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Abstract. The goal of the system presented in this paper is to develop
a natural talking gesture generation behavior for a humanoid robot, by
feeding a Generative Adversarial Network (GAN) with human talking
gestures recorded by a Kinect. A direct kinematic approach is used to
translate from human poses to robot joint positions. The provided videos
show that the robot is able to use a wide variety of gestures, offering a
non-dreary, natural expression level.
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1 Introduction

Social robotics [4] aims to provide robots with artificial social intelligence to
improve human-machine interaction and to introduce them in complex human
contexts. The demand for sophisticated robot behaviors requires to model and
implement human-like capabilities to sense, to process, and to act/interact natu-
rally by taking into account emotions, intentions, motivations, and other related
cognitive functions.

Talking involves spontaneous gesticulation; postures and movements are rel-
evant for social interactions even if they are subjective and culture dependent.
Aiming at building trust and making people feel confident when interacting
with them, socially acting humanoid robots should show human-like talking ges-
ticulation. Therefore, they need a mechanism that generates movements that
resembles humans’ in terms of naturalness. A previous work [24] made use of
gestures selected from a set of movements previously compiled. Those gestures
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were then randomly concatenated and reproduced according to the duration
of the speech. That approach was prone to produce repetitive movements and
resulted in unnatural jerky expression.

The goal of the system presented in this paper is to develop a natural talking
gesture generation behavior for a humanoid robot. At this step we aim to give
a step forward by training a Generative Adversarial Network (GAN) gesture
generation system with movements captured directly from humans. A Kinect
sensor is used to track the skeleton of the talking person and a GAN is trained
to generate a richer and more natural talking gesticulation.

Gestures (head, hands and arms movements) are used both to reinforce the
meaning of the words and to express feelings through non-verbal signs. Among
the different types of conversational movement of arms and hands synchronised
with the flow of the speech, beats are those not associated with particular mean-
ing [18]. References to talking gestures of the present work will be limited to
beats.

The robotic platform employed in the performed experiments is a Soft-
bank Robotics Pepper robot1. Currently, our robot is controlled using the
naoqi driver2 package that wraps the needed parts of NAOqi3 API and makes
them available in ROS4.

2 Related Work

According to Beck et al. [3], there are three main robot motion generation
approaches: manually creating motion, motion capturing, and motion planning;
for manual creation, it is required to set each joint position of the humanoid
robot for each key frame (time step); the motion capture-based approach tries
to mimic human gestures, recording human movements and mapping these data
to a humanoid robot [22]; and motion planning approach relies on kinemat-
ics and/or dynamics equations to solve a geometric task. They found that the
motion capturing approach produces the most realistic results, because the robot
reproduces previously captured human movements.

Motion capturing and imitation is a challenge because humans and robots
have different kinematic and dynamic structures. Motion capture (MoCap) is
the process of recording motion data through any type of sensor. Applications of
MoCap systems range from animation, bio-mechanics, medicine to sports science,
entertainment, robotics [21,31] or even study of animal behavior [27]. MoCap
systems rely on optical technologies, and can be marker-based (e.g. Vicon5) or
markerless like RGB-D cameras. While the former ones provide more accurate
results, the latter ones are less prone to produce gaps (missing values) that need

1 https://www.ald.softbankrobotics.com/en/robots/pepper.
2 http://wiki.ros.org/naoqi driver.
3 http://doc.aldebaran.com/2-5/naoqi/index.html.
4 http://www.ros.org.
5 https://www.vicon.com/.
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to be estimated [19,29]. Many approaches make use of the Kinect sensors due
to its availability [1,9,20].

No matter the motion capture system being used, there is a need to trans-
fer human motion to the robot joints. This can be done by direct kinematics,
adapting captured human joint angles to the robot. Or alternatively, inverse
kinematics calculates the necessary joint positions given a desired end effector’s
pose.

On the other hand, generative models are probabilistic models capable of
generating all the values for a phenomenon. Unlike discriminative models, they
are able to generate not only the target variables but also the observable ones
[28]. They are used in machine learning to (implicitly or explicitly) acquire the
distribution of the data for generating new samples. There are many types of
generative models. For instance, Bayesian Networks (BNs) [7], Gaussian Mixture
Models (GMMs) [8] and Hidden Markov Models (HMMs) [23] are well known
probability density estimators.

Focusing on generative models used for motion generation, in [14] the authors
propose the combination of Principal Component Analysis (PCA) [30] and
HMMs for encoding different movement primitives to generate humanoid motion.
Tanwani [28] uses HSMM (Hidden Semi-Markov Models) for learning robot
manipulation skills from humans. Regarding on social robotics, some generative
approaches are being applied with different objectives. In [17] Manfrè et al. use
HMMs for dance creation and in a later work they try variational auto-encoders
again for the same purpose [2].

Deep learning techniques have also been applied to generative models, giving
rise to deep generative models. A taxonomy of such models can be found in [10].
In particular Generative Adversarial Networks (GANs) [11] are semi-supervised
emerging models that basically learn how to generate synthetic data from the
given training data. GANs are deep generative models capable to implicitly
acquire the probability density function in the training data, being able to auto-
matically discover the internal structure of datasets by learning multiple levels
of abstraction [15]. Gupta et al. [12] extend the use of GANs to generate socially
acceptable motion trajectories in crowded scenes in the scope of self-driving cars.
In [26] GANs showed to overcome other generative approaches such as HMM and
GMM when confronted to the task of motion generation. In that work, move-
ments produced synthetically (using choregraph) were used to train the different
generative approaches. Instead, in this paper we feed the GAN with movements
obtained by observing and capturing human talking gestures.

3 Developed Approach to Enhance Robot Spontaneity

The GAN used in the current approach takes as input only proprioceptive joint
position information. In order to feed the GAN with natural motion data, a
motion capturing approach is employed. Thus, these two aspects are exhaustively
described here on.
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3.1 Human Motion Capture and Imitation

In [25], direct kinematics was used to teleoperate a NAO robot. Human skeleton
obtained with a Kinect was tracked and arm movements were replicated by
the robot, while walking motions were commanded by using different spatial
key movements. As the goal was to teleoperate the robot, there was no need
for subtle and continuous motion since the arms only required to reach single
poses when demanded by the operator. On the contrary, gesticulation requires
continuous arm motion and involves also hands, head and fingers. Although the
present work makes use of a similar motion capture and mapping system, the
presented system has been enriched to cover all the aspects involved.

The Kinect uses structured light (depth map) and machine learning to infer
body position [16]. The OpenNI based skeleton markers6 ROS package is able
to extract in real time the 15 joints associated to the human skeleton.

Mapping Human’s Arms into Robot’s Space
Human arms have 7 degrees of freedom (DoF): a spherical joint at the shoulder, a
revolute joint at the elbow and a spherical joint at the wrist. On the contrary, our
humanoid’s arms have 5 DoF: two at the shoulder (pitch and yaw) and elbow
(yaw and roll), and one at the wrist (yaw) (Fig. 1). Thereby, the movement
configurations of human and robot arms differ.

To transform the Cartesian coordinates obtained from the Kinect into Pep-
per ’s coordinate space a joint control approach was employed. Note that the
transformations are performed to the reference system of each individual joint,
not to a robot’s global reference frame. On the following explanation we will
focus on the left arm. The analysis of the right arm is similar and it will be
omitted here.

Pepper ’s left arm has five joints7 (see Fig. 1): shoulder roll (LSα) and
pitch (LSβ), elbow roll (LEα) and yaw (LEγ) and wrist yaw (LWγ). The
skeleton markers package can not detect the operator’s hands’ yaw motion
and thus, LWγ joints cannot be reproduced using the skeleton information. We
chose another approach for LWγ , that will be explained later on.

In order to calculate the shoulder’s roll angle (LSα) we use the dot product of
the distance vector between both shoulders (LRS) and the length vector between
the shoulder and the elbow (LSE). Note that, before computing that product,
LRS and LSE vectors must be normalized. The LSα angle is calculated in the
Kinect’s coordinate space, therefore, it must be transformed into the robot’s
coordinate space by rotating it −π

2 radians (Eq. 1).

LSα = arccos (LRS · LSE)

LSrobot
α = LSα − π

2
(1)

6 http://wiki.ros.org/skeleton markers.
7 http://doc.aldebaran.com/2-8/family/pepper technical/joints pep.html.

http://wiki.ros.org/skeleton_markers
http://doc.aldebaran.com/2-8/family/pepper_technical/joints_pep.html
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Fig. 1. Pepper’s left arm joints and actuators (from Softbanks official Pepper’s user
guide (see Footnote 7)).

Elbow’s roll (LEα) angle is calculated in the same way as shoulder’s roll angle
(LSα) but the length vector between the shoulder and the elbow (LSE) and the
length vector between the elbow and the hand (LEH) are used instead. Again,
those vectors need to be normalized and transformed to the robot’s space, in
this case by rotating it −π radians.

With respect to elbow’s yaw angle (LEγ) calculation we use only the y and
z components of the LEH vector. After normalizing LEH, Eq. 2 is applied to
obtain the LEγ . Lastly, a range conversion is needed to get LErobot

γ (from [π
2 ,

π] to [−π
2 , 0] and from [−π, −π

2 ] to [0, π]).

LEγ = arctan
LEHz

LEHy

LErobot
γ = rangeConv(LEγ)

(2)

To conclude with the joints, the shoulder pitch angle (LSβ) is calculated by
measuring the angle between the shoulder to elbow vector and the z axis. z = 0
occurs with the arm extended at 90◦ with respect to the torso. Thus, lowering the
arm produces negative pitch angle while raising it above the shoulder produces
positive angular values.

The LSβ can be defined as:

‖A‖ = LSEz (by definition)

sin (LSβ) =
‖A‖

‖LSE‖ =
‖A‖
1

LSrobot
β = arcsin (LSEz)

(3)

where LSEz is the Z coordinate of the shoulder to elbow vector.
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Mapping Human’s Hands into Robot’s Space
Hands movements are common in humans while talking. We do rotate wrist
and open and close hands, move fingers constantly. Unfortunately, the skeleton
capturing system we are using does not allow to detect such movements. It is
possible though to capture the state of the hands using a different approach.

The developed solution forces the user to wear coloured gloves, green in the
palm of the hand and red in the back (Fig. 2). While the human talks, hands
coordinates are tracked and those positions are mapped into the image space
and a subimage is obtained for each hand. Angular information is afterwards
calculated by measuring the number of pixels (max) of the outstanding color in
a subimage. Equation 4 shows the procedure for the left hand. N is a normalizing
constant and maxWγ stands for the maximum wrist yaw angle of the robot.{

LW robot
γ = max/N × maxWγ if max is palm

LW robot
γ = max−N

N × maxWγ otherwise
(4)

Fig. 2. Snapshot of a data capture session.

In addition LEγ is modified when humans palms are up (subimage has only
green pixels) to easy the movement of the robot.

Regarding the fingers, as they cannot be tracked, their position is randomly
set at each skeleton frame.

Mapping Human’s Head into Robot’s Space
Humans move the head while talking and thus, head motion should also be
captured and mapped. The robot’s head has 2 DoFs that allow the head to
move left to right (yaw) and up and down (pitch) as shown in Fig. 3.

The Kinect skeleton tracking program gives us the (neck and) head 3D posi-
tions. The approach taken for mapping the yaw angle to the robot’s head consists
of applying a gain K1 to the human’s yaw value, once transformed into the robot
space by a −π

2 rotation (Eq. 5).

Hrobot
γ = K1 × Hβ (5)
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Fig. 3. Pepper’s head joints and actuators (from Softbanks official Pepper’s user guide
(see Footnote 7)).

In order to approximate head’s pitch angle, the head to neck vector (HN)
is calculated and rotated −π

2 and then, its angle is obtained (Eq. 6). Note that
robot’s head is an ellipsoid instead of an sphere. To avoid unwanted head move-
ments a lineal gain is applied to the final value.

Hrobot
β = arctan (rotate(HN,−π

2
)) + |K2 ∗ Hγ | (6)

3.2 Generative Model

GAN networks are composed by two different interconnected networks. The Gen-
erator (G) network generates possible candidates so that they are as similar as
possible to the training set. The second network, known as Discriminator (D),
judges the output of the first network to discriminate whether its input data
are “real”, namely equal to the input data set, or if they are “fake”, that is,
generated to trick with false data.

The training dataset given to the D network contained 2018 unit of move-
ments (UM), being each UM is a sequence of 4 consecutive poses, and each pose
14 float numbers corresponding to joint values of head, arms, wrists and hands
(finger opening). These samples were recorded by registering 5 different persons
talking, about 9 min overall.

The D network is thus trained using that data to learn its distribution space
and its input dimension is 56. On the other hand, the G network is seeded
through a random input with a uniform distribution in the range [−1, 1] and
with a dimension of 100. The G intends to produce as output gestures that
belong to the real data distribution and that the D network would not be able
to correctly pick out as generated. Figure 4 depicts the architecture the generator
and discriminator networks.

GAN has been trained for 2000 epochs and its hyper-parameter have been
tuned experimentally; we set up a batch size of 16, a learning rate of 0.0002,
Adam [13] as optimization method, and β1 = 0.5 and β2 = 0.999 as its param-
eters.
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Fig. 4. GAN setup for talking gesture generation.

4 Results

The obtained robot performance can be appreciated in the following videos:

1. The first video8 shows some instants recorded during the process of generat-
ing the database of movements captured through the motion capturing and
imitation mechanisms. On the left side the participant talking and gesticulat-
ing is displayed, while the simulated robot mimicking the movements in real
time (without GAN) is shown in the right side.

2. A second video9 shows the evolution of the robot behavior during different steps
of the training process. The final number of epochs was empirically set to 2000
for the model that has been integrated into the gesture generation system.

Notice that the temporal length of the audio intended to be pronounced by
the robot determines the number of units of movement required to the generative
model. Thus, the execution of those units of movements, one after the other,
defines the whole movement displayed by the robot.

5 Conclusions and Further Work

In this work a talking gesture generation system has been developed using a
GAN feeded with natural motion data obtained through a motion capturing
and imitation system. The suitability of the approach is demonstrated with a
real robot. Results show that the obtained robot behavior is appropriate, and
thanks to the movement variability the robot expresses itself with naturalness.

As further work, we intend to improve the skeleton capture process by using
more robust systems, such as OpenPose [5,6] or wrnchAI10 that allow to capture
more detailed movements. In this way, the speakers would not need to wear the
8 https://www.youtube.com/watch?v=iW1566ozbdg.
9 https://www.youtube.com/watch?v=1It Y AEnts.

10 https://wrnch.ai/.

https://www.youtube.com/watch?v=iW1566ozbdg
https://www.youtube.com/watch?v=1It_Y_AEnts
https://wrnch.ai/
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gloves, that somehow are conditioning them. Moreover, speakers tend to behave
in an constricted way when recorded. A more powerful skeleton tracker system
would allow to use recorded videos from real talks and to build a more objec-
tive database. With respect to the mapping process, in [20] direct kinematics is
compared with two inverse kinematics approaches and the neuro fuzzy approach
seems to improve the direct one. The use of a more effective method to translate
human poses to robot poses could also produce better movements.

The work presented here pretends to be the starting point to acquire a richer
gesture set, such as emotion-based gestures or context related gestures. Moreover,
a generator conditioned on the sentence/word itself would correspond to how
humans use their gestures to emphasize their communication.
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