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Abstract. Input-to-state stability (ISS) for systems described by partial dif-
ferential equations has seen intensified research activity recently, and in partic-
ular the class of boundary control systems, for which truly infinite-dimensional
effects enter the situation. This note reviews input-to-state stability for para-
bolic equations with respect to general Lp-input-norms in the linear case and
includes extensions of recent results on semilinear equations.
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1. Introduction

In the study of control of partial differential equations two main types of inputs
can be distinguished: distributed and boundary inputs (or disturbances or controls).
The latter emerge e.g. by the following reason: Although a system is described
by an infinite-dimensional state space, the ability to influence the system may
only be possible through an “infinitesimal small number” of states. As a simple
motivating example consider a metal rod of length 1 whose temperature flux at
both boundary point is subject to control. Neglecting the width of the rod and
normalizing parameters, the heat distribution may be governed by the following
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equations: 

∂x

∂t
(ξ, t) =

∂2x

∂ξ2
(ξ, t)− ax(ξ, t), (ξ, t) ∈ [0, 1]× (0,∞),

∂x

∂ξ
(0, t) =

∂x

∂ξ
(1, t) = u(t), t ∈ (0,∞),

x(ξ, 0) = x0(ξ), where a > 0.

(1.1)

In this setting input-to-state stability (ISS) can be understood as follows:
The given “data” of the model is the initial temperature distribution x0 and the
input function u : R→ U = R, representing the temperature flux at the boundary
points. Since it is (physically) clear that the system is causal, that is, the solution
x at time t does not depend on the values of the function u at later values, we may
ask for an estimate on the (norm of the) state x at time t depending on (the norms
of) u

∣∣
[0,t]

and x0. In particular, if we choose for the state space X = L2(0, 1),

we could aim for the following type of time-space estimate for solutions to the
differential equation: ∥∥x(t)

∥∥
X
. e−tω0

∥∥x0

∥∥
X

+
∥∥u∥∥

Lq(0,t)
, (1.2)

for some fixed q ∈ [1,∞], ω0 > 0 and all x0 ∈ L2(0, 1), u ∈ Lq(0, t) and t > 0.
In this (linear) case, we call the system Lq-input-to-state stable (ISS), and in fact,
the above system is Lq-ISS for the parameters q ∈ (4/3,∞] and ω0 ∈ (0, aπ2], see
Example 2.14. In the literature, the most commonly studied ISS property is with
respect to L∞-functions. Clearly, the notion of “solution” is ambiguous here, and
we shall, for simplicity, confine ourselves in this introduction to classical solutions
of the PDE with sufficiently smooth input functions u.

Since the above example is a linear system, estimate (1.2) clearly superposes
the uniform global asymptotic stability of the internal system, that is the de-
pendence of x(t) on x0 in the case that u ≡ 0, and the external stability, that
is, the stability of u 7→ x(t) when x0 = 0. This combination of stability notions
lies at the heart of ISS and has proved very useful particularly for nonlinear ODE
systems where this superposition principle does not hold. For a detailed overview
on why this concept has become a practical tool in systems and control theory
we refer to [2]. Note that the linear PDE case is more subtle compared to the
rather trivial linear finite-dimensional situation: Imagine, for instance, a simple
space-discretization of the above heat equation which leads to a system of the
form

˙̃x(t) = Ax̃(t) +Bu(t), x̃(0) = x̃0, (1.3)

where x̃ is vector-valued and A,B are matrices of appropriate dimensions. By the
variation-of-constants formula the spatially-discrete system is Lq-ISS for any q ∈
[1,∞] if and only if A is Hurwitz. If more generally (1.3) describes a system with
A being the generator of a strongly continuous semigroup on the (possibly infinite-
dimensional) state space X and B : U → X being a bounded linear operator, the
corresponding assertion, that the semigroup is exponentially stable if and only if
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the system is Lq-ISS, remains valid. Comparing this to the afore-mentioned range
of q ∈ (4/3,∞] for which the heat equation with Neumann control at the boundary
is Lq-ISS, Example 2.14, reveals fundamental differences between systems of the
form (1.3) (with bounded input operator B) and the ones with boundary control.
So what goes wrong?1 Apparently, (1.1) does not fit into the framework of (1.3)
with bounded B. Instead, (1.1) is of the abstract form

ẋ(t) = Ax(t), t > 0,

Bx(t) = u(t), t > 0,

x(0) = x0,

(1.4)

where both A and B are unbounded operators — we will elaborate on the precise
assumptions in Section 2. Such systems have become known as boundary control
systems. Whereas it is formally clear that our example fits into the setting of (1.4)
rather than into (1.3), it is a little less clear how ISS estimates can be assessed in
this case (or how to discuss existence of solutions, to begin with). However, there
is a way of interpreting a boundary control system as a variant of (1.3). Although
this is rather well-known to the operator theorists in systems theory, the explicit
argument will be recalled in Section 2, also revealing the natural connection to
weak formulations from PDEs. This is also done in order to place approaches
and results that were recently obtained for ISS together with more classic — but
sometimes a bit folklore — results known in the literature.

Whereas these different view-points for linear systems are often rather subject
to taste or one’s background — however, the amount of effort for obtaining ISS
results may differ greatly, not only because solution concepts are intimately linked
with the approach — they (can) become crucial when considering systems governed
by nonlinear PDEs. In line with the introductory 1D-heat equation, one may be
interested in the following semilinear system

∂x

∂t
(ξ, t) =

∂2x

∂ξ2
(ξ, t) + f(x(t, ξ)), (ξ, t) ∈ [0, 1]× (0,∞),

∂x

∂ξ
(0, t) =

∂x

∂ξ
(1, t) = u(t) t ∈ (0,∞),

x(ξ, 0) = 0.

(1.5)

where f is e.g. of the form f(x) = −x−x3. In general, to account for nonlinearities,
the aimed ISS estimate has to be adapted to an inequality of the more general
form ∥∥x(t)

∥∥
X
. β

(∥∥x0

∥∥
X
, t
)

+ γ
(∥∥u∥∥

Lq(0,t)

)
, (1.6)

1[34], A. Mironchenko and F. Wirth. Restatements of input-to-state stability in infinite dimen-

sions: what goes wrong? In: Proc. of the 22th International Symposium on Mathematical Theory

of Networks and Systems, pages 667–674, 2016.
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where β ∈ KL and γ ∈ K∞ being classical comparison functions from Lyapunov
theory,

K =
{
µ : R+

0 → R+
0 | µ(0) = 0, µ continuous, strictly increasing

}
,

K∞ =
{
γ ∈ K | lim

x→∞
γ(x) =∞

}
,

L =
{
θ : R+

0 → R+
0 | γ continuous, strictly decreasing, lim

t→∞
θ(t) = 0

}
,

KL =
{
β : (R+

0 )2 → R+
0 | β(·, t) ∈ K ∀t and β(s, ·) ∈ L ∀s

}
.

Of course, even in the uncontrolled setting u(t) ≡ 0, equation (1.5) is more
delicate to deal with than a linear equation, both in terms of existence of solutions
as well as asymptotic behaviour, but well-known [38, 16]. In particular, the “sign”
of f may be crucial for the existence of global solutions, which is necessary for ISS.
Regarding ISS, we now have typical nonlinear effects (for which ISS was originally
studied for ODEs [42]) blended with infinite-dimensional effects (through both the
heat diffusion and the boundary control).

Recently, several steps have been made to address ISS for semilinear sys-
tems, for both distributed and boundary control, e.g. [13, 39, 33, 48, 49] and the
references in Section 1.1. The employed methods are diverse — see the section
paragraph — and it seems that a unified approach for more general systems is
missing and open problems remain. In the following we try to offer yet another
approach to the ISS for parabolic semilinear equations from a mere functional-
analytic point of view. This, though linked to the spirit with [48], generalizes to
more general equations of the form

ẋ(t) = Ax(t) + f(t, x(t)), t > 0,

Bx(t) = u(t), t > 0,

x(0) = x0.

(1.7)

Before we summarize on the state-of-the-art in the literature, let us identify the
crucial tasks in identifying ISS for a parabolic system of the form (1.7):

(I) global existence (and uniqueness) of solutions to (1.7) for u in the considered
function class;

(II) uniform global asymptotic stability of the undisturbed system, u ≡ 0;
(III) the Lq-ISS estimate, (1.6).

The first task is classical in the study of (parabolic) PDEs and is typically ap-
proached by local fix-point arguments and iteratively extending the solutions to
a maximal interval and a-posteriori regularity investigations. The second step,
sometimes phrased by the “geometric properties” of an evolution equation in the
PDE literature, is dealt with differently than in (I); with methods, such as Lya-
punov functions, carefully adjusted from the finite-dimensional theory. The final
step (III) is closely connected to (II) and, at least in the situations studied in the
literature so far, can often be accessed by weaker arguments than the ones in (II).
In particular, a local (in time) version of estimate (1.6) does in general not suffice
to guarantee global solutions. However, after having settled global existence, in
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Section 3 we shall see relatively simple Lyapunov arguments which are sufficient
for ISS.

This note has two goals: First and foremost we would like to survey on recent
developments that fall under the concept of ISS for boundary-controlled (para-
bolic) evolution equations: This is done with particular care at those instances
where the literature has seen results in similar spirit, but emerging from different
approaches. An example of such an instance is the use of the notion of admissible
operators which is classic in infinite-dimensional systems theory, but comes along
with quite an operator-theoretic “flavour” compared to (direct) PDE arguments.
We will avoid the notion of “admissibility” throughout this manuscript as it is, in
case of uniformly globally asymptotically stable linear systems, equivalent to ISS,
[19]. Thus admissibility in the context of ISS is rather “another name” than an
additional property, which, for linear equations, can be used interchangeably. By
this, we hope to contribute to clarify on some things that may be folklore knowl-
edge in one community, while possibly unknown in others. The author strongly
believes that the fact that ISS for PDEs is currently studied by view-points from
different fields, such as operator theory, systems theory and control of PDEs, has
and has had a very positive effect on the topic. Apart from this survey-character,
the article slightly extends recent findings around ISS for semilinear equations,
in particular the ones in [48]. This includes the goal to unify some of the ap-
proaches from the literature and or to reveal common features and difficulties. We
emphasize that in contrast to the introductory example and several results in the
literature, we will not restrict ourselves to spatially one-dimensional systems in
the following. Thereby we hope to set the ground for coming efforts in the study
of ISS estimates for PDE systems, which even in the semilinear parabolic case are
by far not completed.

What this note does not cover is the link to a profound application of ISS.
Instead, we confine ourselves to some of the — as we believe — mathematical
essentials and refer to the literature for important topics such as ISS feedback
redesign and ISS small-gain theorems, which have had great success in finite-
dimensional theory. Furthermore, ISS Lyapunov functions — interesting from both
the application and the general theory — for which even the linear case is not
completely understood yet, see [17] for an interesting partial result, will not be
discussed here in detail.2

Altogether we hope to address with this article both experts in ISS for infinite-
dimensional systems as well as researchers new to the field. This intention has also
led to the style of the presentation which is chosen in a way that, the author
hopes, is more intuitive than a plain arrangement of definitions and results. Like
in the introduction, we will try to stick closely to some tutorial examples and
develop/recap the ISS theory around them. This also means that some of the
results of Section 3 should rather be seen as a first step (or better second step after
what has already been done in the literature) far from being settled conclusively.

2At least not explicitly.
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We will point out such incomplete situations and comment on difficulties. For
example, one of these seems to be Lq-ISS for semilinear parabolic equations with
Dirichlet boundary control, where, to the best of the authors knowledge, so far
only the case q =∞ has partially been resolved [33, 47, 49].

1.1. ISS for parabolic semilinear systems — what is known

As mentioned before the notion of ISS in the context of PDEs has only been studied
in the last ten years. However, particularly for linear systems, several results had
previously been known — at least implicitly — by other notions arising in the con-
trol of PDEs or boundary value problems. For example, for linear systems Lq-ISS
is equivalent to uniform global asymptotic stability together with Lq-admissibility
— the latter property being particularly satisfied if distributed controls are con-
sidered, see [9, 19, 35]. Therefore, classical results for L2-admissibility, e.g. [44] and
Lq-admissibility, q ∈ [1,∞) e.g. [14, 43, 46], can be applied to derive ISS for linear
systems. Recall that q ∈ {1,∞} are special choices for linear systems: Whereas
q = 1 can practically only arise for distributed controls [46], the case q = ∞ is
implied by any other Lp-ISS estimate with p <∞. By now there are several results
for general linear, not necessarily parabolic, systems for distributed and boundary
control, see e.g. [5, 8, 9, 26, 19, 35, 36] and the references therein.

In the following we concentrate on works that focus on parabolic equations.
The assessment for particular parabolic equations, both linear and semilinear, has
been studied by several authors. In [8, 9, 32, 39] (coercive) ISS-Lyapunov func-
tions are constructed for semilinear parabolic equations with distributed control.
In these references, spatially one-dimensional equations are considered with the
diffusion term being the Laplacian and primarily L∞-ISS is shown with input
functions being continuous or piecewise continuous. Boundary control (or mixed
boundary and distributed control) for parabolic equations has been studied in
[19, 21, 24, 25, 33, 29, 30, 48, 50, 49]: More precisely, in [24, 25] L∞-ISS estimates
for classical solutions were proved for spatially one-dimensional linear parabolic
equations where A referred to a regular Sturm–Liouville differential operator and
with controls acting through general Robin boundary conditions.3 The proof tech-
nique rested on a careful analysis of the solutions represented via the spectral
decomposition, available in this case. In [19, Sect. 4] general Riesz-spectral oper-
ators were considered and more general ISS estimates. Recently, another abstract
extension of [24, 25] to Riesz-spectral boundary control systems has been given
in [30], also for generalized solutions and more generally, continuous inputs. The
assumptions used in these works, which particularly include that the differential
operators have discrete spectra, are not required in [21], where a very general class
of linear parabolic equations and inputs in L∞ are considered, see Theorem 2.18
below. Note that all these references require finite-dimensional input spaces.

3Here, “Robin boundary conditions” includes Dirichlet and Neumann boundary conditions.
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Semilinear diffusion equations (with constant diffusion coefficients) in one
spatial coordinate have appeared in [48, 49, 50] with different scenarios of bound-
ary control. In particular, it is shown in [48] that Robin boundary control which
is not Dirichlet control allows for Lq-ISS estimates, q ∈ [2,∞], under sufficient
assumptions on f in order to guarantee global existence of classical solutions. We
will revisit these results in the present paper and show how they generalize to
more general differential operators on higher-dimensional spatial domains. In [33]
maximum principles and their compatibility with monotonicity are used to assess
L∞-ISS for a broad class of semilinear parabolic equations with Dirichlet boundary
control and infinite-dimensional input spaces. Dirichlet control has also appeared
in [49, 50] for a viscous Burger’s type equation, however with a technical assump-
tions on the L∞-norm of the input functions. We also mention a recent result in
[17, Proposition 4.1] which establishes L∞-ISS Lyapunov functions for parabolic
boundary control problems (and even a bit more general settings). Furthermore,
we remark that also linear control systems with nonlinear (closed-loop) feedback
law can be interpreted as semilinear control systems, e.g. [43]. In particular, we
mention the extensive results for Lur’e systems in [13] and the prior work [22].

1.2. Notation

In the following let R and C denote the real and complex numbers respectively and
R+ = [0,∞). The letters X and U will always refer to complex Banach spaces with
norms

∥∥ · ∥∥
X
,
∥∥ · ∥∥

U
where we omit the reference to the space whenever it is clear

from the context. Let I ⊂ [0,∞) be a bounded interval. By Lp(I;X), p ∈ [1,∞)
we refer to the X-valued Lebesgue spaces of measurable, p-integrable functions
f : I → X, where the Bochner integral is used to define the vector-valued integrals.
The space W k,p(I;X) ⊂ Lp(I;X) refers to the vector-valued Sobolev functions of
order k. The space of essentially bounded X-functions is denoted by L∞(I;X),
the space of X-valued regulated functions by Reg(I;X), which is the closure of the
step functions in L∞(I;X), and the space of continuous functions by C(I;X); all
equipped with their natural (essential) supremum norms. Furthermore, Ck(I;X)
refers to the space of k-times continuously differentiable functions f : I → X. By
C∞c (I;X) we refer to the functions which are k-times differentiable for any k > 0
and compactly supported in I. If Z(I;X) refers to one of the defined function
spaces, then Zloc(R+;X) denotes the space of functions f : R+ → X such that
the restriction f

∣∣
I

: I → X lies in Z(I;X) for all compact subintervals I ⊂ R+.
We will also identify a function f : I → Xwith its zero extension to R or R+.
For a Banach space Y let L(X,Y ) denote the space of bounded linear operators
from X to Y . We assume that the reader is familiar with basics from strongly
continuous semigroups (or “C0-semigroups”) for which we refer to the textbooks
[7, 38, 43, 44]. Typically we will denote a semigroup by T and its generator by A.
The growth bound of T will be denoted by ωA. For a Hilbert space X the scalar
product will be denoted by 〈·, ·〉 and for a densely defined, closed operator A on
X, let A∗ denote the Hilbert space adjoint.
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The notation “F (x) . G(x)” means that there exists a constant C > 0,
which is independent of the involved variable x, such that F (x) ≤ CG(x).

2. A recap on ISS for linear boundary control systems

Intuitively, and in particular if one has a certain class of systems in mind, it is
rather straight-forward how input-to-state stability for PDEs should be defined
in order to generalize the finite-dimensional theory. However, as various solution
concepts such as weak, mild and strong solutions for infinite-dimensional systems
exist, the following abstract definition in the language of dynamical systems seems
to be natural for what we need in the following, see [9, 23] and the references
therein, for similar notions in the context of ISS which have motivated the follow-
ing.

Definition 2.1 (Dynamical control systems). Let X and U be a Banach
spaces. Let D ⊂ X × UR+ and let Φ : R+ ×D → X be a function satisfying the
following properties for any t, h ∈ R+, (x, u), (x, u′) ∈ D:

(i) Φ(0, x, u) = x;
(ii) (Φ(t, x, u), u(t+ ·)) ∈ D and Φ(t+ h, x, u) = Φ(h,Φ(t, x, u), u(t+ ·));

(iii)
(
x, u

∣∣
[0,t]

)
∈ D and u|[0,t] = u′|[0,t] implies that Φ(t, x, u) = Φ(t, x, u′).

The mapping Φ is called semiflow and

• X the state space
• U the input space
• D(Φ) := D the space of input data
• DX(Φ) =

{
x ∈ X : ∃u such that (x, u) ∈ D(Φ)

}
the initial values

• DU (Φ) = {u ∈ UR+ : ∃x such that (x, u) ∈ D(Φ)} the input functions

The triple (X,U,Φ) is called a dynamical control system.

Note that for linear systems it is often possible to “separate” D(Φ) in the
sense that D(Φ) = DX(Φ) × DU (Φ). However, in the case of Φ referring to the
semiflow arising from the classical solutions of a boundary control system — even
in the linear case — this is not true.

Remark 2.2. It is debatable whether the definition of a dynamic control system
(as we decided to call it here) should include any continuity assumptions on the
flow. For example, as a “minimal” property, one could require that t 7→ Φ(t, x, u) is
continuous for any (x, u) ∈ D(Φ), as suggested e.g. in [33]. This condition sounds
reasonable in most concrete situations involving the solution concept of the PDE.
However, we remark that checking this property may not be trivially satisfied
even in the context of linear ISS with respect to inputs from L∞, see [19, 21]. As
mentioned, several abstract settings have been introduced in the literature and
the assumptions vary from one to the other. We do not claim that our definition
is more suitable than others, but it seems to be reasonable for our needs.
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Definition 2.3 (ISS of dynamical control system). Let (X,U,Φ) be a dy-
namical control system and let q ∈ [1,∞]. We say that the dynamical control
system is Lq-input-to-state stable, Lq-ISS, if there exist functions β ∈ KL and
γ ∈ K such that∥∥Φ(t, x, u)

∥∥
X
≤ β

(∥∥x0

∥∥
X
, t
)

+ γ
(∥∥u∣∣

[0,t]

∥∥
Lq(0,t;U)

)
(2.1)

for all t > 0, (x0, u) ∈ D(Φ) ∩
(
X × Lqloc(0,∞;U)

)
.

More “exotic” norms other than Lq can be considered in the study of ISS.
For instance, Orlicz spaces, a generalization of Lp-spaces, appear naturally when
studying integral input-to-state stability, a variant of ISS [19, 37, 21]. We remark
that in the above definition one could more generally refrain from the completeness
of the spaces X and U . It is also important to keep in mind that the definition
of an input-to-state stable dynamical control systems requires the global existence
of solutions in time, known as “forward-completeness” of the function Φ. Infinite-
dimensional examples of dynamical control systems that are ISS can readily be
given by means of linear PDE systems with distributed control.

Example 2.4. Let A be the generator of a strongly continuous semigroup on X
and B : U → X be a bounded operator. It is well-known, see e.g. [44, Proposi-

tion 4.2.10], that for any x0 ∈ D(A) and u ∈ W 1,1
loc (R+;U) there exists a classical

solution x : [0,∞)→ X to the abstract linear equation

ẋ = Ax(t) +Bu(t), t > 0 (2.2)

x(0) = x0 (2.3)

and by the (abstract) variation-of-constants formula,

x(t) = T (t)x0 +

∫ t

0

T (t− s)Bu(s) ds (2.4)

one sees that (X,U,Φ) with Φ(t, x0, u) = x(t) and D(Φ) = D(A)×W 1,1
loc (R+;U),

where x denotes the classical solution for x0 ∈ D(A), is a dynamical control sys-
tem which is Lp-ISS for any p ∈ [1,∞] if and only if A generates an exponentially
stable semigroup, see e.g. [19, Proposition 2.10]. On the other hand, if we ‘define’
a solution only by (2.4), which is possible for any x0 ∈ X and u ∈ L1

loc(R+;U), we
have that (X,U,Ψ) is an Lp-ISS dynamical control system, p ∈ [1,∞], with semi-
flow Ψ(t, x0, u) defined as the left-hand-side of (2.4) and D(Φ) = X×L1

loc(R+;U),
if and only if A generates an exponentially stable semigroup.

For instance, this can be applied to show that that the following system is
Lp-ISS for any p ∈ [1,∞] with X = U = L2(Ω) and a > 0,

ẋ(ξ, t) = ∆x(ξ, t)− ax(ξ, t) + u(ξ, t), (ξ, t) ∈ Ω× (0,∞),

∂x

∂ν
(ξ, t) = 0 (ξ, t) ∈ ∂Ω× (0,∞),

x(ξ, 0) = x0(ξ), ξ ∈ Ω,
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where ∆ denotes the Laplace operator on a bounded domain Ω ∈ Rn with smooth
boundary.

In Example 2.4 we have seen that for a linear system with distributed control
the space of initial values DX(Φ) can be chosen identical to X provided that Φ was
extended to a more general solution concept. In fact, the ISS estimate was only
assessed from the variation-of-constants formula which is a hint that this integrated
version of the PDE is a more natural object to study ISS estimates (of course not
only ISS estimates). However, as indicated in the introduction, system (1.1) does
not fit into the framework of Example 2.4. Before we present a work-around to
this issue, let us formalize the type of system that (1.1) is representing.

Definition 2.5 (Linear boundary control system). Let X and U be Banach
spaces and A : D(A) ⊂ X → X and B : D(A)→ U be closed operators such that

1. A
∣∣
kerB

generates a C0-semigroup on X, and

2. B is right-invertible, i.e. there exists B0 ∈ L(U,D(A)) with BB0 = idU .

Here and in the following, we equip D(A) with the graph norm∥∥ · ∥∥
A

:=
∥∥ · ∥∥

X
+
∥∥A · ∥∥

X
.

Then we call both the pair (A,B) and the formally associated set of equations
ẋ(t) = Ax(t), t > 0,

Bx(t) = u(t), t > 0,

x(0) = x0 ∈ X,
(2.5)

a (linear) boundary control system. Given a continuous function u : [0,∞) → U
and x0 ∈ X, a function x : [0,∞) → X is called a classical solution of the
boundary control system if x ∈ C1([0,∞);X) ∩ C([0,∞);D(A)) and x satisfies
(2.5) pointwise.

Note that the definition of a classical solution implies that Bx0 = u(0). Let us
now provide an argument for the Lq-ISS estimate (1.2) for the linear heat equation,
(1.1), stated in the introduction. Suppose x : [0,∞) → X is a classical solution
to the PDE satisfying the boundary condition for some continuous function u :
[0,∞)→ U . Integration by parts then readily yields

1

2

d

dt

∥∥x(t)
∥∥2

L2(0,1)

= Re〈x(t), ẋ(t)〉

= Re
〈
x(t),

∂2

∂ξ2
x(t)− ax(t)

〉
= −

∥∥∥∥ ∂∂ξ x(t)

∥∥∥∥2

L2(0,1)

− a
∥∥x(t)

∥∥2

L2(0,1)
+ Re

(
x(ξ, t)u(t)

∣∣ξ=1

ξ=0

)
≤ −

∥∥∥∥ ∂∂ξ x(t)

∥∥∥∥2

L2(0,1)

− a
∥∥x(t)

∥∥2

L2(0,1)
+ ε
∥∥x(t)

∥∥2

H1(0,1)
+
C

ε
|u(t)|2,



Input-to-state stability for parabolic boundary control 93

where in the last step we used the fact that the boundary trace is a continuous
linear operator from the Sobolev space H1(0, 1) to C2 and where C > 0 is some
absolute constant. Therefore, by Gronwall’s lemma, we conclude that for any ω < a

there exists C̃ > 0 such that∥∥x(t)
∥∥2

L2(0,1)
≤ e−ωt

∥∥x0

∥∥2

L2(0,1)
+ C̃

∫ t

0

e−a(t−s) |u(s)|2 ds

and thus, by Hölder’s inequality, Lq-ISS, (1.2), for any q ∈ [2,∞] follows. Note
that an argument in this spirit has been applied in [48] to assess ISS even for a
class of semilinear one-dimensional heat equations, provided that “the nonlinear-
ity behaves well” in the above estimates — we will be more explicit on that in
Section 3. Let us make a few remarks on this proof: Although eventually Lq-ISS
is derived for q ∈ [2,∞], it is essential for the argument to bound the term in-
volving u(t) such that the resulting x(t) is bounded in the H1-norm squared and
consequently derive an implicit inequality in

∥∥x(t)
∥∥
L2(0,1)

. However, the result is

not sharp. In fact, the considered controlled heat equation (1.1) is Lq-ISS for all
q ∈ (4/3,∞]. To see this, we will rewrite the boundary control system such that
an explicit solution representation of the form (2.4) as in the distributed case can
be used. Here the defining properties of a boundary control system are essential.
This transformation is a well-known technique for operator theorists in systems
theory [44, 43], but appears to be a type of folklore result that is hard to find ex-
plicitly in the literature. What can be found more easily, e.g. in [7], is the so-called
Fattorini trick which rewrites the boundary control system into a linear system
of the form (2.2) with bounded operator B at the price that the new input is the
derivative of the initial u. As we are interested in Lq-estimates of the input u, this
is undesirable. This can be overcome by an additional step: To show that this is a
natural view-point, we briefly lay-out the “general Fattorini trick” in the following.
Recall that the assumptions made in the definition of a boundary control system
are intimately linked with semigroups and thus with (2.4).

Let (A,B) be a boundary control system. Denote by T the semigroup gen-
erated by A := A

∣∣
kerB

and let B0 : U → D(A) be a right-inverse of B. A simple
calculation shows that for continuously differentiable u : [0,∞)→ U and a classi-
cal solution x to (2.5), the function z = x − B0u solves the following differential
equation

ż(t) = Az(t) + AB0u(t)−B0u̇(t), z(0) = x0 −B0u(0), (2.6)

in the classical sense. Note in particular that by the defining properties of B0 we
have that x − B0u ∈ D(A) if and only if x ∈ D(A) and Bx = u. This simple
reformulation, however, paves the way to derive an equation that again only de-
pends on u and not on u̇. For that consider the representation of the solution to
the inhomogeneous equation (2.6),

z(t) = T (t)(x0 −B0u0) +

∫ t

0

T (t− s)AB0u(s) ds−
∫ t

0

T (t− s)B0u̇(s) ds. (2.7)
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Note that AB0 ∈ L(U,X) so that the second term is well-defined even for any
u ∈ L1

loc(R+;U). The third term is also well-defined, even for functions u ∈
W 1,1

loc (R+;U). In order to get rid of the term u̇ we want to (formally) integrate
the second term by parts. To do so, an extension of the semigroup to a larger
space X−1 is considered. This is done to make sure that t 7→ T (t)x is differentiable
for x ∈ X. For some λ ∈ C in the resolvent set of the generator A, X−1 is defined
to be the completion of the space X with respect to the norm ‖(λI − A)−1 · ‖
which is independent of λ. The semigroup uniquely extends to a strongly continu-
ous semigroup T−1(t) on X−1 with the generator A−1 being an extension of A with
D(A−1) = X. For this standard procedure to define X−1, we refer to [38, 43, 44].
Thus, (2.7) and particular the integrals can be viewed in the larger space X−1.
Therefore, integration by parts yields∫ t

0

T (t− s)B0u̇(s) ds =

∫ t

0

T−1(t− s)A−1B0u(s) ds+B0u(t)− T (t)B0u(0).

Inserting this in (2.7) and transforming back to x gives

x(t) = T (t)x0 +

∫ t

0

T−1(t− s) [AB0 −A−1B0]u(s)ds. (2.8)

We emphasize that the integral will in general only exist as a limit in X−1 whereas
its value happens to be an element of X for any t > 0 by our assumption that
x is a classical solution to the boundary control system. Also note that A−1B0 ∈
L(U,X−1) and that x − B0 ∈ D(A) is in turn equivalent to A−1x + [AB0 −
A−1B0]u ∈ X. All this leads to the definition of mild solutions.

Definition 2.6 (Mild solutions of boundary control systems). Let (A,B) be
a boundary control system with state space X and input space U . Let T denote the
semigroup generated by A := A|kerB and B0 be a right-inverse of B. Let x0 ∈ X
and u ∈ L1

loc(R+;U). If the function x : [0,∞)→ X−1 defined in (2.8) takes values
only in X, i.e., x(t) ∈ X for all t > 0, and x is continuous from [0,∞) to X, then
x is called a (continuous) mild solution of (2.5).

Remark 2.7. We want to point that in the literature the notion of a mild solution
may be defined in a more general way. E.g. in [19] an arbitrary function x :
[0,∞) → X−1 defined by (2.8) is called a mild solution, without any assumption
on the range of x and its continuity. Since B ∈ L(U,X−1), any such function
will however be continuous in the weaker norm of X−1. The assumption that a
mild solution should be X-valued is rather natural — not least as one models
a differential equation by choosing for a norm/space initially — and so is the
continuity (in X). While the first one is necessary for ISS, the second (continuity)
could be dropped, if we would be interested in minimal a-priori requirements for
ISS estimates. However, we will see shortly that for linear systems the continuity
is implicit if the system is Lq-ISS for q <∞, and also for q =∞, if only continuous
input functions are considered, see below and [19, 30, 44].
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The following properties of mild solutions corresponding to boundary control
systems are well-known and can for instance be found in [44, Chap. 11] (in the
case of Hilbert spaces). The proofs extend to the general Banach space setting in
a straightforward way, see also [43]. Note that in the literature there exists slightly
different versions of the definition of abstract boundary control systems, e.g. in
[12].

Proposition 2.8. Let (A,B) be a boundary control system with associated oper-
ators A and B0. Let x0 ∈ X and u ∈ L1

loc(0,∞;U). Then the following assertions
hold:

1. Any continuous mild solution x as in (2.8) solves the equation

x(t)− x(0) =

∫ t

0

A−1x(s) + [AB0 −A−1B0]u(s) ds t > 0, (2.9)

where equality is understood in X−1. Conversely, any x ∈ C([0,∞);X) sat-
isfying (2.9) in X−1 is of the form (2.8) with x0 = x(0).

2. The operator B = AB0 − A−1B0 is uniquely determined by the boundary
control system and does not depend on the chosen right-inverse B0 of B.

3. If x0 ∈ D(A) and u ∈ W 2,1(R+;U) such that Bx0 = u(0), then there exists
a unique classical solution to (2.5) given by (2.8).

4. A = A−1|D(A) +BB where B = AB0 −A−1B0 ∈ L(U ;X−1).

Proof. For the first item we refer to [43, Theorem 3.8.2]. The rest can be found
in [44, Chap. 11] upon the straight-forward adaption of proofs to general Banach
spaces. �

In the case of Hilbert spaces (in fact, reflexive spaces suffice), we have several
alternatives to characterize the operator B as well as the mild solutions to a
boundary control system. Note that with this one could in principle avoid the
space X−1.

Proposition 2.9. Let the assumptions of Proposition 2.8 hold and additionally
assume that X and U are Hilbert spaces. Then the following assertions hold:

1. If X and U are Hilbert spaces, then

〈Ax, ψ〉 − 〈x,A∗ψ〉 = 〈Bx,B∗ψ〉 ∀x ∈ D(A), ψ ∈ D(A∗).

2. A continuous function x : [0,∞)→ X is a mild solution of the form (2.8) if
and only if it is a (weak/strong) solution in one of the following senses:

(i) For all v ∈ D(A∗) it holds that 〈v, x(·)〉 is absolutely continuous and

d

dt
〈v, x(t)〉 = 〈x(t), A∗v〉+ 〈v,AB0u(t)〉 − 〈A∗v,B0u(t)〉

holds for almost every t ≥ 0 and x(0) = x0.
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(ii) For all T > 0 and all z ∈ C([0, T ];D(A∗))∩C1([0, T ];X) with z(T ) = 0
it holds that

〈z(0), x0〉 −
∫ T

0

〈ż(t), x(t)〉dt

=

∫ T

0

〈A∗z(t), x(t)〉+ 〈z(t),AB0u(t)〉 − 〈A∗z(t), B0u(t)〉dt.

(iii) x ∈W 1,1
loc ([0,∞);X−1), x(0) = x0 and

ẋ(t) = A−1x(t) + [AB0 −A−1B0]u(t)

holds in X−1 for almost every t ≥ 0.

Proof. Assertion 1. follows directly from Proposition 2.8, see also [44, Remark
10.1.6]. That the solution concept (i) is equivalent to the one of a mild solution
readily follows from (2.9) in Proposition 2.8 and the fundamental theorem of cal-
culus for the Lebesgue integral, see also [44, Remark 4.1.2]. Also recall the duality
of X−1 and D(A∗) (see e.g. [44, Proposition 2.10.2]).

Similarly, (2.9) shows the equivalence with (ii) by the fundamental theorem
of calculus for vector-valued functions (see e.g. [3] and note that X possesses the
Radon–Nikodym property) and again using the duality of X−1 and D(A∗).

To see that (iii) implies (ii) note first that the function t 7→ 〈z(t), x(t)〉 is
differentiable for a.e. t and

∂

∂t
〈z(t), x(t)〉 =〈ż(t), x(t)〉+ 〈z(t), A−1x(t) + [AB0 −A−1B0]u(t)〉D(A∗)×X−1

= 〈ż(t), x(t)〉+ 〈A∗z(t), x(t)−B0u(t)〉+ 〈z(t),AB0u(t)〉

and thus, by integrating, x satisfies the identity in (ii) for all z ∈ C([0, T ];D(A∗))∩
C1([0, T ];X) with z(T ) = 0. Conversely, assume that x satisfies the condition in
(ii) and consider z(t) = vz̃(t), with v ∈ D(A∗), z̃ ∈ C1([0, T ];C) and z̃(T ) = 0.
It readily follows by the definition of the scalar-valued weak derivative and the
characterization of scalar-valued Sobolev functions W 1,1 that

〈x(T ), v〉 − 〈x0, v〉 =

∫ T

0

〈x(t)−B0u(t), A∗v〉+ 〈v,AB0u(t)〉dt

holds. Thus, 〈x(0), v〉 = 〈x(·), v〉(0) = 〈x0, v〉 for all v ∈ D(A∗). Thus, by density,
x(0) = x0 and hence, (i) holds. For a similar proof showing that mild solutions are
weak solutions in the sense of (ii) see e.g. [7, pp. 631–632] (there, however, only
bounded B’s are considered). �

Remark 2.10. 1. In [30] ISS estimates for boundary control systems are shown
for continuous weak solutions in the sense of (ii) of Proposition 2.9. There it is
also shown that for smooth inputs, this definition of weak solutions coincides
with solutions of the form (2.7). In fact, as Proposition 2.9 shows, the notions
of a mild solution as introduced in Definition 2.6, weak solutions of the form
(i), (ii) and a “strong solution” (iii) are all equivalent provided we assume
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continuity. Note that the definitions of weak solutions have the advantage
that they do not refer to the space X−1.

2. It is easy to see that the definition of classical and mild solutions can be
adapted to more general boundary control systems of the form

ẋ(t) = Ax(t) + B̃u1(t), t > 0,

Bx(t) = u2(t), t > 0,

x(0) = x0,

(2.10)

where U1 is a Banach space, B̃ ∈ L(U1, X) and u1 : R+ → U1 account for
some distributed control.

3. Comparing the form of a mild solution (2.8) with the usual variation-of-
constants formula suggests to view a boundary control system as a special
case of a system of the form

ẋ(t) = A−1x(t) +Bu(t), t > 0, x(0) = x0 ∈ X, (2.11)

where the differential equation is understood in the larger space X−1 for
B ∈ L(U,X−1). Clearly, for any x0 and u ∈ L1

loc(R+;U) this equation has a
unique “mild” solution x : [0,∞) → X−1. Definition 2.6 of a mild solution
for a boundary system now additionally requires that such x maps indeed
to X. Also note that this setting as the advantage that systems of the form
(2.10) are automatically encoded in that form. Conversely, if we are given a
system of the form (2.11) with a semigroup generator A and B ∈ L(U,X−1),
it is always possible to find operators A : D(A) → X, B : D(A) → U and

B̃ : U → X so that we have a boundary control system as in (2.10) with
A = A

∣∣
kerB

and B = (A − A)B0 for some (all) right-inverses B0 of B.
This result, in the case that B is injective, can be found in [40]. The non-

injective case can be seen upon considering the quotient space Ũ = U/ kerB.
In conclusion, the study of boundary control systems rather than systems
(2.11) is not a restriction.

So far we have encountered — having in mind the equivalence of Proposi-
tion 2.9 — two types of solutions for boundary control systems: classical and, more
generally, mild solutions. The use of the latter is also motivated by the fact that
the objects in the ISS estimate naturally only require initial values to be in X
and input functions in Lq (or the respective functions space). However, for linear
systems, this choice is less “conceptual” than rather a technicality, as the follow-
ing results shows. Note that the case of ISS with respect to continuous functions
has already appeared in [30] (where weak solutions haven been considered instead
of mild solutions). In the view of systems (A,B) of the form (2.11), the follow-
ing result is a simple consequence of the linearity and the density of the involved
functions spaces.

Proposition 2.11 (ISS w.r.t. different solution concepts). Let (A,B) be
a boundary control system on a Banach space X with associated operators B0,
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A and B. Let q ∈ [1,∞) and let Φclassic and Φmild refer to the semiflow defined
by the classical and mild solutions, respectively.Then the following assertions are
equivalent:

1. (X,U,Φclassic) with D(Φclassic) = D(A)× C∞c (0,∞;U) is Lq-ISS.
2. (X,U,Φmild) with D(Φmild) = X × Lqloc([0,∞);U) is Lq-ISS.
3. (X,U,Φclassic) with

D(Φclassic) =
{

(x, u) ∈ D(A)×W 2,1
loc (0,∞;U) : Bx = u(0)

}
is Lq-ISS.

If q =∞, then the following assertions are equivalent:

1. (X,U,Φclassic) with

D(Φclassic) =
{

(x, u) ∈ D(A)×W 2,1
loc (0,∞;U) : Bx = u(0)

}
is L∞-ISS.

2. (X,U,Φmild) with D(Φmild) = X × C([0,∞);U) is L∞-ISS.

Note that the statements above particularly include that the considered dynamical
control systems are well-defined.

Proof. Since classical solutions are mild solutions the implication (2) to (3) for
q <∞ and (2) to (1) when q =∞ are clear. Moreover, the implication (3) to (1)
is trivial in the case q <∞. It remains to show (1) =⇒ (2) in both regimes.
Let t > 0 be fixed and consider the operator

Lt : D(Lt) ⊂ X × L1([0, t];U)→ C([0, t];X),

[
x
u

]
7→ Φclassic(·, x, u)

∣∣
[0,t]

with D(Lt) =
{(
x, u

∣∣
[0,t]

)
: (x, u) ∈ D(Φclassic)

}
. By Proposition 2.8, Lt is well-

defined and the assumed ISS estimate together with linearity implies that Lt is
continuous with respect to the sum norm ‖x‖X +

∥∥u∥∥
Lq(0,t;U)

. Since classical solu-

tions are mild solutions, Proposition 2.8, Lt extends to an operator, again denoted

by Lt, continuous from D :=
{(
x, u

∣∣
[0,t]

)
: (x, u) ∈ D(Φmild)

}
to C([0, t];X−1).

Consider now q < ∞. Thus Lt is continuous even from D to C([0, t];X) since
D(A) × C∞c (0,∞;U) lies dense in D and since X is continuously embedded in
X−1. For the case q = ∞, it may not be immediate why D(Lt) is dense in D.
To see this, let x ∈ X and u ∈ C([0, t];U). Since D(A) is dense in X, we find
a sequence (x̃n)n≥0 in D(A) = kerB such that x̃n → x − B0u(0) for n → ∞.
Let xn = x̃n + B0u(0), n ∈ N. Then (xn, u) ∈ D(Φclassic) and xn → x for
n → ∞. Now choose a sequence of smooth functions un which satisfy un = u(0)
for all n ∈ N and approximate u on [0, t] in the supremum norm. It follows that
(xn, un) ∈ D(Φclassic). Therefore, Lt is continuous from D to C([0, t];X). From
the representation (2.8), it follows that Φmild(s, x, u) = (Lt(x, u)) (s) for any s, t
such that s ≤ t and (x, u) ∈ D(Φmild).

Hence, in both cases, the continuity of the norms and the KL, K functions
directly gives the ISS estimates for (X,U,Φmild). �
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Remark 2.12. 1. The result of Proposition 2.11 remains true if one replaces
Lq, q < ∞ by the Orlicz space EΦ as defined in [19], since W 2,1(0, t;U) is
dense in EΦ(0, t;U).

2. The proof of Proposition 2.11 can also be easily given by viewing the bound-
ary control system as a linear system of the form (2.11). This completely
reduces to the fact that an operator is bounded if and only if it is bounded
(with an explicit estimate) on a dense subspace.

3. In the view of Proposition 2.11, one could also completely avoid the spaceX−1

in the above considerations and define generalized solutions for the case that
Lq estimates are known for the classical solutions. Then Φ can be defined as
abstract extension of Φclassic on the space X×Lqloc(0,∞;U) or X×C(0,∞;U)
respectively, in a similar way as followed in the proof. Such solutions concepts
(which coincide in this case) are known as “generalized solutions” in the
literature, see e.g. [41], [45, Definition 4.2].

4. The proof of Proposition 2.11 also shows the following: Let q < ∞ (for the
case q = ∞ see below) and (X,U,Φ) be a dynamical control system for a
boundary control system with D(Φ) ⊆ X × Lqloc(0, t;U) with the property
that it extends the dynamical control system given by the classical solutions
(X,U,Φclassic) in the following sense:
• Φ(·, x, u) ∈ C(0;∞;X) for any (x, u) ∈ D(Φ),
• (x, u) 7→ Φ(t, x, u) is linear for any t ∈ R+,
• D(Φclassic) ⊆ D(Φ),
• Φclassic(t, x, u) = Φ(t, x, u) for all (t, x, u) ∈ R+ ×D(Φclassic).

Then, it holds that

Φ = (Φmild)
∣∣
R+×D(Φ)

if (X,U,Φclassic) is Lq-ISS. The same assertion holds for q =∞ with the mod-
ification as in Proposition 2.11. As a side effect, this provides another proof
that the weak solutions considered in [30] coincide with the mild definitions
defined here, at least if the dynamical control system is Lq-ISS. Note that,
by Proposition 2.9, this holds true even without any assumption on ISS.

All of this shows that ISS estimates for continuous input functions and
linear systems do ultimately not rely on the “solution concept”, but essen-
tially only on the classical solutions, see [30] for a similar conclusion.

5. In contrast to the previous comment in this remark, we want to point out
that if one aims to study L∞-ISS for input functions in L∞loc(0,∞;U) or the
regulated functions Regloc(0,∞;U), then L∞-ISS estimates for the classical
solutions are not sufficient. This issue is crucial as one may want to allow for
non-continuous input-functions.

Above we have seen that the regularity of the boundary trace was the key
to derive the L2-ISS estimate in the case of the toy example heat equation with
Neumann boundary control. In fact, this conclusion follows from the upcoming
Proposition 2.13, which will also show that a better Lq-ISS estimate can be ob-
tained. Before let us recap a few essentials about parabolic equations in the view
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of semigroup theory. Recall that a semigroup T is called analytic if T can be ex-
tended analytically to an open sector Sφ = {z ∈ C\{0} : | arg z| < φ} and bounded
analytic if T is bounded on Sφ. An important characteristic of analytic semigroups
is that ranT (t) ⊂ D(A) for all t > 0 and

sup
t>0

t e−tω ‖AT (t)‖ <∞ (2.12)

for ω > ωA. We will now introduce interpolation spacesXα for analytic semigroups.
Note that there are several approaches to do so and we only touch the topic very
briefly here. Let us without loss of generality assume that ωA < 0. If A generates
an analytic semigroup, one can define the fractional power (−A)−α : X → X for
any α ∈ (0, 1) by the contour integral

(−A)−α =

∫
∂Sφ′

z−α(zI +A)−1dz,

where ∂Sφ′ is the boundary of a sufficiently large sector Sφ′ which particularly
contains the spectrum of A. Since (−A)−α is a bounded injective operator on X,
one can further define (−A)α = ((−A)−α)−1 : ran(−A)−α → X. The domain
of (−A)α equipped with the graph norm is denoted by Xα. Analogously to the
space X−1, we can define X−α as the completion of X with respect to the norm
‖(−A)−α · ‖. The operator (−A)−α extends uniquely to an isometric isomorphism
from X−α to X which we denote again by (−A)−α. Its inverse is the unique
bounded extension of (−A)α from X to X−α. For reflexive spaces there is an
equivalent view-point of the space X−α as the dual space of the space X∗α where
X∗α denotes the corresponding fractional space for the dual semigroup T ∗ with
generator A∗ and where duality is understood in the sense of the underlying pivot
space X, see [44, Chap. 3] and [46]. One of the many basic properties of these
spaces are the following (continuous) inclusions,

X−1 ⊃ X−α ⊃ X−β ⊃ X ⊃ Xβ ⊃ Xα ⊃ X1,

where 0 < β < α < 1. If the growth bound of the semigroup satisfies ωA ≥
0, the above construction can be performed for a suitably rescaled semigroup
e−tω T (t) and it can be shown that Xα does not depend on the chosen ω > ωA. For
specific examples (for example when A is the Laplacian with Dirichlet boundary
conditions) these abstract spaces indeed reduce to well-known fractional Sobolev
spaces, which is why Xα is sometimes called an “abstract Sobolev space”.

In the spirit of (2.12), the fractional powers (−A)α of a generator of an
exponentially stable analytic semigroup satisfy ranT (t) ⊂ D(−Aα) for all t > 0
and

sup
t>0

tα e−tω ‖(−A)αT (t)‖ <∞,

for any ω > ωA. Moreover, it holds that ranT−1(t) ⊂ D(A) for all t > 0. For
details on interpolation spaces for analytic semigroup generators we refer e.g. to
[10, 15, 38].
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With these preparatory comments on analytic semigroups, we can prove the
following sufficient condition for ISS.

Proposition 2.13 (Lq-ISS for analytic semigroups). Let (A,B) be a boundary
control system on a Banach space X with associated operators A and B0 and
B = AB0−A−1B0. Furthermore, assume that A generates an exponentially stable
analytic semigroup T and that one of the following properties is satisfied for some
α ∈ (0, 1]:

(i) B0 ∈ L(U,Xα).
(ii) B ∈ L(U,X−1+α).

(iii) B∗ ∈ L(X∗1−α, U
∗) and X is reflexive.4

Then (A,B) is Lq-ISS for q ∈ (α−1,∞]. More precisely, the dynamical control sys-
tem (X,U,Φmild) is Lq-ISS for D(Φmild) = X×Lqloc(0,∞;U), where Φmild(t, x0, u)
refers to the mild solution x(t) defined in (2.8).

Proof. Either of the assumptions on B imply that (−A)−1+αB ∈ L(U,X) and
hence, ∥∥T−1(t)B

∥∥
L(U,X)

=
∥∥T−1(t)(−A)1−α(−A)−1+αB

∥∥
L(U,X)

≤
∥∥T−1(t)(−A)1−α∥∥

L(X)

∥∥(−A)−1+αB
∥∥
L(U,X)

. t−1+α etω
∥∥B∥∥L(U,X−1+α)

.

Thus, for the Hölder conjugate p of q > (1− 1 + α)−1 = α−1,∫ t

0

‖T−1(t− s)Bu(s)‖X ds .
∥∥B∥∥L(U,X−1+α)

Cq,ω
∥∥u∥∥

Lq(0,t;U)
,

where we used that (−1 + α)p ∈ (−1, 0) and Cq,ω =
∥∥ e(t−·)ω(t− ·)(−1+α)

∥∥
Lp(0,t)

.

Therefore the integral
∫ t

0
T−1(t−s)Bu(s) ds converges in X for any u ∈ Lq(0, t;U)

and the assertion follows. �

Recalling that the operator B0 is not uniquely determined by the boundary
control system in general, it is, however, easily seen that Condition (i) in the above
proposition holds for all right inverses of B if and only if it holds for some B0.
Looking at the proof, Proposition 2.13 may seem rather elementary. However, it
is widely applicable to settle ISS for linear parabolic boundary control problems
as the assumption can often be checked by known properties of boundary trace
operators. We now come back to the discussion of the heat equation mentioned in
the introduction for general n-dimensional spatial domains.

Example 2.14 (Heat equation with Neumann boundary control). Let
Ω ⊂ Rn be a bounded domain with C2-boundary ∂Ω. Consider the Neumann

4Here X∗β denotes the dual space of X−β with respect to the pivot space X.
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boundary controlled heat equation with additional distributed control d, i.e.

ẋ(ξ, t) = ∆x(ξ, t)− ax(ξ, t) + d(ξ, t), (ξ, t) ∈ Ω× (0,∞),

∂x

∂ν
(ξ, t) = u(ξ, t) (ξ, t) ∈ ∂Ω× (0,∞),

x(ξ, 0) = x0(ξ), ξ ∈ Ω.

We can formulate this as a boundary control system of the form (2.10) with

X = L2(Ω), A = ∆− aIX , B =
∂

∂ν
, B̃ = IX , U = L2(∂Ω)

with A = ∆− aIX and D(A) =
{
x ∈ H1(Ω) : ∆x ∈ L2(Ω), ∂∂νx = 0

}
. Integrating

by parts twice gives for x ∈ H2(Ω), ψ ∈ D(A),

〈Ax, ψ〉 =
〈
Bx, ψ

∣∣
∂Ω

〉
L2(∂Ω)

+ 〈x,Aψ〉,

Since A is self-adjoint, we conclude by Propositions 2.9 that B∗ equals the bound-
ary trace operator γ0. It is known that γ0 ∈ L

(
Hβ(Ω), L2(∂Ω)

)
for any β > 1

2 ,

where Hβ(Ω) refers to the classical fractional Sobolev space (note, however, that

γ0 is bounded from H1(Ω) to H
1
2 (∂Ω), see [44, 13.6.1]). In terms of the abstract

Sobolev spaces Xα this means that B∗ ∈ L(Xβ , U
∗) for any β > 1

4 , see e.g. [28].

Also recall that the Neumann Laplacian on L2(Ω) has spectrum in (−∞, 0] which
implies that A generates an exponentially stable analytic semigroup as a > 0.
Thus, we can infer from Proposition 2.13 that the system is Lq-ISS with respect

for any q > (1− 1
4 )−1 = 4

3 . Because B̃ is bounded from X to X, we obtain the ISS

estimates for any q > 3
4 and q̃ ≥ 1.∥∥x(t)

∥∥
L2(Ω)

. e−at
∥∥x0

∥∥
L2(Ω)

+
∥∥u∥∥

Lq(0,t;L2(∂Ω))
+
∥∥d∥∥

Lq̃(0,t;X)

for all t > 0, d ∈ Lq̃(0, t;X) and u ∈ Lq
(
0, t;L2(∂Ω)

)
.

Similarly, we can consider the situation where the control does only act on a
part of the boundary ∂Ω, and adapt the argumentation in [6, p. 351].

Remark 2.15. 1. The author is not aware of way to sharpen the “Lyapunov
argument” for ISS from the introduction on the Neumann controlled heat
equation in order to derive the same (sharp) result p > 4/3 as in Exam-
ple 2.14. It seems that such Lyapunov arguments heavily rely on the fact
that the space of input functions is L2 (in time).

2. It is straight-forward to generalize Example 2.14 to a Neumann boundary
problem for a general uniformly elliptic second-order differential operator
with smooth coefficients.

Another, and in the view of the Lyapunov arguments mentioned in the in-
troduction, more interesting example is the Dirichlet-boundary controlled heat
equation.
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Example 2.16 (Dirichlet controlled heat equation). Let Ω ⊂ Rn be a do-
main with C2-boundary ∂Ω. The Dirichlet boundary controlled heat equation

ẋ(ξ, t) = ∆x(ξ, t), (ξ, t) ∈ Ω× (0,∞),

x(ξ, t) = u(ξ, t) (ξ, t) ∈ ∂Ω× (0,∞),

x(ξ, 0) = x0(ξ), ξ ∈ Ω

can be formulated as a boundary control system with

X = L2(Ω), A = ∆, Bx = x
∣∣
∂Ω
, U = L2(∂Ω)

with A = ∆ and D(A) =
{
x ∈ H1(Ω) : ∆x ∈ L2(Ω), γ0x = 0

}
, where γ0 denotes

the boundary trace. Integrating by parts twice gives for x ∈ D(A), ψ ∈ C∞(Ω),

〈Ax, ψ〉 =
〈
Bx,

∂ψ

∂ν

〉
L2(∂Ω)

+ 〈x,Aψ〉,

Since A is self-adjoint, we conclude by Proposition 2.9 that B∗ equals the Neumann
boundary trace operator γ1 for which γ1 ∈ L

(
Hβ(Ω), L2(∂Ω)

)
for any β > 3

2 , see
e.g. [44, Appendix]. In terms of the abstract Sobolev spaces Xα this means that
B∗ ∈ L(Xβ , U

∗) for any β > 3
4 , see e.g. [28]. Since the Dirichlet Laplacian on

L2(Ω) generates an exponentially stable analytic semigroup, by Proposition 2.13
the system is Lq-ISS with respect for any q > (1− 3

4 )−1 = 4. Thus,∥∥x(t)
∥∥
L2(Ω)

. e−λ0t
∥∥x0

∥∥
L2(Ω)

+
∥∥u∥∥

Lq(0,t;L2(∂Ω))

for all t > 0, some λ0 < 0 and all u ∈ Lq(0, t;L2(∂Ω)).

As seen above, Proposition 2.13 Lq-ISS for parabolic equation provided suf-
ficient properties of the boundary operator can be shown. In concrete situations
this typically reduces to knowledge of boundary traces. Let us briefly elaborate
on what can be said in situations where this information is not accessible. Fur-
thermore, one may also ask the question whether at all boundary systems exist
which are not Lq-ISS for any finite q. Let us first answer this positively with a,
admittedly pathologic, example.

Example 2.17. Let X = `2(N) be the space of complex-valued, square-summable
sequences and let (en)n≥1 denote the canonical orthonormal basis. Define A :
D(A)→ X and B : D(A)→ C by

D(A) =

{
x ∈ `2(N) : ∃cx ∈ C such that

∞∑
n=1

∣∣∣∣−2n〈x, en〉+
cx2n

n

∣∣∣∣2 <∞
}
,

Ax =
∞∑
n=1

(
−2n〈x, en〉en +

cx2n

n

)
,

Bx = cx.
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To see that A and B are well-defined, suppose that x ∈ X and cx, c̃x ∈ C. Then it
holds that

∞∑
n=1

∣∣∣∣−2n〈x, en〉+
cx2n

n

∣∣∣∣2 <∞, ∞∑
n=1

∣∣∣∣−2n〈x, en〉+
c̃x2n

n

∣∣∣∣2 <∞.
By triangle inequality (in `2(N)), it follows that |cx−c̃x|2

∑∞
n=1

22n

n2 <∞, and hence

cx = c̃x. Similarly, it follows that both operators are linear. Since ( 1
n )n∈N ∈ `2(N),

it is clear that B possesses a right-inverse, e.g. given by B0c = c
∑∞
n=1

1
nen, c ∈ C.

The operator A = A
∣∣
kerB

is given through Aen = −2nen, n ∈ N on its maximal
domain. This operator generates an exponentially stable, analytic semigroup T
determined by T (t)en = e−2nt, n ∈ N. Thus, (A,B) constitute a boundary control

system. The operator B = AB0−A−1B0 thus becomes Bc = −c
∑∞
n=1

2n

n en, which
has to be interpreted as an operator from C to

X−1 =

{ ∞∑
n=1

xnen :
(xn

2n

)
n∈N
∈ `2(N)

}
.

In [19, Example 5.2], which in turn was based on a result from [20], it was shown
that the system Σ(A,B) of the form (2.11) is not Lq-ISS for any q < ∞. In
particular, this implies that for any q < ∞ there exists a time t0 and a sequence
of continuously differentiable functions um : [0,∞)→ C such that

• supm∈N
∥∥um∥∥Lq(0,t0)

<∞ and

• the classical solution xm : [0,∞)→ X to the boundary control system (A,B)
with initial value x0 = 0 and input function um satisfy

lim
m→∞

∥∥xm(t0)
∥∥
X
→∞.

However, the boundary control system is L∞-ISS, by the upcoming Theorem 2.18.

Theorem 2.18. Let (A,B) be a boundary control system on a Hilbert space with
associated operator A. If the following assumptions are satisfied:

• A generates an exponentially stable, analytic semigroup, and
• there exists an equivalent scalar product 〈·, ·〉new on X such that A is dissi-

pative, i.e. Re〈Ax, x〉new ≤ 0,
• the range of B is finite-dimensional,

then (A,B) is L∞-ISS and the (mild) solutions are continuous for all

(x0, u) ∈ X × L∞loc(R+;U).

Moreover, there exist positive constants C1, C2, ω,and ε, as well as a strictly in-

creasing, smooth, convex function Φ : [0,∞)→ [0,∞) with Φ(0) = 0, limx→∞
Φ(x)
x =

∞ such that∥∥x(t)
∥∥
X
≤ C1 e−ωt

∥∥x0

∥∥
X

+ C2 e−εt inf

{
k ≥ 0:

∫ t

0

Φ
(

esε ‖u(s)‖U
k

)
ds ≤ 1

}
(2.13)

for any mild solution x, t > 0, u ∈ L∞loc(0,∞) and x0 ∈ X.
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Proof. This is a direct consequence of the results in [21] where similar results
were stated for systems of the form (2.11). It remains to observe the following.
Because of the assumed dissipativity, the semigroup T is similar to a contraction
semigroup. Since B has a right-inverse, it follows that dimU = dim ranB < ∞.
Hence, B = (A − A)B0 is an operator from a finite-dimensional space to X−1.
In order to derive Estimate (2.13), we use a rescaling argument: Let ε > 0 such

that T̃ = eε· T is exponentially stable and consider the boundary control system
(A + εI,B). Note that the spaces X−1 and the corresponding one for A+ εI, the

generator of T̃ , coincide and also B = (A − A−1)B0 = (A + εI − A−1 − εI)B0.
Corollary 21 and Theorem 19 from [21] show that there exist positive constants

C̃1, C̃2 and ω and a function Φ with the properties described in the statement of
the theorem such that∥∥x̃(t)

∥∥
X
≤ C̃1 e−ωt

∥∥x0

∥∥
X

+ C̃2 inf

{
k ≥ 0:

∫ t

0

Φ

(∥∥ũ(s)
∥∥
U

k

)
ds ≤ 1

}
(2.14)

for any mild solution x̃ of (A + εI,B) and t > 0, ũ ∈ L∞loc(0,∞) and x0 ∈ X. On
the other hand it follows from the representation (2.8), that any mild solution x to
(A,B) with input function u, the function x̃(t) = eεt x(t) defines a mild solution of
the boundary control problem (A+εI,B) with input function ũ = e·ε u. Combining
this with (2.14) shows (2.13).
To see that (2.13) implies that (A,B) is L∞-ISS, we show that there exists a
constant C3 such that for all t > 0,∫ t

0

Φ

(
esε
∥∥u(s)

∥∥
U

C3 eεt
∥∥u∥∥

L∞(0,t;U)

)
ds ≤ 1.

Since Φ is strictly increasing it thus suffices to show that

sup
t>0

∫ t

0

Φ
(
e−sε C−1

3

)
ds ≤ 1,

which follows easily by the property that limx→0
Φ(x)
x = 0. �

Remark 2.19. The following remarks can be made about Theorem 2.18:

• Let us point out that (2.13) is indeed stronger than the corresponding esti-
mate with ε = 0: By monotonicity of Φ,

e−εt inf

{
k ≥ 0:

∫ t

0

Φ

(
esε
∥∥u(s)

∥∥
U

k

)
ds ≤ 1

}

≤ inf

{
k ≥ 0:

∫ t

0

Φ

(∥∥u(s)
∥∥
U

k

)
ds ≤ 1

}
.

Furthermore, in case that Φ can be chosen as Φ(x) = xq, x ∈ [0,∞) for
q ∈ (1,∞), the estimate reduces to an Lq-ISS estimate.
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• The BCS in Example 2.17 satisfies the assumptions of Theorem 2.18 as can be
checked by the explicit expression for the semigroup. However, the function
Φ cannot be taken of the form Φ(x) = xq for any q <∞, [19, Example 5.2].
• The assumption that there exists an equivalent scalar product such that A

is dissipative is rather weak from a practical point of view: Most known
practically-relevant examples of differential operators satisfy this condition,
[27] which can be rephrased as the property that the semigroup is similar to a
contraction semigroup. However, it is not difficult to construct counterexam-
ples assuring that not every analytic semigroup on a Hilbert space is similar
to a contractive one. This can be done by diagonal operators with respect to
a (Schauder) basis which is not a Riesz basis, [4, 15].

Example 2.20. Let (A,B) be a boundary control system with dimU < ∞ and
A being a Riesz-spectral operator, i.e. A = S−1ΛS for a bijective operator S ∈
L(X) and a densely defined closed operator Λ : D(Λ) ⊂ X → X with discrete
spectrum σ(Λ) contained in a left-half-plane of the complex plane and such that
the eigenvectors establish an orthonormal basis of X, where we also assume that
the eigenvalues are pairwise distinct. By Parseval’s identity, it follows that A is
dissipative with respect to the scalar product 〈S·, S·〉. If, moreover, it is assumed
that σ(A) = σ(Λ) is contained in a sector Sθ := {z ∈ C : arg(z) ≤ θ} with
θ < π

2 , then A generates an analytic semigroup, which is exponentially stable if
and only if sup{Reλ : λ ∈ σ(A)} < 0. For details on Riesz-spectral operator we
refer for instance to [7]. Therefore, the conditions of Theorem 2.18 are satisfied
and (A,B) is L∞-ISS for input data (x0, u) ∈ X × L∞loc(R+;U). See also [30] and
[18, 19] for different proofs of this fact. In particular in the latter, more generally
q-Riesz-spectral operators are considered.

3. A primer on semilinear boundary control systems

In the following we extend the linear systems considered in Section 2 to semilinear
ones. As motivating example serves (1.5). The abstract theory of semilinear PDEs
(without controls/disturbances) with our without using semigroups is comparably
old and can be found e.g. in the textbooks [16, 38]. There is a particularly rich
theory for parabolic equations as smoothing effect of the linear part through the
analytic semigroups allows for rather general nonlinearities. In the following we are
interested in ISS estimates similar to the ones we derived for linear systems: This
includes the property that the undisturbed system is uniformly asymptotically sta-
ble which requires already restrictive conditions on the nonlinearity, particularly,
if we aim for abstract results covering whole classes of examples. The simplest
condition guaranteeing this global stability is a global Lipschitz condition with
sufficiently small Lipschitz constant, as we shall see in Theorem 3.3. There it is
shown that the usual proof technique to assess uniform global asymptotic stability
for uncontrolled systems also goes through for boundary control systems using the
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results we discussed in Section II. The final result of this section is Theorem 3.4,
which provides a generalization of the findings in [48].

Definition 3.1 (Semilinear boundary control system). Let (A,B) be a linear
boundary control system with state space X and input space U . Denote by A the
associated semigroup generator and by B0 a right-inverse of B. Further let

• α ∈ [0, 1) if A generates an analytic semigroup, or
• α = 0 else (in which case we set X0 = X).

Let f : R+ × Xα → X be a function continuous in the first variable and locally
Lipschitz in the second variable with respect to the norm Xα. Then the triple
(A,B, f) formally representing the equations

ẋ(t) = Ax(t) + f(t, x(t)),

Bx(t) = u(t),

x(0) = x0,

(3.1)

t > 0, is called a semilinear boundary control system.
Let x0 ∈ D(A), T > 0 and u ∈ C([0, T ];U). A function

x ∈ C([0, T ];D(A)) ∩ C1([0, T ];X)

is called a classical solution to the nonlinear BCS (3.1) on [0, T ] if x(t) ∈ Xα for
all t > 0 and the equations (3.1) are satisfied pointwise for t ∈ (0, T ]. A function
x : [0,∞) → X is called (global) classical solution to the BCS, if x|[0,T ] is a

classical solution on [0, T ] for every T > 0. If x ∈ C([0, T ];D(A)) ∩ C1((0, T ];X)
and x(t) ∈ Xα for all t > 0 and the equations (3.1) are satisfied pointwise for
t ∈ (0, T ], then we say that x is a classical solution on (0, T ].

Similar as in the previous section, we can define mild solutions.

Definition 3.2 (Mild solutions of semilinear boundary control systems).
Suppose (A,B, f) is a semilinear boundary control system with associatedA,B0, α ∈
[0, 1). Let x0 ∈ X, T > 0 and u ∈ L1

loc([0, T ];U). A continuous function x : [0, T ]→
X is called mild solution to the BCS (3.1) on [0, T ] if x(t) ∈ Xα for all t > 0 and
x solves

x(t) = T (t)x0 +

∫ t

0

T (t− s) [f(s, x(s)) +Bu(s)] ds, (3.2)

for all t ∈ [0, T ] and where B = AB0−A−1B0. A function x : [0,∞)→ X is called
a global mild solution if x

∣∣
[0,T ]

is a mild solution on [0, T ] for all T > 0.

It is not hard to see that the definition 3.2 coincides with the one for lin-
ear BCS in case that f(t, x) = Cx for any bounded operator C : X → X, or,
more generally, when C is unbounded and A + C generate a strongly continuous
semigroup. Moreover, any (global) classical solution is a (global) mild solution.

The following result is not very surprising as it shows that a semilinear system
is ISS if the linear subsystem is ISS and the nonlinearity is globally Lipschitz.
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Theorem 3.3. Let (A,B) be a boundary control system which is assumed to be
Z-ISS where Z refers to either Lq with q < ∞, C or Reg. Let M ≥ 1 and ω < 0
be such that for the associated semigroup T it holds that ‖T (t)‖ ≤ M eωt for all
t > 0. Furthermore, let f : R+ ×X → X be continuous in the first and uniformly
Lipschitz continuous in the second variable with Lipschitz constant Lf > 0 and
f(t, 0) = 0 for all t ≥ 0. If

ω +MLf < 0,

then the semilinear boundary control system Σ(A,B, f) is Z-ISS. More precisely,
for any x0 ∈ X and u ∈ Z(R+;U) System (3.1) has a unique global mild solution
x ∈ C([0,∞);X). Furthermore, there exist β ∈ KL and a constant σ > 0 such
that for all t > 0, x0 ∈ X and u ∈ Z([0, t];U),∥∥x(t)

∥∥
X
≤ β(‖x0‖, t) + σ

∥∥u∥∥Z([0,t];U)
, (3.3)

thus Σ(A,B, f) is Z-ISS.

Proof. The proof follows the lines of a standard technique for semilinear equations
with (global) Lipschitz continuous nonlinearity. For fixed u ∈ Zloc(0,∞;U) and
x0 ∈ X, it follows from the assumed ISS that the mapping

t 7→ g(t) := T (t)x0 +

∫ t

0

T (t− s)Bu(s)ds

is continuous from [0,∞) to X. Indeed, the continuity follows by [43, Theo-
rem 4.3.2] (noting that ISS implies Z-admissibility/Z-well-posedness). The exis-
tence of a mild solution to Σ(A,B, f) is equivalent to the existence of a fixed-point
x ∈ C([0,∞);X) of

x(t) = g(t) +

∫ t

0

T (t− s)f(s, x(s))ds, t ∈ [0,∞).

The latter follows from [38, Corollary 6.1.3] by the assumptions on f and the
continuity of g. The ISS property can now be shown by a Gronwall-type argument:
Since the linear boundary control system is ISS, there exists σ > 0 such that

‖g(t)‖ ≤M eωt ‖x0‖+ σ
∥∥u∥∥Z([0,t];U)

, t > 0,

where M and ω are chosen as in the statement of the theorem. By the definition
of the mild solution,

‖x(t)‖ ≤ ‖g(t)‖+

∫ t

0

M e(t−s)ω ‖f(s, x(s)‖ds

≤ ‖g(t)‖+MLf etω
∫ t

0

e−ωs ‖x(s)‖ds.
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Now Gronwall’s inequality implies that

‖x(t)‖ ≤ ‖g(t)‖+ etω
∫ t

0

e−ωsMLf‖g(s)‖ eMLf (t−s) ds

≤ ‖g(t)‖+MLf et(ω+MLf )

(∫ t

0

M e−MLfs ds‖x0‖+

+σ
∥∥u∥∥Z([0,t];U)

∫ t

0

e−ωs−MLfs ds

)
= M et(ω+MLf ) ‖x0‖+

[
MLf

etω+MLf t−1

ω +MLf
+ 1

]
σ
∥∥u∥∥Z([0,t];U)

.

Since the coefficient of the second term on the right hand side is bounded in t, the
assertion follows. �

It is trivially seen that the condition on the Lipschitz constant is in general
sharp as the finite-dimensional example

ẋ = −x+ 2x+ u,

with f(x) = 2x, shows. On the other hand, the slight adaption X = R, A = 1,
f(x) = −2x, B = 0 shows, that the result is not optimal in the sense that the
“sign” of the nonlinearity is crucial for asymptotic stability.

Theorem 3.4. Let (A,B, f) be a semilinear boundary control system with as-
sociated operators A and B0. Let the following be satisfied for the linear system
(A,B):

(i) the operator A = A
∣∣
kerB

is self-adjoint and bounded from above by ωA ∈ R,
i.e. 〈Ax, x〉 ≤ ωA for all x ∈ D(A),

(ii) B ∈ L
(
U,X− 1

2

)
, where B := (A−A)B0.

Furthermore, the function f : [0,∞)×X 1
2
→ X satisfies the following properties:

(1) f is locally Hölder continuous in the first and Lipschitz in the second variable,
i.e. for any (t, x) ∈ R+ ×X 1

2
there exists L > 0, θ ∈ (0, 1), ρ > 0 such that

‖f(t, x)− f(s, y)‖ ≤ L
(
|t− s|θ + ‖x− y‖ 1

2

)
for all (s, y) in the ball Bρ(t, x) in R+ ×X with radius ρ and centre (t, x);

(2) there exists a continuous, nondecreasing function k : R+ → R+ such that

‖f(t, x)‖ ≤ k(t)
(
1 + ‖x‖ 1

2

)
, ∀(t, x) ∈ R+ ×X;

(3) there exist constants m1,m2 ∈ R such that for any (t, x) ∈ R+ ×X 1
2

it holds

that 〈f(t, x), x〉 ∈ R and

〈f(t, x), x〉 ≤ −m1〈Ax, x〉+m2‖x‖2;

(4) above constants satisfy the inequality

1−m1 > 0 and (1−m1)ωA +m2 < 0.
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Then, for any x0 ∈ X 1
2

and u ∈ W 2,1(R+;U) with A−1x0 + Bu(0) ∈ X, the

semilinear boundary control system (3.1) has a unique mild solution x, which is
classical on (0,∞), and (A,B, f) is Lq-ISS for any q ≥ 2. More precisely, for any
q ≥ 2 there exist constants C1, C2, ω > 0 such that for all (t, x0, u) ∈ R+ ×Xα ×
W 2,1(R+;U) with A−1x0 +Bu(0) ∈ X the solution x satisfies∥∥x(t)

∥∥
X
≤ C1 e−ωt

∥∥x0

∥∥
X

+ C2

∥∥u∥∥
Lq(0,t;U)

.

Proof. First note that — upon considering Ã = A−ωA− ε and f̃(s, x) = f(s, x) +
(ωA + ε)x we can without loss of generality assume that ωA < 0 and thus that the
semigroup is exponentially stable.
In order to show existence and uniqueness of the solutions, we closely follow the
proof of the classical result in [38, Theorem 6.3.1 and Theorem 6.3.3] which has
to be adapted to allow for boundary inputs u. Under the made assumptions on A
and f , it follows by [38, Theorem 6.3.1], that the uncontrolled system, u ≡ 0, has
a unique local classical solution for any x0 ∈ X 1

2
, which, by the assumption (2)

and [38, Theorem 6.3.3], extends to a global solution. The key argument for local
existence [38, Theorem 6.3.1] is to consider the unique solution y of

y(t) = T (t)(−A)
1
2x0 +

∫ t

0

(−A)
1
2T (t− s)f(s, (−A)−

1
2 y(s))ds (3.4)

for t ∈ [0, τ ], where τ > 0 and to show that t 7→ y(t) is Hölder continuous on (0, τ),
so that the sought solution is given by the solution of

ẋ(t) = Ax(t) + f(t, (−A)−
1
2 y(t)), (3.5)

x(0) = x0.

To apply an analogous reasoning in the controlled case, u 6= 0, it remains to

adapt (3.4) and (3.5) by adding the terms
∫ t

0
(−A)

1
2T (t − s)Bu(s)ds and Bu(t)

to the right-hand sides, respectively. Since B ∈ L
(
U ;X− 1

2

)
, we have that B̃ :=

(−A)−
1
2B ∈ L(U ;X) and thus

t 7→
∫ t

0

(−A)
1
2T (t− s)Bu(s)ds = −

∫ t

0

AT (t− s)B̃u(s)ds

= −
∫ t

0

T (t− s)B̃u̇(s)ds+ T (t)B̃u(0)− B̃u(t)

is a continuous function on [0,∞) and, by the analyticity of the semigroup, even
Hölder continuous on (0,∞). Therefore, analogously to the proof of [38, Theo-
rem 6.3.1], we conclude that the equation

y(t) = T (t)(−A)
1
2x0 +

∫ t

0

(−A)
1
2T (t− s)

[
f(s, (−A)−

1
2 y(s)) +Bu(s)

]
ds, (3.6)

allows for a unique continuous solution y : [0, τ ] → X for some τ > 0 such

that t 7→ f(t, (−A)−
1
2 y(t)) is Hölder continuous on (0, τ). Therefore, and since
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u ∈W 2,1(R+;U) with A−1x0 +Bu(0) ∈ X, the mild solution x ∈ C([0, τ ];X) of

ẋ(t) = Ax(t) + f
(
t, (−A)−

1
2 y(t)

)
+Bu(t), (3.7)

x(0) = x0

is in fact a classical solution on (0, τ), [38, Corollary 4.3.3] and [44, Proposi-
tion 4.2.10]. From the representation of the mild solution of (3.7),

x(t) = T (t)x0 +

∫ t

0

T (t− s)
[
f
(
s, (−A)−

1
2 y(s)

)
+Bu(s)

]
ds,

it moreover follows that x(t) = (−A)−
1
2 y(t) and thus, x is a mild solution of the

original boundary control problem (3.1) on [0, τ ] and even a classical solution on
(0, τ). From assumption (4), it follows that x remains bounded in the ‖ · ‖ 1

2
-norm

on [0, τ), so that, by iterating the argument, x can be extended to a global solution,
see [38, Theorem 6.3.3].

We now show the Lq-ISS estimate. Let x be the mild solution to an initial
value x0 ∈ X 1

2
. Since x is a classical solution on (0,∞), we have for any t > 0 that

1

2

d

dt
‖x(t)‖2 = 〈Ax(t), x(t)〉+ 〈f(t, x(t)), x(t)〉+ Re〈u(t), B∗x(t)〉.

Therefore, by Assumption (3) and noting that∥∥x∥∥2
1
2

=
〈
(−A)

1
2x, (−A)

1
2x
〉

= −〈Ax, x〉 ≥ −ωA‖x‖2, (3.8)

it follows that for any t > 0 and sufficiently small ε > 0

1

2

d

dt
‖x(t)‖2 ≤ (1−m1)〈Ax(t), x(t)〉+m2‖x(t)‖2 +

∣∣〈u(t), B∗x(t)
〉
U×U

∣∣
≤ (1−m1 − ε)〈Ax(t), x(t)〉+m2‖x(t)‖2 +

1

4ε

∥∥B∗∥∥2

L(X 1
2
,U)
‖u(t)‖2

≤ ((1−m1 − ε)ωA +m2)‖x(t)‖2 +
1

4ε

∥∥B∗∥∥2

L(X 1
2
,U)
‖u(t)‖2, (3.9)

where we used (3.8) and Assumption (4) in the last inequality. Gronwall’s inequal-
ity now yields the assertion for q = 2 and an additional application of Hölder’s
inequality the one for q > 2. �

Remark 3.5. Theorem 3.4 is a generalization of the result in [48] where only the
Laplacian with Robin/Neumann boundary control (excluding Dirichlet control)
in one spatial variable was considered and the assumptions on f were tuned to
guarantee the existence of classical solutions. We decided to give a full proof (or at
least a sketch of the necessary adaptations from [38]) of the existence of solutions
for the convenience of the reader, but also since the classical literature on semi-
linear PDEs does not cover the presence of the inputs.5 The assumption that the
inputs should lie W 2,1(R) with the additional property that A−1x0 + Bu(0) ∈ X
is clearly tuned in order to guarantee for classical solutions (in (0,∞)), cf. [44,

5At least the author is not aware of any explicit reference in this operator-theoretic framework.
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Proposition 4.2.10]. This, however, can be weakened with a more careful analy-
sis on the regularity of the solutions and by deriving (3.9) only for almost every
t > 0. Although our proof follows standard arguments in the semigroup approach
to semilinear equations instead, the derivation of the ISS estimate can be seen as
abstraction of the procedure in [48]. Recall that it is well-known that the corre-
sponding boundary operator B in the situation of Neumann or Robin control in
[48] satisfies the condition B ∈ L(U,X− 1

2
), see also Example 2.14.

Example 3.6 (Semilinear parabolic equation with cubic nonlinearity).
Let Ω ⊂ Rn with n ∈ {1, 2, 3}. Under the setting of Example 2.14 consider

ẋ(ξ, t) = ∆x(ξ, t)− ax(ξ, t)− x(ξ, t)3 + d(ξ, t), (ξ, t) ∈ Ω× (0,∞),

∂x

∂ν
(ξ, t) = u(ξ, t) (ξ, t) ∈ ∂Ω× (0,∞),

x(ξ, 0) = x0(ξ), ξ ∈ Ω,

which establishes a semilinear BCS (A,B, f) with f(x) = −x3 and the same
operators A,B, A, B as in Example 2.14. As seen in the previous example, (A,B)
is a linear boundary control system for d = 0 and, in the generalized sense of
Remark 2.10, for d 6= 0. The conditions (i) and (ii) of Theorem 3.4 are satisfied
with ωA = −a. Conditions (1) and (2) both follow from the Sobolev embedding
W 1,2(Ω) ⊆ L6(Ω) valid for n ∈ {1, 2, 3}, see e.g. [1], and the fact that X 1

2
=

W 1,2(Ω), see e.g. [28].

4. Concluding remarks and outlook

In the situation of Dirichlet boundary control and the choice X = L2(Ω) for the
state space, it is well-known that an L2-ISS-estimate (in time) cannot be expected.
More precisely, even for a linear heat equation the input operator represented by
Dirichlet boundary control is not L2-admissible if the state space is L2(Ω), see [31,
p. 217] for a counterexample. Instead, as we have seen in Example 2.16, we only
have Lp-ISS for p > 4 in general, see also [11, Proposition 5.1] for another proof in
the case that p =∞. Therefore, the results of Section 3 cannot be applied and the
situation becomes more involved. The question is if Lyapunov arguments such as
used in Theorem 3.4 can at all be used to assess ISS in situations which are not L2-
ISS. A work-around — typical in the theory of linear L2-well-posed systems [44]—
is as follows: If in the setting of Example 3.6 one considers Dirichlet boundary
control instead of Neumann boundary control, we could change the considered
state space X to be the Sobolev space H−1(Ω) in order to obtain L2-ISS, i.e.∥∥x(t)

∥∥
H−1(Ω)

. e−at
∥∥x0

∥∥
H−1(Ω)

+
∥∥u∥∥

L2(0,t;L2(∂Ω))
.

On the other hand, if we aim for L∞-ISS estimates only, other techniques may be
more suitable; such as the maximum principle methods in [33]. These methods,
however, seem to be practical only for L∞-ISS estimates.
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[29] H. Lhachemi, D. Saussié, G. Zhu, and R. Shorten. Input-to-State Stability of a
Clamped-Free Damped String in the Presence of Distributed and Boundary Distur-
bances. Available at arXiv: 1807.11696, 2019.

[30] H. Lhachemi and R. Shorten. ISS Property with respect to boundary disturbances for
a class of Riesz-spectral boundary control systems. Automatica J. IFAC, 109:108504,
2019.

[31] J.-L. Lions. Contrôle optimal de systèmes gouvernés par des équations aux dérivées
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