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Abstract. In many scenarios where robots could assist humans, han-
dover situations are essential. But they are still challenging for robots,
especially if these are initiated by the human interaction partner. Human-
human handover studies report average reaction times of 0.4 s, which is
only achievable for robots, if they are able to predict the object transfer
point (OTP) sufficiently early and then adapt to the human movement.
In this paper, we propose a hand tracking system that can be used in
the context of human initiated handover as a basis for human reach-
ing motion prediction. The OTP prediction implemented is based on
the minimum jerk model and combines a static estimation utilizing the
human’s initial pose and a dynamic estimation from the current hand
trajectory. Results are generated and analyzed for a broad spectrum of
human initiated scenarios. For these cases we examine the dynamics of
different variants of the proposed prediction algorithm, i.e., how early
is a robot’s prediction of the OTP within a certain error range? The
tracking delivers results with an average delay, after the initialization, of
0.07s. We show that the OTP prediction delivers results after 75 % of
the movement within a 10 cm precision box.

1 Introduction

Object handovers take place everywhere in our daily lives. With robots becom-
ing more and more present in our common working or living environment, this is
an essential part of the socially accepted interaction with them. Such close inter-
actions demand a collaborative and precise synchronization of both partners in
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space and time. Previous handover studies provided evidence that an improved
reactivity of the robot increases the acceptance of such systems [11]. This requires
an early prediction of the object transfer point (OTP), which defines the object’s
position in 3d space where the actual object transfer event takes place (see
marked coordinate system in Fig.1(b)). This point can be inferred from the
tracking of the hand position. Existing approaches can be distinguished by sev-
eral factors. These include the number of cameras used, whether color, depth
images or a combination of both is used and if the output is only one point
describing the hand center position or if the hand’s articulation is tracked. The
proposed system should enable a robot to react to a handover considering a
human-like timing. From human-human handover studies an average handover
duration of about 1.24s was reported [1]. The average reaction time was found
to be about 0.4s [12]. Therefore, the processing of the hand tracking and the
planning of the robot’s motion should only induce a minimal delay below 0.4 s.
Approaches with a high processing time (e.g., Bray et al. [2]) do not fulfill these
requirements. Hackenberg et al. [6] report a rate of more than 50 fps and rely
only on depth images. But they assume strong visibility constraints, e.g., the
palm always facing the camera with visible fingers, which are not always met in
handover scenarios with occluding objects. Predicting human reaching motions
in a handover scenario is a very recent research topic. OTP predictions have
been tackled by [7,8,14]. Most approaches learn human motions and need many
human demonstrations or use imitation learning [10,13]. In order to generalize
different handover scenarios and individuals large data sets are needed. Li and
Hauser present a number of different models to predict human reaching motions,
but only present preliminary results for two of them [9]. Nemlekar et al. com-
bine a modified version of the Probabilistic Movement Primitives approach from
Maeda et al. with an offline component in order to predict an estimated OTP
as soon as a handover intent is detected [10,12]. Our proposed system is based
on Nemlekar’s approach but substitutes the Probabilistic Movement Primitives
component with the minimum jerk model, which is the first model presented by
Li and Hauser [9]. The minimum jerk model was originally proposed by Flash
and Hogan as a mathematical model for describing human arm movements [5].
Our approach is inspired by Chen et al. [4] who report a rate of more than
300 fps. As the robot should interact autonomously, our method relies only on
one depth camera which is mounted in the robot’s chest. Similar to Chen et al.,
we segment the hand and estimate the hand center based on the boundary points
of the segmented region providing an input for a mean-shift based tracking. For
the OTP prediction, we apply a model-based approach utilizing the minimum
jerk model combined with the basic idea of Nemlekar et al. [5,9,12]. Instead of
optimizing the approach for a minimal displacement at the end of the tracking,
we examine the effects of different combination schemes of static and dynamic
OTP prediction in the early reaching phase.
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2 Approach

Similar to Nemlekar et al. [12], our system combines an offline and online compo-
nent for the OTP prediction, but we examine the combination schemes in a more
sophisticated manner. The minimum jerk model is a simple method for trajec-
tory generation minimizing a cost criterion based on the trajectory’s jerk [5]. It
is used in the online component and predicts the human hand motions based on
the current hand position, the handover start time, and the estimated end time
[9]. The current hand position is provided by a hand tracking system (Sect. 2.1
that is used to continuously update the OTP prediction. The initialization of
the tracking system is given by a hand detection on a color image based on
OpenPose [3]. This provides accurate results but takes up some processing time
which leads to an initial delay of the tracking results of between 0.3s and 0.4s.
This 2D position is then converted, based on the corresponding depth image,
into a 3D position which is further used for low-latency tracking. Point clouds
are buffered in order to deal with the initial delay and to provide a continuous
tracking input. The hand tracking relies only on point clouds. The camera used
is an Intel RealSense D435, which has a wider opening angle for the depth sensor
than for the color image and, therefore supports a larger interaction space dur-
ing the tracking after the initialization. The OTP is defined as the 3D position
at which the object will be handed over. With the approach from Nemlekar et
al. [12] a prediction for this point is available as soon as the intent for a handover
is detected.

2.1 Hand Tracking with Point Clouds

The hand tracking system, adapted from Chen et al. [4], purely relies on point
clouds. Tt determines the hand position (zjnq) in the current frame, as well as
the current velocity of the hand, given the hand position from the previous frame.
In each frame, the point = closest to the previous hand position, in the point
cloud, is found as a seed for the current hand hypothesis. Chen et al. use the
geodesic distance of points to avoid including other body parts in the segmented
hand region [4]. A similar effect can be achieved by removing points from the
point cloud whose distance to = is greater than a certain distance. This region
is used as hand region (rp4nq). The points at the edge of the region 74,4 are
found as boundary points. The hand position is then approximated as the point
(Tapproz) With the most boundary points within a radius d,s, i.e., assuming it
at the end of the arm [4]. A mean-shift step then refines the hand position [4]:

Zperhand p * 1d(p7$@1)1’7‘017)<dm,s

Thand =

(1)
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The calculated position Zpeng is the result of the current hand tracking and
serves as the input for the next tracking step.
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2.2 Object Transfer Point Prediction

For the OTP prediction a static and a dynamic OTP are used (see [12]). The
weighted sum of these two points, the integrated OTP, is the actual output that
is sent to the robot as a grasp position goal. During the handover the static
OTP is calculated once based on the initial position of the human partner as
half-way between robot and human. The dynamic OTP is calculated based on
the model defined below utilizing the reaching motion of the human partner, so
far observed. The static OTP is instantly available at the start of a handover, so
that the robot can start to reach out as soon as the handover intent is detected.
On the one hand, it is also a relatively safe prediction, that typically is not too
far away from the actual OTP. Therefore, it can reduce the prediction error that
the dynamic OTP initially might have because it is missing a sufficient motion
history. On the other hand, the dynamic OTP can adapt the prediction to the
current situation and is supposed to provide a more accurate position than the
static OTP, once a certain amount of the movement was observed. The difference
in the movement speed of humans and robots allows the dynamic OTP to become
more accurate early during the robot’s movement, because the human’s motion
will proceed faster than the robot’s motion. Thus, the key objective is to weight
these OTP predictions accordingly, so that a robot is able to react fast and
accurately to human initiated handovers.

The utilization of the minimum jerk model for the dynamic OTP prediction is
based on the assumption that human motions are smooth, which means, that the
jerk of the motion is as small as possible. To predict the OTP, the end time of the
movement is needed in order to resolve the minimum-jerk equation for the end
position z; [5]. Here an average handover time can be used. Basili et al. found
that the time between the initiation of the handover and the actual handover
is 1.24s+0.28s [1]. Due to the bell shaped velocity profile the end time can be
updated during the hand over at the velocity extremum, which can be detected.
It is reached when 50 % of the complete movement is executed. Consequently, the
end time can be predicted at this point by adding the time that already passed
since the handover started (t. — tg) to the current time. Thus, the minimum jerk
model for z s, which is the predicted end position of the movement and therefore
the dynamic OTP, is:

Te— o
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+ 29 (2)

The error of the model should decrease over the observation time.

The static and dynamic OTP are interpolated to calculate the integrated
OTP as the result of the prediction. This interpolation can either be applied
to the whole time period, or only when the dynamic OTP is reasonably sta-
ble. Otherwise, the static OTP can be used solely, until the dynamic OTP is
continuously in a reasonable range, i.e. within the space between human and
robot. For the weight calculation there are two possible functions. It can either
be calculated as ratio of the movement executed — where ¢, is the time at which
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the dynamic OTP delivers usable results — or with a parable function that has
its maximum in the origin and goes through the point (1,1) [12]:

— tc_ts tc_ts
Wiin = -2 Wayaa = 0.2 % (-—2) 4 0.8 % (-~—=
=ty e (tf—ts)+ (tf—ts

)? 3)
The integrated OTP is calculated as formulated in Eq.4 [12].
OTPintegrated =W OTdenamic + (1 - W) * OTPstatic (4)

In the context of mobile robots that autonomously perform safe movements,
there are some traits the prediction should have. First the overall error of the
prediction should be as small as possible to avoid that the robot moves in
unpredictable directions which would confuse the human partner. The prediction
should also be as good as possible early during the handover and be able to deal
with different users. We implemented three different features that are supposed
to provide these traits and can be combined for an improved prediction:

Feature 1 (Initial fixation). Fizate static prediction until the dynamic predic-
tion reaches the interaction space estimated.

Feature 2 (Linear interpolation). Use linear interpolation instead of quadratic.

Feature 3 (Update end time). Update end time after peak velocity detection
(extremum. of bell shaped profile).

3 Evaluation

In the evaluation we assess the precision of the estimated OTP over time and
analyze the influence of the integration scheme (Eq.4) including Features 1-3.
Therefore, we recorded several handover scenarios from the robot’s perspective
(see Fig. 1(c)—(e)). This data was used to evaluate the success rate of the hand
tracking, the time delay of the tracking data, as well as the quality of the OTP
prediction.

Test Cases and FEvaluation Procedure: In the test cases considered, we systemat-
ically vary several aspects of handover configurations in order to test the gener-
ality of the model: (i) initial position relative to the robot, (ii) giver vs. receiver,
(iii) small vs. large objects, (iv) direct handover vs. pre-grasp/hand change, (v)
normal vs. tall person, (vi) posture with hands closer vs. farther away from
the body. The general process of the test cases is given in Fig.1. The human
interaction partner approaches the robot from a distance of about 2 m and moves
his/her arm to the handover position in front of the robot (see coordinate system
in Fig. 1(b)). The case where the human stands straight in front of the robot and
acts as a receiver was recorded seven times in total. Five of these recordings are
from a person that is 1.7m tall and, additionally, vary the postures by keeping
the hands closer or farther away from the body. The other two are conducted
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Fig. 1. Experiment Setup: A participant receives or gives an object from/to the
Meka M1 Mobile Manipulator robot (a). Starting 2m away the human approaches the
robot and reaches the object transfer point (coordinate system in (b), red X in (f)).
The final position in the interaction with the annotation of the reference position is
shown as depth and color image (f). Start position (c¢) and start configurations (d, e)
are varied. (Color figure online)

with a person who is 1.9m tall. A similar situation with the human acting as
giver was recorded for four different objects (two smaller bottles and two bulky
objects, a bowl and a box of cereals). In another case one of the bottles was held
with both hands in the beginning; in three cases the object was moved into the
hand before the handover either by taking the object from a table next to the
human or by passing it from the left to the right hand. The start position was
varied in three cases where the human stands at the edge of the robot’s field of
view; in one of them the human acted as giver in the other two as receiver. The
last scenario recorded a longer interaction in which the human approached the
robot and waved his/her right hand around before performing a reaching motion.
Altogether, 19 recordings of handover scenarios were used for the evaluation.
For each scenario, the camera stream of the robot and the tracking result was
recorded; the reference handover position was manually annotated (see Fig. 1(c)).
Then, the OTP prediction was performed multiple times on the same hand-
tracking data using different configurations of activated algorithmic features:
ingtial fization (1), linear vs. quadratic interpolation (2), and update end-time (3).
The prediction starts once a handover intent is detected which is defined as
significant increase of the velocity towards the robot while the velocity to the
left and right and height are relatively small. The OTP is continuously predicted
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until the estimated end time of the expected OTP is reached or the velocity data
shows a movement of the hand away from the robot. For each OTP prediction, we
measure the difference to the annotated OTP in x-/y-/z-direction. The reference
frame for the evaluation is defined as the annotated handover position with the
z-axis pointing upwards, the y-axis describing the distance between the human
and the robot, and the x-axis along left and right (cf. Fig. 1(b)). Thus, even for
the end point of the tracked hand movement, there can be a deviation from the
reference position because the tracking result may not be precise (e.g. occlusion
by bulky transfer-objects) or the end time may have been incorrectly estimated.
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Fig. 2. Absolute error of the OTP prediction over time for four different feature com-
binations on the example of a vis-a-vis handover as the most common example. Error
ranges that contain most test cases when all features are activated: light gray 0.35m
for overall error y and z direction, gray 0.2 m for overall error x direction and dark gray
0.1m end time error range for all directions

Owverall Results: In Fig. 2 results of different system configurations are shown. It
can be seen that (i) without fixation (Fig.2(b)) the OTP prediction in the first
0.2s is unstable; (ii) with quadratic interpolation (Fig. 2(c)) the prediction error
shrinks slower; a similar effect shows up (iii) without end time update (Fig. 2(d)).
Thus, each algorithmic feature enhances the prediction either by reducing the
overall error or by reaching a smaller deviation earlier in time. The initialization
of the tracking, i.e. the initial hand pose estimation on the rgb frame, takes
between 0.3s and 0.4s. During this phase, the system buffers about 10 depth
frames, which are processed afterwards by the tracking. In the following, this
delay is decreased to 0.07s on average leading to very short reaction times of
the robot (see Fig. 3).
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Fig. 3. Delay of the hand tracking for a normal and the long test case.

In order to provide an evaluation over all test cases, we define different error
ranges and report how many test cases are within these error ranges for different
system configurations. First we measure the error ranges of the configuration
with all features activated. The maximal error in 17 of 19 test cases (over the
complete time interval) is below 35 cm for the y- and z-axes and in 18 of 19 test
cases it is below 20 cm for the x-axis. Thus, we define [20cm x 35cm X 35 cm)]
as a first coarse precision box. Considering the end-time error at the detected
OTP, 11 of the 19 test cases are below 10cm in [z/y/z]. This defines a second
more restrictive precision box (the error ranges of both precision boxes — the
coarse:[20 x 35 x 35] and fine:[10 x 10 x 10] — are visualized in Fig. 2). If the fine
precision box is relaxed from a 10cm to a 15 cm range, 15 of 19 cases are finally
within it. Ideally, the OTP prediction should stay in the coarse precision box
during the complete movement. Here a low deviation along the x-axis (<20 cm)
is important because a larger deviation would trigger the robot to turn away.
In the different test cases, we noticed a single case where the x-corridor was
slightly missed (max. x-error 20.4 cm). This has been one of cases where the
human initially stands at the edge of the robot’s field of view. A larger deviation
along the y-axis would trigger the robot to adjust to a wrong distance to the
human. This has been missed only two times, where the end-point has been
wrongly estimated.

Considering the influence of the algorithmic features, we measured that only 13
instead of 17 cases stay inside the coarse precision box [20 x 35 x 35] along the y-
and z-axes, if no end time update is performed. On the downside, in two cases
an update of the end-time lead to a slight miss of the 10 x 10 x 10 precision
box. In the case where all features are activated, the OTP predictions converge
to the fine precision box (<10cm) after 75% of the movement. This increases
to 82 %, if there is no end-time update. The 15 cm-precision box converges after
64 % of the movement, if all algorithmic features are activated. For the quadratic
interpolation, the OTP prediction reaches the fine 10 cm-precision box after 90 %
of the movement in only 9 of 19 test cases.
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4 Discussion

Human-initiated handovers are a frequent case in human-robot interaction. It
should work for different people, with different objects, from different direc-
tions, and even if the human does a preparation movement beforehand. There-
fore, we selected a combination of simplified models considering the body pose
and orientation as well as the dynamic movement of the hand, that both work
without any pre-learning of motion models. In the evaluation, we show that
even if the final OTP predictions (end-time error after hand tracking) may be
similar, there are large differences between OTP predictions during the move-
ment of the human’s hand. These early predictions are most important, when
the robot should smoothly react on the human-initiated handover. However,
these are rarely analyzed systematically. Thus, we take a deeper look at the
impact of different algorithmic combination schemes on these prediction dynam-
ics. The results show that the motion-based OTP prediction is quite poor in
the beginning. Therefore, Feature 1 (Initial fixation) improves the prediction by
limiting the OTP prediction error. This leads to a smoother interaction with
the robot, because its movements are more predictable and human-like. The
quadratic interpolation does not exploit the fast improvement of the dynamic
prediction, thus the end error range is reached for fewer cases and later dur-
ing the handover. The end-time update (Feature 3) together with the dynamic
prediction is responsible for adjusting the prediction to the partially observed
handover. This manifests itself in an earlier convergence to the fine precision
box defined by the error range for the end-time. Overall, the features described
in Sect. 2.2 enhance the prediction results and reach a smaller error range early
during the handover while maintaining a limited maximal error over the com-
plete movement. This fulfills the requirement, that the robot is able to move in
the right direction early during a handover.

Limitations of the system were found for large objects, like bowls. These
were already hard to see for the depth sensor due to shadows which resulted in a
poor hand tracking and prediction since in this case the end error range was not
reached in any of the directions. Furthermore, seven other cases did not reach the
end-time error range in at least one direction, which is mostly due to the noisy
velocity data which can lead to an early termination of the prediction process,
because the end of the handover movement is wrongly detected. Therefore, the
method still can be improved by less noisy velocity data and more advanced
detection methods for the start and end-time of the handover.

5 Conclusion

We presented an object transfer point (OTP) prediction which combines a static
and a dynamic prediction of an OTP for human initiated object handover from
and to a robot. This approach is integrated with our low-latency handtracking
algorithm, for which we combined state-of-the-art techniques to estimate the
position of a human hand in a color image and track it on depth clouds. This
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way we achieved a tracking performance of on average 0.07s delay after the
initialization phase. The whole system was able to run on off-the-shelf hardware
on a mobile humanoid service robot. We could show that the combination of
a static and dynamic OTP for predicting the handover position is useful for
an early estimation that becomes more accurate over time, allowing the robot
to start its movement early and adapt over time, decreasing wait times and
allowing precise adaption to the human interaction partner. As we build upon
the minimum-jerk-model, we do not need to train the system with lots of data
and are independent of retraining for a different kind of robot. Evaluation on a
wide range of situations showed validity of this approach. This leads to robots
that adapt to the human and, thus facilitate socially accepted human-robot
interactions.
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