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Abstract. The introduction of service robots to our daily life requires
adaptation of the current navigation strategies. In the presence of
humans, robots must be designed to ensure their safety and comfort. This
paper proposes a layered costmap architecture that incorporates social
norms to generate trajectories compatible with human preferences. The
implemented framework creates a social abstraction of the environment
– in the form of an occupancy grid – to plan human-friendly paths. It
employs information about individuals in the scene to model their per-
sonal spaces. In addition, it uses predicted human trajectories to improve
the efficiency and legibility of the robot trajectory. Different simulation
scenarios resembling everyday situations have been used to evaluate the
proposed framework. The results of the experiments have demonstrated
its ability to behave according to social conventions. Furthermore, the
navigation system was assessed in real life experiments where it was
proved capable of following similar paths to those performed by humans.
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1 Introduction

The introduction of service robots in our daily life is growing day by day; hence,
the need for intelligent mobile robots to be able to navigate in dynamic environ-
ments where the presence of humans is expected. Furthermore, a robot should
not only carry out its tasks efficiently but also in a human-friendly way, adapting
its behavior according to social conventions. During the last years researchers
have developed different approaches to human-aware navigation; a commonly
used strategy is based on the generation of a social map that models human
space according to social conventions and interaction among individuals, using
as a reference the studies presented by Hall [4] and Kendon et al. [5].

Papadakis et al. [8] proposed a method based on the use of non-stationary,
skew-normal probability density functions for describing the social zones related
to single individuals as well as associations among humans. The experiments car-
ried out have proven the correct interpersonal spaces modeling of their proposed
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method; however, it entails the human interacting with the robot which is inad-
equate in some situations. A similar method was suggested by Charalampous et
al. [3]. In addition, the approach presented by Vega et al. [11] proposed a human
aware navigation strategy which uses an adaptive spatial density function to
cluster groups of people according to their spatial arrangement and the environ-
ment. It uses also affordance spaces for defining potential activity spaces. The
major drawback of this approach is that it assumes a static environment which
can lead to an erratic robot navigation. Truong and Ngo [9] presented a solution
that models group formations and human-object interactions, using social force
models and the reciprocal velocity obstacle model. Experiments conducted in
simulation and in an office environment demonstrate smooth operation in the
presence of static or moving obstacles.

Kruse et al. [7] studied human behaviors in a path crossing situation in
order to generate similar trajectories for robots. They use a linear projection
of the human path based on his velocity to describe the context according to
the human movement. Although the experiments demonstrated that the robot
could perform distinct trajectories by velocity adaptation and waiting behav-
ior, it has been only evaluated for the crossing scenario in simulation. On the
other hand, the work in [6] uses predicted human trajectories and a social cost
function to plan collision-free paths that take social constraints into account. It
has been proven that it can generate consistent paths which respect to social
conventions. However, the proposed method is only concerned with following
a given trajectory, it does not perform any collision avoidance for unexpected
obstacles, furthermore, the use of several descriptive costmaps involve a high
computational cost if it would be utilized constantly during the navigation.

In order to equip the robot with a description of the situation, including
information about individual personal spaces, possible groups arrangements, and
future conflictive areas, this work proposes the development of three costmap
layers as plugins for the current ROS Navigation Stack. This allows usage inde-
pendence between layers and an easy implementation on systems using ROS
as architecture. Each developed layer was individually tested under different
circumstances to ensure it was capable of creating appropriate costmaps. Simu-
lation and real life experiments were performed and their results were evaluated.

2 Methodology

The costmap layers developed in this work are explained in the following sub-
sections. These layers work in combination with the default static, obstacle and
inflation layers provided by ROS [1].

2.1 Human Layer

The Human Layer takes into account static humans in the environment. To
ensure that the robot keeps a comfortable distance, a mixture of Gaussian dis-
tributions is used to calculate the cost of each cell around the human position.
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Fig. 1. Left: Path generated using only Human Layer. Right: Path generated using
both Human Layer and Proxemics Layer. (Color figure online)

In order to achieve a distribution capable of adapting different shapes, five
parameters that can be dynamically reconfigured were defined. Three of those
parameters define the variance to model the distribution at the front, back and
sides. Additionally, two thresholds were used to define the limits of the dis-
tribution. The first threshold was in charge of modeling the inner part of the
distribution. It establishes the highest cost to the area surrounding the human.
Likewise, the second threshold, models the outer part of the distribution, the
cost of each cell will correspond to the cost of the Gaussian distribution until it
reaches this second threshold, then the cost will be considered as free space. This
approach allows to efficiently modify the used shape depending on the situation.

2.2 Proxemics Layer

The Proxemics Layer considers arrangements formed by static persons inter-
acting in groups. This paper proposes a two step strategy to model groups for-
mations. The first step groups the people in clusters according to the Euclidean
distance between each of them. This assumes that two or more people that are in
a close distance to each other, will be interacting. The next step is to model the
space surrounding the group. The method proposed considers a polygon, which
vertices are each person in the group. The edges of the polygon obtained are
represented in the costmap with the highest cost possible. In the case that the
group only have two members, a line connecting them is used. The fact that only
the edges of the polygon are represented in the costmap significantly reduces the
memory and computational costs required.

The combination of both Human Layer and Proxemics Layer has an out-
standing performance. In Fig. 1, the green arrows represent the pose of four
persons that seem to be having a conversation. The green line represents the
global path plan between the robot and its goal. In the first case (Fig. 1a) only
the Human Layer was used, therefore the robot moved through the group. On
Fig. 1b, both layers were used, hence the path generated goes around the group,
avoiding interfering with interpersonal interactions.
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Fig. 2. (a) First trajectory generated. Orange circle represents the dynamic human (b)
Master grid Costmap (c) New trajectory (d) Following new trajectory (Color figure
online)

2.3 Prediction Layer

The Prediction Layer was created to determine possible regions that the robot
and dynamic humans might share in the future. It estimates the robot and
humans poses through a time period. The robot pose estimation is based on
the point in the path generated by the global planner that the robot would
reach every second, following its current velocity. On the other hand, the human
estimation is based on a linear assumption, considering the actual and the pre-
vious pose and the time interval between them. For all the estimated poses it is
found the shortest distance (collision point) between the robot and the human
pose. The collision point is compared with a previous one, if any, and then if
it is under a threshold it is considered into the costmap, modeling the region
around the point using a mixture of Gaussian distributions, similarly to the one
in the Human Layer. The estimation is performed every second, which is the
global path update rate. As an example, a simulation experiment in which two
humans are having a conversation, and a third person is walking, was considered
(Fig. 2). The arrows and the green line represent the poses and the robot global
path respectively. First, a global path was generated. The orange circle in Fig. 2a
highlights the moving person. The collision point is determined using this path
and the information from the moving person. The area enclosing the collision
point is modeled using an Eggshape (Fig. 2b). Here, as the current path crossed
a forbidden zone, it needed to be recalculated. Afterwards, a new path which
considers the future estimation is calculated (Fig. 2c), even though it overlaps
with the current human position (yellow square). Finally, the robot follows the
planned trajectory avoiding the collision with the human (Fig. 2d).

2.4 ROS Implementation

As mentioned in the Introduction, there were created costmap plugins (one for
each layer) following the shapes and procedures previously explained. Those
plugins were loaded in the move base node which calculates the velocity com-
mands needed to move the robot to the designated goal taking into account
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Fig. 3. Left: The software framework architecture. Right: The robot setup

the information of the Layered Costmaps. The implemented software framework
architecture (Fig. 3) allows the replacement of modules with other similar ones,
providing high versatility and convenience. The perception system comprised all
the modules needed to extract relevant information from the cameras and the
laser scanner. This includes a RGB-D pre-processing in charge of synchronizing
the data captured by the cameras in order to provide the people detector a full
FOV image. The perception system involves also the laser pre-processing mod-
ule and filters out the scanner data corresponding to detected moving humans;
therefore, they are not represented in the costmap created by the obstacle layer.
Additionally, the navigation system was in charge of moving the robot to the
desired position, it used the data obtained by the perception system. As part of
this system, a layer controller was developed to determine which layers should
be used. In crowded and narrow spaces, the proposed layered architecture could
generate a particularly restrictive costmap, leading the robot to consider the
desired goal as inaccessible. Using the layer controller, when the navigation sys-
tem fails to find a path, it will disable the Proxemics Layer and the path planner
will try to reach the goal again using the new generated costmap.

3 Experimental Results

The set of metrics given in [10] served as a basis to define the evaluation strategy
used. Two kinds of metrics were used: Objective metrics, which measures the
efficiency of the robot navigation (generated path length, navigation time and
mission completion, number of times the robot successfully reaches the goal
without colliding) and subjective metrics, which evaluates the robot trajectory
according to social norms (minimum distance to human and number of times
the robot performs a social space invasion).

Two approaches have been taken to evaluate the software framework accord-
ing to the metrics exposed above, experiments in a simulated environment and
in a real life setup. For the experiments the robot needed to navigate using
the layered costmaps developed in this work. Besides, for comparison reasons,
the navigation system using the default layered costmap offered by ROS was
evaluated on both setups under the same circumstances.
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(a) (b) Human-aware (c) Default

Fig. 4. Simulated scene (a) for experiment 1 and paths generated by the human-aware
(b) or default (c) planner. Mean poses of persons represented by arrows.

3.1 Simulation Experiments

A Turtlebot 2 model was implemented in Gazebo to provide simulated sensor
information to the ROS system. A generic laser scanner model was placed at the
center front of the robot, and a generic RGB-D camera (represented in Gazebo
as a Kinect) was placed in the robot center at a height of 1.05 m and a horizontal
FOV of 180◦. Human models poses were obtained from the models’ information
provided by Gazebo; hence, there was not applied any perception algorithm.

Two different experiments scenarios were considered. These scenarios were
selected having in mind relevant situations where the robot should demonstrate a
human-friendly behaviour. A total of 30 repetitions are run for each experiment,
where human positions and orientations are randomly modified to resemble a
realistic human scenario.

Experiment 1. Consisted of two static humans having a conversation (Fig. 4a).
The paths followed in each repetition by the human-aware navigation system
and the default navigation system can be seen in Fig. 4c. This illustration shows
the robot’s trajectory for each repetition. The humans are represented by an
arrow whose location, and direction depends on the mean value of their detected
positions and orientations.

Table 1 displays the mean value and standard deviations for the evaluation
metrics proposed. As might be expected, the human-aware mobile robot traveled
a longer distance and needed more time to reach the goal. The default navigation
system provided by ROS interrupted the conversation in all the repetitions,
whereas the proposed method respected the group and kept longer distances.

Experiment 2. In this experiment, there are three humans involved, two
humans are having a conversation, and a third human is moving (Fig. 5a). The
desired goal was selected in order to replicate a crossing situation, where the
human path and the robot trajectory might concur. From the trajectories fol-
lowed by the robot (Fig. 5c), it can be appreciated how the human-aware navi-
gation system prevented the collision by navigating through the initial position
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(a) (b) Human-aware (c) Default

Fig. 5. Simulated scene (a) for experiment 2 and paths generated by the human-aware
(b) or default (c) planner. Mean poses of persons represented by arrows. (Color figure
online)

of the dynamic human (pink arrow); in contrast paths generated by the default
path planner coincided with the human forcing the robot to modify the trajec-
tory abruptly, or even colliding. The Human-Aware navigation system reached
the goal without any trouble. On the other hand, the default approach collided
with the human a total of eight times out of 30. Table 1 only shows evaluated
data from successful repetitions.

3.2 Real Life Experiments

In addition to the Turtlebot, a Hokuyo URG-04LX laser scanner was placed in
the same position as the simulation. Two Intel RealSense D435 cameras were
placed at the same height as in the simulated setup and separated by 18.5 cm.
They were positioned with a pitch rotation of −20◦ in order to focus on people’s
upper body. Additionally a yaw rotation was applied to each of the cameras
in order to have a merged horizontal FOV of approximately 135◦ (Fig. 3). The
human pose estimation was done using OpenPose [2]. The detected keypoints
were projected to 3D by looking up the coordinates in the RGB-D point cloud.

Table 1. Results for simulation experiments (standard deviations in brackets).

Planner Objective metrics Subjective metrics

Path length

[m]

Time

[s]

Mission

completed

Min distance [m] Social space

invasions

H1 H2 H3

Experiment 1, n=30

Human-aware 6.764

(0.114)

22.055

(0.495)

100% 1.610

(0.059)

1.083

(0.033)

- 0%

Default 4.715

(0.014)

12.345

(0.182)

100% 0.636

(0.041)

0.638

(0.046)

- 100%

Experiment 2, n=30

Human-aware 8.518

(0.095)

16.178

(0.428)

100% 1.001

(0.049)

1.814

(0.076)

0.872

(0.066)

-

Default 5.876

(0.194)

16.958

(2.711)

73.33% 3.099

(0.196)

3.031

(0.204)

0.402

(0.166)

-
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Fig. 6. The setup (a) for the real life experiment 1 and example trajectories for the
proposed (b) and default (c) planner.

Fig. 7. The setup (a) for the real life experiment 2 and example trajectories for the
proposed (b) and default (c) planner.

The orientation of each detected person was calculated by projecting the two
shoulder keypoints to the floor plane, and calculating the vector orthogonal
to the line between the two points. The detected neck keypoint was chosen
as the position of the person. All system processing including neural network
computations were done on a Jetson TX2.

A total of six repetitions were run per experiment. In this case, the humans
taking part in the experiment were static since the perception system used is not
able to extract an adequate number of pose estimations from a moving human.

Experiment 1. It involves a human standing in the middle of a corridor, looking
at the paintings in the wall. The robot should transverse the hall without inter-
rupting the human’s activity. In Fig. 6, it can be observed one of the repetitions
carried out for the proposed navigation systems and the default navigation sys-
tem provided by ROS. Red arrows depict the mean detected human position and
orientation calculated using the information from the perception system during
the corresponding repetition. As might be expected, the human-aware system
moved behind the person; in contrast, the default system crossed in front of him,
interrupting the activity. A comparison between the proposed approach and the
default navigation system can be found in Table 2.
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Table 2. Results for real life experiments (standard deviations in brackets).

Planner Objective metrics Subjective metrics

Path

length [m]

Time [s] Mission

completed

Min distance [m] Social space

invasions

H1 H2

Experiment 1, n=6

Human-aware 5.531

(0.113)

44.388

(2.445)

100% 0.961

(0.072)

- 0%

Default 5.324

(0.147)

44.722

(7.158)

100% 0.700

(0.073)

- 83.33%

Experiment 2, n=6

Human-aware 5.459

(0.101)

46.111

(10.432)

100% 0.854

(0.055)

1.708

(0.142)

0%

Default 5.216

(0.092)

40.333

(2.880)

100% 0.661

(0.453)

0.661

(0.453)

83.33%

Experiment 2. It involves two persons standing in front of the robot (Fig. 7a).
In this case, humans might be having a conversation, therefore the robot should
avoid to cross between them. The default navigation system (Fig. 7b) interrupted
the conversation, whereas the proposed method behaves in a human-friendly way
(Fig. 7c). Table 2 shows further information about this experiment.

4 Conclusions

The paper in hand proposed an integrated navigation system which enables a
mobile robot to behave according to social conventions and generates socially
acceptable trajectories in a human populated environment. The layered costmap
suggested, have been integrated into the current version of ROS navigation stack.
Therefore, it can be easily added to any navigation system based on ROS while
maintaining the advantages of the local and global path planners. Moreover, the
layers have been developed having in mind the memory and computational costs
associated with each costmap. The Proxemic Layer only represents the edges
of a polygon since its combination with the Human Layer provides adequate
information about the scenario, reducing the computational effort.

While other studies proposed solutions that are only applicable under cer-
tain circumstances, the suggested approach demonstrates how a detailed layered
costmap is more versatile, and it can be used in a broader range of situations.
Its capability of respecting personal spaces and group formations, as well as
avoiding conflictive regions, has been proven not only in simulation but also
in real life experiments. In particular, the results obtained in simulation verify
that in order to achieve suitable trajectories, a comprehensive layered costmap
is needed. Furthermore, the evaluation in real life experiments demonstrates the
correct performance of the method and its feasibility.

Future improvements involve the use of a robust and reliable perception sys-
tem, capable of detecting the poses of multiple of humans. This would allow the
evaluation of the method in complex constellations of persons. Furthermore, the
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persons orientation can be taken into account in the group formation determined
by the Proxemics Layer. Besides, the performance of the Prediction Layer could
be assessed using real life experiments.
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