(Bν)xu = (Bμ)tu+ b2u, u = u(x, t; ν,μ) (A.26)
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for 0 < μ < 1, 0 < ν < 1 is

u = 2(ν+1
2 )√

π(ν2 )

(
x1−ν

∫ x

0
(x2 − y2)

ν
2 −1dy

×
∫ 1

0

�(y + t (2p − 1))

(p(1 − p))1−μ
2
jμ

2 −1(2bt
√
p(1 − p)) dp

+ t1−μx1−ν
∫ x

0
(x2 − y2)

ν
2 −1dy

×
∫ 1

0

�(y + t (2p − 1))

(p(1 − p))μ/2 j−μ
2
(2bt

√
p(1 − p)) dp.

)

(A.27)

Proof A general solution to the equation

∂2u

∂x2 = (Bμ)tu+ b2u, u = u(x, t;μ), 0 < μ < 1

is (see [24, p. 328])

u =
∫ 1

0

�(x + t (2p − 1))

(p(1 − p))1−μ
2
jμ

2 −1(2bt
√
p(1 − p)) dp

+ t1−μ
∫ 1

0

�(x + t (2p − 1))

(p(1 − p))μ/2 j−μ
2
(2bt

√
p(1 − p)) dp.

Applying Poisson operator (A.10) (again obtained by ITCM) with index ν by
variable x to the (A.21) we derive general solution (A.25) to the Eq. (A.24). ��

References

1. A. Erdélyi, On fractional integration and its application to the theory of Hankel transforms.
Quart. J. Math. Oxford ser. 11(44), 293–303 (1940)

2. A. Erdélyi, H. Kober, Some remarks on Hankel transforms. Quart. J. Math. Oxford ser. II(43),
212–221 (1940)

3. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives (Theory and
Applications) (Gordon & Breach Science Publishers, New York, 1993)

4. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential
Equations, vol. 204 (Elsevier, Amsterdam, 2006)

5. A. Erdélyi, Some applications of fractional integration. Boeing Sci. Res. Labor. Docum. Math.
Note 316, Dl-82-0286, 23 (1963)

6. A. Erdélyi, An application of fractional integrals. J. Analyse Math. 14, 113–126 (1965)
7. I.N. Sneddon, Mixed Boundary Value Problems in Potential Theory (North-Holland Publlica-

tion, Amsterdam, 1966)



On Some Generalizations of the Properties of the Multidimensional. . . 113

8. I.N. Sneddon, The use in mathematical analysis of Erdélyi–Kober operators and of some of
their applications, in Fractional Calculus and Its Applications, Proceedings, Publications.
Lecture Notes in Mathematics, vol. 457 (Springer, New York, 1975), pp. 37–79

9. V.S. Kiryakova, Generalized Fractional Calculus and Applications. Pitman Res Notes Math,
vol. 301 (Longman Scientific & Technical, Harlow, Co-published with Wiley, New York, 1994)

10. J.S. Lowndes, A generalization of the Erdélyi–Kober operators. Proc. Edinb. Math. Soc. 17(2),
139–148 (1970)

11. J.S. Lowndes, An application of some fractional integrals. Proc. Edinb. Math. Soc. 20(1), 35–
41(1979)

12. D.P. Mourya, Fractional integrals of the functions of two variables. Proc. Indian Acad. Sci.
A72(4), 173–184 (1970)

13. R.U. Verma, Theorem on fractional integration and generalized Hankel transform. Bull. Math.
Soc. Sci. Math. RSR 14(1), 117–122 (1970)

14. C.L. Kaul, On fractional integration operators of functions of two variables. Proc. Nat. Acad.
Sci. India. A41(3–4), 233–240 (1971)

15. B.L. Mathur, S. Krishna, On multivariate fractional integration operators. Indian J. Pure and
Appl. Math. 8(9), 1078–1082 (1978)

16. R.K. Saxena, G.C. Modi, Multidimensional fractional integration operators associated with
hypergeometric functions. Nat. Acad. Sci, Lett. 3(5), 153–157 (1980)

17. R.K. Saxena, J. Ram, On certain multidimensional generalized Kober operators. Collect. Math.
41(1), 27–34 (1990)

18. Sh.T. Karimov, Multidimensional generalized Erdélyi–Kober operator and its application to
solving Cauchy problems for differential equations with singular coefficients. Fract. Calc.
Appl. Anal. 18(4), 845–861 (2015)

19. V.V. Katrakhov, S.M. Sitnik, The transmutation method and boundary–value problems for
singular elliptic equations. Contemporary Math. Fundam. Dir. 64(2), 211–426 (2018, in
Russian)

20. S.M. Sitnik, E.L. Shishkina, Method of Transmutations for Differential Equations with Bessel
Operators (Fizmatlit, Moscow, 2019, in Russian), p. 224

21. A. Fitouhi, I. Jebabli, E.L. Shishkina, S.M. Sitnik, Applications of integral transforms com-
position method to wave-type singular differential equations and index shift transmutations.
Electron. J. Differ. Equ. 2018(130), 1–27 (2019)

22. Sh.T. Karimov, About some generalizations of the properties of the Erdélyi–Kober operator
and their application. Vestnik KRAUNC. Fiz.-mat. nauki. 18(2), 20–40 (2017, in Russian).
https://doi.org/10.18454/2079-6641-2017-18-2-20-40

23. Sh.T. Karimov, On some generalizations of properties of the Lowndes operator and their
applications to partial differential equations of high order. Filomat 32(3), 873–883 (2018).
https://doi.org/10.2298/FIL1803873K

24. A.D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists.
(Chapman & Hall/CRC Press, Boca Raton, London, 2002)

25. I.F. Chuprov, E.A. Kaneva, A.A. Mordvinov, Equations of Mathematical Physics with Appli-
cations to the Problems of Oil Production and Pipeline Gas Transport (USTU, Ukhta, 2004)

26. D. Colton, Cauchy’s problem for a singular parabolic differential equation. J. Differ. Equ. 8,
250–257 (1970)

27. V.V. Krekhivskii, M.I. Matiichuk, On boundary–value problems for parabolic systems with a
Bessel operator. Dokl. AN SSSR. 139(4), 773–775 (1971)

28. O. Arena, On a singular Parabolic equation related to axially symmetric heat potentials.
Annali di Matematica Pura ed Applicata 105(1), 347–393 (1975). https://doi.org/10.1007/
BF02414938

29. I.A. Kipriyanov, V.V. Katrakhov, V.M. Lyapin, On boundary value problems in the general
form for singular parabolic systems of equations. Dokl. AN SSSR. 230(6), 1271–1274 (1976)

30. S.A. Tersenov, Parabolic Equations with a Changing Time Direction (Nauka, Novosibirsk,
1985, in Russian)

https://doi.org/10.18454/2079-6641-2017-18-2-20-40
https://doi.org/10.2298/FIL1803873K
https://doi.org/10.1007/BF02414938
https://doi.org/10.1007/BF02414938


114 Sh. T. Karimov and S. M. Sitnik

31. Ya.I. Zhitomirskii, The Cauchy problem for systems of partial linear differential equations with
the Bessel differential operator. Matem. Sborn. 36(2), 299–310 (1955)

32. V.V. Gorodetskii, I.V. Zhitaryuk, V.P. Lavrenchuk, The Cauchy problemfor linear parabolic
equations with the Bessel operator in spaces of distributions of the type S′, in Available from
UkrINTEI, No. 338, Uk93 (Chernovtsy, Chernovtsy University, Chernivtsi, 1993)

33. A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series. Elementary Functions,
vol. 1, 2nd edn. M. (2002)

34. M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, 9th Printing (Dover, New York, 1972)

35. A. Erdélyi, et al. (eds.), Higher Transcendental Functions, vol. 2, (McGraw-Hill, New York
1953)

36. R.W. Carroll, R.E. Showalter, Singular and Degenerate Cauchy Problems (Academic, New
York, 1976)

37. R.W. Carroll, Transmutation and Operator Differential Equations (North Holland, Amsterdam,
1979)

38. R.W. Carroll, Transmutation, Scattering Theory and Special Functions (North Holland,
Amsterdam, 1982)

39. R.W. Carroll, Transmutation Theory and Applications (North Holland, Amsterdam, 1985)
40. V.V. Katrakhov, S.M. Sitnik, Factorization method in transmutation operators theory, in

Memoria of Boris Alekseevich Bubnov: Nonclassical Equations and Equations of Mixed Type,
ed. by V.N. Vragov (Novosibirsk, 1990), 104–122

41. V.V. Katrakhov, S.M. Sitnik, Composition method of construction of B-elliptic, B-parabolic
and B-hyperbolic transmutation operators. Dokl. Russ. Acad. Sci. 337(3), 307–311 (1994)

42. S.M. Sitnik, Factorization and norm estimation in weighted Lebesgue spaces of Buschman-
Erdelyi operators. Dok. Soviet Acad. Sci. 320(6), 1326–1330 (1991)

43. S.M. Sitnik, Transmutations and applications: a survey (2010), p. 141. Preprint
arXiv:1012.3741

44. S.M. Sitnik, A short survey of recent results on Buschman–Erdelyi transmutations, J. Inequal.
Spec. Funct. 8(1), 140–157 (2017) (Special issue To honor Prof. Ivan Dimovski’s contribu-
tions)

45. S.M. Sitnik, Buschman–Erdelyi transmutations, classification and applications, in the book:
Analytic Methods of Analysis and Differential Equations: Amade 2012, ed. by M.V. Duba-
tovskaya, S.V. Rogosin (Cambridge Scientific Publishers, Cambridge, 2013), pp. 171–201

46. V. Radulescu, D. Repovs, Partial Differential Equations with Variable Exponents: Variational
Methods and Qualitative Analysis (CRC Press, Boca Raton, Taylor & Francis Group, New
York, 2015)

47. B.M. Levitan, Generalized Translation Operators and Some of Their Applications (Israel
Program for Scientific Translations, Moscow, 1962)

48. B.M. Levitan, The Theory of Generalized Shift Operators (Nauka, Moscow, 1973)
49. B.M. Levitan, The application of generalized displacement operators to linear differential

equations of the second order. Uspekhi Mat. Nauk. 4(1)(29), 3–112 (1949)
50. H. Ozaktas, Z. Zalevsky, M. Kutay, The Fractional Fourier Transform: with Applications in

Optics and Signal Processing (Wiley, Hoboken, 2001)
51. E.L. Shishkina, S.M. Sitnik, On fractional powers of Bessel operators. J. Inequal. Spec. Funct.

8(1), 49–67 (2017) (Special issue To honor Prof. Ivan Dimovski’s contributions)
52. E.L. Shishkina, S.M. Sitnik, On fractional powers of the Bessel operator on semiaxis. Siberian

Electron. Math. Rep. 15, 1–10 (2018)
53. S.M. Sitnik, Fractional integrodifferentiations for differential Bessel operator, in Proceedings

of the International Symposium The Equations of Mixed Type and Related Problems of the
Analysis and Informatics, Nalchik (2004), pp. 163–167

54. S.M. Sitnik, On explicit definitions of fractional powers of the Bessel differential operator and
its applications to differential equations. Rep. Adyghe (Circassian) Int. Acad. Sci. 12(2), 69–75
(2010)



On Some Generalizations of the Properties of the Multidimensional. . . 115

55. M. Riesz, L’integrale de Riemann–Liouville et le probleme de Cauchy. Acta Math. 81, 1–223
(1949)

56. V.A. Nogin, E.V. Sukhinin, Inversion and characterization of hyperbolic potentials in Lp-
spaces. Dokl. Acad. Nauk 329(5), 550–552 (1993)

57. V.S. Guliev, Sobolev theorems for B–Riesz potentials. Dokl. Russ. Acad. Sci. 358(4), 450–451
(1998)

58. L.N. Lyakhov, Inversion of the B-Riesz potentials. Dokl. Akad. Nauk SSSR 321(3), 466–469
(1991)

59. E.L. Shishkina, On the boundedness of hyperbolic Riesz B–potential. Lith. Math. J. 56(4),
540–551 (2016)

60. A.C. McBride, Fractional powers of a class of ordinary differential operators. Proc. London
Math. Soc. 3(45), 519–546 (1982)

61. I.G. Sprinkhuizen-Kuyper, A fractional integral operator corresponding to negative powers of
a certain second-order differential operator. J. Math. Anal. Appl. 72, 674–702 (1979)

62. I. Dimovski, Convolutional Calculus (Springer, Berlin, 1990)
63. I.A. Kipriyanov, Singular Elliptic Boundary Value Problems (Nauka, Moscow, 1997)
64. E.L. Shishkina, S.M. Sitnik, General form of the Euler–Poisson–Darboux equation and

application of the transmutation method. Electron. J. Differ. Equ. 2017(177), 1–20 (2017)
65. S.A. Tersenov, Introduction in the Theory of Equations Degenerating on a Boundary (Novosi-

birsk State University, Novosibirsk, 1973)



Alternative Approach to Miller-Paris
Transformations and Their Extensions

D. B. Karp and E. G. Prilepkina

Abstract The paper deals with Miller-Paris transformations which are extensions
of Euler’s transformations for the Gauss hypergeometric functions to generalized
hypergeometric functions of higher-order having integral parameter differences
(IPD). In our recent work we computed the degenerate versions of these transforma-
tions corresponding to the case when one parameter difference is equal to a negative
integer. The purpose of this paper is to present an independent new derivation of
both the general and the degenerate forms of Miller-Paris transformations. In doing
so we employ the generalized Stieltjes transform representation of the generalized
hypergeometric functions and some partial fraction expansions. This approach leads
to different forms of the characteristic polynomials, one of them appears noticeably
simpler than the original form due to Miller and Paris. Two extensions are further
presented of the degenerate transformations to the generalized hypergeometric
functions with additional free parameters and additional parameters with negative
integral differences.

Keywords Generalized hypergeometric function · Miller-Paris transformation ·
Karlsson-Minton formula · Integral parameter differences (IPD)
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quantum physics [28], non-equilibrium statistical physics [14] and many other
fields [33]. The main developments up to the end of twentieth century can be
found, for instance, in the books [1, 2, 18]. Hypergeometric functions also play an
important role in the theory of transmutations appearing in the kernels of the integral
representations of many transmutation operators [3, 15]. In this way they are also
very useful in many applications, combining special functions and transmutation
theory [3, 15, 34].

One particular example useful for simplifying sums that arise in theoretical
physics (such as Racah coefficients) is the following summation formula established
by Minton [24] in 1970:

r+2Fr+1

(−k, b, f1 +m1, . . . , fr +mr
b + 1, f1, . . . , fr

∣∣∣∣ 1

)
= k!
(b + 1)k

(f1 − b)m1 · · · (fr − b)mr
(f1)m1 · · · (fr )mr

,

k ≥ m, k ∈ N, (1)

and slightly generalized by Karlsson [7] who replaced −k by an arbitrary complex
number a satisfying "(1 − a −m) > 0 to get

r+2Fr+1

(
a, b, f1 +m1, . . . , fr +mr

b + 1, f1, . . . , fr

∣∣∣∣∣ 1

)
= (b + 1)(1 − a)

(b + 1 − a)
(f1 − b)m1 · · · (fr − b)mr

(f1)m1 · · · (fr )mr
.

(2)

Here and throughout the paper pFq stands for the generalized hypergeometric
function (see [1, Section 2.1], [18, Section 5.1], [26, Sections 16.2–16.12] or [2,
Chapter 12]), (a)k = (a + k)/(a) is rising factorial and (z) is Euler’s gamma
function. These formulas attracted attention to generalized hypergeometric function
with integral parameter differences, for which Michael Schlosser subsequently
introduced the acronym IPD, motivated by the title of Karlsson’s paper [7]. These
summation formulas were generalized and extended in many directions: Gasper [6]
deduced a q-analogue and a generalization of Minton’s and Karlsson’s formulas;
Chu [4, 5] found extensions to bilateral hypergeometric and q-hypergeometric
series; their results were re-derived by simpler means and further generalized by
Schlosser [32], who also found multidimensional extensions to hypergeometric
functions associated with root systems [31]. For further developments in this
directions, see also [29, 30]. We also mention an interesting work [17] by Letessier,
Valent and Wimp, where an order reduction for the differential equation satisfied by
the generalized hypergeometric functions with some integral parameter differences
was established.

Another surge in interest to IPD-type hypergeometric functions is related with
transformation formulas for such functions, generalizing the classical Euler’s
transformations for the Gauss function 2F1 and Kummer’s transformation for the
confluent hypergeometric functions 1F1. Unlike Minton-Karlsson formulas dealing
the generalized hypergeometric functions evaluated at 1 these transformations are
certain identities for these functions evaluated at an arbitrary value of the argument.
They were developed in a series of papers published over last 15 years, the most
general form was presented in a seminal paper [22] by Miller and Paris. For a vector
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of positive integers m = (m1, . . . ,mr), m = m1 +m2 + . . .+ mr , and a complex
vector f = (f1, . . . , fr ) these transformations are given by [16, Theorem 1]

r+2Fr+1

(
a, b, f + m
c, f

∣∣∣∣ x
)

= (1 − x)−am+2Fm+1

(
a, c − b −m, ζ + 1

c, ζ

∣∣∣∣ x

x − 1

)

(3)

if (c− b−m)m �= 0, and, if also (c− a−m)m �= 0 and (1 + a+ b− c)m �= 0, then

r+2Fr+1

(
a, b, f + m

c, f

∣∣∣∣∣ x
)

= (1−x)c−a−b−mm+2Fm+1

(
c − a −m, c − b −m, η + 1

c, η

∣∣∣∣∣ x
)
.

(4)

Here the vector ζ = ζ (c, b, f) = (ζ1, . . . , ζm) comprises the roots of the polynomial

Qm(t) = Q(b, c, f,m; t) = 1

(c − b −m)m
m∑
k=0

(b)kCk,r (t)k(c − b −m− t)m−k,

(5)

where C0,r = 1, Cm,r = 1/(f)m, (f)m = (f1)m1 · · · (fr )mr , and

Ck,r = Ck,r (f,m) = 1

(f)m

m∑
j=k
σjS

(k)
j = (−1)k

k! r+1Fr

(−k, f + m
f

)
. (6)

In this formula and below we routinely omit the argument 1 from the generalized
hypergeometric function: pFq(a; b) := pFq(a; b; 1). The numbers σj (0 ≤ j ≤ m)
are defined via the generating function

(f1 + x)m1 . . . (fr + x)mr =
m∑
j=0

σj x
j ,

and S(k)j stands for the Stirling’s number of the second kind. A simple rearrangement
of Pochhammer’s symbols leads to an alternative form of the polynomialQm(t) as
given in [13, (3.7)]:

Q(b, c, f,m; t) = (c − b − t −m)m
(c − b −m)m

m∑
k=0

r+1Fr

(−k, f + m
f

)
(t)k(b)k

(1 + t + b − c)kk! .
(7)

Further, η = (η1, . . . , ηm) in (4) are the roots of

Q̂m(t) =
m∑
k=0

(−1)kCk,r(a)k(b)k(t)k
(c − a −m)k(c − b −m)k 3F2

(−m+ k, t + k, c − a − b −m
c − a −m+ k, c − b −m+ k

)
.

(8)



120 D. B. Karp and E. G. Prilepkina

See [16, 19–21, 23] and references therein for further details.
Both formulas (3) and (4) fail when c = b + p, p ∈ {1, . . . ,m}. In our

recent paper [12] we used a careful limit transition to derive the degenerate
forms of the transformations (3) and (4) for such values of c. When evaluated at
x = 1 these degenerate transformations lead to extensions of Minton-Karlsson
summation formulas (1), (2) which we also investigated in [13] using several
different techniques. The main purpose of this paper is to present an alternative
derivation of both the general transformations (3), (4) and their degenerate forms
found in [12]. Our derivation of the general case is presented in Sect. 2 and is
based on the representation of the generalized hypergeometric function by the
generalized Stieltjes transform of a particular type of Meijer’s G function, namely
G
p,0
p,p, which for historical reasons we prefer to call the Meijer-Nørlund function.

Details regarding this representation, its history and numerous applications can
be found in [8, 9, 11]. Our approach leads to different forms of the characteristic
polynomials (5), (8). Comparison with those new forms yields an identity for finite
hypergeometric sums which may be difficult to obtain directly. The degenerate
forms and their extensions are presented in Sect. 3. Their derivation hinges on
certain simple partial fraction decompositions. The results differ from those in
[12]: here the negative parameter difference −p (recall that b − c = −p) may
take any (negative) integer value regardless of whether degeneration happens or
not in the corresponding general Miller-Paris transformation. We further present
two extensions: to several negative parameters differences instead of one and to
a pair of additional unrestricted parameters on top and bottom of the generalized
hypergeometric function.

2 Miller-Paris Transformations: General Case

Before proceeding to the main results let us introduce some notation. Let N and C

denote the natural and complex numbers, respectively; further, put

(a) = (a1)(a2) · · ·(ap), (a)n = (a1)n(a2)n · · · (ap)n,
a + μ = (a1 + μ, a2 + μ, . . . , ap + μ).

Inequalities like "(a) > 0 and properties like −a /∈ N0 := N ∪ {0} will be
understood element-wise. The symbol a[k] will stand for the vector a with omitted
k-th component. The function Gm,np,q is Meijer’s G function (see [18, section 5.2],
[26, 16.17], [27, 8.2] or [2, Chapter 12]).

We begin with a lemma expressing the Meijer-Nørlund function Gp,0p,p with
integral parameter differences in terms of beta density times a rational function.
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Lemma 1 Let m = (m1, . . . ,mr) ∈ N
r , m = m1 + m2 + . . . + mr , f =

(f1, . . . , fr ) ∈ C
r and b, c ∈ C. Then

G
r+1,0
r+1,r+1

(
t
c, f
b, f + m

)
= tb(1 − t)c−b−1

(c − b)
m∑
k=0

Dk(c − b − k)k tk

(t − 1)k
, (9)

where

Dk = Dk(f,m, b) =
m∑
j=k
αjS(k)j = (−1)k(f − b)m

k! r+1Fr

(−k, 1 − f + b
1 − f + b − m

)
.

(10)

The numbers αj are defined via the generating function

(f − b − t)m =
m∑
j=0

αj t
j , (11)

and S(k)j stands for the Stirling number of the second kind.

Proof By the well-known expansion of the Meijer-Nørlund functionGr+1,0
r+1,r+1, see,

for instance [10, (2.4)], if fi − fj /∈ Z, fi − c /∈ Z we have

G
r+1,0
r+1,r+1

(
t
c, f
b, f + m

)
= tb(f + m − b)
(c − b)(f − b)r+1Fr

(
1 − c + b, 1 − f + b

1 − f − m + b
∣∣∣∣ t
)

= tb(f + m − b)
(c − b)(f − b)

∞∑
n=0

(1 − c + b)n(1 − f + b)n
(1 − f − m + b)nn! tn.

Next, using (f − b)(f − b)m = (f + m − b) and

(1 − f + b)n
(1 − f − m + b)n = (f − b − n)m

(f − b)m = 1

(f − b)m
m∑
k=0

αkn
k,

where αk is defined in (11), we obtain:

G
r+1,0
r+1,r+1

(
t
c, f
b, f + m

)
= tb(f + m − b)
(c − b)(f − b)(f − b)m

∞∑
n=0

(1 − c + b)n
n! tn

m∑
k=0

αkn
k

= tb

(c − b)
m∑
k=0

αk

∞∑
n=0

(1 − c + b)n
n! tnnk
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= tb

(c − b)
m∑
k=0

αk

k∑
l=0

S(l)k
(1 − c + b)lt l
(1 − t)1−c+b+l

= tb(1 − t)c−b−1

(c − b)
m∑
l=0

(−1)l(c − b − l)l t l
(1 − t)l

m∑
k=l
αkS

(l)
k .

To get the pre-ultimate equality we applied the definition of the Stirling numbers of
the second kind via nk = ∑k

l=0 S(l)k [n]l , [n]l = n(n− 1) . . . (n− l+ 1) and the next
relation (with δ = 1 − c + b):

∞∑
n=0

(δ)nt
n

n! nk =
∞∑
n=0

(δ)nt
n

n!
k∑
l=0

S(l)k [n]l =
k∑
l=0

S(l)k

∞∑
n=l

(δ)nt
n

(n− l)! =

k∑
l=0

S(l)k

∞∑
n=0

(δ)n+l tn+l

n! =
k∑
l=0

S(l)k

∞∑
n=0

(δ)l(δ + l)ntn+l
n! =

k∑
l=0

S(l)k
(δ)l t

l

(1 − t)δ+l .

Thus, we have proved formula (9) with the expression for Dk given by the first
equality in (10). It remains to prove the second equality in (10). To this end we will
borrow the technique from [21, Theorem 2]. By Taylor’s theorem:

R(t) = (f − b − t)m =
m∑
j=0

αj t
j =

m∑
j=0

R(j)(0)
tj

j ! .

On the other hand, from the theory of finite differences:

�kR(t) =
k∑
j=0

(−1)k−j
(
k

j

)
R(t + j) = k!

m∑
j=k

S(k)j
R(j)(t)

j ! .

Comparing with the first formula in (10) we get:

Dk =
m∑
j=k

S(k)j
R(j)(0)

j ! = 1

k!�
kR(0) = 1

k!
k∑
j=0

(−1)k−j
(
k

j

)
R(j)

= 1

k!
k∑
j=0

(−1)k−j
(
k

j

)
(f − b − j)m.

Substituting the identity

(f − b − j)m = (f − b)m (1 − f + b)j
(1 − f + b − m)j
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into the above expression after simple rearrangement and in view of the formula

1

(k − j)! = (−1)j
(−k)j
k! .

we get the second equality in (10). �
As a corollary we get an expansion of r+2Fr+1 with r positive integer parameter

differences.

Corollary 1 The following expansion holds:

r+2Fr+1

(
a, b, f + m
c, f

∣∣∣∣ x
)

= 1

(f)m

m∑
k=0

(−1)kDk(b)k2F1

(
a, b + k
c

∣∣∣∣ x
)
, (12)

where Dk = Dk(f,m, b) is defined (10).

Proof Indeed, by [9, (2)] and (9)

(f + m)
(f) r+2Fr+1

(
a, b, f + m

c, f

∣∣∣∣∣ x
)

= (c)

(b)

1∫

0

G
r+1,0
r+1,r+1

(
t
c, f

b, f + m

)
dt

t (1 − xt)a

= (c)

(b)(c − b)
m∑
l=0

αl

l∑
k=0

S(k)l (1 − c + b)k
1∫

0

tb+k−1(1 − t)c−b−k−1

(1 − xt)a dt

= (c)

(b)(c − b)
m∑
l=0

αl

l∑
k=0

S(k)l (1 − c + b)k (b + k)(c − b− k)
(c)

2F1

(
a, b + k
c

∣∣∣∣∣ x
)

=
m∑
l=0

αl

l∑
k=0

S(k)l (−1)k(b)k2F1

(
a, b + k
c

∣∣∣∣∣ x
)

=
m∑
k=0

(−1)k(b)k2F1

(
a, b + k
c

∣∣∣∣∣ x
)

m∑
l=k

S(k)l αl .

It remains to apply the first equality in (10). �
Using Corollary 1 we can easily recover the first Miller-Paris transformation (3)

(see [22, (1.3)], [16, Theorem 1]) in the following form.

Theorem 1 Let m = (m1, . . . ,mr) ∈ N
r , m = m1 + m2 + . . . + mr , f =

(f1, . . . , fr ) ∈ C
r and a, b, c ∈ C be such that (c − b − m)m �= 0. Then for

all x ∈ C\[1,∞) we have:

r+2Fr+1

(
a, b, f + m
c, f

∣∣∣∣ x
)

= (1 − x)−am+2Fm+1

(
a, c − b −m, ζ + 1

c, ζ

∣∣∣∣ x

x − 1

)
,

(13)
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where ζ = (ζ1, . . . , ζm) are the roots of the polynomial

Pm(x) = 1

(c − b −m)m
m∑
k=0

(b)k(1 − c + b)kDk(c − b −m− x)m−k

with Dk defined in (10).

Proof Apply Euler-Pfaff transformation [1, (2.2.6)] to the Gauss function 2F1 on
the right hand side of (12) and calculate:

(f + m)
(f) r+2Fr+1

(
a, b, f + m

c, f

∣∣∣∣∣ x
)

= (1−x)−a
m∑
l=0

(−1)lDl(b)l2F1

(
a, c − b − l

c

∣∣∣∣∣
x

x − 1

)

= (1 − x)−a
m∑
l=0

(−1)lDl(b)l

∞∑
j=0

(a)j (c − b − l)j
(c)j j !

xj

(x − 1)j

= (1 − x)−a
∞∑
j=0

(a)j x
j

(c)j j !(x − 1)j

m∑
l=0

(−1)lDl(b)l (c − b − l)j

= (1 − x)−a
∞∑
j=0

(a)j x
j

(c)j j !(x − 1)j

m∑
l=0

(−1)lDl(b)l
(c − b −m)j (c − b −m+ j)m−l

(c − b −m)m−l

= (1 − x)−a
∞∑
j=0

(a)j (c − b −m)jxj
(c)j j !(x − 1)j

P̃m(j)

= (1 − x)−a
∞∑
j=0

(a)j (c − b −m)jxj
(c)j j !(x − 1)j

Am(j − ζ1) · · · (j − ζm)

= (1 − x)−a
∞∑
j=0

(a)j (c − b −m)jxj
(c)j j !(x − 1)j

Am(−ζ1)(−ζ2) · · · (−ζm) (1 − ζ1)j · · · (1 − ζm)j
(−ζ1)j · · · (−ζm)j ,

= (1 − x)−aP̃m(0)m+2Fm+1

(
a, c − b −m,−ζ + 1

c,−ζ

∣∣∣∣∣
x

x − 1

)
,

where

P̃m(x) =
m∑
l=0

(−1)lDl(b)l
(c − b −m+ x)m−l
(c − b −m)m−l

= Am(x − ζ1) · · · (x − ζm),

and the identity

(c − b − l)j = (c− b −m)j (c− b −m+ j)m−l
(c − b −m)m−l

has been used. It remains to define Pm(x) = P̃m(−x) and note that P̃m(0) must
equal (f)m by taking x = 0 in the resulting identity. �
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By comparing the Miller-Paris formula (3) with (13) it is clear that Pm(x) must
be a constant multiple ofQm(x) defined in (5).

We give a direct proof of this fact below.

Lemma 2 We have

Pm(x) = (f)mQ(b, c, f,m; x).

Proof A combination of [13, Theorem 2.3] with [13, Theorem 3.2] gives the
following identity forQm:

(f − b)m(1 − c + x)m
(f)m(1 − c + b)m Q(1−c+b, 1−x+b, 1−f+b−m,m; b) = Q(b, c, f,m; x).

Using this identity and definition (5) we obtain

Pm(x) = 1

(c − b −m)m
m∑
k=0

(b)k(1 − c + b)kDk(c − b −m− x)m−k

= (f − b)m
(c − b −m)m

m∑
k=0

(b)k(1 − c + b)k (−1)k

k! r+1Fr

(
−k, 1 − f + b
1 − f + b − m

)
(c − b −m− x)m−k

= (f − b)m(1 − c + x)m
(1 − c + b)m Q(1−c+b, 1−x+b, 1−f+b−m,m; b) = (f)mQ(b, c, f,m; x). �

Our version of the second Miller-Paris transformation (4) (see [22, Theo-
rem 4],[16, Theorem 1]) is the following theorem.

Theorem 2 Let m = (m1, . . . ,mr) ∈ N
r , m = m1 + m2 + . . . + mr , f =

(f1, . . . , fr ) ∈ C
r and a, b, c ∈ C be such that (c−a−m)m �= 0, (c−b−m)m �= 0,

(1 + a + b − c)m �= 0. Then for all x ∈ C\[1,∞) we have:

r+2Fr+1

(
a, b, f + m

c, f

∣∣∣∣∣ x
)

= (1 − x)c−a−b−mm+2Fm+1

(
c− a −m, c − b −m, η + 1

c, η

∣∣∣∣∣ x
)
,

(14)

where η = (η1, . . . , ηm) are the roots of the polynomial

P̂m(t) =
m∑
k=0

(−1)k(a)k(−b −m)k(t)k(c − a −m− t)m−k
(c − a −m)m(c − b −m)kk! r+2Fr+1

(
−k, b, f + m

b +m− k + 1, f

)
.

(15)

The proof of this theorem will require the following two lemmas which might be
of independent interest.
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Lemma 3 For any nonnegative integers 0 ≤ i ≤ k ≤ m the following summation
formula holds:

k∑
j=i
(−k)j (α −m+ j)m−i

(−j)i
j ! = (−1)i(−k)i (−m)k(α −m)m

(−m)i(α −m)k . (16)

Proof Writing S for the left hand side of (16) and using the straightforward
identities

(−j)i = (−1)ij !
(j − i)! , (α−m+j)m−i = (α − i)j (α −m)m−i

(α −m)j , (β)k+r = (β)k(β+k)r ,

we compute by changing the summation index to n = j − i:

S = (−1)i(α−m)m−i
k∑
j=i

(−k)j (α − i)j
(α −m)j (j − i)! = (−1)i(α−m)m−i

k−i∑
n=0

(−k)n+i(α − i)n+i
(α −m)n+in!

= (−1)i(α −m)m−i
k−i∑
n=0

(−k)i(−k + i)n(α − i)i (α)n
(α −m)i(α −m+ i)nn!

= (−1)i(−k)i(α − i)i(α −m)m−i
(α −m)i

k−i∑
n=0

(−k + i)n(α)n
(α −m+ i)nn!

= (−1)i(−k)i(α − i)i (α −m)m−i
(α −m)i

(−m+ i)k−i
(α −m+ i)k−i = (−1)i(−k)i(i −m)k−i (α −m)m

(α −m)k .

The pre-ultimate equality here is the celebrated Chu-Vandermonde identity [1,
Corollary 2.2.3]. It remains to apply (i −m)k−i = (−m)k/(−m)i . �
Lemma 4 For any nonnegative integers 0 ≤ k ≤ m the following summation
formula holds:

k∑
i=0

(−k)i(b)i
(−m)ii! r+1Fr

(−i, f + m
f

)
= (−b −m)k

(−m)k r+2Fr+1

( −k, b, f + m
b +m− k + 1, f

)
.

(17)

Proof Let ε be a small positive number. According to (7) with t = −k, c = b +
m− k + 1 + ε,
k∑
i=0

(−k)i(b)i
(−m− ε)i i! r+1Fr

(
−i, f + m

f

)
= (1 − k + ε)m

(1 + ε)m Qm(b; b +m− k + 1 + ε; f; m;−k)
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Further, by [13, Theorem 3.2],

(1 − k + ε)m
(1 + ε)m Qm(b; b +m− k + 1 + ε; f; m; −k)

= (1 − k + ε)m
(1 + ε)m

(b +m+ 1 + ε)(1 − k + ε)
(b +m− k + 1 + ε)(1 + ε) r+2Fr+1

( −k, b, f + m
b +m− k + 1 + ε, f

)

= (1 − k + ε +m)
(1 + ε +m)

(b +m+ 1 + ε)
(b +m− k + 1 + ε) r+2Fr+1

( −k, b, f + m
b +m− k + 1 + ε, f

)
.

Letting ε → 0 and using m!/(m − k)! = (−1)k(−m)k and (b + m + 1)/(b +
m− k + 1) = (−1)k(−b −m)k we arrive at (17). �
Remark This lemma could also be derived from [21, Theorem 4] but as conditions
of this theorem are violated here, some special treatment would still be needed. We
also prefer to give an independent proof based entirely on our results.

Proof of Theorem 2 Applying (3) with a and b interchanged to the right hand side
of the same formula we immediately get (14) with the characteristic polynomial
given by

P̂m(t) = 1

(c − a −m)m
m∑
k=0

(a)k(c− a−m− t)m−k(t)k
(−1)k

k! r+1Fr

(−k, ζ + 1
ζ

)
,

where ζ = ζ (b, c, f) = (ζ1, . . . , ζm) are the roots of the polynomialQm(b, c, f; t)
defined in (5). Next, we calculate usingQm(0) = 1 and (16):

r+1Fr

(
−k, ζ + 1

ζ

)
= 1 + (−k)(ζ + 1)

(ζ )1! + · · · + (−k)k(ζ + 1)k
(ζ )kk!

1 + (−k)(ζ + 1)

(ζ )1! + · · · + (−k)k(ζ + k)
(ζ )k! = 1 + (−k)Qm(−1)

Qm(0)1! + · · · + (−k)kQm(−k)
Qm(0)k!

= 1

(c − b −m)m
k∑
j=0

(−k)j
j !

m∑
i=0

(b)i (−j)i (c − b −m+ j)m−i
(−1)i

i! r+1Fr

(
−i, f + m

f

)

= 1

(c − b −m)m
k∑
i=0

(−1)i (b)i
i! r+1Fr

(
−i, f + m

f

)
k∑
j=i

(−k)j
j ! (−j)i (c − b −m+ j)m−i

= (−m)k
(c − b −m)k

k∑
i=0

(−k)i (b)i
(−m)i i! r+1Fr

(
−i, f + m

f

)
= (−b −m)k
(c − b −m)k r+2Fr+1

(
−k, b, f + m

b +m− k + 1, f

)
,

where we applied (17) in the last equality. Substituting this formula into the above
expression for P̂m we arrive at (15). �
Corollary 2 The following identity is true: Q̂m(t) = P̂m(t), where Q̂m is defined
in (8) and P̂m is defined in (15).
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Proof Indeed, comparing (4) and (14) we see that Q̂m(t) and P̂m(t) have the same
roots and thus may only differ by a nonzero multiplicative constant. However, it is
straightforward that Q̂m(0) = P̂m(0) = 1 and the claim follows. �

Note that the identity Q̂m(t) = P̂m(t) represents a non-trivial hypergeometric
transformation which seems to be hard to obtain directly.

3 Miller-Paris Transformations: Degenerate Case

As we mentioned in the introduction and the statements of Theorems 1 and 2,
formulas (13) and (14) fail when c = b + p, p ∈ {1, . . . ,m}. The purpose
of this section is to present two transformations valid when c = b + p with
arbitrary p ∈ N. Hence, they cover both degenerate and non-degenerate cases.
Some of the coefficients appearing in these transformations can be expressed in
terms of Nørlund’s coefficients gn(a; b) which were introduced by Nørlund in [25,
(1.33)] and investigated in our papers [10, section 2.2], [9, Property 6] and [13,
section 2]. For completeness we also give a short and slightly different account
here. The functions gn(a; b), n ∈ N0, are polynomials separately symmetric in the
components of the vectors a = (a1, . . . , ap−1) and b = (b1, . . . , bp). They can be
defined either via the power series generating function [25, (1.33)], [9, (11)]

G
p,0
p,p

(
1 − z b

a, 0

)
= zνp−1

(νp)

∞∑
n=0

gn(a; b)
(νp)n

zn, (18)

where νp = νp(a; b) = ∑p
j=1 bj −∑p−1

j=1 aj , or via the inverse factorial generating
function [25, (2.21)]

(z + νp)(z+ a)
(z + b)

=
∞∑
n=0

gn(a; b)
(z+ νp)n .

As, clearly, νp(a + α; b + α) = νp(a; b)+ α, we have (by changing z → z + α)

(z + α + νp)(z+ α + a)
(z + α + b)

=
∞∑
n=0

gn(a + α; b + α)
(z+ νp + α)n =

∞∑
n=0

gn(a; b)
(z+ α + νp)n .

Hence, gn(a + α; b + α) = gn(a; b) for any α. Nørlund found two different
recurrence relations for gn(a; b) (one in p and one in n). The simplest of them
reads [25, (2.7)]

gn(a, α; b, β) =
n∑
s=0

(β − α)n−s
(n− s)! (νp−α+ s)n−s gs(a; b), p = 1, 2, . . . , (19)
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with the initial values g0(−; b1) = 1, gn(−; b1) = 0, n ≥ 1. This recurrence was
solved by Nørlund [25, (2.11)] as follows:

gn(a; b) =
∑

0≤j1≤j2≤···≤jp−2≤n

p−1∏
m=1

(ψm + jm−1)jm−jm−1

(jm − jm−1)! (bm+1 − am)jm−jm−1,

(20)
where ψm = ∑m

i=1(bi − ai), j0 = 0, jp−1 = n. Another recurrence relation
for gn(a; b) discovered by Nørlund [25, (1.28)] has order p in the variable n and
coefficients polynomial in n. Details can be found in [10, section 2.2]. The first
three coefficients are given by [10, Theorem 2]:

g0(a; b) = 1, g1(a; b) =
p−1∑
m=1

(bm+1 − am)ψm,

g2(a; b) = 1

2

p−1∑
m=1

(bm+1−am)2(ψm)2+
p−1∑
k=2

(bk+1−ak)(ψk+1)
k−1∑
m=1

(bm+1−am)ψm.

For p = 2 and p = 3 and arbitrary n ∈ N0 explicit expressions for gn(a; b)
discovered by Nørlund [25, eq.(2.10)] are:

gn(a; b) = (b1 − a)n(b2 − a)n
n! for p = 2;

gn(a; b) = (ν3 − b2)n(ν3 − b3)n

n! 3F2

(−n, b1 − a1, b1 − a2

ν3 − b2, ν3 − b3

)
for p = 3,

(21)

where νm := ∑m
j=1 bj−

∑m−1
j=1 aj . The right hand side here is invariant with respect

to the permutation of the elements of b. Finally, for p = 4 we have [10, p.12]

gn(a; b) = (ν4 − b3)n(ν4 − b4)n

n!
n∑
k=0

(−n)k(ν2 − a2)k(ν2 − a3)k

(ν4 − b3)k(ν4 − b4)k
3F2

(
−k, b1 − a1, b2 − a1

ν2 − a2, ν2 − a3

)
.

Next, define Wm−1(n) = Wm−1(b, f,m; n) = ∑m−1
k=0 δkn

k to be the polynomial
of degreem− 1 given by

Wm−1(n) = Wm−1(b, f,m; n) =
(
(f + m)n
(f)n

− (f − b)m
(f)m

)
(b)n

(b + 1)n
= b((f + n)m − (f − b)m)

(b + n)(f)m .

(22)

The following theorem gives two extensions of the Karlsson’s formula (2) to
arbitrary argument.
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Theorem 3 The following transformation formulas hold:

(1−x)ar+2Fr+1

(
a, b, f + m
b + 1, f

∣∣∣∣ x
)

= (f − b)m
(f)m

2F1

(
1, a
b + 1

∣∣∣∣ x

x − 1

)
+
m−1∑
l=0

Yl
(a)lx

l

(1 − x)l
(23)

and

(1−x)a−1
r+2Fr+1

(
a, b, f + m

b + 1, f

∣∣∣∣∣ x
)

= (f − b)m
(f)m

2F1

(
1, b + 1 − a
b + 1

∣∣∣∣∣ x
)

+
m−1∑
l=0

Yl
(a)lx

l

(1 − x)l+1
.

(24)

Here

Yl = Yl(b, f,m) =
m−1∑
k=l
δkS

(l)
k = (−1)l

l! r+2Fr+1

(−l, b, f + m
b + 1, f

)
− (−1)l(f − b)m
(b + 1)l(f)m

= (−1)m−l−1b

(f)m

m−1−l∑
i=0

(−1)igm−1−l−i (−f; −f − m, l)(1 − b)i, (25)

where δk are the coefficients of the polynomialWm−1(x) defined in (22) and gn(·; ·)
are Nørlund’s coefficients given in (20).

Proof First, we show that for |x| < 1 the following equality holds:

r+2Fr+1

(
a, b, f + m
b + 1, f

∣∣∣∣ x
)

= (f − b)m
(f)m

2F1

(
a, b

b + 1

∣∣∣∣ x
)

+
m−1∑
l=0

(a)lx
l

(1 − x)a+l
m−1∑
k=l
δkS

(l)
k .

(26)

Indeed, in view of (22),

r+2Fr+1

(
a, b, f + m
b + 1, f

∣∣∣∣ x
)

= (f − b)m
(f)m

∞∑
n=0

(a)n(b)nx
n

n!(b + 1)n
+

∞∑
n=0

(a)nx
nWm−1(n)

n!

= (f − b)m
(f)m

2F1

(
a, b

b + 1

∣∣∣∣ x
)

+
m−1∑
k=0

δk

∞∑
n=0

(a)nx
n

n! nk.

Using the definition of the Stirling numbers nk = ∑k
l=0 S(l)k [n]l in terms of falling

factorials [n]l = n(n− 1) . . . (n− l + 1), we get

∞∑
n=0

(a)nx
n

n! nk =
∞∑
n=0

(a)nx
n

n!
k∑
l=0

S(l)k [n]l =
k∑
l=0

S(l)k

∞∑
n=l

(a)nx
n

(n− l)!
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=
k∑
l=0

S(l)k

∞∑
n=0

(a)n+lxn+l

n! =
k∑
l=0

S(l)k

∞∑
n=0

(a)l (a + l)nxn+l
n! =

k∑
l=0

S(l)k (a)l
xl

(1 − x)a+l ,

which implies (26) after exchanging the order of summations. It remains to apply
Euler’s transformations to the 2F1 on the right hand side of (26) to get (23) and (24)
with Yl given by the first formula in (25).

To obtain the second expression for Yl recall that

Wm−1(x) = b[(f + x)m − (f − b)m]
(b + x)(f)m =

m−1∑
k=0

W
(k)
m−1(0)

k! xk,

yielding δk = W
(k)
m−1(0)/k!. Using the technique from [21, Theorem 2] we now

apply the following formula from the theory of finite differences:

�lWm−1(x) =
l∑
j=0

(−1)l−j
(
l

j

)
Wm−1(x + j) = l!

m−1∑
j=l

S(k)j
W
(j)
m−1(x)

j ! .

In view of (22) we have

1

l!�
lWm−1(0) =

m−1∑
k=l
δkS

(l)
k = 1

l!
l∑
j=0

(−1)l−j
(
l

j

)
Wm−1(j)

= 1

l!
l∑
j=0

(−1)l−j (b)j
(b + 1)j

(
l

j

)[
(f + m)j
(f)j

− (f − b)m
(f)m

]

= (−1)l

l!
l∑
j=0

(−l)j (b)j
(b + 1)j j !

[
(f + m)j
(f)j

− (f − b)m
(f)m

]

= (−1)l

l! r+2Fr+1

(−l, b, f + m
b + 1, f

)
− (−1)l

l!
(f − b)m
(f)m

2F1

(−l, b
b + 1

)

= (−1)l

l! r+2Fr+1

(−l, b, f + m
b + 1, f

)
− (−1)l(f − b)m
(b + 1)l(f)m

,

where we employed the relation

(
l

j

)
= (−1)j

(−l)j
j !
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in the second line and the Chu-Vandermonde identity in the last equality. Further,
according to [13, Theorem 2.1]

r+2Fr+1

(−l, b, f + m
b + 1, f

)
= l!
(b + 1)l

(f − b)m
(f)m

− (−1)ml!b
(f)m

ql,

where ql = ∑m−l−1
i=0 gm−l−i−1(b − f; b − f − m, b + l)(b − i)i , and Nørlund’s

coefficient gn(·; ·) is defined in (20). Substituting and using the shifting property
gn(a + α; b + α) = gn(a; b) of Nørlund’s coefficients, we get:

m−1∑
k=l
δkS

(l)
k = (−1)m−l−1b

(f)m

m−l−1∑
i=0

gm−l−i−1(−f; −f − m, l)(b − i)i

which is equivalent to the second formula in (25). �
Remark If "(1 − a − m) > 0 an application of the Gauss summation formula to
2F1 on the right hand side of (26) results in Karlsson’s formula (2).

Theorem 3 can be generalized as follows. Suppose b = (b1, . . . , bl) is a complex
vector, p = (p1, . . . , pl) is a vector of positive integers, p = p1 +p2 + . . .+pl , and
all elements of the vector β = (b1, b1 +1, . . . , b1 +p1 −1, . . . , bl, bl+1, . . . , bl+
pl − 1) = (β1, β2, . . . , βp) are distinct. It is straightforward to verify the partial
fraction decomposition

p∏
j=1

1

βj + x = 1

(β + x)1 =
p∑
q=1

1

Bq(βq + x) , where Bq =
p∏
v=1
v �=q

(βv − βq).

Then

(b)n
(b + p)n

= (b)p
(b + n)p = (b)p

(β + n)1 = (b)p
p∑
q=1

(βq)n

βqBq(βq + 1)n
.

Applying the definition of the generalized hypergeometric function and Theorem 3,
we obtain

(1 − x)ar+p+2Fr+p+1

(
a,b, f + m

b + p, f

∣∣∣∣∣ x
)

= (1 − x)a
p∑
q=1

(b)p
βqBq

r+2Fr+1

(
a, βq , f + m

βq + 1, f

∣∣∣∣∣ x
)

= (b)p
(f)m

p∑
q=1

(f − βq)m
βqBq

2F1

(
a, 1

βq + 1

∣∣∣∣∣
x

x − 1

)
+ (b)p

p∑
q=1

1

βqBq

m−1∑
k=0

δkq

k∑
l=0

S(l)k
(a)lx

l

(1 − x)l

= (b)p
(f)m

p∑
q=1

(f − βq)m
βqBq

2F1

(
a, 1

βq + 1

∣∣∣∣∣
x

x − 1

)
+ (b)p

p∑
q=1

1

βqBq

m−1∑
l=0

Yl(βq, f,m)
(a)lx

l

(1 − x)l ,

(27)
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where δkq are the coefficients of the polynomialWm−1(βq, f,m; x) = ∑m−1
k=0 δkqx

k ,
Yl is defined in (25) and βq = b+q−1 is q-th component of the vector β. Similarly,
applying the second transformation yields:

(1 − x)a−1
r+p+2Fr+p+1

(
a,b, f + m

b + p, f

∣∣∣∣∣ x
)

= (1 − x)a−1
p∑
q=1

(b)p
βqBq

r+2Fr+1

(
a, βq , f + m

βq + 1, f

∣∣∣∣∣ x
)

= (b)p
(f)m

p∑
q=1

(f − βq)m
βqBq

2F1

(
1, βq + 1 − a
βq + 1

∣∣∣∣∣ x
)

+
p∑
q=1

(b)p
βqBq

m−1∑
l=0

Yl(βq , f,m)
(a)lx

l

(1 − x)l+1
.

(28)

In both formulas the sum of the Gauss functions 2F1 does not seem to collapse into
a single hypergeometric function. However, it does happen when b only contains
one component. We formulate this result in the form of the following theorem.

Theorem 4 Suppose p ∈ N. Then the following identity hold true:

(1 − x)ar+2Fr+1

(
a, b, f + m
b + p, f

∣∣∣∣ x
)

= Tp−1(0)

(b)(f)m
p+1Fp

(
a, 1,−λ + 1
b + p,−λ

∣∣∣∣ x

x − 1

)

+
p∑
q=1

(−1)q−1(b)p

(b + q − 1)(q − 1)!(p − q)!
m−1∑
l=0

Yl(b + q − 1, f,m)
(a)lx

l

(1 − x)l , (29)

where Yl is defined in (25), λ = (λ1, . . . , λp−1) are the roots of the polynomial

Tp−1(z) =
p∑
q=1

(−1)q−1(f − b − q + 1)m(b + q − 1)

(q − 1)!(p − q)! (b + q + z)p−q (30)

of degree p − 1. Furthermore,

(1−x)a−1
r+2Fr+1

(
a, b, f + m

b + p, f

∣∣∣∣∣ x
)

= (b − a + 1)T ∗
p−1(0)

(b)(f)m
p+1Fp

(
1, b + 1 − a,−λ∗ + 1

b + p,−λ∗

∣∣∣∣∣ x
)

+
p∑
q=1

(−1)q−1(b)p

(b + q − 1)(q − 1)!(p − q)!
m−1∑
l=0

Yl (b + q − 1, f,m)
(a)lx

l

(1 − x)l+1
, (31)

where λ∗ = (λ∗
1, . . . , λ

∗
p−1) are the roots of the polynomial

T ∗
p−1(z) =

p∑
q=1

(−1)q−1(f − b − q + 1)m(b + q − 1)

(b + q − a)(q − 1)!(p − q)! (b+ q + z)p−q(b+ 1 − a + z)q−1

of degree p − 1.
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Remark It is instructive to compare identities (29) and (31) with the degenerate
Miller-Paris transformations derived in [12, Theorems 1 and 3]. One important
difference is that the above theorem holds for anyp ∈ N, while in [12] p is restricted
to the set {1, . . . ,m}. Nevertheless, with a little effort one can make sure that (29)
and [12, (16)] are related by a rather simple rearrangement and the polynomial Tp−1
is a constant multiple of the polynomialRp from [12]. The same, however, does not
hold for (31), and the polynomial T ∗

p−1 is not a constant multiple of R̂p from [12].

Proof If b = (b) we can represent the sum of hypergeometric functions in (27) as
a single hypergeometric function of a higher order as follows. Using the definition
of the hypergeometric function

p∑
q=1

(f − βq)m
βqBq

2F1

(
a, 1
βq + 1

∣∣∣∣ t
)

=
∞∑
n=0

(a)nt
n

p∑
q=1

(f − βq)m
βqBq(b + q)n . (32)

Applying the formula

(b + q)n = (b + p)(b + p)n
(b + q)(b + n+ q)p−q

, (33)

we get

∞∑
n=0

(a)nt
n

p∑
q=1

(f − βq)m
βqBq(b + q)n = 1

(b + p)
∞∑
n=0

(a)nt
n

(b + p)n
p∑
q=1

(f − βq)m
βqBq

(b+q)(b+n+q)p−q

= 1

(b + p)
∞∑
n=0

(a)nt
n

(b + p)n Tp−1(n), (34)

where Tp−1(n) is the polynomial of degree p − 1 defined in (30) in view of β =
(b, . . . , b + p − 1), βq = b + q − 1 and Bq = (−1)q−1(q − 1)!(p − q)!. Setting
λ = (λ1, . . . , λp−1) to be the roots of this polynomial, we can write

Tp−1(n) = (b + 1)

b(p − 1)!(f − b)m(n− λ)1 = (b)

(p − 1)!(f − b)m(−λ)1
(−λ + 1)n
(−λ)n

.

Hence, it follows from (34) that

∞∑
n=0

(a)nt
n
p∑
q=1

(f − b − q + 1)m
βqBq(b + q)n = (b)

(b + p)
∞∑
n=0

(a)nt
n

(b + p)n
(f − b)m(−λ)1(−λ + 1)n

(−λ)n(p − 1)!

= (f − b)m(−λ)1

(b)p(p − 1)! p+1Fp

(
a, 1,−λ + 1

b + p,−λ

∣∣∣∣∣ t
)
. (35)

Substituting this result into (27) with t = x/(x − 1) yields (29).
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The proof of the second transformation is similar. We transform the first term in
(28) using formula (33) and the identity

(b + n+ q − a)p−q = (b − a + n+ 1)p−1

(b − a + n+ 1)q−1

as follows (keeping in mind that βq = b+ q − 1, Bq = (−1)q−1(q − 1)!(p − q)!):

(b)p

(f)m

p∑
q=1

(f − βq)m
βqBq

2F1

(
βq − a + 1, 1

βq + 1

∣∣∣∣∣ x
)

= (b)p

(f)m

∞∑
n=0

xn
p∑
q=1

(f − βq)m
βqBq

(b + q − a)n
(b + q)n

= (b)p

(f)m

∞∑
n=0

xn
p∑
q=1

(f − βq)m
βqBq

(b + q)(b + n+ q)p−q(b + p − a)(b + p − a)n
(b + p)(b + p)n(b + q − a)(b + n+ q − a)p−q

= (b + p − a)
(b)(f)m

∞∑
n=0

(b + p − a)nxn
(b + p)n

p∑
q=1

(f − βq)m
βqBq

(b + q)(b + n+ q)p−q
(b + q − a)(b + n+ q − a)p−q

= (b + p − a)
(b)(f)m

∞∑
n=0

(b + p − a)nxn
(b + p)n(b + n+ 1 − a)p−1

T ∗
p−1(n)

= 1

(b)(f)m

∞∑
n=0

(b + n− a + 1)xn

(b + p)n T ∗
p−1(n) = (b − a + 1)

(b)(f)m

∞∑
n=0

(b − a + 1)nxn

(b + p)n T ∗
p−1(n),

(36)

where

T ∗
p−1(z) =

p∑
q=1

(−1)q−1(b + q − 1)(f − b − q + 1)m
(b + q − a)(q − 1)!(p − q)! (b+z+q)p−q(b+z+1−a)q−1

is a polynomial of degree p− 1. Setting λ∗ = (λ∗
1, . . . , λ

∗
p−1) to be the roots of this

polynomial, we have

T ∗
p−1(n) = (−λ∗)1

(−λ∗ + 1)n
(−λ∗)n

p∑
q=1

(−1)q−1(b + q − 1)(f − b − q + 1)m
(b + q − a)(q − 1)!(p − q)! .

Substituting this expression into (36), we get (31). �
The remark made after Theorem 3 implies that p = 2 case of (29) is the same

(modulo some rearrangement) as [12, Corollary 5]. Setting p = 2 in (31) we obtain
the following

Corollary 3 Suppose (b + 1)(f − b − 1 + m) �= b(f − b − 1) and (b− a + 1)(f −
b − 1 + m) �= b(f − b − 1). Then the following identity holds:
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(1−x)a−1
r+2Fr+1

(
a, b, f + m

b + 2, f

∣∣∣∣∣ x
)

= b [(f − b)m − (f − b − 1)m]

(f)m
3F2

(
1, b + 1 − a, λ∗ + 1

b + 2, λ∗

∣∣∣∣∣ x
)

+
m−1∑
l=0

[(b + 1)Yl (b, f,m) − bYl (b + 1, f,m)] (a)lx
l

(1 − x)l+1
,

where

λ∗ = (b − a + 1)
(b + 1)(f − b − 1 + m)− b(f − b − 1)

(b − a + 1)(f − b − 1 + m)− b(f − b − 1)

and Yl is defined in (25).

The following theorem extends Theorem 3 in a different direction: we add two
free parameters to r+2Fr+1 on the left hand side.

Theorem 5 Suppose (e − d −m+ 1)m−1 �= 0. Then following identity holds:

r+3Fr+2

(
a, d, b, f + m
e, b + 1, f

∣∣∣∣ x
)

= (f − b)m
(f)m

3F2

(
a, d, b

e, b + 1

∣∣∣∣ x
)

+ (f)m − (f − b)m
(f)m

(1 − x)−am+1Fm

(
a, e− d −m+ 1,λ + 1

e,λ

∣∣∣∣ x

x − 1

)
,

where λ is the vector of zeros of the polynomial

Lm−1(t) = Lm−1(e, d, b, c, f,m; t ) =
m−1∑
k=0

(d)kYk(b, f,m)(t)k(e − d −m+ 1 − t )m−1−k,

(37)

and Yk(b, f,m) is given in (25). If, in addition (e − a − m + 1)m−1 �= 0 and
(1 + a + d − e)m−1 �= 0, then

r+3Fr+2

(
a, d, b, f + m
e, b + 1, f

∣∣∣∣∣ x
)

= (f − b)m
(f)m

3F2

(
a, d, b

e, b+ 1

∣∣∣∣∣ x
)

+ (f)m − (f − b)m
(f)m

(1−x)e−a−d−m+1
m+1Fm

(
e − a −m+ 1, e − d −m+ 1,λ∗ + 1

e,λ∗

∣∣∣∣∣ x
)
,

where λ∗ is the vector of zeros of the polynomial

L̂m−1(t)=
m−1∑
k=0

(−1)kYk(b, f,m)(a)k (d)k(t)k
(e − a −m+ 1)k(e − d −m+ 1)k

3F2

(
−m+ 1 + k, t + k, e − a − d −m+ 1

e − a −m+ 1 + k, e − d −m+ 1 + k

)
.

(38)
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Proof Let γ = (γ1, . . . , γm−1) be the roots of the polynomial Wm−1(x) =
Wm−1(b, f,m; x) defined in (22). Its definition implies that the leading coefficient
ofWm−1(x) equals b/(f)m, while the free term is given byWm−1(0) = ((f)m − (f −
b)m)/(f)m. Hence,

Wm−1(n) = b(−γ )1(n− γ )1

(f)m(−γ )1
= b(−γ )1

(f)m

(−γ + 1)n
(−γ )n

= Wm−1(0)
(−γ + 1)n
(−γ )n

= ((f)m − (f − b)m)(−γ + 1)n
(f)m(−γ )n

. (39)

By definition of the generalized hypergeometric function this leads to

r+3Fr+2

(
a, d, b, f + m

e, b + 1, f

∣∣∣∣∣ x
)

= (f − b)m
(f)m

∞∑
n=0

(a)n(d)n(b)nx
n

n!(e)n(b + 1)n
+

∞∑
n=0

(a)n(d)nx
nWm−1(n)

n!(e)n

= (f − b)m
(f)m

3F2

(
a, d, b

e, b + 1

∣∣∣∣∣ x
)

+
∞∑
n=0

(a)n(d)nx
nWm−1(n)

n!(e)n

= (f − b)m
(f)m

3F2

(
a, d, b

e, b + 1

∣∣∣∣∣ x
)

+ (f)m − (f − b)m
(f)m

m+1Fm

(
a, d,−γ + 1

e,−γ

∣∣∣∣∣ x
)
.

It remains to apply the Miller-Paris transformations (3) and (4) (or (13) and (14)) to
the function

m+1Fm

(
a, d,−γ + 1
e,−γ

∣∣∣∣ x
)
.

Note the change of notation b → d , c → e, m → m − 1 as compared to (3), (4).
To give explicit formulas for the characteristic polynomials (5) and (8) use (22) and
(39) to get

r+3Fr+2

(
−k, b, f + m

b + 1, f

)
= (f − b)m

(f)m
2F1

(
−k, b
b+ 1

)
+ (f)m − (f − b)m

(f)m
m+1Fm

(
−k,−γ + 1

−γ

)

= (f − b)m
(f)m

k!
(b+ 1)k

+ (f)m − (f − b)m
(f)m

m+1Fm

(
−k,−γ + 1

γ

)
,

where the Chu-Vandermonde identity was applied in the second equality. Compar-
ing this formula with (6) and (25) we immediately see that

Ck,r (−γ , 1) = (−1)k

k! m+1Fm

(−k,−γ + 1
−γ

∣∣∣∣ x
)

= (f)m
(f)m − (f − b)mYk(b, f,m).

Substituting this expression into (5) and (8) and canceling constant factors we arrive
at (37) and (38), respectively. �
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Taking r = 1, m = 2 in Theorem 5 after some elementary computations we
arrive at

Corollary 4 Suppose e − d − 1 �= 0. Then following identities hold:

f (f + 1)4F3

(
a, d, b, f + 2
e, b + 1, f

∣∣∣∣ x
)

− (f − b)(f − b + 1)3F2

(
a, d, b

e, b + 1

∣∣∣∣ x
)

= b(2f − b + 1)(1 − x)−a3F2

(
a, e− d − 1, λ+ 1

e, λ

∣∣∣∣ x

x − 1

)

= b(2f − b + 1)(1 − x)e−a−d−1
3F2

(
e − a − 1, e − d − 1, λ∗ + 1

e, λ∗

∣∣∣∣ x
)
,

where

λ = (2f − b + 1)(e − d − 1)

2f − b − d + 1
, λ∗ = (2f − b + 1)(e − a − 1)(e− d − 1)

ad + (2f − b + 1)(e − a − d − 1)
.

For the second equality the additional restrictions e−a−1 �= 0 and 1+a+d−e �= 0
must be imposed.

Similarly, taking r = 2, m1 = m2 = 1 in Theorem 5 we get

Corollary 5 Suppose e − d − 1 �= 0. Then following identities hold:

(f1f2)5F4

(
a, d, b, f1 + 1, f2 + 1
e, b + 1, f1, f2

∣∣∣∣ x
)

− (f1 − b)(f2 − b)3F2

(
a, d, b

e, b + 1

∣∣∣∣ x
)

= b(f1 + f2 − b)(1 − x)−a3F2

(
a, e− d − 1, λ+ 1

e, λ

∣∣∣∣ x

x − 1

)

= b(f1 + f2 − b)(1 − x)e−a−d−1
3F2

(
e − a − 1, e − d − 1, λ∗ + 1

e, λ∗

∣∣∣∣ x
)
,

where

λ = (f1 + f2 − b)(e− d − 1)

f1 + f2 − b − d , λ∗ = (f1 + f2 − b)(e− a − 1)(e − d − 1)

ad + (f1 + f2 − b)(e− a − d − 1)
.

For the second equality the additional restrictions e−a−1 �= 0 and 1+a+d−e �= 0
must be imposed.
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Transmutation Operators For Ordinary
Dunkl–Darboux Operators

S. P. Khekalo, V. V. Meshcheryakov, and K. O. Politov

Abstract The study is developed of transmutation operators for differential-
difference operators, analogous to Dunkl operator. The basis for the study of
operators’ properties is the intertwining operator and Darboux transformations
theories.

Keywords Dunkl operators · Dunkl–Darboux operators · Transmutation
operators · Darboux transmutation

1 Introduction

Paper [1] introduced differential-difference operators, currently known as Dunkl
operators. These operators have important applications for the theory of differential
operators in partial differential equations (e.g., see [2, 3] and works cited therein).
Equally curious applications of these operators were also discovered in the one-
dimensional case (e.g., see [4] and works cited therein). In [5] for ordinary Dunkl
operators and their analogs, i.e. Dunkl–Darboux operators, we can see the results,
which have applications in the Sturm–Liouville operators theory.

Based on the transmutation operators (intertwining operators), we analyze certain
aspects of building analogues of ordinary Dunkl operators.
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2 Dunkl–Darboux Operators

Let

	 = {x ∈ R | x ∈ 	⇒ −x ∈ 	}
be symmetrical with the respect to the point x = 0 open domain in R;

F(	) = {f ∈ C∞(	)}

is a set of real functions which are infinitely differentiable on 	.
On F(	) we see the well defined differentiation operators d/dx : F(	) →

F(	), multiplication by the function k/x : F(	) → F(	\{0}), k ∈ Z+, and
inversion s : F(	)→ F(	), functioning according to the rule

∀f ∈ F(	) : s[f ](x) = f (−x).

Thus, on F(	) naturally works [1] Dunkl classical rational operator

∇k = d

dx
− k

x
s, k ∈ Z+.

It is obvious that

∇k : F±(	)→ F∓(	\{0}), (2.1)

where F±—subsets in F of respectively even and odd functions. It is also obvious
that

Lk := ∇2
k

∣∣∣F+(	)
= d2

dx2 − k(k − 1)

x2 ; ∇2
k

∣∣∣F−(	)
= ∇2

k+1

∣∣∣F+(	)
= Lk+1.

(2.2)

Operators in (2.2) are Sturm–Liouville operators with special Stellmacher
potentials, well known in mathematical physics (e.g., see [2, 6] and works cited
therein).

Due to the design in (2.2) it is the case of Darboux transmutations [6]

Lk =
(
d

dx
+ k

x

)(
d

dx
− k

x

)
=

(
d

dx
− k − 1

x

)(
d

dx
+ k − 1

x

)
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and the intertwining relations corresponding to it

(
d

dx
− k

x

)
Lk = Lk+1

(
d

dx
− k

x

)
,

(
d

dx
+ k

x

)
Lk+1 = Lk

(
d

dx
+ k

x

)
.

(2.3)

On F(	) we shall introduce Dunkl–Darboux operators using the following
formula

∇ω = d

dx
− (log|ω(x)|)′ s, (2.4)

where ω(x) is some even or odd in F(	) function, analytical in its domain. It is
obvious that

∇|x|k = ∇k.

Due to the equality of the function |ω(x)| for ∇ω the analogue of the formula
(2.1) is executed

∇ω : F±(	)→ F∓(	),

and analogues of operators (2.2) may be written as

L+
ω := ∇2

ω

∣∣∣F+(	)
= d2

dx2 −
([
(log|ω(x)|)′]2 + (log|ω(x)|)′′

)
,

L−
ω := ∇2

ω

∣∣∣F−(	)
= d2

dx2 −
([
(log|ω(x)|)′]2 − (log|ω(x)|)′′

)
.

(2.5)

It is apparent that for operators (2.5)

L+
|x|k = Lk, L−

|x|k = Lk+1

and the intertwining relations, analogous to (2.3) are met:

(
d

dx
− (log|ω(x)|)′

)
L+
ω = L−

ω

(
d

dx
− (log|ω(x)|)′

)
,

(
d

dx
+ (log|ω(x)|)′

)
L−
ω = L+

ω

(
d

dx
+ (log|ω(x)|)′

)
.

(2.6)
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Proposition 2.1 (For Darboux Transmutations, See e.g. [5]) Let ω(x) = ωk(x),
depends on the parameter k ∈ Z+, ω0(x) = 1. Then the equation is satisfied

L+
ωk+1

= L−
ωk

with an accuracy to multiplicative constant factor and transformations of the type
x → x + const if and only if there is a equality

ωk(x) = Pk(|x|)
Pk−1(|x|) ,

where Pk(x) are Burchnall-Chaundi polynomials [2], defined by a recurrence
equation

P0(x) = 1; P1(x) = x; P ′
k+1(x)Pk−1(x)− Pk+1(x)P ′

k−1(x) = (2k + 1)P2
k (x).

For the proof of necessity we need to establish that a partial Riccati equation solution

z′ + z2 = −
(

logP2
k (|x|)

)′′
,

has the following appearance

z =
(

log

∣∣∣∣Pk+1(|x|)
Pk(|x|)

∣∣∣∣
)′
.

For the proof of sufficiency we need to establish that forωk(x) = Pk(|x|)/Pk−1(|x|)
there is a equality

[
(log |ωk+1(x)|)′

]2 + (log |ωk+1(x)|)′′ = [
(log |ωk(x)|)′

]2 − (log |ωk(x)|)′′ .

3 Darboux Transmutations for High Order Differential
Operators

For the space Rn+1 let us consider the deformation of wave operator by a time-
dependent potential

L = �n −
(
∂2

∂t2
+ c(t)

)
.

Here �n is the Laplace operator on Rn and c(t) is an almost everywhere differen-
tiable function.
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If the function μ = μ(t) is a solution to the equation

μ′′
t t + c(t)μ = 0,

then there is an obvious transformation

∂2

∂t2
+ c(t) =

(
∂

∂t
+ μ′

μ

)(
∂

∂t
− μ′

μ

)
.

As a result, based on Darboux transmutations, the operator L can be written as
[6] in the form

L = �n + l∗l,

where

l = ∂

∂t
− μ′

μ
and l∗ = − ∂

∂t
− μ′

μ
.

At the same time for operator, associated with L

L̃ = �n + ll∗,

there is the following intertwining property

l L = L̃ l. (3.1)

Based on the intertwining property the Darboux transmutation technique (3.1)
allows to construct new operators, the properties of which are described via the
properties of the initial operator.

Example 3.1 Euler–Poisson–Darboux equation

(
�n+1 − k(k + 1)

t2

)
u(t; x) = 0, k = 0, 1, 2, . . . ,

results from the method mentioned. Here �n+1 is the wave operator. Elementary
solution of the Euler-Poisson-Darboux operator can be achieved based on the
transmutation of the wave operator via step-by-step “destruction” of the parameter
k : k → k − 1 → . . .→ 1 → 0 based on the formula (3.1):

L̃ = �n+1 − k(k + 1)

t2
→ L = �n+1 − (k − 1)k

t2
→ . . . .

Example is complete.
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Example 3.2 Wave operator deformations hierarchy by Lagnese-Stellmacher po-
tentials [6]

�n+1 + uk(t), uk(t) = 2
∂2

∂t2
log|Pk(t)|,

are based on the classical Darboux transmutation.

Darboux transmutations are tightly linked to the concept of the so called gauge
relation of differential operators, which, in our case is set by the equality [2]

adk(k+1)/2+1
d2

dt2
−uk(t), d2

dt2

Pk(t) = 0, k = 1, 2, . . . .

Here, ad-operator

adkA,BC = adk−1
A,B(AC − CB), ad0

A,BC = C,

– is a slant adjoint action operator. The example is complete.

Definition 3.1 ([7]) Operators Lk, k = 0, 1, . . . , s, of some non-negative integer
s, meet the condition of step-by-step gauge equivalence by means of smooth
nonzero function f, if there is a equality

ad1+1
Lk,Lk−1

f = 0

for all k = 1, . . . , s.

Proposition 3.1 ([7]) If operators Lk, k = 0, 1, . . . , s, meet the condition of step-
by-step gauge equivalence using the function f, then the operator Ls is s-gauge
related to the operator L0 using the function f s :

ad1+1
Lk,Lk−1

f = 0, k = 1, . . . , s, ⇒ ads+1
Ls ,L0

f s = 0.

Proposition 3.2 ([7]) Let

L0 =
K∑
j=0

aj
dj

dxj

– ordinary differential operator of an order K on R with constant coefficients.
Then, the differential operator

Lk = L0 +
K−2∑
j=0

⎛
⎝
K−j∑
p=0

(−1)p−1(p − 1)

(
p + j
j

)
(k, p)

xp
ap+j

⎞
⎠ dj

dxj
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of the order K meets the equality

ad 2
Lk,Lk−1

x = 0, k = 1, 2, . . . .

Here
(
p+j
j

)
is the binomial coefficient, and (k, p) is the Pochhammer symbol.

Corollary 3.1 Darboux transmutation analogue has the appearance

Lk lk = lk Lk−1, k = 1, 2, . . . , (3.2)

where

lk =
K−1∑
j=0

⎛
⎝
K−j∑
p=1

(−1)p−1 p

(
p + j
j

)
(k, p − 1)

xp−1 ap+j

⎞
⎠ dj

dxj
.

Formula (3.2) shall naturally be called Dunkl–Darboux transmutation. (E.g., see
[5] and works cited therein).

Example 3.3 In the case K = 2 for

Lk = d2

dx2 − k(k + 1)

x2

Dunkl–Darboux transmutation (3.2) turns into a classical Darboux transmutation
(2.3)

(
d2

dx2 − k(k + 1)

x2

) (
adLk,Lk−1 x

) = (
adLk,Lk−1 x

) ( d2

dx2 − k(k − 1)

x2

)
,

where k = 1, 2, . . . , and

lk := adLk,Lk−1 x = 2

(
d

dx
− k

x

)
.

The example is complete.

4 Integral Dunkl–Darboux Transmutations

Let us designate via F̃ the space of functions which are invariant under the action
of operators ∇ω and d

dx
. In [4] describes a series of functions which are a formal

solution to the equation ∇ωy = y.
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Specification of this series is based on the transmutation operator. Let linear
operator V : F̃ → F̃ , satisfy the intertwining property

∇̃ω V = V d

dx
.

If the intertwining operatorV has the explicit form, then the function f (x) = const ·
V (ex) is a solution to the equation ∇ωy = y. We have

V (ex) =
+∞∑
n=0

V (xn)

n! .

Let us define via yn = V (xn), then

∇ωy0 = 0, ∇ωyn = nyn−1, n ∈ N.

If we limit ourselves to analytical functions, then the first equation shall have the
unique solution (with an accuracy to the constant factor): y0 = ω. Induction by the
parameter n establishes, that at even n the function yn is even, at odd n it is odd.
Based on this fact, the solution of the second equation (for natural n) can be written
down in the form of Dunkl–Darboux integral transmutation [8]

yn(x) = n(ω(x))(−1)n
∫
(ω(x))(−1)n−1

yn−1(x)dx, (4.1)

where the integration constant is chosen so that the function yn has the required type
of equality.

Example 4.1 Immediately, we have

y1 = 1

ω

∫
ω2 dx, y2 = 2ω

∫ (
1

ω2

∫
ω2 dx

)
dx, . . . .

Example is complete.

Using these integral transmutations (4.1) the solution f of the equation ∇ωy = y
can be presented (within a constant factor) in the form of formal series

f (x) =
+∞∑
n=0

yn(x)

n! . (4.2)

For some functionsω the sum of the last series (if we choose integration constants
in a special way) it is possible to calculate immediately.
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Example 4.2 If ω(x) = |x|k, then

f (x) = xk
(
Jk−1/2(x)+ x

2k + 1
Jk+1/2(x)

)
at even k ,

f (x) = x−k
(
J−k−1/2(x)+ x

−2k + 1
J−k+1/2(x)

)
at odd k ,

where

Jγ (x) =
+∞∑
n=0

(γ + 1)

n!(n+ γ + 1)

(x
2

)2n

is a modified Bessel function. Example is complete.

Example 4.3 If ω(x) = |tg x2 |, then f (x) = −2ex + exctgx + e−x

sin x
. Example is

complete.

Example 4.4 If ω(x) = |th x|, then f (x) = − 2

sh2x
e−x . Example is complete.

Let us show that for a functionω, with a specified choice of integration constants,
the series of functions (4.2) converges at each set [−b; −a] ∪ [a; b] (0 � a < b),
where ω is positive and ω′ is bounded. Thus, we shall determine the sequence of the
functions fn (n ∈ Z+), set on [−b; −a] ∪ [a; b] by the equalities

f0(x) = ω(x), fn(x) = n(ω(x))(−1)n
x∫

a

(ω(t))(−1)n−1
fn−1(t)dt, n ∈ N.

Outside the union [−b; −a] ∪ [a; b] we denote fn(x) = 0 for all n ∈ Z+.
The following properties of functions fn can be proved by an induction by n.

1. For all n ∈ Z+ we havefn(−x) = (−1)nfn(x);

2. For all n ∈ Z+ we have |fn(x)| � Mn+1

mn

∣∣∣|x| − a
∣∣∣n;

3. For all n ∈ Z+ the function fn is differentiable, however there are the following
assessments

|f ′
2n+1(x)| � (2n+ 1)

M2n+1

m2n

∣∣∣|x| − a
∣∣∣2n + M2n+2

m2n+2

∣∣∣|x| − a
∣∣∣2n+1|ω′(x)|,

|f ′
2n(x)| � 2n

M2n

m2n−1

∣∣∣|x| − a
∣∣∣2n−1 + M2n

m2n

∣∣∣|x| − a
∣∣∣2n|ω′(x)|.
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Proposition 4.1 Let ω be a positive and even or odd function, the derivative

of which is limited on the interval [a; b]. Then, the series of functions
+∞∑
n=0

fn(x)
n!

converges and its sum f is a solution to the equation ∇ωy = y. In this connection

f (a) = ω(a) and |f (x)| �MeMm
∣∣|x|−a∣∣

,

where M and m are the greatest and the smallest values of the function ω on the
interval [a; b] respectively.

Proof Direct substitution (using property 1) shows that a series of functions
+∞∑
n=0

fn(x)
n! is the formal solution of the equation∇ωy = y. From property 2 it follows

that in the set [−b; −a] ∪ [a; b], the series
+∞∑
n=0

fn(x)
n! converges absolutely and

uniformly, whereas for the sum of f there is the following assessment |f (x)| �
Me

M
m

∣∣|x|−a∣∣. Similarly, from property 3 follows that on the set[−b; −a] ∪ [a; b],
the series

+∞∑
n=0

f ′
n(x)

n! converges absolutely and uniformly. Therefore, series
+∞∑
n=0

fn(x)
n!

may be differentiated term-by-term, and therefore its sum f satisfies the equality
∇ωy = y in a substantial sense. Proof is complete.

5 Transmutation Operators for Dunkl–Darboux Operators
in Cherednik Algebra

The question of ∇ω operator integrability is closely linked with Cherednik algebra,

A =
〈

1, x,
d

dx
, s

〉
,

the generators of which meet the following commutation ratios

[1, x] =
[

1,
d

dx

]
= [1, s] = 0,

[
d

dx
, x

]
= 1, [x, s] = 2xs,

[
s,
d

dx

]
= 2s

d

dx
.

Proposition 5.1 Let D1 and D2 be linear differential operators. In algebra A there
is an equivalence

D1 + D2 s = 0 ⇔ D1 = D2 = 0.
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Proof Sufficiency is obvious. Let us check the necessity in several steps. Let

D1 =
N∑
i=0

di1(x)
di

dxi
, D2 =

M∑
j=0

dj1(x)
dj

dxj
,

then

⎧⎨
⎩
(D1 + D2 s) [1] = d01(x)+ d02(x) = 0,

(D1 + D2 s) [sgn(x)] = (d01(x)− d02(x)) sgn(x) = 0,

and d01(x) = d02(x) = 0;

⎧⎨
⎩
(D1 + D2 s) [x] = d11(x)− d12(x) = 0,

(D1 + D2 s) [x sgn(x)] = (d11(x)+ d12(x)) sgn(x) = 0,

and d11(x) = d12(x) = 0; . . . ;

⎧⎨
⎩
(D1 + D2 s) [xn] = n!(dn1(x)+ (−1)ndn2(x)) = 0,

(D1 + D2 s) [xnsgn(x)] = n!(dn1(x)− (−1)ndn2(x)) sgn(x) = 0,

and dn1(x) = dn2(x) = 0. The proof is complete.

In algebra A we will consider the equation

∇ω V = V d

dx
(5.1)

for the operator V ∈ A :
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V =
N∑
i=0

pi(x)
di

dxi
+

M∑
j=0

qj (x)
dj

dxj
s,

pN(x) �= 0, qM(x) �= 0.

(5.2)

Let us designate via

� = (log|ω(x)|)′ .

Proposition 5.2 If the operator V of a type (5.2) satisfies the intertwining property
(2.2), then N = M + 1.
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Proof Immediately we have

∇ω V =
N∑
i=0

p′
i (x)

di

dxi
+

N∑
i=0

pi(x)
di+1

dxi+1 ,

+
M∑
j=0

q ′
j (x)

dj

dxj
s +

M∑
j=0

qj (x)
dj+1

dxj+1 s

− �
N∑
i=0

(−1)i pi(−x) d
i

dxi
s − �

M∑
j=0

(−1)j qj (−x) d
j

dxj
;

V
d

dx
=

N∑
i=0

pi(x)
di+1

dxi+1 −
M∑
j=0

qj (x)
dj+1

dxj+1 s.

Thus, owing to Proposition 5.2, operator equality (5.1) in algebra A is equivalent
to the system of the operator equations

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N∑
i=0

p′
i (x)

di

dxi
− �

M∑
j=0

(−1)j qj (−x) d
j

dxj
= 0,

M∑
j=0

q ′
j (x)

dj

dxj
+ 2

M∑
j=0

qj (x)
dj+1

dxj+1 − �
N∑
i=0

(−1)i pi(−x) d
i

dxi
= 0.

(5.3)

From the second equation of the system (4.1) we get that inequalities pN(x) �= 0
and qM(x) �= 0 result inM + 1 = N . The proof is complete.

Further, owing to proposition 4.3, we will write down the operator (5.2) in the
form

V =
N∑
i=0

fi(x)
di

dxi
+

2N+1∑
i=N+1

fi(x)
di−N−1

dxi−N−1 s, (5.4)

where, for further convenience,

f2N+1(x) ≡ 0.
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Proposition 5.3 Equation (5.1) for operator (5.4) is equivalent to the system of
2N + 2 differential-difference equations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f ′
i (x)− � (−1)i fi+N+1(−x) = 0, i = 0, 1, . . . , N,

f ′
i+N+1(x)+ 2fi+N(x)− � (−1)i fi(−x) = 0, i = 1, 2, . . . , N,

f ′
N+1(x)− � f0(−x) = 0.

(5.5)

at 2N + 2 functions: ω(x), f0(x), f1(x), . . . , f2N(x) with parameter N .

Proof As per formula (5.3), taking into account the designations (5.4) and (5.2),
we have:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N∑
i=0

f ′
i (x)

di

dxi
− �

N−1∑
i=0

(−1)i fi+N+1(−x) d
i

dxi
= 0,

N−1∑
i=0

f ′
i+N+1(x)

di

dxi
+ 2

N−1∑
i=0

fi+N+1(x)
di+1

dxi+1 − �
N∑
i=0

(−1)i fi(−x) d
i

dxi
= 0;

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N−1∑
i=0

(
f ′
i (x)− � (−1)i fi+N+1(−x)

) di

dxi
+ f ′

N(x)
dN

dxN
= 0,

N−1∑
i=0

f ′
i+N+1(x)

di

dxi
+ 2

N∑
i=1

fi+N(x)
di

dxi
− �

N∑
i=0

(−1)i fi(−x) d
i

dxi
= 0;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f ′
N(x) = 0,

f ′
i (x)− � (−1)i fi+N+1(−x) = 0, i = 0, 1, . . . , N − 1,

f ′
N+1(x)− � f0(−x) = 0,

f ′
i+N+1(x)+ 2 fi+N(x)− � (−1)i fi(−x) = 0, i = 1, 2, . . . , N − 1,

2 f2N(x)− � (−1)N fN(−x) = 0.
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Taking into account equalityf2N+1(x) = 0, we get

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f ′
i (x)− � (−1)i fi+N+1(−x) = 0, i = 0, 1, . . . , N,

f ′
i+N+1(x)+ 2 fi+N(x)− � (−1)i fi(−x) = 0, i = 1, 2, . . . , N,

f ′
N+1(x)− � f0(−x) = 0.

The proof is complete.

The following example shows that the system (5.5) has nonempty set of
solutions.

Example 5.1 In the caseω(x) = |x|k, k ∈ Z+, andN = k the solution of a system
(5.5) determines coefficients of the intertwining operator (5.4) by the following
equality

fi(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(k, k − i) (−k, k − i)
2k−i (k − i)! xk−i , i = 0, 1, . . . , k,

(−1)k
(k, 2k − i + 1) (−k + 1, 2k − i)

22k−i+1(2k − i)! x2k−i+1 , i = k + 1, . . . , 2k,

where

(k, 0) = 1, (k, n) = k(k + 1) . . . (k + n− 1), n ∈ N,

is a Pochhammer symbol. Example is complete.

Comment 5.1 The system (5.5) can be rewritten as matrix equation

df

dx
(x) = 	� f (x), (5.6)

where

f (x) =

⎛
⎜⎜⎜⎝

f0(x)
...

f2N(x)

0

⎞
⎟⎟⎟⎠ ,
df

dx
(x) =

⎛
⎜⎜⎜⎝

df0
dx
(x)
...

df2N
dx
(x)

0

⎞
⎟⎟⎟⎠ , 	� =

(
0 �EN+1 s

�EN+1 s −2IN+1

)

with matrices

EN+1 = ((−1)i+1δij ), IN+1 = (δi,j+1)

of the order N + 1. Here δij is the Kronecker symbol.
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Example 5.2 In the case N = 1 the system (5.6) has the appearance

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f ′
0(x)

f ′
1(x)

f ′
2(x)

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 � s 0

0 0 0 −� s

� s 0 0 0

0 −� s −2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f0(x)

f1(x)

f2(x)

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.7)

or
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f ′
0(x) = � f2(−x),

f ′
1(x) = 0,

f ′
2(x) = � f0(−x),

� f1(−x)+ 2f2(x) = 0.

Without restriction to generality it is possible to consider that f1(x) = 1. At the
same time f2(x) is an odd function. Therefore, the last system can be rewritten as
follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f ′
0(x) = −� f2(x),

f1(x) = 1,

f ′
2(x) = −� f0(x),

f2(x) = −1

2
�;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f0(x) = 1

2

� ′

�
,

f1(x) = 1,

f2(x) = −1

2
�,

(log|�|)′′ = �2.

Let us multiply both members of the equation (log|�|)′′ = �2 on (log|�|)′ and then
integrate:

∫
(log|�|)′ (log|�|)′′ dx =

∫
(log|�|)′ �2 dx,

∫
(log|�|)′ d(log|�|)′ =

∫
� d�,

[
(log|�|)′]2 = �2 + const.
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This equation is integrable in the elementary functions:

� = ± 1

x
, � = ± 1

sinh x
, � = ± 1

sin x
.

Thus, the system of (5.7), to within elementary transformations, has the solutions
determined by the function ω(x):

ω = x; ω = 1

x
− rational case;

ω = tan
x

2
; ω = cot

x

2
− trigonometrical case;

ω = tanh
x

2
; ω = coth

x

2
− hyperbolic case.

Example is complete.

6 Recurrence Equations

Example 5.2 shows that the system (5.5) can be solved analytically: it is constructed
and solved (if the later is possible) as an equation on �, and then on the basis of
iterations the coefficients of the operator V, determined by formula (5.4) are found:

� → f2N(x)→ · · · → fN+1(x)→ 1,

� → fN−1(x)→ · · · → f0(x)→ �.

Indeed, from equalities (5.5) for i = 1, 2, . . . , N, follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f2N+1(x) = 0,

fi+N(x) = −1

2
f ′
i+N+1(x)+

1

2
�

∫
� fi+N+1(x)dx,

fN(x) = 1,

fi−1(x) = −1

2
f ′
i (x)+

1

2
fi(x) (ln|�|)′ + 1

2

∫ (
�2 − (ln|�|)′′

)
fi(x)dx,

� f ′′
0 (x)− � ′ f ′

0(x)− �3 f0(x) = 0.
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7 Transmutation Operators for Dunkl–Darboux Operators
in Cherednik Pseudoalgebra

Let d−1

dx−1 be the pseudodifferential operator, inverse to d
dx

:

d

dx

d−1

dx−1 = d−1

dx−1

d

dx
= 1.

In [9] the problem of finding the transmutation operator(5.1) is generalized for
the case of Cherednik pseudoalgebra

A∗ =
〈
A,

d−1

dx−1

〉

with additional relations on the generators:

[
1,
d−1

dx−1

]
=

[
d

dx
,
d−1

dx−1

]
= 0,

[
s,
d−1

dx−1

]
= 2s

d−1

dx−1 ,

[
x,
d−1

dx−1

]
= d−2

dx−2 .

Equation (5.1) comes down to the solution of a special system of difference-
differential equations for operator V coefficients and the function ω. In particular, it
is sufficient that the function ω satisfies one of the following nonlinear differential
equations

⎡
⎢⎢⎣
(log|�|)′′ − �2 = 0,
ω′′′ ω′ ω − (ω′′)2 ω − ω′′ (ω′)2 + 4ω′′ ω = 0,
ω′′′ ω′ ω − (ω′′)2 ω − ω′′ (ω′)2 + 2ω′′ ω − 2ω′′ ω3 + 4(ω′)2 ω2 = 0,
ω′′′ ω′ ω − (ω′′)2 ω − ω′′ (ω′)2 + 2ω′′ ω + 2ω′′ ω3 − 4(ω′)2 ω2 = 0.

(7.1)

The set (7.1) actually classifies the operators of the type (2.4) as rational,
hyperbolic, trigonometrical and their combinations. For example,

ω = x; ω = tan
x

2
; ω = tanh

x

2
; ω = 2x

tanh x
− 2.
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Theorems on Restriction
of Fourier–Bessel and Multidimensional
Bessel Transforms to Spherical Surfaces

A. A. Larin

Abstract The paper deals with problems of Lq -summability with a weight over
spherical surface of Fourier–Bessel and n-dimensional Bessel transforms for func-
tions from some weighted spaces. The results have applications to PDE theory.
Results of this paper may be applied in transmutation theory, for example for
estimating solutions of singular B-elliptic PDEs.

Keywords Fourier transform · Bessel transform · Sobolev spaces · Restriction
to surfaces · Bessel functions · Generalized translation

MSC: 35A22

1 Introduction

In this paper we study problems of Lq -summability with a weight over spherical
surface of Fourier–Bessel and n-dimensional Bessel transforms [1] for functions
from some weighted spaces. Similar problems for Fourier transform were studied by
Stein and Tomas [2] and Strichartz in [3], cf. also the monograph of Stein [4], ch. 8,
9, in which this topic was further investigated. Note that results in this direction are
naturally applied to proofs of uniform Sobolev estimates and uniqueness theorems
for PDEs [5]. Also results of this paper may be applied in transmutation theory
[11, 12], for example for estimating solutions of singular B-elliptic PDE.

Let introduce necessary notions and notations.
Let E+

n+1 being a half-space of (n+ 1) dimensional Euclidean space En+1, con-
sisting of points (x, y) = (x1, . . . , xn, y) such that y > 0 (n ≥ 1). By Lp, ν

(
E+
n+1

)
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we denote a space of all measurable on E+
n+1 functions f (x, y) with finite norm

‖f ‖p, ν =

⎛
⎜⎜⎝

∫

E+
n+1

|f (x, y)|py2ν+1dydx

⎞
⎟⎟⎠

1/p

,

1 ≤ p < ∞, ν is real and greater than −1/2. Mixed Fourier–Bessel transform of
order ν on functions f from L1, ν

(
E+
n+1

)
is defined by

Fνf (x, y) =
∫

E+
n+1

e−i(x,ξ)jν(yτ )f (ξ, τ ) τ 2ν+1dτdξ,

with jν(t)-normalized Bessel function defined by jν(t) = 2ν(ν + 1)Jν(t)/tν ,
(x, ξ) = x1ξ1 + · · · + xnξn, (s) is the gamma-function. Parseval equation for
functions f from L2, ν

(
E+
n+1

)
is [1]

‖Fνf ‖2, ν = (2π)n2 2ν (ν + 1)‖f ‖2, ν .

Now define n dimensional Bessel transform. Denote by E′
n a subset of En, n ≥

2, consisting of points x = (x1, . . . , xn) with positive coordinates. Let ν1, . . . , νn
being a set of n real numbers greater than −1/2 each. By Lp, ν

(
E′
n

)
we denote a

space of all measurable on E′
n functions with finite norm

‖f ‖p, ν =
⎛
⎜⎝

∫

E′
n

|f (x)|p
n∏
k=1

x
2νk+1
k dx

⎞
⎟⎠

1/p

,

1 ≤ p <∞.

N-dimensional Bessel transform for f ∈ L1, ν
(
E′
n

)
is defined by

Fνf (x) =
∫

E
′
n

f (ξ)

n∏
k=1

jνk (xkξk) ξ
2νk+1
k dξ.

Corresponding Parseval equation for f ∈ L2, ν
(
E′
n

)
has a form

‖Fνf ‖2, ν =
n∏
k=1

2νk(νk + 1)‖f ‖2, ν.
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Let S+
n,R being a part of sphere with radius R centered at 0 in En+1 for points

obeying y > 0. By S′
n−1,R let denote a part of sphere with radius R centered at

origin in En and belonging to E′
n. By Lp, ν

(
S+
n,1

)
we denote a space of functions

defined and measurable on unit half-sphere S+
n,1 with finite norm

‖f ‖
Lp,ν

(
S+
n,1

) =

⎛
⎜⎜⎝

∫

S+
n,1

|f (x, y)|p y2ν+1dS

⎞
⎟⎟⎠

1/p

, 1 ≤ p <∞.

(By dS here and further we denote a surface measure on a sphere of proper radius).

In the same way we define spaces Lp, ν
(
S′
n−1,1

)
, 1 ≤ p < ∞. In case p = ∞

all spaces Lp, ν иLp, ν are defined analogously. We will denote them by L∞.

2 Mixed Fourier–Bessel Transform

First we study properties of the transform Fν . The main results of this section are
the next statements.

Theorem 1 Let 1 ≤ p ≤ 2(n + 2ν + 3)/(n + 2ν + 5) and f ∈ Lp, ν
(
E+
n+1

)
.

Then Fνf ∈ L2, ν

(
S+
n,1

)
and with constant C not depending on function f the next

inequality is valid:

‖Fνf ‖
L2, ν

(
S+
n,1

) ≤ C ‖f ‖p, ν . (1)

Corollary Let f ∈ Lp, ν
(
E+
n+1

)
and 1 ≤ p ≤ 2(n+ 2ν+ 3)/(n+ 2ν+ 5), and let

p′ = p/(p − 1), q = p′(n+ 2ν + 1)/(n+ 2ν + 3). Then Fνf ∈ Lq, ν
(
S+
n, 1

)
and

with constant C not depending on function f the next inequality is valid:

‖Fνf ‖
Lq, ν

(
S+
n,1

) ≤ C ‖f ‖p, ν .

The corollary is a consequence of M. Riesz interpolation theorem [6], an estimate
(1) and obvious inequality

‖Fνf ‖
L∞

(
S+
n,1

) ≤ ‖f ‖1, ν ,

which is valid for any f ∈ L1, ν
(
E+
n+1

)
.
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In this section for points in En+1 we use symbols x̃ = (x, y), ξ̃ = (ξ, τ ), ũ =
(u, v).

To prove theorem 1 we need some auxiliary facts.

Lemma 1 For all n ≥ 1 it is valid that

∫

S+
n,R

e−i(x,ξ)jν(yτ ) τ 2ν+1dS = c(n, ν) Rn/2+ν+1Jn/2+ν (R|̃x|) /|̃x|n/2+ν, (2)

где c(n, ν) = 2ν(2π)n/2 (ν + 1), |̃x|2 = |x|2 + y2 = x2
1 + · · · + x2

n + y2.

Proof First consider the case n ≥ 2. Using parametric representation of the half-
sphere S+

n,R

τ = R cos 1, ξ1 = R sin 1 cos 2, ξ2 = R sin 1 sin 2 cos 3, . . . , ξn−1 =

= R sin 1 sin 2 . . . sin n−1 cos n, ξn = R sin 1 sin 2 . . . sin n−1 sin n,

0 ≤  1 < π/2, 0 ≤  i ≤ π, i = 2, . . . , n− 1, 0 ≤  n ≤ 2π,

evaluate an integral from (2), which we denote as I (̃x), in the form

I (̃x) =
π
2∫

0

π∫

0

. . .

π∫

0

2π∫

0

exp(−i(x1R sin 1 cos 2 + · · · + xnR sin 1 ×

× sin 2 . . . sin n))jν (yR cos 1)R
2ν+1 (cos 1)

2ν+1Rn (sin 1)
n−1 ×

× (sin 2)
n−2 . . . sin n−1d 1 . . . d n = R2ν+2

π
2∫

0

jν (yR cos 1) (cos 1)
2ν+1 ×

×(
π∫

0

. . .

π∫

0

2π∫

0

exp(−i(x1R sin 1 cos 2 + · · · + xnR sin 1 sin 2 . . . sin n))

×(R sin 1)
n−1(sin 2)

n−2(sin 3)
n−3 . . . sin n−1d 2 . . . d n) d 1. (3)

Inner integral in (3) is over sphere in En centered at 0 with radius R sin 1 от
функции e−i(x,ξ). Using a known formula (cf. [6], p. 176)

∫

|ξ |=ρ
e−i(x,ξ)dS = (2π)n/2ρn/2|x|1−n/2Jn/2−1 (ρ|x|) , x ∈ En,



Theorems on Restriction of Fourier–Bessel and Multidimensional Bessel. . . 163

which is valid for n ≥ 2 and connection of functions jν(t) и Jν(t) we derive that

I (̃x) = 2ν(ν + 1)(2π)n/2|x|1−n/2y−νRn/2+ν+2×

×
π/2∫

0

Jν (yR cos 1) Jn/2−1 (|x|R sin 1) (cos 1)
ν+1 (sin 1)

n/2 d 1.

Now use the Sonine integral [7]

π/2∫

0

Jμ(aq cosϕ) Jλ(az sin ϕ)(cosϕ)μ+1(sin ϕ)λ+1dϕ =

= qμzλa−1Jμ+λ+1

(
a

√
q2 + z2

)
/

(√
q2 + z2

)μ+λ+1

, (4)

Reμ > −1, Re λ > −1,

taking μ = ν, λ = n/2 − 1, a = R, q = y, z = |x| and derive the lemma’s
result for n ≥ 2. In case n = 1 the evaluation of curvilinear integral (2) over half-
circumference ξ2 + τ 2 = R2, τ ≥ 0 using equality cos t = √

πt/2 J−1/2(t) leads
to

∫

ξ2+τ 2=R2

τ≥0

e−ixξ jν (yτ ) τ 2ν+1dS =

= 2ν
√

2π (ν + 1) R3/2+νJ1/2+ν
(
R

√
x2 + y2

)
/

(√
x2 + y2

)1/2+ν
,

and it coincides with (2) for n = 1.

The lemma is proved.

Lemma 2 Let z ∈ C, Re z > 0 and the function Fz(̃x) is defined by the formula

Fz(̃x) = c(n, ν) Jn/2+ν+z(|̃x|)/|̃x|n/2+ν+z.

Then

Fν [Fz(·)] (̃ξ ) = (c(n, ν))2 21−z

(z)

(
1 − |̃ξ |2

)z−1

+ , (5)
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with

(
1 − |̃ξ |2

)
+ =

{
1 − |̃ξ |2, ξ̃ ∈ E+

n+1, |̃ξ | < 1,
0, ξ̃ ∈ E+

n+1, |̃ξ | > 1.

Proof Evaluating an integral which define a function Fν [Fz(·)] let first integrate
over the half-sphere S+

n,r with radius r centered at origin, and then at r in limits
(0,∞). Taking into account (2) let derive

Fν [Fz(·)]
(̃
ξ
) =

= c(n, ν)
∞∫

0

Jn/2+ν+z(r) r−n/2−ν−z

⎧⎪⎨
⎪⎩

∫

S+
n, r

e−i(x,ξ)jν(yτ ) y2ν+1dS

⎫⎪⎬
⎪⎭ dr =

= (c(n, ν))2 |̃ξ |−n/2−ν
∞∫

0

Jn/2+ν+z(r)Jn/2+ν(r |̃ξ |) r1−zdr.

The last integral is taking by a formula

∞∫

0

Jμ(ax)Jλ(yx) x
λ−μ+1dx =

{
2λ−μ+1yλ

(μ−λ)aμ (a
2 − y2)μ−λ−1, 0 < y < a,

0, a < y <∞,

a > 0, −1 < Re λ < Reμ

from [8], p. 49, in which we take λ = n/2 + ν, μ = n/2 + ν + z, a = 1, y = |̃ξ |.
From this we derive (5).

The Lemma 2 is proved.
Now the proof of Theorem 1 is based on the Stein interpolation theorem [6] and

to exploit it we need an estimate for modulus of the function Jμ(t)/tμ with complex
μ, Reμ ≥ −1/2, which is uniform in t ∈ (0,∞).

The next fact is known.

Proposition (Watson [7], p. 217) Let x и y being reals and x > −1/2. Then an
inequality is valid

∣∣Jx+iy(ρ)∣∣ ≤ Ax e2π |y|/√ρ, ρ ≥ 1, (6)

in which a constant Ax is not depending on y and ρ.

Note that estimate (6) may be derived from estimates for Hankel functions
H
(1)
ν (z),H

(2)
ν (z) if use integral representations for them [9], p. 181, and the formula
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Jν(z) = (H (1)ν (z)+H(2)ν (z))/2. Also note that if x is varying on some segment than
values Ax are uniformly bounded on it. Using (6), Poisson integral representation
and recurrences for functions Jν(t) it is easy to derive the next proposition.

Lemma 3 Let H being any real number greater than −1/2. Then a constant exists
C = C(H) > 0 such that for any complex number x + iy from the stripe −1/2 ≤
x ≤ H and any real t > 0 the next inequality is valid

∣∣∣Jx+iy(t)/tx+iy
∣∣∣ ≤ C

√
1 + y2 e2π |y|. (7)

Proof of Theorem 1 Note that this theorem will be proved if we establish that
inequality (1) is true for functions dense in Lp, ν

(
E+
n+1

)
. Let f (ξ, τ ) being a simple

finite function. Then Fνf (x, y) is continuous function in E+
n+1

⋃{y = 0} and

surface integral which define this function’s norm L2, ν

(
S+
n,1

)
exists. Represent a

value ‖Fνf ‖2
L2, ν

(
S+
n,1

) in the next form

‖Fνf ‖2
L2, ν

(
S+
n,1

) =
∫

S+
n,1

Fνf (x, y)Fνf (x, y) y
2ν+1dS =

∫

S+
n,1

∫

E+
n+1

∫

E+
n+1

e−i(x,ξ) ×

×ei(x,u)jν(yτ )jν(yv)f (ξ, τ )f (u, v) τ 2ν+1v2ν+1y2ν+1dξ̃dũdS =
∫

E+
n+1

∫

E+
n+1⎧⎪⎪⎨

⎪⎪⎩
∫

S+
n,1

e−i(ξ−u,x)jν(yτ )jν(yv)y2ν+1dS

⎫⎪⎪⎬
⎪⎪⎭
f (ξ, τ )f (u, v) τ 2ν+1v2ν+1dξ̃dũ. (8)

(we use standard notation for complex conjugation). In view that

jν(λy)jν(λx) = T yx jν(λx),

где T yx is a generalized translation operator defined by the formula

T
y
x f (x) = (ν + 1)√

π (ν + 1/2)

π∫

0

f (

√
x2 + y2 − 2xy cos )(sin )2νd ,

and takin into account (2) we derive that inner integral in (8) reduced to
T vτ K(ξ − u, τ), with

K(ξ − u, τ) = c(n, ν) Jn/2+ν(
√

|ξ − u|2 + τ 2)/(

√
|ξ − u|2 + τ 2)n/2+ν .
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So

‖Fνf ‖2
L2, ν

(
S+
n,1

) =
∫

E+
n+1

(K ∗ f )f (u, v) v2ν+1dũ, (9)

where K ∗ f is a generalized convolution of the kernel K(ξ, τ ) with a function
f (ξ, τ ), defined by [10]

(K ∗ f )(u, v) =
∫

E+
n+1

T vτ K(ξ − u, τ)f (ξ, τ ) τ 2ν+1dξ̃ .

Now apply to the integral in (9) the Hölder inequality

‖Fνf ‖2
L2, ν

(
S+
n,1

) ≤ ‖K ∗ f ‖p′, ν ‖f ‖p, ν ,

1/p + 1/p′ = 1,

and to prove inequality (1) it is enough to prove that for any fixed p, 1 ≤ p ≤
2(n+ 2ν+ 3)/(n+ 2ν+ 5) with some constant C > 0 not depending on a function
f ∈ Lp, ν

(
E+
n+1

)
the next inequality is valid

‖K ∗ f ‖p′, ν ≤ C ‖f ‖p, ν . (10)

Let

p∗ = 2(n+2ν+3)/(n+2ν+5), q∗ = p∗/(p∗ −1) = 2(n+2ν+3)/(n+2ν+1).

From M. Riesz interpolation theorem to prove inequality (10) we need to justify
estimates

‖K ∗ f ‖∞ ≤ C1 ‖f ‖1, ν , (11)

f ∈ L1, ν
(
E+
n+1

)
,

‖K ∗ f ‖q∗, ν ≤ C2 ‖f ‖p∗, ν , (12)

f ∈ Lp∗, ν
(
E+
n+1

)
,

in which constants C1, C2 are not depending on functions from corresponding
spaces.
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Inequality (11) is obvious from

∣∣T vτ K(ξ − u, τ)∣∣ ≤ T vτ |K(ξ − u, τ)| ≤ sup
τ≥0

|K(ξ − u, τ)| ≤ sup
τ≥0, ξ∈En

|K(ξ, τ )|

and boundedness of the function Jn
2 +ν(t)/t

n
2 +ν .

Now let us prove (12). For that we will apply complex interpolation. Let

τ (z) = (n+ 2ν + 3)z/2 − (n+ 2ν + 1)/2, z = x + iy ∈ C.

Define a kernelKz(̃ξ) by

Kz(̃ξ ) = c(n, ν)Jn/2+ν+τ (z)(|̃ξ |)/|̃ξ |n/2+ν+τ (z), 0 ≤ Re z ≤ 1,

and introduce analytic family of convolution operators

Tzf = Kz ∗ f, 0 ≤ Re z ≤ 1.

From inequality (7) it follows that for any simple functions f and g from
L1, ν

(
E+
n+1

)
the function

F(z) =
∫

E+
n+1

(Tzf ) · g · y2ν+1dx̃

has permissable growth. Let use the theorem of Stein [6] with q0 = ∞, p0 = 1,
q1 = 2, p1 = 2 and establish that operator norms Tz at z = iy and z = 1 + iy,
−∞ < y <∞ satisfy to the needed growth conditions. Really if z = iy then

Kiy (̃ξ) = c(n, ν)J−1/2+iσ (y)(|̃ξ |)/|̃ξ |−1/2+iσ (y),

with σ(y) = (n+ 2ν + 3)y/2, and from the inequality (7) it follows

∥∥Tiyf ∥∥∞ = ∥∥Kiy ∗ f ∥∥∞ ≤ C
√

1 + (σ (y))2 e2π |σ(y)| ‖f ‖1, ν .

If z = 1 + iy, then

K1+iy (̃ξ ) = c(n, ν) Jn/2+ν+1+iσ (y)(|̃ξ |)/|̃ξ |n/2+ν+1+iσ (y) ∈ L2, ν
(
E+
n+1

)
,

and so

∥∥T1+iyf
∥∥

2, ν = ∥∥K1+iy ∗ f ∥∥2, ν =

= (2π)−n/22−ν ((ν + 1))−1
∥∥Fν (K1+iy

) · Fνf
∥∥

2,ν ≤ sup
E+
n+1

∣∣Fν (K1+iy
)∣∣·‖f ‖2, ν .
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From Lemma 2 and inequality |(1 + iy)|−1 ≤ Ceπ |y|/2, −∞ < y <∞, in which
the constant C > 0 does not depend on y it follows that

∥∥T1+iyf
∥∥

2, ν ≤ Ceπ |σ(y)|/2 ‖f ‖2, ν .

So operators norms in corresponding pairs of spaces have not more than exponential
growth. Due to it putting in the above mentioned theorem z = tν = (n + 2ν +
1)/(n+ 2ν + 3) and taking into account that Ktν (̃ξ ) = K(̃ξ) we derive an estimate
(12), because

1

ptν
= 1 − tν

2
= 1 − n+ 2ν + 1

2(n+ 2ν + 3)
= n+ 2ν + 5

2(n+ 2ν + 3)
= 1

p∗ ,

and also inequality (10) is valid. As functions f of considered form are dense in
Lp, ν

(
E+
n+1

)
, the theorem is proved.

Remark An inequality (10) may be also written in the form

∥∥∥∥∥∥∥∥

∫

S+
n,1

Fνf (ξ, τ )e
i(x,ξ)jν(yτ ) τ

2ν+1dS

∥∥∥∥∥∥∥∥
p

′
, ν

≤ C ‖f ‖p, ν ,

with p ∈ [1; 2(n+ 2ν + 3)/(n+ 2ν + 5)].

3 N -Dimensional Bessel Transform

Now consider in E′
n theN-dimensional Bessel transform, n ≥ 2. Let ν(n) =

n∑
k=1
νk .

The next result is valid

Theorem 2 Let 1 ≤ p ≤ 2(n+ ν(n)+ 1/2)/(n+ ν(n)+ 3/2) and f ∈ Lp, ν
(
E′
n

)
.

Then Fνf ∈ L2, ν

(
S′
n−1,1

)
and with constant C not depending on function f , the

next inequality is valid:

‖Fνf ‖
L2, ν

(
S ′
n−1,1

) ≤ C ‖f ‖p, ν . (13)

Corollary Let f ∈ Lp, ν
(
E′
n

)
and 1 ≤ p ≤ 2(n+ ν(n)+ 1/2)/(n+ ν(n)+ 3/2),

p′ = p/(p − 1), q = p′(n + ν(n) − 1/2)/(n + ν(n) + 1/2). Then Fνf ∈
Lq, ν

(
S′
n−1,1

)
and with constant C not depending on a function f , the next
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inequality is valid:

‖Fνf ‖
Lq, ν

(
S ′
n−1,1

) ≤ C ‖f ‖p, ν .

Proof of the Theorem 2 is the same as that of the Theorem 1. Instead of Lemma 1
from section 2 in this case we use

Lemma 4 For any n ≥ 2 an equality is valid

∫

S ′
n−1,R

n∏
k=1

jνk (xkξk)ξ
2νk+1
k dS =

=
n∏
k=1

c(νk)R
n+ν(n)Jn+ν(n)−1 (R|x|) /|x|n+ν(n)−1, (14)

with c(νk) = 2νk(νk + 1), k = 1, . . . , n, |x|2 = x2
1 + · · · + x2

n.

Proof We prove equality (14) by induction. An equality (14) is true for n = 2, for
it we evaluate an integral over one-fourth of the circumference. Suppose that the
formula (14) is true for n = m. Let derive that then it is also true for n = m + 1.
Denote the integral in this formula by I (x). We will evaluate it by integrating first
over a part of the parallel ξm+1 = R cos , that is over a part of the sphere E′

m

centered at origin with radius R sin , and then integrate by  from 0 to π/2.On
every such a parallel a factor jνm+1(xm+1ξm+1)ξ

2νm+1+1
m+1 is constant and using (14)

with n = m we derive

I (x) =
∫

S ′
m,R

m∏
k=1

jνk (xkξk) ξ
2νk+1
k · jνm+1(xm+1ξm+1) ξ

2νm+1+1
m+1 dS =

=
m+1∏
k=1

c(νk)R
m+ν(m+1)+2x

−νm+1
m+1 |x ′|−m−ν(m)+1

π/2∫

0

Jνm+1(xm+1R cos )×

×Jm+ν(m)−1(|x ′|R sin )(cos )νm+1+1(sin )m+ν(m)d ,

with |x ′|2 = x2
1 + · · · + x2

m. Evaluate the last integral using (4), it leads to

I (x) =
m+1∏
k=1

c(νk)R
m+ν(m+1)+1Jm+ν(m+1) (R|x|) /|x|m+ν(m+1),

|x|2 = |x ′|2 + x2
m+1,

which coincides with (14) taking n = m+ 1.
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The lemma is proved.
Further, the formula (5) is also valid for the transform Fν , acting on a function

Fz(x) =
n∏
k=1

c(νk)Jn+ν(n)−1+z (|x|) /|x|n+ν(n)−1+z.

The kernel of the convolution operator we interpolate, which is needed to prove an
estimate of the type (12), has a form Kz(x) = Fτ(z)(x), with τ (z) = (n + ν(n) +
1/2)z − n − ν(n) + 1/2, 0 ≤ Re z ≤ 1. Let note that the generalized convolution
in the considered case is defined by iterative application of generalized translations
to the kernel. After that applying Stein’s interpolation theorem we derive inequality
(12), from which the Theorem 2 essentially follows.

To conclude we want to point out that results of this paper may be applied in
transmutation theory [11, 12], for example for estimating solutions of singular B-
elliptic PDE.
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of an Intertwining Operator
and Classification of Transmutations
on Its Basis

Sergei M. Sitnik and Viktor I. Makovetsky

Abstract The authors study second-order ordinary differential operators with
functional coefficients for all derivatives and the Volterra integral operator with a
definite kernel. Results of the paper establish a hyperbolic equation and additional
conditions that allow one to construct a kernel according to the ODE. The statements
of the paper show the possibility of splitting the ODE into classes according to the
type of the kernel of the Volterra operator. Examples are considered related to ODE
with Pöschl-Teller type potentials, Bessel functions with complex arguments and
Euler’s relation for hypergeometric functions.

1 Introduction

The transmutation operator (the intertwining operator) [1–3] is a Volterra integral
operator associated with other mathematical structures, which imposes a restriction
on its construction. The article proves a theorem on conditions that interlaced
ordinary differential operators of second order with variable coefficients for all
derivatives impose on the form of the kernel of the Volterra operator. The inverse
statement is also presented that for a given kernel, interlaced structures cannot be
arbitrary, but are divided into classes of feasible functions, largely determined by
the structure of the core, and the ODE coefficients of the highest derivative.
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2 Problem Definition

Historically, the first intertwining operators, rebounding from generalized transla-
tion operators [4, 5], appeared in the form of a Volterra type II integral operator [6,
ch I, лемма 1.1.1], [7, ch. I, (1.4)]. However, according to the traditional approach
to integral equations, it is more natural to take the Volterra type I integral operator
in a one-dimensional space (T : L2(I) → L2(I)) defined by the formula

f1(x) = Tf0(x) =
x∫

0

K(x, t)f0(t)dt (1)

which reduced initial class of functions f0 ∈ E0 into reduced class f1 ∈ E1, при
I = [0, b],K ∈ L2(I × I). Transition function K(x, t) is called the kernel of the
transmutation operator.

If in (1) kernelK(x, x) = γ �= 0, then by differentiation (1) it traditionally turns
into

f ′
1(x) = γf0(x)+

x∫

0

dK(x, t)

dx
f0(t)dt

Due to this fact, only transformations of the first kind will be investigated in the
future.

Comment The features of the kernel and the coefficients of the subsequent differen-
tial equations involved in the construction of K(x, t), require a more correct record
of the proposed definition. Exactly

Tf (x) = f1(x) =
x−δ∫

ε

K(x, t)f0(t)dt

with the subsequent passage to the limit ε → 0 and δ → 0. These clarifications will
be clearly spelled out when installing the conditions imposed on the kernal of the
Volterra operator.

The Transmutation Operator (Intertwining operator) (in the work [1]—the
transformation operator for entities A and B) is a triplet of {A,B, T } objects
that satisfy the condition

T A = BT (2)
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where A, B are ordinary differential operators, traditionally defined by differential
expressions and initial conditions

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt

(
a0(t)

df0(t)

dt

)
+ d

dt
(b0(t)f0(t))+ c0(t)f0(t) = 0

df0(t)

dt

∣∣∣∣
t=0

− h0 ∗ f0(t)|t=0 = 0 или

f0(0) = 0; df0(t)

dt

∣∣∣∣
t=0

= H0;

(3)

B =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1(x)
d2f1(x)

dx2 + b1(x)
df1(x)

dx
+ c1(x)f1(x) = 0

f1(0) = 0; df1(x)

dx

∣∣∣∣
x=0

= H1;
(4)

and T is an integral operator, represented in (1). Note that the Sturm-Liouville
operator (3) is written in the generally accepted divergent form (see Sturm-Liouville
theory, Wikipedia) for favorable integration in parts, which is necessary in proving
the following theorem. The transition from the divergent form to the usual one is
not difficult and is, for example, registered in [8, Ch. 9]

The initial conditions for determining the entity (4) are associated with the
tendency of the Volterra operator of the first kind to zero for x → 0. Very often,
when specifying the initial ratio (3), one of the standard constructions is used [9, ch.
8]

f0(0) = 1; f ′
0(0) = 0; or

f0(0) = 0; f ′
0(0) = 1;

which contributes to the selection of the even or odd part of the solution f0(t). Then,
after applying differentiation to transform (1) into a Volterra mapping of the second
kind, the introduced transmutation operator corresponds to the transformation
operators Kh and K∞ used in Sturm-Liouville spectral theory [10, 11].

The proposed definition of the intertwining operator admits a generalization by
modifying the operators A and B (for example, increasing the order of differential
equations), as well as changing the form of the integral transform (1), but this
extension is not intended.

In papers [1, 10, 11]) for {a0(t) = a1(x) = 1; b0(t) = b1(x) = 0, c0(t) =
q0(t), −c1(x) = q1(x)}, [12]—for Bessel operators, [13]—in general, a relation-
ship is established between the coefficients of differential operators and the type of
the K(x, t) transformation operator.
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Theorem 1 A necessary and sufficient conditions that the Volterra integral opera-
tor (1) be the transmutation operator for ordinary differential (3, 4) operators is:

(a) The kernel of the transformation operator (1) must be a solution to the
hyperbolic equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L [K(x, t)] =
[
∂

∂t

(
a0(t)

∂K(x, t)

∂t

)
− b0(t)

∂K(x, t)

∂t
+ c0(t)K(x, t)

]
−

−
[
a1(x)

∂2K(x, t)

∂x2 + b1(x)
∂K(x, t)

∂x
+ c1(x)K(x, t)

]
= 0

(5a)

(b) On the characteristic t = x, the kernel K (x, t) and its first derivative with respect
to t exist; at t → x − δ и δ → 0

b1) a0(x) = a1(x) = a(x)

b2) 2a(x)
dK(x, x − δ)

dx
+ (b1(x)− b0(x))K(x, x − δ) = 0 (5b)

(c) With initial condition t = ε → 0

{
a(ε)

[
dK(x, t)

dt

]
t=ε

− b0(ε)K(x, ε)− h0a(ε)K(x, ε)

}
f0(ε)→ 0 (5c)

(d) Condition at the edge. Under δ < ε, δ → 0, ε → 0

K(ε, ε − δ) ∗ f0(ε)→ 0; (5d)

Note that in (b) and (c) it is not necessary to know the explicit form of the function
f0(x). What is important is the tempo of striving f0(ε) to zero with ε → 0 to
compensate for the singularity of the coefficients a, b, c at the origin point.

The proof of the theorem is based on the definition of the transmutation operator
(2), which with respect to ordinary differential operators looks like

T (Af0)(x) = B(Tf0)(x); ∀x;

The integral in the left component of the equality is taken in parts, and in the right
component differentiation takes place according to its variable upper limit.

Proof of Theorem 1 Let us prove the assertions of the theorem, generalizing the
method [1, 9–12]. For convenience and brevity of the record, we introduce the
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notation

K0(x) = K(x, x − δ); f (x) = f0(x);

∂t = d

dt
; ∂tt = d2

dt2
; ∂x = d

dx
; ∂xx = d2

dx2 ;

The first operation will be T A.

TA(f (x)) =
∫ x−δ

ε

K(x, t){∂x(a0(x)∂xf (x))+ ∂x(b0(x)f (x))+ c0(x)f (x)}dt

The integral with the first term is taken two times in parts. It is precisely at this
moment that the record of the operator (3) in a divergent form is highly desirable.
Similarly, in parts, the second addend will be transformed only once. This leads to
the following result

TA(f (x)) = a0(x)K0(x)∂xf (x)+
+ [
K0(x)b0(x)− a0(x) {∂tK(x, t)}|t=x−δ

]
f (x)− a0(ε)K(x, ε) {∂tf (t)}|t=ε+

+ a0(ε) {∂tK(x, t)}|t=ε f (ε)− b0(ε)K(x, ε)f (ε)+

+
∫ x−δ

ε

{∂t [a0(t)∂tK(x, t)] − b0(t)∂tK(x.t)+ c0(t)K(x, t)} f (t)dt

Further action is the study of the relationship BT

B(Tf (x)) = {
a1(x)∂x,x(◦)+ b1(x)∂x(◦)+ c1(x)(◦)

}
⎧⎨
⎩
x−δ∫

ε

K(x, t)f (t)dt

⎫⎬
⎭

The calculation of the derivative of the integral over a variable upper limit generates
the equality

B(Tf (x)) = {a1(x)∂xK0(x)+ a1(x) [∂xK(x, t)'|t=x−δ +
b1(x)K0(x)}f (x)+ a1(x)K0(x)∂xf (x)+

+
∫ x−δ

ε

K(x, t){a1(x)∂xxK(x, t)+ b1(x)∂xK(x, t)+ c1(x)K(x, t)}f (x)

Comparison of integrands implies (5a). Due to the arbitrariness of f (x), the
coefficients in front of the function and its first derivative should be separately equal
to zero. Comparing the elements before the first derivative gives (5b.1). If we take
into account this fact in the coefficient adjacent to f (x), as well as for δ → 0, use
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equality

dK(x, x − δ)
dx

= ∂K(x, t)

∂x

∣∣∣∣
t=x

+ ∂K(x, t)

∂t

∣∣∣∣
t=x

then the grouping of elements before f (x) establishes a correspondence (5b.2). It
remains to group the initial conditions string when t = ε → 0. All its elements are
entirely in the TA operator. There will be an expression

−a2(ε)K(x, ε) {∂tf (t)}|t=ε + a(ε) {∂tK(x, t)}|t=ε f (ε)− b2(ε)K(x, ε)f (ε)

The final result is fixed in the condition (5c). To formulate the condition at the vertex
we take the derivative of (1)

∂xTf (x) = K(x, x − δ)f (x − δ)+
x−δ∫

ε

∂xK(x, t)f (t)dt

At the point x = δ + ε

∂ Tf (x)|x=δ+ε = K(δ + ε, ε) ∗ f (ε)

In the end we take into account the initial conditions

∂ f1(x)|x=ε − h1 f1(x)|x=ε = 0; ∂ f0(x)|x=ε − h0 f0(x)|x=ε = 0;

what gives (5d).

The presented conditions refer to an arbitrary form of the kernel, but even they
impose substantial restrictions on it and on the articulated operators A and B. First,
the coefficients of the highest derivative in (3) and (4) must coincide with the
accuracy of the free variable, that is, a0(t) = a1(x) with t = x. The type of ordinary
differential equation is largely determined by these coefficients, so often transmu-
tation occurs between A and B with similar properties. Secondly, the absence of
singularity of the kernel K(x, t) and its derivative with respect to the argument
t leaves outside the scope of this consideration intertwining transformations with
special points, for example, the integral Mohler-Fock representation for Legendre
functions and their generalizations [14]

P− 1
2 +ıν(cosh x) = 2

π

x∫

0

cos(xt)√
2 (cosh x − cosh t)

dt
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It is possible to overcome this difficulties with the help of integrals in the sense of
the Hadamard finite part [15], but it requires a more detailed consideration of the
presented structures.

An Example of the Theorem 1 Let us show that the Volterra operator performing
the transformation for Gegenbauer polynomials

x∫

0

(
x2 − t2

)β−1
C2ν

2n(t)dt = 2
√
π(β)


(
β + 1

2

)x2β−1 Cβn

(
2x2 − 1

)
; Re(β) > 2;

(6)

is a transmutation operator. The presented identity follows from [16, Vol II, 16.3,
(19)] after replacing the variable and modifying the indices. It is easy to check that
the function

f0(t) = C2β
2n (t)

turns out to be a solution of a differential operator (3) with coefficients

a0(t) = (1 − t2); b0(t) = n(1 − 4β)t; c0(t) = 4n(n+ 2β)+ (4β − 1);

For even lower symbols (2n), the derivative of the Gegenbauer polynomials vanishes
when t = 0, so the middle row is used as the initial condition in the operator (3) for
h0 = 0. Right part

f1(x) = 2
√
π(β)


(
β + 1

2

)x2β−1 Cβn

(
2x2 − 1

)
;

satisfies the operator (4) with coefficients

a1(x) = (1 − x2); b1(x) = 2(1 − β)− 3x2

x
; c1(x) = 4(n+ β)2 − 1;

If we substitute the kernel

K(x, t) =
(
x2 − t2

)β−1
(7)

into a hyperbolic equation (5a) with the above groups of coefficients a, b, c, then it
will turn it into a true equality. The core exponent ensures that the condition on the
characteristic is met.
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The left part of the initial condition (5c) is expanded in a series with the first member

h0
4n

√
π(m+ 2β)


(

1
2 − n

)
(2n+ 1)(2β)

x2 +O(ε)

However, it was previously noted that h0 = 0, and, therefore, is realized (5c). The
condition at the vertex (5d) is an identity due to the type of kernel. As a result of
the fulfillment of all conditions, the Volterra operator of the first kind becomes a
transformation operator for ordinary differential operators (3) and (4).

3 Formulation and Specification of Reverse Statement

It can be seen from Theorem 1 that the kernal construction of the transmutation
operator can be determined on the basis of the coefficients of intertwined ordinary
differential operators (3–4). In this article, we make following inverse statement the
cornerstone—‘The kernals of the K(x, t) transmutation operator split the intert-
wined operators A and B into classes, causing the appearance of their coefficients.’

This position is related to the conditions on the characteristic of the hyperbolic
operator (5a). The work [3] noted that “the content of the Copson lemma is that
the initial data on the characteristics cannot be specified arbitrarily, they must be
connected by Bushman-Erdeyi operators of the first kind. The main point of the
proposed current article is the opposite and extended statement”.

Statement 1 Conditions on the characteristic of a hyperbolic equation (5a) together
with (5b) are necessary to classify the linked operators A and B by classes of kernels
K(x, t).

Example for Statement 1 Let us find the classes of intertwined operators A and B
for an already familiar kernel (7), but with a different coefficient in the main part.
Exactly,

K(x, t) =
(
x2 − t2

)β−1 ; a0(t) = 1; a1(x) = 1;

Substituting the specified kernel into the hyperbolic equation (5a) leads to the
relation

L[K(x, t)] = −
(
x2 − t2

)β−2

(
−4(β − 1)2 + 2(β − 1)tb0(t)− 2(β − 1)xb1(x)+ (x2 − t2)(c0(t)− c1(x))

)

in this embodiment, the result can be obtained directly, without using the ratio on
the characteristic. It is easy to see that the right-hand side vanishes at constant and
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equal values of the free members of the ‘c’ and coefficients of the ‘b’, inversely
proportional to their arguments

b0(t) = b0

t
; b1(x) = b1

x
;

In this case, the next identity must be satisfied

b1 = b0 + 2 − 2β

with arbitrary b0. A change in b0 leads to an extensive one-parameter class of
possible representations of the operators A and B, but the most attractive results
are obtained for b0 = −(2 nu+ 1). Then

a0(t) = 1; a1(x) = 1;

b0(t) = −2ν + 1

t
; b1(x) = −2(β + ν)− 1

x
; c0(t) = ω2; c1(x) = ω2;

The solutions of ordinary differential operators (3) and (4) with h0 = 0 are Bessel
functions, which makes it possible to write the transmutation operator [17, Vol II,
No 2.12.4 (6)]

∫ x

0

(
x2 − t2

)β−1
tν+1Jν(ωt)dt = 2β−1xβ+ν

ωβ
(β)Jβ+ν(ωx); (8)

Thus, we arrive at the following conclusion: intertwined operators with a known
form of the kernel K(x, t) are not constructed in an arbitrary way and are largely
determined by the type of this kernel. Most often, the main factor in partitioning
differential operators (3) and (4) into classes that are consistent with the kernel
K(x, t), is the main part of these operators a(x) = a0(x) = a1(x). Recall the
generality of the principal parts, up to a free variable, written in (5a).

With respect to the ad hoc kernels K(x, t), statement 1 is strictly impossible
to prove strictly, but it is well formalized for specific categories of K(x, t). We
introduce auxiliary expressions

ϒ1(x) = 4a0(x)φ
′(x)	′(x)+	(x) (φ′(x)a′

0(x)+ 2a0(x)φ
′′(x)

)
ϒ2(x) = −	(x)φ′(x) (b1(x)− b0(x))

Lemma 1 For operator class

K(x, t) = K
(
	(x)

√
φ(x)− φ(t)

)
(9)
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with kernel satisfying the requirements ((5a)–(5d)), the conditions on the character-
istic impose the following restrictions on the coefficients of the intertwined operators
A and B

�1(x) = K ′(0) (2ϒ2(x)−ϒ1(x)) = 0 (10a)

�2(x) = −2K(0) (c1(x)− c0(x))+K ′′(0)	(x) (ϒ2(x)−ϒ1(x)) (10b)

For even functions, the first equality is automatically fulfilled, for odd functions—
the second one. The proof of the lemma is carried out by substituting (9) into a
hyperbolic operator (5a). As a result, when t → x, an expression appears that
contains singular and regular parts

�1(x)

4
√
φ′(x)(x − t) + �2(x)+O(x − t)

In fact, a parametrix is constructed modulo smoothing operators used recently in
hyperbolic equations [18], although the study of relations on characteristics has a
rich history [19, Ch. 4]

Example 2 to Lemma 1 Consider the class of kernals of the form

K(x, t) = J0

(
	(x)

√
cosh(μx)− cosh(μt)

)
(11)

under a0(t) = 1; a1(x) = 1. The condition (5b) immediately leads to the equality
b1(x) = b0(x), moreover, due to the parity of the Bessel function of zero index
J0( xi), the first line in the condition (10a) is performed automatically. The second
generates identity

1

2
μ	(x)

(
μ	(x) cosh(μx)+ 2 sinh(μx)	′(x)

) = 0

Selection of 	(x) in the form of an exponent makes possible the following kind of
coefficients

b0(t) = b

sinh(μt)
; b1(x) = b

sinh(μx)
;

	(x) = exp
(
−μ

2
x
)

;

c1(x) = c0(x)+ 1

2
μ2β2 exp(−2μx);

If these values are substituted into (5a), then we get an expression that includes two
linearly independent terms, one of which contains the factor ‘b’, the second—the
factor c0(t) − c0(x). Equating b = 0; c0( xi) = ω2, we arrive at the transmutation
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operator

f1(x) = Tf0(x) =
x∫

0

J0

(
exp

(
−μ

2
x
)√

cosh(μx)− cosh(μt)
)
f0(t)dt (12)

intertwining ordinary differential operators

d2

dt2
f0(t)+ ω2f0(t) = 0 (13a)

d2

dx2
f1(x)+

(
ω2 + 1

2
μ2β2 exp(−2μx)

)
f1(x) = 0 (13b)

Earlier Sergey M. Sitnik obtained the kernel (11) by the method of fixed-point
iteration, solving the integral equation given in the work of Marchenko [11, Ch.
I].

If the initial condition is written in (3) in the traditional form with h0 = 0,
and a solution that satisfies the zero initial condition is selected in (4), then the
transmutation operator taking into account [20, No.2.37 b] will give the following
result

x∫

0

J0

(
e−

μ
2 x

√
cosh(μx)− cosh(μt)

)
cos(ωt)dt =

= − ıπ
2μ

1

sinh
(
πω
μ

)
[
J ıω
μ

(
β√
2

)
J− ıω

μ

(
βe−μx√

2

)
− J− ıω

μ

(
β√
2

)
J ıω
μ

(
βe−μx√

2

)]

(14)

For μ → 0, the relation presented is reduced to the Vekua transformation operator
[21, Ch. I, Par.12], created at the time to solve elliptic equations of mathematical
physics. Its feature is the shift in spectral parameter

x∫

0

J0

(
β
√
x2 − t2

)
cos(ωt)dt =

sin
(√
ω2 + β2 x

)
√
ω2 + β2

(15)

Equalities (10a) lead to another class of transmutation operators.
An isolated class with respect to intertwined second-order operators are the

Bushman-Erdei transformations, which include the Legendre functions [3]. It
suffices to look at the tables [17, vol II, No 2.17-2.18] to see in most of the options
the record of the transformed component of f1(x) by means of the generalized
hypergeometric series pFq with p + q > 3. Thus, a very significant set of second-
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order differential operators ‘B’ do not fit into the construction (4). But in rare
exceptions, the method of studying a hyperbolic operator on the characteristic
admits cases of finding new versions of the Bushman-Erdeia OP.

Let’s start with the traditional core of the Bushman-Erdeyi operator

K(x, t) = Pν
(
t

x

)
(16)

where the Legendre function Pν(z) is a solution of a differential equation [16, vol I,
Ch. III]. The singularity in calculating L[K(x, t)] with t → x is

1

2x2

[
−2ν(ν + 1)+ ν(ν + 1)(b1(x)− b0(x))x − 2x2(c1(x)− c0(x))

]
+O(t − x)

For its elimination it is enough to put

a0(t) = a1(x) = 1; b0(t) = b1(x) = 0; c0 = ω2; c(x) = ω2 − ν(ν + 1)

x2 ;
(17)

With such coefficients, the relations (3) and (4) taking into account the initial
conditions in (3) and the finiteness of the solution at the origin for (4) are given
for integer values the index ν [17, Vol II, No 2.17.7 (1)]. Exactly,

x∫

0

P2n+1

(
t

x

)
sin(ωt)dt = (−1)n

√
πx

2ω
J2n+ 3

2
(ωx) (18a)

and

x∫

0

P2n

(
t

x

)
cos(ωt)dt = (−1)n

√
πx

2ω
J2n+ 1

2
(ωx) (18b)

We show that the kernel (18) can be extended to wider classes of functions. In this
case, we obtain the original solutions of hyperbolic equations and representations
for some hypergeometric functions, including composite arguments. Consider the
Bushman-Erdeia transmutation operators with kernels

K(x, t) = Pν
(

sinh(μt)

sinh(μx)

)
(19)
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The study of the relation on the characteristic L[K(x, t)] with t → x leads to an
estimate

L[K(x, t)] = −ν(ν + 1)μ2Csch2(μx)+ 1

2
ν(ν + 1)(b1(x)− b0(x))

− (c1(x)− c0(x)+O(t − x) (20)

The selection of coefficients in the equations is not complicated. Initially, they are
located so as to nullify the final term in (20), and then the final sorting takes place to
turn (5a) into an identity. Finally, it found that the kernel (19) satisfies the hyperbolic
equation

∂2K(x, t)

∂t2
+ ω2K(x, t) = ∂2K(x, t)

∂x2 +
(
ω2 − μ2 ν(ν + 1)

sinh2(μx)

)
K(x, t) (21)

The steps involved in transforming an ordinary differential equation for the operator
‘B’ are well known from books on quantum mechanics [22, Problem 39]. Replace
variables and the function sought are sequentially performed

y = − sinh2(μx); f1(y) = y ν+1
2 v(y)

and also, parameter designation is introduced

a = ν

2
+ ı ω

2μ
; b = −ν

2
+ ı ω

2μ
;

The solution consists of a linear combination of the regular part tending to zero for
x → 0

2F1

(
−a, b, 1

2
− ν,− sinh2(μx)

)
(− sinh2(μx))

ν+1
2

and singular part

2F1

(
1

2
− b, 1

2
+ a, 3

2
+ ν,− sinh2(μx)

)
(− sinh2(μx))−

ν
2

Clearly, the transmutation operator

x∫

0

Pν

(
sinh(μt)

sinh(μx)

)
cos(ωt)dt (22)

correlates only with the regular component, however, due to the complexity of the
parameters of the hypergeometric function, it is very difficult to trace the exact
match. Nevertheless, the finite number of components in the Legendre polynomials
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for integer ν = 2n allows us to express and investigate the result in a much simpler
form.

When nu = 2, the integral (22) takes the value

f1(x) = − sin(ωx)

2ω
+

+ 3

4

1

sinh2(μx)

[
− sinωx

ω
+ ω cosh(2μx) sin(ωx)+ 2μ cos(ωx) sinh(2μx)

ω2 + (2μ)2
]

When μ → 0, this representation completely coincides with the right-hand side
of Eq. (18b) for n = 1. The presented examples with different integer indices
describe a certain set of Bargman potentials [23, Ch. VI.I] and can be used for
their construction and study. Calculations with kernels of the type (22) are carried
out similarly. We present their results in the following lemma.

Lemma 2 Bushman-Erdei transmutation operators with kernels

K(x, t) = Pν
(

sinh(μt)

sinh(μx)

)
; K(x, t) = Pν

(
cosh(μx)

cosh(μt)

)
;

K(x, t) = Pν
(

sin(μt)

sin(μx)

)
; K(x, t) = Pν

(
cos(μx)

cos(μt)

)
; (23)

connect the solution to the equation

d2f0(t)

dt2
+ ω2f0(t) = 0

with solutions of equations

d2f1(x)

dx2 +
(
ω2 + V (x)

)
f1(x) = 0

for potentials

V (x) = μ2ν(ν + 1)U(x) (24)

where respectively

U(x) = 1

sinh2(μx)
; U(x) = 1

cosh2(μx)
;

U(x) = 1

sin2(μx)
; U(x) = 1

cos2(μx)
; (25)

In quantum mechanics, the potentials presented are called Peschl-Teller potentials
(modified and ordinary) [22, Problems No 38, 39]. Their use for integer ν = n
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is important when considering eigenvalues and eigenfunctions that are consistent
with boundary or other quantization conditions [24]. The group of transmutation
operators presented in Lemma 3 is an essential addition to the set of Bushman-Erdei
operators given in the work [3].

4 Some Convolutions as Transmutation Operators and Their
Modifications

Convolution type transformation operators have been extensively studied in the
literature (see, for example, [25]), so we will only touch on those that are important
from a transmutation point of view.

Lemma 3 By definition, each transmutation operator is a Volterra operator of the
first or second kind, the converse is false.

Let us give an example of the last statement—the Kapteyn trigonometric integral
[26, 12.21]

x∫

0

cos(x − t)J0(t)dt = xJ0(x)

Here the kernel is K(x, t) = cos(x − t), and the coefficients in the ordinary
differential operators (3) and (4) are

a0(t) = 1; b0(t) = 1
t
; c0(t) = 1 + 1

t2
;

a1(x) = 1; b1(x) = − 1
x
; c1(x) = 1 + 1

x2 ;

It is easy to check the impracticability of the hyperbolic equation (5a) with a similar
combination of elements necessary for the transmutation operator.

At the same time, extensive combinations of K(x, t); f0(t); f1(x) associated
with hypergeometric functions for which there is a possibility of linking. Imagine
an initially simple illustration. It is easy to check that the coefficients

a0(t) = t; b0(t) = (1 − β)− t; c0(t) = β − α;
a1(x) = x; b1(x) = (2 − β − γ )− x; c1(x) = β + γ − α − 1;

substituted into Eqs. (3) and (4) lead to Kummer intertwined functions. In this case,
the kernal

K(x, t) = (x − t)γ−1
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Replacing the variables t → xt gives the well-known integral relation [27, Vol II,
No 20.3 (2)]

x∫

0

(x − t)γ−1tβ−1
1F1(α, β, t)dt = (β)(γ )

(β + γ ) x
β+γ−1

1F1(α, β + γ, x); (26)

A degenerate hypergeometric function with an integral nonpositive first argument is
a generalized Laguerre polynomial

1F1(−n, β, z) = Lβn(x)

Together with (26), this leads to the transmutation operator [27, Vol II, No 16.6 (5)]

1∫

0

(1 − t)β−α−1tαLαn(xt)dt = (α + n+ 1)(β − α)
(β + n+ 1)

Lβn (x); (27)

5 Euler Transformation for Hypergeometric Functions
as a Transmutation Operator

For the basis of further intertwining operators, we take the Euler transformation [28,
Ch. 4]

p+1Fq+1

(
a1 . . . ap c

b1 . . . bq d
; z

)
=

= (d)

(c)(d − c)
1∫

0

ξc−1(1 − ξ)d−c−1
pFq

(
a1 . . . ap c

b1 . . . bq d
; zξ

)
dξ

There are two directions in which it can develop. In the first case, this is a transition
to the standard transformation operator, by replacing t = zξ .

zd+1
p+1Fq+1

(
a1 . . . ap c

b1 . . . bq d
; z

)
=

= (d)

(c)(d − c)
z∫

0

(z− t)d−c−1tc−1
pFq

(
a1 . . . ap c

b1 . . . bq d
; t

)
dξ (28)

The second option is more interesting. The Euler transformation initially relies on
z = κx2, where κ = ±1. Then the integral follows the replacement ξ = η2 with the
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following substitution t = zη. The final ratio is as follows.

z2(d−1)
p+1Fq+1

(
a1 . . . ap c

b1 . . . bq d
; κz2

)
=

= 2(d)

(c)(d − c)
z∫

0

(z2 − t2)d−c−1t2c−1
pFq

(
a1 . . . ap c

b1 . . . bq d
; κt2

)
dξ (29)

We emphasize that the integral relations (28) and (29) in this article are only
postulated as Euler transformation operators and their modifications. The proof that
they turn out to be intertwining operators in the general version is difficult, if only
by replacing the standard hyperbolic equation (5a) with its generalized analogue.
One of the works, highlighting the path of development in this direction [29].

Since the preimage 0F1 satisfies the operator with the second, and, accordingly,
the image of the Euler transformation 1F2 to the operator with the third derivative,
in the framework of second-order differential equations, only two types of hyperge-
ometric functions [30, 31]:

0F0(t) = F(; ; t) = et ; 1F0(t) = F(a; ; t) = (1 − t)−a;

The Euler transformation for 0F0 leads to an integral representation of the Kummer
function [16, раздел 6.5], [2, 32, 33]

 (c, d, x) = xd−1
1F1(c; d; x) = (d)

(d − c)(c)
x∫

0

(x − t)d−c−1tc−1
0F0(t)dt

(30)

provided that x is a real variable and Re(d) > Re(c) > 0. We note an important
fact: the resulting transformation operator covers a smaller set of parameters than
the series

1F1(c; d; x) =
∞∑
k=0

(c)k

(d)kk!x
k

where (q)k is a Pohgammer symbol, since the inequalities Re(d) > Re(c) > 0
impose significant restrictions on the domains of parameter changes.

We prove that the transformation operator (30) is a transmutation operator. The
function 0F0(t) = et , which is present under the integral sign, is a solution of a first
order differential equation, but the conjugate form (3) allows you to artificially add
another differentiation digit. Exactly if

f0(t) = tc−1
0F0(t) = tc−1et

a0(t) = t; b0(t) = 1 − c − t; c0(t) = 0;
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then the equality (3) takes the form

d

dt

[
a0(t)

df0(t)

dt
+ b0(t)f0(t)

]
= 0

For the transformed function f1(x) = xd−1
1F1(c, d, x), the identity (4) with the

coefficients

a1(x) = x; b1(x) = 2 − d − x; c1(x) = d − c − 1;

It is easy to verify that with the coefficients indicated above, and K(x, t) = (x −
t)d−c−1, the hyperbolic equation (5a) holds.

Thus, the formula (30) is a two-parameter family of intertwining operators.
According to the definition [34, Ch I, Def 2.1], it simultaneously belongs to the
class of fractional integrals. The enumeration of the permissible values of the
parameters [33, Ch 3] leads to many interesting results illustrating the significance
of transmutation operators. For example, ratio

 (1, 2, x) = ex − 1; при x > 0

with the help of the OP it turns out much easier to expand the Kummer function
in a series. On the other hand, much less elementary results are possible. With real
x > 0

 (
3

4
,

3

2
, x) = √

2 4
√
xe

x
2 

(
5

4

)
I 1

4

(x
2

)

with a modified Bessel function, a fractional argument—and this is not the highest
bar of complexity.

At one time, the identity (28) was used by Leonard Euler to determine the
traditional hypergeometric function. Because of the literal following (28), the
definition will take on a different look.

xd−1 π

sin(πc)(c)(1 − c) 2F1(a, c, d, x) =

= (d)

(c)(d − c)
x∫

0

(x − t)d−c−1tc−1
1F0(a, t)dt (31)

or

xd−1 π

sin(πc)(c)(1 − c) 2F1(a, c, d, x) = (d)

(c)(d − c)
x∫

0

(x − t)d−c−1tc−1

(1 − t)a dt

(32)
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The fact that the presented formula has a three-century history does not save it from
checking for the agreement of all the equations for the transition from the variety of
transformations to the class of intertwining operators. We have

a0(t) = t (1 − t); b0(t) = 2 − c − (3 + a − c)− da0(t)
dt

;
a1(x) = x(1 − x); b1(x) = 2 − d − (3 + a + c − 2d)x;
c0(t) = c − a − 1 − db0(t)

dt
; c1(x) = −(1 + a − d)(1 + c − d).

If, as before, K(x, t) = (x − t)d−c−1, then the hyperbolic equation (5a) turns into
an identity. Note again that the transformation is valid only for real 0 < x < 1 and
Re(d) > Re(c) > 0. In addition, the parameter c should not be an integer. The
number of representatives of this transmutation operator with different variants of
the coefficients is almost innumerable [33, Ch. 2, Section 2.4]

Lemma 4 The Euler transformation (32) is the intertwining operator for the hyper-
geometric functions when selecting the coefficients in (3) and (4) mentioned above.

We will not check the relations (29), but instead show how knowing the values on
the characteristic of a hyperbolic equation helps to find a rather complicated integral
that is close in some parameters, for example, 2 paragraph 1 of [35].

x∫

0

(x2 − t2)β cos(ωt)dt (33)

Here, the coefficients for the input function f0(t) = cos(ωt) are obvious

a0(t) = 1; b0(t) = 0; c0(t) = ω2;

We substitute them in (5a), taking into account simultaneously (5b). For t → x, a
relation arises on the characteristic of a hyperbolic operator for the kernelK(x, t) =
(x2 − t2)β

L [K(x, t)]t→x = 2ββ(2β + b1(x))(x(x − t))β−1 + (x(x − t))βO(x − t);

The remaining coefficient c1(x) is easily chosen. As a result

a1(x) = 1; b1(x) = −2β

x
; c1(x) = ω2;

The solution of an ordinary differential equation (4) is a linear combination

x
2β+1

2

[
C1J 2β+1

2
(ωx)+ C2Y 2β+1

2
(ωx)

]
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with Bessel and Neumann functions as components. The singularity at zero elimi-
nates the coefficient C2. For different interpretations of the result, it is convenient to
use the relationship between the Bessel function and the hypergeometric function.
The integral (33) takes the form

x∫

0

(x2 − t2)β cos(ωt)dt =
√
π

2
(β + 1)x

2β+1
2 J 2β+1

2
(ωx) =

=
√
π

2
(β + 1)0F1

(
; β + 3

2
; −

(ωx
2

)2
)
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Polynomial Quantization on Line Bundles

V. F. Molchanov

Abstract We expand polynomial quantization on G/H to the case when a repre-
sentation of the group G on functions on G/H is induced by a character of the
subgroupH .

Keywords Polynomial quantization · Representations · Berezin Transform
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In [1] we constructed quantization in the spirit of Berezin on para-Hermitian
symmetric spaces G/H , see also [3]. In [2] we showed that this quantization,
anyway polynomial quantization—the most algebraic variant of quantization, can be
considered as a part of the representation theory. In present paper we offer to expand
polynomial quantization to case when a representation of the groupG on functions
on G/H is induced by a character of the subgroup H . Here we restrict ourselves
to a hyperboloid of one sheet in R

3. As it is well known, the main content of the
representation theory is based on intertwining operators—intertwining transforms,
transmutations. In this paper we focus to the Berezin transform. It connects symbols
of different types.

We use the following notation:

a[s] = a (a + 1) . . . (a + s − 1), a(s) = a (a − 1) . . . (a − s + 1),
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here a is a number or an operator, s ∈ N = {0, 1, 2, . . .}.

tλ,ν = |t|λsgnν t , t ∈ R
∗ = R \ {0}, λ ∈ C, ν = 0, 1,

1 The Group SL(2,R) and Its Representations

The group G = SL(2,R) consists of real matrices of the second order with unit
determinant:

g =
(
α β

γ δ

)
, αδ − βγ = 1. (1)

Changing in (1) α ↔ δ and β ↔ γ , we obtain an involution g #→ ĝ in G given by

ĝ =
(
δ γ

β α

)

The Lie algebra g of the group G consists of real matrices of the second order
with zero trace. A basis in g consists of matrices:

L− =
(

0 0
1 0

)
, L1 =

(
1/2 0
0 −1/2

)
, L+ =

(
0 −1
0 0

)
. (2)

The commutation relations are:

[L+, L−] = −2L1 , [L+, L1] = −L+ , [L1, L−] = −L− .

Denote by Env (g) the universal enveloping algebra of the Lie algebra g.
The center of Env (g) is generated by the element (the Casimir element, up to a

factor)

	g = L2
1 + 1

2
(L+L− + L−L+).

Recall some material on representations of G. For σ ∈ C, ν = 0, 1, let us
denote by Dσ,ν(R) the space of functions f in C∞(R) such that the function f̂ (t) =
t2σ,νf (1/t) belongs to C∞(R) too. The representation πσ,ν of the group G acts on
Dσ,ν(R) by (we consider thatG acts from the right):

(
πσ,ν(g)f

)
(t) = f (t · g) (βt + δ)2σ,ν, t · g = αt + γ

βt + δ .
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The contragredient representation π̂σ,ν is defined by the involution g #→ ĝ, so that

(
π̂σ,ν(g)f

)
(t) = f (t · ĝ) (γ t + α)2σ,ν .

Representations πσ,ν and π̂σ,ν are equivalent by means of the operator f #→ f̂ .
Any irreducible finite-dimensional representation Tk of the group G is labelled

by the number k (the highest weight) such that 2k ∈ N = {0, 1, 2, . . .}. It acts on the
space Vk of polynomials ϕ(t) in t of degree � 2k (so that dimVk = 2k + 1) by

(Tk(g) ϕ) (t) = ϕ (t · g) (βt + δ)2k .

Operators corresponding to elements of g and Env (g) in representations πσ,ν do
not depend on ν, so we do not write ν in indexes. For basis elements (2) we have

πσ (L−) = d

dt
, πσ (L1) = t d

dt
− σ , πσ (L+) = t2 d

dt
− 2σ t. (3)

and π̂σ (L±) = −πσ (L∓), π̂σ (L1) = −πσ (L1). Replacing in (3) σ by k, we obtain
formulae for Tk .

On monomials tm the representation πσ of g is:

πσ (L−) tm = m tm−1.

πσ (L1) t
m = (m− σ) tm,

πσ (L+) tm = (2σ −m) tm+1,

A bilinear form

〈F, f 〉 =
∫ ∞

−∞
F(t) g(t) dt (4)

is invariant with respect to pairs (πσ,ε, π−σ−1,ε) and (π̂σ,ε, π̂−σ−1,ε):

〈πσ,ε(g)f, h〉 = 〈f, π−σ−1,ε(g
−1)h〉 (5)

and similarly for π̂ .
An operator Aσ,ν defined by

(Aσ,νf )(t) =
∫ ∞

−∞
(1 − ts)−2σ−2, ν f (s) ds

intertwines πσ,ν and π̂−σ−1,ν :

π̂−σ−1,ν(g)Aσ,ν = Aσ,νπσ,ν(g) ,
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and also π̂σ,ν and π−σ−1,ν . The compositionAσ,ν and A−σ−1,ν is a scalar operator:

A−σ−1,ν Aσ,ν = 1

c(σ, ν)
· E, (6)

where

c(σ, ν) = 2σ + 1

2π
· (−1)ν + cos 2σπ

sin 2σπ
.

Let Z be the space of distributions on R concentrated at the point t = 0. It
consists of linear combinations of the Dirac delta function δ(t) and its derivatives
δ(p)(t). Formulae (3) with σ = k define a representation of the Lie algebra g on
Z, denote it by Tk again. Moreover, such a representation is defined not only for
k ∈ (1/2)N but for arbitrary k ∈ R. We need k ∈ (1/2)Z. In particular, the
representation T−k−1, k ∈ (1/2)N, acts on δ(p)(t) as follows:

T−k−1 (L−) δ(p)(t) = δ(p+1)(t)

T−k−1 (L1) δ
(p)(t) = (k − p) δ(p)(t) ,

T−k−1 (L+) δ(p)(t) = p (2k + 1 − p) δ(p−1)(t) .

It has an invariant subspace spanned by δ(p)(t), p � 2k + 1. The corresponding
factor space will be denoted Z−k−1, it is spanned by δ(p)(t), p � 2k. The factor
representation T−k−1 on Z−k−1 is equivalent to Tk, hence it arises to the group G.
It is more convenient to take another basis in Z−k−1, namely, distributions

bp(t) = p! δ(2k−p)(t), p = 0, 1, . . . , 2k.

We have

T−k−1 (L−) bp = pbp−1

T−k−1 (L1) bp = (p − k) bp ,
T−k−1 (L+) bp = (p − 2k) bp+1 .

We see that the action of the Lie algebra g in the basis bp precisely coincides with
the action in the basis tp .

The bilinear form (4) can be extended to the product Z × Vk:

〈ζ , ϕ〉 =
∫ ∞

−∞
ζ(t) ϕ(t) dt , ζ ∈ Z, ϕ ∈ Vk . (7)
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It is invariant with respect to the pair (T−k−1, Tk), i.e.

〈T−k−1 (g
−1) ζ , ϕ〉 = 〈ζ , Tk (g) ϕ〉 , g ∈ G. (8)

2 Tensor Products

The tensor product Vl ⊗ Vm consists of polynomials f (x, y) of degree � 2l in x
and degree � 2m in y. The tensor product Tl ⊗ T̂m of representations Tl and T̂m of
G acts on Vl ⊗ Vm by

(
(Tl ⊗ T̂m)(g)f

)
(x, y) = f (x · g , y · ĝ ) · (βx + δ)2l · (γy + α)2m.

Denote

r = m− l.

It is well known that Tl ⊗ T̂m decomposes into the direct multiplicity free sum

Tl ⊗ T̂m =
∑
k

Tk ,

where k ranges over the set

|r|, |r| + 1, . . . , l +m− 1, l +m . (9)

Respectively, Vl ⊗ Vm decomposes into the direct sum

Vl ⊗ Vm =
∑
k

Wk . (10)

Subspaces Wk are invariant and irreducible with respect to Tl ⊗ T̂m. To simplify
writing, we do not show dependence on l,m—both on the right side of (10) and
later on. The restriction of Tl ⊗ T̂m toWk is equivalent to Tk .

3 Hyperboloid of One Sheet

Let us “seat” Tl ⊗ T̂m and Vl ⊗Vm on the hyperboloid of one sheet X in R
3 defined

by equation −x2
1 + x2

2 + x2
3 = 1. Realize X as the set of matrices

x = 1

2

(
1 − x3 x2 − x1

x2 + x1 1 + x3

)
(11)
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with determinant equal to 0. The group G acts on it: x #→ g−1xg, transitively. The
stabilizer of the point x0 = (0, 0, 1) is the subgroupH of diagonal matrices

h =
(
λ−1 0

0 λ

)
.

Let us introduce on X horospherical coordinates ξ, η:

x = 1

N

(−ηξ −η
ξ 1

)
, N = 1 − ξη. (12)

The action of G in these coordinates splits: if a point x has coordinates ξ , η,
then the point g−1xg has coordinates ξ̃ = ξ · g, η̂ = η · ĝ. The initial point x0 has
coordinates ξ = 0, η = 0. The element

gx =
(

1/N η/N
ξ 1

)
. (13)

moves x0 to the point x with coordinates ξ , η. The G-invariant measure on X is

dx(ξ, η) = dξ dη

(1 − ξη)2 .

Recall r = m− l. Further we consider that

r � 0.

The map

D : f #→ F = N−2mf, f ∈ Vl ⊗ Vm,

transfers Vl⊗Vm to a space Mlm(X ) of some rational functions F of ξ , η. In virtue
of (11) and (12) these rational functions are polynomials in x1, x2, x3 on X . For
example, the polynomial f = 1 in Vl ⊗ Vm goes to the polynomial ((x3 + 1)/2)2m.
Denote

W
(r)
k (X ) = D(Wlm

k ).

These subspaces depend on r and k (not on l and m).
The map D intertwines Tl ⊗ T̂m and the representation Ur of G induced by the

character h #→ λ−2r of the subgroupH . The representation Ur acts on polynomials
on X and in horospherical coordinates is:

(Ur(g)F )(ξ, η) = F (̃
ξ , η̂

)
(βξ + δ)−2r .
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UnderUr the Casimir element	g goes to the operator�r = Ur(	g). Let us call
it the Casimir operator. Here is its expression:

�r = N2 ∂2

∂ξ∂η
− 2Nr η

∂

∂η
+ r2 − r.

For r = 0 it is the Laplace–Beltrami operator.
The restriction of the representation Ur to the space Mlm(X ) decomposes (as

Tl ⊗ T̂m does) into the direct multiplicity free sum
∑
Tk where k ranges over the

set (9). Respectively, Mlm(X ) decomposes into the direct sum

Mlm(X ) =
∑
k

W
(r)
k (X ) .

SubspacesW(r)
k (X ) are invariant and irreducible with respect to Ur .

4 Poisson Transform

Let k belong to the set (9). We consider operators Pr,k : Vk → Vl⊗Vm intertwining
representations Tl ⊗ T̂m and Tk , i.e.,

Pr,k Tk(g) = (
Tl ⊗ T̂m

)
(g)Pr,k ,

where g ∈ G. We call the operator Pr,k the Poisson transform.
First we define the Poisson kernel Pr,k(x; t), k ∈ N, where x ∈ X , t ∈ R.

Recall k − r ∈ N. The monomial tk−r is an eigenvector for the subgroup H with
the eigenvalue λ2r . We obtain the Poisson kernel Pr,k(x; t) applying the operator
Tk(g

−1
x ) to this monomial, namely, we set

Pr,k(x; t) = Tk(g−1
x )t

k−r

and find

Pr,k(x; t) = (t − ξ)k−r (1 − tη)k+r
Nk+r

, N = 1 − ξη.

where ξ , η are horospherical coordinates of the point x.
An important property of this kernel is that it is a fixed vector in the tensor

product Ur ⊗ Tk:
(
Ur(g)⊗ Tk(g)Pr,k

)
(x; t) = Pk(x; t), g ∈ G.
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Therefore, the kernel Pr,k(x; t) is a generating function for polynomials in W(r)
k .

Namely, a coefficient at ta in this kernel is a polynomial in W(r)
k (X ) that is an

eigenvector for the subgroupH with the eigenvalue λ−2k+2r+2a .
Now define the Poisson transform Pr,k : Vk → Vl ⊗ Vm. A distribution

corresponding to the monomial tk−r is bk−r (t) = (k− r)! δ(k+r)(t). It is convenient
to change the factor in front of delta, namely, instead of bk−r we take the distribution
βk−r (t) = (−1)k+r δ(k+r)(t).

This distribution is an eigenfunction for the subgroupH with the eigenvalue λ2r .
Therefore, the map Pr,k : Vk → Mlm defined by

(Pr,kϕ) (x) = 〈T−k−1 (g
−1
x ) βk−r , ϕ〉, (14)

intertwines Tk with Ur . Therefore, the image of this map is just M(r)
k . Because of

(8), (7), (13) and (1) we get:

(
T−k−1(g

−1
x )βk−r

)
(t) = (−1)k+rNk+1−r δ(k+r)

(
t − ξ

1 − tη
)
(1 − tη)−2k−2 .

(15)

By (14) and (15) we have

(Pr,k ϕ) (x) = (−1)k+rNk+1−r
∫
δ(k+r)

(
t − ξ

1 − tη
)
(1 − tη)−2k−2ϕ(t) dt.

By means of the change s = t − ξ
1 − tη we compute

(Pr,k ϕ) (x) = N−k−r
(
d

ds

)k+r ∣∣∣∣∣
s=0

ϕ

(
s + ξ
sη + 1

)
(sη + 1)2k . (16)

Theorem 1 The Poisson transform Pr,k : Vk → Vl ⊗ Vm can be written in one of
the following two forms. Let ϕ ∈ Vk . Then

(Pr,k ϕ) (x) =
k+r∑
s=0

(
k + r
s

)
(k − r + 1)[s]

( η
N

)s
ϕ(k+r−s)(ξ) , (17)

= Nk−r+1
(
d

dξ

)k+r
N−(k−r+1) ϕ(ξ) , (18)

where N = 1 − ξη, r = m− l. a point x has horospherical coordinates ξ , η.

Proof Formula (17) follows from formula (16), for example, by induction on k+ r .
Formula (18) can be checked immediately, for example, by induction. ��
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The Poisson transform Pr,k moves the minimal element t0 = 1 in Vk to the
minimal element

f
(r)
k =

( η
N

)k+r

inW(r)
k (X )—with a factor (k − r + 1)[k+r].

5 Polynomial Quantization

Recall some material on polynomial quantization, see, for example [3]. For initial
algebra of operators we take the algebra of operators πσ,ν(X),X ∈ Env (g), with the
complex parameter σ , acting on functions ϕ(ξ), ξ ∈ R. As a supercomplete system
we take the kernel of the intertwining operator A−σ−1,ν , namely,

�σ,ν(ξ, η) = N(ξ, η)2σ,ν .

This function has an invariance property

[
πσ (g)⊗ π̂σ (g)

]
�σ,ν(ξ, η) = �σ,ν(ξ, η).

This formula can be rewritten as
(
πσ (g

−1)⊗ 1
)
�σ,ν(ξ, η) =

(
1 ⊗ π̂σ (g)

)
�σ,ν(ξ, η). (19)

For elements L of the Lie algebra g, formula (5) gives:

−
(
πσ (L)⊗ 1

)
�σ,ν(ξ, η) =

(
1 ⊗ π̂σ (L)

)
�σ,ν(ξ, η).

Let us define symbols (covariant and contravariant) of operators D =
πσ (X), X ∈ Env (g). Recall that operators corresponding to elements of Env (g)
in representations πσ,ν do not depend on ν, so we do not write ν in indexes.

Formula (6) can be rewritten as a reproducing formula:

ϕ(ξ) = c(σ, ν)
∫
�σ,ν(ξ, v)�−σ−1,ν(u, v)ϕ(u) du dv, (20)

where c = c(σ, ν). Let us apply to both sides of this formula an operator D =
πσ (X), acting on functions of ξ . We obtain

Dϕ(ξ) = c
∫
(D ⊗ 1)�σ,ν(ξ, v)�−σ−1,ν (u, v)ϕ(u) du dv (21)
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Let us introduce a function

F(ξ, η) = 1

�σ,ν(ξ, η)

(
D ⊗ 1)�σ,ν(ξ, η

)
, (22)

then (21) becomes

Dϕ(ξ) = c
∫
F(ξ, v)�σ,ν(ξ, v)�−σ−1,ν (u, v)ϕ(u) du dv (23)

= c
∫
F(ξ, v)

�σ,ν(ξ, v)

�σ,ν(u, v)
ϕ(u) dx(u, v) (24)

The function F(ξ, η) given by (22) is called by the covariant symbol of the operator
D = πσ (X), X ∈ Env (g). Formulae (23) and (24) recover the operator by its
symbol.

Let us define contravariant symbols. In formula (20) instead of ϕ we take Dϕ.
We get

Dϕ(ξ) = c
∫
�σ,ν(ξ, v)�−σ−1,ν(u, v)Dϕ(u) du dv,

Let us transfer the operator D in the interior integral to � by means of (4). By (5),
the operator conjugate toD = πσ (X) with respect to form (4) isD∗ = π−σ−1(X

∨),
where the map X → X∨ is the principal anti-involution of Env (g) corresponding
to the map g → g−1 in G. We obtain

Dϕ(ξ) = c
∫
�σ,ν(ξ, v)

(
D∗ ⊗ 1

)
�−σ−1,ν(u, v) ϕ(u) du dv, (25)

Let us introduce a function

F#(ξ, η) = 1

�−σ−1,ν(ξ, η)

(
π−σ−1(X

∨)⊗ 1
)
�−σ−1,ν(ξ, η) (26)

Then formula (25) becomes

Dϕ(ξ) = c
∫
F#(u, v)�σ,ν(ξ, v)�−σ−1,ν(u, v) ϕ(u) du dv, (27)

= c
∫
F#(u, v)

�σ,ν(ξ, v)

�σ,ν(u, v)
ϕ(u) dx(u, v). (28)

Using (19) we can rewritten (26) as follows

F#(ξ, η) = 1

�−σ−1,ν(ξ, η)

(
1 ⊗ π̂−σ−1(X)

)
�−σ−1,ν(ξ, η) (29)
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The function F#(ξ, η) given by (26) or (29) is called by the contravariant symbol of
the operatorD = πσ (X), X ∈ Env (g). Formulae (27) and (28) recover the operator
by its symbol.

Covariant and contravariant symbols turn out to be polynomials on X . It is why
this theory is called the polynomial quantization.

In particular, covariant symbols for basis elements (2) are multiplied by (−σ)
polynomials x1 − x2, x3, x1 + x2, respectively.

The multiplication of operators gives rise to the multiplication of covariant and
contravariant symbols. But in this paper we do not concern this theme.

The passage from F to F# is called by the Berezin transform. We consider this
transform in the next section in more general setting.

6 Berezin Transform for Induced Representation

Let us take two complex numbers σ and τ and construct for them covariant symbols
Fσ (ξ, η) and contravariant symbols F#τ (ξ, η). We consider that they are connected
by:

σ − τ = r.

Let us write an operator Bσ,τ which moves the covariant symbol Fσ (ξ, η) to
the contravariant symbols F#τ (ξ, η) of operators corresponding to the same element
X ∈ Env (g). Let us call this operator the Berezin transform. Using formulae from
Sect. 5 we find

Fσ (ξ, η) = c(σ, ν)
∫
Bσ,τ (ξ, η; u, v) F #τ (u, v) dx(u, v),

where

Bσ,τ (ξ, η; u, v) = c(σ, ν)�τ,ν(ξ, v)�σ,ν(u, η)
�τ,ν(u, v)�σ,ν(ξ, η)

.

This transform commutes with the representation Ur of the groupG:

Ur(g)Bσ,τ = Bσ,τUr(g), g ∈ G. (30)

It follows from the formula

Bσ,τ (̃ξ , η̂; ũ, v̂) = Bσ,τ (ξ, η; u, v)
(
βξ + δ
βu+ δ

)2r



204 V. F. Molchanov

Theorem 2 For generic σ and τ (not entering in (1/2)Z) the Berezin transform
Bσ,τ is defined on the space of all polynomials on X and preserves subspaces

W
(r)
k (X ). On every this subspace it is a scalar operator, the multiplication by a

number. This number is

bk(σ, τ ) = (−2σ + k) (−2τ − k − 1)

(−2σ) (−2τ − 1)
. (31)

Proof The Berezin transform Bσ,τ acts on symbols, that are polynomials. In virtue
of permutability of this transform with Ur , see (30), and irreducibility of subspaces
W
(r)
k (X ) with respect to Ur , the Berezin transform preserves these subspaces.

Therefore on every this subspace it is the multiplication by a number bk(σ, τ ).
Let us compute this number. For the element Lk−, the corresponding operator D

is (∂/∂ξ)k for both representations πσ and πτ . Covariant and contravariant symbols
for it are respectively

F = (−1)k(2σ)(k)
( η
N

)k
, F # = (−2τ − 2)(k)

( η
N

)k

Therefore,

bk(σ, τ ) = (−1)k
(2σ)(k)

(−2τ − 2)(k)

which is just (31). ��
Theorem 3 The Berezin transform Bσ,τ is expressed in terms of the Casimir
operator�r as follows:

Bσ,τ = (−2σ + r + A)(−2τ − r − A− 1)

(−2σ) (−2τ − 1)

∣∣∣∣
A(A+1)=�r

. (32)

Proof Let us apply the Casimir operator �r to the minimal vector (η/N)k in
W
(r)
k (X ). We get

�r

( η
N

)k = (k − r)(k − r + 1)
( η
N

)k
.

So that�r = (k − r)(k − r + 1) onW(r)
k (X ). The expression (31) does not change

when we replace k by −k+ 2r − 1, or k− r by −(k− r)− 1. Then we select in the
nominator of (31) A = k − r and obtain (32). ��
Theorem 4 There is the following decomposition of the Berezin transform Bσ,τ :

Bσ,τ =
∞∑
s=0

1

s!(2τ + 2)[s]
s−1∏
p=0

[�r − (p − r)(p − r + 1)] . (33)
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Proof Using properties of the Gamma function, we can rewrite (31) as follows:

bk(σ, τ ) = (2σ + 1) (2τ + 2)

(2σ + 1 − k) (2τ + 2 + k) .

It is the value of the Gauss hypergeometric function at 1:

bk(σ, τ ) = F(−k, k + 1 − 2r; 2τ + 2; 1),

so that

bk(σ, τ ) =
∞∑
s=0

k(s) (k + 1 − 2r)[ s]

(−2τ − 2)(s) s! . (34)

Denote λ = (k−r)(k−r+1). It is the eigenvalue of�r onW(r)
k (X ). The numerator

in (34) can be written as

(
λ− r(r − 1)

) (
λ− (r − 1)(r − 2)

)
. . .

(
λ− (r − s + 1)(r − s)

)
.

But it just the eigenvalue onW(r)
k (X ) of the product of operators in (33). ��

We see from (33) that on the space Mlm(X ) the Berezin transform is a
differential operator (some polynomial in �r ).
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Abstract In this paper, we review a number of results about the Fourier–Bessel
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norms of the spherical mean of |f̂ |2 are estimated by its weighted L1-norms; note
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weighted L∞-norms of the Fourier–Bessel transform are estimated by its weighted
L2-norms. Those results are applied to the investigation of singular differential
equations containing Bessel operators acting with respect to selected spatial vari-
ables (the so-called special variables); equations of such kind arise in models of
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1 Introduction

In [6], it is proved that if f ≥ 0, then, for each α from

(
0,
n− 1

2

]
, we have the

estimate

‖rασ (f )‖∞ ≤ C‖rα−1σ(f )‖1, (1)

where σ(f )(r) is the mean value of |f̂ |2 over the sphere of radius r , centered at
the origin, and C depends only on the dimension of the space.

Note that, generally, (1) does not hold because one can construct a sequence
{fm}∞m=1 such that ‖rα−1σ(fm)‖1 does not depend on m, but σ(fm)(1) tends to
infinity as m → ∞. Thus, imposing the nonnegativity requirement on f , we
prohibit the above type of the behavior. Actually, that requirement implies a certain
restriction on the shape of the graph of f̂ .

One can expect that, in the one-dimensional case, inequality (1) provides a
similar estimate for the function itself instead of its mean. However, in the said
case, the integral at the right-hand part of (1) diverges for any nonnegative f : since
f̂ (0) is equal to the integral of f over the whole real line, it follows that there is a
nonintegrable singularity at the origin. It turns out that, unlike the classical regular
case, the mentioned one-dimensional phenomenon takes place for the Fourier–
Bessel transformation applied in the theory of differential equations containing
singular Bessel operators: a weighted L∞-norm of the transform is estimated
from above by its weighted L2-norm. The mentioned equations arise in models of
mathematical physics with degenerative space heterogeneities.

In the present paper, we provide a review of results about estimates of that
kind (both for the one-dimensional and multi-dimensional cases) as well as their
applications to singular (ordinary and partial) differential equations. Using the fact
that the Bessel operator acts as a multiplier in Fourier–Bessel images, we find
estimates of the kinds

‖u‖∞ ≤ u(0) (2)

and

‖r α2 u‖∞ ≤ C‖r α−1
2 u‖2 (3)

for norms of solutions of ordinary differential equations and estimates of the kind

‖rγ Sp,qu‖∞ ≤ C‖rγ−1Sα,βu‖1 (4)

for norms of solutions of partial differential equations, where Sp,q denotes the

weighted hemispherical mean value of | · |2 with weight |x|p
m∏
l=1
y
ql
l , while the
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constant C and the allowed values of the parameters p, q = (q1, . . . , qm), α,
β = (β1, . . . , βm), and γ are determined by the dimension of the space and by
the parameters at the singularities of the Bessel operators contained in the equation
and acting with respect to the special variables y1, . . . , ym (or, which is the same,
the indices of the Bessel functions from the kernel of the corresponding integral
transformation).

To obtain estimates (2)–(4), we require the nonnegativity of the Fourier–Bes-
sel transform of the right-hand part of the equation, divided by the symbol of the
operator at its left-hand part.

The presented results are mainly obtained in [7–10].

2 Notation and Definitions

Let k def= 2ν + 1 and μ be positive parameters. We introduce

R
n+1+ def=

{
(x, y)

∣∣∣ x ∈ R
n, y > 0

}
,

Lp,μ(R
n+1+ )

def=
{
f

∣∣∣ ‖f ‖ =

⎛
⎜⎜⎝

∫

R
n+1+

yμ|f (x, y)|p dxdy

⎞
⎟⎟⎠

1
p

<∞
}

for finite p,

and

L∞,μ(Rn+1+ )
def=

{
f

∣∣∣ ‖f ‖ = vrai sup yμ|f (x, y)| <∞
}
.

The set of infinitely smooth compactly supported functions defined on R
n+1 is

denoted by C∞
0 (R

n+1). We consider the subset of C∞
0 (R

n+1) consisting of even
functions with respect to y. Then we denote by C∞

0,even(R
n+1+ ) the set of restrictions

of elements of that subset to R
n+1+ . The set C∞

0,even(R
n+1+ ) plays the role of the space

of test functions.
Generalized functions (distributions) on C∞

0,even(R
n+1+ ) are introduced with

respect to the degenerative measure ykdxdy: if a linear continuous functional on
C∞

0,even(R
n+1+ ) can be identified with a function f ∈ L1,k,loc(R

n+1+ ) (an ordinary
function) according to the rule

〈f, ϕ〉 def=
∫

R
n+1+

ykf (x, y)ϕ(x, y) dxdy for any ϕ ∈ C∞
0,even(R

n+1+ ), (5)
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then that functional f is called regular. Other linear continuous functionals on
C∞

0,even(R
n+1+ ) are called singular.

The Fourier–Bessel transformation is defined as follows:

f̂ (ξ1, . . . , ξn, η)
def= Fb(f )(ξ, η)

def=
∫

R
n+1+

ykjν(ηy)e
−iξ ·xf (x, y) dxdy,

where jν(z) = 2ν(ν + 1)

yν
Jν(y) is the normalized Bessel function.

Note that f (x, y) = C
∫

R
n+1+

ηkjν(ηy)e
iξ ·xf̂ (ξ, η) dξdη.

In the one-dimensional case, we define the pure Fourier–Bessel transformation

f̃ (η) def= Fb(f )(η)
def=

∞∫

0

ykjν(ηy)f (y) dy

and note that f (y) = C
∞∫

0

ηkjν(ηy)f̃ (η) dη.

The Fourier–Bessel transformation maps L2,k(R
n+1+ ) onto itself.

The generalized translation operator corresponding to the considered degenera-
tive measure is defined (for the one-dimensional case) as follows:

T hy f (y)
def= C

π∫

0

f
(√
y2 + h2 − 2yh cos θ

)
sink−1 θdθ. (6)

Then

∞∫

0

ηkg(η)T ηy f (y)dη =
∞∫

0

ηkf (η)T ηy g(y)dη. Therefore, one can introduce

the generalized convolution (f ∗ g)(y) def=
∞∫

0

ηkf (η)T ηy g(y)dη such that f̃ ∗g

= f̃ g̃.
In the general case of the mixed Fourier–Bessel transformation, the generalized

translation operator is constructed as a superposition of operator (6) acting with
respect to the special variable y and classical translation operators acting with
respect to the remaining nonspecial variables.
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3 Estimates for the One-Dimensional Case

In Sects. 3 and 4, the dimension n is assigned to be equal to zero, i. e., we consider
the case where there are no nonspecial variables and the only independent variable
is singular.

The following assertion is valid.

Theorem 3.1 There exists C = C(k) such that the inequality

sup
(0,+∞)

rαf̃
2
(r) ≤ C

∞∫

0

yα−1f̃
2
(y)dy (7)

holds for any nonnegative f from L1,k(0,+∞) ∩ L2,k(0,+∞) and any α from(
0,
k

2

]
.

Proof The first stage of the proof is to prove the validity of (7) for the greatest
claimed value of α.

Under our assumptions, f̃ is an ordinary function from L2,k(0,+∞). Then the

integral

∞∫

0

ykf (y)jν(ry)dy absolutely converges for a. e. positive r . Therefore,

f̃
2
(r) =

∞∫

0

∞∫

0

ykηkf (y)f (η)jν(ry)jν(rη)dydη.

Taking into account that jν(ry)jν(rη) = T
η
y jν(ry), we see that the last integral is

equal to

∞∫

0

∞∫

0

ykηkf (y)f (η)T ηy jν(ry)dydη=
∞∫

0

ηkf (η)

∞∫

0

ykjν(ry)T
η
y f (y)dydη.

We note that f ≥ 0 and the generalized translation operator preserves the sign; on

the other hand, |jν(ry)| =
∣∣∣∣Jν(ry)(ry)ν

∣∣∣∣ ≤ C

(ry)ν+ 1
2

= C

(ry)
k
2

. Hence,

f̃
2
(r) ≤ C

∞∫

0

ηkf (η)

∞∫

0

yk
1

(ry)
k
2

T ηy f (y)dydη (8)
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under the assumption that the integral at the right-hand part converges. To prove its
convergence, we represent it as

1

r
k
2

∞∫

0

ηkf (η)

∞∫

0

ykf (y)T ηy y
− k

2 dydη = 1

r
k
2

∞∫

0

ηkf (η)
(
f ∗ y− k

2

)
(η)dη

= r− k
2 〈f, f ∗y− k

2 〉 = r− k
2 〈f̃ ,Fb(f ∗y− k

2 )〉 = r− k
2 〈f̃ ỹ− k

2 , f̃ 〉 = r− k
2 〈ỹ− k

2 , f̃
2〉.

Using the well-known Fourier transforms of the Riesz kernel and of radial functions,
we see that ỹ−s = Csys−k−1 for s ∈ (0, k + 1). Therefore,

r−
k
2 〈ỹ− k

2 , f̃
2〉 = r− k

2 〈y k2 −k−1, f̃
2〉 = 1

r
k
2

∞∫

0

y
k
2 −1f̃

2
(y)dy. (9)

The last integral converges by virtue of the following reasons:

(i) the singularity at the origin is integrable since
k

2
− 1 > −1 and f̃ (0) is equal

to the converging integral

∞∫

0

ykf (y)dy (the said convergence holds because

f ∈ L1,k(0,+∞));
(ii) the rate of the decay at infinity is sufficient because

k

2
− 1 < k and f̃ ∈

L2,k(0,+∞) (since f ∈ L2,k(0,+∞)).
The proved convergence means that all the operations leading from (8) to (9) are
really legible, i.e.,

f̃
2
(r) ≤ C

r
k
2

∞∫

0

y
k
2 −1f̃

2
(y)dy on (0,+∞). (10)

The last inequality is actually the claimed estimate (7) for α = k

2
. To extend

it to the whole claimed interval, we apply estimate (10) to the function fγ
def=

f ∗yγ−k−1, where γ
def= 1

2

(k
2

− α
)
> 0. However, to do that, we need fγ to satisfy

the assumptions of the theorem. To show that it belongs to L2,k(0,+∞), we note
that

∞∫

0

ykf̃
2

γ (y)dy = Cγ
∞∫

0

yk−2γ f̃
2
(y)dy = Cγ

∞∫

0

y
k
2 +αf̃

2
(y)dy <∞
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because there is no singularity at the origin since f̃ (0) =
∞∫

0

ykf (y)dy <∞ and

the decay rate at infinity is sufficient because the integral converges even for
the “greater” weight yk. Now, using the nonnegativity of fγ (note that it is the
convolution of nonnegative functions), we can follow the same line of the proof
as for f beyond the point where its weight summability is used; for the case of

fγ , we directly prove the convergence of the majorizing integral

∞∫

0

yα−1f̃
2

γ (y)dy

instead. ��

4 Estimates for One-Variable Compactly Supported
Functions

In [13], it is proved that the additional (besides the nonnegativity) assumptions of the
compactness of the support and of the radiality improve the result of [6] as follows:
the weights at the right-hand part and the left-hand part of the estimate are bound
less strictly than in [6] (actually, they are bound by an inequality) and the weight
powers belong to a wider interval.

In this section, the method of [13] is applied to the Fourier–Bessel transformation
to improve the results of Sect. 3 under the additional assumption of the compactness
of the support.

In this section, all the absolute constants generally depend on ν and α.

4.1 The Case Where the Weight Power Does Not Exceed
the Parameter at the Singularity

Let k > 0 and α ≤ k. Let f be a nonnegative function such that it belongs to
L1,k(0,+∞) ∩ L2,k(0,+∞) and suppf ⊂ [0, 1].

Then f̃ (r) =
1∫

0

skjν(rs)f (s)ds.

Let β < α. Then ν + 1

2
= k

2
≥ α

2
>
β

2
and, therefore, |jν(t)| ≤ C

tν+ 1
2

≤ C

t
β
2

on

[1,+∞).
On the other hand, jν(0) = 1; hence, there exists C such that jν(0) ≤ C

t
β
2

on

(0, 1].
Thus, jν(t) ≤ Ct− β

2 on (0,+∞).
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This implies that

|f̃ (r)| ≤ C
∣∣∣∣∣∣

1∫

0

1

(rs)
β
2

skf (s)ds

∣∣∣∣∣∣ = Cr− β
2

∞∫

0

sks−
β
2 f (s)ds

= Cr− β
2

∞∫

0

sks̃−
β
2 f̃ (s)ds = Cβr− β

2

∞∫

0

sks
β
2 −k−1f̃ (s)ds

= Cβr− β
2

1∫

0

s
β
2 −1f̃ (s)ds + Cβr− β

2

∞∫

1

s
β
2 −1f̃ (s)ds.

Note that

∣∣∣∣∣∣
1∫

0

s
β
2 −1f̃ (s)ds

∣∣∣∣∣∣ ≤ ‖f̃ ‖∞
1∫

0

s
β
2 −1ds = Cβ

∞∫

0

ykf (y)dy because f is a

nonnegative function. Thus, the last integral is equal to

⎛
⎝

∞∫

0

ykf (y)dy

⎞
⎠

1
2
⎛
⎝

∞∫

0

xkf (x)dx

⎞
⎠

1
2

=
⎛
⎝

1∫

0

1∫

0

xkykf (x)f (y)dxdy

⎞
⎠

1
2

.

Let y ∈ [0, 1] and h ∈ [0, 1]; then

T hy y
−α ≥ C

(y + h)α
π∫

0

sink−1 θdθ
def= C

(y + h)α ≥ C

2α
def= 1

C
.

This means that

1∫

0

1∫

0

xkykf (x)f (y)dxdy ≤ C
1∫

0

xkf (x)

1∫

0

ykf (y)T xy y
−αdydx

= C〈f̃ , ˜f ∗ y−α 〉 = C
∞∫

0

yα−1f̃
2
(y)dy

def= CIα(f ).

Thus,

|f̃ (r)| ≤ Cβr−
β
2

(
Iα(f )

)− 1
2 + Cr− β

2

∞∫

1

s
β
2 −1f̃ (s)ds.
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Hence,

f̃
2
(r) ≤ Cβr−βIα(f )+ Cβr−β

( ∞∫

1

s
β−α−1

2 s
α−1

2 f̃ (s)ds

)2

≤ Cβr−βIα(f )+ Cβr−β
∞∫

1

sβ−α−1ds

∞∫

1

sα−1f̃
2
(s)ds = Cβr−βIα(f ).

Therefore, the following assertion is proved.

Theorem 4.1 Let k > 0 and α ∈ (0, k]. Then for any β from (0, α) there exists Cβ
such that if f ∈ L1,k(0,+∞) ∩ L2,k(0,+∞), suppf ⊂ [0, 1], and f ≥ 0, then

f̃
2
(r) ≤ Cβr−β

∞∫

0

yα−1f̃
2
(y)dy f or any positive r. (11)

Now, let suppf ⊂ [0, R], R > 1. Define fR(y)
def= f (Ry); then suppfR ⊂

[0, 1]. Hence, Theorem 4.1 is valid for fR(y), i. e., for each β from (0, α) there
exists Cβ such that for any positive r the following inequality holds:

f̃R
2
(r) ≤ Cβr−β

∞∫

0

yα−1f̃R
2
(y)dy.

On the other hand,

f̃R(y) =
∞∫

0

skjν(ys)fR(s)ds = 1

Rk+1

∞∫

0

skjν

( y
R
s
)
f (s)ds = 1

Rk+1 f̃
( 1

R
y
)
.

Therefore,

f̃
2
( r
R

)
≤ Cβr−β

∞∫

0

yα−1f̃
2
(

1

R
y)dy = CβRαr−β

∞∫

0

yα−1f̃
2
(y)dy

provided that R > 1 and r > 0.

Then f̃
2
(r) ≤ CβRα−βr−β

∞∫

0

yα−1f̃
2
(y)dy for any positive r .
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Thus, the following assertion is proved.

Corollary 4.2 Let k > 0 and α ∈ (0, k]. Then for any β from (0, α) there exists
Cβ such that for each nonnegative compactly supported f from L1,k(0,+∞) ∩
L2,k(0,+∞) the following estimate holds:

f̃
2
(r) ≤ CβRα−βr−β

∞∫

0

yα−1f̃
2
(y)dy f or any positive r, (12)

i.e.,

‖r β2 f̃ ‖∞ ≤ CβR α−β
2 ‖r α−1

2 f̃ ‖2, (13)

where R is the right-hand boundary of suppf .

The next assertion shows the unimprovability of the obtained results.

Corollary 4.3 Estimate (11) (and, therefore, estimates (12)–(13)) is not valid if
β > α.

Proof Suppose, to the contrary, that there exists β exceeding α such that (11) is
valid. Let f from L1,k(0,+∞)∩L2,k(0,+∞) be nonnegative and suppf ⊂ [0, 1].
Define fR(y) as f (Ry) forR exceeding 1; then suppfR ⊂

[
0,

1

R

]
⊂ [0, 1]. Hence,

(11) is valid for fR(y). Then, as in Corollary 4.2, f̃
2
(r) ≤ CβRα−βr−βIα(f ) for

any positive r . Hence, f̃
2
(1) ≤ CβRα−βIα(f ) for each R exceeding 1. Since α <

β, it follows that f̃
2
(1) = 0.

We obtain a contradiction. ��

4.2 The Case Where the Weight Power Exceeds the Parameter
at the Singularity

Theorem 4.4 Let k > 0 and α ∈ (k, k + 1). Then for any β from (0, k] there
exists Cβ such that if a nonnegative f belongs to L1,k(0,+∞) ∩ L2,k(0,+∞) and
suppf ⊂ [0, 1], then

f̃
2
(r) ≤ Cβr−βIα(f ) f or any positive r.

Proof Since ν = k

2
− 1

2
, it follows that ν + 1

2
≥ β

2
. Hence, |jν(t)| ≤ C

t
β
2

on

[1,+∞).
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On the other hand, jν(0) = 1. Hence, there exists C such that |jν(t)| ≤ C

t
β
2

on

(0,+∞).
Then we can repeat the proof of Theorem 4.1 completely because the integral

∞∫

1

sβ−α−1ds converges. ��

As above, we derive the following corollary.

Corollary 4.5 Let k > 0 and α ∈ (k, k + 1). Then for any β from (0, k] there
exists Cβ such that for any nonnegative compactly supported f from L1,k(0,+∞)∩
L2,k(0,+∞) the following estimate holds:

f̃
2
(r) ≤ CβRα−βr−β

∞∫

0

yα−1f̃
2
(y)dy f or any positive r,

i.e.,

‖r β2 f̃ ‖∞ ≤ CβR α−β
2 ‖r α−1

2 f̃ ‖2

)
,

where R is the right-hand boundary of suppf .

The unimprovability of the results of this section is established by the following
assertion.

Theorem 4.6 Theorem 4.4 is not valid if β > k.

Proof Let f (s) = fR(s) = e−iRsϕ(s), ϕ ∈ C∞(R), suppϕ ⊂ (0, 1), ϕ ≥ 0, and

ϕ ≡ 1 on

(
5

8
,

7

8

)
.

Then

f̃ (R) =
∞∫

0

skjν(Rs)f (s)ds =
∞∫

0

skjν(Rs)e
−iRsϕ(s)ds.

Taking into account that

jν(t) = C

tν+ 1
2

(
m−1∑
l=0

Cl

tl
cos

[
t − π

2

(
ν − l + 1

2

)]
+ O

( 1

tm

))

= C

tν+ 1
2

cos
(
t − π

4
k
)

+ O
(

1

t
k
2 +1

)

= C

t
k
2

(
ei(t−

π
4 k) + e−i(t− π

4 k)
)

+ O
(

1

t
k
2 +1

)
as t → ∞,
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we conclude that

f̃ (R) = C1R
− k

2

1∫

0

s
k
2 ϕ(s)ds + C2R

− k
2

1∫

0

s
k
2 e−i2Rsϕ(s)ds

+ O
(
R− k

2 −1
)

as R → ∞,

where C1
def= Ce−i π4 k and C2

def= Cei
π
4 k.

Denote the coefficient at R− k
2 by A and prove that lim

R→∞A �= 0. We have

A

C
= cos

π

4
k

1∫

0

s
k
2 ϕ(s)ds + cos

π

4
k

1∫

0

s
k
2 ϕ(s) cos 2Rsds

+ sin
π

4
k

1∫

0

s
k
2 ϕ(s) sin 2Rsds + i

(
− sin

π

4
k

1∫

0

s
k
2 ϕ(s)ds

+ sin
π

4
k

1∫

0

s
k
2 ϕ(s) cos 2Rsds + cos

π

4
k

1∫

0

s
k
2 ϕ(s) sin 2Rsds

)
.

Suppose, to the contrary, that lim
R→∞ReA = lim

R→∞ImA = 0.

Then lim
R→∞

(
ReA cos

π

4
k − ImA sin

π

4
k
)

vanishes too. On the other hand, the

last limit is equal to

1∫

0

s
k
2 ϕ(s)ds + cos

π

2
k

1∫

0

s
k
2 ϕ(s) cos 2Rsds + sin

π

2
k

1∫

0

s
k
2 ϕ(s) sin 2Rsds.

Taking into account that the integrated function is nonnegative, we conclude that the
last expression is greater than or equal to

7
8∫

5
8

s
k
2 ϕ(s)

[
1 + cos

(π
2
k − 2Rs

)]
ds =

7
8∫

5
8

s
k
2

[
1 + cos

(π
2
k − 2Rs

)]
ds
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bounded from below by

(
5

8

) k
2

7
8∫

5
8

[
1 + cos

(π
2
k − 2Rs

)]
ds =

(
5

8

) k
2
(

1

4
− sin

(
π
2 k − 2Rs

)
2R

∣∣∣∣
7
8

5
8

)
.

This tends to the positive number 1
4

(
5
8

) k
2

as R → ∞, which yields a contradiction.

Thus, A does not tend to zero as R → ∞.

Moreover there exists a positive C

(
e. g., one can take 1

8

(
5
8

) k
2
)

such that if R

is sufficiently large, then

ReA cos
π

4
k − ImA sin

π

4
k ≥ C.

Therefore, C ≤ |ReA| + |ImA|. Hence, C2 ≤ (|ReA| + |ImA|)2 ≤ 2|A|2, i. e.,

|A| ≥ C0
def=

√
C
2 for sufficiently large values of R. Hence, |f̃R(R)| ≥ C0

2
R− k

2

provided that R is sufficiently large.
On the other hand, the following assertion is true.

Lemma 4.7 The inequality |f̃R(R)|2 ≤ CβR−β holds for any positive R.

Proof Introduce fl(s), l = 1, 4, as follows:

f1(x)
def=

{
Ref (x) if Ref (x) > 0

0 otherwise
, f2(x)

def=
{

0 if Ref (x) > 0

−Ref (x) otherwise
,

f3(x)
def=

{
Imf (x) if Imf (x) > 0

0 otherwise
, and f4(x)

def=
{

0 if Imf (x) > 0

−Imf (x) otherwise
.

Then 0 ≤ fl(x) ≤ |f (x)|, l = 1, 4, and f (s) = f1(s)− f2(s) + i[f3(s)− f4(s)].
Hence, |f̃ (s)|2 ≤ C

4∑
l=1

f̃l
2
(s) ≤ Cβs−β

4∑
l=1

Iα(fl) due to Theorem 4.4.

Now, observe that

Iα(|f |) = 〈|f |, |f |yα−k−1〉 = 〈|̃f |, |̃f |ỹ−α〉 = C〈|f |, |f | ∗ y−α〉

= C
∞∫

0

∞∫

0

xkyk|f (x)||f (y)|T xy y−αdxdy ≥ C
∞∫

0

∞∫

0

xkykfl(x)fl(y)T
x
y y

−αdxdy

= CIα(fl), l = 1, 4.

Thus, |f̃R(r)|2 ≤ Cβr−βIα(|fR |). However, |fR| does not depend on R. ��
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Thus, there exists Cβ such that

R−k ≤ CβR−β

provided that R is sufficiently large. This means that k ≥ β. ��
Remark 4.8 If k < α < k + 1, then C does not depend on β.

Really, the said dependence arises (see the prove of Theorem 4.1) at the two
following points:

Cβ
2

1∫

0

s
β
2 −1ds where s̃−

β
2 = Cβ

2
s
β
2 −k−1 and

∞∫

1

sβ−α−1ds.

Since Cβ
2

=

(
k− β

2 −1
2

)

(
β
4 )

2k−
β
2 −1Ck (see, e. g., [12, pp. 157–158]), it follows that

Cβ
2

1∫

0

s
β
2 −1ds = 2

β
Cβ

2
is bounded by a constant depending only on k (because

(
β
4 ) has a simple pole at the origin).

On the other hand,

∞∫

1

sβ−α−1ds = 1

α − β ≤ 1

α − k , which does not depend on

β.
Note that the dependence of C on α cannot be removed (at least, on that way)

because C becomes infinite at both ends of (k, k + 1); really, Cα = (k−α−1
2 )

(α2 )
.

Also, note that if 0 < α ≤ k, then the dependence of C on β cannot be removed

either because

∞∫

1

sβ−α−1ds = 1

α − β −→ ∞ as β → α.

5 Multi-Dimensional Estimates: The Prototype Case

In this section, we consider the case where the special variable y is unique. This is
called the prototype case because it is traditionally assumed that main properties of
singular problems and their core differences from regular ones can be explained and
observed on problems with a single special variable.
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Denoting the upper hemisphere in R
n+1+ of radius r , centered at the origin, by

S+(r), we introduce σp,q as follows:

σp,q(f ) def=
∫

S+(1)

|x|pyq |f̂ (rx, ry)|2dSx,y, (14)

where p and q are real parameters and dS denotes the surface (spherical) measure
with respect to the corresponding variables.

The following assertion is valid.

Theorem 5.1 Suppose that f ∈ L1,k(R
n+1+ )∩L2,k(R

n+1+ ) and f ≥ 0.
If n > 1, then for any p exceeding −n and any q exceeding −1 there exists C

such that the estimate

‖rα+βσp+α,q+β(f )‖∞ ≤ C‖rα+β−1σα−n,β−1(f )‖1 (15)

holds provided that α ∈
(

0,
n− 1

2

)
and β ∈

(
0,
k

2

)
or (α, β) =

(
n− 1

2
,
k

2

)
. If

n = 1, then for any p exceeding −1 and any q exceeding
k

2
− 1 there exists C such

that

‖r k2 σp,q(f )‖∞ ≤ C‖η k2 −1|f̂∣∣∣
ξ=0

|2‖1. (16)

Proof The main idea of the proof is the same as in [6]: the generalized function of
the weighted spherical averaging (in the sequel, it is denoted by σr ) is singular, but
its Fourier–Bessel transform is regular and could be computed explicitly.

We have

〈σ̂r , ϕ〉 = C〈σr , ϕ̌〉 = C
∫

S+(1)

|ξ |pηqϕ̌(rξ, rη) dSξ,η

=
∫

S+(1)

|ξ |pηq
∫

R
n+1+

ykϕ(x, y)eirx·ξjν(ryη) dxdydSξ,η

=
∫

R
n+1+

ykϕ(x, y)

∫

S+(1)

|ξ |pηqeirx·ξjν(ryη) dSξ,ηdxdy,
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where ϕ is an arbitrary test function. The inner integral in the last relation is equal
to

Cr(2−n)/2−ν|x|(2−n)/2 y−ν

×
1∫

0

ηq−ν(1 − η2)(n+2p−2)/4J(n−2)/2

(
r

√
1 − η2|x|

)
Jν(ryη) dη

(see, e. g., [14, p. 155]). This implies the estimate

|σ̂r (x, y)| ≤ Cr−(n+k−1)/2|x|−(n−1)/2y−k/2 (17)

(since now, C depends on p and q as well).

Next, we observe that σ(f )(r) def= 〈σr , |f̂ |2〉 = 〈σr , f̂ f̂ 〉 = 〈f̂ σr , f̂ 〉.
On the other hand, 〈f ∗ σ̂r , f 〉 = C〈f̂∗σ̂r , f̂ 〉 = C〈f̂ ̂̂σr , f̂ 〉 =

C〈f̂ σr (−x, y), f̂ 〉. However, we have just proved that σ̂r is an ordinary function
even with respect to each nonspecial variable. Thus, σ(f )(r) = 〈f ∗ σ̂r , f 〉.

Using the known properties of the generalized translation operator and general-
ized convolution (see [3, 4]), we find that

σ(f )(r) =
∫

S+(1)

|ξ |pηq |f̂ (rξ, rη)|2 dSξ,η

≤ Cr(1−n−k)/2〈Fb
(|x|−(n−1)/2y−k/2), |f̂ |2〉

in the case where n > 1. Also, Fb
(|x|−(n−1)/2y−k/2) may be computed explicitly

(if n > 1 and k > 0):

Fb
(|x|(1−n)/2y−k/2)=

∞∫

0

ykjν(yη)y
−k/2 dy

∫

Rn

e−ix·ξ |x|(1−n)/2 dx

=Cη−k/2−1|ξ |−(n+1)/2.

This leads to (15) with α = α0
def= (n − 1)/2 and β = β0

def= k/2. To extend (15)
to the whole claimed intervals, we, apply (as it is done in [6]) the already proved
inequality to the new function

fγ,δ
def= f ∗ (|x|γ−nyδ−k−1),

where

γ def= α0 − α
2

> 0 and δ def= β0 − β
2

> 0.
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In fact, the mixed Fourier–Bessel transform of |x|γ−nyδ−k−1 is decomposed(
in the same way as the mixed Fourier–Bessel transform of |x|−(n−1)/2y−k/2 is

decomposed above
)

into the product of the Fourier transform of the Riesz kernel
|x|γ−n and the pure Fourier–Bessel transform of the power function yδ−k−1. From
this, we conclude that f̂γ ,δ = Cγ,δf̂ |x|−γ y−δ . Now, it remains to go back from γ, δ
to α, β and obtain the powers in (15). We note that Cγ,δ appears at both parts of the
inequality. Therefore, C in (15) does not really depend on α and β.

In the critical case (i. e, for n = 1), the variable x vanishes at the right-hand part
of inequality (17), and the above arguing leads to (16). ��
Remark 5.2 Inequalities (15)–(16) hold for each nonnegative f such that the right-
hand part of the inequality converges (in particular, for each nonnegative f from
L1,k(R

n+1+ ) ∩ L2,k(R
n+1+ )). However, the inequality remains to be valid formally

even if its right-hand part diverges.

6 Estimates for the Case of Several Special Variables

6.1 Preliminaries

In this section, we extend the necessary notation and definitions of Sect. 2 to the
considered case. Also, we recall the necessary properties of the Fourier–Bessel
transformation.

Let k
def= (k1, . . . , km)

def= (2ν1 + 1, . . . , 2νm + 1) denote a positive multi-index
such that kl > 0 for each l = 1,m. Let |k| denote the length k1 + · · · + km of k.

Introduce Rm(+)
def=

{
y = (y1, . . . , ym)

∣∣∣ yl > 0 for each l = 1,m
}

and R
n+m+

def={
(x, y)

∣∣∣ x ∈ R
n, y ∈ R

m
(+)

}
.

In the sequel, all the absolute constants generally depend on k, m, and n.

Let S(r) denote the sphere
{
x ∈ R

n
∣∣∣ |x| = r

}
, Sl+(r) denote the spherical

segment
{
(x, y) ∈ R

n+l+
∣∣∣ |x|2 + |y|2 = r2

}
, where l = 1,m, S+(r) denote the

spherical segment
{
y ∈ R

m
(+)

∣∣∣ |y| = r
}

, and B+(r) denote the following segment

of the ball:
{
y ∈ R

m
(+)

∣∣∣ |y| ≤ r
}

.

Now, we can introduce

Lp,k(R
n+m+ )

def=
{
f

∣∣∣ ‖f ‖ =
( ∫

R
n+m+

m∏
l=1

y
kl
l |f (x, y)|pdxdy

) 1
p
<∞

}
, p <∞,
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and

L∞,k(Rn+m+ )
def=

{
f

∣∣∣ ‖f ‖ = sup
m∏
l=1

y
kl
l |f (x, y)| <∞

}
.

The set of infinitely smooth functions with compact supports, defined on R
n+m, is

denoted by C∞
0 (R

n+m).
The subset of C∞

0 (R
n+m) formed by functions that are even with respect to each

yl , l = 1,m, is observed; the set of restrictions of elements of that subset to R
n+m+

is denoted by C∞
0,even(R

n+m+ ) and is treated as the space of test functions.

Generalized functions (distributions) on C∞
0,even(R

n+m+ ) are introduced (follow-

ing, e. g., [1]) with respect to the degenerative measure
m∏
l=1
y
kl
l dxdy:

〈f, ϕ〉def=
∫

R
n+m+

m∏
l=1

y
kl
l f (x, y)ϕ(x, y)dxdy for each ϕ from C∞

0,even(R
n+m+ ).

(18)

Thus, all linear continuous functionals onC∞
0,even(R

n+m+ ) that could be given by (18)

(with f from L1,k,loc(R
n+m+ )) are called regular (and the corresponding function f

is called ordinary).
The Fourier–Bessel transformation is introduced according to [2, 5]:

f̂ (ξ, η)
def= Fbf

def=
∫

R
m
(+)

∫

Rn

m∏
l=1

y
kl
l jνl (ηlyl)e

−ix·ξf (x, y)dxdy.

Note (see [2]) that

f (x, y) = C
∫

R
m
(+)

∫

Rn

m∏
l=1

η
kl
l jνl (ηlyl)e

ix·ξ f̂ (ξ, η)dξdη.

The generalized convolution is introduced according to [4, 5]:

f̂ (ξ, η)
def=(f ∗ g)(ξ, η)

def=
∫

R
m
(+)

∫

Rn

m∏
l=1

y
kl
l T

η
y f (x1 − ξ1, . . . , xm − ξm, y1, . . . , ym)dxdy.

It satisfies the relation f̂∗g = f̂ ĝ (see also [3]).
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Here, T hy f (x, y)
def= T h1,...,hm

y1,...,ym f (x, y)
def= T h1

y1 T
h2
y2 · · ·T hmym f (x, y), where T hlyl de-

notes (for l = 1,m) the generalized translation operator with respect to the
corresponding special variable, defined by relation (6) above:

T hlyl f (y) = C
π∫

0

f

(
x, y1, . . . , yl−1,

√
y2
l + h2

l − 2ylhl cos θ, yl+1, . . . , ym

)

× sinkl−1 θdθ.

Note (see [4, 5]) that

∫

R
m
(+)

m∏
l=1

η
kl
l g(η)T

η
y f (y)dη =

∫

R
m
(+)

m∏
l=1

η
kl
l f (η)T

η
y g(y)dη.

6.2 Estimates for the General Case

We start our investigation from the case of several nonspecial variables, i. e., the
case where n > 1; the critical cases of n = 1 and n = 0 are considered in Sects. 6.3
and 6.4 respectively, while the case of a single special variable, i. e., the case where
m = 1, is investigated in Sect. 5; hence, in the sequel, we assume that m > 1.

Thus, let m ≥ 2 and n ≥ 2.
Now, as in Sect. 5, we have to define the weighted spherical mean and the

corresponding generalized function of the weighted spherical averaging:

σp,q(f )(r)
def=σ(f )(r)
def=

∫

Sm+ (1)

|x|pyq1
1 · · · yqmm |f̂ (rx, ry)|2dSx,ydef=〈σr , |f̂ |2〉def=〈σp,qr , |f̂ |2〉,

where p > −n and ql > −1, l = 1,m.
The following assertion is valid.

Theorem 6.1 If m ≥ 2, n ≥ 2, k is a positive multi-index, p > −n, and ql >
−1 (l = 1,m), then there exists C such that the inequality

‖rα+|β|σp+α,q+β(f )‖∞ ≤ C‖rα+|β|−1σα−n,β−1(f )‖1 (19)

holds for each nonnegative f from L1,k(R
n+m+ )∩L2,k(R

n+m+ ) provided that α ∈(
0,
n− 1

2

)
and βl ∈

(
0,
kl

2

)
(l = 1,m) or (α, β) =

(
n− 1

2
,
k1

2
, . . . ,

km

2

)
.
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Proof Estimate

gr(x, y)
def= σ̂r =

∫

Sm+ (1)

|ξ |peirx·ξ
m∏
l=1

η
ql
l jνl (rylηl)dSξ,η

=
1∫

0

η
qm
m jνm(rymηm)

∫

Sm−1+ (
√

1−η2
m)

|ξ |peirx·ξ

×
m−1∏
l=1

η
ql
l jνl (rylηl)dSξ,η1,...,ηm−1

dηm√
1 − η2

m

=
1∫

0

η
qm
m jνm(rymηm)

√
1−η2

m∫

0

η
qm−1
m−1 jνm−1(rym−1ηm−1)

×
∫

Sm−2+ (

√
1−η2

m−η2
m−1)

|ξ |peirx·ξ

×
m−2∏
l=1

η
ql
l jνl (rylηl)dSξ,η1,...,ηm−2

√
1 − η2

mdηm−1√
1 − η2

m−1 − η2
m

dηm√
1 − η2

m

. . .

=
1∫

0

η
qm
m jνm(rymηm)

√
1−η2

m∫

0

η
qm−1
m−1 jνm−1(rym−1ηm−1) . . .

. . .

√
1−η2

m−···−η2
2∫

0

η
q1
1 jν1(ry1η1)(1 − |η|2) p2

∫

S

(√
1−|η|2

) e
irx·ξdSξ

× 1√
1 − |η|2 dη1 . . . dηm
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(see, e. g., [14, p. 155])

=
1∫

0

η
qm
m jνm(rymηm)

√
1−η2

m∫

0

η
qm−1
m−1 jνm−1(rym−1ηm−1) . . .

. . .

√
1−η2

m−···−η2
2∫

0

η
q1
1 jν1(ry1η1)

(1 − |η|2) n+p−1
2√

1 − |η|2

× (r
√

1 − |η|2|x|) 2−n
2 Jn−2

2
(r

√
1 − |η|2|x|)dη

= r−|ν||x| 2−n
2

m∏
l=1

y
−νl
l

1∫

0

η
qm−νm
m Jνm(rymηm)

×

√
1−η2

m∫

0

η
qm−1−νm−1
m−1 Jνm−1(rym−1ηm−1) . . .

√
1−η2

m−···−η2
2∫

0

η
q1−ν1
1 Jν1(ry1η1)

× (1 − |η|2) n+p−1
2 + 2−n

4√
1 − |η|2 r

2−n
2 Jn−2

2
(r

√
1 − |η|2|x|)dη

= r 2−n
2 −|ν||x| 2−n

2

m∏
l=1

y
−νl
l

1∫

0

η
qm−νm
m Jνm(rymηm)

×

√
1−η2

m∫

0

η
qm−1−νm−1
m−1 Jνm−1(rym−1ηm−1) . . .

. . .

√
1−η2

m−···−η2
2∫

0

η
q1−ν1
1 Jν1(ry1η1)(1 − |η|2) n+2p−2

4 Jn−2
2
(r

√
1 − |η|2|x|)dη.
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Since |Jμ(t)| ≤ C√
t

provided that t > 0, it follows that

|gr(x, y)| ≤ Cr m+2−n−|k|
2 |x| 1−n

2 r−
m+1

2

m∏
l=1

y
−νl− 1

2
l

×
∫

B+(1)

(1 − |η|2) n+2p−3
2

m∏
l=1

η
ql−νl− 1

2
l dη = Cr 1−n−|k|

2 |x| 1−n
2

m∏
l=1

y
− kl

2
l

provided that p > −n+ 1

2
and ql >

kl

2
− 1, l = 1,m.

This means that the Fourier–Bessel transform of σr is a regular generalized
function (though σr itself is a singular generalized function).

Further, similarly to Sect. 5, we conclude that σ(f )(r) = 〈f ∗ gr , f 〉. Then, due
to the nonnegativity of f , the last expression is less than or equal to

∫

R
n+m+

m∏
l=1

η
kl
l f (ξ, η)

∫

R
n+m+

m∏
l=1

y
kl
l |gr(x, y)| T ηy f (x − ξ, y) dxdydξdη

since the generalized translation operator preserves the sign.
Hence,

σ(f )(r) ≤ Cr 1−n−|k|
2

〈
f, f ∗

(
|x|− n−1

2

m∏
l=1

y
− kl

2
l

)〉

= Cr 1−n−|k|
2

〈
Fb

(
|x|− n−1

2

m∏
l=1

y
− kl

2
l

)
, |f̂ |2

〉
.

On the other hand,

Fb

(
|x|− n−1

2

m∏
l=1

y
− kl

2
l

)
= C|ξ |− n+1

2

m∏
l=1

η
− kl

2 −1
l

(see, e. g., [14, p. 155] and Sect. 3).
Therefore, for each nonnegativef fromL1,k(R

n+m+ )∩L2,k(R
n+m+ ), the inequality

σ(f )(r) ≤ Cr 1−n−|k|
2

∫

R
m
(+)

∫

Rn

|x|− n+1
2

m∏
l=1

y
kl
2 −1
l |f̂ (x, y)|2dxdy

holds on (0,+∞).
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Actually, this is the claimed estimate (19) for (α, β) =
(
n− 1

2
, ν + 1

2

)
.

In order to extend it to each α from

(
0,
n− 1

2

)
and each (β1, . . . , βm) from

m∏
l=1

(
0, νl + 1

2

)
, we have to introduce fγ,δ

def=f ∗
(
|x|γ−n

m∏
l=1

y
δl−kl−1
l

)
,where γ =

n− 2α − 1

4
> 0 and δl = 2νl − 2βl + 1

4
> 0, l = 1,m (cf. Sects. 3 and 5). Then

we apply the last inequality to this new function fγ,δ .
This yields the inequality

sup
R+
rα+|β|σp− n−1

2 +α,q− k
2 +β(f )(r)

≤ C
∫

R
m
(+)

∫

Rn

|x|α−n
m∏
l=1

y
βl−1
l |f̂ (x, y)|2dxdy (20)

(valid under the same assumptions about f ).

The right-hand part of (20) is equal to C

∞∫

0

rα+|β|−1σα−n,β−1f (r)dr . ��

6.3 The Case of a Single Nonspecial Variable

Let n = 1. Then, similarly to Sect. 6.2, we have

gr(x, y) =
∫

Sm+ (1)

|ξ |peirxξ
m∏
l=1

η
ql
l jνl (rylηl)dSξ,η

=
1∫

0

η
qm
m jνm(rymηm)

√
1−η2

m∫

0

η
qm−1
m−1 jνm−1(rym−1ηm−1) . . .

. . .

√
1−|η|2+η2

1∫

0

(1 −|η|2) p2 ηq1
1 jν1(ry1η1)

(
eix

√
1−|η|2r + e−ix

√
1−|η|2r) dη√

1 − |η|2 .
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This is equal to

= 2

1∫

0

η
qm
m jνm(rymηm)

√
1−η2

m∫

0

η
qm−1
m−1 jνm−1(rym−1ηm−1) . . .

. . .

√
1−|η|2+η2

1∫

0

η
q1
1 jν1(ry1η1)(1 − |η|2) p−1

2 cos rx
√

1 − |η|2dη.

Since
∣∣∣ cos rx

√
1 − |η|2

∣∣∣ ≤ 1, it follows that the inequality

|σ̂r | = |gr(x, y)| ≤ C

r
|k|
2

m∏
l=1
y
kl
2
l

holds provided that p > −1 and ql >
kl

2
− 1, l = 1,m.

Therefore, for each positive r , we have the relation

σp,q(f )(r) ≤ Cr− |k|
2

〈
Fb

( m∏
l=1

y
kl
2
l

)
, |f̂ |2

〉

= Cr− |k|
2

∫

R
m
(+)

m∏
l=1

y
kl
2 −1
l |f̂ (0, y)|2dy (21)

(cf. [7, (1.3)]).

6.4 The Case of Absence of Nonspecial Variables

Let n = 0. Then

f̃ (η)
def=

∫

R
m
(+)

y
k1
1 . . . y

km
m f (y1, . . . , ym)jν1(y1η1) . . . jνm(ymηm)dy.
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Therefore,

gr(x, y)
def= σ̃r =

∫

S+(1)

m∏
l=1

η
ql
l jνl (rylηl)dSη

= r−|ν|
m∏
l=1

y
−νl
l

1∫

0

η
qm−νm
m Jνm(rymηm)

√
1−η2

m∫

0

η
qm−1−νm−1
m−1 Jνm−1(rym−1ηm−1) . . .

. . .

√
1−η2

m−···−η2
2∫

0

η
q1−ν1
1 Jν1(ry1η1)dη1 . . . dηm.

Hence, if ql >
kl

2
− 1, l = 1,m, then

|σ̃r | ≤ Cr−|ν|
m∏
l=1

y
−νl− 1

2
l r−

m
2

∫

S+(1)

m∏
l=1

η
ql− kl

2
l dSη

def=Cr− |k|
2

m∏
l=1

y
− kl

2
l .

Therefore, for each nonnegative f from L1,k(R
m
(+)) ∩ L2,k(R

m
(+)), the inequality

σ 0,q(f )(r) ≤ Cr− |k|
2

∫

R
m
(+)

m∏
l=1

y
kl
2 −1
l f̃

2
(y)dy

holds on (0,+∞) and (similarly to Sect. 6.2) the inequality

sup
R+
r |β|σ 0,q+β(f )(r) ≤ C

∫

R
m
(+)

m∏
l=1

y
βl−1
l f̃

2
(y)dy (22)

holds for each βl from

(
0,
kl

2

)
, l = 1,m.

The right-hand side of the inequality (22) is equal to

C

∞∫

0

∫

S+(r)

m∏
l=1

y
βl−1
l f̃

2
(y)dSydr

= C
∞∫

0

∫

S+(1)

r |β|−m
m∏
l=1

η
βl−1
l f̃

2
(rη)rm−1dSηdr = C‖r |β|−1σ 0,β−1(f )‖1.
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Thus the following statement is true:

Theorem 6.2 Let m ≥ 2, n = 0, and ql > −1, l = 1,m. Then there exists C such
that for any nonnegative f from L1,k(R

m
(+)) ∩ L2,k(R

m
(+)), the inequality

‖r |β|σ 0,q+β(f )‖∞ ≤ C‖r |β|−1σ 0,β−1(f )‖1

holds provided that β =
(
k1

2
, . . . ,

km

2

)
or β ∈

∏
l=1

(
0,
kl

2

)
.

7 Applications to Singular Equations

7.1 Estimates of Solutions of Singular Ordinary Differential
Equations

In this section, we apply the above one-dimensional results to estimate norms of
solutions of the singular ordinary differential equation

P(−B)u = f (y), (23)

where Bu
def= Bku

def= 1

yk

d

dy

(
yk
du

dy

)
is the Bessel operator and P is a polynomial

with real coefficients.
Let u from L2,k(0,+∞) satisfy Eq. (23) in the sense of generalized functions.

Then ũ belongs to L2,k(0,+∞) as well (see [2]) and

P(η2)ũ(η) = f̃ (η). (24)

Since P(η2) ∈ L2,k,loc(0,+∞) and ũ(η) ∈ L2,k,loc(0,+∞), it follows that f̃ (η) ∈
L1,k,loc(0,+∞), i. e., f̃ (η) is an ordinary function.

Thus, (24) bounds ordinary functions and, therefore the following division is
legible:

ũ(η) = f̃ (η)

P (η2)
∈ L2,k(0,+∞).

Now, we denote
f̃ (η)

P (η2)
by g(η) and assume that g is nonnegative and belongs

to L1,k(0,+∞); also, we assume that suppf̃ ⊂ [0, R]. Then g satisfies the
assumptions of Theorems 4.1–4.4 and u = g̃.
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This implies the validity of the following assertion.

Theorem 7.1 Let α ∈ (0, k+1), 0 ≤ f̃ (η)

P (η2)
∈ L1,k(0,+∞), suppf̃ ⊂ [0, R], and

u from L2,k(0,+∞) satisfy Eq. (23) in the sense of generalized functions. Then, if
βmin(α, k), then there exists C = C(α, β, k) such that the estimate

‖r β2 u‖∞ ≤ CRα−β
2 ‖r α−1

2 u‖2 (25)

holds. If the above is satisfied and α > k, then C does not depend on β.

Remark 7.2 In the same way, Corollary 4.3 and Theorem 4.6 imply that Theo-
rem 7.1 is not valid if β > min(α, k).

Remark 7.3 If α = β ≤ k

2
, then the constant C depends only on k and the

compactness condition for suppf̃ is taken off (see Sect. 3).

7.2 Estimates of Solutions of Singular Partial Differential
Equations

In this section we apply the above results to estimate norms of solutions of

P(−�B)u = f (x, y), (26)

where �Bu def=
n∑
j=1

∂2u

∂x2
j

+
m∑
l=1

1

y
kl
l

∂

∂yl

(
y
kl
l

∂u

∂yl

)
, l = 1,m, and P is a polynomial

with real coefficients.
Consider the general case of several special variables.
Let u from L2,k(R

n+m+ ) satisfy (26) in the sense of generalized functions. Then
û belongs to L2,k(R

n+m+ ) as well (see [2]) and

P(|ξ |2 + |η|2)û(ξ, η) = f̂ (ξ, η). (27)

Since P(|ξ |2 +|η|2) ∈ L2,k,loc(R
n+m+ ) and û(ξ, η) ∈ L2,k,loc(R

n+m+ ), it follows that
f̂ (ξ, η) ∈ L1,k,loc(R

n+m+ ), i. e., f̂ (ξ, η) is an ordinary function.
Thus, (27) bounds ordinary functions and, therefore, the following division is

legible:

û(ξ, η) = f̂ (ξ, η)

P (|ξ |2 + |η|2) ∈ L2,k(R
n+m+ ).
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Now, we denote
f̂ (ξ, η)

P (|ξ |2 + |η|2) by g(ξ, η) and assume that g is nonnegative and

belongs to L1,k(R
n+m+ ). Then g satisfies the conditions of Theorem 6.1 and u = ĝ.

This yields the following assertion.

Theorem 7.4 Let
f̂ (ξ, η)

P (|ξ |2 + |η|2) be a nonnegative function from L1,k(R
n+m+ ) and

u from L2,k(R
n+m+ ) satisfy Eq. (26) at least in the sense of generalized functions.

Let p > −n and ql > −1, l = 1,m. Then there exists C such that

‖rα+|β|−p−|q|σα,βu‖∞ ≤ C‖rα+|β|−p−|q|−1σα−n−p,β−q−1u‖1

for (α, β) = (α, β1, . . . , βm) =
(
p + n− 1

2
, q1 + k1

2
, . . . , qm + km

2

)
and for

each (α, β) such that α ∈
(
p,p + n− 1

2

)
and βl ∈

(
ql, ql + kl

2

)
, l = 1,m.

In the same way, (21) yields the following assertion.

Theorem 7.5 Let
f̂ (ξ, η)

P (ξ2 + |η|2) be a nonnegative function from L1,k(R
1+m+ ) and u

from L2,k(R
1+m+ ) satisfy Eq. (26) at least in the sense of generalized functions. Let

p > −1 and ql >
kl

2
− 1, l = 1,m. Then there exists C such that

‖r |k|
2 σp,qu‖∞ ≤ C‖

m∏
l=1

y
kl
2 −1
l u2(0, y)‖1.

Finally, Theorem 6.2 yields the following assertion.

Theorem 7.6 Let
f̃ (η)

P (|η|2) ∈ L1,k(R
m
(+)),

f̃ (η)

P (|η|2) ≥ 0, and a function u from

L2,k(R
m
(+)) satisfy Eq. (26) at least in the sense of generalized functions. Let

ql > −1, l = 1,m. Then

‖r |β|−|q|σ 0,βu‖∞ ≤ C‖r |β|−|q|−1σ 0,β−q−1u‖1

for β = (β1, . . . , βm) =
(
q1 + k1

2
, . . . , qm + km

2

)
and for each β such that βl ∈(

ql, ql + kl

2

)
, l = 1,m.

Remark 7.7 Under the assumptions of Theorems 7.4–7.6, the right-hand parts of the
corresponding inequalities converge and the constant C depends only onm,n, k, p,
and q .
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Remark 7.8 In general, to ensure the right-hand part of an inequality of kind (2)
to be well defined, we need a greater smoothness than the one assumed by the
above theorems. However, since we assume the nonnegativity of the corresponding
integral transform of the solution, we can well define the said value as the norm
of the said integral transform in the space L1,k(R

1+). Indeed, such a definition
is entirely coordinated with the case of smooth functions: if u is smooth, then

u(0) =
+∞∫

0

ηkjν(ηy)û(η) dη
∣∣∣
y=0

=
+∞∫

0

ηkû(η) dη, which is equal to the said norm

because û is assumed to be nonnegative.
All the above results with low-dimensional traces (e. g., estimate (16)) are treated

in the same sense.

Remark 7.9 In [11], results of this section are extended to the case of pseudodiffer-
ential equations.
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Inversion of Hyperbolic B-Potentials

E. L. Shishkina

Abstract The paper is devoted to the study of the fractional integral operator which
is a negative real power of the singular wave operator generated by Bessel operator
and its inverse using weighted generalized functions. Such operators are called
hyperbolic B-potentials. Boundedness, Green formula, inversion were proved for
hyperbolic B-potentials here.

Keywords Hyperbolic Riesz B-potential · Fractional power of singular
hyperbolic operator · Lorentz distance · Singular Bessel differential operator ·
Generalized translation · Multidimensional Hankel transform · Green formula

1 Introduction

1.1 Transmutation Operators

Method of transmutation operators is important and powerful approach to study
problems connected with singular operators such, for example, the Bessel operator.
Non-zero operator T is called transmutation operator for two operators A and B if
TA = BT . In the framework of this method special classes of transmutation oper-
ators such as Sonine, Poisson, Buschman–Erdélyi and others are used (see [1–14]).

In order to construct transmutation operators integral transform composition
method is used (see [5, 6, 15, 16]) The method is based on the representation of
transmutation operators as compositions of basic integral transforms. The formal
algorithm of integral transform composition method is the next. Let us take as input
a pair of arbitrary operatorsA,B, and also connecting with them integral transforms
FA,FB , which are invertible and act by the formulas

FAA = g(t)FA, FBB = g(t)FB, (1)
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where t is a dual variable, g is an arbitrary function with suitable properties. Then we
can obtain formally a pair of transmutation operators P and S by the next formulas:

S = F−1
B

1

w(t)
FA, P = F−1

A w(t)FB (2)

with arbitrary function w(t). When P and S are transmutation operators intertwin-
ing A and B:

SA = BS, PB = AP. (3)

A formal checking of (3) can be obtained by direct substitution. The main difficulty
is the calculation of compositions (2) in an explicit integral form, as well as the
choice of domains of operatorsP and S. Here we use integral transform composition
method for constructing hyperbolic B-potential.

1.2 A Brief History of the Potentials Operators

In recent years, the interest to the Fractional Calculus has been increasing due to
its applications in many fields. As for multidimensional case the most developed
type of fractional integrals are Riesz potentials which are generalized both Newton
potential to the fractional case and Riemann-Liouville fractional integral to the
multidimensional case.

Let us start from the classical mechanic Newton potential. If f is integrable
function with compact support then the Newton potential of f is the convolution
product (see [17])

VNf (x) =
∫

Rn

v(x − y)f (y)dy,

where

v(x) =
{

1
2π log |x|, n = 2;

1
n(2−n)ωn |x|2−n, n �= 2,

ωn is a volume of unit ball Rn.

Newton potential VN of f is the solution to the Poisson equation

�VN = f, � =
n∑
i=1

∂2

∂x2
i

, x = (x1, . . . , xn) ∈ R
n,
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therefore, it can be considered as a negative degree of the Laplace operator:

VNf = �−1f.

Along with the Newtonian potential, the wave potential of the function f has
found wide applications (see [17])

VWf (x) =
∫

Rn

ε(x − y)f (y)dy,

where ε is a fundamental solution of the wave operator. For the wave potential VW
the next equality is true

�VW = f,

therefore, it can be considered as a negative degree of the D’Alembert operator:
VWf = �−1f .

Marsel Riesz was a Hungarian mathematician who first established the fractional
powers of the Laplace and D’Alembert operators (see [18] and [19]). Such potentials
are called the Riesz potentials now and have the forms

Iα�f (P ) = 1

γn(α)

∫

Rn

f (Q)rα−ndQ

and

Iα�f (P ) = 1

Hn(α)

∫

D

f (Q)rα−n
PQ dQ,

where P = (x1, . . . , xn),Q = (ξ1, . . . , ξn), γn(α), Hn(α) is normalizing constant,

r=
√
(x1 − ξ1)2 + (x2 − ξ2)2 + . . .+ (xn − ξn)2

is the Euclidean distance,

rPQ=
√
(x1 − ξ1)2 − (x2 − ξ2)2 − . . .− (xn − ξn)2

is the Lorentz distance, D = {x : x2
1 ≥ x2

2 + . . .+ x2
n} is the positive cone.

In [19] was shown that

�Iα+2
� f (P ) = −Iα�f (P )
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and

�Iα+2
� f (P ) = Iα�f (P ).

For further properties such as conditions of existence, semigroup property and
inversion see [19–23]. The theory of hyperbolic potentials introduced in [22] was
developed in the articles [24, 25].

More attention was paid to Riesz potentials with Euclidean distance (see [26–
30]). In [31] and [32] kernels of fractional powers which are the set of all positive
powers of the operator generated by the Green function for the Laplace equation
were studied. In [33–39] optimal embedding of spaces of Bessel and Riesz types
potentials are obtained.

As for classical Riesz potentials with Lorentz distance we refer to [23, 40].
The theory of fractional powers of elliptic operators with Bessel operator

Bν=D2 + ν

x
D, D = d

dx

acting instead of all or some second derivatives in� is well developed (see [41–58]).
Fractional powers of hyperbolic operators, with Bessel operators instead of all or

some second derivatives, are much less studied. Such operators have wide areas of
application such as singular differential equations, differential geometry and random
walks.

In this article we study real powers of

�γ = Bγ1 − Bγ2 − . . .− Bγn, Bγi = ∂2

∂x2
i

+ γi

xi

∂

∂xi
, i = 1, . . . , n.

Composition method (see [5, 8, 11, 16]) was used for construction of (�γ )−
α
2 , α > 0.

1.3 Basic Definitions

Suppose that Rn is the n-dimensional Euclidean space,

R
n+={x=(x1, . . . , xn) ∈ R

n, x1>0, . . . , xn>0},

γ=(γ1, . . ., γn) is a multi-index consisting of positive fixed real numbers γi ,
i=1, . . ., n, and |γ |=γ1+. . .+γn.

Let 	 be finite or infinite open set in R
n symmetric with respect to each

hyperplane xi=0, i = 1, . . . , n, 	+ = 	 ∩ R
n+ and 	+ = 	 ∩ R

n+ where
R
n+={x=(x1, . . . , xn)∈Rn, x1≥0, . . . , xn≥0}. We deal with the class Cm(	+)

consisting of m times differentiable on 	+ functions and denote by Cm(	+) the
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subset of functions from Cm(	+) such that all derivatives of these functions with
respect to xi for any i = 1, . . . , n are continuous up to xi=0. Class Cmev(	+)

consists of all functions fromCm(	+) such that ∂
2k+1f

∂x2k+1
i

∣∣∣∣
x=0

= 0 for all non-negative

integer k ≤ m−1
2 (see [59] and [60], p. 21). In the following we will denoteCmev(R

n+)
by Cmev . We set

C∞
ev (	+) =

⋂
Cmev(	+)

with intersection taken for all finite m and C∞
ev (R+) = C∞

ev .
As the space of basic functions we will use the subspace of the space of rapidly

decreasing functions:

Sev =
{
f ∈ C∞

ev : sup
x∈Rn+

∣∣xαDβf (x)∣∣ <∞ ∀α, β ∈ Z
n+

}
,

where α = (α1, . . . , αn), β = (β1, . . . , βn), α1, . . . , αn, β1, . . . , βn are integer
non-negative numbers, xα = xα1

1 x
α2
2 . . . x

αn
n , Dβ = Dβ1

x1 . . .D
βn
xn , Dxj = ∂

∂xj
.

Let Lγp(Rn+) = L
γ
p , 1≤p<∞, be the space of all measurable in R

n+ functions
even with respect to each variable xi , i = 1, . . . , n such that

∫

R
n+

|f (x)|pxγ dx <∞,

where and further

xγ =
n∏
i=1

x
γi
i .

For a real number p ≥ 1, the Lγp-norm of f is defined by

||f ||Lγp(Rn+) = ||f ||p,γ =
⎛
⎜⎝

∫

R
n+

|f (x)|pxγ dx
⎞
⎟⎠

1/p

.

Weighted measure of 	+ is denoted by mesγ (	+) and is defined by formula

mesγ (	+) =
∫

	+

xγ dx.
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For every measurable function f (x) defined on R
n+ we consider

μγ (f, t) = mesγ {x ∈ R
n+ : |f (x)| > t} =

∫

{x: |f (x)|>t}+
xγ dx

where {x:|f (x)|>t}+={x∈Rn+:|f (x)|>t}. We will call the function μγ = μγ (f, t)
a weighted distribution function |f (x)|.

Space Lγ∞(Rn+)=Lγ∞ is the space of all measurable in R
n+ functions even with

respect to each variable xi , i = 1, . . . , n for which the norm

||f ||Lγ∞(Rn+) = ||f ||∞,γ = ess supγ
x∈Rn+

|f (x)| = inf
a∈R{μγ (f, a) = 0}

is finite.

Statement 1 Norms of spaces Lγp and Lγ∞ related by equality

||f ||∞,γ = lim
p→∞ ||f ||p,γ , f ∈ Lγ∞. (4)

For 1 ≤ p ≤ ∞ the Lγp,loc(R
n+) = L

γ
p,loc is the set of functions u(x) defined

almost everywhere in R
n+ such that uf ∈ Lγp for any f ∈ Sev .

Definition 1 The space of weighted distributions S′
ev(R

n+) = S′
ev is a class of

continuous linear functionals that map a set of test functions f ∈ Sev into the set
of real numbers. Each function u(x) ∈ Lγ1,loc will be identified with the functional
u ∈ S′

ev(R
n+) = S′

ev acting according to the formula

(u, f )γ =
∫

R
n+

u(x) f (x) xγ dx, f ∈ Sev. (5)

Functionals u ∈ S′
ev acting by the formula (5) will be called regular weighted

functionals. All other continuous linear functionals u ∈ S′
ev will be called singular

weighted functionals.

We consider regular generalized functions

(Pλγ , ϕ)γ =
∫

R
n+

Pλ(x)ϕ(x)xγ dx, xγ =
n∏
i=1

x
γi
i , (6)

where P(x) = α1x
2
1 + . . . + αnx2

n is quadratic form with complex coefficients, ϕ
is appropriate basic function. Let P=x2

1 − x2
2 − . . . − x2

n, and P ′ = ε(x2
1 + . . . +
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x2
n), ε > 0. Weighted generalized functions (P ± i0)λγ are defined by

(P ± i0)λγ = lim
ε→0
(P ± iP ′)λγ

in which we passing to the limit under the integral sign in (6).
Generalized function δγ is defined by the equality (by analogy with [61])

(δγ , ϕ)γ = ϕ(0), ϕ(x) ∈ Sev.

Definition 2 The multidimensional generalized translation is defined by the
equality

(γTyxf )(x) = γTyxf (x) = ( γ1T
y1
x1 . . .

γnT
yn
xn f )(x), (7)

where each of one-dimensional generalized translation γi T
yi
xi acts for i=1, . . ., n

according to

( γi T
yi
xi f )(x)=


(
γi+1

2

)
√
π

( γi
2

)×

×
π∫

0

f (x1, . . . , xi−1,

√
x2
i + τ 2

i − 2xiyi cosϕi, xi+1, . . . , xn) sinγi−1 ϕi dϕi.

We will use the generalized convolution product defined by the formula

(f ∗ g)γ (x) =
∫

R
n+

f (y)( γTyxg)(x)y
γ dy, f, g ∈ Sev

where γTyx is multidimensional generalized translation (7).
The generalized convolution (u ∗ f )γ of a weighted distribution u ∈ S′

ev and a
function f ∈ Sev is defined by

(u ∗ f )γ (x) = (u, γT·
xf )γ

where the right-hand side denotes u acting on γTyxf as a function of y.
Based on the multidimensional generalized translation γTyx the weighted spheri-

cal meanMγ
t [f (x)] of a suitable function is defined by the formula (see [62–64])

M
γ
t [f (x)] = 1

|S+
1 (n)|γ

∫

S+
1 (n)

γTtθx f (x)θ
γ dS, (8)
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where θγ=
n∏
i=1
θ
γi
i , S

+
1 (n)={θ :|θ |=1, θ∈Rn+} and

|S+
1 (n)|γ =

n∏
i=1

(
γi+1

2

)

2n−1
(
n+|γ |

2

) . (9)

It is easy to see that

M
γ

0 [f (x)] = f (x), ∂

∂t
M
γ
t [f (x)]

∣∣∣∣
t=0

= 0. (10)

We will deal with the singular Bessel differential operator Bν (see, for
example, [60], p. 5):

(Bν)t = ∂2

∂t2
+ ν

t

∂

∂t
= 1

tν

∂

∂t
tν
∂

∂t
, t > 0

and the elliptical singular operator or the Laplace-Bessel operator ,γ :

,γ = (,γ )x =
n∑
i=1

(Bγi )xi =
n∑
i=1

(
∂2

∂x2
i

+ γi

xi

∂

∂x

)
=

n∑
i=1

1

x
γi
i

∂

∂xi
x
γi
i

∂

∂xi
.

(11)

The operator (11) belongs to the class of B-elliptic operators by I. A. Kipriyanovs’
classification (see [60]).

Statement 2 ([14]) The weighted spherical mean Mγ
t [f (x)] is the transmutation

operator intertwining (�γ )x and (Bn+|γ |−1)t for the f ∈ C2
ev:

(Bn+|γ |−1)tM
γ
t [f (x)] = Mγ

t [(�γ )xf (x)]. (12)

The natural method for the investigation of operators associated with the Bessel
differential operator is using the multidimensional Hankel transform instead of
Fourier transform.

Definition 3 The Hankel transform of a function f∈Lγ1 (Rn+) is expressed as

Fγ [f ](ξ) = Fγ [f (x)](ξ) = f̂ (ξ) =
∫

R
n+

f (x) jγ (x; ξ)xγ dx,
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where

jγ (x; ξ) =
n∏
i=1

j γi−1
2
(xiξi ), γ1 > 0, . . . , γn > 0,

the symbol jν is used for the normalized Bessel function:

jν(r) = 2ν(ν + 1)

rν
Jν(r) (13)

and Jν(r) is the Bessel function of the first kind of order ν (see [65]).
For f ∈ Sev inverse Hankel transform is defined by

F−1
γ [f̂ (ξ)](x) = f (x) = 2n−|γ |

n∏
j=1

2
(
γj+1

2

)
∫

R
n+

jγ (x, ξ)f̂ (ξ)ξγ dξ.

If g ∈ S′
ev then equality

(Fγ g, ϕ)γ = (g,Fγ ϕ)γ , ϕ ∈ Sev (14)

defines Hankel transform of functional g ∈ S′
ev .

In [66] the space �V consisting of functions vanished on a given closed set V of
measure zero was considered. The Lizorkin–Samko space �V is dual to �V in the
sense of Fourier transforms. We introduce the space �γV of functions Sev vanished
with all their derivatives on a given closed set V :

�
γ

V = {ψ ∈ Sev(Rn+) : (Dkψ)(x) = 0, x ∈ V, |k| = 0, 1, 2, . . .}.

Space �γV is dual to �γV in the sense of Hankel transforms:

�
γ
V = {ϕ : Fγ ϕ ∈ �γV }. (15)

Statement 3 ([14]) Integral
∫

S+
1 (n)

jγ (rθ, ξ)θγ dS is calculated by the formula

∫

S+
1 (n)

jγ (rθ, ξ)θγ dS =

n∏
i=1

(
γi+1

2

)

2n−1
(
n+|γ |

2

) j n+|γ |
2 −1(r|ξ |). (16)
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A linear operator A is of strong type (p, q)γ , 1≤p≤∞, 1≤q≤∞ if it is defined
from Lγp to Lγq and the following inequality is valid:

||Af ||q,γ ≤ h||f ||p,γ , ∀ f ∈ Lγp, (17)

where constant h does not depend on f .
We say that a linear operator A is an operator of weak type (p, q)γ (1 ≤ p ≤

∞, 1 ≤ q <∞) if

μγ (Af, λ) ≤
(
h||f ||p,γ
λ

)q
, ∀ f ∈ Lγp, (18)

where h does not depend on f and λ, λ > 0.
If q = ∞ then a linear operator A is an operator of weak type (p, q)γ when is

has strong type (p, q)γ .
Let p, q, r ∈ [1,∞] and

1

p
+ 1

q
= 1 + 1

r
. (19)

If f ∈ L
γ
p , g ∈ L

γ
q , 1 ≤ p, q, r ≤ ∞, 1

q
= 1

p
+ 1

r
− 1 then a generalized

convolution(f ∗g)γ is bounded almost everywhere and Hausdorff-Young inequality
is valid

||(f ∗ g)γ ||r,γ ≤ ||f ||p,γ ||g||q,γ . (20)

Inequality

||(f ∗ g)γ ||∞,γ ≤ ||f ||p,γ |||g||q,γ (21)

is obtained from (20) by tending to the limit with r → ∞ using (4) (p and q should
be such that 1/p + 1/q = 1).

We present here the Marcinkiewicz interpolation theorem in the following form
(see [67]).

Theorem 1 Let 1 ≤ pi ≤ qi < ∞, (i = 1, 2), q1 �= q2, 0 < τ < 1, 1
p
=1−τ
p1

+ τ
p2

,
1
q
=1−τ

q1
+ τ
q2

. If a linear operator A has simultaneously weak types (p1, q1)γ and
(p2, q2)γ then an operator A has a strong type (p, q)γ and

||Af ||q,γ ≤M||f ||p,γ , (22)

where a constantM = M(γ, τ, κ, p1, p2, q1, q2) and does not depend on f and A.
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Appell hypergeometric function F4(a, b, c1, c2; x, y) (see [68], p. 658) for
|x|1/2 + |y|1/2<1 has the form

F4(a, b, c1, c2; x, y) =
∞∑

m,n=0

(a)m+n(b)m+n
(c1)m(c2)n m! n! x

myn. (23)

For |x|1/2 + |y|1/2 ≥ 1 function F4(a, b; c1, c2; x, y) is understood as an analytical
continuation, which is determined by the formulas from [69].

2 Hyperbolic B-Potentials and Their Properties

2.1 Definitions of the Hyperbolic B-Potentials

We consider fractional powers of the hyperbolic expression with Bessel operators

�γ = Bγ1 − Bγ2 − . . .− Bγn, Bγi = ∂2

∂x2
i

+ γi

xi

∂

∂xi
, i = 1, . . . , n

in Sev and Lγp . Negative real powers of �γ we will call hyperbolic B-potentials.

Definition 4 Hyperbolic B-potentials IαP±i0,γ for α > n + |γ | − 2 are defined by
formulas

(IαP±i0,γ f )(x) = e±
n−1+|γ ′|

2 iπ

Hn,γ (α)

∫

R
n+

(P ± i0)
α−n−|γ |

2
γ (γTyxf )(x)y

γ dy, yγ=
n∏
i=1

y
γi
i ,

(24)

where γ ′ = (γ2, . . . , γn), |γ ′| = γ2 + . . .+ γn,

Hn,γ (α) =

n∏
i=1

(
γi+1

2

)

(
α
2

)

2n−α
(
n+|γ |−α

2

) .

For 0 ≤ α ≤ n+ |γ | − 2 hyperbolic B-potentials IαP±i0,γ are defined as

(IαP±i0,γ f )(x) = (�γ )k(Iα+2k
P±i0,γ f )(x)

= e±
n−1+|γ ′ |

2 iπ

Hn,γ (α + 2k)
(�γ )k

∫

R
n+

(P ± i0)
α+2k−n−|γ |

2
γ (γTyxf )(x)yγ dy,

(25)
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where k =
[
n+|γ |−α

2

]
.

It is well known (see for example [60]) that generalized convolution of weighted
generalized functions and regular function is a regular function.

Using property of weighted generalized functions (P ± i0)λγ see [70] we can
rewrite formulas (24) as

(IαP±i0,γ f )(x) = e±
n−1+|γ ′|

2 iπ

Hn,γ (α)

⎡
⎣

∫

K+

rα−n−|γ |(y)(γTyxf )(x)y
γ dy+

+e± α−n−|γ |
2 πi

∫

K−
|r(y)|α−n−|γ |(γTyxf )(x)y

γ dy

⎤
⎦ , (26)

where

K+ = {x : x ∈ R
n+ : P(x) ≥ 0}, K− = {x : x ∈ R

n+ : P(x) ≤ 0},

r(y) = √
P(y) =

√
y2

1 − y2
2 − . . .− y2

n.

Function r(y) is a Lorentz distance and K+ is a part of light cone.
Introducing the notations

(IαP+,γ f )(x) =
∫

K+
rα−n−|γ |(y)(γTyxf )(x)y

γ dy, (27)

(IαP−,γ f )(x) =
∫

K−
|r(y)|α−n−|γ |(γTyxf )(x)y

γ dy, (28)

we can write formulas (24) as

(IαP±i0,γ f )(x) = e±
n−1+|γ ′|

2 iπ

Hn,γ (α)

[
(IαP+,γ f )(x)+ e±

α−n−|γ |
2 πi(IαP−,γ f )(x)

]
. (29)

Remark 1 Let y ′ = (y2, . . . , yn), |y ′| =
√
y2

2 + . . .+ y2
n, (y ′)γ ′ = y

γ2
2 . . . y

γn
n ,

α > n+ |γ | − 2.
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For n ≥ 3 we have

(IαP+,γ f )(x) =
∞∫

0

y
γ1
1 dy1

∫

{|y ′|<y1}+
(y2

1 −|y ′|2) α−n−|γ |
2 (γTyxf )(x)(y

′)γ ′
dy ′, (30)

(IαP−,γ f )(x) =
∞∫

0

y
γ1
1 dy1

∫

{|y ′|>y1}+
(|y ′|2 −y2

1)
α−n−|γ |

2 (γTyxf )(x)(y ′)γ ′
dy ′, (31)

where {|y ′| < y1}+ = {y ∈ R
n+ : |y ′| < y1}, {|y ′| > y1}+ = {y ∈ R

n+ : |y ′| > y1}.
For n = 2 we have

(IαP+,γ f )(x) =
∞∫

0

y
γ1
1 dy1

y1∫

0

(y2
1 − y2

2)
α−2−|γ |

2 (γTyxf )(x)y
γ2
2 dy2,

(IαP−,γ f )(x) =
∞∫

0

y
γ1
1 dy1

∞∫

y1

(y2
2 − y2

1)
α−2−|γ |

2 (γTyxf )(x)y
γ2
2 dy2.

Passing to the spherical coordinates y ′ = ρσ in (30) and in (31) we obtain

(IαP+,γ f )(x) = |S+
1 (n− 1)|γ×

×
∞∫

0

y
γ1
1 dy1

y1∫

0

(y2
1 − ρ2)

α−n−|γ |
2 ρn+|γ ′|−2( γ1T

y1
x1 )(M

γ ′
ρ )x ′ [f (x1, x

′)]dρ, (32)

(IαP−,γ f )(x) = |S+
1 (n− 1)|γ×

∞∫

0

y
γ1
1 dy1

∞∫

y1

(ρ2 − y2
1)

α−n−|γ |
2 ρn+|γ ′|−2( γ1T

y1
x1 )(M

γ ′
ρ )x ′ [f (x1, x

′)]dρ, (33)

where

(Mγ ′
ρ )x ′ [f (x1, x

′)] = 1

|S+
1 (n− 1)|γ

∫

S+
1 (n−1)

γ ′
Tρσ
x ′ f (x1, x

′)σ γ ′
dS

is weighted spherical mean (8).
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If f (x) = ϕ(x1)G(x
′) then (32) and (33) have forms

(IαP+,γ f )(x)=|S+
1 (n−1)|γ×

∞∫

0

( γ1T
y1
x1 )[ϕ(x1)]yγ1

1 dy1

y1∫

0

(Mγ ′
ρ )x ′ [G(x ′)](y2

1 − ρ2)
α−n−|γ |

2 ρn+|γ ′|−2dρ, (34)

(IαP−,γ f )(x)=|S+
1 (n−1)|γ×

×
∞∫

0

( γ1T
y1
x1 )[ϕ(x1)]yγ1

1 dy1

∞∫

y1

(Mγ ′
ρ )x ′ [G(x ′)](ρ2−y2

1)
α−n−|γ |

2 ρn+|γ ′|−2dρ. (35)

2.2 Absolute Convergence and Boundedness

Theorem 2 Let f ∈ Sev and α > n + |γ | − 2. Then integrals (IαP±i0,γ f )(x)
converge absolutely for x ∈ R

n+.

Proof Let prove absolute convergence of each term in (26). Passing in (26) to
spherical coordinates y=ρσ , ρ=|y|, σ ′=(σ2, . . ., σn) we obtain

∫

K+
rα−n−|γ |(y)(γTyxf )(x)yγ dy =

=
∞∫

0

ρα−1dρ

∫

{S+
1 (n),|σ ′|<σ1}

(σ 2
1 − |σ ′|2) α−n−|γ |

2 (γTρσ f )(x)σ γ dS,

where

{S+
1 (n), |σ ′| < σ1} = {σ ′ ∈ R

n−1+ : σ 2
1 + |σ ′|2 = 1, |σ ′| < σ1}.

Using formula γTyxf (x)= γTxyf (y), inequality |γTyxf (x)|≤ sup
R
n+

|f (x)| (see [71, p.

124]) and considering that f ∈ Sev we get
∣∣∣∣∣∣
∫

K+
rα−n−|γ |(y)(γTyxf )(x)y

γ dy

∣∣∣∣∣∣ ≤

≤ C
∞∫

0

ρα−1

(1 + ρ2)
α+1

2

dρ

∫

S+
1 (n),|σ ′|<σ1

(σ 2
1 − |σ ′|2) α−n−|γ |

2 σγ dS <∞,
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for α > n + |γ | − 2. Similarly, we get that (28) converges absolutely for α >
n+|γ |−2. So for α > n+|γ |−2 integrals (IαP±i0,γ f )(x) converge absolutely. ��
Theorem 3 Let n+ |γ | − 2 < α < n+ |γ |, 1 ≤ p < n+|γ |

α
. For the next estimate

||IαP±i0,γ f ||q,γ ≤ Cn,γ,p||f ||p,γ , f (x) ∈ Sev (36)

to be valid it is necessary and sufficient that q = (n+|γ |)p
n+|γ |−αp . Constant Cn,γ,p does

not depend on f .

Proof (Necessity) Let n+ |γ | − 2 < α < n+ |γ |, 1 < p < n+|γ |
α

and for some q
an inequality

||IαP±i0,γ f ||q,γ ≤ Cn,γ,p||f ||p,γ , f (x) ∈ Sev (37)

is hold.
We show that the inequality (37) is valid only for q= (n+|γ |)p

n+|γ |−αp . Let obtain the
required inequality for each term in the representation (29).

Let consider the extension operator τδ : (τδf )(x) = f (δx), δ > 0. We have

||τδf ||p,γ =
⎛
⎜⎝
∫

R
n+

f p(δx)xγ dx

⎞
⎟⎠

1
p

=
⎛
⎜⎝δ−n−|γ |

∫

R
n+

f p(y)yγ dy

⎞
⎟⎠

1
p

.

Therefore

||τδf ||p,γ = δ− n+|γ |
p ||f ||p,γ . (38)

For (IαP+,γ f )(x) we obtain

(IαP+,γ f )(x) =
∫

K+
[y2

1 − y2
2 − . . .− y2

n]
α−n−|γ |

2 (γTyxτδf )(y)y
γ dy =

= 22n−|γ |C(γ )
∫

K+

[y2
1 − y2

2 − . . .− y2
n]
α−n−|γ |

2 yγ dy

(xy)γ−1 ×

×
x1+y1∫

|x1−y1|
. . .

xn+yn∫

|xn−yn|
f (δz)

n∏
i=1

zi [(z2
i − (xi − yi)2)((xi + yi)2 − z2

i )]
γi
2 −1dz =

= {δz = s} =
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= 22n−|γ |C(γ )
∫

K+

[y2
1 − y2

2 − . . .− y2
n]
α−n−|γ |

2 yγ dy

(xy)γ−1

δ(x1+y1)∫

δ|x1−y1|
. . .

δ(xn+yn)∫

δ|xn−yn|
f (s)δ−n×

×
n∏
i=1

si

δ

[(
s2
i

δ2 − (xi − yi)2
)(
(xi + yi)2 − s2

i

δ2

)] γi
2 −1

ds =

= δ2n−2|γ |22n−|γ |C(γ )
∫

K+

[y2
1 − y2

2 − . . .− y2
n]
α−n−|γ |

2 yγ dy

(xy)γ−1 ×

×
δ(x1+y1)∫

δ|x1−y1|
. . .

δ(xn+yn)∫

δ|xn−yn|
f (s)

n∏
i=1

si [(s2
i − δ2(xi − yi)2)(δ2(xi + yi)2 − s2

i )]
γi
2 −1ds =

= {δy = t} =

= δ2n−2|γ |22n−|γ |C(γ )
∫

K+

δn+|γ |−α[t21 − t22 − . . .− t2n ]
α−n−|γ |

2 δ−n−|γ |tγ dt
δn−|γ |(xt)γ−1 ×

×
δx1+t1∫

|δx1−t1|
. . .

δxn+tn∫

|δxn−tn|
f (s)

n∏
i=1

si[(s2
i − (δxi − ti)2)((δxi + ti)2 − s2

i )]
γi
2 −1ds =

= δ−α22n−|γ |C(γ )
∫

K+

[t21 − t22 − . . .− t2n ]
α−n−|γ |

2 tγ dt

δ|γ |−n(xt)γ−1

δx1+t1∫

|δx1−t1|
. . .

δxn+tn∫

|δxn−tn|
f (s)×

×
n∏
i=1

si[(s2
i − (δxi − ti)2)((δxi + ti)2 − s2

i )]
γi
2 −1ds =

= δ−α
∫

K+
(γTδxt f (t))[t21 − t22 − . . .− t2n ]

α−n−|γ |
2 tγ dt = δ−ατδ(IαP+,γ f )(x).

Then

(IαP+,γ f )(x) = δατ−1
δ (I

α
P+,γ τδf )(x). (39)
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Next we have

||τ−1
δ I

α
P+,γ f ||γq =

⎛
⎜⎝

∫

R
n+

(τ−1
δ (I

α
P+,γ f )(x))

qxγ dx

⎞
⎟⎠

1
q

=

=
⎛
⎜⎝

∫

R
n+

⎛
⎝

∫

K+
[y2

1 − y2
2 − . . .− y2

n]
α−n−|γ |

2 (γT
x
δ
y f )(y)y

γ dy

⎞
⎠
q

xγ dx

⎞
⎟⎠

1
q

=
(x
δ

= t
)

=

= δ n+|γ |
q ||IαP+,γ f ||γq

hence

||τ−1
δ I

α
P+,γ f ||γq = δ n+|γ |

q ||IαP+,γ f ||γq . (40)

Using (38)–(40) we get

||IαP+,γ f ||q,γ = δα||τ−1
δ I

α
P+,γ τδf ||q,γ =

= δ n+|γ |
q +α||IαP+,γ τδf ||q,γ ≤ Cn,γ,pδ

n+|γ |
q +α||τδf ||p,γ =

= Cn,γ,pδ
n+|γ |
q − n+|γ |

p +α||f ||p,γ
or

||IαP+,γ f (x)||q,γ ≤ Cn,γ,p δ
n+|γ |
q − n+|γ |

p +α||f (x)||p,γ . (41)

If n+|γ |
q

− n+|γ |
p

+α > 0 or n+|γ |
q

− n+|γ |
p

+α < 0 then passing to the limit at δ → 0

or at δ → ∞ in (41) accordingly we obtain that for all functions f ∈ Lγp equality

||IαP+,γ f ||q,γ = 0,

is hold what is wrong. That means that inequality (41) is possible only if
n+|γ |
q

−n+|γ |
p

+α=0, i.e. for q= (n+|γ |)p
n+|γ |−αp . Necessity is proved.

Sufficiency Let x ′ = (x2, . . . , xn), |x ′| =
√
x2

2 + . . .+ x2
n, (x ′)γ ′ = x

γ2
2 . . . x

γn
n .

Without loss of generality, we will assume that f (x)≥0 and ||f ||p,γ=1.
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Let 0 < δ < 1. Consider the operators

(IαP+,γ ,δf )(x) =
∫

δy2
1≥|y ′|2

rα−n−|γ |(y)(γTyxf )(y)yγ dy

and

(IαP−,γ ,δf )(x) =
∫

y2
1≤δ|y ′|2

rα−n−|γ |(y)(γTyxf )(y)yγ dy.

Let μ is some fixed real number. We introduce the notations

G0
δ,μ = {y ∈ R

n+ : δy2
1 ≥ |y ′|2, 0 ≤ y1 ≤ μ},

G∞
δ,μ = {y ∈ R

n+ : δy2
1 ≥ |y ′|2, μ < y1},

K+
0,δ(y) =

{
rα−n−|γ |(y), y ∈ G0

δ,μ;
0, y ∈ R

n+ \G0
δ,μ,

K+
∞,δ(y) =

{
rα−n−|γ |(y), y ∈ G∞

δ,μ;
0, y ∈ R

n+ \G∞
δ,μ,

H 0
δ,μ = {y ∈ R

n+ : y2
1 ≤ δ|y ′|2, |y ′| ≤ μ},

H∞
δ,μ = {y ∈ R

n+ : y2
1 ≤ δ|y ′|2, μ < |y ′|},

M+
0,δ(y) =

{
rα−n−|γ |(y), y ∈ H 0

δ,μ;
0, y ∈ R

n+ \H 0
δ,μ,

M+
∞,δ(y) =

{
rα−n−|γ |(y), y ∈ H∞

δ,μ;
0, y ∈ R

n+ \H∞
δ,μ.

In these notations we have

(IαP+,γ ,δf )(x) = (K+
0,δ ∗ f )γ + (K+

∞,δ ∗ f )γ , (42)

(IαP−,γ ,δf )(x) = (M+
0,δ ∗ f )γ + (M+

∞,δ ∗ f )γ . (43)
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To apply Marcinkiewicz’s theorem, we should prove that the operators IαP±,γ ,δ have

a weak type (p1, q1)γ and (p2, q2)γ , where p1, q1, p2, q2 such that 1
p

= 1−τ
p1

+ τ
p2

,
1
q

= 1−τ
q1

+ τ
q2

, 0 < τ < 1. In order to do it we will be interested in the estimate of
the

sup
0<λ<∞

λ(μγ (I
α
P±,γ ,δf, λ))

1/p =

= sup
0<λ<∞

λ
(

mesγ {x ∈ R
n+ : |(IαP±,γ ,δf )(x)| > λ}

)
.

Considering (42) and (43) it is enough to estimate

mesγ {x ∈ R
n+ : |(K+

0,δ ∗ f )γ | > λ},

mesγ {x ∈ R
n+ : |(K+

∞,δ ∗ f )γ | > λ},

mesγ {x ∈ R
n+ : |(M+

0,δ ∗ f )γ | > λ},

mesγ {x ∈ R
n+ : |(M+

∞,δ ∗ f )γ | > λ}

and then to apply inequality

mesγ {x ∈ R
n+ : |A+B| > λ}≤ mesγ {x ∈ R

n+ : |A| > λ}+mesγ {x ∈ R
n+ : |B| > λ}.

To estimate the generalized convolution, we will use Young’s inequality (20).
We have

||K+
0,δ||1,γ =

∫

R
n+

K+
0,δ(y)y

γ dy =
∫

G0
δ,μ

(y2
1 − y2

2 − . . .− y2
n)

α−n−|γ |
2 yγ dy =

=
μ∫

0

y
γ1
1 dy1

∫

|y ′|2≤δy2
1

(y2
1 − |y ′|2) α−n−|γ |

2 (y ′)γ ′
dy ′ = {y ′ = y1z

′, z′ ∈ R
n−1+ } =

=
μ∫

0

yα−1
1 dy1

∫

|z′|2≤δ
(1 − |z′|2) α−n−|γ |

2 (z′)γ ′
dz′ ≤
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≤
μ∫

0

yα−1
1 dy1

∫

|z′|2≤1

(1 − |z′|2) α−n−|γ |
2 (z′)γ ′

dz′ =

= μα

α

∫

|z′|≤1

(1 − |z′|2) α−n−|γ |
2 (z′)γ ′

dz′ = C1
α,n,γ μ

α,

where C1
α,n,γ = 21−n


(
α−n−|γ |+2

2

) n∏
i=2

(
γi+1

2

)

α
(
α−γ1+1

2

) does not depend on δ. Therefore

||K+
0,δ||1,γ ≤ C1

α,n,γ μ
α, (44)

andK+
0,δ ∈ Lγ1 .

Now let’s considerM+
0,δ:

||M+
0,δ||1,γ =

∫

R
n+

M+
0,δ(y)y

γ dy =
∫

H 0
δ,μ

(y2
1 − y2

2 − . . .− y2
n)

α−n−|γ |
2 yγ dy =

=
∫

|y ′|≤μ
(y ′)γ ′

dy ′
∫

y2
1≤δ|y ′|2

(|y ′|2 − y2
1)

α−n−|γ |
2 y

γ1
1 dy1 = {y1 = |y ′|z1, z1 ∈ R

1+} =

=
∫

|y ′|≤μ
|y ′|α−n−|γ |+γ1+1(y ′)γ ′

dy ′
∫

z2
1≤δ
(1 − z2

1)
α−n−|γ |

2 z
γ1
1 dz1 ≤

≤ D1
α,n,γ

∫

|y ′|≤μ
|y ′|α−n−|γ |+γ1+1(y ′)γ ′

dy ′,

where D1
α,n,γ = ∫

z2
1≤1

(1 − z2
1)
α−n−|γ |

2 z
γ1
1 dz1 does not depend on δ. When going over

to spherical coordinates y ′ = ρσ we obtain

||M+
0,δ||1,γ ≤ D2

α,n,γ

μ∫

0

ρα−1dρ = D3
α,n,γ μ

α,

whereD3
α,n,γ = 1

α

∫
S+

1 (n−1)

σ γ
′
dS.
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Now we estimate the norm K+
∞,δ . Let’s take p′ such that 1

p
+ 1
p′ = 1. First

consider ||K+
∞,δ||p′,γ . Let p �= 1 (i.e. p′ �= ∞) then

||K+
∞,δ||p′,γ=

⎛
⎜⎝

∫

R
n+

|K+
0,δ(y)|p

′
yγ dy

⎞
⎟⎠

1/p′

=
⎛
⎜⎝

∫

G∞
δ,μ

(y2
1 − |y′|2) α−n−|γ |

2 p′
yγ dy

⎞
⎟⎠

1/p′

=

=

⎛
⎜⎜⎝

∞∫

μ

y
γ1
1 dy1

∫

|y ′|2≤δy2
1

(y2
1 − |y′|2) α−n−|γ |

2 p′
(y′)γ ′

dy′

⎞
⎟⎟⎠

1/p′

= {y′ = y1z
′, z′ ∈ R

n−1+ } =

=
⎛
⎜⎝

∞∫

μ

y
(α−n−|γ |)p′+n+|γ |−1
1 dy1

∫

|z′|2≤δ
(1 − |z′|2) α−n−|γ |

2 p′
(z′)γ ′

dz′

⎞
⎟⎠

1/p′

≤

≤

n∏
i=2

(
γi+1

2

)

2n
(
n+|γ ′|+1

2

) (1 − δ) α−n−|γ |
2

⎛
⎝

∞∫

μ

y
(α−n−|γ |)p′+n+|γ |−1
1 dy1

⎞
⎠

1/p′

=

= C2
α,n,γ (1 − δ) α−n−|γ |

2 μ
− n+|γ |

q ,

C2
α,n,γ,p=

2−n n∏
i=2

(
γi+1

2

)

((n+|γ |−α)p′−n−|γ |)1/p′

(
n+|γ ′|+1

2

) .

Here we take into account that α−n−|γ |<0, p′= p
p−1 , p < n+|γ |

α
and q= (n+|γ |)p

n+|γ |−αp .
Then

||K+
∞,δ||p′,γ ≤ C2

α,n,γ,p(1 − δ) α−n−|γ |
2 μ

− n+|γ |
q ,

1

p
+ 1

p′ = 1, (45)

henceK+
∞,δ ∈ Lγ

p′ , p′ <∞.
Passing to the limit as p′ → ∞ in (45) we obtain

||K+
∞,δ||∞,γ ≤ C2

α,n,γ,1(1−δ) α−n−|γ |
2 μ

− n+|γ |
q , C2

α,n,γ,1=
e
n+|γ ′ |
n+|γ |−α

n∏
i=2

(
γi+1

2

)

2n
(
n+|γ ′|+1

2

) .

(46)
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Let estimate the norm ||M+
∞,δ||p′,γ . Let p′ such that 1

p
+ 1
p′ = 1 and p �= 1 (i.e.

p′ �= ∞), then

||M+
∞,δ ||p′,γ =

⎛
⎜⎝

∫

R
n+

|M+
∞,δ(y)|p

′
yγ dy

⎞
⎟⎠

1/p′

=
⎛
⎜⎝

∫

H∞
δ,μ

(|y ′|2 − y2
1 )

α−n−|γ |
2 p′

yγ dy

⎞
⎟⎠

1/p′

=

=

⎛
⎜⎜⎝

∫

μ≤|y′ |
(y ′)γ ′

dy ′
∫

y2
1 ≤δ|y′|2

(|y ′|2−y2
1 )

α−n−|γ |
2 p′

y
γ1
1 dy1

⎞
⎟⎟⎠

1/p′

= {y1 = |y ′|z1, z1 ∈ R
1+} =

=

⎛
⎜⎜⎝

∫

μ≤|y′ |
|y ′|(α−n−|γ |)p′+γ1+1(y ′)γ ′

dy ′
∫

z2
1≤δ
(1 − z2

1)
α−n−|γ |

2 p′
z
γ1
1 dz1

⎞
⎟⎟⎠

1/p′

≤

≤ D4
α,n,γ (1 − δ2)

α−n−|γ |
2

⎛
⎜⎝

∫

μ≤|y′|
|y ′|(α−n−|γ |)p′+γ1+1(y ′)γ ′

dy ′

⎞
⎟⎠

1/p′

.

Going over to spherical coordinates y ′ = ρσ we get

||M+
∞,δ||1,γ ≤ D5

α,n,γ (1 − δ2)
α−n−|γ |

2

⎛
⎝

∞∫

μ

ρ(α−n−|γ |)p′+n+|γ |−1dρ

⎞
⎠

1/p′

=

= D5
α,n,γ (1 − δ2)

α−n−|γ |
2 μ

− n+|γ |
q .

Here we take into account that α−n−|γ |<0, p′= p
p−1 , p < n+|γ |

α
and q= (n+|γ |)p

n+|γ |−αp .
Then

||M+
∞,δ||p′,γ ≤ D5

α,n,γ,p(1 − δ) α−n−|γ |
2 μ

− n+|γ |
q ,

1

p
+ 1

p′ = 1, (47)

henceM+
∞,δ ∈ Lγ

p′ , p′ <∞.
Passing to the limit as p′ → ∞ in (47) we obtain

||M+
∞,δ||∞,γ ≤ D6

α,n,γ,1(1 − δ) α−n−|γ |
2 μ

− n+|γ |
q . (48)
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So we have

(1 − δ) n+|γ |−α
2 ||K+

∞,δ||p′,γ ≤ Cμ− n+|γ |
q , 1 ≤ p′ ≤ ∞

and

(1 − δ) n+|γ |−α
2 ||M+

∞,δ||p′,γ ≤ Cμ− n+|γ |
q , 1 ≤ p′ ≤ ∞.

Then applying (21) we can write

(1 − δ) n+|γ |−α
2 ||(K+

∞,δ ∗ f )γ ||∞,γ ≤ (1 − δ) n+|γ |−α
2 ||K+

∞,δ||p′,γ ≤ Cμ− n+|γ |
q

and

(1 − δ) n+|γ |−α
2 ||(M+

∞,δ ∗ f )γ ||∞,γ ≤ (1 − δ) n+|γ |−α
2 ||M+

∞,δ||p′,γ ≤ Cμ− n+|γ |
q .

If we choose μ such that Cμ− n+|γ |
q = λ then

mesγ {x ∈ R
n+ : (1 − δ) n+|γ |−α

2 |(K+
∞,δ ∗ f )γ | > λ} = 0

and

mesγ {x ∈ R
n+ : (1 − δ) n+|γ |−α

2 |(M+
∞,δ ∗ f )γ | > λ} = 0.

Considering (42) and (43) and applying the Young’s inequality (20) we obtain

mesγ {x ∈ R
n+ : (1 − δ) n+|γ |−α

2 |(IαP+,δf )(x)| > 2λ}≤

≤ mesγ {x ∈ R
n+ : (1 − δ) n+|γ |−α

2 |(K+
0,δ ∗ f )γ | > λ}+

+mesγ {x ∈ R
n+ : (1 − δ) n+|γ |−α

2 |(K+
∞,δ ∗ f )γ | > λ} =

= mesγ {x ∈ R
n+ : (1−δ) n+|γ |−α

2 |(K+
0,δ∗f )γ | > λ} ≤ (1−δ) n+|γ |−α

2
||(K+

0,δ ∗ f )γ ||pp,γ
λp

≤

≤ (1 − δ) n+|γ |−α
2 p||K+

0,δ||p1,γ ||f ||pp,γ
λp

≤
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≤ (C1
α,n,γ )

p(1 − δ) n+|γ |−α
2 p μpα

λp
=

= C7(1 − δ) n+|γ |−α
2

1

λq
.

Similarly,

mesγ {x ∈ R
n+ : (1 − δ) n+|γ |−α

2 |(IαP−,δf )(x)| > 2λ} ≤ C7(1 − δ) n+|γ |−α
2

1

λq
.

It was shown that the operators IαP±,γ ,δ have a week type (p, q)γ , where p

and q related by equality q = (n+|γ |)p
n+|γ |−αp . Let 0 < τ < 1, p1=p(1−τ )

1−τp , p1 ∈[
1, n+|γ |

α

)
. The operators IαP±,γ ,δ have a week type

(
1, n+|γ |
n+|γ |−α

)
γ

and a week type(
p1,

(n+|γ |)p1
n+|γ |−αp1

)
γ

. Then by Marcinkiewicz’s Theorem 1 the operators IαP±,γ ,δ have

a strong type
(
p,

(n+|γ |)p
n+|γ |−αp

)
γ

and the next inequality

||(1 − δ) n+|γ |−α
2 (IαP±,γ ,δf )(x)||q,γ ≤ M(1 − δ) n+|γ |−α

2 ||f ||p,γ
is true. So

||(IαP±,γ,δf )(x)||q,γ ≤ M||f ||p,γ , 1≤p<n+ |γ |
α

, n+ |γ | − 2<α<n+ |γ |.
(49)

Since f (x) ≥ 0 then for 0 < δ1 ≤ δ2 ≤ . . . ≤ δm ≤ . . . < 1 we have

(IαP±,γ ,δ1f )(x) ≤ (IαP±,γ ,δ2f )(x) ≤ . . . ≤ (IαP±,γ ,δmf )(x) ≤ . . .

Due to the fact that

lim
δ→1
(IαP±,γ ,δf )(x) = (IαP±,γ f )(x)

Passing to the limit as δ → 1 in (49) we obtain

||(IαP±,γ f )(x)||q,γ ≤M||f ||p,γ , 1≤p<n+ |γ |
α

, n+|γ |−2<α<n+|γ |.

The theorem is proved. ��
Further operators IαP±,γ on functions we Lγp we will define as continuations

of operators (24) with preservation of boundedness. If integral (24) converges
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absolutely for f ∈ Lγp then these continuations are representable as

(IαP±i0,γ f )(x) = e±
n−1+|γ ′|

2 iπ

γn,γ (α)

∫

R
n+

(P ± i0)
α−n−|γ |

2
γ (γTyxf )(x)y

γ dy, yγ=
n∏
i=1

y
γi
i .

Next we show how hyperbolic B-potentials are connected with the operator
(�γ )k , k ∈ N.

Theorem 4 If f ∈ Sev , n+ |γ | − 2 < α and k ∈ N then

(�γ )kIα+2k
P±i0,γ f = IαP±i0,γ f, (50)

where �γ=Bγ1−
n∑
i=2
Bγi .

Proof Using representation (24) and the property γi T yixi (Bγi )xi = (Bγi )
γi
xi T

yi
xi (see

formula 1.8.3 from [60]) we obtain

(�γ )k(Iα+2k
P±i0,γ f )(x) =

= e±
n−1+|γ ′|

2 iπ

Hn,γ (α + 2k)
(�γ )k

∫

R
n+

(P ± i0)
α+2k−n−|γ |

2
γ (γTyxf )(x)yγ dy =

= e±
n−1+|γ ′ |

2 iπ

Hn,γ (α + 2k)

∫

R
n+

(
γTyx(�γ )k(P ± i0)

α+2k−n−|γ |
2

γ

)
f (y)yγ dy.

For function (P ± i0)λγ the next equality is true (see [70])

(�γ )k(P ± i0)
α+2k−n−|γ |

2
γ = 22k


(
α−n−|γ |

2 + k + 1
)


(
α−n−|γ |

2 + 1
) 

(
α
2 + k)

(
α
2

) (P ± i0)
α−n−|γ |

2
γ .

(51)

Since

22k

(
α−n−|γ |

2 + k + 1
)


(
α−n−|γ |

2 + 1
) 

(
α
2 + k)

(
α
2

) · 1

Hn,γ (α + 2k)
= 1

Hn,γ (α)
,
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then using (51) we get

(�γ )k(Iα+k
P±i0,γ f )(x) =

= e±
n−1+|γ ′|

2 iπ

Hn,γ (α)

∫

R
n+

(
γTyx(P ± i0)

α−n−|γ |
2

γ

)
f (y)yγ dy = (IαP±i0,γ f )(x).

and the proof is complete. ��
Theorem 5 If f ∈ Sev , n+ |γ | − 2 < α and k ∈ N then

Iα+2k
P±i0,γ (�γ )

kf = IαP±i0,γ f, (52)

where �γ=Bγ1−
n∑
i=2
Bγi and xγii

∂
∂xi
f

∣∣∣∣
xi=0

= 0, i = 1, . . . , n.

Proof Using the formula 1.8.3 from [60] of the form γi T
yi
xi (Bγi )xi = (Bγi )γixi T yixi we

get

(Iα+2k
P±i0,γ�

k
γ f )(x) = e±

n−1+|γ ′ |
2 iπ

γn,γ (α + 2k)

∫

R
n+

(P ± i0)
α+2k−n−|γ |

2
γ (γTyx(�γ )kxf )(x)yγ dy =

= e±
n−1+|γ ′|

2 iπ

γn,γ (α + 2)

∫

R
n+

(P ± i0)
α+2k−n−|γ |

2
γ

[
(�γ )y γTyx(�γ )k−1

x f )(x)
]
yγ dy =

= e±
n−1+|γ ′ |

2 iπ

γn,γ (α + 2)

∫

R
n+

(P±i0)
α+2k−n−|γ |

2
γ

[(
(Bγ1)y1−

n∑
i=2

(Bγi )yi

)
γTyx(�γ )k−1

x f (x)

]
yγ dy =

= e±
n−1+|γ ′|

2 iπ

γn,γ (α + 2)

∫

R
n+

(P ± i0)
α+2k−n−|γ |

2
γ

[
(Bγ1 )y1

γTyx(�γ )k−1
x f (x)

]
yγ dy−

− e±
n−1+|γ ′ |

2 iπ

γn,γ (α + 2)

n∑
i=2

∫

R
n+

(P ± i0)
α+2k−n−|γ |

2
γ

[
(Bγi )yi

γTyx(�γ )k−1
x f (x)

]
yγ dy. (53)
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Integrating by part at j = 1, . . . , n we get

∞∫

0

(P ± i0)
α+2k−n−|γ |

2
γ (Bγj )yj

[
γTyx(�γ )k−1

x f (x)
]
y
γj
j dyj =

=
∞∫

0

(P ± i0)
α+2k−n−|γ |

2
γ

[
∂

∂yj
y
γj
j

∂

∂yj

γTyx(�γ )k−1
x f (x)

]
dyj =

=
{
u = (P ± i0)

α+2k−n−|γ |
2

γ , dv = ∂

∂yj
y
γj
j

∂

∂yj

γTyx(�γ )k−1
x f (x)dyj

}
=

= (P ± i0)
α+2k−n−|γ |

2
γ y

γj
j

∂

∂yj

γTyx(�γ )k−1
x f (x)

∣∣∣∣
∞

yj=0
−

−
∞∫

0

y
γj
j

∂

∂yj
(P ± i0)

α+2k−n−|γ |
2

γ

[
∂

∂yj

γTyx(�γ )k−1
x (�γ )k−1

x (�γ )k−1
x f (x)

]
dyj =

= −
∞∫

0

y
γj
j

∂

∂yj
(P ± i0)

α+2k−n−|γ |
2

γ

[
∂

∂yj

γTyx(�γ )k−1
x f (x)

]
dyj =

=
{
u = yγjj

∂

∂yj
(P ± i0)

α+2k−n−|γ |
2

γ , dv = ∂

∂yj

γTyx(�γ )k−1
x f (x)dyj

}
=

= −yγjj
[
∂

∂yj
(P ± i0)

α+2k−n−|γ |
2

γ

]
γTyx(�γ )k−1

x f (x)

∣∣∣∣
∞

yj=0
+

+
∞∫

0

[
∂

∂yj
y
γj
j

∂

∂yj
(P ± i0)

α+2k−n−|γ |
2

γ

]
γTyxf (x)dyj =

=
∞∫

0

[
(Bγj )yj (P ± i0)

α+2k−n−|γ |
2

γ

]
γTyx(�γ )k−1

x f (x)y
γj
j dyj .
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Returning to (53) we obtain

(Iα+2k
P±i0,γ�

k
γ f )(x) = e±

n−1+|γ ′ |
2 iπ

γn,γ (α + 2k)

∫

R
n+

[
(�γ )y(P ± i0)

α+2k−n−|γ |
2

γ

]
(γTyx(�γ )k−1

x f )(x)yγ dy.

Consistently applying these actions k times we get

(I α+2k
P±i0,γ�

k
γ f )(x) = e±

n−1+|γ ′|
2 iπ

γn,γ (α + 2k)

∫

R
n+

[
(�γ )ky(P ± i0)

α+2−n−|γ |
2

γ

]
( γTyxf )(x)y

γ dy.

Now applying (51) we obtain the required statement

(Iα+2k
P±i0,γ�

k
γ f )(x) = (IαP±i0,γ f )(x).

��
By virtue of the density Sev in Lγp equalities (50) and (52) spread on function

from L
γ
p for 1 < p <

n+|γ |
α

when integrals IαP±i0,γ f converge absolutely for

f ∈ Lγp .

Example 1 Let n=3, γ1=2, α=4, |γ ′|=γ2+γ3<1, f (x)=x2
1e

−x1jγ ′(x ′, b), |b|=1,
x∈R3+. We have

I 4
P+,γ x

2
1e

−x1jγ ′(x ′, b) =

= 2− 3
2

3∏
i=2



(
γi + 1

2

)


(
1 − |γ ′|

2

)
jγ ′(x ′; b)

∞∫

0

e−y1

(
2T
y1
x1 J 1

2
(x1)x

1
2
1

)
y4

1dy1 =

= 2− 3
2

3∏
i=2



(
γi + 1

2

)


(
1 − |γ ′|

2

)
C(2)

√
2√

πx1
jγ ′(x ′; b)×

×
⎛
⎝

∞∫

0

e−y1 (sin(x1 + y1)− (x1 + y1) cos(x1 + y1)) y
3
1dy1−

−
∞∫

0

e−y1 (sin(|x1 − y1|)− |x1 − y1| cos(|x1 − y1|)) y3
1dy1

⎞
⎠ =

=
3∏
i=2



(
γi+1

2

)


(
1−|γ ′|

2

)
1

4
√
π

jγ ′(x ′; b)
(

6(cos x1−ex1)

x1
−12−6x1 − x2

1

)
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and

I 4
P−,γ x

2
1e

−x1jγ ′(x ′, b) = 2− 3
2

n∏
i=2



(
γi + 1

2

)


(
1 − |γ ′|

2

)
jγ ′(x ′; b)

∞∫

0

e−y1×

×
((

2T
y1
x1 J 1

2
(x1)x

1
2
1

)
cos

3+|γ ′|
2

π +
(

2T
y1
x1 J− 1

2
(x1)x

1
2
1

)
sin

1 + |γ ′|
2

π

)
y4

1dy1=

= 2− 3
2

3∏
i=2



(
γi + 1

2

)


(
1 − |γ ′|

2

)
C(2)

√
2√

πx1
jγ ′(x ′; b)

(
cos

(
3 + |γ ′|

2

)
π×

×
∞∫

0

e−y1y3
1 (sin(x1 + y1)− (x1 + y1) cos(x1 + y1)− sin(|x1 − y1|)+

+|x1 − y1| cos(|x1 − y1|)) dy1+

+ sin

(
1 + |γ ′|

2

)
π

∞∫

0

e−y1y3
1 (cos(x1 + y1)+ (x1 + y1) sin(x1 + y1)−

− cos(|x1 − y1|)− |x1 − y1| sin(|x1 − y1|)dy1

)
=

=
3∏
i=2



(
γi + 1

2

)


(
1 − |γ ′|

2

)
1

4
√
π

jγ ′(x ′; b)×

×
(

cos

(
3 + |γ ′|

2

)
π

(
6(cos x1 − e−x1)

x1
− 12 − 6x1 − x2

1

)
−

−6 sin

(
1 + |γ ′|

2

)
π

sin x1

x1

)
.

Considering that

H3,γ (4) =
√
π

3∏
i=2

(
γi+1

2

)


( |γ ′|+1

2

) ,
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we obtain

I 4
P±i0,γ x2

1e
−x1jγ ′(x ′, b) =

= e±
2+|γ ′|

2 iπ

H3,γ (4)

[
I 4
P+,γ x

2
1e

−x1jγ ′(x ′, b)+ e∓ |γ ′ |+1
2 πiI 4

P−,γ x
2
1e

−x1jγ ′(x ′, b)
]

=

= e±
2+|γ ′|

2 iπ

4 sin
(

1+|γ ′|
2

)
π

jγ ′(x ′; b)
(

6(cos x1 − ex1)

x1
− 12 − 6x1 − x2

1+

+e∓ |γ ′ |+1
2 πi

(
cos

(
3 + |γ ′|

2

)
π

(
6(cos x1 − e−x1)

x1
− 12 − 6x1 − x2

1

)
−

−6 sin

(
1 + |γ ′|

2

)
π · sin x1

x1

)
=

= jγ ′(x ′; b) e
−x1(6 − 6e(1+i)x1 + x1(12 + x1(6 + x1)))

4x1
.

3 Green’s Second Identity for the Hyperbolic B-Potentials

3.1 Divergence Theorem for Weighted Nabla Operator

Suppose that R
n is the n-dimensional Euclidean space, -e = (e1, . . . , en) is

orthonormal basis in R
n,

R
n+={x=(x1, . . . , xn) ∈ R

n, x1≥0, . . . , xn≥0},

∇′
γ =

(
1

x
γ1
1

∂

∂x1
, . . . ,

1

x
γn
n

∂

∂xn

)

is the first weighted nabla operator,

-F = -F(x) = (F1(x), . . . , Fn(x))

is a vector field,

(∇′
γ · -F) = 1

x
γ1
1

∂F1

∂x1
+ . . .+ 1

x
γn
i

∂Fn

∂xn
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is the weighted divergence. Let

♦γ =
(
x
γ1
1
∂

∂x1
,−xγp+1

2
∂

∂x2
, . . . ,−xγnn ∂

∂xn

)
,

then

(∇′
γ · ♦γ ) = �γ .

In R
n+ let consider a domain G+ bounded by a piecewise smooth surface S+ ∈

R
n+. Thus, a surface can be represented as a union S+ =

q⋃
k=1
S+
k of a finite number

of its parts S+
k without common internal points. Let for each interior point there is

a neighborhood within which the surface S+
k is represented by parametric equations

of the form

xi = χi(y1, . . . , yn−1), i = 1, . . . , n,

where χi(y), y = (y1, . . . , yn−1) has continuous first derivatives and the rank of the

Jacobi matrix
∥∥∥ ∂(χ1,...,χn)
∂(y1,...,yn−1)

∥∥∥ is equal to n− 1. Vector

-N =

∥∥∥∥∥∥∥∥∥

e1 . . . en
∂χ1(y)
∂y1

. . .
∂χn(y)
∂y1

. . . . . . . . .
∂χ1(y)
∂yn−1

. . .
∂χn(y)
∂yn−1

∥∥∥∥∥∥∥∥∥

is normal in each point y ∈ S+ to the surface S+ with the exception of the junction
points of surfaces S+

k , k = 1, .., q , where it is not defined unambiguously and will
not be considered. Vector

-ν = -N
| -N |

is determined to within sign. Of the two possible directions -ν, we choose the external
with respect to the domain G+. Such a vector will be called the unit normal vector
to the surface S+ at the point y. Let denote ηi the angle which forms a vector -ν with
an axis xj , then

-ν = e1 cosη1 + . . .+ en cosηn.

Theorem 6 Let G+ is the domain in R
n+ such that each line perpendicular to the

plane xi = 0, i = 1, . . . , n either does not cross G+ or has one common segment



268 E. L. Shishkina

with G+ (maybe degenerating to a point) of the form

αi(x
′) ≤ xi ≤ βi(x ′), x ′=(x1, . . ., xi−1, xi+1, . . ., xn), i = 1, . . . , n.

If -F = (F1(x), . . . , Fn(x)), F1(x) = x
γ1
1 g1(x), . . . , Fn(x) = x

γn
n gn(x), -g =

(g1(x), . . . , gn(x)) is a continuously differentiable in G+ vector field, then the next
formula is valid

∫

G+
(∇′
γ · -F ) xγ dx =

∫

S+
(-g · -ν) xγ dS , (54)

where -ν is the external unit normal vector S+.

Proof Let i = 1, . . . , n is fixed. The part of the surface S+ defined by the equation
xi = βi(x ′) is denoted by S+

u and the part of the surface S+ defined by the equation
xi = αi(x ′) is denoted by S+

d , then

(-ν, ei) =

⎧⎪⎪⎨
⎪⎪⎩

− 1√
1+

(
∂αi
∂x1

)2+...+( ∂αi
∂xi−1

)2+
(
∂αi
∂xi+1

)2+...+
(
∂αi
∂xn

)2
, x ∈ S+

d

1√
1+

(
∂βi
∂x1

)2+...+
(
∂βi
∂xi−1

)2+
(
∂βi
∂xi+1

)2+...+
(
∂βi
∂xn

)2
, x ∈ S+

u

We have

∫

G+
(∇′
γ · -F) xγ dx =

n∑
i=1

∫

G+

1

x
γi
i

∂Fi

∂xi
xγ dx.

Let consider

∫

G+

1

x
γi
i

∂Fi

∂xi
xγ dx =

∫

Q

x
γ1
1 . . . x

γi−1
i−1 x

γi+1
i+1 . . . x

γn
n dx1 . . . dxi−1dxi+1 . . . dxn

βi(x
′)∫

αi (x
′)

∂Fi

∂xi
dxi ,

whereQ is a projection of the G+ to xi = 0. Integrating by xi we obtain

∫

G+

1

x
γi
i

∂Fi

∂xi
xγ dx =

∫

Q

Fi(x)|xi=βi (x
′)

xi=αi(x′)x
γ1
1 . . . x

γi−1
i−1 x

γi+1
i+1 . . . x

γn
n dx1 . . . dxi−1dxi+1 . . . dxn.

Let (x ′)γ ′ = xγ1
1 . . . x

γi−1
i−1 x

γi+1
i+1 . . . x

γn
n , dx ′ = dx1 . . . dxi−1dxi+1 . . . dxn, then

∫

G+

1

x
γi
i

∂Fi

∂xi
xγ dx =
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=
∫

Q

Fi(x1, . . . , xi−1, βi(x
′), xi+1, . . . , xn)(x

′)γ ′
dx ′

−
∫

Q

Fi(x1, . . . , xi−1, αi(x
′), xi+1, . . . , xn)(x

′)γ ′
dx ′ =

=
∫

Q

Fi(x1, . . . , xi−1, βi(x
′), xi+1, . . . , xn)(-ν, ei)×

×
√

1 +
(
∂βi

∂x1

)2

+ . . .+
(
∂βi

∂xi−1

)2

+
(
∂βi

∂xi+1

)2

+ . . .+
(
∂βi

∂xn

)2

(x ′)γ ′
dx ′+

+
∫

Q

Fi(x1, . . . , xi−1, αi (x
′), xi+1, . . . , xn)(-ν, ei)×

×
√

1 +
(
∂αi

∂x1

)2

+ . . .+
(
∂αi

∂xi−1

)2

+
(
∂αi

∂xi+1

)2

+ . . .+
(
∂αi

∂xn

)2

(x ′)γ ′
dx ′ =

=
∫

S+
u

Fi(x)(-ν, ei)(x ′)γ ′
dSu +

∫

S+
d

Fi(x)(-ν, ei)(x ′)γ ′
dSd

=
∫

S+
u

gi(x)(-ν, ei)xγ dSu +
∫

S+
d

gi(x)(-ν, ei)xγ dSd =

=
∫

S+
gi(x) cosηi xγ dS.

Then

∫

G+

(∇′
γ · -F) xγ dx =

n∑
i=1

∫

S+

gi(x) cosηi xγ dS =
∫

S+

(-g · -ν) xγ dS.

��
Remark 1 Suppose that a domain G+ ∈ R

n+ is a union of domains G+
1 , . . . ,G

+
m

without common internal points. Let each G+
j is the domain in R

n+ such that each

line perpendicular to the plane xi = 0, i = 1, . . . , n either does not crossG+
j or has

one common segment with G+
j (maybe degenerating to a point) of the form

α
j
i (x

′) ≤ xi ≤ βji (x ′), x ′=(x1, . . ., xi−1, xi+1, . . ., xn), i = 1, . . . , n
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and -F = (F1(x), . . . , Fn(x)), F1(x) = x
γ1
1 g1(x), . . . , Fn(x) = x

γn
n gn(x), -g =

(g1(x), . . . , gn(x)) is a continuously differentiable in G+ vector field, then the next
formula is valid ∫

G+

(∇′
γ · -F ) xγ dx =

∫

S+

(-g · -ν) xγ dS , (55)

where S+ ∈ R
n+ a piecewise smooth surface boundary, -ν is the external unit normal

vector S+.

3.2 Green’s Second Identities for the �γ

and for the Hyperbolic B-Potentials

Theorem 7 Let G+ satisfies to conditions in Remark 1. If ϕ,ψ are twice continu-
ously differentiable functions defined on G+, such that

∂ϕ

∂xi

∣∣∣∣
xi=0

= 0,
∂ψ

∂xi

∣∣∣∣
xi=0

= 0, i = 1, . . . , n

then the Green’s second identity for B-ultra-hyperbolic operator has the form
∫

G+
(ψ�γ ϕ − ϕ�γψ) xγ dx =

∫

S+

(
ψ
∂ϕ

∂ -τ − ϕ ∂ψ
∂ -τ

)
xγ dS, (56)

where -τ = (cos η1,− cosη2, . . . ,− cos ηn).

Proof Let

-F=ψ♦γ ϕ − ϕ♦γ ψ =
(
x
γ1
1

(
ψ
∂ϕ

∂x1
−ϕ ∂ψ
∂x1

)
,

−xγ2
2

(
ψ
∂ϕ

∂x2
−ϕ ∂ψ
∂x2

)
, . . . ,−xγnn

(
ψ
∂ϕ

∂xn
−ϕ ∂ψ
∂xn

))
,

so

-g =
(
ψ
∂ϕ

∂x1
− ϕ ∂ψ

∂x1
,−

(
ψ
∂ϕ

∂x2
− ϕ ∂ψ

∂x2

)
, . . . ,−

(
ψ
∂ϕ

∂xn
− ϕ ∂ψ

∂xn

))
,

(∇′
γ · -F) = ψ�γ ϕ − ϕ�γ ψ,

(-g · -ν) =
(
ψ
∂ϕ

∂x1
cos η1 − ϕ ∂ψ

∂x1
cos η1

)
−

n∑
i=2

(
ψ
∂ϕ

∂xi
cos ηi − ϕ ∂ψ

∂xi
cos ηi

)
= ψ ∂ϕ

∂ -τ − ϕ ∂ψ
∂ -τ ,

where -τ = (cosη1,− cosη2, . . . ,− cosηn). Then applying Theorem 6 we obtain
(56). ��
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Let g such that (γTyxg)(x) vanishes outside the domain G+, where satisfies to
conditions in Remark 1, then

(IαP±i0,γ g)(x) = e±
n−1+|γ ′ |

2 iπ

Hn,γ (α)

∫

G+

(P ± i0)
α−n−|γ |

2
γ (γTyxg)(x)y

γ dy.

Applying (56) to the hyperbolic B-potentials IαP±i0,γ g we get

e±
n−1+|γ ′ |

2 iπ

Hn,γ (α + 2)

∫

G+
((P ± i0)

α+2−n−|γ |
2

γ �γ (γTyxg)(x) − (γTyxg)(x)�γ (P ± i0)
α+2−n−|γ |

2
γ ) xγ dx =

= e±
n−1+|γ ′ |

2 iπ

Hn,γ (α + 2)

∫

S+

⎛
⎝(P ± i0)

α+2−n−|γ |
2

γ

∂(γTyxg)(x)
∂ -τ − (γTyxg)(x)

∂(P ± i0)
α+2−n−|γ |

2
γ

∂ -τ

⎞
⎠ xγ dS.

Using the equality
�γ (P±i0)

α+2−n−|γ |
2

γ

Hn,γ (α+2) = (P±i0)
α−n−|γ |

2
γ

Hn,γ (α)
and the fact that�γ (γTyxg)(x)

= (γTyx�γ g)(x)we obtain Green’s second identities for the hyperbolic B-potentials
IαP±i0,γ g:

(IαP±i0,γ g)(x) = (Iα+2
P±i0,γ�γ g)(x)−

− e±
n−1+|γ ′ |

2 iπ

Hn,γ (α + 2)

∫

S+

⎛
⎝(P ± i0)

α+2−n−|γ |
2

γ

∂(γTyxg)(x)
∂ -τ − (γTyxg)(x)

∂(P ± i0)
α+2−n−|γ |

2
γ

∂ -τ

⎞
⎠ xγ dS.

4 Inversion of the Hyperbolic B-Potentials

4.1 Method of Approximative Inverse Operators

Here we describe one approach for inverting potential type operators, based on the
idea of approximative inverse operators developed in [40, 72].

The problem to invert this or that convolution operator Af = a ∗ f reduces
to multiplication of the some convenient integral transform of a function f by the
reciprocal 1

â
of chosen integral transform of the kernel:

Af = a ∗ f, Âf = â · f̂ , Â−1f = 1

â
· f̂ .

Indeed we have

g = Af, Â−1g = 1

â
· â · f̂ = f̂ .
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However, in the case of potentials, the multiplier 1
â

, is unbounded at infinity and,
maybe, on some sets. In this case we use the multipliermε, which is dependent on ε
such that mε

â
vanishes at those sets on which it is necessary and lim

ε→0
mε = 1. So we

can construct ̂A−1
ε f = mε

â
· f̂ . Applying the inverse integral transform and passing

to the limit ε → 0 we obtain A−1. Next it is necessary to prove that the resulting
operator will be inverse to the operator to A in some appropriate space. Therefore,
the factormε should be chosen so that inverse integral transform of mε

â
· f̂ provides

a fairly good class of functions.
In our case, we take the Hankel transform. Considering that

Fγ IαP±i0,γ f = (P ∓ i0)−
α
2

γ Fγ f,

where f∈�γV , V={x∈Rn+ : P(x)=0} we take

Mε,δ = (P ∓ i0)me−δ|ξ |
(P (ξ)+ iε|ξ |2)m .

So we should prove that left inverse operators to IαP±i0,γ are

(IαP±i0,γ )−1f ) =
L
γ
p

lim
δ→0

L
γ
2

lim
ε→0

((
F−1
γ

(P ∓ i0)m+ α
2 e−δ|ξ |

(P (ξ) + iε|ξ |2)m
)
(x) ∗ f (x)

)

γ

.

We denote

(IαP±i0,γ )
−1
ε,δf =

((
F−1
γ

(P ∓ i0)m+ α
2 e−δ|ξ |

(P (ξ) + iε|ξ |2)m
)
(x) ∗ f (x)

)

γ

=

=
∫

R
n+

∓gαε,δ(y)(γTyxf (x))y
γ dy,

where

∓gαε,δ(x) =
(

F−1
γ

(P ∓ i0)m+ α
2 e−δ|ξ |

(P (ξ) + iε|ξ |2)m
)
(x) =

= 2n−|γ |
n∏
j=1

2
(
γj+1

2

)
∫

R
n+

(P ∓ i0)m+ α
2 e−δ|ξ |

(P (ξ) + iε|ξ |2)m jγ (x, ξ)ξγ dξ,

m ≥ n+ |γ | − α
2 , n+ |γ | − 2 < α < n+ |γ |.
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4.2 General Poisson Kernel

In this section, we consider a certain function used for solving the problem of
inverting a hyperbolic B-potential. Based on the type and properties of this function,
we will call it the general Poisson kernel.

We first prove an auxiliary lemma.

Lemma 1 Hankel transform of the e−δ|x| is

Fγ [e−δ|x|](ξ) =
2|γ |δ

n∏
i=1

(
γi+1

2

)

(
n+|γ |+1

2

)

√
π(δ2 + |ξ |2) n+|γ |+1

2

. (57)

Proof We have

Fγ [e−δ|x|](ξ) =
∫

R
n+

e−δ|x| jγ (x; ξ)xγ dx = {x = ρσ } =

=
∞∫

0

e−δρρn+|γ |−1dρ

∫

S+
1 (n)

jγ (ρσ ; ξ)σ γ dS.

Applying the formula (13) we obtain

Fγ [e−δ|x|](ξ) =

n∏
i=1

(
γi+1

2

)

2n−1
(
n+|γ |

2

)
∞∫

0

e−δρj n+|γ |
2 −1(ρ|ξ |)ρn+|γ |−1dρ =

=

n∏
i=1

(
γi+1

2

)

2
n−|γ |

2 |ξ | n+|γ |
2 −1

∞∫

0

e−δρJ n+|γ |
2 −1(ρ|ξ |)ρ

n+|γ |
2 dρ.

Applying the formula 2.12.8.4 from [68] p. 164 of the form

∞∫

0

xν+2e−pxJν(cx)dx =
2p(2c)ν

(
ν + 3

2

)
√
π(p2 + c2)ν+ 3

2

, Re ν > −1
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we get

∞∫

0

e−δρJ n+|γ |
2 −1(ρ|ξ |)ρ

n+|γ |
2 dρ =

2δ(2|ξ |) n+|γ |
2 −1

(
n+|γ |+1

2

)
√
π(δ2 + |ξ |2) n+|γ |+1

2

and therefore

Fγ [e−δ|x|](ξ) =

n∏
i=1

(
γi+1

2

)

2
n−|γ |

2 |ξ | n+|γ |
2 −1

2δ(2|ξ |) n+|γ |
2 −1

(
n+|γ |+1

2

)
√
π(δ2 + |ξ |2) n+|γ |+1

2

=

=
2|γ |δ

n∏
i=1

(
γi+1

2

)

(
n+|γ |+1

2

)

√
π(δ2 + |ξ |2) n+|γ |+1

2

.

��
We give the formula from [73] that will be used further

∫

S+
1 (n)

Pγξ f (〈ξ, x〉)xγ dωx =

n∏
i=1

(
γi+1

2

)

√
π2n−1

( |γ |+n−1
2

)
1∫

−1

f (|ξ |p)(1 − p2)
n+|γ |−3

2 dp,

(58)

where f (t)(1−t2) n+|γ |−3
2 ∈L1(−1, 1).

Definition 5 Function

Pγ (x, δ) =
2n

(
n+|γ |+1

2

)

√
π

n∏
j=1


(
γj+1

2

) δ (δ2 + |x|2)− n+|γ |+1
2 , δ > 0 (59)

is called the general Poisson kernel.

Lemma 2 For Pγ (x, δ) next properties are valid

1. Fγ [Pγ (x, δ)](ξ) = e−δ|ξ |,
2.

∫
R
n+
Pγ (x, δ)x

γ dx = ∫
R
n+
Pγ (x, 1)xγ dx = 1,

3. Pγ (x, δ) ∈ Lγp, 1 ≤ p ≤ ∞.
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Proof

1. From Lemma 1 we get

F−1
γ [e−δ|x|](ξ) = 2n−|γ |

n∏
j=1

2
(
γj+1

2

)Fγ [e−δ|x|](ξ) =

= 2n−|γ |
n∏
j=1

2
(
γj+1

2

)
2|γ |δ

n∏
i=1

(
γi+1

2

)

(
n+|γ |+1

2

)

√
π(δ2 + |ξ |2) n+|γ |+1

2

=

=
2nδ

(
n+|γ |+1

2

)

√
π

n∏
j=1


(
γj+1

2

) 1

(δ2 + |ξ |2) n+|γ |+1
2

= Pγ (x, δ).

And when we obtain Fγ [Pγ (x, δ)](ξ) = e−δ|ξ |.
2. Consider the integral

∫
R
n+
Pγ (x, δ)x

γ dx. We have

∫

R
n+

Pγ (x, δ)x
γ dx =

2nδ
(
n+|γ |+1

2

)
√
π

n∏
j=1


(
γj+1

2

)
∫

R
n+

xγ dx

(δ2 + |x|2) n+|γ |+1
2

= {x = δy} =

=
2n

(
n+|γ |+1

2

)

√
π

n∏
j=1


(
γj+1

2

)
∫

R
n+

yγ dy

(1 + |y|2) n+|γ |+1
2

=
∫

R
n+

Pγ (x, 1)xγ dx.

Let us show now that
∫
R
n+
Pγ (x, 1)xγ dx = 1. Going over to spherical

coordinates and using (9) we obtain

∫

R
n+

yγ dy

(1 + |y|2) n+|γ |+1
2

= {y = ρσ } =
∞∫

0

ρn+|γ |−1 dρ

(1 + ρ2)
n+|γ |+1

2

∫

S+
1 (n)

σ γ dS =

=

n∏
i=1

(
γi+1

2

)

2n−1
(
n+|γ |

2

)
∞∫

0

ρn+|γ |−1 dρ

(1 + ρ2)
n+|γ |+1

2

= {ρ2 = r} =

=

n∏
i=1

(
γi+1

2

)

2n
(
n+|γ |

2

)
∞∫

0

r
n+|γ |

2 −1

(1 + r) n+|γ |+1
2

dr.
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Using the formula 2.2.5.24 from [74], p. 239 of the form

∞∫

0

xα−1

(x + z)β dx = zα−βB(α, β − α), 0 < Re α < Re β,

we obtain

2

∞∫

0

ρn+|γ |−1 dρ

(1 + ρ2)
n+|γ |+1

2

=
∞∫

0

r
n+|γ |

2 −1

(1 + r) n+|γ |+1
2

dr =
√
π

(
n+|γ |

2

)


(
n+|γ |+1

2

) (60)

and

∫

R
n+

yγ dy

(1 + |y|2) n+|γ |+1
2

=

n∏
i=1

(
γi+1

2

)

2n
(
n+|γ |

2

)
√
π

(
n+|γ |

2

)


(
n+|γ |+1

2

) =
√
π

n∏
i=1

(
γi+1

2

)

2n
(
n+|γ |+1

2

) .

Finally,

∫

R
n+

Pγ (x, 1)xγ dx =
2n

(
n+|γ |+1

2

)

√
π

n∏
j=1


(
γj+1

2

)
∫

R
n+

yγ dy

(1 + |y|2) n+|γ |+1
2

=

=
2n

(
n+|γ |+1

2

)
√
π

n∏
j=1


(
γj+1

2

)
√
π

n∏
i=1

(
γi+1

2

)

2n
(
n+|γ |+1

2

) = 1.

3. We finally prove that Pγ (x, δ) ∈ Lγp, 1 ≤ p ≤ ∞. We have

∫

R
n+

xγ dx

(δ2 + |x|2)p n+|γ |+1
2

= δ(n+|γ |)(1−p)−p
∫

R
n+

xγ dx

(|x|2 + 1)p
n+|γ |+1

2

=

= {x = ρσ, |x| = ρ} = δ(n+|γ |)(1−p)−p
∞∫

0

ρn+|γ |−1dρ

(ρ2 + 1)p
n+|γ |+1

2

∫

S+
1 (n)

σ γ dS.
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Applying (9) and (60) for 1 ≤ p <∞ we get

||Pγ (x, δ)||p,γ =

⎛
⎜⎜⎝δ(n+|γ |)(1−p)−p

√
π

(
n+|γ |

2

)

2
(
n+|γ |+1

2

)
n∏
i=1

(
γi+1

2

)

2n−1
(
n+|γ |

2

)
⎞
⎟⎟⎠

1
p

=

=

⎛
⎜⎜⎝δ(n+|γ |)(1−p)−p

√
π

n∏
i=1

(
γi+1

2

)

2n
(
n+|γ |+1

2

)
⎞
⎟⎟⎠

1
p

<∞.

For p = ∞ we get inequality ||Pγ (x, δ)||∞,γ <∞ using (4).
��

Following [75] (see Theorem 1.18, p. 17) we prove that a generalized convolution
of a function with the Poisson kernel tends to a function in Lγp .

Let

(Pγ,δf )(x) = (f (x) ∗ Pγ (x, δ))γ . (61)

Lemma 3 If f ∈ Lγp , 1 ≤ p ≤ ∞ or f ∈ C0 ⊂ Lγ∞ then

||(Pγ,δf )(x)− f (x)||p,γ → 0 with δ → 0.

Proof Considering the property 2 from Lemma 2 we can write

(f (x) ∗ Pγ (x, δ))γ − f (x) =
∫

R
n+

[ γTyxf (x)− f (y)]Pγ (y, δ)yγ dy.

Hence, applying the generalized Minkowski inequality, we obtain

||(f (x) ∗ Pγ (x, δ))γ − f (x)||p,γ ≤

≤
∫

R
n+

⎛
⎜⎝
∫

R
n+

[ γTyxf (x)− f (x)]pxγ dx
⎞
⎟⎠

1
p

|Pγ (y, δ)|yγ dy = {y = δt} =

=
∫

R
n+

⎛
⎜⎝

∫

R
n+

[ γTδtx f (x)− f (x)]pxγ dx
⎞
⎟⎠

1
p

|Pγ (t, 1)|tγ dt. (62)
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From [76] (see the Lemma 3.6, p. 166) it follows that for f ∈ Lγp
|| γTδtx f (x)− f (x)||p,γ ≤ c||f (x)||p,γ ,

and from [77] (see the preposition 4.1, p. 182) and [78] p. 50 follows that

lim
δ→0

⎛
⎜⎝

∫

R
n+

[ γTδtx f (x)− f (x)]pxγ dx
⎞
⎟⎠

1
p

= 0.

Then, by the Lebesgue theorem on dominated convergence, the integral (62) tends
to zero when δ → 0, since the integrand is majorized by the integrable function
c||f ||p,γ |Pγ (t, 1)|tγ .

��

4.3 Representation of the Kernel ∓gα
ε,δ

In this section we get the integral kernel representation ∓gαε,δ .

Theorem 8 Function ∓gαε,δ can be presented in the form

∓gαε,δ(x) = 22−|γ |

δn+|γ |+α n∏
i=1

(
γi+1

2

) (n+ |γ | + α)

(
γ1+1

2

)

(
n+|γ ′|−1

2

)×

×
∞∫

0

rn+|γ ′|−2 (1 − r2 ∓ i0)m+ α
2

(1 + r2)
n+|γ |+α

2 (1 − r2 + iε(1 + r2))m
×

×F4

(
β

2
,
β + 1

2
; γ1 + 1

2
,
n+ |γ ′| − 1

2
; − x2

1

δ2(1 + r2)
,− (r|x ′|)2
δ2(1 + r2)

)
dr.

where β = n+ |γ | + α F4(a, b, c1, c2; x, y) is the Appell hypergeometric function
(23).

Proof We represent the function ∓gαε,δ(t) as the sum

∓gαε,δ(x) = F−1
γ

(P ∓ i0)m+ α
2 e−δ|x|

(P (x)+ iε|x|2)m =

= 2n−|γ |
n∏
j=1

2
(
γj+1

2

)
∫

R
n+

(P ∓ i0)m+ α
2 e−δ|ξ |

(P (ξ) + iε|ξ |2)m jγ (x, ξ)ξγ dξ =
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= 2n−|γ |
n∏
j=1

2
(
γj+1

2

)
⎡
⎢⎣

∫

{P(ξ)>0}+

Pm+ α
2 (ξ)e−δ|ξ |

(P (ξ) + iε|ξ |2)m jγ (x, ξ)ξγ dξ+

+e∓(m+ α
2 )πi

∫

{P(ξ)<0}+

|P(ξ)|m+ α
2 e−δ|ξ |

(P (ξ) + iε|ξ |2)m jγ (x, ξ)ξγ dξ

⎤
⎥⎦ .

Let

J1 =
∫

{P(ξ)>0}+

Pm+ α
2 (ξ)e−δ|ξ |

(P (ξ) + iε|ξ |2)m jγ (x, ξ)ξγ dξ,

J2 =
∫

{P(ξ)<0}+

|P(ξ)|m+ α
2 e−δ|ξ |

(P (ξ)+ iε|ξ |2)m jγ (x, ξ)ξγ dξ.

Going in J1 over to spherical coordinates ξ ′ = ρσ , σ ∈ R
n−1+ , ρ = |ξ ′| we obtain

J1 =
∞∫

0

j γ1−1
2
(x1ξ1)ξ

γ1
1 dξ1×

×
∫

|ξ ′|2<ξ2
1

(ξ2
1 − |ξ ′|2)m+ α

2 e
−δ

√
ξ2

1 +|ξ ′|2

(ξ2
1 − |ξ ′|2 + iε(ξ2

1 + |ξ ′|2))m jγ (x ′, ξ ′)(ξ ′)γ ′
dξ ′ =

=
∞∫

0

j γ1−1
2
(x1ξ1)ξ

γ1
1 dξ1

ξ1∫

0

ρn+|γ ′|−2 (ξ
2
1 − ρ2)m+ α

2 e
−δ

√
ξ2

1 +ρ2

(ξ2
1 − ρ2 + iε(ξ2

1 + ρ2))m
dρ×

×
∫

S+
1 (n−1)

jγ (x ′, ρσ)(σ )γ ′
dS.

The next formula

∫

S+
1 (n−1)

jγ (x ′, ρσ)(σ )γ ′
dS =

n∏
i=2

(
γi+1

2

)

2n−2
(
n−1+|γ ′|

2

) j n−1+|γ ′|
2 −1

(ρ|x ′|),
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is valid (see (16)), therefore

J1 =

n∏
i=2

(
γi+1

2

)

2n−2
(
n−1+|γ ′|

2

)
∞∫

0

j γ1−1
2
(x1ξ1)ξ

γ1
1 dξ1×

×
ξ1∫

0

ρn+|γ ′|−2j n−1+|γ ′|
2 −1

(ρ|x ′|) (ξ
2
1 − ρ2)m+ α

2 e
−δ

√
ξ2

1 +ρ2

(ξ2
1 − ρ2 + iε(ξ2

1 + ρ2))m
dρ = {ρ = ξ1r} =

=

n∏
i=2

(
γi+1

2

)

2n−2
(
n−1+|γ ′|

2

)
∞∫

0

j γ1−1
2
(x1ξ1)ξ

n+|γ |−1+α
1 dξ1×

×
1∫

0

rn+|γ ′|−2j n−1+|γ ′|
2 −1

(rξ1|x ′|) (1 − r2)m+ α
2 e−δξ1

√
1+r2

(1 − r2 + iε(1 + r2))m
dr =

=

n∏
i=2

(
γi+1

2

)

2n−2
(
n−1+|γ ′|

2

) 2
γ1−1

2 
(
γ1+1

2

)

x
γ1−1

2
1

2
n−1+|γ ′|

2 −1
(
n−1+|γ ′|

2

)

|x ′| n−1+|γ ′|
2 −1

×

×
1∫

0

r
n+|γ ′|−1

2
(1 − r2)m+ α

2

(1 − r2 + iε(1 + r2))m
dr×

×
∞∫

0

ξ
n+|γ |

2 +α+1
1 e−δξ1

√
1+r2

Jγ1−1
2
(x1ξ1)J n−1+|γ ′ |

2 −1
(rξ1|x ′|) dξ1 =

=
2

|γ |−n
2

n∏
i=1

(
γi+1

2

)

x
γ1−1

2
1 |x ′| n−1+|γ ′|

2 −1

1∫

0

r
n+|γ ′ |−1

2
(1 − r2)m+ α

2

(1 − r2 + iε(1 + r2))m
dr×

×
∞∫

0

ξ
n+|γ |

2 +α+1
1 e−δξ1

√
1+r2

Jγ1−1
2
(x1ξ1)J n−1+|γ ′|

2 −1
(rξ1|x ′|) dξ1.
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To calculate the internal integral, apply the formula 2.12.38.2 from [68], p. 194 of
the form

∞∫

0

xa−1 e−px Jμ(bx) Jν(cx)dx = bμcν

2μ+νpa+μ+ν
(a + μ+ ν)

(μ+ 1)(ν + 1)
×

×F4

(
a + μ+ ν

2
,
a + μ+ ν + 1

2
;μ+ 1, ν + 1; − b

2

p2 ,−
c2

p2

)
,

Re (a + μ+ ν) > 0; Re p > 0.

We have

a = n+ |γ |
2

+ α + 2, p = δ
√

1 + r2, μ = γ1 − 1

2
,

ν = n− 1 + |γ ′|
2

− 1, b = x1, c = r|x ′|

and

∞∫

0

ξ
n+|γ |

2 +α+1
1 e−δξ1

√
1+r2

Jγ1−1
2
(x1ξ1)J n−1+|γ ′|

2 −1
(rξ1|x ′|) dξ1 =

= x
γ1−1

2
1 (r|x ′|) n+|γ ′|−3

2

2
n+|γ |

2 −2(δ
√

1 + r2)n+|γ |+α
(n+ |γ | + α)


(
γ1+1

2

)

(
n+|γ ′|−1

2

)×

×F4

(
β

2
,
β + 1

2
; γ1 + 1

2
,
n+ |γ ′| − 1

2
; − x2

1

δ2(1 + r2)
,− (r|x ′|)2
δ2(1 + r2)

)
,

where β = n+ |γ | + α. Then

J1 =
2

|γ |−n
2

n∏
i=1

(
γi+1

2

)

x
γ1−1

2
1 |x ′| n−1+|γ ′|

2 −1

1∫

0

r
n+|γ ′ |−1

2
(1 − r2)m+ α

2

(1 − r2 + iε(1 + r2))m
dr×

× x
γ1−1

2
1 (r|x ′|) n+|γ ′ |−3

2

2
n+|γ |

2 −2(δ
√

1 + r2)n+|γ |+α
(n+ |γ | + α)


(
γ1+1

2

)

(
n+|γ ′|−1

2

)×
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×F4

(
β

2
,
β + 1

2
; γ1 + 1

2
,
n+ |γ ′| − 1

2
; − x2

1

δ2(1 + r2)
,− (r|x ′|)2
δ2(1 + r2)

)
.

=

n∏
i=1

(
γi+1

2

)

2n−2δβ

(n+ |γ | + α)

(
γ1+1

2

)

(
n+|γ ′|−1

2

)×

×
1∫

0

rn+|γ ′|−2 (1 − r2)m+ α
2

(1 + r2)
n+|γ |+α

2 (1 − r2 + iε(1 + r2))m
×

×F4

(
β

2
,
β + 1

2
; γ1 + 1

2
,
n+ |γ ′| − 1

2
; − x2

1

δ2(1 + r2)
,− (r|x ′|)2
δ2(1 + r2)

)
dr.

Similarly, we find

J2 =

n∏
i=1

(
γi+1

2

)

2n−2δβ

(β)


(
γ1+1

2

)

(
n+|γ ′|−1

2

)×

×
∞∫

1

rn+|γ ′|−2 (1 − r2)m+ α
2

(1 + r2)
n+|γ |+α

2 (1 − r2 + iε(1 + r2))m
×

×F4

(
β

2
,
β + 1

2
; γ1 + 1

2
,
n+ |γ ′| − 1

2
; − x2

1

δ2(1 + r2)
,− (r|x ′|)2
δ2(1 + r2)

)
dr.

Multiplying by the corresponding constants, adding J1(x) with J2(x) and taking
into account that

(1 − r2 ∓ i0)m+ α
2 = (1 − r2)

m+ α
2+ + e∓(m+ α

2 )πi(1 − r2)
m+ α

2−

we obtain the statement of the Theorem. ��

4.4 Belonging of the (Iα
P±i0,γ

)−1
ε,δ

to the Class L
γ

P

Consider a convolution operator

Af = (T ∗ f )γ , f ∈ Sev. (63)
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In the images of Hankel transform we can write

Fγ [Af ] = Fγ [T ] · Fγ [f ].

Definition 6 LetM∈S′
ev . The weighted generalized function is called B-multiplier

in Lγp , if for all f ∈ Sev the generalized convolution (F−1
γ M ∗ f )γ belongs to Lγp

and the supremum

sup
||f ||p,γ=1

||(F−1
γ M ∗ f )γ ||p,γ (64)

is finite. Linear space of all such M is denoting by the Mp,γ=Mp,γ (Rn+). Norm in
Mp,γ is the supremum (64).

Consider a singular differential operator

(DB)
βi
xi

=
⎧⎨
⎩
B
βi
2
γi , β = 0, 2, 4, . . . ,

DxiB
βi−1

2
γi , β = 1, 3, 5, . . . ,

where Bγi = ∂2

∂xi
+ γi
xi

∂
∂xi

.
In the article [79] proved the following criterion of B-multiplier of the type of

Mikhlin criterion.

Theorem 9 LetM(ξ)∈Ckev(Rn+)\{0}, where k is even number grate then n+|γ |
2 and

there is a constantA which does not depend on β = (β1, . . . , βm), |β|<k, such that
for ξ �=0, ξ∈Rn+ the condition

∣∣∣ξβ (DB)βξ M(ξ)
∣∣∣ ≤ A

is valid ThenM(ξ) is B-multiplier for 1 < p <∞.

Lemma 4 Let ε, δ > 0 are fixed numbers andm ≥ n+ |γ | − α
2 . Function

M∓
α,ε,δ(ξ) =

{
(P∓i0)m+ α2 e−δ|ξ |
(P (ξ)+iε|ξ |2)m , P (ξ) �= 0;

0, P (ξ) = 0

is B-multiplier for 1 < p <∞.

Proof We prove the estimate

∣∣∣ξβ1
1 . . . ξβnn (DB)

β1
ξ1
. . . (DB)

βn
ξn
M∓
α,ε,δ(ξ)

∣∣∣ ≤ C(ε, δ). (65)



284 E. L. Shishkina

For ξ /∈ V = {ξ ∈ R
n+ : P(ξ) = 0} we have

|(DB)jξ (P ∓ i0)m+ α
2 | ≤ C1|ξj | · |P(ξ)|m+ α

2 −|j |,

|(DB)kξ (P (ξ) + iε|ξ |2)−m| ≤ C2|ξk| · |P 2(ξ)+ ε2|ξ |4|−m+|k|
2 ,

|(DB)rξ e−δ|ξ || ≤ C3|ξr | · e
−δ|ξ |

|ξ |2r−1 .

Using these estimates and the formula of the type of Leibniz formula for B-
differentiation of the following form (see [80]):

Bli (u v) =
2l∑
k=0

Ck2l

(
D2l−k
Bi

u
) (
DkBi v

)
+

2l−2∑
m=1

1

xmi
P2l−m

(
DBi v;DBiu

)
,

where

P2l−m
(
DBi v;DBiu

) =
2l−v−1∑
j=1

a2l−m−j,j (γj )
(
D

2l−m−j
Bi

u
) (
D
j
Bi
v
)
,

we get the required estimate (65).
If ξ ∈ V then the estimate (65) follows from the continuity of the function

M∓
α,ε,δ(ξ) and its derivatives on V . ��

Lemma 5 Function ∓gαε,δ(x) belongs to space Lγp , 1 < p <∞.

Proof Since the function

∓gαε,δ(t) = F−1
γ

(P ∓ i0)m+ α
2 e−δ|x|

(P (x)+ iε|x|2)m

is representable by an operator generated by the B-multiplier M∓
α,ε,δ(ξ) in Lγp then

∓gαε,δ ∈ Lγp . ��
Lemma 6 Let f ∈ Sev . The operator

(IαP±i0,γ )
−1
ε,δf (x) =

∫

R
n+

∓gαε,δ(t)(γTtxf (x))t
γ dt

is bounded in Lγp , 1 < p <∞.
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Proof By definition of the operator

(IαP±i0,γ )
−1
ε,δf =

((
F−1
γ

(P ∓ i0)m+ α
2 e−δ|ξ |

(P (ξ) + iε|ξ |2)m
)
(x) ∗ f (x)

)

γ

it is a generalized convolution (F−1
γ M

∓
α,ε,δ ∗ f )γ with the B-multiplier M∓

α,ε,δ(ξ)

therefore belongs to Lγp . ��

4.5 Theorems About the Inversion of the Hyperbolic
B-Potential

Lemma 7 Let f ∈ �γV , V={ξ∈Rn+:P(ξ)=0} then

((IαP±i0,γ )−1
ε,δI

α
P±i0,γ f )(x) = (Pγ,δf )(x)+ 2n−|γ |

n∏
j=1

2
(
γj+1

2

)
m∑
k=0

Ckm(−iε)k(Aγ,δ,εk
f )(x),

where (Pγ,δf )(x) is a generalized convolution with the Poisson kernel (61)

(Aγ,δ,εk f )(x) = (Aγ,δ,εk (x)∗f (x))γ , A
γ,δ,ε
k (x) =

∫

R
n+

|ξ |2ke−δ|ξ |
(P (ξ)+ iε|ξ |2)k jγ (x, ξ)ξγ dξ.

Proof Let IαP±i0,γ f = g. We have

Fγ ((IαP±i0,γ )
−1
ε,δg)(x) = Fγ

((
F−1
γ

(P ∓ i0)m+ α
2 e−δ|ξ |

(P (ξ) + iε|ξ |2)m
)
(x) ∗ g(x)

)

γ

=

= (P ∓ i0)m+ α
2

γ e−δ|x|

(P (x)+ iε|x|2)m · Fγ g = (P ∓ i0)m+ α
2

γ e−δ|x|

(P (x)+ iε|x|2)m · (P ∓ i0)−
α
2

γ Fγ f =

= (P ∓ i0)mγ e−δ|x|
(P (x)+ iε|x|2)m · Fγ f.

Then

((IαP±i0,γ )
−1
ε,δI

α
P±i0,γ f )(x)=F−1

γ

(
(P ∓ i0)mγ e−δ|x|
(P (x)+ iε|x|2)m · Fγ f

)
=

=
(

F−1
γ

(P ∓ i0)mγ e−δ|x|
(P (x)+ iε|x|2)m ∗ f

)

γ

. (66)
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Applying to F−1
γ

(P∓i0)mγ e−δ|x|
(P (x)+iε|x|2)m the Newton’s binomial formula we obtain

F−1
γ

(P ∓ i0)mγ e−δ|x|
(P (x)+ iε|x|2)m = 2n−|γ |

n∏
j=1

2
(
γj+1

2

)
⎡
⎢⎣

∫

{ξ1>|ξ ′ |}+

(ξ2
1 − |ξ ′|2)me−δ|ξ |
(P (ξ) + iε|ξ |2)m jγ (x, ξ)ξγ dξ+

+e∓mπi
∫

{ξ1<|ξ ′|}+

(|ξ ′|2 − ξ2
1 )
me−δ|ξ |

(P (ξ) + iε|ξ |2)m jγ (x, ξ)ξγ dξ

⎤
⎥⎦ =

= 2n−|γ |
n∏
j=1

2
(
γj+1

2

)
⎡
⎢⎣

∫

{ξ1>|ξ ′|}+

(
(1 − iε|ξ |2

P(ξ) + iε|ξ |2
)m
e−δ|ξ |jγ (x, ξ)ξγ dξ+

+e∓mπi(−1)m
∫

{ξ1<|ξ ′|}+

(
(1 − iε|ξ |2

P(ξ)+ iε|ξ |2
)m
e−δ|ξ |jγ (x, ξ)ξγ dξ

⎤
⎥⎦ =

= 2n−|γ |
n∏
j=1

2
(
γj+1

2

)
m∑
k=0

Ckm(−iε)k
⎡
⎢⎣

∫

{ξ1>|ξ ′|}+

|ξ |2ke−δ|ξ |
(P (ξ) + iε|ξ |2)k jγ (x, ξ)ξγ dξ+

+
∫

{ξ1<|ξ ′|}+

|ξ |2ke−δ|ξ |
(P (ξ) + iε|ξ |2)k jγ (x, ξ)ξγ dξ

⎤
⎥⎦ =

= 2n−|γ |
n∏
j=1

2
(
γj+1

2

)
m∑
k=0

Ckm(−iε)k
∫

R
n+

|ξ |2ke−δ|ξ |
(P (ξ) + iε|ξ |2)k jγ (x, ξ)ξγ dξ.

For m = 0 applying of (57) gives

(F−1
γ e

−δ|ξ |)(x) = 2n−|γ |
n∏
j=1

2
(
γj+1

2

)
2|γ |δ

n∏
i=1

(
γi+1

2

)

(
n+|γ |+1

2

)

√
π(δ2 + |x|2) n+|γ |+1

2

=

=
2n

(
n+|γ |+1

2

)

√
π

n∏
j=1


(
γj+1

2

) δ (δ2 + |x|2)− n+|γ |+1
2 = Pγ (x, δ). (67)
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Here Pγ (x, δ) is general Poisson kernel (59). By the Lemma 2 Pγ (x, δ) ∈ Lγp .
Introducing the notation

A
γ,δ,ε

k (x) =
∫

R
n+

|ξ |2ke−δ|ξ |
(P (ξ)+ iε|ξ |2)k jγ (x, ξ)ξγ dξ = Fγ

|x|2ke−δ|x|
(P (x)+ iε|x|2)k

form > 0 we get

F−1
γ

(P ∓ i0)mγ e−δ|x|
(P (x)+ iε|x|2)m = 2n−|γ |

n∏
j=1

2
(
γj+1

2

)
m∑
k=0

Ckm(−iε)kAγ,δ,εk (x). (68)

Substituting (67) and (68) in (66) we obtain the statement of the theorem for f∈�γV .
��

Theorem 10 Let f ∈ �
γ

V , V={ξ∈Rn+:P(ξ)=0}, 1 < p <
n+|γ |
α

, p ≤ 2,
n+|γ |−2<α<n+|γ |, then

((IαP±i0,γ )−1IαP±i0,γ f )(x) = f (x),

where

(IαP±i0,γ )−1f ) =
L
γ
p

lim
δ→0

L
γ
2

lim
ε→0

((
F−1
γ

(P ∓ i0)m+ α
2 e−δ|ξ |

(P (ξ) + iε|ξ |2)m
)
(x) ∗ f (x)

)

γ

here the limit by ε is understood by norm in Lγ2 and the limit by δ is understood by
norm in Lγp .

Proof From Lemma 7 follows that it is enough to show

L
γ
p

lim
δ→0

L
γ
2

lim
ε→0

⎡
⎢⎢⎢⎣(Pγ,δf )(x)+

2n−|γ |
n∏
j=1

2
(
γj+1

2

)
m∑
k=0

Ckm(−iε)k(Aγ,δ,εk f )(x)

⎤
⎥⎥⎥⎦ = f (x).

Find the limit for ε in Lγ2 . We have

(Aγ,δ,εk f )(x) = (Aγ,δ,εk (x) ∗ f (x))γ =

=
∫

R
n+

Fγ

[ |x|2ke−δ|x|
(P (x)+ iε|x|2)k

]
(y)(γTyxf )(x)yγ dy =
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=
∫

R
n+

Fγ

[
|x|2ke− δ

2 |x|

(P (x)+ iε|x|2)k e
− δ

2 |x|
]
(y)(γTyxf )(x)y

γ dy =

=
∫

R
n+

Fγ

[
|x|2ke− δ

2 |x|

(P (x)+ iε|x|2)k Fγ

[
Pγ

(
z,
δ

2

)]
(x)

]
(y)(γTyxf )(x)y

γ dy.

Using Parseval Equation to Hankel transform (see [60], p. 20) we obtain

||(−iε)k(Aγ,δ,εk f )(x)||22,γ=||(Aγ,δ,εk (x) ∗ f (x))γ ||22,γ=||Fγ Aγ,δ,εk (x) · Fγ f (x))γ ||22,γ=

= 2n−|γ |
n∏
j=1

2
(
γj+1

2

)
∫

R
n+

∣∣∣∣∣
(−iε)k|x|2ke− δ

2 |x|

(P (x) + iε|x|2)k Fγ

[
Pγ

(
x,
δ

2

)]
Fγ f (x)

∣∣∣∣∣
2

xγ dx =

= 2n−|γ |
n∏
j=1

2
(
γj+1

2

)
∫

R
n+

∣∣∣∣∣
(−iε)k |x|2ke− δ

2 |x|

(P (x) + iε|x|2)k Fγ
[
(Pγ,δf )(x)

]∣∣∣∣∣
2

xγ dx.

Considering that

∣∣∣∣∣
(−iε)k|x|2ke− δ

2 |x|

(P (x)+ iε|x|2)k Fγ
[
(Pγ,δf )(x)

]∣∣∣∣∣
2

≤ e−δ|x| ∣∣Fγ [(Pγ,δf )(x)]∣∣2

and e−δ|x|
∣∣Fγ [Pγ (x, δ2

)]∣∣2 ∈ L
γ

1 on the basis of the Lebesgue dominated
convergence theorem, we obtain that

(−iε)k(Aγ,δ,εk f )(x)→ 0 for ε → 0 in L
γ

2 .

The fact that

||(Pγ,δf )(x)− f (x)||p,γ → 0 for δ → 0

was proved in the Lemma 3. Thus, the theorem is proved. ��
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One-Dimensional and Multi-Dimensional
Integral Transforms
of Buschman–Erdélyi Type with
Legendre Functions in Kernels

Sergei M. Sitnik and Oksana V. Skoromnik

Abstract This paper consists of two parts. In the first part we give a brief survey
of results on Buschman–Erdélyi operators, which are transmutations for the Bessel
singular operator. Main properties and applications of Buschman–Erdélyi operators
are outlined. In the second part of the paper we consider multi-dimensional integral
transforms of Buschman–Erdélyi type with Legendre functions in kernels. Complete
proofs are given in this part, main tools are based on Mellin transform properties and
usage of Fox H -functions.

Keywords Buschman–Erdélyi operators · Multidimensional Buschman–Erdélyi
operators · Transmutations · Mellin transform · Fox H -function
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1 Buschman–Erdélyi Operators

For a given pair of operators (A,B) an operator T is called transmutation (or
intertwining) operator if on elements of some functional spaces the following
property is valid

T A = B T . (1)

And how the transmutations usually works? Suppose we study properties for a
rather complicated operator A. But suppose also that we know the corresponding
properties for a model more simple operator B and transmutation (1) readily exists.
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Then we usually may copy results for the model operator B to corresponding
ones for the more complicated operator A. This is shortly the main idea of
transmutations.

Let us consider for example an equation Au = f , then applying to it a
transmutation with property (1) we consider a new equation Bv = g, with v =
T u, g = Tf . So if we can solve the simpler equation Bv = g, then the initial one
is also solved and has solution u = T −1v. Of course, it is supposed that the inverse
operator exists and its explicit form is known. This is a simple application of the
transmutation technique for finding and proving formulas for solutions of ordinary
and partial differential equations.

The monographs [2, 6–8, 17, 23, 57, 59] are completely devoted to the trans-
mutation theory and its applications, note also author’s survey [50]. Moreover,
essential parts of monographs [9, 12, 24, 30–32, 34–39, 45, 60], include material on
transmutations, the complete list of books which investigate some transmutational
problems is now near of 100 items.

The term “Buschman–Erdélyi transmutations” was introduced by the author and
is now accepted. Integral equations with these operators were studied in mid-1950th.
The author was first to prove the transmutational nature of these operators. The
classical Sonine and Poisson operators are special cases of the Buschman–Erdélyi
transmutations and Sonine–Dimovski and Poisson–Dimovski transmutations are
their generalizations for the hyper-Bessel equations and functions.

The Buschman–Erdélyi transmutations have many modifications. The author
introduced convenient classification of them. Due to this classification we introduce
Buschman–Erdélyi transmutations of the first kind, their kernels are expressed
in terms of Legendre functions of the first kind. In the limiting case we define
Buschman–Erdélyi transmutations of zero order smoothness being important in
applications. The kernels of Buschman–Erdélyi transmutations of the second kind
are expressed in terms of Legendre functions of the second kind. Some combination
of operators of the first kind and the second kind leads to operators of the third
kind. For the special choice of parameters they are unitary operators in the standard
Lebesgue space. The author proposed the terms “Sonine–Katrakhov” and “Poisson–
Katrakhov” transmutations in honor of V. Katrakhov who introduced and studied
these operators.

The study of integral equations and invertibility for the Buschman–Erdélyi
operators was started in 1960-th by P. Buschman and A. Erdélyi, [4, 5, 14, 15].
These operators also were investigated by Higgins, Ta Li, Love, Habibullah, K.
N. Srivastava, Ding Hoang An, Smirnov, Virchenko, Fedotova, Kilbas, Skorom-
nik and others. During this period, for this class of operators were considered
only problems of solving integral equations, factorization and invertibility, cf.
[44].

The most detailed study of the Buschman–Erdélyi transmutations was taken by
the author in 1980–1990th [20, 46, 47] and continued in [19–22, 46–49, 51–56] and
some other papers. Interesting and important results were proved by N. Virchenko
and A. Kilbas and their disciples [26, 27, 61].
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Let us first consider the most well-known transmutations for the Bessel operator
and the second derivative:

T (Bν) f =
(
D2

)
Tf, Bν = D2 + 2ν + 1

x
D, D2 = d2

dx2 , ν ∈ C. (2)

Definition 1 The Poisson transmutation is defined by

Pνf = 1

(ν + 1)2νx2ν

∫ x

0

(
x2 − t2

)ν− 1
2
f (t) dt, "ν > −1

2
. (3)

Respectively, the Sonine transmutation is defined by

Sνf = 2ν+ 1
2

( 1
2 − ν)

d

dx

∫ x

0

(
x2 − t2

)−ν− 1
2
t2ν+1f (t) dt, "ν < 1

2
. (4)

The operators (3)–(4) intertwine by the formulas

SνBν = D2Sν, PνD
2 = BνPν. (5)

The definition may be extended to ν ∈ C. We will use more historically exact term
as the Sonine–Poisson–Delsarte transmutations [50].

An important generalization for the Sonine–Poisson–Delsarte are the
transmutations for the hyper-Bessel operators and functions. Such functions
were first considered by Kummer and Delerue. The detailed study on these
operators and hyper-Bessel functions was done by Dimovski and further, by
Kiryakova. The corresponding transmutations have been called by Kiryakova
[31] as the Sonine–Dimovski and Poisson–Dimovski transmutations. In hyper-
Bessel operators theory the leading role is for the Obrechkoff integral transform
[10, 11, 13, 31]. It is a transform with Meijer’s G-function kernel which
generalizes the Laplace, Meijer and many other integral transforms introduced
by different authors. Various results on the hyper-Bessel functions, connected
equations and transmutations were many times reopened. The same is true for
the Obrechkoff integral transform. It my opinion, the Obrechkoff transform
together with the Laplace, Fourier, Mellin, Stankovic transforms are essential basic
elements from which many other transforms are constructed with corresponding
applications.

Let us define and study some main properties of the Buschman–Erdélyi transmu-
tations of the first kind. This class of transmutations for some choice of parameters
generalize the Sonine–Poisson–Delsart transmutations, Riemann–Liouville and
Erdélyi–Kober fractional integrals, Mehler–Fock transform.
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Definition 2 Define the Buschman–Erdélyi operators of the first kind by

B
ν,μ
0+ f =

∫ x

0

(
x2 − t2

)−μ
2
Pμν

(x
t

)
f (t)d t, (6)

E
ν,μ
0+ f =

∫ x

0

(
x2 − t2

)−μ
2
P
μ
ν

(
t

x

)
f (t)d t, (7)

B
ν,μ
− f =

∫ ∞

x

(
t2 − x2

)−μ
2
Pμν

(
t

x

)
f (t)d t, (8)

E
ν,μ
− f =

∫ ∞

x

(
t2 − x2

)−μ
2
P
μ
ν

(x
t

)
f (t)d t. (9)

Here Pμν (z) is the Legendre function of the first kind, Pμν (z) is this function on
the cut −1 ≤ t ≤ 1 ([1]), f (x) is a locally summable function with some growth
conditions at x → 0, x → ∞. The parameters are μ, ν ∈ C, "μ < 1, "ν ≥ −1/2.

Now consider some main properties for this class of transmutations, following
essentially [46, 47], and also [48, 50]. All functions further are defined on positive
semiaxis. So we use notations L2 for the functional space L2(0,∞) and L2,k for
power weighted space L2,k(0,∞) equipped with norm

∫ ∞

0
|f (x)|2x2k+1 dx, (10)

N denotes the set of naturals, N0-positive integer, Z-integer and R-real numbers.
First, add to Definition 2 a case of parameter μ = 1. It defines a very important

class of operators.

Definition 3 Define for μ = 1 the Buschman–Erdélyi operators of zero order
smoothness by

B
ν,1
0+ f = 1S

ν
0+f = d

dx

∫ x

0
Pν

(x
t

)
f (t) dt, (11)

E
ν,1
0+f = 1P

ν−f =
∫ x

0
Pν

(
t

x

)
df (t)

dt
dt, (12)

B
ν,1
− f = 1S

ν−f =
∫ ∞

x

Pν

(
t

x

)
(−df (t)

dt
) dt, (13)

E
ν,1
− f = 1P

ν
0+f = (− d

dx
)

∫ ∞

x

Pν

(x
t

)
f (t) dt, (14)

where Pν(z) = P 0
ν (z) is the Legendre function.

Theorem 1 The next formulas hold true for factorizations of Buschman–Erdélyi
transmutations for suitable functions via Riemann–Liouville fractional integrals and
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Buschman–Erdélyi operators of zero order smoothness:

B
ν,μ
0+ f = I 1−μ

0+ 1S
ν
0+f , B

ν, μ
− f = 1P

ν− I
1−μ
− f, (15)

E
ν,μ
0+ f = 1P

ν
0+ I

1−μ
0+ f, E

ν, μ
− f = I 1−μ

− 1S
ν−f. (16)

These formulas allow to separate parameters ν and μ. We will prove soon
that operators (11)–(14) are isomorphisms of L2(0,∞) except for some special
parameters. So, operators (6)–(9) roughly speaking are of the same smoothness in
L2 as integrodifferentiations I 1−μ and they coincide with them for ν = 0. It is also
possible to define Buschman–Erdélyi operators for all μ ∈ C.

Definition 4 Define the number ρ = 1−Reμ as smoothness order for Buschman–
Erdélyi operators (6)–(9).

So for ρ > 0 (otherwise for Re μ > 1) the Buschman–Erdélyi operators are
smoothing and for ρ < 0 (otherwise for Re μ < 1) they decrease smoothness in
L2 spaces. Operators (11)–(14) for which ρ = 0 due to Definition 4 are of zero
smoothness order in accordance with their definition.

For some special parameters ν, μ the Buschman–Erdélyi operators of the first
kind are reduced to other known operators. So for μ = −ν or μ = ν + 2
they reduce to Erdélyi–Kober operators, for ν = 0 they reduce to fractional
integrodifferentiation I 1−μ

0+ or I 1−μ
− , for ν = − 1

2 , μ = 0 or μ = 1 kernels reduce to

elliptic integrals, for μ = 0, x = 1, v = it − 1
2 the operator Bν, 0− differs only by a

constant from Mehler–Fock transform.
As a pair for the Bessel operator consider a connected one

Lν = D2 − ν(ν + 1)

x2
=

(
d

dx
− ν

x

)(
d

dx
+ ν

x

)
, (17)

which for ν ∈ N is an angular momentum operator from quantum physics. Their
transmutational relations are established in the next theorem.

Theorem 2 For a given pair of transmutationsXν, Yν

XνLν = D2Xν, YνD
2 = LνYν (18)

define the new pair of transmutations by formulas

Sν = Xν−1/2x
ν+1/2, Pν = x−(ν+1/2)Yν−1/2. (19)

Then for the new pair Sν, Pν the next formulas are valid:

SνBν = D2Sν, PνD
2 = BνPν. (20)
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Theorem 3 Let Re μ ≤ 1. Then an operator Bν,μ0+ on proper functions is a Sonine
type transmutation and (18) is valid.

The same result holds true for other Buschman–Erdélyi operators,Eν,μ− is Sonine
type and Eν,μ0+ , Bν,μ− are Poisson type transmutations.

From these transmutation connections, we conclude that the Buschman–
Erdélyi operators link the corresponding eigenfunctions for the two operators.
They lead to formulas for the Bessel functions via exponents and trigonometric
functions, and vice versa which generalize the classical Sonine and Poisson
formulas.

Now consider factorizations of the Buschman–Erdélyi operators. First let us list
the main forms of fractional integrodifferentiations: Riemann–Liouville, Erdélyi–
Kober, fractional integral by function g(x), cf. [44],

Iα0+,xf = 1

(α)

∫ x

0
(x − t)α−1 f (t)d t, (21)

Iα−,xf = 1

(α)

∫ ∞

x

(t − x)α−1 f (t)d t,

Iα0+,2,ηf = 2x−2(α+η)

(α)

∫ x

0

(
x2 − t2

)α−1
t2η+1f (t)d t, (22)

Iα−,2,ηf = 2x2η

(α)

∫ ∞

x

(
t2 − x2

)α−1
t1−2(α+η)f (t)d t,

Iα0+,gf = 1

(α)

∫ x

0
(g(x)− g(t))α−1 g′(t)f (t)d t, (23)

Iα−,gf = 1

(α)

∫ ∞

x

(g(t)− g(x))α−1 g′(t)f (t)d t.

In all cases "α > 0 and the operators may be further defined for all α, see [44].
In the case of g(x) = x (23) reduces to the Riemann–Liouville integral, in the
case of g(x) = x2 (23) reduces to the Erdélyi–Kober operator, and in the case of
g(x) = ln x—to the Hadamard fractional integrals.

Theorem 4 The following factorization formulas are valid for the Buschman–
Erdélyi operators of the first kind via the Riemann–Liouville and Erdélyi–Kober
fractional integrals:

B
ν,μ
0+ = Iν+1−μ

0+ I
−(ν+1)
0+; 2, ν+ 1

2

(
2

x

)ν+1

, (24)

E
ν,μ
0+ =

(x
2

)ν+1
Iν+1

0+; 2,− 1
2
I

−(ν+μ)
0+ , (25)
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B
ν,μ
− =

(
2

x

)ν+1

I
−(ν+1)
−; 2, ν+1I

ν−μ+2
− , (26)

E
ν,μ
− = I−(ν+μ)

− Iν+1
−; 2, 0

(x
2

)ν+1
. (27)

The Sonine–Poisson–Delsarte transmutations also are special cases for this class
of operators.

Now let us study the properties of the Buschman–Erdélyi operators of zero order
smoothness, defined by (11)–(14). A similar operator was introduced by Katrakhov
by multiplying the Sonine operator with a fractional integral, his aim was to work
with transmutation obeying good estimates in L2(0,∞).

We use the Mellin transform defined by [40]

g(s) = Mf(s) =
∫ ∞

0
xs−1f (x) dx. (28)

The Mellin convolution is defined by

(f1 ∗ f2)(x) =
∫ ∞

0
f1

(
x

y

)
f2(y)

dy

y
, (29)

so the convolution operator with kernel K acts under the Mellin transform as a
multiplication on multiplicator

M[Af ](s) = M [
∫ ∞

0
K

(
x

y

)
f (y)

dy

y
](s) = M[K ∗ f ](s) = mA(s)Mf (s), (30)

mA(s) = M[K](s).

We observe that the Mellin transform is a generalized Fourier transform on
semiaxis with Haar measure dy

y
, [18]. It plays important role for the theory of special

functions, for example the gamma function is a Mellin transform of the exponential.
With the Mellin transform the important breakthrough in evaluating integrals was
done in 1970th when mainly by O. Marichev, the famous Slater’s theorem was
adapted for calculations. The Slater’s theorem taking the Mellin transform as
input gives the function itself as output via hypergeometric functions, see [40].
This theorem occurred to be the milestone of powerful computer method for
calculating integrals for many problems in differential and integral equations. The
package Mathematica of Wolfram Research is based on this theorem in calculating
integrals.
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Theorem 5 The Buschman–Erdélyi operator of zero order smoothness 1S
ν
0+

defined by (11) acts under the Mellin transform as convolution (30) with
multiplicator

m(s) = (−s/2 + ν
2 + 1)(−s/2 − ν

2 + 1/2)

(1/2 − s
2 )(1 − s

2 )
(31)

for "s < min(2 + "ν, 1 − "ν). Its norm is a periodic in ν and equals

‖Bν,10+ ‖L2 = 1

min(1,
√

1 − sinπν)
. (32)

This operator is bounded in L2(0,∞) if ν �= 2k + 1/2, k ∈ Z and unbounded if
ν = 2k + 1/2, k ∈ Z.

Corollary 1 The norms of operators (11)–(14) are periodic in ν with period 2
‖Xν‖ = ‖Xν+2‖, Xν is any of operators (11)–(14).

Corollary 2 The norms of the operators 1S
ν
0+, 1P

ν− are not bounded in general,
every norm is greater or equals to 1. The norms are equal to 1 if sinπν ≤ 0.
The operators 1S

ν
0+, 1P

ν− are unbounded in L2 if and only if sinπν = 1 (or ν =
(2k)+ 1/2, k ∈ Z).

Corollary 3 The norms of the operators 1P
ν
0+, 1S

ν− are all bounded in ν, every

norm is not greater then
√

2. The norms are equal to 1 if sinπν ≥ 0. The operators
1P
ν
0+, 1S

ν− are bounded inL2 for all ν. The maximum of norm equals
√

2 is achieved
if and only if sinπν = −1 (��� ν = −1/2 + (2k), k ∈ Z).

The most important property of the Buschman–Erdélyi operators of zero order
smoothness is the unitarity for integer ν. It is just the case if we interpret for
these parameters the operator Lν as angular momentum operator in quantum
mechanics.

Theorem 6 The operators (11)–(14) are unitary in L2 if and only if the parameter
ν is an integer. In this case the pairs of operators (1Sν0+, 1P

ν−) and (1Sν−, 1P
ν
0+) are

mutually inverse.

To formulate an interesting special case, let us suppose that operators (11)–(14)
act on functions permitting outer or inner differentiation in integrals, it is enough to
suppose that xf (x)→ 0 for x → 0. Then for ν = 1

1P
1
0+f = (I −H1)f, 1S

1−f = (I −H2)f, (33)
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and H1, H2 are the famous Hardy operators,

H1f = 1

x

x∫

0

f (y)dy, H2f =
∞∫

x

f (y)

y
dy, (34)

I is the identic operator.

Corollary 4 The operators (33) are unitary in L2 and mutually inverse. They are
transmutations for the pair of differential operators d2/dx2 and d2/dx2 − 2/x2.

The unitarity of the shifted Hardy operators (33) in L2 is a known fact [33].
Below in application section, we introduce a new class of generalizations for the
classical Hardy operators.

Now we list some properties of the operators acting as convolutions by the
formula (30) and with some multiplicator under the Mellin transform and being
transmutations for the second derivative and angular momentum operator in quan-
tum mechanics.

Theorem 7 Let an operator Sν act by formulas (30) and (18). Then:

(a) its multiplicator satisfies a functional equation

m(s) = m(s − 2)
(s − 1)(s − 2)

(s − 1)(s − 2)− ν(ν + 1)
; (35)

(b) if any function p(s) is periodic with period 2 (p(s) = p(s−2)), then a function
p(s)m(s) is a multiplicator for a new transmutation operator Sν2 also acting by
the rule (18).

This theorem confirms the importance of studying transmutations in terms of the
Mellin transform and multiplicator functions.

Define the Stieltjes transform by (cf. [44])

(Sf )(x) =
∞∫

0

f (t)

x + t dt.

This operator also acts by the formula (30) with multiplicator p(s) = π/ sin(πs),
it is bounded in L2. Obviously p(s) = p(s − 2). So from Theorem 7 it follows a
convolution of the Stieltjes transform with bounded transmutations (11)–(14), also
transmutations of the same class bounded in L2.
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In this way many new classes of transmutations were introduced with special
functions as kernels.

Now we construct transmutations which are unitary for all ν. They are defined
by formulas

SνUf = − sin
πν

2
2S
νf + cos

πν

2
1S
ν−f, (36)

PνUf = − sin
πν

2
2P
νf + cos

πν

2
1P
ν−f. (37)

For all values ν ∈ R they are linear combinations of Buschman–Erdélyi transmu-
tations of the first and second kinds of zero order smoothness. Also they are in
the defined below class of Buschman–Erdélyi transmutations of the third kind. The
following integral representations are valid:

SνUf = cos
πν

2

(
− d

dx

) ∞∫

x

Pν

(
x

y

)
f (y) dy (38)

+ 2

π
sin
πν

2

⎛
⎝

x∫

0

(x2−y2)−
1
2Q1

ν

(
x

y

)
f (y) dy −

∞∫

x

(y2−x2)−
1
2 Q

1
ν

(
x

y

)
f (y) dy

)
,

P νUf = cos
πν

2

x∫

0

Pν

(y
x

)(
d

dy

)
f (y) dy (39)

− 2

π
sin
πν

2

⎛
⎝−

x∫

0

(x2−y2)−
1
2 Q

1
ν

(y
x

)
f (y) dy −

∞∫

x

(y2−x2)−
1
2Q1

ν

(y
x

)
f (y) dy

)
.

Theorem 8 The operators (36)–(37), (38)–(39) for all ν ∈ R are unitary, mutually
inverse and conjugate in L2. They are transmutations acting by (17). SνU is a Sonine
type transmutation and PνU is a Poisson type one.

Transmutations like (38)–(39) but with kernels in more complicated form
with hypergeometric functions were first introduced by Katrakhov in 1980.
Due to this, the author proposed terms for this class of operators as Sonine–
Katrakhov and Poisson–Katrakhov. In author’s papers these operators were
reduced to more simple form of Buschman–Erdélyi ones. It made possible to
include this class of operators in general composition (or factorization) method
[20, 21, 49].
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2 Multi-Dimensional Integral Transforms
of Buschman–Erdélyi Type with Legendre Functions
in Kernels

In this part we consider generalisations of Buschman–Erdélyi operators for multi-
dimensional case.

First introduce integral transforms:

(
H1
σ,κf

)
(x) = xσ

x∫

0

Hm, n
p, q

[
x
t

∣∣∣∣ (ai , αi)1,p(bj , βj )1,q

]
tκf (t)

dt
t
(x > 0); (40)

(
Pγδ,1f

)
(x) =

x∫

0

(
x2 − t2)−γ /2Pγδ

(
x
t

)
f (t)dt = g(x) (x > 0); (41)

(
Pγδ,2f

)
(x) =

x∫

0

(
x2 − t2)−γ /2Pγδ

(
t
x

)
f (t)dt = g(x) (x > 0); (42)

here (see [[43], Section 28.4]) x = (x1, x2, . . . , xn) ∈ Rn; t = (t1, t2, . . . , tn) ∈ Rn,

Rn Euclidean n-space; x · t =
n∑
n=1
xntn denotes their scalar product; in particular,

x · 1 =
n∑
n=1
xn for 1= (1,. . . ,1). The expression x > t means that x1 > t1, . . . , xn >

tn, the nonstrict inequality ≥ has similar meaning;
x∫

0
=
x1∫
0

x2∫
0

···
xn∫
0

; by N = {1, 2, . . .}
we denote the set of positive integers, N0 = N

⋃ {0},Nn0 = N0 × N0 × . . . × N0,
Rn+ = {x ∈ Rn, x > 0};

m = (m1,m2, . . . ,mn) ∈ Nn0 and m1 = m2 = . . . = mn; n =
(n1, n2, . . . , nn) ∈ Nn0 and n1 = n2 = . . . = nn; p = (p1, p2, . . . , pn) ∈ N0
and p1 = p2 = . . . = pn; q = (q1, q2, . . . , qn) ∈ N0 and q1 = q2 = . . . = qn)

(0 ≤ m ≤ q, 0 ≤ n ≤ p);
σ = (σ1, σ2, . . . , σn) ∈ Cn; κ = (κ1, κ2, . . . , κn) ∈ Cn;
δ = (δ1, δ2, . . . , δn) ∈ Rn; γ = (γ1, γ2, . . . , γn) ∈ Rn; 0 < γ < 1;
ai = (ai1, ai2 , . . . , ain ), 1 ≤ i ≤ p, ai1, ai2 , . . . , ain ∈ C (1 ≤ i1 ≤ p1, . . . , 1 ≤

in ≤ pn);
bj = (bj1, bj2, . . . , bjn), 1 ≤ j ≤ q , bj1, bj2, . . . , bjn ∈ C (1 ≤ j1 ≤

q1, . . . , 1 ≤ jn ≤ qn);
αi = (αi1 , αi2 , . . . , αin ), 1 ≤ i ≤ p, αi1 , αi2 , . . . , αin ∈ R+

1 (1 ≤ i1 ≤
p1, . . . , 1 ≤ in ≤ pn);
βj = (βj1 , βj2, . . . , βjn), 1 ≤ j ≤ q , βj1, βj2 , . . . , βjn ∈ R+

1 (1 ≤ j1 ≤
q1, . . . , 1 ≤ jn ≤ qn);
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k = (k1, k2, . . . , kn) ∈ Nn0 = N0×. . .×N0 (ki ∈ N0, i = 1, 2, . . . , n) is a multi-
index with k! = k1! · · · kn! and |k| = k1 +k2+ . . .+kn; for l = (l1, l2, . . . , ln) ∈ Rn+

Dl = ∂ |l|
(∂x1)

l1 ···(∂xn)ln , dt = dt1 · dt2 · · · dtn; tl = t l1 · · · t ln;
x2 − t2 = (x2

1 − t21 ) · · · (x2
n − t2n); f (t) = f (t1, t2, . . . , tn); we introduce the

function

Hm, n
p, q

[
x
t

∣∣∣∣ (ai , αi)1,p(bj , βj )1,q

]
=

n∏
k=1

Hmk, nkpk, qk

[
xk

tk

∣∣∣∣ (aik , αik )1,pk(bjk , βjk )1,qk

]
, (43)

which is the product of the H-functions Hm, np, q [z]. Such a function is defined by

Hm,np, q [z] ≡ Hm,np,q

[
z

∣∣∣∣ (ai, αi)1,p(bj , βj )1,q

]
= 1

2πi

∫

L

Hm,np,q (s)z−sds, z �= 0, (44)

where

Hm,np, q(s) ≡ Hm,np, q
[
(ai, αi )1,p

(bj , βj )1,q

∣∣∣∣s
]

=

m∏
j=1
(bj + βj s)

n∏
i=1
(1 − ai − αis)

p∏
i=n+1

(ai + αis)
q∏

j=m+1
(1 − bj − βj s)

.

(45)

HereL—is a specially chosen infinite contour and empty product, if it occurs, being
taken to be one. Note that most of the elementary and special functions are special
cases of the H-function (44), and one may find its properties in the books by Mathai
and Saxena [41, Chapter 2], Srivastava et al. [58, Chapter 1], Prudnikov et al. [42,
Section 8.3] and Kilbas and Saigo [25, Chapters 1 and 2].

We introduce the function

Pγδ [z] =
n∏
k=1

Pγkδk [zk], (46)

which is the product of the Legendre functions Pγ
δ
(z) of the first kind. For complex

γ , Re(γ ) < 1, and δ, z ∈ C this function is defined by

Pγ
δ
(z) = 1

(1 − γ )
(
z+ 1

z− 1

) γ
2

2F1

(
−δ, 1 + δ; 1 − γ ; 1 − z

2

)
, |arg(z− 1)| < π,

(47)

Pγ
δ
(x) = 1

(1 − γ )
(

1 + x
1 − x

) γ
2

2F1

(
−δ, 1 + δ; 1 − γ ; 1 − x

2

)
, −1 < x < 1,

(48)
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see ([[16], Formulas 3.2(3) and 3.4(6)], [[42], Section 11.18]), where 2F1(−δ, 1 +
δ; 1 − γ ; z)—is the Gauss hypergeometric function [[16], Section 2.1].

Our paper is devoted to the study of transforms Pγδ,kf (k = 1, 2) in the weighted
spaces Lν, 2 summable functions f (x) = f (x1, . . . , xn) on Rn+, such that:

‖f ‖v,2 = {
∫
R1+
xvn·2−1
n {· · ·{

∫
R1+
x
v2·2−1
2 ×

× [
∫
R1+
x
v1·2−1
1 |f (x1, . . . , xn)|2dx1]dx2} · ··}dxn}1/2 <∞ (49)

(2 = (2, . . . , 2), v = (v1, . . . , vn) ∈ Rn, v1 = v2 = . . . = vn).
Our investigations are based on representations of Eqs. (41) and (42) via the

modified H-transform of the form (40). Mapping properties such as the boundedness
the range, the representation and the inversion of the considered transforms are
established.

Preliminaries
Denote by [X,Y ] a set of bounded linear operators acting from a Banach space X
into a Banach space Y .

The n-dimensional Mellin transform (Mf )(x) of a function f (x) =
f (x1, x2, . . . , xn), x = (x1, x2, . . . , xn) ∈ Rn+, is defined by

(Mf )(s) =
∞∫

0

f (t)ts−1dt, Re(s) = ν, (50)

s = (s1, s2, . . . , sn) ∈ Cn; while the inverse Mellin transform is given for x ∈ Rn+
by the formula

(M−1g)(x) = M−1[g(p)](x) = 1

(2πi)n

∫ γ1+i∞

γ1−i∞
· · ·

∫ γn+i∞

γn−i∞
x−sg(s)ds, (51)

with γj = Re(sj ) (j = 1, · · · , n). The theory for these multidimensional Mellin
transforms appears in the book by Brychkov [3], see also [29, Chapter 1].

Let Mζ , R be elementary operators (see [29, Chapter 1]):

(Mζ f )(x) = xζ f (x) (ζ = (ζ1, ζ2, . . . , ζn) ∈ Cn), (Rf )(x) = 1

x
f

(
1

x

)
. (52)

There holds the following assertion, which follows from [29] formulas (1.4.44),
(1.4.45), (1.4.46)] [25, Lemma 3.2].
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Lemma 1 Let ν = (ν1, ν2, . . . , νn) ∈ Rn (ν1 = ν2 = . . . = νn) and 1 ≤ r <∞.

(a) Mζ is isometric isomorphism of Lν,r onto Lν − Re(ζ ),r and if f ∈ Lν,r (1 ≤ r ≤
2), then

(MMζ f )(s) = (Mf )(s + ζ ) (Re(s) = ν − Re(ζ )). (53)

(b) R is an isometric isomorphism of Lν,r ontoL1 − ν,r and if f ∈ Lν,r (1 ≤ r ≤ 2),
then

(MRf )(s) = (Mf )(1 − s) (Re(s) = ν). (54)

Let Iα0+; σ,η and Iα−; σ,η be the Erdelyi-Kober operators of fractional integration,
defined for α = (α1, α2, . . . , αn) ∈ Cn (Re(α) > 0), σ > 0, η ∈ Cn by:

(
Iα0+; σ, ηf

)
(x) = σx−σ(α+η)

(α)

x∫

0

(
xσ − tσ

)α−1tση+σ−1f (t)dt (x > 0), (55)

(
Iα−; σ, ηf

)
(x) = σxση

(α)

∞∫

x

(
tσ − xσ

)α−1tσ(1−α−η)−1f (t)dt (x > 0). (56)

2.1 L
ν,2–Theory and the Inversion Formulas for the Modified

H-Transform

To formulate the results presented Lν,2-theory and the inversion formulas for the
modified H-transform (40) we need the following constants, analogical for one-
dimensional case defined via the parameters of the H-function (44) [[25], (3.4.1),
(3.4.2), (1.1.7), (1.1.8), (1.1.10)]:

α1 =
{− min

1≤j1≤m1

[
Re(bj1 )
βj1

]
, m1 > 0,

0, m1 = 0;
β1 =

{ min
1≤i1≤n1

[
1−Re(ai1 )
αi1

]
, n1 > 0,

0, n1 = 0;

α2 =
{− min

1≤j2≤m2

[
Re(bj2 )
βj2

]
, m2 > 0,

0, m2 = 0;
β2 =

{ min
1≤i2≤n2

[
1−Re(ai2 )
αi2

]
, n2 > 0,

0, n2 = 0;
and so on

αn =
{− min

1≤jn≤mn

[
Re(bjn )
βjn

]
, mn > 0,

0, m2 = 0;
βn =

{ min
1≤in≤nn

[
1−Re(ain )
αin

]
, nn > 0,

0, nn = 0;
(57)
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a∗
1 =

n1∑
i=1

αi1 −
p1∑

i=n1+1

αi1 +
m1∑
j=1

βj1 −
q1∑

j=m1+1

βj1, �1 =
q1∑
j=1

βj1 −
p1∑
i=1

αi1 ,

a∗
2 =

n2∑
i=1

αi2 −
p2∑

i=n2+1

αi2 +
m2∑
j=1

βj2 −
q2∑

j=m1+1

βj2, �2 =
q2∑
j=1

βj2 −
p2∑
i=1

αi2 ,

and so on

a∗
n =

nn∑
i=1

αin−
pn∑

i=nn+1

αin+
mn∑
j=1

βjn−
qn∑

j=mn+1

βjn, �n =
qn∑
j=1

βjn−
pn∑
i=1

αin; (58)

μ1 =
q1∑
j=1

bj1 −
p1∑
i=1

ai1 + p1 − q1

2
, μ2 =

q2∑
j=1

bj2 −
p2∑
i=1

ai2 + p2 − q2

2
, . . . ,

μn =
qn∑
j=1

bjn −
pn∑
i=1

ain + pn − qn
2

; (59)

α1
0 =

{1 + max
m1+1≤j1≤q1

[
Re(bj1 )−1
βj1

]
, q1 > m1,

∞, q1 = m1,
β1

0 =
{1 + min

n1+1≤i1≤p1

[
Re(ai1 )
αi1

]
, p1 > n1,

∞, p1 = n1;

α2
0 =

{1 + max
m2+1≤j2≤q2

[
Re(bj2 )−1
βj2

]
, q2 > m2,

∞, q2 = m2,
β2

0 =
{1 + min

n2+1≤i2≤p2

[
Re(ai2 )
αi2

]
, p2 > n2,

∞, p2 = n2;
. . .

αn0 =
{1 + max

mn+1≤jn≤qn

[
Re(bjn )−1
βjn

]
, qn > mn,

∞, qn = mn,
βn0 =

{1 + min
nn+1≤in≤p2

[
Re(ain )
αin

]
, pn > nn,

∞, pn = nn.
(60)

The exceptional set EH of a function Hm,n
p,q (s):

Hm,n
p, q (s) ≡ Hm,n

p, q

[
(ai , αi)1,p
(bj , βj )1,q

∣∣∣∣s
]

=
n∏
k=1

Hmk,nkpk, qk

[
(aik , αik )1,pk

(bjk , βjk )1,qk

∣∣∣∣s
]
, (61)

is called a set of vectors ν = (ν1, ν2, . . . , νn) ∈ Rn (ν1 = ν2 = . . . = νn),

such that α1 < 1 − ν1 < β1, α2 < 1 − ν2 < β2, . . . , αn < 1 − νn < βn, and
functions Hm1,n1

p1, q1 (s1), Hm2,n2
p2, q2 (s2),. . . ,Hmn,nnpn, qn (sn), have zeros on lines Re(s1) <

1 − ν1, Re(s2) < 1 − ν2, . . . , Re(sn) < 1 − νn, respectively.
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Applying multidimensional Mellin transform (50) to (40), taking into account
the results for the one-dimensional case [25, Formulae (5.1.14)], we obtain:

(MH1
σ,κf )(s) = Hm,n

p,q

[
(ai, αi )1,p
(bj , βj )1,q

∣∣∣∣s + σ
]
(Mf )(s + σ + κ). (62)

The following assertion presents the Lν,2-theory of the modified H-transform
(40). One dimensional case see in [25, Theorem 5.37].

Theorem 9 Let

α1 < ν1 − Re(κ1) < β1, α2 < ν2 − Re(κ2) < β1, . . . , αn

< νn − Re(κ1) < βn, ν1 = ν2 = . . . = νn;

a∗
1 = 0, a∗

2 = 0, . . . , a∗
n = 0;�1[ν1 − Re(κ1)] + Re(μ1) ≤ 0,

�2[ν2 − Re(κ2)] + Re(μ2) ≤ 0, . . . ,�n[νn − Re(κn)] + Re(μn) ≤ 0. (63)

There hold the following assertions:

(a) There exists a one-to-one map H1
σ,κ ∈ [Lν,2, Lν−Re(κ+σ),2] such the relation

(62) holds for f ∈ Lν,2 and Re(s) = ν − Re(κ + σ).
If a∗

1 = 0, a∗
2 = 0, . . . , a∗

n = 0; �1[ν1 − Re(κ1)] + Re(μ1) = 0,�2[ν2 −
Re(κ2)]+Re(μ2) = 0, . . . ,�n[νn−Re(κn)]+Re(μn) = 0 and 1−ν+Re(κ) �∈
EH, then H1

σ,κ mapsLν,2 onto Lν−Re(κ+σ),2.

(b) The transform H1
σ,κ does not depend on ν in the sense if ν and ν̃ satisfy Eq. (63)

and if the transforms H1
σ,κ and H̃1

σ,κ are defined in respective spaces Lν,2 i Lν̃,2
by Eq. (62), then H1

σ,κf = H̃1
σ,κf for f ∈ Lν̃,2

⋂
Lν,2.

(c) If a∗
1 = 0, a∗

2 = 0, . . . , a∗
n = 0; �1[ν1 − Re(κ1)] + Re(μ1) < 0,�2[ν2 −

Re(κ2)] + Re(μ2) < 0, . . . ,�n[νn − Re(κn)] + Re(μn) < 0; then for f ∈
Lν,2 H1

σ,κf is given by Eq. (40).

(d) Let λ = (λ1, . . . , λn) ∈ Cn , h = (h1, . . . , hn) > 0, and f ∈ Lν,2. If Re(λ) >

(ν − Re(κ))h− 1, then H1
σ,κf is represented in the form

(
H1
σ,κf

)
(x) = hxσ+1−(λ+1)/h d

dx
x(λ+1)/h×

×
∞∫

0

Hm,n+1
p+1,q+1

[
x
t

∣∣∣∣ (−λ, h), (ai , αi)1,p
(bj , βj )1,q, (−λ− 1, h)

]
tκ−1f (t)dt. (64)
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while for Re(λ) < (ν − Re(k))h− 1 is given by

(
H1
σ,κf

)
(x) = −hxσ+1−(λ+1)/h d

dx
x(λ+1)/h×

×
∞∫

0

Hm+1,n
p+1,q+1

[
x
t

∣∣∣∣ (ai , αi)1,p, (−λ, h)
(−λ− 1, h), (bj , βj )1,q

]
tκ−1f (t)dx. (65)

(e) If f ∈ Lν,2 and g ∈ L1−ν+Re(κ+σ),2, then there holds the relation:

∞∫

0

f (x)
(
H1
σ,κg

)
(x)dx =

∞∫

0

(
H2
σ,κf

)
(x)g(x)dx, (66)

where

(
H2
σ,κf

)
(x) = xσ

∞∫

0

Hm,n
p,q

[
t
x

∣∣∣∣ (ai , αi)1,p(bj , βj )1,q

]
tκf (t)

dt
x
. (67)

Inversion formulas for the transform H1
σ,κ are given by the following equalities

(one-dimensional case see in [[25], (5.5.23) and (5.5.24)]):

f (x) = −hx(λ+1)/h−κ d
dx

x−(λ+1)/h×

×
∞∫

0

Hq−m,p−n+1
p+1,q+1

[
t
x

∣∣∣∣ (−λ, h), (1 − ai − αi, αi)n+1,p, (1 − ai − αi, αi)1,n
(1 − bj − βj , βj )m+1,q, (1 − bj − βj , βj )1,m (−λ− 1, h)

]

× t−σ (H1
σ,κf )(t)dt (68)

or

f (x) = hx(λ+1)/h−1 d
dx

x−(λ+1)/h×

×
∞∫

0

Hq−m+1,p−n
p+1,q+1

[
t
x

∣∣∣∣
(1 − ai − αi, αi)n+1,p, (1 − ai − αi, αi)1,n, (−λ, h)

(−λ− 1, h), (1 − bj − βj , βj )m+1,q, (1 − bj − βj , βj )1,m

]

× t−σ (H1
σ,κf )(t)dt. (69)

Condition for the validity of these formulas are given by the following assertion
(one-dimensional case see in [25, Theorem 5.47]).
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Theorem 10 Let a∗
1 = 0, a∗

2 = 0, . . . , a∗
n = 0; α1 < ν1 − Re(κ1) < β1, α2 <

ν2 − Re(κ2) < β2, . . . , αn < νn − Re(κn) < βn; α1
0 < 1 − ν1 + Re(κ1) < β

1
0 ,

α2
0 < 1−ν2+Re(κ2) < β

2
0 ,. . . , αn0 < 1−νn+Re(κn) < βn0 ; and let λ ∈ Cn, h > 0.

If�1[ν1 − Re(κ1)] + Re(μ1) = 0,�2[ν2 − Re(κ2)] + Re(μ2) = 0,. . . ,�n[νn−
Re(κn)] + Re(μn) = 0, and f ∈ Lν,2 (ν1, ν2, . . . , νn), then the inversion formulas

(68) and (69) are valid for Re(λ) > (1 − ν + Re(κ))h− 1 and Re(λ) < (1 − ν +
Re(κ))h− 1, respectively.

2.2 Representations in the Form of Modified H-Transform

Introduce so-called one-sided functions

K1(x) = (x2 − 1)−γ /2+ Pδγ (x) =
{
(x2 − 1)−γ /2Pδγ (x), x > 1,

0, 0 < x < 1; (70)

K2(x) = (1 − x2)
−γ /2
+ Pδγ (x) =

{
(1 − x2)−γ /2Pδγ (x), 0 < x < 1,

0, x > 1.
(71)

Using notations in (52) and (70), (71), present transforms (41) and (42) in respective
forms

(
Pγδ,1f

)
(x) =

∞∫

0

K1

(
x
t

)(
M−γ f

)
(t)dt; (72)

(
Pγδ,2f

)
(x) = x1−γ

∞∫

0

(
RK2

)(x
t

)(
M−1f

)
(t)dt. (73)

The following assertion yields the Mellin transform formulas (50) of K1(x) and
K2(x) in (70) and (71).

Lemma 2 Let γ = (γ1, γ2, . . . , γn), δ = (δ1, δ2, . . . , δn), s = (s1, s2, . . . , sn) ∈
Cn.

(a) If Re(γ ) < 1, Re(s) < 1 + Re(γ + δ), Re(s) < Re(γ − δ), then

(
MK1

)
(s) = 2γ−1

( 1+γ+δ−s
2

)

( γ−δ−s

2

)

(
1 − s

2

)

( 1−s

2

) . (74)
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(b) If Re(γ ) < 1, Re(s) > 0, then

(
MK2

)
(s) = 2γ−1 

( s
2

)

( s+1

2

)

( 1−γ−δ+s

2

)

(
1 + δ−γ+s

2

) . (75)

Proof By [42, 2.172.9], under conditions in (a) there holds the formula

(
MK1

)
(s) = 2γ1−s1−1

√
π


( 1+γ1+δ1−s1

2

)

( γ1−δ1−s1

2

)
(1 − s1)

2γ2−s2−1

√
π


( 1+γ2+δ2−s2

2

)

( γ2−δ2−s2

2

)
(1 − s2) · ··

2γ1−sn−1

√
π


( 1+γn+δ1−sn

2

)

( γn−δn−sn

2

)
(1 − sn) = 2γ−s−1

√
π


( 1+γ+δ−s

2

)

( γ−δ−s

2

)
(1 − s)

. (76)

Using the duplication formula for the gamma function

(2z) = 22z−1
√
π
(z)

(
z + 1

2

)
(77)

with z = 1−s
2 , from Eq. (76) we deduce Eq. (74).

If conditions in (b) are satisfied, then according to [42, 2.172].

(
MK2

)
(s) = 2γ−s√π (s)


( 1−γ−δ+s

2

)

(
1 + δ−γ+s

2

) . (78)

Applying Eq. (77) with z = s
2 , from Eq. (78) we deduce Eq. (75). Lemma is proved.

��
Applying the convolution Mellin formula [29, (1.4.56)]

(
M

∞∫

0

K

(
x
t

)
y(t)

dt
t

)
(s) = (

MK
)
(s)

(
Mf

)
(s), (x ∈ Rn+), (79)

being valid for suitable K
( x

t

) = K
(
x1
t1
, x2
t2
, . . . , xn

tn

)
and y(x), and formulas (53) and

(54) for Mellin transform of Mζ f, Rf, we find the Mellin transform of Eqs. (72)
and (73) for suitable f .

Applying (74), we have for
(
Pγδ,1f

)
(x):

(
MPγδ,1f

)
(s) =

(
M

∞∫

0

K1

(
x
t

)(
M1−γ f

)
(t)
dt
t

)
(s) =

(
MK1

)
(s)

(
MM1−γ f

)
(s) =

= 2γ−1

(
(1 + γ + δ − s)/2

)

(
(γ − δ − s)/2

)


(

1 − s/2
)

(
(1 − s)/2

) (
Mf

)
(1 − γ + s). (80)
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In accordance with (61), relation (80) takes the form

(
MPγδ,1f

)
(s) = 2γ−1


(
(1 + γ + δ − s)/2

)

(
(γ − δ − s)/2

)


(

1 − s/2
)

(
(1 − s)/2

) (
Mf

)
(1−γ+s) =

2γ−1H0,2
2,2

[( 1−γ−δ
2 , 1

2

)
,

(
1 + δ−γ

2 ,
1
2

)
(
0, 1

2

)
,

( 1
2 ,

1
2

)
∣∣∣∣s
](

Mf
)
(s + 1 − γ ). (81)

Therefore, by (62), the initial integral transform (41) is modified H-transform
(40) with σ = 0, κ = 1 − γ :

(
Pγδ,1f

)
(s) = 2γ−1

∞∫

0

H0,2
2,2

[
x
t

∣∣∣∣
( 1−γ−δ

2 , 1
2

) (
1 + δ−γ

2 ,
1
2

)
(
0, 1

2

) ( 1
2 ,

1
2

)
]

t−γ f (t)dt. (82)

Similarly to the above, using Eq. (75) we have for
(
Pγδ,2f

)
(x) :

(
MPγδ,2f

)
(s) =

(
M

(
x1−γ

∞∫

0

(
RK2

)(x
t

)(
M−1f

)
(t)dt

))
(s)

=
(
M

∞∫

0

(
RK2

)(x
t

)
f (t)

dt
t

)
(s + 1 − γ ) =

= (
M

(
RK2

))
(s + 1 − γ )(Mf )(s + 1 − γ ) = (

MK2
)
(γ − s)

(
Mf

)
(s + 1 − γ ) =

= 2γ−1 
(
(γ − s)/2

)

(
(γ − s + 1)/2

)

(
(1 − δ − s)/2

)

(
1 + (δ − s)/2

)(Mf )(1 − γ + s). (83)

According to Eq. (61), relation (83) takes the form:

(
MPγδ,2f

)
(s) = 2γ−1 

(
(γ − s)/2

)

(
(γ − s + 1)/2

)

(
(1 − δ − s)/2

)

(
1 + (δ − s)/2

) (Mf )(1 − γ + s)

= 2γ−1H0,2
2,2

[( 1−γ
2 ,

1
2

)
,

(
1 − γ

2 ,
1
2

)
( 1+δ

2 ,
1
2

)
,

(− δ
2 ,

1
2

)
∣∣∣∣s
](

Mf
)
(s + 1 − γ ), (84)
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and hence, in accordance with Eq. (62), the initial transform
(
Pγδ,2f

)
(x) is also

modified H-transform (40), with σ = 0, κ = 1 − γ :

(
Pγδ,2f

)
(s) = 2γ−1

∞∫

0

H0,2
2,2

[
x
t

∣∣∣∣
(
1 − γ

2 ,
1
2

)
,

( 1−γ
2 ,

1
2

)
( 1+δ

2 ,
1
2

)
,

(− δ
2 ,

1
2

)
]

t−γ f (t)dt. (85)

Lν, 2-Theory of Transforms Pγ
δ,kf (k = 1, 2)

Lν, 2-theory of transforms (41)–(42) follows from Eqs. (82) and (85) with using

Theorem 9 for the H1
σ,κ -transform.

By Eqs. (82), (85), and (40), a∗
1 = a∗

2 = . . . = a∗
n = 0;�1 = �2 = . . . = �n =

0; p = (p1, p2, . . . , pn) = (2, 2, . . . , 2); q = (q1, q2, . . . , qn) = (2, 2, . . . , 2),
αi = (αi1 , αi2 , . . . , αin ) = ( 1

2 ,
1
2 , . . . ,

1
2 ), βj = (βj1, βj2 , . . . , βjn) =

( 1
2 ,

1
2 , . . . ,

1
2 ) (i = 1, . . . , p; j = 1, . . . , q); μ = γ − 1.

As for m, n and other parameters in Eqs. (57) and (59), we have:

m = 0, n = 2, α = −∞, β = min[Re(1 + γ + δ), Re(γ − δ)]; (86)

m = 0, n = 2, α = −∞, β = Re(γ ); (87)

respectively for the operators (41) and (42).

According to (80), 1 − ν does not belong to exceptional set EH of the H0,2
2,2-

function in the right-hand side of (81), if:

s �= 2m+ 1, s �= 2l + 2 (l = (l1, l2, . . . , ln);m = (m1,m2, . . . ,mn) ∈ Nn0 ),
(88)

for Re(s) = 1 − ν.

According to (83), 1 − ν does not belong to exceptional set EH of the H2,0
2,2-

function in the right-hand side of (84), if:

s �= −δ + 2m+ 1, s �= δ + 2l + 2 (l = (l1, l2, . . . , ln);m = (m1,m2, . . . , mn) ∈ Nn0 ),
(89)

for Re(s) = 1 − ν.
By Eqs. (82), (85) and (86), (87), from Theorem 9 we deduce Lν, 2-theory of the

transforms Pγδ,kf (k = 1, 2).

Theorem 11 Let

−∞ < ν1 − Re(1 − γ1) < min[Re(1 + γ1 + δ1), Re(γ1 − δ1)], Re(γ1 − 1) ≤ 0;

−∞ < ν2 −Re(1−γ2) < min[Re(1+γ2 +δ2), Re(γ2 −δ2)], Re(γ2 −1) ≤ 0; . . . ;

−∞ < νn − Re(1 − γn) < min[Re(1 + γn + δn), Re(γn − δn)], Re(γn − 1) ≤ 0.
(90)
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There hold the following assertions:

(a) There exists a one-to-one map Pγδ,1 ∈ [Lν,2, Lν−Re(1−γ ),2] such that the
relation (81) holds for f ∈ Lν,2 and Re(s) = ν − Re(1 − γ ). If Re(γ − 1) = 0
and Eq. (88) holds, then Pγδ,1 is one-to-one on Lν,2.

(b) The transform Pγδ,1f does not depend on ν in the sense if ν1 and ν2 satisfy

Eq. (90) and if the transforms Pγδ,1f and P̃γδ,1f are defined in respective spaces

Lν1,2
and Lν2,2

by Eq. (81), then Pγδ,1f = P̃γδ,1f for f ∈ Lν1,2
⋂

Lν2,2
.

(c) If Re(γ − 1) < 0, then for f ∈ Lν,2 Pγδ,1f is given by Eqs. (41) and (82).

(d) Let λ = (λ1, λ2, . . . , λn) ∈ Cn, h = (h1, . . . , hn) > 0, and f ∈ Lν,2. If

Re(λ) > (ν − Re(1 − γ ))h− 1, then Pγδ,1f is represented in the form(
Pγδ,1f

)
(x) = 2γ−1hx1−(λ+1)/h d

dx x(λ+1)/h×

×
∞∫

0

H0,3
3,3

[
x
t

∣∣∣∣
(−λ, h), ( 1−γ−δ

2 , 1
2

)
,

(
1 + δ−γ

2 ,
1
2

)
(
0, 1

2

)
,

( 1
2 ,

1
2

)
, (−λ− 1, h)

]
t−γ f (t)dt, (91)

while for Re(λ) < (ν − Re(1 − γ ))h− 1 is given by(
Pγδ,1f

)
(x) = −2γ−1hx1−(λ+1)/h d

dx x(λ+1)/h×

×
∞∫

0

H1,2
3,3

[
x
t

∣∣∣∣
( 1−γ−δ

2 , 1
2

)
,

(
1 + δ−γ

2 ,
1
2

)
, (−λ, h)

(−λ− 1, h),
(
0, 1

2

)
,

( 1
2 ,

1
2

)
]

t−γ f (t)dt. (92)

(e) If f ∈ Lν,2 and g ∈ L1−ν+Re(1−γ ),2, then there holds the relation:

∞∫

0

f (x)
(
Pγδ,1g

)
(x)dx =

∞∫

0

2γ−1(P∗γ
δ,2f

)
(x)g(x)dx, (93)

where
(
P∗γ
δ,2f

)
(x) is the transform

(
P∗γ
δ,2f

)
(x) =

∞∫

x

(
t2 − x2)−γ /2Pγδ

(
t
x

)
f (t)dt = g(x) (x > 0). (94)

Theorem 12 Let

−∞ < ν1 − Re(1 − γ1) < Re(γ1), Re(γ1 − 1) ≤ 0;

−∞ < ν2 − Re(1 − γ2) < Re(γ2), Re(γ2 − 1) ≤ 0; . . . ;

− ∞ < νn − Re(1 − γn) < Re(γn), Re(γn − 1) ≤ 0. (95)
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There hold the following assertions:

(a) There exists a one-to-one map Pγδ,2 ∈ [Lν,2, Lν−Re(1−γ ),2] such that the
relation (84) holds for f ∈ Lν,2 and Re(s) = ν − Re(1 − γ ). If Re(γ − 1) = 0
and Eq. (89) holds, then Pγδ,2 is one-to-one on Lν,2.

(b) The transform Pγδ,2f does not depend on ν in the sense if ν1 and ν2 satisfy

Eq. (95) and if the transforms Pγδ,2f and P̃γδ,2f are defined in respective spaces

Lν1,2
and Lν2,2

by Eq. (84), then Pγδ,2f = P̃γδ,2f for f ∈ Lν1,2
⋂

Lν2,2
.

(c) If Re(γ − 1) < 0, then for f ∈ Lν,2 Pγδ,2f is given by Eqs. (42) and (85).

(d) Let λ ∈ Cn, h > 0, and f ∈ Lν,2. If Re(λ) > (ν−Re(1−γ ))h−1, then Pγδ,2f
is represented in the form

(
Pγδ,2f

)
(x) = 2γ−1hx1−(λ+1)/h d

dx
x(λ+1)/h×

×
∞∫

0

H0,3
3,3

[
x
t

∣∣∣∣
(−λ, h), (1 − γ

2 ,
1
2

)
,

( 1−γ
2 ,

1
2

)
( 1+δ

2 ,
1
2

)
,

(− δ
2 ,

1
2

)
, (−λ− 1, h)

]
t−γ f (t)dt, (96)

while for Re(λ) < (ν − Re(1 − γ ))h− 1 is given by

(
Pγδ,2f

)
(x) = −2γ−1hx1−(λ+1)/h x

dx
x(λ+1)/h×

×
∞∫

0

H1,2
3,3

[
x
t

∣∣∣∣
(
1 − γ

2 ,
1
2

)
,

( 1−γ
2 ,

1
2

)
, (−λ, h)

(−λ− 1, h),
( 1+δ

2 ,
1
2

)
,

(− δ
2 ,

1
2

)
]

t−γ f (t)dt. (97)

(e) If f ∈ Lν,2 and g ∈ L1−ν+Re(1−γ ),2, then there holds the relation:

∞∫

0

f (x)
(
Pγδ,2g

)
(x)dx =

∞∫

0

2γ−1(P∗γ
δ,2f

)
(x)g(x)dx, (98)

where
(
P∗γ
δ,2f

)
is given by

(
P∗γ
δ,2f

)
(x) =

∞∫

x

(
t2 − x2)−γ /2Pγδ

(
x
t

)
f (t)dt = g(x) (x > 0). (99)

Inversion Formulas of Transforms Pγ
δ,kf (k = 1, 2)

By substitution Eqs. (82), (85), and (40) parameters in Eq. (60) leads to

α0 = 0, β0 = ∞; (100)

α0 = 1 + max[Re(δ − 1), Re(−δ − 2)], β0 = ∞; (101)

respectively for the operators (41), (42).
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According to Eq. (82) the relation formulas (68) and (69) for Pγδ,1f take the
forms:

f (x) = −21−γ hx(λ+1)/h−1+γ d
dx

x−(λ+1)/h×

×
∞∫

0

H2,1
3,3

[
t
x

∣∣∣∣
−(λ, h), ( γ+δ

2 ,
1
2

)
,

( γ−δ−1
2 , 1

2

)
( 1

2 ,
1
2

)
,

(
0, 1

2

)
, (−λ− 1, h)

](
Pγδ,1f

)
(t)dt, (102)

or

f (x) = 21−γ hx(λ+1)/h−1 d
dx

x−(λ+1)/h×

×
∞∫

0

H3,0
3,3

[
t
x

∣∣∣∣
( γ+δ

2 ,
1
2

)
,

( γ−δ−1
2 , 1

2

)
, (−λ, h)

(−λ− 1, h),
( 1

2 ,
1
2

)
,

(
0, 1

2

)
](

Pγδ,1f
)
(t)dt. (103)

According to Eq. (85) the relation formulas (68) and (69) for Pγδ,4f take the
forms:

f (x) = −21−γ hx(λ+1)/h−1+γ d
dx

x−(λ+1)/h×

×
∞∫

0

H2,1
3,3

[
t
x

∣∣∣∣
(−λ, h), ( γ−1

2 ,
1
2

)
,

( γ
2 ,

1
2

)
(− δ

2 ,
1
2

)
,

(
δ+1

2 ,
1
2

)
, (−λ− 1, h)

](
Pγδ,4f

)
(t)dt, (104)

or

f (x) = 21−γ hx(λ+1)/h−1 d
dx

x−(λ+1)/h×

×
∞∫

0

H3,0
3,3

[
t
x

∣∣∣∣
( γ−1

2 ,
1
2

)
,

( γ
2 ,

1
2

)
, (−λ, h)

(−λ− 1, h),
(− δ

2 ,
1
2

)
,

(
δ+1

2 ,
1
2

)
](

Pγδ,4f
)
(t)dt. (105)

Theorem 13 Let Re(γ ) = 1, −∞ < ν < min[1,Re(2 + δ),Re(1 − δ)] and let
λ ∈ Cn, h > 0.

If f ∈ Lν,2, then the inversion formulas (102) and (103) are valid for Re(λ) >

(1 − ν)h− 1 and Re(λ) < (1 − ν)h− 1, respectively.

Theorem 14 Let Re(γ ) = 1, −∞ < ν < min[1,Re(1 − δ),Re(2 + δ)] and let
λ ∈ Cn, h > 0.

If f ∈ Lν,2, then the inversion formulas (104) and (105) are valid for Re(λ) >

(1 − ν)h− 1 and Re(λ) < (1 − ν)h− 1, respectively.
In the second part of the paper we summarize the corresponding results for the

one-dimensional case, obtained in [28].
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Distributions, Non-smooth Manifolds,
Transmutations and Boundary Value
Problems

Vladimir B. Vasilyev

Abstract One discusses the problem of constructing the theory of pseudo differen-
tial equations on manifolds with a non-smooth boundary. Using special factorization
principle and transmutation operators we consider some general boundary value
problems for elliptic pseudo-differential equations in canonical non-smooth mani-
folds.

Keywords Non-smooth manifold · Pseudo-differential operator · Elliptic
symbol · Boundary value problem

2010 Mathematics Subject Classification Primary: 35S15; Secondary: 58J05

1 Introduction

We study Fredholm properties of elliptic pseudo-differential operators (or equa-
tions) in Sobolev–Slobodetskii spaces on manifolds with a boundary but in our case
the boundary may be non-smooth.

Basic principles for studying such equations are the following:

• a local principle or freezing coefficients principle;
• factorizability principle for an elliptic symbol at boundary point;
• a pluralism principle for singular boundary points which implies distinct types of

local operators.

Local principle and factorizability was first introduced in papers I.B. Simonenko
[16] (for multidimensional singular integral operators in Lebesgue Lp-spaces)
and M.I. Vishik–G.I. Eskin [2] (for pseudo-differential operators in Sobolev–
Slobodetskii Hs-spaces). For manifolds with a smooth boundary one uses an idea
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of “rectification of a boundary”, and the problems reduces to a half-space case,
for which a factorizability principle holds immediately because under localization
at a boundary point and applying the Fourier transform we obtain well known
one-dimensional classical Riemann boundary value problem for upper and lower
complex half-planes with a multidimensional parameter. This approach does not
work if a boundary has at least one singular point like a conical point. One needs
here other considerations and approaches.

The wave factorization principle was introduced by the author in 90th [18, 19]
to extend the Vishik–Eskin theory to manifolds with a singular boundary. Such
approach requires a special factorization for an elliptic symbol, and it leads
to multidimensional variant of classical Riemann boundary value problem and
multidimensional analogues of the Cauchy type integrals. It was shown [20, 28]
these multidimensional analogues transform to the Cauchy type integral with a
parameter for limit cases.

The third principle asserts that there are a lot of singularities at a boundary.
Every singularity requires a separate studying to obtain solvability conditions for
corresponding model equation. Common part of such studying is requiring the
wave factorization for an elliptic symbol with respect to corresponding cone. If we
have such factorization then we can describe needed solvability conditions (see, for
example, [22–27]).

2 Domains and Operators

We consider a certain integro-differential operator A on m-dimensional com-
pact manifold M with a boundary. This operators is defined by the function
A(x, ξ), (x, ξ) ∈ R

2m. There are some smooth compact sub-manifolds Mk of di-
mension 0 ≤ k ≤ m−1 on the boundary ∂M of manifoldM which are singularities
of a boundary. These singularities are described by a local representative of operator
A in a point x0 ∈ M on the map U . x0 in the following way

(Ax0u)(x) =
∫

Dx0

∫

Rm

eiξ ·(x−y)A(ϕ(x0), ξ)u(y)dξdy, x ∈ Dx0 , (1)

where ϕ : U → Dx0 is a diffeomorphism, and the canonical domain Dx0 has a
distinct form depending on a placement of the point x0 on manifoldM . We consider
the following canonical domains Dx0 : Rm,Rm+ = {x ∈ R

m : x = (x ′, xm), xm >
0},Wk = R

k×Cm−k , whereCm−k is a convex cone in R
m−k non-including a whole

line.
Such an operator A will be considered in Sobolev–Slobodetskii spaces Hs(M),

and local variants of such spaces will be spaces Hs(Dx0). Local principle asserts
that for a Fredholm property of the operator A it is necessary and sufficient an
invertibility for all “local operators” Ax0, x0 ∈ M . So, we need to describe the
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conditions for unique solvability all model equations of the following type

(Ax0u)(x) = v(x), x ∈ Dx0, (2)

in corresponding local Sobolev–Slobodetskii spaces Hs(Dx0).

2.1 Paired Equations

Such equations appear together with Eq. (2). Paired equation is called the following
equation

(AP+ + BP−)U(x) = V (x), x ∈ R
m,

where A,B are model elliptic pseudo-differential operators, P+ is restriction
operator on canonical domain D, P− is restriction operator on R

m \ D. It is easily
to show that solving the Eq. (2) is equivalent to solving the paired equation with
A = Ax0 and B = I (identity). For solving such paired equations they apply the
factorization technique and complex variables [2].

2.2 Singularities and Distributions

Author’s point of view is the following. Each boundary point of manifold M is
served by a special distribution. Such a distribution is the Fourier transform of an
indicator of canonical domain. Using these distributions we reduce the Eq. (2) to a
certain variant of the Riemann boundary value problem in the function theory of
complex variables (one or many) [1, 2, 4, 7, 9, 19–21].

2.3 Complex Variables and Wave Factorization

To obtain the conditions for unique solvability for the Eq. (2) (or equivalently
invertibility conditions for the operator (1)) we introduce the following concept.
Let us denote [32]

∗
Cm−k= {x ∈ R

m−k : x · y > 0, y ∈ Cm−k}
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Taking into account local principle we will consider only symbols non-depending
on spatial variables x and satisfying the condition

c1(1 + |ξ |)α ≤ |A(ξ)| ≤ c2(1 + |ξ |)α. (3)

Definition 1 k-Wave factorization of elliptic symbolA(ξ)with respect to the Cm−k
is called its representation in the form

A(ξ) = A �=(ξ)A=(ξ),

where the factors A �=(ξ),A=(ξ) must satisfy the following conditions:

(1) A �=(ξ),A=(ξ) are defined forall ξ ∈ R
m without may be the points R

k ×
∂

( ∗
Cm−k ∪(−

∗
Cm−k)

)
;

(2) A �=(ξ),A=(ξ) admit analytic continuation into radial tube domains T (
∗

Cm−k),

T (−
∗

Cm−k) for almost all ξ ′′ ∈ R
k respectively with estimates

|A±1
�= (ξ

′′, ξ ′ + iτ )| ≤ c1(1 + |ξ | + |τ |)±æk ,

|A±1= (ξ ′′, ξ ′ − iτ )| ≤ c2(1 + |ξ | + |τ |)±(α−æk), ∀τ ∈
∗

Cm−k .

The number æk ∈ R is called index of k-wave factorization.

Existence of such factorization permits to describe solvability picture for model
pseudo-differential equation (2) for m − k = 2 [19, 20], but in a general case we
need to know the general form of a distribution supported on a conical surface (we
can’t find such form in [5]). We try to reduce the problem to a half-space case using
transmutation operators.

3 Transmutations, Distributions and the Fourier Transform

Below we consider the case k = 0 because all conclusions will be the same, only k-
dimensional parameter can be appear. Let C be a convex cone in the space Rm, and
this cone does not include any whole straight line, it is important because we use
the theory of analytic functions of several complex variables [1, 31, 32]. Moreover
we suppose that a surface of this cone is given by the equation xm = ϕ(x ′), x ′ =
(x1, · · · , xm−1), where ϕ : R

m−1 → R is a smooth function in R
m−1 \ {0}, and

ϕ(0) = 0.
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Let us introduce the following change of variables [14, 29, 30]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t1 = x1

t2 = x2

· · ·
tm−1 = xm−1

tm = xm − ϕ(x ′)

and we denote this operator by Tϕ : Rm → R
m.

Obviously, this is a smooth transformation excluding an origin. Let f be a local
integrable function which generates a distribution defined by the formula

(f,ψ) =
∫

Rm

f (x)ψ(x)dx.

We define a functional Tϕf by the formula

(Tϕf,ψ) = (f, T −1
ϕ ψ).

According to the Schwartz theorem on one-dimensional distribution from S′(R)
supported at the origin 0 [5, 32] we can conclude that if a distribution f ∈ S′(Rm)
supported in the hyper-plane xm = 0 then it has the following form

f (x) =
n∑
k=0

ck(x
′)⊗ δ(k)(xm), x = (x ′, xm),

where ck ∈ S′(Rm−1), k = 0, 1, · · · , n, are arbitrary distributions.
Therefore we can assert that if a distribution f ∈ S′(Rm) is supported on ∂C

then Tϕf is supported on R
m−1.

An arbitrary distribution f ∈ S′(Rm) supported on conical surface ∂C can
written in the form

f (x) = T −1
ϕ

(
n∑
k=0

ck(y
′)⊗ δ(k)(ym)

)
, (4)

where ck ∈ S′(Rm−1), k = 0, 1, · · · , n, are arbitrary distributions.
Further, for functions u(x) from S(Rm) their Fourier transform is defined by the

formula

(Fu)(ξ) ≡ ũ(ξ) =
∫

Rm

eix·ξu(x)dx.
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The Fourier transform for distributions is defined as follows

(Ff,ψ) = (f, Fψ),

therefore

(FTϕf,ψ) = (f, T −1
ϕ Fψ).

Let f ∈ S′(Rm) be a distribution supported on ∂C. According to the above
conclusions it has the special form (4). Using properties of Tϕ and F we will find

Ff = Vϕ
(
n∑
k=0

c̃k(ξ
′)ξkm

)
,

where

FT −1
ϕ F−1 ≡ Vϕ.

For a distribution f ∈ S′(Rm) the transform Vϕ is given by the formula

(Vϕf̃ , ψ) ≡ (f̃ , V−ϕψ), ∀ψ ∈ S(Rm).

If û(x ′, ξm) denotes the Fourier transform of the function u(x ′, xm) with respect
to a variable xm then one can make the following conclusion. Let us denote

Fx ′→ξ ′(e−iξmϕ(x ′)) ≡ Kϕ(ξ ′, ξm),

and after this we obtain an integral representation for the operator Vϕ :

(FT −1
ϕ u)(ξ) =

∫

Rm

Kϕ(ξ
′ − η′, ξm)ũ(η′, ξm)dη′.

3.1 Examples

3.1.1 Plane Sector

The case m = 2 is a very good, there is only one mentioned cone. We write it as
follows

Ca+ = {x ∈ R
2 : x = (x1, x2), x2 > a|x1|, a > 0},
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and further evaluate:

(FT −1
ϕ u)(ξ) = ũ(ξ1 + aξ2, ξ2)+ ũ(ξ1 − aξ2, ξ2)

2
+

v.p.
i

2π

+∞∫

−∞

ũ(η, ξ2)dη

ξ1 + aξ2 − η − v.p. i
2π

+∞∫

−∞

ũ(η, ξ2)dη

ξ1 − aξ2 − η ≡ (Vϕũ)(ξ).

We denote by S1ũ the operator

(S1ũ)(ξ1, ξ2) = v.p. i
2π

+∞∫

−∞

ũ(η, ξ2)dη

ξ1 − η

and analogously S2 for the second variable.

3.1.2 Standard Cone

As it was shown the kernel Kϕ is computable for concrete function ϕ(x ′). Let
ϕ(x ′) = a|x ′|, a > 0,. If we will look at the formulas from [31] (see also [16]
in which a real analogue of these formulas is given as the Poisson kernel) we will
find

Kϕ(ξ
′, ξm) = a2m−1π

m−2
2 (m/2)(|ξ ′|2 − a2ξ2

m

)m/2 .

Therefore for such multidimensional cone the operator Vϕ looks as follows

(Vϕũ)(ξ) =
∫

Rm−1

a2m−1π
m−2

2 (m/2)ũ(η′, ξm)dη′
(|ξ ′ − η′|2 − a2ξ2

m

)m/2 .

In our opinion we could call it a conical potential.
Of course this formula should be treated in a distribution sense. Below we give

such definition for the operator Vϕ in the space S′(Rm).

3.1.3 Three-Wedged Pyramid

This cone looks as follows

Ca+ = {x ∈ R
3 : x3 > a1|x1| + a2|x2|, a1, a2 > 0}
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For this case the operator Vϕ is constructed exactly using two operators S1, S2
(see below)

4 Potentials Generated by Transmutations

4.1 General Situation

Now we see that the main problem is to study
Let C be a convex cone non-including a whole straight line. Let us introduce the

Bochner kernel [1, 31, 32]

Bm(z) =
∫

C

eix·zdx, z = ξ + iτ,

and related integral operator

(Bmu)(x) = lim
τ→0+

∫

Rm

Bm(x − y + iτ )u(y)dy, x ∈ R
m.

Theorem 1 If the symbolA(ξ) admits the wave factorization with the index æ,æ−
s = n+δ, n ∈ N, |δ| < 1/2, then a general solution of the Eq. (2) in Fourier images
is given by the formula

ũ+(ξ) = A−1
�= (ξ)Qn(ξ)BmQ

−1
n (ξ)A

−1= (ξ) ˜lf (ξ)+

+A−1
�= (ξ)V

−1
ϕ F

(
n∑
k=1

ck(x
′)δ(k−1)(xm)

)
,

where ck(x ′) ∈ Hsk (Rm−1) are arbitrary functions, sk = s − æ + k − 1/2, k =
1, 2, . . . , n, lf is an arbitrary continuation of f ontoHs−α(Rm),Qn is an arbitrary
polynomial satisfying the condition (3) for α = n.

Using these results one needs to add some additional conditions to determine
uniquely unknown functions ck . We will consider certain particular case in the next
section.

Some special cases are very interesting, for example if C = Ca+ = {x ∈ R
m :

x = (x ′, xm), xm > a|x ′|, a > 0}. Using evaluations from [17] we can obtain the
following result.
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Corollary 1 If f ≡ 0, n = 1, then we have the following form for a general
solution in the space Hs(Ca+)

ũ+(ξ) = A−1
�= (ξ)

∫

Rm−1

a2m−1π
m−2

2 (m/2)c̃(η′)dη′
(|ξ ′ − η′|2 − a2ξ2

m

)m/2 ,

where c(x ′) ∈ Hs−æ+1/2(Rm−1) is an arbitrary function.

5 Boundary Value Problems

According to Theorem 1 we can consider different types of boundary value
problems with boundary conditions or with co-boundary operators.

Let us consider a simple boundary value problem for the equation

(Au)(x) = 0, x ∈ Ca+ (5)

for the case æ − s = 1 + δ, |δ| < 1/2, where A is an elliptic pseudo-differential
operator with the symbol A(ξ) satisfying the condition (3) and admitting the wave
factorization with respect to the cone Ca+.

According to Theorem 1 we have the formula for a general solution, for our case
it can be written as

ũ(ξ) = A−1
�= (ξ)(V−aFc0)(ξ), (6)

where c0(x
′) is an arbitrary function fromHs0(R2).

Now we will write an expression for V−aFc0 and then we will see what kind
of conditions for a solution u is more preferable. Direct calculations led to the
following expression

A �=(ξ)ũ(ξ) = C̃1(ξ1 − a1ξ3, ξ2 − a2ξ3)+ C̃2(ξ1 − a1ξ3, ξ2 + a2ξ3)+
C̃3(ξ1 + a1ξ3, ξ2 − a2ξ3)+ C̃1(ξ1 + a1ξ3, ξ2 + a2ξ3),

(7)

where

C̃1(ξ1−a1ξ3, ξ2−a2ξ3) = 1

4
c̃0(ξ1−a1ξ3, ξ2−a2ξ3)−1

2
(S1c̃0)(ξ1−a1ξ3, ξ2−a2ξ3)−

−1

2
(S2c̃0)(ξ1 − a1ξ3, ξ2 − a2ξ3)+ (S1S2c̃0)(ξ1 − a1ξ3, ξ2 − a2ξ3);

C̃2(ξ1−a1ξ3, ξ2+a2ξ3) = 1

4
c̃0(ξ1−a1ξ3, ξ2+a2ξ3)−1

2
(S1c̃0)(ξ1−a1ξ3, ξ2+a2ξ3)+
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+1

2
(S2c̃0)(ξ1 − a1ξ3, ξ2 + a2ξ3)− (S1S2c̃0)(ξ1 − a1ξ3, ξ2 + a2ξ3);

C̃3(ξ1+a1ξ3, ξ2−a2ξ3) = 1

4
c̃0(ξ1+a1ξ3, ξ2−a2ξ3)+1

2
(S1c̃0)(ξ1+a1ξ3, ξ2−a2ξ3)−

−1

2
(S2c̃0)(ξ1 + a1ξ3, ξ2 − a2ξ3)− (S1S2c̃0)(ξ1 + a1ξ3, ξ2 − a2ξ3);

C̃4(ξ1+a1ξ3, ξ2+a2ξ3) = 1

4
c̃0(ξ1+a1ξ3, ξ2+a2ξ3)+1

2
(S1c̃0)(ξ1+a1ξ3, ξ2+a2ξ3)+

+1

2
(S2c̃0)(ξ1 + a1ξ3, ξ2 + a2ξ3)+ (S1S2c̃0)(ξ1 + a1ξ3, ξ2 + a2ξ3).

It seems the problem of finding the unknown function c0(ξ1, ξ2) is very hard, but
we suppose that we know the following function ũ(ξ1, ξ2, 0). It means that we know
the following integral

+∞∫

−∞
u(x1, x2, x3)dx3 ≡ g(x1, x2), (8)

thus

ũ(ξ1, ξ2, 0) = g̃(ξ1, ξ2). (9)

The formula (7) includes a representation for V−ac̃0, where c̃0(ξ
′) is a function

of two variables. Thus, if c̃0(ξ1, ξ2) depends on two variables ξ1, ξ2 then V−ac̃0
depends on all three variables ξ1, ξ2, ξ3.

Substituting (9) into (7) and collecting similar summands we obtain the following
equation for the unknown c̃0(ξ

′)

A−1
�= (ξ

′, 0)(c̃0(ξ
′)) = g̃(ξ ′),

or if we designate A �=(ξ ′, 0)g̃(ξ ′) ≡ f (ξ ′)

c̃0(ξ
′) = f̃ (ξ ′)

Now if we have found c̃0(ξ
′) we have the solution of the problem (5) and (8).

Also we can give a priori estimates for the solution.

Theorem 2 Let A(ξ) admits the wave factorization with respect to the Ca+. Then
the boundary value problem (5) and (8) has a unique solution for an arbitrary g ∈
Hs+1/2(R2) in the spaceHs(Ca+). This solution can be constructed explicitly by the
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Fourier transform and the one-dimensional singular integral operator. The a priori
estimate

||u||s ≤ c[g]s+1/2

holds for −1/2 < δ < 0.

6 Thin Cones

As we see all local operators includes some parameters (sizes of cones) which can
be small or large. These situations correspond to so called thin cones or a half-space
case (see, for example, [20] were some calculations were given). Singularities at a
boundary can be of distinct dimensions and it is possible such singularities of a low
dimension can be obtained from analogous singularities of full dimension. It means
we need to find distributions for limit cases when some of parameters of singularities
tend to zero. This approach was partially realized in author’s papers [22, 23], and the
latest paper [27] is devoted to multi-dimensional constructions. The further author’s
idea is the following. If we know the limit operator for a thin singularity then
possible it is zero approximation for a such thin singularity. It is desirable to obtain
an asymptotic expansion with a small parameter for the distribution corresponding
to a such singularity. We will consider here a two-dimensional case.

To describe a solvability picture for a model elliptic pseudo differential equation
with an operator A

(Au)(x) = v(x), (10)

in two-dimensional cone Ca+ = {x ∈ R
2 : x2 > a|x1|, a > 0} the author earlier

considered a special singular integral operator [18, 19]

(Kau)(x) = a

2π2 lim
τ→0+

∫

R2

u(y)dy

(x1 − y1)2 − a2(x2 − y2 + iτ )2 .

This operator served a conical singularity in the general theory of boundary value
problems for elliptic pseudo differential equations on manifolds with a non-smooth
boundary. This operator is a convolution operator, and the parameter a is a size of
an angle, x2 > a|x1|, a = cotα.

We will consider two spaces of basic functions for distributions. If D(R2)

denotes a space of infinitely differentiable functions with a compact support
then D′(R2) is the corresponding space of distributions over the space D(R2),
analogously if S(R2) is the Schwartz space of infinitely differentiable rapidly
decreasing at infinity functions then S′(R2) is a corresponding space of distributions
over S(R2).
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When a → +∞ one obtains [20] the following limit distribution

lim
a→∞

a

2π2

1

ξ2
1 − a2ξ2

2

= i

2π
P 1

ξ1
⊗ δ (ξ2) ,

where the notation for distributionP is taken from V.S. Vladimirov’s books [31, 32],
and ⊗ denotes the direct product of distributions. Here δ denotes one-dimensional
Dirac mass-function which acts on ϕ ∈ D(R) by the following way

(δ, ϕ) = ϕ(0),

and the distribution P 1
x

is defined by the formula

(P 1

x
, ϕ) = v.p.

+∞∫

−∞

ϕ(x)dx

x
≡ lim
ε→0+

⎛
⎝

−ε∫

−∞
+

+∞∫

ε

⎞
⎠ ϕ(x)dx

x
.

We would like to obtain an asymptotical expansion for the two-dimensional
distribution

Ka(ξ1, ξ2) ≡ a

2π2

1

ξ2
1 − a2ξ2

2

with respect to small a−1. It is defined by the corresponding formula ∀ϕ ∈ D(R2)

(Ka, ϕ) = a

2π2

∫

R2

ϕ(ξ1, ξ2)dξ

ξ2
1 − a2ξ2

2

.

For Ka ∈ D′(R2) we can suggest the following decomposition [28]

Ka(ξ1, ξ2) = i

2π

+∞∑
n=0

(−1)n

n!an P 1

ξ1
⊗ δ(n)(ξ2).

But for Ka ∈ S′(R2) we have more explicit result [28].

Theorem 3 The following formula

Ka(ξ1, ξ2) = i

2π
P 1

ξ1
⊗ δ(ξ2)+

∑
m,n

cm,n(a)δ̃(m)(ξ1)⊗ δ(n)(ξ2),

where cm,n(a)→ 0, a → +∞, holds in a distribution sense.
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Let us return to the Eq. (10). For |æ − s| < 1/2 one has the existence and
uniqueness theorem [18]

ũ(ξ) = A−1
�= (ξ)(Kal̃v)(ξ),

where lv is an arbitrary continuation of v on the whole Hs(R2).
Below we denote lv ≡ V .

Theorem 4 If the symbolA(ξ) admits a wave factorization with respect to the cone
Ca+ and |æ − s| < 1/2 then Eq. (1) has a unique solution in the spaceHs(Ca+), and
for a large a it can be represented in the form

ũ(ξ) = i

2π
A−1

�= (ξ)v.p.
+∞∫

−∞

(A−1= Ṽ )(η1, ξ2)dη1

ξ1 − η1
+

A−1
�= (ξ)

∑
m,n

cm,n(a)

+∞∫

−∞
(ξ1 − η1)

m(A−1= Ṽ )
(n)
ξ2
(η1, ξ2)dη1

assuming Ṽ ∈ S(R2), A−1= Ṽ means the function A−1= (ξ)Ṽ (ξ).

7 Conclusion

This paper is a brief description of latest author’s studies on elliptic pseudo-
differential equations and boundary value problems on manifolds with non-smooth
boundaries. Other approaches, similar problems, interesting statements can be found
in books and monographs [3, 6–8, 10–13, 15].
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and Inverse Problems



On a Transformation Operator Approach
in the Inverse Spectral Theory of Integral
and Integro-Differential Operators

Sergey Buterin

Abstract A brief survey is given on using transformation operators in the inverse
spectral theory of integral and integro-differential operators possessing a convo-
lutional term to be recovered. The central place of this approach is occupied by
reducing the inverse problem to solving some nonlinear equation, which can be
solved globally. We illustrate this scheme on several examples, among which there
are: one-dimensional perturbation of the convolution operator, Sturm–Liouville-
type integro-differential operators and an integro-differential Dirac system.

Keywords Integral operator · Convolution · Integro-differential operator ·
Nonlocal operator · Transformation operator · Inverse spectral problem ·
Nonlinear integral equation
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1 Introduction

Inverse spectral problems consist in recovering operators from their spectral char-
acteristics. The greatest success in the inverse spectral theory has been achieved for
the Sturm–Liouville and Dirac differential operators (see, e.g., [1–6] and references
therein) and afterwards for higher-order differential operators and differential
systems with an arbitrary location of roots of characteristic polynomial [5–9]. The
classical methods of inverse spectral theory that allow to obtain global solutions of
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inverse problems for differential operators (the transformation operator method (i.e.
the so-called Gel’fand–Levitan method) [2–5] and the method of spectral mappings
[4–8]), do not work for integral, integro-differential and other classes of nonlocal
operators (see [10–46] and references therein). At the same time, the transformation
operator itself is a common tool (see also monograph [47]) and it is widely used
in the spectral theory. In the present paper a brief survey is given on one way of
using transformation operators in the inverse spectral theory of integral and integro-
differential operators possessing a convolution term to be recovered.

In [16] for a one-dimensional perturbation of the Volterra convolution operator
a special approach was suggested, which was based on a structure of the transfor-
mation operator kernel. Within this approach, the inverse problem was reduced to
some nonlinear integral equation, which was solved globally. This allowed to obtain
a global solution of the inverse problem of recovering the convolution term from the
spectrum, provided that the perturbation term was known a priori (for more details
see Sect. 2). Moreover, this approach appeared to be successful for studying inverse
problems for convolution integro-differential operators [19, 25, 34] (see Sect. 3).

Later on, a further development of this approach was given in [21] and then
in [35, 39, 46], where the global solution was obtained for the inverse problem of
recovering a convolutional perturbation of the Sturm–Liouville operator. The main
difficulty there was connected with a general implicit structure of the transformation
operator kernel. However, a detailed analysis of its dependence on the convolution
kernel allowed to prove the global solvability of the main equation (see Sect. 4).

Another important promotion relates to integro-differential Dirac systems [28,
30, 38, 40]. Unlike the scalar case, here the main equation of the inverse problem
is a vectorial nonlinear integral equation of a special form, whose global solvability
has been also established (see Sect. 5). Among other essential directions of applying
this approach one should mention inverse problems for fractional order integro-
differential operators [34, 35], integro-differential operators with discontinuity
conditions [26, 31, 39], integro-differential operators on geometrical graphs [32],
integro-differential pencils [43–45]. Moreover, it appeared to be successful also for
solving the so-called half inverse problems [27, 33, 40].

As was mentioned above, in each case the main equation of the inverse problem
may take a special form peculiar namely to the considered class of operators, which
usually causes the necessity to carry out the proof of solvability of the main equation
in each new case. For this reason, in [48] a general approach has been developed for
solving nonlinear equations of this type by introducing some abstract equation and
proving its global solvability. Moreover, in [48] uniform stability of such nonlinear
equations was established, which has not been studied before even in simple cases.
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2 One-Dimensional Perturbation of a Convolution Operator

2.1 Historical Notes

Consider the integral operator

Af = Mf + g(x)
∫ π

0
f (t)v(t) dt, Mf =

∫ x

0
M(x, t)f (t) dt, 0 ≤ x ≤ π,

(1)

which is a one-dimensional perturbation of the Volterra integral operator M . It
is known that the inverse operator to the Sturm–Liouville one is an operator of
the form (1). Moreover, the inverse operators to differential and Volterra integro-
differential ones of an arbitrary order on the segment [0, π] with separated boundary
conditions, from which only one is imposed at the point π, have the form (1)
too. Boundary conditions of any possible form (including integral ones) corre-
spond to a finite-dimensional perturbation. We note that direct spectral problems
for finite-dimensional perturbations of Volterra operators have been investigated
fairly completely (see [49] and the references therein). Regarding inverse spectral
problems for the operator (1), in [12, 18, 36, 41] inverse problems were studied of
recovering the functions g(x), v(x) from spectral data, provided that the function
M(x, t) was known a priori. Also a connection with the inverse Sturm–Liouville
problem was established (see [12]).

In [15–17] another inverse problem for A was studied, namely, the problem
of recovering the operator M from the spectrum, provided that the functions
g(x), v(x) are known a priori. Since a solution of this inverse problem is not unique,
the special case was considered, when the kernel M(x, t) depends only on the
difference of its arguments, i.e.M is a convolution operator. Nonlinear inclusion of
M into the representation of the characteristic function of A essentially complicates
studying this inverse problem. However, a special form of the transformation
operator kernel, connected with M allowed to reduce the inverse problem to
some nonlinear integral equation with singularity, which was solved globally. This
allowed to prove the uniqueness theorem and to obtain a constructive procedure for
solving the inverse problem along with necessary and sufficient conditions of its
solvability. In the next subsections we illustrate key points of this approach.

2.2 Statement of the Inverse Problem

Consider the operator A = A(M, g, v) of the form (1) with

Mf =
∫ x

0
M(x − t)f (t) dt, 0 ≤ x ≤ π,
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where M(x) is a complex-valued function, M(x) ∈ W 2
2 [0, T ] for all T ∈ (0, π),

(π − x)M ′′(x) ∈ L2(0, π) and M(0) = −i, M ′(0) = 0. Under these assumptions
the operatorM−1 has the form

M−1y = %1y := iy ′(x)+
∫ x

0
H(x − t)y(t) dt, y(0) = 0, (2)

where the functionH(x), (π − x)H(x) ∈ L2(0, π), is connected withM(x) by the
relation

M ′′(x) = H(x)+ i
∫ x

0
M ′′(t) dt

∫ x−t

0
H(τ) dτ

We also assume that g(x), v(x) ∈ W 1
2 [0, π] and a1a2 �= 0, where

a1 = 1 + ig(0)v(0)+
∫ π

0
v(x)%1g(x) dx, a2 = ig(0)v(π). (3)

Under all above assumptions we say that the operatorA belongs to the class A. The
operator A has infinitely many characteristic numbers λk, k ∈ Z, of the form (see
[16])

λk = 2k + α + �k, λk �= 0, α ∈ C, {�k} ∈ l2, (4)

which, in turn, coincide with zeros of the characteristic function

L(λ) = 1 − λ
∫ π

0
v(x)g(x, λ) dx, (5)

where

g(x, λ) = (I − λM)−1g = g(x)+ λ
∫ x

0
M(x − t, λ)g(t) dt. (6)

Here I is the identity operator, M(x − t, λ) is the kernel of the integral operator
Rλ(M) = (E − λM)−1M. Consider the following inverse problem.

Inverse Problem 1 Given the spectrum {λk}k∈Z; find the functionM(x), provided
that the functions g(x) and v(x) are known a priori.

2.3 Transformation Operator

In this subsection we obtain a representation for the functionM(x, λ).
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Lemma 1 The relationM(x, λ) = −iy(x) holds with y(x) being a solution of the
Cauchy problem

%1y(x) = λy(x), 0 < x < π, y(0) = 1, (7)

where %1 is determined in (2).

Proof Since Rλ(M) = M + λMRλ(M), the functions M(x) and M(x, λ) are
connected by the relation

M(x, λ) = M(x)+ λ
∫ x

0
M(x − t)M(t, λ) dt.

Hence, they have the same smoothness with respect to x, and M(0, λ) = −i.
Applying the operator (Rλ(M))−1 = M−1 − λI to the function z = Rλ(M)f

with f ∈ L2(0, π), we arrive at the relation

i

∫ x

0

∂

∂x
M(x−t, λ)f (t) dt+

∫ x

0
f (t) dt

∫ x

t

H(x−τ)M(τ−t, λ) dτ = λ
∫ x

0
M(x−t, λ)f (t) dt,

which, by virtue of arbitrariness of f, finishes the proof. ��
Denote

f ∗ g(x) =
∫ x

0
f (x − t)g(t) dt, f ∗1(x) = f (x), f ∗(ν+1)(x) = f ∗ f ∗ν(x), ν ≥ 1.

Lemma 2 The solution of the Cauchy problem (7) has the form

y(x) = exp(−iλx)+
∫ x

0
P(x, t) exp(−iλ(x − t)) dt, (8)

where

P(x, t) =
∞∑
ν=1

iν
(x − t)ν
ν! H ∗ν(t). (9)

Proof Substituting (8) into the equation in (7), we get the relation

P(x, x)+
∫ x

0

∂

∂x
P (x, t) exp(−iλ(x − t)) dt = i

∫ x

0
H(t) exp(−iλ(x − t)) dt

+i
∫ x

0
exp(−iλ(x − t)) dt

∫ t

0
H(t − τ )P (x − t + τ, τ ) dτ, 0 < x < π.
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Thus, representation (8) holds, if the function P(x, t) is a solution of the Cauchy
problem

∂

∂x
P (x, t) = iH(t)+ i

∫ t

0
H(t − τ)P (x − t + τ, τ) dτ, P (x, x) = 0, 0 < t < x < π,

which, in turn, is equivalent to the integral equation

P (x, t) = i(x − t)H(t) + i
∫ x−t

0
ds

∫ t

0
H(t − τ)P (s + τ, τ) dτ, 0 ≤ t ≤ x ≤ π.

(10)

For solving it by the method of successive approximations we put

P1(x, t) = i(x − t)H(t), Pν+1(x, t) = i
∫ x−t

0
ds

∫ t

0
H(t − τ )Pν(s + τ, τ ) dτ.

Then by induction we get

Pν(x, t) = iν (x − t)ν
ν! H ∗ν(t).

The series in the right-hand side of (9) converges uniformly for 0 ≤ t ≤ x ≤ π and
gives the solution of (10). ��

Formula (8) determines the transformation operator I + P, where Pf =∫ x
0 P(x, x − t)f (t) dt, which connects the solution y0(x) = exp(−iλx) of the

unperturbed Cauchy problem (7) possessingH(x) = 0 with the solution y(x) of the
problem (7) with arbitrary H(x), i.e. y(x) = (I + P)y0(x).

Transformation operators are closely related to the notion of similarity (or linear
equivalence) of linear operators. For example, one can show that the following
relation holds:

M(I + P) = (I + P)M0, M0f = −i
∫ x

0
f (t) dt. (11)

2.4 Main Nonlinear Integral Equation

Denote

μ0(x) =
∫ π

x

v(t)g(t −x) dt, μ(x) = μ0(x)+
∫ π

x

P (t, t −x)μ0(t) dt, (12)

then, in particular, μ(x) ∈ W 2
2 [0, π].
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Lemma 3 The characteristic function of the operator A has the form

L(λ) = a1 − a2 exp(−iλπ)+
∫ π

0
w(x) exp(−iλx) dx, w(x) ∈ L2(0, π).

(13)

Here the numbers a1, a2 are determined by (3) and

w(x) = −iμ′′(x). (14)

Proof Substituting (6) into (5) and changing the order of integration, we obtain

L(λ) = 1 − μ0(0)λ− λ2
∫ π

0
μ0(x)M(x, λ) dx.

Substituting here M(x, λ) = −iy(x), where y(x) is determined by (8), and using
(12) we get

L(λ) = 1 − μ0(0)λ+ iλ2
∫ π

0
μ(x) exp(−iλx) dx.

Integrating by parts twice and taking into account that μ(0) = μ0(0), μ(π) = 0,
μ′(0) = i(a1 − 1), μ′(π) = ia2 we arrive at (13). ��

Relation (14) can be considered as a nonlinear equation with respect to H(x).
Indeed, differentiating (12) twice and using (14) we get the equation

(π − x)H(x) = ϕ(x)+
∞∑
ν=1

(
bν(x)H

∗ν(x)+
∫ x

0
Bν(x, t)H

∗ν(t) dt
)
, 0 < x < π,

(15)

where

ϕ(x)= iw(π − x)− μ̌′′
0(x)

a2
, μ̌0(x) = μ0(π−x), b1(x) ≡ 0, bν(x) = iν+1 (π − x)ν

ν! , ν ≥ 2,

Bν(x, t) = − i
ν

a2

(π − x)ν−2

ν!
(
ν(ν − 1)μ̌0(x − t)− 2ν(π − x)μ̌′

0(x − t)+ (π − x)2μ̌′′
0(x − t)

)
.

(16)

Equation (15) is called main nonlinear integral equation of Inverse Problem 1. Its
solution is complicated both by its nonlinearity and also by the singularity connected
with presence of the multiplier (π −x) in the left-hand side. The following theorem
holds (see Theorem 2.1 in [16]).
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Theorem 1 For any function ϕ(x) ∈ L2(0, π), satisfying the condition

∫ π

0
(π − x)ϕ(x) dx = 0, (17)

Eq. (15) has a unique solution H(x), (π − x)H(x) ∈ L2(0, π).

2.5 Solution of a Nonlinear Equation Without Singularity

Consider the equation

y(x) = ξ(x)+
∞∑
ν=1

(
ψν(x)y

∗ν(x)+
∫ x

0
�ν(x, t)y

∗ν(t) dt
)
, 0 < x < T, (18)

where ψ1(x) = 0. Let the functions ψν(x), �ν(x, t) be square-integrable and let
there exist square-integrable functions u(x), U(x, t) such that |ψν(x)| ≤ u(x),

|�ν(x, t)| ≤ U(x, t), 0 < t < x < T, for all ν. The following theorem holds
(see Theorem 2.2 in [16]).

Theorem 2 For any function ξ ∈ L2(0, T ) Eq. (18) has a unique solution y ∈
L2(0, T ).

Proof Let us show that for sufficiently small δ > 0 Eq. (18) has a unique solution
y(x), 0 < x < δ, in the domain Bδ = {y : ‖y‖δ ≤ 1/2}, where ‖ · ‖δ is the norm in
L2(0, δ). Denote

ψνy = ψν(x)y∗ν(x)+
∫ x

0
�ν(x, t)y

∗ν(t) dt, �y = ξ +
∞∑
ν=1

ψνy. (19)

Let y, ỹ ∈ L2(0, δ). The Cauchy–Bunyakovsky–Schwarz inequality yields |y ∗
ỹ(x)| ≤ ‖y‖δ‖ỹ‖δ for all x ∈ [0, δ]. For convenience it is assumed that δ ≤ 1. Then
by induction we get the estimate |y∗ν(x)| ≤ ‖y‖νδ , ν ≥ 2, and consequently

‖ψνy‖δ ≤ Cδ‖y‖νδ , where Cδ = ‖u‖δ +
( ∫ δ

0

∫ x

0
U2(x, t) dt dx

) 1
2
. (20)

Moreover, since

y∗ν − ỹ∗ν = (y − ỹ) ∗ (y∗(ν−1) + y∗(ν−2) ∗ ỹ∗1 + . . .+ ỹ∗(ν−1)), ν ≥ 2,

and ‖y∗ν‖δ ≤ ‖y‖νδ , then we arrive at the estimate

‖ψνy − ψνỹ‖δ ≤ Cδν(max{‖y‖δ, ‖ỹ‖δ})ν−1‖y − ỹ‖δ . (21)
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Let us choose δ, so that Cδ < 1/4, ‖ξ‖δ ≤ 1/4. Then it follows from (20), (21) that
the operator � maps Bδ into Bδ and it is a contraction in Bδ. Indeed let y, ỹ ∈ Bδ,
then

‖�y‖δ ≤ ‖ξ‖δ +
∞∑
ν=1

‖ψνy‖δ ≤ ‖ξ‖δ + Cδ
∞∑
ν=1

‖y‖νδ ≤ ‖ξ‖δ + Cδ < 1

2
,

‖�y −�ỹ‖δ ≤
∞∑
ν=1

‖ψνy − ψνỹ‖δ ≤ Cδ
∞∑
ν=1

ν(max{‖y‖δ, ‖ỹ‖δ})ν−1‖y − ỹ‖δ ≤ α‖y − ỹ‖δ,

where

α = Cδ
∞∑
ν=1

ν

2ν−1 = 4Cδ < 1.

The contracting mapping principle yields that Eq. (18) has a unique solution in Bδ.
Suppose that y = y1(x) is a solution of Eq. (18) for 0 < x < δ, δ ∈ (0, π).

Let us show that (18) has a solution y(x) in L2(0, 2δ), which coincides with y1(x)

on (0, δ). We seek y(x) in the form y(x) = y1(x) + y2(x), where y1(x) = 0 for
δ < x < 2δ and y2(x) = 0 for 0 < x < δ. By induction one can prove the following
representation

y∗ν(x) = (y1 + y2)
∗ν(x) = y∗ν

1 (x)+
ν−1∑
k=1

(
ν

k

)
(y

∗(ν−k)
1 ∗ y∗k

2 )(x)+ y∗ν
2 (x), ν ≥ 2,

(22)

where
(
ν
k

) = ν!/(k!(ν − k)!). Since y2(x) = 0 for (0, δ), then y∗2
2 (x) ≡ 0 on [0, δ]

and

y∗2
2 (x) =

∫ x

δ

y2(t)y2(x − t) dt =
∫ x−δ

0
y2(x − t)y2(t) dt = 0, δ ≤ x ≤ 2δ.

Consequently, for ν ≥ 2 we have y∗ν
2 (x) ≡ 0 on [0, 2δ] and, according to (22), we

get the expression

y∗ν(x) = y∗ν
1 (x)+ ν(y∗(ν−1)

1 ∗ y2)(x), 0 ≤ x ≤ 2δ, ν ≥ 2. (23)

Substituting (23) into (18) we arrive at the linear Volterra equation of second order
with respect to the function y2(x) :

y2(x) = ζ(x)+
∫ x

δ

�(x, t)y2(t) dt, δ < x < 2δ, (24)
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where the functions

ζ(x) = ξ(x)+
∞∑
ν=1

(
ψν(x)y

∗ν
1 (x)+

∫ x

0
�ν(x, t)y

∗ν
1 (t) dt

)
,

�(x, t) = �1(x, t)+
∞∑
ν=2

ν
(
ψν(x)y

∗(ν−1)
1 (x−t)+

∫ x−t

0
�ν(x, t+τ )y∗(ν−1)

1 (τ ) dτ
)

are square-integrable. Equation (24) has a unique solution and, therefore, the
function y(x) = y1(x)+ y2(x) is a solution of Eq. (18) in L2(0, 2δ) that coincides
with y1(x) on (0, δ). Continuing this process after a finite number of steps we obtain
a solution of (18) on the entire interval (0, T ),which coincides with y1(x) on (0, δ).
Note that a solution with this property is unique. Thus, the existence of the solution
is proved. Let ỹ ∈ L2(0, T ) be another solution of (18). For sufficiently small δ > 0
both the functions y(x) and ỹ(x) belong to the domain Bδ. According to the first
part of the proof, they are equal a.e. on (0, δ). Hence, y(x) = ỹ(x) a.e. on (0, T ).

��
Remark 1 The operator � determined in (19) belongs to the class ET (see [39]) as
well as to the class ET ,1 (see [48]). Thus, Theorem 2 can be obtained as a corollary
from Theorem 4.2 in [39] or from Theorem 1 in [48].

2.6 Proof of Theorem 1

Note that, according to Theorem 2, the main Eq. (15) has a unique locally square-
integrable solution H(x), i.e. such that H(x) ∈ L2(0, T ) for all T ∈ (0, π).
However, so far it is impossible to say anything about integrability of H(x) in
the vicinity of the point π. In the present subsection we show how to prove that
(π − x)H(x) ∈ L2(0, π) using condition (17) as well as the special structure of the
functions bν(x), Bν(x, t), ν ≥ 1.

By virtue of Theorem 2, there exists a unique square-integrable solutionH(x) =
H1(x) of Eq. (15) on the interval (0, π/2). As in its proof we seek the solution on
(0, π) in the form H(x) = H1(x) + H2(x), where H1(x) = 0 on (π/2, π) and
H2(x) = 0 on (0, π/2), and arrive at the following equation with respect to H2(x):

(π − x)H2(x) = ζ(x)+
∫ x

π
2

B(x, t)H2(t) dt,
π

2
< x < π, (25)
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where

ζ(x) = ϕ(x)+
∞∑
ν=1

(
bν(x)H

∗ν
1 (x)+

∫ x

0
Bν(x, t)H

∗ν
1 (t) dt

)
,

B(x, t) = B1(x, t)+
∞∑
ν=2

ν
(
bν(x)H

∗(ν−1)
1 (x−t)+

∫ x−t

0
Bν(x, t+τ)H ∗(ν−1)

1 (τ ) dτ
)
.

Denote h2(x) = (π − x)H2(x). According to (16), the following equation is
equivalent to (25):

h2(x) = ζ(x)+ 2
∫ x

π
2

h2(t) dt

π − t +
∫ x

π
2

G(x, t)h2(t) dt,
π

2
< x < π, (26)

where the function

G(x, t) = i

a2(π − t)
{

2
∫ x

t

μ̌′′
0(x − τ ) dτ − (π − x)μ̌′′

0(x − t)
}

+ 1

π − t
∞∑
ν=2

ν
(
bν(x)H

∗(ν−1)
1 (x − t)+

∫ x−t

0
Bν(x, t + τ )H ∗(ν−1)

1 (τ ) dτ
)

is square-integrable on the triangle π/2 < t < x < π. It remains to show that
h2(x) ∈ L2(π/2, π). For this purpose we need the following two lemmas.

Lemma 4 Let η, θ be real numbers, θ ≥ 0. The solution y(x) of the equation

y(x) = f (x)+ η
∫ x

a

y(t) dt

b − t , a < x < b,

satisfies the condition (b − x)θy(x) ∈ L2(a, b) if and only if one of the following
conditions (depending on the difference η − θ ) holds:

(1) (b − x)θf (x) ∈ L2(a, b) for η − θ < 1/2;
(2) (b − x)θf (x) ∈ L2(a, b),

∫ b

a

(b − x)η−1f (x) dx = 0

for η − θ > 1/2.
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Lemma 5 Fix η ≥ 0 and let (b − x)ηf (x) ∈ L2(a, b). Then the equation

y(x) = f (x)+ η
∫ x

a

y(t) dt

b − t +
∫ x

a

G(x, t)y(t) dt, a < x < b,

where

∫ b

a

∫ x

a

|G(x, t)|2 dt dx <∞,

has a unique solution y(x), (b − x)ηy(x) ∈ L2(a, b).

In this subsection we will use Lemmas 4 and 5 for η = 2. For this case they were
proved in [16]. For arbitrary η the proof can be found in [39].

Applying Lemma 5 to Eq. (26), we get (π − x)2h2(x) ∈ L2(π/2, π), i.e. (π −
x)3H(x) ∈ L2(0, π). It remains to show that (17) implies (π−x)H(x) ∈ L2(0, π).
According to (15) and (16), we have

h(x) = ϕ(x)+ α1(x)+ α2(x)+ 2
∫ x

0

h(t) dt

π − t , (27)

where h(x) = (π − x)H(x) and

α1(x) = i
∫ x

0

h(t)

a2(π − t)
{

2
∫ x−t

0
μ̌′′

0(τ ) dτ − (π − x)μ̌′′
0(x − t)

}
dt,

α2(x) =
∞∑
ν=2

(
bν(x)H

∗ν(x)+
∫ x

0
Bν(x, t)H

∗ν(t) dt
)
.

The following two lemmas hold (see [16]).

Lemma 6 Let (π − x)θh(x) ∈ L2(0, π) for some θ ∈ [1/2, 2]. Then the functions
(π − x)θ−1/2α1(x) and (π − x)θ−1α2(x) also belong to L2(0, π).

Lemma 7 If (π − x)θh(x) ∈ L2(0, π) for some θ < 2, then

∫ π

0
(π − x)αk(x) dx = 0, k = 1, 2. (28)

Consider relation (27). Since (π − x)2h(x) ∈ L2(0, π), by Lemma 6 we have
(π − x)3/2αk(x) ∈ L2(0, π), k = 1, 2. By virtue of Lemma 4, we arrive at (π −
x)3/2+εh(x) ∈ L2(0, π) for all ε > 0. Then Lemma 7 gives (28). Taking also
(17) into account and applying Lemma 6 along with Lemma 4 four more times, we
finally arrive at h(x) ∈ L2(0, π), which finishes the proof of Theorem 1.
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2.7 Solution of Inverse Problem 1

Based on the solution of the main Eq. (15), i.e. on Theorem 1, one can obtain a
global solution of the inverse problem (for more details see [16]). In particular, the
following uniqueness theorem holds.

Theorem 3 Specification of the spectrum {λk}k∈Z uniquely determines the function
M(x), provided that the functions g(x) and v(x) are known a priori.

The next theorem gives necessary and sufficient conditions for solvability of the
inverse problem.

Theorem 4 Let arbitrary complex-valued functions g(x), v(x) ∈ W 1
2 [0, π],

g(0)v(π) �= 0, be given. For an arbitrary complex sequence {λk}k∈Z to be the
spectrum of a certain operator A = A(M, g, v) ∈ A it is necessary and sufficient
to have the form (4) and to satisfy the so-called concordance conditions

p = −
∫ π

0
g(x)v(x) dx, γ exp(iαπ) = ig(0)v(π),

where

p =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

iπ

exp(−iαπ)− 1
+

∞∑
k=−∞

(
1

2k + α − 1

λk

)
, exp(iαπ) �= 1,

π

2i
− 1

λ− α
2

+
∞∑

k=−∞, k �=− α
2

(
1

2k + α − 1

λk

)
, exp(iαπ) = 1,

γ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − exp(iαπ))−1
∞∏

k=−∞

2k + α
λk

, exp(iαπ) �= 1,

i

πλ− α
2

∞∏
k=−∞, k �=− α

2

2k + α
λk

, exp(iαπ) = 1.

The proof is constructive and gives an algorithm for solving the inverse problem
(see [17]). We also note that Theorem 4, in particular, implies that in Theorem 3 it
is sufficient to specify characteristic numbers with exception of any two.

3 Convolution Integro-Differential Operator

3.1 Statement of the Inverse Problem and Main Results

In this section we illustrate the above approach to studying an inverse problem for
the so-called convolution integro-differential operator of the second order [19].
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Let {λk}k≥1 be the spectrum of the boundary value problem L = L(M) of the
form

%y := −y ′′ +
∫ x

0
M(x − t)y ′(t) dt = λy, 0 < x < π, y(0) = y(π) = 0,

(29)

where M(x) is a complex-valued function and (π − x)M(x) ∈ L2(0, π). By the
standard method (see, e.g., [3]) one can obtain the asymptotics of {λk}k≥1. Namely,
the following theorem holds.

Theorem 5 Eigenvalues λk, k ≥ 1, of the problem L have the form

λk = (k + �k)2, {�k} ∈ l2. (30)

Consider the following inverse problem.

Inverse Problem 2 Given {λk}k≥1; findM(x).

The following theorem gives uniqueness of solution of Inverse Problem 2 along
with its global solvability.

Theorem 6

(i) For arbitrary complex numbers λk, k ≥ 1, of the form (30) there exists a
unique (up to values on a set of measure zero) functionM(x), (π − x)M(x) ∈
L2(0, π), such that {λk}k≥1 is the spectrum of the corresponding eigenvalue
problem L(M). In other words, asymptotics (30) is a necessary and sufficient
condition for solvability of Inverse Problem 2.

(ii) The functionM(x) satisfies the additional smoothness condition:
M(x) ∈ W 1

2 [0, T ] for each T ∈ (0, π), (π − x)M ′(x) ∈ L2(0, π) if and only
if

λk =
(
k + ω

k
+ �k,1

k

)2
, {�k,1} ∈ l2, ω − const. (31)

Moreover,M(0) = 2ω.

The proof of Theorem 6 is constructive and gives an algorithm for solving the
inverse problem (see [19] for details). This proof is based on a special form of the
kernel of a transformation operator for (29) (see the next subsection). This form
allows one to reduce Inverse Problem 2 to solving some nonlinear integral equation,
whose global solvability is proved in Sect. 3.3. For the Robin boundary conditions
y ′(0)− hy(0) = y ′(π)+Hy(π) = 0 analogous results were obtained in [25].
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3.2 Transformation Operator

Let y = S(x, λ) be a solution of the equation in (29) satisfying the initial conditions

y(0) = 0, y ′(0) = 1. (32)

Eigenvalues of L coincide with zeros of its characteristic function�(λ) := S(π, λ).
In order to obtain an appropriate representation for S(x, λ),we consider the function
H(x) that satisfies the equation

M(x) = 2iH (x)+
∫ x

0
dt

∫ t

0
H(t − τ )H(τ) dτ, 0 < x < π. (33)

Note that unique solvability of Eq. (33) follows, e.g., from Theorem 2. Moreover, it
is easy to show that (π−x)H(x) ∈ L2(0, π). As will be seen below it is convenient
to recover first H(x) and then one can constructM(x) via (33).

Lemma 8 Let ρ2 = λ. Then the following representation holds:

S(x, λ) = sinρx

ρ
+

∫ x

0
P(x, t)

sin ρ(x − t)
ρ

dt, (34)

where the function P(x, t) is determined in (9).

Proof Consider the integro-differential operator %1 determined in (2). Let y(x) ∈
W 2

2 [0, T ] for each T ∈ (0, π), then we can calculate

%1(%1y) = −y′′ +
∫ x

0

(
2iH(t)+

∫ t

0
H ∗2(τ ) dτ

)
y′(x− t) dt+y(0)

(
iH(x)+

∫ x

0
H ∗2(t) dt

)
.

Thus, by virtue of (33), we have %u = %1(%1u) for any sufficiently smooth function
u(x), u(0) = 0. Let y = e(x, λ) be a solution of the Cauchy problem (7). Recall
that, by virtue of Lemma 2, it has the form (8). Hence, taking into account that
e(0, ρ) = 1 and e′(0, ρ) = −iρ, we get the identity

S(x, λ) = e(x,−ρ)− e(x, ρ)
2iρ

,

which along with (8) give (34). ��
Remark 2 The proof of Lemma 8 is actually based on extracting the square root
from a convolution operator (more precisely from its inverse). For more details
on extraction of roots from convolution operators see also [50, 51]. Formula (34)
means that the transformation operator I + P introduced in Sect. 2.3 for a first-
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order integro-differential equation applies also for the second-order one. Namely, it
connects the solution y0(x) = ρ−1 sin ρx of the Cauchy problem for the equation
in (29) possessingM(x) = 0 under the initial conditions (32) with the solution y(x)
of the corresponding Cauchy problem with arbitraryM(x).

The same transformation operator I+P can be used also for convolution integro-
differential equations of arbitrary order (see [37]). Namely, the solution Sn(x, λ) of
the Cauchy problem

iny(n) +
∫ x

0
M(x − t)y(n−1)(t) dt = λy, 0 < x < π, y(j)(0) = δj,n−1, j = 0, n− 1,

(35)
has the form

Sn(x, λ) = Sn,0(x, λ)+
∫ x

0
P(x, t)Sn,0(x − t, λ) dt, (36)

where the function

Sn,0(x, λ) = 1

n(−iρ)n−1

n∑
j=1

ωj exp(−iωj ρx), ρn = λ, ωj = exp
(2πi(j − 1)

n

)
, j = 1, n,

is the solution of the unperturbed Cauchy problem (35) with M(x) = 0, while
P(x, t) is determined by formula (9) with H(x) being a solution of the nonlinear
integral equation

M(x) = nin−1H(x)+
n∑
j=2

(
n

j

)
in−j

∫ x

0

(x − t)j−2

(j − 2)! H
∗j (t) dt, 0 < x < π.

More briefly this effect can be demonstrated by using (11). Namely, it is easy to
see that relation (11) impliesMn(I + P) = (I + P)Mn

0 for all n ∈ N with one and
the same P.

Eventually, according to Lemma 8, we have

�(λ) = sin ρπ

ρ
+

∫ π

0
w(x)

sin ρx

ρ
dx, ρ2 = λ, w(x) ∈ L2(0, π),

where

w(π − x) =
∞∑
ν=1

iν
(π − x)ν
ν! H ∗ν(x), 0 < x < π. (37)
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3.3 The Main Equation

Relation (37) can be considered as a nonlinear integral equation with respect to
H(x), which is called main equation of Inverse Problem 2. For briefness denote

Wl := {f (x) : f (x) ∈ Wl
2[0, T ] for each T ∈ (0, π), (π − x)f (l)(x) ∈ L2(0, π)}.

In particular,W0 = {f (x) : (π − x)f (x) ∈ L2(0, π)}.
Theorem 7

(i) For any w(x) ∈ L2(0, π) Eq. (37) has a unique solution H(x) ∈ W0.

(ii) The functionH(x) belongs toW1 if and only ifw(x) ∈ W 1
2 [0, π] andw(0) = 0.

Moreover, in this case w(π) = iπH(0).
Proof (i) After division by π − x Eq. (37) takes the form (18) on intervals (0, T ),
T ∈ (0, π). Then, by virtue of Theorem 2, it has a unique locally square-integrable
solution H(x) ∈ L2(0, T ), T ∈ (0, π). Representing it in the form H(x) =
H1(x)+H2(x) where H1(x) ∈ L2(0, π) and H2(x) = 0 on (0, π/2) we have

H ∗ν(x) = H ∗ν
1 (x)+ νH ∗(ν−1)

1 ∗H2(x), ν ≥ 2. (38)

Substituting this into (37) we arrive at

w(π−x)−μ1(x)−i(π−x)H1(x) = i(π−x)H2(x)+
∫ x

0
Q(x, t) i(π−t)H2(t) dt,

where

μ1(x) =
∞∑
ν=2

iν
(π − x)ν
ν! H ∗ν

1 (x), Q(x, t) = π − x
π − t

∞∑
ν=1

iν
(π − x)ν
ν! H ∗ν

1 (x − t)

are square-integrable functions. Hence H(x) ∈ W0.

(ii) Necessity is obvious. Let us prove sufficiency. Denote

μ(x) =
∞∑
ν=2

iν
(π − x)ν
ν! H ∗ν(x).

It is sufficient to show that there exists a functionN(x) ∈ W0 such that

H(x) = w(π)

iπ
+

∫ x

0
N(t) dt.
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Substituting this into (37) and differentiating we arrive at the following nonlinear
equation with respect to N(x) :

i(π − x)N(x) = −w′(π − x)+ w(π)

π
+ i

∫ x

0
N(t) dt − μ′(x), 0 < x < π,

(39)

which, after division by i(π−x), takes the form (18) on intervals (0, T ), T ∈ (0, π).
Then, by virtue of Theorem 2, it has a unique locally square-integrable solution
N(x) ∈ L2(0, T ), T ∈ (0, π). Representing the function h(x) := i(π − x)N(x)
in the form h(x) = h1(x)+ h2(x) where h1(x) = 0 on (π/2, π) and h2(x) = 0 on
(0, π/2) and putting

H1(x) = w(π)

iπ
− i

∫ x

0

h1(t)

π − t dt, H2(x) = −i
∫ x

0

h2(t)

π − t dt

we have (38). Then the following relation is equivalent to (39):

h(x) = −w′(π − x)+ w(π)

π
+

∫ x

0

h(t) dt

π − t + α(x), 0 < x < π, (40)

where

α(x) = −μ′(x) = −μ′
1(x)−

∫ x

0
G(x, t)h2(t) dt, (41)

G(x, t) = 1

π − t
∞∑
ν=1

iν
(π − x)ν
ν!

(
(π − x)H ∗ν

1 (x− t)− (ν+ 1)
∫ x−t

0
H ∗ν

1 (τ ) dτ
)
.

It remains to prove that h(x) ∈ L2(0, π). Applying Lemma 5 (for η = 1) to (40),
(41) we deduce that (π−x)h2(x) ∈ L2(0, π). According to (41), this yields α(x) ∈
L2(0, π). Further, besides

∫ π

0
α(x) dx = −μ(π) = −

(
μ1(x)+

∞∑
ν=2

iν
(π − x)ν
(ν − 1)!

∫ x

0
H

∗(ν−1)
1 (x − t)H2(t) dt

)∣∣∣∣∣
x→π

= 0,

the assumption on the function w(x) gives

∫ π

0

[
−w′(π − x)+ w(π)

π

]
dx = w(0) = 0.

Thus, applying Lemma 4 (for η = 1, θ = 0) to (40), we arrive at h(x) ∈ L2(0, π).
��
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4 Convolutional Perturbation of the Sturm–Liouville
Operator

4.1 Historical Notes and the Main Result

In the present section a more general situation is considered, when the transforma-
tion operator kernel cannot be represented as a series of convolutional powers of the
unknown function. However, a detailed study of dependence of the kernel on the
unknown function allows one to prove the global solvability of the corresponding
nonlinear equation (see Sect. 4.3).

Let {λn}n≥1 be the spectrum of the boundary value problem L = L(q,M) of the
form

− y ′′ + q(x)y +
∫ x

0
M(x − t)y(t) dt = λy, 0 < x < π, y(0) = y(π) = 0,

(42)

where q(x) andM(x) are complex-valued functions such that q(x) ∈ L2(0, π) and

(π − x)M(x) ∈ L2(0, π). (43)

Then the following asymptotics holds (see [14]):

λn =
(
n+ ω

n
+ �n

n

)2

, ω = 1

2π

∫ π

0
q(x) dx, {�n} ∈ l2. (44)

Consider the following inverse problem.

Inverse Problem 3 Given the spectrum {λn}n≥1; find the functionM(x), provided
that the potential q(x) is known a priori.

The first detailed study of this inverse problem was undertaken in [14]. In
particular, the uniqueness theorem was proved and a local solvability of the inverse
problem was established. Specifically, it was proved that a complex sequence
{λ̃n}n≥1 is the spectrum of a certain problemL(q, M̃), if it is sufficiently close in the
l2-metric to the spectrum {λn}n≥1 of some model problem L(q,M). Moreover, the
stability of the solution was established. The proof was based on developing Borg’s
idea [1] for the classical Sturm–Liouville operator (see also [4]).

By the development of the approach illustrated in the previous sections, in [21]
the global solution of this inverse problem was obtained. Namely, the following
theorem holds.

Theorem 8 Let a complex-valued function q(x) ∈ L2(0, π) be given. Then for any
sequence of complex numbers {λn}n≥1 of the form (44) there exists a unique (up to
values on a set of measure zero) functionM(x), satisfying condition (43), such that
{λn}n≥1 is the spectrum of the corresponding boundary value problem L(q,M).
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Thus, asymptotics (44) is a necessary and sufficient condition for solvability of
Inverse Problem 3.

A generalization of this result to the case of Robin boundary conditions was
obtained in [46].

Remark 3 In [14] the following conditions on the functionM(x) were imposed:

(π − x)M(x),
∫ x

0
M(t) dt ∈ L(0, π), (π − x)M(x)−

∫ x

0
M(t) dt ∈ L2(0, π). (45)

However, from Theorem 8 along with the uniqueness theorem in [14] it follows that
(45) is equivalent to (43). This can also be proved directly using Lemma 4 for η = 1.

In the next subsection the transformation operators related to (42) is studied.

4.2 Transformation Operator

Consider the linear integral equation

F(x, t, τ )=F0(x, t, τ )+ 1

2

( ∫ x

t
q(s) ds

∫ t

τ
F (s, ξ, τ ) dξ +

∫ t

t+τ
2

q(s) ds

∫ 2s−t
τ

F (s, ξ, τ ) dξ

−
∫ x

τ−t
2 +x

q(s) ds

∫ 2(s−x)+t
τ

F (s, ξ, τ ) dξ +
∫ t−τ

0
M(s) ds

∫ x

t
dξ

∫ t−s
τ

F (ξ − s, η, τ ) dη

+
∫ t−τ

0
M(s) ds

∫ t

t+τ+s
2

dξ

∫ 2ξ−t−s
τ

F (ξ − s, η, τ ) dη

−
∫ t−τ

0
M(s) ds

∫ x

s+τ−t
2 +x

dξ

∫ 2(ξ−x)+t−s
τ

F (ξ − s, η, τ ) dη
)
, 0 ≤ τ ≤ t ≤ x ≤ π, (46)

where the free termF0(x, t, τ ) is a continuous function. By the method of successive
approximations one can prove that Eq. (46) has a unique solution F(x, t, τ ) =
F(x, t, τ ;M), which is also a continuous function (see Lemma 2.1 in [39]).

Note that τ ∈ [0, π) in (46) is actually a parameter, i.e. it can be fixed. Another
important property of Eq. (46) is that for any fixed δ ∈ (0, π] it can be narrowed
down to the set

Dδ :=
{
(x, t, τ ) : 0 ≤ x ≤ π, 0 ≤ τ ≤ t ≤ min{δ, x}

}
.

In other words, for (x, t, τ ) ∈ Dδ the right-hand side of (46) depends on
values of F(x, t, τ ) only on the set Dδ. Moreover, on Dδ the solution of the
“narrowed” equation coincides with the solution of the initial one. Hence, the
functionF(x, t, τ ;M) on Dδ depends on values of the functionM(s) only on (0, δ).
This property allows solving the main equation in Sect. 4.3 by steps.
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Let y = S(x, λ) be a solution of the equation in (42) obeying the initial
conditions S(0, λ) = 0, S′(0, λ) = 1. Eigenvalues of the boundary value problem
L coincide with zeros of its characteristic function�(λ) = S(π, λ). The following
representation holds (see Lemma 2.2 in [39]):

S(x, λ) = sin ρx

ρ
+

∫ x

0
P(x, t)

sin ρ(x − t)
ρ

dt, ρ2 = λ, (47)

which gives the transformation operator associated with the equation in (42), where
the kernel

P(x, t) = P(x, t;M) = F(x, t, 0;M) (48)

is a solution of Eq. (46) for τ = 0 and with the free term

F0(x, t, 0) = 1

2

(∫ x−t/2

t/2
q(s) ds +

∫ t

0
(x − t)M(s) ds

)
. (49)

Denote R(x, t;M) := ∂

∂t
P (x, t;M). According to (46)–(49), the characteristic

function has the form

�(λ) = sin ρπ

ρ
− ωπ cosρπ

ρ2 +
∫ π

0
v(x)

cos ρx

ρ2 dx, v(x) ∈ L2(0, π).

Moreover, we have

− v(π − x) = R(π, x;M), 0 < x < π, (50)

∫ π

0
v(x) dx = ωπ, (51)

where the value ω is determined in (44).

4.3 The Main Equation

Relation (50) can be considered as a nonlinear equation with respect to the function
M(x),which is called the main equation of Inverse Problem 3. Thus, having initially
assumed that the functionM(x) obeys condition (43), we arrived at v(x) ∈ L2(0, π)
as well as at (51). The following inverse assertion holds.

Theorem 9 For any function v(x) ∈ L2(0, π), satisfying condition (51), the main
Eq. (50) has a unique solutionM(x), (π − x)M(x) ∈ L2(0, π).
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Proof Fix δ ∈ (0, π/2] and put

M1(x) =
{
M(x), x ∈ (0, δ),
0, x ∈ (δ, 2δ), M2(x) =

{
0, x ∈ (0, δ),
M(x), x ∈ (δ, 2δ).

Solving equation (50) is based on the following representation (see Lemma 3.2 in
[39]):

P(x, t;M) = P(x, t;M1)+
∫ t

0
F(x, t, τ ;M1)M2(τ) dτ, 0 ≤ t ≤ min{2δ, x}, x ≤ π,

(52)

where the function F(x, t, τ ;M1) is a solution of Eq. (46) for 0 ≤ τ ≤ t ≤
min{2δ, x}, x ≤ π withM1(x) instead ofM(x) and with the free term

F0(x, t, τ ) = 1

2

(
x − t +

∫ x

t
ds

∫ t−τ
0

P(s − τ, ξ ;M1) dξ+

+
∫ t

t+τ
2

ds

∫ 2s−t−τ
0

P(s − τ, ξ ;M1) dξ −
∫ x

τ−t
2 +x

ds

∫ 2(s−x)+t−τ
0

P(s − τ, ξ ;M1) dξ
)
.

By the contracting mappings principle, one can prove that for sufficiently small
δ > 0 in the ball Bδ := {f : ∫ δ

0 |f (x)|2 dx ≤ 1} Eq. (50) has a unique solution
M(x) = M1(x), 0 < x < δ. Continuing the function M1(x) by zero on (δ, 2δ),
we look for the solution of (50) on (0, 2δ) in the form M(x) = M1(x) +M2(x),

whereM2(x) = 0 on (0, δ). Differentiating representation (52) with respect to t and
substituting x = π, we arrive at the following linear equation with respect toM2(t):

g(t) = π − t
2
M2(t)+

∫ t

δ

�(π, t, τ ;M1)M2(τ ) dt, δ < t < 2δ, (53)

where the functions

g(t) = −v(π − t)− R(π, t;M1), �(π, t, τ ;M1) = ∂

∂t
F (π, t, τ ;M1)

are square-integrable in their domains of definition. Equation (53) has a unique
solution M2(x), which belongs to L2(δ, 2δ) as soon as 2δ < π. Obviously, the
obtained function M(x) = M1(x) + M2(x) is a unique solution of Eq. (50) on
(0, 2δ) that coincides with M1(x) a.e. on (0, δ). Continuing this process, we obtain
the solution M(x) on the entire interval (0, π) such that M(x) ∈ L2(0, T ) for any
T ∈ (0, π). It is easy to see that this solution is unique. Indeed, let M̃(x) be another
solution, then for sufficiently small δ > 0 the both solutions belong to the ball Bδ
and hence, they coincide a.e. on (0, δ). By virtue of uniqueness of the continuation
of the solution, they coincide a.e. on the entire interval (0, π).
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Further, using properties of the solution of Eq. (46) along with Lemmas 4 and 5
for η = 1 as in the second part of the proof of Theorem 7 one can prove that
condition (51) implies (43) (for more details see [39]). ��
Remark 4 For any T ∈ (0, π) the operator 2R(π, t;M) − (π − t)M(t) belongs
to the class ET (see [39]) as well as to the class ET ,1 (see [48]). Thus, existence of
a unique locally square-integrable solution of the main Eq. (50) is a corollary from
Theorem 4.2 in [39] or from Theorem 1 in [48].

5 Integro-Differential Dirac Systems

5.1 Statement of the Inverse Problem and Main Results

Consider the integro-differential Dirac system of the form

By ′ +
∫ x

0
M(x − t)y(t) dt = λy, 0 < x < π, (54)

where

B =
(

0 1
−1 0

)
, y(x) =

(
y1(x)

y2(x)

)
, M(x) =

(
M1(x) M2(x)

M3(x) M4(x)

)
,

the functionsMk(x) are complex-valued and (π − x)Mk(x) ∈ L2(0, π), k = 1, 4.
For j = 1, 2 let {λn,j }n∈Z be the spectrum of the boundary value problemDj :=

Dj(M) for Eq. (54) under the boundary conditions

y1(0) = yj (π) = 0.

In this section we illustrate the generalization of the above approach for solving
the following inverse problem [38].

Inverse Problem 4 Given the spectra {λn,j }n∈Z, j = 1, 2; find the matrix-function
M(x).

In [28] the inverse problem was studied of recovering the matrix-functionM(x)
in the particular case, when M1(x) = M4(x) and M2(x) = −M3(x), from
given one spectrum {λn,1}n∈Z. Specifically, the uniqueness theorem was proved
and a constructive procedure was obtained for solving the inverse problem along
with necessary and sufficient conditions for its solvability in terms of asymptotics
of the spectrum. In [30] analogous results were obtained for the situation, when
M1(x) = −M4(x) and M2(x) = −M3(x). In [33, 40] for the particular case
from [28] the half inverse problem was studied, when M(x) was to be found on
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subintervals (a, π) ⊂ (0, π) from appropriate subspectra of D1, provided that
on (0, a) the matrix-function M(x) was known a priori. We note that analogous
half inverse problems for scalar integro-differential operators were studied in [23]
and [27].

The case of independent components of the matrix-functionM(x) is much more
difficult. The following uniqueness theorem holds (see [38]).

Theorem 10 Specification of the spectra {λn,1}n∈Z and {λn,2}n∈Z uniquely deter-
mines the matrix-functionM(x).

More deep results are connected with obtaining necessary and sufficient con-
ditions for solvability of Inverse Problem 4. For this purpose a special subclass
M of kernels M(x) was chosen in which such conditions could take a sufficiently
concise form. Namely, we say that M(x) ∈ M, if the following two requirements
are fulfilled:

(1) Mk(x) ∈ L2(0, π), k = 1, 4;
(2) (π − x)(M1 +M4)(x), (π − x)(M2 −M3)(x) ∈ W 1

2 [0, π].
The next theorem gives necessary and sufficient conditions for solvability of

Inverse Problem 4 in the class M (see [38]).

Theorem 11 For two arbitrary sequences of complex numbers {λn,1}n∈Z and
{λn,1}n∈Z to be the spectra of the boundary value problems D1(M) and D2(M),

respectively, with a common kernel-function M(x) ∈ M it is necessary and
sufficient to have the asymptotics

λn,j = n+ δ2,j

2
+ ω

πn
+ �n,j

n
, {�n,j } ∈ l2, j = 1, 2,

with a common complex coefficientω, where δ2,j is Kronecker’s delta; and to satisfy
the condition

n
(
�1

(
n+ 1

2

)
+�2(n)

)
= o(1), n→ ∞,

where �1(λ) and�2(λ) are entire functions constructed by the formulae

�1(λ) = π(λ − λ0,1)
∏
k �=0

λk,1 − λ
k

exp
(λ
k

)
, �2(λ) = −

∏
k∈Z

λk,2 − λ
k + 1

2

exp
( λ

k + 1
2

)
.

The central place in the proof of Theorems 10 and 11 is occupied by the main
equation of Inverse Problem 4, which is a nonlinear vectorial integral equation (see
Sect. 5.4). In the next subsection we construct a transformation operator connected
with system (54).
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5.2 Transformation Operator

Let y = S(x, λ) = (S1(x, λ), S2(x, λ))
T be a solution of system (54), satisfying the

initial conditions

S1(0, λ) = 0, S2(0, λ) = −1, (55)

where T is the transposition sign. In the following lemma we introduce the
transformation operator that connects S(x, λ) with the solution of the Cauchy
problem (54), (55) having the trivial kernelM(x) = 0, i.e. with the vector-function
S0(x, λ) = (sin λx,− cosλx)T .

Lemma 9 The following representation holds:

S(x, λ) = S0(x, λ)+
∫ x

0
K(x, t)S0(t, λ) dt, K(x, t) =

(
K11(x, t) K12(x, t)

K21(x, t) K22(x, t)

)
,

where Klm(x, t), l,m = 1, 2, are square-integrable functions.
Moreover, for each x ∈ (0, π] the functions Klm(x, t) are determined for almost

all t ∈ (0, x) and |Klm(x, t)| ≤ f (x − t), l,m = 1, 2, for some function f (x) ∈
L2(0, π).

The proof of Lemma 9 can be found in [38], Moreover, in [38] further
representations for the functionsKlm(x, t) were obtained. In order to provide them,
we introduce the following notations:

gn(x) := xn

n! , n ≥ 0, f ∗ g−1 = g−1 ∗ f := f, f ∗0 ∗ u = u ∗ f ∗0 := u

for any functions f and u. By C we will denote different positive constants in
estimates.

Proposition 1 For l,m = 1, 2 the following representation holds:

Klm(x, t) =
∞∑
n=1

Klm,n(x, t), Klm,n(x, t) =
mn∑
j=1

n∑
k=0

almnjkgk(t)
(
Qnj [M] ∗ gn−1−k

)
(x − t),

(56)

whereQnj [M], j = 1,mn, are all possible convolutional monomials of the form

Qnj [M] = Mi1 ∗Mi2 ∗ · · · ∗Min , 1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ 4,
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and almnjk are some constant coefficients satisfying the estimate

Slmn :=
mn∑
j=1

n∑
k=0

|almnjk| ≤ C4n, n ∈ N. (57)

Proposition 2 The functionsKlm,1(x, t), l,m = 1, 2, in (56) have the form

K11,1(x, t) = − t
2
(M2 −M3)(x − t),

K12,1(x, t) = t

2
(M1 +M4)(x − t)− 1

2

∫ x−t

0
(M1 −M4)(τ ) dτ,

K21,1(x, t) = − t
2
(M1 +M4)(x − t),

K22,1(x, t) = − t
2
(M2 −M3)(x − t)− 1

2

∫ x−t

0
(M2 +M3)(τ ) dτ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(58)

Proposition 3 In (56) the coefficients al1nj0 vanish for all n ≥ 1, j = 1,mn and
l = 1, 2.

5.3 Characteristic Functions

Eigenvalues of the boundary value problems Dj, j = 1, 2, coincide with zeros
of their characteristic functions �j(λ) = Sj (π, λ), j = 1, 2, respectively, which,
according to Lemma 9, have the form

�1(λ) = sin λπ +
∫ π

0

(
v11(x) sin λx + v12(x) cos λx

)
dx, v1m(x) ∈ L2(0, π), m = 1, 2,

�2(λ) = − cosλπ +
∫ π

0

(
v21(x) sin λx + v22(x) cos λx

)
dx, v2m(x) ∈ L2(0, π), m = 1, 2,

where

vlm(x) = (−1)m+1Klm(π, x). (59)

The following lemma reveals a connection between the characteristic functions
�1(λ) and �2(λ).

Lemma 10 The following interrelations of the functions vlm(x) hold:

x(v11 + v22)(x) ∈ W 1
2 [0, π], x(v12 − v21)(x) ∈ W 1

2 [0, π]. (60)
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The proof of Lemma 10 is based on the following representations, which were
obtained as a result of further analysis of the transformation operator kernels (see
[38]):

(v11 + v22)(x) = 1

2

∫ π−x

0
(M2 +M3)(t) dt +

∞∑
n=2

mn∑
j=1

n−1∑
k=0

A
(1)
njkgk(x)

(
Qnj [M] ∗ gn−1−k

)
(π − x),

(61)

(v12 − v21)(x) = 1

2

∫ π−x

0
(M1 −M4)(t) dt +

∞∑
n=2

mn∑
j=1

n−1∑
k=0

A
(2)
njkgk(x)

(
Qnj [M] ∗ gn−1−k

)
(π − x),

(62)

where it is important that the summation index k does not exceed n− 1.Moreover,
(57) implies

mn∑
j=1

n−1∑
k=0

|A(1)njk| ≤ S11
n +S22

n ≤ C4n,
mn∑
j=1

n−1∑
k=0

|A(2)njk| ≤ S12
n +S21

n ≤ C4n, n ≥ 2.

(63)

5.4 The Main Equation

By virtue of (56), (58) and (59), we get the representations

v11(x) = −x
2
(M2 −M3)(π − x)+ u11(x),

v12(x) = −x
2
(M1 +M4)(π − x)+ 1

2

∫ π−x

0
(M1 −M4)(t) dt − u12(x),

v21(x) = −x
2
(M1 +M4)(π − x)+ u21(x),

v22(x) = x

2
(M2 −M3)(π − x)+ 1

2

∫ π−x

0
(M2 +M3)(t) dt − u22(x),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(64)

where

ulm(x) =
∞∑
n=2

mn∑
j=1

n∑
k=0

almnjkgk(x)
(
Qnj [M]∗gn−1−k

)
(π−x), l,m = 1, 2. (65)
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Denote

w1(x) := −v21(π − x)− (π − x)(v12 − v21)
′(π − x),

w2(x) := −v11(π − x)− (π − x)(v11 + v22)
′(π − x),

w3(x) := v11(π − x)− (π − x)(v11 + v22)
′(π − x),

w4(x) := −v21(π − x)+ (π − x)(v12 − v21)
′(π − x).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(66)

We note that, according to Lemma 10, the derivatives in (66) exist and wν(x) ∈
L2(0, π), ν = 1, 4.Moreover, by virtue of (61) and (62), we have

(v11 + v22)(π) = (v12 − v21)(π) = 0, (67)

which gives the bijectivity of (66). In other words, the following assertion holds.

Lemma 11 For arbitrary functions wν(x) ∈ L2(0, π), ν = 1, 4, the system (66)
has a unique solution vjk(x) ∈ L2(0, π), j, k = 1, 2, satisfying (60) and (67).

By virtue of (61), (62), (64)–(66) and Proposition 3, we have

wν(x) = (π − x)Mν(x)+
∞∑
n=2

mn∑
j=1

n∑
k=1

b
(ν)
njkgk(π − x)

(
Qnj [M] ∗ gn−1−k

)
(x), ν = 1, 4,

(68)

where b(ν)nj are constant coefficients, which, according to (57) and (63), satisfy the
estimates

mn∑
j=1

n∑
k=1

|b(ν)njk| ≤ Cn4n, n ≥ 2, ν = 1, 4.

The relations in (68) can be considered as a system of nonlinear integral equations
with respect to the functions Mν(x), ν = 1, 4, which is called main nonlinear
vectorial integral equation (or the main equation) of Inverse Problem 4. The
following theorem gives global solvability of the main equation (see [38]).

Theorem 12 For any functions wν(x) ∈ L2(0, π), ν = 1, 4, the main Eq. (68) has
a unique solution (Mν(x))T

ν=1,4
obeying (π − x)Mν(x) ∈ L2(0, π), ν = 1, 4.

Note that existence of a unique locally square-integrable solution of (68), i.e. the
vector-function (Mν(x))T

ν=1,4
, which belongs to (L2(0, b))4 for all b ∈ (0, π), can

be obtained as a corollary from Theorem 3 in [48]. Afterwards, the belonging to the
class (π − x)Mν(x) ∈ L2(0, π), ν = 1, 4, can be proved developing the trick used
in part (i) of the proof of Theorem 7 above (see also [38]).

Theorem 12 plays a central role in the proof of Theorem 10 as well as
in justification of the constructive procedure for solving the inverse problem.
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However, for the proof of Theorem 11 one needs a more deep analysis of both the
transformation operator kernels and the main equation (for more details see [38]).

Acknowledgement This work was supported by Grant 17-11-01193 of the Russian Science
Foundation.
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Expansion in Terms of Appropriate
Functions and Transmutations

Ahmed Fitouhi and Wafa Binous

Abstract This work presents and summarizes the main steps of the work of Fitouhi
et al. on the expansions in series of appropriate functions, namely the Bessel
functions of the first kind for second-order differential Bessel perturbed operators.
By changing functions or variables we can reduce the operators associated with
certain polynomials and special functions to the operators considered like the Jacobi
polynomials and the Whittaker functions. Taking into account that the principal part
of these operators is closely related to the function of Bessel and that these latter
verify recursive relations, we show that their eigenfunctions can be developed in
series of Bessel functions which induce two integral representations of Mehler and
Sonine type.

1 Introduction

This work presents and summarizes the main steps of the work of Fitouhi et al.
on the expansions in series of appropriate functions, namely the Bessel functions
of the first kind for second-order differential Bessel perturbed operators. By
changing functions or variables we can reduce the operators associated with certain
polynomials and special functions to the operators considered like the Jacobi
polynomials and the Whittaker functions. Taking into account that the principal
part of these operators is closely related to the function of Bessel and that these
latter verify recursive relations, we show that their eigenfunctions can be developed
in series of Bessel functions which induce two integral representations of Mehler
and Sonine type. These representations suggest to define transmutation operators
with the second derivative operator for the first one and with the Bessel operator
for the second. This new approach is different from that studied by Levitan,
Marchenko, Sitnik, and many other authors. It allows in particular to give a series
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development of the kernels of the transmutation operator and its inverse. In the
same direction, further work on the expansion in polynomials of Laguerre and
Gegenbauer concerning the perturbed operators with discrete spectrum operators
has been the subject of other works but the study of related transmutations do not
make up to day.

Finally we would like to thank M.M. Hamza and H. Chebli for their collaboration
for establishing some result at the beginning.

2 Presentation of the Class of the Operators and Expansion

On the interval (0,∞) we consider the class of second-order singular differential
equations given for λ complex and q(x) a suitable function by

(A) : u′′(x)−
(α2 − 1/4

x2
+ λ2 + q(x)

)
u(x) = 0, α > −1/2.

This class contains many differential equations related to special polynomials
and functions of Legendre, Gegenbauer, Jacobi, Whittaker, . . . type. We note in
particular that the radial parts of the Laplace Beltrami operator in the riemanann
symmetric space of rank one is included in this class. More precisely, we find after
change of function that the following operators

1

x2α+1C(x)

[
x2α+1C(x)u′(x)

]′ − (λ2 + q(x))u(x) = 0.

The principal part of the operators (A) (q(x) = 0) suggests that it is natural to seek
a solution Vλ(x) of the operator (A) satisfying

2α(α + 1)Vλ(x) ∼ xα+1/2, x → 0+

in a formal series, of the form:

(B) : Vλ(x) =
+∞∑
p=0

Ap
√
x
Jα+p(λx)
λα+p

where Jα(x) denotes the Bessel function of first kind of index α. We recall that√
xJα(λ) is a solution of the equation:

u′′(x) =
(α2 − 1/4

x2 − λ2
)
u(x)
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and that the function Jα(x) satisfy the recurrence relations:

Jα+1(x)+ Jα−1(x) = 2α

x
Jα(x),

Jα+1(x)− Jα−1(x) = 2J ′
α(x).

Putting Lα the operator defined by

Lαu = u′′ − α2 − 1/4

x
u.

After computation and using the previous relations, we discover that the series (B)
is to be a formal solutions this implies that the coefficients Ap(x) must satisfy the
following relations.

A′
0(x) = 0

A′
p+1(x) = A′′

p(x)+
1 − (α + p)

x
A′
p(x)+

(p(p + 2α)

x2 + q(x)
)
Ap(x).

If we put Ap(x) = xpBp(x), we obtain that:

Bp+1(x) = − 1

2xp+1

∫ x

0
tp
(
B ′′
p(t)+

1 − 2α

t
B ′
p(t)+ q(t)Bp(t)

)
dt, if x �= 0.

and

Bp+1(0) = − 1

2(1 − α) {B
′′
p(0)+ q(0)Bp(0)}.

Hence the functions Bp(x) are even and entire functions as the nature of q(x).
For precision and detail of computation, we invite the interest reader to refer to

[1] and [4].
Thus we have the formal solution

Vλ(x) =
+∞∑
p=0

xpBp

√
xJα+p(x)
λα+p

where Bp(x) are defined above.
A crucial problem is to study the convergence of this serie.To show that we use

the technic of complex variable. We prove that if q(z) is assumed to be holomorphic
in the disc D(0, 2R) = {z ∈ C, |z| < 2R} the series converges uniformly on every
subinterval of (0, (1 + |1 − 2α|)−1/2R/e). This is achieved owing the following
lemma which derive immediately from Cauchy formula.
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Lemma 1 Let f be a holomorphic function on a bounded domain D2 and D1 a
sub-domain in D2 such that d = inf{|z1 − z|; z1 ∈ D1; z /∈ D2} is positive, then

|f ′′|D1 ≤ 2

d
|f |D2,

where |u|D = sup{|u(z)|; z ∈ D}.
Now we are in situation to state the main result.

Theorem 1 Suppose that q(z) is an even holomorphic function on C.Then the
series

Vλ(x) =
+∞∑
k=0

xkBk(x)
√
x
Jα+k(x)
λα+k

converges on (0,∞), uniformly on every compact subinterval of (0,∞).
Proof We give here the principal step of proof. We begin by applying the previous
Lemma in taking f = Bk+1, D2 = D(0, (1 + 1/k)R) and D1 = (0, R), then we
establish an inequality involving Bk . We reapplying for f = Bk , D2 = D(0, (1 +
2/k)R) and D1 = (0, (1 + 1/k)R) and iterate the processus. Using the convexity
of the function xk , we find for some constant c that

|Bk+1|D(0,R) ≤ 1

2(k + 1)!
[
2kck

k2k

R2k +Mk
]
|B1|D(0,2R).

The estimation

Jα+k+1(λx)

λα+k+1
≤ |x|α+ke|λx|

2α+k+1(α + k + 1)

gives an entire series with big radius of convergence see [1] for more detail.

3 Integral Representations

Bessel functions have the integral representations respectively of Mehler and Sonine
type:

√
xJν(λx) = λν

2ν−1
√
π(ν + 1/2)

∫ x

0
(x2 − u2)ν−1/2 cos(λν)du, ν > −1/2;

xν+kJν+k(λx) = λk

2k−1(k)

∫ x

0
uν+1(x2 − u2)k−1Jν(λu)du, k ≥ 1.
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From these representations with the previous theorem, we have following result.

Theorem 2 The solution Vλ(x) has:

1. the Mehler type integral representation:

Vλ(x) =
∫ x

0
M(x, u) cos(λu)du,

where

M(x, u) = (x2 − u2)α−1/2
+∞∑

0

xkBk(x)√
π2α+k−1(α + k − 1/2)

(x2 − u2)k.

2. the Sonine integral representation:

Vλ(x) = √
x
Jα(λx)

λα
+

∫ x

0
S(x, u)

√
u
Jα(λu)

λα
,

where

S(x, u) = uα+1/2

xα−1/2

+∞∑
1

Bk(x)

2k−1(k)
(x2 − u2)k−1.

the functions Bk(x) being defined above and these representations hold in any
bounded interval of (0,∞).

These representations link the eigenfunctions Vλ(λx) of the operator A to
cos(λx) and Jα(λ) eigenfunctions of the second derivative operator and the Bessel
operator. So we can used it to built an operator which transmutes a perturbed Bessel
operator into these operators. Here we focus our attention on the Sonine integral
representation which is a good approach to transmute perturbed Bessel operators.

4 Transmutation

For α > −1/2, r(x) and s(x) two real entire functions, we consider two perturbed
differential Bessel operators Lr and Ls ,

Lr (u)(x) = u′′(x)+
(1/4 − α2

x2 + r(x)
)
u(x),

Ls(u)(x) = u′′(x)+
(1/4 − α2

x2 + s(x)
)
u(x),
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We look for an operator χ of the form:

(χf )(x) = f (x)+
∫ x

0
K(x, u)f (u)du,

such that

χLr = Lsχ

on suitable space of functions.
When you make computation as those treated by some authors in this field, it is seen
that to built a such transmutation operator it suffices that the kernel satisfies:

d

dx
K(x, x) = −1

2
(s(x)− r(x)),

LruK(x, u) = LsxK(x, u),

lim
u→0+

uα−1/2K(x, u) = 0.

Hence

K(x, x) = −1

2

∫ x

0
(s(t) − r(t))dt.

The expression and the definition of the operator χ suggest that we seek the
kernelK(x, u) of the form:

K(x, u) =
∞∑
1

gk(x,u)

2k−1(k)
(x2 − u2)k−1.

The kernel satisfies the hyperbolic equation, simple computation shows that the
functions gk(x, u) must satisfy:

(Ls − Lr)gk(x,u) = −2
(
x
∂gk+1(x, u)

∂x
+ u∂gk+1(x, u)

∂u
+ (k + 1)gk+1(x, u)

)

we are in situation to state

Theorem 3

1. The operator χ1 defined on the space of even entire functions by

χ1(f )(x) = f (x)+
∫ x

0
S(x, u)f (u)du
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Where

S(x, u) = uα+1/2

xα−1/2

+∞∑
1

Bk(x)

2k−1(k)
(x2 − u2)k−1

verifies Lqχ1 = L0χ1
2. The operator χ2 defined on the space of even entire functions by

χ2(f )(x) = f (x)+
∫ x

0
H(x, u)(u)du.

where

H(x, u) = −S(u, x)

verifies L0χ2 = χ2L
q .

To show (1) we use the previous theorem in putting gk(x, u) = uα+1

xα−1/2 ck(x) we
discover that the functions ck(x)satisfy the same recursive relations than Bk(x).

to show (2) we proceed with the same manner in putting gk(x, u) = ( xα+1/2

uα−1/2 dk(u).
Now consider the operators

Lαu = u′′ + 2α + 1

x
u′

and

Lu = Lαu+ q(x)

the function q(x) is given even entire. Let us denote by χ and χ̃ the following
operators

χ(f )(x) = f (x)

2α(α + 1)
+ 1

2α(α + 1)

∫ x

0
s(x, u)f (u)u2α+1du,

where

s(x, u) = x−2α
∞∑
1

Bk(x)

2k−1(k)
(x2 − u2)k−1,

and

χ̃(f )(x) = f (x)+
∫ x

0
h(x, u)f (x)u2α+1du,
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where

h(x, u) = u−2α
∞∑
1

(−1)kBk(u)

2k−1(k)
(x2 − u2)k−1.

By change of function and the above theorem, we have

Lχ = χLα, and χ̃L = Lαχ̃.

Now using the well known Riemann-Liouville integral transform which transmute
Lα and the second derivative operator one can prove:

Proposition 1 the operators χ and χ̃ are isomorphism of the space of C∞ functions
and are inverse:

χ−1 = χ̃ .

Estimation on the Kernel s(x, u)
To look for an estimation of the kernel s(x, u), we first refer to the work of M.
Coz and V. Coudray [2] who study the link between some kernel operator and
his perturbed, second with the aid the Riemann method via the Guelfand-Levitan
domain, we find that

Proposition 2 The kernel associated to the transmutation operatorχ satisfies

(xu)α+1/2s(x, u) ≤ 1

2

∫ x+u
2

0
|q(t)|dt exp(

∫ x

0
t|q(t)|dt).

For deep study we invite the reader to consult the work of the authors [1, 3–6].

5 Some Applications

We return to the operator L and we impose following assumptions on the functions
A(x) = x2α+1C(x):
A(x) is increasing, A′/A(x) is decreasing et tends to 0 at infinity.

Many authors defined a generalized Fourier transform for f a C∞ even function
of compact support by

F(f )(λ) =
∫ ∞

0
f (x)φ(λ, x)x2α+1C(x)dx, λ ∈ C

where φ(λ, x) is the eigenfunctions of the operator L.



Expansion in Terms of Appropriate Functions and Transmutations 377

This integral transform is an isometry between L2((0,∞), A(x)dx) and
L2((0,∞), λ2α+1|c(λ)|dλ) where c(λ) is the Harich-Sandra function related to
the operator L.The generalized Fourier inverse is given by

F−1(f )(λ) =
∫ ∞

0
F(λ)φ(λ, x)λ2α+1|c(λ|2dλ).

One can proof that

χ(f )(x) = F−1(λ2α+0|c(λ)|2(Fb)(λ))(x),

where Fb is the Bessel transform associated with the Bessel operator the case
A(x) = x2α+1.
From the properties of the transformations F and Fb we deduce some properties
related to the transmutation operator χ in particular

||χ(f )||L2
(A(x)dx)

� ||f ||L2(x2α+1)

N being constant.
Finally, on the space of even C∞ functions of compact support, we define the

transposed operator χ by

χ(f )(x) = √
C(x)f (x)+

∫ ∞

0

√
C(u)s(u, x)f (u)u2α+1du.

one can show that

F = Fbχ.

We have used essentially the paper of the first author and all published in Journal
of Mathematical Analysis and Applications Vol. 181. No. 3. 1994. The readers must
consult the references therein.
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Transmutation Operators as a Solvability
Concept of Abstract Singular Equations

A. V. Glushak

Abstract One of the methods of studying differential equations is the transmutation
operators method. Detailed study of the theory of transmutation operators with
applications may be found in the literature. Application of transmutation operators
establishes many important results for different classes of differential equations
including singular equations with Bessel operator. In this paper transmutation
operators are used in more general case when in Euler–Poisson–Darboux equation
as the space-variable Laplace operator is replaced by some abstract operator acting
in Banach space. Also some other abstract singular equations are studied by this
method.

1 Introduction

One of the method of studying to differential equations is transmutation operators
method. Detailed study of the theory of transmutation operators with applications
may be found in [1, 2]. Application of transmutation operators establishes many
important results for different classes of differential equations including singular
differential equations with Bessel operator

Bk = d2

dt2
+ k

t

d

dt
, k ∈ R.

For example, singular PDE named Euler–Poisson–Darboux equation (EPD) has the
form

∂2u(t, x)

∂t2
+ k

t

∂u(t, x)

∂t
= �u(t, x), k > 0, x ∈ R
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where � is the space-variable Laplace operator. In the paper [3] singular EPD was
leading to a simpler wave equation (with k = 0) using the appropriate transmutation
operator. In this case, the formulas for the solution are written using spherical means
acting by spatial variables.

In this paper transmutation operators are used in more general case when in EPD
equation the space-variable Laplace operator is replaced by some abstract operator
acting in Banach space. Also some other abstract singular equations will be studied
by this method.

In the future we will assume thatA is a closed operator in a Banach space E with
a dense in E domainD(A).

2 Euler–Poisson–Darboux Equation: Bessel Operator
Function

Consider the Euler–Poisson–Darboux equation expressed as follows:

u′′(t)+ k

t
u′(t) = Au(t), t > 0 (1)

for k > 0 in Banach space E.
As we will see further the correct initial condition for the EPD equation (1) are

u(0) = u0, u′(0) = 0. (2)

Wherein, if k ≥ 1 then the initial condition u′(0) = 0 is not needed that is usual
situation for some equations with a singularity in the coefficients at t = 0.

Correct choice of initial conditions depending on the parameter k ∈ R and
solution to the problem (1)–(2) when A is space-variable Laplace operator is given
in Chapter 1 in [3]. Next results on the theory of singular equations in partial
derivatives can be found, for example, in the papers [4–10] and their bibliography.

The problem (1)–(2) for k = 0 studied in details in [11–13]. In these papers
the fact that the problem (1)–(2) is uniformly correct only if the operator A is
the generator of the cosine operator function (COF) C(t) was established. For
terminology, see [11–14]. In the same papers, necessary and sufficient conditions
that the operator A is a generator COF are given. These conditions are formulated
in terms of the estimation of the norm of the resolvent R(λ) = (λI − A)−1 and its
derivatives of the operator A

As for abstract EPD equation (1), then is was studied in [15], in Chapter 1 in
[16, 17] under various assumptions about the operatorA.

The Cauchy problem (1)–(2) was studied in [18], in which the necessary and
sufficient solvability conditions are formulated in terms of the estimation of the
norm of the resolventR(λ) and its weighted derivatives. In the present paper, unlike
in [18], we give the necessary and sufficient condition for operator A is formulated
in terms of the fractional degree of the resolvent and its non-weight derivatives as in
the case k = 0.
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Denote by Cn(I,E0) a space of n times strongly continuously differentiable for
t ∈ I functions with values in E0 ⊂ E. Let L(E) is the space of linear bounded
operators.

Definition 1 A solution of Eq. (1) is a function u(t) that is twice strongly continu-
ously differentiable for t ≥ 0 which takes values belonging toD(A) for t > 0. That
means u(t) ∈ C2(R̄+, E) ∩ C(R+,D(A)), and satisfies Eq. (1).

Definition 2 Problem (1)–(2) is called uniformly well posed if there exists a
commuting on D(A) with the A operator function Yk(·) : [0,∞) → L(E) and
numbersM ≥ 1, ω ≥ 0, such that for all u0 ∈ D(A) function Yk(t)u0 is its unique
solution and

‖Yk(t)‖ ≤ M exp(ωt), (3)

∥∥Y ′
k(t)u0

∥∥ ≤ Mt exp(ωt) ‖Au0‖ . (4)

Function Yk(t) is the Bessel operator function (OFB) of the problem (1)–(2) and
the set of operators for which the problem (1)–(2) is uniformly correct, denoted
by Gk . Moreover, G0 is the set of generators of the operator cosine function, and
Y0(t) = C(t).

In Definition 2 and throughout the following, we use the notation Y ′
k(t)u0 =

(Yk(t)u0)
′.

Theorem 1 ([19]) Let problem (1)–(2) be uniformly well posed for values of
parameter m ≥ 0 (A ∈ Gm). Then this problem is also uniformly well posed
fork > m ≥ 0 (A ∈ Gk ⊃ Gm). The corresponding Bessel operator function
Yk(t) has the form

Yk(t) = �k,mYm(t) = μk,m
1∫

0

sm(1 − s2)(k−m)/2−1Ym(ts) ds, (5)

μk,m = 2(k/2 + 1/2)

(m/2 + 1/2)(k/2 −m/2) ,

where (·) is the Euler gamma-function.
The equality (5) written on the initial element u0 is called the translation formula

by the parameter k for the solution of the Cauchy problem for Eq. (1).
The integral on the right side of Eq. (5) called the Poisson integral, and

�k,m is transmutation operator intertwining differential operators Bm and Bk
(for terminology see [1]). Operator �k,m is the particular case of Erdelyi–Kober
operator (see. [20]) preserving the initial conditions (2).

Note that in this paper we get along with the concept of an integral of a
continuous function, but if necessary, we can use the Bochner integral of a function
with a value in a Banach space.



382 A. V. Glushak

If operator A ∈ G0 is a COF generator C(t) then (see. [21]) uniformly by t ∈
[0, t0], t0 > 0 for u0 ∈ E. When k → 0 operator Pk,0 strongly converges to a
identity operator I and OFB Yk(t) strongly converges to a COF C(t):

lim
k→0

Yk(t)u0 = C(t)u0.

Let ρ(A) is resolvent operator set ofA,Kν(·) is Macdonald function or modified
Bessel function of the third kind of order ν.

Theorem 2 ([19]) If problem (1)–(2) is uniformly well posed and Re λ > ω, then
λ2 ∈ ρ(A) and the representation for resolvent of operator A

λ(1−k)/2R(λ2)x = 2(1−k)/2

(k/2 + 1/2)

∞∫

0

K(k−1)/2(λt)t
(k+1)/2Yk(t)x dt.

holds for each x ∈ E.

Theorem 3 ([19]) Let the problem (1)–(2) is uniformly well posed and Yk(t) is
OFB of this problem. Then the operator A is the generator of a C0—semigroup
T (t), and this semigroup admits the representation

T (t)x = 1

2k (k/2 + 1/2) tk/2+1/2

∞∫

0

sk exp

(
− s

2

4t

)
Yk(s)x ds, x ∈ E. (6)

The semigroup T (t) defined by the equality (6) can be extended to an operator
function that is analytic in some sector &ϕ and get the representation (see [22], p.
269)

T (z) = 1

2πi

∫

1
⋃
2

eλzR(λ) dλ,

where 1
⋃
2 is a contour consisting of rays λ = σ + ρ exp(−iϕ), 0 ≤ ρ < ∞

and λ = σ + ρ exp(iϕ), 0 ≤ ρ < ∞, σ ≥ ω0,
π

2
< ϕ <

π

2
+ arcsin

1

M0(k)
.

Therefore, to find a criterion for the uniform well-posedness of problem (1)–(2) one
can restrict considerations to the class of operators that are generators of analytic
C0–semigroups T (t). We denote this class of operators by G. In [23] can be found
that if A ∈ G then for Re λ > ω and for α > 0 there exists a fractional degree of
the resolvent R(λ) which has the form

Rα(λ)x = 1

(α)

∞∫

0

tα−1 exp(−λt)T (t)x dt, x ∈ E.
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A necessary condition for the uniform well-posedness of problem (1)–(2) is
obtained in the following assertion.

Theorem 4 ([19]) If problem (1)–(2) is uniformly well posed and Re λ > ω, then
λ2 belongs to the resolvent set ρ(A) of the operator A, and the fractional power of
the resolvent admits the representation

R1+k/2(λ2) = 1

(k + 1) λ

∞∫

0

tk exp(−λt)Yk(t) dt

in addition,

∥∥∥∥ d
n

dλn

(
λR1+k/2 (λ2

))∥∥∥∥ ≤ M (k + n+ 1)

(Re λ− ω)k+n+1 , n = 0, 1, 2, . . . (7)

In fact the estimates (7) are sufficient for the uniform well-posedness of problem
(1)–(2).

Theorem 5 (Criterion of the Uniform Well-Posedness [19]) Let A ∈ G is a
generator of an analytic C0–semigroup. For the problem (1)–(2) to be uniformly
well posed it is necessary and sufficient that for some constantsM ≥ 1, ω ≥ 0 the
number λ2 with Re λ > ω belonged to the resolvent set of the operator A and for
the fractional degree of the resolvent of the A operator estimates (7) were correct.

Example 1 Let m > 0 and E = L2
xm(0,∞) is a Hilbert space of complex-valued

functions v(x), x ∈ (0,∞), squared integrable with the weight xm and with the
norm

‖v(x)‖2 =
∫ ∞

0
xm |v(x)|2 dx.

Consider presented into[24] set of the form

S =
{
v(x) ∈ C∞(−∞,∞), v(−x) = v(x),

∣∣∣v(n)(x)
∣∣∣ ≤ Mn

(1 + x2)N

}
,

where n ≥ 0, N ≥ 0 are arbitrary integers,Mn are constants independent of x, and
operator A is Bessel operator

A = d2

dx2 + m

x

d

dx

on functions from the set S considering on [0,∞). Obviously,D(A) = L2
xm(0,∞)

and operator A is a symmetric upper semibounded operator, i.e. (Av, v) ≤ 0. By
the Friedrichs theorem, its closure A is a selfadjoint operator.
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Following [24, 25], we define the Fourier–Bessel transform on functions in S by
the formulas

v̂(s) =
∫ ∞

0
x2p+1 jp(sx) v(x) dx,

v(x) = γp
∫ ∞

0
s2p+1 jp(sx) v̂(s) ds,

m = 2p + 1, γp = 1

22p 2(p + 1)
, jp(x) = 2p (p + 1)

xp
Jp(x),

where Jp(x) is the Bessel function. The set S is invariant under the one-to-one
Fourier–Bessel transform.

For Re λ > 0, the operator A has the resolvent R(λ) defined by the formula

R(λ)v(x) = γp
∫ ∞

0

s2p+1

s2 + λ jp(sx) v̂(s) ds, v(x) ∈ L2
x2p+1(0,∞),

and, by virtue of the Parseval relation, the following estimate holds:

‖R(λ)v(x)‖2 = γ 2
p

∫ ∞
0
s2p+1 |v̂(s)|2

|s2 + λ|2 ds ≤ γ 2
p

|λ|2 ‖v̂(s))‖2 = γ 2
p

|λ|2 ‖v(x))‖2, Re λ > 0.

Consequently, the operator A ∈ G, i.e., it is the generator of an analytic semigroup,
which admits the representation

T2p+1(t)v(x)= 1

2πi

∫ ω+i∞

ω−i∞
eλtR(λ)v(x) dλ= γp

2πi

∫ ω+i∞

ω−i∞
eλt

(∫ ∞

0

s2p+1

s2 + λjp(sx)v̂(s) ds
)
dλ =

= γp
∫ ∞

0
s2p+1jp(sx)v̂(s)

(
1

2πi

∫ ω+i∞

ω−i∞
eλt

s2 + λ dλ
)
ds = γp

∫ ∞

0
exp(−s2t)s2p+1jp(sx)v̂(s) ds=

= γ 2
p

∫ ∞

0
exp(−s2t)s2p+1jp(sx)

(∫ ∞

0
τ 2p+1jp(sτ )v(τ ) dτ

)
ds =

= 1

xp

∫ ∞

0
τp+1v(τ)

(∫ ∞

0
s exp(−s2t)Jp(sx)Jp(sτ ) ds

)
dτ =

= 1

2t xp

∫ ∞

0
τp+1 exp

(
−x

2 + τ 2

4t

)
Ip

(xτ
2t

)
v(τ ) dτ, (8)

here we have used the integral 2.12.39.3 [26], where Ip(·) is the modified Bessel
function.
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Let us show that the resolvent of the operator A satisfies the estimates (7). By
using relation (8) we obtain

R1+k/2(λ2)v(x) = 1

(k/2 + 1)

∫ ∞

0
tk/2 exp(−λ2t)T2p+1(t)v(x) dt =

= γp

(k/2 + 1)

∫ ∞

0
tk/2 exp(−λ2t)

∫ ∞

0
exp(−s2t)s2p+1jp(sx)v̂(s) dsdt =

= γp
∫ ∞

0

s2p+1

(s2 + λ2)1+k/2 jp(sx)v̂(s) ds, v(x) ∈ L2
x2p+1(0,∞).

Next, by virtue of the Parseval relation, the representation

∥∥∥∥ d
n

dλn

(
λR1+k/2 (λ2

))
v(x)

∥∥∥∥
2

= γ 2
p

∫ ∞

0
s2p+1

∣∣∣∣ d
n

dλn

(
λ

(s2 + λ2)1+k/2

)∣∣∣∣
2

|v̂(s)|2 ds
(9)

holds for Re λ > 0.
By differentiating the relation (see [26] 2.12.8.4)

λ

(s2 + λ2)1+k/2 =
√
π

2(2s)(k−1)/2(k/2 + 1)

∫ ∞

0
t(k+1)/2e−λtJ(k−1)/2(ts) dt,

with respect to λ, we obtain

dn

dλn

(
λ

(s2 + λ2)1+k/2

)
= (−1)n

√
π

2(2s)(k−1)/2(k/2 + 1)

∫ ∞

0
t (k+1)/2+ne−λtJ(k−1)/2(ts) dt.

(10)

By taking into account relation (10), from the representation (9) we obtain the
estimate

∥∥∥∥ d
n

dλn

(
λR1+k/2 (λ2

))
v(x)

∥∥∥∥
2

≤ π γ 2
p

2k+1 2(k/2 + 1)
×

×
∫ ∞

0
s2p−k+2

∣∣∣∣
∫ ∞

0
t(k+1)/2+ne−λtJ(k−1)/2(ts) dt

∣∣∣∣
2

|v̂(s)|2 ds =

= π γ 2
p

2k+1 2(k/2 + 1)

∫ ∞

0
s2p−2k−2n−1

∣∣∣∣
∫ ∞

0
τ k+ne−λt/sτ (1−k)/2J(k−1)/2(τ ) dτ

∣∣∣∣
2

|v̂(s)|2 ds ≤
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≤ M0 π γ
2
p

2k+1 2(k/2 + 1)

∫ ∞

0
s2p−2k−2n−1

∣∣∣∣
∫ ∞

0
τ k+ne−λt/s dτ

∣∣∣∣
2

|v̂(s)|2 ds ≤

≤ M1 
2(k + n+ 1)

(Re λ)2(k+n+1) ‖v(x)‖2, n = 0, 1, 2, . . .

Therefore, the estimates (7) hold. Theorem 5 is true for the considered operator
A, and A ∈ Gk for each k ≥ 0. In particular, A ∈ G0 and the corresponding cosine
operator function has the form

C(t)v(x) = 1

2πi

∫ σ−i∞

σ−i∞
eλt λ R(λ2)v(x) dλ =

= γp

2πi

∫ σ+i∞
σ−i∞

λeλt
∫ ∞

0

s2p+1

s2 + λ2
jp(sx)v̂(s) dsdλ = γp

∫ ∞
0
s2p+1jp(sx) cos st v̂(s) ds.

for σ > 0
It is convenient to use relation (5) to find the function Yk(t). For k > 0, we have

the representation

Yk(t)v(x) = 2

B(1/2, k/2)

∫ 1

0
(1 − τ 2)k/2−1C(tτ )v(x) dτ =

= 2

B(1/2, k/2)

∫ 1

0
(1 − τ 2)k/2−1γp

∫ ∞

0
s2p+1jp(sx) cos stτ v̂(s) dsdτ =

= γp
∫ ∞

0
s2p+1jp(sx) j(k−1)/2(st) v̂(s) ds.

Example 2 Let m > 0 and let E = L2
xm

(
R+

2

)
be the Hilbert space of complex-

valued functions v(x, y), (x, y) ∈ R+
2 that are square integrable with weight xm

and with the norm

‖v(x, y)‖2 =
∫ ∞

−∞

∫ ∞

0
xm |v(x, y)|2 dxdy.

Consider the set

S2 =
{
v(x, y) ∈ C∞ (R2) , v(−x, y) = v(x, y),

∣∣∣∣ ∂
n

∂xn

∂j

∂yj
v(x, y)

∣∣∣∣ ≤ Mn,j

(1 + x2 + y2)N

}
,
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where n, j ≥ 0, N ≥ 0 are arbitrary integers and the Mn,j are constants
independent of x, y, and define the operator A by the differential expression

A = ∂2

∂x2 + m

x

∂

dx
+ ∂2

∂y2

on functions in the set S2 considered on R+
2 . Obviously, D(A) = L2

xm

(
R+

2

)
and

A is a symmetric upper semibounded operator; i.e., (Av, v) ≤ 0. By the Friedrichs
theorem, its closure A is a selfadjoint operator.

In addition to the Fourier–Bessel transform on functions in the set S2, we define
the Fourier transform (with respect to the variable y) by the formulas

w̃(x, ξ) = 1√
2π

∫ ∞

−∞
e−iξy w(x, y) dy, w(x, y) = 1√

2π

∫ ∞

−∞
eiξy w̃(x, ξ) dξ.

The Fourier–Bessel and Fourier transforms are one-to-one mappings of S2 onto
S2. For Re λ > 0, the operator A has the resolvent R(λ) defined by the formula

R(λ)v(x, y) = γp√
2π

∫ ∞

−∞

∫ ∞

0
eiξy

s2p+1

s2 + ξ2 + λ jp(xs)
˜̂v(s, ξ) dsdξ,

in addition, by virtue of the Parseval relation, we have the estimate

‖R(λ)v(x, y)‖2 ≤ γ 2
p

|λ|2 ‖v(x, y)‖2, Re λ > 0.

Consequently, the operator A ∈ G, i.e., it is the generator of the analytic
semigroup

T2p+1(t)v(x, y) = γp

2π

∫ ∞

−∞

∫ ∞

0
exp(−s2t − ξ2t + iξy) s2p+1 jp(sx) ˜̂v(s, ξ) dsdξ =

= 1

4π
√

2 t
√
t xp

∫ ∞

0
τp+1 exp

(
−x

2 + τ 2

4t

)
Ip

(xτ
2t

) ∫ ∞

−∞
exp

(
− (η − y)2

4t

)
v(τ, η) dηdτ.

By analogy with Example 1, one can prove the estimates

∥∥∥∥ d
n

dλn

(
λR1+k/2 (λ2

))
v(x)

∥∥∥∥
2

≤ M1 
2(k + n+ 1)

(Re λ)2(k+n+1)
‖v(x)‖2, n = 0, 1, 2, . . . ,
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and consequently,A ∈ Gk for any k ≥ 0, in addition,

C(t)v(x, y) = γp√
2π

∫ ∞

−∞

∫ ∞

0
eiξys2p+1jp(sx) cos

(
t

√
s2 + ξ2

)
˜̂v(s, ξ) dsdξ,

Yk(t)v(x, y) = γp√
2π

∫ ∞

−∞

∫ ∞

0
eiξys2p+1jp(sx) j(k−1)/2

(
t

√
s2 + ξ 2

)
˜̂v(s, ξ ) dsdξ.

Example 3 Let E = L∞(0,∞) is a space of measurable functions v(x) of variable
x ∈ (0,∞) with norm ‖v(x)‖ = ess sup

(0,∞)
|v(x)|.

Operator A is the Bessel differential expression for m = 2 on considered on
the semiaxis [0,∞) even functions v(x) from L∞(−∞,∞) such that v′′(x) +
2/x v′(x) ∈ E. Then A is closed operator with a dense domain of definition and
the problem

∂2u

∂t2
+ 2

t

∂u

∂t
= ∂2u

∂x2
+ 2

x

∂u

∂x
, t, x > 0, u(0, x) = v(x), ∂u(0, x)

∂t
= 0

has the unique solution of the form

u(t, x) = T tx v(x) = 1

2

∫ π

0
v

(√
x2 + t2 − 2xt cosϕ

)
sin ϕ dϕ.

Function u(t, x) for each t ≥ 0 belongs to E and estimates (3), (4) with ω = 0
are valid. Therefore, A ∈ G2. We show that the operator A is not a generator COF,
i.e. A /∈ G0. Indeed, the unique solution to the problem

∂2u

∂t2
= ∂2u

∂x2 + 2

x

∂u

∂x
, t, x > 0, u(0, x) = v(x) ∈ D(A), ∂u(0, x)

∂t
= 0

is

u(t, x) = (x + t)v(x + t)+ (x − t)v(x − t)
2x

= v(x + t)+ v(x − t)
2

+ t

2x

∫ t+x

t−x
v′(s) ds.

(11)

Obviously for defined by equality (11) function u(t) evaluation (3) for k = ω = 0
is not valid and, therefore,A /∈ G0. Based on this example, it can be argued that the
statement is the opposite of Theorem 1 is, generally speaking, false, i.e. for k > 0
enclosureG0 ⊂ Gk is strict.
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Here are some more properties of OFB Yk(t). Let u0 ∈ D(A) then for OFB Yk(t)
the relations

Y ′
k(t)u0 = t

k + 1
Yk+2(t)Au0, lim

t→0
Y ′′
k (t)u0 = 1

k + 1
Au0,

Yk(t)Yk(s) = T ts Yk(s)

are valid. Here T ts is generalized translation corresponding to Eq. (1), defined by the
equality (see [25])

T ts H(s) = 1

B(k/2, 1/2)

∫ π

0
H

(√
s2 + t2 − 2st cosϕ

)
sink−1 ϕ dϕ.

Along with Eq. (1) form > 0 we consider the equation perturbed by the operator
coefficient B:

u′′(t)+ m

t
u′(t)+ Bu(t) = Au(t), t > 0. (12)

In [27] investigated the question of belonging of the operator A − B to the
correctness class Gm when A ∈ Gk and B ∈ L(E) is bounded operator and it
is established that A− B ∈ Gm, m ≥ k.
Theorem 6 ([27]) Let for some k > 0 A ∈ Gk , B is bounded operator, Yk(t;A)
and B commute. Then A− B ∈ Gm for anym ≥ k and

Yk(t;A− B) = Yk(t;A)+ (−1/2)N+1(k/2 + 1/2)t2B

(k/2 + 1)(N + 1/2)
×

×
1∫

0

s2N
(

1

s

d

ds

)N
(1−s2)k/2 1F2

(
1; k/2 + 1, 2; t2(s2 − 1)B/4

)
Y2N(ts;A) ds,

where N is the smallest integer such that 2N ≥ k, 1F2(α; β, γ ; ·) is generalized
hypergeometric function and Ym(t;A−B) form > k determined through Yk(t;A−
B) by the formula (5), written for the operator A− B.

If (−B) ∈ Gp, then ib [28] it is established that the closure of the operatorA−B
belongs to Gm, m ≥ k + p + 1.

Theorem 7 ([28]) Let for some k ≥ 0A ∈ Gk and (−B) ∈ Gm−k−1 form ≥ k+1,
Yk(t;A). Let operators Ym−k−1(t; −B) commute on D = D(A)

⋂
D(B), D = E.
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Then the closure of the operator A− B belongs to Gm and

Ym(t;A− B) = 2(m/2 + 1/2)

(k/2 + 1/2)(m/2 − k/2) ×

×
1∫

0

sk(1 − s2)(m−k)/2−1Ym−k−1

(
t
√

1 − s2; −B
)
Yk(ts;A) ds.

In the general case of the sum of n operators, the following theorem is
established.

Theorem 8 ([28]) Let Aj ∈ Gkj , kj ≥ 0, j = 1, . . . , n. If for i �= j Ai and

Aj commute on D =
n⋂
j=1
D(Aj ) and D = E, then operator closure A =

n∑
j=1
Aj

belongs to Gk for k = n− 1 +
n∑
j=1
kj and

Yk(t;A) = 2n−1(k/2 + 1/2)
n∏
j=1
(kj /2 + 1/2)

∫

	

n∏
j=1

y
kj
j Ykj (tyj ;Aj) dy,

where 	 = {|y| = 1, y1, . . . , yn ≥ 0}.
Theorem 3 established that OFB Yk(t;B), B ∈ Gk generates a semigroup

T (t;B), which allows us to solve the corresponding Dirichlet problem.

Theorem 9 ([29]) Let u0 ∈ D(B), in Eq. (12)A = 0 and operatorB is a generator
of a uniformly bounded C0-semigroup T (t;B). Then for m < 1 the function

u(t) = (t/2)1−m

(1/2 −m/2)
∞∫

0

sm/2−3/2 exp

(
− t

2

4s

)
T (s;B)u0 ds

is the unique limited solution to Eq. (12) for A = 0, satisfying to condition u(0) =
u0.

Weakening requirements for resolving operators of the Cauchy problem for
abstract differential equations of the first and second orders led (see [30–33]) to
the concept of an integrated semigroup and an integrated cosine operator function
(ICOF).

Lower bound of the resolvent R(λ2, A) of the operator A of the form

∥∥∥∥ d
n

dλn

(
λ1−αR(λ2, A)

)∥∥∥∥ ≤ M n!
(λ− ω)n+1 , λ > ω, n = 0, 1, . . .
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is the criterion for existence of the generator of ICOF Cα(t) (see, for example,
theorem 2.2.5 from [33]).

Let Pν(t) is the Legendre spherical function (see [25], p. 205). In papers [34],
[35] formulas that associate ICOF with a resolving operator Yk(t) of (1), (2) are
established and the following theorem is proved.

Theorem 10 Let k = 2α > 0 and operator A is a α-times generator ICOF
Cα(t), u0 ∈ D(A). Then the problem (1), (2) uniformly correct, i.e., A ∈ Gk , and
corresponding OFB has a form

Yk(t)u0 = 2α(α + 1/2)√
π tα

⎛
⎝Cα(t)u0 −

1∫

0

P ′
α−1(τ )Cα(tτ )u0 dτ

⎞
⎠ .

In the end of this section we note that if 0 < k < 1 then OFB Yk(t) can be used
to solve the weighted Cauchy problem for the EPD equation (1) with conditions

u(0) = u0, lim
t→0

tku′(t) = u1. (13)

For u0, u1 ∈ D(A) and A ∈ Gk ⊂ G2−k the unique solution to the Cauchy
problem (1)–(13) is (see [36])

u(t) = Yk(t)u0 + 1

1 − k t
1−kY2−k(t)u1.

3 Euler–Poisson–Darboux Equation: Bessel Operator
Function with Negative Index

In this section for EPD equation (1) for k < 0 we consider the initial problem

u(0) = 0, lim
t→0+ t

ku′(t) = u1, (14)

which, due to the presence of a factor in front of the derivative in the second initial
condition, will be called the weighted Cauchy problem.

Correct setting of initial conditions depending on the parameter k ∈ R for the
EPD equation (1) in the case when A is the Laplace operator with respect to spatial
variables is given in Ch. 1 of [3] and the initial conditions for the abstract EPD
equation are considered in [36]. We also note that for k < 0 Cauchy problem for
EPD equation (1) with conditions

u(0) = 0, u′(0) = u1

is not correct due to loss of uniqueness (see [37]).
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Definition 3 The problem (1), (14) is called uniformly correct if there exists a
commuting on D(A) with the A operator function Zk(·) : [0,∞) → B(E) and
numbersM ≥ 1, ω ≥ 0 such that for any u1 ∈ D(A) function Zk(t)u1 is its unique
solution and at the same time

‖Zk(t)‖ ≤M t1−k exp(ωt),

∥∥Z′
k(t)u1

∥∥ ≤ M t−k exp(ωt) (‖u1‖ + t‖Au1‖) .

Operator function Zk(t) for k < 0 we will call the Bessel operator function with
a negative index (OBFNI) of the problem (1), (14). Set of operators for which the
problem (1), (14) is uniformly correct we will denote by Hk. In addition, we denote
H0 = G2 and Z0(t) = tY2(t).

Here we present the main statements about OFBNI from the article [38], which
are analogues of the corresponding properties OFB.

Theorem 11 Let the problem (1), (14) is uniformly correct, i.e., A ∈ Hk and u1 ∈
D(A). Then this problem is uniformly correct and form < k ≤ 0, i.e., A ∈ Hm. The
corresponding Bessel operator function with a negative index Zm(t) has the form

Zm(t)u1 = μk,m tk−m
1∫

0

s(1 − s2)(k−m)/2−1 Zk(ts)u1 ds,

μk,m = 2(1 − k)
(1 −m) B(3/2 − k/2, k/2 −m/2) ,

where B(·, ·) is Euler beta-function.

Theorem 12 If the problem (1), (14) is uniformly correct and Re λ > ω, then λ2

belongs to the resolvent set ρ(A) and for any x ∈ E the representation

λ(k−1)/2R(λ2)x = 2(k−1)/2(1 − k)
(3/2 − k/2)

∞∫

0

Kν(λt)t
(k+1)/2Zk(t)x dt

is valid.

Theorem 13 Let the problem (1), (14) is uniformly correct and let Zk(t) is the
Bessel operator function with a negative index for this problem. Then operator A is
generator of C0-semigroups T (t) and for this semigroup, the representation

T (t)x = 1 − k
22−k (3/2 − k/2) t3/2−k/2

∞∫

0

s exp

(
− s

2

4t

)
Zk(s)x ds, x ∈ E

is valid.
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Theorem 14 If the problem (1), (14) is uniformly correct and Re λ > ω, then
λ2belongs to the resolvent set ρ(A) of the operator A and for the fractional degree
of the resolvent the representation

R2−k/2(λ2)x = 1 − k
(3 − k) λ

∞∫

0

t exp(−λt)Zk(t)x dt, x ∈ E

is valid. Also inequalities

∥∥∥∥ d
n

dλn

(
λR2−k/2 (λ2

))∥∥∥∥ ≤ M (n− k + 3)

(Re λ− ω)n−k+3
, n = 0, 1, 2, . . . (15)

are true.

Theorem 15 (Criterion for Uniform Correctness of the Weighted Cauchy Prob-
lem) Let operator A is a generator of the analytic C0–semigroup. In order to the
problem (1), (14) was uniformly correct, it is necessary and sufficient that for some
constantsM ≥ 1, ω ≥ 0 the number λ2 with Re λ > ω belonged to the resolvent
set of the operator A and for the fractional degree of the resolvent of the operator
A the estimates (15) were valid.

Theorem 16 Suppose that the conditions of Theorem 16 are satisfied, then for k ≤
0 the equality Hk = G2−k holds true and, moreover, Zk(t) = 1

1 − k t
1−kY2−k(t).

Note that examples of operators belonging to G2−k , and, therefore, and Hk , are
given in Sect. 2.

Theorem 17 Let α < 0 and the operator A a generator of 1 − α–timesintegrated
COF C1−α(t). Then A ∈ H2α, wherein the corresponding Bessel operator function
with a negative index Z2α(t) has the form

Z2α(t) = 21−α(3/2 − α)√
π(1 − 2α)tα

⎛
⎝C1−α(t)−

1∫

0

P ′−α(τ )C1−α(tτ ) dτ

⎞
⎠ .

If the operator A is a generator of (−α)–times integrated COF C−α(t), then

Z2α(t) = 2−α(1/2 − α)t1−α
√
π

1∫

0

P−α(τ )C−α(tτ ) dτ.
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4 The Bessel-Struve Equation: Operator Function Struve

In this section, for k > 0, we consider the equation

u′′(t)+ k

t

(
u′(t)− u′(0)

) = Au(t), t > 0, (16)

which, unlike Eq. (1), contains the value of the derivative of an unknown function at
the point t = 0.

Scalar equation of the form (16) is called the Bessel-Struve equation and it was
previously met in [39–42]. Equation (16), following to [43, 44], can also be called
a lightly loaded EPD equation. The growing interest in studying loaded differential
equations is explained by the expanding scope of their applications and the fact that
loaded equations constitute a special class of functional differential equations with
their own specific tasks. A review of publications on loaded differential equations
can be found in monographs [43, 44].

It is important to note that the presence in Eq. (16) given at t = 0 load changes
the formulation of the initial problem. In contrast to the weighted problem (1), (13)
for k > 0 we establish the well-posedness of the Cauchy problem

u(0) = u0, u′(0) = u1 (17)

for the Bessel-Struve equation (16) and we indicate the explicit form of the resolving
operator.

First, we make a remark about the point t = τ, τ ≥ 0, at which load value, i.e.
the value of an unknown function or its derivative entering the equation.

Let consider the equation

u′′(t)+ k

t
u′(t) = Au(t)+ B0u(τ), t > 0 (18)

with bounded operator B0 and A ∈ Gk .
For 0 < k < 1 solution to the problem (18), (2) satisfies equality (see [36])

u(t) = Yk(t)u0 + 1

1 − k

⎛
⎝t1−kY2−k(t)

t∫

0

skYk(s)B0u(τ ) ds − Yk(t)
t∫

0

sY2−k(s)B0u(τ ) ds

⎞
⎠ .

(19)

Putting in (19) t = τ in order to find u(τ) we get the equation

(I − (τ))u(τ ) = Yk(τ )u0, (20)
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where

 (τ) = B0

1 − k

⎛
⎝τ 1−kY2−k(τ )

τ∫

0

skYk(s) ds − Yk(τ )
τ∫

0

sY2−k(s) ds

⎞
⎠ .

In particular, if the inverse operator A−1 exists then  (τ) = B0(Yk(τ )− 1)A−1

(see [45]).
For sufficiently small τ , the norm of the bounded operator  (τ) satisfies the

inequality ‖ (τ)‖ < 1 and, therefore, from Eq. (20) can be determined

u(τ) = (I − (τ))−1Yk(τ )u0,

after which the solution to the problem (18), (2) found by the formula (19).
A similar situation arises if, in the EPD equation, instead of the load B0u(τ), a

load of the form B1u
′(τ ) or B2u

′′(τ ) is introduced.
The operator (I −  (τ))−1 in the formula (19) makes it difficult to find

explicit representations for the resolving operator of initial problems. Finding such
a representation is simplified if the equation contains a load at the point τ = 0, then
the problem with a given load is actually solved. Here are some examples.

Let consider two equations

u′′(t)+ k

t
u′(t) = A(u(t)− b0u(0)), t > 0 b0 �= 0, (21)

u′′(t)+ b2u
′′(0)+ k

t
u′(t) = Au(t), t > 0, b2 �= 0. (22)

It is easy to verify that for 0 ≤ k < 1, A ∈ Gk (note that if b0 = 1 or b2 = k+ 1,
then the condition on the operator A can be changed and require that A ∈ G2−k ⊃
Gk) the unique solution to the Cauchy weighted problem (21), (13) is

u(t) = (1 − b0)Yk(t)u0 + 1

1 − k t
1−kY2−k(t)u1 + b0u0

and the unique solution to the (22), (13) unloaded is

u(t) = k − b2 + 1

k + 1
Yk(t)u0 + 1

1 − k t
1−kY2−k(t)u1 + b2

k + 1
u0.

Also note that in the paper [21] an explicit formula for a solution to a Cauchy
problem for a weekly stressed Malmsteen equation was found in the form

u′′(t)+ k

t
u′(t)+ l

t2
(u(t)− u(0)) = Au(t), t > 0. (23)
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If A ∈ Gm for some m ≥ 0 and k > m, l ≤ (k − 1)2/4 then a function

u(t) = 2 (p + 1)(q + 1)


(
m+1

2

)

(
k−m

2

)
1∫

0

sk
(

1 − s2
)(k−m)/2−1

2F1

(
p, q; k −m

2
; 1 − s2

)
Ym(ts)u0 ds,

(24)

2F1 (p, q; r; z)—Gauss hypergeometric function, p, q—real roots of quadratic
equation

x2 + 1 − k
2
x + l

4
= 0, l ≤ (k − 1)2

4
,

is the unique solution of (23) satisfying conditions (2).
If p = (k −m)/2, q = (m− 1)/2, l = (k−m)(m− 1) ≤ (k− 1)2/4 then (24)

has a form

u(t) = (k −m)
1∫

0

s
(

1 − s2
)(k−m)/2−1

Ym(ts)u0 ds. (25)

More interesting is a problem of finding explicit solution to the Cauchy problem
(16), (17), which leads to a new notion of operator function—Struve operator
function. Let go to its introduction.

Consider the Cauchy problem (16), (17) in case u0 = 0.

Theorem 18 ([46]) Let u0 = 0, u1 ∈ D(A), k = 2α > 0 and operator A is a
generator of the operator cosine function α times of Cα(t). Then a function u(t) =
Lk(t)u1, with

Lk(t)u1 = 2α (α + 1)

tα−1

1∫

0

Pα−1(τ )Cα(tτ )u1 dτ,

is a solution to a problem (16), (17).
In formulations of theorems 10, 17 and 18 some integral operators are involved

with spherical Legendre functions in kernel Pν(t). These are Buschman–Erdélyi
transmutations, they are extensively studied cf. [1, 2, 47–51].

Remark 1 If A is an operator of multiplication by a number then

Yk(t)=(k/2 + 1/2)
∞∑
j=0

(
t2A/4

)j
j ! (j + k/2 + 1/2)

= (k/2 + 1/2)
(
t
√
A/2

)1/2−k/2
Ik/2−1/2

(
t
√
A
)
,
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with Iν(z) being a modified Bessel function,

Lk(t) =
√
π

2
 (k/2 + 1)

∞∑
j=0

t
(
t2A/4

)j
 (j + 3/2)  (j + k/2 + 1)

=

= 2k/2−1/2√π (k/2 + 1)

Ak/4+1/4 tk/2−1/2 Lk/2−1/2

(
t
√
A
)
,

with Lν(z) being a Struve function. Due to it we call Yk(t) as operator Bessel
function (OBF) and Lk(t) operator Struve function (OSF).

Remark 2 Let u0 = 0, then a condition on operatorA in the theorem 18 to existence
of only OCF Lk(t) may be weakened. If operatorA is a generator α + 1 times COF
Cα+1(t), then the next representation is valid

Lk(t)u1 = 2α (α + 1)

tα

⎛
⎝Cα+1(t)u1 −

1∫

0

P ′
α−1(τ )Cα+1(tτ )u1 dτ

⎞
⎠ .

Also it is interesting to find formulas representing COF via OFB and These
formulas follows from theorem 17 [47] and have the next form

Cα(t) =
√
π

2α(α + 1/2)

⎛
⎝tαY2α(t)+

t∫

0

P ′
α−1(t/ξ)ξ

α−1Y2α(ξ) dξ

⎞
⎠ ,

Cα+1(t) = 1

2α(α + 1)

⎛
⎝tαL2α(t)+

t∫

0

P ′
α−1(t/ξ)ξ

α−1L2α(ξ) dξ

⎞
⎠ .

For OSF Lk(t) and also OBF Yk(t) (cf. theorem 1) the next shift parameter
formula is valid.

Theorem 19 ([46]) Let k = 2α and operator A is a generator α + 1 times OCF
Cα+1(t) and m > k ≥ 0. Then operator function

Lm(t) = 2

B(k/2 + 1,m/2 − k/2)
1∫

0

sk (1 − s2)(m−k)/2−1 Lk(ts) ds

is an OSF for a problem (16), (17) for a parameter choice m.
OBFs Yk(t) and OCFs Lk(t) give solving operator to a problem (16), (17).
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Theorem 20 ([46]) Let u0, u1 ∈ D(A), k = 2α > 0 and operatorA is a generator
α times OCF Cα(t). Then a function u(t) = Yk(t)u0 +Lk(t)u1 with OSF Yk(t) and
OCF Lk(t), which are defined in 10 and 18, is a unique solution to the Cauchy
problem (16), (17).

Let u1 ∈ D(A) then for OCF Lk(t) the next is valid

L′
k(t)u1 = t

k + 2
Lk+2(t)Au1 + u1, lim

t→0+L
′′
k(t)u1 = 0.

OBF and OSF give solutions to a Cauchy problem for the stressed Malmsteen
equation (23) for l = −k and A ∈ Gk+2. From properties of these function we find
a solution to

u′′(t)+ k

t
u′(t)− k

t2
(u(t)− u(0)) = Au(t), t > 0, (26)

satisfying (17), and it has a form

u(t) = tYk+2(t)u1 + t

k + 2
Lk+2(t)Au0 + u0,

and equality (25) for m = 0 has a form

u(t) = t

k + 2
Lk+2(t)Au0 + u0.

So it may be stated that a pass from abstract wave equation u′′(t) = Au(t)

to Euler–Poisson–Darboux (EPD) equation (1) with coefficient k > 0 a set of
admissible operators A for which an initial problem with a condition (2) is correct,
is expanded from G0 to Gk, G0 ⊂ Gk, and a further pass from EPD equation (1)
to Eq. (26) expand this set to Gk+2, Gk ⊂ Gk+2.

We also note the relations

Lk(t)x =
t∫

0

ξ√
t2 − ξ2

Yk+1(ξ)x dξ, A ∈ Gk+1, x ∈ E,

Lk(t)x =
√
π(k/2 + 1)

(k/2 + 1/2)

t∫

0

2F1

(
1

2
,
k

2
; 1; 1 − t2

τ2

)
Yk(τ)x dτ, A ∈ Gk, x ∈ E.

If the problem (1), (2) is uniformly correct, i.e., A ∈ Gk and Yk(t) is OFB of this
problem then operator A is a generator of a strongly continuous semigroup T (t)
and for this semigroup the representation through OFB is valid (see Theorem 3).
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We also indicate a formula that allows us to express this semigroup in terms of OFS
Lk(t)

T (t)x = 1√
π 2k (k/2 + 1) tk/2+1

∞∫

0

sk exp

(
− s

2

4t

)
�

(
−1

2
,
k + 1

2
; s

2

4t

)
Lk(s)x ds,

where �(a, b; ·) is confluent hypergeometric Tricomi function (see. ([52], p. 365 or
[25], p. 309).

5 The Legendre Equation: Legendre Operator Function

The study of many physical processes is based on solving equations containing the
Laplace operator. Using the separating of variables in curvilinear coordinate systems
one can lead to differential equations containing a singularity. If there is a certain
symmetry, these equations turn into the Euler–Poisson–Darboux and Legendre
equations. The initial problem for the abstract EPD equation was considered in
Sect. 2. In this section, we study the Cauchy problem for another abstract singular
equation, namely for the Legendre equation.

For k > 0 we consider the Legendre equation

Lku(t) ≡ u′′(t)+ k coth t u′(t)+ (k/2)2u(t) = Au(t), t > 0. (27)

Differential operator Lk in the left part of (27) occurs when solving the Laplace
equation in coordinates of an elongated ellipsoid of revolution [53], p. 138. If A is
scalar multiplication operator then for k = 2 spherical functions (considered in [54],
p. 53) satisfy to Eq. (27).

Also note papers [5, 55–58], in which partial differential equations containing a
singular operator of the type under consideration were studied.

As follows from the results of the paper [59], correct statement of the initial
conditions for the abstract Legendre equation (27) consists in setting the initial
conditions at the point t = 0

u(0) = u0, u′(0) = 0, (28)

in this case, if k ≥ 1 then initial condition u′(0) = 0 removed. The definition
of uniform correctness of the problem (27), (28) formulated similarly to the
Definition 2.

In [59] found that set of operators A with which the problem (27), (28) correct
uniformly coincides with the set Gk introduced in Section. The resolving operator
of this problem is denoted by Pk(t) and called operator Legendre function (OLF).

OLF can also be used and for solving the weighted Cauchy problem for the
Legendre equation. If 0 < k < 1 then more general then in (28) initial conditions
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are correct. Let consider the initial conditions of the form

u(0) = u0, lim
t→0

(
sinh t

t

)k
u′(t) = u1. (29)

For u0, u1 ∈ D(A) and A ∈ Gk ⊂ G2−k the unique solution to the Cauchy
problem (27), (29) has the form (see [59])

u(t) = Pk(t)u0 + 1

1 − k
(

sinh t

t

)1−k
P2−k(t)u1.

Note that if A ∈ Gk and k ≥ 1 then the problem (27), (29) is not correct.

Theorem 21 ([59]) Let the problem (27), (28) uniformly correct when parameter
m ≥ 0 (A ∈ Gm) then this problem uniformly correct and for k > m ≥ 0 (A ∈
Gk ⊃ Gm). While corresponding OLF Pk(t) is

Pk(t) = ϒk,mPm(t) = 2(k−m)/2 sinh1−k t
B(k/2 −m/2,m/2 + 1/2)

t∫

0

(cosh t−cosh s)(k−m)/2−1 sinhm y Pm(s) ds.

(30)

The equality (30) written on the initial element u0 is called the formula of a
shift by the parameter k of the solution of the Cauchy problem for Eq. (27) and
ϒk,m is transmutation operator transmuting differential operators Lm and Lk and
preserving initial conditions (28).

In addition, the equality

P ′
k(t)u0 = sinh t

k + 1
Pk+2(t)

(
A− k2

4
I

)
u0

is valid. From this equality follows that the first and the second producing operators

of OLF Pk(t) are equal to zero and to
1

k + 1

(
A− k2

4
I

)
, respectively.

In the particular case when the operator A = (δ + 1/2)2, δ ∈ R is the operator
of multiplication by a number then OLF Pk(t) is expressed through the associated
Legendre function of the first kind Pβδ (·) (see [52], p. 661)

Pk(t) = (1 − β)
(

1

2
sinh t

)β
Pβδ (cosh t), β = 1 − k

2
.
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As indicated in Theorem 3, the operator A ∈ Gk is a generator of the semigroup
T (t) which in case of even k can be represented (see [59]) through the OLF Pk(t)
(see [59])

T (t) = 1

(k/2 + 1/2)
√
t

∞∫

0

sinhk s

(
− 1

2 sinh s

d

ds

)k/2
exp

(
− s

2

4t

)
Pk(s) ds.

In the case of integer k/2 semigroup T (t) can be represented through OLF Pk(t)
using for

(
− 1

2 sinh s

d

ds

)k/2
,

the definition of a fractional derivative.

In conclusion of this section, we note that the OFL Pk(t) was used by the author
in [60] to establish the criterion for stabilizing the solution of the Cauchy problem
for an abstract differential equation of the first order.

6 The Loaded Legendre Equation

In this section, we consider the equation

u′′(t)+k coth t

(
u′(t)− cosh2−k(t/2)

cosh t
u′(0)

)
+ k

2

4
u(t) = Au(t), t > 0, (31)

which, unlike Eq. (27), contains the value of the derivative of the unknown function
at the point t = 0 and which we will call the weakly loaded Legendre equation.

The presence in Eq. (31) given at t = 0 load changes the setting of the initial
problem. Unlike the weighted problem (27)–(29) for k > 0 we will establish the
correctness of the Cauchy problem

u(0) = u0, u′(0) = u1 (32)

for a lightly loaded equation (31) and indicate the explicit form of the resolving
operator.

In this section, we will further assume g(t) = cosh t and

μk = 2k/2(k/2 + 1/2)√
π (k/2)

.
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To prove the following statements, it is convenient to use the concept of a
fractional integral of a function f (t) by the function g(t) = cosh t (see [20], p.
248)

Iαg f (t) = 1

(α)

t∫

0

(cosh t − cosh s)α−1 sinh s f (s) ds.

Let an operator A is a generator COF C(t), u0 ∈ D(A). Then from Theorem 21
the following representation follows for OFL Pk(t)

Pk(t)u0 =μk sinh1−k t
t∫

0

(cosh t − cosh s)k/2−1C(s)u0 ds =μk (k/2) sinh1−k t I k/2g

[
C(t)

sinh t

]
u0

(33)

is valid.
Next, we consider the Cauchy problem (31)–(32) in case when u0 = 0. Let

νk = k2k/2−1 and

S(t) =
t∫

0

C(s) ds

is a sine operator function (SOF).

Theorem 22 ([61]) If u0 = 0, u1 ∈ D(A) and the operator A is a generator COF
C(t), then function u(t) = Qk(t)u1, where

Qk(t)u1 = νk sinh1−k t
t∫

0

(cosh t − cosh τ)k/2−1S(τ)u1 dτ = νk (k/2) sinh1−k t I k/2g

[
S(t)

sinh t

]
u1

(34)

is the solution to the problem (31)–(32), and wherein

Q′
k(t)u1 = sinh t

k + 2
Qk+2(t)

(
A− k2

4
I

)
u1 + u1

coshk(t/2)
.

Theorem 23 ([61]) Let u0, u1 ∈ D(A) and operator A is a generator COF C(t).
Then function u(t) = Pk(t)u0+Qk(t)u1, where operator functionsPk(t) andQk(t)
are given by (33), (34), is the unique solution to the Cauchy problem (31)–(32).
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7 Nonlocal Problems

Opposite to Sect. 1 of this paper let find a solution u(t) ∈ C2([0, 1], E) ∩
C((0, 1],D(A)) to EPD equation (1), with nonlocal integral condition

lim
t→1

Iν,β u(t) = u1 (35)

and condition

u′(0) = 0, (36)

with ν = (k − 1)/2, β > 0, Iν,β being an Erdélyi–Kober operator defined by (cf.
[20], p. 246)

Iν,β u(t) = 2

(β) t2(β+ν)

t∫

0

s2ν+1(t2 − s2)β−1u(s) ds.

The problem (1), (35), (36) with nonlocal condition (35) in general is not correct.
Many ill-posed problems for differential–operator equations may be reduced to
operator equations of the first kind Bx = y, x, y ∈ E and the main problem is to
prove its solvability. We formulate conditions for an operatorA and element u1 ∈ E
which are sufficient for unique solvability.

Let refer to papers on solvability of nonlocal problems with integral condition
for abstract first order equation [62] and [63]. Necessary and sufficient condition for
solution’s uniqueness was found in [64].

As it follows from the results of the first section of this work correct initial
problem for EPD equation (1) include given values at t = 0 and a condition (36),
which is dropped for k ≥ 1,

u(0) = u0 ∈ D(A). (37)

Further let fix a condition A ∈ Gk as valid, it means uniform correctness of the
problem (1), (37), (36), and below we consider a determination of initial element u0
in condition (37) by nonlocal condition (35). This nonlocal problem is reduced to an
operator equation of the first kind Yk(1)u0 = y which we solve on a subset D(A).

Let introduce an entire function

cosh ik,β(λ) = ((k + 1)/2)

((k + 1)/2 + β) 0F1

(
k + 1

2
+ β; λ

4

)
,

which is called characteristic function for nonlocal condition (35).
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Theorem 24 ([65]) Let A being a bounded operator and u1 ∈ E. For unique
solvability of the problem (1), (35), (36) is necessary and sufficient for the next
condition being valid on a spectrum σ(A) of operator A

cosh ik,β(λ) �= 0, λ ∈ σ(A). (38)

From the Theorem 24 it follows that position of zeroes of the function cosh ik,β(λ)
is responsible for the unique solvability of the problem (1), (35), (36) with a bounded
operator A. For EPD equation with unbounded operator A the condition (38)
will not be sufficient for the unique solvability, though position of zeroes is also
important.

Now let find necessary condition for the uniqueness of a solution for the inverse
problem (1), (35), (36) with an unbounded operator A.

Theorem 25 ([65]) Let A being a linear closed operator in E. Propose that
nonlocal problem (1), (35), (36) has a solution u(t). Then for this solution being
unique it is necessary that all zeroes μj , j = 1, 2, . . . of the entire function
cosh ik,β(λ) do not belong to the set of eigenvalues of operator A.

In contrast to Theorem 24, the proof of a sufficient condition for unique
solvability requires additional conditions.

Theorem 26 ([65]) Let the operator A ∈ Gk and each zero μj , j = 1, 2, . . . of
function cosh ik,β(λ) belongs to the resolvent set ρ(A). Let also exists such d > 0
that sup

j=1,2,...
‖R(μj )‖ ≤ d . If u1 ∈ D(An+1), where n ∈ N chosen so that the

inequality n > max{(k + β + 1)/2, (k/2 + β + 2)/2} is true then the problem (1),
(35), (36) has a unique solution.

A similar nonlocal problem for the abstract Malmsten equation, which is a
generalization of the EPD equation, was considered in [66].

We also point out that the nonlocal problem for the Legendre equation (27) with
conditions

lim
t→1

Iβg

(
sinhk−1 t u(t)

)
= u1, u′(0) = 0

and the boundary control problem for a lightly loaded Legendre equation (31) with
conditions

u(1) = u2, u′(1) = u3

were studied in [61]. Results on the solvability of a nonlocal problem for the
Bessel-Struve equation (16) with two nonlocal conditions containing Erdeyi-Kober
operators were announced in [67].
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8 Dirichlet Problem for the Bessel-Struve Equation

Boundary problems for Eq. (16) for A ∈ Gk (hyperbolic case), generally speaking,
they are not correct, but the need to solve these incorrect problems is now generally
recognized (see introduction [68–70] and their bibliography). The second chapter
of the monograph [68] explores the correctness of general boundary value problems
for a first-order differential-operator equation and for an abstract wave equation
u′′(t) = Au(t).

We will look for a solution u(t) ∈ C2([0, 1], E) ∩ C((0, 1],D(A)) of Eq. (16)
for t ∈ [0, 1], satisfying to the boundary conditions

u(0) = u0, u(1) = u1. (39)

Dirichlet Problem (16), (39) can be reformulated as the inverse problem of
finding a function u(t) and an element p ∈ D(A) which is the second initial
condition in (17). So u(t) and p should be found from the equation

u′′(t)+ k

t
u′(t) = Au(t)+ k

t
p (40)

by initial and final conditions from equality (39). A detailed review of the work on
various inverse problems can be found in [71].

Returning to the problem we are considering (40), (39), note that, taking into
account the Theorem 20, we should define an element p ∈ D(A) from the operator
equation

Lk(1)p = u2, (41)

where u2 = u1 − Yk(1)u0.
To establish the solvability of Eq. (41) we impose an additional condition to the

resolvent of the operatorA. An important role will be played by the entire function

cosh ik(λ) = 2k/2−1/2√π (k/2 + 1)

λk/4+1/4 Lk/2−1/2

(√
λ
)
, (42)

Condition 1 Each zeroμj , j = 1, 2, . . . defined by equality (42) of entire function
cosh ik(λ) belongs to the resolvent set ρ(A) and there is such d > 0 then

sup
j=1,2,...

‖R(μj )‖ ≤ d.

Note that in the general case for k > 0 distribution of zeros μj of function
cosh ik(λ) we do not know, but in special cases for k = 0 and k = 2 zeros μj are
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calculated explicitly. In these particular cases, respectively, we have:

cosh i0(λ) = sinh
√
λ√

λ
, μj = −π2j2, j ∈ N,

cosh i2(λ) =
2
(

cosh
√
λ− 1

)

λ
, μj = −4π2j2, j ∈ N.

Let the condition 1 is valid. Since each zero μj , j = 1, 2, . . . of the function
cosh ik(λ) belongs to ρ(A), then it belongs to ρ(A) together with a circular

neighborhood	j with the radius
1

d
, whose boundary is traversed along clockwise,

we denote γj .

Condition 2 For some n, such that

n >
1

4
(k + 7 − max{3 − k, 1}) ,

series

∞∑
j=1

∫

γj

R (z) dz

cosh ik(z) (z − λ0)n
, λ0 ∈ ρ(A), Reλ0 > σ

absolutely converges.
We formulate a theorem on the solvability of the Dirichlet problem for the Bessel-

Struve equation, which was announced in [72].

Theorem 27 Let A ∈ Gk and conditions 1, 2 are valid. If u0, u1 ∈ D(An+1) then
the problem (16), (39) has a unique solution.
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On the Bessel-Wright Operator
and Transmutation with Applications

Ilyes Karoui, Wafa Binous, and Ahmed Fitouhi

Abstract In this paper we summarize and complete the study of the Bessel-Wright
operator and the transmutation operator recently introduced in Fitouhi et al. (Anal
Math 44:1–19, 2018). Special motivation is given for the translation operator and the
wavelet transform and for the resolution of the associated wave and heat equation.

Keywords Bessel-Wright functions · Bessel-Wright transform · Heat kernel ·
Wave kernel · Translation operator · Wavelet transform
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1 Introduction

In [5], Fitouhi et al. introduced a family of second-order differential operators with
double indices α and β

�(α,β)u(x) = d2u

dx2 (x)+
2(α + β)+ 1

x

du

dx
(x)+ 4αβ

x2 [u(x)− u(0)] (1)

These operators are very important in pure Mathematics and especially in the
special function and Harmonic analysis area [2, 11]. Throughout these operators,
several known mathematical analytic structures related to the Bessel operator are
generalized, as for instance, taken β = 0, we regain the Bessel differential operator

�(α,0)u(x) = d2u

dx2 (x)+
2α + 1

x

du

dx
(x) = −λ2u(x). (2)
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This difference differential operator admits as eigenfunction with −λ2 as eigen-
value the Bessel-Wright function

j(α,β)(λx) =
+∞∑
n=0

(−1)n
(α + 1)(β + 1)

(α + 1 + n)(β + 1 + n)
(
λx

2

)2n

, λ ∈ C

which is even and symmetric in α and β and coincide when α = 0 or β = 0 with
the normalized Bessel function [10]:

jα(λx) =
+∞∑
n=0

(−1)n
(α + 1)

(α + 1 + n)
(
λx

2

)2n

, λ ∈ C.

To study an harmonic analysis associated with the Bessel-Wright operators, the
authors have introduced the Riemann Liouville operator that links the Bessel-Wright
function to the classical Bessel function. In fact, for x, α, β reals, the following
integral representation holds

j(α,β)(x) = 2β
∫ 1

0
(1 − t2)β−1jα(tx)tdt, if α > −1 and β > 0 (3)

= 2α
∫ 1

0
(1 − t2)α−1jβ(tx)tdt, if α > 0 and β > −1,

where jα(.) is the normalized Bessel function.
These last integral representations use a simple integral unlike these concerning

the Bessel functions of index vector with r components which involve r−1 multiple
integrals [6, 8].

A second important consequence of this integral representation is the possibility
to build an operator linking the operator �(α,β) and �(α,0).

In this paper, we return to work with the objective of studying the translation
operators for the Bessel-Wright operator. We investigate mainly in the translation
operator mapping properties, the Bessel-Wright function product formula and the
dual of the translation operator.

As application, we define and study the Bessel-Wright wavelets and the contin-
uous wavelet transform. We will prove, by using the Bessel-Wright wavelets, the
Plancherel, the inversion formulas and we will end this paper by solving the Bessel-
Wright heat and wave equation.

2 The Bessel-Wright Transmutation Operator

In the sequel, we assume that α > 0 and β > −1. We need the following functionals
spaces:

By C0 we denote the space of real continuous functions on ]0,+∞[ having 0 as
limit at infinity.
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By Lpβ, for p ∈ [1,+∞[ , the Banach space of real-valued functions f ,
measurable on ]0,+∞[ such that

‖f ‖p,β =
[∫ ∞

0
|f (x)|p x2β+1dx

]1/p

< +∞, ∀p ∈ [1,+∞[

We equipped the space L2
β by the inner product given by:

〈f, g〉β =
∫ ∞

0
f (t)g(t)t2β+1dt. (4)

Let E be the space of real C∞-functions on ]0,+∞[ , provided with the topology of
uniform convergence on every compact of the functions and their derivatives. This
topology is defined by the semi-norms

∀n ∈ N, a ≥ 0 pn,a (f ) = sup
0≤k≤n, x∈[−a,a]

∣∣∣∣ d
k

dxk
f (x)

∣∣∣∣ <∞.

Let S be the space of real C∞-functions on ]0,+∞[ rapidly decreasing together
with their derivatives equipped with the seminorms

pm,n (f ) = sup
x>0

(
1 + x2

)m ∣∣∣∣ d
n

dxn
f (x)

∣∣∣∣ , n,m ∈ N.

The seminorms pm,n define the topology of S.
We denote by Da the subspace of S of function with compact support of the form

[τ, a], τ < a.
The Paley-Winer space PWa is the set of entire functions of exponential type

and rapidly decreasing. The topology on PWa is defined by the seminorms

Pm (f ) = sup
λ∈C

(
1 + |λ|2

)m |f (λ)| e−a|Imλ|, m ∈ N.

Consider the Riemann Liouville operator

Rαg(x) = 2α
∫ 1

0
g(xt)(1 − t2)α−1tdt, α > 0, x > 0.

which can be written as follows:

Rαg(x) = 2α

x2α

∫ x

0
g(u)

[
x2 − u2

]α−1
udu, x > 0.
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It is easy to verify that

�(α,β) ◦ Rα = Rα ◦ �(0,β)

and

�(α,β) ◦ Rβ = Rβ ◦ �(α,0)

�(0,β) and �(α,0) being the Bessel operator.
In [5], we have proved the that:

Theorem 1 If we assume that

1 + β < p

then

Rα : Lpβ → Lpβ
is a bounded linear operator. In particular for all −1 < β < 0 we obtain

Rα : L1
β → L1

β,

and if −1 < β < 1 then

Rα : L2
β → L2

β.

Proposition 1 The operator Rα is continuous from E into itself.

Proof For all n ∈ N, the function x #→ Rα (f ) (x) is Cn on [0,+∞[ and we have
then the function

x #→ Rα (f ) (x) ∈ E .

and the fact that

pn,a (Rα (f )) ≤ Cpn,a (f ) , C > 0,

leads to the result. �
Proposition 2 The dual of the Riemann-Liouville operator relative to the inner
product (4) is given by

Rt(α,β)g(u) = 2α
∫ ∞

1
g(ut)

[
t2 − 1

]α−1
t2(β−α)+1dt

which is valid for any function belongs to the space S.
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Proof In fact we have

〈Rαf, g〉 =
∫ ∞

0
Rαf (x)g(x)x

2β+1dx

=
∫ ∞

0

[
2α

∫ x

0
f (u)

[
x2 − u2

]α−1
udu

]
g(x)x2β+1−2αdx

= 2α
∫ ∞

0
f (u)u

[∫ ∞

u

g(x)
[
x2 − u2

]α−1
x2β+1−2αdx

]
du

=
∫ ∞

0
f (u)Rt(α,β)g(u)u

2β+1du =
〈
f,Rt(α,β)g

〉
.

Then we obtain

Rt(α,β)g(u) = 2αu−2β
∫ ∞

u

g(x)
[
x2 − u2

]α−1
x2β+1−2αdx

= 2αu−2β
∫ ∞

1
g(ut)

[
u2t2 − u2

]α−1
t2β+1−2αu2β+2−2αdt

= 2α
∫ ∞

1
g(ut)

[
t2 − 1

]α−1
t2(β−α)+1dt,

which leads to the result. �
As important results concerning the operator Rt(α,β), we have proved in [5] that:

Theorem 2 If we assume that

β − 1

p
(1 + β) < 0

then

Rt(α,β) : Lpβ → Lpβ
is a bounded linear operator. In particular for all β > −1 we obtain

Rt(α,β) : L1
β → L1

β,

and if −1 < β < 1 then

Rt(α,β) : L2
β → L2

β.
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Proposition 3 For k integer and 0 < α < 1 we have

R−1
k+αg(x) = 1

(k + 1)(k + α)(1 − α)(α)(1 − α)x
(

1

2x

d

dx

)k+1

x2(1−α)R1−αx2(k+α)g(x)

and

R−1
k g(x) = 1

(k + 1)

(
1

2x

d

dx

)k
x2kg(x)

which is valid for any function belongs to the space S.

Corollary 1 For k integer and 0 < α < 1 we have

(
Rt(α+k,β)

)−1
g(x) = (−1)k+1 1

2k(k + 1)(k + α)(α)(1 − α)x
2(k+1)

×
∫ ∞

1

[(
d

dx

1

x
+ 2β + 1

x2

)k+1

xg

]
(xt)

(
t2 − 1

)−α
t2β+1dt.

which is valid for any function belongs to the space S.
Finally, the following properties are summarized as:

Proposition 4 The operators Rα and Rt(α,β) satisfied the following properties

1. Rα is a linear operator from Da into itself.
2. Rα is a topological isomorphism from E (resp. S and D) into itself.
3. Rt(α,β) is a linear operator from Da into itself.

4. Rt(α,β) is a topological isomorphism from E (resp. S and D) into itself.

3 Applications

3.1 The Bessel-Wright Transform

Definition 1 We define the Bessel-Wright transform on L1
β by

∀ λ ∈ R+, F(α,β)(f )(λ) = cβ
∫ ∞

0
f (x) j(α,β)(λx) x

2β+1dx.

where

cβ = 1

2β(β + 1)
.
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Proposition 5 For f and g in L1
β , we have

∫ ∞

0
F(α,β)(f )(x) g(x) x2β+1dx =

∫ ∞

0
f (x)F(α,β)(g)(x)x2β+1dx

Since

j(α,β)(λx) = Rα
(
jβ

)
(λx)

It is proved in [5] that:

Proposition 6 The Bessel-Wright transform is related to the Bessel-Fourier
transform via

F(α,β) = Fβ ◦ Rt(α,β) (5)

where Fβ is the classical Bessel-Fourier transform defined by

Fβ(g)(λ) = cβ
∫ +∞

0
g(x)jβ(λx)x

2β+1dx.

We recall that the following results holds.

Theorem 3 The Bessel-Wright transform F(α,β) satisfies the following mapping
properties:

(i) F(α,β) is a bounded linear operator from L1
β to C0.

(ii) Let p ∈ ]1, 2] and q = p
p−1 . If we assume that

β − 1

p
(1 + β) < 0

then the Bessel-Wright transform F(α,β) extends to a bounded linear operator
from Lpβ to Lqβ .

(iii) F(α,β) a topological isomorphism from S (resp. E)into itself.
(iv) F(α,β) is a linear operator from Da into PWa.

3.2 The Bessel-Wright Transform Inversion Formula

Like we already proved in [5], using the transmutation operator Rt(α,β) the Bessel-
Wright transform could be inverted in the Schwartz space. This result is larger than
the formula of Cooke [1, 7, 9].
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Theorem 4 Let k integer and 0 < α < 1. The inversion of the Bessel-Wright
transform is given by

F−1
(k+α,β)g(x) = (−1)k+1 1

2k(k + 1)(k + α)(α)(1 − α)x
2(k+1)

×
∫ ∞

1

[(
d

dx

1

x
+ 2β + 1

x2

)k+1

xFβ(g)
]
(xt)

(
t2 − 1

)−α
t2β+1dt,

and

F−1
(k,β)g(x) = 1

2k(k + 1)
x2k

(
d

dx

1

x
+ 2β + 1

x2

)k
Fβg(x),

which is valid for any function belongs to the space S.

Proof Using formula (5) we obtain

F−1
(α,β) =

(
Rt(α,β)

)−1 F−1
β

=
(
Rt(α,β)

)−1 Fβ.

and Corollary 1 we get the result. �

3.3 The Bessel-Wright Translation Operator and Its Dual

Let’s recall some results about the harmonic analysis generated by the Bessel
operator�α.We stake out especially properties that will serve us in below section.
For more details we refer the reader to [4].

Recall that the Fourier-Bessel transform of order Fα is defined by

Fα(g)(λ) = cα
∫ +∞

0
g(x)jα(λx)x

2α+1dx

where

cα = 1

2α(α + 1)
.
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where jα is the normalized Bessel function defined by

jα (x) =  (α + 1)
∞∑
n=0

(−1)n

 (α + n+ 1) n!
(x

2

)2n
, α ≥ −1

2

The Bessel translation operator τxα has been investigated in [3]. It has been proved
that τxα has the following integral representation

τxα (f ) (y) =
∫ x+y

|x−y|
f (z)Wα (x, y, z) z

2α+1dz, x, y > 0 (6)

where

Wα (x, y, z) = 21−α[ (α + 1)]2

√
π

(
α + 1

2

) × [(x + y)2 − z2]α− 1
2 [z2 − (x − y)2]α− 1

2

(xyz)2α

with a change of variables τxα can written in the following form

τxα (f ) (y) = kα
∫ π

0
f

(√
x2 + y2 + 2xy cos θ

)
(sin θ)2α dθ

where

kα = 2 (α + 1)
√
π

(
α + 1

2

)

Hence, the Bessel convolution product of two functions f, g on [0,∞[ could be
defined by the relation

f ∗α g (x) =
∫ ∞

0
τxα f (y) g (y) y

2α+1dy, x ≥ 0

The below theorems highlight the most important properties of the Bessel
translation operator. For detailed proof we refer the reader to [3, 8]

Theorem 5 The Bessel translation operator satisfies the following properties

1. τxα f is the solution of the hyperbolic equation

⎧⎪⎨
⎪⎩
�xαu (x, y) = �yαu (x, y)

u (x, 0) = f (x)
∂
∂y
u (x, 0) = 0
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2. Let p ∈ [1,∞] and f ∈ Lpα . Then for all x ≥ 0, τxα f ∈ Lpα and

∥∥τxα f
∥∥
p,α

≤ ‖f ‖p,α

3. For f ∈ Lpα, p = 1 or 2, we have

Fα
(
τxα f

)
(λ) = jα (λx)Fα (f ) (λ)

4. Let p, q ∈ [1,∞] such that 1
p

+ 1
q

= 1. If f ∈ Lpα and g ∈ Lqα , then for every
x ≥ 0 we have

∫ ∞

0
τxα f (y) g (y) y

2α+1dy =
∫ ∞

0
f (y) τxα g (y) y

2α+1dy

5. Let p, q, r ∈ [1,∞] such that 1
p

+ 1
q

− 1 = 1
r
. If f ∈ Lpα and g ∈ Lqα , then

f ∗α g ∈ Lrα and

‖f ∗α g‖r,α ≤ ‖f ‖p,α ‖g‖q,α

6. For f ∈ L1
α and g ∈ Lpα, p = 1 or 2, we have

Fα (f ∗α g) = Fα (f )Fα (g)

7.

τxα : Da → Da+x (7)

3.3.1 The Bessel-Wright Translation Operator

Definition 2 For f ∈ E , we define the Bessel-Wright translation operator as follow

τx(α,β)f (y) = (Rα)x (Rα)y τ xβ
(
R−1
α (f )

)
(y) (8)

where τyβ is the Bessel translation operator defined by formula (6).

Theorem 6 The Bessel-Wright translation operator verifies the following proper-
ties

1. For all f ∈ E

τ 0
(α,β)f = f
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2. Given λ ∈ C, and x, y ∈ ]0,+∞[ ,we have the Bessel-Wright product formula

τx(α,β)
(
j(α,β) (λ.)

)
(y) = j(α,β) (λx) j(α,β) (λy)

3. The Bessel-Wright translation operator is a linear operator from E into itself.

τx(α,β) : E → E

4. The Bessel-Wright translation operator is a linear operator from S into itself.

τx(α,β) : S → S

5. The Bessel-Wright translation operator is a linear operator from D into itself.

τx(α,β) : D → D

Proof Recall that the Bessel translation verifies for all f ∈ E

τ 0
β (f ) (y) = f (y)

So

τ 0
(α,β)f (y) = (Rα)0 (Rα)y τ 0

β

(
R−1
α (f )

)
(y)

= (Rα)0 (Rα)y τ 0
β

(
R−1
α (f )

)
(y)

= 2α
∫ 1

0
f (y) (1 − t2)α−1tdt

= f (y)

And Since j(α,β) ∈ E , we get the product formula

τx(α,β)
(
j(α,β) (λ.)

)
(y) = (Rα)x (Rα)y τ xβ

(
R−1
α

(
j(α,β) (λ.)

))
(y)

= (Rα)x (Rα)y τ xβ
(
R−1
α

(
jβ (λ.)

))
(y)

= (Rα)x (Rα)y
[
jβ (λx) jβ (λy)

]
= j(α,β) (λx) j(α,β) (λy)

Using the Rα properties in Proposition 4 and Theorem 3.3, we get the rest of the
proof. �



422 I. Karoui et al.

3.3.2 The Dual of the Bessel-Wright Translation Operator

Definition 3 For each x, y ∈ R, the dual of the translation operator t τ x(α,β) is
defined on D ( resp. S) by

t τ x(α,β)f (y) = (Rα)x
(
R∗−1
α,β

)
y
τ xβ

(
R∗
α,β (f )

)
(y)

Remark 1 Note that for α = 0, t τ x(α,β) reduces to the well know Bessel translation
operator

t τ x(0,β)f (y) = τxβ f (y)

since

R0 = R∗
0,β = id.

Theorem 7 The operator t τ x(α,β) verifies the following properties

1. t τ x(α,β) is a linear operator from E into itself.

t τ x(α,β) : E → E

2. t τ x(α,β) is a linear operator from S into itself.

t τ x(α,β) : S → S

3. t τ x(α,β) is a linear operator from D into itself.

t τ x(α,β) : D → D

4. For f ∈ E , g ∈ D ( resp. S), we have

∫ ∞

0
τx(α,β) (f ) (y) g (y) y

2β+1dy =
∫ ∞

0
f (y)t τ x(α,β) (g) (y) y

2β+1dy

5. For all f ∈ S,

F(α,β)
(
t τ x(α,β) (f )

)
(λ) = j(α,β) (λx)F(α,β) (f ) (λ)

Proof Using mainly the Rtα,β properties in Proposition 4 and Theorem 3.3, we
deduce the mapping properties of the operator t τ x(α,β).
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And the fact that

t τ x(α,β) : S → S

will be the entry to justify that F(α,β)
(
t τ x(α,β) (f )

)
exists, and we have

F(α,β)
(
t τ x(α,β) (f )

)
(λ) = cβ

∫ ∞

0

[
t τ x(α,β)

]
f (t) j(α,β)(λt) t

2β+1dt

= cβ
∫ ∞

0
f (t) τ x(α,β)

(
j(α,β)

)
(λt) t2β+1dt

= j(α,β) (λx)F(α,β) (f ) (λ) .

�

3.4 Generalized Wavelet Transform

In this subsection, we show that the transmutation operators are crucial to define and
study the generalized wavelet transform.

3.4.1 Preliminaries

Definition 4 We define the Bessel wavelet as a measurable function satisfying the
admissibility condition [4]

0 < Cαg =
∫ ∞

0
|Fα (g) (λ)|2 dλ

λ
<∞

Definition 5 Let a, b > 0, the Bessel continuous wavelet transform is defined for
suitable functions f on [0,∞[ by

Sαg (f ) (a, b) =
∫ ∞

0
f (x) gαa,b (x)x

2α+1dx

Where

gαa,b (x) = 1

a2α+2 τ
b
α (ga) (b)
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and

ga (x) = ga
(x
a

)

Theorem 8 Let g ∈ L2
α be a Bessel wavelet of order α. We have

1. For all f ∈ L2
α we have the Plancherel formula

∫ ∞

0
|f (x)|2 x2α+1dx= 1

Cαg

∫ ∞

0

∫ ∞

0

∣∣∣Sαg (f ) (a, b)
∣∣∣2 b2α+1db

da

a

2. Assume that ‖Fα (g)‖∞ <∞. For f ∈ L2
α and 0 < ε < δ <∞, the function

f ε,δ = 1

Cg

∫ δ

ε

∫ ∞

0
Sαg (f ) (a, b) g

α
a,b (x) b

2α+1db
da

a

belongs to L2
α and satisfies

lim
ε→0, δ→∞

∥∥f ε,δ − f ∥∥2,α = 0

3. For f ∈ L1
α such that Fα (f ) ∈ L1

α , we have

f (x) = 1

Cαg

∫ ∞

0

(∫ ∞

0
Sαg (f ) (a, b) g

α
a,b (x) b

2α+1db

)
da

a

for almost all x ≥ 0.

3.4.2 The Bessel-Wright Wavelet

Definition 6 We define the Bessel-Wright wavelet as a measurable function satis-
fying the admissibility condition

0 < Cα,βg =
∫ ∞

0

∣∣F(α,β) (g) (λ)∣∣2 dλ
λ
<∞

Definition 7 Let a, b > 0, and let g be a Bessel-Wright wavelet. We consider the
family gα,βa,b of Bessel-Wright wavelets on ]0,+∞[ in L2

α, defined by

g
α,β
a,b (x) = 1

a2α+2

t

τ b(α,β) (ga) (x)
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where

ga (x) = g (x/a)

and τb(α,β) the Bessel-Wright translation operator 8.

Proposition 7 For all a > 0, b > 0, we have

g
α,β
a,b (x) = (Rα)b

(
Rtα,β

)−1

x

(
Rtα,βg

)β
a,b
(x) (9)

where gαa,b is the classical Bessel wavelet.

Proof we have

g
α,β
a,b (x) = 1

a2α+2

t

τ b(α,β) (ga) (x)

= 1

a2α+2 (Rα)b

(
Rt(α,β)

)−1

x
τ bβ

(
R∗
α,β (ga)

)
(x)

= (Rα)b
(
Rt(α,β)

)−1

x
τ bβ

(
R∗
α,βg

)
a
(x)

= (Rα)b
(
R∗−1
α,β

)
x

(
R∗
α,βg

)β
a,b
(x)

which ends the proof. �
Proposition 8 A function g is a Bessel-Wright wavelet in D (resp. S) if and only if
the function Rt(α,β)g is a Bessel wavelet, and we have

Cα,βg = CβRt
(α,β)(g)

Proof We deduce these results, since the following formula is valid in D (resp. S) ,

F(α,β) = Fβ ◦ Rt(α,β)
Which may end the proof. �

Definition 8 Let a, b > 0, the Bessel-Wright continuous wavelet transform is
defined for suitable functions f on ]0,∞[ by

Sα,βg (f ) (a, b) =
∫ ∞

0
f (x) g

α,β
a,b (x)x

2β+1dx
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Proposition 9 For all a, b > 0,the Bessel-Wright continuous wavelet transform

1. Given a function f ∈ S, the Bessel-Wright wavelet transform is linked to the
classical Bessel wavelet transform via the following formula

Sα,βg (f ) (a, b) = (Rα)b SβRt(α,β)g
(
R−1
α f

)
(a, b) (10)

2. Sα,βg is a linear operator from S into itself.

Sα,βg : S → S

3. Sα,βg is a linear operator from D into itself.

Sα,βg : D → D

Proof From (9), we get

Sα,βg (f ) (a, b) =
∫ ∞

0
f (x) g

α,β
a,b (x)x

2β+1dx

=
∫ ∞

0
f (x) (Rα)b

(
R∗−1
α,β

)
x

(
R∗
α,βg

)β
a,b
(x) x2β+1dx

= (Rα)b
∫ ∞

0
R−1
α (f ) (x)

(
R∗
α,βg

)β
a,b
(x) x2β+1dx

= (Rα)b SβR∗
α,β g

(
R−1
α f

)
(a, b) .

and so we deduce that

Sα,βg : S → S

and.

Sα,βg : D → D

�
Theorem 9 (Plancherel Formula) Let f ∈ S ∩ L2

β be a Bessel-Wright wavelet,
we have the Planchrel formula

∫ ∞
0

|f (x)|2 x2β+1dx = 1

Cα
Rt(α,β)(g)

∫ ∞
0

∫ ∞
0

∣∣∣(Rα)−1
b
S
α,β
g (Rα (f )) (a, b)

∣∣∣2 b2β+1db
da

a
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Proof Using Theorem (8) and formula (10), we get

∫ ∞
0

|f (x)|2 x2β+1dx = 1

Cα
Rtα,β (g)

∫ ∞
0

∫ ∞
0

∣∣∣∣SβRt(α,β)(g) (f ) (a, b)
∣∣∣∣
2
b2β+1db

da

a

= 1

Cα
Rtα,β (g)

∫ ∞
0

∫ ∞
0

∣∣∣(Rα)−1
b S

α,β
g (Rα (f )) (a, b)

∣∣∣2 b2β+1db
da

a
.

�
Theorem 10 (Inversion Formulas) Let g ∈ L2

β be a Bessel-Wright wavelet, then
we have

• For f ∈ S, we have

f (x) = 1

Cα
Rt
(α,β)

(g)

∫ ∞

0

(∫ ∞

0
(Rα)

−1
b S

α,β

Rt
(α,β)

(g)
(Rα (f )) (a, b) R

t
(α,β)

(
gαa,b

)
(x) b2β+2db

)
da

a

for almost all x ≥ 0.
• For f ∈ S, we have

R−1
α (f ) (x) = 1

Cα
Rt(α,β)(g)

∫ ∞

0

(∫ ∞

0
(Rα)

−1
b S

β

Rt
(α,β)

(g)
(f ) (a, b)

Rt(α,β)
(
gαa,b

)
(x) b2β+2db

)
da

a

for almost all x ≥ 0.

Proof Starting from Theorem 8 and Proposition 8, we get

f (x) = 1

Cα
Rt(α,β)(g)

∫ ∞

0

(∫ ∞

0
S
β

Rtα,β (g)
(f ) (a, b) Rt(α,β)

(
gαa,b

)
(x) b2β+1db

)
da

a

= 1

Cα
Rt(α,β)(g)

∫ ∞

0

(∫ ∞

0
(Rα)

−1
b S

α,β

Rt(α,β)(g)
(Rα (f )) (a, b) R

t
(α,β)

(
gαa,b

)
(x) b2β+2db

)
da

a

�

3.5 The Heat Kernel

The generalized Gaussian function introduced in [5], depending of parameter α, is
defined by:

ψα(x) =
∞∑
n=0

(−1)n
(α + 1)

(α + 1 + n)
(
x2

2

)n
, α > −1.

Note that when α = 0, we find the classical Gaussian function ψ(x) = e− x2
2 .
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Proposition 10 The generalized Gaussian function satisfies the following

1. The function (x, t) #→ 1
(2t )β+1ψα

(
x√
2t

)
is the solution of the heat equation

�x(α,β)u (x, t) = ∂

∂t
u (x, t) .

2.

Fx(α,β)e−tx
2 = 1

(2t)β+1ψα

(
x√
2t

)
.

3. The function x #→ ψα (x) ∈ S.

Proof Refer to [5]. �

3.6 The Wave Kernel

As application, we introduce the generalized wave kernel function

W(α,β)(x) = (α + 1)

2β

∞∑
n=0

(2n+ 2β + 2)

(α + 1 + n)(β + 1 + n)
(

−x
2

2

)n
, α, β > −1.

Corollary 2 We have

W(α,β)(x) = F(α,β)
(
e−x

)
(x) . (11)

In particular W(α,β) ∈ S.
Proof To prove this assertion we write

F(α,β)
(
e−x

)
(x) = cβ

∫ ∞

0
e−t j(α,β)(tx)t2β+1dt

= cβ

∞∑
n=0

(α + 1)(β + 1)

(α + 1 + n)(β + 1 + n)
(x

2

)2n
[∫ ∞

0
e−t t2β+2n+1dt

]

= cβ

∞∑
n=0

(−1)n
(2n+ 2β + 2)(α + 1)(β + 1)

(α + 1 + n)(β + 1 + n)
(x

2

)2n

= (α + 1)

2β

∞∑
n=0

(2n+ 2β + 2)

(α + 1 + n)(β + 1 + n)
(

−x
2

2

)n
= W(α,β)(x).

The fact that ψ ∈ S leads to the result. �
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Proposition 11 The function (x, t) #→ W(α,β)(tx) is the solution of the wave
equation

�(α,β)u (x, t)+ ∂2

∂t2
u (x, t) = 0

Proof Now, recall that

�x(α,β)W(α,β)(tx) = �x(α,β)Fx(α,β)e−tx

= cβ
∫ ∞

0
e−tu�x(α,β)j(α,β)(ux)u

2β+1du

= cβ
∫ ∞

0
−u2e−tuj(α,β)(ux)u2β+1du

= −cβ
∫ ∞

0

∂2

∂t2
e−tuj(α,β)(ux)u2β+1du

= − ∂
2

∂t2
Fx(α,β)e−tx .

�
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On a Method of Solving Integral
Equation of Carleman Type on the Pair
of Segments

L. A. Khvostchinskaya

Abstract The method is considered of solving integral equations of Carleman type
on the pair of adjacent and disjoint segments. The problem is reduced to boundary
problem of Riemann with piecewise constant matrix and four and five singular
points. The solution is expressed via the solution of a differential equation of Fuchs
class in which it was possible to define all the parameters.

Keywords Integral equations of Carleman type · The canonical matrix ·
Riemann boundary value problem · Differential equation of the Fuchs class

In 1823, N. Abel considered and solved an integral equation

∫ x

a

ϕ (t)√
x − t dt = f (x) , x > a,

which describes the movement of a material point by gravity in a vertical plane
along a curve. Abel integral equations

1

 (α)

∫ x

a

ϕ (t)

(x − t)1−α dt = f (x) , 0 < α < 1, x > a,

arise when solving inverse problems in solid state physics (determining the potential
energy from the oscillation period or restoring the scattering field from the effective
glow in classical mechanics). Abel integral equation with constant limits

∫ b

a

ϕ (t)

|x − t|1−α dt = f (x) , 0 < α < 1, a < x < b, (1)
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it was decided by Carleman [1]. The unique solution to Eq. (1) is given by the
formula [2]

ϕ (x) = tg πα2

2π

d

dx

∫ x

a

f (t) dt

(x − t)α − sin2 πα
2

π2

d

dx

∫ x

a

(
b − t
t − a

) α
2 dt

(x − t)α ·

· d
dt

∫ t

a

dτ

(t − τ )1−α

∫ b

τ

(
s − a
b − s

) α
2 f (s) ds

(s − τ )α . (2)

Consider the integral equation of Carleman type
∫
L1

ϕ (t) dt

|x − t|α1
+

∫
L2

ϕ (t) dt

|x − t|α2
= f (x) , (3)

where α1, α2 are given real numbers, 0 < αk < 1, k = 1, 2, α1 �= α2, in the
following two cases:

1. on a pair of adjacent segments L1 = [a1, a2] , L2 = [a2, a3] ,
2. on a pair of disjoint segments L1 = [a1, b1] , L2 = [a2, b2] , b1 �= a2.

The solution ϕ (z) of problems (2) will be sought in the class of functions
satisfying the Hölder condition inside the segments and that are integrable at the
ends of segments, f (x) = fk (x) , x ∈ Lk, k = 1, 2, are corresponding Holder
functions.

Solution of Eq. (3) in the case a3 = ∞ was constructed in [3] explicitly and
expressed in terms of hypergeometric functions. It was also noted here that when
a3 �= ∞ solution of Eq. (3) is much more complicated.

Equation (3) is a generalization of the Carleman equation (2). Let us reduce the
integral equation (3) to the Riemann vector-matrix boundary value problem and
construct a solution of this equation in each of the two cases, using the results of
[4–7].

We construct the solution of the integral equation (3) on a pair of adjacent
segments:

∫ a2

a1

ϕ (t) dt

|x − t|α1
+

∫ a3

a2

ϕ (t) dt

|x − t|α2
= f (x) , a1 < x < a3. (4)

We write Eq. (4) in the form of a system of three equations
∫ a2

a1

ϕ1 (t) dt

|x − t|α1
+

∫ a3

a2

ϕ2 (t) dt

(t − x)α2
= f1 (x) , a1 < x < a2,

∫ a2

a1

ϕ1 (t) dt

(x − t)α1
+

∫ a3

a2

ϕ2 (t) dt

|x − t|α2
= f2 (x) , a2 < x < a3, (5)

∫ a2

a1

ϕ1 (t) dt

(x − t)α1
+

∫ a3

a2

ϕ2 (t) dt

(x − t)α2
= 0, a3 < x <∞.
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We introduce two new unknown functions

�k (z) =
∫ ak+1

ak

ϕk (t) dt

(t − z)αk , k = 1, 2,

which are analytic in the complex plane z with the cut along the ray (a1,∞). Find
the limiting values of these functions on the banks of the section.

For a1 < x < a2 we get �±
1 (x) = e±πiα1

∫ x
a1

ϕ(t)dt
(x−t )α1 + ∫ a2

x
ϕ(t)dt
(x−t )α1 , where we

find

∫ a2

a1

ϕ (t) dt

|x − t|α1
= eπiα1�+

1 (x)+�−
1 (x)

1 + eπiα1
,�+

2 (x) = �−
2 (x) =

∫ a3

a2

ϕ (t) dt

(t − x)α2

(6)

Similarly for a2 < x < a3 we get

∫ a3

a2

ϕ (t) dt

|x − t|α2
= eπiα2�+

2 (x)+�−
2 (x)

1 + eπiα2
,�+

1 (x) = e−2πiα1�−
1 (x) =

= e−πiα1

∫ a2

a1

ϕ (t) dt

(x − t)α1
. (7)

For a3 < x <∞
�+

1 (x) = e−πiα1�−
1 (x) , �+

2 (x) = e−πiα2�−
2 (x) . (8)

Using formulas (6)–(8), we rewrite system (5) as boundary conditions for two
functions�1 (z) and�2 (z) [8–10]:

{
�+

1 (x) = −eπiα1�−
1 (x)−

(
1 + e−πiα1

)
�−

2 (x)+
(
1 + e−πiα1

)
f1 (x) ,

�+
2 (x) = �−

2 (x) , a1 < x < a2,

{
�+

1 (x) = e−2πiα1�−
1 (x) , a2 < x < a3,

�+
2 (x) = −e−πiα1

(
1 + e−πiα2

)
�−

1 (x)− e−πiα2�−
2 (x)+

(
1 + e−πiα2

)
f2 (x) ,

{
�+

1 (x) = e−2πiα1�−
1 (x) ,

�+
2 (x) = e−2πiα2�−

2 (x) ,
a3 < x <∞.

So we have obtained the Riemann boundary value problem for the vector function
�(z) = (

�1 (z) ,�2 (z)
)

with a piecewise constant matrix and four singular points
a1, a2, a3,∞:

�+ (x) = Ak�− (x)+ Fk (x) , ak < x < ak+1, k = 1, 2, 3; a4 = ∞, (9)

A1 =
(−e−πiα1 − (

1 + e−πiα1
)

0 1

)
, F1 (x) =

((
1 + e−πiα1

)
f1 (x)

0

)
,



434 L. A. Khvostchinskaya

A2 =
(

e−πiα1 0
−e−πiα1

(
1 + e−πiα2

) −e−πiα2

)
, F2 (x) =

(
0(

1 + e−πiα2
)
f2 (x)

)
,

A3 =
(
e−2πiα1 0

0 e−2πiα2

)
, F3 (x) =

(
0
0

)
.

The solution of problems (9) will be sought in the class of functions that are bounded
as z → ak, k = 1, 2, 3, and disappearing at infinity.

In order to solve the inhomogeneous boundary value problem (9), it is necessary
to construct a canonical matrix X (z) corresponding homogeneous boundary value
problem. The columns of the matrix X (z) consist of linearly independent solutions
of a homogeneous boundary problem

�+ (x) = Ak�− (x) , ak < x < ak+1, k = 1, 2, 3; a4 = ∞, (10)

and orders p1, p2 first and second columns X (z) at infinity satisfy inequality p1 ≤
p2. The matrix X (z) has the following properties [11]:

1. detX (z) �= 0 for ∀z �= ak (k = 1, 2, 3);
2. the columns of the matrix X (z) belong to the selected class of functions;
3. the order of the determinantX (z) is equal to the sum of the orders of its columns.

If the matrixX (z)multiply on the left by a constant nondegenerate second-order
upper triangular matrix T , then the matrix X (z) T will also be canonical, since the
orders of the determinant and the columns of the matrix will not change.

The canonical matrix X (x) of homogeneous boundary value problem (10) is a
solution of a system of differential equations of Fuchs class with four singular points
a1, a2, a3,∞ [12]:

dX

dz
= X

3∑
k=1

Uk

z− ak , (11)

moreover, differential matrices Uk like matrices Wk = 1
2πi lnAk−1A

−1
k , k =

1, . . . , 4, A0 = A4 = E. Matrices Vk = Ak−1A
−1
k , k = 1, . . . , 4, form a

monodromy group of a differential equation (11) [13–15].
Find differential matrices Uk systems (11) by the “logarithmization method of

matrix product” of the 2nd order [4].
Let V1, V2 be constant non-degenerate matrices of the 2nd order, V3 = V1 V2.

Equality ln (V1V2) = lnV1 + lnV2 is valid only for transitive matrices. Denote
by αk, βk the characteristic numbers of matrices Vk and by ρk = 1

2πi ln αk , σk =
1

2πi lnβk the characteristic numbers of matricesWk = 1
2πi lnVk , k = 1, 2,3. Fix any

branches of logarithms ρ1, σ1, ρ2, σ2 so that |Re (ρk − σk)| < 1, k = 1, 2. Then
the branches of logarithms for ρ3, σ3 should be consistent and selected from the
condition ρ1 + σ1 + ρ2 + σ2 = ρ3 + σ3.
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If ρ3 �= σ3, then the matrix S =
(
ρ3 0
0 σ3

)
uniquely accurate to a similarity

transformation using a diagonal matrix can be represented as the sum of two
matrices S = S1 + S2, where Sk ∼ Wk, k = 1, 2. The last equality can be written as

(
ρ3 0
0 σ3

)
=

(
ρ1σ1−(ρ3−ρ2)(ρ3−σ2)

σ3−ρ3

(ρ3−ρ1)(σ3−σ1)−ρ2σ2
σ3−ρ3

c
ρ2σ2−(ρ3−σ1)(σ3−ρ1)

c(σ3−ρ3)
(σ3−ρ2)(σ3−σ2)−ρ1σ1

σ3−ρ3

)
+

+
(
ρ2σ2+(ρ3−ρ1)(ρ3−σ1)

σ3−ρ3

ρ2σ2−(ρ3−ρ1)(σ3−σ1)
σ3−ρ3

c
(ρ3−σ1)(σ3−ρ1)−ρ2σ2

c(σ3−ρ3)
(σ3−ρ1)(σ3−σ1)−ρ2σ2

σ3−ρ3

)
(12)

where c is an arbitrary constant. If ρ3 = ρ1 + ρ2, σ3 = σ1 + σ2, then matrices V1,
V2 are reduced by a single similarity transformation to a triangular form and simpler
matrix representations take place S:

(
ρ3 0
0 σ3

)
=

(
ρ1 c

0 σ1

)
+

(
ρ2 −c
0 σ2

)
, (13)

(
ρ3 0
0 σ3

)
=

(
ρ1 0
c σ1

)
+

(
ρ2 0
−c σ2

)
. (14)

Let V1, V2, V3 be constant non-degenerate matrices of the 2nd order, V4 =
V1V2V3. Denote by αk, βk the characteristic numbers of matrices Vk and by
ρk = 1

2πi lnαk , σk = 1
2πi ln βk the characteristic numbers of matrices Wk =

1
2πi lnUk , k = 1, . . . , 4, where the branches of logarithms satisfy the conditions
|Re (ρk − σk)| < 1 and

3∑
k=1

(ρk + σk) = ρ4 + σ4. (15)

If ρ4 �= σ4, then the matrixW4 is reduced to diagonal Jordan form S =
(
ρ4 0
0 σ4

)
.

Representation of the matrix S as the sum of three matrices S = S1 +S2 +S3, where
Sk ∼ Wk , k = 1, 2, 3, we get from the formulas (12)–(14). We write the product of
matrices V1 · V2 · V3 in the form of multiplication of two matrices as follows:

V4 = V1 · V2 · V3 = V1 · (V2 · V3) = V1 · V23,

V4 = V1 · V2 · V3 = (V1 · V2) · V3 = V12 · V3.

Therefore, we need to find the characteristic numbers α12, β12 and α23, β23
respectively matrices V12, V23 and numbers ρ12 = 1

2πi ln α12, σ12 = 1
2πi ln β12,
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ρ23 = 1
2πi lnα23, σ23 = 1

2πi lnβ23, whose branches are chosen from the conditions
ρ12 +σ12 = ρ1 +σ1 +ρ2 +σ2, |Re (ρ12 − σ12)| < 1, ρ23 +σ23 = ρ2 +σ2 +ρ3 +σ3,
|Re (ρ23 − σ23)| < 1.

We write the matrices V1, V2, V3, V4 monodromy groups of problem (10) and
their characteristic numbers λk , μk .

(
k = 1, 4

)
:

V1 = A−1
1 =

(−eπiα1 − (
1 + eπiα1

)
0 1

)
,

V2 = A1A
−1
2 =

(−eπiα1 + (
1 + eπiα1

) (
1 + eπiα2

)
eπiα2

(
1 + e−πiα1

)
−eπiα1

(
1 + eπiα2

) −eπiα2

)
,

V3 = A2A
−1
3 =

(
1 0

−eπiα1
(
1 + e−πiα2

) −eπiα2

)
,

V4 = A3, λ1 = −eπiα1, μ1 = 1;
λ2 = −1, μ2 = −eπi(α1+α2); λ3 = 1, μ3 = −e−πiα2; λ4 = e−2πiα1,

μ4 = e−2πiα2 .

Next we find the numbers ρk = 1
2πi lnλk , 0 ≤ Reλk < 1, σk = 1

2πi lnμk , 0 ≤
Reσk < 1, k = 1, 4, 0 ≤ Reλk < 1, ρ1 = 1+α1

2 , σ1 = 0; ρ2 = 1
2 , σ2 = α1+α2+1

2 ;

ρ3 = 0, σ3 = 1+α2
2 ; ρ4 = 1 − α1, σ4 = 1 − α2, � = ∑4

k=1 (ρk + σk) = 4.
The behavior of the solution of problem (9) at infinity determine the numbers

ρ = ρ4 − 1 = −α1, σ = σ4 − 2 = −α2 − 1, if α1 > α2 and ρ = ρ4 − 2 = −α1 − 1,
σ = σ4 − 1 = −α2, if α1 < α2.

Numbers ρk , σk (k = 1, 2, 3), ρ, σ satisfy the Fuchs relation:

3∑
k=1

(ρk + σk)+ ρ + σ = 1. (16)

The total index κ and partial indices æ1, æ2 of the problem (9) are respectively
equal æ = −� = −4, æ1 = æ2 = −2, those problem (9) will be solvable if four
solvability conditions are satisfied.

We also find the characteristic numbers λ12, μ12 and λ23, μ23 of the matrices

V12 = V1 · V2 = A−1
2 =

(
e2πiα1 0

−eπi(α1+α2)
(
1 − e−πiα2

) −eπiα2

)
,

λ12 = −eπiα1, μ12 = −eπiα2;
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V23 = V2 · V3 = A1 · A−1
3 =

(−eπiα1 −e2πiα2
(
1 + e−πiα1

)
0 e2πiα2

)
,

λ23 = −eπiα1, μ23 = e2πiα2 .

Branches of logarithms of numbers ρk,k+1 = 1
2πi ln λk,k+1 and σk,k+1 =

1
2πi lnμk,k+1 should be conditions

ρ12+σ12 = ρ1+σ1+ρ2+σ2 = 1+α1+ 1 + α2

2
⇒ ρ12 = 1+α1, σ12 = 1 + α2

2
,

ρ23+σ23 = ρ2+σ2+ρ3+σ3 = 1+α2+ 1 + α1

2
⇒ ρ23 = 1 + α1

2
, σ12 = 1+α2.

Comparing formulas (15) and (16), we notice that ρ4 + σ4 = 1 − ρ − σ , those

ρ4 = 1 − ρ, σ4 = −σ , if α1 > α2,
ρ4 = 1 − σ , σ4 = −ρ, if α1 < α2.

Denote by S =
(− min (ρ, σ ) 0

0 1 − max (ρ, σ )

)
=

(
1 + α1 0

0 1 + α2

)
.

Imagine the matrix S as the sum of three matrices using the representations (13)
and (14):

S = S1 + S2 + S3 = S1 + S23 = S12 + S3, (17)

where

Sk ∼ 1

2πi
lnVk, S12 ∼ 1

2πi
lnV12, S23 ∼ 1

2πi
lnV23.S1 + S23 = S ⇒

( 1+α1
2 c

0 0

)
+

( 1+α1
2 −c
0 α2 + 1

)
=

(
1 + α1 0

0 1 + α2

)
, S12 + S3 = S ⇒

(
α1 + 1 0
d α2+1

2

)
+

(
0 0

−d 1+α2
2

)
=

(
1 + α1 0

0 1 + α2

)
,

where c, d are arbitrary constants. From (17) it follows that

S2 = S23 − S3 = S12 − S1 =
( 1+α1

2 −c
d 1+α2

2

)
.
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Since S2 ∼ 1
2πi lnV2, that detS2 = ρ2 ·σ2, or 1+α1

2 · 1+α2
2 +c·d = 1

2 · 1+α1+α2
2 ⇒

c · d = − 1
4α1 · α2. Matrices Sk (k = 1, 2, 3) are differential matrices of system

(11), which takes the form

dX

dz
= X

⎡
⎢⎢⎢⎣

(
(1 + α1) /2 c

0 0

)

z− a1
+

(
(1 + α1) /2 −c
−α1 · α2/4c (1 + α2) /2

)

z− a2
+

+

(
0 0

α1 · α2/4c (1 + α2) /2

)

z− a3

⎤
⎥⎥⎥⎦ , (18)

where c is an arbitrary constant.

Let be X (z) =
(
u (z) u1 (z)

v (z) v1 (z)

)
. Substituting this matrix into Eq. (18), we obtain

the following system of differential equations connecting the functions u (z) and
u1 (z):

u′ = ρ1

(
1

z−a1
+ 1
z−a2

)
u+ d

(
1

z−a3
− 1
z−a2

)
u1,

u′
1 = c

(
1

z−a1
− 1
z−a2

)
u+ σ2

(
1

z−a3
+ 1
z−a3

)
u1

(19)

Functions v (z) and v1 (z)are also solutions of the system (19). Express the
function from the first equation of system (19)

u1 = (z− a2) (z− a3)

d (a3 − a2)

[
u′ − ρ1

(
1

z− a1
+ 1

z− a2

)
u

]

and substitute it into the second equation. We obtain a second-order differential
equation whose fundamental system of solutions are functions u (z)andv (z). This
is a differential equation of Fuchs class with four singular points a1, a2, a3, ∞:

u′′ − 1
2

(
α1+1
z−a1

+ α1+α2
z−a2

+ α2−1
z−a3

)
u′ + 1

4

(
2(α1+1)
(z−a1)

2 + α1+α2+1
(z−a2)

2 +
+ (4α1α2+3(α1−α2−1))z+(α1−α2−2α1α2+1)(a1−a3)+(α1−α2+1)a2

(z−a1)(z−a2)(z−a3)

)
u = 0

(20)

In the neighborhood of each singular point ak (k = 1, 2, 3) Eq. (20) has 2 linearly
independent solutions, representable by series of the form

uk (z) = (z− ak)ρk
∞∑
n=0

c(k)n (z − ak)n ,

vk (z) = (z− ak)σk
∞∑
n=0

d(k)n (z− ak)n , (21)
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whose coefficients are found directly from the recurrence relations after substituting
the series in the equation. The canonical matrix of the problem (9) in the neighbor-
hood of each singular point is given by the formula

X (z) = Dk
⎛
⎝uk (z− a2) (z− a3)

[
u′
k − α1+1

2

(
1

z−a1
+ 1
z−a2

)
uk

]

vk (z− a2) (z− a3)

[
v′
k − α1+1

2

(
1

z−a1
+ 1
z−a2

)
vk

]
⎞
⎠ ,

k = 1, 2, 3, where Dk are matrices transforming the matrices Vk to a Jordan form.
The solution of the boundary value problem (9) is found by the formula

�(z) = 1

2πi
X(z)

3∑
k=1

∫ ak+1

ak

[
X+(x)

]−1
Fk(x)

dx

x − z =

= 1

2πi
X(z)

[∫ a2

a1

[
X+(x)

]−1
F1(x)

dx

x − z +
∫ a3

a2

[
X+(x)

]−1
F2(x)

dx

x − z
]
.

Considering that X+ (x) = AkX
− (x) , ak < x < ak+1, k = 1, 2, 3, and

applying the Sokhotsky formulas, as well as formulas (6) and (7), we find the
integrals

∫ ak+1

ak

ϕ (t) dt

|x − t|αk = gk (x) , k = 1, 2. (22)

Reversing equations (22) using formulas (2), we obtain a unique solution to the
integral equation (4) when two matrix solvability conditions are satisfied

∫ a2

a1

[
X+ (x)

]−1
F1 (x) x

kdx +
∫ a3

a2

[
X+ (x)

]−1
F2 (x) x

kdx = 0, k = 1, 2.

We now consider the Carleman integral equation on a pair disjoint segments.

∫ b1

a1

ϕ (t)

|x − t|α1
dt +

∫ b2

a2

ϕ (t)

|x − t|α2
dt = f (x) , x ∈ [a1, b1]

⋃
[a2, b2] , (23)

where α1, α2 are given real numbers, 0 < αk < 1, k = 1, 2, α1 �= α2, a1 < b1 <

a2 < b2.
We introduce two new unknown functions

�k (z) =
∫ bk

ak

ϕk (t)

(t − z)αk dt, k = 1, 2, ϕk (t) = ϕ (t) , t ∈ [ak, bk] ,

which are analytic in the complex plane z with a cut along the ray (a1,∞). Find the
limiting values of these functions on the banks of the section.
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For a1 < x < b1 we get

�±
1 (x) = e±πiα1

∫ x

a1

ϕ (t) dt

(x − t)α1
+

∫ b1

x

ϕ (t) dt

(x − t)α1
,

where we find

∫ b1

a1

ϕ (t) dt

|x − t|α1
= eπiα1�+

1 (x)+�−
1 (x)

1 + eπiα1
,

�+
2 (x) = �−

2 (x) =
∫ b2

a2

ϕ (t) dt

(t − x)α2
. (24)

Similarly for a2 < x < b2 we get

∫ b2

a2

ϕ (t) dt

|x − t|α2
= eπiα2�+

2 (x)+�−
2 (x)

1 + eπiα2
,�+

1 (x) = e−2πiα1�−
1 (x) =

= e−πiα1

∫ b1

a1

ϕ (t) dt

(x − t)α1
(25)

For b1 < x < a2

�+
1 (x) = e−2πiα1�−

1 (x) ,�
+
2 (x) = �−

2 (x) .

For b2 < x <∞

�+
1 (x) = e−2πiα1�−

1 (x) ,�
+
2 (x) = e−2πiα2�−

2 (x) .

We write the system of boundary conditions for two functions�1 (z) and�2 (z):

{
�+

1 (x) = −eπiα1�−
1 (x)−

(
1 + e−πiα1

)
�−

2 (x)+
(
1 + e−πiα1

)
f1 (x) ,

�+
2 (x) = �−

2 (x) , a1 < x < b1,

{
�+

1 (x) = e−2πiα1�−
1 (x) ,

�+
2 (x) = �−

2 (x) ,
b1 < x < a2.

{
�+

1 (x) = e−2πiα1�−
1 (x) , a2 < x < b2,

�+
2 (x) = −e−πiα1

(
1 + e−πiα2

)
�−

1 (x)− e−πiα2�−
2 (x)+

(
1 + e−πiα2

)
f2 (x) ,

{
�+

1 (x) = e−2πiα1�−
1 (x) ,

�+
2 (x) = e−2πiα2�−

2 (x) ,
b2 < x <∞.
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So we have obtained the Riemann boundary value problem for the vector function
�(z) = (

�1 (z) ,�2 (z)
)

with a piecewise constant matrix and five singular points
a1, b1, a2, b2, ∞:

�+ (x) = Ak�− (x)+ Fk (x) , x ∈ lk, k = 1, 2, 3, 4; (26)

l1 ∈ (a1, b1) , l2 ∈ (b1, a2) , l3 ∈ (a2, b2) , l4 ∈ (b2,∞) ,

A1 =
(−e−πiα1 − (

1 + e−πiα1
)

0 1

)
, A2 =

(
e−2πiα1 0

0 1

)
,

F1 (x) =
((

1 + e−πiα1
)
f1 (x)

0

)
, A3 =

(
e−2πiα1 0

−e−πiα1
(
1 + e−πiα2

) −e−πiα2

)
,

A4 =
(
e−2πiα1 0

0 e−2πiα2

)
, F3 (x) =

(
0(

1 + e−πiα2
)
f2 (x)

)
,

F2 (x) = F4 (x) =
(

0
0

)
, fk (x) = f (x) , x ∈ [ak, bk] , k = 1, 2.

Find the characteristic numbers λk, μk, k = 1, 5, of the monodromy matrices
Vk = Ak−1A

−1
k , A0 = A5 = E and numbers ρk = 1

2πi lnλk , σk = 1
2πi lnμk ,

0 ≤ Reρk < 1, 0 ≤ Reσk < 1, and characteristic numbers and corresponding
logarithms of matrices V1V2, V3V4, V1V2V3, V2V3V4:

V1 = A−1
1 , V2 = A1A

−1
2 , λ1 = λ2 = −eπiα1, μ1 = μ2 = 1;

ρ1 = ρ2 = (1 + α1)/2, σ1 = σ2 = 0,

V3 = A2A
−1
3 , V4 = A3A

−1
4 , λ3 = λ4 = 1, μ3 = μ4 = −e−πiα2,

ρ3 = ρ4 = 0, ρ3 = ρ4 = (1 + α2)/2,

V5 = A4, λ5 = e−2πiα1, μ5 = e−2πiα2, ρ5 = 1 − α1, σ5 = 1 − α2,

V12 = V1 · V2 = A−1
2 , λ12 = e2πiα1, μ12 = 1, ρ12 = α1, σ12 = 1,

V34 = V3 · V4 = A2 ·A−1
4 , λ34 = 1, μ34 = e2πiα2, ρ34 = 1, σ34 = α2,

V123 = V1 · V2 · V3 = A−1
3 , λ123 = e2πiα1, μ123 = −e−πiα2,

ρ123 = 1 + α1, σ123 = (1 + α2)/2,

V234 = V2 · V3 · V4 = A1A
−1
4 , λ234 = −e−πiα1 , μ234 = e2πiα2,

ρ234 = (1 + α1)/2, σ234 = 1 + α2.
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The branches of the logarithms of monodromy matrix products are chosen from
the conditions

ρ12 + σ12 = ρ1 + σ1 + ρ2 + σ2, ρ123 + σ123 = ρ1 + σ1 + ρ2 + σ2 + ρ3 + σ3

etc.
The behavior of the solution of problem (26) at infinity determine the numbers

ρ = ρ5 − 1 = −α1, σ = σ5 − 2 = −α2 − 1, if α1 > α2 and
ρ = ρ5 − 2 = −α1 − 1, σ = σ5 − 1 = −α2, if α1 < α2.

The numbers ρk ,σk(k = 1, 2, 3, 4),ρ,σ satisfy the Fuchs relation:

4∑
k=1

(ρk + σk)+ ρ + σ = 1.

The total index κ and partial indices æ1, æ2 of the problem (9) are respectively equal
æ = −∑5

k=1 (ρk + σk) = −4, æ1 = æ2 = −2, those problem (24) has a unique
solution.

The canonical matrix X (x) of homogeneous boundary value problem

X+ (x) = AkX− (x) , x ∈ lk, k = 1, 2, 3, 4,

is a solution of a system of differential equations of Fuchs class

dX

dz
= X

4∑
k=1

Uk

z− ak , (27)

where Uk˜ 1
2πi lnVk , k = 1, . . . , 4. Denote by

S =
(− min (ρ, σ ) 0

0 1 − max (ρ, σ )

)
=

(
1 + α1 0

0 1 + α2

)

and imagine the matrix S as the three sums of matrices:

S = S1 + S234 = S123 + S4 = S12 + S34, (28)

where

Sk ∼ 1

2πi
lnVk, S12 ∼ 1

2πi
lnV12, S34 ∼ 1

2πi
lnV34,

S234 ∼ 1

2πi
lnV234, S123 ∼ 1

2πi
lnV123.
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Knowing the characteristic numbers and their logarithms of monodromy matrices
and their products, we write three representations of the matrix S: S1 + S234 =
S ⇒

(
(1 + α1)/2 c1

0 0

)
+

(
(1 + α1)/2 −c1

0 1 + α2

)
=

(
1 + α1 0

0 1 + α2

)
,

S12 + S34 = S ⇒
(
α1 0
c2 1

)
+

(
1 0

−c2 α2

)
=

(
1 + α1 0

0 1 + α2

)
, (29)

S123 + S4 = S ⇒
(

1 + α1 c3

0 (1 + α2)/2

)
+

(
0 −c3

0 (1 + α2)/2

)
=

=
(

1 + α1 0
0 1 + α2

)
,

where c1, c2, c3 are arbitrary constants. From formulas (28), (29) it follows that

S2 = S12 − S1 = S234 − S34 =
(
(α1 − 1)/2 −c1

c2 1

)
,

S3 = S123 − S12 = S34 − S4 =
(

1 c3

−c2 (α2 − 1)/2

)
.

So detS2 = ρ2 ·σ2 = 0 and det S3 = ρ3 ·σ3 = 0, constants c1, c2, c3 are related by:

c1c2 = 1−α1
2 , c2c3 = 1−α2

2 , where do we find that c1 = 1−α1
2c2
, c3 = 1−α2

2c2
.

Matrices Sk (k = 1, 2, 3, 4) are differential matrices of system (27), which takes
the form

dX

dz
= X

⎡
⎢⎢⎢⎣

(
(1 + α1) /2 (1 − α1) /2c

0 0

)

z− a1
+

(
(α1 − 1) /2 (α1 − 1) /2c

c 1

)

z− a2
+

+

(
1 (1 − α2) /2c

−c (α2 − 1) /2

)

z− a3
+

(
0 (α2 − 1) /2c
0 (α2 + 1) /2

)

z− a4

⎤
⎥⎥⎥⎦ ,
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where c is an arbitrary constant. The elements of the matrix are solutions of a
differential equation of Fuchs class with five singular points a1, b1, a2, b2, ∞:

u′′ − 1

2

(
α1 + 1

z − a1
+ α1 − 1

z− a2
+ α2 − 1

z− a3
+ α2 + 1

z− a4

)
u′+ (30)

+1

4

(
2 (α1 + 1)

(z− a1)
2

+ 2 (α1 − 1)

(z− a1) (z − a2)
+ + (α1 + 1) (α2 − 1)− 4α1

(z− a1) (z − a3)
+

+ (α1 + 1) (α2 + 1)

(z− a1) (z− a4)
+ + (α1 + 1) (α2 − 1)

(z − a2) (z− a3)
+ (α1 + 1) (α2 + 1)− 4α2

(z − a2) (z− a4)
+

+ 4α2

(z− a3) (z − a4)

)
u = 0.

In the neighborhood of each singular point equation (30) has 2 linearly indepen-
dent solutions, representable by series of the form (22).

The canonical matrix X (z) of the problem (26) in the neighborhood of each
singular point is given by the formula

X (z) = Dk
⎛
⎝uk (z− b1) (z − a2)

[
u′
k − 1

2

(
α1+1
z−a1

+ α1−1
z−b1

+ 2
z−a2

)
uk

]

vk (z − b1) (z− a2)
[
v′
k − 1

2

(
α1+1
z−a1

+ α1−1
z−b1

+ 2
z−a2

)
vk

]
⎞
⎠ ,

k = 1, 2, 3, 4, whereDk are matrices transforming the matrices Vk to a Jordan form.
The only solution to problem (26) is found by the formula

�(z) = 1

2πi
X (z)

[∫ b1

a1

[
X+ (x)

]−1
F1 (x)

dx

x − z +
∫ b2

a2

[
X+ (x)

]−1
F3 (x)

dx

x − z
]
.

Using the Sokhotsky formulas and formulas (25) and (26), we find the integrals∫ bk
ak

ϕ(t)dt

|x−t |λk = gk (x) , k = 1, 2. Reversing the last equations, we find the only

solution to the integral equation (24) when two matrix (four scalar) resolvability
conditions are satisfied:

∫ b1

a1

[
X+ (x)

]−1
F1 (x) x

kdx +
∫ b2

a2

[
X+ (x)

]−1
F3 (x) x

kdx = 0, k = 1, 2.
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Transmutation Operators Boundary
Value Problems

Sergei M. Sitnik, Oleg Yaremko, and Natalia Yaremko

Abstract Transmutation operators method is used to solve and study boundary
value problems. In this paper several ways to obtain transformation operators are
considered: the finite integral transforms, Neumann series, the Fourier transforms,
and reflection techniques. The finite integral transform technique leads to solution
in the form of a composition of the Fourier sine transform and inverse finite integral
transform. The Neumann series technique implies decomposition of the solution in
power series of the shift operator. The Fourier transform technique provides transi-
tion to the Fourier images and comparison with the model boundary value problem.
Reflection technique involves a consistent approach to the solution as a reflection
from the borders. In all cases, the solution of the boundary value problem is obtained
as an expansion in the solutions of the model boundary value problem. In some
cases, the sum of a series can be calculated in elementary functions. New formulas
have been found for solving the Dirichlet problem in a three-dimensional layer.

Keywords Transmutation operators · Boundary value problems · Integral
transforms · Laplace equation · Poisson operator
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K. Weierstrass, S. D. Poisson N. Y. Sonin and are used in mathematical physics
[2–4, 6–8, 10, 14, 17, 18]. S.M. Sitnik [17] describes the general definition of the
transmutation operator, see Definition 1 in [15].

Definition 1 An operator J is called the transmutation operator if for operatorsA,B
the following condition holds

JA = BJ.

If the solution y = B−1x of the model problem By = x is known, then the solution
of the new problemAz = x can be found using the transmutation operator J by the
formula z = J−1B−1Jx. If we select

A = d2

dx2 , B = Bα = d2

dx2 + 2α + 1

x
,

Bα—the Bessel operator, then the transmutation operator J = P0 is the Poisson
operator [17]

P0 [f (x)] = 2

π

∫ 1

0

f (εx)√
1 − ε2

dε.

The transmutation operator has the form P0 = H−1Fc, here H is the Hankel
transform, and Fc is the Fourier cosine transform.

In the article, we clarify the concept of a transmutation operator in order to solve
boundary value problems for potential theory. For this, we consider two boundary
value problems for the Laplace equation

{
u′′
xx + u′′

yy = 0, 0 < x,−∞ < y < ∞;
u (0, y) = g (y) ;

{
ũ′′
xx + ũ′′

yy = 0, 0 < x,−∞ < y < ∞;
̃ũ (0, y) = g (y) .

Below in Definition 2 we define the transmutation operator associated with bound-
ary conditions. The transmutation operator establishes an isomorphism of these
boundary value problems.

Definition 2 Let two boundary operators ̃,  be given. An operator J is called the
transmutation operator if the following conditions hold:

(1) the transmutation operator J and operator d2

dx2 are permutable,

(2) ̃J = .

In contrast to the general case [17], Definition 2 introduces special transmutation
operators that take into account boundary conditions.The introduced operators are
permutable with the Laplace operator, they transform the harmonic function into
a harmonic function and change the type of boundary conditions.For example, the
Dirichlet problem in a semi-plane is transformed into a boundary value problem
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with non-local boundary conditions. The transmutation operators introduced in the
article (see Definition 2) establish a functional connection between the different
boundary-value problems of the potential theory. Moreover, the properties of the
solution of a new boundary value problem are determined by the properties of the
solution of the model boundary value problem. The transmutation operator allows
us to obtain the solution of a boundary value problem in the form of Neumann series,
more convenient when implemented on a computer.The members of the Neumann
series are powers of the shift operator, therefore, the calculations are cyclical.In
addition, the usage of transmutation operators allows us to clarify the structure of
potential field and present it as a sum of field reflections from domain boundary.
Further, in Sect. 2 we present four ways to construct the transmutation operators:
The finite integral transforms technique, Reflection method, the Fourier trans-
form technique, Neumann series technique. The main results and conclusions are
formulated in Sects. 3 and 4.

2 Materials and Methods

2.1 The Finite Integral Transforms Technique

The transmutation operators technique is based on the study of a pair of Sturm-
Liouville problems. The transmutation operator establishes an isomorphism of the
singular and regular Sturm-Liouville problems [5, 13]. For the most important cases
in applications, an explicit expression for the transmutation operators is found.

2.1.1 Sturm–Liouville Problem with Dirichlet Boundary Conditions

Let’s consider the Sturm–Liouville problem on finding nontrivial solutions on the
interval (0, π)

{
y ′′ + λ2y = 0,

y (0) = 0, y (π) = 0.

The eigenvalues have the form λk = k, k = 1, 2, 3, . . ., and the corresponding
eigenfunctions are yk (x) = sin kx, k = 1, 2, 3, . . . Let the function y = f (x) be
defined on the segment [0, π] and f̂ (k) be its the Fourier integral transform

f̂ (k) =
∫ π

0
sin kxf (x) dx. (1)

Then the functiony = f (x) can be represented

f (x) = 2

π

∞∑
k=1

f̂ (k) sin kx. (2)
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For the function y = F (x) on the interval [0,∞) we consider the Fourier sin
transforms on the real semi-axis, direct:

F̂ (λ) =
∫ ∞

0
sinλxF (x) dx,

inverse:

F (x) = 2

π

∫ ∞

0
sin λxF̂ (λ) dλ.

Let the function y = f (x) on the interval [0, π] corresponds to the function F̂ (λ)
by formula (2):

f (x) = 2

π

∞∑
k=1

F̂ (k) sin kx, x ∈ [0, π] .

The mapping J : F → f is a transmutation operator

J [F ] (x) ≡ f (x) = 2

π

∞∑
k=1

F̂ (k) sin kx.

Let the function F (x) be sufficiently smooth and decreases sufficiently rapidly
at infinity so that all arising integrals and series converge. We will transform the
function F̂ (k):

F̂ (k) =
∫ ∞

0
sin kxF (x) dx =

= ∑∞
j=0

(∫ 2πj+π
2πj sin kxF (x) dx + ∫ 2πj+2π

2πj+π sin kxF (x) dx
)

=
= ∑∞

j=0

∫ π
0 sin kxF (x + 2πj) dx + ∫ 2π

π
sin kxF (x + 2πj) dx =

= ∑∞
j=0

∫ π
0 sin kxF (x + 2πj) dx − ∫ π

0 sin kxF (2π − x + 2πj) dx =
= ∑∞

j=0

∫ π
0 sin kx (F (x + 2πj)− F (2π − x + 2πj)) dx =

= ∫ π
0 sin kx

∑∞
j=0 (F (x + 2πj)− F (2π − x + 2πj)) dx.

We find the original y = f (x) by formula (2). The transmutation operator J has
the form:

J [F ] (x) = f (x) = 2
π

∑∞
k=1 F̂ (k) sin kx =

= ∑∞
j=0 (F (x + 2πj)− F (2π − x + 2πj)) .

(3)
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To apply the transmutation operator (3), we consider the Dirichlet problem for the
strip

{
u′′
xx + u′′

yy = 0, 0 < x < π,−∞ < y <∞;
u (0, y) = g (y) , u (π, y) = 0,

(4)

and the Dirichlet problem for the semi-plane

{
ũ′′
xx + ũ′′

yy = 0, 0 < x,−∞ < y <∞;
ũ (0, y) = g (y) . (5)

Using the transmutation operator (3), we establish relation of problems (4) and (5)

u (x, y) = J [
ũ (x, y)

] =
∞∑
j=0

(ũ (x + 2πj, y)− ũ (2π − x + 2πj, y)) . (6)

Based on Poisson’s formula for a semi-plane

ũ (x, y) = 1

π

∫ ∞

−∞
x

x2 + (y − η)2 g (η) dη,

and on identity from [12], we get

∞∑
j=0

(
x + 2πj

(x + 2πj)2 + (y − η)2 − 2π − x + 2πj

(2π − x + 2πj)2 + (y − η)2
)

= 1

2

sin x

ch (y − η)− cos x
.

(7)

Formula (7) is established for solving the Dirichlet problem in the strip [13]

u (x, y) = 1

2π

∫ ∞

−∞
sin x

ch (y − η)− cos x
g (η) dη.

2.1.2 Sturm–Liouville Problem with Neumann Boundary Conditions

Sturm–Liouville problem with Neumann boundary conditions is to find non-trivial
solutions on the interval (0, π)

{
y ′′ + λ2y = 0,

y ′ (0) = 0, y ′ (π) = 0.
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The eigenvalues have the form λk = k, k = 0, 1, 2, 3, . . ., and the corresponding
eigenfunctions are yk (x) = cos kx, k = 0, 1, 2, 3, . . . Let a function y = f (x) be
given on a segment [0, π] and f̂ (k) be its the finite Fourier transform

f̂ (k) =
∫ π

0
cos kxf (x) dx. (8)

Then the conversion formula has the form:

f (x) = 2

π

∞∑
k=0

f̂ (k) cos kx. (9)

Let the function F (x) be defined on the real semi-axis, and F̂ (λ) be its Fourier
cosine transform:

F̂ (λ) =
∫ ∞

0
cos λxF (x) dx.

As a result, we get the transmutation operator J : F → f :

J [F ] (x) ≡ f (x) = 2

π

∞∑
k=0

F̂ (k) cos kx, x ∈ [0, π] . (10)

Simplify the function F̂ (k)

F̂ (k) = ∫ ∞
0 sin kxF (x) dx =

= ∫ π
0 cos kx

∑∞
j=0 (F (x + 2πj)+ F (2π − x + 2πj)) dx,

and back to (10):

J [F ] (x) = f (x) = 2
π

∑∞
k=0 F̂ (k) cos kx =

= ∑∞
j=0 (F (x + 2πj)+ F (2π − x + 2πj)) .

(11)

Formula (11) defines the required transmutation operator. We will apply it to the
Neumann problem in the strip

{
u′′
xx + u′′

yy = 0, 0 < x < π,−∞ < y <∞;
u′ (0, y) = g (y) , u′ (π, y) = 0,

(12)

Let a function U (x, y) be the solution of Neumann problem for a semi-plane

{
U ′′
xx + U ′′

yy = 0, 0 < x,−∞ < y <∞;
U ′ (0, y) = g (y) . (13)
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By using (11), we obtain a new formula for solving problem (12):

u (x, y) = J [U (x, y)] =
∞∑
j=0

(U (x + 2πj, y)− U (2π − x + 2πj, y)) . (14)

By integrating identity (7), we get

∞∑
j=0

(
1

2
ln
(x + 2πj)2 + (y − η)2

(2πj)2
+ 1

2
ln
(2π − x + 2πj)2 + (y − η)2

(2π + 2πj)2

)
=

= 1

2
ln (ch (y − η)− cos x) .

As a result, we obtain a solution to the Neumann problem in the strip:

u (x, y) = 1

2π

∫ ∞

−∞
ln (ch (y − η)− cos x) g (η) dη.

2.1.3 Sturm–Liouville Mixed Boundary Value Problem

The Sturm–Liouville problem about finding non-trivial solutions on the interval
[0, π]

{
y ′′ + λ2y = 0,

y (0) = 0, y ′ (π) = 0.

has eigenvalues λk = k, k = 1, 2, 3, . . . and corresponding eigenfunctions

yk (x) = sin

((
k − 1

2

)
x

)
, k = 1, 2, 3, . . .

Let the function y = f (x) be given on segment [0, π] and f̂ (k) be its finite Fourier
transform on segment [0, π]

f̂ (k) =
∫ π

0
sin

(
k − 1

2

)
xf (x) dx,

then

f (x) = 2

π

∞∑
k=1

f̂ (k) sin

(
k − 1

2

)
x.
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Let the function y = F (x) be given on the interval [0,∞) and F̂ (λ) be its Fourier
sine transform

F̂ (λ) =
∫ ∞

0
sinλxF (x) dx,

then

F (x) = 2

π

∫ ∞

0
sin λxF̂ (λ) dλ.

The function y = f (x) on the interval [0, π] corresponds to the function F (x) by
the rule:

f (x) = J [F ] (x) = 2

π

∞∑
k=1

F̂ (k) sin

(
k − 1

2

)
x (15)

The transmutation operator J is given by formula (15). Formula (15) can be
simplified:

J [F (x)] = f (x) =
∞∑
j=0

(−1)j (F (x + 2πj)+ F (2π − x + 2πj)) . (16)

We will apply the constructed transmutation operator (16) for the mixed boundary
value problem in the strip

{
u′′
xx + u′′

yy = 0, 0 < x < π,−∞ < y <∞;
u (0, y) = g (y) , u′ (π, y) = 0,

(17)

and Dirichlet problem for the semi-plane (5). By using (16), we obtain a new
formula for solving problem (17)

u (x, y) = J [
ũ (x, y)

] =
∞∑
j=0

(−1)j (ũ (x + 2πj, y)+ ũ (2π − x + 2πj, y)) .

(18)

Based on the identity of [12]

∞∑
j=0

(−1)j
(

x + 2πj

(x + 2πj)2 + (y − η)2 + 2π − x + 2πj

(2π − x + 2πj)2 + (y − η)2
)

= sin x2 ch
y−η

2

ch (y − η)− cos x
,

we get a new formula for solving a mixed boundaries [15] value problem in the strip
[12]

u (x, y) = 1

π

∫ ∞

−∞
sin x2 ch

y−η
2

ch (y − η)− cos x
g (η) dη.
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2.1.4 Sturm–Liouville Problem with Dirichlet Boundary Conditions
on Composite Real Semi-Axis

Let’s consider the Sturm–Liouville singular problem about finding nontrivial solu-
tions on composite real semi-axis E1+ = (0, l) ∪ (l,∞) ,

λ2yj + a2
j y

′′
jxx = 0, x ∈ E1+, j = 1, 2; (19)

with boundary conditions

y1 (0) = 0, |y2 (x)| <∞ (20)

and inner boundary conditions

y1 (l) = y2 (l) , λ1y
′
1 (l) = λ2y

′
2 (l) . (21)

The eigenvalues of problem (19)–(21) are the interval (0,∞), and eigenfunctions
are, [16]

y1 (x, λ) = Jm
[(
e
iλ xa1 − k − 1

k + 1
e
iλ 2l−x

a1

)(
1 − k − 1

k + 1
e
iλ 2l
a1

)−1
]
, 0 < x < l,

y2 (x, λ) = 2

k + 1
Jm

[
e
iλ x−la2 e

iλ l
a1

(
1 − k − 1

k + 1
e
iλ 2l
a1

)−1
]
, l < x, k = λ2

λ1

a1

a2
.

Formulas can be represented as

y1 (x, λ) =
∞∑
j=0

(
k − 1

k + 1

)j (
sin

(
x + 2lj

a1

)
− k − 1

k + 1
sin

(
2l − x + 2lj

a1

))
, 0 < x < l,

y2 (x, λ) = 2

k + 1

∞∑
j=0

(
k − 1

k + 1

)j
sin

(
x − l
a2

+ l + 2lj

a1

)
, l < x. (22)

The decomposition theorem on eigenfunctions is valid

f1 (x) = 2

π

∫ ∞

0
y1 (x, λ) F (λ) dλ, 0 < x < l;

f2 (x) = 2

π

∫ ∞

0
y2 (x, λ) F (λ) dλ, l < x. (23)
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where F (λ) is the spectral function. Let the function y = f̃ (x) be define on the
real semi-axis, and the functionF (λ) be its Fourier sine transform

F (λ) =
∫ ∞

0
sin (λξ) f̃ (ξ) dξ.

The transmutation operator J is defined by formulas (23), i.e. J : f̃ → f,

f (x) = f1 (x) (θ (l − x) · θ (x))+ f2 (x) θ (x − l) .

We obtain transformation operator from (22):

f1 (x) =
∞∑
j=0

(
k − 1

k + 1

)j (
f̃

(
x + 2lj

a1

)
− k − 1

k + 1
f̃

(
2l − x + 2lj

a1

))
, 0 < x < l;

f2 (x) = 2

k + 1

∞∑
j=0

(
k − 1

k + 1

)j
f̃

(
x − l
a2

+ l + 2lj

a1

)
, l < x; (24)

2.2 Reflection Method

In this section a transmutation operator is constructed as infinite sum of reflections
from the domain boundaries. As a result, the solution of the basic boundary value
problem is obtained on the base of the model boundary value problem.

2.2.1 Non-local Boundary Value Problem on the Strip

Let the function ũ (x, y) be a solution of the Dirichlet model problem (5) and let the
function u (x, y) be a solution of boundary value problem with non-local boundary
conditions for the Laplace equation in the strip

⎧⎨
⎩

u′′
xx + u′′

yy = 0,
u (0, y) = f (y) ,
u′ (0, y) = −u′ (l, y) .

(25)

We will apply the method of successive reflections from the boundaries x = 0 and
x = l. As a zero-order approximation, we choose the solution of model problem
(5), i.e. u0 (x, y) = ũ (x, y). We will look for the first-order approximation in the
form

u1 (x, y) = ũ (x, y)+ v0 (x, y) ,
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here v0 (x, y) is a harmonic function in the right semi-plane

ũ′ (0, y)− ũ′ (l, y) = −v′
0 (0, y)+ v

′
0 (l, y) .

Then v0 (x, y) = ũ (l − x, y). So, the first-order approximation is

u1 (x, y) = ũ (x, y)+ ũ (l − x, y) .
Repeating the algorithm we find the second-order approximation u2 (x, y) and a
sequence of approximations

u2 (x, y) = ũ (x, y)+ ũ (l − x, y)− ũ (l + x, y) .

u3 (x, y) = ũ (x, y)+ ũ (l − x, y)− ũ (l + x, y)+ ũ (2l + x, y) .

u4 (x, y) = ũ (x, y)+ ũ (l − x, y)− ũ (l + x, y)+ ũ (2l + x, y)− ũ (2l − x, y) .

. . .

u2n (x, y) = u2n−2 (x, y)+ (−1)n (ũ (x + nl, y)− ũ (−x + nl, y)) .

u2n−1 (x, y) = u2n−2 (x, y)+ (−1)n ũ (x + nl, y) .
As a limit we obtain the exact solution to problem (25)

u (x, y) = ũ (x, y)+
∞∑
j=1

(−1)j (ũ (x + lj, y)− ũ (−x + lj, y)) .

2.2.2 Boundary Value Problem with Inner Boundary Conditions
in a Strip

Let’s consider the Dirichlet problem for the Laplace equation in the strip:

S1 = {(x, y) : x ∈ (0, l) ∪ (l, L) , y ∈ (−∞,∞)}

u′′
1xx + u′′

1yy = 0, 0 < x < l,−∞ < y <∞,
u′′

2xx + u′′
2yy = 0, l < x < L,−∞ < y <∞

with boundary conditions

y1 (0) = 0, |y2 (x)| <∞

u1 (0, y) = f (y) ,−∞ < y <∞;
u2 (L, y) = 0,−∞ < y <∞ (26)
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and inner boundary conditions on the straight line x = l

u1 (l, y) = u2 (l, y) ,−∞ < y <∞;
λ1u

′
1 (l, y) = λ2u

′
2 (l, y) ,−∞ < y <∞.

The solution to problem (26) will be found by the reflection method. The zero-order
approximation will be the solution of the model problem (4), i.e.

u0
1 (x, y) = ũ0 (x, y) , 0 < x < l, u0

2 (x, y) = ũ0 (x, y) , l < x < L.

First- order approximation has the form

u1
1 (x, y) = ũ0 (x, y)+ 1−k

1+k ũ0 (2l − x, y) , 0 < x < l;
u1

2 (x, y) = 2
1+k ũ0 (x, y) , l < x < L, k = λ2

λ1
.

Let the function ũ1 (x, y) be a solution of the model problem (4) with the boundary
condition ũ1 (0, y) = ũ0 (2l, y), then the second-order approximation will be

u1
1 (x, y) = u0

1 (x, y)+ k−1
k+1

(
ũ1 (x, y)− k−1

k+1 ũ1 (2l − x, y)
)
, 0 < x < l;

u1
2 (x, y) = u0

2 (x, y)+ 2
k+1 ũ1 (x, y) , l < x < L.

If un1 (x, y) , u
n
2 (x, y) are an approximations of order n, then the (n + 1)—order

approximations are

un+1
1 (x, y) = un1 (x, y)+ k−1

k+1

(
ũn+1 (x, y)− k−1

k+1 ũn+1 (2l − x, y)
)
, 0 < x < l;

un+1
2 (x, y) = un2 (x, y)+ 2

k+1 ũn+1 (x, y) , l < x < L,

where un+1 (x, y) is the solution of model problem (4) with the boundary condition

ũn+1 (0, y) = ũn (2l, y) .

If n→ ∞ we get

u1 (x, y) =
∞∑
j=0

(
k − 1

k + 1

)j (
ũj (x, y)− k − 1

k + 1
ũj (x, y)

)
, 0 < x < l; (27)

u2 (x, y) = 2

k + 1

∞∑
j=0

(
k − 1

k + 1

)j
ũj (x, y) , l < x. (28)
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2.3 The Fourier Transform Technique

Let the function u (x, y) be a solution of Laplace equation with periodicity boundary
conditions in the strip

S = {(x, y) : x ∈ (0, l) , y ∈ (−∞,∞)}
⎧⎨
⎩

u′′
xx + u′′

yy = 0,
u (0, y)− u (l, y) = f (y) ,
u′ (0, y)− u′ (l, y) = 0.

(29)

And let F (λ) be the Fourier transform of function f (y), i.e.

F (λ) =
∫ ∞

−∞
e−iληf (η) dη,

then the solution to problem (27) takes form

u (x, y) = 1

4π

∫ ∞

−∞
e−|λ|x − e−|λ|(l−x)

1 − e−|λ|l eiλyF (λ) dλ.

Expand the kernel in a series of powers e−|λ|l

e−|λ|x − e−|λ|(l−x)

1 − e−|λ|l =
∞∑
k=0

(
e−|λ|(x+lj) − e−|λ|(l−x+lj)) .

Then we get

u (x, y) = 1

2

∞∑
k=0

1

2π

∫ ∞

−∞

(
e−|λ|(x+lj)eiλyF (λ) dλ− e−|λ|(l−x+lj)eiλyF (λ) dλ

)
.

The Inverse Fourier transform gives:

u (x, y) = 1

2

∞∑
j=0

(ũ (x + lj )− ũ (l − x + lj )) .

Taking into account the formulae from [12]

1

π

∞∑
j=0

(
x + lj

(x + lj )2 + y2
− l − x + lj
(l − x + lj )2 + y2

)
= 1

l

sin 2πx
l

ch
2πy
l

− cos 2πx
l

.
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we get a solution to the problem with boundary conditions of periodicity

u (x, y) = 1

2l

∫ ∞

−∞
sin 2πx

l

ch
2π(η−y)

l
− cos 2πx

l

f (η) dη.

2.4 Neumann Series Technique

In the section the transmutation operator is searched as the Neumann series sum [9]
of shift or generalized shift operators.

2.4.1 Solution of the Laplace Equation with Non-local Boundary
Conditions in the Strip

Let the function u (x, y) be a solution of the Laplace equation with non-local
boundary conditions in the strip S = {(x, y) : x ∈ (0, l) , y ∈ (−∞,∞)}

{
u (0, y) = f (y) ,−∞ < y <∞;
u′ (0, y) = u′ (l, y) ,−∞ < y <∞. (30)

The solution to problem (30) will be sought in the form

u (x, y) = A1ũ (x, y)+ A2ũ (l − x, y) ,

where A1, A2 are unknown operators, ũ is the solution of the model problem (5).
We get the system of equations for operators A1, A2

{
A1 + A2 = 0,
A1 + A2Tl = I ,

here Tl is the shift operator Tl : u (x, y)→ u (x + l, y) and I is an identity operator.
The solution to the system of operator equations is

A1 = (I − Tl)−1 , A2 = − (I − Tl)−1 .

By using Neumann series

(I − Tl)−1 =
∞∑
j=0

T
j
l ,
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we get

u (x, y) =
∞∑
j=0

(ũ (x + lj, y)− ũ (l − x + lj, y)) , 0 < x < l,−∞ < y <∞.
(31)

Based on formula (31), we obtain the solution of the non-local problem (30)

u (x, y) = 1

l

∫ ∞

−∞
sin 2πx

l

ch
2π(η−y)

l
− cos 2πx

l

f (η) dη. (32)

Formula (32) is obtained for the first time.

2.4.2 Solution of the Laplace Equation with Generalized Non-local
Boundary Conditions in a Strip

Let the function u (x, y) be a solution of the Laplace equation in a strip S =
{(x, y) : x ∈ (0, l) , y ∈ (−∞,∞)} with non-local boundary conditions

{
u (0, y) = f (y) ,

ku′ (0, y) = u′ (l, y) ,−1 ≤ k ≤ 1.
(33)

We will seek a solution to the problem in the form

u (x, y) = A1ũ (x, y)+ A2ũ (l − x, y) .

From the boundary conditions (33) we have a system of equations

{
kA1 − kA2Tl − A1Tl + A2 = 0,

A1 + A2Tl = I.

The formal solution to the system of equations has the form

A1 = (I − kTl)
(
I − 2kTl + T 2

l

)−1
,

A2 = (Tl − kI)
(
I − 2kTl + T 2

l

)−1
.

We apply formulas for the generating functions of Chebyshev polynomials [11] of
first and second kind

∑∞
n=0 Tn(k)t

n = 1−tk
1−2tk+t2 ;∑∞

n=0 Un(k)t
n = 1

1−2tk+t2 .
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As a result, we get for operatorsA1, A2 [11]

A1 = (I − kTl)
(
I − 2kTl + T 2

l

)−1 = ∑∞
j=0 Tj (k) T

j
l ,

A2 = (Tl − kI)
(
I − 2kTl + T 2

l

)−1 = ∑∞
j=0

[
− 1
k
Tj (k)+ 1−k2

k
Uj (k)

]
T
j
l .

Thus, we have

u (x, y) =
∞∑
j=0

Tj (k) ũ (x + lj, y)+
∞∑
j=0

[
−1

k
Tj (k)+ 1 − k2

k
Uj (k)

]
ũ (l − x + lj, y) .

Using the recurrent relation [11], we obtain

Tj+2(k) = kTj+1(k)− (1 − k2)Uj (k),

then

−1

k
Tj (k)+ 1 − k2

k
Uj (k) = −1

k
Tj (k)+ Tj+1 (k)− 1

k
Tj+2 (k) .

The recurrent relation for Chebyshev polynomials of the first kind has the form

Tj+2(k) = 2kTj+1(k)− Tj (k),

then

−1

k
Tj (k)+ 1 − k2

k
Uj (k) = −Tj+1 (k) .

As a result, we have the solution to the boundary value problem

u (x, y) = ũ (x, y)+
∞∑
j=1

Tj (k) (ũ (x + lj, y)− ũ (−x + lj, y)) .

3 Results

All proposed and developed methods from Sect. 2 are successfully applied to
solving boundary value problems with non-classical boundary conditions. The
proposed techniques allow us to find a formula, see (38), for solving the Dirichlet
problem with inner boundary conditions for the semi-plane. We illustrate the proof
of formula (38) by using the Neumann series expansion method. Formula (38) is
a new result for the theory of potentials. To solve the Dirichlet problem with inner
boundary conditions for the strip, the reflection method is most effective, the new
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result is represented in (39). Using the finite Fourier transforms method, a new
result is obtained for the three-dimensional Dirichlet problem in a flat layer, see
formula (41). We will apply the Neumann expansion method in solving problem of
the Laplace equation in semi-plane E1+ = { (x, y) : y ∈ R, x ∈ (0, l) ∪ (l,∞) }

u′′
jyy + a2

j u
′′
jxx = 0, (x, y) ∈ E1+, j = 1, 2; (34)

with boundary condition

u1 (0, y) = f (y) (35)

and inner boundary conditions

u1 (l, y) = u2 (l, y) , λ1u
′
1x (l, y) = λ2u

′
2x (l, y) . (36)

We will seek a solution to problem (34)–(36) in the form

u1 (x, y) = c1ũ

(
x

a1
, y

)
+ c2ũ

(
2l − x
a1

, y

)
, 0 < x < l;

u2 (x, y) = c3ũ

(
x − l
a2

+ l

a1
, y

)
, l < x.

From (34)–(36) we get the system of equations

⎧⎨
⎩
c1 + c2T = I,
c1 + c2 = c3,

c1 − c2 = kc3,

(37)

where k = λ2
λ1

a1
a2

and T is the shift operator T
[
ũ (x, y)

] = ũ
(
x + 2l

a1

)
. The solution

of the system of equations (37) is obtained as an expansion in a series of Neumann
operators in powers of the operator k−1

k+1 · T

c1 =
∞∑
j=0

(
k − 1

k + 1

)j
T j , c2 = −k − 1

k + 1

∞∑
j=0

(
k − 1

k + 1

)j
T j , c3 = 2

k + 1

∞∑
j=0

(
k − 1

k + 1

)j
T j ,

where T j is the power of operator T i.e.

T j
[
ũ (x, y)

] = ũ
(
x + 2lj

a1

)
, j = 0, 1, 2, . . .
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As a result, we obtain the formulas for solution to problem (34)–(36)

u1 (x, y) =
∞∑
j=0

(
k − 1

k + 1

)j (
ũ

(
x + 2lj

a1
, y

)
− k − 1

k + 1
ũ

(
2l − x + 2lj

a1
, y

))
, 0 < x < l;

u2 (x, y) = 2

k + 1

∞∑
j=0

(
k − 1

k + 1

)j
ũ

(
x − l
a2

+ l + 2lj

a1
, y

)
, l < x. (38)

The finite integral transforms method leads to formula (38) also. The reflection
method is effective in the Dirichlet problem for the Laplace equation in the strip

S1 = {(x, y) : x ∈ (0, l) ∪ (l, L) , y ∈ (−∞,∞)} .

Let ũ (x, y)be the solution of the model problem (4). The generalized shift operator
T is defined by the rule T ũ (0, y) = ũ (2l, y), then formulas (27)–(28) take the form

u1 (x, y) =
∞∑
j=0

(
k − 1

k + 1

)j (
T j ũ (x, y)− k − 1

k + 1
T j ũ (2l − x, y)

)
, 0 < x < l;

u2 (x, y) = 2

k + 1

∞∑
j=0

(
k − 1

k + 1

)j
T j ũ (x, y) , l < x. (39)

The Fourier transform method and the Neumann series method are less effective,
since solution of problem (34)–(36) is obtained in the form of multiple series and
obtained formulas are difficult to apply in practice. The transmutation operators
method has shown its effectiveness in solving model boundary value problems.
Boundary value problems for the Laplace equation in the semi-plane and in the strip
with inner boundary conditions can be investigated by the transmutation operators
method. The method effectively works in the three-dimensional case. For example,
consider the Dirichlet problem for the three-dimensional Laplace equation in the
layer 0 < x < π,−∞ < y1, y2 <∞

{
u′′
xx + u′′

y1y1
+ u′′

y2y2
= 0, 0 < x < π,−∞ < y1, y2 <∞;

u (0, y1, y2) = g (y1, y2) , u (π, y1, y2) = 0,
(40)

We apply The finite Fourier integral transforms technique from Sect. 2.1 and we
have

u (x, y1, y2) =
∞∑
j=0

(ũ (x + 2πj, y1, y2)− ũ (2π − x + 2πj, y1, y2)) ,
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there

ũ (x, y1, y2) = 1

2π2

∫ 2π

0

xg (η1, η2)(
x2 + (y1 − η1)

2 + (y2 − η2)
2) 3

2

dη1dη2.

To transform the formula for u (x, y1, y2) we use the integral

∫ 2π

0

dt

x + iy sin t
= 2π√

x2 + y2
, x > 0,

it is obtained by the residue method, [1]. Find the derivative for the real part of the
integral with respect to x, we get

− 1

2π

d

dx

[∫ 2π

0

xdt

x2 + y2 sin2 t

]
= x(
x2 + y2

) 3
2

, x > 0.

From (7) we obtain the solution of the Dirichlet problem (40)

u (x, y) = 1

4π2

∫ ∞

−∞

∫ 2π

0

1 − cos xch (sin t |y − η|)
(ch (sin t |y − η|)− cos x)2

dtg (η1, η2) dη1dη2,

(41)

where |y − η|2 = |y1 − η1|2 + |y2 − η2|2.

4 Conclusions

The universality of transmutation operators method gives the possibility of its
application for any dimension problems with non-local boundary conditions. The
method advantage is the easily implementation form on a computer due to the
cyclical nature of the corresponding algorithm. Further, the transmutation operators
method can be developed for boundary value problems with axial and central
symmetry. The method can also be useful in the theory of integral transforms with
discontinuous trigonometric kernels and for calculating integrals, summing series.
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Solution of Inverse Problems
for Differential Operators with Delay

Vjacheslav Yurko

Abstract Non-self-adjoint second-order differential operators with a constant de-
lay are studied. We establish properties of the spectral characteristics and investigate
the inverse problem of recovering operators from their spectra. For this nonlinear
inverse problem the uniqueness theorem is proved and an algorithm for constructing
the global solution is provided.
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1 Introduction

Inverse problems of spectral analysis consist in recovering operators from their
spectral characteristics. Nowadays such problems attract much attention of mathe-
maticians because of their applications in various fields of science and engineering,
e.g. quantum mechanics, geophysics, chemistry, nanotechnology. The most com-
plete results in the inverse problem theory were obtained for differential operators
(see [1–4]). However, inverse problems for nonlocal operators are not so well-
studied, although such operators are often more adequate for modeling physical
processes (see [5, 6]). This paper concerns a class of nonlocal Sturm-Liouville
operators with deviating argument.
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Let {μnj }n≥0 be the eigenvalues of the boundary value problems Lj , j = 1, 2,
of the form

−y ′′(x)+ q(x)y(x − a) = λy(x), 0 < x < π, (1)

y ′(0)− hy(0) = y ′(π)+Hjy(π) = 0,

Here a ∈ (0, π), h and Hj are complex numbers (H1 �= H2), q(x) is a complex-
valued function, q(x) ∈ L(a, π) and q(x) = 0 a.e. on (0, a). In this paper we
study the inverse spectral problem of recovering potential q(x) and the coefficients
h,H1,H2, provided that the spectra {μnj }n≥0, j = 1, 2, are given. We pay attention
to the essentially nonlinear case when a ∈ [π/3, π/2) (the case a ≥ π/2 is
linear; the case a < π/3 is nonlinear and requires separate investigations). In
this paper we obtain a global constructive procedure for the solution of the inverse
problem and establish its uniqueness. The main results of the paper are Theorem 1
and Algorithm 1 (see Sect. 3 below). Note that some particular results on inverse
problems for operators with delay were obtained in [7–11].

2 Auxiliary Propositions

Let S(x, λ), C(x, λ) be solutions of Eq. (1) satisfying the initial conditions

C(0, λ) = S′(0, λ) = 1, S(0, λ) = C′(0, λ) = 0.

Denote ϕ(x, λ) = C(x, λ) + hS(x, λ). For each fixed x, the functions
C(ν)(x, λ), S(ν)(x, λ) and ϕ(ν)(x, λ), ν = 0, 1, are entire in λ of order 1/2. Denote

Pj (λ) := ϕ′(π, λ)+Hjϕ(π, λ), j = 1, 2.

The eigenvalues {μnj }n≥0 of the boundary value problemLj coincide with the zeros
of the entire function Pj (λ). The function Pj (λ) is called the characteristic function
for Lj .

Let λ = ρ2. The functions C(x, λ) and S(x, λ) are the unique solutions of the
following integral equations

C(x, λ) = cosρx+
∫ x

a

G(x, t, λ)C(t−a, λ) dt, S(x, λ) = sinρx

ρ
+
∫ x

a

G(x, t, λ)S(t−a, λ) dt,

whereG(x, t, λ) = q(t) sin ρ(x − t)
ρ

. Therefore,

C(x, λ) = cos ρx+C1(x, λ)+C2(x, λ), S(x, λ) = sinρx

ρ
+S1(x, λ)+S2(x, λ),

(2)
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where

C1(x, λ) =
∫ x

a

G(x, t, λ) cos ρ(t − a) dt, S1(x, λ) = 1

ρ

∫ x

a

G(x, t, λ) sin ρ(t − a) dt,
(3)

for x ≥ a, and C1(x, λ) = S1(x, λ) = 0 for x ∈ [0, a]. Similarly,

C2(x, λ) =
∫ x

2a
G(x, t, λ)C1(t−a, λ) dt, S2(x, λ) =

∫ x

2a
G(x, t, λ)S1(t−a, λ) dt,

(4)

for x ≥ 2a, and C2(x, λ) = S2(x, λ) = 0 for x ∈ [0, 2a]. In particular, this yields

C1(π, λ) = A sinρ(π − a)
ρ

− 1

2ρ

∫ π

a

q(t) sin ρ(2t − π − a) dt,
S1(π, λ) = −A cosρ(π − a)

ρ2
+ 1

2ρ2

∫ π

a

q(t) cosρ(2t − π − a) dt,

⎫⎪⎬
⎪⎭ (5)

C′
1(π, λ) = A cosρ(π − a)+ 1

2

∫ π

a

q(t) cosρ(2t − π − a) dt,
S′

1(π, λ) = A sinρ(π − a)
ρ

+ 1

2ρ

∫ π

a

q(t) sinρ(2t − π − a) dt,

⎫⎪⎬
⎪⎭ (6)

where A := 1

2

∫ π

a

q(t) dt. Substituting (3) into (4), we calculate

C2(π, λ) = −A1 cos ρ(π − 2a)

4ρ2 + 1

8ρ2

∫ π−2a

−(π−2a)
Q+(ξ) cos ρξ dξ,

S2(π, λ) = −A1 sin ρ(π − 2a)

4ρ3 + 1

8ρ3

∫ π−2a

−(π−2a)
Q−(ξ) sin ρξ dξ,

⎫⎪⎪⎬
⎪⎪⎭

(7)

C′
2(π, λ) = A1 cos ρ(π − 2a)

4ρ
+ 1

8ρ

∫ π−2a

−(π−2a)
Q+(ξ) sin ρξ dξ,

S′
2(π, λ) = −A1 sinρ(π − 2a)

4ρ2 − 1

8ρ2

∫ π−2a

−(π−2a)
Q−(ξ) cosρξ dξ,

⎫⎪⎪⎬
⎪⎪⎭

(8)

where

A1 =
∫ π

2a
q(t)dt

∫ t−a

a

q(s)ds, Q1(t) = q(t)
∫ t−a

a

q(s)ds, Q2(t) = q(t)
∫ π

t+a
q(s)ds,

Q3(t)=
∫ π

t+a
q(s)q(s − t)ds, Q∓(ξ)=Q1(ξ/2 + π/2 + a)−Q2(ξ/2 + π/2) ∓Q3(ξ/2 + π/2).
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Since Pj (λ) := ϕ′(π, λ)+Hjϕ(π, λ), j = 1, 2, and ϕ(x, λ) = C(x, λ)+hS(x, λ),
it follows from (2), (5)–(6) and (7)–(8) that

Pj (λ) = −ρ sinρπ+(h+Hj) cos ρπ+A cosρ(π−a)+o(exp(|Imρ|π)), |ρ| → ∞.
(9)

Using (9) by the well-known arguments (see, for example [3]) we obtain

√
μnj = n+ (h+Hj + A cosna)/(πn)+ o(1/n), n→ ∞. (10)

Moreover, the specification of the spectrum {μnj }n≥0, uniquely determines the
characteristic function via

Pj (λ) = π(μ0j − λ)
∞∏
n=1

μnj − λ
n2 , j = 1, 2. (11)

Denote�k(λ) := ϕ(k)(π, λ), k = 0, 1.Then Pj (λ) = �1(λ)+Hj�0(λ), j = 1, 2;
hence

�0(λ) = P1(λ)− P2(λ)

H1 −H2
, �1(λ) = P1(λ)H2 − P2(λ)H1

H2 −H1
. (12)

Since ϕ(x, λ) = C(x, λ)+ hS(x, λ), it follows from (2), (5)–(6) and (7)–(8) that

�0(λ) = cos ρπ + h sin ρπ

ρ
+ A sinρ(π − a)

ρ
− hA cosρ(π − a)

ρ2
+ d0(ρ)

2ρ
,

(13)

�1(λ) = −ρ sinρπ + h cos ρπ + A cosρ(π − a)+ hA sin ρ(π − a)
ρ

+ d1(ρ)

2
,

(14)

where

d0(ρ) = −
∫ π

a

q(t) sin ρ(2t − π − a) dt + h

ρ

∫ π

a

q(t) cos ρ(2t − π − a) dt − A1 cos ρ(π − 2a)

2ρ

−hA1 sin ρ(π − 2a)

2ρ2
+ 1

4ρ

∫ (π−2a)

−(π−2a)
Q+(ξ) cos ρξ dξ + h

4ρ2

∫ (π−2a)

−(π−2a)
Q−(ξ) sin ρξ dξ,

(15)

d1(ρ) =
∫ π

a

q(t) cos ρ(2t − π − a) dt + h

ρ

∫ π

a

q(t) sin ρ(2t − π − a) dt + A1 sin ρ(π − 2a)

2ρ

−hA1 cos ρ(π − 2a)

2ρ2
+ 1

4ρ

∫ (π−2a)

−(π−2a)
Q+(ξ) sin ρξ dξ − h

4ρ2

∫ (π−2a)

−(π−2a)
Q−(ξ) cos ρξ dξ.

(16)
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3 Solution of the Inverse Problem

Let the spectra {μnj }n≥0, j = 1, 2, be given. Our goal is to find the potential q(x)
and the coefficients h,H1,H2. First of all, by (11) we construct the characteristic
functions Pj (λ), j = 1, 2. Then, using (10) we calculate

H1 −H2 = π lim
n→∞(

√
μn1 − √

μn2)n. (17)

Now we can construct the function �0(λ) with the help of (12). Using (13) we
can find the coefficients h and A. Indeed, it follows from (13) that A sin an =
(−1)n+1(�0(n

2)− (−1)n)n+ o(1), as n→ ∞, and consequently,

A = lim
nk→∞(−1)nk+1(sin ank)−1(�0(n

2
k)− (−1)nk )nk, (18)

where nk are such that | sin ank| > δ > 0. Using (13) again we infer

h = lim
n→∞

(
(2n+ 1/2)�0((2n+ 1/2)2)− A sin(2n+ 1/2)(π − a)

)
. (19)

Furthermore, using (10) we calculate the coefficients H1 and H2, and then we can
construct the function �1(λ) by (12). Since A and h are known, we can find the
functions dk(ρ), k = 0, 1, with the help of (13) and (14).

In order to simplify calculations we assume that q(x) and q ′(x) are absolutely
continuous on [a, π]. The general case requires slightly different calculations.
Integration by parts in (15)–(16) yields

2ρd0(ρ) = B0 cos ρ(π − a)+
∫ π

a

g(t) cos ρ(2t − π − a)dt − A1 cos ρ(π − 2a)

−hA1 sinρ(π − 2a)

ρ
+ 1

2

∫ (π−2a)

−(π−2a)
Q+(ξ ) cos ρξ dξ + h

2ρ

∫ (π−2a)

−(π−2a)
Q−(ξ ) sinρξ dξ,

(20)

2ρd1(ρ) = B1 sinρ(π − a)+
∫ π

a

g(t) sin ρ(2t − π − a)dt + A1 sinρ(π − 2a)

−hA1 cos ρ(π − 2a)

ρ
+ 1

2

∫ (π−2a)

−(π−2a)
Q+(ξ ) sin ρξ dξ − h

2ρ

∫ (π−2a)

−(π−2a)
Q−(ξ ) cos ρξ dξ,

(21)

where g(x) = −q ′(x)+2hq(x), B0 = q(π)−q(a), B1 = q(π)+q(a).Using (20)–
(21) we can find B0, B1 and A1. Indeed, it follows from (20)–(21) that for real ρ,
|ρ| → ∞,

2ρd0(ρ) = B0 cos ρ(π − a)− A1 cosρ(π − 2a)+ o(1), (22)
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2ρd1(ρ) = B1 sinρ(π − a)+ A1 sin ρ(π − 2a)+ o(1). (23)

Taking in (23) ρn = nπ/(π − a), we get for n→ ∞:

2ρnd1(ρn) = A1 sin(αnπ)+ o(1), α = (π − 2a)/(π − a) < 1,

and consequently,

A1 = 2 lim
mk→∞

(
ρmkd1(ρmk )(sin αmkπ)−1

)
, (24)

wheremk are such that | sin αmkπ | > δ > 0. Using (22)–(23) we infer

B1 = lim
n→∞

(
2ρn1d1(ρn1)− A1 sinρn1(π − 2a)

)
, ρn1 = (2n+ 1/2)π/(π − a),

B0 = lim
n→∞

(
2ρn0d0(ρn0)+ A1 cos ρn0(π − 2a)

)
, ρn0 = 2nπ/(π − a).

⎫⎬
⎭
(25)

Since B0 and B1 are known, we calculate q(a) and q(π) by the formulas q(π) =
(B1 + B0)/2 and q(a) = (B1 − B0)/2. Let us now construct the functions

d∗
0 (ρ) = 2ρd0(ρ)− B0 cos ρ(π − a)+ A1 cos ρ(π − 2a)+ hA1 sinρ(π − 2a)

ρ
,

d∗
1 (ρ) = 2ρd1(ρ)− B1 sinρ(π − a)− A1 sinρ(π − 2a)+ hA1 cos ρ(π − 2a)

ρ
.

⎫⎪⎬
⎪⎭

(26)

It follows from (22)–(23) that

d∗
0 (ρ)=

∫ π

a

g(t) cos ρ(2t − π − a)dt+ 1

2

∫ (π−2a)

−(π−2a)
Q+(ξ) cos ρξ dξ+ h

2ρ

∫ (π−2a)

−(π−2a)
Q−(ξ) sin ρξ dξ,

d∗
1 (ρ)=

∫ π

a

g(t) sin ρ(2t − π − a)dt+ 1

2

∫ (π−2a)

−(π−2a)
Q+(ξ) sin ρξ dξ+ h

2ρ

∫ (π−2a)

−(π−2a)
Q−(ξ) cos ρξ dξ.

Integration by parts yields

2ρd∗
0 (ρ)= b0 sin ρ(π − a)+ω0 sin ρ(π − 2a)−

∫ (π−a)

−(π−a)
g0(ξ) sin ρξ dξ−

∫ (π−2a)

−(π−2a)
G(ξ) sin ρξ dξ,

(27)

2ρd∗
1 (ρ)= b1 cos ρ(π − a)+ω1 cos ρ(π − 2a)+

∫ (π−a)

−(π−a)
g0(ξ) cos ρξ dξ+

∫ (π−2a)

−(π−2a)
G(ξ) cos ρξ dξ,

(28)

where G(ξ) = Q′+(ξ) − hQ−(ξ), g0(ξ) = g1((ξ + π + a)/2)/2, g1(x) = g′(x),
b0 = g(a) + g(π), b1 = g(a) − g(π), ω0 = Q+(π − 2a) + Q+(−(π − 2a)),
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ω1 = Q+(π − 2a) − Q+(−(π − 2a)). Using (27)–(28) by similar arguments as
above we can find b0, b1, ω0 and ω1:

ω0 = 2 lim
mk→∞

(
ρmkd

∗
0 (ρmk )(sin αmkπ)−1

)
,

ω1 = 2 lim
rk→∞

(
ρrkd

∗
1 (ρrk )(cosα(2rk + 1/2)π)−1

)
,

⎫⎬
⎭ (29)

b0 = lim
n→∞

(
2ρ0
nd

∗
0 (ρ

0
n)− ω0 sinρ0

n(π − 2a)
)
, ρ0

n = (2n+ 1/2)π/(π − a),
b1 = lim

n→∞
(

2ρ1
nd

∗
1 (ρ

1
n)− ω1 cosρ1

n(π − 2a)
)
, ρ1

n = 2nπ/(π − a),

⎫⎬
⎭
(30)

where rk are such that | cosα(2rk + 1/2)π | > δ > 0.
Since b0 and b1 are known, we calculate g(a) and g(π) by the formulas g(π) =

(b0 −b1)/2 and g(a) = (b0 +b1)/2, and consequently, we can find q ′(a) and q ′(π)
via q ′(a) = −g(a)+ 2hq(a), q ′(π) = −g(π)+ 2hq(π). Let us now construct the
functions

D0(ρ) = 2ρd∗
0 (ρ)− b0 sinρ(π − a)− ω0 sin ρ(π − 2a),

D1(ρ) = 2ρd∗
1 (ρ)− b1 cos ρ(π − a)− ω1 cos ρ(π − 2a).

}
(31)

It follows from (27)–(28) that

D0(ρ) = −
∫ (π−a)

−(π−a)
R(ξ) sin ρξ dξ, D1(ρ) =

∫ (π−a)

−(π−a)
R(ξ) sin ρξ dξ, (32)

where

R(ξ) = g0(ξ)+G(ξ), (33)

and G(ξ) ≡ 0 for ξ /∈ (−(π − 2a), π − 2a). Using (32) we construct the function
R(ξ). SinceG(ξ) ≡ 0 for ξ /∈ (−(π − 2a), π − 2a), we find the function g0(ξ) for
ξ /∈ (−(π − 2a), π − 2a) via g0(ξ) = R(ξ). This yields

q ′′(x)− 2hq ′(x) = −2R1(x), x ∈ [a, 3a/2] ∪ [π − a/2, π], (34)

where R1(x) := R(2x − π − a). Since q(a), q ′(a), q(π) and q ′(π) are known, we
can construct the potential q(x) for x ∈ [a, 3a/2] ∪ [π − a/2, π] by solving the
linear equation (34).

Moreover, it follows from (33) that

q ′′(x)− 2hq ′(x) = −2R1(x)+Q′
1(x + a/2)−Q′

2(x − a/2)+Q′
3(x − a/2)

−2hQ1(x + a/2)+ 2hQ2(x − a/2)+ 2hQ3(x − a/2), x ∈ [3a/2, π − a/2].
(35)
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Since q(x) is known for x ∈ [a, 3a/2] ∪ [π − a/2, π], then Eq. (35) is linear with
respect to q(x), and the solution exists. In particular, if a ∈ [2π/5, π/2), then the
right-hand side in (35) is the known function. Solving linear equation (35), we can
find q(x) for x ∈ [3a/2, π − a/2]. Thus, we have proved the following theorem.

Theorem 1 The specification of the spectra {μnj }n≥0, j = 1, 2, uniquely deter-
mines the potential q(x) and the coefficients h,H1,H2. The solution of the inverse
problem can be found by the following algorithm.

Algorithm 1 Let the spectra {μnj }n≥0, j = 1, 2, be given.

(1) Construct the characteristic functions Pj (λ), j = 1, 2 by (11).
(2) Find H1 −H2 via (17).
(3) Calculate the function�0(λ) using (12).
(4) Calculate A and h with the help of (13), for example, by (18)–(19).
(5) Find H1 and H2 using (10).
(6) Construct the function�1(λ) by (12).
(7) Find the functions dj (ρ), j = 0, 1, with the help of (13) and (14).
(8) Calculate B0, B1 and A1, using (20)–(21), for example, by (24)–(25).
(9) Find q(π) = (B1 + B0)/2 and q(a) = (B1 − B0)/2.

(10) Construct the functions d∗
j (ρ), j = 0, 1, by (26).

(11) Calculate ω0, ω1, b0 and b1, using (27)–(28), for example, by (29)–(30).
(12) Find g(a) = (b0 + b1)/2 and g(π) = (b0 − b1)/2.
(13) Calculate q ′(a) = −g(a)+ 2hq(a) and q ′(π) = −g(π)+ 2hq(π).
(14) Construct the functionsDj (ρ), j = 0, 1, by (31).
(15) Find the function R(ξ) using (32).
(16) Calculate the potential q(x) for x ∈ [a, 3a/2] ∪ [π − a/2, π] by solving

Eq. (34).
(17) Calculate the potential q(x) for x ∈ [3a/2, π−a/2] using (35) and knowledge

q(x) for x ∈ [a, 3a/2] ∪ [π − a/2, π].
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Part III
Transmutations for Partial and Fractional

Differential Equations



Transmutations of the Composed
Erdélyi-Kober Fractional Operators
and Their Applications

M. Al-Kandari, L. A-M. Hanna, and Yu. F. Luchko

Abstract This chapter provides a survey of an important class of transmutations
for the composed Erdélyi-Kober fractional operators and some of their applications.
The transmutations are given in a closed form as the generalized Obrechkoff-Stiltjes
integral transforms. They translate the composed Erdélyi-Kober fractional operators
to multiplication with a power function. These transmutations can be applied for
treating the linear fractional integro-differential equations containing both the right-
and the left-hand sided Erdélyi-Kober fractional derivatives. The equations of this
type are subject of active research in fractional calculus of variations and by
determination of the scale-invariant solutions of the partial differential equations
of fractional order to mention only few of many relevant research areas.

1 Introduction

Fractional Calculus (FC) as a theory of integrals and derivatives of non-integer order
became very popular within the last few decades both in mathematical research and
in applications. The main definitions of fractional derivatives and integrals and their
properties have been introduced more than two centuries ago. However, most of the
mathematical models in form of the fractional differential and integral equations
used nowadays in physics, chemistry, engineering, biology, medicine, and even in
life and social sciences are very recent.

In the literature, several different definitions of the fractional integrals and
derivatives including the Riemann-Liouville fractional integrals and derivatives, the
Grünwald-Letnikov derivatives, the Erdélyi-Kober integrals and derivatives, and
the Caputo-Djrbashian derivatives are actively used. In this chapter, we deal with
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the Erdélyi-Kober left- and right-hand sided fractional integrals and derivatives
as well as with their suitable compositions that we call the composed Erdélyi-
Kober fractional operators. Theory of these operators started with the papers [5, 10]
by Erdélyi and Kober, respectively, who introduced and studied some particular
cases of the operators named after them. The general case of the Erdélyi-Kober
fractional operators was treated in [8, 26, 28, 29, 34] to mention only few of
the relevant publications. The case of the Caputo-type Erdélyi-Kober fractional
operators was considered in [18]. In [8, 34], compositions of the left- or right-
hand sided Erdélyi-Kober fractional integrals and derivatives were investigated in
detail. The compositions of the left- and right-hand sided Erdélyi-Kober fractional
integrals and derivatives were studied in [13, 14, 34]. In [13], some operational rules
for these compositions were deduced and in [2, 7, 15] they were used to determine
the scale-invariant solutions of some partial differential equations of fractional
order.

The transmutations of the composed Erdélyi-Kober fractional operators are
provided in form of the generalized Obrechkoff-Stiltjes integral transform that
contains both the Obrechkoff and the Stiltjes integral transforms as its particular
cases. The Obrechkoff transform was introduced in [23]. In [3, 4], it was used as a
transmutation that translates the hyper-Bessel differential operator to a multiplica-
tion with a power function. Because the hyper-Bessel operator is a particular case of
a composition of the Erdélyi-Kober fractional derivatives, these results are included
in our schema.

Worth mentioning is another kind of transmutations that involve the Erdélyi-
Kober fractional derivatives, namely, the so called Sonin transmutations. This
time, the Erdélyi-Kober fractional derivatives are employed as transmutations that
translate the Bessel differential operator to the second order derivative. For a detailed
description of these transmutations, their generalizations, and applications we refer
the interested readers to [27]; in this chapter we do not repeat these results.

The technique employed for deriving results of this chapter is mainly based on
the Mellin integral transform. For elements of the Mellin integral transform and its
applications we refer the reader to [22]. A survey of some applications of the Mellin
transform technique in FC was provided in [17].

As to the applications of the transmutations of the composed Erdélyi-Kober
fractional operators, we mention an operational treatment of the fractional differ-
ential equations containing both the left- and the right-hand sided Erdélyi-Kober
derivatives. Such equations were deduced as a suitably modified Euler-Lagrange
equation in the fractional calculus of variations (see, e.g., [1, 21]). Whereas
on the finite intervals these equations can be solved by the method of power
series extension [9], the case of infinite intervals is still open. Another important
application of this technique is for determination of the scale-invariant solutions of
some partial differential equations of fractional order [2, 7, 15].

The rest of this chapter is organized as follows. In the second section, some basic
facts concerning the Mellin integral transform and the Mellin-Barnes integrals are
presented. The third section deals with the integral transforms of the Mellin convolu-
tion type and their properties. In the next section, the generalized Obrechkoff-Stiltjes
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integral transform is introduced as a generalization of the Obrechkoff integral
transform and the Stiltjes integral transform. The Obrechkoff-Stiltjes integral
transform turns out to play a role of a transmutation operator for the Erdélyi-
Kober fractional operators that are introduced in the last section. This transmutation
translates the Erdélyi-Kober fractional operators into a multiplication with a power
function. As a consequence, application of the transmutation operator reduces the
integro-differential equations with the Erdélyi-Kober fractional operators to some
algebraic equations and thus allows to determine their solutions in explicit form.
This solution technique is discussed in the last section, too.

2 The Mellin Integral Transform

The Mellin integral transform is one of the most used and important integral
transforms in mathematics and its applications. In particular, almost all known
special functions including the generalized hypergeometric functions, the Mittag-
Leffler function, the Wright function, and the Fox H-function can be interpreted
as the inverse Mellin integral transforms of some quotients of products of the
Gamma-functions (the Mellin-Barnes integrals). Moreover, many integral trans-
forms including the Riemann-Liouville and the Erdélyi-Kober fractional integrals
have the Mellin convolution form and can be represented as the Mellin-Barnes
integrals.

The Mellin integral transform of a function f = f (x), x > 0 at the point s ∈ C

is defined as the following improper integral (in the case it is convergent one):

f ∗(s) = M{f (x); s} =
∫ +∞

0
f (x)xs−1 dx. (1)

Let us denote by Lc(a, b) the space of functions that are continuous on the interval
(a, b) with a possible exception of finite many points and for that the improper
integral

∫ b
a |f (x)| dx converges. The Mellin integral transform is well defined in

particular for the functions f that satisfy the following sufficient conditions: f ∈
Lc(ε,E), 0 < ε < E < ∞, f ∈ C(0, ε] and f ∈ C[E,+∞), |f (t)| ≤ Mt−γ1 for
0 < t < ε and |f (t)| ≤ Mt−γ2 for t > E, whereM is a constant and γ1 < γ2. If the
conditions formulated above are fulfilled, the Mellin integral transform f ∗ = f ∗(s)
exists and is an analytical function in the strip γ1 < "(s) < γ2 of the complex
plane.

The inverse Mellin integral transform is defined by the following improper
integral in the sense of the Cauchy principal value:

f (x) = M−1{f ∗(s); x} = 1

2πi

∫ γ+i∞

γ−i∞
f ∗(s)x−s ds, γ = "(s). (2)
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In particular, the formula (2) is valid in a point x > 0 for the functions f that are
piecewise differentiable in an ε-neighborhood of the point x, continuous at the point
x, and satisfy the inclusion f (x)xγ−1 ∈ Lc(0,+∞). In the case, f has a jump at
the point x, but satisfies all other conditions mentioned above, the left-hand side of
the formula (2) has to be replaced by (f (x − 0)+ f (x + 0))/2.

It is worth mentioning that the Mellin integral transform can be interpreted as the
Fourier integral transform for the complex frequencies:

M{f (x); s} =
∫ +∞

0
f (x)xs−1 dx =

∫ +∞

−∞
f (ex)eix(−is) dx = F{f (ex); −is}.

Employing this relation, both the inverse Mellin integral transform and the con-
volution for the Mellin integral transform can be obtained from the formulas for
the inverse Fourier integral transform and the convolution for the Fourier integral
transform by the same variables substitutions.

The Mellin convolution is provided by the following integral:

(f
M∗ g)(x) =

∫ +∞

0
f (x/t)g(t)

dt

t
. (3)

According to the results presented in [30], the Mellin convolution h = f
M∗ g is

well defined and satisfies the inclusion h(x) xγ−1 ∈ L(0,∞) and the convolution
property

M{(f M∗ g)(x); s} = M{f (x); s} · M{g(x); s} (4)

for the functions satisfying the inclusions f (x) xγ−1 ∈ L(0,∞) and g(x) xγ−1 ∈
L(0,∞).

Combining the convolution property (4) and the formula (2) for the inverse
Mellin integral transform, we get the well-known and important Parseval equality
for the Mellin integral transform

∫ +∞

0
f (x/t)g(t)

dt

t
= 1

2πi

∫ γ+i∞

γ−i∞
f ∗(s)g∗(s) x−sds. (5)

The basic properties of the Mellin integral transform are as follows (by → we denote
the correspondence between a function and its Mellin transform):

f (ax)→ a−sf ∗(s), a > 0, (6)

xpf (x)→ f ∗(s + p), (7)

f (xp)→ 1

|p|f
∗(s/p), p �= 0, (8)
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f (n)(x)→ (n+ 1 − s)
(1 − s) f ∗(s − n), if lim

x→0
xs−k−1f (k)(x) = 0, (9)

n = 1, 2, . . . , k = 0, 1, . . . , n− 1,

(
x
d

dx

)n
f (x)→ (−s)nf ∗(s), n = 1, 2, . . . , (10)

(
d

dx
x

)n
f (x)→ (1 − s)nf ∗(s), n = 1, 2, . . . . (11)

It is a very remarkable and important fact that the Mellin integral transforms of
practically all known elementary and special functions are in form of quotients of
products of the Gamma-functions [22, 25]. In the further discussions we need the
closed form formulas for the Mellin integral transforms of some elementary and
special functions that are presented below:

e−xp → 1

|p|(s/p), "(s/p) > 0, (12)

(1 − xp)α−1+
(α)

→ (s/p)

|p|(s/p + α) , "(α) > 0, "(s/p) > 0, (13)

where (x)+ ≡ H(x),H(x) is the Heaviside function,

(xp − 1)α−1+
(α)

→ (1 − α − s/p)
|p|(1 − s/p) , 0 < "(α) < 1 − "(s/p), (14)

(ρ)(1 + x)−ρ → (s)(ρ − s), 0 < "(s) < "(ρ), (15)

1

π(1 − x) → (s)(1 − s)
(s + 1/2)(1/2 − s) , 0 < "(s) < 1, (16)

Kν(2
√
x)→ 1

2
(s + ν/2)(s − ν/2), "(s) > |"(ν)|/2, (17)

Kν(x) is the Macdonald function (37),

exerfc(
√
x)→ 1

π
(s + 1/2)(s)(1/2 − s), 0 < "(s) < 1/2, (18)

erfc(x) = 1 − erf(x), erf(x) is the probability integral,

�(a, b; x) → 1

(a)(a − b + 1)
(s)(s + 1 − b)(a − s), max{0,"(b − 1)} < "(s) < "(a),

(19)
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�(a, b; z) is the Tricomi function (39),

ex/2Kν

(x
2

)
→ 1√

π
cos(πν)(s + ν)(s − ν)(1/2 − s), |"(ν)| < "(s) < 1/2,

(20)

Kν(x) is the Macdonald function (37),

π2μ+1(1−μ+ν)(−μ−ν)|1−x|μ/2Pμν (
√
x)→(s)(s+1/2)

× ((1 + ν−μ)/2 − s)(−(μ+ν)/2−s), (21)

0 < "(s) < min{(1 + "(ν − μ))/2,−"(ν + μ)/2},

P
μ
ν (x) is the Legendre function of the first kind (40),

J 2
ν (

√
x)+ Y 2

ν (
√
x) → 2 cos(νπ)

π5/2
(s)(s + ν)(s − ν)(1/2 − s), |"(ν)| < "(s) < 1/2,

(22)

Jν(x) is the Bessel function of the first kind (35), and Yν(x) is the Neumann
function (38),

H
m,n

p, q

(
x

∣∣∣∣(αp, ap)(βq, bq)

)
→

∏m
j=1 (βj + bjs)∏n

j=1 (1 − αj − aj s)∏p

j=n+1 (αj + ajs)∏q

j=m+1 (1 − βj − aj s)
(23)

− min
1≤j≤m"(βj )/bj < "(s) < min

1≤j≤n(1 − "(αj ))/aj

and

(1) σ > 0 or

(2) σ = 0, δ"(s) < q−p
2 − 1 + "

(∑p

j=1 αj − ∑q

j=1 βj

)
,

where

σ =
n∑
j=1

aj −
p∑

j=n+1

aj +
m∑
j=1

bj −
q∑

j=m+1

bj , δ =
q∑
j=1

bj −
p∑
j=1

aj .

In (23), H m,n
p,q

stands for the Fox H -function defined by (41).
In the rest of this section, we provide definitions of the special functions

mentioned above and some of their important properties.
The Euler Gamma-function is defined by the following improper integral:

(s) =
∫ ∞

0
e−xxs−1dx, "(s) > 0. (24)
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For "(s) > 0, it is an analytic function that can be extended to "(s) ≤ 0, s �=
0,−1,−2, . . . by analytic continuation of the integral at the right-hand side of (24).
The standard way for the analytic continuation is to employ the reduction formula

(s + 1) = s(s), "(s) > 0 (25)

that immediately follows from (24) by means of integration by parts.
Other important properties of the Gamma-function are the supplement formula

(s)(1 − s) = π

sin(πs)
, s ∈ C (26)

and the asymptotic formulas [6, 22, 34]:

(s) = √
2πss−

1
2 e−s(1 +O(s−1)), | arg(s)| < π, |s| → ∞, (27)

(s + α)
(s + β) = sα−β(1 +O(s−1)), | arg(s)| < π, α, β ∈ C, |s| → ∞, (28)

|(x + iy)| = √
2π |y|x− 1

2 e−π |y|/2(1 +O(|y|−1)), x, y ∈ R, |y| → ∞. (29)

The Pochhammer symbol (z)n is defined by

(z)n =
n−1∏
k=0

(z+ k) = (z + n)
(z)

. (30)

The Euler Beta-function is defined by the improper integral

B(s, t) =
∫ 1

0
xs−1(1 − x)t−1dx, "(s) > 0, "(t) > 0. (31)

It is related to the Gamma-function by the formula

B(s, t) = (s)(t)

(s + t) . (32)

The generalized hypergeometric function pFq(z) is one of the most general and
used special functions. One of its definitions is in form of the following series (in
the case it is convergent)

pFq
[
(a)p; (b)q; z

] ≡ pFq

[
a1, . . . , ap;
b1, . . . , bq; z

]
≡

∞∑
n=0

∏p

j=1(aj )n∏q

j=1(bj )n

zn

n! . (33)
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The series at the right-hand side of (33) is absolutely convergent in the whole
complex plane when p ≤ q .

When p = q + 1, it converges only for |z| < 1. When

"
⎡
⎣
q∑
j=1

bj −
p∑
j=1

aj

⎤
⎦ > 0,

the series (33) converges for z = 1 and when

"
⎡
⎣
q∑
j=1

bj −
p∑
j=1

aj

⎤
⎦ > −1,

it converges for |z| = 1, z �= 1. For other values of z, q+1Fq(z) can be defined
as an analytic continuation of the series (33). One of the ways for the analytic
continuation is employing the following Mellin-Barnes integral representation

q+1Fq
[
(a)q+1; (b)q ; z

] =
∏q

j=1 (bj )∏q+1
j=1 (aj )

1

2πi

∫ γ+i∞

γ−i∞

∏q+1
j=1 (aj − s)(s)∏q

j=1 (bj − s) (−z)−sds,

(34)

where 0 < "(s) = γ < min
1≤j≤q+1

"(aj ); | arg(−z)| < π.
For p > q + 1, the series at the right-hand side of (33) is divergent everywhere

with exception of the point z = 0.
The Bessel functions Jν(z), Iν(z), the Macdonald function Kν(z), and the

Neumann function Yν(z) are all particular cases of the function 0F1:

Jν(z) = 1

(ν + 1)

( z
2

)ν
0F1

[
ν + 1; −z

2

4

]
=

∞∑
n=0

(−1)n(z/2)2k+ν

(ν + n+ 1)n! , (35)

Iν(z) =
∞∑
n=0

(z/2)2k+ν

(ν + n+ 1)n! = e−πiν/2Jν(iz), (36)

Kν(z) = π

2 sin(πν)
[I−ν (z)− Iν(z)] , ν �= 0,±1,±2, . . . , (37)

Kn(z) = lim
ν→n

Kν(z), n = 0,±1,±2, . . . ,

Yν(z) = cos(πν)Jν(z)− J−ν(z)
sin(πν)

ν �= 0,±1,±2, . . . , (38)

Yn(z) = lim
ν→n

Yν(z), n = 0,±1,±2, . . . .
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The Tricomi function �(a, b; z) can be defined in terms of 1F1(z), whereas the
Legendre function of the first kind Pμν (z) is a special case of 2F1(z):

�(a, b; z) = (1 − c)
(1 + a − c) 1F1(a; c; z)+ (c − 1)

(a)
z1−c

1F1(1 + a − c; 2 − c; z),
(39)

Pμν (z) = 1

(1 − μ)
(
z+ 1

z− 1

)μ/2
2F1(−ν, ν + 1; 1 − μ; (1 − z)/2),

|arg(z− 1)| < π; μ �= 1, 2, . . . . (40)

The Fox H-function was initially introduced as an extension of the hypergeo-
metric function pFq(z) for the case p > q + 1. It is defined by the following
Mellin-Barnes integral:

H
m,n

p, q

(
z

∣∣∣∣ (αp, ap)(βq, bq)

)
= H m,n

p, q

(
z

∣∣∣∣ (α, a)1,p(β, b)1,q

)
= 1

2πi

∫
L

�(s)z−s ds, (41)

where z �= 0, 0 ≤ m ≤ q, 0 ≤ n ≤ p, αj ∈ C, aj > 0, 1 ≤ j ≤ p, βj ∈ C, bj > 0,
1 ≤ j ≤ q ,

�(s) =
∏m
j=1 (βj + bjs)∏n

j=1 (1 − αj − aj s)∏p
j=n+1 (αj + aj s)∏q

j=m+1 (1 − βj − aj s)
, (42)

an empty product, if it occurs, is taken to be one. The contour L is an infinite
contour in the complex plane that separates the left poles s = (−βj − k)/bj ,
j = 1, 2, . . . ,m, k = 0, 1, 2, . . . of the numerator of�(s) from the right poles s =
(1−αj +k)/aj , j = 1, 2, . . . , n, k = 0, 1, 2, . . . . It may be of three different types:
L−∞, L+∞ or Li∞ (in particular, even a rectilinear line L = (γ − i∞, γ + i∞)).
For more details regarding the contour L and properties of the Fox H-function see,
e.g., [25].

3 Integral Transforms of the Mellin Convolution Type

As we could see in the previous section, the Mellin integral transforms of the
elementary and special functions of the hypergeometric type are all in form of
quotients of products of the Gamma-functions. In particular, this important property
opens a gateway for construction of a unified theory of the Mellin convolution type
integral transforms with the special functions in the kernels. The idea is to study
them in form of the Mellin-Barnes integrals given by the right-hand side of the
Parseval equality (5). In the Mellin-Barnes integral, one has to deal with the Mellin
integral transforms of the kernel functions that are provided in form of quotients
of products of the Gamma-functions. Using the formulas (27), (28), and (29) for
the asymptotic behavior of the Gamma-function, the asymptotic behavior of the
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Mellin integral transforms of different kernel functions can be then obtained in a
uniform way. Accordingly, it is very convenient to study the Mellin convolution
type integral transforms with the special functions in the kernels in some special
spaces of functions that are introduced in terms of their Mellin integral transforms.

The basic space of functions M−1(L) used for this approach was introduced and
investigated in [32, 33], and [34].

Definition 3.1 The space of functions M−1(L) consists of all functions f =
f (x), x > 0 that can be represented as the inverse Mellin integral transform

f (x) = M−1{f ∗(s); x} = 1

2πi

∫
σ

f ∗(s) x−s ds, x > 0, σ = {s ∈ C : "(s) = 1/2}
(43)

of the functions f ∗ ∈ L(σ).
The space of functions M−1(L) equipped with the norm

‖ f ‖M−1(L)=
1

2π

∫ +∞

−∞
|f ∗(1/2 + it)| dt (44)

is a Banach space.
For a function f ∈ M−1(L), the following useful properties are fulfilled:

(1) x−1f (x−1) ∈ M−1(L). Vice versa, if x−1f (x−1) ∈ M−1(L) then f ∈
M−1(L).

(2) x1/2f (x) is uniformly bounded, continuous on (0,+∞), and the relation
x1/2f (x) = o(1) when x → +∞ and x → 0 holds true.

(3) If g ∈ M−1(L) then x1/2f (x)g(x) ∈ M−1(L).

(4) If x−1/2g(x) ∈ L(R+) then f
M∗ g ∈ M−1(L).

In this chapter, we deal with the integral transforms of the Mellin convolution
type with the kernels from a class K defined as follows:

Definition 3.2 ([32]) A function k : (0, ∞) → R is said to belong to the class K
of kernels if it satisfies the following conditions:

(1) k ∈ L(ε,E) for any ε, E, such that 0 < ε < E <∞,
(2) the integral

k∗(s) = M{k(u); s} =
∫ ∞

0
k(u)us−1du, s ∈ σ, σ = {s ∈ C : "(s) = 1/2}

(45)

converges for any s ∈ σ ,
(3) for almost all ε, E > 0 and t ∈ R

∣∣∣∣
∫ E

ε

k(u)uit−1/2du

∣∣∣∣ < Ck, (46)
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where the constant Ck > 0 does not depend on ε, E, and t .

If for a function k ∈ K, there exists a kernel k̂∗ ∈ K such that the equality

k∗(s)k̂∗(1 − s) = 1, k, k̂ ∈ K (47)

holds true almost everywhere on the line "(s) = 1/2, we say that k ∈ K∗ ⊂ K. The
kernel k̂ ∈ K∗ satisfying (47) is called a conjugate kernel of the kernel k ∈ K∗.

It is easy to verify that if x−1/2k(x) ∈ L(0,∞), then k ∈ K but k �∈ K∗.
In what follows, we consider the integral transforms of the Mellin convolution

type in form [11, 13, 14, 16, 19, 31, 32, 34]

g(x) = (Kf )(x) =
∫ ∞

0
k
(x
u

)
f (u)

du

u
(48)

with the kernels from the space K and their inverse transforms

f (x) = (K̂g)(x) =
∫ ∞

0
k̂
(x
u

)
g(u)

du

u
(49)

with the kernels from the space K∗ and some of their properties in the space of
functions M−1(L). The results that we use in the further discussions are formulated
in Theorems 3.1 and 3.2 (for the proofs we refer the interested reader to [31, 32],
and [34]).

Theorem 3.1 ([31]) Let f ∈ M−1(L), k ∈ K, k∗ be given by (45) and f ∗ be
defined as in (43). Then the Parseval formula

∫ ∞

0
k
(x
u

)
f (u)

du

u
= 1

2πi

∫
σ

k∗(s)f ∗(s)x−sds (50)

holds true.

Theorem 3.2 ([31]) Let k ∈ K∗ and k̂ ∈ K∗ be its conjugate kernel. Then the
integral transform

g(x) = (Kf )(x) =
∫ ∞

0
k
(x
u

)
f (u)

du

u

is an automorphism in the space M−1(L) and its inverse transform is given by

f (x) = (K̂g)(x) =
∫ ∞

0
k̂
(x
u

)
g(u)

du

u
.
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Corollary 3.1 Let k ∈ K∗, k̂ ∈ K∗ be its conjugate kernel, and |k∗(s)| = 1, s ∈ σ .
Then the integral transforms (48) and (49) are isometric automorphisms in the space
M−1(L).

As an example, it is an easy exercise to verify that the sine-Fourier transform

(Fsf )(x) = √
2/π

∫ ∞

0
sin(xy)f (y) dy (51)

is an isometric automorphism in the space M−1(L) and its inverse transform has
the same form.

As we already mentioned, the Mellin integral transforms of the functions of the
hypergeometric type typically have the form

k∗(s) =
∏m
i=1 (αi + ais)

∏n
i=1 (βi − bis)∏l

i=1 (γi + cis)
∏k
i=1 (δi − dis)

, αi , βi, γi, δi ∈ C, ai, bi, ci, di > 0.

(52)

For s ∈ σ ("(s) = 1/2), the asymptotic behavior of the right-hand side of (52) is
given by the formula

k∗(s) = |s|−γ e−πc|0(s)|
(
C +O(|s|−1

)
, |0(s)| → ∞, (53)

where

γ = 1

2
(m+n−k−l)−

m∑
i=1

(αi+ 1

2
ai)−

n∑
i=1

(βi− 1

2
bi)+

l∑
i=1

(γi+ 1

2
ci)+

k∑
i=1

(δi− 1

2
di),

(54)

c = 1

2
(

n∑
i=1

ai +
m∑
i=1

bi −
l∑
i=1

ci −
k∑
i=1

di). (55)

The formula (53) is a simple consequence of the formula (29) for the asymptotic
behavior of the Gamma-function.

Thus, the Mellin integral transforms of the kernel functions can increase or
decrease when 0(s) → ∞ and we have to take their asymptotic behavior into
consideration while defining the spaces of functions for the Mellin convolution type
integral transforms with the hypergeometric type functions in the kernel.

Definition 3.3 The space of functions M−1
c,γ (L) consists of all functions f =

f (x), x > 0 that can be represented as the inverse Mellin integral transforms

f (x) = M−1{f ∗(s); x} = 1

2πi

∫
σ

f ∗(s) x−s ds, x > 0, σ = {s ∈ C : "(s) = 1/2}
(56)
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of the functions f ∗ = f ∗(s) that satisfy the inclusion

f ∗(s)|s|γ eπc|0(s)| ∈ L(σ) (57)

under the condition

2sign(c)+ sign(γ ) ≥ 0, c, γ ∈ R. (58)

For |s| → ∞, s ∈ σ , |0(s)| behaves like |s| and thus the integral at the right-
hand side of (56) converges if c > 0, γ ∈ R or if c = 0, γ ≥ 0, i.e., under the
condition (58).

Evidently, the space of functions M−1
c,γ (L) is a subspace of M−1(L) and the

family of these subspaces is partially ordered, i.e., the inclusion

M−1
c1,γ1

(L) ⊂ M−1
c2,γ2

(L) (59)

holds true if and only if

2sign(c1 − c2)+ sign(γ1 − γ2) ≥ 0. (60)

Equipped with the norm

‖f ‖M−1
c,γ (L)

= 1

2π

∫
σ

eπc|0(s)||sγ f ∗(s) ds| (61)

M−1
c,γ (L) becomes a Banach space.
For c = 0, we get an important particular case of the space of functions

M−1
c,γ (L) that is denoted by M−1

γ (L). In particular, this space of functions will be
employed for investigation of the mapping properties of the Erdélyi-Kober fractional
operators.

4 The Generalized Obrechkoff-Stieltjes Integral Transform

In this section, a closed form representation for transmutations of the composed
Erdélyi-Kober fractional operators is introduced and discussed.

We start with a generalization of the Obrechkoff transform [4, 23, 34] in form of
a Mellin convolution type integral transform

(Of )(x) =
∫ ∞

0
H

0,n
n,0

(
x

u

∣∣∣∣ (α, a)1,n−
)
f (u)

du

u
, u > 0, (62)
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whereH 0,n
n,0 is a particular case of the Fox H -function (41).

The formula (41) and the integral representation (24) of the Gamma-function
lead to the following identity for the kernel function H 0,n

n,0 in form of a multiple
integral:

H
0,n
n,0

(
z

∣∣∣∣ (α, a)1,n−
)

= z
αn−1
an

an

∫ ∞

0
. . .

∫ ∞

0
exp

(
−
n−1∑
i=1

ui − z−
1
an

n−1∏
i=1

u
− ai
an

i

)
×
(63)

n−1∏
i=1

u
−ai 1−αn

an
−αi

i du1 . . . dun−1.

Denoting the right-hand side of the formula (63) by�(z|(αi , ai)1,n), we can rewrite
the generalized Obrechkoff transform (62) as

(Of )(x) =
∫ ∞

0
�n

(x
u

| (αi , ai)1,n
)
f (u)

du

u
. (64)

Applying now Theorem 3.1, the known asymptotic behavior of the H -function
(see e.g. [34]), and the formula (23) we conclude that the generalized Obrechkoff
transform (62) maps the space of functions M−1(L) into a subspace of M−1(L)

and the following representation holds true:

(Of )(x) = 1

2πi

∫
σ

n∏
i=1

(1 − αi − ais)f ∗(s)x−sds. (65)

Now we continue with the generalized Stieltjes integral transform that was
introduced in [11, 34] in the following form:

(Sαβ f )(x) = x
α
β

β

∫ ∞

0

f (u)u
1−α
β

x
1
β + u 1

β

du

u
, u > 0, β > 0. (66)

For α = 0, β = 1, the generalized Stieltjes integral transform (66) is reduced to the
conventional Stieltjes transform.

Employing Theorem 3.1 and the formulas (7), (8), and (15), we get the following
representation of the generalized Stieltjes transform (66) in the space of functions
M−1(L):

(Sαβ f )(x) = 1

2πi

∫
σ

(1 − α − βs)(α + βs)f ∗(s)x−sds. (67)

Motivated by the representations (65) and (67) of the generalized Obrechkoff and
Stieltjes transforms, the generalized Obrechkoff-Stieltjes transform was introduced
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in [13] in form of the following Mellin-Barnes integral:

(OSf )(x) = 1

2πi

∫
σ

n∏
j=1

(1 − αj − ajs)
m∏
j=1

(βj + bj s)f ∗(s)x−sds. (68)

The formula (23) for the Mellin integral transform of the Fox H -function,
Theorem 3.1, and the asymptotic behavior of the H -function (see e.g. [34]) allow
us to represent the generalized Obrechkoff-Stieltjes transform (68) in the space of
fucntions M−1(L) as an integral transform of the Mellin convolution type with the
Fox H -function in the kernel:

(OSf )(x) =
∫ ∞

0
Hm,nn,m

(
x

u

∣∣∣∣ (α, a)1,n(β, b)1,m

)
f (u)

du

u
, u > 0. (69)

As can be easily seen from the relations (65), (67), and (68), both the general-
ized Obrechkoff transform and the generalized Stieltjes transform are particular
cases of the generalized Obrechkoff-Stieltjes transform. The Mellin transform
formulas (17)–(22) lead to other interesting and important particular cases of the
generalized Obrechkoff-Stieltjes transform (69):

1. the modified Meijer transform (m = 2, n = 0, b1 = b2 = 1, β1 = ν
2 , β2 =

−ν/2):

(OSf )(x) =
∫ ∞

0
Kν

(
2

√
x

u

)
f (u)

du

u
, x > 0, (70)

2. the integral transform with the Macdonald function (37) in the kernel (m = 2,
n = 1, b1 = b2 = a1 = 1, β1 = ν, β2 = −ν, α1 = 1/2):

(OSf )(x) =
∫ ∞

0
e
x
2uKν

( x
2u

)
f (u)

du

u
, x > 0, (71)

3. the integral transform with the probability integral in the kernel (m = 2, n = 1,
b1 = b2 = a1 = 1, β1 = 1/2, β2 = 0, α1 = 1/2):

(OSf )(x) =
∫ ∞

0
e
x
u erfc

(√
x

u

)
f (u)

du

u
, x > 0, (72)

4. the integral transform with the Tricomi function (39) in the kernel (m = 2, n = 1,
b1 = b2 = a1 = 1, β1 = 0, β2 = 1 − b, α1 = 1 − a):

(OSf )(x) =
∫ ∞

0
�

(
a; b; x

u

)
f (u)

du

u
, x > 0, (73)
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5. the integral transform with the Legendre function of the first kind (40) in the
kernel (m = 2, n = 2, b1 = b2 = a1 = a2 = 1, β1 = 0, β2 = 1/2, α1 =
1 − (1 + ν − μ)/2, α2 = 1 + (ν + μ)/2):

(OSf )(x) =
∫ ∞

0

∣∣∣1 − x

u

∣∣∣μ/2 Pμν
(√

x

u

)
f (u)

du

u
, x > 0, (74)

6. the integral transform with the sum of squares of the Bessel function (35) and the
Neumann function (38) in the kernel (m = 3, n = 1, b1 = b2 = b3 = a1 = 1,
β1 = 0, β2 = ν, β3 = −ν, α1 = 1/2):

(OSf )(x) =
∫ ∞

0

(
J 2
ν

(√
x

u

)
+ Y 2

ν

(√
x

u

))
f (u)

du

u
, x > 0. (75)

In analogy to the Obrechkoff integral transform (62), the generalized Obrechkoff-
Stieltjes transform can be represented in form of a multiple integral with an
exponential function and power multipliers in the kernel (see the formula (64) for
the corresponding representation of the Obrechkoff integral transform).

For illustration of the method, we first consider the modified Laplace transform
that is a particular case of the Obrechkoff transform. Employing the integral
representation (24) of the Gamma-function and changing the order of integration in
the double integral, for a function f from the space M−1(L) we get the following
chain of equalities:

(Lf )(x) = 1

2πi

∫
σ

(1 − s)f ∗(s)x−sds = 1

2πi

∫
σ

∫ ∞

0
e−t t−sdt f ∗(s)x−sds

(76)

=
∫ ∞

0
e−t 1

2πi

∫
σ

f ∗(s)(xt)−sds dt =
∫ ∞

0
e−t f (xt) dt.

The same method can be used for the generalized Obrechkoff-Stieltjes integral
transform (68) if min

1≤i≤n(1 − αi)/ai > max
1≤i≤m−βj/bi :

(OSf )(x) = 1

2πi

∫
σ

m∏
i=1

(βi + bis)
n∏
i=1

(1 − αi − ais)f ∗(s)x−sds (77)

= 1

2πi

∫
σ

∫ ∞

0
· · ·

∫ ∞

0
exp

(
−

m∑
i=1

ui

)
m∏
i=1

u
βi+bis−1
i du1 . . . dum

×
∫ ∞

0
· · ·

∫ ∞

0
exp

(
−

n∑
i=1

vi

)
n∏
i=1

v
−αi−ais
i dv1 . . . dvn f

∗(s)x−sds
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=
∫ ∞

0
· · ·

∫ ∞

0
exp

(
−

m∑
i=1

ui −
n∑
i=1

vi

)
m∏
i=1

u
βi−1
i

n∏
i=1

v
−αi
i du1 . . . dum dv1 . . . dvn

× 1

2πi

∫
σ

f ∗(s)
(
x

m∏
i=1

u
−bi
i

n∏
i=1

v
ai
i

)−s
ds

=
∫ ∞

0
· · ·

∫ ∞

0
exp

(
−

m∑
i=1

ui −
n∑
i=1

vi

)
m∏
i=1

u
βi−1
i

n∏
i=1

v
−αi
i

×f
(
x

m∏
i=1

u
−bi
i

n∏
i=1

v
ai
i

)
du1 . . . dum dv1 . . . dvn.

As we will see in the next section, the generalized Obrechkoff-Stieltjes integral
transform is a transmutation of the composed Erdélyi-Kober fractional operators.

5 Composed Erdélyi-Kober Fractional Operators and Their
Transmutations

In this section, we first introduce the composed Erdélyi-Kober fractional operators
related to the generalized Obrechkoff-Stieltjes integral transform (69). It turns
out that the composed Erdélyi-Kober fractional operators and the generalized
Obrechkoff-Stieltjes transform are connected by some operational relations, i.e.,
the generalized Obrechkoff-Stieltjes transform is a transmutation of the composed
Erdélyi-Kober fractional operators that translates them into multiplication with a
power function. In this sense, the generalized Obrechkoff-Stieltjes transform and the
composed Erdélyi-Kober fractional operators can be interpreted as a far-reaching
generalization of the well-known Laplace integral transform and the differential
operators of integer order.

In the Fractional Calculus literature, finite compositions of the right-hand sided
or the left-hand sided Erdélyi-Kober fractional integrals or derivatives were already
considered (see e.g. [8] or [34]). Their transmutation operators can be represented
via the generalized Obrechkoff integral transform (see the examples at the end
of this section). In this section, we introduce and study the composed Erdélyi-
Kober fractional operators, i.e., the compositions of both the right-hand sided and
the left-hand sided Erdélyi-Kober fractional integrals and derivatives. This type
of operators has very different properties compared to those of compositions of
only right-hand sided or only left-hand sided Erdélyi-Kober fractional integrals or
derivatives. As a particular case of the composed Erdélyi-Kober fractional operator
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let us mention the Hilbert integral transform (see the end of this section for
details):

(Hf )(x) = 1

π

∫ ∞

0

f (t)

t − x dt. (78)

We start with a discussion of some basic properties of the Erdélyi-Kober frac-
tional integrals and derivatives that are among most used and important definitions
of the fractional calculus operators. These operators and their numerous applications
both for mathematical and applied problems were discussed in a number of
publications [8, 18, 24, 34]. In what follows, we focus on the left-hand sided Erdélyi-
Kober fractional integrals and derivatives because the properties of the right-hand
sided Erdélyi-Kober fractional integrals and derivatives are very similar to ones of
the left-hand sided operators and can be derived from them by simple variables
substitutions.

The left- and right-hand sided Erdélyi-Kober fractional integrals of order δ and
α, respectively, are given by the relations

(I
γ,δ
β f )(x) = β

(δ)
x−β(γ+δ)

∫ x

0
(xβ − uβ)δ−1uβ(γ+1)−1f (u)du, δ, β > 0, γ ∈ R,

(79)

(K
τ,α
β f )(x) = β

(α)
xβτ

∫ ∞

x

(uβ − xβ)α−1u−β(τ+α−1)−1f (u)du, α, β > 0, τ ∈ R.

(80)

For δ = 0 or α = 0, respectively, these operators are reduced to the identity
operators:

(I
γ,0
β f )(x) = f (x), (Kτ,0β f (x) = f (x).

For β = 1, the Erdélyi-Kober fractional integrals (79) and (80) can be represented
in terms of the Riemann-Liouville fractional integrals with the power functions
weights [26, 34]:

(I
γ,δ

1 f )(x) = (x−γ−δI δ0+uγ f )(x) = 1

(δ)
x−γ−δ

∫ x

0
(x − u)δ−1uγ f (u)du,

(81)

(K
τ,α
1 f )(x) = (xτ Iα−u−τ−αf )(x) = 1

(α)
xτ

∫ ∞

x

(u− x)α−1u−τ−αf (u)du.

(82)
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Below we list the main properties of the left-hand sided Erdelyi-Kober fractional
integral (79) that will be used in the further discussions (for the proofs see, e.g.,
[8]):

(I
γ,δ
β xλβf )(x) = xλβ(Iγ+λ,δ

β f )(x), (83)

(I
γ,δ
β I

γ+δ,α
β f )(x) = (Iγ,δ+αβ f )(x), (84)

(I
γ,δ
β I

α,η
β f )(x) = (Iα,ηβ I

γ,δ
β f )(x). (85)

For the theory of the Erdélyi-Kober fractional integrals in several different spaces
of functions and some of their applications we refer to e.g., [8, 26], and [34].

We introduce now the left- and right-hand sided Erdélyi-Kober fractional
derivatives [8, 18, 34]. Let n − 1 < δ ≤ n, n ∈ N and m − 1 < α ≤ m, m ∈ N.
The integro-differential operators

(D
γ,δ
β f )(x) =

n∏
i=1

(
γ + i + 1

β
x
d

dx

)
(I
γ+δ,n−δ
β f )(x), (86)

(P
τ,α
β f )(x) =

m−1∏
i=0

(
τ + i − 1

β
x
d

dx

)
(K

τ+α,m−α
β f )(x) (87)

are called the left- and right-hand sided Erdélyi-Kober fractional derivatives of order
δ or α, respectively.

In the formulas (86) and (87), the operators Iγ,δβ andKτ,αβ are the left- and right-
hand sided Erdélyi-Kober fractional integrals defined by (79) and (80), respectively.

The left- and the right-hand sided Erdélyi-Kober fractional derivatives are the
left-inverse operators to the left- and the right-hand sided Erdélyi-Kober fractional
integrals, respectively [18].

Of course, the Erdélyi-Kober fractional derivatives are not right-inverse operators
to the Erdélyi-Kober fractional integrals (see [18] for the closed form formulas for
the compositions of the Erdélyi-Kober fractional integrals and the Erdélyi-Kober
fractional derivatives).

In analogy to the case of the fractional derivatives in the Riemann-Liouville
and Caputo sense, a Caputo-type modification of the Erdélyi-Kober fractional
derivatives was introduced in [7] and analyzed in details in [18]. These fractional
derivatives are similar to the conventional Erdélyi-Kober fractional derivatives,
but allow a traditional form of initial conditions while considering initial value
problems for the fractional differential equations with the Erdélyi-Kober fractional
derivatives.
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Let n − 1 < δ ≤ n, n ∈ N, m − 1 < α ≤ m, m ∈ N, and β > 0. The
integro-differential operator

(∗Dγ,δβ f )(x) = (Iγ+δ,n−δ
β

n−1∏
i=0

(
1 + γ + i + 1

β
u
d

du

)
f (u))(x), x > 0 (88)

is called the left-hand sided Caputo-type modification of the Erdélyi-Kober frac-
tional derivative of order δ. The Caputo-type modification of the right-hand sided
Erdélyi-Kober fractional derivative of order α is defined by the integro-differential
operator

(∗Pτ,αβ f )(x) = (Kτ+α,m−α
β

m−1∏
i=0

(
τ + i − 1

β
u
d

du
)f (u)

)
(x), x > 0. (89)

In the formulas (88), (89), the operators Iγ,δβ and Kτ,αβ are the left- and right-hand
sided Erdélyi-Kober fractional integrals of order δ or α, respectively.

The Caputo-type modifications of the Erdélyi-Kober fractional derivatives are
the left-inverse operators to the corresponding Erdélyi-Kober fractional integrals
[18], but not the right-inverse ones. A closed form formula for the composition
of the left-hand sided Erdélyi-Kober fractional integral and the corresponding
Caputo-type modification of the Erdélyi-Kober fractional derivative was derived in
[18].

Now we introduce the suitable compositions of the left- and right-hand sided
Erdélyi-Kober fractional integrals and derivatives we deal with in this chapter.

Definition 5.1 Let ai > 0, αi ∈ R, i = 1, . . . , n; bi > 0, βi ∈ R, i = 1, . . . ,m.
The integro-differential operators

(Lηf )(x) =
{
xη(

∏m
i=1 P

βi−biη,biη
1/bi

∏n
i=1 I

−αi ,aiη
1/ai

f )(x), η > 0,

xη(
∏n
i=1D

−αi+aiη,−aiη
1/ai

∏m
i=1K

βi,−biη
1/bi

f )(x), η < 0,
(90)

where Iγ,δβ and Kτ,αβ are the left- and the right-hand sided Erdélyi-Kober fractional

integrals and Dγ,δβ and Pτ,αβ are the left- and the right-hand sided Erdélyi-
Kober fractional derivatives are called the composed Erdélyi-Kober fractional
operators.

In analogy to Definition 5.1, one can define the Caputo-type modifications of the
composed Erdélyi-Kober fractional operators (see [18] for details).

Employing Theorem 3.1, formula (8), and the relations (13), (14), we arrive at the
following Melling-Barnes representations of the Erdélyi-Kober fractional operators
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in the space of functions M−1
γ (L) (under suitable restrictions on the parameter

γ ):

(I
γ,δ
β f )(x) =

∫
σ

(1 + γ − s/β)
(1 + γ + δ − s/β)f

∗(s)x−sds, (91)

(K
τ,α
β f )(x) =

∫
σ

(τ + s/β)
(τ + α + s/β)f

∗(s)x−sds, (92)

(D
γ,δ
β f )(x) =

∫
σ

(1 + γ + δ − s/β)
(1 + γ − s/β) f ∗(s)x−sds, (93)

(P
τ,α
β f )(x) =

∫
σ

(τ + α + s/β)
(τ + s/β) f ∗(s)x−sds. (94)

The mapping properties of the Erdélyi-Kober fractional integrals and derivatives
follow from the relations (91)–(94), the definition of the space M−1

γ (L), and the
asymptotic formula (29) for the Gamma-function: the right-hand sided Erdélyi-
Kober fractional integral (91) maps the space M−1

γ (L) into M−1
γ+δ(L) and the

left-hand sided Erdélyi-Kober fractional integral (92) maps the space M−1
γ (L) into

M−1
γ+α(L). For γ ≥ δ, the right-hand sided Erdélyi-Kober fractional derivative (93)

maps the space M−1
γ (L) into M−1

γ−δ(L). Finally, the left-hand sided Erdélyi-

Kober fractional derivative (94) maps the space M−1
γ (L) into M−1

γ−α(L) under the
condition γ ≥ α.

The representations (91)–(94) and the mapping properties mentioned above lead
to the following result:

Theorem 5.1 ([13]) Let the condition

γ + η
(
n∑
i=1

ai −
m∑
i=1

bi

)
> 0 (95)

be satisfied.
Then the composed Erdélyi-Kober fractional operator maps the space M−1

γ (L)

into the space M−1
γη
(L) with γη = γ + η (∑n

i=1 ai −
∑m
i=1 bi

)
> 0 and can be

represented as the Mellin-Barnes integral

(Lηf )(x) = xη

2πi

∫
σ

n∏
i=1

(1 − αi − ais)
(1 − αi + aiη − ais)

m∏
i=1

(βi + bis)
(βi − biη + bis)f

∗(s)x−sds.

(96)

The representation (96) explains the idea behind derivation of the closed form
formula for the transmutation operator of the composed Erdélyi-Kober fractional
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operator (90). Indeed, let us denote the kernel of the generalized Obrechkoff-
Stieltjes transform (68) by �(s), i.e.,

�(s) =
n∏
i=1

(1 − αi − ais)
m∏
i=1

(βi + bis). (97)

Then it is easy to verify that the kernel of the Mellin-Barnes representation (96) of
the composed Erdélyi-Kober fractional operator satisfies the relation

n∏
i=1

(1 − αi − ais)
(1 − αi + aiη − ais)

m∏
i=1

(βi + bis)
(βi − biη + bis) = �(s)

�(s − η) . (98)

The representation (98) is a basis for proving that the generalized Obrechkoff-
Stieltjes transform is a transmutation for the composed Erdélyi-Kober fractional
operator.

Theorem 5.2 ([13]) Let f ∈ M−1
γ (L) and the condition (95) be satisfied.

Then the generalized Obrechkoff-Stieltjes transform (69) is a transmutation
for the composed Erdélyi-Kober fractional operator (90) that translates it into
multiplication by a power function:

(OS(Lηf ))(x) = xη(OSf )(x). (99)

We reproduce here just a basic idea of the proof of this theorem given in [13].
According to Theorem 5.1 and under the condition (95), the composed Erdélyi-
Kober fractional operator (90) can be represented in the space of functions M−1

γ (L)

as a Mellin-Barnes integral:

(Lηf )(x) = xη

2πi

∫
σ

�(s)

�(s − η)f
∗(s)x−sds,

where �(s) is defined by (97). Using the shift property (7) of the Mellin transform
and the representation (68) of the generalized Obrechkoff-Stieltjes transform we
have then a simple chain of equalities:

(OS(Lηf ))(x) = 1

2πi

∫
σ
�(s)(Lηf )∗(s)x−sds = 1

2πi

∫
σ
�(s)

�(s + η)
�(s)

f ∗(s+η)x−s ds

= 1

2πi

∫
σ
�(s + η)f ∗(s + η)x−s ds = xη

2πi

∫
σ
�(s)f ∗(s)x−s ds = xη(OSf )(x),

that proves Theorem 5.2.
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The explicit form of the transmutations and the operational relation (99) can
be used for analytical treatment of a class of linear integro-differential equations
containing the operator (90) of the type

n∑
i=0

ai (Liηy)(x) = f (x), (100)

where ai, i = 0, . . . , n are some coefficients, Liη means a composition of i

operators Lη, and L0
η is interpreted as the identity operator: L0

η ≡ Id .
The solution algorithm follows the standard procedure: First, the transmutation

operator is applied to the integro-differential equation (100) that translates it
into an algebraic equation for the generalized Obrechkoff-Stieltjes transform
of the unknown solution. Solving this equation, we get the generalized
Obrechkoff-Stieltjes transform of the solution. Finally, the inversion for-
mula

f (x) = (OSg)−1(x) = 1

2πi

∫
σ

1∏n
j=1 (1 − αj − aj s)

∏m
j=1 (βj + bj s)g

∗(s)x−s ds

(101)

for the generalized Obrechkoff-Stieltjes transform leads to an explicit formula for a
solution of the integro-differential equation (100) in the space of functionsM−1

c,γ (L)

under suitable conditions posed on the parameters c and γ .
One example of an equation in form (100) with n = 1 is the equation

y(x)− λxη(P 1+γ−α,α
η
α

I
−η,η
1 y)(x) =

n∑
i=1

cix
2η−i , η > α, λ, ci ∈ R, j=i, . . . , n,

(102)

that was deduced and solved in [15] to obtain the scale-invariant solutions of a space-
time fractional partial differential equation (for details see [15]). In the Eq. (102), the
composed Erdélyi-Kober fractional operator has the form

(Lηf )(x) = xη(P 1+γ−α,α
η
α

I
−η,η
1 f )(x).

The operator Lη is a composition of the Erdélyi-Kober left-hand sided fractional
integral I−η,η

1 of order η and the Erdélyi-Kober right-hand sided fractional derivative

P
1+γ−α,α
η/α of order α. Because η > α, Lη can be interpreted as an “integral operator”

and therefore no initial conditions for the Eq. (102) are required.
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In general, the composed Erdélyi-Kober fractional operator (90) has charac-
teristic properties of a fractional integral for η > 0 and

∑n
i=1 ai >

∑m
i=1 bi

and for η < 0 and
∑n
i=1 ai <

∑m
i=1 bi . If η > 0 and

∑n
i=1 ai <

∑m
i=1 bi

or η < 0 and
∑n
i=1 ai >

∑m
i=1 bi , the operator (90) can be interpreted as a

fractional derivative. Finally, if
∑n
i=1 ai = ∑m

i=1 bi , the composed Erdélyi-Kober
fractional operator (90) can be considered to be a generalization of the Hilbert
transform (an example illustrated this situation will be presented at the end of this
section).

For the composed Erdélyi-Kober fractional integral (90) (
∑n
i=1 ai >

∑m
i=1 bi if

η > 0 or
∑n
i=1 ai <

∑m
i=1 bi if η < 0), the inverse operator (composed Erdélyi-

Kober fractional derivative) is defined as follows:

(Dηf )(x) =
⎧⎨
⎩
x−η

(∏n
i=1D

−αi−aiη,aiη
1/ai

∏m
i=1K

βi,biη

1/bi
f
)
(x), η > 0,

x−η
(∏m

i=1 P
βi+biη,−biη
1/bi

∏n
i=1 I

−αi ,−aiη
1/ai

f
)
(x), η < 0.

(103)

Using the properties of the Erdélyi-Kober fractional integrals and derivatives
(see, e.g., [8, 11, 26, 34]), it can be easy shown that the composed Erdélyi-Kober
fractional derivative Dη is a left-inverse operator to the composed Erdélyi-Kober
fractional integral Lη, i.e.

(DηLηf )(x) = f (x). (104)

However, Dη is not a right-inverse operator to Lη and their composition has a
complicated form. To demonstrate this, let us restrict ourselves to the parameter
values η > 0 and m = 0. In this case, the operators Lη and Dη are called the
multiple Erdélyi-Kober fractional integrals and derivatives, respectively [11, 20].
They have the form

(Lηf )(x) = xη
(
n∏
i=1

I
−αi ,aiη
1/ai

f

)
(x), (105)

(Dηf )(x) = x−η
(
n∏
i=1

D
−αi−aiη,aiη
1/ai

f

)
(x). (106)

For these operators, the composition LηDη takes the following form in the
corresponding space of functions (see [11] or [34] for details):

(LηDηf )(x) = f (x)−
n∑
i=1

ηi∑
k=1

Cik

(
lim
x→0

(Aikf )(x)

)
x
η− k−αi

ai , (107)
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where

Cik =
∏n
j=i+1 (1 − αj − aj

ai
(k − αi))∏i−1

j=1 (1 − αj − aj
ai
(k − αi)+ ηj )∏n

j=1 (1 − αj − aj
ai
(k − αi)+ aj η)

,

(Aiky)(x) = x−η+ k−αi
ai

ηi−k∏
j=1

(
k + j − αi − aiη + aix d

dx

) n∏
l=i+1

ηi∏
j=1

(
j − αl − alη + alx d

dx

)

⎛
⎝ n∏
j=1

I
−αj ,ηj−aj μ
1/aj

f

⎞
⎠ (x), ηi =

⎧⎨
⎩

[aiη] + 1, aiη �∈ N,

aiη, aiη ∈ N.

Remark 5.3 In [8], a more general definition of the multiple Erdélyi-Kober frac-
tional integral was given in the following form:

(If )(x) = xβ0(I
(γi),(δi )

(βi),n
f )(x) = xβ0

(
n∏
i=1

I
γi ,δi
βi

f

)
(x) (108)

= xβ0

∫ 1

0
Hn,0n,n

[
t

∣∣∣∣ (γi + δi + 1 − 1
βi
, 1
βi
)

(γi + 1 − 1
βi
, 1
βi
)

]
f (xt)dt ,

where γi ∈ R, δi ≥ 0, βi > 0, i = 1, . . . , n, β0 > 0 and δiβi > 0, i =
1, . . . , n can be different, not obligatory all equal to β0 = η, as it is the case
for the operator (105): (aiη) × (1/ai) = η, i = 1, . . . , n. However, the multiple
Erdélyi-Kober fractional integral (108) does not in general possess the operational
property (99) because its kernel cannot be represented in the form (98), the only
exception being the case of the operator (105).

Returning back to the equations with the composed Erdélyi-Kober fractional
derivatives (103), the natural formulation of the Cauchy problem for the equations
with these fractional derivatives should incorporate the initial conditions given
in form of the projector of the corresponding composed Erdélyi-Kober fractional
integrals:

n∑
i=0

ai(Diηy)(x) = f (x), (109)

(FDkηy)(x) = γk(x), k = 0, 1, . . . , n− 1, γk(x) ∈ kerDη,
where F = Id − LηDη is the projector of the operator Lη. One example of
the projector for a particular case of the operator Lη-the multiple Erdélyi-Kober
fractional integral-is presented in the formula (107).

The Cauchy problem (109) can be solved by applying the transmutation operator
in form of the generalized Obrechkoff-Stieltjes integral transform. The basis for the
solution method is again Theorem 5.2 that remains valid in the space M−1

γ (L) if we
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replace η with −η and Lη with Dη. Thus we arrive at the transmutation formula

(OS(Dηf ))(x) = x−η(OSf )(x)
that is valid in the space of functionsM−1

γ (L). Otherwise, in the suitable “classical”
spaces of functions, the right-hand side of the last relation will include some
additional terms that arise from the initial conditions of the Cauchy problem (109)
(for details see [11, 12, 34])).

Particular cases of the multiple Erdélyi-Kober fractional derivative (106) are the
hyper-Bessel differential operator (ai = 1

β
, αi = −γi, ηi = 1, 1 ≤ i ≤ n, η = β

in (106)):

(Bf )(x) = x−β
n∏
i=1

(
γi + 1

β
x
d

dx

)
f (x) (110)

and the Riemann-Liouville fractional derivative (n = 1, a1 = 1, α1 = 0, and

η1 =
{

[η] + 1, η �∈ N,

η, η ∈ N

in (106)):

(D
η
0+f )(x) =

(
d

dx

)η1

(I
η1−η
0+ f )(x), η1 =

{
[η] + 1, η �∈ N,

η, η ∈ N,
(111)

where (Iα0+f )(x) is the right-hand sided Riemann-Liouville fractional integral

(Iα0+f )(x) = 1

(α)

∫ x

0
(x − t)α−1f (t) dt. (112)

For the Riemann-Liouville fractional derivative (111), the representation (107)
has the well-known form

(LηDηf )(x) = f (x)−
η1∑
k=1

xη−k

(η − k + 1)
lim
x→0

(D
η−k
0+ f )(x). (113)

For the hyper-Bessel differential operator (110), the formula (107) can be rewritten
in the form

(LηDηf )(x) = f (x)−
n∑
i=1

x−βγiβi−n
n∏

j=i+1

(γj − γi)−1

× lim
x→0

⎛
⎝xβγi

n∏
j=i+1

(βγj + x d
dx
)f (x)

⎞
⎠ , (114)

γ1 < γ2 < · · · < γn < γ1 + 1.
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Thus, in the Cauchy problems of type (109) for the Riemann-Liouville fractional
derivative or for the hyper-Bessel differential operator, the initial conditions should
be formulated as in the formulas (113) or (114), respectively.

Finally, we present here some of the important particular cases of the composed
Erdélyi-Kober fractional operators (90) and their transmutations in form of the
generalized Obrechkoff-Stieltjes transform (69).

The simplest particular cases of the generalized Obrechkoff-Stieltjes trans-
form (69) are the modified Borel-Dzrbasjan transforms [11, 34]:

(BDβ,b+ f )(x) = 1

b

∫ ∞

0

(x
t

) β
b

exp

(
−

(x
t

) 1
b

)
f (t)

dt

t
, x > 0, (115)

(BDα,a− f )(x) = 1

a

∫ ∞

0

(x
t

) α−1
a

exp

(
−

(x
t

)− 1
a

)
f (t)

dt

t
, x > 0. (116)

The relations (7), (12), and Theorem 3.1 lead to the following Mellin-Barnes integral
representations of the modified Borel-Dzrbasjan transforms:

(BDβ,b+ f )(x) = 1

2πi

∫
σ

(β + bs)f ∗(s)x−sds, (117)

(BDα,a− f )(x) = 1

2πi

∫
σ

(1 − α − as)f ∗(s)x−sds. (118)

The composed Erdélyi-Kober fractional operators of type (90) with the modified
Borel-Dzrbasjan transforms (115), (116) as the transmutation operators, respec-
tively, have the following form:

(Lηf )(x) = xη 1

2πi

∫
σ

(β + bs)
(β − bη+ bs) f

∗(s)x−s ds =
⎧⎨
⎩
xη(K

β,−bη
1/b f )(x), η < 0,

xη(P
β−bη,bη
1/b f )(x), η > 0,

(119)

(Lηf )(x) = xη 1

2πi

∫
σ

(1 − α − as)
(1 − α + aη − as) f

∗(s)x−s ds =
⎧⎨
⎩
xη(I

−α,aη
1/a f )(x), η > 0,

xη(D
aη−α,−aη
1/a f )(x), η < 0,

(120)

where Iγ,δβ ,K
τ,α
β ,D

γ,δ
β , P

τ,α
β are the Erdélyi-Kober fractional integrals and deriva-

tives.
As the next example, we consider the multiple Erdélyi-Kober fractional inte-

grals (105) and derivatives (106). Their Mellin-Barnes integral representations have
the form

(Lηf )(x) = xη

2πi

∫
σ

∏n
j=1 (1 − αj − aj s)∏n

j=1 (1 − αj − aj (s − η))f
∗(s)x−s ds (121)
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that corresponds to the following operators for η > 0 and η < 0, respectively:

(Lηf )(x) =
⎧⎨
⎩
xη

(∏n
j=1 I

−αj ,aj η
1/aj

f
)
(x), η > 0,

xη
(∏n

j=1D
−αj+ajη,−aj η
1/aj

f
)
(x), η < 0.

In particular, for η = −β < 0, aj = − 1
η

= 1
β
, 1 ≤ j ≤ n, and −αj = γj , 1 ≤ j ≤

n, the multiple Erdélyi-Kober fractional derivative (121) is reduced to the hyper-
Bessel differential operator

(Lηf )(x) = x−β
⎛
⎝ n∏
j=1

D
γj−1,1
β f

⎞
⎠ (x) = x−β

n∏
j=1

(
γj + 1

β
x
d

dx

)
f (x).

(122)

According to Theorem 5.2, the transmutation operator for the multiple Erdélyi-
Kober fractional integral (105) and derivative (106) is the generalized Obrechkoff
integral transform (62).

As the last example, we consider the following particular case of the composed
Erdélyi-Kober fractional operator:

(Lηf )(x) = xη 1

2πi

∫
σ

(α + βs)(1 − α − βs)
(α − βη + βs))(1 − α + βη − βs)f

∗(s)x−sds.

(123)

Using the formula (90), we immediately get the following representation of the
operator (123):

(Lηf )(x) =
{
xη(P

α−βη,βη
1/β I

−α,βη
1/β f )(x), η > 0,

xη(D
−α+βη,−βη
1/β K

α,−βη
1β

f )(x), η < 0.

Another, even more interesting representation of the operator (123) can be obtained
starting from the supplement formula (26) for the Euler -function:

(α + βs)(1 − α − βs)
(α + β(s − η))(1 − α − β(s − η)) = sin(π(α − βη + βs))

sin(π(α + βs))

= cos(πβη) sin(π(α + βs))− sin(πβη) cos(π(α + βs))
sin(π(α + βs)) = cos(πβη)− sin(πβη)

×cos(π(α + βs))
sin(π(α + βs)) = cos(πβη)− sin(πβη)

(α + βs)(1 − α − βs)
(1/2 + α + βs)(1/2 − α − βs) .
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Substituting the last representation into the formula (123), we arrive at the following
relation:

(Lηf )(x) = xη(cos(πβη)f (x)− sin(πβη)(Hαβf )(x)), (124)

where the operator

(Hαβf )(x) = 1

2πi

∫
σ

(α + βs)(1 − α − βs)
(1/2 + α + βs)(1/2 − α − βs) f

∗(s)x−s ds = 1

π

∫ ∞

0

f (xtβ )t−α

t − 1
dt

(125)

can be interpreted as the generalized Hilbert transform (the integral at the right-hand
side of the formula (125) has to be considered in the sense of the principal value).
The last representation follows from the Parseval formula (5) for the Mellin integral
transform, the shift property (7), and the Mellin transform formula (16). For α = 0
and β = 1, the operator (125) is reduced to the classical Hilbert transform (78).

Theorem 5.2 and the formula (67) ensure that the generalized Stieltjes trans-
form (66) is a transmutation of the operator (124) that translates it into multiplication
with a power function.

Acknowledgements The authors acknowledge the support of the Kuwait University for their joint
research project No. SM01/17 “Operational method in fractional calculus” funded by the Kuwait
University.

References

1. R. Almeida, D.F.M. Torres, Necessary and sufficient conditions for the fractional calculus of
variations with Caputo derivatives, in Communications in Nonlinear Science and Numerical
Simulation, vol. 16 (2011), pp. 1490–1500

2. E. Buckwar, Y.F. Luchko, Invariance of a partial differential equation of fractional order under
the Lie group of scaling transformations. J. Math. Anal. Appl. 227, 81–97 (1998)

3. I.H. Dimovski, On a Bessel-type integral transformation due to N. Obrechkoff. C. R. Acad.
Bulg. Sci. 27, 23–26 (1974)

4. I.H. Dimovski, A transform approach to operational calculus for the general Bessel-type
differential operator. C. R. Acad. Bulg. Sci. 27, 155–158 (1974)

5. A. Erdélyi, On some functional transformations. Univ. Politec. Torino Rend. Semin. Math. 10,
217–234 (1950–1951)

6. A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, vol.
1 (McGraw-Hill, New York, 1953)

7. R. Gorenflo, Y.F. Luchko, F. Mainardi, Wright functions as scale-invariant solutions of the
diffusion-wave equation. J. Comput. Appl. Math. 11, 175–191 (2000)

8. V. Kiryakova, Generalized Fractional Calculus and Applications (Longman, Harlow, 1994)
9. M. Klimek, On Solutions of Linear Fractional Differential Equations of a Variational Type

(University of Technology, Czestochowa, 2009)
10. H. Kober, On fractional integrals and derivatives. Quart. J. Math. Oxford ll, 193–211 (1940)
11. Y.F. Luchko, Some operational relations for the H -transforms and their applications, Ph.D.

Thesis, Belarusian State University, Minsk, 1993, in Russian



508 M. Al-Kandari et al.

12. Y.F. Luchko, Operational method in fractional calculus. Fract. Calc. Appl. Anal. 2, 463–488
(1999)

13. Y. Luchko, Operational rules for a mixed operator of the Erdélyi-Kober type. Fract. Calc. Appl.
Anal. 7, 339–364 (2004)

14. Y. Luchko, Integral transforms of the Mellin convolution type and their generating operators.
Integral Transform. Spec. Funct. 19, 809–851 (2008)

15. Y.F. Luchko, R. Gorenflo, Scale-invariant solutions of a partial differential equation of
fractional order. Fract. Calc. Appl. Anal. 1, 63–78 (1998)

16. Y.F. Luchko, V.S. Kiryakova, Generalized Hankel transforms for hyper-Bessel differential
operators. C. R. Acad. Bulg. Sci. 53, 17–20 (2000)

17. Y. Luchko, V. Kiryakova, The Mellin integral transform in fractional calculus. Fract. Calc.
Appl. Anal. 16, 405–430 (2013)

18. Y. Luchko, J.J. Trujillo, Caputo-type modification of the Erdélyi-Kober fractional derivative.
Fract. Calc. Appl. Anal. 10, 249–267 (2007)

19. Y.F. Luchko, S.B. Yakubovich, Generating operators and convolutions for some integral
transforms. Dokl. Akad. Nauk. BSSR 35, 773–776 (1991, in Russian)

20. Y.F. Luchko, S.B. Yakubovich, An operational method for solving some classes of integro-
differential equations. Differ. Equ. 30, 247–256 (1994)

21. A.B. Malinowska, D.F.M. Torres, Introduction to the Fractional Calculus of Variations
(Imperial College Press, London, 2012)

22. O.I. Marichev, Handbook of Integral Transforms of Higher Transcendental Functions, Theory
and Algorithmic Tables (Ellis Horwood, Chichester, 1983)

23. N. Obrechkoff, On some integral representations of real functions on the real semi-axis.
Izvestija Mat. Inst. (BAS-Sofia) 3, 3–28 (1958, in Bulgarian); English Translation: East J.
Approx. 3, 89–110 (1997)

24. G. Pagnini, Erdélyi-Kober fractional diffusion. Fract. Calc. Appl. Anal. 15, 117–127 (2012)
25. A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, in Integrals and Series. More Special Functions,

vol. 3 (Gordon and Breach, New York, 1989)
26. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Theory and

Applications (Gordon and Breach, New York, 1993)
27. S.M. Sitnik, Transmutations and applications: a survey. arXiv:1012.3741v1. Originally pub-

lished, in Advances in Modern Analysis and Mathematical Modeling, ed. by Y.F. Korobeinik,
A.G. Kusraev (Vladikavkaz Scientific Center of the Russian Academy of Sciences and
Republic of North Ossetia–Alania, Vladikavkaz, 2008), pp. 226–293

28. I.N. Sneddon, Mixed Boundary Value Problems in Potential Theory (North-Holland Publishing
Company, Amsterdam, 1966)

29. I.N. Sneddon, The use in mathematical analysis of Erdélyi–Kober operators and some of their
applications, in Fractional Calculus and Its Applications. Lecture Notes in Mathematics, vol.
457 (Springer, New York, 1975), pp. 37–79

30. E.C. Titchmarsh, Introduction to Theory of Fourier Integrals (Oxford University, Oxford, 1937)
31. K.T. Vu, On the theory of generalized integral transforms in a certain function space. Dokl. AN

SSSR 286, 521–524 (1986); English Translation: J. Soviet Math 33, 103–106 (1986)
32. K.T. Vu, Integral transforms and their composition structure, Dr.Sc. Thesis, Belarusian State

University, Minsk, 1987, in Russian
33. K.T. Vu, O.I. Marichev, S.B. Yakubovich, Composition structure of integral transformations.

Dokl. AN SSSR 286, 786–790 (1986); English Translation: J. Soviet Math 33, 166–169 (1986)
34. S.B. Yakubovich, Y.F. Luchko, The Hypergeometric Approach to Integral Transforms and

Convolutions (Kluwer Academic Publication, Dordrecht, 1994)



Distributed Order Equations in Banach
Spaces with Sectorial Operators

Vladimir E. Fedorov and Aliya A. Abdrakhmanova

Abstract We study the Cauchy problem for a class of solved with respect to
the distributed Gerasimov–Caputo derivative inhomogeneous equations in Banach
spaces with a linear unbounded operator, generating an analytic in a sector resolving
family of operators. The unique solvability theorem for the Cauchy problem was
proved, the form of the solution is found. These results were applied to the research
of the Cauchy problem and the Showalter–Sidorov problem for linear inhomo-
geneous equations in Banach spaces with degenerate operator at the distributed
order derivative. In the case of the generation by the pair of operators (at unknown
function and its distributed order derivative) of an analytic resolving family of the
corresponding degenerate homogeneous equation, we obtain the theorems of the
existence of a unique solution to such problems, and derive the form of the solution.
Abstract results for the degenerate equation are used for research of initial-boundary
value problems unique solvability for a class of distributed order in time equations
with polynomials of self-adjoint elliptic differential operator with respect to the
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1 Introduction

The last 2–3 decades the increased interest of researchers arised with respect
to differential equations with distributed fractional derivatives (see the works of
A.M. Nakhushev [1, 2], M. Caputo [3, 4], A.V. Pskhu [5, 6]). Such equations appear
in various applied problems in describing certain physical or technical processes [3,
4, 7–10]. Among the mathematical investigations of the distributed order equation
we note the works of A.V. Pskhu [5, 6] on the solvability and qualitative properties of
both ordinary differential equations of distributed order, and the diffusion equation
of distributed order in time, the paper of S. Umarov and R. Gorenflo [11], devoted to
the unique solvability study of multipoint problems, including the Cauchy problem,
to the equation with the distributed Gerasimov–Caputo derivative in time and with
pseudodifferential operators with respect to the spatial variables, the papers of
A.N. Kochubei [12, 13], R. Gorenflo, Y. Luchko, M. Stojanović [14], in which
the theory of solvability is constructed for initial-boundary value problems to the
diffusion and diffusion-wave equations of distributed order in time, the works of
T. Atanacković, S. Pilipović, B. Stanković, D. Zorica [15–17] on the research of
distributed order diffusion-wave equation by means of the theory of abstract Volterra
equations, the works of E. Bazhlekova, I. Bazhlekov [18, 19] on the subordination
principle for distributed order differential equations.

In this paper we study linear distributed order equations in Banach spaces by
means of Laplace transform theory and apply the obtained results to research of
initial boundary value problems for distributed order in time partial differential
equations.

In the second section we consider the Cauchy problem for distributed order
equation with the Gerasimov–Caputo derivative

c∫

b

ω(α)Dαt z(t)dα = Az(t)+ g(t), t > 0. (1)

with c ∈ (0, 1] and with the linear closed unbounded operator A, generating an
analytic in a sector resolving family of operators to the corresponding homogeneous
equation, namely, A ∈ A c(θ0, a0) for some θ0 ∈ (π/2, π), a0 ≥ 0 [20, 21]. The
unique solvability theorems for the Cauchy problem were proved, the form of the so-
lution is found. In Sect. 3 analogous results were obtained for the case of c ∈ (1, 2).
The research of this form equations was ended by applications of abstract results
to the study of initial boundary value problems for equations with polynomials of
elliptic differential operators with respect to spatial variables in Sect. 4.

In the fifth section of the work the equation

b∫

a

ω(α)Dαt Lx(t)dα =Mx(t)+ f (t), t > 0, (2)
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is studied with linear closed and densely defined in X operators L,M : X → Y
under the assumptions kerL �= {0}, (L,M) ∈ Hc(θ0, a0) for some θ0 ∈ (π/2, π),
a0 ≥ 0. (The class Hα(θ0, a0) of operators pairs was introduced in [22] and used
in [23] for research of initial problems unique solvability of the fractional order
equation Dαt Lx(t) = Mx(t) + f (t).) For the Cauchy problem and the Showalter–
Sidorov problem to Eq. (2) we obtain the theorems of a unique solution existence,
and derive the form of the solution. Here we apply the theorem on the Cauchy
problem for Eq. (1). Abstract results for Eq. (2) are used for research of the same
class of initial-boundary value problems, but in the case of degenerating of the
differential operator with respect to the spatial variables under the distributed time-
derivative.

This work is the continuation of the papers [24, 25], in which the solvability of
Eqs. (1) and (2) was studied in the case of bounded operator A, and papers [22,
23, 26–33] on evolution equations, with a degenerate operator at the highest order
fractional derivative.

2 Nondegenerate Equation at c ∈ (0, 1]

In this section we study the existence and the uniqueness of the Cauchy problem
classical solution to equations, solved with respect to the distributed derivative with
upper order integration limit not greater than one.

2.1 Homogeneous Equation at c ∈ (0, 1]

At β > 0, t > 0 denote gβ(t) := tβ−1/Γ (β), where Γ (·) is the Euler function,

J
β
t h(t) :=

t∫

0

gβ(t − s)h(s)ds = 1

Γ (β)

t∫

0

(t − s)β−1h(s)ds.

Let m − 1 < α ≤ m ∈ N, Dmt is the usual m-th order derivative, Dαt is the
Gerasimov–Caputo fractional derivative (see in details, for example, in [21]), i.e.

Dαt h(t) := Dmt Jm−α
t

(
h(t)−

m−1∑
k=0

h(k)(0)gk+1(t)

)
.

Let R+ := R+∪{0}, Z be a Banach space. The Laplace transform of the function
h : R+ → Z is denoted by L̂[h]. The formula for the Laplace transform of the
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Gerasimov–Caputo fractional derivative has the form

L̂[Dαt h](λ) = λαL̂[h](λ)−
m−1∑
k=0

λα−k−1h(k)(0). (3)

Hereafter the fractional power will be understood as its principal branch.
Denote by L (Z ) the Banach space of all linear continuous operators from Z

to Z , and by C l(Z ) the set of all linear closed operators with dense domains in
Z , acting into Z . For A ∈ C l(Z ) endow its domain DA with the graph norm
‖ · ‖DA := ‖ · ‖Z + ‖A · ‖Z , then it will be the Banach space, denoted byDA also.

Consider the Cauchy problem

z(0) = z0 (4)

to the distributed order equation

c∫

b

ω(α)Dαt z(t)dα = Az(t), t > 0, (5)

where Dαt is the Gerasimov–Caputo fractional derivative, 0 ≤ b < c ≤ 1,
ω : (b, c) → C. By a solution of (4), (5) we mean a function z ∈ C(R+;Z ) ∩
C(R+;DA), such that there exists

c∫
b

ω(α)Dαt z(t)dα ∈ C(R+;Z ) and equalities (4)

and (5) are fulfilled.
Denote by ρ(A) the resolvent set of the operatorA. In notation of [21] an operator

A ∈ C l(Z ) belongs to the class A α(θ0, a0) at some θ0 ∈ (π/2, π), a0 ≥ 0, if there
exists a resolving operators family {Z(t) ∈ L (Z ) : t ∈ R+} for the fractional
order equationDαt z(t) = Az(t), having a holomorphic extension in the sector

Σθ0 := {t ∈ C : | arg t| < θ0 − π/2, t �= 0}

and for every θ ∈ (π/2, θ0), a > a0 there exists a constant C(θ, a), such that for
all t ∈ Σθ ‖Z(t)‖L (Z ) ≤ C(θ, a)eaRet . In according to Theorem 2.14 [21] (see
more general Theorem 2.1 [20] also) at α ∈ (0, 2) A ∈ A α(θ0, a0), if and only if
the following conditions are satisfied:

1. for all λ ∈ Sθ0,a0 := {μ ∈ C : | arg(μ− a0)| < θ0, μ �= a0} we have λα ∈ ρ(A);
2. for every θ ∈ (π/2, θ0), a > a0 there exists a constant K = K(θ, a) > 0, such

that for all μ ∈ Sθ,a

‖Rμα(A)‖L (Z ) ≤ K(θ, a)

|μα−1(μ− a)| , (6)
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where Rμα(A) = (μαI − A)−1.

We shall consider an operator A from the class A c(θ0, a0), where c is from (5).
Denote Γ = Γ+ ∪ Γ−, Γ± = {μ ∈ C : μ = a + re±iθ , r ∈ (0,∞)} at a > a0,
θ ∈ (π/2, θ0),

Wh
d (λ) :=

h∫

d

ω(α)λαdα,

Z0(t) := 1

2πi

∫

Γ

eλt

λ
Wc
b (λ)

(
Wc
b (λ)I − A)−1

dλ.

Denote by E(K, β;Z ) the set of functions z : R+ → Z , such that ‖z(t)‖Z ≤
Keβt for all t ∈ R+. Besides, we shall use the denotation

E(Z ) :=
⋃
K>0

⋃
β≥0

E(K, β;Z ).

Theorem 1 Let 0 ≤ b < c ≤ 1, A ∈ A c(θ0, a0), z0 ∈ DA, and Wc
b (λ) be

holomorphic function on Sθ1,a1 with some θ1 ∈ (π/2, θ0], a1 ≥ a0, satisfying the
conditions

∀λ ∈ Sθ1,a1 (Wc
b (λ))

1/c ∈ Sθ0,a0, (7)

∃C1, C2 > 0 ∃ε ∈ (0, c) ∀λ ∈ Sθ1,a1 C1|λ|ε ≤ |Wc
b (λ)| ≤ C2|λ|c. (8)

Then the function z(t) = Z0(t)z0 is a unique solution of the Cauchy problem (4),
(5) in the space E(Z ).

Proof Take the contour Γ with the constants a = a1 + δ, θ = θ1, where θ1, a1 are
from condition (7), δ > 0 is a small number. Then for λ ∈ Γ we haveWc

b (λ) ∈ ρ(A)
and

∥∥∥(Wc
b (λ)I − A)−1

∥∥∥
L (Z )

≤ K1

|Wc
b (λ)|

≤ K2

|λ|ε (9)

with some constants K1 = K1(θ1, a1), K2 = K1/C1, since A ∈ A c(θ0, a0).
Therefore,

∥∥∥Wc
b (λ)

(
Wc
b (λ)I − A)−1

∥∥∥
L (Z )

≤ K1, (10)
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and at t > 0 the integral

∫

Γ

eλt

λ
Wc
b (λ)

(
Wc
b (λ)I − A)−1

dλ,

converges, Z0(t)z0 ∈ DA, Z0(t) and

AZ0(t)z0 =
∫

Γ

eλt

λ
Wc
b (λ)

(
Wc
b (λ)I − A)−1

dλAz0

are holomorphic in Σθ1 := {t ∈ C : | arg t| < θ1 − π/2, t �= 0}.
Let R > δ,

ΓR =
3⋃
k=1

Γk,R, Γ1,R = {λ ∈ C : λ = a + Reiϕ, ϕ ∈ (−θ1, θ1)},

Γ2,R = {λ ∈ C : λ = a + reiθ1, r ∈ [0, R]},

Γ3,R = {λ ∈ C : λ = a + re−iθ1, r ∈ [0, R]},

ΓR be the closed loop, oriented counter-clockwise. Consider also the contours

Γ4,R = {λ ∈ C : λ = a + reiθ1, r ∈ [R,∞)},

Γ5,R = {λ ∈ C : λ = a + re−iθ1, r ∈ [R,∞)},

then Γ = Γ4,R ∪ Γ5,R ∪ ΓR \ Γ1,R.
For t > 0, z0 ∈ DA

Z0(t)z0 = 1

2πi

∫

Γ

eλt

λ
Wc
b (λ)

(
Wc
b (λ)I − A)−1

z0dλ =

= 1

2πi

∫

Γ

eλt

λ
dλz0 + 1

2πi

∫

Γ

eλt

λ

(
Wc
b (λ)I − A)−1

Az0dλ.

For t ∈ [0, 1], λ ∈ Γ by (9)

∥∥∥∥e
λt

λ

(
Wc
b (λ)I − A)−1

Az0

∥∥∥∥
Z

≤ eaK2‖Az0‖Z
|λ|1+ε ,
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therefore, for some C > 0

∥∥∥∥∥∥
1

2πi

∫

Γ

eλt

λ

(
Wc
b (λ)I − A)−1

Az0dλ

∥∥∥∥∥∥
Z

≤ C.

Consequently, the integral converges uniformly with respect to t ∈ [0, 1] and

Z0(0)z0 = z0 + 1

2πi

∫

Γ

1

λ

(
Wc
b (λ)I − A)−1

Az0dλ =

= z0 + lim
R→∞

1

2πi

⎛
⎜⎝

∫

ΓR

−
∫

Γ1,R

+
∫

Γ4,R

+
∫

Γ5,R

⎞
⎟⎠ 1

λ

(
Wc
b (λ)I − A)−1

Az0dλ = z0,

since by the Cauchy Theorem

∫

ΓR

1

λ

(
Wc
b (λ)I − A)−1

Az0dλ = 0,

and
∥∥∥∥∥∥∥
∫

Γ1,R

eλt

λ

(
Wc
b (λ)I − A)−1

Az0dλ

∥∥∥∥∥∥∥
Z

≤ C‖Az0‖Z
Rε

,

∥∥∥∥∥∥∥
∫

Γs,R

eλt

λ

(
Wc
b (λ)I − A)−1

Az0dλ

∥∥∥∥∥∥∥
Z

≤ C‖Az0‖Z
Rε

, s = 4, 5.

Consequently, Z0(·)z0 ∈ C(R+;Z ), the function z(t) = Z0(t)z0 satisfies
Cauchy condition (4).

By the construction, due to (6)

‖Z0(t)z0‖Z ≤ K1

2π

∫

Γ

etReλ|dλ|
|λ| ‖z0‖Z ≤ C3e

(a1+δ)t ,
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because

∫

Γ

etReλ|dλ|
|λ| ≤ Ce(a1+δ)t

0∫

−∞
exdx = Ce(a1+δ)t , t ≥ 1.

Here C = min{|λ| : λ ∈ Γ }. Therefore, we can take

C3 = max

{
K1C‖z0‖Z

2π
, max
t∈[0,1] e

−(a1+δ)t‖Z0(t)z0‖Z
}
.

Thus, Z0(·)z0 ∈ E(Z ).
Under the condition Reμ > a1 + δ we have the equality

L̂[z](μ) = 1

2πi

∫

Γ

Wc
b (λ)

λ(μ− λ)
(
Wc
b (λ)I − A)−1

z0dλ.

Due to (10) this integral converges and

lim
R→∞

1

2πi

∫

Γs,R

Wc
b (λ)

λ(μ− λ)
(
Wc
b (λ)I − A)−1

z0dλ = 0, s = 1, 4, 5.

Therefore, by the Cauchy integral formula

L̂[z](μ) = lim
R→∞

1

2πi

∫

ΓR

Wc
b (λ)

λ(μ− λ)
(
Wc
b (λ)I − A)−1

z0dλ =

= Wc
b (μ)

μ

(
Wc
b (μ)I − A)−1

z0,

L̂[Az](μ) = Wc
b (μ)

μ

(
Wc
b (μ)I − A)−1

Az0.

Hence, L̂[z](μ) ∈ DA, AL̂[z](μ) = L̂[Az](μ), L̂[z](μ) and L̂[Az](μ) have
holomorphic extensions on Sθ1,a1 .

Further, using formula (3) for the Laplace transform, we can write

L̂

⎡
⎣

c∫

b

ω(α)Dαt z(t)dα

⎤
⎦ (μ) = (Wc

b (μ))
2

μ

(
Wc
b (μ)I − A)−1

z0 − Wc
b (μ)

μ
z0 =

= Wc
b (μ)

μ

(
Wc
b (μ)I − A)−1

Az0 = L̂[Az](μ).
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Here the commutation of an operator and its resolvent was taken into account. We
can apply the inverse Laplace transform on the both parts of the last equality and
obtain equality (5) in all continuity points of function z, i.e. for all t ≥ 0. It was
proved, thatAz ∈ C(R+;Z ), hence the left-hand side of the equation is continuous
also and the function z is a solution of problem (4), (5).

If there are two solutions z1, z2 of problem (4), (5) from the class E(Z ), then
their difference y = z1 − z2 ∈ E(Z ) is a solution of Eq. (5) and satisfy the initial
condition y(0) = 0. Applying the Laplace transform to the both sides of Eq. (5)
gives the equality Wc

b (λ)L̂[y](λ) = AL̂[y](λ). Therefore, for λ ∈ Sθ1,a1 we have

L̂[y](λ) ≡ 0. It means that y ≡ 0. ��
Remark 1 If ω ≡ 1, then W(λ) = λc−λb

ln λ . It is evident, that the condition (7) is
satisfied for θ1 = θ0 and some a1 ≥ a0. Condition (8) will be discussed in the end
of Sect. 3.1.

Remark 2 In the proof of Theorem 1 it is shown that the solution z(t) = Z0(t)z0 of
problem (4), (5) has holomorphic extension to the sector Σθ1 .

Remark 3 It can be proved that under the conditions of Theorem 1 for z0 ∈ DA2

we have Z0(·)z0 ∈ C(R+;DA) and Eq. (5) is satisfied at t = 0.

Remark 4 By the Banach–Steinhaus Theorem we have also that for every z0 ∈ Z
Z0(·)z0 ∈ C(R+;Z ) and Z0(0)z0 = z0.

2.2 Inhomogeneous Equation at c ∈ (0, 1]

A solution of problem (4) for the equation

c∫

b

ω(α)Dαt z(t)dα = Az(t)+ g(t), t > 0, (11)

where 0 ≤ b < c ≤ 1, ω : (a, b) → C, g ∈ C(R+;Z ), is a function z ∈
C(R+;Z ) ∩ C(R+;DA), such that there exists

c∫
b

ω(α)Dαt z(t)dα ∈ C(R+;Z )
and equalities (4) and (11) are valid.

Denote

Z(t) := 1

2πi

∫

Γ

eλt
(
Wc
b (λ)I − A)−1

dλ. (12)

Lemma 1 Let 0 ≤ b < c ≤ 1, A ∈ A c(θ0, a0), Wc
b (λ) be the holomorphic

function on Sθ1,a1 with some θ1 ∈ (π/2, θ0], a1 ≥ a0, satisfying conditions (7), (8),
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g ∈ C(R+;DA) ∩ E(DA). Then the function

zg(t) =
t∫

0

Z(t − s)g(s)ds

is a unique solution to the Cauchy problem z(0) = 0 for Eq. (11) in E(Z ).

Proof It is easy to show that the integral (12) converges uniformly with respect to
t on every compact set from the sector Σθ1 , therefore, Z(t) can be holomorphically
extended onto this set.

For t ∈ [0, 1] we have

∫

Γ

etReλ

|λ|ε |dλ| ≤ C
0∫

−∞

etxdx

|x|ε = Ctε−1

+∞∫

0

e−ydy
yε

= CΓ (1 − ε)tε−1.

Therefore,

‖Z(t)‖L (Z ) ≤ C
∫

Γ

etReλ

|λ|ε |dλ| = O(tε−1) as t → 0+,

‖zg(t)‖Z ≤ Ctε → 0 as t → 0+. Thus, zero initial condition (4) is fulfilled.
Note also, that for g ∈ E(Kg, βg,DA), t ≥ t0 > 0,

‖zg(t)‖Z ≤ C
t∫

0

0∫

−∞

e(a1+δ+x)(t−s)dx
|x − δ1|ε eβgsds ≤ Ceβt

0∫

−∞

t∫

0

e(x−δ1)(t−s)ds dx

|x − δ1|ε ≤

≤ Ceβt
0∫

−∞

(1 − e(x−δ1)t )dx
|x − δ1|1+ε ≤ Ceβt

+∞∫

0

dy

(y + δ1)1+ε = Ceβt

εδε1
,

where δ1 > 0 is a small number, β = max{a1 + δ+ δ1, βg}. Taking into account the
previous paragraph, we obtain that zg ∈ E(Z ).

We have the convolution zg = Z ∗ g, hence L̂[zg] = L̂[Z]L̂[g]. Reasoning as in

the proof of Theorem 1, we obtain L̂[Z](μ) = (
Wc
b (μ)I − A)−1

, because from (9)
it follows that

∥∥∥∥ 1

μ− λ
(
Wc
b (λ)I − A)−1

∥∥∥∥
L (Z )

≤ C

|λ|1+ε .
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Since g ∈ C(R+;DA) and the operator A is closed, for t ≥ 0 we have zg(t) ∈
DA, and Azg(t) = zAg(t). Hence

L̂

⎡
⎣

c∫

b

ω(α)Dαt zgdα

⎤
⎦ (μ) = Wc

b (μ)
(
Wc
b (μ)I − A)−1

L̂[g](μ) =

= L̂[g](μ)+ (
Wc
b (μ)I − A)−1

L̂[Ag](μ).

Acting by the inverse Laplace transform on the both sides of this equality, obtain

b∫

a

ω(α)Dαt zg(t)dα = g(t) + (Z ∗ Ag)(t) = g(t)+ Azg(t).

The proof of the solution uniqueness reduces in the obvious way to the proof of
the uniqueness for the homogeneous equation. ��

From Theorem 1 and Lemma 1 the next statement follows immediately.

Theorem 2 Let 0 ≤ b < c ≤ 1, A ∈ A c(θ0, a0), z0 ∈ DA, Wc
b (λ) be the

holomorphic function on Sθ1,a1 with some θ1 ∈ (π/2, θ0], a1 ≥ a0, satisfying the
conditions (7), (8), g ∈ C(R+;DA) ∩ E(DA). Then the function

z(t) = Z0(t)z0 +
t∫

0

Z(t − s)g(s)ds

is a unique solution to problem (4), (11) in E(Z ).

3 Nondegenerate Equation at c > 1

The unique solvability issues for the Cauchy problem to distributed order differential
equation in a Banach space with upper order integration limit greater than one is
studied in this section.

3.1 Homogeneous Equation at c > 1

Consider the Cauchy problem

z(0) = z0, z′(0) = z1 (13)
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to the distributed order equation

c∫

b

ω(α)Dαt z(t)dα = Az(t), t > 0, (14)

where Dαt is the Gerasimov–Caputo fractional derivative, 1 < c ≤ 2, 0 ≤ b < c,
ω : (b, c) → C. By a solution of problem (13), (14) we mean a function z ∈
C1(R+;Z ) ∩ C(R+;DA), such that there exist

c∫
b

ω(α)Dαt z(t)dα ∈ C(R+;Z )
and equalities (13) and (14) are fulfilled.

Denote b1 := max{b, 1},

Z0(t) := 1

2πi

∫

Γ

eλt

λ
Wc
b (λ)

(
Wc
b (λ)I − A)−1

dλ,

Z1(t) := 1

2πi

∫

Γ

eλt

λ2 W
c
b1
(λ)

(
Wc
b (λ)I − A)−1

dλ

with Γ = Γ+ ∪ Γ−, Γ± = {μ ∈ C : μ = a1 + δ + re±iθ1, r ∈ (0,∞)} at the
constants a1 > a0, θ1 ∈ (π/2, θ0) from the conditions of the next theorem, δ > 0.

Theorem 3 Let c ∈ (1, 2), A ∈ A c(θ0, a0), z0, z1 ∈ DA, Wc
b (λ) and Wc

b1
(λ) be

holomorphic functions on Sθ1,a1 with some θ1 ∈ (π/2, θ0], a1 ≥ a0, satisfying the
conditions

∀λ ∈ Sθ1,a1 (Wc
b (λ))

1/c ∈ Sθ0,a0, (15)

∃C1, C2 > 0 ∃ε ∈ (0, c − 1) ∀λ ∈ Sθ1,a1 C1|λ|1+ε ≤ |Wc
b (λ)| ≤ C2|λ|c,

(16)

∃C3 > 0 ∀λ ∈ Sθ1,a1 |Wb1
b (λ)| ≤ C3|λ|. (17)

Then the function z(t) = Z0(t)z0 + Z1(t)z1 is a unique solution to problem (13),
(14) in the space E(Z ).

Proof We haveWc
b1
(λ) = Wc

b (λ)−Wb1
b (λ), therefore,

|Wc
b1
(λ)|

|Wc
b (λ)|

≤ 1 + C−1
1 C3|λ|−ε ≤ C4 ∀λ ∈ Sθ1,a1 .
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HereafterWb1
b ≡ 0, if b ≥ 1,Wb1

b = W 1
b for b < 1; b0 = b. Thus,

∥∥∥∥∥
Wc
bk
(λ)

λk+1

(
Wc
b (λ)I − A)−1

∥∥∥∥∥
L (Z )

≤ C

|λ|k+1 , (18)

since A ∈ A c(θ0, a0), and at t > 0 the integrals Zk(t) converge for k = 0, 1.
Moreover, for t > 0, z0, z1 ∈ DA we have Z0(t)z0, Z1(t)z1 ∈ DA,

AZk(t)zk = 1

2πi

∫

Γ

eλt

λk+1
Wc
bk
(λ)

(
Wc
b (λ)I − A)−1

dλAzk,

Z0(t) and Z1(t) are holomorphic in Σθ1 := {t ∈ C : | arg t| < θ1 − π/2}, Z1 is
differentiable in t = 0, Z1(0) = 0 since the right-hand side of (18) at k = 1 is
O(|λ|−2) as |λ| → ∞.

For R > δ we shall use the contours Γk.R , k = 1, 2, 3, 4, 5, and

ΓR =
3⋃
k=1

Γk,R,

as in the proof of Theorem 1. For t > 0, z0, z1 ∈ DA

Z0(t)z0 = 1

2πi

∫

Γ

eλt

λ
dλz0 + 1

2πi

∫

Γ

eλt

λ

(
Wc
b (λ)I − A)−1

Az0dλ,

Z′
1(t)z1 = 1

2πi

∫

Γ

eλt

λ
Wc
b1
(λ)

(
Wc
b (λ)I − A)−1

z1dλ =

= 1

2πi

∫

Γ

eλt

λ
dλz1 + 1

2πi

∫

Γ

eλt

λ

(
Wc
b (λ)I − A)−1

Az1dλ−

− 1

2πi

∫

Γ

eλt

λ
W
b1
b (λ)

(
Wc
b (λ)I − A)−1

z1dλ.

For t ∈ [0, 1], k = 0, 1, λ ∈ Γ by conditions (16), (17)

∥∥∥∥e
λt

λ
(W

b1
b )

k
(
Wc
b (λ)I − A)−1

∥∥∥∥
L (Z )

≤ C

|λ|2+ε−k .
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Consequently, the integrals converge uniformly with respect to t ∈ [0, 1] and

Z0(0)z0 = z0 + lim
R→∞

1

2πi

⎛
⎜⎝

∫

ΓR

−
∫

Γ1,R

+
∫

Γ4,R

+
∫

Γ5,R

⎞
⎟⎠ 1

λ

(
Wc
b (λ)I − A)−1

Az0dλ = z0,

Z′
1(0)z1 = z1 + lim

R→∞
1

2πi

⎛
⎜⎝

∫

ΓR

−
∫

Γ1,R

+
∫

Γ4,R

+
∫

Γ5,R

⎞
⎟⎠ 1

λ

(
Wc
b (λ)I − A)−1

Az1dλ−

− lim
R→∞

1

2πi

⎛
⎜⎝

∫

ΓR

−
∫

Γ1,R

+
∫

Γ4,R

+
∫

Γ5,R

⎞
⎟⎠ 1

λ
W
b1
b (λ)

(
Wc
b (λ)I − A)−1

z1dλ = z1.

Moreover, for t ≥ 0, z0 ∈ DA we have

Z′
0(t)z0 = 1

2πi

∫

Γ

eλtWc
b (λ)

(
Wc
b (λ)I − A)−1

z0dλ =

= 1

2πi

∫

Γ

eλt z0dλ+ 1

2πi

∫

Γ

eλt
(
Wc
b (λ)I − A)−1

Az0dλ = 0.

Thus, the function z ∈ C1(R+;Z ) ∩ C(R+;DA) satisfies Cauchy condi-
tions (13).

By the construction, it can be shown as in the proof of Theorem 1 that due to
estimate (18)

‖Zk(t)‖L (Z ) ≤ C
∫

Γ

etReλ|dλ|
|λ|k+1 ≤ C0

k e
(a1+δ)t , k = 0, 1,

‖Z′
k(t)‖L (Z ) ≤ C

∫

Γ

etReλ|dλ|
|λ|k ≤ C1

k e
(a1+δ)t , k = 0, 1.

Consequently, ‖z(t)‖Z ≤ e(a1+δ)t (C0
0‖z0‖Z + C0

1‖z1‖Z ), i.e. z ∈ E(Z ).
Under the condition Reμ > a1 + δ we have the equality

L̂[z](μ) =
1∑
k=0

1

2πi

∫

Γ

Wc
bk
(λ)

λk+1(μ− λ)
(
Wc
b (λ)I − A)−1

zkdλ.
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Due to (18) these integrals converge and at k = 0, 1

lim
R→∞

1∑
k=0

1

2πi

∫

Γs,R

Wc
bk
(λ)

λk+1(μ− λ)
(
Wc
b (λ)I − A)−1

zkdλ = 0, s = 1, 4, 5.

Therefore, by the Cauchy integral formula

L̂[z](μ) = lim
R→∞

1∑
k=0

1

2πi

∫

ΓR

Wc
bk
(λ)

λk+1(μ− λ)
(
Wc
b (λ)I − A)−1

zkdλ =

= Wc
b (μ)

μ

(
Wc
b (μ)I − A)−1

z0 + Wc
b1
(μ)

μ2

(
Wc
b (μ)I − A)−1

z1.

Analogously we can obtain the equality at z0, z1 ∈ DA

L̂[Az](μ) = Wc
b (μ)

μ

(
Wc
b (μ)I − A)−1

Az0 + Wc
b1
(μ)

μ2

(
Wc
b (μ)I − A)−1

Az1.

Consequently, L̂[z](μ) ∈ DA, AL̂[z](μ) = L̂[Az](μ), L̂[z](μ) and L̂[Az](μ) have
holomorphic extensions on Sθ1,a1 .

Formula (3) for the Laplace transform implies that

L̂

⎡
⎣

b∫

a

ω(α)Dαt z(t)dα

⎤
⎦ (μ) =

=
1∑
k=0

Wc
bk
(μ)

μk+1 W
c
b (μ)

(
Wc
b (μ)I − A)−1

zk −
1∑
k=0

Wc
bk
(μ)

μk+1 zk =

= A
1∑
k=0

Wc
bk
(μ)

μk+1

(
Wc
b (μ)I − A)−1

zk = AL̂[z](μ).

The rest of the reasoning is the same as in the proof of Theorem 1. ��
Remark 5 We obtained that the families {Zk(t) ∈ L (Z ) : t ∈ (0, 1]}, {Z′

k(t) ∈
L (Z ) : t ∈ (0, 1]}, k = 0, 1, are uniformly bounded. The density ofDA in Z and
the Banach–Steinhaus Theorem imply that for every z0, z1 ∈ Z

lim
t→0+Z

(k)
k (t)zk = zk, lim

t→0+Z
(1−k)
k (t)zk = 0, k = 0, 1.

Therefore, Zk ∈ C1(R+;L (Z )), k = 0, 1
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Proposition 1 ([25]) Let a function ω : (b, c) → R be bounded, and for some
γ ∈ (0, c − b) in the left γ -neighborhood of the point c it do not change the sign
and

∃k1 > 0 ∀α ∈ (c − γ, c) |ω(α)| ≥ k1.

Then for c ∈ (0, 1] conditions (8) with arbitrary ε ∈ (0, c), for c ∈ (1, 2)
conditions (16) with arbitrary ε ∈ (0, c− 1) and condition (17) hold.

Corollary 1 ([25]) Let ω ∈ C([a, b]; R) and ω(b) �= 0. Then for c ∈ (0, 1]
conditions (8) with arbitrary ε ∈ (0, c), for c ∈ (1, 2) conditions (16) with
ε ∈ (0, c − 1) and condition (17) hold.

3.2 Inhomogeneous Equation at c > 1

By a solution of problem (13) for the equation

b∫

a

ω(α)Dαt z(t)dα = Az(t)+ g(t), t > 0, (19)

where c ∈ (1, 2), b ∈ [0, c), ω : (a, b) → C, g ∈ C(R+;Z ), we shall call a

function z ∈ C1(R+;Z ) ∩ C(R+;DA), such that there exists
b∫
a

ω(α)Dαt z(t)dα ∈
C(R+;Z ) and equalities (13) and (19) are valid.

As before, denote

Z(t) := 1

2πi

∫

Γ

eλt
(
Wc
b (λ)I − A)−1

dλ. (20)

Lemma 2 Let c ∈ (1, 2), A ∈ A c(θ0, a0), Wc
b (λ) and Wc

b1
(λ) be holomorphic

functions on Sθ1,a1 with some θ1 ∈ (π/2, θ0], a1 ≥ a0, satisfying (15)–(17), g ∈
C(R+;DA) ∩ E(DA). Then the function

zg(t) =
t∫

0

Z(t − s)g(s)ds

is a unique solution to the Cauchy problem z(0) = z′(0) = 0 for Eq. (19) in E(Z ).
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Proof The integrals

Z(k)(t) := 1

2πi

∫

Γ

λkeλt
(
Wc
b (λ)I − A)−1

dλ, k = 0, 1,

can be holomorphically extended ontoΣθ1 . A more difficult question is the behavior
of this functions at zero. Let us consider it.

For t ∈ [0, 1] we have

‖Z(t)‖L (Z ) ≤ C
∫

Γ

|dλ|
|λ|1+ε .

Hence, integral (20) converges uniformly with respect to t ∈ [0, 1], and there exists
the limit

lim
t→0+Z(t) = 1

2πi

∫

Γ

(
Wc
b (λ)I − A)−1

dλ = Z(0) = 0,

since 1+ε > 1 (see the proof of Theorem 3). Reasoning as in the proof of Lemma 1,
we can show, that ‖Z′(t)‖L (Z ) = O(tε−1) as t → 0+. Consequently,

z′g(t) = 0 +
t∫

0

Z′(t − s)g(s)ds,

‖z′g(t)‖Z ≤ Ctε → 0 as t → 0+. Thus, zero initial conditions (13) are fulfilled.
The remaining part of the proof does not differ from the same in the proof of

Lemma 1. ��
Theorem 4 Let c ∈ (1, 2), A ∈ A c(θ0, a0), Wc

b (λ) and Wc
b1
(λ) be holomorphic

functions on Sθ1,a1 with some θ1 ∈ (π/2, θ0], a1 ≥ a0, satisfying (15)–(17), g ∈
C(R+;DA) ∩ E(DA), z0, z1 ∈ DA. Then the function

z(t) = Z0(t)z0 + Z1(t)z1 +
t∫

0

Z(t − s)g(s)ds

is a unique solution to problem (13), (19) in E(Z ).
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4 A Class of Initial Boundary Value Problems

Let Pn(λ) =
n∑
i=0
ciλ

i , Qp(λ) =
p∑
j=0
djλ

j , ci , dj ∈ R, i = 0, 1, . . . , n, j =
0, 1, . . . , p, cn �= 0, dp �= 0, n < p. Let Ω ⊂ Rd be a bounded region with a
smooth boundary ∂Ω , operators pencilΛ,B1, B2, . . . , Br be regularly elliptic [34],
where

(Λu)(s) =
∑

|q|≤2r

aq(s)D
q
s u(s), aq ∈ C∞(Ω),

(Blu)(s) =
∑

|q|≤rl
blq(s)D

q
s u(s), blq ∈ C∞(∂Ω), l = 1, 2, . . . , r,

D
q
s = D

q1
s1D

q2
s2 . . .D

qd
sd , Dqisi = ∂qi /∂s

qi
i , i = 1, 2, . . . , d , q = (q1, q2, . . . , qd) ∈

Nd0 . Define the operator Λ1 ∈ C l(L2(Ω)) with domain DΛ1 = H 2r{Bl}(Ω) [34] by
the equality Λ1u = Λu. Let Λ1 be self-adjoint operator and it has a bounded from
the right-hand side spectrum. Then the spectrum σ(Λ1) of the operator Λ1 is real,
discrete and condensed at −∞. Let 0 /∈ σ(Λ1), {ϕk : k ∈ N} is an orthonormal
in L2(Ω) system of the operator Λ1 eigenfunctions, numbered in according to
nonincreasing of the corresponding eigenvalues {λk : k ∈ N}, taking into account
their multiplicity.

Consider the initial-boundary value problem

u(s, 0) = u0(s),
∂u

∂t
(s, 0) = u1(s), s ∈ Ω, (21)

BlΛ
ku(s, t) = 0, k = 0, 1, . . . , p − 1, l = 1, 2, . . . , r, (s, t) ∈ ∂Ω × R+,

(22)
c∫

b

ω(α)Dαt Pn(Λ)u(s, t)dα = Qp(Λ)u(s, t)+f (s, t), (s, t) ∈ Ω×R+, (23)

where Dαt is the Gerasimov–Caputo fractional derivative, c ∈ (1, 2), b ∈ [0, c),
ω : (b, c)→ R, f : Ω × R+ → R.

Set

Z = {v ∈ H 2rn(Ω) : BlΛkv(x) = 0, k = 0, 1, . . . , n− 1, l = 1, 2, . . . , r, x ∈ ∂Ω}.

Under the condition of the existence of the inverse operator

[Pn(Λ1)]−1 : L2(Ω)→ Z ,
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define in the Banach space Z the operator Az = [Pn(Λ1)]−1Qp(Λ)z with domain

DA = {v ∈ H 2rp(Ω) : BlΛkv(x) = 0, k = 0, 1, . . . , p − 1, l = 1, 2, . . . , r, x ∈ ∂Ω}.

Theorem 5 ([23]) Let p > n, (−1)p−n(dp/cn) < 0, the spectrum σ(Λ1) be
bounded from the right-hand side, do not contain zeros of the polynomial Pn(λ),
0 /∈ σ(Λ1). Then for α ∈ [1, 2) there exist θ0 ∈ (π/2, π), a0 ≥ 0, such that
A ∈ A α(θ0, a0). If, moreover, max

k∈N
{Qp(λk)/Pn(λk)} < 1, then A ∈ A α(θ0, a0)

at α ∈ (0, 1). Furthermore, for every α ∈ (0, 2) σ (A) = {μ ∈ C : μ =
Qp(λk)/Pn(λk)}.
Theorem 6 Let p > n, (−1)p−n(dp/cn) < 0, the spectrum σ(Λ1) be bounded
from the right-hand side, do not contain zeros of the polynomial Pn(λ), 0 /∈ σ(Λ1),
c ∈ (1, 2), Wc

b (λ) and Wc
b1
(λ) be holomorphic functions on Sθ1,a1 with some θ1 ∈

(π/2, θ0], a1 ≥ a0, satisfying (15)–(17), f ∈ C(R+;DA) ∩ E(DA). Then for all
u0, u1 ∈ DA there exists a unique solution of problem (21)–(23) in E(Z ).

Proof By the choosing of the space Z and the operator A problem (21)–(23) is
reduced to problem (13), (19). Theorems 5 and 4 imply the required. ��

For c ∈ (0, 1] in (23) we consider the problem with the initial condition

u(s, 0) = u0(s), s ∈ Ω. (24)

By the analogous way with the obvious changing due to Theorems 5 and 2 we obtain
the corresponding unique solvability theorem.

Theorem 7 Let p > n, (−1)p−n(dp/cn) < 0, the spectrum σ(Λ1) be bounded
from the right-hand side, do not contain zeros of the polynomial Pn(λ), 0 /∈ σ(Λ1),
max
k∈N

{Qp(λk)/Pn(λk)} < 1, c ∈ (0, 1], Wc
b (λ) be holomorphic function on Sθ1,a1

with some θ1 ∈ (π/2, θ0], a1 ≥ a0, satisfying (7), (8), f ∈ C(R+;DA) ∩ E(DA).
Then for all u0 ∈ DA there exists a unique solution of problem (22)–(24) in E(Z ).

At n = 0, P0(λ) = 1, p = 1, Q1(λ) = λ Theorems 6 and 7 (if max
k∈N

λk < 1)

imply the unique solvability of the initial-boundary value problems

c∫

b

ω(α)Dαt u(s, t)dα = Λu(s, t) + f (s, t), (s, t) ∈ Ω × R+, (25)

Blu(s, t) = 0, l = 1, 2, . . . , r, (s, t) ∈ ∂Ω × R+,

with the initial conditions (21) or (24) at c ∈ (1, 2), or c ∈ (0, 1] respectively. If

here r = 1, Λ = Δ =
s∑
i=1

∂2

∂x2
i

is the Laplace operator and, for example, B1 = I ,
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then max
k∈N

λk < 0, and (25) is the ultraslow diffusion equation with the Dirichlet

boundary condition.

For P1(λ) = 2 + λ, Q2(λ) = λ + λ2, d = 1, Ω = (0, π), r = 1, A = ∂2

∂s2 ,

B1 = I we obtain λk = −k2, ϕk(s) = sin ks, k ∈ N. Then (22), (23) at f ≡ 0 has
the form

c∫

b

ω(α)Dαt

(
2 + ∂2

∂s2

)
u(s, t)dα = ∂2u

∂s2
(s, t)+ ∂

4u

∂s4
(s, t), (s, t) ∈ (0, π)×R+,

u(0, t) = u(π, t) = ∂2u

∂s2 (0, t) = ∂2u

∂s2 (π, t) = 0, t ∈ R+.

It is evident, that

max
k∈N

Q2(λk)

P1(λk)
= max
k∈N

k4 − k2

2 − k2 = 0 < 1.

5 Degenerate Distributed Order Equation

Let us consider initial problems for equations in Banach spaces with a degenerate
linear operator at the distributed order derivative.

5.1 The Case c ∈ (0, 1]

Let X , Y be Banach spaces, L (X ;Y ) be the Banach space of linear continuous
operators, acting from X into Y , C l(X ;Y ) be the set of all linear closed
densely defined in the space X operators, acting into Y , L (X ;X ) := L (X ),
C l(X ;X ) := C l(X ).

Let L,M ∈ C l(X ;Y ) have domainsDL,DM , kerL �= {0}. Since L andM are
closed operators, we can considerDL and DM as the Banach spaces with the graph
norms of the operator L and M respectively. Let us consider the distributed order
equation

c∫

b

ω(α)Dαt Lx(t)dα = Mx(t)+ f (t), t > 0, (26)

where Dαt is the Gerasimov–Caputo fractional derivative, 0 ≤ b < c ≤ 1, ω :
(b, c) → C, f ∈ C(R+;Y ). Equation (26) is called degenerate, because it is
supposed that kerL �= {0}.
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A function x : R+ → DL ∩ DM is called a solution of Eq. (26), if Mx ∈
C(R+;Y ), there exists

b∫
a

ω(α)Dαt Lx(t)dα ∈ C(R+;Y ) and equality (26) is valid.

A solution x of (26) is called a solution to the Cauchy problem

x(0) = x0 (27)

for Eq. (26), if x ∈ C(R+;X ) satisfies condition (27).
By ρL(M) the set of μ ∈ C is denoted, for which the mapping

μL−M : DL ∩DM → Y

is injective, and RLμ(M) := (μL−M)−1L ∈ L (X ), LLμ(M) := L(μL−M)−1 ∈
L (Y ).

Definition 1 ([22]) Let L,M ∈ C l(X ;Y ). A pair of operators (L,M) belongs to
the class Hα(θ0, a0), if the following two conditions are valid:

1. there exist θ0 ∈ (π/2, π) and a0 ≥ 0, such that for all λ ∈ Sθ0,a0 we have
λα ∈ ρL(M);

2. for every θ ∈ (π/2, θ0), a > a0 there exists a constant K = K(θ, a) > 0, such
that for all μ ∈ Sθ,a

max{‖RLμα (M)‖L (X ), ‖LLμα (M)‖L (Y )} ≤ K(θ, a)

|μα−1(μ− a)| .

Remark 6 If there exists the operator L−1 ∈ L (Y ;X ) and α ∈ (0, 2), then
(L,M) ∈ Hα(θ0, a0), when and only when L−1M ∈ A α(θ0, a0) and ML−1 ∈
A α(θ0, a0).

It is easy to show, that the subspaces kerRLμ(M) = kerL, imRLμ(M), kerLLμ(M),
imLLμ(M) do not depend on the parameter μ ∈ ρL(M). Denote kerRLμ(M) = X 0,

kerLLμ(M) = Y 0. By X 1 (Y 1) the closure of the subspace imRLμ(M) (imLLμ(M))
in the norm of X (Y ) is denoted. By Lk (Mk) we denote the restriction L (M) on
DLk := DL ∩ X k (DMk := DM ∩ X k), k = 0, 1. Introduce also the denotations
S = L−1

1 M1 : DS → X 1,DS = {x ∈ DM1 :M1x ∈ imL1}; T = M1L
−1
1 : DT →

Y 1, DT = {y ∈ imL1 : L−1
1 y ∈ DM1}.

We shall use the properties of the operators pairs from the class Hα(θ0, a0) in
the case of reflexive Banach spaces X and Y , which were proved in the work [22].

Theorem 8 ([22]) Let Banach spaces X and Y be reflexive, (L,M) ∈
Hα(θ0, a0). Then

1. X = X 0 ⊕ X 1, Y = Y 0 ⊕ Y 1;
2. projection P (Q) on the subspace X 1 (Y 1) along X 0 (Y 0) has the form P =
s- lim
n→∞ nR

L
n (M) (Q = s- lim

n→∞ nL
L
n (M));
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3. L0 = 0,M0 ∈ C l(X 0;Y 0), L1,M1 ∈ C l(X 1;Y 1);
4. there exist inverse operators L−1

1 ∈ C l(Y 1;X 1), M−1
0 ∈ L (Y 0;X 0);

5. ∀x ∈ DL Px ∈ DL and LPx = QLx;
6. ∀x ∈ DM Px ∈ DM andMPx = QMx;
7. DS is dense in the space X , DT is dense in Y ;
8. if L1 ∈ L (X 1;Y 1), or M1 ∈ L (X 1;Y 1), then the operator S ∈ C l(X 1),
S ∈ A α(θ0, a0);

9. if L−1
1 ∈ L (Y 1;X 1), or M−1

1 ∈ L (Y 1;X 1), then T ∈ C l(Y 1), T ∈
A α(θ0, a0).

As before, we define the contour Γ = Γ+ ∪ Γ− with θ1 ∈ (π/2, θ0], a1 ≥ a0,
δ > 0, where θ0, a0 are from Definition 1, the constants θ1, a1 are from the next
theorem conditions, and operators

X0(t) := 1

2πi

∫

Γ

eλt

λ
Wc
b (λ)R

L
Wcb (λ)

(M)dλ, X(t) := 1

2πi

∫

Γ

eλtRLWcb (λ)
(M)dλ.

Denote byE(X ;P) the set of all functions x : R+ → X , such that Px ∈ E(X 1).

Theorem 9 Let Banach spaces X and Y be reflexive, c ∈ (0, 1], a pair (L,M) ∈
Hc(θ0, a0), L1 ∈ L (X 1;Y 1) or M1 ∈ L (X 1;Y 1), Wc

b (λ) be holomorphic
function on Sθ1,a1 with some θ1 ∈ (π/2, θ0], a1 ≥ a0, satisfying the conditions (7),
(8), f ∈ C(R+;Y ), L−1

1 Qf ∈ C(R+;DS
) ∩ E(DS), x0 ∈ X , such that Px0 ∈

DS , and

(I − P)x0 = −M−1
0 (I −Q)f (0). (28)

Then the function

x(t) = X0(t)x0 +
t∫

0

X(t − s)L−1
1 Qf (s)ds −M−1

0 (I −Q)f (t) (29)

is a unique solution to Cauchy problem (26), (27) from the class E(X ;P).
Proof By means of Theorem 8 problem (26), (27) can be reduced to the two Cauchy
problems

c∫

b

ω(α)Dαt v(t)dα = Sv(t) + L−1
1 Qf (t), t > 0, (30)

v(0) = Px0, (31)
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and

0 = w(t)+M−1
0 (I −Q)f (t), t > 0, (32)

w(0) = (I − P)x0 (33)

on the subspaces X 1 and X 0 respectively. Here v(t) := Px(t), w(t) := (I −
P)x(t).

Equation (32) has the unique solution w(t) = −M−1
0 (I − Q)f (t). Therefore,

condition (33) is equivalent to (28).
Problem (30), (31) is uniquely solvable by Theorem 2, and its solution has the

form

v(t) = 1

2πi

∫

Γ

eλt

λ
Wc
b (λ)(W

c
b (λ)I − S)−1dλPx0+

+
t∫

0

1

2πi

∫

Γ

eλ(t−s)(Wc
b (λ)I − S)−1dλL−1

1 Qf (s)ds =

= X0(t)x0 +
t∫

0

X(t − s)L−1
1 Qf (s)ds,

since (I −P)x0 ∈ kerX0(t), t ≥ 0, and (Wc
b (λ)I −S)−1 = (Wc

b (λ)L1 −M1)
−1L1.

��
Theorem 10 Let Banach spaces X and Y be reflexive, c ∈ (0, 1], a pair
(L,M) ∈ Hc(a0, θ0), L

−1
1 ∈ L (Y 1;X 1) or M−1

1 ∈ L (Y 1;X 1), Wc
b (λ) be

holomorphic function on Sθ1,a1 with some θ1 ∈ (π/2, θ0], a1 ≥ a0, satisfying the
conditions (7), (8), f ∈ C(R+;Y ), Qf ∈ C(R+;DT

) ∩ E(DT ), x0 ∈ DM , such
that condition (28) be fulfilled. Then function (29) is a unique solution to Cauchy
problem (26), (27) from the class E(X ;P).
Proof In this case instead of (30) obtain the equation

c∫

b

ω(α)Dαt y(t)dα = Ty(t)+Qf (t), (34)

where y(t) = L1Px(t). By Theorem 8 if L−1
1 ∈ L (Y 1;X 1), or M−1

1 ∈
L (Y 1;X 1), then T ∈ A α(a0, θ0), hence there exists a unique solution of the
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Cauchy problem y(0) = L1Px0 ∈ DT to Eq. (34). It has the form

y(t) = 1

2πi

∫

Γ

eλt

λ
Wc
b (λ)(W

c
b (λ)I − T )−1dλL1Px0+

+
t∫

0

1

2πi

∫

Γ

eλ(t−s)(Wc
b (λ)I − T )−1dλQf (s)ds.

Consequently,

Px(t) = L−1
1 y(t) = X0(t)x0 +

t∫

0

X(t − s)L−1
1 Qf (s)ds,

since (Wc
b (λ)I − T )−1 = L1(W

c
b (λ)L1 − M1)

−1 and the operator L1 is closed.
Finally, x(t) = Px(t)−M−1

0 (I −Q)f (t) has form (29). ��
Consider the Showalter–Sidorov problem

(Lx)(0) = y0 (35)

for Eq. (26). The solution of problem (26), (35) is a solution x of Eq. (26), such that
Lx ∈ C(R+;X ) satisfies condition (35).

Theorem 11 Let Banach spaces X and Y be reflexive, c ∈ (0, 1], a pair (L,M) ∈
Hc(a0, θ0), L1 ∈ L (X 1;Y 1) or M1 ∈ L (X 1;Y 1), Wc

b (λ) be holomorphic
function on Sθ1,a1 with some θ1 ∈ (π/2, θ0], a1 ≥ a0, satisfying conditions (7), (8),
f ∈ C(R+;Y ), L−1

1 Qf ∈ C(R+;DS
) ∩ E(DS), x0 ∈ DM , such that Px0 ∈ DS .

Then function (29) is a unique solution to problem (26), (35) in E(X ;P).
Theorem 12 Let Banach spaces X and Y be reflexive, c ∈ (0, 1], a pair (L,M) ∈
Hc(a0, θ0), L

−1
1 ∈ L (Y 1;X 1) or M−1

1 ∈ L (Y 1;X 1), Wc
b (λ) be holomorphic

function on θ1 ∈ (π/2, θ0], a1 ≥ a0, satisfying conditions (7), (8), f ∈ C(R+;Y ),
Qf ∈ C(R+;DT

) ∩ E(DT ), x0 ∈ DM . Then function (29) is a unique solution to
problem (26), (35) in E(X ;P).
Proof Under the conditions of Theorem 11 (or Theorem 12) equations system (30),
(32) (or (34), (32) respectively) has initial condition only for (30) (or (34)).
Equation (32) is uniquely solvable. Reasoning as in the proof of Theorems 9 and 10
we shall obtain the required. ��
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5.2 The Case c ∈ (1, 2)

A function x : R+ → DL ∩DM is called a solution of the degenerate equation

c∫

b

ω(α)Dαt Lx(t)dα = Mx(t)+ f (t), t > 0, (36)

c ∈ (1, 2), b ∈ [0, c), ω : (b, c) → C, f ∈ C(R+;Y ), if Mx ∈ C(R+;Y ),
there exists

b∫
a

ω(α)Dαt Lx(t)dα ∈ C(R+;Y ) and equality (36) is valid. A solution

x of (36) is called a solution to the Cauchy problem

x(0) = x0, x ′(0) = x1 (37)

for Eq. (36), if x ∈ C1(R+;X ) satisfies condition (37).
Let the contour Γ = Γ+ ∪ Γ− be the same, as before, b1 := max{b, 1},

X0(t) := 1

2πi

∫

Γ

eλt

λ
Wc
b (λ)R

L
Wcb (λ)

(M)dλ, X1(t) := 1

2πi

∫

Γ

eλt

λ2
Wc
b1
RL
Wcb (λ)

(M)dλ,

X(t) := 1

2πi

∫

Γ

eλtRLWcb (λ)
(M)dλ.

Theorem 13 Let Banach spaces X andY be reflexive, c ∈ (1, 2), a pair (L,M) ∈
Hc(a0, θ0), L1 ∈ L (X 1;Y 1) or M1 ∈ L (X 1;Y 1), Wc

b (λ) and Wc
b1
(λ) be

holomorphic functions on Sθ1,a1 with some θ1 ∈ (π/2, θ0], a1 ≥ a0, satisfying
conditions (15)–(17), (I − Q)f ∈ C1(R+;Y ), L−1

1 Qf ∈ C(R+;DS
) ∩ E(DS),

x0, x1 ∈ X , such that Px0, Px1 ∈ DS , and

(I −P)x0 = −M−1
0 (I −Q)f (0), (I −P)x1 = −M−1

0 ((I −Q)f )′(0). (38)

Then the function

x(t) = X0(t)x0 +X1(t)x1 +
t∫

0

X(t− s)L−1
1 Qf (s)ds−M−1

0 (I −Q)f (t) (39)

is a unique solution to the Cauchy problem (36), (37) from the class E(X ;P).
Proof As in the proof of Theorem 9 we can reduce problem (36), (37) to the
two Cauchy problems (30), (31), and (32), (33) on the subspaces X 1 and X 0

respectively. Instead of Theorem 2, we need to apply Theorem 4. ��



534 V. E. Fedorov and A. A. Abdrakhmanova

Theorem 14 Let Banach spaces X andY be reflexive, c ∈ (1, 2), a pair (L,M) ∈
Hc(a0, θ0), L

−1
1 ∈ L (Y 1;X 1) or M−1

1 ∈ L (Y 1;X 1), Wc
b (λ) and Wc

b1
(λ) be

holomorphic functions on Sθ1,a1 with some θ1 ∈ (π/2, θ0], a1 ≥ a0, satisfying
conditions (15)–(17), (I − Q)f ∈ C1(R+;Y ), Qf ∈ C

(
R+;DT

) ∩ E(DT ),
x0, x1 ∈ DM , such that conditions (38) be fulfilled. Then function (39) is a unique
solution to Cauchy problem (36), (37) from the class E(X ;P).
Proof This statement can be proved similar to Theorem 10, but using Theorem 4
instead of Theorem 2. Note that, as in the proof of Theorem 10, for xk ∈ DM we
have L1Pxk ∈ DT , k = 0, 1. ��

The solution of the Showalter–Sidorov problem

(Lx)(0) = y0, (Lx)′(0) = y1 (40)

for Eq. (36) is a solution x of Eq. (36), such that Lx ∈ C1(R+;X ) satisfies
conditions (40). As in the previous subsection, it is not difficult to obtain the next
two assertions.

Theorem 15 Let Banach spaces X and Y be reflexive, c ∈ (1, 2), (L,M) ∈
Hc(a0, θ0), L1 ∈ L (X 1;Y 1) or M1 ∈ L (X 1;Y 1), Wc

b (λ) and Wc
b1
(λ) be

holomorphic functions on Sθ1,a1 with some θ1 ∈ (π/2, θ0], a1 ≥ a0, satisfying
conditions (15)–(17), f ∈ C1(R+;Y ), L−1

1 Qf ∈ C(R+;DS
) ∩ E(DS), x0, x1 ∈

DM , such that Px0, Px1 ∈ DS . Then function (39) is a unique solution to
problem (36), (40) in E(X ;P).
Theorem 16 Let Banach spaces X and Y be reflexive, c ∈ (1, 2), (L,M) ∈
Hc(a0, θ0), L

−1
1 ∈ L (Y 1;X 1) or M−1

1 ∈ L (Y 1;X 1), Wc
b (λ) and Wc

b1
(λ) be

holomorphic functions on Sθ1,a1 with some θ1 ∈ (π/2, θ0], a1 ≥ a0, satisfying
conditions (15)–(17), f ∈ C1(R+;Y ),Qf ∈ C(R+;DT

)∩E(DT ), x0, x1 ∈ DM .
Then function (39) is a unique solution to problem (36), (40) in E(X ;P).

6 Applications to Boundary Value Problems

Consider the initial-boundary value problem

u(s, 0) = u0(s),
∂u

∂t
(s, 0) = u1(s), s ∈ Ω, (41)

BlΛ
ku(s, t) = 0, k = 0, 1, . . . , p − 1, l = 1, 2, . . . , r, (s, t) ∈ ∂Ω × R+,

(42)
c∫

b

ω(α)Dαt Pn(Λ)u(s, t)dα = Qp(Λ)u(s, t)+f (s, t), (s, t) ∈ Ω×R+, (43)
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from Sect. 4. Recall that n < p. In contrast to that situation we suppose, that Pn has
zeros among {λk} = σ(Λ1). Now we set

X = {u ∈ H 2rn(Ω) : BlΛku(s) = 0, k = 0, 1, . . . , n− 1, l = 1, 2, . . . , r, x ∈ ∂Ω},
(44)

DM = {u ∈ H 2rp(Ω) : BlΛku(s) = 0, k = 0, 1, . . . , p−1, l = 1, 2, . . . , r, x ∈ ∂Ω},
(45)

Y = L2(Ω), L = Pn(Λ), M = Qp(Λ). (46)

Then L ∈ L (X ;Y ), M ∈ C l(X ;Y ) and problem (41)–(43) is presented in
form (36), (37).

Theorem 17 ([22]) Let the spaces and the operators have forms (44)–(46), the
spectrum σ(Λ1) do not contain common zeros of the polynomialsPn(λ) andQp(λ),
0 /∈ σ(Λ1). Then the operator L1 : X 1 → Y 1 is the homeomorphism, for
α ∈ [1, 2) there exist θ0 ∈ (π/2, π), a0 ≥ 0, such that (L,M) ∈ Hα(θ0, a0).
If moreover

max
Pn(λk) �=0

Qp(λk)

Pn(λk)
< 1,

then at α ∈ (0, 1) (L,M) ∈ Hα(θ0, a0) for some θ0 ∈ (π/2, π), a0 ≥ 0.

Remark 7 Under assumptions of Theorem 17 we have

σL(M) =
{
μ ∈ C : μ = Qp(λk)

Pn(λk)
, Pn(λk) �= 0

}
,

X 0 = Y 0 = span{ϕk : Pn(λk) = 0}; X 1 is the closure of span{ϕk : Pn(λk) �= 0}
in the norm of the space X ; Y 1 is the closure of the same set in L2(Ω).

Theorem 18 Let σ(Λ1) do not contain common zeros of the polynomials Pn(λ)
and Qp(λ), 0 /∈ σ(Λ1), c ∈ (1, 2), Wc

b (λ), W
c
b1
(λ) be holomorphic functions on

Sθ1,a1 with some θ1 ∈ (π/2, θ0], a1 ≥ a0, satisfying conditions (15)–(17), a function
f : R+ → L2(Ω) be such that 〈f, ϕl〉L2(Ω) ∈ C1(R+; R), if Pn(λl) = 0;

∑
Pn(λk) �=0

〈f, ϕk〉L2(Ω)

Pn(λk)
ϕk ∈ C(R+;DM), (47)

u0, u1 ∈ DM ; if Pn(λl) = 0, then

Qp(λl) 〈uk, ϕl〉L2(Ω) = −Dkt |t=0 〈f (·, t), ϕl〉L2(Ω)
, k = 0, 1. (48)

Then there exists a unique solution of problem (41)–(43) from the class E(X ;P).
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Proof Due to Theorem 17 (L,M) ∈ Hα(θ0, a0) for some θ0 ∈ (π/2, π), a0 ≥ 0,
L1 ∈ L (X 1;Y 1), L−1

1 ∈ L (Y 1;X 1). Therefore, DS = DM1 . Conditions (48)
mean (38) for this case. It remains to apply Theorem 13. ��

Consider the Showalter–Sidorov initial conditions

Pn(Λ)u(s, 0) = y0(s),
∂Pn(Λ)u

∂t
(s, 0) = y1(s), s ∈ Ω. (49)

The respective unique solvability statement need not the matching condition (48).

Theorem 19 Let σ(Λ1) do not contain common zeros of the polynomials Pn(λ)
and Qp(λ), 0 /∈ σ(Λ1), c ∈ (1, 2), Wc

b (λ), W
c
b1
(λ) be holomorphic functions on

Sθ1,a1 with some θ1 ∈ (π/2, θ0], a1 ≥ a0, satisfying conditions (15)–(17), a function
f : R+ → L2(Ω) be such that 〈f, ϕl〉L2(Ω) ∈ C1(R+; R), if Pn(λl) = 0, and
condition (47) be satisfied, y0 = Pn(Λ)u0, y1 = Pn(Λ)u1 for some u0, u1 ∈ DM .
Then there exists a unique solution of problem (42), (43), (49) from the class
E(X ;P).

Let n = 1, P1(λ) = 1 + λ, p = 2, Q2(λ) = λ + 2λ2, Ω = (0, π), d = 1. Then
λk = −k2, ϕk(s) = sin ks, k ∈ N, problem (41)–(43) has the form

∫
ω(α)Dαt (u+ uss) dα = uss + 2ussss, (s, t) ∈ (0, π)× R+,

u(0, t) = u(π, t) = uss(0, t) = uss(π, t) = 0, t ∈ R+,

u(s, 0) = u0(s), ut (s, 0) = u1(s), s ∈ (0, π).

The eigenvalue λ1 = −1 is a zero of P1, hence the equation is degenerate. Note that
there are no common zeros of P1 andQ2.
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Transformation Operators for Fractional
Order Ordinary Differential Equations
and Their Applications

Mark M. Malamud

Abstract The survey is concerned with triangular transformation operators for
fractional order α = n− ε ordinary differential equations. We discuss the existence
of transformation operators in the case of holomorphic coefficients. Similarity
between such operators and the simplest fractional differentiation Dα0 is discussed
too.

Applications to the unique determination of the operator from n spectra of
boundary value problems are given. Applications to the completeness property of
certain boundary value problems for such equations are considered.

1 Introduction

The paper continues the previous review [35] and is devoted to the following
fractional order ordinary differential equation

ln−ε(D)f := Dn−εf +
n−1∑
j=1

qj (x)D
n−ε−j−1f +

∫ x

0
M(x, t)(J εf )(t) dt = λf.

(1)

Here Dk−ε denotes fractional order differentiation,

Dk−εf (x) = f (k−ε)(x) = (DkJ εf )(x) = dk

dxk
J εf, k ∈ N ∪ 0, ε ∈ [0, 1),

(2)

M. M. Malamud (�)
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russian Federation
e-mail: malamud-mm@rudn.ru

© Springer Nature Switzerland AG 2020
V. V. Kravchenko, S. M. Sitnik (eds.), Transmutation Operators and Applications,
Trends in Mathematics, https://doi.org/10.1007/978-3-030-35914-0_24

539

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35914-0_24&domain=pdf
mailto:malamud-mm@rudn.ru
https://doi.org/10.1007/978-3-030-35914-0_24


540 M. M. Malamud

and J α denotes the Riemann-Liouville fractional integration:

J αf = 1

(α)

x∫

0

(x − t)α−1f (t) dt, α ∈ R+ = (0,∞), and J 0 := I,

(3)

where I denotes the identical operator in Lp[0, b]. The operator J α is well defined
on Lp[0, b] for each p ∈ [1,∞] and b > 0. Moreover, it is a Volterra operator, i.e.
it is compact operator with zero spectrum, σ(J α) = {0}. It is well known also (see
e.g. [6, 8, 11, 21, 44, 51]) that the family {J α}α∈R+ forms a continuous semigroup,
J αJ β = J α+β . Moreover, s − limε↓ J ε = I .

The operator ln−ε(D) is well defined on the Sobolev space Wn−ε
1 [0, b] (see

Sect. 2 for definition).
Denote by A(D) the class of operators (1) with coefficients qj and kernels

M(x, t) being restrictions of entire functions in one and two variables, respectively.
With this notation one of our main results (in a weak form) reads as follows.

Theorem 1 Let ln−ε(D) ∈ A(D) and let y(x, λ) be the solution of Eq. (1)
satisfying the initial conditions

y(j−ε−1)(0, λ) = hj , j ∈ {1, . . . , n}. (4)

Then there exists a unique kernel R(x, t) analytic in both variables in 	

y(x, λ) = (I + R)w(x, λ) := w(x, λ)+
∫ x

0
R(x, t)w(t, λ) dt (5)

in which w(x, λ) is a solution of the Cauchy problem for the simplest fractional
order equation

Dn−εx w(x, λ) = λw(x, λ) (6)

satisfying the same initial conditions (4).

To prove this result we first investigate the operators l0n−ε(D) being restrictions
of the operators ln−ε(D) to the subspaceWn−ε

1,0 [0, b] of functions fromWn−ε
1 [0, b]

vanishing at zero. Namely, we first show (and this result is a special case of
Theorem 1) the similarity in L2[0, b] between operators l0n−ε(D) and Dn−ε0 :=
Dn−ε � Wn−ε

1,0 [0, b]:

l0n−ε(D) = (I + R)−1Dn−ε0 (I + R) (7)

where I +R is given by (5). This result allows one to define functional calculus for
the operator l0n−ε(D) by setting ϕ(l0n−ε(D)) := (I +R)−1ϕ(Dn−ε0 )(I +R) where a
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function ϕ is such that ϕ(Dn−ε0 ) is well defined. This functional calculus for l0n−ε(D)
is wider than the ordinary Riesz-Dunford calculus (see [9]) and includes functions
non-holomorphic at zero. For instance, fractional powers of the operator l0n−ε(D)
can be defined as follows

(l0n−ε(D))α = (I + R)−1D
(n−ε)α
0 (I + R), α ∈ R. (8)

where the powers D(n−ε)α0 for positive αth are well defined by D(n−ε)α0 :=
J−(n−ε)α.

Setting K := (l0n−ε(D))−1 we obtain a Volterra operator

K : f →
x∫

0

k(x, t)f (t) dt (9)

with a “good” kernel k(x, t). With this notation the definition of (8) for negative αth
becomes

Kα = (I + R)−1J (n−ε)α(I + R), α ∈ R+. (10)

It can easily be shown that both definitions (8) and (10) do not depend on a choice
of transformation operator.

Transformation operators are applied in (see [32]) to prove the unique determina-
tion of operator (1) (withM(x, t) = 0) from n spectra of boundary value problems
(a generalization of the classical Borg-Marchenko theorem on unique determination
of the Sturm-Liouville operator −d2/dx2 + q from two spectra). Following [36]
we also apply them to investigate completeness property of certain boundary value
problems for Eq. (1).

The paper is organized as follows. In Sect. 2 we discuss relation (7), i.e. the
similarity between operators ln−ε(D) and Dn−ε0 . We show that relation (7) with
smooth kernel R(x, t) is satisfied if and only if the kernel R̃(x, t) := R(x, x − t) is
a solution of the incomplete Cauchy problem for equation

n∑
j=1

(
n− ε
j

)
D
j

1D
n−j
2 R̃(x, t)+

n−1∑
j=1

qj (x)

n−1−j∑
i=0

(
n−ε − 1 − j

i

)

×Di1Dn−1−i−j
2 R̃(x, t) = F(R̃(x, t)) (11)

where the right-hand side F(R̃(x, t)) contains certain integro-differential terms (see
the problem (18)–(19) below). This equation plays a crucial role in the sequel.
For instance, solvability of the incomplete Cauchy problem (18)–(19) implies
similarity (7).

Emphasize that the left hand side of Eq. (11) can be obtained from the corre-
sponding equation for nth order operator ln(D) (with ε = 0) just by replacing n
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by n − ε in binomial coefficients. While for ε �= 0 the right-hand side of Eq. (11)
contains partial (n+1)th derivatives, it is natural to define a principle symbol of this
operator by setting Ln−ε(ξ) := ∑n

j=1

(
n−ε
j

)
ξ
j
1 ξ
n−j
2 .

In Sect. 3 we apply the main result of Sect. 2 to prove the similarity of integral
Volterra operator of the form (9) with a kernel k(x, t) being analytical in one
variable, to the fractional integration J α , α ∈ (0,∞), on Lp[0, l], p ∈ [1,∞].
To this end we find explicit conditions for a kernel k(x, t) of Volterra operator (9) to
admit a representation K = l0n−ε(D)−1 with some differential operator ln−ε(D)
from the class A(D) or from more general class. In particular, we discuss here
the problem of similarity for (weak) perturbations of the fractional integration J α,
α ∈ (0,∞), on L2[0, l], by Volterra integral operators of the form

K = J α(I +K1), where K1 : f →
x∫

0

k1(x, t)f (t) dt. (12)

Clearly, if K of the form (12) is similar to J α, it is unicellular and LatK = Lat J α.
In Sect. 4 we discuss existence of a triangular transformation operator for Eq. (1).

Note that the similarity between operators l0n−ε(D) and Dn−ε0 is used for proving
existence of transformation operators for Eq. (1). In particular, we prove here
Theorem 1 in more general form assuming that a kernelM(x, x− t) is holomorphic
in x for each t instead of its homomorphy in both variables. The proof is reduced to
the proof of solvability of Goursat problem (19), (51) for Eq. (11).

The necessary conditions for representation (5) to exist is also discussed here.
The proof (for odd n) is used the factorization of the principal symbol Ln(ζ ) =
ζ1Qn−1(ζ )whereQn−1(ζ ) is already elliptic polynomial with constant coefficients,
and is heavily relied on the result of regularity up to a boundary of elliptic boundary
value problems with “good” coefficients.

In Sect. 5 we apply representation (5) to prove uniqueness results for Eq. (1).
More precisely, following [32] we apply transformation operators to prove the
unique determination of operator (1) (withM(x, t) = 0) from n spectra of boundary
value problems (a generalization of the classical Borg-Marchenko theorem on the
unique determination of the Sturm-Liouville operator −d2/dx2 + q by spectra of
two boundary value problems). The proof is reduced to the uniqueness of either
Goursat or Cauchy problem (97) for Eq. (11).

Following [34] we also briefly discuss here a problem of the unique determina-
tion of a potential matrix of first order system of ODE on a finite interval by its
monodromy matrix.

In Sect. 6 following [36] we discuss completeness property for boundary value
problems for Eq. (1) with splitting boundary conditions. The proof of the cor-
responding completeness result in [36] is based on existence of transformation
operators for Eq. (1). The second main ingredient of the proof is Theorem 14, a
“fractional version” of the classical Birkhoff result on the asymptotic behaviour
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of solutions of nth order Eq. (1) with ε = 0. Emphasize that this generalization
(Theorem 14) is valid for Eq. (1) with arbitrary L1-coefficients qj .

Notations Through the paper X1,X2, and X denote Banach spaces, B(X1,X2)

denotes the set of bounded linear operators from X1 to X2; B(X) = B(X,X).
Lp

([0, 1];Cn) = Lp[0, 1] ⊗ C
n

2 Similarity of Fractional Order Ordinary Differential
Operators

Let 0 < α = n − ε, n ∈ N, ε ∈ [0, 1). Recall that the operator of fractional
derivative of order α is given by (see [8, 44]),

f (α)(x) = Dαf (x) = (DnJ εf )(x) = dn

dxn
J εf. (13)

Next we denote byWα
p [0, l] the Sobolev space of functions f ∈ L1[0, l] having

fractional derivatives f (α) ∈ Lp[0, l]. The functions f ∈ Wα
p [0, l] are characterized

by means of the following integral representation

f (x) =
n∑
j=1

cj
xα−j

(α − j + 1)
+ 1

(α)

x∫

0

(x − t)α−1f1(t) dt, (14)

where cj = f (α−j)(0), j ∈ {1, . . . , n}, and f1(·) = Dαf (·) = f (α)(·) ∈ Lp[0, l].
Let us denote also by Wα

p,0[0, l] the subspace of those f ∈ Wα
p [0, l] for which

the polynomial in (14) is absent, that is, cj = f (α−j)(0) = 0, j ∈ {1, . . . , n}.
Here assuming that ε ∈ [0, 1) we consider in L1[0, l] the operatorsDα = Dn−ε

and ln−ε(D):

ln−ε(D)f = Dn−εf +
n−1∑
j=1

qj (x)D
n−ε−j−1f +

∫ x

0
M(x, t)(J εf )(t)dt (15)

with domain Wn−ε
1 [0, 1]. As above we denote by Dn−ε0 and l0n−ε(D) their restric-

tions to the subspaceWn−ε
1,0 [0, 1].We also put 	 = {0 < t < x < l}.

Definition 1 It is said that an operator of triangular from

(I + R)f = f (x)+
∫ x

0
R(x, t)f (t)dt (16)
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with sufficiently smooth kernel R(x, t) intertwines unbounded operators l0n−ε(D)
andDn−ε0 if I + R mapsWn−ε

1,0 [0, l] ontoWn−ε
1,0 [0, l] and satisfies the identity

l0n−ε(D)(I + R)f = (I + R)Dn−ε0 f for all f ∈ Wn−ε
1,0 [0, l]. (17)

Proposition 1 ([32]) Let R(x, t) ∈ Cn+1(	) and let M̃(x, t) := M(x, x− t). Then
an operator I + R of the form (16) intertwines the operators Dn−ε0 and l0n−ε(D)
if and only if the function R̃(x, t) := R(x, x − t) is a solution of the following
fractional order equation in partial derivatives

n∑
j=1

(
n− ε
j

)
D
j
1D

n−j
2 R̃(x, t)+

n−1∑
j=1

qj (x)

n−1−j∑
i=0

(
n− ε − 1 − j

i

)
Di1D

n−1−i−j
2 R̃(x, t)

+ M̃(x, t)+
∫ t

0
M̃(x, s)R̃(x − s, t − s) ds

=
∫ t

0
dξ

∫ 1

0

(1 − β)εβn−ε
(ε)(1 − ε) D

n+1
1 R̃

(
ξ + x − t + (t − ξ)β, ξ) dβ

+
n−1∑
j=1

qj (x)

∫ t

0
dξ

∫ 1

0

(1 − β)εβn−1−j−ε
(ε)(1 − ε) D

n−j
1 R̃

(
ξ + x − t + (t − ξ)β, ξ) dβ

+
∫ t

0
M̃(x, s) ds

∫ t−s
0

dξ

∫ 1

0

(1 − β)−εβε
(ε)(1 − ε)D1R̃

(
x − s − (t − s − ξ)β, ξ) dβ, (18)

subject to the following initial conditions

r∑
j=1

(
n− ε
j

)
D
j
1D

r−j
2 R̃(x, 0)+

r−1∑
j=1

qj (x)

r−1−j∑
i=0

(
n− ε − 1 − j

i

)
Di1D

r−1−i−j
2 R̃(x, 0)

= −qr (x), r ∈ {1, . . . , n− 1}. (19)

Theorem 2 ([32]) Let qj be entire analytical functions, j ∈ {1, . . . , n − 1},
M(x, t) ∈ C(	), and let M̃(x, t0) = M(x, x−t0) be also entire analytical functions
in x for all t0 ∈ [0, l], and let ln−ε(D) be the fractional order integro-differential
operator of the form (15). Then:

(i) There exists a (non-unique) triangular operator I + R of the form (16)
intertwining operators Dn−ε0 and l0n−ε(D), i.e. identity (17) holds. Moreover,
the kernel R̃(x, t) := R(x, x − t) is a solution of the incomplete Cauchy
problem (18)–(19);

(ii) For each t0 ∈ [0, 1) the function R̃(x, t0) := R(x, x− t0) admits a holomorphic
continuation to an entire function in x. Moreover,R(x, t) admits a holomorphic
continuation to an entire function in both variables, wheneverM(x, t) admits.
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Sketch of the Proof Due to Proposition 1 we should prove existence of the prob-
lem (18)–(19) using analyticity of qj and M(x, t). It can be shown (see [32] and
[31] for ε = 0) that conditions (19) are transformed into the conditions

Dr−1
2 u(x, 0) = −(n− ε)−1qr(x)+ ϕr(x), r ∈ {1, . . . , n− 1}. (20)

where ϕ1(x) = 0 and ϕr(x) with r ≥ 2 is expressed via {qj }r−1
1 by means of

operations of summation, multiplication, differentiation, and integration. Thus we
should prove solvability of the incomplete Cauchy problem (18), (20).

Imposing additional condition

R̃(l, t) = R̃(x, t)|x=l = 0. (21)

we arrive at the problem (18), (20), (21). It is natural to call this problem a Goursat
problem.

It is easily reduced to a (complete) Cauchy problem. Indeed, settingD1R̃(x, t) =
u(x, t) and using condition (21) we find that R̃(x, t) = ∫ x

l u(ζ, t)dζ. Inserting this
expression into (18) one arrives at the integro-differential PDE of order n − 1 for
the function u. At the same time boundary conditions (20) turn in to the conditions
for u and we arrive at the Cauchy problem for the function u(x, t).

So, we should prove the existence of the (non-characteristic) Cauchy problem
for partial differential equation of order n with fractional order terms in the right
hand side. It is shown in [32] by using the method of successive approximations
that this problem has a unique solution u(x, t). Hence we find a solution R̃(x, t) to
the problem (18)–(19). ��
Corollary 1 Let the operator l0n−ε(D) satisfy the conditions of Theorem 2. Then
they are similar in each Lp[0, b], p ∈ [1,∞]. More precisely, each triangular
operator I + R of the form (16) intertwining operators Dn−ε0 and l0n−ε(D) maps
Wn−ε

1,0 [0, l] ontoWn−ε
1,0 [0, l] and the following similarity identity holds

l0n−ε(D)f = (I + R)−1Dn−ε0 (I + R)f, f ∈ Wn−ε
1,0 [0, l]. (22)

Remark 1 Passing in (18) to the limit as ε → 0 and noting that (0) =
limε→0 (ε) = ∞, we conclude that the right-hand side of Eq. (18) vanishes and it
turns into the equation

n∑
j=1

(
n

j

)
D
j
1D

n−j
2 R̃(x, t)+

n−1∑
j=1

qj (x)

n−1−j∑
i=0

(
n− 1 − j

i

)
Di1D

n−1−i−j
2 R̃(x, t)

+ M̃(x, t)+
∫ t

0
M̃(x, s)R̃(x − s, t − s) ds (23)
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obtained earlier in [31, formula (67)]. This equation is equivalent to

DnxR(x, t)+
n−1∑
j=1

qj (x)D
n−1−j
x R(x, t) = (−1)nDnt R(x, t)+M(x, t)+

∫ x

t

M(x, s)R(s, t) ds

(24)

with R(x, t) = R̃(x, x − t) andM(x, x − t) = M̃(x, x). The latter is a well-known
equation for the kernel of transformation operator of nth order ordinary differential
equation with M(x, t) = 0 (see [31, 42], and also [24, Chapter 5.6]). Moreover,
setting u(x, t) := DxR̃(x, t) and passing to the limit as ε → 0 one transforms the
initial conditions (19) into the following conditions

r∑
j=1

(
n

j

) [
D
j−1
1 D

r−j
2 u(x, t)|t=0

]
+
r−1∑
j=1

qj (x)

∫ x

1
D
r−j−1
2 u(ξ, 0) dξ

+
r−2∑
j=1

(
n− j − 1

i

)
qj (x)

⎡
⎣r−1−j∑

i=1

Di−1
x D

r−j−i−1
t u(x, t)|t=0

⎤
⎦ = −qr(x), r ∈ {1, . . . , n−1},

(25)

coinciding with conditions (70) in [31]:
Emphasize that the left hand side of Eq. (18) can be obtained from the nth order

equation (23) just by replacing n by n − ε in binomial coefficients. Moreover,
boundary conditions (19) are obtained from their limit form (25) (with ε = 0) in the
same manner: just by replacing n by n − ε in binomial coefficients. So, the main
distinguishing between Eqs. (18) and (23) is appeared in the right hand side of (18)
containing fractional derivatives. Note however that despite of presence of (n+1)th
order derivative Dn+1

1 R̃ in the right hand side of (18) it is natural to consider the
polynomial

Ln−ε(ξ) =
n∑
j=1

(
n− ε
j

)
ξ
j

1 ξ
n−j
2

as a principal symbol of the fractional order differential operatorLn−ε(D) generated
by Eq. (18).

Remark 2 In particular, for n = 2, ε = 0, and M(x, t) = 0, the boundary value
problem (18)–(19) is equivalent to the following well-known incomplete Cauchy
problem for hyperbolic (string) equation

(D2
x −D2

t )R(x, t)+ q(x)R(x, t) = 0, (26)

d

dx
R(x, x) = −2−1q(x). (27)

(see [24, 25, 38]).
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3 Similarity of Volterra Operators

Here we apply Theorem 2 to prove similarity of the Volterra operator

K : f →
x∫

0

k(x, t)f (t) dt (28)

with a “good” kernel k(x, t) to the operator J α with α �= 1. Roughly speaking the
conditions of similarity read as follows:

(i) k(x, x − t) should be an entire function in x for all t ∈ [0, l);
(ii) the behavior of k(x, t) at the diagonal x = t coincides with that of the kernel

(x−t )α−1

(α)
of the operator J α .

The precise statement on similarity of Volterra operators reads as follows.

Theorem 3 ([30, 32]) Let α = n− ε, ε ∈ [0, 1). Suppose that the kernel k(x, t) of
the Volterra operator (28) satisfies the following conditions:

(i) for all t ∈ [0, l] the derivatives

D
j−ε
x k(x, t) ∈ C(	) exist, j ∈ {0, 1, . . . , n}; (29)

(ii) for all x ∈ [0, l] the derivative Dnt k1(x, t) ∈ C(	) exist, where k1(x, t) =
Dn−εx k(x, t) ∈ C(	);

(iii) Djt k1(x, x − t0) is an entire function in x for all j ∈ {1, . . . , n}, and for all
t0 ∈ [0, l];

(iv) [Dj−εx k(x, t)]|t=x = 0, j ∈ {0, n− 2}, and [Dn−1−ε
x k(x, t)]|t=x = 1.

Then K is similar in Lp[0, l], p ∈ [1,∞], to the operator of fractional integration
J α.

Moreover, if Dn−εs k(s, t)|t=s = 0, then:

(a) there exists a Volterra operatorR of the form (28) with a kernelR(x, t) and such
that I + R intertwines the operatorsK and J α , i.e. K(I + R) = (I + R)J α ,

(b) for each t0 ∈ [0, 1) the function R̃(x, t0) := R(x, x − t0) admit a holomorphic
continuation to an entire function in x. Moreover, R(x, t) admit a holomorphic
continuation to an entire function in both variables whenever k(x, t) does.

Sketch of the Proof Denote by Dα0 the restriction of the operator Dα (see (13)) to
the domain D(Dα0 ) = Wn−ε

p,0 [0, l]. It is easily seen that (J α)−1 = Dα0 . Next we show
that the inverse to the Volterra operator K is a fractional order integro-differential
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operator of the form

K−1f = l0n−ε,1(D)f = Dn−εf +
n−1∑
j=1

qj (x)D
n−ε−j f +

∫ x

0
N(x, t)(J εf )(t)dt

(30)

with domain D(l0n−ε,1(D)) = Wn−ε
1,0 [0, l]. It allows us to reduce the problem to the

investigation of similarity between the operators l0n−ε,1(D) and Dα0 .

Since, by hypothesis, Dj−εx k(x, t) ∈ C[t, l] for all t ∈ [0, l), j ∈ {0, . . . , n}, it
follows that k(·, t) ∈ Wn−ε

1 [t, l]. Therefore, in view of (14) and condition (iv) of the
theorem, we have the representation

k(x, t) = (x − t)α−1

(α)
+

∫ x

t

(x − s)α−1

(α)
k1(s, t) ds (31)

in which k1(s, t) = Dn−εs k(s, t).
We now find the inverse of the operator K (28). For this we apply the operator

Dn−εx to the equality

∫ x

0
k(x, t)f (t) dt = g(x), g ∈ Wn−ε

1,0 [0, l]. (32)

Using (31) we obtain

Dn−εx

∫ x

0
k(x, t)f (t)dt = Dnx

∫ x

0

(x − s)ε−1

(ε)
ds

∫ s

0
k(s, t)f (t) dt

= Dnx
∫ x

0
f (t) dt

∫ x

t

(x − s)ε−1

(ε)
k(s, t) ds = Dnx

∫ x

0
f (t) dt

∫ x

t

(x − s)ε−1

(ε)

(s − t)n−ε−1

(n− ε) ds

+Dnx
∫ x

0
f (t) dt

∫ x

t

(x − s)ε−1

(ε)
ds

∫ s

t

(s − ξ)n−ε−1

(n − ε) k1(ξ, t) dξ

= Dnx
∫ x

0

(x − t)n−1

(n − 1)! f (t) dt +D
n
x

∫ x

0
f (t) dt

∫ x

t

k1(ξ, t) dξ

∫ x

ξ

(x − s)ε−1

(ε)

(s − ξ)n−ε−1

(n− ε) ds

= f (x) +Dnx
∫ x

0
f (t) dt

∫ x

t

(x − ξ)n−1

(n− 1)! k1(ξ, t) dξ = f (x) +
∫ x

0
k1(x, t)f (t) dt. (33)

Thus it follows from (32) and (33) that

f (x)+
∫ x

0
k1(x, t)f (t)dt = Dn−εx g(x) = g(n)1 (x), (34)
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where g1(x) = J εg(x). Let

(I + P)f = f (x)+
∫ x

0
P(x, t)f (t)dt (35)

be the inverse of the operator I + K1. It is easily seen that the kernels P(x, t) and
k1(x, t) are related by the equation

P(x, t)+ k1(x, t)+
∫ x

t

P (x, s)k1(s, t)ds = 0. (36)

Setting P̃ (x, t) := P(x, x − t) and k̃1(x, t) := k1(x, x − t), we write (36) in the
form

P̃ (x, t) = −k̃1(x, t)−
∫ t

0
P̃ (x, s)̃k1(x − s, t − s) ds. (37)

Since k1(x, t0) is an entire function for all t0 < l, solving (37) by the method of
successive approximations we can represent P(x, t) as the sum of a uniformly
convergent series of entire functions. Consequently, P̃ (x, t0) is also an entire
function for all t0 ∈ [0, l). Differentiating (37) repeatedly with respect to t , we
then obtain

D
j
2 P̃ (x, t) = −Dj2 k̃1(x, t)−

j−1∑
i=0

D
j−1−i
t [P̃ (x, t)Di2k̃1(x − t, 0)]

−
∫ t

0
P̃ (x, s)Di2k̃1(x − s, t − s)ds. (38)

Hence we can easily deduce by induction on j that Dj2 P̃ (x, t0) ∈ AR[t0, l] for all
t0 ∈ [0, l](1 ≤ j ≤ n) and Dn2 P̃ (x, t) ∈ C(	). We now apply the operator I + P
to (34) and integrate by parts to obtain

f (x) = (I + P)g(n)1 (x) = g(n)1 (x)+
∫ x

0
P(x, t)g

(n)
1 (t)dt

= g(n)1 (x)+
n∑
j=1

qj (x)g
(n−j)
1 (x)+

∫ x

0
N(x, t)g1(t)dt, (39)

where

qj (x) = (−1)j [Dj−1
2 P(x, t)|t=x] = Dj−1

2 P̃ (x, 0), 1 ≤ j ≤ n− 1,

and Dn2P(x, t) = N(x, t). (40)

Thus, the inverseK−1 of K is of the form (30).
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Next to “kill” the coefficient q1(x) �= 0 we introduce the multiplication operator

�f (x) = ϕ0(x)f (x), ϕ0(x) = exp

(
1

ε − n
∫ x

0
q1(s)ds

)
(41)

and prove the equality

�−1l0n−ε,1(D)�f = l0n−ε,2(D)f for all f ∈ Wn−ε
1,0 [0, l], (42)

in which

l0n−ε,2(D)f := Dn−εf +
n∑
j=2

rj (x)D
n−ε−j f +

∫ x

0
M(x, t)(J εf )(t)dt (43)

We achieve this representation by applying following analogue of Leibniz’s formula
(see [44], Section 15.2, formula (15.11)):

Dn−j−ε
(
ϕ(x)f (x)

) =
∞∑
i=0

(
n− j − ε

i

)
ϕ(i)(x)Dn−j−ε−if (x), j ∈ {1, . . . , n}.

(44)

By Theorem 2 (see below), the operator l0n−ε,2(D) is similar to the operator Dα0 in
Lp[0, 1] for each p ∈ [0,∞]. This implies the similarity of inverses. ��
Remark 3 If n = 1, the conditions (iv) are reduced to the solo condition
[D−ε
x k(x, t)]|t=x = 1.

Corollary 2 Let

k(x, t) = (x − t)α−1

(α)
P (x, t) and P(x, x) = 1, (45)

and suppose that the derivatives

DnxP (x, t) := Q(x, t) ∈ C(	) and D
j
t Q(x, t) := Qj (x, t) ∈ C(	), j ∈ {0, . . . , n},

exist. Assume, in addition, that for each t0 ∈ [0, 1) the functions Q̃j (x, t0) :=
Qj(x, x − t0), (0 ≤ j ≤ n), admit holomorphic continuations to entire functions in
x. Then the operator K of the form (28) is similar in Lp[0, l], p ∈ [1,∞], to the
operator of fractional integration J α.
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Example 1 Let the kernel k(x, t) has the form

k(x, t) = (x − t)α−1

(α)

⎡
⎣1 +

m∑
j=1

ϕj (x)ψj (x − t)
⎤
⎦ , (46)

where
∑m
j=1 ϕj (x)ψj (0) = 0, ψj (t) ∈ C2n[0, l], j ∈ {0, . . . ,m}, and ϕj (x) is

an entire function in x for all j ∈ {1, . . . ,m}. Then k(x, t) satisfies the conditions
of Theorem 3, and hence the Volterra operator K of the form (28) is similar to the
operator J α .

Corollary 3 Assume that k(x, t) is a kernel of the form (45) with P(x, t) admitting
a holomorphic continuation to entire function in both variables. Then for any n ∈ N

there exists a Volterra operatorKn with a kernel kn(x, t) of the form

kn(x, t) = (x − t)α/n−1

(α/n)
Pn(x, t) and Pn(x, x) = 1, (47)

and such that:

(i) Pn(x, t) admits a holomorphic continuation to entire function in both variables;
(ii) Kn is an nth root of K , i.e. Knn = K .

An improvement of Theorem 3 was obtained by Ignat’ev [15] (see Theorem 6
below). His method being an improvement of the method of Khachatryan allows
him to weaken the constraints imposed in Theorem 3 in the case α > 2.

Remark 4

(i) The problem of similarity between operators K and J α has a long
history going back to the works by G. Kalish [16] and L.A. Sakhnovich
[41, 42] who treated the case of integers α = n ∈ N. Theorem 3
strengthens their result from [16, 41, 42], where the kernel k(x, t) was
required to be analytic in both variables instead of being finitely smooth
in one of them, as required in Theorem 3. In the case of non-integer α
Theorem 3 was proved in [32], while a weaker result was announced in
[30].

Other results on similarity of Volterra operators and its applications to Riesz
basis property can be found in [12, 13] (see also references therein and in
[32]).

(ii) Corollary 3 generalizes the classical result of Volterra and Peres [48] and
coincides with it for α = n. It was substantially employed by G. Kalish [16] in
his proof of similarity between operatorsK and J n.
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4 Triangular Transformation Operators

4.1 Sufficient Conditions for Existence of Transformation
Operators

Here we discuss triangular transformation operators for solutions to the equa-
tion ln−ε(D)y(x, λ) = λy(x, λ), where ln−ε(D) is the fractional order integro-
differential operator of the form (15).

To this end we denote by E1and E2 the subspaces of Wn−ε
1 [0, l] defined by the

relations

E1 := {f ∈ Wn−ε
1 [0, l] : f (j−ε)(0) = 0, 1 ≤ j ≤ n− 1}, (48)

E2 := {f ∈ Wn−ε
1 [0, l] : f (j−ε)(0) = hjf (−ε)(0), 1 ≤ j ≤ n− 1}. (49)

Clearly, Ej ⊃ Wn−ε
1,0 [0, l] and dim(Ej/W

n−ε
1,0 [0, l]) = 1, j ∈ {1, 2}.

Proposition 2 ([32]) Let ln−ε(D) be a fractional order differential operator of the
form (15), let I +R1 be a triangular operator of the form (16) with kernel R1(x, t),
and let R̃1(x, t) := R1(x, x − t). Then in order that the operator I + R1 maps
E1onto E2 and intertwines the operators ln−ε(D)|E2 and Dn−ε |E1 , that is in order
that the following equality should hold:

ln−ε(D)(I + R1)f = (I + R1)D
n−εf for all f ∈ E1, (50)

it is necessary and sufficient that R̃1(x, t) satisfies Eq. (18), conditions (19), and the
further conditions

[Dn−1
2 R̃1(x, t)]|t=x = 0 (51)

and

j−1∑
i=0

(
j − ε
i

)[
Di1D

j−i−1
2 R̃1(x, t)

] ∣∣
x=t=0 = hj , j ∈ {1, . . . , n− 1}. (52)

Now we are ready to state our main result on existence of a triangular transformation
operator.

Theorem 4 ([32]) Let qj be entire analytical functions, j ∈ {1, . . . , n − 1},
M(x, t) ∈ C(	), 	 = {0 < t < x < l}, and let M̃(x, t0) = M(x, x − t0) be
also entire in x for all t0 ∈ [0, l]. Suppose further that y(x, λ) is a solution to the
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following Cauchy problem

ln−ε(D)y(x, λ) := Dn−εy(x, λ)+
n−1∑
j=1

qj (x)D
n−ε−j−1y(x, λ)

+
∫ x

0
M(x, t)(J εy(t, λ)) dt = λy(x, λ), (53)

y(j−ε−1)(0, λ) = hj , j ∈ {1, . . . , n}. (54)

Then there exists a unique kernel R1(x, t) ∈ Cn(	) such that R1(x, x − t0) is an
entire function for all t0 ∈ [0, l], and

y(x, λ) = (I + R1)w(x, λ) := w(x, λ)+
∫ x

0
R1(x, t)w(t, λ) dt (55)

in which w(x, λ) is a solution of the Cauchy problem for the simplest fractional
order equation

Dn−εx w(x, λ) = λw(x, λ) (56)

with the initial data

w(j−1−ε)(0, λ) = hj,0, j ∈ {1, . . . , n}, (57)

where if hj,0 = 0, j ∈ {1, . . . , p − 1} and hp,0 �= 0, then hj,0 = hj for all j ≤ p.
If, in addition, M(x, t) is analytic in both variables, then R1(x, t) is also analytic
in both variables x and t ∈ 	.

Proof Let I + R be an operator intertwining operators l0n−ε(D) and Dn−ε0 , i.e.
Eq. (17) holds. By Proposition 1 R(x, t) is a solution of the incomplete Cauchy
problem (18)–(19) and by Theorem 2 a solution to this problem exists.

Next we define the transformation operator I + R1 by setting

I + R1 = (I + R)(I +�) where � : f →
∫ x

0
ϕ(x − t)f (t) dt

is a convolution operator with smooth kernel ϕ ∈ Cn+1[0, 1]. Since the operator
� commutes with J α, one gets that the operator I + R1 intertwines the operators
l0n−ε(D) and J α, i.e.

l0n−ε(D)(I + R1)f = (I + R1)D
n−ε
0 f for all f ∈ Wn−ε

1,0 [0, l]. (58)

By Proposition 1, R1(x, t) is also a solution to the problem (18)–(19). Next we find
ϕ ∈ Cn+1[0, 1] to satisfy the conditions (51)–(52) from the following second order
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integral equation on unknown function ϕ:

R1(x, t) = R(x, t)+ ϕ(x − t)+
∫ x

t

R(x, s)ϕ(s − t) ds

Rewriting this equation in the form

R̃1(x, t) = R̃(x, t)+ ϕ(x − t)+
∫ t

0
R̃(x, s)ϕ(t − s) ds

we show that such a function does exist. ��
Remark 5 Here w(x, λ) admits a representation:

w(x, λ) =
n∑
j=1

hn+1−j,0xj−1−εEα,j−ε(λxα) (59)

where Eα,μ is the classical Mittag-Leffler function (see [8, Chapter 3]),

Eα,μ
(
zxα

) =
∞∑
k=0

(zxα)k

(kα + μ), μ > 0. (60)

It is known [8] that Eα,μ
(
zxα

)
is an entire function in z of order 1/α and type x not

depending on μ, hence so is w(x, z).

Note that the theory of triangular transformation operators for Sturm-Liouville
equation goes back to the classical paper by Marchenko [37] (see also monographs
[24, 25, 38]). Namely, he proved representation (55) with w(x, λ) = cos x

√
λ for

the solution of the following Cauchy problem

− y ′′ + q(x)y = λy, y(0) = 1, y ′(0) = h, x ∈ R+, (61)

for Sturm-Liouville equation with L1
loc-potential q and applied it to different

problems of spectral theory of such operators (asymptotic behaviour of spectral
functions, uniqueness of reconstruction of a potential q from spectral function, etc.).

To construct a transformation operator for the problem (61) Marchenko writing
equation (61) as y ′′ + λy = q(x)y with the right hand side q(x)y and by using the
method of variation of constants reduced the problem (61) to the equivalent integral
Sturm-Liouville equation

y(x, λ) = cos(x
√
λ)+ h sin(x

√
λ)√

λ
+

∫ x

0

sin((x − t)√λ)√
λ

q(t)y(t, λ) dt. (62)

Then he has obtained a triangular representation (55) for y(x, λ) by applying the
method of successive approximations. Later on inserting representation (55) for
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y(x, λ) into (62) he obtained an integral equation for the kernel R(x, t) expressing
it via a potential q .

Gelfand and Levitan (see [25]) proposed a slightly different approach to deduce
representation (55) for the solution y(x, λ) of the problem (61). Namely, starting
with formula (55) for y(x, λ) they shown that the kernel R(x, t) satisfies the certain
Goursat problem for the string equation (26). Then proving the (unique) solvability
to this problem they arrived at representation (55).

L. Sakhnovich [42] extended the Gel’fand-Levitan method to the case of nth
order equation (15). Again starting with representation (55) for the solution y(x, λ)
of the problem (53)–(54) (with ε = 0 and M(x, t) = 0) he shown that R(x, t)
satisfies a certain Goursat problem for a partial differential equation (24). Assuming
that the coefficients qj are entire functions and M(x, t) = 0, and applying the
Cauchy-Kovalevskii theorem, he proved solvability of this problem. This leads to
representation (55) for a solution to Cauchy problem of Eq. (15) (with ε = 0, entire
coefficients qj , andM(x, t) = 0).

Our proof of Theorem 4 is a further generalization of the above mentioned proofs
from [25] and [41] regarding the cases α = 2 and (N .)α = n ≥ 3, respectively,
while a deduction of the respective Goursat problem (18)–(19), (51) for the kernel
R(x, t) of transformation operator is much more complicated.

On the other hand, Marchenko’s method was extended by I.G. Khachatryan [18]
to the case of nth order equation. Namely, writing down Eq. (53) (with ε = 0 and
M = 0) in the form

Dny(x, λ)− λy(x, λ) =
n−1∑
j=1

qj (x)D
n−j−1y(x, λ)

and applying the method of variation of constants, he reduced the Cauchy problem
for Eq. (53) to the equivalent integral equation similar to (62). He improved the
result of Sakhnovich by showing that formula (55) remains valid provided that the
coefficients qj are holomorphic in certain polygon (see below).

Next contribution to the subject was done by Ignat’ev [15]. Assuming that α >
2 he simplified the original proof of Theorem 4 by generalization the reasoning
of Hachatryan [18]. The proposed method allows him to weaken the constraints
imposed in Theorem 4 on the analyticity domain of the kernel M(x, t) and the
coefficients {qj }n−1

1 of Eq. (53).
Following [15] we assume that α > 2, l = 1, and denote by Da the quadrangle

in the complex plane with vertices

{0, a, a(1 −w)−1, a(1 −w−1)−1}, w = exp(2πi/α), (63)

and put

V := {(x, ξ) : x ∈ [0, 1], ξ ∈ D1−x}.
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A Volterra integral operator is said to be an operator of class A if it can be
expressed as

(Nf )(x) =
∫ x

0
N(x − t, t)f (t)dt (64)

where N(x, ξ) is a continuous function defined on V and, for any fixed x ∈ [0, 1],
is analytic with respect to ξ on the domainD1−x .

Theorem 5 ([15]) Suppose that α > 2, and the coefficients of the integro-
differential operator (53) are analytic on D1, the functions q(n−j−1)

j , j ∈
{1, . . . , n − 1} are continuous on D1, and M is a Volterra operator of class A.
Let also y(x, λ) and w(x, λ) be the solutions of Eqs. (53) and (56), respectively,
satisfying the common initial conditions

y(α−k−1)(x, λ)|x=0 = w(α−k−1)(x, λ)|x=0 = δk,n−1, k ∈ {1, . . . , n− 1}

Then y(x, λ) admits a representation (55) with R(x, t) being of class A.

As a corollary of this result Ignat’ev obtained the following improvement of
Theorem 3 on similarity to the operator J α with α > 2.

Theorem 6 ([15]) Suppose that α > 2 and J α(I + JN), where N is a Volterra
operator of class A. Then there exists a Volterra operator R of class A such that
K = (I + R)Jα(I + R)−1 in the spaces Lp[0, b] for p ∈ [1,∞].

4.2 Necessary Conditions

Analyticity of coefficients qj (·) of Eq. (53) is in sense necessary for Eq. (53) (with
M(x, t) = 0) to admit a triangular transformation operator. First we present results
for nth order equation assuming that ε = 0.

Theorem 7 ([31]) Let ln(D) be nth order operator of the form (53) with ε =
M(x, t) = 0 and let qj ∈ A(0, b)(C∞(0, l)) for j ∈ {1, . . . , [n/2]}. Assume
also that Eq. (53) admits a triangular transformation operator, i.e. that represen-
tation (55) holds with a kernel R1(x, t) ∈ Cn(	).

Then qj ∈ A(0, b)(C∞(0, l)) for j ∈ {[n/2] + 1, . . . , n− 1}.
Proof (Sketch of the Proof ) Let transformation operator I + R1 exist. Then the
kernel R1(x, t) satisfies Eq. (23), conditions (25) and one more condition (51).
First we show that there exists another solution R̂(x, t) of Eq. (23) satisfying
conditions (25) and one more condition

R̂(l, t) = 0 (65)
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instead of condition (51). Setting u(x, t) := DxR̂(x, t) we get from (65) that

R̂(x, t) = D−1
1 u :=

∫ x

l

u(ξ, t) dξ.

Assuming that n is odd, n = 2m + 1 and inserting this expression in Eq. (23) we
conclude that u(x, t) satisfies the elliptic equation

n∑
j=1

(
n

j

)
D
j−1
1 D

n−j
2 u(x, t) = −

n−1∑
j=1

qj (x)

n−1−j∑
i=0

(
n− 1 − j

i

)
Di−1

1 D
n−1−i−j
2 u(x, t).

(66)

and initial conditions (25). Since the coefficients of the principle part of 2mth
equation (66) are real, the operator is properly elliptic.

Next we express the second part of the coefficients qj , j ∈ {m + 1, . . . , 2m}
by means of the first one and functionsDj2u(x, t)|t=0, j ∈ {m, . . . , 2m}, and insert
these expressions into Eq. (66). Summing up we arrive at the Dirichlet problem at
t = 0 for the nonlinear integro-differential properly elliptic equation. Assuming
that qj ∈ C∞(0, l) for j ∈ {1, . . . ,m} one gets that the right hand side of (66)
is in C1(	). Since the Dirichlet problem satisfies the covering condition, we apply
the regularity result for elliptic problem and obtain that u(x, t) ∈ Cn+1(	1) where
	1 = {0 ≤ t < x < l}. Repeating this reasoning we conclude that u(x, t) ∈
C∞(	1).

Now returning to the conditions (25) we obtain that qj ∈ C∞(0, l) for j ∈
{m+ 1, . . . , 2m}.

If qj ∈ C∞(0, l) for j ∈ {1, . . . ,m}, we use generalization of the Morrey-
Nirenberg approach to prove analyticity up to the boundary of the solutions to
Dirichlet problem for the above elliptic non-linear integro-differential equation. ��
Remark 6 Special cases of Theorem 7 have earlier been established by V.I. Macaev
[29] and L.A. Sakhnovich [43]. More precisely, V. Macaev established absence of
triangular transformation operators for two-term equation y(n) + qy = λy with a
coefficient q being analytical on [0, 1/2) and vanishing on [1/2, 1). Clearly, q /∈
A(0, 1) and this result is immediate from Theorem 7. The detailed discussion of
this question can be found in the monographs [17] and [47].

The following result shows that Theorem 7 is sharp.

Theorem 8 ([31]) Let qj ∈ A[0, l] for j ∈ {1, . . . , [n/2]− 1}. Then there exists an
operator ln(D) admitting triangular transformation operator of the form (55) with
qj /∈ A[0, l] for j ∈ {[n/2], . . . , n− 1}.
For non-integer α = n− ε, ε ∈ (0, 1), a weaker result is known.

Theorem 9 ([32, Theorem 4]) Let l ≤ ∞ and let for Eq. (53) there exists triangu-
lar transformation operator I + R1 of the form (55) with R1(x, t) ∈ Cn+ε(	).
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Assume also that qj (·) ∈ C∞(0, l) for j ∈ {1, . . . , [n/2]} and M̃(x, t0) :=
M(x, x − t0) ∈ C∞[t0, l] for each t0 ∈ [0, l]. Then qj (x) ∈ C∞(0, l) for
j ∈ {[n/2] + 1, . . . , n− 1}.
Apparently Theorem 7 remains valid for fractional order equations with ε ∈ (0, 1).
In other words, in Theorem 9 inclusions qj (·) ∈ C∞(0, b) (both for the assumption
and the conclusion) can be replaced by qj (·) ∈ A(0, b).
Example 2 For two-term equation

y(n−ε) + q(x)y−ε = λy (67)

the inclusion q ∈ A(R) is sufficient for Eq. (67) to admit triangular transformation
operator, while condition q ∈ C∞(0, b) is necessary.

If ε = 0, then the stronger inclusion q ∈ A(0, b) is necessary.

5 Uniqueness Results

5.1 Fractional Order Equations

Here we employ transformation operators to prove unique recovery of Eq. (53) with
M(x, t) = 0 by n spectra of boundary value problems.

So, consider Eq. (53) withM(x, t) = 0, namely

ln−ε(D)y1 = Dn−εx y1(x, λ)+
n−1∑
j=1

qj (x)D
n−1−j−ε
x y1(x, λ) = λy1(x, λ), (68)

and impose the following boundary conditions

Uiy1 =
n∑
j=1

hij y
(j−1−ε)
1 (0, λ) = 0, i ∈ {1, . . . , n− 1}, (69)

Vryl =
n∑
j=1

Hiry
(j−1)
l (l, λ) = 0. (70)

Assuming the forms {Ui}n−1
l to be linearly independent and fixing r ∈ {1, . . . , n},

we denote by Sr
({Ui}n−1

1 ;Vr; {qj }n−1
l

)
the spectrum of the problem (68)–(70)

taking multiplicity into account.
Next, let �j be the minor of the matrix ‖hilhi2 . . . hin‖n−1

i=1 obtained by deleting
the j th column.
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Finally, alongside Eq. (68) we consider the analogous equation with entire
coefficients {̃qj (x)}n−1

1 ,

l̃n−ε(D)y2 = Dn−εx y2(x, λ)+
n−1∑
j=1

q̃j (x)D
n−1−j−ε
x y2(x, λ) = λy2(x, λ), (71)

subject to the boundary conditions

Ũiy1 =
n∑
j=1

h̃ij y
(j−1−ε)
1 (0, λ) = 0, i ∈ {1, . . . , n− 1}, (72)

Vryl =
n∑
j=1

Hiry
(j−1)
l (l, λ) = 0. (73)

Similarly, assuming the forms {Ũi}n−1
1 to be linearly independent, we denote by

Sr
({Ũi}n−1

1 ;Vr; {̃qj}n−1
l

)
the spectrum of the problem (71)–(73) counting multi-

plicities. Finally, denote by �̃j the minor of the matrix ‖h̃i1h̃i2 . . . h̃in‖n−1
i=1 obtained

by deleting the j th column.
Now we are ready to state the main result of this section.

Theorem 10 ([32, Theorem 3]) Let n ≥ 2 and ln−ε(D), l̃n−ε(D) ∈ A(D).
Suppose also that the forms {Vr}n1 are linearly independent, and the following n
spectra

Sr
({Ui}n−1

1 ;Vr; {qj }n−1
1

) = Sr
({Ũi}n−1

1 ;Vr; {̃qj }n−1
1

)
, r ∈ {1, . . . , n},

(74)

for Eqs. (68) and (71) coincide. Here if�j = 0 (1 ≤ j ≤ p − 1) and�p �= 0, then
�̃j = 0 (for all j ≤ p − 1), and �̃p �= 0. Then

qj (x) = q̃j (x) for j ∈ {1, . . . , n− 1},

and there exists a constant c0 �= 0 such that �̃j = c0�j for j ∈ {1, . . . , n− 1}.
Proof (Sketch of the Proof ) Since the forms {Uj }n−1

1 are linearly independent, it
follows from (69) that

y
(j−1−ε)
1 (0, λ) = C1�j, C1 �= 0, j ∈ {1, . . . , n}. (75)

Similarly, we get

y
(j−1−ε)
2 (0, λ) = C2�̃j , C2 �= 0, j ∈ {1, . . . , n}. (76)
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Without loss of generality we can assume that C2�̃p = C1�p( �= 0).
On the other hand, it follows from (55), that each yj (·, λ) admits a triangular

representation

yj (x, λ) = (I + Rj )w(x, λ) := w(x, λ)+
∫ x

0
Rj (x, t)w(t, λ) dt, j ∈ {1, 2},

(77)

where both representations hold with the same w(·, λ) being the solution of the
Cauchy problem of the simplest equation (56) with βj = 0 for j < p and βp =
C1�p = C2�̃p �= 0.

Each of the boundary conditions Vry1 = 0 generates the characteristic de-
terminant of the problem (68)–(70). Taking representation (77) into account this
determinant can be written in the form

Fr(λ) =
n∑
k=1

Akrw
(k−1)(b, λ)+

∫ b

0
Qr(t)w(t, λ) dt = 0, (78)

where

Qr(t) =
n∑
j=1

HjrD
j−1
1 R1(b, t), Akr =

n∑
j=k
ajkHjr , (79)

and ajk (1 ≤ k ≤ j ≤ n) are linearly expressed by means of the values of the kernel
R1(x, t) and its partial derivatives at the point (b, b).

Further, it is shown in a standard way that the spectrum Sr
({Ui}n−1

1 ;Vr; {qj }n−1
1

)
of the problem (68)–(70) coincides with zeros of the entire function Fr(·) (the
characteristic determinant) counting multiplicities. Being an entire function of order
(n − ε)−1 < 1 the function Fr(·) is uniquely determined by its zeros up to a
multiplicative constant.

Next we show that the family {Fr(·)}n1 determines uniquely the functions

D
j

1R1(b, t) := DjxR1(x, t)�x=b, t ∈ [0, b], j ∈ {1, . . . , n}. (80)

Similar reasoning with respect to the problem (71)–(73) together with condition (74)
of the theorem yields

D
j

1R1(b, t) = Dj1R2(b, t), t ∈ [0, b], j ∈ {1, . . . , n}. (81)

Starting with these relations it is established that

Dk1D
j
2 R̃1(b, 0) = Dk1Dj2 R̃2(b, 0), j, k ∈ N ∪ 0.
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Using analyticity of both kernels we arrive at the equality R1(x, t) = R2(x, t) in 	.
This relation implies the required uniqueness. ��
If a part of coefficients {qj }n−1

1 is known, the number of spectra required for the
unique determination of Eq. (68) can be reduced.

Theorem 11 ([32]) Assume that ln−ε(D) and l̃n−ε(D) be the operators of the
form (68) and (71), respectively, n ≥ 3, and

Vr(y) = y(r−1)(l), r ∈ {1, . . . , n}. (82)

Let also {Uj }n−1
1 , {Ũj }n−1

1 be the linear forms given by (69) and (72), respectively.
Assume also that the following k + 1 spectra for operators ln−ε(D) and l̃n−ε(D)
coincide:

Sr
({Ui}n−1

1 ;Vr; {qj}n−1
1

) = Sr
({Ũi}n−1

1 ;Vr; {̃qj }n−1
1

)
, r ∈ {1, . . . , k + 1},

(83)

and qj (x) = q̃j (x) for j ∈ {1, . . . , n− k − 1}. Then

ln−ε(D) = l̃n−ε(D), i.e. qj (x) = q̃j (x) for j ∈ {1, . . . , n− 1}.

Proof Here we propose another approach. Namely, we reduce the problem to
Goursat problem for linear fractional order partial differential equation. To this end
starting with representations (77) we set I + R := (I + R2)(I + R1)

−1. Clearly, R
is a triangular operator with the kernel R(·, ·) given by

R(x, t) = R2(x, t)+ P1(x, t)+
∫ x

t

R2(x, s)P1(s, t)ds (84)

where I + P1 = (I + R1)
−1. It follows that

y2(x, λ) = (I + R)y1(x, λ) = y1(x, λ)+
∫ x

0
R(x, t)y1(t, λ)dt (85)

It can be shown similarly to the deduction of Eq. (18) that the kernel R̃(x, t) :=
R(x, x − t) is a solution of the following nth order equation with partial derivatives

n∑
j=1

(
n− ε
j

)
D
j

1D
n−j
2 R̃(x, t)+

n−1∑
j=1

[̃qj (x)−qj (t)]
n−1−j∑
i=0

(
n− ε − 1 − j

i

)
Di1D

n−1−i−j
2 R̃(x, t)

=
∫ t

0
dξ

∫ 1

0

(1 − β)εβn−ε
(ε)(1 − ε)D

n+1
1 R̃

(
ξ + x − t + (t − ξ)β, ξ) dβ

+
n−1∑
j=1

[̃qj (x) − qj (t)]
∫ t

0
dξ

∫ 1

0

(1 − β)εβn−1−j−ε

(ε)(1 − ε) D
n−j
1 R̃

(
ξ + x − t + (t − ξ)β, ξ) dβ

(86)
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subject to the following initial conditions

D
j−1
2 D1R̃(x, 0) = ϕj (x), j ∈ {1, . . . , n− 1}. (87)

Here ϕj(·) is expressed via coefficients qk(·), q̃k(·), and the derivatives

D
j−k−1
1 R̃(x, 0), 1 ≤ k ≤ j , of the kernel R̃(x, t) with t = 0 by means

of operations of addition, multiplication, and differentiation. For instance,
ϕ1(x) = [q1(x)− q̃1(x)](n− ε)−1.

As it is shown in the proof of Theorem 10, the coincidence of the k + 1
spectra (83) yields

y
(j)

1 (b, λ) = y(j)2 (b, λ) for j ∈ {0, 1, . . . , k}. (88)

In turn, combining these equalities with representation (85) implies

D
j

1 R̃(x, t)|x=b = 0, j ∈ {0, 1, . . . , k}. (89)

Further, it easily follows from equalities qj (x) = q̃j (x), j ∈ {1, . . . , n − k − 1},
and initial conditions (69), (72), that

D
j−1
2 D1R̃(x, 0) = 0, j ∈ {1, . . . , n− k − 1}. (90)

So, to prove the uniqueness result it suffices to show that the Goursat prob-
lem (86), (89), (90), has only trivial solution R(x, t) ≡ 0.

Setting P(x, t) = Dk+1R̃(x, t) and taking boundary conditions (89) into
account, one gets

R̃(x, t) =
∫ x

b

(x − ξ)k
k! P(ξ, t) dξ. (91)

Inserting this expression for R̃(x, t) into Eq. (86), and initial conditions (90) we
arrive at certain fractional order integro-differential equation

L̃P = 0 (92)

for P(x, t) and initial conditions

D
j−1
2 P(x, t)|t=0 = 0, j ∈ {1, . . . , n− k − 1}. (93)

Using these relations and Eq. (92) we show by induction that

Dk1D
j
2P(x, t)|x=l,t=0 = 0, j, k ∈ N ∪ {0}. (94)



Transformation Operators for Fractional Order Ordinary Differential Equations. . . 563

Since the kernel P(x, t) is analytical in certain domain	′ ⊃ 	, relations (94) yield
P(x, t) ≡ 0 in	. In turn, this implies R1(x, t) ≡ R2(x, t), {x, t} ∈ 	. The required
relations

qj (x) = q̃j (x), j ∈ {n− k, . . . , n− 1}, (95)

are extracted now from initial conditions (19) for R̃1(x, t) := R1(x, x − t) and
R̃2(x, t) := R2(x, x − t). ��
Example 3 Let ln−ε(D) and l̃n−ε(D) be two-terms fractional (n − ε)-order opera-
tors,

ln−ε(D) = Dn−ε + q and l̃n−ε(D) = Dn−ε + q̃

where q and q̃ are entire coefficients. Then q = q̃ whenever two spectra coincide.

Remark 7 Note that in the case of integer α = n(⇐⇒ ε = 0) and k = n − 1 the
second part of the proof of Theorem 11 is immediate from the Cauchy-Kovalevskii
theorem. Namely, the Cauchy-Kovalevskii theorem applied to the non-characteristic
Cauchy problem (86), (90) yields uniqueness: R̃(x, t) ≡ 0 in 	, and hence
R1(x, t) ≡ R2(x, t) in 	.

However, the following more general uniqueness result holds.

Theorem 12 ([32]) Let ln(D) and l̃n(D) be operators of the form (68) and (71)
with ε = 0 and smooth coefficients qj , q̃j ∈ Cn−j [0, b], j ∈ {1, . . . , n− 1}, and let
the boundary forms {Uj }n−1

1 , {Ũj }n−1
1 , Vr , be the same as in Theorem 11. Assume

also that the following conditions hold:

(i) Equations (68) and (71) admit triangular transformation operators;
(ii) the spectra (83) coincide for r ∈ {1, . . . , k + 1} with some k ≤ n− 1;

(iii) qj (x) = q̃j (x) for j ∈ {1, . . . , n− k − 1}.
Then qj (x) = q̃j (x) for j ∈ {1, . . . , n− 1}.
Proof Let us explain the scheme of the proof assuming that k = n − 1. In
accordance with condition (i) the solutions yj (x, λ) admit representations (77),
and hence y2(x, λ) and y1(x, λ) are related by formula (85) with I + R =
(I + R2)(I + R1)

−1. Now the kernel R̃(x, t) = R(x, x − t) satisfies the partial
differential equation

n∑
j=1

(
n

j

)
D
j
1D

n−j
2 R̃(x, t) =

n−1∑
j=1

[
qj (t)− q̃j (x)

] n−1−j∑
i=0

(
n− 1 − j

i

)
Di1D

n−1−i−j
2 R̃(x, t)

(96)
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and the following boundary conditions

D
j

1 R̃(x, t)|x=b = 0, j ∈ {0, 1, . . . , n− 1}. (97)

As in the proof of Theorem 11 it suffices to show that the non-characteristic Cauchy
problem (96)–(97) has only trivial solution.

Let Ln(ζ ) = Ln(x, ζ ) be the principle (homogeneous) symbol of the operator
Ln(x, ζ ) in the left hand side of Eq. (96). Clearly, Ln(ζ ) is a polynomial (with
constant coefficients) in ζ with constant (not depending on x) coefficients. It is easily
seen that for each fixed ζ the polynomial Ln(ζ + τN) in τ has no multiple roots
whenever ζ + τN �= 0. Therefore the Calderon theorem (see [14]) ensures local
triviality of the solution of the Cauchy problem (96)–(97).

To prove global uniqueness we reduce the problem to the equivalent Cauchy
problem for elliptic equation. To this end we note that for odd n the polynomial
Ln(ζ ) admits the factorization Ln(ζ ) = ζ1Qn−1(ζ ) where Qn−1(ζ ) is already
elliptic polynomial with real (constant) coefficients.

Setting P(x, t) = D1R̃(x, t) and inserting this expression into (96)–(97) we
arrive at the following Cauchy problem

Qn−1(D)P (x, t) =
n−1∑
j=1

[qj (t)− q̃j (x)]
n−1−j∑
i=0

(
n− 1 − j

i

)
Di−1

1 D
n−1−i−j
2 P(x, t),

(98)

D
j
1P(x, t)|x=b = 0, j ∈ {0, 1, . . . , n− 2}, (99)

for elliptic operatorQ1(D). Here

D−1
1 D

n−1−j
2 R̃(x, t) :=

∫ x

b

Dn−1−jP (ξ, t)dξ. (100)

Now the Kalderon uniqueness result [14] (in fact, its generalization to elliptic
equation containing integral terms of the form (100)) yields P(x, t) ≡ 0, hence
R̃(x, t) = R(x, t) ≡ 0 and R1(x, t) ≡ R2(x, t). Since each of the operators l0n(D)
and l̃0n(D) is similar to the operatorD0

n (see identity (58)), one gets

l0n(D) = (I + R1)
−1D0

n(I + R1) = (I + R2)
−1D0

n(I + R2) = l̃0n(D). (101)

This identity yields (in fact, is equivalent to) qj (x) = q̃j (x) for j ∈ {1, . . . , n− 1}.
The case of even n = 2n1 is more cumbersome because the principle symbol

admits now the following factorization: Ln(ζ ) = ζ1Qn−2(ζ )[ζ 2
1 + 2ζ1ζ2] where

Qn−2(ζ ) is elliptic polynomial of degree n − 2 with real coefficients. The rest of
reasonings is similar to the case of odd n. ��
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Remark 8 Theorem 3 can be regarded as a generalization of the well known result
of Borg and Marchenko (see [37, 38]), [24, 25] on the unique determination of the
Sturm-Liouville operator from two spectra. For equations of integer orders (that
is, for ε = 0) and Hjk = δjk (δjk is the Kronecker delta) Theorem 10 was
proved independently by the author and Yurko [49]. The method of [49] does not
use transformation operators technique. Note also that I. Khachatryan [19] applied
triangular transformation operators to investigate the scattering problem for nth
order equation with analytic coefficients.

5.2 First Order Systems of Ordinary Equations

Here we consider some recent uniqueness results on first order systems of ODE. Let
B be a non-singular diagonal n× n-matrix

B = diag(b1In1 , . . . , brInr ) ∈ C
n×n, n = n1 + . . .+ nr , (102)

with pairwise different complex numbers, bj �= bk for j �= k.
Consider a system of differential equations

Py := −iB−1y ′ +Q(x)y = λy, y = col(y1, . . . , yn), (103)

on the interval [0, 1] with a summable potential matrixQ ∈ L1[0, 1] ⊗ C
n×n.

Systems of the form (103) play important role in theoretical and practical
problems. For instance, for n = 2m, B = diag(−Im, Im) and Q11 = Q22 = 0
the system (103) is equivalent to 1D stationary Dirac system (see [26, Chapter 7]).
Further nth order ordinary differential equation is reduced to system (103) with
r = n and bj = exp(2πij/n), j ≤ n (see [33]). Note also that system (103)
appears in the Lax representation for n-waves equation arisen in non-linear optic
[40, Chapter 3].

Alongside with Eq. (103) consider vector equation

P̃y := −iB−1ỹ ′ + Q̃(x)ỹ = λỹ, ỹ = col(ỹ1, . . . , ỹn), (104)

with a summable potential matrix Q̃ ∈ L1[0, l] ⊗ C
n×n.

Assume also that with respect to the orthogonal decomposition C
n = ⊕rj=1C

nj

the potential matricesQ(·) and Q̃(·) have zero diagonals,

Q = (Qjk)rj,k=1, Q̃ = (Q̃jk)rj,k=1, Qjk, Q̃jk : [0, 1] → C
nj×nk ,

Qjj (x) = Q̃jj (x) = 0, x ∈ [0, l], j ∈ {1, . . . , r}. (105)
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Theorem 13 ([34]) Let T ∈ C
n×n, detT �= 0, and let Q = (Qjk)

r
j,k=1 and Q̃ =

(Q̃jk)
r
j,k=1 be potential matrices of the form (105). Let also W(·, λ) and W̃ (·, λ)

be n × n fundamental matrices of solutions of Eqs. (103) and (104), respectively,
satisfying the common initial condition

W(0, λ) = W̃ (0, λ) = T , λ ∈ C. (106)

ThenQ(x) = Q̃(x) for a.e. x ∈ [0, 1] whenever

W(λ) := W(l, λ) = W̃ (l, λ) =: W̃ (λ).

If the spectrum of the matrix B is simple (p := n1 = . . . = nr = 1), i.e. r = n,
this theorem was proved by another method by Z.L. Leibenzon [22].

LetW(·) = (Wjk(·))rj,k=1 be the block-matrix representation of the monodromy
matrix W(·) with respect to the orthogonal decomposition C

n = ⊕rj=1C
nj . In the

self-adjoint case
(
B = B∗, Q(·) = Q∗(·)) it is shown in [34] that for n1 = . . . = nr

and a special choice of the matrix T in (106), a potential matrix Q(·) is uniquely
determined from a certain (not arbitrary) system of r(r − 1)/2 matrix functions

Mjk(·) := Wjk(·)W−1
kk (·), j, k ∈ {1, . . . , r}.

In particular,Q(·) is uniquely determined by (r − 1)(r+ 2)/2 = r(r− 1)/2 + r − 1
block-matrix entries of the monodromy matrixW(·).

Note that despite of existence triangular transformation operators for Eq. (103)
in selfadjoint case the proof of just mentioned result as well as Theorem 13 have not
used this fact. More precisely, it is shown in [33] that Eq. (103) with B = B∗ and
Q(·) = Q∗(·) ∈ L∞[0, 1] ⊗ Cn×n admit transformation operators. This result was
applied there to prove much weaker result: unique determination of the potential
matrix Q(·) = Q∗(·) by (r − 1) columns of the monodromy matrix W(λ). It
is also shown in [33, Theorem 3.4] that if Q(·) and Q̃ admit a continuation to a
holomorphic entire function and arg bj �= arg bk for all j �= k, thenQ(·) is uniquely
determined by a column of the monodromy matrixW(λ), i.e. by its r matrix entries.

Note also that in [23] triangular transformation operators was applied to solve
inverse spectral problem for selfadjoint equation (103) on the half-line, i.e. in
L2(R+)⊗C

n×n. The Gel’fand-Levitan type equation was obtained and investigated
there. The case of 2×2-Dirac operators was earlier treated in [26]. We also refer the
reader to the survey [10] and the monograph [50] precisely treated different kind of
inverse problems.

Numerous applications of transformation operators to different problems of
mathematical physics can be found in [17] and [47].

We finalize this section by considering one more uniqueness problem for a
canonical system

J
dy

dt
= λH(t)y(t), J = −J ∗ = −J−1, y = col(y1, . . . , yn), (107)



Transformation Operators for Fractional Order Ordinary Differential Equations. . . 567

on a finite interval [0, l] with n × n Hamiltonian H(·) ≥ 0. Denote by W(x, λ)
the fundamental n × n matrix solution of Eq. (107) satisfying the initial condition
W(0, λ) = In. The matrix function W(λ) := W(l, λ) is called the monodromy
matrix W(λ). The problem of unique recovery of the Hamiltonian by monodromy
matrixW(λ) has attracted a lot of attention.

In the definite case (J = iIn) the most complete result was obtained by G.
Kisilevskii [20] (see also [11]). Complete solution to this problem in indefinite case
was obtained by de Brange [7] for n = 2 and iJ = diag(1,−1) for real normed(
trH(t) ≡ 1

)
Hamiltonian. For n > 2 and J �= iIn some partial uniqueness results

are also known (see e.g. [4, 34], and references therein).

6 Completeness of Root Functions of BVPs for Fractional
Order Ordinary Differential Equations

Let α = n− ε, where n ∈ N, 0 ≤ ε < 1. Now we consider the equation

lα(D)y = Dn−εx y +
n∑
k=2

pn−k(x)Dn−k−εx y = λy (108)

subject to the splitting boundary conditions:

Uj(y) =
n−1∑
k=0

αjky
(k−ε)(0) = 0, 1 ≤ j ≤ l, (109)

Uj(y) =
n−1∑
k=0

βjky
(k)(1) = 0, l + 1 ≤ j ≤ n. (110)

Let us denote by L the operator generated by the differential expression lα(D)
and the boundary conditions (109), (110).

The classical Birkhoff theorem [5] (see also [39, Chapter 2, Theorem 1]) treats
the existence of solutions of n-th order differential equation on a finite interval with
exponential asymptotics. The following theorem extends the Birkhoff result to the
case of fractional order differential equation of the form (108). At first we consider
the simplest differential equation

z(α)(x, λ) = λz(x, λ). (111)
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of fractional order α = n − ε (n ∈ Z+ \ {0}, 0 ≤ ε < 1). Denote by {ej (x; ł)}n1
the fundamental system of solutions of Eq. (111). And let us denote

n1 := [(1 − n+ ε)/2], n2 := [(n− ε)/2] and øj = exp(2πij/α), j ∈ {n1, n1 + 1, . . . , n2}.

Next we set

β = 2π min

{{
n− ε

4

}
, 1 −

{
n− ε

4

}}

where, as usual, {x} stands for the fractional part of a number x ∈ R.

Consider the following sectors in the complex plane:

S̃−
β = {λ ∈ C : −π < argλ < −β};
S−
β = {λ ∈ C : −β < argλ < 0};
S+
β = {λ ∈ C : 0 < argλ < β};
S̃+
β = {λ ∈ C : β < argλ < π}.

In each of these sectors we can put the numbers {ωj }n2
n1 in order so that

"(ωj1 ł1/α) > "(ωj2λ1/α) > · · · > "(ωjq λ1/α) > 0 > "(ωjq+1λ
1/α) > · · · > "(ωjnλ1/α).

Here λ1/α stands for the branch of the corresponding multifunction in λ ∈ C \ R

fixed by the initial condition 11/α := 1.

Theorem 14 ([36]) Let pj (x) ∈ C[0, 1] (2 ≤ j ≤ n) and let S be one of the
sectors S+

β , S−
β , S̃+

β and S̃−
β . Then there exists a fundamental system of the solutions

{yk(x, λ)}n1 of Eq. (108) holomorphic with respect to λ ∈ Sβ(R0) := {λ ∈ S : |λ| >
R0} with sufficiently large R0 and satisfying the following asymptotic relations

yk(x; λ) = (1 +O(|λ|− 1
α ))ek(x; λ), k ∈ {1, . . . , n},

and

Dν−εx (yk(x; λ)) = (1 +O(|λ|− 1
α ))Dν−εx ek(x; λ), ν ∈ {0, 1, . . . , n− 1}.

This theorem is substantially used in proving the following completeness result.
Note that the resolvent of the operator L generated in the space L1[0, 1] (or in
L2[0, 1]) by problem (108)–(110) with ε > 0 can have exponential growth in any
direction in the complex plane (as in the case ε = 0). Therefore the classical tests
(like Keldysh theorem, Macaev theorem, or Lidskii-Keldysh theorem, etc.) cannot
be applied to prove completeness since in each of these tests it is assumed (explicitly
or tacitly) that there are rays in the complex plane on which the resolvent decays (the
so called the rays of minimal growth).
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Theorem 15 ([36]) Let pj (x) (2 ≤ j ≤ n) be entire analytic functions of x ∈ R

and 2l ≥ n, n � 3. Then the system of root subspaces of the splitting boundary
value problem (108)–(110) is complete and minimal in L1[0, 1].

This theorem generalizes the result of A.A. Shkalikov [46]. The proof is heavily
relied on Theorem 14 (the Birkhoff type result) and triangular transformation
operators. Namely, first using Theorem 14 we reduce the proof of completeness of
the system of root vectors of the problem (108)–(110) to the proof of completeness
of the corresponding Cauchy problem. The latter is established by using triangular
transformation operators (55).

Next we consider in L1[0, 1] the differential equation of order 2 − ε, ε ∈ (0, 1),

y(2−ε) + q(x)y(−ε) = λy (112)

subject to the boundary conditions

hy(−ε)(0, λ)+ y(1−ε)(0, λ) = 0, (113)

a21y
(−ε)(0, λ)+ a22y

(1−ε)(0, λ)+ a23y
(−ε)(1, λ)+ a24y

(1−ε)(1, λ) = 0. (114)

The following theorem is the main result.

Theorem 16 ([1]) Let q be entire analytic function. Then the system of root
functions of the problem (112)–(114) is complete in L1[0, 1].

Finally, we consider in L1[0, 1] the differential equation of order (1 − ε), ε ∈
(0, 1),

y(1−ε) + q(x)y(−ε) = λy, (115)

subject to the boundary condition

y(−ε)(0, λ)+ hy(−ε)(1, λ) = 0, h �= 0. (116)

Theorem 17 ([3]) Let q be entire analytic function. Then the system of root
functions of the problem (115), (116) is complete in L1[0, 1].
Detailed discussion of different boundary value problems for fractional order
equations including equations (112) and (115) can be found in the recent survey
[3].

Recently Riesz basis property of the systems of root vectors of boundary value
problems for Dirac type operators with summable potential matrices have been
investigated by different methods in [27, 28] and [45]. The corresponding result
in [27, 28] was obtained by applying the technique of triangular transformation
operators for Dirac type equations.
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Strong Solutions of Semilinear Equations
with Lower Fractional Derivatives

Marina V. Plekhanova and Guzel D. Baybulatova

Abstract We find conditions of a unique strong solution existence for the Cauchy
problem to solved with respect to the highest fractional Gerasimov–Caputo deriva-
tive semilinear fractional order equation in a Banach space with nonlinear operator,
depending on the lower Gerasimov–Caputo derivatives. Then the generalized
Showalter–Sidorov problem for semilinear fractional order equation in a Banach
space with a degenerate linear operator at the highest order fractional derivative is
researched in the sense of strong solution. The nonlinear operator in this equation
depends on time and on lower fractional derivatives. The corresponding unique solv-
ability theorem was applied to study of linear degenerate fractional order equation
with depending on time linear operators at lower fractional derivatives. Applications
of the abstract results are demonstrated on examples of initial-boundary value
problems to partial differential equations with time-fractional derivatives.

Keywords Fractional order differential equation · Fractional Gerasimov–Caputo
derivative · Degenerate evolution equation · Cauchy problem · Generalized
Showalter–Sidorov problem · Initial boundary value problem

1 Introduction

Consider the semilinear equation of fractional order

Dαt Lx(t) = Mx(t)+N(t,Dα1
t x(t),D

α2
t x(t), . . .D

αn
t x(t)), t ∈ (t0, T ), (1)

whereL ∈ L (X ;Y ) (linear and continuous operator from a Banach space X into
a Banach space Y ), M ∈ C l(X ;Y ) (linear closed operator with dense domain
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DM in the space X and with the image in Y ), n ∈ N, N : R × X n → Y is
a nonlinear operator,Dαt ,D

α1
t , D

α2
t , . . . ,D

αn
t are the fractional Gerasimov–Caputo

derivatives, 0 ≤ α1 < α2 < · · · < αn ≤ m − 1 < α ≤ m ∈ N. The equation is
supposed to be degenerate, i. e. kerL �= {0}.

Equations, which are not solved with respect to highest integer order time-
derivative are often found among non-classical equations of mathematical physics
[1–5]. Interest in fractional order equations is associated with a lot of results of the
fractional calculus successful applications in the mechanics of viscoelastic fluids
[6], in the physics of real processes in fractal structures [7] and in many other areas.

The unique solvability of initial problems for linear degenerate fractional order
equations was studied by many authors [5, 8–17]. In the papers [18–22] semilinear
degenerate fractional order equations with nonlinear operator, depending on lower
derivatives of integer orders, were investigated.

In the present work we research such equations with lower derivatives of
fractional orders. Firstly conditions of a unique strong solution existence for the
Cauchy problem to nondegenerate equation (1), i. e. with X = Y , L = I

(the identical operator). Then the unique solvability of the generalized Showalter–
Sidorov problem

(Px)(k)(t0) = xk, k = 0, . . . ,m− 1, (2)

for degenerate semilinear fractional order Eq. (1) is researched. (The projection P
will be defined further.) It is reduced to the Cauchy problem for the nondegenerate
equation on a subspace and to equation with a nilpotent operator at the highest order
derivative on its complement. Then this result was applied to the study of the linear
degenerate fractional order equation

Dαt Lx(t) =Mx(t)+
n∑
k=1

Nk(t)D
αk
t x(t), t ∈ (t0, T ),

with depending on t linear continuous operators Nk , k = 1, 2, . . . , n, at the lower
fractional derivatives. Applications of the abstract results are demonstrated on
examples of initial-boundary value problems to partial differential equations with
time-fractional derivatives.

2 Equations Solved with Respect to the Highest Derivative

2.1 Linear Equation

Let Z be a Banach space. Denote gδ(t) = Γ (δ)−1tδ−1, g̃δ(t) = Γ (δ)−1(t− t0)δ−1,

J δt h(t) = (gδ∗h)(t) =
t∫
t0

gδ(t−s)h(s)ds for δ > 0, t > t0. Letm−1 < α ≤ m ∈ N,
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Dmt is the usual derivative of the order m ∈ N, J 0
t is the identical operator. The

Gerasimov–Caputo derivative of a function h is (see [23, p. 11])

Dαt h(t) = Dmt Jm−α
t

(
h(t)−

m−1∑
k=0

h(k)(t0)g̃k+1(t)

)
, t ≥ t0.

Consider the Cauchy problem

z(k)(t0) = zk, k = 0, 1, . . . ,m− 1, (3)

for the inhomogeneous differential equation

Dαt z(t) = Az(t)+ f (t), t ∈ [t0, T ], (4)

where A ∈ L (Z ) := L (Z ;Z ), the function f : [t0, T ] → Z is given for some
T > t0.

A strong solution of problem (3), (4) is a function z ∈ Cm−1([t0, T ];Z ), such
that

gm−α ∗
(
z−

m−1∑
k=0

z(k)(t0)g̃k+1

)
∈ Wm

q (t0, T ;Z )

and equalities (3), (4) are true. Here we use some q > 1.

For α, β > 0 denote the Mittag-Leffler function Eα,β(z) =
∞∑
n=0

zn

Γ (αn+β) .

Theorem 1 ([19]) Let A ∈ L (Z ), q > (α −m+ 1)−1, f ∈ Lq(t0, T ;Z ). Then
for any zk ∈ Z , k = 0, 1, . . . ,m − 1, there exists a unique strong solution of
problem (3), (4). Moreover, it has the form

z(t) =
m−1∑
k=0

(t − t0)kEα,k+1(A(t − t0)α)zk +
t∫

t0

(t − s)α−1Eα,α(A(t − s)α)f (s)ds.

(5)

2.2 Semilinear Equation

Let m − 1 < α ≤ m ∈ N, n ∈ N, an operator B : (t0, T ) × Z n → Z be
nonlinear. Suppose that an operator B is the Caratheodory mapping, i. e. for every
z1, z2, · · · , zn ∈ Z it defines measurable mapping on (t0, T ) and for almost all
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t ∈ (t0, T ) it is continuous in z1, z2, · · · , zn ∈ Z . Consider Cauchy problem (3)
for the nonlinear differential equation

Dαt z(t) = Az(t)+ B(t,Dα1
t z(t),D

α2
t z(t), . . . ,D

αn
t z(t)) (6)

where 0 ≤ α1 < α2 < · · · < αn ≤ m− 1.
A strong solution of problem (3), (6) is a function z ∈ Cm−1([t0, T ];Z ), such

that gm−α ∗
(
z−

m−1∑
k=0

z(k)(t0)g̃k+1

)
∈ Wm

q (t0, T ;Z ), conditions (3) is satisfied

and almost everywhere on (t0, T ) equality (6) is valid.

Lemma 1 Let l − 1 < β ≤ l ∈ N, t > t0. Then

∃Cl,β > 0 ∀h ∈ Cl([t0, t];Z ) ‖Dβt h‖C([t0,t ];Z ) ≤ Cl,β‖h‖Cl([t0,t ];Z ).

Proof For the function f (t) = h(t) −
l−1∑
k=0
h(k)(t0)g̃k+1(t) we have f (k)(t0) = 0,

k = 0, 1, . . . , l − 1. So at β < l

‖Dlt J l−βt f (t)‖Z =
∥∥∥∥∥∥D

l
t

t−t0∫

0

sl−β−1f (t − s)
Γ (l − β) ds

∥∥∥∥∥∥
Z

=

= ‖J l−βt f (l)(t)‖Z ≤ (t − t0)l−β
Γ (l − β + 1)

‖f (l)‖C([t0,t];Z ) ≤ (t − t0)l−β
Γ (l − β + 1)

‖h‖Cl([t0,t];Z ).

In the case β = l the statement is obvious. ��
Lemma 2 Let A ∈ L (Z ), q > (α − m + 1)−1, B : (t0, T ) × Z n → Z be
Caratheodory mapping, at all y1, y2, . . . , yn ∈ Z and almost everywhere on (t0, T )
estimate

‖B(t, y1, y2, . . . , yn)‖Z ≤ a(t)+ c
n∑
k=1

‖yk‖Z (7)

be true for some a ∈ Lq(t0, T ; R), c > 0. Then a function z ∈ Cm−1([t0, T ];Z ) is
a strong solution of problem (3), (6), if and only if the equality

z(t) =
m−1∑
k=0

(t − t0)kEα,k+1(A(t − t0)α)zk+

+
t∫

t0

(t − s)α−1Eα,α(A(t − s)α)B(s,Dα1
t z(s),D

α2
t z(s), . . . ,D

αn
t z(s))ds (8)

holds.
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Proof Let z ∈ Cm−1([t0, T ];Z ) be a solution of problem (3), (6), then Dαkt z ∈
C([t0, T ];Z ), k = 1, 2, . . . , n, due to Lemma 1, and the inequality (7) implies that
B(·,Dα1

t z(·),Dα2
t z(·), . . . ,Dαnt z(·)) ∈ Lq(t0, T ;Z ). By Theorem 1 the solution

satisfies Eq. (8).
Let a function z ∈ Cm−1([t0, T ];Z ) satisfies Eq. (8), then reasoning as in the

proof of Theorem 1 (see [19]) we obtain directly that the function z is a strong
solution of problem (3), (6). ��

Denote z̄ = (z1, z2, . . . , zn). A mapping B : (t0, T ) × Z n → Z is called
uniformly Lipschitz continuous in z̄, if there exists l > 0, such that for almost all
t ∈ (t0, T ) and for all z̄, ȳ ∈ Z n

‖B(t, z̄)− B(t, ȳ)‖Z ≤ l
n∑
k=1

‖zk − yk‖Z .

Remark 1 IfB : (t0, T )×Z n → Z is Caratheodory mapping, uniformly Lipschitz
continuous in z, and for some x ∈ Z n B(·, x) ∈ Lq(t0, T ;Z ), then condition (7)

is valid at a(t) = ‖B(t, x)‖Z + l
n∑
k=1

‖xk‖Z , c = l.

Theorem 2 Suppose that A ∈ L (Z ), q > (α − m + 1)−1, B : (t0, T ) ×
Z n → Z is Caratheodory mapping, uniformly Lipschitz continuous in z, at all
y1, y2, . . . , yn ∈ Z and almost everywhere on (t0, T ) inequality (7) is valid for
some a ∈ Lq(t0, T ; R), c > 0; z0, z1, . . . , zm−1 ∈ Z . Then problem (3), (6) has a
unique strong solution on (t0, T ).

Proof By Lemma 2, it suffices to prove that Eq. (8) has a unique solution z ∈
Cm−1([t0, T ];Z ). In Banach space Cm−1([t0, T ];Z ) we define an operator G by
the equality

G(y)(t) =
m−1∑
k=0

(t − t0)kEα,k+1(A(t − t0)α)zk+

+
t∫

t0

(t − s)α−1Eα,α(A(t − s)α)B(s,Dα1
t y(s),D

α2
t y(s), . . . ,D

αn
t y(s)) ds.

By Lemma 1 and Theorem 1 we haveG : Cm−1([t0, T ];Z )→ Cm−1([t0, T ];Z ).
Denote as Gr the r-th power of the operator G, r ∈ N, and if T − t0 < 1

we replace T − t0 by 1 in the following reasoning. For t ∈ [t0, T ], r ∈ N,
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y, z ∈ Cm−1([t0, T ];Z ) we shall prove by the induction the inequality

‖Gr(y)−Gr(z)‖Cm−1([t0,t ];Z ) ≤
(9)

≤ (KCnlm)r(T − t0)(m−1)r(t − t0)α−m+r‖y − z‖Cm−1([t0,t ];Z )
(α −m+ 1)rr! ,

where K = max
k=0,1,...,m−1

Eα,α−k((T − t0)
α‖A‖L (Z )), C = max

k=1,2,...,n
Cmk,αk ,

mk − 1 < αk ≤ mk ∈ N, Cmk,αk are the constants from Lemma 1, k = 1, 2, . . . , n.
Indeed, for r = 1, k = 0, 1, . . . ,m− 1 we have

‖[G(y)](k)(t)− [G(z)](k)(t)‖Z ≤ Eα,α−k((t − t0)α‖A‖L (Z ))×

×
t∫

t0

(t− s)α−k−1‖B(s,Dα1
t y(s), . . . ,D

αn
t y(s))−B(s,Dα1

t z(s), . . . ,D
αn
t z(s))‖Z ds ≤

≤ KCnl‖y − z‖Cm−1([t0,t];Z )

(t − t0)α−k
α − k ,

‖G(y)−G(z)‖Cm−1([t0,t];Z ) ≤ KCnl

α −m+ 1
‖y − z‖Cm−1([t0,t];Z )

m−1∑
k=0

(t − t0)α−k ≤

≤ KCnlm(T − t0)m−1

α −m+ 1
‖y − z‖Cm−1([t0,t];Z )(t − t0)α−m+1.

Suppose that inequality (9) holds. Then we have

‖[Gr+1(y)](k)(t)− [Gr+1(z)](k)(t)‖Z ≤

≤ Kl
t∫

t0

(t − s)α−k−1
n∑
k=1

‖Dαkt (Gr(y)−Gr(z))(s)‖Z ds ≤

≤ KCnl(T − t0)α−1

t∫

t0

‖Gr(y)−Gr(z)‖Cm−1([t0,s];Z )ds ≤

≤ (KCnl)r+1mr(T − t0)(m−1)(r+1)

(α −m+ 1)rr!(α −m+ r + 1)
‖y − z‖Cm−1([t0,s];Z )(t − t0)α−m+r+1,

‖Gr+1(y)−Gr+1(z)‖Cm−1([t0,t ];Z ) ≤

≤ (KCnlm)r+1(T − t0)(m−1)(r+1)

(α −m+ 1)r+1(r + 1)! ‖y − z‖Cm−1([t0,s];Z )(t − t0)α−m+r+1.
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From (9) it follows that for r ∈ N

‖Gr(y)−Gr(z)‖Cm−1([t0,T ];Z ) ≤ (KCnlm)r (T − t0)α+m(r−1)‖y − z‖Cm−1([t0,T ];Z )

(α −m+ 1)r r! .

Therefore, if r is large enough,Gr is a strict contraction in Cm−1([t0, T ];Z ), hence
this mapping has a unique fixed point in this space by the fixed point theorem. So it
is a unique strong solution of (3), (6) on (t0, T ). ��
Theorem 3 Let A ∈ L (Z ), q > (α − m + 1)−1, Bk : (t0, T ) → L (Z ), k =
1, 2, . . . , n, be measurable and essentially bounded on (t0, T ), z0, z1, . . . , zm−1 ∈
Z . Then problem (3) to the linear equation

Dαt z(t) = Az(t)+
n∑
k=1

Bk(t)D
αk
t z(t) (10)

has a unique strong solution on (t0, T ).

3 Degenerate Equations

3.1 Degenerate Semilinear Equation

Let X , Y be Banach spaces, L ∈ L (X ;Y ),M ∈ C l(X ;Y ), DM be a domain
of an operatorM , endowed by the graph norm ‖ · ‖DM := ‖ · ‖X +‖M · ‖Y . Define
L-resolvent set ρL(M) := {μ ∈ C : (μL−M)−1 ∈ L (Y ;X )} of an operatorM
and its L-spectrum σL(M) := C\ρL(M), and denote RLμ(M) := (μL −M)−1L,
LLμ := L(μL−M)−1.

An operatorM is called (L, σ )-bounded, if

∃a > 0 ∀μ ∈ C (|μ| > a)⇒ (μ ∈ ρL(M)) .

Under the condition of (L, σ )-boundedness of operatorM we have the projections

P := 1

2πi

∫

γ

RLμ(M) dμ ∈ L (X ), Q := 1

2πi

∫

γ

LLμ(M) dμ ∈ L (Y ),

where γ = {μ ∈ C : |μ| = r > a} (see [24, p. 89, 90]). Put X 0 := kerP ,
X 1 := imP , Y 0 := kerQ, Y 1 := imQ. Denote by Lk (Mk) the restriction of the
operator L (M) on X k (DMk := DM ∩ X k), k = 0, 1.

Theorem 4 ([24, p. 90, 91]) Let an operatorM be (L, σ )-bounded. Then

(i) M1 ∈ L
(
X 1;Y 1

)
,M0 ∈ C l

(
X 0;Y 0

)
, Lk ∈ L

(
X k;Y k

)
, k = 0, 1;

(ii) there exist operatorsM−1
0 ∈ L

(
Y 0;X 0

)
, L−1

1 ∈ L
(
Y 1;X 1

)
.
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Denote N0 := {0} ∪ N, G := M−1
0 L0. For p ∈ N0 operatorM is called (L, p)-

bounded, if it is (L, σ )-bounded,Gp �= 0, Gp+1 = 0.

Remark 2 The number p ∈ N0 characterizes the maximal length of M-adjoint
vectors chains (see [24]).

Let n ∈ N, N : (t0, T )× X n → Y be nonlinear operator. As before 0 ≤ α1 <

α2 < · · · < αn ≤ m− 1, r − 1 < αn ≤ r ∈ N. Consider the equation

Dαt Lx(t) = Mx(t)+N(t,Dα1
t x(t),D

α2
t x(t), . . . ,D

αn
t x(t))+ f (t). (11)

Its strong solution on (t0, T ) is a function x ∈ Cr([t0, T ];X ) ∩ Lq(t0, T ;DM),
such that Lx ∈ Cm−1([t0, T ];Y ),

Jm−α
t

(
Lx −

m−1∑
k=0

(Lx)(k)(t0)g̃k+1

)
∈ Wm

q (t0, T ;Y ), q ∈ (1,∞),

and almost everywhere on (t0, T ) equality (11) holds.
A solution of the generalized Showalter–Sidorov problem

(Px)(k)(t0) = xk, k = 0, 1, . . . ,m− 1, (12)

to Eq. (11) is a solution of the equation, such that conditions (12) are true. Note
here that Px = L−1

1 L1Px = L−1
1 QLx, and the smoothness of Px is not less the

smoothness of Lx, since L−1
1 Q ∈ L (Y ;X ).

Theorem 5 Let q > (α−m+1)−1, p ∈ N0, an operatorM be (L, p)-bounded,N :
(t0, T ) × X n → Y be Caratheodory mapping, uniformly Lipschitz continuous in
x ∈ X n, at all y1, y2, . . . , yn ∈ Z and almost everywhere on (t0, T ) the inequality

‖N(t, y1, y2, . . . , yn)‖Z ≤ a(t)+ c
n∑
k=1

‖yk‖Z (13)

be true for some a ∈ Lq(t0, T ; R), c > 0, N(t, y1, y2, . . . , yn) ∈ Y 1. Suppose
also thatQf ∈ Lq(t0, T ;Y ), for all k = 0, 1, . . . , p there exist (Dαt G)

kM−1
0 (I −

Q)f ∈ Cr([t0, T ];X ); x0, x1, . . . , xm−1 ∈ X 1. Then problem (11), (12) has a
unique strong solution.

Proof Due to the theorem conditions the mapping

x(·)→ N(·,Dα1
t x(·),Dα2

t x(·), . . . ,Dαnt x(·))

acts from Cr([t0, T ];X ) into the space Lq(t0, T ;Y ).
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By condition imN ⊂ Y 1 we have (I −Q)N ≡ 0,QN ≡ N . Equation (11) after
action of the operatorM−1

0 (I−Q) has a formDαt Gw(t) = w(t)+M−1
0 (I−Q)f (t),

where w(t) = (I − P)x(t). Since the operator G is nilpotent, the unique solution
of this equation has the form

w(t) = −
p∑
k=0

(Dαt G)
kM−1

0 (I −Q)f (t).

Note that w ∈ Cr([t0, T ];X ) and there exist derivatives Dαt L(D
α
t G)

kM−1
0 (I −

Q)f ∈ Lq(t0, T ;Y ) for k = 0, 1, . . . , p, because

Dαt L(D
α
t G)

kM−1
0 (I −Q)f = M0D

α
t G(D

α
t G)

kM−1
0 (I −Q)f =

= M0(D
α
t G)

k+1M−1
0 (I −Q)f ∈ Lq(t0, T ;Y )

by this theorem conditions, and if k = p, then (Dαt G)
p+1 = (Dαt )p+1Gp+1 = 0.

It remains to prove the existence and the uniqueness of the strong solution to the
Cauchy problem

Dαt v(t) = S1v(t) + L−1
1 N(t,D

α1
t (v(t) + w(t)), . . . ,Dαnt (v(t) + w(t))) + L−1

1 Qf (t),

v(k)(t0) = xk, k = 0, 1, . . . , m− 1,

where v(t) = Px(t), S1 = L−1
1 M1 ∈ L (X 1) due to Theorem 4. This problem is

obtained from (11), (12) after the action of the continuous operator L−1
1 Q. Here the

operator

B(t, v0, v1, . . . , vn) = L−1
1 N(t, v0 +Dα1

t w(t), . . . , vn +Dαnt w(t)) + L−1
1 Qf (t)

satisfies the conditions of Theorem 2, and the proof is completed. ��

3.2 Degenerate Multi-Term Linear Equation

Let n ∈ N, Nk : (t0, T ) → L (X ;Y ), k = 1, 2, . . . , n, 0 ≤ α1 < α2 < · · · <
αn ≤ m − 1, r − 1 < αn ≤ r ∈ N. Consider the degenerate multi-term linear
equation

Dαt Lx(t) = Mx(t)+
n∑
k=1

Nk(t)D
αk
t x(t)+ f (t), t ∈ (t0, T ). (14)
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The definitions of its strong solution on (t0, T ) and of the solution to the generalized
Showalter–Sidorov problem

(Px)(k)(t0) = xk, k = 0, 1, . . . ,m− 1, (15)

for Eq. (14) do not differ from the analogous definitions for semilinear equation (11).

Theorem 6 Let q > (α − m + 1)−1, p ∈ N0, an operatorM be (L, p)-bounded,
Nk : (t0, T ) → L (X ;Y ), k = 1, 2, . . . , n, be measurable and essentially
bounded on (t0, T ), imNk(t) ⊂ Y 1 for almost all t ∈ (t0, T ), Qf ∈ Lq(t0, T ;Y ),
for all k = 0, 1, . . . , p there exist (Dαt G)

kM−1
0 (I − Q)f ∈ Cr([t0, T ];X );

x0, x1, . . . , xm−1 ∈ X 1. Then problem (14), (15) has a unique strong solution.

Proof By the construction the operator

N(t, x1, x2, . . . , xn) := N1(t)x1 + N2(t)x2 + · · · + Nn(t)xn
is Caratheodory mapping due to the theorem conditions onNk , k = 1, 2, . . . , n. Let

l := max
k=1,2,...,n

ess sup
t∈(t0,T )

‖Nk(t)‖L (X ;Y ),

then the operator N is uniformly Lipschitz continuous in x̄ with the constant l and
it satisfies inequality (13) with a ≡ 0, c = l. Thus, by Theorem 5 we obtain the
required. ��

4 Application

Consider the initial-boundary value problem

∂kw

∂tk
(s, t0) = vk(s), k = 0, 1, . . . ,m− 1, s ∈ (0, π), (16)

w(0, t) = w(π, t) = 0, t ∈ (t0, T ). (17)

for the model equation

Dαt

(
∂2w

∂s2 + γw
)

= δw +
n∑
k=1

δk(t)D
αk
t

(
∂2w

∂s2 + γk(t)w
)
, s ∈ (0, π), t ∈ (t0, T ),

(18)

where α, αk, γ, δ ∈ R, γk, δk : (t0, T ) → R, k = 1, 2, . . . , n, 0 ≤ α1 < α2 < · · · <
αn ≤ m− 1 < α ≤ m ∈ N.
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Define Banach spaces X = {v : H 2(0, π) : v(0) = v(π) = 0}, Y = L2(0, π),
and operators

L = ∂2

∂s2
+ γ, M = δI, Nk(t) = δk(t)

(
∂2

∂s2
+ γk(t)

)
, k = 1, 2, . . . , n.

Theorem 7 Let γ �= b2 for all b ∈ N, vk ∈ X , k = 0, 1, . . . ,m − 1, γd, δd :
(t0, T ) → R are measurable and essentially bounded, d = 1, 2, . . . , n. Then there
exists a unique strong solution of problem (16)–(18) on (t0, T ).

Proof Since γ �= b2, b ∈ N, L has a continuous inverse operator L−1 : Y → X .

Then Eq. (18) has the form (10), where Z = X , the operator A = L−1M : X →
X is the continuous as composition of continuous operators, Bd(t) = L−1Nd(t),
d = 1, 2, . . . , n. For w ∈ X we have

‖Bd(t)w‖2
L2(0,π) = |δd(t)|2

∞∑
k=1

∣∣∣∣γd(t)− k
2

γ − k2

∣∣∣∣
2

|wk|2 ≤

ess sup
t∈(t0,T )

|γd(t)|2c−2

(
1 + ess sup

t∈(t0,T )
|γd(t)|

)2

‖w‖2
X ,

where wk := 〈w, sin ks〉L2(0,π), c := min
k∈N

|1 − k−2γ |. By Theorem 3 we obtain the

required statement. ��
If there exists b ∈ N, such that γ = b2, then kerL �= {0}, and Eq. (18) is

degenerate. We can obtain the unique solvability theorem, for example, for the case
of the Showalter–Sidorov initial conditions

∂k

∂tk

(
∂2w

∂s2 + γw
)
(s, t0) = yk(s), k = 0, 1, . . . ,m− 1, s ∈ (0, π), (19)

in the partial case γd(t) ≡ γ , d = 1, 2, . . . , n.

Theorem 8 Let for all d = 1, 2, . . . , n and for almost all t ∈ (t0, T ) γd(t) ≡ γ =
b2 at some b ∈ N, yk ∈ L2(0, π),

π∫

0

yk(s) sin(bs)ds = 0, k = 0, 1, . . . ,m− 1, (20)

δd : (t0, T ) → R are measurable and essentially bounded, d = 1, 2, . . . , n. Then
there exists a unique strong solution of problem (17)–(19) on (t0, T ).

Proof Here we have (L, 0)-bounded operator M due to [10, Theorem 8], hence
imL = Y 1, and the generalized Showalter–Sidorov problem (15) is equivalent to
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the Showalter–Sidorov problem (Lx)(k)(t0) = yk = Lxk ∈ Y 1, k = 0, 1, . . . ,
m − 1. Hence problem (17)–(19) has form (14), (15). Moreover, since γk ≡ γ , we
have Nk = δk(t)L, therefore, imNk(t) ⊂ imL = Y 1, k = 1, 2, . . . , n.

It remains to note, that conditions (20) mean that for all k = 0, 1, . . . ,m − 1
yk ∈ Y 1 = imL1. By Theorem 6 obtain the required. ��
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Mean Value Theorems and Properties
of Solutions of Linear Differential
Equations

I. P. Polovinkin and M. V. Polovinkina

Abstract This paper describes an accompanying distributions technique that allows
to obtain mean value formulas for linear homogeneous partial differential equations.
One of these formulas can be interpreted as a generalization of the Asgeirsson
principle for the string vibration equation into the case of an arbitrary natural order.
In addition, this mean value formula is an exact difference scheme for a two-
dimensional linear homogeneous equation with a symbol factorized up to linear
factors.

Keywords Mean value formula · Accompanying distribution · Difference
scheme · Hyperbolic equation

1 Introduction

In different fields and applied problems, the notions of “mean value formula” and
“mean value theorem” often refer to somewhat different facts. Nevertheless, various
results for different types of equations have the common point that they involve the
mean value of a smooth function over a certain manifold. In this paper we discuss
mean value formulas for linear partial differential equations.

Mean value theorems are most widely known for elliptic equations. The basic
result for using in applications is the following classical result (by Gauss): a
continuous in a domain 	 ⊂ Rn function is harmonic in 	 if and only if for every
point x ∈ 	 and every r such that the ball |ξ − x| ≤ r is contained in 	 its value at
the point x is equal to the mean of the function over this sphere [1]. This statement
is called the mean value theorem for the Laplace equation . Generalizations of this
result have been established for solutions of second-order elliptic equations (see the
works of V. A. Il’in and E. I. Moiseev [2, 3]). The well-known Asgeirsson theorem
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for an ultra-hyperbolic equation is a sort of generalization of the mean value theorem
for harmonic functions, and also a generalization for the Green’s function formula
for the linear constant coefficient wave equation (see [4]). A mean value theorems
for some classes of equations were proved by A. V. Bitsadze and A. M. Nachushev in
1974 [5]. In particular, this includes the mean value theorem for the wave equation,
which was inverted by I.P. Polovinkin in 1991 [6] for smooth functions.

In this paper we expound a uniform viewpoint on mean value theorems for linear
elliptic and hyperbolic partial differential equations that allows to obtain new mean
value formulas. This was proposed by L. Zalcman [7] and generalized by means of
Hermander’s [8] methods in [9] and then in [10] for a class of singular differential
equations with the Bessel operator. Furthermore we deduce a difference mean value
formula for a factorable linear two-dimensional hyperbolic equation as an example
of the method.

2 Accompanying Distributions

We denote by D the space of compactly supported test functions of variables
x=(x1, . . ., xn)∈Rn, by S the Schwartz space of rapidly decaying test functions,
and by D′,S ′ corresponding spaces of distributions.

Denote by f̂ the Fourier transform of a distribution f ∈ S. We use the
same symbol f̂ (w) for designating the Fourier-Laplace transform of a compactly
supported distribution f . In this case f̂ (w) is an entire analytic function of a
complex variable w ∈ C

n. We use a symbol f ∨ for designating the inverse Fourier
transform of a distribution f ∈ S. Furthermore, let

Dj = −i ∂
∂xj

, j = 1, . . . , n, D = (D1, . . . ,Dn), x
α = xα1

1 . . . xαnn .

In what follows, we assume that the multi-index α has nonnegative integral
coordinates. Denote by SR(x0) the sphere in Rn. By δ(x − x0) we denote the Dirac
measure supported at a point x0, and by δSR(x0)(x−x0) the Dirac measure supported
on the sphere SR(x0).

Definition W Let P(w) be a polynomial of degreem. Consider the equation

P(D)u ≡
∑

|β|≤m
aβD

βu = 0. (1)

A compactly supported distribution � is called an accompanying distribution for
Eq. (1) if the relation

〈�,u〉 = 0 (2)
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holds for any solution u(x) ∈ C∞(Rn). The relation (2) is called a mean value
formula for Eq. (1). The distribution � is said to be an accompanying distribution
for the operator P(D).

Theorem A (Criterion of the Accompanying Distribution in Terms of the
Fourier-Laplace Transform) A compactly supported distribution � is an accom-
panying distribution for Eq. (1) in Rn, if and only if the function

�̂(w)

P (−w) , w ∈ Cn (3)

is an entire analytic function.

Theorem B (Properties of Means for Operators that can be Factorized) Let
P(D) = P1(D)P2(D), where P1 and P2 are polynomials. Let �l be a compactly
supported distribution accompanying the operator Pl(D), l = 1, 2. The distribu-
tion

� = �1 ∗�2

is accompanying for the operator P(D) = P1(D)P2(D).

Theorems A and B were proved in [9]. They were proved in [7] under the
assumption that the distribution � is a finite complex Borel measure supported in
the closed unit ball in Rn.

Theorem C If a distribution � is accompanying for the operator P then the

distribution �0 = � + λ
(
�̂(ξ)/P ∗(ξ)

)∨
(x) is accompanying for the operator

P + λ.

3 Accompanying Distributions for Singular Operators

In [10] definition W and theorems A, B, C were extended to the case of singular
differential equations with the Bessel operator. Below we describe that briefly.

Let R+
N = {x = (x ′, x ′′), x ′=(x1, . . . , xn), x

′′=(xn+1, . . . , xN), x1>0, . . . , xn
>0}. We denote by 	+ a domain adjacent to the hyperplanes x1 = 0, . . . , xn = 0.
The boundary of 	+ consists of two parts: + in R+

N and 0 in the hyperplanes
x1 = 0, . . . , xn = 0.

Let	+
σ be an interior subdomain of	+ adjacent to the boundary0 and such that

all its points are located at a distance at least σ from the part of the boundary + of
the domain 	+. Then 	+

σ is called a symmetrically interior (s-interior) subdomain
of the domain 	+.

We denote by Clev(	
+) the linear space of functions possessing the following

properties.
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1. Every function ϕ ∈ Clev(	+), together with all its partial derivatives of order up
to l, is continuous in 	+. If every function ϕ has continuous partial derivatives
of any order in 	+, we set l = ∞.

2. Even extensions of a function ϕ ∈ Clev(	+) with respect to x ′ must remain in the
class Cl(	), where 	 is the union of the domain 	+ and its symmetric image
	− with respect to x ′ = 0.

We say that functions admitting smooth even extension relative to the corre-
sponding variables are even with respect to these variables.

We denote by Clev,0(	
+) the linear space of functions ϕ ∈ Clev(	+) vanishing

outside some s-interior subdomain of 	+.
If 	+ and R+

N coincide, we omit the symbol (R+
N).

Let γ = (γ1, . . . , γn), (x
′)γ =

n∏
i=1
x
γi
i , γi > 0.

We denote by Lγp,loc(	
+) the linear space of functions such that

∫

	+
δ

|f (x)|p (x ′)γ dx < +∞

for any s-interior subdomain 	+
δ of the domain 	+. Let 	 ⊆ RN be the union of

the set 	+ and the set 	− obtained from 	+ by symmetry with respect to x ′ = 0.
We denote by Dev(	+) (Eev(	+)) the set of all restrictions of even functions with
respect to x ′ = 0 in the space D(	) (Eev(	+)) onto the set 	+. The topology
in Dev(	+) (E(	+)) is induced by the topology in D(	) (Eev(	)). By definition,
Dev = Dev(R+

N). We denote by Sev the linear space of functions ϕ(x) ∈ C∞
ev (R

+
N),

that, together with all their derivatives, decrease faster than any power of |x|−1 as
|x| → ∞. The topology in Sev is introduced in the same way as in the space S
[8, 11, 12]. The dual space for Dev(	+) (Eev(	+), Sev) equipped with the weak
topology is denoted by D′

ev(	
+) (E ′

ev(	
+), S ′

ev). The following relations hold:
Dev ⊂ Sev ⊂ S ′

ev ⊂ D′
ev. In all three cases, the action of a distribution f on a test

function ϕ is denoted by

〈f (x), ϕ(x)〉γ = 〈f (x), ϕ(x)〉 .

We identify each function f (x) ∈ Lγ1,loc(	+) with the functional f ∈ D′
ev(	

+),
called regular, acting by

〈f (x), ϕ(x)〉 =
∫

	+

f (x)ϕ(x) (x ′)γ dx.

The remaining functionals in D′
ev(	

+) are said to be singular.
Let β = (β ′, β ′′) be a multi-index with non-negative integer components, β ′ =

(β1, β2, . . . , βn), β
′′ = (βn+1, . . . , βN). We denote by Bβ

′
x ′ the operator defined
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by

B
β ′
x ′ u = Bβ1

x1
Bβ2
x2
. . . Bβnxn u,

where Bxi = Bxi,γi is the Bessel operator acting relative to xi by the formula

Bxiu = Bxi ,γi u = ∂2u

∂x2
i

+ γi

xi

∂u

∂xi
= x−γi

i

∂

∂xi

(
x
γi
i

∂u

∂xi

)
.

Let Dβ
′′
x ′′ be the operator acting by

D
β ′′
x ′′ f (x ′, x ′′) = ∂ |β ′′|f (x ′, x ′′) / ∂xβn+1

n+1 . . . ∂x
βN
N ,

where |β ′′| = βn+1 + · · · + βN .
We define the operator P=P(Bx ′ ,Dx ′′ ) with the symbol P(−ζ 2

1 , . . . ,−ζ 2
n ,

−iζn+1, . . . ,−iζN ) together with the formal-adjoint operator P ∗ by formulas

Pu =
∑

2|β ′|+|β ′′|≤m
bβB

β ′
x ′D

β ′′
x ′′ u, (4)

P ∗u =
∑

2|β ′|+|β ′′ |≤m
bβB

β ′
x ′ (−Dx ′′)β

′′
.

The mixed generalized shift is defined by

f → (T yf )(x) =
n∏
i=1

T
yi
xi f (x

′, x ′′ − y ′′),

where each of the generalized shifts T yixi has the form (see [13])

(T
yi
xi f )(x) = (

γi+1
2 )√

π 
( γi

2

)×

×
∫ π

0
f

(
x1, . . . , xi−1,

√
x2
i + y2

i − 2xiyi cosα, xi+1, . . . , xN

)
sinγi−1 α dα,

i = 1, . . . , n,

where
n∏
k=1
T
yk
xk is understood as the superposition of operators.
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The generalized convolution of functions f, g ∈ Lγp(R+
N) is defined by

(f ∗ g)γ (x) =
∫

R+
N

f (y)T
y
x g(x)(y

′)γ dy.

If f ∈ D′
ev, g ∈ E ′

ev , then the generalized convolution (f ∗ g)γ of such
distributions is defined by

〈(f ∗ g)γ (x), ϕ(x)〉γ = 〈f (y), 〈g(x), T yx ϕ(x)〉γ 〉γ , ϕ(x) ∈ Dev.

The direct and the inverse mixed Fourier–Bessel transforms are introduced by

FB,γ [ϕ(x ′, x ′′)](ξ) =
∫

R+
N

ϕ(x)

n∏
k=1

jνk (ξkxk)e
−ix ′′·ξ ′′

(x ′)γ dx =

= (2π)N−n22|ν|
n∏
k=1

2(νk + 1)F−1
B,γ [ψ(x ′,−x ′′)](ξ),

where

x ′ ·ξ ′ = x1ξ1 + . . .+xnξn, x ′′ ·ξ ′′ = xn+1ξn+1 + . . .+xNξN, |ν| = ν1 + . . .+νn,

jνk (zk) = 2νk(νk + 1)

z
νk
k

Jνk (zk) = (νk + 1)
∞∑
m=1

(−1)mz2m
k

22mm!(m+ νk + 1)

(·) is the Euler gamma-function, Jνk (·) is the Bessel function of the first kind of
order νk = (γk − 1)/2, k = 1, . . . , n.

Definition W′ A distribution� ∈ E ′
ev(R

+
N) is called an accompanying distribution

of the equation

P u = 0,

if for any solution u(x) ∈ C∞(Rn)

〈�,u〉γ = 0.

Theorem A′ A distribution� is an accompaniment of an operator P if and only if
the Fourier–Bessel image FB,γ [�](ξ) of � ∈ E ′

ev(R
+
N) is divisible by the symbol of

the formally adjoint of P , i.e., FB,γ [�](ξ) = ψ̂(ξ)P (−ξ2
1 , . . . ,−ξ2

n ,−iξ ′′), where
ψ(ξ) is an entire function.
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Theorem B′ Let an operator P can be factorized in the form P = P1P2, where
P1, P2, are operators of the form (4), but of less order. Let �l be a compactly
supported accompanying distribution of the operator Pl, l = 1, 2. Then � =
�1 ∗�2 is an accompanying distribution of the operator P .

Theorem C′ If � is an accompanying distribution of an operator P , then

�0 = �+ λF−1
B,γ [FB,γ [�](ξ)/P ∗(ξ)](x)

is an accompanying distribution of the operator P + λ.

The technique of accompanying distributions can be used to obtain an analogue
of the Asgeirsson theorem for the B-ultrahyperbolic equation (see [14]).

4 Some Examples of Applying the Method

The above method is able to lead either to well-known results or to new ones. We
give some examples of its application (see [9]).

Example 1 For the string vibration equation

∂2u

∂x2 − ∂2u

∂y2 = 0 (5)

one has the following assertion (a mean-value theorem, or the one-dimensional
Asgeirsson principle): a function u(x, y) ∈ C2(R2) is a solution of Eq. (5), if and
only if the relation

u(M1)+ u(M3)− u(M2)− u(M4) = 0, (6)

holds for each rectangle formed by lines x ± y=const , where Mk=(xk, yk),
(k=1, 2, 3, 4) are the successively numbered vertices of this rectangle.

By subjecting the solutions of Eq. (5) to the more restrictive condition u(x) ∈
C∞(R2), one can readily find that the necessity of relation (6) is equivalent to the
following assertion: the distribution

4∑
k=1

(−1)k−1δ(M −Mk), (7)

whereM = (x, y) ∈ R2, is accompanying for Eq. (5).

Example 2 The well-known classical (Gauss) mean-value theorem for the Laplace
equation has the following form: a function u ∈ C(Rn) is a solution to the Laplace
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equation

�u ≡
n∑
k=1

∂2u

∂x2
k

= 0, x ∈ Rn, (8)

if and only if the relation

u(x0) = 1

|Sn|Rn−1

∫

SR(x0)

u(x) dSx, (9)

holds for each R > 0 and for each point x0 ∈ Rn, where dSx is the surface area
element of the sphere SR(x0) with the center at the point x0 and radius R (the arc
length element of the circumference when n = 2), |Sn| is the surface area of the unit
sphere in Rn (the length of the unit circumference when n = 2). Hence it readily
follows that the distribution

δ(x − x0)− 1

|Sn|Rn−1 δSR(x0)(x) (10)

is accompanying for the Laplace operator�.

Example 3 Consider the equation

L[u] ≡ ∂4u

∂x4 − ∂4u

∂y4 = 0. (11)

The operator L on the right-hand side of this equation obviously decomposes into
multipliers:

L =
(
∂2

∂x2 − ∂2

∂y2

)(
∂2

∂x2 + ∂2

∂y2

)
.

It follows from formulas (7) and (10) that a distribution of the form

4∑
k=1

(−1)k−1 (δ(M −Mk)− δSR(Mk)(M)
)
,

where Mk = (xk, yk) (k = 1, 2, 3, 4) are sequentially enumerated vertices of the
rectangle composed of the lines x±y = const , is accompanying for the operatorL.
In turn, this implies that the solution of Eq. (11) satisfies the following mean value
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formula:

4∑
k=1

(−1)k−1

⎛
⎜⎝u(Mk)− 1

2πR

∮

SR(Mk)

u(ξ) dSξ

⎞
⎟⎠ = 0.

Example 4 Theorem B allows us to find accompanying distributions for linear
homogeneous differential operators with constant coefficients and two independent
variables, since such operators are factorized into multipliers whose accompanying
distributions are known. Let us pass to a detailed presentation of this fact.

Consider a linear homogeneous differential operator

P

(
∂

∂x
,
∂

∂y

)
=

∑
|α|=m

aα

(
∂

∂x
,
∂

∂y

)α

with constant coefficients aα, α = (α1, α2). It is well known that such an operator
is factorable into simplest multipliers:

P

(
∂

∂x
,
∂

∂y

)
=

(
a1
∂

∂x
+ b1

∂

∂y

)l1
× · · ·×

×
(
as
∂

∂x
+ bs ∂

∂y

)ls
×

×
(
A1
∂2

∂x2 + 2B2
∂2

∂x∂y
+ C1

∂2

∂y2

)q1

× · · · ×

×
(
Ar
∂2

∂x2 + 2Br
∂2

∂x∂y
+ Cr ∂

2

∂y2

)qr
, (12)

B2
k − AkCk < 0, k = 1 . . . r, l1 + . . . ls + 2(q1 + . . . qr) = m.

Decomposition (12)contains two types of multipliers:
the multiplier

(
a
∂

∂x
+ b ∂

∂y

)
(13)

of the first order and elliptic multipliers of the form

(
A
∂2

∂x2
+ 2B

∂2

∂x∂y
+ C ∂

2

∂y2

)
, B2 − AC < 0. (14)
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Now let us consider separately accompanying distributions for each of the
types (13) and (14).

It is easy to see that the following distribution can be an accompanying
distribution for operator (13):

δ(M −M1)− δ(M −M2), (15)

where M = (x, y), Mk = (xk, yk), k = 1, 2, are arbitrary points of the plane
connected by the relation

bx1 − ay1 = bx2 − ay2. (16)

This directly follows from the fact that a solution of the homogeneous equation
corresponding to operator (13) is a plane wave.

For operator (14), by the change

ξ =
√
AC − B2x, η = Ay − Bx, (17)

the corresponding elliptic equation can be reduced to the Laplace equation

∂2u

∂ξ2 + ∂2u

∂η2 = 0. (18)

From the Gauss formula of mean value for the Laplace operator and change (17),
we obtain that the distribution

δ(M −M0)− 1

2πR
δSR(M0)(M −M0), (19)

where

M = (
√
AC − B2x,Ay − Bx), M0 = (

√
AC − B2x0, Ay0 − Bx0),

is accompanying for operator (14).
This implies that for an arbitrary homogeneous differential operator with con-

stant coefficients and two independent variables, we can find an accompanying
distribution that is the convolution of accompanying distributions of multipliers
in decomposition (12), i.e., the convolution of distributions of the form (15)
and (19).
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5 Mean Value Formula for a Two-Dimensional Hyperbolic
Equation

Now we consider the equation

m∏
j=1

(
aj ∂/∂x + bj ∂/∂t + cj

)
u = 0 (20)

with constant coefficients aj , bj , cj , j = 1, . . . ,m.
A line given by the equation

bjx − aj t = const (21)

is called the j -th type characteristic of Eq. (20), j = 1, . . . , m. We assume that all of
the characteristics of Eq. (20) are simple.

In accordance with Theorem B, we would be able to construct an accompanying
distribution for Eq. (20), if we constructed one for every factor. Consider the
equation

aj ∂u/∂x + bj∂u/∂t + cju = 0. (22)

Let a function wj(x, t) be a certain regular solution of Eq. (22):

aj ∂wj/∂x + bj ∂wj/∂t + cjwj = 0. (22′)

Changing the function u(x, t) to a new unknown function v(x, t) by the formula

u(x, t) = wj(x, t)v(x, t), (23)

we lead Eq. (22) to the equation

wj (aj∂v/∂x + bj∂v/∂t) = 0. (24)

If wj (x, t) is non vanishing, then we may reduce (24) by wj(x, t) and obtain an
equation

aj ∂v/∂x + bj ∂v/∂t = 0. (25)

Let Z = (x, t). We introduce the compactly supported distributions

�j(Z) = δ(Z −Q0
j )− δ(Z −Q1

j ), j = 1, . . . ,m, (26)
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where every pair of points

Q
αj
j = (ξαjj , τ

αj
j ), αj ∈ {0; 1}, j = 1, . . . ,m, (27)

lies on the j -th type characteristic. It is obvious that every�j(Z) is an accompany-
ing distribution of the operator

(
aj ∂/∂x + bj ∂/∂t

)
, j = 1, . . . ,m. (28)

With respect to (23) we obtain

u(Q1
j )/wj (Q

1
j )− u(Q0

j )/wj (Q
0
j ) = 0. (29)

If 1/wj (x, t) ∈ C∞(R2), then (29) leads to the fact that the distribution

�j(Z) = (δ(Z −Q0
j )− δ(Z −Q1

j ))/wj (x, t), j = 1, . . . ,m, (30)

is accompanying for Eq. (22) and the operator

(
aj∂/∂x + bj∂/∂t + cj

)
, j = 1, . . . ,m. (31)

As an example of wj (x, t) we can use a function

wj(x, t) = eμj x+νj t , (32)

where

ajμj + bjνj + cj = 0. (33)

Then the accompanying distribution (30) for the operator (31) can be written in the
form

�j(Z) = (δ(Z −Q0
j )− δ(Z −Q1

j ))e
−μjx−νj t , j = 1, . . . ,m. (34)

By Theorem B, the distribution

�(Z) = �1(Z) ∗�2(Z) ∗ · · · ∗�m(Z) =

= (e−μ1x−ν1t (δ(Z −Q0
1)− δ(Z −Q1

1))) ∗ · · · ∗

∗ (e−μmx−νmt (δ(Z −Q0
m)− δ(Z −Q1

m))) (35)
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is accompanying for Eq. (20).
Taking into account the equality

(ρ1(Z)δ(Z−Z1)) ∗ (ρ2(Z)δ(Z−Z2)) = ρ1(Z1)ρ2(Z2)δ(Z−Z1 −Z2), (36)

we describe distribution (35) and the corresponding mean value formula. We denote
by the symbol “⊕” the modulo 2 sum of Boolean variables: α ⊕ β = 0, if α = β

and α ⊕ β = 1, if α �= β. Let α = (α1, . . . , αm), l = α1 ⊕ · · · ⊕ αm. Denote by
 the set of all ordered collections α = (α1, . . . , αm), αj ∈ {0; 1}, j = 1, . . . ,m.
Let

Aαl =
m∑
j=1

Q
αj
j . (37)

Then accompanying distribution (35) for Eq. (20) can be written as

�(Z) =
∑
α∈ 

(−1)l δ(Z − Aαl )
m∏
j=1

exp(−μjξαjj − νj ταjj ), (38)

and the corresponding mean value formula for Eq. (20) can be written as

∑
α∈ 

(−1)lu(Aαl )
m∏
j=1

exp(−μjξαjj − νj ταjj ) = 0. (39)

Note that two points Aαl = (ηαl , ωαl ) and Aγs = (ηγs , ωγs ), defined by (37), lie on
the j -th characteristic if and only if, their upper multi-indexes

α = (α1, . . . , αm), γ = (γ1, . . . , γm), αj , γj ∈ {0; 1}, j = 1, . . . ,m,

are connected with relations

αk = γk, k = 1, . . . , j − 1, j + 1, . . . ,m, γj = ¬αj , s = ¬l = l ⊕ 1, (40)

where “¬” is the negation operation. Let’s prove that fact. The assertion that two
points Q0

j = (ξ0
j , τ

0
j ) and Q1

j = (ξ1
j , τ

1
j ) lie on a j -th characteristic means that

their coordinates are connected by the equality

bj ξ
0
j − ajτ 0

j = bjξ1
j − aj τ 1

j . (41)
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Then at the point Aαl = (ηαl , ωαl ), where α = (α1, . . . , αm), we have

bjη
α
l − ajωαl = bj (ξα1

1 + ξα2
2 + · · · + ξαjj + · · · + ξαmm )−

−aj (τα1
1 + τα2

2 + · · · + ταjj + · · · + ταmm )

= bj (ξα1
1 + ξα2

2 + · · · + ξ¬αj
j + · · · + ξαmm )−

− aj (τα1
1 + τα2

2 + · · · + τ¬αj
j + · · · + ταmm ) = bjηγs − ajωγs , (42)

and this completes our proof.
The set of all points Aαl , defined by formula (37), together with all segments of

characteristics, connecting pairs of pointsAαl and Aγl , satisfying equalities (40), can
be interpreted as a graph with the vertices Aαl and the edges coinciding with the
segments of the characteristics.

This graph is isomorphic to a m-dimensional cube with edge length 1. Denote
by Ãαl vertices of this cube. Now we can interpret the numbers α1, . . . , αm as usual
coordinates in spaceRm. LetAαl andAγl satisfy equalities (40). An edge of the graph
joining vertices Aαl and Aγl is corresponded to an edge of the cube with vertices Ãαl
and Ãγl .

Let G = G(Aαl ) be a graph on the plane with vertices Aαl ∈ R2, where
α = (α1, . . . , αm), l = α1 ⊕ · · · ⊕ αm αj ∈ {0; 1}, multi-index α is running
the set  . Let any two points Aαl , A

γ
s and only them, satisfying conditions (40),

be connected by a segment of j -th type characteristic. We declare these segments
to be edges of the graph. We say that a graph of this kind is a characteristic
graph. Let’s see if formula (39) holds for any characteristic graph G. We proved
that formula (39) holds for a graph with vertices defined by (37). If we prove that
vertices of any characteristic graph are representable in form (37) we will confirm
our assumption.

We know that every graph of this kind is isomorphic to a m-dimensional cube.
We denote this cube by G̃. Let H be an isomorphism that maps the cube G̃ onto
the graphG. For example, the isomorphismH can be a linear mapping (projection).
Let Q̃αkk = (0, . . . , αk, . . . , 0) (k-th coordinate is equal to αk , the rest ones are equal
to zero moreover Q̃0

k = (0, . . . , 0) for all k = 1, . . . ,m). Then it is sufficient to set
Q
αk
k = H(Q̃αkk ), k = 1, . . . ,m, αk = 0, 1, that leads to equalities (37).
Now we have to remember that direct using of the accompanying distributions

technics leads to mean value formulas for solutions in C∞. Nevertheless, the
action of the accompanying distribution is able to be extended to arbitrary regular
solutions. So we proved the next main result.

Theorem Let u(Z) = u(x, t) be a regular solution of Eq. (20) and G be an
arbitrary characteristic graph with verticesAαl , which are represented by form (37),
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Q
αj
j = (ξαjj , τ

αj
j ). Then the mean value formula (39) holds. This formula is an exact

difference ratio.

For m = 3 and m = 4, cj = 0, this theorem was proved in [15] and [16]
respectively.

We considered the case when all of the characteristics for Eq. (20) were simple.
Let us now decline the requirement of simple characteristics. Then formally the
mean-value formula will look like (39), but we have to get 2k points on every
characteristic instead of two ones, where k is the multiplicity of the characteristic.
Furthermore let us assume that we are dealing with alonem-multiple characteristic.
Then Eq. (20) takes the form

(a ∂/∂x + b ∂/∂t + c)m u = 0. (43)

Making the substitutions η = x/a, ξ = (b x − a t)/a, we reduce this equation to
the form

(
∂

∂η
+ c

)m
u = 0. (44)

This is an ordinary differential equation. Its general solution is

u(η) = Pm−1(η)exp (−cη) , (45)

where Pm−1(η) is a polynomial of degreem− 1 in η with coefficients depending on
variable ξ . In addition let c = 0. Then formula (39) becomes “inclusions-exceptions
formula” for the polynomial of degreem− 1 (see [17])

u(0) =
m∑
k=1

(−1)k−1
∑

i1<···<ik
u(xi1 + · · · + xik ), (46)

where x1, . . . , xm are arbitrary points of the real line.

References

1. D. Gilbarg, N.S.Trudinger, Elliptic Partial Differential Equations of Second Order (Springer,
Berlin, 1983). ISBN: 3-540-13025-X

2. V.A. Il’in, Fourier series in fundamental systems of functions of the Beltrami operator. Differ.
Equ. (Differ. Uravn.) 5(11), 1940–1978 (1969)

3. V.A. Il’in, E.I. Moiseev, A mean value formula for the associated equation of the Laplace
operator. Differ. Equ. (Differ. Uravn.) 17(10), 1908–1910 (1981)

4. F. John, Plane Waves and Spherical means (Interscience Publishes, New York, 1955). ISBN:
0-486-43804-X



602 I. P. Polovinkin and M. V. Polovinkina

5. A.V. Bitsadze, A.M. Nakhushev, On the theory of equations of mixed type in multidimentional
domains. Differ. Equ. (Differ. Uravn.) 10(12), 2184–2191 (1974)

6. I.P. Polovinkin, Inversion of the mean value theorem for the wave equation. Differ. Equ. (Differ.
Uravn.) 27(11), 1987–1990 (1991)

7. L. Zalcman, Mean values and differential equations. Isr. J. Math. 14, 339–352 (1973)
8. L. Hörmander, The Analysis of Linear Differential Operators (Springer, Heidelberg, 1983).

ISBN: 978-3-540-26964-9
9. V.Z. Meshkov, I.P. Polovinkin, On the derivation of new mean-value formulas for linear

differential equations. Differ. Equ. (Differ. Uravn.) 47(12), 1724–1731 (2011)
10. L.N. Lyakhov, M.V. Polovinkina, E.L. Shishkina, Accompanying distribution of singular

differential operators. J. Math. Sci. 219(2), 184–189 (2016)
11. I.A. Kipriyanov, Singular Elliptic Problems (Nauka, Moscow, 1997, in Russian). ISBN: 5-02-

014799-0
12. I.A. Kipriyanov, Yu.V. Zasorin, On the fundamental solution of the wave equation with many

features and Huygens’ principle. Differ. Equ. (Differ. Uravn.) 28(3), 383–393 (1992)
13. B.M. Levitan, Expansion in Fourier series and integrals with Bessel functions. Usp. Mat. Nauk.

6(2/42), 102–143 (1951)
14. L.N. Lyakhov, I.P. Polovinkin, E.L. Shishkina, On Kipriyanov problem for a singular ultrahy-

perbolic equation. Differ. Equ. (Springer) 50(4), 513–525 (2014)
15. V.Z. Meshkov, I.P. Polovinkin, M.V. Polovinkina, Yu.D. Ermakova, S.A. Rabeeakh, Difference

mean-value formula for two-dimensional linear hyperbolic equations of third order. Proc.
Voronezh State Univ. Ser.: Phys. Math. (Vestnik Voronezhskogo Gosudarstvennogo Univer-
siteta. Seriya: Fizika. Matematika) 3, 138–145 (2015)

16. V.Z. Meshkov, Yu.D. Ermakova, I.P. Polovinkin, Difference mean-value formula for a two-
dimensional fourth order linear hyperbolic equation. J. Math. Sci. 219(2), 203–208 (2016)

17. V.Z. Meshkov, I.P. Polovinkin, M.V. Polovinkina, Yu.D. Ermakova , S.A. Rabeeakh. A mean-
value formula for a two-dimentional linear hyperbolic equation. Proc. Voronezh State Univ.
Ser.: Phys. Math. (Vestnik Voronezhskogo Gosudarstvennogo Universiteta. Seriya: Fizika.
Matematika) 4, 121–126 (2016)



Transmutations for Multi-Term
Fractional Operators

Arsen V. Pskhu

Abstract In this paper, we construct a transmutation operator for fractional
multi-term differential operators. The constructed operator intertwines multi-term
differential operators and the operator of first order differentiation, and allows us
to find explicit representations of solutions for initial and boundary value problems
for fractional multi-term evolution type differential equations. As an example, we
find solutions to a boundary value problem for the multi-term fractional diffusion
equation in an unbounded domain.
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1 Introduction

Consider the operator

Dσ,λt =
n∑
k=1

λk
∂σk

∂tσk
(1.1)

where σ = (σ1, . . . , σn), λ = (λ1, . . . , λn), σk ∈ (0, 1), λk > 0 and ∂σk/∂tσk stands
for the fractional derivative of order σk with respect to t with starting point at t = 0.

Our purpose is to construct a transmutation operator T that intertwines the multi-
term operator (1.1) and the operator of first order differentiation Dt = ∂

∂t
, i.e. an

operator T satisfying

Dσ,λt T = TDt . (1.2)
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Having constructed the operator T , one can derive solutions to evolution type
equations of the form

Dσ,λt u = Lu

in terms of solutions to the first order equation

Dtv = Lv.

Here, L is a linear operator. As an example, we find an explicit form of solutions to
a boundary value problem for the multi-term fractional diffusion equation.

As it is well known, the method of transmutations provides us with powerful
tools to study operators with complicated structure in terms of simpler operators.
In this connection, we refer to [1–8], which contain the principal points of the
transmutation theory and comprehensive bibliographies on the topic.

The operator (1.1) can be treated as a fractional differentiation operator of
distributed (segment) order [9]

∫ b

a

(
λ(ξ, t)

∂ξ

∂tξ

)
dμ(ξ) (1.3)

with a measure concentrated on a discrete set. It can also be used for finding ap-
proximate solutions of equations with operators of the form (1.3) [10]. Differential
equations of fractional order including those with the operators (1.1) and (1.3) have
been widely used in modeling, physics, and mechanics [11–15].

We also mention [16–25] that reflect the variety of approaches to the study of
multi-term fractional differential equations, and contain an extensive bibliography
on the subject.

The paper has the following structure. In Sects. 2 and 3, we give the definitions
of the fractional differentiation operators and related special functions necessary for
what follows. In Sect. 4, we construct a transmutation operator satisfying (1.2). In
Sect. 5 some applications are indicated.

2 Fractional Differentiation

The fractional differentiation is given by the Dzhrbashyan–Nersesyan operator [26]
(see also [27]). The Dzhrbashyan–Nersesyan operator of order ζ ∈ (0, 1) associated
with an ordered pair {ξ, η}, is defined by

∂ζ

∂tζ
= D{ξ,η}

0t = Dη−1
0t D

ξ
0t , ξ, η ∈ (0, 1], ζ = ξ + η − 1, (2.1)
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where Dη−1
0t and Dξ0t are the Riemann–Liouville fractional integral and fractional

derivative, respectively, with starting point at t = 0 [11, p. 11], [28, §2.1]:

D
η−1
0t g(t) =

∫ t

0
g(s)

(t − s)−η
(1 − η) ds D

ξ
0t g(t) = ∂

∂t

∫ t

0
g(s)

(t − s)−ξ
(1 − ξ) ds.

It is also assumed thatD0
0t g(t) = g(t).

From the definition (2.1) and the composition law for the Riemann–Liouville
derivatives (see, e.g., [28]), it follows that

D
{ξ,η}
0t g(t) = Dζ0t g(t)−

t−η

(1 − η)
[
D
ξ−1
0t g(t)

]
t=0
. (2.2)

It should be noted that the operator (2.1) associated with the pairs {ζ, 1} and
{1, ζ }, coincides with the Riemann–Liouville derivative and the Caputo derivative,
respectively, i.e.:

D
{ζ,1}
0t g(t) = Dζ0t g(t) and D

{1,ζ }
0t g(t) = ∂ζ0t g(t) =

∫ t

0
g′(s) (t − s)

−ζ

(1 − ζ ) ds.

It means that the operator (1.1) covers the special cases of operators containing the
Riemann–Liouville and Caputo derivatives.

3 Auxiliary Assertions

In what follows, the symbol C denotes positive constants, which are different in
different cases; if necessary, the parameters on which it can depend are indicated in
parentheses: C = C(α, β, . . .).

Consider the function [23]

wμ(s, t) = Sμn (t; −λ1s, . . . ,−λns; −σ1, . . . ,−σn)

where [18]

Sμn (t; −λ1s, . . . ,−λns; −σ1, . . . ,−σn) = (h1 ∗ h2 ∗ . . . ∗ hn) (t), (3.1)

hk = hk(t) ≡ tμk−1φ
(−σk, μk,−λkst−σk ) , μ =

n∑
k=1

μk,

φ (δ, ε; z) =
∞∑
m=0

zm

m!(mδ + ε) (δ > −1)
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is the Wright function [29, 30]; (h ∗ g)(t) denotes the Laplace convolution of the
functions h(t) and g(t):

(h ∗ g) (t) =
∫ t

0
h(t − η) g(η) dη.

It should be noted that the function (3.1) (as well as the function wμ(x, y)) does
not depend on the distribution of the numbers μk but depends only on their sum μ
[23].

In the following lemma, we formulate the properties of the functionwμ(s, t) that
we need in our further considerations. The proof of the statement can be found in
[24, Lemma 1] (see also [23]).

Lemma 3.1 Let

σ∗ = max{σ1, . . . , σn}, λ∗ = max
k: σk=σ∗

{λk}.

Then the following assertions hold.

1. If μ ≥ 0, s > 0 and t > 0, then

wμ(s, t) > 0. (3.2)

2. The inequality

wμ(s, t) ≤ Cs−θ tμ+θσ∗−1 exp
(
−ρs 1

1−σ∗ t−
σ∗

1−σ∗
)
, C = C(μ, λ, σ, θ, ρ),

(3.3)

holds for arbitrary μ ∈ R, θ and ρ such that

ρ < (1 − σ∗)σ
σ∗

1−σ∗∗ λ
1

1−σ∗∗ and θ ≥
{

0, (−μ) �∈ N ∪ {0},
−1, (−μ) ∈ N ∪ {0}.

3. The following relation holds:

Dν0twμ(s, t) = wμ−ν(s, t). (3.4)

4. If μ ≥ 0 and t > 0, then

lim
s→+0

wμ(s, t) = tμ−1

(μ)
. (3.5)
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5. The relation
(
∂

∂s
+

n∑
k=1

λkD
σk
0t

)
D−ν

0t wμ(x, y) = sν−1

(ν)

tμ−1

(μ)
(3.6)

holds for arbitrary μ ≥ 0 and ν ≥ 0.

4 Transmutation Operator

Further, we use the following notations

σ∗ = max{σ1, . . . , σn}, α∗ = max{α1, . . . , αn},

and, as above, we always assume that

σk ∈ (0, 1), αk, βk ∈ (0, 1], σk = αk + βk − 1, λk > 0, k = 1, n.

Moreover, without loss of generality we assume that all pairs {αk, βk} are pairwise
distinct, i.e. (αk − αj )2 + (βk − βj )2 = 0 if and only if k = j .

Consider the operator

T λα,βu(t) =
(
T λα,βu

)
(t) =

∫ ∞

0
u(s)

∑
k:αk=α∗

λk w1−βk (s, t) ds. (4.1)

The summation in (4.1) is over all k such that αk = α∗. In (4.1), u(x) is assumed to
be locally integrable, i.e.

u(t) ∈ L(0, a) for any a > 0,

and satisfying

lim
t→∞u(t) exp

(−tε) = 0 for some ε <
1

1 − σ∗
. (4.2)

We can now formulate the main results of the work.

Theorem 4.1 Let u(t) satisfy (4.2), u(t) ∈ C[0,∞) ∩ C1(0,∞) and

σ∗ > max
k:αk<α∗

{σk}. (4.3)

Then

lim
t→0

D
α∗−1
0t T λα,βu(t) = u(0) (4.4)
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and

Dσ,λt T λα,βu(t) = T λα,βu′(t). (4.5)

Proof Let K(s, t) denote the kernel in (4.1):

K(s, t) =
∑

k:αk=α∗
λk w1−βk (s, t).

By (3.4) and (3.5), we get

D
α∗−1
0t K(s, t) =

∑
k:αk=α∗

λkw1−σk (s, t) =

=
n∑
k=1

λkw1−σk (s, t) −
∑

k:αk<α∗
λkw1−σk (s, t) = W1(s, t) −W2(s, t).

Therefore, we have

D
α∗−1
0t T λα,βu(t) =

∫ ∞

0
u(s) [W1(s, t) −W2(s, t)] dt = I1 − I2.

It follows from (3.3) that

|I2| ≤ Ctθσ∗
∑

k:αk<α∗
t−σk (0 ≤ θ < 1).

By virtue of (4.3) this means that limt→0 I2 = 0. Next, for an arbitrary ε > 0 we
can rewrite I1 as

I1=
(∫ ε

0
+

∫ ∞

ε

)
[u(s)− u(0)]W1(s, t) dt+u(0)

∫ ∞

0
W1(s, t) dt = J ε1 +J ε2 +J3.

By (3.2) and (3.6) it is easy to check that

0 ≤ W1(s, t) =
(
n∑
k=1

λkD
σk
0t

)
w1(s, t) = − ∂

∂s
w1(s, t).

Together with (3.3) and (3.5), this yields

∣∣J ε1
∣∣ ≤ sup

t∈(0,ε)
|u(s)− u(0)| [w1(0, t)−w1(ε, t)] , lim

t→0
J ε2 = 0,
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and

J3 = u(0)
∫ ∞

0

[
− ∂

∂s
w1(s, t)

]
dt = u(0).

Taking into account the arbitrary choice of ε, this leads to (4.4).
Let us prove (4.5). By (2.2) and (4.4), we get

Dσ,λt T λα,βu(t) =
n∑
k=1

λkD
βk−1
0t D

αk
0t T

λ
α,βu(t) =

=
n∑
k=1

λk

[
D
σk
0t T

λ
α,βu(t)−

t−βk
(1 − βk) (D

αk−1
0t T λα,βu)t=0

]
=

=
n∑
k=1

λkD
σk
0t T

λ
α,βu(t)− u(0)

∑
k:αk=α∗

t−βk
(1 − βk) . (4.6)

Consider the first summand in the right hand side of the last equality. The properties
of wμ(s, t) and the requirements imposed on u(t) allow us to bring the operator

D∗ =
n∑
k=1

λkD
σk
0t

inside the integral:

n∑
k=1

λkD
σk
0t T

λ
α,βu(t) =

∫ ∞

0
u(s)D∗K(s, t) dt. (4.7)

By (3.5) and (3.6), we get

D∗K(s, t) =
∑

k:αk=α∗
λkD∗w1−βk (s, t) = − ∂

∂s

∑
k:αk=α∗

λkw1−βk (s, t)

and

∫ ∞

0
u(s)D∗K(s, t) dt =

∫ ∞

0
u(s)

⎛
⎝− ∂

∂s

∑
k:αk=α∗

λkw1−βk (s, t)

⎞
⎠ dt =

= T λα,βu′(t)+ u(0)
∑

k:αk=α∗

t−βk
(1 − βk) .

Combining the last equality with (4.6) and (4.7), we obtain (4.5). ��
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Remark 4.2 For the case n = 1, we have

σ = {σ1}, σ1 = α1 + β1 − 1, λ = {λ1},

and

wμ(s, t) = Sμ1 (t; −s; −σ1) = tμ−1φ
(
−σ1, μ; − s

tσ1

)

[Without loss of generality, we put λ1 = 1.] Thus, for n = 1 the operator T λα,β can
be written as

T λα,βu(t) =
∫ ∞

0
u(s) t−β1φ

(
−σ1, 1 − β1; − s

tσ1

)
ds = Aσ1,1−β1u(t).

That is, in this case, T λα,β coincides with the Stankovich transform Aσ1,1−β1 ,

which intertwines the fractional differentiation operator ∂σ1

∂tσ1 = D
β1−1
0t D

α1
0t and the

operator of first order differentiation ∂
∂t

[31–33].

5 Application

As an example of application of our results, we construct a solution of a boundary
value problem in an unbounded domain for the multi-term fractional diffusion
equation.

Let R+ denote the set of positive real numbers, p, q ∈ N ∪ {0}, m ∈ N and
p + q = m, and let Sp,q be the subset of Rm defined by

Sp,q = R
p
+ × R

q = {x = (x1, .., xm) ∈ R
m : xj > 0, j = 1, . . . , p}.

It is evident that S0,m coincides with R
m, and Sm,0 is the positive orthant Rm+.

Next, for a point ξ = (ξ1, . . . , ξm) ∈ R
m, let ξ [k] denote the symmetric reflection

of ξ with respect to the hyper-plane perpendicular to ξk-axis, i.e

ξ [k] = (ξ1, . . . , ξk−1,−ξk, ξk+1, . . . , ξm).

For a function f (ξ), ξ ∈ R
m, we introduce the operator J [k]

ξ defined by

J
[k]
ξ f (ξ) = f (ξ)− f (ξ [k]).
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It is well known (see, i.e., [34]) that the function

(x, ξ, t) = (4πt)− n
2 exp

(
−|x − ξ |2

4t

)

is the fundamental solution of the heat equation

(
∂

∂t
−�x

)
v(x, t) = 0 (5.1)

where

�x =
m∑
j=1

∂2

∂x2
j

is the Laplace operator with respect to x, x = (x1, . . . , xm) ∈ R
m. Moreover, it is

easy to check that the function

G(x, ξ, t) = J [1]
ξ J

[2]
ξ . . . J

[p]
ξ (x, ξ, t)

is the Green function of the boundary value problem:

v(x, 0) = τ (x) x ∈ Sp,q , (5.2)

v(x, t)
∣∣
x∈∂Sp,q = 0 t ∈ R+, (5.3)

for Eq. (5.1). As usual, ∂Sp,q stands for the boundary of Sp,q . [Note: ∂Sp,q = ∅ for
p = 0, and in this case the condition (5.3) is superfluous.] In addition, under some
restrictions on the function τ (x), the solution of the problem (5.1), (5.2) and (5.3)
can be given by [34]

v(x, t) =
∫
Sp,q

τ (ξ)G(x, ξ, t) dξ.

Now, our goal is to find a solution of the multi-term fractional diffusion equation

(
Dσ,λt −�x

)
u(x, t) = 0, (5.4)

in the domain

	 = Sp,q × R+,
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with the initial and boundary conditions

lim
t→0

D
α∗−1
0t u(x, t) = τ (x) x ∈ Sp,q , (5.5)

u(x, t)
∣∣
x∈∂Sp,q = 0 t ∈ R+. (5.6)

[As above, we consider (5.5) only, if p = 0.]
Let v(x, t) be a solution of the problem (5.1), (5.2) and (5.3), and let v(x, t) and

�xv(x, t) satisfy (4.2) uniformly with respect to x ∈ Sp,q . The formula (4.5) now
yields

Dσ,λt T λα,βv(x, t) = T λα,β
∂

∂t
v(x, t) = −T λα,β�xv(x, t) = −�xT λα,βv(x, t).

Next, it follows from (4.4) that

lim
t→0

D
α∗−1
0t T λα,βv(x, t) = v(x, 0) = τ (x).

Thus, we can claim that the function

u(x, t) = T λα,βv(x, t) (5.7)

is the solution of the Eq. (5.4) and satisfies the conditions (5.5) and (5.6).
Moreover, we can rewrite (5.7) as

u(x, t) =
∫
Sp,q

τ (ξ)Gλα,β(x, ξ, t) dξ. (5.8)

where

Gλα,β(x, ξ, t) = T λα,βG(x, ξ, t) dξ

is the Green function of the problem (5.4), (5.5) and (5.6).
More precisely, in much the same way as in [24], we can prove the following

statement.

Theorem 5.1 Let (4.3) be satisfied; τ (x) ∈ C(Sp,q) if m = 1 or βk = 1 for all
k = 1, . . . , n; τ (x) be Hölder continuous if m ≥ 2 and βk < 1 for some k; and
τ (x) satisfy

lim|x|→∞ τ (x) exp
(−ρ|x|δ) = 0

for some ρ > 0 and δ < 2
2−σ∗ . Then the function (5.8) is a solution of the

problem (5.4), (5.5) and (5.6).
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Fractional Bessel Integrals
and Derivatives on Semi-axes

E. L. Shishkina and S. M. Sitnik

Abstract In this paper we study fractional powers of the Bessel differential
operator. The fractional powers are defined explicitly in the integral form without
use of integral transforms in its definitions. Some general properties of the fractional
powers of the Bessel differential operator are proved and some are listed. Among
them are different variations of definitions, relations with the Mellin and Hankel
transforms, group property, evaluation of resolvent integral operator in terms of
the Wright or generalized Mittag–Leffler functions. At the end, some topics are
indicated for further study and possible generalizations. Also the aim of the paper
is to attract attention and give references to not widely known results on fractional
powers of the Bessel differential operator. This class of fractional operators is in
close connection with transmutation theory and classic transmutational operators.
We also study connections of Bessel fractional operators with different kinds of
integral transforms.

Keywords Fractional Bessel operator · Hypergeometric function · Hankel
transform

1 Introduction

We study the differential Bessel operator in the form

Bν := D2 + ν

x
D, ν ≥ 0, D := d

dx
, (1)
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and its fractional powers (Bν)α, α ∈ R. This operator has essential role in the theory
of differential equations both as a radial part of the Laplace operator and also as
involved in partial differential equations with Bessel operators. Such equations were
called B-elliptic, B-hyperbolic and B-parabolic by I.A. Kipriyanov and intensively
studied by his scientific school and many others researchers, now the term “Laplace–
Bessel equations” is also used. For equations with Bessel operators and related
topics cf. [1–3].

Of course fractional powers of the Bessel operator (1) were studied in many
papers. But in the most of them fractional powers were defined implicitly as a
power function multiplication under Hankel transform. This definition via integral
transforms leads to many restrictions. Just imagine that for the classical Riemann–
Liouville fractional integrals we have to work only with its definitions via Laplace
or Mellin transforms and nothing more without explicit integral representations. If
it would be true, then 99% of classical “Bible” [4] and other books on fractional
calculus would be empty as they mostly use explicit integral definitions! But for
fractional powers of the Bessel operator at most papers implicit definitions via
Hankel transform are still used.

Of course such situation is not natural and in some papers different approaches
to step closer to explicit formulas were studied. Let us mention that in [5] explicit
formulas were derived as compositions of Erdélyi–Kober fractional integrals [4]
on distribution spaces, in this monograph results on fractional powers of Bessel
and related operators are gathered of McBride’s and earlier papers. An important
step was done in [6] in which explicit definitions were derived in terms of the
Gauss hypergeometric functions with different applications to PDE, we also use
basic formulas from [6] in this paper. The most general study was fulfilled by
I. Dimovski and V. Kiryakova [7–10] for the more general class of hyper-Bessel
differential operators related to the Obrechkoff integral transform. They constructed
explicit integral representations of the fractional powers of these operators by using
Meijer G-functions as kernels, and also intensively and successfully used for this
the theory of transmutations. Note that in this and others fields of theoretical and
applied mathematics, the methods of transmutation theory are very useful and
productive and for some problems are even irreplaceable (see e.g. [11]). In [12, 13]
simplified representations for fractional powers of the Bessel operator were derived
with Legendre functions as kernels, and based on them general definitions were
simplified and unified with standard fractional calculus notation as in [4], and
also important generalized Taylor formulas were proved which mix integer powers
of Bessel operators (instead of derivatives in the classical Taylor formula) with
fractional power of the Bessel operator as integral remainder term, cf. also [14, 15].

This class of fractional operators is in close connection with transmutation theory
and classic transmutational operators such as Sonine and Poisson ones [16, 17].
We also study connections of Bessel fractional operators with different kinds of
integral transforms: Hankel, Mellin, Erd’elyi–Kober, Mejer, integral transforms
with Wittaker, Wright, Mittag–Leffler and hypergeometric kernels.
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2 Definitions

2.1 Special Functions and Integral Transforms

In this subsection we give definitions of some special functions. Special functions
enable us to introduce integral transforms connected with these functions such that
a new problem can be attacked within a known framework, usually in the context of
differential equations and their generalizations.

Let start with normalized Bessel functions.
The symbol jα is used for the normalized Bessel function:

jα(t) = 2α(α + 1)

tα
Jα(t), jα(0) = 1, j ′

α(0) = 0, (2)

where Jα(t) is the Bessel function of the first kind of order α (see [18]):

Jα(x) =
∞∑
m=0

(−1)m

m!(m+ α + 1)

(x
2

)2m+α
.

Function Jα first defined by the mathematician Daniel Bernoulli and then general-
ized by Friedrich Bessel (see [18]).

Using formulas 9.1.27 from [19] we obtain that the function jν(t) is an
eigenfunction of a linear operator Bν :

(Bν)t j ν−1
2
(τ t) = −τ 2j ν−1

2
(τ t). (3)

We also will need some other normalized Bessel functions. Normalized Bessel
functions of the second kind yα is

yα(t) = 2α(α + 1)

tα
Yα(t), (4)

where Yα is the Bessel functions of the second kind. Function Yα for non-integer α
is related to Jα by:

Yα(x) = Jα(x) cos(απ)− J−α(x)
sin(απ)

.

In the case of integer order n, the function Yn is defined by taking the limit as a
non-integer α tends to n,

Yn(x) = lim
α→n

Yα(x).
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Normalized modified Bessel functions of the first and second kind Iα(x) and
Kα(x) are defined by

iα(t) = 2α(α + 1)

tα
Iα(t), kα(t) = 2α(α + 1)

tα
Kα(t), (5)

where modified Bessel functions of the first and second kind Iα(x) and Kα(x) are

Iα(x) = i−αJα(ix) =
∞∑
m=0

1

m!(m+ α + 1)

(x
2

)2m+α
, Kα(x) = π

2

I−α(x)− Iα(x)
sin(απ)

,

when α is not an integer and when α is an integer, then the limit is used.
Next we consider generalized hypergeometric functions which have many

particular special functions as special cases, such as elementary functions, Bessel
functions, and the classical orthogonal polynomials.

A generalized hypergeometric function is defined as a power series

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n! .

The functions of the form 0F1(; a; z) are called confluent hypergeometric limit
functions and are closely related to Bessel functions Jα and Iα . The relationships
are

Jα(x) = ( x2 )
α

(α + 1)
0F1

(
; α + 1; − x2

4

)
,

Iα(x) = ( x2 )
α

(α + 1)0F1

(
; α + 1; x2

4

)

or

0F1

(
; α + 1; − x2

4

)
= jα(x), 0F1

(
; α + 1; x2

4

)
= iα(x).

Beside we need function 1F2(; a; z). It is known (see [20]) that for α > 0, ξ ≥ 0,
t > 0

t∫

0

(
t2 − u2

)α−1
u1−γ Jγ (uξ)dt = ξγ t2α

2γ+1α(γ + 1)
1F2

(
1; α + 1, γ + 1; − t

2ξ2

4

)
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and for γ < 2, α > 0, ξ ≥ 0, t > 0

t∫

0

(
t2 − u2

)α−1
u1−γ Iγ (uξ)dt = ξγ t2α

2γ+1α(γ + 1)
1F2

(
1; α + 1, γ + 1; t

2ξ2

4

)
.

Next we present Whittaker functions which are appear in kernel of integral
transform connected with fractional Bessel integral.

Whittaker functions Mκ,μ(z) and Wκ,μ(z) are special solutions of Whittaker’s
equation

d2w

dz2
+

(
−1

4
+ κ

z
+ 1/4 − μ2

z2

)
w = 0.

They are modified forms of the of Kummer’s confluent hypergeometric functions
were introduced by Edmund Taylor Whittaker by

Mκ,μ (z) = exp (−z/2) zμ+ 1
2M

(
μ− κ + 1

2
, 1 + 2μ; z

)
,

Wκ,μ (z) = exp (−z/2) zμ+ 1
2U

(
μ− κ + 1

2
, 1 + 2μ; z

)
, (6)

where

M(a, b, z) =
∞∑
n=0

a(n)zn

b(n)n! = 1F1(a; b; z).

and

U(a, b, z) = (1 − b)
(a + 1 − b)M(a, b, z)+

(b − 1)

(a)
z1−bM(a + 1 − b, 2 − b, z).

are Kummer’s functions.
The Whittaker functions Mκ,μ(z) and Wκ,μ(z) are the same as those with

opposite values of μ, in other words considered as a function of μ at fixed κ and
z they are even functions. When κ and z are real, the functions give real values for
real and imaginary values of μ.

2.2 Integral Transforms

In this subsection we give definitions of integral transforms which can be used in
dealing with differential equations with fractional Bessel derivatives on semi-axes.
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The Mellin transform of a function f : R+ → C is the function f ∗ defined by

f ∗(s) = Mf (s) =
∞∫

0

xs−1f (x)dx,

where s = σ + iτ ∈ C, provided that the integral exists.
Following to [21] as space of originals we choose the space Pba , −∞ < a < b <

∞ which is the linear space of R+ → C functions such that xs−1f (x) ∈ L1(R+)
for every s ∈ {p ∈ C : a ≤ Rep ≤ b}.

If additionally f ∗(c + iτ ) ∈ L1(R) with respect to τ then complex inversion
formula holds:

{
M−1ϕ

}
(x) = f (x) = 1

2πi

c+i∞∫

c−i∞
x−sϕ(s) ds.

For functions f∈Lν1(R+) the Hankel transform of order ν−1
2 > − 1

2 is

Fν[f ](ξ) = f̂ (ξ) =
∞∫

0

j ν−1
2
(xξ) f (x)xν dx.

Let f∈Lν1(R+) and of bounded variation in a neighborhood of a point x of
continuity of f . Then for ν > 0 the inversion formula

F−1
ν [f̂ ](x) = f (x) = 21−ν

2
(
ν+1

2

)
∞∫

0

j ν−1
2
(xξ) f̂ (ξ)ξν dξ

holds.
For functions f the integral transforms involving Bessel function Kν−1

2
, ν ≥ 1

as kernel is the Meijer transform defined by

Kν[f ](ξ) = F(ξ) =
∞∫

0

k ν−1
2
(xξ) f (x)xν dx.

Let f ∈ Lloc1 (R+) and f (t) = o
(
tβ− ν

2

)
as t → +0 where β > ν

2 − 2 if ν > 1

and β > −1 if ν = 1. Furthermore let f (t) = O(eat) as t → +∞. Then its Meijer
exists a.e. for Re ξ > a (see [21, p. 94]).

If 0 < ν < 2 and F(ξ) is analytic on the half-plane Ha = {p ∈ C : p ≥ a,
a ≤ 0 and s

ν
2 −1F(ξ) →, |ξ | → +∞, uniformly with respect to arg s then for any
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number c, c > a the inverse transform K−1
ν is

K−1
ν [f̂ ](x) = f (x) = 1

πi

c+i∞∫

c−i∞
f̂ (ξ)i ν−1

2
(xξ)ξνdξ.

Generalized Whittaker transform is

(Wk
ρ,γ f )(x) =

∞∫

0

(xt)ke
x2t2

2 Wρ,γ (x
2t2)f (t)dt

with ρ, γ ∈ C and k ∈ R, containing the Whittaker function (6) in the kernel.

2.3 Fractional Bessel Integrals and Derivatives on Semi-axes

In this section we give definition of the fractional Bessel integrals on semi-axes
following to [5, 6, 12, 13, 22, 23].

Definition 1 Let f is integrable by (0,∞) with the weight ρ(x), α > 0. The
integrals

(B−α
ν,0+f )(x)=(IBαγ,0+ f )(x) = 1

(2α)

x∫

0

(y
x

)ν (x2−y2

2x

)2α−1

2F1

(
α+ν−1

2
, α; 2α; 1−y

2

x2

)
f (y)dy (7)

and

(B−α
ν,−f )(x) = (IBαγ,− f )(x) = 1

(2α)

∞∫

x

(
y2−x2

2y

)2α−1

2F1

(
α+ ν−1

2
, α; 2α; 1− x

2

y2

)
f (y)dy

(8)

are called left-sided fractional Bessel integral and right-sided fractional Bessel
integral on semi-axis [0,∞) of order α, accordingly. In the case of the integral (7)
the weight ρ(x) = x4α+ν and in the case of the integral (7) the weight ρ(x) = x4α.

In Definition 1 function 2F1(a, b; c; z) is the hypergeometric function defined
for |z| < 1 by the power series

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n

(c)n

zn

n! .
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For complex argument z with |z| ≥ 1 function 2F1(a, b; c; z) can be analytically
continued along any path in the complex plane that avoids the branch points 1 and
infinity.

Using formula 22 p. 64 from [24] of the form

2F1(a, b; c; z) = (1 − z)−a 2F1

(
a, c − b; c; z

z− 1

)

we can rewrite (7) as

(B−α
ν,0+f )(x) = 1

(2α)

x∫

0

(
x2−y2

2y

)2α−1

2F1

(
α+ν−1

2
, α; 2α; 1−x

2

y2

)
f (y)dy.

(9)

In [12, 13, 15] was shown that formulas (7) and (8) can be simplified using
formula 15.4.7 p. 561 from [19]

2F1(a, b; 2b; z)=

= 22b−1

(
b + 1

2

)
z

1
2 −b(1 − z) 1

2

(
b−a− 1

2

)
P

1
2 −b
a−b− 1

2

[(
1 − z

2

) 1√
1 − z

]
.

So, we can write for α > 0

(B−α
ν,0+f )(x) =

√
π

22α−1(α)

x∫

0

(x2 − y2)α− 1
2

(y
x

) ν
2
P

1
2 −α
ν
2 −1

[
1

2

(
x

y
+ y

x

)]
f (y)dy

and

(B−α
ν,−f )(x) =

√
π

22α−1(α)

∞∫

x

(y2 − x2)α− 1
2

(y
x

) ν
2
P

1
2 −α
ν
2 −1

[
1

2

(
x

y
+ y

x

)]
f (y)dy

where f (x) ∈ L1(0,∞). Here the kernels of the fractional Bessel integrals on
semi-axes are expressed using two-parameter Legendre functions instead of three-
parameter Gauss hypergeometric functions.

Next we give some known facts proved in [22, 23].
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2.3.1 Basic Properties of the Fractional Bessel Integrals on Semi-axes

1. For ν = 0 we have

(B−α
0,0+f )(x) = 1

(2α)

x∫

0

(x − y)2α−1f (y)dy = (I 2α
0+f )(x), (10)

(B−α
0,− f )(x) = 1

(2α)

∞∫

x

(y − x)2α−1f (y)dy = (I 2α− f )(x), (11)

where I 2α
0+ is the left-sided Riemann-Liouville fractional integrals (see formula

5.1 on p. 94 in [4]) and I 2α− is the Liouville fractional integral (see formula 5.3
on p. 94 in [4]).

2. When α=1 if lim
x→+0

g(x)=0, lim
x→+0

g′(x)=0 the left-sided fractional Bessel

integral on semi-axis is the left inverse to the differential Bessel operator

(B−1
ν,a+Bνg(x))(x) = g(x)

and when α=1 if lim
x→+∞ g(x)=0, lim

x→+∞ g
′(x)=0 the right-sided fractional

Bessel integral B−1
ν,− is the left inverse to the differential Bessel operator

(B−1
ν,−Bνg(x))(x) = g(x).

3. The formula for integration by parts is valid on proper functions:

∞∫

0

f (x)(B−α
ν,0+g)(x)x

νdx =
∞∫

0

g(x)(B−α
ν,−f )(x)xνdx. (12)

Definition 2 Let α > 0. The left-sided fractional Bessel derivative and right-
sided fractional Bessel derivative on semi-axis [0,∞) of order α are defined by
the next equalities, accordingly

(Bαγ,0+f )(x) = (DBαγ,0+f )(x) = Bnγ (IBn−αγ,0+f )(x), n = [α] + 1 (13)

and

(Bαγ,−f )(x) = (DBαγ,−f )(x) = Bnγ (IBn−αγ,− f )(x), n = [α] + 1. (14)
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In [5] spaces adapted to work with operators of the form Bαγ,0+ and Bαγ,−, α ∈ R

were introduced:

Fp =
{
ϕ ∈ C∞(0,∞) : xk d

kϕ

dxk
∈ Lp(0,∞) for k = 0, 1, 2, . . .

}
, 1 ≤ p < ∞,

F∞ =
{
ϕ ∈ C∞(0,∞) : xk d

kϕ

dxk
→ 0 as x → 0 + and as x → ∞ for k = 0, 1, 2, . . .

}

and

Fp,μ = {
ϕ : x−μϕ(x) ∈ Fp

}
, 1 ≤ p ≤ ∞, μ ∈ C.

We present here two theorems that are special cases of theorems from [5].

Theorem 1 Let α ∈ R. For all p,μ and ν > 0 such that μ �= 1
p
−2m,

γ �= 1
p
−μ−2m+1, m=1, 2. . . the operator Bαγ,0+ is a continuous linear mapping

from Fp,μ into Fp,μ−2α. If also 2α �= μ− 1
p

+ 2m and γ − 2α �= 1
p

−μ− 2m+ 1,
m = 1, 2 . . ., then Bαγ,0+ a homeomorphism from Fp,μ onto Fp,μ−2α with inverse

B−α
γ,0+.

Theorem 2 Let α ∈ R. For all p,μ and γ > 0 such that μ �= 1
p
−2m + 1,

γ �= 1
p
−μ−2m, m=1, 2. . . the operator Bαγ,− is a continuous linear mapping from

Fq,−μ+2α into Fq,μ, where 1
q

= 1 − 1
p

. If also 2α �= μ − 1
p

+ 2m − 1 and

γ + 2α �= μ− 1
p

+ 2m, m = 1, 2 . . ., then Bαγ,− a homeomorphism from Fq,−μ+2α

onto Fq,−μ with inverse B−α
γ,−.

3 Factorisation

Following [6] and [5] we present next results.
Let Re (2η + μ) + 2 > 1/p, and ϕ ∈ Fp,μ. For Reα > 0, we define Iη,α2 ϕ by

formula

I
η,α
2 ϕ(x) = 2

(α)
x−2η−2α

x∫

0

(x2 − u2)α−1u2η+1ϕ(u)du. (15)

Let Re (2η − μ) > −1/p, and ϕ ∈ Fp,μ. For Reα > 0, we define Kη,α2 ϕ by
formula

K
η,α
2 ϕ(x) = 2

(α)
x2η

∞∫

x

(u2 − x2)α−1u1−2(η+α)ϕ(u)du. (16)
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The definitions are extended to Reα ≤ 0 by means of the formulas

I
η,α
2 ϕ = (η + α + 1)Iη,α+1

2 ϕ + 1

2
I
η,α+1
2 x

dϕ

dx
(17)

and

K
η,α

2 ϕ = (η + α)Kη,α+1
2 ϕ − 1

2
K
η,α+1
2 x

dϕ

dx
. (18)

Theorem 3 The next factorizations of (7) and (8) are valid

(B−α
ν,0+ϕ)(x)=

1

(2α)

x∫

0

(u
x

)ν (x2 − u2

2x

)2α−1

2F1

(
α + ν − 1

2
, α; 2α; 1 − u2

x2

)
ϕ(u)du =

=
(x

2

)2α
I
ν−1

2 ,α

2 I
0,α
2 ϕ, (19)

(B−α
ν,−f )(x) = 1

(2α)

∞∫

x

(
y2−x2

2y

)2α−1

2F1

(
α+ν−1

2
, α; 2α; 1−x

2

y2

)
f (y)dy =

= 2−2αK
1−ν

2 ,α

2 K
0,α
2 x2αϕ (20)

where

I
0,α
2 ϕ(x) = 2

(α)
x−2α

x∫

0

(x2 − u2)α−1uϕ(u)du,

I
ν−1

2 ,α

2 ϕ(x) = 2

(α)
x1−ν−2α

x∫

0

(x2 − u2)α−1uνϕ(u)du,

K
0,α
2 ϕ(x) = 2

(α)

∞∫

x

(u2 − x2)α−1u1−2αϕ(u)du.

K
1−ν

2 ,α

2 ϕ(x) = 2

(α)
x1−ν

∞∫

x

(u2 − x2)α−1uν−2αϕ(u)du.
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Proof We have

(B−α
ν,0+ϕ)(x) = 1

(2α)

x∫

0

(u
x

)ν (x2 − u2

2x

)2α−1

2F1

(
α + ν − 1

2
, α; 2α; 1 − u2

x2

)
ϕ(u)du =

= 2−2αx2αI
ν−1

2 ,α

2 I
0,α
2 ϕ =

= 21−2αx2α

(α)
I
ν−1

2 ,α

2 y−2α

y∫

0

(y2 − u2)α−1uϕ(u)du =

= 22−2αx2α

2(α)
x−ν+1−2α

x∫

0

(x2 − y2)α−1yν−2αdy

y∫

0

(y2 − u2)α−1uϕ(u)du =

= 22−2α

2(α)
x1−ν

x∫

0

uϕ(u)du

x∫

u

(y2 − u2)α−1(x2 − y2)α−1yν−2αdy.

Let find

x∫

u

(y2 −u2)α−1(x2 − y2)α−1yν−2αdy = {y2 = t} = 1

2

x2∫

u2

(t −u2)α−1(x2 − t )α−1t
ν−1

2 −αdt =

=
√
π(α)

22α
(
α + 1

2

) (
x2 − u2

)2α−1
u−2α+ν−1

2F1

(
α + 1 − ν

2
, α; 2α; 1 − x2

u2

)
.

Using formula

2F1(a, b; c; z) = (1 − z)−a 2F1

(
a, c − b; c; z

z− 1

)

we obtain

2F1

(
α + 1 − ν

2
, α; 2α; 1 − x2

u2

)
= 2F1

(
α, α + 1 − ν

2
; 2α; 1 − x2

u2

)
=

=
(
x2

u2

)−α
2F1

(
α, α + ν − 1

2
; 2α; 1 − u2

x2

)
=

(
x2

u2

)−α
2F1

(
α + ν − 1

2
, α; 2α; 1 − u2

x2

)
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and

x∫

u

(y2 − u2)α−1(x2 − y2)α−1yν−2αdy =

=
√
π(α)

22α
(
α + 1

2

) (
x2 − u2

)2α−1
u−2α+ν−1

(
x2

u2

)−α
2F1

(
α, α + ν − 1

2
; 2α; 1 − u2

x2

)
=

=
√
π(α)

22α
(
α + 1

2

) (
x2 − u2

)2α−1
uν−1x−2α

2F1

(
α, α + ν − 1

2
; 2α; 1 − u2

x2

)
.

Finally

(B−α
ν,0+ϕ)(x)=

22(1−2α)√π
(α)

(
α + 1

2

) x1−ν−2α

x∫

0

(
x2 − u2

)2α−1
uν

2F1

(
α + ν − 1

2
, α; 2α; 1 − u2

x2

)
ϕ(u)du.

Applying the duplication formula

(α)

(
α + 1

2

)
= 21−2α√π(2α)

we obtain

(B−α
ν,0+ϕ)(x)=

21−2α

(2α)
x1−ν−2α

x∫

0

(
x2 − u2

)2α−1
uν 2F1

(
α + ν − 1

2
, α; 2α; 1 − u2

x2

)
ϕ(u)du =

= 1

(2α)

x∫

0

(
x2 − u2

2x

)2α−1 (u
x

)ν
2F1

(
α + ν − 1

2
, α; 2α; 1 − u2

x2

)
ϕ(u)du.

which gives (19).
Now we proof (20). We have

B−α
ν,−ϕ = 2−2αK

1−ν
2 ,α

2 K
0,α
2 x2αϕ =

= 21−2α

(α)
K

1−ν
2 ,α

2

∞∫

y

(u2 − y2)α−1uϕ(u)du =
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= 22−2α

2(α)
x1−ν

∞∫

x

(y2 − x2)α−1yν−2αdy

∞∫

y

(u2 − y2)α−1uϕ(u)du =

= 22−2α

2(α)
x1−ν

∞∫

x

uϕ(u)du

u∫

x

(u2 − y2)α−1(y2 − x2)α−1yν−2αdy.

For inner integral we have

u∫

x

(y2 − x2)α−1(u2 − y2)α−1yν−2αdy =

= 1

2

21−2α√π(α)

(
α + 1

2

) (
u2 − x2

)2α−1
xν−1u−2α

2F1

(
α, α + ν − 1

2
; 2α; 1 − x2

u2

)

and

B−α
ν,−ϕ = 21−2α

2(α)

21−2α√π(α)

(
α + 1

2

) x1−ν×

×
∞∫

x

(
u2 − x2

)2α−1
xν−1u−2α

2F1

(
α, α + ν − 1

2
; 2α; 1 − x2

u2

)
uϕ(u)du =

= 21−2α

(2α)

∞∫

x

(
u2 − x2

)2α−1
u1−2α

2F1

(
α, α + ν − 1

2
; 2α; 1 − x2

u2

)
ϕ(u)du =

= 1

(2α)

∞∫

x

(
u2 − x2

2u

)2α−1

2F1

(
α + ν − 1

2
, α; 2α; 1 − x2

u2

)
ϕ(u)du.

Which coincides with formula (20).
The proof is complete. ��
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4 Resolvent for Fractional Powers of the Bessel Differential
Operator

We consider resolvents for integral operators at standard setting, cf. [25]. For any
linear operator A on some Banach space � let us consider the equation

(A− λI) g = f ; λ ∈ C; f, g ∈ �, (21)

and its solution as resolvent operator due to the well-known formula from [25]

g = Rλf = (A− λI)−1 f = − (λI − A)−1 f = − 1

λ

(
I − 1

λ
A

)−1

f

= − 1

λ

∞∑
k=0

(
1

λ
A

)k
f = − 1

λ
f − 1

λ

( ∞∑
k=1

Ak

λk
f

)
. (22)

Note that if integral representations are known for all powersAk , then an integral
representation for the resolvent is readily following from (21), of course if the series
are convergent. In this way it is possible to get resolvent operators for the Riemann–
Liouville fractional integrals, known as the Hille–Tamarkin formula [4] (in fact first
proved by M.M. Dzhrbashyan in [26]), and also for the Erdélyi–Kober fractional
integrals but we omit it here.

Theorem 4 For a resolvent operator of (B−α
ν,−) the next formula is valid

Rλf = − 1

λ
f − 1

λ2

+∞∫

x

f (y)

(
y2 − x2

2y

)2α−1

dy

1∫

0

tα−1(1 − t)α−1

×
(

1 −
(

1 − x2

y2

)
t

)−α− ν−1
2

E(α,α),(α,α)

(
1

λ

(
1

4

t (1 − t)(y2 − x2)2

y2 − (y2 − x2)t

)α)
dt,

with the Wright or generalized (multi-index) Mittag–Leffler function

E(1/ρi),(μi)(z) =
∞∑
k=0

zk

(μ1 + k/ρ1) . . . (μm + k/ρm) , (23)

cf. [10, 27–32].



630 E. L. Shishkina and S. M. Sitnik

Proof Let us consider

(B−α
ν,− f )(x) = 1

(2α)

+∞∫

x

(
y2 − x2

2y

)2α−1

2F1

(
α + ν − 1

2
, α; 2α; 1 − x2

y2

)
f (y)dy.

Using the group property or index law, we have

(B−α
ν,− f )k = B−αk

ν,− f.

Then from (22) we obtain

Rλf = − 1

λ
f − 1

λ

( ∞∑
k=1

1

λk
B−αk
ν,− f

)
= − 1

λ
f − 1

λ

( ∞∑
k=1

1

λk(2αk)

×
+∞∫

x

(
y2 − x2

2y

)2αk−1

2F1

(
αk + ν − 1

2
, αk; 2αk; 1 − x2

y2

)
f (y)dy

)

= − 1

λ
f − 1

λ

⎛
⎝

+∞∫

x

f (y)dy

∞∑
k=1

[
1

λk(2αk)

(
y2 − x2

2y

)2αk−1

× 2F1

(
αk + ν − 1

2
, αk; 2αk; 1 − x2

y2

)])
.

Using the integral representation for the hypergeometric function for c−a−b > 0:

F(a, b; c; z) = (c)

(b)(c − b)
1∫

0

tb−1(1 − t)c−b−1(1 − tz)−a dt,

we obtain

Rλf = − 1

λ
f − 1

λ

+∞∫

x

f (y)dy

1∫

0

∞∑
k=1

1

λk2(αk)

(
y2 − x2

2y

)2αk−1

tαk−1(1− t)αk−1

×
(

1 −
(

1 − x2

y2

)
t

)−αk− ν−1
2

dt
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= {k = p+1} = − 1

λ
f− 1

λ

+∞∫

x

f (y)dy

1∫

0

∞∑
p=0

1

λp+12(α(p + 1))

(
y2 − x2

2y

)2α(p+1)−1

×tα(p+1)−1(1 − t)α(p+1)−1
(

1 −
(

1 − x2

y2

)
t

)−α(p+1)− ν−1
2

dt

= − 1

λ
f− 1

λ

+∞∫

x

f (y)

(
y2 − x2

2y

)2α−1

dy

1∫

0

tα−1(1−t)α−1
(

1 −
(

1 − x2

y2

)
t

)−α− ν−1
2

×
∞∑
p=0

1

λp+12(α(p + 1))

(
y2 − x2

2y

)2αp

tαp(1 − t)αp
(

1 −
(

1 − x2

y2

)
t

)−αp
dt

= − 1

λ
f− 1

λ2

+∞∫

x

f (y)

(
y2 − x2

2y

)2α−1

dy

1∫

0

tα−1(1−t)α−1
(

1 −
(

1 − x2

y2

)
t

)−α− ν−1
2

×
∞∑
p=0

1

2(α + αp)

[
1

λ

(
1

4

t (1 − t)(y2 − x2)2

y2 − (y2 − x2)t

)α]p
dt. (24)

The function in (24) is a special case of the Wright generalized hypergeometric
function defined above as (23). So it follows

∞∑
p=0

1

2(α + αp)

[
1

λ

(
1

4

t (1 − t)(y2 − x2)2

y2 − (y2 − x2)t

)α]p

= E(α,α),(α,α)
(

1

λ

(
1

4

t (1 − t)(y2 − x2)2

y2 − (y2 − x2)t

)α)
,

and we finally derive

Rλf = − 1

λ
f − 1

λ2

+∞∫

x

f (y)

(
y2 − x2

2y

)2α−1

dy

1∫

0

tα−1(1 − t)α−1

×
(

1 −
(

1 − x2

y2

)
t

)−α− ν−1
2

E(α,α),(α,α)

(
1

λ

(
1

4

t (1 − t)(y2 − x2)2

y2 − (y2 − x2)t

)α)
dt.

��
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5 Integral Transforms

Integral transform maps the original space into or onto the image space. Wherein
usually difficult operations in the original space are converted in general into
simple operations in the image space. For example, the Fourier transform converts
a derivative of order n into multiplication by the n power of the variable with some
constant. This is the reason that the Fourier transform is beneficial to use for solution
to differential equations. Since the Hankel transform applied to a Bessel operator
of order n gives multiplication of a Hankel image of a function by the 2n power
of the variable with some constant this transform is used instead of the Fourier
transform when differential equation with the Bessel operator is solved. But the
action of Hankel transform to the fractional Bessel derivatives of order α on semi-
axes gives multiplication of the 2α power of the variable by not a Hankel image
of a function with some constant (see Theorem 7). In this section we collect some
integral transforms which can be used to solve differential equations the fractional
Bessel derivatives on semi-axes.

5.1 The Mellin Transform

Using the following formula 2.21.1.11 from [33, p. 265] of the form

z∫

0

xα−1(z − x)c−1
2F1

(
a, b; c; 1−x

z

)
dx=zc+α−1

[
c, α, c−a−b+α

c−a + α, c−b+α

]
,

(25)

z > 0, Re c > 0, Re (c − a − b + α) > 0,

we prove next theorems.

Theorem 5 Let α > 0. Mellin transforms of the IBαν,− and the IBαν,0+ are

MIBαν,−f (s) = 1

22α


[
s
2 ,

s
2 − ν−1

2

α + s
2 − ν−1

2 , α + s
2

]
f ∗(2α + s), s > ν − 1, IBαν,−f ∈ P ba ,

(26)

MIBαν,0+f (s) = 1

22α


[
ν−s+1

2 − α, 1 − s
2 − α

1 − s
2 ,

ν−s+1
2

]
f ∗(2α+s), 2α+s < 2, IBαν,0+f ∈ P ba .

(27)
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Proof Let start from the definitions

((IBαν,−f )(x))∗(s) =
∞∫

0

xs−1(IBαν,−f )(x)dx =

= 1

(2α)

∞∫

0

xs−1dx

+∞∫

x

(
y2 − x2

2y

)2α−1

2F1

(
α + ν − 1

2
, α; 2α; 1 − x2

y2

)
f (y)dy

= 1

(2α)

∞∫

0

f (y)(2y)1−2αdy

y∫

0

(y2−x2)2α−1
2F1

(
α + ν − 1

2
, α; 2α; 1 − x2

y2

)
xs−1dx.

Using (25) let us find inner integral for s > ν − 1

y∫

0

(y2 − x2)2α−1
2F1

(
α + ν − 1

2
, α; 2α; 1 − x2

y2

)
xs−1dx

= y4α+s−2

2


[
2α, s

2 ,
s
2 − ν−1

2
α + s

2 − ν−1
2 , α + s

2

]
.

We obtain

((IBαν,−f )(x))∗(s) = 1

22α 

[
s
2 ,

s
2 − ν−1

2
α + s

2 − ν−1
2 , α + s

2

] ∞∫

0

f (y)y2α+s−1dy =

= 1

22α 

[
s
2 ,

s
2 − ν−1

2
α + s

2 − ν−1
2 , α + s

2

]
f ∗(2α + s).

Similarly we have

((IBαν,0+f )(x))∗(s) =
∞∫

0

xs−1(B−α
ν,0+f )(x)dx =

= 1

(2α)

∞∫

0

xs−1dx

x∫

0

(y
x

)ν (x2−y2

2x

)2α−1

2F1

(
α+ν−1

2
, α; 2α; 1−y

2

x2

)
f (y)dy =

= 1

(2α)

∞∫

0

f (y)yνdy

∞∫

y

(
1

x

)ν (
x2−y2

2x

)2α−1

2F1

(
α+ν−1

2
, α; 2α; 1−y

2

x2

)
xs−1dx.
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Let find inner integral

∞∫

y

(
1

x

)ν (
x2−y2

2x

)2α−1

2F1

(
α+ν−1

2
, α; 2α; 1−y

2

x2

)
xs−1dx =

= 21−2α

∞∫

y

(
1

x

)2α−s+ν (
x2−y2

)2α−1
2F1

(
α+ν−1

2
, α; 2α; 1−y

2

x2

)
dx =

{
1

x
= t

}
=

= 21−2α

1/y∫

0

tν−2α−s (1−t2y2
)2α−1

2F1

(
α+ν−1

2
, α; 2α; 1−t2y2

)
dt = {ty = z} =

= 21−2αy2α+s−ν−1

1∫

0

zν−2α−s (1−z2
)2α−1

2F1

(
α+ν−1

2
, α; 2α; 1−z2

)
dz = {z2 = s} =

= 1

22α y
2α+s−ν−1

1∫

0

s
ν−s−1

2 −α (1−s)2α−1
2F1

(
α+ν−1

2
, α; 2α; 1−s

)
ds.

Using (25) we get for 2α + s < 2

1∫

0

s
ν−s−1

2 −α (1−s)2α−1
2F1

(
α+ν−1

2
, α; 2α; 1−s

)
ds

= 1

22α y
2α+s−ν−1

[
2α, ν−s+1

2 − α, 1 − s
2 − α

1 − s
2 ,

ν−s+1
2

]

and

((B−α
ν,0+f )(x))

∗(s) = 1

22α 

[
ν−s+1

2 − α, 1 − s
2 − α

1 − s
2 ,

ν−s+1
2

] ∞∫

0

f (y)y2α+s−1dy =

= 1

22α 

[
ν−s+1

2 − α, 1 − s
2 − α

1 − s
2 ,

ν−s+1
2

]
f ∗(2α + s).

This complete the proof. ��
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In order to obtain formulas for Mellin transform of fractional Bessel derivatives
on semi-axes we should proof next statement.

Lemma 1 Let Bnν f ∈ Pba then for n ∈ N

MBnν f (s) = 22n

[
n+ 1 − s

2
1−s+ν

2 + n
1 − s

2
1−s+ν

2

]
f ∗(s − 2n). (28)

Proof Using formulas for Mellin transform from [34] we get

Mf ′(s) = (1 − s)Mf (s − 1), M1

x
f (s) = Mf (s − 1),

M1

x
f ′(s) = (Mf ′(t − 1))(s) = (2 − s)Mf (s − 2),

Mf ′′(s) = (2 − s)(1 − s)Mf (s − 2),

MBνf (s) = (2−s)(1−s)f ∗(s−2)+ν(2−s)f ∗(s−2) = (2−s)(1−s+ν)f ∗(s−2).

So

MBνf (s) = (2 − s)(1 − s + ν)f ∗(s − 2). (29)

Applying the formula (29) n times we obtain

MBnν f (s) = (2−s)(4−s) . . . (2n−s)(1−s+ν)(3−s+ν) . . . (2n−1−s+ν)f ∗(s−2n).

Since

(2−s)(4−s) . . . (2n−s) = 2n
(

1 − s

2

)(
2 − s

2

)
. . .

(
n− s

2

)
= 2n

(
1 − s

2

)
n

= 2n
(
n+ 1 − s

2

)

(
1 − s

2

)

and

(1 − s + ν)(3 − s + ν) . . . (2n− 1 − s + ν)

= 2n
(

1 − s + ν
2

)(
1 − s + ν

2
+ 1

)
. . .

(
1 − s + ν

2
+ n− 1

)
=

= 2n
(

1 − s + ν
2

)
n

=
2n

(
1−s+ν

2 + n
)


(

1−s+ν
2

) ,
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then

MBnν f (s) = 22n

(
n+ 1 − s

2

)

(

1−s+ν
2 + n

)


(
1 − s

2

)

(

1−s+ν
2

) f ∗(s − 2n) =

= 22n

[
n+ 1 − s

2
1−s+ν

2 + n
1 − s

2
1−s+ν

2

]
f ∗(s − 2n).

It completes the proof ��
Theorem 6 Let α > 0, n = [α] + 1. Mellin transforms of the DBαν,− and the
DBαν,0+ are

MDBαν,−f (s) = 22α 

[
s
2 ,

s
2 − ν−1

2
s
2 − α − ν−1

2 ,
s
2 − α

]
f ∗(s−2α), s−2n > ν−1, IBn−αν,− f ∈ P ba ,

(30)

MDBαν,0+f (s) = 22α

[
1 − s

2 + α, ν−s+1
2 + α

1 − s
2 ,

ν−s+1
2

]
f ∗(s−2α), 2α−2n+s < 2, IBn−αν,0+f ∈ P ba .

(31)

Proof Applying (26) and (28) we obtain

((DBαν,−f )(x))∗(s) = ((Bnν (IBn−αν,− f (x))∗(s) =

= 22n

[
n+ 1 − s

2
1−s+ν

2 + n
1 − s

2
1−s+ν

2

]
((IBn−αν,− f (x))∗(s − 2n) =

= 22α

[
n+ 1 − s

2
1−s+ν

2 + n
1 − s

2
1−s+ν

2

]


[
s
2 − n, s

2 − n− ν−1
2

s
2 − α − ν−1

2 ,
s
2 − α

]
f ∗(s − 2α).

(32)

Using the formula

(1 − z)(z) = π

sin (πz)
, z �∈ Z

in the numerator we get


(

1 + n− s

2

)

( s

2
− n

)
= π

sin( s2 − n)π = (−1)nπ

sin( s2 )π
,



(
1 − s + ν

2
+ n

)


(
s − ν + 1

2
− n

)
= 

(
1 − 1 − s + ν

2
− n

)


(
1 − s + ν

2
+ n

)
=

= π

sin( 1−s+ν
2 + n)π = (−1)nπ

sin( 1−s+ν
2 )π

.
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So

(−1)nπ


(

1−s+ν
2

)
sin( 1−s+ν

2 )π
= (−1)n

(
1 + s − ν

2

)
,

(−1)nπ


(
1 − s

2

)
sin( s2 )π

= (−1)n
( s

2

)
.

Substituting the found expressions in (32) we obtain (30).
Similarly, using (27) and (28) we

((DBαν,0+f )(x))
∗(s) = ((Bnν (IBn−αν,0+f (x))

∗(s) =

= 22n

[
n+ 1 − s

2
1−s+ν

2 + n
1 − s

2
1−s+ν

2

]
((IBn−αν,0+f (x))

∗(s − 2n) =

= 22α

[
n+ 1 − s

2
1−s+ν

2 + n
1 − s

2
1−s+ν

2

]


[
1 − s

2 + α, ν−s+1
2 + α

1 − s
2 + n, ν−s+1

2 + n
]
f ∗(s − 2α) =

= 22α

[
1 − s

2 + α, ν−s2 + α
1 − s

2 ,
ν−s+1

2

]
f ∗(s − 2α).

��

5.2 The Hankel Transform

Theorem 7 Let B−α
ν,0+ϕ,B

−α
ν,−ϕ∈Lν1(R+), then

Fν[(B−α
ν,0+ϕ)(x)](ξ) = ξ−2α

∞∫

0

ϕ(t)
[
cos(απ)j ν−1

2
(ξ t)− sin(απ)y ν−1

2
(ξ t)

]
tνdt,

4α − 2 < ν < 4 − 2α, (33)

Fν [(B−α
ν,−ϕ)](ξ) = ξ−2α

∞∫

0

j1
ν−1

2 ,α
(tξ)ϕ(t)tνdt, (34)
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where

j1
ν−1

2 ,α
(tξ) =

2
ν−1

2 
(
ν+1

2

)

(tξ)
ν−1

2

J 1
ν−1

2 ,α
(tξ),

J 1
ν−1

2 ,α
(tξ) =

∞∑
n=0

(−1)n

(α + n+ 1)
(
ν+1

2 + α + n
)
(
tξ

2

)2n+ ν−1
2 +2α

.

Proof Using factorization formula (19) and denoting g(x) = I 0,α
2 ϕ(x) we obtain

Fν[(B−α
ν,0+ϕ)(x)](ξ) =

∞∫

0

j ν−1
2
(xξ) (B−α

ν,0+ϕ)(x)x
ν dx =

= 1

22α

∞∫

0

j ν−1
2
(xξ) I

ν−1
2 ,α

2 I
0,α
2 ϕ(x)x2α+ν dx = 1

22α

∞∫

0

j ν−1
2
(xξ) I

ν−1
2 ,α

2 g(x)x2α+ν dx =

= 1

22α−1(α)

∞∫

0

j ν−1
2
(xξ) x dx

x∫

0

(x2 − u2)α−1uνg(u)du =

= 1

22α−1(α)

∞∫

0

uνg(u)du

∞∫

u

(x2 − u2)α−1j ν−1
2
(xξ) x dx.

Let consider inner integral

∞∫

u

(x2−u2)α−1j ν−1
2
(xξ) x dx =

2
ν−1

2 
(
ν+1

2

)

ξ
ν−1

2

∞∫

u

(x2−u2)α−1J ν−1
2
(xξ) x1− ν−1

2 dx.

Using the formula 2.12.4.17 from [20] of the form

∞∫

a

x1−ρ(x2 − a2)β−1Jρ(cx)dx = 2β−1aβ−ρc−β(β)Jρ−β(ac),

a, c, β > 0; (2β − ρ) < 3/2
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we obtain for 4α − ν < 2

∞∫

u

(x2 − u2)α−1J ν−1
2
(xξ) x1− ν−1

2 dx = 2α−1uα− ν−1
2 ξ−α(α)J ν−1

2 −α(uξ)

and

Fν[(B−α
ν,0+ϕ)(x)](ξ) =

2
ν−1

2 −α
(
ν+1

2

)

ξ
ν−1

2 +α

∞∫

0

uα+ ν+1
2 J ν−1

2 −α(uξ)g(u)du =

=
2
ν+1

2 −α
(
ν+1

2

)

(α)ξ
ν−1

2 +α

∞∫

0

u
ν+1

2 −αJ ν−1
2 −α(uξ)du

u∫

0

(u2 − y2)α−1yϕ(y)dy =

=
2
ν+1

2 −α
(
ν+1

2

)

(α)ξ
ν−1

2 +α

∞∫

0

yϕ(y)dy

∞∫

y

(u2 − y2)α−1u
ν+1

2 −αJ ν−1
2 −α(uξ)du.

Let calculate inner integral using the formula 2.12.4.17 from [20] of the form

∞∫

a

x1+ρ(x2−a2)β−1Jρ(cx)dx = 2β−1aβ+ρc−β(β)[cos(βπ)Jρ+β(ac)−sin(βπ)Yρ+β(ac)],

a, c, β > 0; (2β + ρ) < 3/2

we obtain

∞∫

y

(u2−y2)α−1u
ν+1

2 −αJ ν−1
2 −α(uξ)du=2α−1y

ν−1
2 ξ−α(α)[cos(απ)J ν−1

2
(ξy)−sin(απ)Y ν−1

2
(ξy)]

for 2α + ν < 4 and

Fν[(B−α
ν,0+ϕ)(x)](ξ) =

=
2
ν−1

2 
(
ν+1

2

)

ξ
ν−1

2 +2α

∞∫

0

y
ν+1

2 ϕ(y)[cos(απ)J ν−1
2
(ξy)− sin(απ)Yν−1

2
(ξy)]dy =

= ξ−2α

∞∫

0

ϕ(t)
[
cos(απ)j ν−1

2
(ξ t)− sin(απ)y ν−1

2
(ξ t)

]
tνdt.
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So (33) is proved.
Now let consider (34). Let g(x) = K0,α

2 x2αϕ(x). Using factorization (20) we get

Fν[(B−α
ν,−ϕ)](ξ) = 2−2α

∞∫

0

j ν−1
2
(xξ) xν K

1−ν
2 ,α

2 K
0,α
2 x2αϕ(x)dx =

= 2−2α

∞∫

0

j ν−1
2
(xξ) xν K

1−ν
2 ,α

2 g(x)dx = 21−2α

(α)

∞∫

0

j ν−1
2
(xξ) xdx

∞∫

x

(u2 −x2)α−1uν−2αg(u)du =

= 21−2α

(α)

∞∫

0

g(u)uν−2αdu

u∫

0

j ν−1
2
(xξ)(u2 − x2)α−1xdx.

Using the formula 2.12.4.7 from [20] of the form

a∫

0

x1−ρ(a2 − x2)β−1Jρ(cx)dx = 21−ρaβ−ρ

cβ(ρ)
sρ+β−1,β−ρ(ac),

a > 0; Re β > 0

we obtain for inner integral

u∫

0

(u2−x2)α−1j ν−1
2
(xξ) x dx=

2
ν−1

2 
(
ν+1

2

)

ξ
ν−1

2

u∫

0

(u2−x2)α−1J ν−1
2
(xξ) x1− ν−1

2 dx=

= (α)

2(α + 1)
u2α

1F2

(
1; α + 1,

ν + 1

2
; −u

2ξ2

4

)
.

So

Fν[(B−α
ν,−ϕ)](ξ) = 1

22α(α + 1)

∞∫

0

1F2

(
1; α + 1,

ν + 1

2
; −u

2ξ2

4

)
g(u)uνdu =

= 1

22α(α + 1)

∞∫

0

1F2

(
1; α + 1,

ν + 1

2
; −u

2ξ2

4

)
uνK

0,α
2 u2αϕ(u)du =
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= 1

22α−1(α)(α + 1)

∞∫

0

1F2

(
1;α + 1,

ν + 1

2
; −u

2ξ2

4

)
uνdu

∞∫

u

(t2−u2)α−1tϕ(t)dt =

= 1

22α−1(α)(α + 1)

∞∫

0

tϕ(t)dt

t∫

0

(t2 −u2)α−1
1F2

(
1;α + 1,

ν + 1

2
;−u

2ξ2

4

)
uνdu.

Using Wolfram Mathematica we obtain

t∫

0

(t2 − u2)α−1
1F2

(
1; α + 1,

ν + 1

2
; −u

2ξ2

4

)
uνdu =

=
(α)

(
ν+1

2

)

2
(
α + ν+1

2

) t2α+ν−1
1F2

(
1; α + 1, α + ν + 1

2
; − t

2ξ2

4

)

and

Fν[(B−α
ν,−ϕ)](ξ) =

=

(
ν+1

2

)

22α(α + 1)
(
α + ν+1

2

)
∞∫

0

ϕ(t) t2α+ν
1F2

(
1; α + 1, α + ν + 1

2
; − t

2ξ2

4

)
dt.

Since

1F2

(
1; α + 1, α + ν + 1

2
; − t

2ξ2

4

)
= (α + 1)

(
α + ν + 1

2

)

∞∑
n=0

(−1)n

(α + n+ 1)
(
α + ν+1

2 + n
)
(
tξ

2

)2n

and the Wright function through which the Hankel transform of B−α
ν,−ϕ is expressed

in [22] is given by

J 1
ν−1

2 ,α
(tξ) =

∞∑
n=0

(−1)n

(α + n+ 1)
(
ν+1

2 + α + n
)
(
tξ

2

)2n+ ν−1
2 +2α



642 E. L. Shishkina and S. M. Sitnik

we obtain

Fν[(B−α
ν,−ϕ)](ξ) =

2
ν−1

2 
(
ν+1

2

)

ξ
ν−1

2

ξ−2α

∞∫

0

ϕ(t) t
ν+1

2 J 1
ν−1

2 ,α
(tξ )dt = ξ−2α

∞∫

0

j1
ν−1

2 ,α
(tξ )ϕ(t)tνdt.

The (34) is proved.
��

Since Fν [(Bnν ϕ)](ξ)=(−1)nξ2nFν[ϕ](ξ) we obtain for Bαν,0+ϕ,B
α
ν,−ϕ∈Lν1(R+)

Fν[(Bαν,0+ϕ)(x)](ξ)=Fν[(Bnν B−(n−α)
ν,0+ ϕ)(x)](ξ)=(−1)nξ2nFν[B−(n−α)

ν,0+ ϕ(x)](ξ)=

= (−1)nξ2α

∞∫

0

ϕ(t)
[
cos((n− α)π)j ν−1

2
(ξ t) − sin((n− α)π)y ν−1

2
(ξ t)

]
tνdt,

n = [α] + 1, 4(n− α)− 2 < ν < 4 − 2(n− α)

and

Fν[(Bαν,−ϕ)(x)](ξ) = Fν [(Bnν B−(n−α)
ν,− ϕ)(x)](ξ)=(−1)nξ2nFν[B−(n−α)

ν,− ϕ(x)](ξ) =

= (−1)nξ2α

∞∫

0

j1
ν−1

2 ,n−α(tξ)ϕ(t)t
νdt, n = [α] + 1.

5.3 The Meijer Transform

Theorem 8 The Meijer transforms of B−α
ν,0+, B−α

ν,− for proper functions are

Kν[(B−α
ν,0+ϕ)(x)](ξ) = ξ−2αKνϕ(ξ), (35)

Kν[(B−α
ν,−ϕ)(x)](ξ ) = (36)

=

(

1−ν
2

)
2

(
ν+1

2

)

22α(α + 1)
(
α + ν+1

2

)
∞∫

0

ϕ(t)t2α+ν
1F2

(
1; α + 1, α + ν + 1

2
; t

2ξ2

4

)
dt−

−
π2ν−2α−2

(
ν+1

2

)

(α + 1)
(
α + 3−ν

2

)
cos

(
πν
2

)ξ1−ν
∞∫

0

ϕ(t)t2α+1
1F2

(
1;α + 1, α + 3 − ν

2
; t

2ξ2

4

)
dt.
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Proof We start with (35). Let g(x) = I
0,α
2 ϕ(x). Then using the factorization (19)

we obtain

Kν[(B−α
ν,0+ϕ)(x)](ξ) =

∞∫

0

k ν−1
2
(xξ) (B−α

ν,0+ϕ)(x)x
ν dx =

= 1

22α

∞∫

0

k ν−1
2
(xξ) I

ν−1
2 ,α

2 I
0,α
2 ϕ(x)x2α+ν dx = 1

22α

∞∫

0

k ν−1
2
(xξ) I

ν−1
2 ,α

2 g(x)x2α+ν dx =

= 1

22α−1(α)

∞∫

0

k ν−1
2
(xξ) x dx

x∫

0

(x2 − u2)α−1uνg(u)du =

= 1

22α−1(α)

∞∫

0

uνg(u)du

∞∫

u

(x2 − u2)α−1k ν−1
2
(xξ) x dx.

Let consider the inner integral. Using the formula 2.16.3.7 from [20] of the form

∞∫

a

x1±ρ(x2 − a2)β−1Kρ(cx)dx = 2β−1aβ±ρc−β(β)Kρ±β(ac), a, c, β > 0

(37)

we get

∞∫

u

(x2−u2)α−1k ν−1
2
(xξ) x dx=

2
ν−1

2 
(
ν+1

2

)

ξ
ν−1

2

∞∫

u

(x2−u2)α−1Kν−1
2
(xξ) x1− ν−1

2 dx=

=
2
ν−1

2 
(
ν+1

2

)

ξ
ν−1

2

· 2α−1uα− ν−1
2 ξ−α(α)Kν−1

2 −α(uξ)
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and

Kν[(B−α
ν,0+ϕ)(x)](ξ) =

2
ν−1

2 −α
(
ν+1

2

)

ξ
ν−1

2 +α

∞∫

0

uα+ ν+1
2 Kν−1

2 −α(uξ)g(u)du =

=
2
ν+1

2 −α
(
ν+1

2

)

(α)ξ
ν−1

2 +α

∞∫

0

u
ν+1

2 −αKν−1
2 −α(uξ)du

u∫

0

(u2 − t2)α−1tϕ(t)dt =

=
2
ν+1

2 −α
(
ν+1

2

)

(α)ξ
ν−1

2 +α

∞∫

0

tϕ(t)dt

∞∫

t

(u2 − t2)α−1u
ν+1

2 −αKν−1
2 −α(uξ)du.

Using again (37) we can write

∞∫

t

(u2 − t2)α−1u
ν+1

2 −αKν−1
2 −α(uξ)du = 2α−1t

ν−1
2 ξ−α(α)Kν−1

2
(tξ)

and

Kν[(B−α
ν,0+ϕ)(x)](ξ) =

2
ν+1

2 −α
(
ν+1

2

)

(α)ξ
ν−1

2 +α · 2α−1ξ−α(α)
∞∫

0

ϕ(t)Kν−1
2
(tξ)t

ν+1
2

dt = ξ−2α

∞∫

0

ϕ(t)k ν−1
2
(tξ)tνdt =

= ξ−2αKνϕ.

Now let prove (36). Let g(x) = K0,α
2 x2αϕ(x). Then using the factorization (20)

we obtain

Kν[(B−α
ν,−ϕ)(x)](ξ) =

∞∫

0

k ν−1
2
(xξ) (B−α

ν,0−ϕ)(x)x
ν dx =

= 2−2α

∞∫

0

k ν−1
2
(xξ) xν K

1−ν
2 ,α

2 K
0,α
2 x2αϕ(x) dx =
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= 21−2α

(α)

∞∫

0

k ν−1
2
(xξ) xdx

∞∫

x

(u2 − x2)α−1uν−2αg(u)du =

= 21−2α

(α)

∞∫

0

uν−2αg(u)du

u∫

0

(u2 − x2)α−1k ν−1
2
(xξ) xdx.

Let consider the inner integral

u∫

0

(u2−x2)α−1k ν−1
2
(xξ) xdx =

2
ν−1

2 
(
ν+1

2

)

ξ
ν−1

2

u∫

0

(u2−x2)α−1Kν−1
2
(xξ) x1− ν−1

2 dx.

Using the formula 2.16.3.3 from [20] of the form

a∫

0

x1−ρ(a2 − x2)β−1Kρ(cx)dx = π2β−2aβ−ρ

cβ sin ρπ
(β)Iβ−ρ(ac)+

+ a
2βcν

2ρ+2β
(−ρ) 1F2

(
1; ρ + 1, β; a

2c2

4

)
, a, β > 0, ρ < 1

we obtain for ν < 3

u∫

0

(u2 − x2)α−1Kν−1
2
(xξ) x1− ν−1

2 dx =
ξ
ν−1

2 
(

1−ν
2

)

2
ν+3

2 α
u2α

1F2

(
1;α + 1,

ν

2
+ 1

2
; u

2ξ2

4

)
−

−π2α−2(α)

ξα cos
(
πν
2

)uα+ 1−ν
2 I

α+ 1−ν
2
(uξ)

and

u∫

0

(u2 − x2)α−1k ν−1
2
(xξ) xdx =


(

1+ν
2

)

(

1−ν
2

)

2α
u2α

1F2

(
1; α + 1,

ν

2
+ 1

2
; u

2ξ2

4

)
−

−
π2

ν−1
2 +α−2(α)

(
ν+1

2

)

ξα+ ν−1
2 cos

(
πν
2

) uα+ 1−ν
2 Iα+ 1−ν

2
(uξ)
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So

Kν[(B−α
ν,−ϕ)(x)](ξ) =

= 21−2α

(α)

⎡
⎣

(
1+ν

2

)

(

1−ν
2

)

2α

∞∫

0

uν 1F2

(
1; α + 1,

ν

2
+ 1

2
; u

2ξ2

4

)
g(u)du−

−
π2

ν−1
2 +α−2(α)

(
ν+1

2

)

ξα+ ν−1
2 cos

(
πν
2

)
∞∫

0

u
ν+1

2 −αIα+ 1−ν
2
(uξ)g(u)du

⎤
⎦ =

= 22−2α

2(α)

⎡
⎣

(
1+ν

2

)

(

1−ν
2

)

2α

∞∫

0

uν 1F2

(
1;α + 1,

ν

2
+ 1

2
; u

2ξ2

4

)
du

∞∫

u

(t2 − u2)α−1tϕ(t)dt−

−
π2

ν−1
2 +α−2(α)

(
ν+1

2

)

ξα+ ν−1
2 cos

(
πν
2

)
∞∫

0

u
ν+1

2 −αIα+ 1−ν
2
(uξ)du

∞∫

u

(t2 − u2)α−1tϕ(t)dt

⎤
⎦ =

= 22−2α

2(α)

⎡
⎣

(
1+ν

2

)

(

1−ν
2

)

2α

∞∫

0

tϕ(t)dt

t∫

0

(t2 − u2)α−1uν 1F2

(
1;α + 1,

ν

2
+ 1

2
; u

2ξ2

4

)
du−

−
π2

ν−1
2 +α−2(α)

(
ν+1

2

)

ξα+ ν−1
2 cos

(
πν
2

)
∞∫

0

tϕ(t)dt

t∫

0

(t2 − u2)α−1u
ν+1

2 −αIα+ 1−ν
2
(uξ)du

⎤
⎦ .

Using Wolfram Mathematica we obtain

t∫

0

(t2 − u2)α−1uν 1F2

(
1; α + 1,

ν

2
+ 1

2
; u

2ξ2

4

)
du =

(α)
(
ν+1

2

)

2
(
α + ν+1

2

) t2α+ν−1

1F2

(
1; α + 1, α + ν + 1

2
; t

2ξ2

4

)

and

t∫

0

(t2 − u2)α−1u
ν+1

2 −αI
α+ 1−ν

2
(uξ)du = 2

ν−3
2 −α(α)

(α + 1)
(
α + 3−ν

2

) t2αξα− ν
2 + 1

2

1F2

(
1; α + 1, α + 3 − ν

2
; t

2ξ2

4

)
, 2α < ν + 3.
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Finally

Kν[(B−α
ν,−ϕ)(x)](ξ) =

=

(

1−ν
2

)
2

(
ν+1

2

)

22α(α + 1)
(
α + ν+1

2

)
∞∫

0

ϕ(t)t2α+ν
1F2

(
1; α + 1, α + ν + 1

2
; t

2ξ2

4

)
dt−

−
π2ν−2α−2

(
ν+1

2

)

(α + 1)
(
α + 3−ν

2

)
cos

(
πν
2

) ξ1−ν
∞∫

0

ϕ(t)t2α+1
1F2

(
1;α + 1, α + 3 − ν

2
; t

2ξ2

4

)
dt.

��
Since Kν[(Bnν ϕ)](ξ) = ξ2nKν[ϕ](ξ) we obtain for proper functions

Kν[(Bαν,0+ϕ)(x)](ξ) = ξ2αKνϕ(ξ).

5.4 Generalized Whittaker Transform

Theorem 9 The generalized Whittaker transform of B−α
ν,0+ for proper functions is

(
W

ν−1
2

ρ, ν−1
4
B−α
ν,0+f

)
(x) = C(ν, α, ρ)x−2α

(
W

ν−1
2

ρ+α, ν−1
4
f

)
(x),

where

C(ν, α, ρ) =

(
ν+1

4 − α − ρ
)

(

3−ν
4 − α − ρ

)

22α
(
ν+1

4 − ρ
)

(

3−ν
4 − ρ

) .

Proof We have

(
W

ν−1
2

ρ, ν−1
4
B−α
ν,0+f

)
(x) = 1

(2α)

∞∫

0

(xt)
ν−1

2 e
x2t2

2 Wρ, ν−1
4
(x2t2)dt×

×
t∫

0

(y
t

)ν ( t2 − y2

2x

)2α−1

2F1

(
α + ν − 1

2
, α; 2α; 1 − y2

t2

)
f (y)dy =



648 E. L. Shishkina and S. M. Sitnik

= x
ν−1

2

22α−1(2α)

∞∫

0

f (y)yνdy

∞∫

y

t
ν−1

2 −ν−2α+1e
x2t2

2 (t2 − y2)2α−1W
ρ, ν−1

4
(x2t2)

2F1

(
α + ν − 1

2
, α; 2α; 1 − y2

t2

)
dt.

Using formula

2F1(a, b; c; z) = (1 − z)−a 2F1

(
a, c − b; c; z

z− 1

)

we obtain

2F1

(
α + ν − 1

2
, α; 2α; 1 − y2

t2

)
=
(y
t

)1−ν−2α
2F1

(
α + ν − 1

2
, α; 2α; 1 − t2

y2

)

and
(
W

ν−1
2

ρ, ν−1
4
B−α
ν,0+f

)
(x) =

= x
ν−1

2

22α−1(2α)

∞∫

0

f (y)y1−2αdy

∞∫

y

t
ν−1

2 e
x2t2

2 (t2 − y2)2α−1Wρ, ν−1
4
(x2t2)

2F1

(
α + ν − 1

2
, α; 2α; 1 − t2

y2

)
dt.

Let consider an inner integral. We have

∞∫

y

t
ν−1

2 e
x2 t2

2 (t2−y2)2α−1W
ρ, ν−1

4
(x2t2) 2F1

(
α + ν − 1

2
, α; 2α; 1 − t2

y2

)
dt={t2 → t, y2=p} =

= 1

2

∞∫

p

t
ν−1

4 − 1
2 e

x2t
2 (t − p)2α−1Wρ, ν−1

4
(x2t) 2F1

(
α + ν − 1

2
, α; 2α; 1 − t

p

)
dt.
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Using formula 2.21.8.2 from [33] of the form

∞∫

p

t
a+b−c−1

2 (t − p)c−1e
σt
2 Wρ, a+b−c2

(σ t) 2F1

(
a, b; c; 1 − t

p

)
dt =

= p
a+b−1

2

σ
c
2

 (c)
(
a−b−c+1

2 − ρ
)

(
b−a−c+1

2 − ρ
)


(
a+b−c+1

2 − ρ
)

(
c−a−b+1

2 − ρ
) e

σp
2 Wρ+ c

2 ,
a−b

2
(σp),

p,Re c > 0,Re (c + 2ρ) < 1 − |Re(a − b)|; |argσ | < 3π

2

we obtain

a = α + ν − 1

2
, b = α, c = 2α, σ = x2, 2α + 2ρ < 1 −

∣∣∣∣ν − 1

2

∣∣∣∣
and

1

2

∞∫

p

t
ν−1

4 − 1
2 e

x2t
2 (t − p)2α−1W

ρ, ν−1
4
(x2t) 2F1

(
α + ν − 1

2
, α; 2α; 1 − t

p

)
dt =

= 1

2

pα+ ν−3
4

x2α

 (2α) 
(
ν+1

4 − α − ρ
)

(

3−ν
4 − α − ρ

)


(
ν+1

4 − ρ
)

(

3−ν
4 − ρ

) e
x2p

2 Wρ+α, ν−1
4
(x2p) =

= 1

2

y2α+ ν−3
2

x2α

 (2α) 
(
ν+1

4 − α − ρ
)

(

3−ν
4 − α − ρ

)


(
ν+1

4 − ρ
)

(

3−ν
4 − ρ

) e
x2y2

2 W
ρ+α, ν−1

4
(x2y2) =

= A(ν, α, ρ)x−2αy2α+ ν−3
2 e

x2y2

2 W
ρ+α, ν−1

4
(x2y2),

where

A(ν, α, ρ) = 1

2

 (2α) 
(
ν+1

4 − α − ρ
)

(

3−ν
4 − α − ρ

)


(
ν+1

4 − ρ
)

(

3−ν
4 − ρ

)
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Then
(
W

ν−1
2

ρ, ν−1
4
B−α
ν,0+f

)
(x) =

= A(ν, α, ρ) x
ν−1

2 −2α

22α−1(2α)

∞∫

0

f (y)y
ν−1

2 e
x2y2

2 W
ρ+α, ν−1

4
(x2y2)dy =

= C(ν, α, ρ)x−2α

∞∫

0

f (y)(xy)
ν−1

2 e
x2y2

2 W
ρ+α, ν−1

4
(x2y2)dy =

= C(ν, α, ρ)x−2α
(
W

ν−1
2

ρ+α, ν−1
4
f

)
(x),

where

C(ν, α, ρ) =

(
ν+1

4 − α − ρ
)

(

3−ν
4 − α − ρ

)

22α
(
ν+1

4 − ρ
)

(

3−ν
4 − ρ

) .

��
It is worth mentioning that the mapping property of the transmutation operators

allowing one to obtain the images of the powers of the independent variable without
knowledge of the transmutation operator itself [35] can be used for further study of
fractional powers of Bessel operator.
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The Fractional Derivative Expansion
Method in Nonlinear Dynamics
of Structures: A Memorial Essay

Marina V. Shitikova

Abstract The history of formulation of the efficient method for studying the
nonlinear dynamic response of structures, damping features of which depend on
natural frequencies of vibrations, is presented. This technique is the modified
version of the method of multiple scales.

This memorial essay is dedicated to the bright memory of two great scientists,
Ali Hasan Nayfeh and Yury Rossikhin, who had gone away one after another in 2
days, March 27 and 29, 2017.

1 Introduction

In March 2017, together with Professor Yury Rossikhin we were working on
a review paper devoted to the latest results in applications of fractional-order
operators in mechanics of solids and structures, which should be an extension of
our two previous reviews published in 1997 and 2010 in Applied Mechanics Reviews
[20, 28]. The article was practically prepared, and I took in my hands the 1973 book
by Professor Ali Nayfeh [10] in order to find the phrase, which he liked to repeat in
his numerous conference talks dealing with the method of multiple scales and which
we wanted to utilize as an epigraph for a nonlinear dynamics section in our review:

The method of multiple scales is so popular that it is being rediscovered just about every 6
months.

I found rather quickly this phrase in page 232 of [10], since we have in our home
library its Russian translation published in 1976 in Moscow, and we began with
Yury to recall our meetings and discussions with Professor Nayfeh. It was in the
late evening of March 27, 2017. . . At that moment we did not know that he is not
with us any more. . .
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It is unbelievable for me up today that it had happened in the late evening
on March 27, maybe in those minutes when we were talking about him. And 2
days later, on March 29, 2017 the second great loss crashed in my life: Professor
Yury Rossikhin had passed away after sudden heart attack. Thus, the mechanics
community lost two distinguished representatives during three March days.

In this memorial essay, I am going to tell a story how a generalization of
the method of multiple time scales, and to be more precisely, of its one version,
which was named by Sturrock [42] and Nayfeh [9, 10] as the derivative expansion
method, was suggested and constructed by Yury Rossikhin and myself [21, 22] via
considering fractional derivatives in nonlinear dynamics of structures. It could not
be happened without the influence of the Professor Nayfeh contribution in the field.

2 Nonlinear Vibrations of Suspension Bridges
and the Method of Multiple Time Scales

In 1977, when I was a first-year student of Voronezh Civil Engineering Institute,
during one of the introductory lectures Professor Nikolai M. Kirsanov, who was
an outstanding expert in metal structures and particularly in suspension combined
systems, showed us a record film about the collapse of the Tacoma Narrows
Suspension Bridge, which impressed me a lot. At that time I could not imagine
that I would take part in studies of the Golden Gate Bridge some day. But certainly
that lecture with the film run was a starting point.

Seven years later being a PhD student, I collected and studied literature devoted
to dynamics of suspension bridges, since it was the topic of my future PhD thesis.
It was not an easy task in those times in Russia, and to find some interesting and
useful papers (especially by Western researchers), which could be included in the
thesis list of references, it was a need to spend a lot of time in the Lenin Library in
Moscow, the largest Russian library.

Thus, among other papers in the field, my attention was attracted by the articles
by Abdel-Ghaffar and Rubin [2, 3], wherein nonlinear undamped free coupled
vertical-torsional vibrations of suspension bridges were examined using the multiple
scales method with the reference to the book by Nayfeh and Mook [14]. It was the
first time when I got acquainted with the name of Professor Nayfeh and the method
of multiple scales.

Unfortunately, this book [14] was unavailable even in the Lenin Library, but I
have found that other two books by Nayfeh published in 1973 [10] and 1981 [11]
had been translated into Russian in 1976 and 1984, respectively. Just these two
books influenced greatly researchers especially young ones, including myself, to
study the perturbation technique with its further utilization.

Reference to [10] shows that the method of multiple scales has been applied
to a wide variety of problems in physics, engineering, and applied mathematics.
Moreover, it is very efficient for studying the problems resulting in modal interaction
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in dynamical and structural systems subjected to different cases of internal and
combinational resonances [12, 13].

2.1 Nonlinear Undamped Vibrations of Suspension Bridges

It is known for suspension bridges (Fig. 1) that some natural modes belonging to
different types of vibrations could be coupled with each other, i.e., the excitation
of one natural mode gives rise to another one [2]. Two modes interact more often
that not, although the possibility for interaction of a greater number of modes is not
ruled out.

Consider the case when only two modes predominate in the vibrational process,
namely: the vertical n-th mode with linear natural frequency ω0n, and the torsional
m-th mode with the natural frequencyΩ0m. Under such an assumption the functions
η(z, t) and ϕ(z, t) could be approximately defined as

η(z, t) ∼ vn(z)x1n(t), ϕ(z, t) ∼ Θm(z)x2m(t) (1)

where x1n(t) and x2m(t) are the generalized displacements, and vn(z) and Θm(z)
are natural shapes of the two interacting modes of vibrations.

The modes interaction could be observed under the conditions of the two-to-one
internal resonance, when the linear natural frequency ω0n is approximately twice as
large than the linear natural frequencyΩ0m, i.e.,

ω0 = 2Ω0 + εσ, (2)

or the one-to-one internal resonance

ω0 = Ω0 + ε2σ, (3)

where σ is a detuning parameter.

Fig. 1 Suspension bridge scheme
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In this case the resolving set of equations in dimensionless form was written in
Abdel-Ghaffar and Rubin [2] in terms of the generalized displacements as

ẍ1 + ω2
0x1 + a11x

2
1 + a22x

2
2 + (b11x

2
1 + b22x

2
2)x1 = 0, (4)

ẍ2 +Ω2
0x2 + a12x1x2 + (c11x

2
1 + c22x

2
2)x2 = 0, (5)

where dots denote differentiation with respect to time, all coefficients are given in
[2], and the indices n and m denoting the numbers of the interacting modes are
omitted for ease of presentation.

An approximate solution of Eqs. (4) and (5) for small amplitudes weakly varying
with time can be represented by an expansion in terms of different time scales in the
following form [10]:

x1(t) = εx11(T0, T1, T2, . . . )+ ε2x12(T0, T1, T2, . . . )+ ε3x13(T0, T1, T2, . . . )+ . . . (6)

x2(t) = εx21(T0, T1, T2, . . . )+ ε2x22(T0, T1, T2, . . . )+ ε3x23(T0, T1, T2, . . . )+ . . . (7)

where

Tn = εnt (n = 0, 1, 2, . . . ) (8)

are new independent variables. The time scale T0 is the fast one characterizing
motions with the natural frequencies ω0 and Ω0, the time scale T1 is slower than
T0, while the time scale T2 is slower than T1. In general, Tn is slower than Tn−1. All
slow scales characterize the modulations of the amplitudes and phases.

Equations (6), (7), and (8) show that the problem has been transformed from the
ordinary differential equations to partial differential equations. Since the equations
of motion involve the time-derivatives, then it a need to represent them in terms of
new time scales. Thus, as it is written in Nayfeh [10], using the chain rule, the time
derivative is transformed according to

d/dt = D0 + εD1 + ε2D2 + . . . , (9)

whereDn = ∂/∂Tn.
Then the second-order time-derivative could be found as

d2/dt2=
(
D0 + εD1 + ε2D2 + . . .

)2 =D2
0 + 2εD0D1 + ε2(D2

1 + 2D0D2)+ . . .
(10)

Equations (8) through (10) formulate one version of the method of multiple
scales; namely, the many-variable version. This technique has been developed by
Sturrock [42] and Nayfeh [9]. Equations show that a uniformly valid expansion is
obtained by expanding the derivatives as well as the dependent variables in powers
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of the small parameter. Hence Sturrock [42] and Nayfeh [10] called this technique
the derivative expansion method.

Substituting Eqs. (6)–(10) in Eqs. (4) and (5) and equating coefficients of like
powers of ε, the equations for determining xi1, xi2, . . .xim (i = 1, 2) could be
obtained. Thus, restricting ourselves by three-term expansions in (4) and (5), i.e.
considering the scales T0, T1, and T2, yields

• to order ε:

D2
0x11 + ω2

0x11 = 0, D2
0x21 +Ω2

0x21 = 0; (11)

• to order ε2:

D2
0x12 + ω2

0x12 = −2D0D1x11 − a11x
2
11 − a22x

2
21, (12)

D2
0x22 +Ω2

0x22 = −2D0D1x21 − a12x11x21; (13)

• to order ε3:

D2
0x13 + ω2

0x13 = −2D0D1x12 − (D2
1 + 2D0D2)x11 − 2a11x11x12

−2a22x21x22 − b11x
3
11 − b22x

2
21x11, (14)

D2
0x23 +Ω2

0x23 = −2D0D1x22 − (D2
1 + 2D0D2)x21 − a12(x11x22 + x12x21)

−c22x
3
21 − c11x

2
11x21. (15)

The solutions of these equations

x11 = A1(T1, T2) exp(iω0T0)+ Ā1 exp(−iω0T0), (16)

x21 = A2(T1, T2) exp(iΩ0T0)+ Ā2 exp(−iΩ0T0) (17)

contain arbitrary complex functionsA1 and A2 of the time scales T1 and T2, and Ā1
and Ā2 are the complex conjugates of A1 and A2, respectively.

In order to determine these functions, additional conditions, which were named
as solvability conditions [12] and which are equivalent to the elimination of circular
terms, need to be imposed.

Substituting expressions (16) and (17) into the right-hand sides of Eqs. (12) and
(13) yields

D2
0x12 + ω2

0x12 = −2iω0D1A1 exp(iω0T0)− a11A
2
1 exp(2iω0T0)

−a11A1Ā1 − a22A
2
2 exp(2iΩ0T0)− a22A2Ā2 + cc, (18)
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D2
0x22 +Ω2

0x22 = −2iΩ0D1A2 exp(iΩ0T0)

−a12A1A2 exp[i(ω0 +Ω0)T0] − a12A1Ā2 exp[i(ω0 −Ω0)T0] + cc, (19)

where cc is the complex conjugate part to the preceding terms.
Reference to Eqs. (18) and (19) show that they could describe the two-to-one

internal resonance (2). However, this type of the internal resonance was mentioned
but was not considered by Abdel-Ghaffar and Rubin [2]. It has been done lately by
Rossikhin and Shitikova [18].

Further considering that the functions exp(iω0T0) and exp(iΩ0T0) entering into
the right-hand sides of Eqs. (18) and (19) produce secular terms, therefore the
following solvability conditions should be imposed:

D1A1(T1, T2) = 0, D1A2(T1, T2) = 0, (20)

i.e., the functions A1 and A2 are dependent on T2 only.
Substituting now Eqs. (16)–(19) with due account for (20) into the right-hand

sides of Eqs. (14) and (15) results in the system of equations for determining x13
and x23. Such a set of equations has been obtain in Abdel-Ghaffar and Rubin [2],
and some particular cases have been considered including the case of the one-to-one
internal resonance (3) [2, 3].

The systematic quantitative and qualitative analysis of the both internal reso-
nances, i.e. (2) and (3), which could occur in suspension bridges, has been carried
out in [18], wherein two first integrals of the system of Eqs. (4) and (5) have been
obtained. The first of them defines the energy of the system, while the second
one gives the stream-function, therefore the hydrodynamical analogy has been
suggested. Using the data of the Golden Gate Bridge provided in [3], the phase
portraits have been constructed for several cases of the internal resonance which
could be appropriate for nonlinear vibrations of this bridge.

By using the hydrodynamic analogy (phase fluid flow) a qualitative method of
analysis of the suspension bridge non-linear free vibrations has been proposed. This
procedure allows one to determine the types of oscillatory process, to investigate
the stability of each vibrational regime, to determine the character of amplitude and
phase difference dependences from initial conditions, etc. Theorems allowing one
to detect various types of vibrational regimes: periodic, aperiodic and stationary—
have been proved. These vibrational regimes correspond to the three types of energy
exchange between the vertical and torsional modes: two-sided energy exchange
(a periodic energy exchange from one subsystem to another), one-sided energy
interchange (one subsystem transfers energy to another), and energy exchange does
not occur. Two-sided energy exchange corresponds to both amplitude and phase
modulated aperiodic motions, one-sided energy interchange is appropriate to both
amplitude and phase aperiodic motions or pure amplitude modulated aperiodic
motions. In the absence of energy exchange, there are stationary vibrations or
pure phase modulated motions. The class of soliton-like solutions describing the
complete one-sided energy transfer has been found.
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2.2 Nonlinear Damped Free Vibrations of Suspension Bridges

The natural extension of studies presented in Rossikhin and Shitikova [18] was to
consider damped vibrations, since all engineering structures possess the intrinsic
structural damping and work in the surrounding media which quench oscillations.
For this purpose, damping terms proportional to the first-order time-derivative in
displacements have been added to Eqs. (4) and (5) in [19], as it is traditionally
accepted in dynamics of structures [8].

The similar approach was realized 10 years later in [7] with the only difference
that the method of derivative expansions has been applied directly to the governing
equations of suspension bridge motion without preliminary expansion in terms of
eigenmodes.

The experimental data obtained by Abdel-Ghaffar and Housner [1], Abdel-
Ghaffar and Scanlan [4], and Baranov et al. [5] during ambient vibration studies
of the Vincent-Thomas Suspension Bridge, the Golden Gate Bridge, and the
pedestrian suspension bridge over the Sura River in Penza, Russia, respectively,
show that different vibrational modes feature different amplitude damping factors,
and the order of smallness of these coefficients tells about low damping capacity
of suspension combined systems, resulting in prolonged energy transfer from one
partial subsystem to another. Besides, as natural frequencies of vibrations increase,
the corresponding damping ratios decrease.

It has been shown in Rossikhin and Shitikova [19] for both types of the internal
resonance that when damping features of the system are prescribed by the first
derivative of the displacement with respect to time, then the damping coefficient
does not depend on the natural frequency of vibrations. It means that this result is in
conflict with the experimental data presented in [1, 4, 5].

Thus, this raised the question of whether it is possible to create such a model
which could lead the theoretical investigations in line with the experiment. The
answer for this question was found in 1997 by Professor Yury Rossikhin who
suggested to introduce fractional derivatives for describing the processes of internal
friction proceeding in suspension combined systems at free vibrations. He possessed
the encyclopedical lore in fractional calculus viscoelasticity, and the history of
fractional calculus applications in dynamic problems of mechanics of solids and
structures was described by him in the retrospective paper [17].

There exist several definitions of fractional order derivatives, and the most useful
in hereditary mechanics is the Riemann-Liouville fractional derivative [39]

D
γ
+f = 1

Γ (1 − γ )
d

dt

∫ t

−∞
f (t ′)dt ′

(t − t ′)γ = 1

Γ (1 − γ )
d

dt

∫ ∞

0

f (t − t ′)dt ′
t ′γ

, (21)

where Γ (1−γ ) is the Gamma-function, and 0 < γ < 1 is the order of the fractional
derivative.
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Then equations of motion of damped nonlinear vibrations of suspension bridge
take the form

ẍ1 + βDγ1+ x1 + ω2
0x1 + a11x

2
1 + a22x

2
2 + (b11x

2
1 + b22x

2
2 )x1 = 0, (22)

ẍ2 + βDγ2+ x2 +Ω2
0x2 + a12x1x2 + (c11x

2
1 + c22x

2
2)x2 = 0, (23)

where β is the damping coefficient.
However, the Riemann-Liouville definition could not be incorporated in the

method of multiple time scales used for solving the problem of undamped vibra-
tions. The Grunwald-Letnikov definition [20] is widely used in different numerical
procedures. Another representation of the fractional derivative was needed, and
Professor Rossikhin had found another approach.

The matter is fact that it was shown in Samko et al. [39] (see Chapter 2, Paragraph
5, point 70) that the fractional order of the operator of differentiation

(
d
dt

)γ
is equal

to the Marchaud fractional derivative, which, in its turn, equal to the Riemann-
Liouville derivativeDγ+ for sufficiency “good” functions

(
d

dt

)γ
f = 1

Γ (−γ )
∫ ∞

0

f (t − t ′)− f (t)
t ′1+γ dt ′ = Dγ+f, (24)

or with due account for the equality γΓ (γ ) = Γ (1 + γ )
(
d

dt

)γ
f = γ

Γ (1 − γ )
∫ ∞

0

f (t)− f (t − t ′)
t ′1+γ dt ′ = Dγ+f. (25)

In order to utilize the definition (24), the expansion of the fractional derivative in
terms of new time scales was written by Rossikhin and Shitikova [21, 22] as

D
γ
+ = (d/dt)γ = (D0 + εD1 + ε2D2 + . . . )γ

= Dγ0+ + εγDγ−1
0+ D1 + 1

2
ε2γ

[
(γ − 1)Dγ−2

0+ D2
1 + 2Dγ−1

0+ D2

]
+ . . . , (26)

whereDγ0+ is obtained from (21) by replacing t by T0.
Thus, Eqs. (21), (24)–(26) together with Eqs. (8)–(10) formulate the modified

version of the method of multiple scales. We called this technique, following
Professor Nayfeh, the fractional derivative expansion method.

The set of Eqs. (22) and (23) describes the two processes, which are related
to each other and go on concurrently: the energy-exchange mechanism between
vertical and torsional modes, and the process of energy dissipation during this
interaction. Since further investigations will be carried out by the method of
multiple scales and these two processes should proceed at the same time scale, then
there is a need to assume that the viscosity coefficient β could be represented as
β = εkμ, where μ is a finite value, k = 1 and 2 for the 2:1 and 1:1 internal
resonances, respectively. At other orders of smallness of the viscosity coefficient,



Fractional Derivative Expansion Method 661

energy dissipation will occur either too fast or too slow relative to the process of
energy exchange.

It has been noted in [22] that the fractional derivative is the immediate extension
of an ordinary derivative. In fact, when γ → 1, Dγ+x tends to ẋ, i.e., at γ → 1 the
fractional derivative goes over into the ordinary derivative, and the mathematical
model of the suspension bridge transforms into the Kelvin-Voigt model, wherein
the elastic element behaves nonlinearly, but the viscous element behaves linearly.
When γ → 0, the fractional derivative Dγ+x tends to x(t). To put it otherwise, the
introduction of the new fractional parameter along with the parameter β allows one
to change not only the magnitude of viscosity at the cost of an increase or decrease
in the parameter β, but also the character of viscosity at the sacrifice of variations in
the fractional parameter.

With due account for the additional fractional derivative terms in Eqs. (22)
and (23) and considering the expansion of the fractional derivative (26), Eqs. (12)–
(15) take the following form:

• to order ε2:

D2
0x12 +ω2

0x12 = −2D0D1x11 −μ(2 − k)Dγ1
0+x11 − a11x

2
11 − a22x

2
21, (27)

D2
0x22 +Ω2

0x22 = −2D0D1x21 − μ(2 − k)Dγ2
0+x21 − a12x11x21; (28)

• to order ε3:

D2
0x13 + ω2

0x13 = −2D0D1x12 − (D2
1 + 2D0D2)x11

−μ(2 − k)Dγ1
0+x12 − μ(2 − k)γ1D

γ1−1
0+ D1x11

−μ(k − 1)Dγ1
0+x11 − 2a11x11x12 − 2a22x21x22

−b11x
3
11 − b22x

2
21x11, (29)

D2
0x23 +Ω2

0x23 = −2D0D1x22 − (D2
1 + 2D0D2)x21

−μ(2 − k)Dγ2
0+x22 − μ(2 − k)γ2D

γ2−1
0+ D1x21

−μ(k − 1)Dγ2
0+x21 − a12(x11x22 + x12x21)

−c22x
3
21 − c11x

2
11x21. (30)

To solve the sets of Eqs. (27)–(28) and (29)–(30), it is necessary to specify the
action of the fractional derivativeDγ0+ on the functions xj1 and xj2 j = 1, 2, i.e., to
calculate Dγ0+eiωt . It has been shown in [34] that

D
γ
0 e
iωt = (iω)γ eiωt . (31)
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Note that since the process of vibrations starts at t = 0, then the fractional
derivative should be defined on the segment [0, t], i.e.,

D
γ

0 x(t) = 1

Γ (1 − γ )
d

dt

∫ t

0

x(s)ds

(t − s)γ . (32)

Then instead of formula (31), the application of the fractional derivative (32) on
the exponent results in the following relationship [34] (see Appendix):

D
γ

0 e
iωt = (iω)γ eiωt + sinπγ

π

∫ ∞

0

uγ

u+ iω e
−utdu. (33)

However, the second term of (33), as it has been proved in [29], does not influence
the solution constructed via the method of multiple time scales restricted to the first-
and second-order approximations.

In other words, even the utilization of exact formula (33) in the problem under
consideration produces completely equivalent results given by the approximate
formula (31) if the solution is constructed via the method of multiple time scales
within the considered orders of approximation. Thus, in further analysis we will
utilize formula (31), as well as the following relationship:

iγ = cos
γπ

2
+ i sin

γπ

2
= ei γπ2 . (34)

The case of the 1:1 internal resonance at k = 2 and γ1 = γ2 = γ was presented
in [20, 22]. Representing the functionsA1 and A2 in their polar form, i.e.,

A1(T2) = a1(T2) exp [iϕ1(T2)] ,

A2(T2) = a2(T2) exp [iϕ2(T2)] ,

the modulation equations have been obtained

(
a2

1

). + μωγ−1
0 a2

1 sin

(
1

2
πγ

)
− 1

2
Γ1a

2
1a

2
2 sin δ = 0, (35)

(
a2

2

). + μωγ−1
0 a2

2 sin

(
1

2
πγ

)
+ 1

4
Γ2a

2
1a

2
2 sin δ = 0, (36)

ϕ̇1 − 1

2
μω

γ−1
0 cos

(
1

2
πγ

)
− λ1a

2
1 − λ2a

2
2 + 1

4
Γ1a

2
2 cos δ = 0, (37)

ϕ̇2 − 1

2
μω

γ−1
0 cos

(
1

2
πγ

)
− λ3a

2
1 − λ4a

2
2 + 1

4
Γ2a

2
1 cos δ = 0, (38)
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where δ = 2(ϕ2 −ϕ1) is the phase difference, and a dot denotes differentiation with
respect to T2.

Multiplying (36) by the value Γ1Γ
−1

2 and then adding it to (35) yield

Ė + αE, α = μωγ−1
0 sin

(
1

2
πγ

)
, (39)

where E = a2
1 + Γ1Γ

−1
2 a2

2 is the energy of the system.
Integrating (39) yields

E = E0 exp (−αT2), (40)

where E0 is the initial magnitude of the system’s energy.
Equation (40) shows that owing to the fractional parameter γ dissipation of the

system’s energy depends on the natural frequency of vibrations. When γ → 1, the
damping value α tends to the viscosity coefficient μ, and from (40) it follows that

E = E0 exp (−μT2) = 0. (41)

Reference to (41) shows that in the case γ = 1 the damping coefficient is
independent of the natural frequency ω0, what is in conflict with the experimental
data.

The cases of different fractional parameters and force driven vibrations of
suspension bridges have been considered in [26, 30]

2.3 Correlation with Experiment

The experimental data obtained by Abdel-Ghaffar and Housner [1] and Abdel-
Ghaffar and Scanlan [4] during ambient vibration studies of the Vincent-Thomas
Suspension Bridge in Los Angeles and the Golden Gate Bridge in San Francisco,
respectively, show that each natural mode of vibration has its own damping ratio,
which decreases as the natural frequency increases (see Table 2 in [1] and Tables 2–5
in [4]).

As it is evident from (39), the damping coefficient α satisfies the enumerated
properties. Moreover, using the tables of the papers cited above, the damping
parametersμ and γ of the system can be selected so that all pairs of the magnitudes
of α and ω0 taken from the tables would be connected by the dependence (39).

Thus, summarizing the data for the Golden Gate Bridge presented in Tables 2–
5 [4] for symmetric and antisymmetric vertical and torsional modes in one table,
arranging the pairs of the magnitudes of α and ω0 in order of increasing natural
frequency ω0, and then using two pairs of extreme values αaver1 = 0.085 s−1, ω0 =
0.1221 rad/s and αaverm = 0.007 s−1, ω0n = 1.6855 rad/s from the pooled table, the
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magnitudes of γ and μ could be determined (n = 37; αaver is the average value of
α corresponding to the natural frequency ω0). As a result we obtain

γ = 1 + ln(α1α
−1
n )

ln(ω01ω
−1
0n )

= 0.05; μ = α1ω
1−γ
01

sin (πγ /2)
= 0.15. (42)

Figures 2 and 3 show the dispersion of the experimental values of the magnitude
α, which varies in some interval at each fixed value of the natural frequency ω0 and
Ω0 (the extreme points of each of such an interval are indicated in Figs. 2 and 3 for
vertical and torsional modes of vibrations). The ω0-dependence of αaver (this curve
is based on the data from [4]) and the ω0-dependence of α (this curve is calculated
with the use of (39) at γ = 0.05 and μ = 0.15) are also presented in Figs. 2 and 3.
It is seen that the theoretical curve of the ω0-dependence of α and the curve of the
ω0-dependence of αaver differ little from each other, and the experimental points
are arranged within a rather narrow band containing these curves. Thus, the selected
values of γ and μ may be considered as the parameters of the suspension bridge
under discussion.

Fig. 2 Comparison of analytical and experimental results for vertical modes of the Golden Gate
Suspension Bridge
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Fig. 3 Comparison of analytical and experimental results for torsional modes of the Golden Gate
Suspension Bridge

Distinct to the traditional modeling the viscous resistance forces via first order
time-derivatives [8], in the present research we adopt the fractional order time-
derivatives Dγ+, what allowed us to obtain the damping coefficients dependent
on the natural frequency of vibrations. It has been demonstrated in [22, 26] that
such an approach for modeling the damped non-linear vibrations of thin bodies
provides the good agreement between the theoretical results and the experimental
data through the appropriate choice of the fractional parameter (the order of the
fractional derivative) and the viscosity coefficient.

3 Conclusion

It has been shown the necessity to formulate the modified version of the method of
multiple scales, which could be called, following Professor Nayfeh, the fractional
derivative expansion method. It is the efficient method for studying the nonlinear
dynamic response of structures damping features of which depend on natural
frequencies of vibrations.
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For the first time it has been suggested by Rossikhin and Shitikova in 1997 to
show that the damping features of a suspension combined system are adequately
described by fractional derivatives. In so doing the fractional parameter (the order
of the fractional derivative) fulfills the role of the structural parameter of the
whole system and influences the character of the system’s damping coefficient as a
function of natural frequencies of linear vibrations. The obtained power relationship
with a negative exponent between the damping coefficient of the system and
its natural frequencies of linear vibrations correlates well with the experimental
data describing the natural frequency dependence of the damping ratio. When the
fractional parameter tends to one, i.e., when the fractional derivative transforms into
the common derivative with respect to time, the system’s damping coefficient does
not depend on the natural frequencies of linear vibrations, which is in contradiction
with the experimental data. Thus, the nonlinear viscoelastic models with fractional
derivatives with respect to time are more preferred over the models with integral
derivatives for describing damping features of a suspension combined system.

Further this method was applied for the analysis of different internal and
combinational resonances in a two-degree-of-freedom mechanical system [23], thin
plates [24, 25, 32, 35, 36, 38, 41] and shells [31, 33, 37, 40].

Ten years ago, in May 2008, when together with Professor Rossikhin I was
at Virginia Tech attending the Mechanics Conference to Celebrate the 100th
Anniversary of the Department of Engineering Science and Mechanics, we had a
very fruitful discussion with Professor Nayfeh. He said us that until the appearance
of our 1998 paper [22], he could not see the possibility of incorporation of fractional
calculus in perturbation technique, and in particular within the method of multiple
scales.

And then Professor Nayfeh suddenly to us gave us very profound advise: to pose
the fractional derivative expansion technique on examples of linear and nonlinear
oscillators arguing that it would be didactic material for students and engineers who
are not familiar with such ‘exotic’ field of Mathematics as Fractional Calculus.

We had realized Professor Nayfeh suggestion and published two papers [27, 34],
wherein free and forced vibrations of different types of linear and nonlinear
fractional oscillators have been treated using the modified method of multiple time
scales. I am very grateful to Professor Nayfeh for this advise, since these two papers
together with two state-of-the-art articles [20, 28] are the inestimable basis of the
lecture course on “Fractional calculus in mechanics”.

Professor Nayfeh had the vision of supporting Fractional Calculus in Nonlinear
Mechanics via approving as an Editor-in-Chief several special issues of Nonlinear
Dynamics and Journal of Vibration and Control.

Acknowledgements Studies of the research team headed by Professor Yury Rossikhin in the field
of fractional calculus application in mechanics of solids and structures have been supported by the
Ministry of Science and Education of the Russian Federation, including the current Project No.
9.5138.2017/8.9.
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Appendix

Following [27], formula (33) could be obtained from the Mellin-Fourier formula for
the functionDγ0+eiωt . Really,

D
γ

0+e
iωt = 1

2πi

∫ c+i∞

c−i∞
pγ ept

p − iωdp. (43)

To calculate the integral in the right-hand side of Eq. (43), we use the contour of
integration L shown in Fig. 4.

Applying the theorem of theory of residues for the integral over the contour
L, writing the contour integral in terms of the sum of integrals along the vertical
segment of the straight line, along the arcs of the circumferences with radii CR and
Cρ , and along the branches of the cut of the negative real semi-axis, then tending R
to ∞ and ρ to 0, and considering Jordan lemma, we arrive at the relationship (33).

Changing in (33) iω with −iω yields

D
γ

0+e
−iωt = (−iω)γ e−iωt + sinπγ

π

∫ ∞

0

uγ e−utdu
u− iω . (44)

Adding Eqs. (33) and (44), we obtain

D
γ

0+(cosωt) = ωγ cos
(
ωt + π

2
γ
)

+ sinπγ

π

∫ ∞

0

u1+γ e−utdu
u2 + ω2 , (45)

while subtracting Eq. (44) from (33) we have

D
γ
0+(sinωt) = ωγ sin

(
ωt + π

2
γ
)

− sinπγ

π
ω

∫ ∞

0

uγ e−utdu
u2 + ω2 . (46)

Fig. 4 Contour of integration
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When γ = 1, these formulas go over into the corresponding formulas of
conventional differentiation.

The derived Eqs. (33) and (44)–(46) are more preferred in engineering applica-
tions than those presented in Table 9.1 of [39], or in tables for semiderivatives in
Chapter 7 [15], or in tables in [16], since allow one to estimate the accuracy of
approximate solutions like those constructed in the given paper.

Reference to Eqs. (33) and (44)–(46) shows that it is possible to ignore the
improper integrals in the following cases: (1) if γ differs a little from unit, (2)
when the magnitude of the fractional parameter γ is rather small, (3) for rather large
frequencies ω. The second terms in Eqs. (33) and (44)–(46) could be also neglected
from some instants of time after beginning of vibratory motion.

It should be emphasized that in some engineering problems a combination of the
conditions mentioned above can occur at a time, what allows one to use Eq. (31).
Another very important case, what was discussed above, is dealing with the method
of solution, as it takes place with the generalized method of multiple time scales
proposed in [22], which allows one to obtain the valid results adopting approximate
formulas [29].

Note that the formulas similar to Eqs. (33) and (44)–(46) were derived by Caputo
[6] using the Gerasimov-Caputo fractional derivative representation. The estimates
of improper integrals useful for engineering applications were suggested in [6] as
well.
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Boundary Value Problem with Integral
Condition for the Mixed Type Equation
with a Singular Coefficient

Natalya Vladimirovna Zaitseva

Abstract We study the boundary value problem for the mixed type equation with
a singular coefficient and nonlocal integral first-kind condition. We establish the
uniqueness criterion and prove the solution existence and stability theorems. The
solution of the problem is constructed explicitly and the proof of convergence of the
series in the class of regular solutions is derived.

Keywords Mixed type equation · Singular coefficient · Nonlocal integral
condition · Uniqueness · Existence · Stability · Fourier–Bessel series
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1 Introduction

Let D = {(x, y)| 0 < x < l,−α < y < β} be a rectangular domain of coordinate
planeOxy, where l, α, β are given positive real numbers. We introduce denotation:
D+ = D ∩ {y > 0} andD− = D ∩ {y < 0}.

In the domainD we consider the elliptic-hyperbolic equation

Lu ≡ uxx + (sgn y)uyy + p

x
ux = 0, (1)

where p ≥ 1 is a given positive real number.
Boundary value problems for mixed type equations are one of the most important

topics of the modern theory of partial differential equations. Mathematical models of
heat transfer in capillary-porous media, formation of a temperature field, movement
of a viscous fluid and many others leads to the problems for equations of this type.
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Interest in the degenerate equations is caused not only by the need to solve
applied problems, but also by the intense development of the theory of mixed
type equations. The first boundary value problem for degenerate partial differential
equations of elliptic type with variable coefficients was initially studied in [1].
The research of equations which contains the Bessel differential operator holds a
special place in this theory. The study of this class of equations was begun by Euler,
Poisson, Darboux and was continued in the theory of generalized axisymmetric
potential [1–4]. The equations of the three main classes containing the Bessel
operator, according to the [5], are called B-elliptic, B-hyperbolic and B-parabolic,
respectively. The boundary value problems for parabolic equations with the Bessel
operator are studied in [6, 7], a rather complete review of the papers, devoted to
boundary value problems for elliptic equations with singular coefficients is given in
monograph [8]. An extensive study of B-hyperbolic equations is presented in [9].
The papers [10–16] are also devoted to the study of boundary value problems for
singular equations.

In this paper we study the following nonlocal problem with first-kind integral
condition when p ≥ 1 for Eq. (1) in the domainD.

Statement of the Problem Let p ≥ 1. We need to find function u(x, y) which
satisfies the following conditions:

u(x, y) ∈ C1(D) ∩ C2(D+ ∪D−), (2)

Lu(x, y) ≡ 0, (x, y) ∈ D+ ∪D−, (3)

u(x, β) = ϕ(x), u(x,−α) = ψ(x), 0 ≤ x ≤ l, (4)

l∫

0

xpu(x, y) dx = A = const, −α ≤ y ≤ β, (5)

where A is a given real number, ϕ(x), ψ(x) are given smooth enough functions,
which satisfy conditions

l∫

0

xpϕ(x) dx =
l∫

0

xpψ(x) dx = A. (6)

The boundary value problem (2)–(6) has nonlocal boundary conditions on the
sides of the rectangle D. When p ≥ 1 in the domain of ellipticity D+ of Eq. (1),
due to [1], the segment x = 0 is free of boundary condition in the class of
bounded solutions. By dividing the variables it is easy to show that in the domain of
hyperbollicityD− of the Eq. (1) there is valid equation

ux(0, y) = 0, −α ≤ y ≤ β. (7)
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Nonlocal problems for different classes of differential equations are studied in
the works [17–24]. The integral condition (5) was introduced in [25] for the heat
equation. The boundary value problems with (5)-type integral condition have been
studied in [26–28].

2 Uniqueness

Let’s represent the solution (1) as

x−p ∂
∂x

(
xp
∂u

∂x

)
+ (sgn y)uyy = 0.

Let’s multiply it by xp and integrate it over the x variable with fixed y ∈
(−α, 0) ∪ (0, β) on interval from ε to l − ε, where ε > 0 is a number small
enough. As a result we will get

l−ε∫

ε

∂

∂x

(
xp
∂u

∂x

)
dx + (sgn y)

l−ε∫

ε

xpuyy dx,

or

(
xp
∂u

∂x

)∣∣∣∣
l−ε

ε

+ (sgn y)
d2

dy2

l−ε∫

ε

xpu(x, y) dx = 0.

At ε → 0, due to the conditions (2) and (5) we will get the local boundary
condition

ux(l, y) = 0, −α ≤ y ≤ β. (8)

In what follows we will consider the problem (2)–(4), (8) instead of (2)–(6).
We will look for particular solutions of the Eq. (1) which are not equal to zero

in the domain D+ ∪ D− and which satisfy the conditions (2) and (8) in the form
u(x, y) = X(x)Y (y). By substituting this product into the Eq. (1) and the condition
(8), we will get the following spectral problem with respect to X(x)

X′′(x)+ p

x
X′(x)+ λ2X(x) = 0, 0 < x < l, (9)

|X(0)| < +∞, X′(l) = 0, (10)

where λ2 is a separation constant.
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The general solution of Eq. (9) has the form

X̃(x) = C1x
1−p

2 Jp−1
2
(λx)+ C2x

1−p
2 Yp−1

2
(λx),

where Jν(ξ), Yν(ξ) are the first-kind and second-kind Bessel functions respectively,
ν = (p − 1)/2, C1, C2 are arbitrary constants.

We put C2 = 0 so the function satisfies the first condition from (10). Since the
eigenfunctions of the spectral problem are determined to within a constant factor,
we set C1 = 1. Thus, the solution of the Eq. (9), which satisfies the first condition
from (10), has the form

X̃(x) = x 1−p
2 Jp−1

2
(λx).

Let’s note that this function satisfies the condition (7). By substituting the
function X̃(x) into the second condition from (10) we will get

λ0 = 0,

X̃′(l) =
(
x

1−p
2 Jp−1

2
(λx)

)′
x

∣∣∣
x=l = −l 1−p

2 Jp+1
2
(λl),

and now we can obtain

Jp+1
2
(μ) = 0, μ = λl. (11)

It is known [29, p. 530] that function Jν(ξ) with ν > −1 has a countable set of
real zeros. We denote the n–th root of the (11) equation by μn with given p and find
the eigenvalues λn = μn/l of the problem (9) and (10). According to [30, p. 317]
there is valid assimptotic formula for the zeros of the Eq. (11) when n is big enough

μn = λnl = πn+ π

4
p +O

(
1

n

)
. (12)

Let’s note that when λ0 = 0 the spectral problem (9) and (10) has constant
eigenfunction which we will take as one. Thus, the system of eigenfunctions of the
problem (9) and (10) has the form

X̃0(x) = 1, λ0 = 0, (13)

X̃n(x) = x 1−p
2 Jp−1

2

(μnx
l

)
= x 1−p

2 Jp−1
2
(λnx), n ∈ N, (14)

where eigenvalues λn are determined as zeros of the Eq. (11).
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Let’s note that the system of eigenfunctions (13) and (14) of the problem (9) and
(10) is orthogonal in the space L2[0, l] with a weight xp and also forms a complete
system in this space [31, p. 343].

For further calculations we will use an orthonormal system of functions:

Xn(x) = 1

||X̃n(x)||
X̃n(x), n = 0, 1, 2, . . . , (15)

where

||X̃n(x)||2 =
l∫

0

ρ(x) X̃2
n(x) dx, ρ(x) = xp. (16)

Let u(x, y) be a solution of the problem (2)–(4), (8). Let’s introduce the functions

un(y) =
l∫

0

u(x, y)xpXn(x) dx, n = 0, 1, 2, . . . , (17)

based on which we consider an auxiliary functions of the form

un,ε(y) =
l−ε∫

ε

u(x, y)xpXn(x) dx, n = 1, 2, . . . , (18)

where ε > 0 is a number small enough. Let’s differentiate the Eq. (18) over the y
variable twice with y ∈ (−α, 0) ∪ (0, β) and with respect to Eq. (1), we will get the
equation

u′′
n,ε(y) =

l−ε∫

ε

uyy(x, y)x
pXn(x) dx = −(sgn y)

l−ε∫

ε

(
uxx + p

x
ux

)
xpXn(x) dx =

=−(sgn y)

l−ε∫

ε

∂

∂x
(xpux)Xn(x) dx = −(sgn y)

⎡
⎢⎣xpuxXn(x)

∣∣∣l−ε
ε

−
l−ε∫

ε

xpuxX
′
n(x) dx

⎤
⎥⎦ .

(19)
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From (18), due to Eq. (9), we can obtain

un,ε(y) = − 1

λ2
n

l−ε∫

ε

u(x, y)xp
[
X′′
n(x)+

p

x
X′
n(x)

]
dx =

= − 1

λ2
n

l−ε∫

ε

u(x, y)
d

dx

(
xpX′

n(x)
)
dx = − 1

λ2
n

⎡
⎣u(x, y)xpX′

n(x)

∣∣∣l−ε
ε

−
l−ε∫

ε

xpuxX
′
n(x) dx

⎤
⎦ ,

and, thus,

l−ε∫

ε

xpuxX
′
n(x) dx = λ2

nun,ε(y)+ u(x, y)xpX′
n(x)

∣∣∣l−ε
ε
.

By substituting this expression into (19) we will have

u′′
n,ε(y) = −(sgn y)

[
xpuxXn(x)

∣∣∣l−ε
ε

− λ2
nun,ε(y)− u(x, y)xpX′

n(x)

∣∣∣l−ε
ε

]
.

By virtue of (2) in the last equation, we can pass to the limit as ε → 0, from
which, according to the conditions (8) and (10) we obtain the following differential
equation that we will use to find the functions (17)

u′′
n(y)− (sgn y)λ2

nun(y) = 0, y ∈ (−α, 0) ∪ (0, β). (20)

It’s general solution has the form

un(y) =
{
ane

λny + bne−λny, y > 0,
cn cosλny + dn sin λny, y < 0,

(21)

where an, bn, cn, dn are arbitrary constants which must be defined.
Now we will pick the constants an, bn, cn and dn in (21) with respect to (2)

such that the conjugation conditions un(0+) = un(0−), u′
n(0+) = u′

n(0−) are
satisfied. Those conditions are satisfied when an = (cn + dn)/2, bn = (cn − dn)/2,
n = 1, 2, . . .. By substituting the values found in (21) we will have

un(y) =
{
cnchλny + dnsh λny, y > 0,
cn cosλny + dn sin λny, y < 0.

(22)
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Now let’s substitute (17) into the boundary conditions (4):

un(β) =
l∫

0

ϕ(x)xpXn(x) dx = ϕn, un(−α) =
l∫

0

ψ(x)xpXn(x) dx = ψn.

(23)
Based on (22) and (23) we can obtain a system for finding the constants cn and

dn:

{
cnch λnβ + dnshλnβ = ϕn,
cn cos λnα − dn sin λnα = ψn, (24)

which has the unique solution

cn = ϕn sin λnα + ψnshλnβ

sinλnα chλnβ + cos λnα sh λnβ
, dn = ϕn cos λnα − ψnchλnβ

sinλnα chλnβ + cos λnα sh λnβ
,

(25)

if for all n ∈ N the determinant of the system (24) is non-zero:

,n(α, β) = sinλnα chλnβ + cos λnα sh λnβ �= 0. (26)

By substituting the values we found (25) into (22) we will find the final form of
the functions

un(y) =
{,−1

n (α, β) (ϕn,n(α, y)+ ψnshλn(β − y)) , y > 0,
,−1
n (α, β) (ϕn sin λn(α + y)+ ψn,n(−y, β)) , y < 0.

(27)

Similarly, we find

u0(y) = αϕ0 + βψ0

α + β + ϕ0 − ψ0

α + β y, y ∈ (−α, 0) ∪ (0, β), (28)

u0(β) = l− p+1
2
√
p + 1

l∫

0

ϕ(x)xpdx = ϕ0, u0(−α) = l− p+1
2
√
p + 1

l∫

0

ψ(x)xpdx = ψ0.

(29)

When the condition (26) is satisfied, the problem (2)–(4), (8) has the unique
solution. Indeed, let ϕ(x) = ψ(x) ≡ 0 and ,n(α, β) �= 0. Then it follows
from (23) and (29) that ϕn = ψn ≡ 0, n = 0, 1, 2, . . ., and it follows from
(27) and (28) that un(y) = 0 for all n ∈ N0 = N ∪ {0}. Due to (17) we have
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l∫

0

u(x, y)xpXn(x) dx = 0. Hence, as the system (15) is complete in the space

L2[0, l] with weight xp, u(x, y) = 0 almost everywhere on the interval x ∈ [0, l]
and for all y ∈ [−α, β]. As according to (2) function u(x, y) ∈ C(D), then
u(x, y) ≡ 0 in D.

Let’s suppose that for some values p, l, α, β and some n = m the condition
(26) is not satisfied. When ϕ(x) = ψ(x) ≡ 0 and ,m(α, β) = 0 the system (24) is
equivalent to one of the equations (let it be the first one)

cmchλmβ + dmsh λmβ = 0,

which has an infinite set of solutions

{
−dm shλmβ

ch λmβ
, dm

}
. By substituting the values

we found into (22) we get

um(y) =
{
d̃m (sh λmy chλmβ − sh λmβ chλmy) , y ≥ 0,
d̃m (chλmβ sin λmy − sh λmβ cosλmy) , y ≤ 0,

where d̃m is an arbitrary non-zero constant.
Thus the homogenous problem (2)–(4), (8) has the non-zero solution

um(x, y) =
{
d̃m (shλmy chλmβ − sh λmβ chλmy)Xm(x), y ≥ 0,
d̃m (chλmβ sin λmy − sh λmβ cosλmy)Xm(x), y ≤ 0,

(30)

where the functions Xm(x) are determined by (15). It is easy to prove that the built
function (30) satisfies all the conditions (2)–(4), (8) when ϕ(x) = ψ(x) ≡ 0.

Let’s find out for which values of the parameters p, l, α, β the condition (26) is
violated. We represent ,n(α, β) as

,n(α, β) = √
ch 2λnβ sin(μnα̃ + γn), (31)

where μn = λnl, α̃ = α/l, γn = arcsin
sh λnβ√
ch 2λnβ

→ π

4
at n→ +∞.

This representation shows that ,n(α, β) = 0, if sin(μnα̃ + γn) = 0, that is, if

α̃ = πk − γn
μn

, k = 1, 2, . . . . (32)

Thus we proved

Theorem 1 If the solution of the problem (2)–(4), (8) exists, then it is unique if and
only if the condition (26) is satisfied for all n ∈ N.
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3 Existence

As according to (31) the expression ,n(α, β) has a countable set of zeros, we
examine the values of this expression, included in the denominators of the formula
(27) when n is big enough.

Lemma 1 If α̃ = a/b is a rational number, a, b are mutually prime numbers and

p �= 1

a
(4bd − b − 4r), r = 1, b − 1, d ∈ Z, then there exists constants C0 > 0,

n0 ∈ N such that for all n > n0 there is valid inequality

|,n(α, β)| ≥ C0e
λnβ . (33)

Proof Let’s substitute (14) into (31):

,n(α, β) = √
ch 2λnβ sin

(
πnα̃ + π

4
pα̃ + γn +O

(
1

n

))
.

Let α̃ = a/b, a, b ∈ N, (a, b) = 1. Let’s divide na by b. According to the
division theorem we have

na = bq + r, q ∈ N0, 1 ≤ r ≤ b − 1.

Then

,n(α, β) = √
ch 2λnβ (−1)q sin

(
πr

b
+ πa

4b
p + γn +O

(
1

n

))
=

= eλnβ√
2

√
1 + ch − 4λnβ (−1)q sin

(
πr

b
+ πa

4b
p + π

4
− εn +O

(
1

n

))
,

where εn > 0 and εn → 0 at n → +∞. Thus there is a number n0, such that for
any n > n0 there is valid inequality

|,n(α, β)| ≥ eλnβ

2
√

2

∣∣∣sin
(πr
b

+ πa

4b
p + π

4

)∣∣∣ = C0e
λnβ.

In order to get C0 > 0 it is necessary that

πr

b
+ πa

4b
p + π

4
�= πd, d ∈ Z,

hence

p �= 1

a
(4bd − b − 4r), d ∈ Z. (34)

The condition (34) is satisfied for any irrational value p ≥ 1. ��
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Lemma 2 If for n > n0 the condition (33) is satisfied, then there are valid estimates

|un(y)| ≤ C1(|ϕn| + |ψn|), y ∈ [−α, β], (35)

|u′
n(y)| ≤ C2n(|ϕn| + |ψn|), y ∈ [−α, β], (36)

|u′′
n(y)| ≤ C3n

2(|ϕn| + |ψn|), y ∈ [−α, 0), (37)

|u′′
n(y)| ≤ C4n

2(|ϕn| + |ψn|), y ∈ (0, β], (38)

where Ci are positive constants (here and further).

Proof From formula (27) with respect to (33) we can get

|un(y)| ≤ 1

|,n(α, β)| (|ϕn|(shλnβ + chλnβ)+ |ψn|sh λnβ) ≤

≤ 1

C0eλnβ
(|ϕn|(shλnβ + ch λnβ)+ |ψn|shλnβ) ≤ C̃1(|ϕn| + |ψn|), y ≥ 0,

|un(y)| ≤ 1

C0eλnβ
(|ϕn| + |ψn|(shλnβ + ch λnβ)) ≤ C̃2(|ϕn| + |ψn|), y ≤ 0,

where C̃i are positive constants (here and further). By denoting C1 = max {C̃1, C̃2}
we get the estimate (35) for all n > n0 and y ∈ [−α, β].

Let’s calculate the derivative u′
n(y) based on (27) and with respect to (33) and

formula (12):

|u′
n(y)| ≤ n

C0eλnβ
(|ϕn|(chλnβ + shλnβ)− |ψn|chλnβ) ≤ C̃3n(|ϕn|+|ψn|), y ≥ 0,

|u′
n(y)| ≤ n

C0eλnβ
(|ϕn| − |ψn|(shλnβ + chλnβ)) ≤ C̃4n(|ϕn| + |ψn|), y ≤ 0.

Form those inequalities we can obtain the estimate (36) for all n > n0 and y ∈
[−α, β], where C2 = max {C̃3, C̃4}.

The validity of the estimates (37) and (38) follows from the equalities (12), (20)
and the estimate (35). ��
Lemma 3 For n big enough and for all x ∈ [0, l] there are valid estimates:

|Xn(x)| ≤ C5, |X′
n(x)| ≤ C6n, |X′′

n(x)| ≤ C7n
2.

Proof of this lemma can be found in [32].
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Lemma 4 If functions ϕ(x), ψ(x) ∈ C2[0, l] and there exists the derivatives
ϕ′′′(x), ψ ′′′(x) which has finite variation on [0, l], and

ϕ′(0) = ϕ′′(0) = ψ ′(0) = ψ ′′(0) = ϕ′(l) = ψ ′(l) = 0,

then there are valid estimates:

|ϕn| ≤ C8/n
4, |ψn| ≤ C9/n

4.

Proof of this lemma can be found in [32].
Based on the found particular solutions (15), (27) and (28), if the conditions

(26) and (33) are satisfied, the solution of the problem (2)–(4), (8) is defined as a
Fourier–Bessel series

u(x, y) = u0(y)X0(x)+
∞∑
n=1

un(y)Xn(x). (39)

We will consider the following series together with the series (39):

uy(x, y) = u′
0(y)X0(x)+

∞∑
n=1

u′
n(y)Xn(x), ux(x, y) =

∞∑
n=1

un(t)X
′
n(x); (40)

uyy(x, y) =
∞∑
n=1

u′′
n(y)Xn(x), uxx(x, y) =

∞∑
n=1

un(y)X
′′
n(x). (41)

According to Lemmas 2 and 3, for any (x, y) ∈ D the series (39)

and (40) are majorized, correspondingly, by the series C10

∞∑
n=1

(|ϕn| + |ψn|),

C11

∞∑
n=1

n (|ϕn| + |ψn|), and the series (41) for any (x, y) ∈ D+ ∪D− are majorized

by the series C12

∞∑
n=1

n2 (|ϕn| + |ψn|), which, in turn, according to Lemma 4, are

estimates by the number series C13

∞∑
n=1
n−2. Consequently, by virtue of Weierstrass

M-test, the series (39) and (40) converges uniformly in the bounded domain D and
the series (41) converges uniformly in the bounded domains D+ and D−. Thus we
have built the function u(x, y) which is defined by the series (39) and satisfies all
the (2)–(4), (8) problem conditions.

If for numbers α̃ in Lemma 1, for some natural n = m = m1, . . . ,mk , where
1 ≤ m1 < . . . < mk ≤ n0, k ∈ N, there is ,m(α, β) = 0 satisfied, then for
the solvability of the problem (2)–(4), (8) it is necessary and sufficient to fulfill the
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conditions

ψmch λmβ − ϕm cosλmα = 0, m = m1, . . . ,mk. (42)

In this case, the solution of the problem (2)–(4), (8) is determined by the series

u(x, y) =
⎛
⎝m1−1∑
n=1

+ · · · +
mk−1∑

n=mk−1+1

+
∞∑

n=mk+1

⎞
⎠un(y)Xn(x)+ ∑

n=1

um(x, y),

(43)

where m takes the values m1, . . . ,mk , and the function um(x, y) is determined by
the formula (30). If the lower limit is greater than the upper limit in some sums, then
these sums should be considered equal to zero.

Thus, we proved

Theorem 2 Let functions ϕ(x) and ψ(x) satisfy the Lemma 4 conditions and the
condition (33) is satisfied for n > n0. Then there exists the unique solution u(x, y)
of the problem (2)–(4), (8) determined by the series (39), if ,n(α, β) �= 0 for all
n = 1, n0; if ,m(α, β) = 0 with some m = m1, . . . ,mk ≤ n0, the problem has a
solution determined by (43), if and only if the conditions (42) are satisfied.

Theorem 3 Let functions ϕ(x) and ψ(x) satisfy the Lemma 4 conditions and the
conditions (6) and the inequality (33) is valid for all n > n0. Then there exists
the unique solution u(x, y) of the problem (2)–(6) determined by the series (39), if
,n(α, β) �= 0 for all n = 1, n0; if ,m(α, β) = 0 with somem = m1, . . . ,mk ≤ n0,
the problem has a solution determined by (43), if and only if the conditions (42) are
satisfied.

Proof Let u(x, y) be a solution of the problem (2)–(4), (8) and functions ϕ(x) and
ψ(x) satisfies the theorem conditions. Then the Eq. (1) is valid everywhere on set
D+ ∪D−. Let’s multiply the Eq. (1) by xp and integrate it over the x variable with
y ∈ (−α, 0) ∪ (0, β) fixed on interval from ε to l−ε, where ε > 0 is small enough.
As a result we will get

(
xp
∂u

∂x

)∣∣∣∣
l−ε

ε

+ (sgn y)

l−ε∫

ε

xpuyy(x, y) dx = 0. (44)

By passing to the limit as ε → 0 and with respect to conditions (2) and (8), we have

l∫

0

uyy(x, t)x
p dx = 0.
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By integrating the last equation over the y variable twice we have

l∫

0

u(x, y)xp dx = K1y +K2, K1, K2 = const. (45)

By putting y = β and then y = −α in the Eq. (45) and with respect to the conditions
(4) and (6) we get

l∫

0

u(x, β)xp dx =
l∫

0

ϕ(x)xp dx = K1β +K2 = A,

l∫

0

u(x,−α)xp dx =
l∫

0

ψ(x)xp dx = −αK1 +K2 = A,

and thus we can find the values of the constants K1 = 0 and K2 = A. Then from
the formula (45) we have

l∫

0

u(x, y)xp dx = A,

which means that the condition (5) is satisfied.
Now let u(x, y) be a solution of the problem (2)–(6). Then from the Eq. (44) we

can obtain

(
xp
∂u

∂x

)∣∣∣∣
l−ε

ε

+ (sgn y)
d2

dy2

l−ε∫

ε

xpu(x, y) dx = 0.

By passing to limit as ε → 0 and according to conditions (2) and (5) we obtain the
local second-kind boundary condition ux(l, y) = 0.

Thus, we showed that when the conditions (6) are satisfied, the conditions (5)
and (8) are equivalent. This means that the problems (2)–(6) and (2)–(4), (8) are
also equivalent. ��
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4 Stability

Theorem 4 For the solution of the problem (2)–(6) there is valid estimate

||u(x, y)|| ≤ C14(||ϕ(x)|| + ||ψ(x)||),

where ||f (x)||2 =
l∫

0

ρ(x)|f (x)|2dx, ρ(x) = xp.

Proof According to the formula (39) with respect to the estimate (35) we can
calculate

||u||2 =
l∫

0

xpu2(x, y) dx =
l∫

0

xp
∞∑
n=0

un(y)Xn(x)

∞∑
m=0

um(y)Xm(x) dx =

=
∞∑
n=0

u2
n(y) = u2

0(y)+
∞∑
n=1

u2
n(y) ≤ C15(ϕ

2
0 + ψ2

0 )+ 2C2
1

∞∑
n=1

(
|ϕn|2 + |ψn|2

)
≤

≤ C15(ϕ
2
0 + ψ2

0 )+ 2C2
1

( ∞∑
n=1

ϕ2
n +

∞∑
n=1

ψ2
n

)
= C14

(
||ϕ||2 + ||ψ||2

)
.
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