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Preface

The Conference on Security, Privacy, and Applied Cryptography Engineering 2019
(SPACE 2019), was held during December 3–7, 2019, at the Dhirubhai Ambani
Institute of Information and Communication Technology, Gandhinagar, India. This
annual event is devoted to various aspects of security, privacy, applied cryptography,
and cryptographic engineering. This is a challenging field, requiring expertise from
diverse domains, ranging from mathematics to solid-state circuit design.

This year we received 26 submissions from 10 different countries. The submissions
were evaluated based on their significance, novelty, technical quality, and relevance to
the SPACE conference. The submissions were reviewed in a double-blind mode by at
least 3 members of the 36-member Program Committee. The Program Committee was
aided by 9 additional reviewers. The Program Committee meetings were held
electronically, with intensive discussions. After an extensive review process, 12 papers
were accepted for presentation at the conference, with an acceptance rate of 46.15%.

The program also included five invited talks and four tutorials on several aspects of
applied cryptology, delivered by world-renowned researchers: Yu Sasaki, Francesco
Regazzoni, Makoto Nagata, Sahar Kvatinsky, Avinash L. Varna, Debrup Chakraborty,
Shashwat Raizada, and Stjepan Picek. We sincerely thank the invited speakers for
accepting our invitations in spite of their busy schedules. As in previous editions,
SPACE 2019 was organized in cooperation with the International Association for
Cryptologic Research (IACR). We are thankful to the Dhirubhai Ambani Institute of
Information and Communication Technology, Gandhinagar, for being the gracious host
of SPACE 2019.

There is a long list of volunteers who invested their time and energy to put together
the conference, and who deserve accolades for their efforts. We are grateful to all the
members of the Program Committee and the additional reviewers for all their hard
work in the evaluation of the submitted papers. We thank Cool Press Ltd, owner of the
EasyChair conference management system, for allowing us to use it for SPACE 2019,
which was a great help. We thank our publisher Springer for agreeing to continue to
publish the SPACE proceedings as a volume in the Lecture Notes in Computer Science
(LNCS) series. We are grateful to the local Organizing Committee, especially to the
general chair, Anish Mathuria, who invested a lot of time and effort in order for the
conference to run smoothly. Our sincere gratitude to Debdeep Mukhopadhyay,
Veezhinathan Kamakoti, and Sanjay Burman for being constantly involved in SPACE
since its very inception and responsible for SPACE reaching its current status.



Last, but certainly not least, our sincere thanks go to all the authors who submitted
papers to SPACE 2019, and to all the attendees. The conference was made possible by
you, and it is dedicated to you. We sincerely hope you find the proceedings stimulating
and inspiring.

October 2019 Shivam Bhasin
Avi Mendelson
Mridul Nandi

vi Preface
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Deployment of EMC-Compliant IC Chip
Techniques in Design for Hardware Security

Invited Paper

Makoto Nagata(B)

Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
nagata@cs.kobe-u.ac.jp

Abstract. IC chips are key enablers of densely networked smart society and need
to be more compliant to security and safety. The talk will start from Electromag-
netic Compatibility (EMC) techniques of IC chips on the safety side, toward EMC
aware design, analysis and implementation. Then, the challenges will be discussed
about the deployment of such EMC techniques in the design of IC chips for the
higher level of hardware security. In detail, the talk will start with Silicon exper-
iments on electromagnetic susceptibility (noise immunity) and electromagnetic
interference (noise emission) of IC chips in automotive applications, covering on-
chip/in-place noise measurement (OCM) and chip-package-system board (C-P-S)
simulation techniques. Then, the talk will evolve for side channel leakage analysis
and resiliency by design in cryptographic IC chips.

Keywords: Hardware security · Electromagnetic compatibility · Side channel
leakage · Cryptography · Semiconductor integrated circuit

1 Outline

Semiconductor integrated circuit (IC) chips are strongly requested to hold safety
and security features with of critical importance in the fields such as automotive,
aerospace/aviation, healthcare and medical applications (Fig. 1).

Fig. 1. Semiconductor IC chips in mission critical application [1]. (Copyright 2019, IEEE.)
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2 M. Nagata

Electromagnetic compatibility (EMC) of an IC chip covers radio wave noise interfer-
ence (EMI) and susceptibility (EMS). When circuits operate, power supply (PS) current
is dynamically consumed, and leads to the emanation of electromagnetic (EM) waves
through the interaction with parasitic antennas on metallic wiring associated with a
power delivery network (PDN). On the other hand, external EM waves can be cap-
tured by the same parasitic antennas that may introduce disturbances on the operation
of ICs through modulated PS currents. These bidirectional influence of EM waves on
IC chips needs to be predicted and protected by design for the safety as well as for the
security.

The knowledge and techniques of EMC on IC chips are very much relevant to hard-
ware security, in the context of physical side channel information leakage and attack
preventions [2]. PS current flows from an external power source to ICs on a die through
PDNs. The current can be observed through the power lines on a printed circuit board
(PCB), power pins of an IC chip package, power pads and power wirings in an IC
chip. Electromagnetic (EM) waves are also radiated from an IC chip in operation. Those
paths and nodes unintentionally provide the vulnerability of security functions like cryp-
tographic engines in hardware, through a variety form of side channel attacks by an
adversary, as sketched in Fig. 2.

There are a variety of technical and scientific achievements to solve EMC problems
in semiconductor IC chip developments, which can be applied for the mitigation of side
channel attacks in secure IC chips. This presentation will focus on following two major
aspects of EMC techniques.

(1) Chip-package-system board (C-P-S) simulation technique.
(2) On-chip waveform measurement (OCM) technique.

Fig. 2. Side-channel passive attacks [1]. (Copyright 2019, IEEE.)
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TheC-P-S simulation involves active PS current and passive PDN impedancemodels
and evaluates dynamic PS noise of an IC chip. The model is capable for a full chip level
PDNswhere security and other circuitsmay belong to individual power domains (Fig. 3).
The EM simulation is extensively extended for the side channel leakage analysis (SCA)
of cryptographic engines.

The OCM evaluates PS noise waveforms of cryptographic engines in-place on an IC
chip. The measured waveforms provide in-depth understanding of PS side channel leak-
age mechanisms, and also guarantee the efficacy and accuracy of the C-P-S simulation
technique. The voltage and time resolution of 100 µV and 100 ps has been achieved.

An IC chip as the test vehicle of these techniques embeds advance encryption stan-
dard (AES) cores and OCM circuitry and actualizes Si demonstration. The whole flow
and evaluation examples will be detailed in the presentation. The techniques outlined
here can be the basis for the design of protection circuitry against side channel attacks
and also for the resiliency by design against active attacks such as fault injection [3].

The challenges have been pursued to establish the pre-silicon evaluation of cryp-
tographic engines about the level of leakage in the development of very large scale
integration (VLSI) chips [4], where the large number of logic gates (e.g. 1 million or
more) and the large number of payloads (e.g. 10k or more) need to be handled in the
simulation flow.

Electromagnetic emission Side channel leakage 
(passive information leakage)
EMI analysis SCA analysis

EMI 

Fig. 3. Electromagnetic interference simulation model [1]. (Copyright 2019, IEEE.)
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Real Processing-In-Memory with Memristive
Memory Processing Unit

Shahar Kvatinsky(B)

Technion – Israel Institute of Technology, 3200003 Haifa, Israel
shahar@ee.technion.ac.il

Abstract. Memristive technologies are attractive candidates to replace conven-
tional memory technologies and can also be used to perform logic and arithmetic
operations. In this extended abstract, we discuss howmemristors are used to com-
bine data storage and computation in the memory, thus enabling a novel non-von
Neumann architecture called the ‘memristive memory processing unit’ (mMPU).
The mMPU relies on a memristive logic technique called ‘memristor aided logic’
(MAGIC) that requires no modification to the memory array structure. By greatly
reducing the data transfer between the CPU and the memory, the mMPU alle-
viates the primary restriction on performance and energy efficiency in modern
computing systems.

Keywords: Memristors · RRAM · mMPU ·MAGIC

1 The Memory Wall and Processing-In-Memory

General purpose computing systems are typically designed in von Neumann architec-
ture, or an ameliorated version of it, which separates the memory and processing space.
In these systems, programs are executed bymoving data between the processing unit and
memory using specific operations (load/store).While this programmingmodel is simple,
the performance of the system is limited by the memory access time, which is substan-
tially higher than the computing time itself. This performance bottleneck has become
evenmore severe over the years because CPU speed has improvedmuchmore thanmem-
ory speed andbandwidth.Moreover,manymodernworkloads havehigh andunstructured
data volumes with limited locality, reducing the effectiveness of data caching.

This separation of the processing and memory space – and thus the required transfer
of data between them – constitute two main bottlenecks in current computing systems:
speed (‘memory wall’) and energy efficiency (‘power wall’). A promising approach
to overcome these challenges is to push the computation closer to the memory. Both
DRAMand emerging non-volatile memory have ample intrinsic parallelism, which goes
unutilized today because of the pin-limited integrated circuit interface. Processing-In-
Memory (PIM) can tap this intrinsic parallelism, avoiding the need for high-latency and
high-energy chip-to-chip transfers, thus yielding massively parallel, high-performance,
energy-efficient processing [1].

© Springer Nature Switzerland AG 2019
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6 S. Kvatinsky

Early research into PIM dates back to the ‘90s, but only recently with the advance-
ments in technologies it seems that PIM may become an efficient solution to the afore-
mentioned walls. This extended abstract deals with the use of emerging memory tech-
nologies, namely, memristive memory technologies, to perform PIM. Figure 1 shows
the evolution from von Neumann architecture to near-memory processing techniques
and to the proposed PIM technique in this extended abstract, where the computation is
done inside the memory arrays.

2 Memristors and Memristor Aided Logic

2.1 Memristors

Memristive emerging memory technologies are different types of technologies that store
data in the form of resistance [2]. For example, high resistance can be considered as
logical 0, while low resistance as logical 1. Note that multilevel cells with multiple
resistive values can also be used. These technologies differ in their physical mechanism
and can be based on mechanisms such as oxygen vacancy ion drift (RRAM), thermal
effects (PCM), and magnetic tunnel junctions (STT MRAM). All of these technologies
can be fabricated in CMOS back-end-of-line and are nonvolatile and relatively fast.

In addition to their obvious potential for memory applications, they have also poten-
tial to be used in other applications, such as neuromorphic computing [3, 4], cytomorphic
electronics [5, 6], and logic gates [7, 8].

2.2 Memristor Aided Logic (MAGIC)

Recently, we have proposed Memristor-Aided loGIC (MAGIC) [9], a stateful, in-
memory, flexible logic family. In MAGIC, only a single voltage VG is used to perform
a NOR logic operation and there are separate input and output memristors, as shown
in Fig. 2. Additionally, MAGIC gates do not require additional devices to perform the
operation (unlike some memristive logic families that require an additional resistor for
each wordline). Since NOR is a complete logic function, a MAGIC NOR operation
is sufficient to execute any Boolean operation. Hence, MAGIC NOR can be the basis
for performing all desired processing within memory by dividing the desired function
into a sequence of MAGIC NOR operations. These basic NOR operations are executed
one after the other using the memory cells as computation elements. MAGIC can also
be used to perform logic operations in parallel on sets of data. The crossbar array is
structured such that applying the operating voltage VG on any two selected rows and
grounding a third rowwill result in NOR operations being performed on all columns that
were not isolated by applying an isolation voltage VISO. Note that due to the symmetry
of memristive crossbar arrays (i.e., transpose memory), performing NOR operations on
column vectors is similarly feasible.

3 Memristive Memory Processing Unit (mMPU)

The mMPU [10, 11] is a standard RRAM memory with a few modifications that enable
the support ofMAGIC-based PIM instructions. In other words, themMPU functions as a
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standard memory that supports memory operations (i.e., read and write) with additional
PIM capabilities, and thus it is backward compatible with the von Neumann computing
scheme.

Fig. 1. Architectural evolution of eliminating the von Neumann bottleneck bymoving processing
into the memory. Moving from von Neumann machines with separate computation and storage to
near data processing, and finally to the proposed architecture that eliminates a significant amount
of data transfer using the same cells that store the data to perform logical operations within the
mMPU.

Fig. 2. Schematic of (a) MAGIC NOR gate and (b) MAGIC NOR gate within a memristive
memory array. IN1 and IN2 are the input memristors and OUT is the output memristor. A single
voltage VG is applied to perform the NOR operation [9].

To support PIM instructions, thememory controller [12, 18, 19], thememoryprotocol
[13], and the peripheral circuits (i.e., voltage drivers and row/column decoders) must be
modified to support MAGIC instructions [14, 15]. The mapping of data is also modified
to maintain persistency and coherence. Note, however, that the memory crossbar array
structure itself is not modified. The mMPU is useful to accelerate different applications
such as image processing [16, 17].
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Challenges in Deep Learning-Based
Profiled Side-Channel Analysis

Stjepan Picek(B)

Delft University of Technology, Delft, The Netherlands
stjepan@computer.org

Abstract. In recent years, profiled side-channel attacks based on
machine learning proved to be very successful in breaking cryptographic
implementations in various settings. Still, despite successful attacks even
in the presence of countermeasures, there are many open questions. A
large part of the research concentrates on improving the performance of
attacks while little is done to understand them and even more impor-
tantly, use that knowledge in the design of more secure implementations.
In this paper, we start by briefly recollecting on the state-of-the-art in
machine learning-based side-channel analysis. Afterward, we discuss sev-
eral challenges we believe will play an important role in future research.

1 Introduction

In side-channel analysis (SCA), the attacker exploits weaknesses in physical
implementations of cryptographic algorithms [12]. This is possible by exploit-
ing unintentional leakages in physical channels like power consumption [9] or
electromagnetic radiation [19].

In profiled side-channel attacks, a powerful attacker has a device (the clone
device) with knowledge about the secret key implemented and can obtain a set
of profiling traces. From there, he builds a profiled model, which is then used to
conduct an attack on another device (the device under attack). Consequently,
profiled attacks have two phases (1) profiling phase where a model is constructed
and (2) attack phase where the constructed model is used to attack the actual
target device. Profiled SCA performs the worst-case security analysis as it consid-
ers the most powerful side-channel attacker with access to an open (since the keys
are chosen/known by the attacker) clone device. The best-known profiled attack
is the template attack, which is based on the Bayesian rule. Template attack is
considered to be the most powerful attack from the information-theoretic point
of view when the attacker has an unbounded number of measurements in the
profiling phase [3]. To cope with certain statistical difficulties that can arise in
template attack, there is a variant of it commonly known as the pooled template
attack [4]. Finally, the third example of profiled attacks is the stochastic attack,
which uses linear regression in the profiling phase [20].

These three techniques represent a standard set of techniques in profiled
SCA. Besides these techniques, the SCA community also started using different
c© Springer Nature Switzerland AG 2019
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machine learning techniques. Common examples are the Naive Bayes [15], Sup-
port Vector Machines [7], Random Forest [10], and multilayer perceptron [6,13].
The multilayer perceptron algorithm (when having multiple hidden layers) also
represents the first setting for deep learning-based attacks in profiled SCA. In
2016, Maghrebi et al. conducted a more detailed study of deep learning tech-
niques in profiled SCA where they also used techniques like convolutional neural
networks (CNN) or recurrent neural networks [11]. The reported results were in
favor of CNNs, and from that time, a large part of the SCA community started
to use CNNs, see, e.g., [2,17]. Such a direction seems to pay off as current
state-of-the-art results suggest CNNs indeed perform very well and can break
implementations protected with countermeasures [2,8,22].

2 State-of-the-Art and Future Challenges

We emphasize that we do not provide a complete overview of the state-of-the-art
nor all related works tackling certain aspects of the future research directions we
discuss. Rather, we concentrate on challenges we consider to be important and
then offer more precise research questions within those.

Currently, the most explored research direction in machine learning-based
SCA uses deep learning techniques like multilayer perceptron and convolutional
neural networks to mount as powerful as possible attacks. A common setting is
to use publicly available datasets (the more difficult dataset the more attractive
target) and report the guessing entropy results (i.e., how many traces we require
to break the target). There, we mention research by Kim et al. that showed
how to add noise to the input to improve the performance of CNNs [8]. More
recently, Zaid et al. proposed a methodology for CNN-based attacks where they
achieved state-of-the-art results [22]. Some of their results are so good that it
remains questionable whether truly better attacks on those datasets and in such
scenarios are even possible (as minimal improvements in guessing entropy are
not so relevant in practice). Still, there is room for improvements if we consider
not only the number of measurements necessary to mount the attack but also
to:

– Reduce the complexity of deep learning models. For example, Zaid et al.
reported CNN models with much smaller number of parameters than com-
monly needed [22].

– Limit the number of measurements available to the attacker not only in the
attack phase (which is usually done) but also in the training phase. By doing
so, we force the attacker to use as powerful as possible deep learning models
and at the same time, we reduce the computational complexity as the training
phase would last shorter [16].

– Consider more difficult targets and more realistic settings. Indeed, a quite
common procedure in profiled SCA research is to use only a single device for
both profiling and attacking as well as to have the same key on both “devices”.
While this makes the setting easier for research, it also makes the results less
reliable. Recent results indicate that settings using different devices and keys,
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commonly known as portability settings, are significantly more difficult for
machine learning attacks [1,5].

Next, despite strong results in deep learning-based SCA, we still do not
understand much that is happening inside the deep learning process and as such,
we do not know how to make the attacks even stronger. Common examples of
questions one could ask are:

– How to know when to stop the training phase (as simply observing loss and
accuracy is not necessarily revealing the SCA performance)?

– How to understand what did deep learning model learn and how different
results one can expect from some other target?

– How to better connect the performance as measured by side-channel metrics
and machine learning metrics?

– How to select the best deep learning architectures (from both performance
and complexity perspectives) for certain scenarios and how to conduct good
hyperparameter tuning?

We note there are several works partially considering such questions but the
answers are far from complete [14,18,21].

Finally, while improving the performance of attacks is important, we must
not forget that the end goal is to provide more security. As such, we should
consider how to use the knowledge from the most powerful machine learning-
based attacks to construct stronger countermeasures and how to use machine
learning constructively in SCA (i.e., not only to attack).
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Abstract. Persistent faults mark a new class of injections that perturb
lookup tables within block ciphers with the overall goal of recovering the
encryption key. Unlike earlier fault types persistent faults remain intact
over many encryptions until the affected device is rebooted, thus allow-
ing an adversary to collect a multitude of correct and faulty ciphertexts.
It was shown to be an efficient and effective attack against substitution-
permutation networks. In this paper, the scope of persistent faults is
further broadened and explored. More specifically, we show how to con-
struct a key-recovery attack on generic Feistel schemes in the presence
of persistent faults. In a second step, we leverage these faults to reverse-
engineer AES- and PRESENT-like ciphers in a chosen-key setting, in
which some of the computational layers, like substitution tables, are
kept secret. Finally, we propose a novel, dedicated, and low-overhead
countermeasure that provides adequate protection for hardware imple-
mentations against persistent fault injections.

Keywords: Fault analysis · PFA · Feistel networks · Reverse
engineering · AES · PRESENT · Countermeasures

1 Introduction

Fault injections and their accompanying analysis techniques rank amongst the
most devastating attacks against cryptographic implementations. They saw their
inception in 1996 when Boneh et al. demonstrated how to use computation
errors during the CRT step of RSA to recover a prime factor of the public
modulus [5]. In the following year, Biham and Shamir gave a method to exploit
the difference between a faulty and correct DES ciphertext to gain information
about the encryption key, this type of analysis became known as differential
fault analysis [3]. Usually very few ciphertext pairs are needed to mount a DFA
attack successfully; however, the faults have to be precisely targeted, often at
rather small memory regions or specific registers, and during particular rounds
of a block cipher computation. Other attacks assume a permanent fault model
that is most commonly induced by defective hardware [9].

Persistent faults attempt to bridge the gap between short-lived and perma-
nent faults as they remain intact over multiple encryptions but vanish once the
device is rebooted. Persistent fault analysis gained traction at CHES 2018, in a
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work by Zhang et al. [16]. Their attack exploits the statistical imbalance in a
collected set of ciphertexts, caused by one or more overwritten s-box elements,
to recover the last round-key of substitution-permutation networks. The idea is
based on the fact that in most SPN ciphers, like AES, a skewed substitution
layer distribution translates directly into the ciphertexts. To see this, suppose
the element u does not appear anymore in the s-box output due to the persistent
fault injection, as a consequence, u ⊕ k is an impossible ciphertext word, where
k is a last round-key word. Hence, after enough collected ciphertexts from the
faulty device, k can be uniquely identified. The authors subsequently show that
around 1500 ciphertexts are sufficient to recover the last round-key of AES in the
presence of a single overwritten s-box element. They further demonstrate how
to use the rowhammer attack [10] in order to provoke persistent fault injections
in the s-box of vulnerable AES implementations.

In this paper, we show how persistent faults can be used to attack generic
Feistel schemes where an altered s-box distribution is not directly visible in the
collected ciphertext set. In a next step, we tackle the task of reverse engineering
concealed parts of block ciphers. In particular, we demonstrate how to leverage
persistent fault injections to recover a hidden PRESENT s-box and its permu-
tation layer, as well as the substitution box of AES in a reduced-round setting.
These reverse engineering attacks take place in the chosen-key setting and exploit
particular behaviours within the key-schedule routines of both PRESENT and
AES. Lastly, we propose a novel, low-overhead hardware countermeasure that ade-
quately protects bijective substitution boxes against persistent fault injections.

2 Persistent Fault Analysis on Feistel Schemes

The standard techniques of persistent fault analysis do not apply to Feistel
networks due to the fact that the both the left and right side of the output
are masked by previous round function outputs. Indeed any Feistel round is
a permutation over bit strings of length equal to the block size of the cipher,
irrespective of whether the component s-box used in it is bijective or not. As
a consequence, the skewed distribution of a faulty substitution box does not
appear in the collected ciphertexts. However, if we loosen the ciphertext-only
requirement, persistent fault can become a feasible danger. More specifically,
we allow the attacker a single device reset and the possibility to re-encrypt
plaintexts.

Consider a generic r-round Feistel scheme whose substitution layer consists
of b identical or different n × m s-boxes S1, S2, . . . , Sb. The last round of such a
construction is depicted in Fig. 1, with xl||xr being the input to the last round
and yl||yr the corresponding ciphertext. Both xl||xr and yl||yr can be further
decomposed into b blocks of m bits such that

xl = |x1
l , . . . , x

b
l |, xr = |x1

r, . . . , x
b
r|,

yl = |y1
l , . . . , y

b
l |, yr = |y1

r , . . . , y
b
r|.
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For most ciphers n = m. However, for block ciphers like DES, n = 6 and m = 4.
So we first expand xr using an expansion function to a string dr of length nb
bits. Thereafter, we can write dr = |d1r, d2r, . . . , dbr|, where each dir is of length
n bits.

S1

S2

···

Sb

k1

k2

kb

xl

yl

xr

yr

Fig. 1. Last round of a generic Feistel scheme

2.1 Different S-Boxes

We first treat the case where S1, S2, . . . , Sb are pairwise different substitution
boxes. The key observation is that in the presence of persistent faults some
ciphertexts remain uncorrupted.

Suppose a single fault has been injected into one box. The probability that
this element is not accessed in each round lies at (1 − 1

2n )r. Furthermore, the
probability that the faulty element is only accessed in the very last round is
given by 1

2n (1 − 1
2n )r−1.

Example 1 (DES). The data encryption standard [8] is a 16-round Feistel net-
work whose substitution layer consists eight pairwise different 6×4 s-boxes. The
probability that a faulty element in one box is not accessed in all rounds stands
at (1 − 1

26 )16 ≈ 0.777. Additionally, the probability that the faulty element is
only accessed in the last round is given by 1

26 (1 − 1
26 )15 ≈ 0.0123.

For illustration purposes assume that entry e of Sb has been altered. The
faulty s-box is denoted by S′

b. The injected element does not need to be known
to the attacker. Let yl||yr be a ciphertext from a faultless device, i.e. one with Sb,
and y′

l||y′
r the encryption of the same plaintext on a faulty device, i.e. one with

S′
b that only accessed faulty element of S′

b in the last round. As a consequence
we have that yl ⊕ y′

l is of the form

yl ⊕ y′
l = |a1, a2, . . . , ab|,

where ai is a block of m bits with the property that ai = 0 for 0 ≤ i < b
and ab = Sb(yb

r ⊕ kb) ⊕ S′
b(y

b
r ⊕ kb). In other words, incorrect ciphertexts that
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accessed the faulty entry e of S′
b only in the last round can be identified when

given the corresponding correct ciphertext. In such a case kb can be recovered
via kb = yb

r ⊕ e. In the case where we have l faulty elements e1, . . . , el, kb can
be recovered up-to l candidates. Note that to recover the remaining parts of the
last round-key further injections into the other s-boxes are needed. Also note
that there is a negligible probability that a false-positive, i.e. a ciphertext that
accessed the faulty element in more than just the last round, is of the desired
form.

The expected number of required ciphertexts pairs is given by the reciprocal
2n(1− 1

2n )−(r−1). For DES this value stands at 26(1− 1
26 )−15 ≈ 82. Algorithm 1

summarizes the developed ideas.

Algorithm 1. Feistel Scheme PFA Key-Recovery

1 p, cl, cr ← (·) // Initialize empty lists

2 for i ← 0; i < n; i ← i + 1 do
3 p(i) ← random plaintext
4 yl||yr ← E(p(i))
5 cl(i), cr(i) ← yl, yr

6 Overwrite element e of St in E

7 for i ← 0; i < n; i ← i + 1 do
8 y′

l||y′
r ← E(p(i))

9 |a1, . . . , ab| ← yl ⊕ y′
l

10 if (aj = 0, j ∈ {1, . . . , b} \ {t}) ∧ (at �= 0) then
11 return yt

r ⊕ e

2.2 A Single S-Box

In the case where S1 = · · · = Sb the probability that the faulty element is only
accessed by yb

r in the last round is now given by 1
2n (1 − 1

2n )br−1, which can
significantly increase the number of required ciphertext pairs. However, unlike
in the previous case, one fault injection is enough to recover the entire last
round-key. Furthermore, the overwritten element does not need to be known
by the attacker either and can be brute-forced. In summary, if the attacker is
allowed slightly more powers persistent faults can be exploited to recover the
last round-key of Feistel schemes as well.

3 Reverse Engineering

The idea of leveraging fault injections for reverse-engineering, (in short FIRE),
was introduced by San Pedro et al. [14] in an attempt to use a corrupted last
round computation of either AES or DES to recover their hidden s-boxes. The
attack itself is differential in its nature and requires many thousands of faults in
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order to be successful. The attack was later improved by Le Boulder et al. [12],
their attack requires fewer faults in the penultimate instead of the last round of
DES to recover all eight hidden substitution boxes. The concept of ineffective
fault analysis where a particular byte of the intermediate state is stuck at zero
is used by Clavier et al. to recover a hidden s-box of AES [6]. Finally, Tiessen
et al. [15] used integral cryptanalysis to retrieve a secret AES substitution box
when the cipher is reduced to four rounds.

In this section, we present a chosen-key attack that, in combination with
persistent faults, aims to recover hidden substitution boxes and permutations
of block ciphers more efficiently than an ordinary exhaustive search. Consider
a PRESENT-like [4] construction in which the s-box or the permutation layer
are fixed but secret bijective functions over {0, 1}4 and {0, 1}64 respectively.
We demonstrate how persistent faults can be used to reverse-engineer such a
construction.

3.1 Brute-Force

We first consider the method of a simple exhaustive search in order to recover
the substitution box. There are 2n! bijective s-boxes over {0, 1}n, and hence
the computational complexity of exhaustive search grows out of bound very
quickly. For instance, there are 16! ≈ 244.25 possible arrangements for a small
4 × 4 s-box. However, already for a 8 × 8 s-box, as deployed in AES, there exist
256! ≈ 21684 possibilities. For non-bijective n × m substitution tables we have

2n!
(2n−m!)2m

potential arrangements. For one of the 6 × 4 DES s-boxes this values

stands at 64!
(4!)16 ≈ 2222.64.

3.2 S-Box Recovery of 16-Round PRESENT

PRESENT is an ultra-lightweight block cipher designed by Bogdanov et al. [4]
that operates on 64-bit blocks with a key size of either 80 or 128 bits meant
for usage in low-energy and space-restricted devices. It operates over 31 rounds
with a substitution layer consisting of a single 4 × 4 s-box that is applied on
all 16 nibbles of the intermediate state. For the remainder, we will focus on the
80-bit version and in particular on its key schedule routine. Algorithm 2 depicts
its key schedule procedure. Let |k79k78 . . . k1k0| be the individual bits of the
master key in big endian notation. In each round the 64 most significant bits
yield the current round-key. The key is then rotated 61 positions to the left,
followed by the substitution of the four most significant bits |k79k78k77k76| by
S(|k79k78k77k76|). Finally, the bits |k19k18k17k16k75| are xored with the binary
representation of the round counter i.

As a warm-up we consider the s-box recovery in a reduced 16-round setting of
PRESENT in the presence of persistent faults in the known-key setting such that
the last round-key can be exactly determined. Assume the faults are injected into
the target device before the key schedule takes place and that the encryption
key can be switched out without necessitating a reboot of the device, i.e. the
injected faults do not disappear.
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Algorithm 2. 80-Bit PRESENT Key-Schedule

1 for i = 1; i ≤ 32; i ← i + 1 do
2 Ki ← |k79k78 . . . k16|
3 |k79k78 . . . k1k0| ← |k18k17 . . . k20k19|
4 |k79k78k77k76| ← S(|k79k78k77k76|)
5 |k19k18k17k16k15| ← |k19k18k17k16k15| ⊕ i

Due to its simplicity, the PRESENT key schedule exhibits some peculiarities.
For instance, Hernandez et al. [11] showed that there exist keys that expand into
very similar round-keys. This is partly due to the fact that some key bits only
enter the substitution box during relatively late rounds and only appear in a few
round-keys.

We want to stress another property of the key schedule routine. It is not hard
to see that during the first 16 rounds no key bit enters the substitution box more
than once, hence all s-box accesses during the second 16 rounds only depend on
the values of the first 16 accesses. As a consequence, it is possible to compute
keys that only access a single s-box element during the first half which in turn
leads to the fact that the pattern of the latter half of s-box accesses is entirely
determined by this single s-box value that was accessed during the first half.

Definition 1 (Low-Diffusion Key). A low-diffusion key ˜K is a PRESENT
master key that, if fed into the key schedule routine, causes only one element of
the s-box table to be accessed during the first 16 key schedule rounds.

Naturally, there can only be 16 low-diffusion keys in total ˜K0, . . . , ˜K15 one
for each substitution box element, i.e. key ˜Ki only accesses s-box entry i during
the first 16 rounds of the key schedule. See Algorithm 7 in the appendix on how
to calculate all the 16 low-diffusion keys.

The existence of low-diffusion keys immediately suggests a s-box recovery
procedure in a reduced 16-round setting. Given a faulty device E, for each low-
diffusion key ˜Ki, 0 ≤ i < 16 we recover the last round-key k through PFA then
iterate over all possible values of S(i) = j and compare whether an offline key
schedule calculation is equal to k. Algorithm 3 depicts the described method.
Note that we assume that the faults remain intact after re-keying, if this is
not the case the persistent faults have to be injected again for each iteration.
Further note that only a few dozens of ciphertexts are required to recover the
last round-key through PFA in PRESENT with high probability.

3.3 S-Box Recovery of Full-Round PRESENT

The attack from the previous section does not directly apply to a full 31-round
setting, however we can use persistent faults to engineer a new s-box recovery
algorithms applicable to different fault models. The intuition is still based on the
particular behaviour of low-diffusion keys, especially their behaviour throughout
the key schedule computation.
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Algorithm 3. 16-Round PRESENT S-Box Recovery

1 S(i) ← 0, for 0 ≤ i < 16

2 for i = 0; i < 16; i ← i + 1 do
3 k ← PFA(E

˜Ki
) // Recover last round-key through PFA

4 for j = 0; j < 16; j ← j + 1 do
5 S(i) = j // Assign j to i-th s-box entry

// Offline key schedule using s-box S

// and low-diffusion key ˜Ki

6 if KeyScheduleS( ˜Ki) = k then
7 break

Definition 2 (Access Rate). The access rate of a low-diffusion key, denoted
by r

˜Ki
(j), is the number of accessed s-box elements by the key ˜Ki during the key

schedule routine when S(i) = j.

Table 1 depicts each low-diffusion key alongside their respective access rates.

Table 1. Low-diffusion keys and their access rates

i ˜Ki r
˜Ki

(j)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0x037bf04d5c0567402460 16 15 13 13 11 11 11 11 15 14 12 13 11 11 11 11

1 0x026ae06f7e012300ace8 16 15 13 13 11 11 11 11 16 15 13 13 11 11 11 11

2 0x0159d009180defc13570 16 15 13 13 11 11 11 11 15 14 12 13 11 11 11 11

3 0x0048c02b3a09ab81bdf8 16 15 13 13 11 11 11 11 15 14 12 13 11 11 11 11

4 0x073fb0c5d41476420640 16 15 13 13 11 11 11 11 15 14 13 14 11 11 11 11

5 0x062ea0e7f61032028ec8 16 15 14 14 11 11 11 11 15 14 12 13 11 11 11 11

6 0x051d9081901cfec31750 16 16 14 14 11 11 11 11 15 14 13 14 11 11 11 11

7 0x040c80a3b218ba839fd8 16 15 14 14 11 11 11 11 15 15 13 14 11 11 11 11

8 0x0bf3715c4c2745446020 16 15 13 13 12 12 12 11 15 14 12 13 12 12 11 11

9 0x0ae2617e6e230104e8a8 16 15 13 13 12 12 11 11 15 14 12 13 12 12 12 11

10 0x09d15118082fcdc57130 16 15 13 13 12 12 11 12 15 14 12 13 12 12 11 11

11 0x08c0413a2a2b8985f9b8 16 15 13 13 12 12 11 11 15 14 12 13 12 12 11 12

12 0x0fb731d4c43654464200 16 15 13 13 12 11 12 12 15 14 12 13 11 11 12 12

13 0x0ea621f6e6321006ca88 16 15 13 13 11 11 12 12 15 14 12 13 12 11 12 12

14 0x0d951190803edcc75310 16 15 13 13 11 12 12 12 15 14 12 13 11 11 12 12

15 0x0c8401b2a23a9887db98 16 15 13 13 11 11 12 12 15 14 12 13 11 12 12 12

Definition 3 (Access Pattern). Denote by p
˜Ki

(j) the set of accessed s-box
entries during the key schedule for low-diffusion key ˜Ki with S(i) = j.

Example 2. The access pattern for ˜K0 and S(0) = 12 is given by

p
˜K0

(12) = {0, 1, 2, 3, 4, 5, 6, 7, 12, 14, 15}.
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We look at the case where the adversary manages to inject a single chosen
fault at a precise position in the substitution table, i.e. one element is overwritten.
The online stage for this attack is the same as the previous one; we use the
persistent attack module with the set of known keys ˜Ki to extract the last
round-key.

Note that a brute-force search in this setting, to recover the secret s-box,
requires in the worst case 15! ≈ 240.25 trials in order to recover the remaining
s-box entries. This value can be significantly improved if the encryption key can
be chosen. Let the injected fault be of the form S(i) = j such that r

˜Ki
(j) = 11.

In this case there are only 10 remaining s-box entries in the entire key schedule
routine that are accessed for the low-diffusion key ˜Ki. The strategy is to ran-
domly assign values to these 10 entries, after which it is possible to compute the
last round-key from ˜Ki using an offline key schedule computation: the assigned
values are correct if this computed key matches the last round-key obtained
through PFA. Now, there are 15!

5! ≈ 233.34 potential arrangements that have to
be checked in the worst case since due to the low-diffusion key and the fault
injection only 10 s-box entries need to be assigned from a set of 15 potential
values. This results in a reduction by a factor of 120 compared to the brute-force
approach. The remaining 5 elements can then be safely brute-forced. Thus the
computational complexity of this method is around 233.34 + 5! ≈ 233.34 offline
key schedule computations. Algorithm 4 formally depicts the described strategy:
it makes use of the following definition.

Definition 4 (m-Permutation). Let L be a collection of n elements. A m-
permutation of L, denoted by Πn,m(L), is the set of all possible ways to choose
m elements from L without repetition.

Algorithm 4. Single-Fault S-Box Recovery

1 Choose i ∈ {0, 1, 2, 3, 4, 5, 6, 7}
2 Overwrite S(i) = j such that r

˜Ki
(j) = 11

// Recover last round-key k
// and overwritten element v through PFA

3 k, v ← PFA(E
˜Ki

)

4 L ← {0, . . . , 15} \ {v}
5 S′(l) = 0, 0 ≤ l ≤ 15; S′(i) = j

6 for each π ∈ Π15,10(L) do
7 z ← 0
8 for each p ∈ p

˜Ki
(j) do

9 S′(p) ← π(z), z ← z + 1

10 if KeyScheduleS′( ˜Ki) = k then
11 return S′
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3.4 Permutation Layer Recovery of PRESENT

On paper, recovering the permutation layer appears to be a harder task due to
the sheer amount 64! ≈ 2296 of possibilities. Let C = {c1, . . . , cn} be a set of
n ciphertexts from the faulty device. Denote by |c(i), c(j), c(k), c(l)| the nibble
that is created by extracting the bits i, j, k, l from a ciphertext c. Further, denote
by C(i, j, k, l) the set of nibbles that is generated by extracting bits i, j, k, l from
each ciphertext, i.e.

C(i, j, k, l) = {|c1(i), c1(j), c1(k), c1(l)|, . . . , |cn(i), cn(j), cn(k), cn(l)|}.

Suppose an random entry in the S-box is overwritten due to a fault. If each
bit in a nibble i, j, k, l stems from the same s-box then we have necessarily
|C(i, j, k, l)| < 16 due to the persistent fault injection. This is obviously due
to the fact that overwriting the entry of a bijective 4 × 4 s-box decreases the
number of unique outputs to less than 16. For all other nibbles the set is of size
16 for a large enough n. In this fashion we recover the hidden permutation up to
a reordering of the bits i, j, k, l of each nibble, which naturally gives rise to 4!
possibilities for each nibble and hence 4!16 possibilities for the entire 16 nibbles.
Furthermore a reordering of the 16 s-boxes is also required that gives rise to 16!
possibilities, which leaves us with a remaining complexity of 2416 × 16! ≈ 2118

to recover the entire permutation. Algorithm 5 depicts this strategy.

Algorithm 5. PRESENT Permutation Recovery

1 L ← {0, 1, 2, . . . , 63}
2 C ← {c1, . . . , cn} // Set of n ciphertexts from faulty device

// Iterate over all permutations of size 4

3 for each π0, π1, π2, π3 ∈ Π4(L) do
4 if |C(π0, π1, π2, π3)| < 16 then
5 output |π0, π1, π2, π3|
6 L ← L \ |π0, π1, π2, π3|

The question is now, how large do we have to choose n in order to guarantee
with high probability that only the correct nibbles are chosen? This is a clas-
sical instance of the coupon collector’s problem where we want to quantify the
number of uniform trials until some number of elements have been picked. In the
case of Algorithm 5, how many ciphertexts are required until |C(i, j, k, l)| = 16
with high probability for an incorrect nibble? Let T the number of trials until
16 substitution box entries have occurred for a specific ciphertext nibble. The
expected number of picks E[T ] is given by

E[T ] = 16H16 ≈ 54.1,
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where H16 is the 16-th Harmonic number. Similarly, we can quantify the variance
Var[T ], which is upper-bounded by

Var[T ] <
π2

6
162 ≈ 421.1.

Finally, we can use the Chebyshev’s inequality to specify the bound on the error
probability.

Pr[T ≥ kE[T ]] ≤ Pr [|T − E[T ]| ≥ (k − 1)E[T ]]

≤ Var[T ]
((k − 1)E[T ])2

<
16π2

6(k − 1)2H2
16

,

where k ≥ 2. Table 2 depicts Pr[T ≥ kE[T ]] for multiple choices of k. Evidently,
a few hundred ciphertexts should suffice for a successful run of Algorithm 5.

Table 2. Pr[T ≥ kE[T ]] for several n

k 2 3 4 5 10 20

Pr[T ≥ kE[T ]] 0.1439 0.0359 0.0159 0.0089 0.0017 0.0003

Knowing the nibbles that directly originated from one s-box, it is possible
to further reduce the permutation space with multiple injections. Firstly, note
that if 0 is overwritten then the last round-key bits κ = |κ(i), κ(j), κ(k), κ(l)| is
determined exactly (where we have already determined that bits i, j, k, l emanate
from the same s-box). This is a direct consequence of the fact that all 4-bit
permutations of 0 remain 0, hence 0⊕κ does not appear in the ciphertext nibble.
The same also holds if 15 is overwritten (in that case 15⊕κ does not appear in the
ciphertext nibble). Once the last round-key has been established, the last round
substitution layer output bits s = |κ(i)⊕ c(i), κ(j)⊕ c(j), κ(k)⊕ c(k), κ(l)⊕ c(l)|
is also available. Figure 2 illustrates the situation.

Let La be the list of collected s-box outputs s for one nibble when entry a
of the s-box has been overwritten. There exists a small set of potential 4-bit
permutations that produce the values in La assuming element a never appears
in the s-box output. For example let the entry 1 in the s-box table be overwrit-
ten. Then we know that the s-box never outputs 1. We are interested in the
determining the order in which the output bits of some s-box is shuffled to map
to bits i, j, k, l of the ciphertext (denote this permutation by πs). Now if some
s = s0 is not present in L1, then we can reduce the search space for πs to only
those permutations that map 1 to s0. For example if s0 = 8 (the nibble which
has 1 in the msb), then πs is essentially the set of all 4 bit permutations that
map the lsb to the msb.
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S-Box Ordering: 16!

Fig. 2. Permutation layer recovery in PRESENT

It is not too difficult to see that repeating the above experiments for a = 2, 4, 8
gives us the unique 4-bit permutation πs. This means with four injections we can
retrieve the 4-bit permutation after each s-box, which reduces the overall search
space down to a reordering of the s-boxes, i.e. 16! ≈ 244 possibilities. This set is
small enough to be brute forced using appropriate computational resources.

3.5 Reduced-Round AES S-Box Recovery

The ideas developed so far can be adapted in order to recover a hidden AES
s-box in a reduced-round setting. We consider the 128-bit Rijndael key schedule
procedure as it is deployed in the final AES specification [7]. The routine acts in
eleven rounds, one for each round-key, and works on 32-bit words. Let K0, K1,
K2 and K3 denote the four 32-bit words of the master key with W0, . . . , W43

being the 32-bit round-key output words. Further, let rc be a list of ten round
constants.

The key schedule also makes use of two external transformations R and S.
R designates the rotation of a 32-bit word, consisting of four bytes |b0, b1, b2, b3|,
by one position to the left, such that

R(|b0, b1, b2, b3|) = |b1, b2, b3, b0|

while S is the substitution of each byte in a 32-bit word by its corresponding
s-box value such that

S(|b0, b1, b2, b3|) = |S(b0), S(b1), S(b2), S(b3)|.
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The key schedule then calculates each round-key word Wi as follows

Wi =

⎧

⎪

⎨

⎪

⎩

Ki, i < 4
Wi−4 ⊕ R(S(Wi−1)) ⊕ rci/4, i ≥ 4 and i ≡ 0 mod 4
Wi−4 ⊕ Wi−1, otherwise.

In the PRESENT key schedule we had the property that during the first sixteen
rounds the s-box access pattern was entirely determined by the master key thus
special keys could be found that only access a single s-box entry during those
initial rounds of the key schedule. It is obvious that no such property is given in
the AES key schedule, simply because all intermediate key states are affected by
the s-box accesses within one round. A single round contains four s-box accesses
one for each byte of current 32-bit word, hence in total there are 40 accesses
over all eleven rounds of the key schedule due to the first round not performing
no lookup. However, it is possible to find keys for which all four lookups of a
single round go to the same element for the first few rounds of the key schedule
routine.

We consider the following adapted fault model, where the 0 is injected at a
known position i in the substitution table such that S(i) = 0, which has the
following lemma as a consequence.

Lemma 1. Given a AES master key of the form

K0 = 0x01000000, K1 = 0x02000000,

K2 = 0x02000000, K3 = |a, a, a, a|,

where a ∈ {0, 1}8 are the individual bytes of the word, and a faulty substitution
box S with S(a) = 0. The s-box access pattern during first six rounds of the key
schedule is given by

W3 = |a, a, a, a|, W7 = |a, a, a, a|,
W11 = |a, a, a, a|, W15 = |a, a, a, b|,
W19 = |a, a, c, d|, W23 = |a, e, f, g|,

where b, c, d, e, f, g ∈ {0, 1}8 are bytes and given by

b = a ⊕ 0x06, c = a ⊕ S(b),
d = a ⊕ 0x08, e = a ⊕ S(a ⊕ S(b)),
f = a ⊕ S(b) ⊕ S(0x08), g = 0x1a.

This means that the set of input entries of the s-box accessed during the first 6
rounds is given by the byte-values a, b, c, d, e, f, g.

Proof. Due to space constraints, we present a proof in Appendix B.
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By leveraging those keys we can device a s-box recovery attack on a reduced-
round version of AES that is similar to the algorithms in Sects. 3.2 and 3.3. We
use PFA to recover last round-key, then guess partial locations of the s-box table
to do an offline key schedule to calculate the last round-key and see if both the
above keys match. Algorithm 6 shows a five-round s-box recovery, which recovers
three elements of the substitution box.

Algorithm 6. 5-Round AES S-Box Recovery

1 Inject 0 at position a in substitution box of EK

2 S(i) ← 0, for 0 ≤ i < 256
3 a ∈ {0, . . . , 255}
4 K0 ← 0x01000000, K1 ← 0x02000000, K2 ← 0x02000000, K3 ← |a, a, a, a|
5 K ← K0||K1||K2||K3

// Retrieve round-key k and active s-box elements L through PFA

6 k, L ← PFA(EK)

7 for each x ∈ L do
8 for each y ∈ L \ {x} do
9 for each z ∈ L \ {x, y} do

10 S(a ⊕ 0x06) = x, S(a ⊕ 0x08) = y, S(a ⊕ S(a ⊕ 0x06)) = z
11 if KeyScheduleS(K) = k then
12 return S

The number of key schedule operations in Algorithm 6 depends the numbers
of cipher rounds, i.e. since only one assignment is made to the s-box table for
the 4 round attack, we require 255 key schedule operations. For the 5 round
attack, 3 entries are assigned and so 255!

252! ≈ 224 offline key schedule computations.
Similarly 6 assignments are required for the 6 round attack and so and 255!

249! ≈ 248

operations are required.
The above routine needs to be repeated for multiple values of a to recover

the full S-box table. For example in both the 5/6 round attacks, we successfully
assign 2 entries (a⊕0x06) and (a⊕0x08) in each execution of the above routine.
Thus at most 128 executions of the above routine with judiciously chosen values
of a are sufficient to extract the entire table.

4 Countermeasures

We propose a novel, low-overhead and dedicated countermeasure against persis-
tent fault injections in bijective substitution boxes that is not susceptible to fur-
ther injections through redundant lookup tables. The need for this arises through
the fact that common fault injection countermeasures, like area redundancy and
masking of intermediate values, have been shown to be ineffective [13,16].
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We assume the fault model where one or more entries of the s-box have been
altered. In such a scenario there are necessarily at least two entries in the s-box
that bear the same value such that S(x) = S(y) with x �= y, i.e. if two different
values enter the substitution layer and are equal after the transformation an error
is detected. This necessitates that all input and output are compared to each
other. Figure 3 depicts such a construction. Once a fault has been detected the
device can engage in remedy procedures such as outputting random ciphertexts
until the next reboot. We will see that the number of encryptions is so low that
no information about the last round-key can be inferred through persistent fault
analysis techniques.

Fig. 3. Pairwise comparison network

If there is one or more overwritten elements in the substitution layer it is
possible to quantify the probability that the fault is detected in a particular
round by the following lemma.

Lemma 2. Denote by S a faulty n×n s-box with t altered entries v1, . . . , vt such
that S(vi) = S(ui) for some ui /∈ {v1, v2, . . . , vt}. Let pn,m,t be the probability
that at least one pair of equal entries is accessed in one round. The value is
given by

pn,m,t = 1 −
(

2n − 2t

2n

)m

−
t

∑

i=1

(

2i
(

t

i

)

×
m

∑

k1

m−k1
∑

k2

· · ·
m−∑i−1

j=1
∑

ki

(

m

k1

)

· · ·
(

m − ∑i−1
j=1 kj

ki

)
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×
(

1
2n

)

∑i
j=1 kj

(

2n − 2t

2n

)m−∑i
j=1 kj

)

Proof. Suppose there are t pairs of equal entries. An error is not detected if
none of the 2t elements of these pairs are accessed in round, which happens with
probability

(

2n−2t
2n

)m
, or exactly one element is accessed from i pairs, which

happens with probability

m
∑

k1

m−k1
∑

k2

· · ·
m−∑i−1

j=1
∑

ki

(

m

k1

)

· · ·
(

m − ∑i−1
j=1 kj

ki

)

.

Summing over all 1 ≤ i ≤ t then yields pn,m,t.

We can further calculate the probability that one or more faults are detected
over r round function invocations in a block cipher.

Corollary 1. Given a r-round block cipher whose substitution box bears t equal-
ized entries. Denote by prn,m,t the probability that an error is detected. It is
given by

prn,m,t = 1 − (1 − pn,m,t)r.

The expected value of required encryption until an injected fault is detected
lies at 1

pr
n,m,t

. Table 3 shows the detection probabilities for a varying number of

overwritten elements t for both AES p108,16,t and PRESENT p314,16,t.

Table 3. pr
n,m,t for AES and PRESENT

pr
n,m,t

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

p10
8,16,t (AES) 0.0341 0.0671 0.0990 0.1288 0.1597 0.1884

p31
4,16,t (PRESENT) ≈1 ≈ 1 ≈1 ≈1 ≈1 ≈1

The sixteen substitution box accesses per AES round already yield a rela-
tively good fault detection probability whose expected value is well below the
number of ciphertexts that are required for a successful persistent fault analy-
sis attack. However, it is possible to perform additional redundant accesses, i.e.
increasing m, to further increase the detection probability.

4.1 Reducing the Hardware Cost

For both AES and PRESENT it is necessary to perform
(

16
2

)

= 120 pairwise byte
or nibble comparisons. This necessitates a rather large overhead in hardware
implementations. A naive circuit that compares bytes can be built out of 8
XNOR gates and 7 AND gates, thus doing 120 comparisons would result in a
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Fig. 4. Adjacent comparison network

total of 1800 logic gates, which requires a significant amount of chip area. As an
alternative construction, we propose a modification in which that only adjacent
bytes are compared, as seen in Fig. 4.

In such a pattern there are only fifteen comparisons, which in turn changes the
detection probability, which is now lower-bounded by pn,m,t

8 . For AES this bound
is tight, the overall detection probability over 10 rounds then stands at 1 − (1 −
p8,16,t

8 )10 ≈ 0.004335. Hence in expectation we need 1
0.004335 ≈ 230 encryptions

until a faulty substitution box is detected. For PRESENT, this bound is not
tight, it can be shown that in a single-fault setting the detection probability for
one encryption is roughly 0.97, which means that in expectation 1 encryption
suffices to detect the fault.

We measured the effectiveness of our countermeasure in the following exper-
iment. We collected ciphertexts from a faulty device protected by our counter-
measure until the fault is detected. Persistent fault analysis is then performed
on those ciphertexts and the residual key-entropy of the last round key is eval-
uated. The experiment is further repeated for around 220 random keys in order
to obtain a probability for each entropy value. The results are tabulated as a
function of the number of persistent faults t in Table 4 for AES and Table 5 for
PRESENT. Our countermeasure offers a very strong protection of PRESENT
already in the single-fault setting. For AES, it performs well on average but it
is especially effective in the presence of more than one persistent fault injection.

Table 4. Probability of residual key entropy (AES)

[0, 15) [15, 30) [30, 45) [45, 60) [60, 75) [75, 90) [90, 105) [105, 120) [120, 128]

t = 1 0.00195 0.00361 0.00856 0.01699 0.03708 0.07811 0.16763 0.35617 0.32989

t = 2 0.00000 0.00000 0.00008 0.00071 0.00343 0.01654 0.07612 0.35053 0.55261

t = 3 0.00000 0.00000 0.00000 0.00002 0.00020 0.00261 0.02669 0.26949 0.70104

t = 4 0.00000 0.00000 0.00000 0.00000 0.00001 0.00032 0.00860 0.18980 0.80127

Table 5. Probability of residual key entropy (PRESENT)

[56, 57) [57, 58) [58, 59) [60, 61) [61, 62) [62, 63) [63, 64) 64

t = 1 0.00000 0.00000 0.00002 0.00032 0.00067 0.03099 0.00000 0.96798

t = 2 0.00000 0.00000 0.00000 0.00001 0.00001 0.00085 0.00000 0.99914
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5 Implementation

The countermeasure we suggest is efficiently implementable in ASIC platforms
with minimal overhead in hardware. For a round based implementation of AES,
the architecture is straightforward and is exactly as depicted in Fig. 4. Comparing
each of the adjacent bytes before and after the s-box operation to produce 15-
bit vectors before and after the s-box, requires a total of 2 · 15 = 30 comparator
blocks. Each such block can be constructed as the bitwise AND of the XNOR of
the two input bytes, i.e.

c =
7

∏

i=0

(ai ⊕ bi ⊕ 1),

where a = (a0, a1, . . . , a7) and b = (b0, b1, . . . , b7) are the input bytes and c = 1
if and only if a = b. The circuit to compare the two 15-bit vectors is similar,
we perform a bitwise XNOR and compute the logical AND of the resultant bits
to get the final fault integrity bit F . If F = 1 and all previous fault integrity
checks have passed, the round function is allowed to output required result else
it is replaced with the all 0 signal. We thus must have some way of ascertaining
if all previous integrity checks have passed. To do that we introduce a fault
integrity flip-flop, that is initialized to 1 at system reset, which is updated by
ANDing the value of the current flip-flop state ft with the current value of F ,
i.e ft+1 = F · ft. The advantage of this method is that once a fault integrity
check fails, the integrity flip-flop is permanently set to 0, after which it becomes
easy to replace s-box outputs with random bytes by xoring the term (1 + ft) · θ,
where θ is the output of a random byte generator. Since a bitwise AND of a t-bit
signal requires t − 1 2-input AND gates, the above comparison network requires
2 ∗ 15 ∗ 8 + 15 = 255 two-input XNOR gates and 2 ∗ 15 ∗ 7 + 14 = 224 two-
input AND gates. The final randomizing of the round function output in case
ft = 0, requires a simple XOR of the function output with (1 + ft) · θ and hence
requires a further 128 two-input AND and XOR gates. For the round based
implementation of PRESENT, the cost is similar, except that the comparison
network is built over nibbles rather than bytes.

For a serial architecture, the implementation is even more efficient and
requires minimal hardware overhead. Take, for example the Atomic AES v 2.0
architecture proposed in [2], which performs one s-box operation in one clock
cycle. The architecture has an internal round counter constructed with 5-bit full
period LFSR that counts up from 0 to 30 for each round. Of these the 16 s-box
operations are done in cycles 15 to 30, as the state bytes are shifted out serially
through the first byte register implemented in the circuit. In each cycle labeled
t = 15 + j for j ∈ [0, 14] the s-box input and output are each driven into byte
registers CIN and COUT respectively as shown in Fig. 5. As a result at round t+1
one can make a comparison between adjacent byte inputs by simply comparing
the values stored in CIN and the current s-box input. A similar comparison can
be made between the COUT and the current s-box output. For fault integrity,
the result of the input and output byte comparisons should be equal to each
other which is again implemented by an XNOR gate: which naturally outputs 1
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Fig. 5. Fault Integrity check for the Atomic AES v2.0 architecture

if the input-output pairs are both equal or both unequal. Moreover this equality
must hold for the 15 · 11 = 165 comparisons made during an AES encryption
operation. Thus we also have a fault integrity flip-flop which works exactly in
the same manner as described in the round based circuit.

Table 6 tabulates the results of all implementations. The following design flow
was used: first the design was implemented in VHDL. Then, a functional veri-
fication was first done using Mentor Graphics Modelsim software. The designs
were synthesized using the standard cell library of the 90 nm logic process of
STM (CORE90GPHVT v 2.1.a) with the Synopsys Design Compiler, with the
compiler being specifically instructed to optimize the circuit for area. A timing
simulation was done on the synthesized netlist. The frequency of operation was
fixed at 10 MHz as established in [1], because at this frequency, for the STM
90 nm logic process, the energy consumption of block ciphers was found to be
frequency-independent. The switching activity of each gate of the circuit was col-
lected while running post-synthesis simulation. The average power was obtained
using Synopsys Power Compiler, using the back annotated switching activity.
Energy is calculated as the product of average power and time taken for one
encryption. The table clearly shows that the overhead in terms of area, except
for the round based implementation of PRESENT is well under 8%. In terms of
other performance metrics, we see reasonably competitive figures.
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Table 6. Performance Comparison of circuits before and after implementing fault
integrity countermeasures. B refers to the basic circuit without countermeasures, C
refers to the circuit after implementing countermeasures, TPmax refers to maximum
throughput achievable on hardware. Note that the figures do not include an RNG used
for randomization

# Architecture Type Area
(GE)

Overhead
(in %)

Latency
(cycles)

Energy
(nJ)

TPmax

(Gbps)

AES

1 Round based B 12876 5.7 11 0.72 2.371

C 13615 11 0.78 1.555

2 8-bit Serial B 2060 4.0 246 3.20 0.086

C 2143 246 3.23 0.075

PRESENT

1 Round based B 1316 30.2 33 0.19 1.598

C 1713 33 0.29 1.050

2 4-bit Serial B 892 7.9 564 2.50 0.052

C 963 564 2.71 0.046

6 Conclusion

Persistent fault analysis has been shown to be an efficient and devastating attack
against substitution-permutation networks. In this paper, we further broadened
and investigated the range of these kinds of injections. In other words, we showed
how Feistel schemes can also fall prey to persistent faults and demonstrate how
they can be used to accelerated reverse engineering endeavors. Finally, we pre-
sented a low-overhead countermeasure that efficiently protects bijective substi-
tution boxes against persistent fault injections.

In conclusion, persistent faults offer an exciting new perspective on fault
attacks in various fields from key-recovery attacks to reverse engineering tasks
and the development of efficient and adequate countermeasures. It is thus an
interesting exercise in future works to see to what extent persistent faults can
be further leveraged.

Appendix

A Calculation of Low-Diffusion Keys

Algorithm 7 depicts the routine that calculates all 16 low-diffusion keys for
PRESENT.
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Algorithm 7. Calculation of Low-Diffusion Keys

1 for i = 0; i < 16; i ← i + 1 do

2 ˜Ki ← 0
3 for j = 0; j < 16; j ← j + 1 do
4 r ← (15 + 19j) mod 80

5 ˜Ki = ˜Ki ⊕ ((i ⊕ j) 
 r)

6 return ˜Ki, 0 ≤ i < 16

B Proof of Lemma 1

Proof. The access pattern follows from a simple calculation of the intermediate
round key words. Set K0 = 0x01000000, K1 = 0x02000000, K2 = 0x02000000,
K3 = |a, a, a, a| and S(a) = 0.

W0 = K0 = 0x01000000

W1 = K1 = 0x02000000

W2 = K2 = 0x02000000

W3 = K3 = |a, a, a, a|
W4 = W0 ⊕ S(R(W3)) ⊕ rc1 = 0x00000000

W5 = W1 ⊕ W4 = 0x02000000

W6 = W2 ⊕ W5 = 0x00000000

W7 = W3 ⊕ W6 = |a, a, a, a|
W8 = W4 ⊕ S(R(W7)) ⊕ rc2 = 0x02000000

W9 = W5 ⊕ W8 = 0x00000000

W10 = W6 ⊕ W9 = 0x00000000

W11 = W7 ⊕ W10 = |a, a, a, a|
W12 = W8 ⊕ S(R(W11)) ⊕ rc3 = 0x06000000

W13 = W9 ⊕ W12 = 0x06000000

W14 = W10 ⊕ W13 = 0x06000000

W15 = W11 ⊕ W14 = |a ⊕ 0x06, a, a, a|
W16 = W12 ⊕ S(R(W15)) ⊕ rc4 = |0x0e, 0, 0, S(a ⊕ 0x06)|
W17 = W13 ⊕ W16 = |a ⊕ 0x08, 0, 0, S(a ⊕ 0x06)|
W18 = W14 ⊕ W17 = |a ⊕ 0x0e, 0, 0, S(a ⊕ 0x06)|
W19 = W15 ⊕ W18 = |a ⊕ 0x08, a, a, a ⊕ S(a ⊕ 0x06)|
W20 = W16 ⊕ S(R(W19)) ⊕ rc5 = |0x1e, 0, S(a ⊕ S(a ⊕ 0x06)), S(0x0b)|
W21 = W17 ⊕ W20 = |0x16, 0, S(a ⊕ S(a ⊕ 0x06)), S(0x0b) ⊕ S(a ⊕ 0x06)|
W22 = W18 ⊕ W21 = |0x18, 0, S(a ⊕ S(a ⊕ 0x06)), S(0x0b)|
W23 = W19 ⊕ W22 = |0x1a, a, a ⊕ S(a ⊕ S(a ⊕ 0x06)), a ⊕ S(a ⊕ 0x06) ⊕ S(0x0b)|
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Abstract. This paper proposes an attack on shift register based stream
ciphers. The attack consists of recovering the internal state of the reg-
isters at a starting clock instant from which the output stream is avail-
able. For a given output stream the evolution of the output function at
the clocking times is first computed in symbolic form as a sequence of
Boolean functions from the symbolic state update map of the internal
state dynamics. Then the Boolean equations are solved using a Boolean
solver which returns all possible internal states which match the output
stream. Once the internal state (or most of its assignments) are obtained
this way the internal state is reversed sequentially to the initial condition.
The resulting equations give solutions to key bits solved by comparing
the IV bits with unknown variable equations. This discovers most of the
key bits and reduces the unknown key bits to a very small number. Then
by brute force search on the remaining key bits the output stream is
regenerated to recognize the remaining key bits when the output stream
exactly matches. In case when all the bits of the internal state are solved
from the Boolean equations of the output stream, but there are more
than one solutions to the internal state, the correct initial state is recog-
nized when the IV bits match exactly with the initial condition obtained
by reversing the internal state. The attack is practically useful when the
all computations involved in steps such as solutions of the Boolean equa-
tions from the output stream, the symbolic equation generation from the
output function for the length of output stream, symbolic reversing of the
internal state with small number of unknown variables are feasible. This
paper shows feasibility of this approach for the stream cipher BIVIUM
with 80 bits of key and shows that a complete recovery of the key is fea-
sible in practical time by parallel search requiring memory space which
is feasible in modern day clusters.
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1 Introduction

The aim of this paper is to demonstrate a complete key recovery attack on
the stream cipher Bivium by solving the internal state of the cipher using a
Boolean model of the cipher and solving all Boolean assignments of a system
of equations compatible with the output stream. This attack is in principle a
universal methodology for cryptanalysis of nonlinear combiners or NLFSR based
stream ciphers. But in practice it may work only when computation of a Boolean
model of the output functions for the length of output stream is feasible, as well
as computing all solution of the Boolean system for the output stream with
partially solved bits is also feasible. This paper shows that the structure of
the Boolean system of Bivium with 177 variables in the internal state fails to
withstand this attack. We show how 80 bit Bivium key can be estimated to be
recovered from 177 variable internal state within a time of 49 h by a parallel
brute force search of special 40 bits equivalent to parallel 240 searches requiring
5.4 TB of memory space. Similarly a parallel search over 242 threads generated
from implicants obtained from the first 14 of the same equations can recover the
key in 17 h but requires 30 TB of memory. The first of these attacks can be
accomplished in a practically feasible memory space available with state of the
art clusters. Since the memory space required does not increase drastically for
implicant based search a combination of the two searches may be utilized to bring
the computation to a feasible space and time requirement. No previous record of
an algebraic system solver to the best of author’s knowledge has achieved these
performances.

Creating a record of breaking Bivium is a case study for establishing the
effectiveness of the algorithmic methods used in this paper. Aim of this paper
is much beyond just breaking Bivium and is to find heuristics for solving all
solutions of the non linear system of 177 Boolean variables arising from Bivium
key stream. To get a perspective we list the main contributions of this paper as

1. Showing that the implicant based solver announced in [14] is effective in
solving the system of Boolean equations and get all solutions in realistically
feasible time and memory space. No other algebraic approach has reported
equivalent success in finding all solutions of such large nonlinear equations.
(The timings shown in Tables 1 and 2 of performances are of actual compu-
tations on a 2.5 GHz desktop computer with standard Intel processor and
RAM).

2. Discovering two different heuristics for decomposing the Boolean equations
due to their structure. These heuristics are otherwise quite general and can
be useful for solving Boolean systems in cryptanalysis of other stream ciphers
as well as in other applications.

3. Estimating a practically feasible record of breaking Bivium by parallel compu-
tation by actually carrying out sample computations of threads for estimating
average times and memory space requirements. No such practically feasible
records of breaking Bivium are believed to be known.
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Key recovery problem of cryptanalysis of stream ciphers requires solving the hard
computational problem of finding all solutions of Boolean equations arising from
the knowledge of the output stream. Most well known algebraic cryptanalysis
approaches are either not scalable for realistic number of variables of actual
cipher models and hence can only show results of scaled down ciphers. Often
their limitation is also due to not being able to represent all solutions of the
system of equations which are essential for key recovery. Our aim in this paper
is to demonstrate that the implicant based approach to solving Boolean systems
is scalable, parallel and can represent all solutions and succeeds in solving the
realistic size equations arising in Bivium. Hence this algorithm should also be
useful in solving similar complex Boolean systems depending on the structure
which permitted certain heuristics in decomposition of the equations.

1.1 The Key Recovery Problem

A stream cipher which uses shift registers for its state evolution is a finite state
dynamical system with an output. In most cases such a system can be described
by a finite state map F : Fn

2 → F
n
2 and a function f : Fn

2 → F2 giving a state
output system

x(k + 1) = F (x(k))
w(k) = f(x(k)) (1)

where x(k) is the internal state (of all the shift registers) and w(k) is the output
(key stream bit) of the cipher at an instant k. The symmetric key K of the cipher
is a fixed subset of known bits of the initial state x(0). The remaining state is
filled with bits known as IV (initializing vector) and possibly fixed bits. Hence
apart from K all the bits of the initial state x(0) are known. Assuming that the
algorithm (or model) of the cipher is known, the key recovery problem is stated
as follows:

Problem 1 (Key Recovery Problem). Given an instant k0 > 0, the IV of the
stream cipher and the output stream w(k0), w(k0 + 1), . . . , w(k0 + m) for some
m > 0 find the key K.

Key recovery problem arises from the known plaintext attack on the cipher
when the encryption of the plaintext stream p(k) is carried out as c(k) = p(k)⊕
w(k) by modulo 2 addition of bits. For the attack described in this paper it is
not necessary that the output stream w(k) be known for consecutive instants
k0, k0 + 1, . . .. Any sample of outputs w(k) with known instances k ≥ k0 is
sufficient to formulate this attack. The state x(k0) is called the internal state at
k0. This paper describes solution of the key recovery problem by computing all
solutions of the internal state x(k0).

1.2 Internal State Recovery Problem

The most logical strategy to solve the key recovery problem is to solve the
internal state recovery problem for a known model of the stream cipher.
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Since the secret key is a part of the initial condition, computation of inter-
nal states of the cipher at other times either by mathematical analysis or by side
channel attack is the only way available to the cryptanalyst to attack the cipher.
In a practical cipher implementation, the secret key is well guarded from the side
channel measurements but the internal state can be vulnerable to attack hence
even knowledge of the internal state by side channel attack can be utilized to
attack the cipher. On the other hand computation of the internal state from a
known output stream is the most practical attack since it does not assume extra
information or measurement than is naturally possible.

This makes the internal state recovery problem a realistic problem of crypt-
analysis of stream ciphers. The Mathematical statement of this problem is as
follows.

Problem 2 (Internal State Recovery Problem). Given an instant k0 > 0 and an
output stream w(k) for k = k0, k0 + 1, k0 + 2, . . . , k0 + m corresponding to an
unknown key K and known IV , find the internal state x(k0).

Internal State Recovery Attack. This attack in principle works as follows.
(This attack is most convenient for stream cipher models in which the state
transition map F is invertible. In that case the internal states which satisfy
output equations can be inverted symbolically to recover key bits. When the
state map F is not invertible the modification required is discussed in the next
subsection). Let G denote the inverse map. Then it follows that G(x(k + 1)) =
x(k) when x(k + 1) = F (x(k)).

1. Compute all solutions x̃(k0) of the internal state from a Boolean system of
equations which model the output stream w(k) for k ≥ k0.

2. For those solutions x̃(k0) in which all bits of the state are determined, compute
the initial state x̃(0) = Gk0(x̃(k0)) using the inverse map. Compare the bits
of x̃(0) at the indices of IV and fixed bits. If these match then the key bits of
the x̃(0) give correct key recovery.

3. In solutions x(k0) where only partial bits are recovered, the remaining bits
of x(k0) are free for the same output stream. Then reverse the internal state
x(k0) symbolically using the map G to x(0) and solve the remaining bits using
known IV bits of x(0) to recover the remaining key bits.

The solutions x(k0) of the Boolean equations corresponding to the output
stream are usually very small in number and when computation of such solutions
is practically feasible, they contain almost all assignments of the internal state
leaving a very small number of unknown (free) variables of the internal state.
Hence the computation of the initial states symbolically in terms of such small
number of variables is also practically feasible.

Role of Symbolic Computation. Symbolic computation is required in the
above procedure at two different stages. First the construction of the Boolean
equations for a given output stream w(k0+j) for j = 1, 2, . . . has to be computed
by compositions described by
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w(k0 + j) = fj(x(k0)) = f(F j−1(x(k0))

where f0(x(k0)) is defined as f(x(k0)). These compositions are symbolic Boolean
computations. Next the reversing of the internal state x(k0) to the initial con-
dition x(0) as Gk0(x(k0)) may also involve symbolic free variables in x(k0) if
not all variables of x(k0) are assigned by the Boolean equations defined by the
output stream. Our central observation in this paper which leads to a success-
ful attack on Bivium is that these symbolic computations and the solutions of
Boolean equations are practically feasible for Bivium.

There is another way to solve the key recovery problem by using a different
symbolic computation. In this method the initial condition x(0) with known
IV bits and unknown key bits is symbolically updated using the map F (.) to
get x(k0 + j) symbolically in terms of unknown key bits. Then the solution of
the Boolean equations directly solves the key bits. However in Bivium k0 =
4 × 177 + 1 = 709 where 177 is the number of internal state variables. In a
previous article an author attempted to update the initial state with 80 unknown
key bits but the symbolic computation could not be scaled up to k0 = 709. Hence
such a simplistic attack is not practically feasible. It is for this reason that the
internal state recovery attack is the most feasible attack.

Cryptanalysis approaches which utilize algebraic equations usually require
symbolic computation as discussed above. However symbolic computation and
its scalability for realistic size models has not yet been fully understood and
appreciated as the problem of solving large algebraic systems. Efficient and scal-
able symbolic computation is likely to have a deep impact in cryptanalysis and
can reduce algebraic problems to smallest possible sizes.

Case of Non Invertible State Map. When the state map is not invertible
previous states before k0 cannot be represented by a map G as above. How-
ever for an internal state x(k0) there exist attractor states x(k0 − 1) such that
F (x(k0 − 1) = x(k0). This gives equations for solving the previous states. Since
the components of map F are much simple and sparse compared to the output
equations, these equations can be solved for assignments in x(k0 − 1) (by impli-
cants) much easily compared to output equations. Many internal states x(k0)
which are not feasible for the key and IV specified may not have solution to pre-
vious states. Repeating such inverse computations will result into multiple initial
states from which the correct initial state can be recognised by the associated
IV values and give correct key bits from the rest of the variables. Many back
computations of the internal state in the case of such maps may not correspond
to possible state for the key and IV hence the threads may terminate even before
reaching the initial state. In the present case study of Bivium the internal state
map is invertible. Hence this procedure is not necessary.

1.3 Previous Work and Challenges of Algebraic Cryptanalysis.

Since recent times algebraic model based cryptanalysis of stream ciphers has
come on the scene in a big way [1–3]. These are primarily based on Gorbener



Internal State Recovery Attack on BIVIUM 39

basis computation of algebraic equations or XL (extended linearization) and the
advances to the method of fast algebraic attacks. Other approaches for algebraic
attacks involve decomposition of Boolean equations [1,8]. A major hurdle for
algebraic attacks is the scalability of the methods for realistic sizes of the number
of states of practical ciphers. Algebraic operations involved in computations
are also not easy for parallelization of solving large systems. Another modern
alternative to the algebraic attack which is being vigorously researched is the
satisfiability (SAT) based solution of the algebraic system. This method has
been tested for cryptanalysis of many ciphers including the Bivium case study
[6,7,9]. The nonlinear equations resulting from the output stream data can be
expressed as a multivariable quadratic (degree at most two) system of polynomial
equations over the binary field. However finding all satisfying assignments of such
a system is known to be an NP hard problem in general and hence is expected
to be infeasible as number of variable are as large as in realistic ciphers. SAT
approach is also being developed for overcoming challenges of parallelization [12].
SAT approach (based on available algorithms) has the difficulty that these are
meant for solving the decision problem while cryptanalysis requires computing
all solutions. The SAT methods need re-initialization for computing every new
solution. Another difficulty is that the SAT algorithms work on CNF model of
the algebraic equation hence cannot handle the ANF forms of functions more
commonly available in algebraic models. Conversion of ANF to CNF distroys the
natural structure of equations which may be useful for scaling up the procedure.
It is important to note that apart from the difficulty in solving these equations in
a given practical time limit such as 48 h (say), the true hurdle is the scalability
of the method to successfully solve these equations with the number of variables
in a realistic cipher without crashing the program. A logical approach to make
any method (algorithm) scalable is to execute the algorithm in parallel using
a large cluster which offers sufficient memory. However unless the algorithm
has inherent parallel computational features it is not likely to be scalable when
the number of variables are large enough. In this sense the currently available
algebraic methods have not been successful at scalability.

1.4 Approach of the Present Paper

This paper utilizes a Boolean approach (called Implicant based approach) [14]
for solving the algebraic equations resulting from the output stream to solve the
internal state. This approach is inherently parallel and results in all solutions of
equations. The approach becomes scalable for solving the large system with the
help of heuristics suggested. Previously this approach succeeded in completely
solving the 80 bit Bivium key from a keystream starting with k = 0 [15]. However
this was not the most realistic case of cryptanalysis. This paper shows that for
k0 = 709 using an in house implementation of the Implicant algorithm, the inter-
nal state recovery is feasible for Bivium and gives estimates of successful breaks
of Bivium if carried out on a parallel cluster with realistic memory requirement
for search. The main reason for this success is the exploitation of the structure of
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Boolean equations resulting from the keystream from k0 = 709. No other alge-
braic solver is believed to have solved these equations with realistic feasibility
constraints of time and memory as reported in this paper to the knowledge of
authors. The implicant based approach for solving Boolean systems has resulted
from several fundamental results on Boolean equations whose theory has been
well known in books and references therein such as [10,11,13].

The heuristics discovered in solving the Boolean equations in this paper and
for internal state recovery are quite general and are applicable to solve output
equations of other stream ciphers as well as in many other applications by par-
allel computation. Whenever a stream cipher algorithm is amenable to offline
computation of Boolean equations for the output stream then the number of
parallel searches (the memory required for parallel computation) for solving the
Boolean equations can be reduced using the heuristics presented in this paper.

2 Internal State Recovery

We now explain the attack of this paper to solve key recovery problem by internal
state recovery. This method is suitable for stream ciphers whose internal state
update map F in Eq. (1) is invertible. Note that when the map F is invertible
then even if k0 is a large enough time instant, an internal state x(k0) can be
inverted fast to the initial state by repeated inversions to compute the previous
state x(k0−1) = F−1(x(k0)). The overall methodology of internal state recovery
attack requires another computation which is difficult for scalability in the prac-
tical cases. This computation is that of computing a symbolic model for output
equations in terms of the internal state.

2.1 Computation of Symbolic Model or Equations for Internal State

For any instant k in time, the output of the stream cipher is given by the output
equation

w(k) = f(x(k))

with internal state x(k). Then the output at the next instant k + 1 is given by

w(k + 1) = f(x(k + 1)) = f(F (x(k)))

the last composition f ◦ F (.) of the function f with the map F is also denoted
as F ∗f(.) (called action of map F on f) and is a new function of the internal
state.

This step of computing the new function F ∗f(.) from a given function
involves symbolic computation in which the arguments of f are not specified any
value but have to obey formal rules of arithmetic in the field F2. By repeated
composition we can define a sequence of new functions starting from f as follows.

f0(x) = f(x)
fk+1(x) = F ∗fk(x)
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for k = 1, 2, 3, . . .. This sequence of functions in principle can be computed from
the model of the stream cipher offline since it can be performed starting at any
instant k. However the map action F ∗f is an expensive computation practically.
The symbolic terms of the iterated functions fk grow fast in number hence
require increasing memory.

Although performing a number of such iterations or actions F ∗fk is one of
the expensive computations required in this attack it is worth noting that this
computation can be carried out offline. Hence given the cipher model (1) the
sequence of functions fk, k = 0, 1, 2, . . . can be assumed to be pre-computed
before the internal state recovery attack. The symbolic model (or equations) for
computation of the internal state is then given by the following system

w(k0 + j + 1) = F ∗f(x(k0 + j)) (2)

for j = 0, 1, 2, . . . ,m while w(k0) = f(x(k0)). In this model the right hand side
(RHS) consists of the iterates of the output function f of the model (1) and is
a precomputed. The left hand side (LHS) however consists of the output values
w(k) which are available only as the online data stream generated with help of a
key and an IV of the session of operation. Hence the LHS is only available online.
Due to this dichotomy between online and pre-computation of the model, the
symbolic model computation (2) of the output is a practically feasible problem
for any stream cipher modeled by state update maps F (.) to get enough number
of Boolean equations in (2) to solve the internal state x(k0). Note that it is
not necessary to have a consecutive stream of outputs w(j) and the Boolean
functions corresponding to them. Any collection of sufficient number of outputs
w(j) for known indices of j ≥ k0 are sufficient to solve for all internal states
x(k0) provided all the internal state variables are reflected in these equations.

2.2 Computing all Internal States by Implicant Based Algorithm

Next the Eq. (2) need to be solved and all the solutions need to be represented in
symbolic form for assignments of solved variables and identifying free variables.
This task is achieved by using the Implicant based solver algorithm on the system
of Boolean equations above resulting from the output stream. This algorithm has
been announced in previous articles. It is briefly described here for convenience.
The RHS of these equations are Boolean functions fk with unknown internal
state x. For an equation w(k) = fk(x) denoted as Ek an implicant of Ek is a
term t(x) of unknown variables in x such that the assignment of variables for
t(x) = 1 satisfies Ek. For example, consider an equation E given by

1 = w + x + y

in variables w, x, y. Then t = w′x′y is an implicant of E. For an equation E given
by f(x) = c where c is a constant 0, 1, a set I(E) of implicants of E is called
a complete set of implicants of E if whenever E is satisfied for any assignments
of x there exists an implicant t in I(E) such that the assignments t = 1 satisfy
E. Moreover such a set is called orthogonal if the implicants are orthogonal i.e.
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titj = 0 for i �= j. When I(E) is a complete set of orthogonal implicants of
E then there is exactly one implicant t which gives a satisfying assignment for
every satisfaction of E. For instance for the above equation the set of terms

{wx′y′, w′xy,w′x′y, wxy}

is a complete orthogonal set of implicants of E and when E is satisfied exactly
one of the implicants t = 1 since the set is orthogonal. Hence the set of all
assignments for satisfying the equation E is given by set

S(E) = �t∈I(E){X|t(X) = 1}

where � denotes disjoint union. To represent all solutions of multiple equations
we need the concept of implicant of simulteneous equations such that all the
equations are satisfied by the assignments when the implicant becomes 1. For
example if E1 and E2 are two equations with non overlapping variables and
I(E1) and I(E2) are their complete sets of implicants then a complete set of
implicants of simultaneous equations is

I(E1, E2) = {ts, t ∈ I(E1), s ∈ I(E2)}

Implicant Algorithm for all Solutions of a Boolean System. For one
equation E we described above a complete set of orthogonal implicants I(E).
Next a set of all solutions of the simultaneous equations E1, E2 is described
by a complete set of implicants denoted as I(E1, E2). For equations with non-
overlapping variables this set was just the product set of I(E1) and I(E2) as
shown above. However when E1 and E2 have overlapping variables then

I(E1, E2) = {ts|t ∈ I(E1), s ∈ I(E2/t1)} = {ts|t ∈ I(E1/s), s ∈ I(E2)}

where E2/t denotes the equation obtained by substituting assignments t(X) = 1
in E2. Here if E2 is not satisfied by assignments of t = 1 then I(E2/t) = ∅ while
if E2 is satisfied by assignments t = 1 then t is also an implicant of E2. In general
for a system of equations S the Implicant solver can be briefly described by the
following recursive algorithm (1).

It is beyond the scope of this paper to describe this algorithm fully beyond
these basic concepts. The algorithm has been announced and applied for solving
complex Boolean systems in several papers. One of these [15], showed the solution
of 80 bit system in unknown key variables for a hypothetical keystream starting
at k = 0 however the system was complex enough with nonlinear terms as the
registers build the feedback. Another demonstration of the effectiveness of the
implicant algorithm is in paper [16] for solving XOR linear systems with O(n2)
computation time.

Computation of Internal State x (k0) and x (0). Consider the Boolean
Eq. (2) called the Boolean system corresponding to an output stream w(k0 + j).
The implicant algorithm shall return the set I of all orthogonal implicants such
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Algorithm 1. Implicant algorithm ImplicantSolve(S)
Input: Boolean system of equations S
Output: A complete set of orthogonal implicants I(S)

1 I(S) = ∅
2 Select one equation E in S and find an orthogonal implicant set I(E)
3 Repeat
4 for Implicant t in I(E) do
5 Compute S/t. % Reduce the system by assignments defined by t = 1
6 if S/t has a contradiction in an equation then
7 Go to End

8 % choose next t in I(E)
9 else

10 delete all equations that are satisfied to get a reduced system S(t)

11 % this reduces the system by variables assigned by t = 1 and also by deleted
equations

12 while S(t) has equations left to be solved do
13 S := S(t)
14 I(t) = ImplicantSolve(S)
15 Return I(S) = I(S) ∪ {t × I(S)}
16 % t × I(S) is the set of product implicants {ts|s ∈ I(S)}
17 End
18 Until all t in I(E) are processed

that for each t in I the assignments t(X) = 1 satisfy all equations of the Boolean
system and such that if there is any assignment of variables X = a for which
all equations are satisfied then there is an implicant t in I such t(a) = 1. In
this way I represents all solutions of the Boolean system. Hence once this set I
is computed all internal states x(k0) which give rise to the same given output
stream are available. The key recovery problem is then solved by reversing each
of the internal states x(k0) by the inverse map G to compute x(0) and recog-
nizing the correct initial state by matching the IV, as explained in introduction.
This attack succeeds in practice when the number of implicants i.e. the size of
the set is I is small and the the assignments determined by t = 1 do not leave too
many free state variables. In short it is expected that the inverse computation
of x(0) by the map G is feasible. In the next section we show that this attack
succeeds in the case of Bivium. We conclude by describing this algorithm (2) for
solving the key recovery problem. Note that the

3 Bivium Cryptanalysis

In this section we discuss the Bivium case study in detail. The model of the
cipher in terms of state update map (1), output function of the cipher and the
inverse map are first described. Then the Boolean system corresponding to the
output stream is described followed by heuristics for solving these equations.
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Algorithm 2. Key recover algorithm
Input: Functions of the Boolean system (2), inverse map G, k0 output stream

w(k0 + j), j = 1, . . . ,m
Output: Key bits from the initial state

1 Prepare the Boolean system (2) denoted S for the output stream for input to
the Implicant algorithm

2 Compute the set of all orthogonal implicants I(S) (output of Implicant
algorithm I(S) = ImplicantSolve(S))

3 Choose t in I(S) to fix x(k0) for assignments defined by t = 1. (some
components of x(k0) may be free and treated as unknowns)

4 Compute symbolically x(0) = Gk0(x(k0))
5 Solve the Boolean equations for unknown variables in x(k0) by matching the

known IV bits of x(0). Discover the unknown key bits of from known bits of
x(k0) and solved bits after matching IV bits in x(0).

6 % most of the key bits may be discovered in this steps
7 If the equations of unknown bits in x(k0) after matching IV bits in x(0) have no

solution, reject the implicant t and choose the next implicant in I(S). select
x(k0) corresponding to the implicant and repeat above steps.

8 If after solving the equations a small number of key bits are not discovered.
Then these are free bits of key and signify multiple solutions of key for
generating same output stream with same IV.

9 End the process when x(k0) is found for which the equations matching IV bits
in x(0) are consistent. Solve all possible unknown bits of key.

3.1 Bivium State Model and the Inverse

Bivium cipher has been described in detail in [7]. We shall describe the model
equations of Bivium in the form (1). The state consists of 177 variables
x1, . . . , x177. The key forms first 80 bits x1, . . . , x80 of x(0), IV forms 80 bits
x94, . . . , x173 of x(0) while variables x81, . . . , x93 and x174, . . . , x177 are set to
zero in x(0). State update map F is

x1(k + 1) = x162(k) ⊕ x177(k) ⊕ x175(k)x176(k) ⊕ x69(k)
x2(k + 1) = x1(k)
... =

...
x93(k + 1) = x92(k)
x94(k + 1) = x66(k) ⊕ x93(k) ⊕ x91(k)x92(k) ⊕ x171(k)
x95(k + 1) = x94(k)
... =

...
x177(k + 1) = x176(k)

(3)

The ouput map is

w(k) = x66(k) ⊕ x93(k) ⊕ x162(k) ⊕ x177
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The inverse of the update map G is

x1(k) = x2(k + 1)
... =

...
x92(k) = x93(k + 1)
x93(k) = x94(k + 1) ⊕ x66(k + 1) ⊕ x91(k + 1)x92(k + 1) ⊕ x177(k + 1)
x94(k) = x95(k + 1)
... =

...
x176(k) = x177(k + 1)
x177(k) = x1(k + 1) ⊕ x162(k + 1) ⊕ x175(k + 1)x176(k + 1) ⊕ x69(k + 1)

(4)

Thus the inverse map G of Bivium is no more complex in degree than forward
update map F .

3.2 Boolean System

The functions involved in the Boolean system (2) can be computed offline. The
system of equations is determined by the output stream w(k) for k ≥ k0 = 709.
A sample set of equations is given in the appendix where the list of equations
fj(x(k)) = w(k) are written in terms of the list of functions fj(k) ⊕ w(k). We
shall call this the Boolean system of equations in terms of the internal state x(k)
referring to the same system of Eq. (2).

The procedure described in algorithm (2) for the key recovery problem is
used to discover the key bits once all internal states x(k0) are solved from the
Boolean system. Following features were discovered in the Bivium case study
which were advantageous to complete the computation and hence can be con-
sidered as yardsticks of complexity (or weakness) of Bivium.

1. Solution of the Boolean system (2) formed the major computational load. The
equations had a structure which facilitated heuristics for solving the equations
by parallel computation. (These heuristics are discussed below).

2. Assignments of all the bits of the internal state x(k0) were fixed by the impli-
cants of the Boolean system. Free variables in x(k0) were absent. Hence the
inverse computation of x(0) was as fast as forward computation of x(k0) for
a given key and IV since no symbolic computation was needed in inversion.
Moreover complete key bit recovery was possible by matching the IV bits.

3. Number of implicants of the Boolean system in sample trials were very few
(at most two). This is expected as sufficient number of bits of the output
stream are available. Hence the major computation involved is in searching
over the rare set of implicants which provide satisfying assignments of the
Boolean system or solve x(k0). This computation was simplified by certain
heuristics possible with the structure of equations.

These observations are elaborated further with results of computation. The
structure of equations identified above in the Boolean system was not affected
by change in key and IV as both are random looking.
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Structure of Boolean System and Heuristics for Parallel Solution. The
Boolean system (2) corresponding to an output stream has 177 unknown vari-
ables corresponding to bits of the internal state x(k0) and as many equations
assuming a sufficiently long output stream. Some observations which shaped the
heuristics of solving this systems were as follows.

1. First set of 66 equations in (2) are linear with 4 variables each.
2. These linear equations have 8 implicants each in these 4 variables irrespective

of the value of output w.
3. First 15 of these equations have non-overlapping variables. Hence the largest

set of all implicants to search from is 815 = 245. Each such search will thus fix
4 × 15 = 60 variables while rest of 117 variables will have to be solved using
the Boolean solver. Using less number of equations will reduce the number of
searches but will increase number of variables in the Boolean system.

4. A gross ranking of variables can be made by the number of equations in
which that variable appears. If a variable appears in more equations its assign-
ment is likely to simplify more equations. The Boolean system showed drastic
improvements in time taken to solve once the top ranked variables were sub-
stituted.

Based on above observation following heuristics were developed for solving
the Boolean system. The performance of solving the system are presented for
each heuristic. A sample Boolean system and an output stream are shown in the
appendix.

Searching over Possible Implicants Obtained with Constraints on
Number of Searches. Presence of a set of linear equation in the Boolean
system which have no overlapping variables suggests that by choosing a number
of equations a set of implicants can be easily obtained in which an implicant
satisfying the system must exist. For instance if all 15 linear equations each with
4 variables with non-overlapping variables are considered, then the total number
of implicant (8 per equation) is 815 = 245. Hence a search over these implicants
by reducing the system with assignments of these implicants becoming 1 will find
at least one solution of the system. All these searches are parallel hence given a
memory resource for executing 245 threads one for each implicant the search for
the internal state can be accomplished in time approximately equal to average
time to decide whether the Boolean system has a solution and compute the solu-
tion when the assignments for variables arising in the implicant are substituted.
The Table 1 shows such average time for different selection of equations.

For instance the table shows that a parallel search over 242 implicants of 56
variable each (requiring 56 × 242 bits (=30 TB) of memory can recover the key
of Bivium in 6150317 s. (or 17 h).

A general heuristic that follows from this observation for solving Boolean
equations is thus to identify a subset of equations which have non-overlapping
variables and search over the assignments defined by their implicants. The set
of implicants is just a direct product of implicants of each of the equations. The
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Table 1. Implicant based computation timings

No. of
equations

No. of variable
assignments

No. of implicant
threads

Average Time for
computation Sec

Memory required
in terabytes

13 52 239 >2 days 3.95

14 56 242 61503 30.68

15 60 245 4926 261.16

set of implicants and the time required to compute the solution after substitution
gives a time versus memory tradeoff.

Brute Force Search over Assignments of Top Ranked Variables. The
variables of the Boolean system are spread in different equations unevenly. A
variable is said to have rank r if it appears in r equations. For the Boolean
system of Bivium a table of number of incidences of variables with equations
was computed offline. Of these a certain number of top ranked variables (e.g. 44
variables of highest rank) were chosen. When the true internal state assignments
for a known key and IV were substituted in the Boolean system it was observed
that the Boolean system was rapidly solved by the solver.The Table 2 shows the
time for solving the remaining variables of the system when certain number of
top ranked variable assignments are substituted. The 40 bit brute force search

Table 2. Timing with assignment of top ranked variables

No. of top ranked
variables in search

Time taken (Sec) to
solve the system

Memory required in
terabytes

40 177746 5.4

44 100642 96.7

45 50521 197.9

48 6642 >1000

52 663 >1000

56 26 >1000

60 13 >1000

approximately requires 5.4 TB of memory space and the Boolean solver can solve
the complete set of equation in 49 h. This may be considered as a practically
feasible attack. The implicant based search requires much less memory as com-
pared to the brute force search. However if the memory is kept in practical limit
such 3.95 TB as for search over implicants obtained from first 13 equations the
computation time required for each thread is larger than 2 days. These two types
of heuristics can be combined for parallely solving the equations keeping both
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memory and time in feasible limits. This heuristic for solving Boolean systems,
to select a set of top ranked variables of the system small enough to carry out
parallel brute force search over the assignments may be potentially effective in
solving Boolean systems arising in several other Cryptanalysis problems.

4 Conclusion

An algorithm called Implicant based solver for Boolean systems was utilized
to solve the Boolean system arising from the output stream of Bivium with
80 bits key. Two heuristics for searching the solutions are proposed based on
the structure of equations of the system. It is shown that Bivium key can be
recovered in practical time of about 49 h by a brute force search over top ranked
40 variables with 3.95 terabytes of memory, which is feasible for modern clusters.
The important conclusions of this study are that the Implicant based solver has
good scalability, the heuristic of searching implicants from equations without
non-overlapping variables and the heuristic of searching over top ranked variables
are powerful methodologies for Cryptanalysis. These two can be combined to get
a better control over memory requirement and time of computation for parallel
solution of Boolean systems. The case study shows that Bivium is weak against
these algebraic attacks.
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Abstract. CRAFT is a lightweight tweakable block cipher introduced in
FSE 2019. One of the main design criteria of CRAFT is the efficient protec-
tion of its implementations against differential fault analysis. While the
authors of CRAFT provide several cryptanalysis results in several attack
models, they do not claim any security of CRAFT against related-key
differential attacks. In this paper, we utilize the simple key schedule of
CRAFT to propose a systematic method for constructing several repeatable
2-round related-key differential characteristics with probability 2−2. We
then employ one of these characteristics to mount a key recovery attack
on full-round CRAFT using 231 queries to the encryption oracle and 285

encryptions, and 241 64-bit blocks of memory.. Additionally, we manage
to use 8 related-key differential distinguishers, with 8 related-key differ-
ences, in order to mount a key recovery attack on the full-round cipher
with 235.17 queries to the encryption oracle, 232 encryptions and about
26 64-bit blocks of memory. Furthermore, we present another attack that
recovers the whole master key with 236.09 queries to the encryption oracle
and only 11 encryptions with 27 blocks of memory using 16 related-key
differential distinguishers.

1 Introduction

Modern symmetric-key cryptographic primitives, such as the Advanced Encryp-
tion Standard (AES), which are likely designed for desktops and servers, cannot
be easily implemented on resource-constrained devices such as sensor networks,
healthcare equipment, Internet of Things (IoT) devices, and RFIDs. With the
rapidly increasing demand for such devices, the National Institute for Stan-
dards and Technology (NIST) has initiated a standardization process for new
lightweight cryptographic algorithms for use in resource-constrained devices.
SKINNY [3], PRESENT [7], SIMON [2], and GIFT [1] are examples of such
lightweight block ciphers that have been recently proposed.

The resistance against the differential cryptanalysis [6] is essential for any
proposed cryptographic block ciphers. In differential cryptanalysis, for an n-
bit primitive, an attacker is looking for a distinguisher (ΔP → ΔC) where
an XOR difference of two plaintexts (ΔP ) gives, after some rounds, another
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XOR difference (ΔC) with probability higher than 2−n. Using this distin-
guisher, a key recovery attack can be performed by guessing the round keys.
One of the variations of this attack is the related-key differential cryptanalysis
[5] in which the attacker has the ability to query the encryption oracle asking for
the encryption of two plaintexts, the first plaintext is encrypted using the secret
key, and the other one is encrypted using another key related to the secret key,
where such relation is known or even chosen by the attacker.

At FSE 2019, Beierle et al. presented CRAFT [4], a new lightweight tweakable
block cipher with a block size of 64 bits and a key length of 128 bits associ-
ated with 64 bits as a tweak. One of the main design criteria of CRAFT is the
efficient protection of its implementations against differential fault analysis. In
the design paper, the authors provide the security analysis of CRAFT against sev-
eral cryptanalysis techniques such as differential, linear, impossible differential,
zero correlation, and integral cryptanalysis in the single-key and related-tweak
settings. While they do not claim any security of CRAFT against the related-key
differential attacks, they presented a deterministic related-key/related-tweak dif-
ferential characteristic. However, this characteristic cannot be used to mount a
key recovery attack. In this paper, we study in details the security of CRAFT
against the related-key differential attack. More precisely,

1. We utilize the simple key schedule of CRAFT to present a systematic method
of how to select the key difference in addition to the input and the output
differences of the 2-round structure of CRAFT such that the input difference is
the same as the output difference. Thus, the resulting 2-round characteristic is
repeatable. In the same time, we also try to maximize the probability of that
characteristic. Thereby, we use it as a building block for constructing a longer
characteristic. To illustrate the effectiveness of this method, we present 17
repeatable 2-round characteristics, each one of them has only one active Sbox
and holds with probability equals to the maximum differential probability of
an active Sbox of CRAFT (2−2).

2. We extend one of these characteristics to a 28-round related-key differential
characteristic with probability 2−28. After that, we employ it to mount a key
recovery attack on full-round CRAFT using 231 queries to the encryption oracle
and 285 encryptions, and 241 64-bit blocks of memory.

3. We can speed up the key recovery attack against the full-round CRAFT using
235.17 queries to the encryption oracle and 232 full-round encryptions. To this
end, we manage to use 8 different related-key differential characteristics (with
8 related-key differences) in order to recover 96 bits from the secret master
key and then we get the full master key by testing the right 96-bit key along
with the remaining 32 bits of the key using 2 plaintext/ciphertext pairs.

4. Furthermore, we can perform the previous attack without the exhaustive
search step and recover the whole master key with 236.09 queries to the
encryption oracle and only 11 full-round encryptions (instead of 232 in the
above attack) using 16 different related-key differential characteristics (with
16 related-key differences). This attack has been verified experimentally.
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It should also be noted that, independent of our work, a related-key attack
on CRAFT has been recently presented in [8] but with data and time complexities
higher than the complexities of our attack.

The rest of this paper is organized as follows. In Sect. 2, we briefly revisit
the specifications of CRAFT. A systematic method to build a repeatable 2-round
related-key characteristic is explained in Sect. 3. In Sect. 4, we describe the key
recovery attack against the full rounds of CRAFT using a single related-key differ-
ential characteristic. Then, the details of our attack using multiple related-key
differential characteristics are presented in Sect. 5. Finally, the paper is concluded
in Sect. 6.

2 Specifications of CRAFT

CRAFT [4] is a lightweight tweakable block cipher with a block size of 64 bits, a
key length (K) of 128 bits, and a tweak (T ) of 64 bits. The internal state of the
cipher can be represented as a 4 × 4 square array of nibbles or as a 16-nibble
vector by concatenating the rows of the square array. The notation Ii,j is used
to denote the nibble located at row i and column j of the 4 × 4 array. Also, a
single subscript Ii denotes the nibble in the i-th position of 16-nibble vector, i.e.,
Ii,j = I4i+j .

Tweakey Schedule. The 128-bit key K is split into two 64-bit subkeys K0

and K1. Similar to the internal state, the subkeys K0 and K1 in addition to the
64-bit input tweak T are represented as as 4 × 4 square array of nibbles or as
a 16-nibble vector using a similar indexing technique as for the internal state.
Then, four 64-bit tweakeys TK0, TK1, TK2 and TK3 are derived from K0 and
K1 with the associated T as follows:

TK0 = K0 ⊕ T, TK1 = K1 ⊕ T, TK2 = K0 ⊕ Q(T ), TK3 = K1 ⊕ Q(T ).

where Q(T ) is a permutation on the nibbles of the input tweak T using a per-
mutation Q = [12, 10, 15, 5, 14, 8, 9, 2, 11, 3, 7, 4, 6, 0, 1, 13]. In other words, the
i-th nibble of Q(T ) (T (Q)i, 0 ≤ i ≤ 15) is equal to the Q(i)-th nibble of T
(Q(T )i = TQ(i)). The tweakey TKi mod 4 (0 ≤ i ≤ 31) is used during the i-th
round of the encryption operation in order to update the internal state.

Encryption Operation. The encryption operation proceeds as follows. First,
the plaintext m = m0||m1|| · · · ||m14||m15 (where mi is a 4-bit nibble) is loaded
into the internal state. Then, the internal state is updated by applying the
full round function of CRAFT 31 times (Ri, 0 ≤ i ≤ 30). Finally, one more
linear round(R′

31) is applied on the internal state to compute the ciphertext as
shown in Fig. 1, where RCi is the round constant. The full round of CRAFT (Ri)
consists of the following five operations: MixColumn, AddConstanti, AddTweakeyi

PermuteNibbles and SubBox as described in Fig. 2. The last round (R′
31) omits

PermuteNibbles and SubBox operations from the full round. These operations
are defined as follows,
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Fig. 1. Structure of CRAFT

Fig. 2. One full round function of CRAFT

– MixColumn (MC): Each column of the internal state is multiplied by a binary
matrix M ,

M =

⎡
⎢⎢⎣

1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

This operation can be described using the XOR operation as follows. For each
column j (0 ≤ j ≤ 3),

⎡
⎢⎢⎣

I0,j

I1,j

I2,j

I3,j

⎤
⎥⎥⎦ �→

⎡
⎢⎢⎣

I0,j ⊕ I2,j ⊕ I3,j

I1,j ⊕ I3,j

I2,j

I3,j

⎤
⎥⎥⎦

– AddConstantsi (ARCi): In the i-th round (0 ≤ i ≤ 31), the internal state
nibbles I4 and I5 are XOR-ed with the two nibbles (a and b), respectively,
where a and b represented the 2-nibble round constant RCi = (a, b). These
round constants are generated using 4-bit and 3-bit LFSRs. The details of
generating the round constants can be found in [4].

– AddTweakeyi (ATKi): Each nibble of the internal state is XOR-ed with the
corresponding nibble of the tweakey TKi mod 4.

– PermuteNibbles (PN): An permutation P is applied on the nibble positions
of the internal state. In particular, for all 0 ≤ i ≤ 15, Ii is replaced by IP(i),
where

P = [15, 12, 13, 14, 10, 9, 8, 11, 6, 5, 4, 7, 1, 2, 3, 0].

– SubBox (SB): A nonlinear bijective mapping applied on every nibble of the
internal state in parallel using the Sbox given in Table 1.
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Table 1. 4-bit Sbox of CRAFT

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

3 Related-Key Differential Characteristic of CRAFT

In this section, we describe our technique to build a repeatable 2-round related-
key characteristic with a high probability p. A repeatable characteristic is a
characteristic where the input difference is the same as the output difference.
Hence, we can construct a long characteristic by repeating the short one n times
and the probability of the long one will be pn.

Denote the state at the input and the output of round i of CRAFT by xi and
xi+1, respectively, and the state after MC, ARCi and ATKi operations by yi. Thus
we have

yi = ATKi ◦ ARCi ◦ MC(xi)

xi+1 = SB ◦ PN(yi)

In the related-key with a single tweak model of CRAFT, the tweak (T ) has
zero difference, and the subkeys (K0,K1) have the nonzero differences ΔK0 and
ΔK1, respectively. Thereby, the four tweaks have nonzero differences as follows

ΔTK0 = ΔTK2 = ΔK0, ΔTK1 = ΔTK3 = ΔK1

A 2-Round Characteristic. Consider two consecutive rounds, i and i + 1,
where i is even. Thus ΔTKi mod 4 = ΔK0 and ΔTK(i+1) mod 4 = ΔK1. We
start building a repeatable 2-round characteristic by setting the input and the
output differences (Δxi and Δxi+2) of the 2-round with arbitrary nonzero values
such that Δxi = Δxi+2. Then, we deterministically propagate the input differ-
ence Δxi forward through the MC and ARCi operations and choose ΔK0 such
that ΔK0 = ARCi ◦ MC(Δxi). Thereby, we ensure that Δyi = 0, Δxi+1 = 0 and
Δyi+1 = ΔK1. From the other direction, we propagate the output difference
Δxi+2 backward through SB and PN operations to obtain Δyi+1 and select ΔK1

such that ΔK1 = Δyi+1 = PN−1
i ◦ SB−1(Δxi+2). It should be noted that the

probability of propagating Δxi+2 backward to ΔK1 is the same as the proba-
bility of propagating ΔK1 forward to Δxi+2 due to the properties of the Sbox
of CRAFT. Therefore, the overall probability of this characteristic depends on the
probability of propagating Δxi+2 through SB−1 operation. In order to maximize
the overall probability, we have to minimize the number of active nibbles in the
input/output differences to only one active nibble with, e.g., difference value (α).
Therefore, ΔK1 also has a single active nibble with, e.g., difference value (β)
such that Pr[SB−1(α) → β] = p. Finally, we select the value of the tuple (α, β)
so that p is equal to the maximum differential probability for an active Sbox
which is 2−2.
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Figure 3 depicts an example of such characteristics in which we set the
input/output differences to zero except for the two nibbles Δxi

12 and Δxi+2
12 ,

which we set to α. Therefore, we select the difference of the subkey K0 such that
it has zero difference except the nibbles ΔK0

0 , ΔK0
4 and ΔK0

12 have a nonzero
difference (α). For the subkey K1, it will have zero difference in 15 nibbles and
nonzero difference β in the nibble ΔK1

1 such that Pr[SB−1(α) → β] = 2−2.
Based on the differential distribution table (DDT) of the CRAFT’s Sbox, the

unordered tuples (α, β) can take one of the values from the following set:

(α, β) or (β, α) ∈ {(1, 2), (2, 4), (2, 9), (2, c), (3, 6), (5, 7), (5, a),
(7, d), (a, a), (a, d), (a, f), (b, b), (e, e), (f, f)}. (1)

We can also build a repeatable 2-round characteristic by setting the input
and the output differences to zero differences (Δxi = Δxi+2 = 0), then selecting
ΔK0 such that it has only one active nibble with nonzero difference (α). After
that, we obtain the value of the difference ΔK1 which will have only one active
nibble with nonzero difference (β) such that ΔK1 = ARCi+1 ◦MC ◦SB ◦PN(ΔK0).
Finally, we select the value of the tuple (α, β) from the previously mentioned
set. Table 2 summarizes some examples for the obtained 2-round related-key
differential characteristics.

In the following sections, we utilize the repeatable 2-round related-key dif-
ferential characteristics derived here to mount two key recovery attacks against
the full round of CRAFT.

4 Related-Key Differential Attack Using Single Difference

In this section, we employ the repeatable 2-round characteristic (RK0) with,
e.g., the tuple (α, β) = (4, 2) to present a related-key differential attack against
the full round of CRAFT. By repeating RK0 (14) times as depicted in Fig. 4, we
are able to construct a 28-round related-key differential characteristic (covered
from round 0 to round 27) with probability (2−2)14 = 2−28. We have verified
this characteristic experimentally.

Since the characteristic ends at x28 with all nibbles have zero differences.
After that, we propagate this difference through the last 4 rounds, and we obtain
the difference at the ciphertext (ΔC) in form of

(δ4, δ3, δ9, δ6, δ4, 0, δ8, δ6, 0, δ3, 0, 0, δ4, 0, δ7, δ6).

Thus, we can derive the following conditions:

ΔC5 = ΔC8 = ΔC10 = ΔC11 = ΔC13 = 0,

ΔC1 = ΔC9,

ΔC0 = ΔC4 = ΔC12,

ΔC3 = ΔC7 = ΔC15.

Our attack has two phases: Data Collection phase and Key Recovery phase.
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Fig. 3. A repeatable 2-round related-key characteristic of CRAFT with probability 2−2.

4.1 Data Collection

We select a set of 2m 64-bit plaintexts associated with a 64-bit tweak in which
the plaintexts and the tweak can take any arbitrary values. Each plaintext is
encrypted twice, using the secret master key (K0||K1) and using the secret mas-
ter key XORed with the key differences ((K0 ⊕ ΔK0)||(K1 ⊕ ΔK1)). Then,
we compute the difference at the ciphertext (ΔC) and filter out the plain-
text/ciphertext pairs that do not satisfy the conditions, obtained above, on ΔC.
This step provides a 5 × 4 + 4 + 2 × 4 + 2 × 4 = 40 bits filtration. Suppose the
number of the remaining plaintext/ciphertext pairs after this filtration is 2m′

,
then on average, 2m′

= 2m × 2−40 = 2m−40.

4.2 Key Recovery

We first prepare 211×4 = 244 counters corresponding to the 44 bits of the key
involved in the analysis. After that, for each ciphertext pair in the filtered 2m′

pairs obtained in the data collection phase, we apply the following procedure:

1. Guess the key nibbles (K1
9 ,K1

12) and partially decrypt the ciphertext to obtain
the differences (Δy30

1 ,Δy30
5 ). The average number of the guessed keys that

satisfy the condition (Δy30
1 = Δy30

5 ) is 22×4 × 2−4 = 24.
2. Guess the key nibbles (K1

6 ,K1
14,K

1
15) and partially decrypt the ciphertext to

obtain the values and differences at the nibbles (y30
0 , y30

3 , y30
8 ) and discard any

key that does not lead to satisfy the condition of (Δy30
0 = Δy30

8 ). The average
number of the keys passing this filtration is 24 × 23×4 × 2−4 = 212.

3. Guess the value of (K1
2 ⊕ K1

10) with associated value of K1
14 passed the fil-

tration on the previous step (step 2) and partially decrypt the ciphertext to
obtain the values and the differences at the nibbles (y30

4 , y30
13). Then filter out

the keys if the difference(Δy30
13) is not the same as the differences (Δy30

1 ,Δy30
5 )

that are obtained in the step (1). Thus, the average number of keys suggested
by a pair after this step is 212 × 24 × 2−4 = 212.

4. Guess the key nibbles (K0
8 ,K0

13) and partially decrypt the nibbles (y30
8 , y30

13)
obtained on steps (2,3), respectively, and get the differences (Δy29

2 ,Δy29
6 ).

The average number of the guessed keys that satisfy the condition of (Δy29
2 =

Δy29
6 ) is 212 × 22×4 × 2−4 = 216.
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5. Guess the key nibble (K1
7 ) and use the previous guessed value of K1

15 to
partially decrypt the ciphertext in order to obtain the value of y30

11 . Also,
guess the key nibbles value of (K1

0 ⊕ K1
8 ) and use the previous guess of K1

12

to obtain the value of y30
15 . The average number of keys suggested by a pair

after this step is 216 × 22×4 = 224.
6. Use the value and the difference at (y30

3 ) from step (2) with the values
(y30

11 , y
30
15) obtained from the previous step to get the value and the differ-

ence at (y29
14) by guessing the value of (K0

3 ⊕ K0
11 ⊕ K0

15). We then filter out
the keys if the difference(Δy29

14) is not the same as the differences (Δy29
2 ,Δy29

6 )
that are obtained in the step (4). Thus, the average number of keys suggested
by a pair after this step is 224 × 24 × 2−4 = 224.

7. Use the previously guessed value of the key nibble (K1
14) to partially decrypt

the nibble y29
14 to obtain the difference Δy28

3 and discard the keys if the condi-
tion of (Δy28

3 = 4) is not satisfied. Consequently, the average number of keys
suggested by a pair after this procedure will be decreased to 224 × 2−4 = 220.
Thus, we increment the corresponding 220 counters.

After repeating the above procedure for 2m′
pairs, we select the key corre-

sponding to the highest counter as a 44-bit right key. Then, we recover the 128-bit
master key by testing the 44-bit right key along with the remaining 84 bits of
the master key that are not involved in the analysis using 2 plaintext/ciphertext
pairs.

4.3 Attack Complexity and Success Probability

In what follows, we present the complexity analysis of the attack in order to
determine the required number of chosen plaintexts and the memory required
to launch this attack.

Data Complexity. We utilize the concept of signal-to-noise ratio (S/N) [6] in
order to determine the required number of chosen plaintext/ciphertext pairs
(2m). S/N = 2k×p

α×β , where k is the number of key bits involved in the analysis,
p is the probability of the differential characteristic, α is the number of guessed
keys by a pair, and β is the ratio of the pairs that are not discarded. In our
analysis, k = 44, p = 2−28, α = 220, and β = 2−40. Therefore, we have S/N =
244×2−28

220×2−40 = 236. Due to this high S/N , we can use the recommendation of Biham
and Shamir [6] that 3–4 right pairs are sufficient enough to mount a successful
differential attack. Therefore, we select the number of plaintext/ciphertext pairs
(2m) equal to 4 × p−1 = 230. Consequently, the data complexity will be 231

chosen plaintexts.
During the data collection phase, we discard the pairs that do not satisfy the

conditions on the differences of the ciphertext. The probability of satisfying these
conditions is 2−40, i.e., there are, on average, 2m−40 = 230−40 = 2−10 remaining
pairs. This means that the right pairs only pass this filtration and 2m′

= 4.
According to [9] and due to the high S/N , the success probability of the

attack (Ps) can be calculated as Ps ≈ Φ(
√

p × 2m) where Φ is the cumulative
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distribution function of the standard normal distribution. Therefore, our differ-
ential attack will succeed with probability Ps ≈ 0.9772.

Time Complexity. During the key recovery phase, we perform several partial
decryption of some nibbles which we can consider as 1

16 of 1-round decryption.
The dominant time complexity of the key recovery procedure comes from step
6 in which we perform 2m′ × 24 × 224 × 2 = 231 partial decryption of 3 nibbles.
This time equals to 1

16 × 1
32 ×231 = 222 32-round encryptions. Then, we perform

the exhaustive search over the remaining 284 keys using 2 plaintext/ciphertext
pairs. The time complexity of this step is 2 × 284 = 285 32-round encryptions.
Therefore, the total time complexity of the attack is 222+285 ≈ 285 encryptions.

...

Fig. 4. The related-key differential attack against Full CRAFT using the repeatable 2-
round related-key differential characteristic (RK0) where the colored cells are known
values and differences.
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Memory Complexity. The dominant part of the memory complexity comes from
storing 244 counters. Since the upper limit of each counter is 2m′

= 4, we can
store each counter in one byte. Therefore, we need 244 × 8

64 = 241 64-bit blocks
of memory.

5 Related-Key Differential Attack Using Multiple
Differences

In this section, we present a key recovery attack in the related-key model against
the full-round CRAFT with 235.17 queries to the encryption oracle and 232 full-
round encryptions. To this end, we manage to use 8 different related-key differ-
ential characteristics in order to recover 96 bits (represented in 24 nibbles) from
the secret master key and then we get the full master key by testing the right 96-
bit key along with the remaining 32 bits of the key using 2 plaintext/ciphertext
pairs. Moreover, we can omit the exhaustive search step and recover the whole
master key with 236.09 queries to the encryption oracle and only 11 full-round
encryptions.

30-Round Related-Key Differential Characteristics. We employ the
repeatable 2-round characteristics (RK1 – RK8) (see Table 2) with the tuple
(α, β) = (4, 2) in order to build eight 30-round characteristics as follows. First,
we repeat each RKi (1 ≤ i ≤ 8) 14 times to build a 28-round characteristic with
probability (2−2)14 = 2−28. Then, we append another 2 rounds with probability
of (2−2). Thus, we are able to construct a 30-round characteristic with total
probability (p) of 2−30. Figure 5 depicts the 30-round characteristic that is built
using RK1.

Consequently, we use these characteristics one by one to collect 8 datasets
(Di, 1 ≤ i ≤ 8) (Data Collection phase) and then apply a partial-key recovery
process to determine a part of the master secret key (Key Recovery phase).

5.1 Data Collection

We use the 30-round characteristic based on the repeatable 2-round characteris-
tic, e.g., RK1 to build the dataset D1 as follows. This characteristic ends at x30

with zero differences in all nibbles except Δx30
12 = 1 as depicted in Fig. 5. After

that, by propagating this difference through the last two rounds, we are able to
obtain the difference at the ciphertext (ΔC) in the form

(0, δ0, β0, γ0, 0, 0, 0, γ0, 0, 0, β0, 0, 0, 0, 0, γ0)

where δ0 = α0 ⊕ 2 and based on the DDT of CRAFT Sbox, α0, β0, γ0 ∈
{0, 4, 7, 9, a, c}. Thus, we can derive the following conditions on the difference of
the ciphertext:

ΔCi = 0, i ∈ {0, 4, 5, 6, 8, 9, 11, 12, 13, 14}, ΔC1 = δ0,

ΔC2 = ΔC10 = β0, ΔC3 = ΔC7 = ΔC15 = γ0.
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Consequently, we first select a set of 4 × p−1 = 4 × 230 = 232 arbitrary
plaintexts (L0) and then we create another set of 232 plaintexts (L1) by XORing
each plaintext in the first set L0 with the input difference. After encrypting the
two sets (L0,L1) using (K0||K1) and ((K0 ⊕ ΔK0)||(K1 ⊕ ΔK1)), respectively,
we discard the pairs where the output difference does not match the required
output difference (ΔC). The probability of getting (ΔC) is 2−(10×4+4+2×4) ×
( 6
16 )3 ≈ 2−56.25. In other words, only the right pairs can pass this filtration.

Thus, we collect, on average, 4 right pairs that follow the characteristic.
We repeat the same approach using the same set of plaintexts (L0) with

other sets of plaintexts Li, (2 ≤ i ≤ 8), selected like L1, in order to construct the
datasets Di, (1 ≤ i ≤ 8) using the 30-round characteristic that has been built
using RKi, (1 ≤ i ≤ 8) in order to get 4 right pairs per each dataset.

5.2 Key Recovery

We first prepare 24 groups of counters in which each group consists of 16 coun-
ters. Each group corresponds to a nibble of the key involved in the analysis.
After that, we perform the attack in three sequential stages as follows.

First Stage. In this stage, we manage to determine the nibbles K1
i , (8 ≤ i ≤ 15).

For example, we determine the right value of K1
15 as follows. We consider the

group of counters corresponding to K1
15, then for each right pair in the datasets

D1 and D5, we guess K1
15 and decrypt the ciphertext nibble (C15) (see Figs. 5

and 6), then increment the counter corresponding to the guessed value if the
difference Δy30

0 = 5. After repeating these steps for all the pairs, we select the
value corresponding to the highest counters as the right value for K1

15.
By repeating these steps, we are able to obtain the right values of the nibbles

K1
i , (8 ≤ i ≤ 15). Table 3 summarizes which datasets are used to recover these

nibbles.

Second Stage. After finishing the first stage, we have the right value of the
key nibbles K1

8 ,K1
9 ,K1

10,K
1
11,K

1
12,K

1
13,K

1
14,K

1
15. During this stage, we obtain

the right value of another 8 nibbles K1
0 ,K1

1 ,K1
2 ,K1

3 ,K0
12,K

0
13,K

0
14,K

0
15. To this

end, we consider, for example, the groups of counters corresponding to the key
nibbles K1

1 and K0
12, respectively. After that, we reuse the dataset D1 (see Fig. 5)

in order to carry out the following steps:

1. Use the key nibbles K1
9 and K1

13 determined in the first stage to partially
decrypt the ciphertext nibbles (C9, C13) and obtain the values of the nibbles
x31
9 and x31

13, respectively.
2. Guess K1

1 and partially decrypt the ciphertext nibble C1 to get the value and
the difference at y30

12 , after that, increment the counter corresponding to the
value of K1

1 in case of Δy30
12 = 5.

3. Determine the right value of the key nibble K1
1 by observing the highest

counter.
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Table 3. Key recovery

Key nibble Dataset used Key nibble Dataset used

K0
0 D13 K1

0 D4

K0
1 D14 K1

1 D1

K0
2 D15 K1

2 D2

K0
3 D16 K1

3 D3

K0
4 D9 K1

4 D7

K0
5 D10 K1

5 D6

K0
6 D11 K1

6 D5

K0
7 D12 K1

7 D8

K0
8 D5 K1

8 D3

K0
9 D6 K1

9 D2

K0
10 D7 K1

10 D1

K0
11 D8 K1

11 D4

K0
12 D1 K1

12 D2, D6

K0
13 D2 K1

13 D3, D7

K0
14 D3 K1

14 D4, D8

K0
15 D4 K1

15 D1, D5

4. Guess K0
12 and decrypt y30

12 to get the difference Δy29
1 , then increment the

counter corresponding to the value of K0
12 if Δy29

1 = 2.
5. Determine the right value of the key nibble K0

12 by observing the highest
counter.

In the same manner, we reuse the datasets D2,D3 and D4 to determine the
right values of the key nibbles (K1

2 ,K0
13), (K1

3 ,K0
14), (K1

0 ,K0
15), respectively.

Third Stage. Similar to the second stage, we reuse the datasets D5,D6, D7

and D8 to recover the key nibbles K1
i , (4 ≤ i ≤ 7) and K0

j , (8 ≤ j ≤ 11) as
follows. To recover the nibbles K1

6 and K0
8 , we consider the groups of counters

corresponding them, and we reuse the dataset D5 (see Fig. 6) in order to carry
out the following steps:

1. Use the key nibble K1
14 determined in the first stage to partially decrypt the

ciphertext nibbles (C14) to obtain the value of the nibble x31
14.

2. Guess K1
6 and get the value and difference at y30

8 , then increment the counter
corresponding to the value of K1

6 in case of Δy30
8 = 5.

3. Determine the right value of the key nibble K1
6 by observing the highest

counter.
4. Guess K0

8 and decrypt y30
8 to get the difference Δy29

6 , then increment the
counter corresponding to the value of K0

8 if Δy29
6 = 2.
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...

Fig. 5. Related-key differential attack against Full CRAFT using the dataset (D1) to
recover K1

1 , K1
10, K

1
15, and K0

12.

5. Determine the right value of the key nibble K0
6 by observing the highest

counter.

Using the same approach, we are able to determine the right values of the
key nibbles (K1

5 ,K0
9 ), (K1

4 ,K0
10) and (K1

7 ,K0
11) using the datasets D6,D7 and

D8, respectively.

5.3 Attack Complexity

Each set of plaintexts L0, · · · ,L8 contains 232 plaintexts. Thus, we need 9×232 ≈
235.17 queries to the encryption oracle.

During the first stage of the key recovery phase, we determine 4 nibbles using
32 right pairs and another 4 nibbles using 16 right pairs, therefore, we execute
2 × (32 + 16) × 24 = 210.58 single nibble encryptions. For the second stage, we
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...

Fig. 6. Related-key differential attack against Full CRAFT using the dataset (D5) to
recover K1

6 , K1
15, and K0

8 .

recover another 8 nibbles using 4 right pairs per each nibble. This process needs
2 × 4 × 4 × (2 + 24 + 24) = 210.08 single nibble encryptions. The third stage
needs 2 × 4 × 4 × (1 + 24 + 24) = 210.04 single nibble encryptions. Therefore,
these three stages need 212.32 single nibble encryptions which is equivalent to
211.83× 1

16 × 1
32 ≈ 8 full-round encryptions. After these stages, we run exhaustive

search over the remaining 232 keys using 2 plaintext/ciphertext pairs and this
step needs 232 = 233 full-round encryptions.

The dominant part of the memory complexity of this stage is for storing
4×8 = 32 right pairs in addition to the 128-bit right key. Therefore, the memory
complexity is 2 × 32 + 2 = 66 64-bit blocks.
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5.4 Omitting the Exhaustive Search Step

In this section, we describe how we can omit the exhaustive search over 232 keys.
To this end, we utilize the repeatable 2-round characteristics RK9 – RK16 to
build another 8 30-round characteristics. Then, we employ these characteristics
to construct the datasets D1 – D16 to get, on average, 4 right pairs per each
dataset as we do before.

To determine the right value of the key nibbles K0
i , (0 ≤ i ≤ 7), we first

prepare 16 counters per each nibble. Then, we partially decrypt some nibbles of
the ciphertexts. After that, we guess the key nibble and increment the counters
if a specific nibble at the state y29 has a difference equal to 2, as we do in the
second and the third stages before. The ciphertext nibbles to be decrypted in
addition to the position of the checked nibble at the state y29 and the used
dataset depend on which key nibble we recover (see Table 3).

In this case, we need 17 × 232 ≈ 236.09 queries to the encryption oracle.
In addition to the 8 full-round encryptions required during the previous three
stages, we need 2 × 4 × 4 × (6 + 24) = 29.46 single nibble encryptions to recover
the nibbles K0

0 – K0
3 and 2× 4× 4× (4+24) = 29.32 single nibble encryptions to

recover the nibbles K0
4 – K0

7 . Thus, we need 8 + ((29.46 + 29.32) × 1
16 × 1

32 ) ≈ 11
full-round encryptions. Also, we need more 2 × 4 × 8 = 64 block of memory to
store the right pairs. Thus, the total memory complexity will be 66 + 64 = 130
blocks of memory.

6 Conclusion

In this paper, we studied the security of the lightweight tweakable block cipher
CRAFT against the related-key differential cryptanalysis. More precisely, we
described a systematic method to build a repeatable 2-round related-key dif-
ferential characteristic that holds with the probability of 2−2. We utilized this
method to build several 30-round related-key differential characteristics with
probability 2−30. Then, we employed these characteristics to mount a key recov-
ery attack against the full round of CRAFT in practical time. Moreover, we have
verified this attack experimentally.
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Abstract. We present SpookChain, a new online authenticated encryp-
tion (OAE) mode that offers several appealing features:

– SpookChain is fully online: it supports the processing of long mes-
sages by segments of arbitrary size, and the processing of each seg-
ment is online itself, with memory requirements in encryption and
decryption being independent of the segment size.

– SpookChain is, to the best of our knowledge, the first concrete mode
that is proven to offer dOAE security, a requirement for OAE that, at
least guarantees security for new segments as soon as one of the pre-
viously processed segments contains a fresh element (nonce, plaintext
or associated data).

– SpookChain offers beyond birthday multi-user security (w.r.t. the
secret key length), a requirement that we define for the first time in
the context of OAE, and which is increasingly appealing in a world
where communications are encrypted by default.

– SpookChain is also expected to be remarkably lightweight to imple-
ment when protection against side-channel attacks is required.

1 Introduction

Online Authenticated Encryption. Online authenticated encryption (OAE), first
formally studied by Bellare et al. [1], aims at offering confidentiality and authen-
ticity under the constraint that the amount of memory that is needed to encrypt
and decrypt messages is limited to a constant that can be much smaller than
the size of the messages and ciphertexts that may be processed. Encryption and
decryption then need to be possible while only storing small segments of the
plaintext or ciphertext.

The design of OAE is motivated by numerous applications. For instance,
a user willing to watch a movie stored on a remote server will not wait until
the full movie, which may be a few gigabytes big, is downloaded, but rather
buffer segments of a few megabytes, which will be decrypted and authenticated
before being watched, even if the rest of the movie keeps being downloaded in
background.

In switched packet networks, it is also common to use a transport layer that
provides an in-order stream communication where data is sent and received by
c© Springer Nature Switzerland AG 2019
S. Bhasin et al. (Eds.): SPACE 2019, LNCS 11947, pp. 67–85, 2019.
https://doi.org/10.1007/978-3-030-35869-3_7
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chunks (which correspond to a packet in the underlying network), and it is
then a common approach to secure this stream by enforcing confidentiality and
authenticity at the chunk level. An OAE offers here the convenience of securely
linking the chunks together as part of a unique stream. For instance, in its
latest version, the widely used TLS protocol [10] performs a nonce-based AEAD
for each segment (named record) where the nonce contains the record number.
Another example is the SSH protocol which uses a similar technique (although
it predates the AEAD definition). Online authenticated encryption appears thus
as a natural abstraction of the goal of those protocols where, while data is
conceptually a stream, it is split into segments (that are sent and received in-
order) that match the characteristics of the underlying network for performance
reasons.

Eventually, OAE may be required in environments in which the available
memory is much smaller than the size of the messages that need to be processed:
this may be the case in FPGA or ASIC implementations for instance.
dOAE security. Following the tradition of modern authenticated encryption, we
are interested in designing a nonce based OAE (that is, deterministic encryption
and decryption processes that are initialized with the help of a nonce that is
expected to be unique), which still offers some form of security when nonces are
repeated (contrary to the normal use of the OAE). Indeed, even if the require-
ment of a nonce is much less stringent than the requirement of a uniformly
random IV, it appears that this uniqueness requirement remains notoriously
hard to guarantee in practice [4,11].

First security definitions for OAE that incorporate some protection against
repeated nonces have been proposed by Fleischsmann et al. [6], and have been
recently revised and extended by Hoang et al. [8] who propose two new defini-
tions: dOAE, and OAE2 (a third one, nOAE, focuses on nonce-respecting adver-
saries). OAE2 is the strongest of these notions, and requires two passes on each
message segment that cannot be processed online, meaning that the memory
available in the encryption and decryption devices must be at least as big as the
size of a segment. We are interested in minimizing the memory requirements in
order to obtain a scheme that is suitable for the most memory constrained envi-
ronments. Of course, minimal memory requirements can be obtained by defining
very small segments, but this comes at the cost of an increased ciphertext expan-
sion since authentication tags need to be provided per segment. So, our goal is
to obtain minimum memory requirements while keeping the flexibility to define
the segment size as a function of the latency and/or ciphertext expansion that
one is willing to tolerate in a given application. We refer to OAE schemes that
offer constant memory requirements, independent of the segment size, as fully
online.

Fully online encryption is compatible with the second notion proposed by
Hoang et al., namely dOAE security, a notion that was inspired by the general
duplex design approach [3]. In a nutshell (a more detailed presentation will be
offered in the next section), dOAE guarantees security for a segment as long
as there is at least one fresh element (nonce, plaintext or associated data) in
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a prior segment. So, for instance, even if a nonce is repeated, security remains
guaranteed if there is a unique element in the associated data.

Multi-user Security. As encryption has become a default choice for communi-
cation in an always increasingly connected world, the importance of multi-user
security has become paramount: it is not exceptional to have an encryption
scheme used with billions of keys.

SpookChain offers beyond birthday multi-user security, that is, it keeps offer-
ing security even when using a number of keys that is (much) larger than the
square-root of the size of the key space. As dOAE was only defined in the single
user setting, we extend the notion to the multi-user setting, a contribution that
offers an interest independent of SpookChain itself.

Previous sponge or duplex-based AEs, see e.g., Keyak [2], attempted chaining
for online functionality. But SpookChain provides the first rigorous security anal-
ysis for such chains in the multi-user setting (even for nOAE). Prior Duplex [5]
analysis did not explicitly consider this setting. We leave similar treatments on
the other permutation-based AEs as open questions.

Side-Channel Attack Resistant Implementations. Side-channel attacks have also
become a major concern, as it is more and more common to have devices spread
in the nature within adversarial reach, and as it has become standard to have sen-
sitive information belonging to independent organizations being processed on a
single hardware platform. As a result, the built-in side-channel attack resistance
of authenticated encryption schemes has been pointed out as a core criterion in
the ongoing NIST lightweight cryptography competition [9].

SpookChain builds on the TETSponge mode [7], which is a used in the Spook
proposal to this NIST competition. SpookChain incorporates many of the features
offered by TETSponge, while actually offering some extra efficiency benefits.
TETSponge mixes two components: one is a tweakable block cipher (TBC) that
is required to be strongly protected against side channel attacks, and is used
only twice per encrypted message (independently of the size of the message).
The plaintext and associated data are themselves processed using a variant of
the sponge-based duplex mode, with minimal protections against side-channel
attacks. As the heavily protected TBC is expected to be more expensive than
the sponge by 2–3 orders of magnitude, the efficiency benefits of TETSponge
are most important when longer messages are processed or, considering an OAE
setting, when segments are relatively long. SpookChain mitigates this effect by
only requiring a single use of the heavily protected TBC per additional segment
(2 TBC calls are still needed for the initial segment).

As a result, in settings where multiple ordered messages need to be sent (e.g.,
in an SSH or TLS communication), SpookChain offers not only an effective way of
splitting the conversation in multiple segments that are linked together, but also
comes with efficiency benefits (which are most visible when side-channel attacks
are a concern) compared to a solution in which messages would be encrypted
independently of each other.
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Paper Organization. Section 2 introduces our notations and defines the compo-
nents and security notions that are needed for the presentation of SpookChain.
The SpookChain mode itself is presented in Sect. 3, together with security anal-
ysis in Sect. 4.

2 Preliminaries

We use the following notations. Let A ∈ {0, 1}∗ be a bitstring and r > 0 be an
integer. |A| denotes the bit-length of the bit-string A, i.e. the value a such that
A ∈ {0, 1}a. The concatenation of the bit-strings A and B is A‖B. The empty
string is ε. If A �= ε (i.e. |A| > 0), A[1]‖ . . . ‖A[α] r

� A denotes that A is parsed
into r-bit blocks such that A = A[1]‖ . . . ‖A[α] and |A[i]| = r, for i = 1, . . . , α−1,
and 0 < |A[α]| ≤ r, hence α = �a/r�. Moreover, if r ≤ a, msbr(A) (resp. lsbr(A))
is an r-bit string composed of the r most (resp. least) significant bits of A.

Let A ∈ A∗. Λ denotes the empty vector, Λ = (). |A| denotes the number
of components of A in A, i.e. the value L such that A ∈ AL. Therefore, A =
(A1, . . . , A|A |) and A[i] := Ai is its i-th component, for i = 1 to |A|. Moreover,
given A ∈ A, A‖A = (A1, . . . , A|A |, A) in AL+1. For instance, if A = {0, 1}∗,
we simply have A∗ = {0, 1}∗∗ such that if Ai ∈ {0, 1}ai , then |A[i]| = ai. For
A = (ε, ε), we have |A| = 2 and then A �= Λ, but |A[1]| = |A[2]| = 0.

2.1 Primitives

A Tweakable Block Cipher (TBC) with key space {0, 1}κ, tweak space {0, 1}t,
and domain {0, 1}n, also denoted (κ, t, n)-TBC, is a mapping ˜E : {0, 1}κ ×
{0, 1}t ×{0, 1}n → {0, 1}n such that for any key K ∈ {0, 1}κ and any tweak T ∈
{0, 1}t, X 	→ ˜E(K,T,X) is a permutation of {0, 1}n. We only focus on (n, n, n)-
TBC in this paper. An ideal TBC ˜IC : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}n is a
TBC sampled uniformly at random from all (n, n, n)-TBCs: the spirit is the same
as ideal (block) ciphers. In this case, ˜ICT

K is a random independent permutation
of {0, 1}n for each (K,T ) ∈ {0, 1}n × {0, 1}n even if the key K is public.

A random key-less permutation π, as used in sponge designs, refers to a per-
mutation of {0, 1}� drawn uniformly at random among the set of all permutations
of {0, 1}�. The permutation π is then seen as an ideal object.

Chaining authenticated encryption is made segment by segment as formally
defined next.

Definition 1 (Segmented-AE [8]). A segmented-AE scheme is a triple Π =
(K, E ,D) where the key space K is a non-empty set with an associated dis-
tribution and both encryption E = (E .init, E .next, E .last) and decryption D =
(D.init,D.next,D.last) are specified by triple of deterministic algorithms such that

EK .init : N → S DK .init : N → S
EK .next : S × A × M → C × S DK .next : S × A × C → M ∪ {⊥} × S
EK .last : S × A × M → C DK .last : S × A × C → M ∪ {⊥}
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where K ← K, N is the nonce space, S is the state space, A is associated data
space, M is the message space and C is the ciphertext space.

In order to encrypt a chain (A1,M1), . . . , (AL,ML) ∈ A × M, for some L,
given a nonce N ∈ N , we start by generating an initial state S0 ← EK .init(N),
then we iterate (Si, Ci) ← EK .next(Si−1, Ai,Mi), for i = 1, . . . , L − 1, and even-
tually we finalize by CL ← EK .last(SL−1, AL,ML) resulting in C1, . . . , CL ∈ C.
This process denoted by C ← EK(N,A,M), where A = (A1, . . . , AL) ∈ AL,
M = (M1, . . . ,ML) ∈ ML and C = (C1, . . . , CL) ∈ CL is the induced encryp-
tion chain. Similarly, we have the induced decryption chain M ← DK(N,A,C),
where all M [i] ∈ M ∪ {⊥}. Since L is not fixed, the induced chain algorithm
EK (resp. DK) runs on the domains N , A∗ and M∗ (resp. C∗).

Throughout the paper any segmented-AE is assumed to be correct meaning
that, for all K ← K, the induced chaining is correct: for any N ∈ N , any A ∈ A∗

and any M ∈ M∗, |A| = |M | implies M = DK(N,A, EK(N,A,M)).

Ciphertext Expansion. The ciphertext expansion τ is the constant value such
that, for any ciphertext C computed by a segmented-AE on input (S,A,M), we
have |M | + τ = |C|. In our case, we have τ = n since our ciphertext C = (c, Z),
where c ∈ {0, 1}|M | and Z is an integrity tag output by an (n, n, n)-TBC.

2.2 dOAE Security

We extend the dOAE security given by Hoang et al. [8] to the multi-user (i.e.
multi-key) setting. Since we get the original definition in the single-user setting,
i.e. when there is only one key in our model, we only proceed with our natu-
ral extension. However, we recall the original definition [8] for completeness in
Appendix A, Fig. 6.

dOAE Privacy. We recall the intuition behind the dOAE privacy of [8]. A
dOAE-secure scheme should produce pseudorandom segments into a chain of
segment ciphertexts under partial misuse of prefix chains. More precisely, an
adversary can make adaptive encryption queries segment-by-segment. To start
a new chain, the adversary makes an initial query on a nonce N which may be
repeated. The adversary can also make some segment encryption queries to con-
tinue an encrypted prefix chain (N, (A1, A2), (C1, C2)) of (N, (A1, A2), (M1,M2))
with a next segment (A,M). As long as the prefix (N, (A1, A2, A), (M1,M2, 	))
is fresh, which means that it never appears before, the adversary gets C ←
{0, 1}|M |+τ , where τ is the ciphertext expansion of the scheme. However, if
some prefix (N, (A1, A2, A), (M1,M2,M

′)) already exists, the adversary gets ⊥,
if M �= M ′, or the already defined segment ciphertext C, otherwise. This latter
case allows the adversary to adaptively build two chains with a common pre-
fix that could be forked later from different associated data, like for instance
from (N, (A1, A2, A

′), (M1,M2, 	)) with A′ different than the A above. Even-
tually, the adversary may also make a last segment encryption queries on any
chain to add a final segment. If a chain ends with a last segment it cannot be
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further augmented. The restriction between last segment queries is the same as
between next segment queries. Nevertheless, assuming the existence of a prefix
chain for (N, (A1, A2), (M1,M2)), it is accepted to make both a next segment
encryption query on (A,M) and a last segment encryption query on (A,M ′),
even if the associated data are common but M �= M ′. So there is a full prefix-
misuse resistance between next and last segments.

To enhance the dOAE privacy to the multi-user setting, we only have to
properly deal with the chaining generated from different keys. Moreover, we
merge both types of queries into a single encryption segment procedure as the
specifications of both queries are very similar. More precisely, the procedure
Enc.seg(i, j, A,M, 0) (resp. Enc.seg(i, j, A,M, 1)) corresponds to an encryption
query for a next (resp. last) segment (A,M) using the key Ki, and where j allows
keeping track of the current state in the continuing chain. For convenience, even
though a last segment has signature C ← EK .last(S,A,M) we abuse the notation
and use (C,⊥) ← EK .last(S,A,M), where the update state ⊥ indicates that no
further segment is allowed in that chain.

Fig. 1. Multi-user dOAE privacy experiments.

dOAE Integrity. Under the same restriction on the encryption queries it should
be unfeasible to output a valid chain (N,A,C) for some key Ki, meaning that
all the internal segments are valid for Ki, as long as the chain is fresh for i.
The multi-user dForge experiment given in Fig. 2 follows the multi-user dReal
experiment where we have to keep track of all the ciphertext chains returned to
the adversary, and augmented with a final procedure as in [8]. Formally, we define
the authenticity advantage Advdoae-auth

AEAD (D) = Pr[dForgeAEAD(D) ⇒ true].
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Fig. 2. Multi-user dOAE integrity experiment.

3 SpookChain Mode

The SpookChain mode is defined upon the TETSponge mode. For completeness,
we recall the TETSponge mode of [7] in Fig. 3. We identity the first TBC call
which produces B to feed the first permutation call as the “initial” part of
TETSponge. The remaining part of the algorithm is named the “Duplex” part
and it is denoted as DEnc (resp. DDec) for the encryption (resp. decryption).
We stress that the last TBC call is included in these algorithms by convention.

Therefore, we can say that the TETSponge encryption consists of its initial
part followed by an encryption of a single segment, processed by DEnc. The
basic principle of SpookChain is to “chain” TETSponge by keeping in memory
the capacity of the last permutation call which should have been erased after
a careful execution of TETSponge. This capacity is denoted by R in Fig. 3. To
process a second segment, we simply have to call DEnc again starting with input
state S = 0r‖R. This process can be repeated as many times as desired by
keeping the next value R generated by DEnc in memory. In a chain, we thus save
as many (initial) call to the TBC as the number of segments, and so TETSponge
is not used in black-box. To get a fully OAE mode with dOAE security, we also
have to treat the “last segment” in another way than the segments that can be
further chained. For that purpose, we introduce nothing more than a separation
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Fig. 3. TETSponge[π, ˜E]K,PK AEAD with ν = 2 and � = 2. Grey square indicates TBC
call, where the input to the triangle denotes the key and the input to the dark rectangle
denotes the tweak. The block 1‖0c−2 is inserted only if |A[ν]| < r, resp. |M [�]| < r.

bit in the most significant bit of the input permutation when calling DEnc for
the last time. To make the whole SpookChain mode working in all the cases, and
so even when the first segment is also the last segment, we just re-order a bit the
input permutation of the first call to DEnc, that is the initial part of SpookChain
slightly differs from the one of TETSponge. We illustrate SpookChain in Fig. 4.

Fig. 4. SpookChain[π, ˜E]K,PK with 4 segments, the final one being a last segment, then
starting with 1. The TBC is in grey. See Fig. 3 for the details of each segment.

In the description of SpookChain, the input of the first permutation of DEnc
corresponds to the state S in the sense of the segmented-AE definition, see Defi-
nition 1. Therefore, it also corresponds to the full input state of the permutation
π. However, from a space complexity standpoint, only the c bits of the capac-
ity must be stored (additionally to K) to process the next segments both in
encryption and decryption. We now turn to the full specification of SpookChain.

Parameters. ˜E is an (n, n, n)-TBC and π is an r + c bit keyless permutation.
The encryption is made by r-bit block of the message. The key of SpookChain
is K‖PK , where |K| = n and |PK | = np. We stress that only K has to be
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kept secret, but PK can be public as in TETSponge. The secret key K is picked
uniformly at random in {0, 1}n. The public key PK only needs to be distinct
for each session (pair of users). For simplicity, in this paper we focus on uniform
PK ∈ {0, 1}np . Moreover, we have A = M = C = {0, 1}∗ and N = {0, 1}nN ,
where the nonce length nN is fixed. We require that nN , np + 1 ≤ n (initial ˜E

input), 1+np +nN +n ≤ r + c (π input), and 2n ≤ r + c+1 (tag ˜E input). Yet,
we recommend np ≈ n and c ≈ 2n and we actually choose np = n−1 and c = 2n
as this leads to a security up to 2n/n2 complexity. There is no recommendation
for nN , but when n = 128 one could take nN = 96 which is a standard choice.
The ciphertext expansion of SpookChain is τ = n.

algorithm EK,PK .init(N)

1. B ← ˜E
PK‖0n−nP

K (N‖0n−nN )
2. return 0r+c−nP −nN −n‖PK‖N‖B

algorithm EK,PK .next(S, A, M)

1. (C, capa) ← DEncK(S, A, M)
2. return (C, 0r‖capa)

algorithm EK,PK .last(S, A, M)

1. S ← S ⊕10r+c−1 // i.e. 1‖lsbr+c−1(S)
2. (C, capa) ← DEncK(S, A, M)
3. return C

algorithm DK,PK .init(N)

1. B ← ˜E
PK‖0n−nP

K (N‖0n−nN )
2. return 0r+c−nP −nN −n‖PK‖N‖B

algorithm DK,PK .next(S, A, M)

1. (M, capa) ← DDecK(S, A, M)
2. return (M, 0r‖capa)

algorithm DK,PK .last(S, A, M)

1. S ← S ⊕10r+c−1 // i.e. 1‖lsbr+c−1(S)
2. (M, capa) ← DDecK(S, A, M)
3. return M

algorithm DEncK(S0, A, M)

1. � ← �|M |/r�, ν ← �|A|/r�
2. S1 ← π(S0)
3. if ν ≥ 1 then
4. A[1]‖ . . . ‖A[ν]

r
� A

5. for i = 1 to ν − 1 do
6. Si ← Si ⊕ (A[i]‖0c)
7. Si+1 ← π(Si)
8. if |A[ν]| < r then
9. A[ν] ← A[ν]‖10r−|A[ν]|−1

10. Sν ← Sν ⊕ (0r‖[1]2‖0c−2)
11. Sν ← Sν ⊕ (A[ν]‖0c)
12. Sν+1 ← π(Sν)
13. if � ≥ 1 then
14. M [1]‖ . . . ‖M [�]

r
� M

15. Sν+1 ← Sν+1 ⊕ (0r‖[2]2‖0c−2)
16. for i = 1 to � − 1 do
17. j ← i + ν
18. C[i] ← msbr(Sj) ⊕ M [i]
19. Sj ← C[i]‖lsbc(Sj)
20. Sj+1 ← π(Sj)
21. C[�] ← msb|M [�]|(Sν+�) ⊕ M [�]
22. if |C[�]| < r then
23. Sν+� ← Sν+� ⊕ (0r‖[1]2‖0c−2)

24. Sν+� ← C[�]‖10r−|C[�]|−1‖lsbc(Sν+�)
25. else Sν+� ← C[�]‖lsbc(Sν+�)
26. Sν+�+1 ← π(Sν+�)
27. U‖V

n
� msb2n−1(Sν+�+1)

28. capa ← lsbc(Sν+�+1)

29. Z ← ˜E
V ‖1
K (U)

30. if � = 0, return (Z, capa)
31. c ← C[1]‖ . . . ‖C[�], C ← c‖Z
32. return (C, capa)

algorithm DDecK(S0, A, C)
1. Parse c‖Z ← C, where Z ← lsbn(C)
2. � ← �|c|/r�, ν ← �|A|/r�
3. S1 ← π(S0)
4. if ν ≥ 1 then
5. A[1]‖ . . . ‖A[ν]

r
� A

6. for i = 1 to ν − 1 do
7. Si ← Si ⊕ (A[i]‖0c)
8. Si+1 ← π(Si)
9. if |A[ν]| < r then

10. A[ν] ← A[ν]‖10r−|A[ν]|−1

11. Sν ← Sν ⊕ (0r‖[1]2‖0c−2)
12. Sν ← Sν ⊕ (A[ν]‖0c)
13. Sν+1 ← π(Sν)
14. if � ≥ 1 then
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15. C[1]‖ . . . ‖C[�]
r
� c

16. Sν+1 ← Sν+1 ⊕ (0r‖[2]2‖0c−2)
17. for i = 1 to � − 1 do
18. j ← i + ν
19. M [i] ← msbr(Sj) ⊕ C[i]
20. Sj ← C[i]‖lsbc(Sj)
21. Sj+1 ← π(Sj)
22. M [�] ← msb|C[�]|(Sν+�) ⊕ C[�]
23. if |C[�]| < r then
24. Sν+� ← Sν+� ⊕ (0r‖[1]2‖0c−2)

25. Sν+� ← C[�]‖10r−|C[�]|−1‖lsbc(Sν+�)

26. else Sν+� ← C[�]‖lsbc(Sν+�)

27. Sν+�+1 ← π(Sν+�)

28. U‖V
n
� msb2n−1(Sν+�+1)

29. capa ← lsbc(Sν+�+1)

30. U∗ ← (˜E
V ‖1
K )−1(Z)

31. if U �= U∗, return (⊥, ⊥)

32. if � ≥ 1, return (M [1]‖ . . . ‖M [�], capa)

33. return (true, capa)

Forward Secrecy Against Full State Recovery. As an interesting additional fea-
ture SpookChain provides forward secrecy if a full state of a permutation call is
exposed. As a chain might be very long it is of great important to measure the
degradation implied by the exposure of the rate and the capacity of a permu-
tation call. Hopefully, if such an exposure occurs in a segment, its prefix in the
chain is not affected. Indeed, by inverting the permutation calls, the adversary
is able to compute backward the state of the segment, i.e. the first input of π
in that segment containing the capacity value R, See Fig. 4, called capa in the
specification. However, in order to carry on this backward process to adversary
has to guess the output rate of the last permutation call of the previous segment
(the rate which feeds the TBC call of the previous segment, resulting in Z). So,
as long as r is long enough in O(n), the adversary can no longer “rewind” the
chain. In contrary, in the forward direction the adversary can easily breaks the
privacy of all the next segments. Nevertheless, a full state exposure does not
allow computing new valid authentication tags as the key (of the TBC) is still
hidden.

Finally, it is worth noticing that the damage caused by a full state recovery
in a session is only isolated in the chain where it happens. The security of the
other chains of the same session is not impacted in any manner. Clearly, other
sessions are neither impacted.

4 Security Analysis

We move on to show the beyond-birthday dOAE-security of SpookChain in the
multi-user setting. In the dOAE experiments of privacy (Fig. 1) and integrity
(Fig. 2) the adversary can make numerous calls to many different procedures.
We say the adversary is (−→q , σ, σd)-bounded, where −→q = (qe, q˜IC, qπ), qe denotes
the maximal number of adversarial queries to init, q

˜IC and qπ denote the number
of ideal TBC and permutation queries, σ denotes the total number of blocks
in encrypted segments, and σd denotes the number of blocks in the decryption
queries/adversarial forgery trial (for dOAE authenticity only).



SpookChain: Chaining a Sponge-Based AEAD 77

Theorem 1. Assuming that u ≤ 2np , np ≤ n, n ≥ 5, and 2σ + 2σd + qπ ≤
min{2n/4, 2r+c/2}. Then, in the ideal TBC and permutation model, for any
(−→q , σ)-adversary A it holds

Advdoae-priv
SpookChain ≤ 3u

2np
+

4n(2σ + qπ) + nq
˜IC + n2qe

2n
+

17(2σ + qπ)2

2c
, (1)

Advdoae-auth
SpookChain ≤ 3u

2np
+

4n(2σ + 2σd + qπ) + nq
˜IC + 2

2n
+

16(2σ + 2σd + qπ)2

2c
.

(2)

Intuition of the Proofs. We will consider the security game capturing the inter-
action between the adversary and the SpookChain mode. In a nutshell, our argu-
ments proceed in two steps. First, we replace the ideal TBC ˜IC in SpookChain
by another ideal TBC ˜IC∗ that cannot be queried by the adversary. This mod-
ification is “invisible” to the adversary as long as certain types of collisions
do not occur, and thus we are able to bound the difference. As the second
step, we study the somewhat ideal game with SpookChain[π, ˜IC∗]. For privacy,
we further identify some bad collisions, and we are able to show that the out-
puts of SpookChain[π, ˜IC∗] are random as long as these collisions do not occur.
Hence the collision probability, which can be bounded, cinches the privacy secu-
rity bound. For integrity, we show that the probability to reach a forgery for
SpookChain[π, ˜IC∗] is sufficiently small, and thus this forgery probability plus the
already bounded gap between SpookChain[π, ˜IC∗] and SpookChain[π, ˜IC] gives the
integrity security bound. See the two subsequent subsections for details.

4.1 Proof of dOAE Privacy

Proof (Sketch). We denote by G0 the game capturing the interaction between D
and dReal, and G2 the game capturing D ’s interaction with dRand. We transit
G0 to G2 via several hybrids.
Intermediate game G1. First, we replace the ideal TBC used in SpookChain by
another ideal TBC ˜IC∗ that’s independent from the ˜IC accessible to D . This
yields the game G1. We formally describe G1 in Fig. 5, in which we define four
sets τ

˜IC, τ∗
˜IC
, τπ, τ∗

π for subsequent arguments.

It can be seen that, as long as the following bad event does not happen in
G0, the behaviors of G0 and G1 are the same:

– (B-1) At any time, there exists (i,N) ∈ τie such that (Ki, PKi‖0∗, 	, 	) ∈ τ
˜IC,

where τie is the set of all earlier queries to Enc.init(i,N).

To analyze this event, we define

μPK := max
pk∈{0,1}np

∣

∣{i ∈ {1, . . . , u} : PKi = pk}∣

∣. (3)
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We consider the event μPK ≥ n+1. As PK1, . . . , PKu are uniformly distributed,
it holds

Pr[μPK ≥ n + 1] ≤
(

u

n + 1

)

· 1
(2np)n

≤
( u

2np

)n+1

· 2np

(n + 1)!
≤

( u

2np

)n+1

,

where the last inequality comes from (n + 1)! ≥ (

n+1
e

)n+1 ≥ 2n+1 ≥ 2np since
n + 1 ≥ 6 > 2e. Furthermore, when u ≤ 2np and np ≤ n, we have

Pr[μPK ≥ n + 1] ≤
( u

2np

)n+1

≤ u

2np
.

Conditioned on μPK ≤ n, we could bound Pr[(B-1)]. Note that in G1, for any
(i,N) ∈ τie, the “user key” Ki is uniformly sampled. Then, using an auxiliary
set

τ
˜IC[T ] :=

{

K ∈ {0, 1}n : (K,T, 	, 	) ∈ τ
˜IC

}

,

it holds

Pr[(B-1)] ≤
∑

(i,N)∈τie

Pr
[

Ki ∈ τ
˜IC[PKi‖0∗]

]

≤μPK ·
∑

PK∈{0,1}np

∣

∣τ
˜IC[PK‖0∗]

∣

∣

2n
≤ nq

˜IC

2n
.

Therefore,
∣

∣

∣ Pr[G0 ⇒ 1] − Pr[G1 ⇒ 1]
∣

∣

∣ ≤ u

2np
+

nq
˜IC

2n
.

Gap between G1 and G2. Second, we define several bad conditions in G1 that
will trigger “abort”. See Fig. 5 for details. Roughly speaking, they capture the
following conditions:

– (C-1) When an initial key B is derived, it results in a (r + c)-bit initial state
that collides with the adversarial π-queries nor the other earlier (r + c)-bit
internal states;

– (C-2) When an internal (r + c)-bit state is derived, it collides with the adver-
sarial π-queries nor the other earlier internal states in certain senses;

– (C-3) When a final (r + c)-bit state is derived for a query to E .next or E .last,
it collides with the earlier internal calls to ˜IC∗ nor the π-queries in certain
senses.
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Fig. 5. Game G1 with abort conditions.
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First, let us consider the condition (C-1). Consider the �-th initializing call
Enc.init(i�, N�) that internally results in the state [0]‖PK‖N‖B�. Define

τπ[Ni, PKi] :=
{

B ∈ {0, 1}n : (	‖PKi‖Ni‖B, 	) ∈ τπ

}

,

then this call causes abort if B� ∈ τπ[Ni, PKi]. We next argue that w.h.p., B� is
uniform. For this, consider any earlier call init(i�′ , N�′) resulting in the n-bit seed
B�′ with �′ < �. If i�′ = i�, then N�′ �= N� since abortion is only check in “new”
calls, and thus B� is uniform in at least 2n − qe values given B�′ . Otherwise,
conditioned on that the key collision event ∃i �= j : Ki‖PKi = Kj‖PKj in
initialize did not happen, the two init-calls would induce two distinct TBC-

calls ˜IC
PKi�

‖0∗

Ki�
(N�‖0∗) → B� and ˜IC

PKi
�′ ‖0∗

Ki
�′

(N�′‖0∗) → B�′ , and thus B� is
uniform given B�′ . By these, the probability of abortion in the call to init(i�, N�)
is at most

∣

∣τπ[Ni�
, PKi�

]
∣

∣/(2n − qe). Summing over the qe calls results in

Pr[(C-1) | ¬key collision] ≤
qe

∑

�=1

∣

∣τπ[Ni�
, PKi�

]
∣

∣

2n − qe
≤

qe
∑

�=1

2
∣

∣τπ[Ni�
, PKi�

]
∣

∣

2n

≤ μPK ·
∑

N‖PK∈{0,1}nN+np

2
∣

∣τπ[N,PK]
∣

∣

2n

≤ 2μPK |τπ|
2n

,

where μPK is as defined in Eq. (3). Note that when the total number of queried
blocks is σ, the number of internal π-calls can’t exceed 2σ. Thus |τπ| ≤ 2σ + qπ.
Furthermore, as we’ve proved that Pr[μPK ≥ n + 1] ≤ u

2np , and clearly

Pr[key collision] = Pr[∃i �= j : Ki‖PKi = Kj‖PKj ] ≤ u2

2n+np
≤ u

2np
,

we obtain

Pr[(C-1)] ≤ 2n(2σ + qπ)
2n

+
2u

2np
.

For (C-2), for each of the internal π-calls, the probability of colliding on the
least significant c − 2 bits is ≤ 2 · 2|τπ|/2c−2 ≤ 2(2σ + qπ)/2c−2. Thus we have

Pr[(C-2)] ≤ 16(2σ + qπ)2

2c
.

Noticing that |τ
˜IC| + |τ∗

˜IC
| ≤ q

˜IC + 2qe. Thus a similar analysis gives rise to

Pr[(C-3)] ≤ (2σ + qπ) · 2(q
˜IC + 2qe)
22n−1

≤ 4(2σ + qπ)(q
˜IC + 2qe)

22n
.
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Summing over the above, we obtain

Pr[G1 aborts] ≤ 2n(2σ + qπ)
2n

+
2u

2np
+

16(2σ + qπ)2

2c
+

4(2σ + qπ)(q
˜IC + 2qe)

22n

≤ 4n(2σ + qπ)
2n

+
2u

2np
+

16(2σ + qπ)2

2c
.

The inequality leverages 4(2σ + qπ)(q
˜IC + 2qe)/22n ≤ 2(2σ + qπ)/2n ≤ 2n(2σ +

qπ)/2n assuming q
˜IC + 2qe ≤ 2n/2.

To complete the analysis for Advdoae-priv
AEAD , we replace the freshly generated

internal states with values uniformly distributed in {0, 1}r+c and the tags Z
with values uniformly distributed in {0, 1}n, to obtain the game G2 = dRand.
It is easy to see as long as G1 does not abort, replacing internal states induces a
gap of at most σ2

2r+c (a somewhat standard RP-RF switch). On the other hand,

replacing tags may cause a gap of q2
e

2n . However, define

μV := max
v∈{0,1}n−1

∣

∣{π(Sin) → Sout,msb2n−1(Sout) = 	‖V }∣

∣,

then conditioned on μV ≤ n, replacing tags only induces a gap of qe · n2

2n since
the number of TBC-calls under each tweak V ‖1 does not exceed n.

It remains to prove that the ciphertext blocks produced in G1 are “as random
as” those in G2. This essentially requires to prove that in G1, all new queries to
E .next and E .last give rise to uniform output (as it is also the case in G2). We show
that it is the case in G1 conditioned on the absence of abortion. For this, we first
consider a new call to Enc.seg(i�, j�, A�,M�, 0), assume that its corresponding
nonce is N� and initial key is B�, and distinguish two cases:

– Case 1: it is the first segment for the nonce N�. We show that all earlier
queries to Enc.seg will not affect the randomness of the output. We only need
to consider earlier calls of the form Enc.seg(i�, j�, ·, ·, ·), as the other calls
must have a different 1st call to π, which give rise to completely independent
computation flows. Earlier calls to Enc.seg(i�, j�, A�′ ,M�′ , 1) will not affect
Enc.seg(i�, j�, A�,M�, 0) either, as they only query π(1‖	) which does not
affect π([0]‖PKi�

‖Ni�,j�
‖	). For earlier calls to Enc.seg(i�, j�, A�′ ,M�′ , 0), it

has to be A�′ �= A� by the security definitions, and this necessarily make the
two computation flows diverge after processing A� and A�′ . Since the abort
conditions around queries to π were never fulfilled, this means all the π-calls
made during processing M� and M�′ are distinct. A similar argument applies
to the resulted tag Z�. Therefore, the call Enc.seg(i�, j�, A�,M�, 0) gives rise
to a ciphertext segment C� that is uniform and independent from all the
previous ones, as well as a new state capa� that is fresh and not contained by
any entries in τπ.

– Case 2: it is not the first segment. Assume that the corresponding 2n-
bit chaining state is S. The subsequent discussion is similar: earlier calls
to Enc.seg(i�, j�, A�′ ,M�′ , 1) only query π([1]‖ 	 ‖S) and will not influence
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π([0]r+c−2n‖S), while earlier calls to Enc.seg(i�, j�, A�′ ,M�′ , 0) result in a com-
putation flow that is distinct from Enc.seg(i�, j�, A�,M�, 0) after processing A�

and A�′ . A similar argument applies to the resulted tag Z�, and thus the call to
Enc.seg(i�, j�, A�,M�, 0) gives rise to a ciphertext segment C� that is uniform
and independent from all the previous ones.

The analysis a new call to Enc.seg(i�, j�, A�,M�, 1) is similar. Therefore, the
statistical distance between the ciphertext segments produced by G1 and G2 is
the aforementioned gap

σ2

2r+c + n2qe

2n ≤ (2σ+qπ)2

2c + n2qe

2n plus the abort probability of G1, i.e.,

∣

∣

∣ Pr[G1 ⇒ 1] − Pr[G2 ⇒ 1]
∣

∣

∣ ≤ 4n(2σ + qπ) + n2qe

2n
+

2u

2np
+

17(2σ + qπ)2

2c
.

This finally concludes with Eq. (1), i.e.,

Advdoae-priv
AEAD ≤ u

2np
+

nq
˜IC

2n
+

4n(2σ + qπ) + n2qe

2n
+

2u

2np
+

17(2σ + qπ)2

2c

≤ 3u

2np
+

4n(2σ + qπ) + nq
˜IC + n2qe

2n
+

17(2σ + qπ)2

2c
.

4.2 Proof of the dOAE Authenticity

Proof (Sketch). For authenticity, we follow the above proof flow and transit
to the intermediate game G1. However, with the additional blocks in the final
decryption query, the technical results shall be updated as
∣

∣

∣ Pr[G0 ⇒ 1] − Pr[G1 ⇒ 1]
∣

∣

∣ ≤ u

2np
+

nq
˜IC

2n
,

Pr[G1 aborts] ≤ 4n(2σ + 2σd + qπ)
2n

+
2u

2np
+

16(2σ + 2σd + qπ)2

2c
.

Then, assume that abortion never happens, we show that the final decryption
of (i,N,A,C, b) gives rise to ⊥ except with a low probability. Assume that
A = (A[1], . . . ,A[m]) and C = (C[1], . . . ,C[m]). Further assume that the tuple
in Yi that has the longest common prefix with (A,C) is (N,A′,C ′, b′), where
A′ = (A′[1], . . . ,A′[m]) and C ′ = (C ′[1], . . . ,C ′[m]). We distinguish two cases:

– Case 1: b = b′. Then there must necessarily exist an index � such that
(A[1],C[1]) �= (A′[1],C ′[1]). This means the computation flows of process-
ing (A[1],C[1]) and (A′[1],C ′[1]) necessarily deviate at some point, and thus
processing (A[1],C[1]) eventually gives rise to a fresh π-call at the end. This
gives rise to a random 2n−1 bit value U‖V , which means the integrity check-
ing condition U = U∗ (line 31 in DDec) is fulfilled with probability at most
2
2n . As such, with probability at least 1 − 2

2n , the final decryption returns ⊥.
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– Case 2: b �= b′. Regardless of the contents, the call to D.next(S,A[m],C[m])
(when b = 0) or D.last(S,A[m],C[m]) (when b = 1) necessarily started with
a new state (similarly to that argued before). Similarly to Case 1, this gives
rise to a random 2n−1 bit value U‖V , and thus the probability that it passes
the integrity checking is at most 2

2n .

By the above, Eq. (2) is established:

Advdoae-auth
SpookChain ≤ u

2np
+

nq
˜IC

2n
+

4n(2σ + 2σd + qπ)

2n
+

2u

2np
+

16(2σ + 2σd + qπ)2

2c
+

2

2n

≤ 3u

2np
+

4n(2σ + 2σd + qπ) + nq
˜IC + 2

2n
+

16(2σ + 2σd + qπ)2

2c
,

which concludes the proof. ��
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A Original dOAE Definition

Formally, Hoang et al. define the dOAE privacy advantage Advdoae-priv
AEAD (D) =

|Pr[DdRealAEAD ⇒ 1] − Pr[DdRandAEAD ⇒ 1]| and the dOAE authenticity advan-
tage Advdoae-auth

AEAD (D) = Pr[dForgeAEAD(D) ⇒ true], where the experiments
dReal, dRand and dForge are given in Fig. 6.



84 G. Cassiers et al.

Fig. 6. (dOAE). First column: dReal experiment, finalize procedure excluded; dForge
experiment includes all the procedures of the column. Second column: game dRand.
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Abstract. Profiling attacks, especially those based on machine learn-
ing proved as very successful techniques in recent years when considering
side-channel analysis of block ciphers implementations. At the same time,
the results for implementations of public-key cryptosystems are very
sparse. In this paper, we consider several machine learning techniques
in order to mount a power analysis attack on EdDSA using the curve
Curve25519 as implemented in WolfSSL. The results show all considered
techniques to be viable and powerful options. Especially convolutional
neural networks (CNNs) are effective as we can break the implementation
with only a single measurement in the attack phase while requiring less
than 500 measurements in the training phase. Interestingly, that same
convolutional neural network was recently shown to perform extremely
well for attacking the implementation of the AES cipher. Our results
show that some common grounds can be established when using deep
learning for profiling attacks on distinct cryptographic algorithms and
their corresponding implementations.

1 Introduction

Cryptographic algorithms ensure the security of a system (e.g., communication
on a network or payment with a smartcard), by providing security features (e.g.,
authenticity and non-repudiation). However, implementations of those algo-
rithms can fail during the engineering process and present flaws, leaking secret
information over side-channels, even for the strongest protocols. Side-channel
analysis (SCA) designates a set of signal processing techniques targeting the
execution of cryptographic implementations, evaluating a system’s security.

Since Differential Power Analysis by Kocher et al. [16], many other pow-
erful SCAs have been successfully used to break all cryptographic algorithms,
including recent machine learning approaches, on both symmetric key cryptog-
raphy [9,14,15,18,20,27,28,31] and public-key cryptography [21,30]. Among all
SCAs, profiling attacks are the most powerful provided that the attacker has
access to a clone device with full control that can be profiled offline, to later use
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this knowledge on another device during the attack phase. Template attack [9]
has been the most popular instance of profiling attacks, but in recent years, new
techniques based on machine learning were able to outperform template attack
and break implementations protected with countermeasures. However, most of
those results are obtained on block ciphers implementations (and more precisely
on AES) and there are almost no results considering machine learning (deep
learning) on public-key cryptography.

In this paper, we attack the digital signature algorithm Ed25519 as imple-
mented in WolfSSL on an STM32F4 microcontroller and we also compare the
results obtained from different profiling attacks. To that end, we consider several
machine learning techniques (i.e., Random Forest, Support Vector Machines, and
Convolutional Neural Network) that have been proved strong in related work
(albeit mostly on block ciphers) and template attack, which we consider the
standard technique and a baseline setting.

1.1 Related Work

Template attacks (TAs) have been introduced by Chari et al. in 2003 [9] as
the most powerful SCA in the information-theoretic point of view and became
a standard tool for profiling SCA. As straightforward implementations of TA
can lead to computationally intensive computation, one option for more efficient
computation is to use only a single covariance matrix, and is referred as the so-
called pooled template attack presented by Choudary and Kuhn [10] where they
were able to template a LOAD instruction and recover all 8 bits treated with a
guessing entropy of 0. Several works applied machine learning methods to SCA
of block ciphers because of their resemblance to general profiling techniques.
Two methods stand out particularly in profiling SCA, namely Support Vector
Machines (see, e.g., [18,20,28,33]) and Random Forest (see, e.g., [14,27,33]).
With the general evolution in the field of deep learning, more and more works
deal with neural networks for SCA and often show top performance. There, most
of the research concentrated on either multilayer perceptron or convolutional
neural networks [7,11,20,29].

There is a large portion of works considering profiling techniques for block
ciphers but there is much less for public-key cryptography. Lerman et al. con-
sidered template attack and several machine learning techniques to attack RSA.
However, the targeted implementation was not secure, which makes the compar-
ison with non-machine learning techniques less favorable [18]. Nascimento et al.
applied a horizontal attack on ECC implementation for AVR ATmega micro-
controller targeting the side-channel leakage of cmov operation. Their approach
to side-channel is similar to ours but they don’t use deep learning in the analy-
sis [23]. Poussier et al. used horizontal attacks and linear regression to conduct
an attack on ECC implementations but their approach cannot be classified as
deep learning [30]. Carbone et al. used deep learning to attack a secure imple-
mentation of RSA [8]. Previous work has shown TA to be efficient for attacking
SPA-resistant ECDSA with P192 NIST curve on 32-bit microcontroller [21].
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1.2 Contributions

There are two main contributions of this paper:

1. We present a comprehensive analysis of several profiling attacks by exploring
different sets of hyper-parameters that permit to obtain the best results for
each method. This evaluation can be helpful when deciding on an optimal
strategy for machine learning and in particular, deep learning attacks on
implementations of public-key cryptography.

2. We consider elliptic curve cryptography (actually EdDSA using curve
Curve25519) and profiling attacks where we show that such techniques,
and especially the convolutional neural networks can be extremely power-
ful attacks.

Besides those contributions, we also present a publicly available dataset we
developed for this work. We aim to make our results more reproducible but also
motivate other researchers to publish their datasets for public-key cryptography.
Indeed, while the SCA community realizes the lack of publicly available datasets
for block ciphers (and tries to improve it), the situation for public-key cryptog-
raphy seems to attract less attention despite even worse availability of codes,
testbeds, and datasets.

The rest of this paper is organized as follows. In Sect. 2, we give relevant
background on elliptic curve scalar multiplication, Ed25519 algorithm, and pro-
filing attack techniques. In Sect. 3, we explain the way an attacker can exploit
this implementation of Ed25519. In Sect. 4, we present our testbed and data
collection strategy. In Sect. 5, we give the results of the hyper-parameter tun-
ing phase, dimensionality reduction, and profiling results. Finally, in Sect. 6, we
conclude the paper and give some possible future research directions.

2 Background

In this section, we start by introducing the elliptic curve scalar multiplication
operation and EdDSA algorithm. Afterward, we discuss profiling attacks that
we use in our experiments.

2.1 EdDSA

In the context of public-key cryptography, one important feature is the authen-
tication of a message between two parties. This feature ensures to party B that
party A has indeed sent a message M and that this message is original and
unaltered. Message authentication can be performed by Digital Signature Algo-
rithms (DSA). DSA creates a signature pair (R,S) for proving that a message M
was emitted by the known party A, unaltered and that A cannot repudiate. For
security reasons and computational speed, public-key cryptography has turned
toward Elliptic Curves based cryptography (ECC) as it tends to become the
successor of RSA for public-key cryptography because it can meet higher secu-
rity levels with smaller key lengths. ECC is based on the Elliptic Curve Discrete
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Logarithm Problem (ECDLP), which states that it is easy and hence efficient to
compute Q = k · P , but it is difficult to find k knowing Q and P .

EdDSA [3] is a variant of the Schnorr digital signature scheme [34] using
Twisted Edward Curves, a subgroup of elliptic curves that uses unified formu-
las, enabling speed-ups for specific curve parameters. This algorithm proposes
a deterministic generation of the ephemeral key, different for every different
message, to prevent flaws from a predictable random number generator. The
ephemeral key r is made of the hash value of the message M and the auxiliary
key b, generating a unique ephemeral public key R for every message.

EdDSA, when using parameters of Curve25519 is referred to as Ed25519
(domain parameters are given in AppendixA) [2]. EdDSA scheme for signa-
ture generation and verification is described in Algorithm1, where the nota-
tion (x, . . . , y) denotes the concatenation of the elements. The notation used in
Algorithm 1 is given in Table 1.

After the signature generation, party A sends (M,R, S), i.e., the message
along with the signature pair (R,S) to B. The verification of the signature is
done by B with Steps 10 to 11. If the last equation is verified, it represents a
point on the elliptic curve and the signature is correct, ensuring that the message
can be trusted as an authentic message from A.

Table 1. Notation for EdDSA

Name Symbol

Private key k

Private scalar a (first part of H(k))

Auxiliary key b (last part of H(k))

Ephemeral key r

Message M

Algorithm 1. EdDSA Signature generating and verification
Keypair Generation (k, P ): (Used once, first time private key is used.)

1: Hash k such that H(k) = (h0, h1, . . . , h2u−1) = (a, b)
2: a = (h0, . . . , hu−1), interpret as integer in little-endian notation
3: b = (hu, . . . , h2u−1)
4: Compute public key: P = aB.

Signature Generation:
5: Compute ephemeral private key r = H(b, M).
6: Compute ephemeral public key R = rB.
7: Compute h = H(R, P, M) mod l.
8: Compute: S = (r + ha) mod l.
9: Signature pair (R, S)

Signature Verification:
10: Compute h = H(R, P, M)
11: Verify if 8SB = 8R + 8hP holds in E
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2.2 Elliptic Curve Scalar Multiplication

The security of ECC algorithms depends on the ability to compute a point mul-
tiplication and the presumed inability to reverse the computation to retrieve the
multiplicand given the original and product points. This security is strengthened
with a greater prime order of the underlying finite field. In our attack, we aim
to extract the ephemeral key r from its scalar multiplication with the Elliptic
Curve base point B (see step 5 in Algorithm 1). To understand how this attack
works, we decompose this computation as implemented in the case of WolfSSL
Ed25519.

The implementation of Ed25519 in WolfSSL is based on the work of Bernstein
et al. [3]. The implementation of elliptic curve scalar multiplication is a window-
based method with radix-16, making use of a precomputed table containing
results of the scalar multiplication of 16i|ri| · B, where ri ∈ [−8, 7] ∩ Z and
B is the base point of Curve25519 (see AppendixB). This method is popular
because of its trade-off between memory usage and computation speed, but also
because the implementation is time-constant and does not feature any branch
condition nor array indices and hence is presumably secure against timing attack.
Leaking information from the corresponding value loaded from the memory with
a function ge select is used here to recover e and hence can be used to easily
connect to the ephemeral key r. More details are given in the remainder of this
paper.

2.3 Profiling Attacks

In this work, we consider several machine learning techniques that showed
very good performance when considering side-channel attacks on block ciphers.
Besides, we briefly introduce the template attack, which serves as a baseline to
compare the performance of algorithms.

Random Forest. Random Forest (RF) is a well-known ensemble learning
method consisting of a number of decision trees [6]. Decision trees consist of
combinations of Boolean decisions on a different random subset of attributes of
input data (called bootstrap sampling). For each node of each tree, the best split
is taken among these randomly chosen attributes. RF is a stochastic algorithm
because of its two sources of randomness: bootstrap sampling and attribute
selection at node splitting. The most important hyper-parameter to tune is the
number of trees in the forest (we do not limit the tree size nor use pruning
methods).

Support Vector Machines. Support Vector Machines (denoted SVM) is a
kernel-based machine learning family of methods that are used to accurately
classify both linearly separable and linearly inseparable data [38]. The idea for
linearly inseparable data is to transform them into a higher dimensional space
using a kernel function, wherein the data can usually be classified with higher
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accuracy. The scikit-learn implementation we use considers libsvm’s C-SVC clas-
sifier [25] that implements SMO-type algorithm [12]. The multi-class support is
handled according to a one-vs-one scheme. We investigate two variations of SVM:
with a linear kernel and with a radial kernel. Linear kernel-based SVM has the
penalty hyper-parameter C of the error term. Radial kernel-based SVM has two
significant hyper-parameters to tune: the cost of the margin C and the kernel γ.
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Fig. 1. Anatomy of a neuron.

Convolutional Neural Networks. Convolutional Neural Networks (CNNs)
are a type of neural networks initially designed to mimic the biological process
of animal’s cortex to interpret visual data [17]. CNNs show excellent results
for classifying images for various applications and have also proved to be a
powerful tool to classify time series data such as music or speech [24]. The
VGG-16 architecture introduced in [35] for image recognition was also recently
applied to the problem of side-channel analysis with very good results [15].

From the operational perspective, CNNs are similar to ordinary neural net-
works (e.g., multilayer perceptron): they consist of several layers where each layer
is made up of neurons as depicted in Fig. 1. Every neuron in a layer computes
a weighted combination of an input set by a net input function (e.g., the sum
function in neurons of a fully-connected layer) from which a nonlinear activation
function produces an output. When the output is different from zero, we say that
the neuron activation feeds the next layer as its input. Layers with a convolution
function as the Net Input Function are referred to as convolutional layers and
are the core building blocks in a CNN.

CNNs use three main types of layers: convolutional layers, pooling layers,
and fully-connected layers. Convolution layer computes the output of neurons
from locally sparse combinations of initial raw input features, to reduce the space
volume of information into smaller regions of interest. Pooling layers are used
after a convolution layer to sample down local regions and create spatial regions
of interest. The fully-connected layer at the end of a CNN behaves as a classifier
for the extracted features from the inputs. The ReLU activation function will
apply an element-wise activation function, such as the max(0, x) thresholding
at zero.
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The architecture of CNN we choose in this paper makes use of some additional
elements: batch normalization is used to normalize the input layer by applying
standard scaling on the activations of the previous layer, using running mean
and standard deviation. Flatten layer transforms input data of rank greater
than two into a one-dimensional feature vector that is used in the fully-connected
layer. Dropout is a regularization technique for reducing overfitting by preventing
complex co-adaptations on training data. The term refers to randomly dropping
out units (both hidden and visible) in a neural network with a certain probability
at each batch.

The architecture of a CNN is dependent on a large number of hyper-
parameters making the choice of hyper-parameters for each different application
an engineering challenge. The choices made in this paper are discussed in Sect. 5.

Template Attack. The template attack relies on the Bayes theorem and con-
siders the features as dependent. In the state-of-the-art, TA relies mostly on a
normal distribution [9]. Accordingly, TA assumes that each P (X = x|Y = y)
follows a (multivariate) Gaussian distribution that is parameterized by its mean
and covariance matrix for each class Y . The authors of [10] propose to use only
one pooled covariance matrix averaged over all classes Y to cope with statistical
difficulties and thus lower efficiency. In our experiments, we use the version of
the attack with only one pooled covariance matrix.

3 Attacker Model

The general warning for implementations of ECDSA is to select different
ephemeral private keys r for different signature. The flaw of using the same r for
different messages happens since the two corresponding signatures would result
in two signature pairs (R,S) and (R,S′) for messages M and M ′, respectively.
Then, an attacker can use this information to recover r as r = (z −z′)(S −S′)−1

(with z and z′, few bits of H(M) and H(M ′) interpreted as integers). Finally, to
recover the private scalar a required to forge signatures, the attacker can trivially
compute a = R−1(Sr − z).

Here, the aim of the attacker is the same as for every ECDSA attack: recover
the secret scalar a. The difference is that the attacker cannot acquire two sig-
natures with the same random r, but can still recover the secret scalar in two
different ways. One method would consist of attacking the implementation of the
hash function to recover b from the computation of ephemeral private key [32].
Another method (developed in this paper) attacks the implementation of the
scalar multiplication during the computation of the ephemeral public key. With
this method, the attacker collects side-channel traces of each computation since
r is different in every message. This paper shows that even with a single attack
trace, the attacker can recover private scalar with high confidence where we
provide a comparison with different state-of-the-art profiling SCA.
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4 Dataset Generation

In this section, we first present the measurement setup and explain the method-
ology for creating a dataset from the power traces obtained with our setup
(see Fig. 2).

Fig. 2. The measurement setup

4.1 Measurement Setup

The device under attack is a Piñata development board developed by Riscure
to perform SCA evaluations1. The board is based on a 32-bit STM32F4 micro-
controller with an ARM-based architecture, running at the clock frequency of
168 MHz. The board is modified to perform SCA through power consumption.
The target is Ed25519 implementation of WolfSSL 3.10.2. As WolfSSL is an
open-source library written in C, we have a fully transparent and controllable
implementation for the profiling phase.

Power consumption is measured with a current probe2 placed between the
power source and the board’s power supply source. Power measurements are
obtained with a Lecroy Waverunner z610i oscilloscope. The measures are per-
formed with a sampling frequency of 1.025 GHz and the trigger is implemented
with an I/O pin of the board around the ge select function (see Algorithm 2) to
retrieve a part of the key e.

1 Pinata Board: https://www.riscure.com/product/pinata-training-target/
2 Current Probe: https://www.riscure.com/product/current-probe/

https://www.riscure.com/product/pinata-training-target/
https://www.riscure.com/product/current-probe/
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4.2 Dataset

To evaluate the attack proposed in this paper and to facilitate reproducible
experiments, we present the dataset we built for this purpose [1]. We follow
the same format for the dataset as in recently presented ASCAD database [31].
For this attack, we profile the EC scalar multiplication with the ephemeral key
with the base point of curve Ed25519 (as explained in Sect. 3). Regarding the
implementation of this operation for our target, we focus on the profiling of one
function of the operation as it is more challenging by exploiting less information.
We focus on the Lookup Table (LUT) operation used to fetch the precomputed
chunks of the result in a table stored in memory. For speed reasons, the 256 bits
scalar/ephemeral secret key r is interpreted in slices of 4-bits (nibbles) e[i], i ∈
[0, 63], and to compute R = rB, the field multiplication with the base point B, we
would have to compute

∑63
i=0 e[i]16iB. As multiplication is resource consuming,

the implementation stores the results for every nibble number i and nibble value
e[i] in a precomputed LUT and loads corresponding chunks when needed.

Table 2. Organization of the database.

database

attack traces profiling traces

traces trace 1[1 000] traces trace 1[1 000]

· · · · · ·
trace na[1 000] trace np [1 000]

labels label 1[1] labels label 1[1]

· · · · · ·
label na[1] label np[1]

Each trace in the database is represented by a tuple composed of one power
trace and its corresponding label (class). The database is composed of two
groups: the first group is profiling traces, which contains np tuples. The
second group is attack traces, which contains na tuples (see Table 2). In
total, there are 6 400 labeled traces. We divide the traces in 80/20 ratio for pro-
filing/attacking groups, and consequently, have np = 5120 and na = 1280. The
profiling group is additionally divided in 80/20 ratio for training and valida-
tion sets.

A group contains two datasets: traces and labels. The dataset traces
contains the raw traces recorded from different nibbles during the encryption.
Each trace contains 1 000 samples and represents the relevant information of one
nibble encryption. The dataset labels contains the correct subkey candidate
for the corresponding trace. In total, there are 16 classes since we consider all
possible nibble values.

To the best of our knowledge, besides the dataset we presented here, there
is only one publicly available dataset for SCA on public-key cryptography on
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elliptic curves. Tuveri et al. conducted a side-channel analysis of SM2 (a digital
signature algorithm) public-key cryptography suite where they consider various
side channels [37]. Additionally, the authors published EM side-channel mea-
surements of elliptic curve point multiplication3. We note that due to the choice
of the suite (SM2 is not an international standard), this dataset is difficult to
compare with ours.

5 Experimental Setting and Results

To examine the feasibility and performance of our attack, we present different
settings for power analysis and use two different metrics. We first compare the
performance by using the accuracy metric since it is a standard metric in machine
learning. The second metric we use is the success rate as it is an SCA metric
that gives a more concrete idea on the power of the attacker [36]. Note that we
assume the attacker who can collect as many power traces as she wants and that
the profiling phase is nearly-perfect as also suggested by Lerman et al. [19].

5.1 Hyper-parameters Choice

Here we discuss the choice of hyper-parameters for each method we consider in
this paper.

TA: Classical Template Attack is applied with pooled covariance [10]. Profiling
phase is repeated for a different choice of points of interest (POI).

RF: Hyper-parameter optimization is applied to tune the number of decision
trees used in Random Forest. We consider the following number of trees: 50,
100, 500. The best number of decision trees is 100 with no PCA and 500 when
PCA is applied for 10 and 656 POI.

SVM: For the linear kernel, the hyper-parameter to optimize is the penalty
parameter C. We search for the best C among a range of [1, 105] in logarithmic
space. In the case of the radial basis function (RBF) kernel, we have two hyper-
parameters to tune: the penalty C and the kernel coefficient γ. The search for
best hyper-parameters is done within C = [1, 105] and γ = [−5, 2] in logarithmic
spaces. We consider only those hyper-parameters that give the best scores for
each choice of POI (see Table 3).

CNN: The chosen hyper-parameters for VGG-16 follows several rules that have
been adapted for SCA in [15] or [31] and that we describe here:

1. The model is composed of several convolution blocks and ends with a dropout
layer followed by a fully connected layer and an output layer with the Softmax
activation function.

3 Available at https://zenodo.org/record/1436828#.XRhmfY-xWrw.

https://zenodo.org/record/1436828#.XRhmfY-xWrw
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Table 3. Chosen hyper-parameters for SVM

Number of features Kernel C γ

1 000 linear 1 000 −
rbf 1 000 1

656 linear 1 000 −
rbf 1 000 1

10 linear 1 333 −
rbf 1 000 1.23

Table 4. Architecture of the CNN

Hyper-parameter Value

Input shape (1000, 1)

Convolution layers (8, 16, 32, 64, 128, 256, 512, 512, 512)

Pooling type Max

Fully-connected layers 512

Dropout rate 0.5

2. Convolutional and fully-connected layers use the ReLU activation function.
3. A convolution block is composed of one convolution layer followed by a pooling

layer.
4. An additional batch normalization layer is applied for every odd-numbered

convolution block and is preceding the pooling layer.
5. The chosen filter size for convolution layers is fixed on size 3.
6. The number of filters nfilters,i in a convolution block i keeps increasing accord-

ing to the following rule: nfilters,i = max(2i ·nfilters,1, 512) for every layer i ≥ 0
and we choose nfilters,1 = 8

7. The stride of the pooling layers is of size 2 and halves the input data for each
block.

8. Convolution blocks follow each other until the size of the input data is reduce
to 1.

The resulting architecture is represented in Table 4 and Fig. 3.

5.2 Dimensionality Reduction

For computational reasons, one may want to select points of interest (POI) and
consequently, we explore several different setting where we either use all the fea-
tures in a trace or we conduct dimensionality reduction. Here, for dimensionality
reduction, we use Principal Component Analysis (PCA) [5]. Principal compo-
nent analysis (PCA) is a well-known linear dimensionality reduction method that
may use Singular Value Decomposition (SVD) of the data matrix to project it
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Fig. 3. CNN architecture as implemented in Keras. This architecture consists of 9
convolutional layers followed by max pooling layers. For each odd convolutional layer,
there is a batch normalization layer before the pooling layer. At the end of the network,
there is one fully connected layer.

to a lower dimensional space. PCA creates a new set of features (called prin-
cipal components) that are linearly uncorrelated, orthogonal, and form a new
coordinate system. The number of components equals the number of original
features. The components are arranged in a way that the first component cov-
ers the largest variance by a projection of the original data and the subsequent
components cover less and less of the remaining data variance. The projection
contains (weighted) contributions from all the original features. Not all principal
components need to be kept in the transformed dataset. Since the components
are sorted by the variance covered, the number of kept components, designated
with L, maximizes the variance in the original data and minimizes the recon-
struction error of the data transformation.

Note, while PCA is meant to select the principal information from a data,
there is no guarantee that the reduced data form will give better results for
profiling attacks than its complete form. We apply PCA to have the least possible
number of points of interest that maximize the score from TA (10 points of
interest) and the number of POI using a Bayesian model selection that estimates
the dimensionality of the data based on a heuristics (see [22]). After an automatic
selection of the number of components to use, we have 656 points of interest.
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5.3 Results

In Table 5, we give results for different profiling methods when considering recov-
ery of a single nibble of the key. We can see that all profiling techniques reach
very good performance with all accuracy scores above 95%. Still, some differences
can be noted. When considering all available features (1 000), CNN performs the
best and has the accuracy of 100%. Both linear and rbf SVM and RF have the
same accuracy. The performance of SVM is interesting since the same value for
linear and rbf kernel indicates that there is no advantage of going into higher
dimensional space, which means that the classes are linearly separable. Finally,
TA performs the worst of all considered techniques.

Applying PCA to the dataset results in lower accuracy scores. More precisely,
when considering the results with PCA that uses an optimal number of compo-
nents (656), we see that the results for TA slightly improve while the results for
RF and CNN decrease. While the drop in the performance for RF is small, CNN
has a significant performance drop and becomes the worst performing technique.
SVM with both kernels retains the same accuracy level as for the full number
of features. Finally, when considering the scenario where we take only 10 most
important components from PCA, all the results deteriorate when compared
with the results with 1 000 features. Interestingly, CNN performs better with
only 10 most important components than with 656 components but is still the
worst performing technique from all the considered ones.

To conclude, all techniques exhibit very good performance but CNN is the
best if no dimensionality reduction is done. There, the maximum accuracy is
obtained after only a few epochs (see Figs. 5 and 6). If there is dimensionality
reduction, CNN shows a quick performance deterioration. This behavior should
not come as a surprise since CNNs are usually used with the raw features (i.e., no
pre-processing). In fact, applying such techniques could reduce the performance
due to a loss of information and changes in the spatial representation of features.
Interestingly, TA is never the best technique while SVM and RF show good and
stable behavior for all feature set sizes.

In Fig. 4, we give the success rate with orders up to 10 for all profiling methods
on the dataset without applying PCA. Note, a success rate of order o is the
probability that the correct subkey is ranked among the firsts o candidates of
the guessing vector. While CNN has a hundred percent success rate of order 1,
other methods achieve the perfect score only for orders greater than 6.

The results for all methods are similar in the recovery of a single nibble from
the key. If we want to have an idea of how good these methods are for the
recovery of a full 256-bit key, we must apply the classification on the successive
64 nibbles. We can have an intuitive glimpse of the resulting accuracy Pc with
the cumulative probability of the probability of one nibble Ps : Pc = Π64Ps (see
Table 6). The cumulative accuracy obtained in such a way can be interpreted as
the predictive first-order success rate of a full key for the different methods in
terms of a security metric.

From these results, we can observe that the best result is obtained with CNN
when there is no dimensionality reduction. Other machine learning methods and
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Table 5. Accuracy for the different methods obtained on the attacking dataset.

Algorithm 1 000 features 656 PCA components 10 PCA components

TA 0.9977 0.9984 0.9830

RF 0.9992 0.9914 0.9937

SVM (linear) 0.9992 0.9992 0.995

SVM (rbf) 0.9992 0.9992 0.995

CNN 1.00 0.95 0.96

Fig. 4. Success rate results.

TA are nonetheless powerful profiling attacks with up to 95 and 90% performance
to recover the full key on the first guess with the best choice of hyper-parameters
and dimensionality reduction. Note the low accuracy value for CNN when using
656 PCA components: this result is obtained as the accuracy of CNN for a
single nibble raised to the power of 64 (since now we consider 64 nibbles). When
considering the results after dimensionality reduction, we see that SVM is the
best performing technique, which is especially apparent when using only 10 PCA
components. Finally, we observe again that TA is never the best performing
technique.

As it can be observed from Figs. 5 and 6, both scenarios without dimen-
sionality reduction and dimensionality reduction to 656 components, reach the
maximal performance very fast. On the other hand, the scenario with 10 PCA
components does not seem to reach the maximal performance within 100 epochs
since we see that the validation accuracy does not start to decrease. Still, even
longer experiments do not show further improvement in the performance, which
indicates that the network simply learned all that is possible and that there is
no more information that can be used to further increase the performance.
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Table 6. Cumulative probabilities of the profiling methods.

Algorithm 1 000 features 656 PCA components 10 PCA components

TA 0.86 0.90 0.33

RF 0.95 0.57 0.66

SVM (linear) 0.95 0.95 0.72

SVM (rbf) 0.95 0.95 0.72

CNN 1.00 0.03 0.07

(a) Training Accuracy (b) Validation Accuracy

Fig. 5. Accuracy of the CNN method over 100 epochs

(a) Training Loss (b) Validation Loss

Fig. 6. Loss of the CNN method over 100 epochs.

Choosing the Minimum Number of Traces for Training on CNN. As
it is possible to obtain a perfect profiling phase on our dataset using CNN, we
focus here on finding the smallest training set that gives a success rate of 1. More
precisely, we evaluate the attacker in a more restricted setting [26]. To do so, we
first reduce the size of the training set to k number of traces per class (to always
have a balanced distribution of the traces) and then we gradually increase it to
find out when the success rate reaches 1. In Table 7, we give the results obtained
after one hundred epochs.
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Table 7. Validation and test accuracy of CNN with an increasing number of training
traces.

Number of traces per class k 10 20 30 50 100 300

Validation accuracy 0.937 1.0 1.0 1.0 1.0 1.0

Testing accuracy 0.992 0.992 1.0 1.0 1.0 1.0

Interestingly, it turns out that 30 traces per class for training the CNN is
enough to reach the perfect profiling of this dataset. At the same time, the
additional experiments did not show good enough behavior with a lower number
of traces per class. Note the scenario with only 10 traces per class where the
validation accuracy is lower than the testing accuracy. This happens since we
use only 20% of the training set for the validation, which results in an extremely
small validation set and consequently, less reliable results.

6 Conclusions and Future Work

In this paper, we consider a number of profiling techniques to attack the Ed25519
implementation in WolfSSL. The results show that although several techniques
perform well, convolutional neural networks are the best if no dimensionality
reduction is done. In fact, in such a scenario, we can obtain the accuracy of
100%, which means that the attack is perfect in the sense that we obtain the
full information with only a single trace in the attack phase. What is especially
interesting is the fact that CNN used here is taken from related work (more
precisely, CNN used for profiling SCA on AES) and is not further adapted to the
scenario here. This indicates that CNNs can perform well over various scenarios
in SCA. Finally, to obtain such results, we require only 30 measurements per
class, which results in less than 500 measurements to reach a success rate of 1
with CNN.

The implementation of Ed25519 we attack in this work does not feature
any countermeasure for SCA (that is, beyond constant-time implementation).
In future work, we plan to evaluate CNN for SCA on Ed25519 with different
countermeasures to test the limits of CNN in the side-channel analysis.

Appendix

A Ed25519 Domain Parameters

Ed25519 domain parameters:

– Finite field Fq, where q = 2255 − 19 is the prime.
– Elliptic curve E(Fq), Curve25519
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– Base point B
– Order of the point B, l
– Hash function H, SHA-512 [13]
– Key length u = 256 (also length of the prime)

For more details on other parameters of Curve25519 and the corresponding curve
equations we refer to Bernstein [2].

B EC Scalar Multiplication

Algorithm 2. Elliptic curve scalar multiplication with base point [4]
Input: R, a with a = a[0] + 256 ∗ a[1] + ... + 25631a[31]
Output: H(a, s, m)
1: for i = 0; i < 32; + + i do
2: e[2i + 0] = (a[i] >> 0&15);
3: e[2i + 1] = (a[i] >> 4)&15;
4: end for
5: carry = 0;
6: for i = 0; i < 63; + + i do
7: e[i]+ = carry;
8: carry = (e[i] + 8);
9: carry >>= 4;

10: e[i]− = carry << 4;
11: end for
12: e[63]+ = carry; � ∀i < 64, −8 ≤ e[i] ≤ 8
13: ge p3 0(h);
14: for i = 1; i < 64; i+ = 2 do
15: ge select(&t, i/2, e[i]); � load from precomputed table (e[i] · 16i) · B in E.
16: ge madd(&r, R, &t); ge p1p1 to p3(R, &r);
17: end for
18: ge p3 dbl(&r, R); ge p1p1 to p2(&s, &r);
19: ge p2 dbl(&r, &s); ge p1p1 to p2(&s, &r);
20: ge p2 dbl(&r, &s); ge p1p1 to p2(&s, &r);
21: ge p2 dbl(&r, &s); ge p1p1 to p3(R, &r);
22: for i = 0; i < 64; i+ = 2 do
23: ge select(&t, i/2, e[i]); � load from precomputed table (e[i] · 16i) · B in E.
24: ge madd(&r, R, &t); ge p1p1 to p3(R, &r);
25: end for
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Abstract. Impossible-differential cryptanalysis finds the correct round-
key of a block cipher by eliminating wrong guesses which do not satisfy
some impossible path(s). In this paper, we report our parallel implemen-
tation of the impossible-differential cryptanalysis of five-round AES-128,
originally proposed by Biham and Keller [4]. In this attack, the time
complexity is 231 and the data complexity is 229.5. But the primary
memory requirement is very high, about 4 TB, making the attack some-
what impractical to implement. The first practical implementation of
this attack appears in Kakarla et al. [11], where the primary memory
requirement is reduced to 128.5 GB, and the running time achieved is
48 h. Here, we propose an improvement of the attack by exploiting data
and task parallelism. We use a nine-node cluster (one master node and
eight worker nodes) to implement the attack. In our attack, the time
complexity and the data complexity remain the same as [11], but the
primary memory requirement is reduced to 96.5 GB per node. This par-
allelism helps us retrieve the full key in only 6.5 mins.

Keywords: AES-128 · Impossible-differential Cryptanalysis ·
Precomputation · Parallel implementation · Distributed computation

1 Introduction

Rijndael is selected as the Advanced Encryption Standard (AES) [8] by the
National Institute of Standards and Technology (NIST) in October 2000. Since
then, AES is the most widely used symmetric-key block cipher used by the
cryptographic community. Consequently, cryptanalysis of AES continues to be a
very significant and active area of research in symmetric cryptology. The biclique
attack [6] is the first key-recovery attack on full-round AES. The time complexity
of this attack is too high: 2126.1 for AES-128, 2189.7 for AES-192, and 2254.4 for
AES-256. Square attack [8] and impossible-differential cryptanalysis [3] are so far
the most effective attacks on reduced-round AES. In this paper, we focus on the
impossible-differential cryptanalysis of AES-128. Differential cryptanalysis [5]
c© Springer Nature Switzerland AG 2019
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is a type of chosen-plaintext attack which probabilistically correlates plaintext
differences with last-round ciphertext differences. Impossible-differential crypt-
analysis tries to exploit differentials in the cipher path, that can never occur,
and the subkeys for which this incident occurs can be eliminated with impunity,
thereby reducing the key-space.

Biham and Keller [4] introduce impossible-differential cryptanalysis (IDC)
of five-round AES-128 in 2000. This attack requires 229.5 chosen plaintexts, 231

encryptions, 242 bytes of memory, and 237 one-round encryptions as precomputa-
tion. In 2001, Cheon et al. [7] apply IDC on six-round AES-128. They use about
291.5 chosen plaintexts and 2122 encryptions of Rijndael. Another approach of the
six-round attack is given by Zhang et al. [15] in 2007. The attack requires 2114.5

plaintexts and 246 six-round encryptions, and the total memory requirement is
245 bytes. In 2004, Phan [13] proposes an improved version of IDC on seven-
round AES-192 and AES-256. Phan’s attack on seven-round AES-192 uses 292

chosen plaintexts, 2153 memory, and 2186 seven-round encryptions, whereas the
attack on seven-round AES-256 requires 292.5 chosen plaintexts, 2153 memory,
and 2250.5 seven-round encryptions. Also, many other theoretically new attacks
and improvements [1,9,12] are available for IDC in the literature.

Table 1. Key recovery attacks on 5-Round AES-128

Attack Key Data complexity Memory Time

Partial sum [14] Partial key 28 Small 238

Square [8] Partial key 233 64 GB 234

Improved square [9] Partial Key 233 Small 233

MDC [10] Partial key 232 64 GB 232

IDC [4] Partial key 229.5 4 TB 231

IDC [11] Full key 4 × 232 128.5 GB 231

MDC [2] Partial key 221.5 45.25 MB 221.5

In Table 1, we summarize the major five-round key-recovery attacks on AES-
128. Here, IDC and MDC stand for impossible-differential and mixture-differential
cryptanalysis. Among these attacks, the only practically implemented attack on
five-round AES-128 using IDC is reported by Kakarla et al. [11] in 2017. In what
follows, we describe our improvement of this attack by adding parallelism in the
implementation. In short, our contribution can be summarized as follows.

– We distribute the attack over multiple computing nodes not sharing any com-
mon memory. In each node, multiple cores run in parallel, and share memory
among themselves.

– The precomputation time complexity is reduced from 240 to 237.
– The total memory required is reduced from 128.5 GB to 96.5 GB per node.
– The total time required to get the full key is reduced from 48 h to 6.5 mins.
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The rest of the paper is organized as follows. Section 2 provides the necessary
background which includes a brief description of AES, the notations used in this
paper, the four-round impossible-differential property of AES, and the original
round-reduced attack of Biham [4]. Section 3 deals with our parallel implemen-
tation. Section 3.1 elaborates the data- and task-parallelism ideas used in our
implementation. Section 3.2 gives a step-by-step procedure of the attack imple-
mentation. Our experimental results are presented in Sect. 4. Section 5 concludes
the paper.

2 Differential Cryptanalysis of AES

2.1 A Brief Description of AES

AES has three variants. AES-128 uses 128-bit keys and has 10 rounds, AES-192
uses 192-bit keys and has 12 rounds, and AES-256 uses 256-bit keys and has
14 rounds. The block size is 128 bits in all these variants. The 128-bit input or
output of any round of AES is a state matrix of size 4 × 4 as given in Fig. 1.
Each element of the state matrix is a byte.

Fig. 1. Byte coordinates of an AES state

Each round of the AES encryption, except for the final one, performs the
following operations. The last round is similar; only the MixColumn step is
skipped. Moreover, before the first round, there is an XOR of the state with a
128-bit initial key.

– SubByte (SB): This is the only nonlinear operation of AES, and is applied
byte-wise on the state matrix.

– ShiftRow (SR): This left shifts each row of the state matrix by a fixed number
of bytes (except the first row).

– MixColumn (MC): This is a column-wise operation which multiplies each
column of the state matrix with a constant MixColumn matrix.

– AddRoundKey (AK): The state matrix is XOR-ed with the 128-bit round
key.
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Fig. 2. Diagonal-wise byte positions of the plaintext

Fig. 3. Diagonal-wise byte positions of the ciphertext at the fifth-round output

The decryption process uses the inverse of each of the above operations.
There is also a KeySchedule algorithm which generates the round keys. In this
paper, we use the AES-128 variant, that is, all the keys are assumed to be of
size 128 bits. In the rest of this paper, we use the following notations.

– P : Plaintext
– C: Ciphertext
– Si: State matrix at the beginning of the i-th round.
– SSR

i : State matrix after the ShiftRow operation of the i-th round.
– SBS

i : State matrix after the SubBytes transformation of the i-th round.
– SMC

i : State matrix after the MixColumn operation of the i-th round.
– SAK

i : State matrix after the AddRoundKey step of the i-th round (SAK
i =

Si+1).
– Sb: The b-th byte in the state for b ∈ {1, 2, . . . , 16} (see Fig. 1).
– K0: The initial key.
– Ki: The round key in the i-th round (i ≥ 1).
– PD: The set of plaintext diagonals (given in Fig. 2 by filled boxes). This

consists of four byte combinations:

PD =
{

(1, 6, 11, 16), (2, 7, 12, 13), (3, 8, 9, 14), (4, 5, 10, 15)
}

.

– CD: The set of ciphertext diagonals (shown in Fig. 3 by unfilled or white
boxes). This consists of four byte combinations:

CD =
{

(1, 8, 11, 14), (2, 5, 12, 15), (3, 6, 9, 16), (4, 7, 10, 13)
}

.

2.2 Four-Round Impossible-Differential Property of AES-128

In this section, we describe the four-round IDC property used by Biham and
Keller [4]. Indeed, they use the four-round property to attack the five-round
AES-128. Subsequently, this property is used in most of the higher-round attacks
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Fig. 4. Four-round Impossible-differential path

of this type. Here we take two chosen plaintexts as input. A byte in the state
matrix, which is different(XOR difference is non-zero) in the encryptions of the
two chosen plaintexts or after decryptions of the two generated ciphertexts, is
called an active byte. A non-active byte is called passive. The position of the
active bytes and passive bytes in chosen plaintexts are shown in Fig. 2. The active
bytes are shown by filled boxes, and the passive bytes by white boxes.

Property 1 (MixColumn Property): In a state, if there is only one byte dif-
ference in a particular column, then after MixColumn the corresponding column
will have all non zero differences.

In Fig. 4, let P1 and P2 be equal in all except one byte. The MixColumn
property implies that after two round of encryption, all bytes become active. If
C1 and C2 have zero difference in only one of the diagonals in CD as in Fig. 3,
then after two rounds of decryption, there will be zero difference only in one of
the diagonal positions in PD (with active and passive bytes switched in reference
to Fig. 2). This observation leads to the following property.

Property 2 (Impossible-differential property): Let two plaintexts be equal
in all bytes except one. Then after four rounds of encryption, the two ciphertexts
cannot have zero differences in any one of the diagonals of CD.
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Fig. 5. Five-round Impossible-differential path

2.3 Five-Round Impossible-Differential Attack on AES-128

We now explain the five-round IDC on AES-128, as proposed by Biham and
Keller [4]. To implement the five-round impossible-differential attack, an extra
round is added at the top of the four-round impossible-differential path (see
Fig. 5). Plaintext pairs which have active bytes in only any one of the diagonals
from the set PD are called chosen pairs. Those chosen pairs, for which the
ciphertext pairs have passive bytes in any one of the diagonals from the set CD,
are called desired pairs.

Let P1, P2 be a desired pair. Let C1, C2 be the five-round encryptions of these
plaintext messages, obtained by the encryption oracle. This means ΔC = C1⊕C2

has passive bytes in one of the ciphertext diagonals. Also denote ΔP = P1 ⊕P2.
Now, consider two states Q1, Q2 after the MixColumn operation of the first

round such that their difference has only one active byte. Applying the inverses of
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Fig. 6. Elimination of invalid partial keys in first round

the MixColumn, ShiftRow, and SubByte operations, we get R1, R2. This compu-
tation does not involve any key and can therefore be done without any decryption
oracle. Moreover, the difference ΔR = R1 ⊕ R2 must be active only at one of
the plaintext diagonals. We must have ΔR = ΔP for some desired pair P1, P2

(see Fig. 6).
The plaintexts P1, P2 do not have any contribution of the secret key. On

the contrary, the position of R1, R2 is after the XOR-ing with the initial key
K0. Therefore, P1 ⊕ R1 and P2 ⊕ R1 reveal two impossible byte values of the
initial key K0 in the byte positions of one plaintext diagonal. These four-byte
impossible values are called invalid partial keys. We get four invalid partial-key
sets for the four plaintext diagonals. These four diagonals are non-overlapping.
Therefore, the key space is reduced to only those combinations, in which none
of the diagonals contains an invalid partial key.

We choose one column of Q1 and Q2 as (w, x, y, z) and (w′, x, y, z) with
w �= w′. We take zero bytes at all other positions of Q1 and Q2. There are
about 240 choices of Q1, Q2, whereas there are 232 possibilities of ΔR. So each
possibility of ΔR has an expected number 28 of Q1, Q2 pairs. There are 232

plaintexts with one active diagonal, and the number of pairs of such plaintexts
is

(
232

2

) ≈ 263. For each pair, the probability that one of the ciphertext diagonals
is passive after five rounds of encryption is 2−32. Since there are four ciphertext
diagonals, the probability that any one of these is passive is 2−30. So the expected
number of desired pairs is 263 × 2−30 = 233. Two invalid partial keys discovered
in the process are the same with probability 2−32. Finally, we work with 232

chosen plaintexts. Therefore the expected number of wrong keys that remain
after this filtering is about

232
(
1 − 2−32

)233·28 ≈ 0 (1)

Biham and Keller [4] argue that the working of the attack actually needs 229.5

chosen plaintexts, yielding 228 desired pairs. The precomputation cost is 237 one-
round decryptions. In the key elimination part, 231 five-round encryptions are
needed. The memory requirement is 4 TB.

This attack requires the maintenance of two tables. First, we need a table
to identify all the desired pairs. To start with, we fix a plaintext diagonal and
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a ciphertext diagonal. Let P be a plaintext with active bytes only in the fixed
plaintext diagonal. Let p be the 32-bit value in these active byte positions. We
invoke the encryption oracle to obtain the five-round encryption C of P . We
then extract from C the 32-bit value c from the position of the fixed ciphertext
diagonal. The desired pair table stores p indexed by c. Multiple entries p1, p2
stored in the same index c corresponds to a plaintext pair (P1, P2) for which
ΔC = C1 ⊕C2 has passive bytes in the given ciphertext diagonal. These desired
pairs allow us to eliminate invalid partial keys using the second table.

For constructing the second table, called the hash table, we generate all of
the 240 combinations of Q1, Q2, and compute the corresponding R1, R2 and
subsequently ΔR = R1 ⊕ R2, as explained above. Let r1 and δr be the 32-bit
values extracted from the given plaintext diagonals of R1 and ΔR, respectively.
The hash table stores r1 in the index δr. The expected size of the list at each
hash-table index is 28.

3 Parallel Implementation of IDC for Five-Round
AES-128

We implement the IDC algorithm on a cluster with one master node and eight
worker nodes. The nodes do not share any memory, so some relevant data need
to be copied to each of these. Each node runs 32 cores which can share data
stored in the memory of that node.

Figure 7 gives the broad phases of the five-round IDC algorithm. In the pre-
computation phase, the hash table is generated by one-round decryption start-
ing at SSM

1 . Also, by making five-round encryption requests to the oracle, the
desired pair table is generated corresponding to each plaintext diagonal and each
ciphertext diagonal. The precomputations proceed in the worker nodes in par-
allel. In the key elimination phase, all the invalid partial keys are identified for
each plaintext diagonal. This stage uses both the hash table and the desired
pair table, and is carried out in parallel at the eight worker nodes. The worker
nodes eventually return four reduced valid partial-key sets. Finally, the full-key
recovery phase is distributed to the eight working nodes which merge the partial
key sets to a set of possible full keys, and identify the correct full key by making
a brute force search over all these possibilities.

3.1 Task Distribution Across the Worker Nodes

As mentioned above, the phases that are parallelized across the eight worker
nodes are hash-table generation, desired-pair table generation, and partial-key
elimination. All these phases have data-parallelism possibilities in the sense that
the different worker nodes perform the same task in parallel on different sets of
data. The work of each node in these stages is broken down to 32 subtasks, each
running on a single core. The final full-key recovery phase is likewise distributed
to the eight worker nodes, each involving its 32 cores to complete its task.
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Fig. 7. Phases of the IDC implementation process

Parallelism in Hash-Table Generation. The hash table is generated by
iterating over all of the 240 values of (w,w′, x, y, z), calculating the states R1, R2

by one-round decryption, and then storing r1 = Extract32(R1) in the index δr =
Extract32(ΔR) = Extract32(R1 ⊕ R2). Here, the method “Extract32” extracts
the 32 bits of a plaintext diagonal. The procedure is elaborated in Algorithm 1.
Since, we have eight worker nodes, we divide the set of 240 calculations into eight
sets of size 240/8 =237, one assigned to each worker node. The hash-table parts
generated by the eight worker nodes can be merged.

Algorithm 1. Generation of the hash table
1: procedure FormHashtable( )
2: HashTable ← Empty
3: for tuples (w, w′, x, y, z) assigned to the worker node, do
4: Q1 ←InitializeColumn(w, x, y, z)
5: Q2 ←InitializeColumn(w′, x, y, z)
6: R1 ← SB−1(SR−1(MC−1(Q1)))
7: R2 ← SB−1(SR−1(MC−1(Q2)))
8: r1 = Extract32(R1)
9: δr = Extract32(R1 ⊕ R2)

10: Append(Hashtable[δr], r1)

11: end for
12: return

Parallelism for Plaintext Diagonals. In our implementation, partial keys for
one plaintext diagonal can be eliminated independently of the other three diago-
nals. So the partial-key elimination phase for the four diagonals can run in parallel
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Fig. 8. Hash table and desired pair table mapping into worker nodes

without any dependency. Since, we have eight nodes in our cluster, we distribute
the work for each diagonal to two nodes.

Hash Table Division. The hash table is divided into two parts to reduce the
RAM requirements for this attack. The hash table contains 232 rows indexed by
the 32-bit value δr. We divide the table into two expectedly equal-sized halves
H0 and H1 based on the most significant bit of δr. Along with the division of the
work with respect to the plaintext diagonals, this creates a total of eight subtasks
in the partial-key elimination phase. Eventually, the eight worker nodes produce
eight valid partial-key sets, each corresponding to one plaintext diagonal and
one half of the hash table. Figure 8 illustrates this division of work.

3.2 The Attack Procedure

In this subsection, we elaborate the different steps of our implementation.

Optimizing Memory Requirement. In our description given so far, the hash
table stores an expected number 240 of 4-byte entries distributed across 232

indices. The memory requirement in bytes for this storage is four times 240, that
is, 4 TB. This is a very high requirement for most modern machines. We propose
ways of reducing the space occupied by the hash table. This requires a larger
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Fig. 9. Data structures used to access the hash table

number of desired pairs for the attack to succeed. Moreover, the running time
should not deteriorate.

Initially, a simple technique is used to reduce the hash table size from 4 TB to
2 TB. Instead of using both the pairs ((w, x, y, z), (w′, x, y, z)) and ((w′, x, y, z),
(w, x, y, z)), only one pair used by enforcing the condition w > w′. This memory
is still impractically huge.

Biham and Keller [4] argue that instead of 232 chosen plaintexts, one can
work with only 229.5 plaintexts. The hash-table size is kept at 240 bytes. Kakarla
et al. [11] propose a trade-off which uses all of the 232 available plaintexts. They
then throw away a part of the hash table.

Let the average number of entries per hash table index be 2m, 0 ≤ m ≤ 7.
Then, for each desired pair, 2m+1 partial keys are expected to be discarded. If
the number of desired pairs is 2n, the number of potentially correct partial keys
is given by

232
(
1 − 2−32

)2m+1·2n
(2)

According to the probability calculations of [4], we should have

m + n + 1 = 36 =⇒ n = 35 − m (3)

So, the total number of hash table entries is 232+m. For obtaining 2n desired
pairs, the number of chosen plaintexts required is 2(n+31)/2, that is, 233−m/2 for
n = 35 − m. Since we want to reduce m as much as possible, and we have the
option of using at most 232 chosen plaintexts, we set 33 − m/2 = 32, that is,
m = 2. This means that the hash table now contains 232+m = 234 entries, and
the memory requirement drops to 64 GB.

Hash Table Accessing. To access the hash table efficiently during the key-
elimination phase, we maintain two arrays (see Fig. 9).

– The decryption array: This is used to store the r values generated after one
round of decryption. The total no of r values is 232. For the choice m = 2
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Fig. 10. List for storing plaintext-ciphertext pairs for identifying desired pairs

explained above, the expected number of entries per index is four, so a total
of about 234 entries are stored in the array.

– Cumulative count array: For an index r, let ur denote the number of entries in
the decryption array with the given r value. In the cumulative count array, we
store the partial sums 0, u0, u0+u1, u0+u1+u2, . . . , (u0+u1+u2+. . .+u232−2).

Desired Pair Table Generation. For each diagonal, 232 plaintexts expectedly
generate 233 desired pairs before the key-elimination phase. We do not store the
pairs explicitly. We instead store the extracted 32-bit plaintext p against the
extracted 32-bit ciphertext c. The plaintext extractions p corresponding to the
same ciphertext extraction c are stored as a linked list in an array called the
plaintext array. The first index of each list is stored in a head array. Figure 10
illustrates this organization of the data. For example, the ciphertext c0 arises
from the plaintexts p3, p7, p10, whereas the ciphertext c1 originates from p8, p1.

Key Elimination. This phase runs in parallel at eight worker nodes. For
invalidating the partial keys, we take a desired pair (P1, P2), and compute
δr = Extract32(P1 ⊕ P2). If this index is not present in the part of the hash
table assigned to the given node, nothing is done (this is processed by another
node). Otherwise, for each r value stored at index δr of the hash table, the par-
tial keys r ⊕ Extract32(P1) and r ⊕ Extract32(P2) are recorded as invalid. The
key-elimination procedure for a particular node is given as Algorithm 2. Each
node takes a plaintext diagonal and one of the two parts of the hash table as
input.

Key-Set Merging and Full Key Recovery. To recover the correct full key,
we perform the following steps.

– Key-Set Merging: Take the intersection of the two key arrays calculated
by a pair of nodes for a single plaintext diagonal. The hash table is divided



118 D. Pal et al.

Algorithm 2. Key elimination at a worker node
1: procedure KeyElimination(PTDiag, HashTablePart)
2: KeyArr ←AllKeys � Initially mark all possible 4-byte keys as valid
3: for each ciphertext diagonal CTDiag, do
4: DPT ← CreateDesiredPairTable(PTDiag, CTDiag)
5: for c = 0 to 232 − 1 do
6: for P1, P2 ∈ DPT [c] do
7: δr ← Extract32(P1 ⊕ P2)
8: if δr belongs to HashTablePart then
9: for r ∈ HashTablePart[δr] do

10: Delete r ⊕ Extract32(P1) from KeyArr
11: Delete r ⊕ Extract32(P2) from KeyArr

12: end for
13: end if
14: end for
15: end for
16: end for
17: return(KeyArr)

in two parts, and two nodes for a given plaintext diagonal handle these two
parts independently. Only the keys not eliminated by both the nodes are kept
for further consideration.

– Full Key Recovery: Finally, we have around 480–500 partial keys for each
of the diagonals. We combine them, and make a brute-force search on the
reduced key-space to recover the correct full key.

4 Implementation and Results

Our code is executed on a cluster with one master node (working as the coordi-
nator), eight worker nodes, connected by InfiniBand switch. Each node has 32
cores clocked at 2.1 GHz. Each worker node has 128 GB RAM. The gcc com-
piler version 4.8.5 is used along with the POSIX threads (Pthread) API. We
have compiled our prgrams with the -O2 optimization flag.

We now work out the exact space usage and report the running time achieved
by our implementation.

– Space Usage: The total space required for the entire hash table is 234 × 4+
232×8 = 96 GB. With the splitting of the hash table, each plaintext diagonal
involves two nodes, each of which works on its part of the hash table. This
reduces the space usage of the Count and Decryption arrays per node to
48 GB. To access the desired pair table, the Head array takes 232 × 4 = 16
GB space, and the Plaintext array takes 232×8 = 32 GB. Finally, the boolean
array KeyArr takes only 0.5 GB, bringing the total RAM requirement in each
worker node to about 96.5 GB. Table 2 summarizes these space-usage figures.
It is to be noted that our implementation does not reduce the overall space
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complexity of the attack. Since our program runs on multiple nodes having
no shared memory, we have to replicate the hash-table data across nodes.
However, different desired-pair tables are used in different nodes.

– Running Time: The precomputation of the hash table incurs only a one-
time cost of 236 one-round decryptions and is independent of any key. Our
implementation needs 232 chosen plaintexts for each plaintext diagonal, so the
total data complexity is 4 × 232 = 234 (oracle encryptions). For each desired
pair in the key-elimination phase, we need to check an average of four entries
from the hash table at the relevant hash index, so the expected number of
XOR calculations is 233 × 23 = 236, which is roughly equivalent to the time
of 231 five-round encryptions [4].
We have implemented the attack on the distributed platform with one thread
running in each node. The running time of our implementation is about two
hours for each worker node. This time pertains to the key-elimination phase
(Algorithm 2), and does not include the time for the generation of the hash
table and the desired-pair tables. Traditionally, these are treated as precom-
putation stages. In the full-key recovery phase, the brute-force search is dis-
tributed to the eight worker nodes resulting in a further reduction in the
parallel running time. It requires about 10 min to retrieve the correct key
using brute-force search. So, the total time required for the key-elimination
and the full-key recovery phases is 2 h 10 min.

Table 2. Memory requirement at each worker node

Data structure Memory requirement

Hash table 48 GB

Head array 16 GB

Plaintext array 32 GB

Key array 0.5 GB

Total 96.5 GB

If the tasks done by the eight worker nodes are sequentially carried out in
a single node (like the master node), the total sequential time achieved by
our implementation would be 8 × 2 h + 8 × 10 mins ≈ 17.33 h. We have not
implemented this sequential version. Table 3 reports the projected running
time.
We have also carried out a multi-threaded implementation. Each node of
our cluster has 32 cores, so the computation at each node can be shared by
these available cores. Both the key-elimination stage and the brute-force key-
merging stage have parallelization potentials. We face some synchronization
and critical-section issues during the key-elimination phase. As the threads
invalidate the wrong subkeys in KeyArr in parallel, we need to handle con-
current writes by multiple threads. If the entire KeyArr is guarded by a
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mutex (semaphore), then all the writes proceed sequentially, thereby leading
to a significant loss of parallelization. On the other hand, if we guard each
element of KeyArr by a mutex, the number of mutexes will be astronomically
large. As a practical compromise, the KeyArr is divided into 1024 equal-sized
blocks. One mutex is used to guard each block, so we need a total of 1024
mutexes. When a thread updates the status of a key in a block, it locks the
mutex pertaining to that block only. This ensures mutual exclusion of con-
current write requests to the same block. Since 32 threads run in parallel,
and there are 1024 mutexes, the probability of a collision is no more than
1/2 by the birthday paradox. That is, the event that a thread has to wait for
acquiring its lock is rather infrequent.
After effectively handling the concurrent-write problem, the running time we
get is 6.5 min (6 min for key elimination and 30 s for full key recovery using
brute-force search).

Performance Comparison

A comparison of the theoretical performance of our approach with those of Biham
and Keller [4] and Kakarla et al. [11] is given in Table 3. Also, the comparison
for implementation with respect to running time is given in Table 4.

Table 3. Comparison of performance for full key recovery of five-round AES-128 using
IDC

Attack Data complexity Memory used

Biham and Keller [4] 4 × 229.5 4 TB

Kakarla et al. [11] 4 × 232 128.5 GB

This work 4 × 232 96.5 GB per node

Table 4. Comparison with respect to time required for full key recovery

Implementation Type System used Time taken

Kakarla et al. [11] Sequential Centralized Server 48 h

This work Sequential Single node, one thread 17 h 20 min

Distributed Eight worker and one master
nodes, one thread per node

2 h 10 min

Distributed Eight worker and one master
nodes, 32 threads per node

6.5 min
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Communication Complexity

The running times reported above do not include the time needed for distributing
data (hash-table parts and desired-pair tables) to the worker nodes. We use a
56 Gbps InfiniBand switch to speed up this data transmission. We experience a
communication delay of about 10–12 min in our implementation. Ironically, this
is larger than the best computation times achieved. This overhead can however
be completely eliminated by storing the relevant data in the local hard disk
of each worker node. Indeed, these data are generated by the precomputation
phase, and their distribution can be considered as a part of precomputation.

5 Conclusion

In this paper, we report our parallel implementation of impossible-differential
cryptanalysis of five-rounds AES. We propose a way to distribute the data and
the tasks to eight working nodes. This results in practical memory usage in each
node, and a sizeable reduction in the running time over a previous implementa-
tion. Indeed, to the best of our knowledge, ours is the fastest implementation of
this attack.

Extensions of this attack to work for more than five rounds of AES increase
data and time complexities almost unmanageably. While theoretical estimates
for six-round and seven-round AES are available in the literature, effective imple-
mentations of these attacks are never attempted, and remain as challenging open
problems to the cryptology community.

References

1. Bahrak, B., Aref, M.R.: Impossible differential attack on seven-round AES-128.
IET Inf. Secur. 2(2), 28–32 (2008). https://doi.org/10.1049/iet-ifs:20070078

2. Bar-On, A., Dunkelman, O., Keller, N., Ronen, E., Shamir, A.: Improved key recov-
ery attacks on reduced-round AES with practical data and memory complexities.
In: Advances in Cryptology - CRYPTO 2018–38th Annual International Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 19–23, 2018, Proceedings, Part
II, pp. 185–212 (2018). https://doi.org/10.1007/978-3-319-96881-0 7

3. Biham, Eli, Biryukov, Alex, Shamir, Adi: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Stern, Jacques (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48910-X 2

4. Biham, E., Keller, N.: Cryptanalysis of reduced variants of rijndael. In: 3rd AES
Conference, vol. 230 (2000)

5. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer-Verlag, Berlin (1993)

6. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
AES. In: Advances in Cryptology - ASIACRYPT 2011–17th International Confer-
ence on the Theory and Application of Cryptology and Information Security, Seoul,
South Korea, December 4–8, 2011. Proceedings, pp. 344–371 (2011). https://doi.
org/10.1007/978-3-642-25385-0 19

https://doi.org/10.1049/iet-ifs:20070078
https://doi.org/10.1007/978-3-319-96881-0_7
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/978-3-642-25385-0_19
https://doi.org/10.1007/978-3-642-25385-0_19


122 D. Pal et al.

7. Cheon, Jung Hee, Kim, MunJu, Kim, Kwangjo, Jung-Yeun, Lee, Kang, Sung-
Woo: Improved impossible differential cryptanalysis of rijndael and crypton. In:
Kim, Kwangjo (ed.) ICISC 2001. LNCS, vol. 2288, pp. 39–49. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45861-1 4

8. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryp-
tion Standard. Information Security and Cryptography, Springer, Berlin (2002).
https://doi.org/10.1007/978-3-662-04722-4

9. Ferguson, Niels, Kelsey, John, Lucks, Stefan, Schneier, Bruce, Stay, Mike, Wag-
ner, David, Whiting, Doug: Improved cryptanalysis of rijndael. In: Goos, Gerhard,
Hartmanis, Juris, van Leeuwen, Jan, Schneier, Bruce (eds.) FSE 2000. LNCS,
vol. 1978, pp. 213–230. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44706-7 15

10. Grassi, L.: Mixture differential cryptanalysis: a new approach to distinguishers
and attacks on round-reduced AES. IACR Trans. Symmetric Cryptol. 2018(2),
133–160 (2018). https://doi.org/10.13154/tosc.v2018.i2.133-160

11. Kakarla, S., Mandava, S., Saha, D., Roy Chowdhury, D.: On the practical imple-
mentation of impossible differential cryptanalysis on reduced-round AES. In:
Applications and Techniques in Information Security - 8th International Confer-
ence, ATIS 2017, Auckland, New Zealand, July 6–7, 2017, Proceedings, pp. 58–72
(2017). https://doi.org/10.1007/978-981-10-5421-1 6

12. Mala, H., Dakhilalian, M., Rijmen, V., Modarres-Hashemi, M.: Improved impos-
sible differential cryptanalysis of 7-round AES-128. In: Progress in Cryptology -
INDOCRYPT 2010–11th International Conference on Cryptology in India, Hyder-
abad, India, December 12–15 2010, Proceedings, pp. 282–291 (2010). https://doi.
org/10.1007/978-3-642-17401-8 20

13. Phan, R.C.: Impossible differential cryptanalysis of 7-round advanced encryption
standard (AES). Inf. Process. Lett. 91(1), 33–38 (2004). https://doi.org/10.1016/
j.ipl.2004.02.018

14. Tunstall, M.: Improved “partial sums”-based square attack on AES. IACR Cryp-
tology ePrint Archive 2012, 280 (2012). http://eprint.iacr.org/2012/280

15. Zhang, W., Wu, W., Feng, D.: New results on impossible differential cryptanaly-
sis of reduced AES. In: Information Security and Cryptology - ICISC 2007, 10th
International Conference, Seoul, Korea, November 29–30, 2007, Proceedings, pp.
239–250 (2007). https://doi.org/10.1007/978-3-540-76788-6 19

https://doi.org/10.1007/3-540-45861-1_4
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/3-540-44706-7_15
https://doi.org/10.1007/3-540-44706-7_15
https://doi.org/10.13154/tosc.v2018.i2.133-160
https://doi.org/10.1007/978-981-10-5421-1_6
https://doi.org/10.1007/978-3-642-17401-8_20
https://doi.org/10.1007/978-3-642-17401-8_20
https://doi.org/10.1016/j.ipl.2004.02.018
https://doi.org/10.1016/j.ipl.2004.02.018
http://eprint.iacr.org/2012/280
https://doi.org/10.1007/978-3-540-76788-6_19


Automated Classification
of Web-Application Attacks

for Intrusion Detection

Harsh Bhagwani, Rohit Negi, Aneet Kumar Dutta, Anand Handa(B),
Nitesh Kumar, and Sandeep Kumar Shukla

C3I Center, Department of CSE, Indian Institute of Technology, Kanpur, India
harshbhagwani@ymail.com,

{rohit,aneet,ahanda,niteshkr,sandeeps}@cse.iitk.ac.in

Abstract. In today’s information driven society and economy, web fac-
ing applications are most common way to run information dissemina-
tion, banking, e-commerce etc. Web applications are frequently targeted
by attackers through intelligently crafted http requests to exploit vul-
nerabilities existing in the application, front-end, and the web-clients.
Some of the most frequent such attacks are SQL Injection, Cross-Site
Scripting, Path-traversal, Command Injection, Cross-site request forgery
etc. Detecting these attacks up front and blocking them, or redirecting
the request to a honey-pot could be a way to prevent web applications
from being exploited. In this work, we developed a number of machine
learning models for detecting and classifying http requests into normal,
and various types of attacks. Currently, the models are applied as an
ensemble on the http server logs, to classify and build data analytics on
the http requests received by any web server in order to garner threat
intelligence, and threat landscape. We also implemented an online log-
analysis version that analyzes logs every 15 s to classify http requests
in the recent 15 s. However, it can also be used as a web application
firewall to block the http requests based on the classification results. We
also have implemented an intrusion protection mechanism by redirecting
http requests classified upfront as malicious towards a web honeypot. We
compare various existing signature based, regular expression based, and
machine learning based techniques against our models for detection and
classification of http based attacks, and show that our methods achieve
better performance over existing techniques.

Keywords: Intrusion detection system · Web security · Machine
learning

1 Introduction

In the last few years, there has been a tremendous growth in the use of the
Internet. According to the Internet World statistics, the number of Internet users
has increased by 30% within a decade [10]. From booking an appointment for
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health check-ups to online purchasing, the Internet is becoming part and parcel
of our lives. With the introduction of these web facing services, there has been a
huge growth in the web-application attacks which necessitates timely detection
of attacks and prevention. Malicious users are exploiting the vulnerabilities of
these services to obtain the personal data of other users, and affecting the quality
of service. According to the survey done by Sophos, India is ranked third in the
world, in the number of cyber attacks in 2018 and around 76% of the Indian
organizations faced cyber attacks in 2018 [9]. In another survey done by Small
Business Trends, hackers have targeted 43% of the start-ups, and around 60%
of them have gone out of business within a few months of the attacks [24].

According to the ENISA Threat Landscape report (ETL) of 2018 [18], web
application attack is ranked 3rd, consecutively for two years, among other attacks
in the cyber domain. Among the various types of web application attacks, there
are different techniques of different levels of difficulties, and different damages
they cause. In ETL 2018 report, SQL injection [5] dominates the web application
attacks with a share of 51%. Local File Inclusion and Cross-Site Scripting (XSS)
[7] come 2nd and 3rd in the attack ranking respectively. Attacks like injection
(mainly including SQL, Lightweight Directory Access Protocol (LDAP) [29],
XML Path (XPath) [2], etc.) and XSS come under one of the categories in the
OWASP Top 10 list of the most common attacks [28]. According to a report
published by Positive Technologies in 2017 [35], SQL injection and Cross-site
Scripting together have contributed about 50% of the attacks.

Intrusion Detection Systems (IDS) are security applications that monitor a
computer network or hosts therein, to detect any malicious activities or threats.
On detection, they alert the system administrators [17,23,32]. Alerting may
vary from logging the attacks in log files or alerting an administrator on security
dashboards to take necessary actions. Ideally, an Intrusion Detection System
should be simple, fast and precise. But it is impossible for an IDS to provide
complete protection as no detection method is 100% accurate. They make two
types of errors: False Positive - this is generally when a normal access is falsely
considered as a threat and False Negative - when a real attack goes undetected by
the IDS systems. Although, false positives are acceptable because they are passed
to the administrator for reviews, too many false positives can be a burden for
them as well. However, false negatives are never reviewed by the administrator
as they are mistaken as non-malicious threats. Hence, most of the organizations
tune their IDS from time to time to ensure close to zero false negatives, and
close to tolerance level of false positives.

One could use many different techniques to implement an IDS. Signature
based techniques use existing database of patterns for malicious access which
are matched against incoming activities (in web-application case, http requests).
Regular expression based signature schemes generalize the static patterns for
such detection. However, in this work, we show that these methods are often
not very effective in reducing false negatives or false positives. Also, as attack-
ers apply more intelligent encoding schemes to hide their malicious payload,
static or regular expression based patterns can be easily bypassed. Rule based
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techniques are another generalization of pattern matching. Dynamic learning
of rules for attack detection with reinforcement learning could be one way to
mitigate these problems – however, that requires complex training process, and
requires administrators to be interactive. Customers of IDS often want out-of-
the-box solutions rather than those requiring training on-site. Machine learning
based on past attack payloads therefore have been proposed by a number of
researchers. However, most prior work seem to be focused on detection of SQL
injection, and Cross-site scripting attacks. Our goal in this work has been to
build a tool that uses an ensemble of models trained to detect a larger variety of
attacks, and use the ensemble to classify the http requests into different attack
types. We also target offline detection from log files, and online detection from
incremental log files of http servers. Further, we are in the process of applying
the same ensemble of models to detect attacks even before the request has been
executed by the web application – thereby creating a web-application firewall.
However, in this paper, we only discuss the log file based detection. One might
question the need for classification/detection after the request has been pro-
cessed – by analyzing after the fact, from log files. This is useful when one has
a web application that is highly secure with all vulnerabilities patched, hence
the malicious requests have no effect even when processed, but after the fact
analysis provides system administrators with statistics of various kinds of attack
attempts, the payload structures, and thereby the threat landscape.

Therefore, the models presented in this paper feeds on the log files of the
web applications to detect attacks like SQLi, XSS, path traversal [11,26], OS
command [30], Server Side Includes (SSI) [34], LDAP, CRLF [6], and XPath. It
is able to detect the mentioned eight most popular attacks along with any other
anomalies which cannot be classified in one of the above classes of attacks. The
same machine learning based tool can be turned into a firewall by intercepting
http requests before it is delivered to the web application.

It is to be noted that a web server provides two different log files - access
log and error log. The access log maintains the history of all the requests a web
server receives and the error log maintains the records of all the error a web
server encountered while processing the requests. This work focuses more on
‘access.log’ because it contains all the necessary information required to monitor
the server. In Table 1 the various fields in a typical log file entry are shown.

Due to lack of space, we do not provide the definitions of the eight different
web application attacks considered in this paper. Readers unfamiliar with the
definitions of these attacks are referred to [2,6,11,12,29,30,34,36].

The rest of the paper is organized as: In Sect. 2, we discuss the existing regular
expression based approaches and machine learning based approaches to detect
or classify web application attacks. Section 3 discusses our proposed framework.
In Sect. 4, we evaluate our proposed framework and discuss the results. Section 5
compares our framework with the existing approaches, and finally, we conclude
the paper in Sect. 6 with some discussion on future work.
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Table 1. Definition of different log fields

Fields Definition

122.172.41.188 Client’s IP address

− The identity of the client on client’s machine

− Username of the client if the request was
authenticated

[24/Jun/2018:08:12:12 + 0000] Time at which the request was received

“GET /main.php HTTP/1.1” This contains HTTP method, path of the
requested resource and HTTP protocol version
used by client

200 It is a status code send by the server to the client
after processing the request

203 Size of the resources requested by client

− Referrer - Indicates from where did the request
arrived

“Mozilla/5.0 (Macintosh; Intel
Mac OS X 10 10 5) Gecko/
20100101 Firefox/45.0”

Gives information about the user making requests
like web browser, OS used, website source etc

2 Related Work

In this section we outline the different existing approaches to detect or classify
web application attacks.

2.1 Regular Expression Based Approaches

Regular Expression or Regex is a set of strings represented in an algebraic for-
mat which is used to describe the search pattern of a string [26]. This makes regex
fit for text processing, data validation and searching of strings. Searching strings
using regular expression is fast. A proposed method of detection of web application
attacks from entries in http server log files using regular expressions, can be found
in [26]. The paper proposes regular expressions to match http requests formed by
attackers in cases of XSS, code injection attacks (such as SQLi, LDAPi, XPath and
OS Command) and Path Traversal attack. The regular expressions may be able
to detect both obfuscated and non-obfuscated version of attacks. They search for
keywords like scripts, update, insert,../, etc. (which are found in these attacks) in
the received requests. Although they do not provide any analysis of accuracy or
precision of applying these regular expression on log files, still their prescribed reg-
ular expressions are widely used in many web application IDS. Table 2 shows the
attack types and their corresponding regular expressions provided in [26] for SQLi,
XSS, and Path Traversal. The regular expressions for other attacks are missing in
[26]. Later in this paper, we measure the accuracy of detection using these regular
expressions on test data to check their accuracy.
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Table 2. Regular expressions used in [26].

Attack type Regular expression

XSS 1./((\%3C) |<)(\%2F ) | \/) ∗ [az09\%] + ((\%3E) |>)/ix

2./((\%3C) |<)((\%69) | i | (\%49))((\%6D) | m | (\%4D))

((\%67) | g | (\%47))[∧\n] + ((\%3E) |>)/I

3.\(javascript | vbscript | expression | applet | script | embed |
object | iframe | frame | frameset)/i

SQLi 1./(\′) | (\%27) | (\\) | (#) | (\%23)/ix

2./((\%3D) | (=))[∧\n] ∗ ((\%27) | (\′) | (\\) | (\%3B) | (; ))/i

3./\w ∗ ((\%27) | (\′))(\s | \+ | \%20) ∗ ((\%6F ) | o |
(\%4F ))((\%72) | r | (\%52))/ix

4./((\%27) | (\′))(select | union | insert | update | delete |
replace | truncate)/ix
5./exec(\s | \+) + (s | x)p\w + /ix

Path Traversal /(\. | (% | %25)2E)(\. | (% | %25)2E)(\/(% | %25)2F | \\ | (% |
%25)5C)/i

SSI Not Provided

OS Command Not Provided

XPath Not Provided

CRLF Not Provided

LDAP Not Provided

Table 3. Regular expressions used by [27]

Attack type Regular expressions used by OWASP ModSecurity

XSS http : \/\/[\w\.]+?\/.∗?\.pdf\b[∧\x0d\x0a] ∗ #

SQLi No Regular Expression provided

Path Traversal No Regular Expression provided

SSI <! − −\W∗?#\W∗?(? : e(? : cho | xec) | printenv | include |
cmd)

OS Command (?i : (? : [\; \ | \‘]\W∗?\bcc | \b(wget | curl))\b | \/(? : [\′\”\ |
\; \‘\ − \s] | $))

XPath No Regular Expression provided

CRLF No Regular Expression provided

LDAP (? : \((? : W∗?(? : objectc(? : ategory | lass) | homedirectory |
[gu]idnumber | cn)\
b\W∗? =| [∧\w\x80 − \xFF ]∗?[\!\&\ |
][∧\w\x80 − \xFF ]∗?\()\)[∧\w\x80 − \xFF ]

∗?\[∧\w\x80 − \xFF ]∗?[\!\&\ |])
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OWASP ModSecurity Core Rule Set (CRS)[27] gives the regular expressions
to most of the attacks. They use the rule sets in ModSecurity, a firewall used
to provide securities from web app attacks. Table 3 depicts the types of attacks
and their corresponding regular expressions used to detect the attacks. In this
work, we also measure the accuracy obtainable by these regular expression based
matching in detecting different attack types. As we find in Sect. 4, we obtain
better results in the detection of web application attacks using machine learning
based approaches than regex based ones.

Now, we discuss some of the most well known approaches in web attack
detection using the concept of machine learning.

2.2 Machine Learning Based Approaches

In [13], authors propose a machine learning method to detect anomalous web
traffic. They perform their experiments on CSIC 2010 HTTP dataset. The
dataset consists of 25065 anomalous requests and 36000 normal requests. In
CSIC 2010 dataset, the anomalous request is a collection of various attacks like
XSS, SQLi, CSRF, etc. Using Weka analysis, they obtain five best features from
a set of 9 features based on their relevance and their impact on accuracy. The
best five features are request length, arguments length, number of arguments,
path length and number of special characters in the path. For classification of
requests into normal and anomalous, they have used various machine learning
techniques like Random Forest, Logistic Regression, Decision Tree, AdaBoost
Classifier, Stochastic Gradient Descent Classifier, and Naive Bayes. With all
the mentioned classifiers, they have achieved an accuracy of 99.94% except with
Stochastic Gradient Descent for which they obtain 99.88% and with Naive Bayes
they obtain 88.83%. Although they got good accuracy, they do not further clas-
sify the attacks into individual categories. We implement their model and applied
to our dataset. The highest accuracy using Random Forest classifier came out
to be 88.84%. This indicates that the model might not generalize well beyond
the CSIC 2010 dataset.

In [25], the authors discuss the detection of Cross-site Scripting attacks using
machine learning techniques. They dealt with both normal and obfuscation ver-
sion of XSS attacks. For training, they collected 4000 requests from many dif-
ferent sites consisting of 2000 benign samples from Dmoz and ClueWeb09 and
2000 XSS attack samples from [21]. Their testing dataset includes 13000 each
of benign and XSS samples. They prepare the data by removing duplicates,
removing extra new lines and blank spaces and at last, changing all the charac-
ters of the request to lowercase. To get a good result, they select two types of
features namely structural features and behavioral features. The structural fea-
tures deals with punctuation like &,%, /, \,+,@, space, |,# and combinations
of different punctuation like ><,′ ” ><, [],==,&#. Behavioural features con-
tain a list of selected commands and functions like eval(), Onload, Onerror,
createelement, String.fromCharCode, Search which are usually found in
an XSS attack. Together, they form a total of 38 structural features and 21
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behavioral features. These features have been used to create binary feature vec-
tors indicating the presence or absence of individual features in a request. To
classify the attacks into XSS and benign samples, they used four classifiers: Ran-
dom Forest, K-Nearest Neighbor and two variations of Support Vector Machine
(Linear Kernel and Polynomial Kernel). After tuning the classifiers using 5-fold
cross-validation, they tested the classifiers with test data and achieve an accu-
racy of 99.5% with Random Forest, 99.75% with K-NN, 99.6% with Polynomial
Kernel SVM and 96.32% with Linear Kernel SVM. When we implement machine
learning models with their feature set, we get the best accuracy of 89.81% with
Random Forest.

Cheon et al. [20] propose a method to prevent SQL injection in web applica-
tions. They detect the SQLi attacks using Bayesian Classifier, a machine learning
classifier using only two features which are the length of the parameters and the
number of keywords of parameters. The keywords are the commands and symbols
found in SQL statements like commas, quotation marks, “UNION,” “SELECT”,
etc., but they do not specify the full set of keywords used in second feature set.
They form their training dataset of size 2142 containing a mix of both SQL injec-
tion patterns and benign samples by using a python script and a test dataset
of 4070 different patterns. After training the Bayesian Classifier with full train-
ing dataset, upon testing they achieve an accuracy of 99.61%. Also, they detect
different patterns of SQL injection attacks. We are not able to reproduce their
model due to lack of enough details in [20].

These most recent machine learning based approaches supersede a few other
previous approaches, and hence not discussed here. In summary, our observations
on the past approaches are as follows:

– We found no substantial amount of work to detect attacks like XPath injec-
tion, CRLF, LDAP Injection, OS Command, SSI attack and Path traversal
attack using machine learning techniques so far.

– Only after the fact analysis is done in the detection of attacks on web appli-
cation from http log files.

– Although, the above mentioned approaches have achieved high accuracy, but
none of them has implemented the sub-classification of attacks.

3 Proposed Framework

In this section, we explain the architecture of our proposed log-based attack
detection and classification methods to achieve better detection accuracy. We
also discuss the implementation of our solution for a live website. We divide this
section into two phases offline log based detection and classification, and online
implementation.

3.1 Offline Log Based Detection and Classification

This step include dataset collection, data processing, feature extraction and mod-
eling of processed data as shown in Fig. 1.



130 H. Bhagwani et al.

Fig. 1. Architecture for Phase 1

Dataset Collection. We use a combination of two different datasets ECML/
PKDD 2007 Discovery Challenge dataset [1] and HTTP CSIC Torpeda 2012
dataset [15].

1. ECML/PKDD 2007 Dataset
ECML/PKDD 2007 Discovery Challenge aims to address the classification
of malicious HTTP requests received by a web application and identification
of the attack requests. They provide the real-time traffic of HTTP requests
in XML format stored in .txt file. The dataset consists of a total of 50116
samples, out of which 35006 are valid requests and 15110 are different types
of attack request.

2. HTTP CSIC Torpeda 2012 Dataset
This dataset is created using Torpeda framework [16]. Torpeda framework is
used to develop labeled web traffic. The motive of Torpeda is to generate a
dataset of HTTP requests for the purpose of evaluating the effectiveness of a
Web Application Firewall. The torpeda dataset is given in XML document.

The statistics of the final dataset used for our work is shown in Table 4. In an
HTTP request, there are many fields like URL, Query, Protocol, Method, Path,
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Table 4. Dataset used for detection of each attack.

Attack types Attack requests Bengin requests Total requests Training set Testing set

XSS 5310 5138 10448 7836 2612

SQL 4418 4801 9219 6914 2305

Path Traversal 1933 2000 3933 2949 984

OS Command 2094 2200 4294 3220 1074

CRLF 319 337 656 492 164

SSI 1889 1999 3888 2916 972

LDAP 1791 1945 3736 2802 934

XPath 1913 2035 3948 2961 987

Anomaly 22258 28033 50291 37718 12573

etc. In this work, we focus only on Path and Query part of the HTTP request
because payload of the attacks are encoded in these parts [22,37]. Figure 2
explains both the Path and Query parts of the HTTP requests.

Fig. 2. Structure of an HTTP request

Data Processing. This section explains the data processing required to extract
the necessary features. Data processing involves the following steps:

– URL decoding of the requests
– Converting the request to lowercase (except CRLF where we change the

request to uppercase)
– Replacement of characters

These steps are almost same for all the attacks. The only variation is in the
number of decoding of URLs and characters to be replaced for each attack. After
data processing, we pass the processed data for feature extraction. Table 5 shows
operations involved in data processing.

Feature Engineering. A feature is a measurable attribute based on which
machine learning classifiers predict the results. For each malicious attack, fea-
tures are described as a set of punctuation and keywords (commands or func-
tions) present in that attack. These features are labeled as 0/1 showing whether
a particular keyword or punctuation is present or not in the HTTP request.
We extract these features manually using the technique as explained in [25].
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Table 5. Data processing

Attack types Number of Characters removed and replaced

URL decoding

XSS 2 \n and whitespace removed

SQLi 2 \n removed

Path Traversal 4 \n removed

LDAP 1 \n removed

XPath 1 \n removed

SSI 1 \n removed and whitespaces replaced with +

OS Command 2 \n and + replaced with single whitespace

CRLFi 1 -

Table 6 shows the features used for each attack. For anomaly detection,
we have considered the following features. They are Request length,
Argument’s length, Number of arguments, Path length, Frequencies
of Uppercase characters, Number of keywords, Frequencies of Lower
case characters, Frequencies of digits[0--9], Frequencies of spec-
ial characters.

Here, the number of keywords means the count of all the keywords that
occurred in the HTTP request. Keywords constitute the features of all the eight
attacks. The features are extracted directly from the HTTP requests. But for
the calculation of the last feature, some data processing has been done which
includes ‘URL decoding’, lowercasing of all the characters, removal of newline
characters and replacement of ‘+’ with a single whitespace. For feature selection,
information gain algorithm is applied to select the most prominent features.

Classification. For the classification of the web application attacks, we use six
different machine learning classifiers namely Logistic Regression [4], K-Nearest
Neighbour (KNN) [8], Support Vector Machine (SVM) [33], Decision Tree [31],
Random Forest [14], Gradient Boosting Algorithm [3]. We use Python’s Sckit-
learn library to implement these machine learning algorithms. We carry out
our experiments on Ubuntu 18.04 LTS having 32 GB RAM and Intel i7 octa-
core processor. We add approximately the same number of valid requests as the
number of attack requests to balance the dataset. Each attack dataset has been
randomly split into 75% training and 25% testing set and the results are shown
in Tables 8 and 9.

3.2 Online Implementation

In this phase, we describe the implementation of our models obtained from offline
log based analysis for a live website. These models read HTTP requests in real
time from the log file of a website ‘‘security.cse.iitk.ac.in’’ to detect
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Table 6. Features used for different attacks

Attack types Features used

XSS ‘&’, ‘%’, ‘/’, ‘\\’, ‘+’, “’”, ‘?’, ‘!’, ‘;’, ‘#’, ‘=’, ‘[‘, ’]’, ‘$’, ‘(‘, ’)’, ‘∧’,

‘*’, ‘,’, ‘-’, ‘<’, ‘>’, ‘@’, ‘ ’, ‘:’, ‘{‘, ’}’, ‘ ’, ‘.’, ’ ’, ‘|’, ‘”’, ‘<>’, ‘‘’,

‘<>’, ‘[]’, “==”, ‘&#’, ‘document’, ‘window’, ‘iframe’, ‘location’, ‘this’,

‘onload’, ‘onerror’, ‘createelement’, ‘string.fromcharcode’, ‘search’, ‘div’,

‘img’, ‘<script’, ‘src’, ‘href’, ‘cookie’, ‘var’, ‘eval()’, ‘http’, ‘.js’

SQLi ‘–’, ‘/**/’, ‘%’, ‘+’, “’”, ‘;’, ‘#’, ‘=’, ‘[‘, ’]’, ‘(‘, ’)’, ‘∧’, ‘*’, ‘char’, ‘,’, ‘-’,

‘<’, ‘>’, ‘ ’, ‘.’, ‘|’, ‘”’, ‘<>’, ‘<=’, ‘>=’, ‘&&’, ‘||’, ‘:’, ‘!=’, ‘’, ‘count’,

‘into’, ‘or’, ‘and’, ‘not’, ‘null’, ‘select’, ‘union’, ‘#’, ‘insert’, ‘update’,

‘delete’, ‘drop’, ‘replace’, ‘all’, ‘any’, ‘from’, ‘count’, ‘user’, ‘where’, ‘sp’,

‘xp’, ‘like’, ‘exec’, ‘admin’, ‘table’, ‘sleep’, ‘commit’, ‘()’, ‘between’

Path Traversal ‘../’, ‘..\\’, ‘etc’, ‘passwd’, ‘\\.’, ‘\\/’, ‘./’, ‘/’, ‘:’, ‘//’, ‘:/’, ‘system’, ‘ini’,

‘..’, ‘exec’, ‘:\\’, ‘%00’, ‘.bat’, ‘file’, ‘windows’, ‘boot’, ‘winnt’, ‘.conf’,

‘access’, ‘log’, ‘,,’

LDAP ‘\\’, ‘*’, ,(‘, ’)’, ‘/’, ‘+’, ‘<’, ‘>’, ‘;’, ‘”’, ‘&’, ‘|’, ‘(&’, ‘(|’, ’)(‘, ’,’, ‘!’, ‘=’, ’)&’,

‘ ’, ’*)’, ’))‘, ‘&(‘, ‘+)’, ‘=)’,‘cn=’, ‘sn=’, ‘=*’, ‘(|’,‘mail’, ‘objectclass’, ‘name’

XPath ‘/∗’, ‘%’, ‘+’, ‘′’, ‘;’, ‘#’, ‘=’, ‘[’, ‘]’, ‘(’, ‘)’, ‘∧’, ‘∗’, ‘()’, ‘//’, ‘,’, ‘−’, ‘<’,

‘>’, ‘.’, ‘|’, ‘”’, ‘<>’, ‘<=’, ‘>=’, ‘&&’, ‘||’, ‘::’, ‘((’, ‘< −−’, ‘ ’, ‘or’, ‘count’,

‘path/’, ‘and’, ‘not’, ‘text()’, ‘child’, ‘position()’, ‘node()’, ‘name’, ‘user’,

‘comment’

SSI ‘<!−’, ‘−− >’, ‘#’, ‘+’, ‘,’, ‘”’, ‘etc/’, ‘/passwd’, ‘dir’, ‘#exec’, ‘cmd’,

‘fromhost’,

‘email’, ‘odbc’, ‘#include’, ‘virtual’, ‘bin/’, ‘toaddress’, ‘message’, ‘replyto’,

‘sender’, ‘#echo’, ‘httpd’, ‘access.log’, ‘var’, ‘+connect’, ‘date gmt’,

‘+statement’,

‘log/’, ‘/mail’, ‘”mail’, ‘”id’, ‘+id’, ‘.bat’, ‘ls+’, ‘home/’, ‘winnt\\’,
‘system.ini’,

‘.conf’, ‘+-l’, ‘windows’, ‘.conf’, ‘.com’, ‘:\\’
OS Command ‘../’, ‘..\\’, ‘etc’, ‘passwd’, ‘\\.’, ‘\\/’, ‘./’, ‘:’, ‘:/’, ‘.’,‘system32’, ‘display’,

‘.exe’,

‘cmd’, ‘dir’, ‘;’, ‘tmp/’, ‘etc/passwd’, ‘wget’, ‘cat’, ‘ping’, ‘bash’, ‘ftp’, ‘|’, ‘..’,
‘exec’, ‘:\\’, ‘.bat’, ‘file’, ‘script’, ‘rm ’, ‘c:’, ‘winnt’, ‘access’, ‘log’, ‘‘’, ‘www.’,

‘http’, ‘ ’, ’bin/’, ‘telnet’, ‘echo’, ‘root’, ‘-aux’, ‘shell’, ‘uname’, ‘IP’

CRLFi ‘%0A’, ‘%0D’, ‘%0D%0A’, ‘SET’, ‘COOKIE’, ‘:’, ‘+’, ‘TAMPER’

different attacks. The same log file is fed to each attack model consecutively for
detection of attacks. Figure 3 shows the architecture of our implementation.

Here, the models continuously read new requests from the log file every 15 s.
Once the new requests are received, they are passed to the parser for formatting.
The formatted traffic is then passed to each attack model sequentially, as shown
in the Fig. 3. The attack detection models are arranged sequentially from most
dangerous to least dangerous attacks [35]. Each model detects its correspond-
ing attack and passes the rest of the traffic to the subsequent attack models
for detection. Each detection process carries out its own data processing, and
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Fig. 3. Architecture for Phase 2

feature extraction as both the steps are different for each attack model. After the
detection of all the attacks, we display the count of attacks received and types
of requests detected in the last 15 s. This procedure for detection of attack is
repeated in every 15 s. Figures 4 and 5 displays screen shots of the implemented
tool for our real website and the corresponding dashboard.
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Fig. 4. IDS System showing the count of each attacks

Fig. 5. IDS System showing the types of request received

4 Evaluation of the Proposed Framework

To evaluate the performance of our models, we use ten-fold cross-validation
on each attack dataset. Table 7 shows the results of 10-fold cross-validation for
different machine learning classifiers on the features selected for each attack.
Tables 8 and 9 shows the performance in terms of accuracy, precision, recall, F1-
score, TPR, FPR, TNR, and FNR for all the classifiers on each attack dataset.
On the basis of these metrics, we select a model which performs better.

Table 8 shows the results for XSS, SQLi, Path Traversal, and LDAP attacks.
For XSS attacks, Random Forest achieves the highest accuracy of 99.38% with
a low FPR. Also for SQLi attacks, Random Forest performs better with an
accuracy of 97.91%. Random Forest and Gradient Boosting classifiers achieve the
highest accuracy of 99.28% for Path Traversal attacks. In case of LDAP attacks,
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Table 7. 10-fold cross-validation results in %

Attacks\Classifiers LR LSVM GB DT K-NN RF

XSS 98 99 99 99 98 99

SQL 96 96 97 97 97 98

Path Traversal 97 98 98 98 95 98

OS Command 98 98 98 97 96 98

CRLF 100 100 100 100 100 100

SSI 100 100 100 100 100 100

LDAP 100 100 100 100 99 100

XPath 100 100 100 100 100 100

Anomaly 89 85 95 95 93 97

where LR = Logistic Regression, LSVM = Linear Support
Vector Machine, GB = Gradient Boosting Classifier, DT =
Decision Tree, K-NN = K-Nearest Neighbor, and RF =
Random Forest

Table 8. XSS, SQLi, path traversal, and LDAP detection test results in %

Classifiers XSS results SQLi results

Acc. Pre. FS TPR FPR TNR FNR Acc. Pre. FS TPR FPR TNR FNR

LR 98.04 98.4 97.98 97.55 1.4 98.6 2.45 95.7 95.16 95.84 96.53 5.1 94.9 3.47

LSVM 98.66 98.32 98.6 98.88 1.5 98.5 1.12 95.57 95 95.71 96.44 5.3 94.7 3.56

GB 98.88 98.64 98.84 99.04 1.2 98.8 0.96 96.52 95.16 96.61 98.1 5.1 94.9 1.9

DT 99.15 99.2 99.12 99.04 0.7 99.3 0.96 96.78 95.83 96.88 97.95 4.4 95.6 2.05

K-NN 99.27 99.36 99.24 99.12 0.5 99.5 0.88 96.39 95.75 96.51 97.29 4.5 95.5 2.71

RF 99.38 99.6 99.36 99.12 0.3 99.7 0.88 97.91 97 97.97 98.97 3.1 96.9 1.03

Classifiers Path traversal results LDAP results

Acc. Pre. FS TPR FPR TNR FNR Acc. Pre. FS TPR FPR TNR FNR

LR 98.27 98.15 98.25 98.35 1.8 98.2 1.65 99.67 99.77 99.66 99.55 0.2 99.8 0.45

LSVM 98.88 99.79 98.88 97.98 0.2 99.8 2.02 99.89 100 99.88 99.77 0 100 0.23

GB 99.28 100 99.28 98.58 0 100 1.42 99.89 100 99.88 99.77 0 100 0.23

DT 99.18 100 99.18 98.38 0 100 1.62 99.89 100 99.88 99.77 0 100 0.23

K-NN 96.23 93.63 96.1 98.7 5.9 94.1 1.3 99.89 100 99.88 99.77 0 100 0.23

RF 99.28 100 99.28 98.58 0 100 1.42 99.89 100 99.88 99.77 0 100 0.23

where Acc. = Accuracy, Pre. = Precision, FS = F1-Score, TPR = True Positive Rate, FPR = False

Positive Rate, TNR = True Negative Rate, FNR = False Negative Rate

except Logistic Regression all other classifiers achieve an highest accuracy of
99.89% having zero FPR.

The results for XPath, OS command, SSI, and anomaly detection are shown
in Table 9. Random Forest classifier achieves the highest accuracy of 99.94% for
detection of XPath attack with zero FPR. The highest detection accuracy for OS
command attacks is 98.13% using Gradient Boosting classifier with low FPR.
All the classifiers achieve the highest detection accuracy of 99.89% with zero
FPR for the SSI attack. For the detection of anomaly Random Forest achieves
the highest accuracy of 96.92%.
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Table 9. XPath, OS command, SSI and anomaly detection test results in %

Classifiers XPath results OS command results

Acc. Pre. FS TPR FPR TNR FNR Acc. Pre. FS TPR FPR TNR FNR

LR 99.89 100 99.9 99.8 0 100 0.2 97.85 99.01 97.75 96.53 0.9 99.1 3.47

LSVM 99.84 99.9 99.85 99.8 0.1 99.9 0.2 97.95 99.4 97.85 96.36 0.5 99.5 3.64

GB 99.89 99.9 99.9 99.9 0.1 99.9 0.1 98.13 99.8 98.05 96.37 0.1 99.9 3.63

DT 99.84 99.8 99.84 99.89 0.2 99.8 0.11 97.39 98.61 97.27 95.96 1.2 98.8 4.04

K-NN 99.89 99.9 99.9 99.9 0.1 99.9 0.1 96.55 98.61 96.42 94.32 1.2 98.8 5.68

RF 99.94 100 99.95 99.9 0 100 0.1 97.57 98.61 97.46 96.33 1.2 98.8 3.67

Classifiers SSI results Anomaly results

Acc. Pre. FS TPR FPR TNR FNR Acc. Pre. FS TPR FPR TNR FNR

LR 99.89 100 99.89 99.79 0 100 0.21 89.13 94.43 90.58 87.03 7.7 92.3 12.97

LSVM 99.89 100 99.89 99.79 0 100 0.21 86.53 99.33 89.09 80.76 1.1 98.9 19.24

GB 99.89 100 99.89 99.79 0 100 0.21 94.96 97.54 95.54 93.62 3.2 96.8 6.38

DT 99.89 100 99.89 99.79 0 100 0.21 94.73 94.95 95.23 95.5 6.2 93.8 4.5

K-NN 99.89 100 99.89 99.79 0 100 0.21 93.2 95.14 93.94 92.77 6.2 93.8 7.23

RF 99.89 100 99.89 99.79 0 100 0.21 96.92 97.94 97.24 96.55 2.5 97.5 3.45

In CRLF, all the classifiers give 100% accuracy in the detection of CRLF
because of the same kind of pattern among the data points.

We also check the performance of some of the attack detection models based
on the data that were not used in the training, validation, and testing. For their
performance comparison, we train all the classifiers on the full training dataset
and test on the data which we collected from different sources [19,21] having
81804 (Attack requests: 40637 + Valid requests: 41167) requests for XSS attack
detection and 9120 (Attack requests: 4824 + Valid requests: 4296) requests for
anomaly detection. This experimental analysis is performed to check whether the
models generalize or not, and the selected features which are used to train the
model are independent of the dataset. Table 10 shows the result of the detection
of XSS attacks and anomaly using all the considered machine learning classifiers,
and the results show that the model performs best on the previously unseen
dataset using Random Forest classifier.

Table 10. Test results of some of the attacks on new test data.

Classifiers XSS results Anomaly results

Acc. Pre. FS TPR FPR TNR FNR Acc. Pre. FS TPR FPR TNR FNR

LR 94.03 91.34 93.9 96.62 8.3 91.7 3.38 95.42 95.11 95.14 95.17 4.3 95.7 4.83

LSVM 83.27 69.68 80.74 95.96 24 76 4.04 95.06 95.5 94.8 94.1 4 96 5.9

GB 96.79 98.01 96.85 95.73 2 98 4.27 88.27 88.26 87.64 87.03 10.5 89.5 12.97

DT 95.41 95.65 95.45 95.25 4.4 95.6 4.75 86.14 79.21 84.33 90.16 16.7 83.3 9.84

K-NN 97.19 98.86 97.25 95.7 1.1 98.9 4.3 96.99 99.33 96.88 94.57 0.6 99.4 5.43

RF 97.53 98.87 97.58 96.33 1.1 98.9 3.67 97.23 99.46 97.13 94.91 0.4 99.6 5.09
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5 Analyzing the Existing Approaches

In this section, we compare our work with existing work on the detection of web
attacks. In previous work, most of the attacks have been detected using regular
expressions. Some of the attacks, like SQL injection, XSS, etc. are identified
using Machine Learning, but they are tested on a small amount of data. To
compare our approach against these, we implement the models in the earlier
papers and test on our dataset. The results show that our approach performs
better as compared to their approach. Table 11 summarises the results reported
in their paper and the ones obtained by using their approach on our dataset.

In [26] and [27], the authors do not report their dataset details and accu-
racy. They provide the regular expressions used for the detection of attacks. We
consider their regular expressions and apply them on our dataset and report
the accuracy in Table 11. In [37], they detect many different web attacks, but
the common to our approach are XSS, SQL, and Path Traversal, for which we
analyse their approach on our dataset. We want to mention here that we did
not implement Path Traversal attack as the corresponding regular expressions
are not provided. Note that the regular expressions used to detect these attacks
have become dated, and multiple rounds of encoding schemes are being used
by attackers often to disguise the attack signatures. As a result, the accuracy
numbers for regex based detection seems to be low compared to models trained
with latest attack requests.

Table 11. Comparison with existing approaches

Authors Approach Reported Author’s reported

accuracy (%)

Accuracy (%) on our

dataset

dataset on their dataset

Meyer et al. [26] Regular

expression

Not

provided

Not

provided

XSS: 78.44

SQL: 93.06

Path Traversal: 73.19

OWASP [27] Regular

expression

Not

provided

Not

provided

XSS: 49.17

SSI: 55.78

OS Command: 74.5

LDAP: 56.29

Yu et al. [37] Regular

expression

297 - XSS

113 - SQL

127 - Path

Traversal

XSS - 97.98

SQL - 98.23

Path Traversal - 90.55

XSS: 78.44

SQL: 91.64

Path Traversal: Regex

not provided

Althubiti et al. [13] Machine

learning

25000 - Anomaly

360000 - Normal

RF - 99.94 RF: 88.84

Mereani et al. [25] Machine

learning

13000 - XSS

13000 - Normal

K-NN - 99.75 RF: 89.81

Proposed method Learning

machine

Dataset Sect. 3.1 XSS - 99.34, SQL - 97.91

Path Traversal - 99.28,

SSI - 99.89

LDAP - 99.89, XPath -

99.79

OS Command - 98.13,

CRLF - 100

Anomaly - 96.92

XSS - 99.34, SQL - 97.91

Path Traversal - 99.28,

SSI - 99.89

LDAP - 99.89, XPath -

99.79

OS Command - 98.13,

CRLF - 100

Anomaly - 96.92
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In [13] and [25] authors use machine learning approaches to detect the
anomaly and XSS attack, respectively. We implement their approach to our
dataset and achieve less accuracy as compared to their reported accuracy. The
reason may be that the authors in [13] used a highly imbalanced dataset, but
we used balanced dataset. Another reason may be that the feature set used is
dependent on the dataset. This is the reason why we also implement our app-
roach for the unseen dataset, and the results are discussed in Table 10 to test for
generalization.

6 Conclusion

Web application attacks are significant threats to most of the organizations, and
attacks like XSS, injections, etc. are on the rise. Hence, to detect these attacks,
we implement a two-phase approach i.e. offline log-based analysis using various
machine learning models and an online implementation of the log-analysis ver-
sion. Here, the online log-analysis system reads HTTP requests from the log
files every 15 s for the classification of these requests into corresponding attacks
or normal requests. For this, the system parses those requests and then passes
them to different machine learning models for detection of attacks. In this work,
we found features and machine learning classifiers which are effective for high
accuracy detection of attacks. Lastly, we also analyse the XSS and anomaly
detection models for unseen requests. Since we use supervised machine learning
algorithm; hence, we can detect only those attack requests for which we perform
the analysis.

Various improvements can be done to this work. In this work, we perform
the detection of web application attacks using HTTP requests, which contain
only Query and Path field. This can be extended to all the other aspects such
as ‘Accept-Encoding,’ ‘Cookie,’ ‘Referrer’, etc. We can also implement the clas-
sification of attacks into its sub-categories, e.g., XSS can be sub-classified into
Stored, Reflected and DOM-based XSS. Similarly, other attacks can also be
sub-categorized. In future, we plan to detect the attacks that use HTTP POST
method to deliver the attack payload. As of now, we do not have any ground
truth to validate live data results. Hence, in future, we shall validate these results.
We also plan to develop a web application firewall using our models which would
intercept HTTP requests before they are processed at the web servers.
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Security Institute of CSIC (Spanish Research National Council) (2010)
20. Hong Cheon, E., Huang, Z., Lee, Y.S.: Preventing sql injection attack based on

machine learning. Int. J. Advancements Comput. Technol. 5, 967–974 (2013).
https://doi.org/10.4156/ijact.vol5.issue9.115

21. KF, DP: Xssed dataset (2007). http://www.xssed.com/
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Abstract. In this paper, we present a novel formal analysis scheme
considering that the fabrication of a batch of N > 1 PUFs is equivalent
to drawing random instances of Boolean mappings. We model PUFs as
black-box Boolean functions of dimension m × 1 and show combinato-
rially that random designs of such m × 1 functions exhibit correlation-
spectra which can be used to characterize random and thus good designs
of PUFs. We first develop theoretical results to quantize the correla-
tion values and subsequently find the expected number of pairs of such
Boolean functions which should belong in different regions of the spectra.
We extend the concept of correlation to PUFs and theoretically prove
that a randomly chosen sample of PUFs and Boolean functions follow
the same distribution. In addition to this, we show through extensive
experimental results that a randomly chosen sample of such PUFs also
resembles the correlation-spectra property of the overall PUF popula-
tion. We finally propose a formal analysis tool for evaluation of PUFs by
observing the correlation-spectra of the PUF instances under test. We
show through experimental results on 50 FPGAs that when the PUFs are
infected by faults the usual randomness tests for the PUF outputs such as
uniformity, fail to detect any aberration. However, the spectral-pattern
is clearly shown to get affected, which we demonstrate by standard sta-
tistical measure like KL Divergence.

Keywords: Physically Unclonable Functions · Formal analysis ·
Boolean functions

1 Introduction

Due to the inherent challenge of producing clones physically or characteriz-
ing mathematical models, Physically Unclonable Functions (PUFs) are widely
adopted to act primarily as the fingerprint in devices [7]. Typically, a PUF
(first proposed in [16]) is built over the notion of a one-way function embedded
in a physical device and has been an active topic of research for many years.
PUF is a physical mapping that maps an input, also known as the challenge
to a unique and random output, also known as the response. The challenge
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response combination defines the functional behaviour of a PUF instance and is
known as challenge response pair (CRP). Ideally, such challenge-response map-
ping is unique for every PUF instance and is independent of each other. The
uncontrollable manufacturing varieties bring in random variations in its internal
properties, which forms the unique relationship. PUFs are designed leverag-
ing such random internal properties of the device. For instance, in delay-based
PUFs [7], the propagation delay of a signal through various paths in the circuit
is a source of randomness and is used to generate responses subject to different
challenges. The role of the challenge is to select which path the signal will travel
through. Many security solutions have been developed leveraging the uniqueness
property of PUFs, such as PUF based RFID [1], authentication of devices [22],
cryptographic key generation [13]. Besides, the unique nature of PUF has also
been exploited in various security protocols [18,19]. Delvaux et al. [3] provides
a detailed overview of all protocols using strong PUFs.

To develop highly secure and reliable PUF variants, a lot of research has been
conducted on various aspects of PUFs ranging from creating metrics for quality
evaluation to understanding the intricacies of its internal circuit structure [8,14].
Despite the enormous work on the application of PUFs in various security appli-
cations, the area for formal analysis of this primitive lacks depth. Unlike other
conventional cryptographic primitives, PUFs do not have a defined functional-
ity; thus it does not have a golden instance against which new instances can be
compared. Due to the widespread use of PUFs as a promising security measure,
it becomes imperative to understand this entity from a theoretical perspective.
There is a dearth of formal methods which uses statistical tests to yield metrics
which can be used to estimate a PUFs quality.

The CRP behaviour of a PUF can be thought of as a Boolean mapping,
fPUF : C → R, where C = {0, 1}n is a n-bit challenge and R = {0, 1}m is
a m-bit response. A set of challenge response pairs or CRPs uniquely define
the behaviour of an instance. PUFs can be classified into two broad categories,
Strong PUFs, and Weak PUFs, based on the number of CRPs it admits. Strong
PUFs such as Arbiter PUF, XOR PUF have an exponential number of challenges
with respect to some system parameter. On the other hand, weak PUFs such as
SRAM PUFs have a limited challenge space. Depending on the number of chal-
lenges a PUF allows the applications of PUF changes. Strong PUFs are mostly
used in applications like authentication based protocols and identification. On
the other hand, weak PUFs are mainly used in key generation.

PUFs can be considered to be black-box Boolean functions [5,6], which
implies that all properties of Boolean functions become inherent to PUFs. It is
well established that Boolean functions exhibit correlation, indicating the inter-
relationship among Boolean functions [15]. Due to such correlation properties of
Boolean functions, random choices of Boolean functions, which are realized as
PUFs also should ideally manifest such correlations. Such characteristics may
form a basis for the analysis of a given sample of PUFs, which otherwise may be
infeasible to evaluate individually as PUFs ideally have no describable function-
ality (as then we have a mathematical model!). Furthermore, faults or any defect
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inside a PUF circuitry may not be detected by the standard metrics like unifor-
mity or other randomness tests, while correlation analysis may form a novel basis
for evaluating the goodness of a given sample of PUFs. Our work articulates the
idea of PUF analysis based on correlation properties of Boolean functions.

There are some well-defined functions [25] to measure correlations of Boolean
functions, such as Pearson correlation function, auto-correlation function etc.
There are some works which explore similarity among PUFs. In [9], analysis
of PUF responses has been done using Welch’s t-test and PUF responses are
categorized based on its first order and second order moments. Other exist-
ing approaches explore the uniqueness and quality of PUFs based on querying
the identifiers generated by the PUFs either by computing the entropy of the
identifiers [17] (high entropy reveals better randomness) or by determining the
number of collisions among the identifiers [14] (fewer the collisions better the
randomness). In [24], theoretical analysis of PUFs using distribution of delay
difference is presented. Our paper presents a new approach for formal analysis
of PUFs leveraging the spectral properties of Boolean functions. The primary
contributions of this work are summarized as follows:

– We define PUFs as random black-box Boolean functions and formally present
a correlation-spectra of PUFs.

– We theoretically quantize the correlation values and the expected number of
pairs of Boolean functions which will belong to a specified correlation-spectra.

– We present a novel Formal Correlation and Spectral Analysis Tool (FCSA)
for PUFs which utilizes the correlation properties of PUFs.

– Finally we test our FCSA tool using two samples of PUF instances, one
consisting of good instances another sample consisting of faulty instances.
We also employ statistical method like KL-Divergence to verify the results.

The rest of the paper is organized as follows. Section 2 presents a brief back-
ground of PUF and properties of Boolean functions along with necessary statisti-
cal tests. Section 3 starts with an explanation of correlation properties of Boolean
functions in-depth, followed by formally defining the correlation between PUFs.
It is followed by a detailed description of our proposed analysis tool leverag-
ing these properties. Section 4 presents the experimental setup and results and
Sect. 5 concludes the paper.

2 Background

In this section, we present an introduction to PUFs and its properties, followed by
a few relevant properties of Boolean functions. We also provide a brief description
of the statistical tests used in our analysis.

2.1 Physically Unclonable Function (PUF)

Physically Unclonable Function (PUF) is a hardware based cryptographic prim-
itive that exploits the uncontrollable imperfections of the underlying circuit to
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create unique and unclonable functional behaviour. This makes it a promising
candidate in multiple security applications. A PUF is attributed with properties
mentioned below.

Properties of PUF. An ideal PUF, fPUF : C → R, exhibits certain properties
which are as follows:

– Evaluable: fPUF evaluates in polynomial time.
– Unique: fPUF mapping is instance-specific.
– Reproducible: If ci = cj (∀ ci, cj ∈ C ), then |fPUF (ci) − fPUF (cj)| < Δ

(distance).
– Unclonable: It is impossible to construct another gPUF : C → R, where

gPUF ≈ fPUF .
– Unpredictable: Given U = {(ci, ri) | ri = fPUF (ci)}, it is impossible to predict

a response rz = fPUF (cz), where cz is a random challenge and (cz, rz) /∈ U .
– One-way: Applying a challenge c, drawn from a uniform distribution on

{0, 1}n, we obtain r = fPUF (c) so that Prob[A(fPUF (c)) = c] < 1
p(n) , where

p(·) is any positive polynomial. The probability that any probabilistic polyno-
mial time algorithm or physical procedure A can output c itself is negligible.

An Example PUF (5-4 DAPUF). 5-4 DAPUF (5-4 Double Arbiter PUF) [2]
is a variant of a Double Arbiter PUF proposed in [12]. It is a delay-based PUF
consisting of five equal length delay chains, followed by twenty arbiters and four
XOR gates, as shown in Fig. 1. An input challenge c is applied to each chain.
The outcome of these five chains is then fed into arbiters which results in twenty
intermediate outcomes. Each XOR gate takes 5 of these outcomes and produces
1-bit output as shown in equations of Fig. 1 to produce a 4-bit response r.

5-4 DAPUF, being a delay based PUF, exploits the difference of propagation
delay accumulated over all switches in each chain. The XOR gates at the last
level make the circuit non-linear. Hardware implementation of 5-4 DAPUF on
Artix-7 FPGA reveals the uniformity for the four response bits to be 44.6%,
54.9%, 43.4% and 40.9%, respectively. 5-4 DAPUF is a strong PUF, admitting a
large set of challenges, making it resistant to model building attacks. As per our
knowledge, there is only one work which has modelled a DAPUF [10], but that
requires about a million challenges. This makes it a good candidate for analysis.

Faults in Physically Unclonable Functions. A fault is defined as an aberra-
tion in a circuit caused due to manufacturing defects or intentional changes made
from external sources. Faults cause a deviation from the normal execution of the
circuit. Faults can be of various types such as stuck-at faults, glitches, transient
faults. The process of introducing a fault in device or circuit is known as fault
injection and attacks involving such injections are known as fault attacks. The
objective behind a fault attack on a cryptographic implementation is to reveal
some secret information. In the case of PUFs, since the secret lies embedded in
device randomness, a fault attack on PUF tries to reduce the randomness or
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Fig. 1. Schematic representation of a 5-4 DAPUF

entropy. Such a PUF instance tends to become biased, making it vulnerable to
modelling attacks [4,20,23] and is referred to as a faulty PUF or a biased PUF.
In this work, we introduce a stuck-at fault at an intermediate switch in all the
delay chains of DAPUF.1

2.2 Boolean Functions and Its Properties

In this section, we represent Boolean functions formally and provide the formal
notion of correlation between two Boolean functions.

1 It may be noted that while there are potential methods of introducing faults in PUF
circuits, the objective of the paper is to study the effects of faults on the Boolean
spectrum of PUF instances.



Formal Analysis of PUF Instances Leveraging Correlation-Spectra 147

Boolean Function and Its Representation. A Boolean function f :
{0, 1}m → {0, 1} of m variables a mapping of m input variables to {0, 1}. It
can be represented by a Boolean row vector f = 〈f0, f1, . . . f2m−1〉 of length
2m. This is known as the truth table representation of f . The value at the ith

index of f stores the output of f , when the binary equivalent of i is given as
input. Another way to represent a Boolean function is by a vector of the form
{−1, 1}2m

= 〈(−1)f0 , (−1)f1 , . . . (−1)f2m−1〉, also known as polarity truth table
or sequence of a function.

Correlation Properties of Boolean Functions. There are various measures
to assess similarity among Boolean functions, correlation being one of them. One
of the well known correlation functions is cross-correlation function [21] which
measures the statistical closeness between two functions f and g (f �= g) with
one of them shifted by α, denoted by Cf,g(α) is given by,

Cf,g(α) =
∑

x∈{0,1}m

(−1)f(x)⊕g(x+α) (1)

A modified version of the cross-correlation is shown below. This equation
computes the closeness between functions f and g without any shift (α = 0)
and the correlation coefficient is normalized with the size of the input space.
This can be written in terms of the truth table representation of the functions
involved, as follows

Cf,g =

∑
x∈{0,1}m(−1)f(x)⊕g(x)

2m
(2)

The output of the cross-correlation function is called the correlation coefficient
and is denoted by Cf,g ∈ [−1, 1]. A cross-correlation value of 0 (Cf,g = 0) implies
that f and g are completely uncorrelated or independent. Positive values of Cf,g

imply that f and g are positively correlated, on the other hand, negative values of
Cf,g imply that their functional behaviours are rather complementary. Given a set
of N random Boolean functions, we get a N ×N correlation matrix by applying
Eq. 2 for all possible pairs. The frequency distribution of the correlation matrix
is called the correlation spectrum. Note that, in the correlation spectrum, we
do not count the self pairs, as we are solely concerned with the cross-correlation
between function pairs. Moreover, each pair (f, g) is counted only once. The
pie representation of correlation spectrum for all 3-input and 4-input Boolean
functions is shown in Fig. 22. From Fig. 2 it is evident that total number of pairs
can be partitioned into (2m +1) bins, each corresponding to a unique correlation
value. Each correlation value is in turn dependent on the number of mismatches
between the truth tables of functions in the pair. The relationship between the
number of bit mismatches, correlation coefficient and the number of function
pairs has been elaborated in Sect. 3.2. For small values of m, we get discrete
correlation segments as shown in Fig. 3. As the size of the input will increase,
the spectra will start to resemble a continuous spectrum.
2 We have omitted the bin for correlation value 1, as these correspond to the self pairs.
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(a) for m = 3 (b) for m = 4

Fig. 2. Correlation-spectra of m-variable Boolean functions

2.3 Statistical Tests

Given two samples of data, statistical tests enable us to differentiate between
the samples. One of the well known statistical measures is Kullback-Leibler
(KL) Divergence which quantitatively determines the difference between two
distributions.

Kullback-Leibler Divergence: Kullback-Leibler (KL) Divergence [11] is a
statistical measure of divergence of one distribution from a reference distribution.
The divergence value is directly proportional to the similarity of the distribution
under test to the reference distribution. A value of 0 implies that the distributions
are identical. KL Divergence is an asymmetric measure and thus changes with
the swap of the test and reference distribution. For discrete distributions P and
Q, KL-Divergence from Q to P is given by,

DKL(Q||P) =
∑

i

Q(i)ln
(Q(i)

P(i)

)
(3)

Here, Q is the reference distribution and P is the distribution under test.

3 Theoretical Analysis of PUFs

In this section, we formalize an analysis mechanism for PUFs using spectral
properties of Boolean functions. In the first part, we elaborate on the correlation
properties of Boolean functions which form the base of our PUF analysis tool.
We proceed to provide the theoretical basis for the analysis of correlation among
PUF instances.
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Fig. 3. Frequency distribution of 4-variable Boolean function

3.1 Correlation Properties of Boolean Function

In this part we continue the discussion on correlation properties of Boolean
functions from Sect. 2.2. The relationships are formulated as lemmas as follows.
These lemmas highlight some necessary relations needed for our analysis.

Lemma 1. Let f and g be two m-variable Boolean functions with i bit mis-
matches (0 ≤ i ≤ 2m). The cross-correlation coefficient between f and g is

Cf,g = 1 − i

2m−1
(4)

Proof: For m-variate Boolean function, truth table contains 2m values.
Simplifying the exponent in Eq. 2, we get,

Cf,g =
(−1)i + (1)(2m − i)

2m
=

2m − 2i

2m
= 1 − i

2m−1

which completes the proof. 
�
Lemma 2. Let Cα be a given correlation value. The number of unordered m×1
function pairs with this cross-correlation value is given by,

Pair Count = (22
m−1)

(
2m

2m−1(1 − Cα)

)
(5)

Proof: Number of unordered function pairs having i bit differences (mismatches)
in their truth table is

Pair Count =
22

m

2

(
2m

i

)
(6)

Substituting the value of i from Eq. 4 completes the proof. 
�
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Equation 6 also proves that the correlation values follow a binomial distribu-
tion. For large input space, this will approach a standard normal distribution.
Using the above result, the probability of a pair P belonging in a particular
correlation bin Cα is given by:

Pr[P ∈ Cα] =
Pair Count
22m × 22m =

(
2m

2m−1(1−Cα)

)

22m+1
(7)

Using the above lemmas, we tabulate the results for 4-variable function in
Table 1. Note that for correlation value 1, we get 216 pairs as these correspond
to self pairs (f, f). The plot of the data for 4-variate Boolean functions in Fig. 3
makes the underlying distribution evident.

Table 1. Correlation coefficients of 4-variable Boolean function with number of func-
tion pairs

Coefficient Mismatch count Pair count

−1.000 16 32768

−0.875 15 524288

−0.750 14 3932160

−0.625 13 18350080

−0.500 12 59637760

−0.375 11 143130624

−0.250 10 262406143

−0.125 9 374865919

0 8 421724159

0.125 7 374865919

0.250 6 262406143

0.375 5 143130624

0.500 4 59637760

0.625 3 18350080

0.750 2 3932160

0.875 1 524288

1.00 0 65536

In the next subsection, we extend the correlation properties to PUFs. Finally,
we use the correlation-spectra as the fundamental tool for analysis of a sample
of randomly picked PUF instances.

3.2 Formalization of PUFs Correlation

PUFs can be defined as physical mapping from the set of challenges (C ) to
corresponding responses (R). Let us represent the mapping by fPUF : C → R
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where fPUF (c) = r, c ∈ C and r ∈ R. This representation is striking similar to
the representation of Boolean functions and is frequently used in the literature
[5,6]. Thus, we represent PUFs as random instances of Boolean function over
F2. Let us represent a challenge as a vector c = <c1, c2, . . . , cn>. According to
the PUF to Boolean function mapping, each element ci of c corresponds to a
Boolean variable which can be either 1(true) or 0(false) and c corresponds to
an n-bit binary string. This implies that fabrication of a batch of N > 1 PUFs
is equivalent to drawing N random instances of Boolean mappings over F2.

In this part, we formally define the correlation between PUF instances. Given
n-bit input and m-bit output, the total number of unique PUF instances enumer-
ate to 2m×2n

which encompass the PUF space. Sampling of N random instances
from the PUF space is equivalent to drawing N random Boolean functions. In
the previous section we have established that for large input size n, frequency
of cross-correlation values between pairs of Boolean functions follow a Gaussian
distribution. This distribution is often referred to as the correlation spectra. We
show that PUFs correlation spectra follows a Gaussian distribution, owing to
the previously established analogy between PUFs and Boolean Functions. This
provides us with a template which we subsequently use as a guide to identifying
good PUFs. For a multibit response, each response bit is considered to be the
outcome of an independent function over the challenge bits. Thus, for correlation
analysis, we treat each response bit independently.

Consider two random n × m PUF instances PUFA and PUFB and let rA,i

and rB,i be their respective responses to a challenge ci. Each response can be
expressed as a tuple given by,

rA,i =
(
rA,i,1, rA,i,2, . . . , rA,i,m

)
rB,i =

(
rB,i,1, rB,i,2, . . . , rB,i,m

)

For K challenges {c1, c2, . . . , cK}, we get K responses from both PUFA and
PUFB given by {rA,1, rA,2, . . . , rA,K} and {rB,1, rB,2, . . . , rB,K} respectively.
Each response tuple (for one PUF) can be split into m vectors, each correspond-
ing to one response bit. Thus, for K challenges, we get m vectors each of size
K, given by:

rA|1 =
(
rA,1,1, rA,2,1, . . . , rA,K,1

)T
rB|1 =

(
rB,1,1, rB,2,1, . . . , rB,K,1

)T

rA|2 =
(
rA,1,2, rA,2,2, . . . , rA,K,2

)T
rB|2 =

(
rB,1,2, rB,2,2, . . . , rB,K,2

)T

...
...

rA|m =
(
rA,1,m, rA,2,m, . . . , rA,K,m

)T
rB|m =

(
rA,1,m, rB,2,m, . . . , rB,K,m

)T

The correlation between PUFA and PUFB is computed for each response
bit independently. The cross-correlation between PUFA and PUFB for the pth

response bit is calculated as follows

CA,B(p) =

∑K
j=1(−1)rA|p⊕rB|p

K
(8)
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Thus, for one pair of PUFs (PUFA, PUFB), we get m independent values of
correlation, which form the tuple CA,B =

(CA,B(1), CA,B(2), . . . , CA,B(m)
)
. This

calculation is done for all possible PUF pairs in the PUF space. Given N PUFs,
we have N ′ =

(
N
2

)
possible pairs. For ease of representation, let us denote pairs

by
(
P1, P2, . . . PN ′

)
. Finally, we get a N ′ × m matrix combining all pair tuples.

Let the matrix be denoted by M.

M =

⎡

⎢⎢⎢⎣

CP1(1) CP1(2) CP1(3) . . . CP1(m)
CP2(1) CP2(2) CP2(3) . . . CP2(m)

...
...

...
. . .

...
CPN′ (1) CPN′ (2) CPN′ (3) . . . CPN′ (m)

⎤

⎥⎥⎥⎦ (9)

The correlation spectra for each response bit is obtained by picking the corre-
sponding column from M and generating its frequency distribution. This distri-
bution is similar to the correlation spectrum of Boolean functions. From Lemma2
it follows that the spectrum is Gaussian in nature. Equation 6 enumerates the
number of function pairs having i mismatches in their truth table representation.
Varying the value of i from 0 to 2m, and adding the pair counts, we get a binomial
series. As the size of the input increases, it approximates a normal distribution.
This proves that individual response bit pairs of PUF instances also follow a
Gaussian distribution. Thus, we can theoretically estimate the number of PUF
instances that lie in a region of the spectrum. This is precisely the information
that we leverage in our analysis tool. We would like to stress on the generality of
the described methodology. This spectrum generation method is solely depen-
dent on the challenge response system making it architecture independent.

3.3 Spectral Analysis of PUFs

Fig. 4. Flowchart description for analysis of PUF instances

In the above subsection, we theoretically proved that for a collection of PUFs,
each response bit exhibits a correlation spectra analogous to Boolean Functions.
This property is leveraged in the correlation analysis of PUFs. The fundamental
property of a good PUF design is that it exhibits randomness and uniqueness. In
the previous section, we defined the correlation between two PUF instances for
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individual bits, using the correlation concepts from Boolean theory. Since PUFs
can be represented as random black-box Boolean functions, a given sample of such
good designs is anticipated to exhibit the correlation-spectra of Boolean functions.

Figure 4 schematically represents our analysis tool flow which includes cor-
relation analysis of PUF responses followed by the tests conducted on PUF
responses leveraging its correlation properties. For spectral analysis of PUFs, we
have used KL divergence over correlation spectra of two collections (good and
faulty) of multiple instances of 64-bit 5-4 DAPUF.

4 Experimental Setup and Results

We have divided our experiment into two parts:

1. Correlation Analysis: Evaluation of correlation among PUF instances using
the correlation-spectrum

2. Spectral Analysis: Applying KL divergence on correlation spectra of correct
and faulty PUF to analyse the difference

4.1 Implementation Setup

We have used 64-bit 5-4 DAPUF3 for implementation of the proposed methodol-
ogy. The setup includes 50 instances of hardware implementation of 5-4 DAPUF
implemented on Xilinx Artix-7 FPGA. The challenge set C consisting of 10000
randomly generated challenges. Each PUF takes a 64-bit challenge from C and
returns a 4-bit response. To account for reliability, we have taken 5 measure-
ments for each challenge and PUF instance and selected a reference response
using majority voting from the generated responses. We have also generated a
collection of faulty PUF instances by inducing a stuck-at-fault at an input of
10th switch of delay chains in the hardware implementation of PUF. The same
data collection process was done for the faulty PUFs as well.

4.2 Experiments and Correlation Results for PUFs

Experiment: The first step is to generate responses of each PUF instance for
the challenge set C and compute the correlation matrix for all PUF instances.
We obtain the correlation spectrum by plotting the frequency of the correlation
values. We then compute the correlation matrix for all the faulty pairs and gener-
ate the corresponding correlation spectra. We compute the correlation coefficient
for all four response bits individually for the set of 50 instances. Since there are
a large number of distinct real-valued correlation coefficients spanning from −1
to +1, we have grouped the coefficients into 256 bins. For each response bit, we
count the number of PUF pairs having the same correlation value. This gives the
frequency distribution of the cross-correlation coefficient. For 64-bit 5-4 DAPUF,
all possible input realizations amount to 264, which makes the truth table of a
3 From here on, we will refer it as 5-4 DAPUF.
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single instance of DAPUF extremely large and unmanageable. Since it is not
possible to compute the outcome of 264 challenges, we have used a challenge
subset comprising of 10000 randomly picked challenges. The plots in Fig. 5 show
the frequency distribution of the correlation coefficient for each response bit for a
set of non faulty (good) PUF instances. In the second part of the experiment, we
induce a stuck-at-1 fault at the 10th switch from the beginning of the delay chain,
for all five chains in the hardware implementation of DAPUF. This introduces
a bias in responses. We repeat the above steps to obtain correlation-spectra for
each response bit, as shown in Fig. 6. Note that, even with a small challenge
subset, we get a correlation-spectra similar to Boolean functions.

The key point to be noted is that after injecting the fault, there were neg-
ligible changes in the uniformity measure of the response bits, as can be found
from the high similarity percentages in Table 2. In this table, we have listed some
PUF instances along with its uniformity measure before and after fault injection.
However, it can be observed that for each bit, there is a change in the mean and
standard deviation of the frequency distribution which can be observed from
Fig. 7. This shows that the key properties of a PUF are insufficient to detect if
the PUF is being tampered with. Thus, analysing the correlation spectra helps
us to judge the quality of PUFs.

In Fig. 7, we can see the change in the mean and standard deviation of the
distributions for correct and faulty instances. Specifically, there is a decrease in
the standard deviation in case of faulty PUFs in comparison to the good PUFs.

(a) for Response bit 1 (b) for Response bit 2

(c) for Response bit 3 (d) for Response bit 4

Fig. 5. Correlation-spectra corresponding to various Response Bits of Correct 5-4
DAPUF (for N = 50)
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(a) for Response bit 1 (b) for Response bit 2

(c) for Response bit 3 (d) for Response bit 4

Fig. 6. Correlation-spectra corresponding to various response bits of Faulty 5-4
DAPUF (for N = 50)

(a) Mean (b) Standard Deviation

Fig. 7. Mean and standard deviation of Correct and Faulty PUFs

Smaller standard deviation values can be explained by a decrease in the range
of correlation values. One plausible reason for the narrowing of the correlation
range could be an introduction of bias in the responses.

4.3 Spectral Analysis Results for PUFs

Correlation analysis provides an essence of the change in the spectra with a
change in circuit, but it fails to give a quantitative metric. Statistical tools
gives a quantitative metric, which helps to understand the difference better.
Given two correlation spectra, one for good PUF instances and one for faulty
PUF instances, we use Kullback-Leibler Divergence to understand the statistical
difference better.
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Table 2. Uniformity measure of correct and faulty 5-4 DAPUFs

PUF instances Uniformity measures for Percentage similarity

Correct instances Faulty instances

1 57.10 53.34 93.42%

2 56.74 53.88 94.96%

3 59.66 54.29 91.00%

4 52.36 49.96 95.42%

5 54.98 54.46 99.05%

6 56.93 54.47 95.68%

...
...

...
...

Kullback-Leibler Divergence Results. For KL divergence, we consider the
spectra of non-faulty PUFs as the reference distribution and the spectra of faulty
PUFs as the distribution under test. The divergence values for the four response
bits are enlisted in Table 3. KL Divergence value 0 indicates that the distribu-
tions are identical and higher values indicate more distance between the distri-
butions. We have compared the values with the divergence values for a pair of
correct distributions (over different challenge sets), as shown in Table 3. There
is a significant difference between the divergence values for correct-faulty pair
and both correct pair, for each response bit. This implies that the distributions
are significantly away from each other and hence can be distinguished easily.

Table 3. KL Divergence values for all Response bits

KL Divergence Bit 1 Bit 2 Bit 3 Bit 4

Value between non faulty and faulty 21.97 27.10 22.18 32.50

Value between two non faulty 19.75 22.83 22.06 22.77

5 Conclusion

In this paper, we present a novel approach for formal analysis of PUF instances
from the perspective of Boolean functions. Extending the Boolean function rep-
resentation of PUFs, this work leverages the correlation properties of Boolean
functions. From this work, we conclude that correlation of a sample of PUFs
obeys Gaussian distribution, similar to a sample of randomly selected Boolean
functions. Thus, for ideal PUFs, the probability distribution of both the samples
should coincide. This forms a concrete base for analysis of PUF instances. We
have also presented an overview of formal analysis tool (FCSA) to evaluate the
goodness of PUFs. Our theoretical claims are well supported by the statistical
test of a collection of good and faulty PUF instances. Thus, a combination of
correlation analysis and statistical test provide a complete analytical picture and
can be used as an aid during a new PUF characterization.
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Abstract. Over the past decades, the exponentially high rate of growth
in number of connected devices has been accompanied by the discovery of
new security loopholes, vulnerabilities and attacks in the network infras-
tructure. The original ethernet protocol was not designed considering the
security aspect of the network architecture. In order to improve the secu-
rity of the ethernet, many solutions and standards have been proposed.
The IEEE 802.1AE Media Access Control Security (MACSec) standard
is one of the most recent link layer security protocols which provides
encryption and authentication between two network interfaces for secure
next-generation deployments. In this paper we present a network packet
redirection attack on a MACSec enabled NetFPGA-SUME based ether-
net switch, by means of a Hardware Trojan (HT). The HT design is based
on a probabilistic counter update mechanism with multiple triggers which
eventually affects the way in which a network packet flows through the
switch. In particular, an activated HT redirects a packet to an incorrect
port, and in turn to a malicious eavesdropper. The proposed HT evades
most of the recent hardware trust verification schemes. We present the
complete architecture of the proposed MACSec enabled ethernet switch,
followed by the design and mode of operation of the HT with promising
experimental results.

Keywords: FPGA · Hardware Trojan · AXI4-Stream · NetFPGA ·
MACSec · Network security · AES-GCM

1 Introduction

A steep increase in growth and demand of the internet bandwidth has forced
the networking industry to continuously innovate the ethernet architecture. The
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advent of Internet of Things has opened a whole new world – be it data centers
hosting cloud services, in-car automotive networks or a smart grid infrastruc-
ture. The success of the Internet has left it unprotected and defenseless at the
hands of resourceful malicious attackers [18]. In view of this scenario, there is
great necessity of a very stable security mechanism to protect data integrity,
authenticity and confidentiality. The IEEE 802.1AE MACSec standard is one
step towards securing the current ethernet architecture at Layer 2 of the Open
Systems Interconnection (OSI) network model [14]. In [2], the authors have pre-
sented a hardware implementation of the MACSec protocol suitable for automo-
tive applications on Altera Stratix V FPGA. The paper [16] proposes MACSec
based Layer 2 security for Smart Grid Communication networks.

A Hardware Trojan (HT) is defined as a malicious, intentional modifica-
tion of a circuit design that results in undesired behavior when the circuit is
deployed [30]. Designs that are infected by a HT may experience changes to their
functionality or specification, may leak sensitive information, or may experience
degraded or unreliable performance. Designing a stealthy yet powerful HT has
been the goal of many researchers. There are a plethora of sophisticated methods
available in the literature, which have been proposed to detect different types of
HTs. Some of these HT detection techniques include formal and functional ver-
ification schemes [8,10,23], Unused Circuit Identification (UCI) [13], Functional
Analysis for Nearly-unused Circuit Identification (FANCI) [29], Verification for
Hardware Trust (VeriTrust), and Hardware Trojan Catcher (HaTCh) [11]. How-
ever, side-by-side techniques to defeat many of the above mentioned state-of-
the-art HT detection techniques have also been proposed, e.g., those targeting
Unused Circuit Identification (UCI) [26], Hardware Trust Verification [34], mali-
cious LUT [20] and XOR-LFSR [12] (please refer to Sect. 2 for more details).

This paper presents a HT attack on a MACSec enabled ethernet switch
implemented on NetFPGA-SUME board. To the best of our understanding this
is the first work which targets a MACSec enabled ethernet switch architecture
using a multi-level probabilistic counter based HT that redirects the data pack-
ets to incorrect ports, possibly to malicious eavesdroppers. Given its proba-
bilistic mode of operation, we have named our designed HT as Probabilistic
Trojan (ProTro). The ProTro HT when implemented has negligible overhead,
and severely interferes with the proper functionality of the ethernet switch. This
HT also evades most of the hardware trust verification techniques like UCI,
VeriTrust and HaTCh with the help of a non-deterministic element in its con-
struction. The major contributions of this paper are the following: (a) a hardware
implementation of MACSec standard on NetFPGA-SUME platform, and, (b) an
implementation of a highly disruptive but stealthy and low-overhead HT, tar-
geting this FPGA implementation, that affects the confidentiality of the data
processed by this switch.
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Fig. 1. Trojan designs: a structural classification [3] (adapted with modifications).

2 Background

2.1 Hardware Trojan

Hardware Trojans can be classified in many ways. We describe one of the
most widely accepted classifications based on HT structure and impact.
Generally, HTs comprises of two sections: a trigger for its initiation and a payload
to cause the undesired function. But few types of HTs exists without trigger [21].
The triggers can be launched from the internals of circuits such as the output
of on-chip sensor [1], as well as external such as particular input. However, it
is reasonable to assume that the attacker will retain some control over the HT,
and in the process she will make it externally triggered. To be undetectable
during the test phase and most of the deployment phase, HTs are designed to
get activated at extremely rare conditions [4]. Based on structure, classification
of HTs was mentioned in [3] (please refer to Fig. 1). This classification consid-
ers digital, analog and hybrid (combination of digital and analog) HTs, e.g.,
analog trigger mechanism with digital payload [6]. Digital HTs constitute the
most common threats. The HT proposed in this paper is digitally trig-
gered which causes both information leakage and denial-of-service. An
important recent alternative classification of HTs has been presented in [11], by
dividing them into St and Si groups, where St refers to the HTs which lever-
age the standard I/O channels to deliver the payload, while Si represents the
HTs which use side-channels to deliver the payload. St class of HTs are further
classified into deterministic (HD) and non-deterministic (HND) types, where HD

represents the HTs which are embedded in a digital IP core whose output is a
function of only its input, and the algorithmic specification of the IP core can
exactly predict the IP core behavior. In this work we present a HND type HT
whose details are described in Sect. 4.

2.2 FPGA Based Secured Ethernet Switch

MACSec is a security standard which provides secure communication between
stations that are attached to the same Local Area Network (LAN). It com-
prises of two standards, namely IEEE 802.1AE [15] and IEEE 802.1X [14].
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Fig. 2. Proposed MACSec-enabled ethernet switch architecture. This is a combination
of the FPGA-SUME ethernet switch with the MACSec core.

IEEE 802.1AE specifies provisions for connectionless user data confidentiality,
frame data integrity, and data origin authenticity by media access independent
protocols and entities that communicate transparently with MAC clients [15].
IEEE 802.1X specifies a general method for port-based network access control. It
also defines protocols such as MACSec Key Agreement (MKA) that establishes
secure associations and facilitates the use of industry standard authentication
and authorization protocols [14]. MACSec uses keys derived from MKA proto-
col to encrypt data of authenticated users and perform integrity check on the
data, using the Advanced Encryption Standard-Galois Counter Mode (AES-
GCM 128/256 bit) as the cipher suite for cryptographic functions. In brief, the
MACSec security architecture comprises of a control plane that provides the
keys using an authenticated key agreement protocol, and a data plane for secure
transport of payloads in order to protect the upper protocol data.

In this paper we have implemented the MACSec protocol at the ethernet
switch level which behaves as one of the connected devices in a point-to-point
MACSec secure network architecture. We assume that the keys required for the
cryptographic operations have been already installed after the successful comple-
tion of the MKA protocol using a software. The full-fledged implementation of
the control plane services are beyond the scope of this paper. Figure 2 shows the
overall architecture of the MACSec-enabled ethernet, details of which, including
the implementation details of the data plane provisions are discussed in Sect. 3.

Applying reconfigurable hardware for network infrastructure security has
drawn plenty of attention recently in the network security community [5]. The
increasing number and sophistication of attacks, the performance limitations
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Fig. 3. AXI4-Stream slave interface bus signals.

of sequential software execution, and the increase in network throughput all
contribute to a huge gap between the requirements and implementations. NetF-
PGA [35], an open-source platform for rapid prototyping and deployment of
networking devices with I/O capabilities up to 100 Gbps, can be used to reduce
this gap. The NetFPGA project [28] currently supports three platforms, of which
NetFPGA-SUME is the most recent platform. The NetFPGA-SUME board is
based on the Xilinx Virtex-7 Field Programmable Gate Array (FPGA), along
with peripherals such as 3rd generation PCI Express (PCIe), multiple mem-
ory interfaces, and high-speed expansion interfaces. In this work we propose
a hardware implementation of the basic MACSec protocol over the NetFPGA-
SUME’s reference switch design [22]. The AXI4-Stream protocol [31] is one of the
data interfacing protocols added in the ARM AMBA4 specifications to support
low resource, high bandwidth unidirectional data transfers. It is well-suited for
FPGA implementation because the transfer protocol allows for high frequency
versus clock latency trade-offs to help meet design goals. An ethernet packet
flows through data plane of the reference switch design on the NetFPGA-SUME
platform through AXI4-Stream interface [32]. The protocol interface consists
of a master interface and a slave interface. The two interfaces are symmet-
ric and point-to-point, such that master interface output signals can connect
directly to the slave interface input signals. Typical signals at the AXI4-Stream
slave interface are depicted in Fig. 3 where a valid data transfer takes place
whenever s axis tvalid and s axis tready signals are asserted. An asserted
s axis tlast signal indicates that the last word has been transmitted. The
signal s axis tkeep is a byte identifier in the s axis tdata and the signal
s axis tuser consists of user defined information. Next, we describe the sys-
tem architecture of the MACSec enabled ethernet switch, as adopted by us on
the NetFPGA-SUME platform.

3 System Architecture

As mentioned in the previous section, the system architecture is based on
NetFPGA-SUME’s reference switch design [22]. The reference switch design has



164 V. Govindan et al.

Table 1. Verilog code snippets from MAC CAM Lookup Module

MAC Address learning Destination Port Lookup Update

//MAC Address learning
always @ (posedge clk) begin
if (reset)
lut[i] <= {(56){1’b0}};
else if (lookup_req) begin
if ((lut[i][47:0] == src_mac) ||
(~lut_learn_hit[15] && (lut_wr_addr == i)))

// lut[i] <= {(src_port), src_mac};
lut[i] <= {src_port[7:3],src_port[0],src_port[1]
,src_port[2], src_mac};

end
end

//Destination Port Lookup Update
always (posedge clk) begin
if(reset)
dst_ports <= {8{1’b0}};
else begin
if (lookup_req) begin
//dst_ports <= (lut_lookup_hit[15]) ?
// (rd_oq[15][7:0] & ~(src_port)) :
// (DEFAULT_MISS_OUTPUT_PORTS & ~src_port);

case ({llh_m,llh})
2’b00: begin dst_ports <= d1; end
2’b01: begin dst_ports <= r1; end
2’b10: begin dst_ports <= d1; end
2’b11: begin dst_ports <= r2; end
endcase
end

end
end

a pipelined architecture, with three main stages, namely the Input Arbiter, the
Output Port Lookup and the Block RAM (BRAM) Output queues, as depicted
in Fig. 2. However, the architecture is flexible enough to allow an user to insert
his/her own module as part of the pipeline, for additional functionality. In our
case, we have introduced a MACSec core module into the reference data pipeline
which makes the switch design MACSec-enabled. The ethernet packet is received
by the board through one of the four SFP+ interfaces, which is accepted by the
design’s 10 Gigabit ethernet MAC (GMAC) IP.

The data pipeline follows packet based module interfaces according to the
AXI4-Stream protocol. The input arbiter has five input interfaces: four GMAC
RX modules and one Direct Memory Access (DMA) RX module. Each input to
the arbiter connects to an input queue, which is in fact a small fall-through FIFO.
The simple arbiter is time-multiplexed between all the input queues in a round-
robin manner, each time selecting a non-empty queue and writing one full packet
from it to the next stage in the data-path. The Output Port Lookup module is
responsible for deciding the packet output port with the help of the destination
MAC address (dMAC) register. After that decision is made, the packet is then
handed to the output queues module. The lookup module implements a simple
learning Content Addressable Memory (CAM) implemented using Xilinx’s CAM
core. Packets with unknown destination MAC address are broadcasted. Once a
packet arrives to the BRAM Output Queues module, it already has a marked
destination (provided on the TUSER field of the stream interface). According to
the destination it enters a dedicated output queue. There are five such output
queues: one per each 10 Gbps port and one to the DMA block. The DMA module
includes Xilinx’s PCIe core, a DMA engine and AXI4 Interconnect module. To
the other NetFPGA modules it exposes AXI4-Stream (master+slave) interfaces
for sending/receiving packets, as well as a AXI4-LITE master interface through
which all AXI registers can be accessed from the host (over PCIe). The refer-
ence switch design also implements a Xilinx Microblaze 32-bit RISC processor
subsystem, including a BRAM block and its controller.
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Fig. 4. Ethernet and MACSec-secured ethernet data format [15].

The MACSec protocol as described in [15] provides secure communication
between stations that are attached to the same LAN by forming a set of trusted
entities. Every station can receive both encrypted or unencrypted messages
depending on the configuration of the system policy. Every node capable of
participating in an instance of the secure MAC Service comprises both a MAC
Security Key Agreement Entity (KaY) and a MAC Security Entity (SecY). A
secure Connectivity Association (CA) is created between the communicating
nodes which may have multiple Secure Channels (SCs) supporting secure trans-
mission of frames through the use of symmetric key cryptography. Each SC
supports multiple Security Associations (SAs), each of which uses a fresh Secure
Association Key (SAK) to provide the MACSec security services for a sequence of
transmitted frames. The protocol modifies the traditional ethernet frame struc-
ture to include MACSec specific functions by adding a Security TAG (SecTAG)
and an Integrity Check Value (ICV) along with the secure data. The ethernet
frame and its modified MACSec-enabled version is shown in Fig. 4. The MACSec
core implemented by us consists of a MACSec controller, an AES-GCM core and
three data FIFOs to facilitate the encryption and decryption functions. The con-
troller along with AES-GCM core is the central part of the design. The controller
core controls and synchronizes the following operations:

1. Receive inbound (“Ingress”) ethernet packet with MACSec header at an input
port.

2. Extract MACSec header from Ingress packet.
3. Decrypt user data and perform secure frame verification, with credentials of

process bound to Ingress port.
4. Encrypt user data and generate secure frame for outbound (“Egress”) ether-

net packet, with credentials of process bound to Outgress port.
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5. Route the packet to the Outgress port, according to the information received
from the Output Port Lookup module.

6. Generate AXI4-Stream Master Interface signal to announce completion of
operation.

The MACSec ethernet frame arrives through one port of the switch design
and first undergoes a MACSec header extraction process, where the SecTAG field
along with the MAC addresses are extracted and stored in internal registers. The
source and destination MAC addresses are stored in sMACSec and dMACSec
registers, respectively. We assume here that the SAKs associated with every
frame are already updated into the key registers of the MACSec core. Once the
incoming frame header is extracted, the decryption of the data is performed
using the obtained Key and SecTAG information. The symmetric key algorithm
used in this core is the efficient AES-GCM 128-bit implementation described
in [19]. Before forwarding the decrypted data to the next stage, the receive path
performs an integrity check verification by comparing the tag generated from
the AES-GCM core with the ICV received. The decrypted data is stored in
the Decrypt data FIFO if the frame verification is successful. As soon as the
Decrypt data FIFO receives first word of data, the frame encryption process is
initiated with a different key associated with the Egress port (port that forwards
network traffic or the exiting port) of the switch. The ethernet switch model
considered in this work operates as follows. The incoming encrypted data arriving
at the incoming port (“Ingress port”) is decrypted using a key (“key-1”), and is
encrypted again using a different key (“key-2”) for the outgoing port (“Egress
port”) of the switch. The encrypted data received from the AES-GCM core is
stored in the Encrypt data FIFO before being sent out through the AXI4-master
interface, after performing the frame encapsulation using the new SecTAG and
key information. This method of operation makes it vulnerable to HT
attacks in which the HT infects the ethernet switch itself, because
inside the switch the data traffic is available in an unencrypted form
between the abovementioned decryption and the encryption steps.
This observation is the main motivation behind the method of working
of the HT designed by us, as described in the next section.

4 Mode of Operation of Inserted Hardware Trojan

4.1 Threat Model

Our threat model is based on the model discussed in [25,34]. We assume that
a hardware design can be covertly compromised by HTs inserted into Register
Transfer Level (RTL) source code or the gate-level netlist. These HTs are intro-
duced by one or more rogue designers in the in-house design team, or integrated
into the design with third-party IP (3PIP) cores. An attacker having physi-
cal access to the board or an attacker who can reconfigure the FPGA bitstream
remotely through partial reconfiguration during a design update [17] could intro-
duce the proposed HT.
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Fig. 5. Proposed Hardware Trojan circuit.

Consider a scenario that the simple ethernet switch is deployed in a data
center. In order to support higher speed and better security policies, data cen-
ters are moving towards Layer-2 secure connectivity inside the center [7]. The
Layer-2 security policy facilitates updating the ethernet switch core with MAC-
Sec functionality. While adding the MACSec functionality, the new design also
opens up the possibility of a HT being introduced that can modify the flow of
packets through the switch. Once the HT is activated, data which needs to be
secured using the MACSec protocol is no longer secure, as it is delivered to an
incorrect port, possibly being accessed by a malicious user. From a network
perspective, this can be viewed as an example of a network packet
interception and removal, or network traffic redirection attack lead-
ing to Denial of Service (DoS), while from a security perspective, this
is an information leakage attack.

4.2 Hardware Trojan Design

Trojan Premise. Our attack is based on a HT which is embedded in the
Output Port Lookup module of the reference switch design discussed in Sect. 3.
The Output Port Lookup module consists of two main submodules: ethernet
parser and learning CAM. The ethernet parser module first extracts the source
and destination MAC address and the source port from the input packet. The
fields are next looked up in the CAM, implementing a lookup table (LUT). If
the result is a hit, the packet is sent to the destination ports indicated by the
lookup (except for the source port), if the result is a miss, the destination ports
are set to broadcast to all output ports (except for the source port). If the source
MAC is not found in the LUT, it is learned for future lookups.

Table 1 shows Verilog code snippets from the learning CAM switch module
(mac cam lut.v). The register lut represents the lookup table (LUT) which stores
the source address and the corresponding port. Each entry in this memory is 56 bits
wide (8 bits for the port and 48 bits for the address). At the end of each lookup the
register dst ports consists of the information as to which ports the input packet
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has to be sent out. The register dst ports is an 8-bit register, where each out-
put port is encoded in an one-hot manner supporting up to a maximum of eight
ports. This output port information is transferred to subsequent modules in the
data plane through the meta-data signal axis tuser of the AXI4 stream interface.

Trojan Trigger and Payload. The proposed HT consists of three trigger lev-
els as shown in Fig. 5. At the first level it comprises of a probabilistic counter.
Traditionally packet counting has been employed in network devices such as
routers for characterizing and controlling traffic. For diagnostic and record keep-
ing purposes, it may be desirable for the router to keep a running total of the
number of dropped packets. Keeping track of the number of dropped packets
may require large hardware registers that can be time consuming to update.
Thus, there is a need to efficiently maintain a counter capable of counting a
large number of items. We assume that one such counter pre-existed in the net-
work switch design, and has been replaced by a malicious probabilistic counter
(as part of the inserted HT). Probabilistic counters have been used widely in
processor architectures to improve predictability [9,24]. In this design, the prob-
abilistic counter is enabled whenever an incoming packet has one of the following
EtherType field values:

– MACSec packet - 0x88E5
– IPv4 packet - 0x0800
– IPv6 packet - 0x86DD
– ARP packet - 0x0806

The counter update mechanism is based on a hardware pseudo-random number
generator (PRNG) to increment or decrement counter value, as described in [24].
A generalized counter is represented as 4-tuple (n, I, D, T ): an n-bit counter’s
value is incremented by I or decremented by D on the basis of two different
values of an up down signal, with T being a pre-determined threshold value.

In our HT design the counter value is incremented whenever the switch
receives an IPv4 or IPv6 packet, and it is decremented when the switch receives
a MACSec or ARP packet. The counter is updated only when the PRNG out-
put value is greater than the threshold value T , which we also term as the HT
“trigger value”. The resulting counter value is then passed through a complex
combinational and flip-flop based circuit, which forms the second-level trigger.
In our implementation we used an 8-bit counter with I = D = 1, and T =
0x7C1FE0 represented as (8, 1, 1, 0x7C1FE0). The PRNG used in this work is a
23-bit Fibonacci linear feedback shift register (LFSR) with a primitive polyno-
mial x23+x18+1. Because we use a probabilistic counter in the design of our HT,
we term our HT Probabilistic Trojan (ProTro). The second level of the trigger
also consists of the signal axis trigger, which is defined by the combination of
AXI4 stream slave signals of Output Port Lookup module as:

axis trigger = s axis tvalid & s axis tready & (∼s axis tlast) (1)

The signal llh m, i.e., the malicious LUT lookup hit signal forms the third level of
the trigger mechanism. This signal, when active, affects the Trojan payload. The
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Fig. 6. Ethernet packet flow in a switch design with and without inserted HT.

HT payload comprises of the registers lut and dst ports as shown in Table 1. It
can be observed that when the HT is inactive only the lut lookup hit (llh)
signal is used to update the dst ports register, while when the HT is active the
llh m signal also contributes to the dst ports output value. The signals d1, r1
and r2 are defined as follows:

d1 = DEFAULT OUTPUT PORTS & (∼src port) (2)
r1 = rd oq[15][7:0] & ∼src port (3)
r2 = rd oq[15][7:0] & (∼(src port << 2)) (4)

The rd oq register acts as an intermediate register which stores the addresses
looked up and the associated ports. It is the value of this register which finally
updates dst ports and the axis tuser signal of AXI4-Stream bus. Note that
the MAC address learning mechanism is also slightly altered during writing in
the lut register by swapping the input src port bits. This modification is cru-
cial for the HT operation as it changes the port associated to a particular MAC
address. More specifically, by multiplication of the src port signal by
4, as shown in Eq. (4), only the input src port values of 0x01 and 0x04
are changed by swapping one with the other. This means a packet
arriving at the physical port-0 is learned in the switch to be asso-
ciated with the physical port-1, and vice versa, leading to passing
packets to incorrect ports. If these ports are being currently accessed
by malicious eavesdropper process, the possibly confidential data to
the process of port-0 is accessed by an unintended receiver at port-1.
As a result, the process at port-0 will be experiencing simultaneously
a DoS attack and confidentiality violation.
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Trojan Stealthiness and Detection. The effectiveness of any HT is based
on its ability to evade existing detection techniques, while having minimum
hardware area overhead. In this section we discuss about how our proposed
HT is unaffected by state-of-the art HT detection techniques.

Hicks et al. in [13] proposed to detect rare event triggering using data flow
graph of a design. Multiple levels of functional simulations are performed in
order to flag a signal or circuit as malicious or unused. By carefully changing the
code writing style and trigger inputs, an circuit which has been identified to be
“unused” by the UCI technique, can be transformed to a useful circuit as shown
in [26,33]. Our proposed HT inherently evades UCI technique by implementing
the comparator and multiplexer circuit in the HT RTL, following the methods
proposed in [26].

Walksman et al. in [29] tried to statically identify “weakly affecting inputs”
which are wires having the potential of operating as HT trigger. This method of
HT detection is based on computing a control value obtained by building truth
tables of intermediate outputs in the suspicious circuit. Here, a signal is deemed
suspicious when the control value remains under a threshold value. The authors
of [34] have shown that FANCI can be defeated by making control values of
Trojan related signals comparable to those of normal signals. This can be done
by introducing multiple sequential levels in the HT trigger logic. We propose
similar modification in our HT design in order to evade FANCI.

Also in [34], a method to overcome the VeriTrust detection technique is also
proposed which makes the Trojan affected signals driven by only non-redundant
inputs under non-trigger condition. The authors also provide well-explained
observation on how most of the Trust-Hub [27] benchmark HTs are all explic-
itly triggered, and hence detectable by VeriTrust. To counteract detection tech-
niques, they implemented HTs which are implicitly triggered which means the
HT generated output is indistinguishable from the normal output. There are
other papers such as [20] which evades all the above mentioned detection tech-
niques and proposed an effective HT design. It should be noted that most of
these Trojan design and detection techniques are centered around RTL design
modification and very few of them are directed towards FPGA application only.
In this work, we launch an attack on FPGA based Ethernet switch through the
means of a HT inserted through partial reconfiguration.

Recently, in [11], Haider et al. proposed a HT detection algorithm, namely
Hardware Trojan Catcher (HaTCh) which claims to detect a large and complex
class of deterministic HTs. The HaTCh tool consists of two phases. The first phase
is the “learning phase” which performs functional testing on an IP core under test,
and produces a blacklist of all the unactivated potentially harmful transitions of
internal wires. The second phase is the “tagging phase” which adds additional logic
to the core to track the previously listed malicious behavior. The main claim of this
work is that it can detect a larger class of HTs with much less computational com-
plexity and false positives when compared to other existing works.

Also, considering the classification of HTs by [11] as presented in Sect. 2, one
can easily observe that the HT proposed in our work falls under HND class, since
the IP core here is the switch design whose behavior is largely dependent on the
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Table 2. Design overhead for ProTro

Resource Without HT With HT HT insertion overhead (%)

LUT 48650 48744 0.19

LUTRAM 1880 1880 0.00

FF 70264 70376 0.16

BRAM (kbit) 213.50 213.50 0.00

BUFG 22 22 0.00

MMCM 3 3 0.00

PCIe 1 1 0.00

Power (watt) 6.90 6.90 0.00

traffic that the switch is subjected to. Even if we consider that there exists a
deterministic algorithmic specification of the design implemented in this work,
the detection of our HT is very difficult, firstly because it has multiple trigger
levels, and secondly it involves a probabilistic counter.

5 Experimental Results

The HT described in the previous section was designed using Verilog HDL, and
the HT-free and HT-infected ethernet switches were implemented on Xilinx’s
Virtex-7 based NetFPGA-SUME board, using Xilinx Vivado (v. 2016.4) design
platform. A Python based testing framework is part of the NetFPGA reference
switch project, which was modified to include then MACSec module, to verify
the functionality of the design. Packet stimuli and verification scripts were built
using the scapy Python module, which was also used to construct MACSec
packets.

In the Python testing infrastructure, first a packet is sent with pre-defined
source and destination MAC addresses through the nf0 port of the board as
shown in Fig. 6(a)(i). We assume that the switch’s CAM table is initially empty.
As an incoming packet is received at an Ingress port, the switch collects the
source address of the packet and adds that source address to a lookup table of
addresses that the switch maintains. So the first packet received is broadcast to
other ports of the switch, while it learns the MAC address associated to the port
(we indicate this as LUT Learn). For example, here MAC As is the source address
associated with port-0 of the switch. Second, another packet with MAC Ad as the
destination address is sent through the nf2 port as shown in Fig. 6(a)(ii). Under
normal condition as the switch has learned the port associated with MAC Ad

earlier, the packet is correctly directed out of the port-0 of the switch by looking
up the port from the CAM table (we indicate this as LUT Lookup). The switch
also learns the port associated with the new source address MAC Bs.

When the proposed HT is active, during the learning phase of source MAC
address, the associated port linked to this address is modified and then stored
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Table 3. TrustHub benchmark overhead

Trust-Hub Trojans Resource overhead (%)

LUT LUTRAM FF BRAM

MC8051T200 0.80 0 0 0

MC8051T300 0.19 0 0 0

MC8051T400 15.30 0 1.45 0

MC8051T500 2.82 0 0 0

MC8051T600 0.50 0 0 0

MC8051T700 3.74 0 0 0

MC8051T800 0.32 0 0 0

Average 3.38 0 0.20 0

PIC16F84T100 6.25 0 0 0

PIC16F84T200 1.30 38.40 3.10 0

PIC16F84T300 1.32 38.40 0.37 0

PIC16F84T400 1.20 38.40 37.00 0

Average 2.51 28.80 10.12 0

in the CAM table, as indicated in Fig. 6(b)(i). Now, instead of storing the nf0
port with MAC As, the switch saves nf1 port with MAC As. As a result of this
malicious hardware modification, one can observe that a packet destined to be
sent out of the nf0 port is actually directed out of nf1 port (Fig. 6(b)(ii)). The
highlighted yellow marking in Fig. 6(b) indicates the presence of HT in these
particular modules of the switch. Table 2 shows the resource overhead of the
proposed design, with and without HT. The HT circuit only incurs 0.19% and
0.16% overhead for the number of LUTs and flip-flop (FF) elements respectively.
The number of FF elements can be reduced or eliminated altogether if we use the
pre-exiting counters in the switch design to characterize the traffic, and one such
counter is reconfigured to behave differently in this case as an HT. In Table 3 we
have compared ProTro with similar TrustHub Benchmarks which fall under the
HND category. We can observe that our proposed Trojan is comparable or even
better than state-of-the-art Trojan designs, in terms of resource overhead. Also
the inserted HT did not incur any delay and power overhead.

6 Conclusion

In this paper we have presented a hardware implementation of the MACSec pro-
tocol over an ethernet switch reference design targeting the NetFPGA-SUME
platform. We have also proposed a HT attack on this MACSec enabled switch,
whereby the normal functionality of the switch is altered such that an eavesdrop-
per user attached to one of the ports of the switch can receive the ethernet traffic
intended for another user. Our proposed HT circuitry is based on a probabilistic
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counter. The proposed HT’s resource overhead is negligible, and since it is based
on a multi-level trigger mechanism, detection of such a HT is extremely difficult
using the state-of-the-art detection techniques. Our future work will involve inte-
grating the MKA protocol to develop a complete hardware-software co-design
for FPGA based ethernet security, and development of advanced HT detection
techniques to detect HTs of the type proposed in the paper.
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Abstract. Machine learning (ML) is one of the growing areas of engi-
neering with sweeping applications. Executing machine learning algo-
rithms on vast amount of data raises demand of huge resources and
large data set handling. Thus, machine learning was too costly for many
enterprise budgets. However, cloud service suppliers are making this tech-
nology reasonable to enterprises by offering massive shared resources.
Machine learning as a service (MlaaS) is a category of cloud comput-
ing services that provides machine learning tools to allow customers to
run, develop and manage applications in cloud without the complexity of
building and maintaining. However, ascent of machine learning as a ser-
vice procreates scenarios where one faces concealment dilemma, where
the model must be revealed to the outsourced platform. Hence, cloud
data security is an important issue where users can fancy the ability of
executing applications by outsourcing sensitive data. Fully Homomorphic
Encryption (FHE) offers a refined way to accommodate these conflicting
interests in the cloud scenario by preserving data confidentiality as well
as applying Mlaas in secure domain. However, processing on FHE data
can not be directly performed on traditional instruction execution flow,
but requires special circuit based representation of algorithms. In this
paper, we focus on realizing K-Nearest Neighbour (KNN) computation
on encrypted data, where data is stored using a generalized encrypted
representation. Such representation will be suitable for easily extending
to encrypted ensemble learning framework supporting multiple encrypted
learners for higher accuracy. Extensive performance studies are carried
out to evaluate the timing overhead of the encrypted KNN computation.

Keywords: Cloud · FHE · Machine learning · KNN

1 Introduction

Along with traditional cloud services like Infrastructure as a service (IaaS), Plat-
form as a service (PaaS) and Software as a service (SaaS), Machine learning as a
service (MLaaS) is also gaining attention with an array of machine learning tools
provided by different cloud service providers. Clouds’ pay-per-use model allows
organizations to avail intelligent machine learning options as and when required
without much need of advanced skills and individual resource requirements.
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Table 1. Famous cloud/server data hacks

Organization Impact

Yahoo 2013–14 3 billion user accounts were compromised with names,
dates of birth, email addresses and passwords

Marriott
International
2014–18

Attackers were able to take some combination of contact
info, passport number and other personal information of
500 million customers from internal server

eBay May 2014 145 million users compromised when attackers got access
to company network for 229 days using the credentials of
three corporate employees

Equifax 2017 Personal information and Credit card data hacking of 143
million consumers of this one of the largest credit bureaus
in the U.S.

Heartland Payment
Systems 2008

134 million credit cards exposed through SQL injection,
company paid out an estimated 145 million in
compensation

Uber 2016 Personal information of 57 million Uber users and 600,000
drivers exposed along with driver license numbers

Home Depot 2014 Theft of credit/debit card information of 56 million
customers, company agreed to pay at least 19.5 million to
compensate US consumers

Microsoft 2010 Experienced breach due to configuration issue within
Business Productivity Online Suite, allowed non-authorized
users of the cloud service to access employee contact info

Dropbox 2014 Hackers tapped more than 68 million user accounts and
passwords, disclosed after four years

LinkedIn 2012 6 million user passwords were stolen then published on a
Russian forum

LinkedIn 2016 Hackers stole and posted for sale on the dark web an
estimated 167 million LiknedIn email addresses and
passwords

Apple iCloud 2014 High-profile cloud security breach, the iCloud service for
personal storage of celebrities had been compromised,
private photos leaked online

Leading public cloud platforms like AWS, Microsoft Azure, Google Cloud hence
broken the barriers of scaling issues faced by organizations’ in-house machine
learning model generation attempts which require large computation clusters.

In spite of lots of promises from cloud computing, security is a major bottle-
neck to adapt cloud for world-wide applications. Due to incomplete control over
who can access sensitive data and limited monitoring capability of data in transit
to and from cloud applications, theft of data from cloud domain is very common.
Starting from big names for cloud computing services like Apple-iCloud, Google,
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Microsoft Azure and several other organizations are concerned about this data
security issue in cloud. Table 1 [37] has listed some of the major data breaches
which shows that data security is not only a concern when data is outsourced
to cloud platform, critical data should also be protected in internal organization
specific servers.

That raises a pertinent question in what form critical data should be stored in
cloud without leaking sensitive information to untrusted cloud service providers.
One immediate solution is to upload the data encrypting with traditional encryp-
tion schemes. That may conform data security, but processing on that encrypted
form of data is not possible. That defeats the purpose of cloud computing as huge
computing resources of cloud can not be utilized and encrypted data in cloud
need to be taken back in repeatedly for decryption to process further. FHE [34]
is an aid to such problems which supports direct processing on encrypted data
in the cloud domain without the need of intermediate decryption. However, for
developing suitable tools to execute algorithms operating on FHE data on gen-
eral purpose computers, suitable translations of algorithms should be designed
[28]. This requirement derives from the fact that all the existing FHE schemes
(for example: libraries like HElib [36], TFHE [35]) are by design circuit-based
and are not easily amenable to non-circuit representations of traditional algo-
rithms. Thus, to perform classification or regression analysis on encrypted form of
data, it is essential to translate suitable algorithms to their equivalent encrypted
counterpart.

In this work, we focus on realizing classification over encrypted data. Consid-
ering classification to be performed on sensitive information related to health-
care, financial credit evaluation and many more, it is important to investigate
how to execute such algorithms over encrypted data. Data classification in gen-
eral includes two-step machine learning approach. The first training step involves
determining the parameters for the classification algorithm, which is termed as
“training phase’ of sample data. The second prediction step classifies the data
using the trained parameters, termed as ‘model’. Therefore, it is essential to per-
form classification without exposing the sensitive information used as input for
the classification algorithm or the test data set [1]. There are different classifica-
tion algorithms in literature. In this work, we specifically concentrate on KNN
classification algorithm due to its simplicity. It is also easy to understand and
implement and does not make much assumptions as compared to other para-
metric models. Different efforts have been made to design secure KNN [6]. Most
of these works are either based on underlying order preserving scheme, some-
what homomorphic schemes or bounded polynomial based vector homomorphic
schemes [6,14,16], suitable for particular analytic scenario. Stored data in cloud
particularly encrypted with such restricted encryption schemes are not general
to support further complex ML algorithms on that same dataset. Thus, such
restricted form of representation may not be suitable in real world applications
specially in case of applying ensemble learning with multiple models combined to
solve a particular computational intelligence problem to achieve higher accuracy.
In this work, we consider a more general representation of FHE data outsourced
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in cloud. Such representation will keep the provision of applying multiple mod-
els on same form of encrypted dataset to handle encrypted ensemble learning
framework in future.

The overall paper is organized as follows: Sect. 2 highlights few related works
in this direction. Section 3 explains few basics of homomorphic encryption and
Sect. 4 justifies why we choose KNN over other ML classification algorithms.
Section 5 provides the details of KNN implementation over encrypted data along
with required submodules. Section 6 includes extensive experimental results and
analysis. Finally, Sect. 7 states the conclusion and possible future extension of
this work.

2 Related Works

Realizing machine learning over encrypted data is an active area of research for
last few years. In the work mentioned in [3], three major classification protocols:
hyperplane decision, Näıve Bayes, and decision trees are constructed to be com-
bined with AdaBoost. However, building blocks of these classifiers are developed
based on multiple encryption techniques and that intermediate switching incurs
added security overhead. Authors in [1] implemented Naive Bayes (NB) classifier
for encrypted dataset which has inherent limitation due to the underlying clas-
sification scheme. Among different encrypted analytic algorithms, few explored
on Logistic regression [4,8,9] and few other works analyze encrypted support
vector machines [10,11].

Authors in [13] revisit the secure nearest neighbour problem with a design
analysis based on new partition-based secure Voronoi diagram (SVD) method.
Work in [15] proposes particular KNN Queries implementation with Location
privacy useful for mobile communication. In [14], authors proposed a secure KNN
query processing based on mutable order preserving encoding (mOPE). An effort
has been made to design compact privacy-preserving KNN search using garbled
circuits (GC) in [25]. The work [16] performs only the secure nearest neigh-
bour search over encrypted data on untrusted clouds with underlying searchable
encryption scheme. In [26], authors proposed secure KNN design with restricted
homomorphic property, not suitable to extend for further complex ML algo-
rithms. Secure KNN Classification in [7] using Vector Homomorphic Encryption
is suitable for low dimensional representations of the encrypted data. Recent
work in [6] demonstrates secure KNN computing in two-party federated cloud
setting, with two non-colluding public cloud servers, which also requires one
round of communication between the two.

Overall, all these existing works are based on limited homomorphic prop-
erty or specific representation of data optimized for KNN implementation. In
the subsequent sections, we highlight how to implement KNN with a general-
ized encrypted representation suitable for further complex multiple classification
algorithms working over encrypted data.
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3 Preliminaries

A homomorphism is a structure-preserving transformation between two sets,
where an operation on two members in the first set is preserved in the second
set on the corresponding members. Let P and C be sets with members p1, p2 ∈ P
and c1, c2 ∈ C. Let a transformation, T : P → C such that T (P1) = C1 and
T (P2) = C2. Let us define an operator ⊕ on the elements of P and � an operator
on those of C, T is said to define an homomorphism if,

T (P1 ⊕ P2) = T (C1) � T (C2) (1)

Homomorphism may be valid for multiple operators and it is termed as algebraic
cryptosystem. Note that, the operators on P (say, ⊕) may be same or different
with operators on C (say, �). Further, an algebraically homomorphic crypto-
system can be described as a 6-tuple H1 = (P,C,E,D,⊕,⊗) where P and C
denote the plaintext space and the ciphertext space, respectively, whereas E
and D denote the encryption and decryption functions. ⊕ and ⊗ tag the two
algebraic operations. Gentry’s approach [34] of bootstrapping is to develop a
fully homomorphic from a somewhat homomorphic system and provide addition
and multiplication plus a normalization procedure that is supposed to allow
unlimited chaining of operations in ciphertext space. This technique of reducing
noise in the cipher-text space requires for an additional formal descriptive item,
extending H1 to H2 = (P,C,E,D,⊕,⊗, r), introducing a reduction-function r,
which takes a noisy cipher-text and transforms it into an equivalent with reduced
noise.

An encryption scheme ε consists of three algorithms: KeyGenε, Encryptε
and Decryptε. Each of these algorithms must be efficient, i.e. they must all run
in polynomial time (λ), where λ is the security parameter which specifies the bit-
length of the keys. KeyGenε generates a key, which is used in both Encryptε and
Decryptε . In the next subsections, we shall discuss about two main homomor-
phic schemes: Somewhat homomorphic scheme and fully homomorphic scheme.

3.1 Fully Homomorphic Scheme

Consider the following encryption scheme. Here λ is the security parameter. We
set N = λ, P = λ2 and Q = λ5.

– KeyGenε(λ): Generate a random P -bit odd integer p, which acts as the key.
– Encryptε(p,m): Output a ciphertext c ← m′ + p ∗ q, where m′ is a random

N-bit number such that m′ = m mod 2 and q is any random Q-bit number.
– Decryptε(p, c): Output (c mod p) mod 2.
– Evaluateε(f, c1, . . . ct): The boolean function f is first converted to an equiv-

alent function f ′ with only AND and XOR gates. Then the AND and XOR
operators are replaced with multiplication and addition operators respectively
to generate the function f ′′. Compute and return f ′′(c1, . . . , ct).
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One can observe that the ciphertexts from ε are near-multiples of p. (c mod p)
is referred to as the noise associated with the cipher-text. It is the difference from
the nearest multiple of p. Since the noise has the same parity as the message
encrypted. Operations like Add ε(c1, c2), Sub ε(c1, c2) and Mult ε(c1, c2) are
computed as (c1 + c2), (c1 − c2) and (c1 ∗ c2) respectively.

In order to make it more convincing, an example is presented. For the com-
putation of Mult ε(c1, c2), where c1 ← Encryptε(p,m1) = m′

1 + p ∗ q1, and
c2 ← Encryptε(p,m2) = m′

2 + p ∗ q2. The cipher-text output by Evaluate ε is
c = c1 ∗ c2. So,

c = m′
1 ∗ m′

2 + p ∗ q′ (2)

where q′ is some integer. As long as the noise m′
1 ∗ m′

2 is small, and not compa-
rable to p, we have:

c mod p = m′
1 ∗ m′

2 (3)

Therefore, (c mod p) mod 2 = m1 ∗ m2. This scheme works as long as the
noise does not blow up too much and start affecting the result. It is clear that
this scheme is incomplete and somewhat homomorphic, because if the result of
an operation between the two operands a and b exceeds the prime modulus p,
the decryption fails. So starting with two clean plain-text items, the intermedi-
ate result grows towards the modulus with every operation and in this sense is
polluted. To compensate for this, a fully homomorphic encryption scheme must
define normalization (as mentioned reencryption procedure in [34] of the inter-
mediate result. In the case of the system shown here, a normalization would be
any function that can minimize the remainder mod p of the result while preserv-
ing the parity mod p. Gentry addresses this problem by generating a public key
that contains a decryption hint. This hint allows to homomorphically decrypt the
intermediate result in the encrypted domain, which means that the plain-text
of the argument remains unknown. With the plain-text at hand in cipherspace,
it is possible to reencrypt the plaintext which generates a new cipher of the
plain-text with reduced noise.

In this paper, we consider TFHE library [35] as the underlying homomorphic
scheme where the normalization process is defined in a different way as expressed
in [41]. We are mostly interested in the library due to the fact that it provides
fastest gate-by-gate bootstrapping and not constrained in case of supported set
of efficient operations as previous BGV based FHE schemes [40].

4 Choice of KNN over Other ML Algorithms

As defined by Arthur Samuel “machine learning is the field of study that gives
computers the ability to learn without being explicitly programmed.” Machine
learning algorithms are either parametric or non-parametric. Parametric algo-
rithms incorporate a mounted range of parameters. A parametric algorithm
is computationally quicker, however, makes stronger assumptions concerned to
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data, the algorithmic program may match well if the assumptions prove to be
correct. However, it’s going to perform poorly if the assumptions go wrong. In
distinction, a non-parametric algorithm uses a versatile range of parameters,
and also the variety of settings typically grow because it learns from additional
information. A non-parametric algorithm is computationally slower, however,
makes fewer assumptions related to the information. A typical example of a
non-parametric algorithm is KNN, which is inherently slow but robust to noisy
training data.

Overall, machine learning algorithms are grossly classified as:supervised
learning and unsupervised learning. Supervised learning is based on the idea
of learning with known quantities to support future judgment whereas, in case
of unsupervised learning, the algorithm learns by itself. “Supervise” means to
observe and direct the execution of the task. Supervised learning is a method in
which machine infer from labeled data, which indicates group of samples that
have been tagged with one or more labels identifying certain properties or char-
acteristics. After learning, new set of data without labels are provided. Test
algorithms analyze labels of the given data based on the labeled data. Under
Supervised ML, few notable techniques for classification are as follows:

– Linear regression creates a relationship between target scalar and one or
more predictors [19]. Simple regression is of one predictor where as multiple
regression is associated with more than one predictor [20]. Predictor func-
tion estimates parameters from the data. Linear regression is applied if the
target scalar is continuous. Linear regression is widely utilized in biologi-
cal, behavioral, and social sciences to explain doable relationships between
variables [22].

– Logistic Regression Logistic regression applies a logistic function to a linear
combination of features to predict the outcome of a categorical dependent
variable based on predictor variables [22]. Logistic regression is a commonly
used tools for discrete data analysis and applied statistics [21].

– Decision trees are tree-like structure which use branching methodology to
illustrate possible outcomes of the decision based on the specific boundary
condition. Each node represents a condition on the attribute, a branch of the
test corresponds to the outcome of the trial, and leaf nodes represent labels.
The classification rules described through the path from the root to the leaf
node [23].

– Naive Bayes algorithm belongs to the family of the probabilistic classi-
fier. Naive Bayes parameter estimation uses Bayesian methods or maximum
likelihood in the domain of document, news article classification, sentiment
analysis etc [24].

– Support Vector Machine (SVM) involves linear algebra to realize hyper-
planes to classify among different data sets to be classified.

– Neural Networks (NN) classification technique is inspired by biological
network composed of massively parallel interconnections, where the system
consists of processing elements connected using weights. NN is trained using
the algorithm for estimation of parameters to do one or more classification
tasks.
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Implementation of all these above mentioned ML classification algorithms in
encrypted domain either requires costly probability computation with encrypted
division (for Naive Bayes classification and Logistic regression), numerous
encrypted decision making (for Decision trees), encrypted complex mathemati-
cal sub-operation module implementation (for SVM classifier) or huge parame-
ter estimation (for NN based approaches). Due to all these issues, in this paper.
We focus on the implementation of comparatively simpler K Nearest Neighbour
(kNN), which has the following advantages:

• KNN is simple, easy to understand, and implement. To classify the new datum
KNN reads through the whole dataset to search out K nearest neighbours.

• No assumptions need to make to implement kNN. Parametric models have a
lot of assumptions.

• KNN does not explicitly build any model, merely tags the new data entry
based learning from historical data.

• The classifier at once adapts as we tend to collect new coaching knowledge.
KNN is an instance-based learning and memory-based approach.

• KNN complies with multi-class with none additional efforts. Classification
algorithms are easy to apply for binary classifications, needs the effort to
implement for multiclass.

• KNN might take some time while selecting the first hyper-parameter but after
that rest of the parameters are aligned to it.

In the next section, we discuss how to realize KNN in encrypted domain.

Fig. 1. KNN classification.
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5 Encrypted KNN Computation

KNN based classification is a non-parametric method, where the input is the
K (number of neighbours) closest training data in the feature space1 [39]. KNN
classifies an object by analyzing fixed number of plurality voting of neighbours
as shown in Fig. 1a. Number of neighbours are involved in voting depend on the
amount of K, a positive integer, with the object being assigned to the class most
common among its K nearest neighbours [2,26].

Figure 2 outlines the major steps of implementing KNN algorithm on unen-
crypted data. The algorithm considers input as n point training data set P =
{p1, p2, p3, . . . pn} with m dimensional features and associated class labels, num-
ber of nearest neighbours integer value K and a test data Ti. The training phase
of the algorithm only requires storing the feature vectors and class labels of the
training samples. Main challenge of realizing this classification model compu-
tation in the encrypted domain ultimately boils down to the realization of the
following submodules in encrypted domain:

1. Encrypted distance computation between the points pi and Ti.
2. Sorting of the computed distances.
3. K-Nearest Neighbours Voting based on the class label of the neighbours.
4. Class Label Assignment of test input Ti.

In the subsequent sections, we highlight the realization of the encrypted
counterpart of above operations.

5.1 Distance Computation

Consider two vectors A = {x1, x2, x3 . . . xm} and B = {y1, y2, y3 . . . yn} in training
and test feature space respectively, where m is the number of features in a single
instance of the training dataset and n is the number of features in test data,
xi indicates features of a single instance the training dataset, where i ∈ m, yj

indicates features of a single instance the test dataset, where j ∈ n. For the
simplicity, here we consider m = n.

KNN classifier calculates the distance between the points to be classified
and training instances in feature space. KNN offers the flexibility to decide on
a distance, whereas building the KNN model requires any one of the following
distance metrics:

1. Euclidean Distance:

EuclideanDistance(A,B) =

√
√
√
√

m∑

i=1

(xi − yi)2 (4)

1 Feature vectors are used to represent numeric or symbolic characteristics, called
features, of an object in a mathematical, easily analyzable way.
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Fig. 2. KNN algorithm

2. Hamming Distance:

HammingDistance(A,B) =
m∑

i=1

(xi, yi) (5)

where, (xi, yi) = {0 xi = yi 1, xi 	= yi}
3. Manhattan Distance:

ManhattanDistance(A,B) = (
m∑

i=1

|xi − yi|) (6)



186 B. P. K. Reddy and A. Chatterjee

4. Minkowski Distance:

MinskowiDistance(A,B) = (
m∑

i=1

|xi − yi|r) 1
r (7)

where r = Parameter used to calculate distance between the points

In the encrypted domain, multiplication operation is costlier than addi-
tion/subtraction. Hence, among the above four distances, we consider Manhat-
tan distance which promises to be less computation expensive. The input data
has been encrypted bit wise with Enc pk function. Following Eq. 6, following
two sub-operations need to be realized to compute Manhattan distance with
encrypted homomorphic primitives:

Fig. 3. Fully Homomorphic subtraction

– Encrypted subtraction
– Encrypted absolute value computation of the subtraction result

Encrypted Subtraction. Considering b-bit feature size, we need to design
b-bit subtractor for distance computation. The subtraction circuit is designed
bit-wise initially and the bit-wise subtractor is iterated over the loop for b-bit
subtraction computation.

For the bit-wise subtraction, half subtractor is designed between two single
bits (Xi and Yi). If any borrow (Bin) occurs to the next bit then we need to
complete a subtraction between three bits. Thus, this full subtractor with two
input bits and borrow input generates two outputs, difference (D) and borrow
out (Bout) based on the following equations:

Bout = Bin . (Xi XOR Bin) + Xi . Yi

D = (Xi XOR Yi)XOR Bin (8)

As shown in Fig. 3, FHE subtraction between two encrypted operands x′

and y′ with borrow B′
in is computed with this logic (as explained in Eq. 8)

and implemented using FHE primitive gates provided underlying TFHE library.
In the next subsection, we explain how to compute the absolute value of the
subtraction result.
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Fig. 4. Encrypted absolute value computation

Fig. 5. Distance array

Absolute Value Computation. For two encrypted operands x′ and y′, abso-
lute value of the subtraction result x′ − y′ will be |x′ − y′|, non-negative value
of x′ − y′ irrespective of its sign. In this implementation, we are considering
two’s complement notation where negative number. According to this notation,
−num′, negation of a positive encrypted number num′ can be computed by com-
plementing the bits of num′ and subsequently adding encrypted one (Enc(1))
to the result [28]. Again, num′ can be obtained back from −num′ by same way.

Hence, while absolute value computation of any subtraction result x′ − y′, it
is important to check whether x′ − y′ is already positive or negative. If x′ − y′

is positive, then |x′ − y′| = x′ − y′. Else, |x′ − y′| = −(x′ − y′). Such encrypted
conditional assignment or encrypted decision making can be done with encrypted
multiplexer (FHE mux) [28]. For two encrypted inputs A′

i and B′
i and encrypted

selection line s′, the encrypted multiplexer output (Z ′) will be A′
i.s

′ + B′
i.s

′.
Depending on the values of selection line (either Enc(0) or Enc(1)), B′

i or A′
i

will be selected as the value of Z ′.
Figure 4 shows |x′ −y′| Computation, where MSB of the subtraction result is

fed as selection of FHE mux. If the x′ − y′ value is positive, MSB is Enc(0) and
direct x′ − y′ value is selected. Otherwise, if the subtraction result is negative,
MSB is Enc(1) and −(x′ − y′) is selected as the final absolute value. Further,
summing up these absolute subtraction values with encrypted adder [28] final
encrypted distances (dist′[i]) between pi and test input Ti are computed. Next
step of KNN computation is the sorting of these computed distances which will
be detailed in the subsequent section.

5.2 Distance Sorting

Sorting of computed distances requires implementation of encrypted sorting with
dist′[i] values. As discussed in [29]. Bubble sort has been proven to be promis-
ing sorting technique while considering encrypted data. Bubble sort repeat-
edly compares adjacent elements and based on the result of the comparison,
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Fig. 6. Fully homomorphic swap

swapping operation takes place until the elements sorted. Thus, the sorting algo-
rithm involves comparison, decision making and swapping operation. In case of
sorting of the Manhattan distance, the main operation is the swap of two dis-
tances based on their greater-lesser relationship. Hence, considering two consec-
utive encrypted distances dist[i]′ followed by dist[i + 1]′ in sorting input array,
their positions will be changed during the sorting process if dist[i]′ > dist[i+1]′.
That decision making involves subtraction of two operands and MSB of sub-
traction outcome to be fed to encrypted multiplexers as shown in Figs. 5 and 6.
While dist[i]′ > dist[i+1]′, value of encrypted MSB will be Enc(0). Thus, lower
value position of sorted array will hold dist[i+1]′ as output of FHE mux1. Sim-
ilarly, the selection value of FHE mux2 will be Enc(1) and that will give output
dist[i]′ as upper value position of sorted array.

From the final sorted distance array, K nearest neighbours are selected and
final assignment of test input’s class label will be done by KNN Voting, which
will be detailed in the next section.

5.3 KNN Voting and Class Label Assignment

By KNN Voting, we mean predicting the class label of test input based on the
existing class labels (as assigned and stored in the training phase) of the nearest
neighbours. Training phase class labels are assigned either as positive (+) class
or negative (−) class marked as label (Li) and encrypted as Enc(1) or Enc(0)
respectively. Thus, voting involves the following sub-operations:

– Equality comparison of nearest neighbours class labels with Enc(1) or
Enc(0) and summing up the equality check results to get the total positive
(posCount’) and negative counts (negCount’).

– Subtraction of encrypted posCount’ and negCount’ to get the higher count
and predict the final label of test input.

Figure 7 performs equality comparison between Li and Enc(1) and the equal-
ity check result (Enc(1) if values are equal [28]) is fed to two multiplexers
FHE mux1 and FHE mux2. If Li equals to Enc(1), posCount′ increases else
negCount value increases.

Finally, as shown in Fig. 8, negCount′ and posCount′ are fed as input of
FHE subtraction module and MSB of the subtraction result provides the final
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Fig. 7. Fully homomorphic prediction

Fig. 8. Fully homomorphic label assignment

predicted label. If negCount′ > posCount′, MSB turns to be Enc(0) and that
predicts the negative class.

Here 8-bits, 10-bits and 16-bits represent the number of bits used to store
input data and output.

6 Result

The real world multivariate Iris data set from UCI machine learning repository
[33] is used to verify our encrypted kNN classification. The Iris data set has
150 rows, and each row contains single label and four features. Based on these
features, flowers are classified into three categories namely Iris setosa, Iris Ver-
sicolor, and Iris Virginia. To implement binary classification, we are considering
two classes of Iris data set such as positive class and negative class. The posi-
tive class and the negative class are represented by Iris versicolor and Iris setosa
respectively, where each category of flower has 50 rows of positive and negative
classes. Our implemented algorithm had been estimated on Linux Ubuntu 64-
bit machine with i7700 with the 3.6 GHz processor using FHE module of TFHE
library. Due to the RAM limitation, we managed to process partial blocks of
values at a time.

We implement KNN over encrypted form of Iris data, where encryption is
done using underlying TFHE library. Our extensive experimental results show
how the timing requirement varies with the change of dataset size (Fig. 9), vary-
ing numbers of features (Fig. 11) and the selection of number of neighbours
K (Fig. 10). With increase in number of bits of the input data, the time for
computation increases too. The library used here, TFHE supports symmetric
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Fig. 9. Data size vs. time

encryption, decryption, and evaluation of a boolean circuit in Gate bootstrap-
ping mode only (one bootstrapping per binary gate), and in single threaded
mode. Unsupervised ML algorithm implementations, as shown in the work [2]
are even more costly in comparison to our results. In the paper [2], authors con-
sidered K-means algorithm over encrypted data with Lsun dataset [38] of 400
data instances, and every single instance has two features (32 bits each) and the
execution time is 0.85 months approximately for 3 clusters. However, the scope
of comparison with other secure KNN results is very limited since most of the
previous implementations are either based on some specific assumptions or with
limited homomorphic property.
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Fig. 10. K value vs. time

Fig. 11. Features vs. time

7 Conclusion

To preserve privacy in machine learning, applying algorithms over encrypted
data can be an optimal solution. Our proposed implementation provides accu-
rate privacy-preserving training and classification in this direction by utilizing
a state of the art approach based on encrypted KNN algorithm. This encrypted
classification can be used for some specific medical or financial long term deci-
sion making scenario, but not for real time critical applications due to its per-
formance bottleneck. The reason may be the present algorithm uses underlying
TFHE library which solely operates on the single thread computation without



192 B. P. K. Reddy and A. Chatterjee

accounting parallelism. In our future work, we intend to improve the perfor-
mance supporting suitable parallel processing and GPU or FPGA acceleration
of the underlying library to improve the overall performance.
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Abstract. This paper studies some low XOR matrices systematically.
Some known low XOR matrices are companion, DSI and sparse DSI
matrices. Companion matrices have been well studied now whereas DSI
and sparse DSI are newly proposed matrices. There are very few results
on these matrices. This paper presents some new mathematical results
and rediscovers some existing results on DSI and sparse DSI matrices.
Furthermore, we start from a matrix with the minimum number of fixed
XORs required, which is one, to construct any recursive MDS matrix.
We call such matrices 1-XOR matrices. No family of low XOR matrices
can have lesser fixed XORs than 1-XOR matrices. We then move on to
2-XOR and provide some impossibility results for matrices of order 5
and 6 to compute recursive MDS matrices. Finally, this paper shows the
non-existence of 8-MDS sparse DSI matrix of order 8 over the field F28 .

Keywords: MDS matrix · DSI matrix · Sparse DSI matrix ·
Permutation matrix

1 Introduction

Consider an 8 × 8 matrix

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 0 0 0 0 0 0 a1

a2 0 0 0 0 0 0 0
0 a3 b3 0 0 0 0 0
0 0 a4 0 0 0 0 0
0 0 0 a5 b5 0 0 0
0 0 0 0 a6 0 0 0
0 0 0 0 0 a7 b7 0
0 0 0 0 0 0 a8 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where ai’s and bi’s are from the field F28 . The question is - does there exist any
M over the field F28 such that M8 becomes MDS? One special case is when all
c© Springer Nature Switzerland AG 2019
S. Bhasin et al. (Eds.): SPACE 2019, LNCS 11947, pp. 195–213, 2019.
https://doi.org/10.1007/978-3-030-35869-3_14
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ai’s are 1 (the multiplicative identity in the field F28). An obvious way is to try
all possible values of bi’s, considering all ai’s are 1, which is (28)4 = 232 possible
values. It can be easily checked from existing computational resources, but what
if we do not fix ai’s to 1? The total possible values will be (28)12 = 296 which
is now infeasible to explore considering the current computational resources.
In [15], the main reason for not providing any 8 × 8 sparse DSI matrix (see
Definition 8 in this paper) was a large search space which is 296 matrix checking
for MDS property. This paper settles this answer by reducing the search space of
296 elements to a search space of 232 elements. It can be verified by exhaustive
search that there does not exist any such M over F28 whose power raised to 8
yields an MDS matrix.

The structure of M like matrices was first studied in [15] and such matrices
are called sparse DSI matrices. The motivation behind the introduction of sparse
DSI matrices was to achieve the optimal diffusion along with a low hardware area.
The study on achieving optimal diffusion with low hardware area is not a recent
activity; in fact, in recent years, a lot of research has been done to achieve so -
notably using circulant, variants of circulant, Hadamard, variants of Hadamard,
Cauchy, Vandermonde, companion matrices etc [1–5,7,8,10,12–14]. One can find
a very nice account of the recent advances in obtaining MDS matrices using dif-
ferent kinds of matrices in [6].

The DSI and sparse DSI matrices were first introduced and studied in [15].
The motivation behind this study was to provide an optimal cryptographically
significant diffusion layer in terms of the hardware area. The authors showed the
existence of n × n sparse DSI matrices for n ≤ 7 along with some mathematical
results. But, the paper could not settle the answer for 8× 8 sparse DSI matrices
because of a huge search space. Needless to say, that paper [15] lacked sufficient
mathematical results to conclude the impossibility of 8-MDS sparse DSI matrices
of order 8 over the field F28 which has been finally settled in this paper.

Our Contribution: In this paper, we make an attempt to formalize the low
XOR matrices and study their properties systematically. Our study starts with
the minimum number of fixed XORs required in low XOR matrices which could
yield recursive MDS matrices. The minimum number of fixed XORs required is
one. We call such matrices 1-XOR matrices (for definition of t-XOR see Sect. 3.1).
We provide an upper bound on the number of nonzero elements of an n×n 1-XOR
matrices when raised to power n. Toh et al. [15] proved that 1-XOR matrices of
order 4 are not k-MDS for k ≤ 8. In this paper, we provide a similar but more
generic result for any n×n 1-XOR matrices with some constraints in Theorem 3.
Moreover, we have provided some results for 2-XOR matrices of order up to 6
in Sect. 3.3. We have shown that there does not exist 2-XOR matrices of order 5
and 6 whose 5-th and 6-th power respectively yield MDS matrices. These results
are significant because they give a lower bound on the number of fixed XORs
required for k-MDS lower XOR matrices of order n for n ≤ 6. Finally, this paper
shows the non-existence of 8-MDS sparse DSI matrix of order 8 over the field
F28 which was remain unsolved in [15] due to huge search space. The drastic
reduction in the search space comes from the result in the paper which shows
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that checking sparse DSI matrices with ai’s equal to 1 to obtain recursive MDS
matrices is sufficient.

2 Definition and Preliminaries

Let
∑

be a set of variables. We assume that 0 (zero) and 1 (one) belong to
∑

.
Now we define binary operations + :

∑×∑ �→ ∑
and ·∑ ×∑ �→ ∑

such that

1. a + b = b + a, ∀ a, b ∈ ∑
,

2. a · b = b · a, ∀ a, b ∈ ∑
,

3. 0 + a = a, ∀ a ∈ ∑
,

4. 0 · a = 0, ∀ a ∈ ∑
,

5. 1 · a = a, ∀ a ∈ ∑
,

6. a + (b + c) = (a + b) + c, ∀ a, b, c ∈ ∑
,

7. a · (b · c) = (a · b) · c, ∀ a, b, c ∈ ∑
,

8. a · (b + c) = a · b + a · c, ∀ a, b, c ∈ ∑
,

9. a · b is nonzero if and only if both a and b are nonzero,
10. a + b is zero if and only if both of a and b are zero.

0 is called the “zero” and rest are nonzero. For simplicity, we may denote a · b
as ab only.

An integral domain satisfies all properties except the last one. In an integral
domain, the additive inverse exists for all elements whereas it is not true in

∑
because the sum of zeros only can produce zero (the last property).

Let A(S) denotes a matrix A, whose entries are from the set S. The row
(and column) index of a matrix starts from 1. The (i, j)-th entry of a matrix
A is denoted by (A)i,j . An n × n matrix is called a matrix of order n. Suppose
A (

∑
) and B (

∑
) are two matrices, then A + B and A · B are defined as usual

matrix addition and multiplication whose entries operations are done as defined
above. For simplicity, we may denote A · B as AB only. We denote by |A| for
the number of nonzero entries in the matrix A. We denote a commutative ring
with unity by R and a field by F. If there are q = pr elements for some prime
p and r > 0 in a field, we denote the field by Fq. The algebraic closure and
multiplicative group of Fq are denoted by F̄q and F

∗
q respectively. For two m×n

matrices A and B, we symbolize A(
∑

) � B(
∑

) if (A)i,j �= 0 implies (B)i,j �= 0.
It is not hard to observe the following:

1. |A1(
∑

) + A2(
∑

)| ≤ |A1(
∑

)| + |A2(
∑

)| for any two matrices A1 and A2

over
∑

.
2. If A1(

∑
) � B1(

∑
) and A2(

∑
) � B2(

∑
), then A1(

∑
) + A2(

∑
) � B1(

∑
) +

B2(
∑

) and A1(
∑

)A2(
∑

) � B1(
∑

)B2(
∑

).

The second observation is true because of the last property of
∑

which allows
the sum of two elements be zero only when both of them are zero. Furthermore,
the motivation behind the introduction of

∑
is the fact that the second observa-

tion happens only over
∑

; it is not true in any arbitrary ring or field. In general,
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the number of nonzero elements in the resultant matrix keeps varying (some-
times goes up, sometimes goes down) when the matrix operations are done over
a ring or a field, and it is very difficult to find an upper bound on the number
of nonzero elements. But it is not very difficult to obtain the same over

∑
.

Definition 1. A matrix D is said to be diagonal if (D)i,j = 0 for i �= j. By
setting di = (D)i,i, we denote the diagonal matrix D as diag(d1, d2, . . . , dn).
The diagonal matrix D is non-singular if and only if di �= 0 for 1 ≤ i ≤ n.

Theorem 1 [9]. A square matrix A is an MDS matrix if and only if every
square submatrices of A are nonsingular.

An MDS matrix must have all its entries nonzero. Therefore, any n × n
matrix cannot be MDS if the number of nonzero entries is less than n2. In this
paper, we are using this fact to obtain some negative results. The upper bound on
the nonzero elements in the resultant matrix over

∑
ensures the upper bound

over any ring or a field also. And that is why the structure
∑

becomes very
significant.

MDS matrices provide maximal diffusion which is useful in cryptographic
applications, but they are not sparse resulting in costly implementations. Sev-
eral techniques have been proposed to construct efficiently implementable MDS
matrices. In this direction, recursive MDS matrices are proposed which are more
suited for lightweight applications.

Definition 2. A recursive MDS matrix is an MDS matrix which can be
expressed as a power of some matrix, i.e. an MDS matrix M = Bk for some
matrix B and some integer k > 0. We say that the B yields a recursive MDS
matrix M .

In [5], B was a companion matrix; in [15], B was any one of companion, DSI
or sparse DSI matrix, but in this paper we will consider only low XOR matrices
for B.

Definition 3 [15]. A matrix of order n is k-MDS if it is MDS when raised to
the k-th power.

Example 1. For example, the matrix

M =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 1 α 1

⎤
⎥⎥⎦

yields an MDS matrix when raised to power 8, where α is a primitive element
of F24 whose constructing polynomial is x4 + x + 1.

Definition 4. A permutation matrix P is a binary matrix which is obtained
from the identity matrix by permuting the rows (or columns).
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Note that a permutation matrix is invertible and the inverse of P is the transpose
of P , i.e. P−1 = PT . The product of two permutation matrices is a permutation
matrix.

Definition 5. Let ρ be an element of the symmetric group Sn (set of all permu-
tations over the set {1, 2, . . . , n}). Then ρ is called a k length cycle permutation,
written (i1 i2 i3 . . . ik), if

ρ =
(

i1 i2 i3 . . . ik
i2 i3 i4 . . . i1

)

i.e. i1 �→ i2, i2 �→ i3, . . ., ik �→ i1.

Lemma 1 [6, Corollary 4]. If M is an MDS matrix, then for any permutation
matrices P and Q, PMQ is an MDS matrix.

Definition 6. Two matrices M and M ′ are called permutation-equivalent if
there exists a permutation matrix P such that M ′ = PMP−1.

Remark 1. Therefore by Lemma 1, permutation equivalent of an MDS matrix is
again an MDS matrix.

Definition 7 [15, Definition 5]. Let a = [a1 a2 · · · an] and b = [b1 b2 · · · bn−1]
where ai, bj ∈ ∑

for 1 ≤ i ≤ n and 1 ≤ j ≤ n − 1. A Diagonal-Serial-Invertible
(DSI) matrix D(

∑
) is determined by two vectors a and b defined as follows:

(D)i,j =

⎧
⎪⎪⎨
⎪⎪⎩

a1, i = 1, j = n
ai, i = j + 1
bi, i = j ≤ n − 1
0, otherwise.

We would like to mention here that the Definition 7 is slightly different than
the definition (5) of [15]. Here, all ai’s and bi’s are being assumed from

∑
whereas

in [15], these are from the field F2r for some r ≥ 1. Note that by choosing
∑

instead of the field F2r , the results proved in this paper are also valid for arbitrary
fields Fpr and arbitrary rings.

Definition 8 [15, Definition 6]. A DSI matrix D = DSI(a1, a2, . . . , an; b1, b2,
. . . , bn−1) of order n is sparse if it satisfies:

{
b2 = b4 = . . . = bn−2 = 0, if n is even
b2 = b4 = . . . = bn−3 = 0, if n is odd.

Example 2. An example of a sparse DSI matrix of order 4 and 5 are given below:

⎡
⎢⎢⎣

b1 0 0 a1

a2 0 0 0
0 a3 b3 0
0 0 a4 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

b1 0 0 0 a1

a2 0 0 0 0
0 a3 b3 0 0
0 0 a4 b4 0
0 0 0 a5 0

⎤
⎥⎥⎥⎥⎦

.
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3 Low XOR Matrices

Low XOR matrices have great importance in lightweight constructions of dif-
fusion layers as they are sparse. We will consider an n × n matrix of the form
M = PD1 + D2, where D1 and D2 are two diagonal matrices and P is a per-
mutation matrix. We consider that all matrices have entries from

∑
, unless

specified.

3.1 t-XOR Matrices

To yield a recursive MDS matrix, a matrix must have at least one nonzero
element in each row and each column. So, we consider an n × n matrix M of
the form P (D + A′) = PD + A, where P is a permutation matrix, D is a
nonsingular diagonal matrix and A′ contains t (t ≥ 1) nonzero elements in some
non-diagonal position. Moreover, A also has t nonzero elements. We will call
such matrix t-XOR matrix.

The reason for calling t-XOR matrix can be explained through an example.
Consider

M =

⎡
⎢⎢⎣

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0 e 0 f
0 0 0 0
g 0 0 0
0 0 0 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 e c f
a 0 0 0
g b 0 0
0 0 0 d

⎤
⎥⎥⎦

If y = [y1 y2 y3 y4]T (a column vector), then My = [ey2 + cy3 + fy4 ay1 gy1 +
by2 dy4]T . The number of total additions in My, which is 3 in this example, is
equal to the number of nonzero elements in A. In a field or a ring of characteristic
2, these additions are implemented using XORs and that’s why the name t-XOR.
These XORs are referred as fixed XORs. In this paper, we will assume t ≤ n− 1
which is a reasonable assumption otherwise there is no point of calling these
matrices low XOR matrices.

Some known t-XOR matrices are companion [5], DSI and sparse DSI matri-
ces. For an n × n companion and DSI matrix, t is n − 1 whereas for sparse DSI
matrix, t is 	n/2
. Since a sparse DSI matrix has the least t value among com-
panion, DSI and sparse DSI, that is why it is more suited for the lightweight
diffusion layer. Lesser the value of t, more suited for implementation.

In the following lemma, we study an equivalence relation between the t-XOR
matrices.

Lemma 2. Let M1 be a t-XOR matrix of order n ≥ 2. Then M1 is permutation
equivalent to some t-XOR matrix M2 = QD′ + A′, where Q is a permutation
matrix, D′ is a nonsingular diagonal matrix and A′ has t nonzero elements in
its first t rows.

Proof. Let M1 = PD+A be a t-XOR matrix, where A has r1, r2, . . . , rk nonzero
elements in the i1, i2, . . . , ik-th row respectively such that r1 + r2 + . . . + rk = t
and k ≤ t.
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Now consider the permutation matrix P1 obtained from the identity matrix
by permuting the row i1 to row 1, row i2 to row 2, . . . , row ik to row k. Now

P1M1P
−1
1 = P1(PD + A)P−1

1

= P1PDP−1
1 + P1AP−1

1

Since DP−1
1 = P−1

1 D′ for some diagonal matrix D′, we have

P1M1P
−1
1 = P1PP−1

1 D′ + P1AP−1
1

= QD′ + A′,

where Q = P1PP−1
1 and A′ = P1AP−1

1 . Also note that A′ has altogether t
nonzero elements in its 1st, 2nd, . . . , k-th row. Let M2 = QD′ + A′. Therefore
M1 is permutation equivalent to M2. ��
Remark 2. For example, consider a 1-XOR matrix of order 4

M1 =

⎡
⎢⎢⎣

b 0 0 0
0 c d 0
0 0 e 0
0 0 0 f

⎤
⎥⎥⎦ and P1 =

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

Then P1M1P
−1
1 = M2, where M2 is a 1-XOR matrix given by

M2 =

⎡
⎢⎢⎣

c 0 d 0
0 b 0 0
0 0 e 0
0 0 0 f

⎤
⎥⎥⎦ .

Therefore, to construct MDS matrices from t-XOR matrices, we need to check
only for t-XOR matrices whose nonzero elements (for A) are in the first t rows.
This reduces the search space. For example, to construct recursive MDS matrices
from 2-XOR matrices of order 5 and 6, we need to check only 5 ! × 8C2 = 3360
and 6 ! × 10C2 = 32400 2-XOR matrices respectively.

3.2 1-XOR Matrices

We try to minimize the number of nonzero elements in a matrix which will yield
a recursive MDS matrix. Also note that to yield a recursive MDS, an n × n
matrix should have at least n+1 nonzero elements. Therefore, we start with the
1-XOR matrices. Because of Lemma 2, we are considering those A only whose
first row has exactly one nonzero element.

In Theorem 2, we prove that for n ≥ 3, there exists no n × n 1-XOR matrix
which is n-MDS. For this, we need the following lemma.

Lemma 3. Let M = (P + A) be a 1-XOR matrix. Then, there exists some Ai’s
such that Mr � P r + P r−1A1 + P r−2A2 + P r−3A3 + . . . + PAr−1 + Ar for
1 ≤ r ≤ n, where Ai are the matrices whose first row contain exactly i nonzero
elements and rest rows zero.
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Proof. We will prove this result by mathematical induction. When r = 1, M �
P + A1 = P + PA0 + A1. Therefore the result is true for r = 1. Now assume
that the result is true for r = k < n. Now we show that the result is true for
r = k + 1. Now Mk+1 = (P + A1)k(P + A1). Therefore

Mk+1 � (P k + P k−1A1 + P k−2A2 + P k−3A3 + . . . + PAk−1 + Ak)(P + A1)

= (P k+1 + P k−1A1P + P k−2A2P + P k−3A3P + . . . + PAk−1P + AkP )

+ (P kA1 + P k−1A2
1 + P k−2A2A1 + P k−3A3A1 + . . . + PAk−1A1 + AkA1)

Note that AiA1 � A1 and AiP = A′
i for some A′

i, where A′
i are the matrices

whose first row contain exactly i nonzero elements and rest rows zero. Therefore,

Mk+1 � (P k+1 + P k−1A′
1 + P k−2A′

2 + P k−3A′
3 + . . . + PA′

k−1 + A′
k)

+ (P kA1 + P k−1A1 + P k−2A1 + P k−3A1 + . . . + PAk−1A1 + A1)

�P k+1 + P kA1 + P k−1(A′
1 + A1) + P k−2(A′

2 + A1)
+ . . . + P (A′

k−1 + A1) + (A′
k + A1).

Note that A′
i + A1 � A

′′
i+1, where A

′′
i are the matrices whose first row contain

exactly i nonzero elements and rest rows zero. Therefore,

Mk+1 � P k+1 + P kA
′′
1 + P k−1A

′′
2 + P k−2A

′′
3 + . . . + PA

′′
k + A

′′
k+1.

Hence the result. ��
Theorem 2. For n ≥ 3, there does not exist any 1-XOR matrix of order n
which is n-MDS.

Proof. From Lemma 3, we have

Mn � (P + A)n

� Pn + Pn−1A1 + Pn−2A2 + Pn−3A3 + . . . PAn−1 + An.

Thus

|Mn| ≤ |Pn| + |Pn−1A1| + |Pn−2A2| + |Pn−3A3| + . . . + |PAn−1| + |An|
= |Pn| + |A1| + |A2| + |A3| + . . . + |An−1| + |An|

Note that Pn and An have a common element. Therefore

|Mn| ≤ n + (1 + 2 + 3 + . . . + n) − 1 =
n(n + 3)

2
− 1.

Therefore for n ≥ 3, |Mn| < n2. Hence the theorem. ��
In the following theorem, we prove that that some specific type of 1-XOR

matrices of order n are not k-MDS for k ≤ 3n − 5.
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Theorem 3. For n ≥ 4, let M = PD + A be an n × n 1-XOR matrix over a
field of characteristic 2, where P is a permutation matrix corresponding to an n
length cycle permutation and A has a nonzero entry in (1, 1)-th position. Then
M is not k-MDS for k ≤ 3n − 5.

Proof. Let Pi be the permutation matrix corresponding to the n length cycle
permutation σi of the symmetric group Sn for i=1, 2, . . . , (n − 1)!. Suppose
Pi and Pj be two permutation matrices corresponding to the n length cycle
σi = (i1 = 1 i2 i3 . . . in) and σj = (j1 = 1 j2 j3 . . . jn) respectively.

Now consider the permutation λ =
(

j1 j2 j3 . . . jn
i1 i2 i3 . . . in

)
. Therefore λσjλ

−1 =

(λ(j1) λ(j2) λ(j3) . . . λ(jn)) = (i1 i2 i3 . . . in) = σi. Let Q be the permu-
tation matrix corresponding to λ. Therefore we have QPjQ

−1 = Pi. Hence all
Pi’s for i = 1, 2, . . . , (n−1)! are permutation equivalent to each other. Therefore
for all i, j ∈ {1, 2, . . . , (n − 1)!}, Pi = QPjQ

−1 for some permutation matrix Q,
where the first row of Q is the first row the identity matrix. Now

Q(PjD + A)Q−1 = QPjDQ−1 + QAQ−1

Since DQ−1 = Q−1D′, for some diagonal matrix D′ and A has the nonzero entry
in (1, 1)-th position, we have

Q(PjD + A)Q−1 = QPjQ
−1D′ + A

= PiD
′ + A

Therefore all PiD + A for i ∈ {1, 2, . . . , (n − 1)!} are permutation equivalent.
Therefore to check whether all such M = PD + A, P is the permutation matrix
corresponding to a full length cycle permutation and A has the nonzero entry
in the (1, 1)-th position, is k-MDS, where k ≤ 3n − 5, we need to check only one
such M . Consider the matrix

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a 0 0 . . . 0 xn

x1 0 0 . . . 0 0
0 x2 0 . . . 0 0
0 0 x3 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . xn−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Now consider the input vector (0, 1, y, 0, . . . , 0)T . The resultant vector after each
iteration are
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
y
0
0
0

.

.

.
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−−−→
i=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
x2
x3y
0
0

.

.

.
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−−−→
i=2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

x3x2
x4x3y

0

.

.

.
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−−−→
i=3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

x4x3x2
x5x4x3y

.

.

.
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−−−→
i=4

. . . −−−−−→
i=n-5

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

.

.

.
xn−4xn−5 . . . x4x3x2

xn−3xn−4xn−3 . . . x4x3y

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−−−−−→
i=n-4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0

.

.

.
xn−3xn−4 . . . x4x3x2
xn−2xn−3 . . . x4x3y

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−−−−−→
i=n-3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

.

.

.
xn−2xn−3 . . . x4x3x2

xn−1xn−2xn−3 . . . x4x3y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−−−−−→
i=n-2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xnxn−1xn−2xn−3 . . . x4x3y

0
0
0
0
0

.

.

.
0

xn−1xn−2xn−3 . . . x4x3x2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−−−−−→
i=n-1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

axnxn−1xn−2xn−3 . . . x4x3y

+xnxn−1xn−2xn−3 . . . x4x3x2
∗
0
0
0
0

.

.

.
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(“*” is some nonzero entry)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
∗
0
0
0
0

.

.

.
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(by choosing y = a
−1

x2) −−−→
i=n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
∗
0
0
0

.

.

.
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. . . −−−−−−→
i=2n-3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

.

.

.
0
∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−−−−−−→
i=2n-2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗
0
0
0
0
0

.

.

.
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−−−−−−→
i=2n-1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗
∗
0
0
0
0

.

.

.
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−−−−→
i=2n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗
∗
∗
0
0
0

.

.

.
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. . .

−−−−−−−−−−−−−−→
i=2n+(n-5)=3n-5

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗
∗
∗
∗
∗
∗
.
.
.
∗
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The sum of nonzero elements of input vector and output vector in each iteration
is < n + 1. Therefore M is not k-MDS, where k ≤ 3n − 5. ��
Remark 3. For n = 3, choose the input vector y = (0, ax−1

2 , 1)T and it can be
easily checked that the sum of nonzero elements of input vector and output
vector in i = 2, 3 and 4 is less than n + 1. Also for the input vector (0, 1, 0)T ,
the sum of nonzero elements of input vector and output vector in iteration i = 1
is less than n + 1. Therefore the above result is also true for n = 3. Again for
n = 2, the result is trivially true. Therefore the above result is true for all n ≥ 2.

Remark 4. For n = 3 and the input vector y = (1, a2x−1
2 x−1

3 , 0) it is easy to
check that the above result is true for i = 5, 6. Therefore the above result is true
for up to k = 6.

Remark 5. For n = 4 and the input vector y = (0, a2x−1
2 x−1

3 , 0, 1) it is easy
check that the above result is true for i = 1, 3, 4, 5, 6, 7, 8, 9, 10. Therefore the
above result is true up to k = 10.
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Experimental Observation: We have also observed that if in a 1-XOR matrix
M = PD + A of order n (for n ≤ 8), if P is not a permutation matrix corre-
sponding to a n length cycle permutation or A has a nonzero entry in some
different position other than (1, 1)-th position, then Mk contains at least one
zero entry for k ≤ 3n − 5. Therefore by Theorem 3, 1-XOR matrices of order n
(for n ≤ 8) are not k-MDS for k ≤ 3n − 5 over a field of characteristic 2.

1-XOR Matrix of Order 2: There exists a 1-XOR matrix of order 2 which is
2-MDS. For example, consider the matrix

M =
[
0 1
1 0

] [
α 0
0 1

]
+

[
1 0
0 0

]
=

[
1 1
α 0

]

over the field F24 , where α is a root of the constructing polynomial x4 + x + 1.
It is easy to check that M2 is an MDS matrix.

3.3 2-XOR Matrices

Now we are considering two nonzero elements in A for the study of recursive
MDS matrices. In this section, most of the results are experimental.

2-XOR Matrix of Order 3: There exists a 2-XOR matrix of order 3 which is
3-MDS. For example, consider the matrix

M =

⎡
⎣

1 0 1
1 α 0
0 α3 + 1 0

⎤
⎦

over the field F24 , where α is a root of the constructing polynomial x4 + x + 1.
It is easy to check that M3 is an MDS matrix.

2-XOR Matrix of Order 4: There exists a 2-XOR matrix of order 4 which is
4-MDS. For example, consider the matrix

M =

⎡
⎢⎢⎣

0 1 α3 + 1 0
0 0 α 0
1 0 0 1
1 0 0 0

⎤
⎥⎥⎦

over the field F24 , where α is a root of the constructing polynomial x4 + x + 1.
It is easy to check that M4 is an MDS matrix.

2-XOR Matrix of Order 5: We have observed that among 3360 2-XOR matri-
ces of order 5 (Remark 2), 12 matrices provide all nonzero element, when raised
to power 5 but in a ring of characteristic 2 these matrices have zero elements
when it raised to power 5. Therefore over a ring of characteristic 2, there exist
no 5-MDS 2-XOR matrix of order 5. Thus for 5 × 5 low XOR matrices, the
minimum number of fixed XOR required is 3 to get a 5-MDS matrices. In other
words, for a 5-MDS, the minimum number of nonzero elements needed in a 5×5
matrix is 5 + 3 = 8.
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Remark 6. Note that there may exist 2-XOR matrices M of order 5 such that
M is q-MDS where 5 < q ≤ 10. For example, consider the matrix

M =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 1
1 1 0 0 0
0 1 0 0 0
0 0 1 α 0
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

over the field F28 where α is a root of the constructing polynomial x8 + x7 +
x6 + x + 1. It is easy to check that M9 is a MDS matrix.

2-XOR Matrix of Order 6: We have observed that among the 32400 2-XOR
matrix of order 6, there exist no such matrix that gives all nonzero element when
raised to power 6. Therefore for 6 × 6 low XOR matrices, the minimum number
of fixed XOR needed is 3 to get 6-MDS matrices. In other words for a 6-MDS,
the minimum number of nonzero elements in a 6 × 6 matrix is 6 + 3 = 9.

4 Some (Negative) Results on the Constructions of MDS
Matrices from DSI Matrices

In the structure M = PD1 + D2, if

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
... 0

0 0 0
. . . 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, D2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

b1 0 0 . . . 0 0
0 b2 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . bn−1 0

0 0 0
. . . 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

and D1 is a nonsingular diagonal matrix, then M is called a DSI matrix.
In [15, Theorem 2], authors proved that given a DSI matrix M of order n, Mr

contains at least one zero for 0 ≤ r < n and n ≥ 2. In Theorem 4, we prove this
by providing a combinatorial argument. For this, we need the following lemma.

Lemma 4. Let M = P +D2 be an n×n matrix, where D2 is a diagonal matrix
having zero in the n-th diagonal position and P is the permutation matrix defined
in 1. Then Mr � P r + P r−1D + P r−2D + . . . + PD + Dn=0 for r ≥ 2, where
D denotes some nonsingular diagonal matrix and Dj=0 be some diagonal matrix
with 0 only at the j-th diagonal position.

Proof. We will prove this result using mathematical induction. We have

M2 = (P + D2)(P + D2)

= P 2 + PD2 + D2P + D2
2

� P 2 + PDn=0 + Dn=0P + Dn=0

� P 2 + PDn=0 + PDn−1=0 + Dn=0
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Therefore

M2 � P 2 + PD + Dn=0

Therefore the result is true for r = 2. Assume that the result is true for r = k.
Now, Mk+1 = Mk(P + D2). Therefore we have

Mk+1 � (P k + P k−1D + P k−2D + . . . + PD + Dn=0)(P + Dn=0)

� P k+1 + P kDDn=0 + P k−1DP + P k−1DDn=0 + P k−2DP

+ P k−2DDn=0 + . . . + PDP + PDn=0 + Dn=0P + Dn=0

� P k+1 + P kDn=0 + P kD + P k−1Dn=0 + P k−1D + . . .

+ P 2D + PDn=0 + PDn−1=0 + Dn=0

= P k+1 + P k(Dn=0 + D) + P k−1(Dn=0 + D) + . . . + P (Dn=0 + Dn−1=0)
+ Dn=0

� P k+1 + P kD + P k−1D + . . . + PD + Dn=0

Thus the lemma. ��
Theorem 4. Given a DSI matrix M of order n ≥ 2, Mk is not MDS for k < n.

Proof. From Lemma 4, we have

|Mk| ≤ |P kD + P k−1D + . . . + PD + Dn=0|
≤ |P kD| + |P k−1D| + . . . + |PD| + |Dn=0|

Therefore |Mk| ≤ |D| + |D| + . . . + |D|︸ ︷︷ ︸
k times

+|Dn=0| ≤ kn+n−1. Now for k ≤ n−1,

we have |Mk| ≤ (n − 1)n + n − 1 = n2 − 1. ��
Recall that in the DSI matrix structure M = PD1 + D2 of order n, if D2 =
diag(b1, 0, b3, . . . , 0, bn−1, 0) (when n is even) or D2 = diag(b1, 0, b3, . . . , bn−2,
bn−1, 0) (when n is odd), then M is called a sparse DSI matrix of order n.

Lemma 5. Suppose n ≥ 2. Let M = P +D2 be an n×n matrix, where D2 have
zeros in the i-th and (i mod n+1)-th diagonal position and P is the permutation
matrix defined in 1. Then Mr � P r +P r−1D+P r−2D+ . . .+PDi=0 +Di,i+1=0

for r ≥ 2, where D denotes some nonsingular diagonal matrix and Dj,k=0 be
some diagonal matrix with 0 only at the j-th and k-th diagonal position.

Proof. We will prove this result using mathematical induction. We simply denote
(i + 1) for (i mod n + 1). We have

M2 = (P + D2)(P + D2)

= P 2 + PD2 + D2P + D2
2

� P 2 + PDi,i+1=0 + PDi−1,i=0 + Di,i+1=0

= P 2 + P (Di,i+1=0 + Di−1,i=0) + Di,i+1=0
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Therefore

M2 � P 2 + PDi=0 + Di,i+1=0

Therefore the result is true for r = 2. Assume that the result is true for r = k.
Now, Mk+1 = Mk(P + D2). Therefore we have

Mk+1 � (P k + P k−1D + P k−2D + . . . + PDi=0 + Di,i+1=0)(P + Di,i+1=0)

� P k+1 + P kDi,i+1=0 + P k−1DP + P k−1DDi,i+1=0 + . . .

+ PDi=0P + PDi=0Di,i+1=0 + Di,i+1=0P + Di,i+1=0

� P k+1 + P kDi,i+1=0 + P kD + P k−1Di,i+1=0 + . . .

+ P 2Di−1=0 + PDi,i+1=0 + PDi−1,i=0 + Di,i+1=0

= P k+1 + P k(Di,i+1=0 + D) + . . . + P (Di,i+1=0 + Di−1,i=0) + Di,i+1=0

� P k+1 + P kD + . . . + PDi=0 + Di,i+1=0

Thus the lemma. ��
Theorem 5. Let M = PD1+D2 be an n×n matrix, where P be the permutation
matrix defined in 1, D1 is a nonsingular diagonal matrix and D2 has any two
consecutive zero entries in the diagonal position, then Mr must contain a zero
entry for 2 ≤ r ≤ n.

Proof. From Lemma 5, we have

Mr � (P + D2)r

� P r + P r−1D + P r−2D + . . . + PDi=0 + Di,i+1=0.

Therefore, we have

|Mr| ≤ |P r + P r−1D + P r−2D + . . . + PDi=0 + Di,i+1=0|
≤ |P r| + |P r−1D| + |P r−2D| + . . . + |PDi=0| + |Di,i+1=0|
≤ (r − 1)n + (n − 1) + (n − 2)
= (r − 1)n + 2n − 3

When r ≤ n − 1, we have |Mr| ≤ (n − 2)n + 2n − 3 = n2 − 3 < n2. It is easy to
check that Pn = I, where I is the identity matrix. Thus for r = n, we have

|Mr| ≤ |I + Pn−1D + Pn−2D + . . . + PDi=0 + Di,i+1=0|
≤ |I + Di,i+1=0| + |Pn−1D| + |Pn−2D| + . . . + |PDi=0|

Note that |I + Di,i+1=0| = n and |PDi=0| = n − 1. Hence
|Mn| ≤ n + n + . . . + n︸ ︷︷ ︸

n-1 times

+n − 1 = (n − 1)n + (n − 1) = n2 − 1 < n2. ��
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The authors in [15], could not find a sparse DSI matrix of order 8 which is
8-MDS, over the field F28 due to large search space. In the following lemma and
theorem, we have provided an equivalence criteria for checking a n × n sparse
DSI matrix to be a n-MDS. Through these results, we reduce the large search
space into a small search space and show that there exists no 8 × 8 sparse DSI
matrix over F28 which is 8-MDS.

Lemma 6. Let a ∈ F
∗
q and P is an n × n permutation matrix. Given any n × n

diagonal matrix D, there exists an n×n diagonal matrix D′ such that (P +D)r

is MDS if and only if (aP + D′)r is MDS for r ≥ 1.

Proof. Note that (P +D)r is MDS if and only if ar(P +D)r because a �= 0. Now
we have

ar(P + D)r = (a(P + D))r

= (aP + aD)r = (aP + D′)r,

where D′ = aD. ��
Note that in the above lemma as D′ = aD, D and D′ have nonzeros in the same
position.

Theorem 6. Let a1, a2, . . . , an ∈ F
∗
q , D1 = diag(a1, a2, . . . , an) and

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...
...
...
. . .

...
...

0 0 0
. . . 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Given any diagonal matrix D2, there exists a ∈ F̄q satisfying an = a1a2 . . . an

such that (PD1 + D2)r is MDS if and only if (aP + D′)r is MDS for r ≥ 1.

Proof. Consider a nonsingular diagonal matrix Dd = diag(d1, d2, . . . , dn).
Let Dd,a = diag(ad−1

2 , ad−1
3 , . . . , ad−1

n , ad−1
1 ). Then, we have

aP + D2 = aDdD
−1
d PDdD

−1
d + DdD2D

−1
d

= Dd(aD−1
d PDd + D2)D−1

d

= Dd(PDd,aDd + D2)D−1
d

= Dd(PD1 + D2)D−1
d .

(2)

where D1 = Dd,aDd. Now we will show that there exists Dd,a such that D1 =
Dd,aDd.
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If D1 = Dd,aDd, we have

a1 = ad−1
2 d1

a2 = ad−1
3 d2

a3 = ad−1
4 d3

. . .

an−1 = ad−1
n dn−1

an = ad−1
1 dn.

Therefore, we have

d2 = aa−1
1 d1

d3 = a2a−1
1 a−1

2 d1

d4 = a3a−1
1 a−1

2 a−1
3 d1

. . .

dn−1 = an−2a−1
1 a−1

2 a−1
3 . . . a−1

n−2d1

dn = an−1a−1
1 a−1

2 a−1
3 . . . a−1

n−2a
−1
n−1d1

d1 = an(a−1
1 a−1

2 a−1
3 . . . a−1

n−2a
−1
n )d1.

Thus, an = a1a2a3 . . . an, for a1, a2, . . . , an ∈ F
∗
q and such a exists in F̄q. There-

fore from Eq. 2, we can say that (PD1 + D2)r is MDS if and only if (aP + D2)r

is MDS. ��
Corollary 1. Let ai ∈ F

∗
q for 1 ≤ i ≤ n and a ∈ F̄q satisfying an = a1a2 . . . an.

Let bj ∈ Fq and b′
j = a−1bj for 1 ≤ j ≤ n − 1. Suppose M = DSI(a1, a2, . . . ,

an; b1, b2, . . . , bn−1) and M ′ = DSI(1, 1, . . . , 1; b′
1, b

′
2, . . . , b

′
n−1). Then Mr is

MDS if and only if M ′r is MDS for r ≥ 1.

Proof. Let M̄ = DSI(a, a, . . . , a; b1, b2, . . . , bn−1). From Theorem 6, Mr is MDS
if and only if M̄r is MDS for r ≥ 1.

From Lemma 6, M̄r is MDS if and only if M ′r is MDS. Hence the corollary. ��

4.1 Non Existence of 8-MDS Sparse DSI Matrix of Order 8 over F28

Now we show that there does not exist any sparse DSI matrix of order 8 over
F28 . From Corollary 1, any sparse DSI matrix M ′ = DSI(a1, a2, a3, a4, a5, a6,
a7, a8; b′

1, 0, b′
3, 0, b′

5, 0, b′
7, 0) over F28 is permutation equivalent to a sparse

DSI matrix M = DSI(1, 1, 1, 1, 1, 1, 1, 1; b1, 0, b3, 0, b5, 0, b7, 0) where bi = a−1b′
i

for i = 1, 3, 5, 7 and an = a1a2 . . . a8.
Since x �→ x8 is an isomorphism over F28 , such a exists in the field F28

only. Therefore it is sufficient to check only those M whose bi’s belong to F28

which has (28)4 = 232 choices. Otherwise, the total choices would be (28)12 =
296 considering a1, a2, · · · , a8, b

′
1, b

′
3, b

′
5, b

′
7 all belong to F28 . This was perhaps
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the reason why the authors in [15] could not provide the answer for either the
possibility or impossibility of 8-MDS sparse DSI matrix of order 8 over F28 .

After reducing the search space from 296 candidates to 232 candidates only,
we experimentally observed that M8 over a field of characteristic 2 will not be
MDS if the following conditions are satisfied.

1. If b1 + b3 + b5 + b7 = 0
2. If b1b3 + b1b5 + b1b7 + b3b5 + b3b7 + b5b7 = 0
3. If b1b3b5 + b1b3b7 + b1b5b7 + b3b5b7 = 0
4. If b1b3b5b7 = 0
5. If b1 = b3 or b1 = b7 or b3 = b5 or b5 = b7.

One can get the above conditions by (i) looking at some of the entries of M8 and
M−8 and (ii) computing the determinants of some of the 2 × 2 matrices in M8

and M−8. We want to emphasize that these are not the only conditions we got
from (i) and (ii); these are only a few. One can get many more such conditions
and can further enhance the search time. We considered only five because the
first four conditions are symmetric in b1, b3, b5 and b7 and the fifth one appears
very simple.

We ran an experiment over all choices of b1, b3, b5, b7 ∈ F28 except which
satisfy at least one of the above five conditions. Our experiment could not find
any 8-MDS matrix of order 8. Thus, we conclude that there does not exist any
sparse DSI matrix of order 8 over the field F28 which is 8-MDS.

Remark 7. An 8-MDS sparse DSI matrix of order 8 exists over the higher order
field. For example, consider the matrix

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 α 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 α12 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 α30 0
0 0 0 0 0 0 α30 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

over F210 , where α is a root of the constructing polynomial x10 + x3 + 1. It can
be verified that M8 is MDS.

5 Conclusion and Future Work

Our investigations in this paper open up some possibilities for future work.

1. We have provided an upper bound on nonzero elements in 1-XOR matrices of
order n when raised to power n. But we could not find similar results for any
arbitrary t-XOR matrices. So it can be a future work to find an upper bound
on nonzero elements in t-XOR matrices of order n when raised to power n.
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2. There are many direct constructions of recursive MDS matrices from com-
panion matrices. So it can be a problem for further research to find a direct
construction of recursive MDS matrices from sparse DSI matrices.

Acknowledgments. We are thankful to the anonymous reviewers for their valuable
comments. We also wish to thank Prof. Rana Barua for providing several useful and
valuable suggestions.
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Abstract. Lightweight, computationally efficient HB-like protocol fam-
ily has been used for privacy-preserving authentication mechanisms of
Radio-Frequency Identification (RFID) tags in recent past. Most of these
protocols are proved to be provably secure using the hardness assumption
of Learning Parity with Noise (LPN) problem, but failed to resist against
man-in-the-middle attack. Li et al. extended this concept and proposed
a scheme called LCMQ protocol which was based on Learning Parity
with Noise, Circulant Matrix, and Multivariate Quadratic problems. It
was proved to be secure against man-in-the-middle attack and cipher-
text only attacks. Execution of LCMQ protocol requires involvement of
two secret m bit keys: K1 and K2. In this paper, we first make a crit-
ical observation that though the LCMQ based authentication protocol
requires two keys, knowledge of K2 is sufficient to launch an imperson-
ation attack. Next, since the value of K2 can be revealed by a precise
fault attack, we have developed a hardware Trojan horse based fault
attack methodology on the hardware implementation of the LCMQ pro-
tocol to retrieve K2. To validate our proposed attack methodology, we
have developed and implemented an optimized hardware architecture of
the LCMQ on a FPGA platform. To the best of our knowledge, this is the
first FPGA based hardware implementation of the LCMQ protocol. We
have then augmented our developed hardware design with a stealthy and
lightweight hardware Trojan horse (requiring only 4 Look Up Tables) for
precise fault injection, to corroborate the proposed attack methodology.

Keywords: RFID · Learning parity with noise · Circulant matrix ·
Multivariate quadratic · LCMQ · Lightweight entity authentication ·
HB · Fault attack · Impersonation attack

Abstract of the present work [1] has appeared in International Symposium on Hard-
ware Oriented Security and Trust (HOST-2017), titled as “Exploiting safe error based
leakage of (RFID) authentication protocol using hardware Trojan horse”.

c© Springer Nature Switzerland AG 2019
S. Bhasin et al. (Eds.): SPACE 2019, LNCS 11947, pp. 214–230, 2019.
https://doi.org/10.1007/978-3-030-35869-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35869-3_15&domain=pdf
http://orcid.org/0000-0002-4631-2208
http://orcid.org/0000-0003-4664-5237
http://orcid.org/0000-0003-3588-163X
https://doi.org/10.1007/978-3-030-35869-3_15


Revisiting the Security of LPN Based RFID Authentication Protocol 215

1 Introduction

From supply chain to anti-counterfeiting, RFID tags have been a vital compo-
nent for solving range of problems in recent years. E-passports and RFID enabled
bank notes are mere examples of such a set of authentication and tracking appli-
cations. As more government and multinational corporations have accepted it as
an integral part of almost every possible household gadgets, they have started
occupying a substantial part in this framework. Therefore several lightweight
authentication protocols and algorithms have been proposed for these low-cost,
strictly resource-constrained devices.

One of the most significant family of protocols that has been widely discussed
and analysed in this broad area of research was designed by Hopper and Blum
(HB) [2] based on Learning Parity with Noise (LPN) problem. Subsequently
several HB-like protocols such as HB+ [3], HB++ [4], HB# [5,6], HB-MP [7],
HB-MP+ [8], HB-MAC [9], PUF-HB [10], HB+PUF [11], Tree-LSHB++ [12],
Trusted-HB [13], GHB# [14], LAPIN [15] have been proposed in the litera-
ture. However several cryptanalysis techniques and man-in-the middle attacks
have been proposed in [16–18] for most of these HB-family protocols. Finally Li
et al. [19] presented a novel entity authentication protocol titled LCMQ which
is not direct descendant of HB protocol, rather a consolidation of LPN, Circu-
lant Matrix and Multivariate Quadratic (MQ) problem that has been proved
to be secure against mathematical cryptanalysis, ciphertext only attacks and
man-in-the-middle attacks.

Fault attacks [20] have been introduced in the literature to leak information
from a system by forcing spurious computations in the hardware and software
implementations of cryptographic schemes. Several authors have shown how such
fault injections can result in leakage of secret keys in block ciphers such as AES
and DES [21–23]. Static faults that set a register bit to 0/1 for a particular
round of execution are called Safe errors. It gets reset once the next execution
begins. These safe errors were also exploited [24] in modular exponentiation
to break constant time simple power attack resistant RSA algorithm. Similarly
many researchers have also started to realize the impact of SCA on the physical
implementation of HB family protocols. In [25], Gaspar et al. illustrated a DPA-
like attack on the hardware implementation of masked Lapin algorithm. Carrijo
et al. proposed a fault analytic model [26] which can lead to a cogent attack
against HB-like protocols. But Berti and Standaert presented a security anal-
ysis [27] of LPN based implementations against fault attacks and showed that
it inherently possess an algebraic structure that can resist such attacks. They
have shown thatt flipping of intermediate variable of LPN algorithm through the
fault attack does not provide any information leakage. Moreover, when we use
external sources like clock glitch, EM wave radiation or laser for fault injection,
precise fault injection may not happen. In [27], the authors have shown that
such inaccuracy in fault injection makes the key retrieval significantly hard.

On the other hand, the opportunity of a fault attack can still be exploited
by potential hardware trojan horses (HTHs) which can be inserted by malicious
entities in the distributed IC design cycle. To execute accurate fault insertion
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in the circuit or for side channel, HTHs have been leveraged in multiple works
in the past [28–34], both in IC and PCB level. Manufacturing of ICs is usually
outsourced to potentially untrusted remote electronic manufacturing facilities.
HTHs are surreptitious-by-design, malicious modifications to ICs which have the
capability to evade traditional post-manufacturing testing, and once deployed,
can cause disastrous functional failure or information. Once a HTH-infected cir-
cuit is deployed, usually they cannot be neutralized by any hardware or software
updates. Hence, they are regarded as one of the foremost threats to security
and privacy. Notably, in [35], it was shown how a tiny chip on PCB was used
to create stealth doorway to any network on which the altered machines were
deployed. Radio-Frequency Identification tags are used for several applications
requiring authentication mechanisms, which if subverted by any of the above
mentioned attacks can lead to unauthorized access, clandestine scanning and
tracking, skimming and cloning.

With this regard, the major contributions in this work are as follows:

– First we give a security evaluation of the protocol and show that although
the authentication uses two keys, knowledge of only one key is sufficient
to impersonate as a legitimate tag. This shows that all three mathemat-
ical building blocks used in the scheme might provide some security features
independently. But all together, they fail to provide the level of security to
the protocol it actually claims.

– Next we present a lightweight hardware architecture of LCMQ authentication
protocol on an FPGA platform. To the best of our knowledge, no hardware
implementation based analysis of LCMQ protocol, especially a lightweight one
targeting resource-constrained applications such as RFIDs, has been reported
so far.

– To investigate the above mentioned weakness in the LCMQ protocol further,
we propose a HTH based fault attack methodology which leaks one of the
authentication keys (K2) when triggered. The usage of HTH is motivated by
the fact that inaccuracy in the fault injection will increase the complexity of
the attack.

– We demonstrate the use of HTH to induce precise fault attack on the protocol.
We also design a hardware implementation of HTH and demonstrate that
when triggered, it requires less than 28 rounds of protocol run to guess the
key and forge the authentication. Finally, we propose a subtle modification
of the LCMQ protocol to eliminate the threat of impersonation attack with
the knowledge of only one key.

This paper is organized as follows. In Sect. 2, we briefly present the math-
ematical background necessary to understand the LCMQ protocol. Then we
illustrate the tag impersonation attack in Sect. 3. Its hardware architecture have
been described in Sect. 4. Next, in Sect. 5, we have presented the methodology
behind the proposed HTH along with the description of the payload and trig-
gering modules. Section 6 provides the overhead of the proposed HTH module
and present a possible modification of the LCMQ protocol to circumvent this
threat. Finally the paper has been concluded in Sect. 7.
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2 Background

In this section we provide the basics of the LPN problem, circulant matrices,
multivariate quadratic polynomials and finally, the LCMQ protocol.

2.1 LPN Problem

Suppose both the tag and the reader share an already agreed m-bit key K for the
successive authentication rounds. Initially, the reader randomly selects l number
of m-bit binary vectors a0,a1,...,al−1 and sends them as a challenge to the tag. To
generate the response, the tag computes zi = <ai,K> for all i ∈ {0, · · · , l − 1},
where <ai,K> denotes the dot product modulo-2 of ai and K. Now, the reader
will only accepts the tag if <ai,K> = zi. But this scheme is simply vulnerable
as an adversary can eavesdrop m linearly independent challenge-response pairs
(ai, zi) and retrieve the secret key K by solving a linear system of equations
modulo-2. But the determination of the key becomes difficult in the presence of
noise. Hence the LPN problem can be defined as:

Definition 1 (LPN Problem): Let A be a random (l × m)-binary matrix, K be
a random m-bit vector, ε ∈ (0, 1

2 ) be a noise parameter, and V be a random
l-bit vector such that Hwt(V) ≤ ε × l. where Hwt(V) denotes the Hamming
Weight of a binary vector V, i.e., the number of bits which are 1 in a binary
vector V. Given A, ε, and z = <A · Kt> ⊕ Vt, find a k-bit vector yt such that
Hwt(<A · yt> ⊕ z) ≤ ε × l.

This problem is proven to be NP-Hard [36] and the key length m and the
noise level ε decides the security of the problem instances. As stated in [19], for
80-bit security, m and ε are set to 512 and 0.25.

2.2 Circulant-P2 Matrix

Now, as given in [19], we will provide the definition of square circulant matrix
and circulant-P2 matrix.

Definition 2 (Square Circulant Matrix): A square circulant matrix M of order
(m × m) is a matrix with first row = [α0 α1 . . . αm−1] and the next rows are
generated by right circular rotation of the previous row.

Definition 3 (Circulant-P2 Matrix): Given n < m, a circulant-P2 matrix is an
(m × m) square circulant matrix, or an (n × m) landscape circulant matrix, or
an (m × n) portrait circulant matrix, satisfying the below criteria.

1. It must be a binary matrix.
2. m is a prime number such that 2 is a primitive element of the finite field Fm.

Here, m is defined as a P2 number.
3. No row vector and column vector of a Circulant-P2 matrix can be all zeroes

or all ones.

It is to be noted that all row vectors in a landscape circulant matrix are linearly
independent to each other. Similarly, all column vectors in a portrait circulant
matrix are linearly independent.
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Fig. 1. The LCMQ protocol.

2.3 LCMQ Problem

Let E = {a|a ∈ {{0, 1}m
� {{0}m, {1}m}} and Hwt(a) is even} and given an

m-bit binary vector α, Cα denotes the square circulant matrix of order m × m
with first row as α. Then we can define LCMQ problem as follows.

Definition 4 (LCMQ problem): Let m be a P2 number, n < m, ε ∈ (0, 1
2 )

be the noise parameter, K1 ∈R {0, 1}m, parity of Hamming weight of K1 is
publicly known and K2 ∈R E . Given l pairs of (bi, zi = (((bi · C

[m×n]
K1

) ⊕
vi)||ri) · C

[(m−1)×m]
K2

), ∀i ∈ {0, · · · , l − 1}, where bi ∈R {0, 1}m, Pr[vi[j] = 1]=
ε, Pr[vi[j] = 0]= (1 − ε) ∀0 ≤ j ≤ n − 1 and ri ∈R {0, 1}m−n−1, determine K1

and K2.
If we consider n = m − 1 and there is no noise in the system, then this

problem reduces to finding K1 and K2 such that:

(bi ∈R {0, 1}m, z′
i = (bi · C

[m×n]
K1

) · C
[(m−1)×m]
K2

)

As shown in [19], this problem is an instance of the multivariate quadratic
(MQ) problem in 2(m − 1) variants. This is another problem known to be NP-
complete [37] and stated as below:

Definition 5 (MQ Problem): Given a system of d multivariate quadratic equa-
tions in t variables over a finite field, find a valid solution satisfying all equations.

Next we describe the LCMQ protocol in details.

2.4 The LCMQ Protocol

Let parameter θ ∈ (ε × n, n
2 ) be a threshold value, similar to the LPN problem.

The steps for the LCMQ protocol are as follows:

– Both tag and the reader share two m-bit secret keys K1 and K2. For 80-bit
security, the authors proposed m to be 163 bit in [19].



Revisiting the Security of LPN Based RFID Authentication Protocol 219

– First the reader selects an m-bit random binary vector a from the set E and
sends it to the tag.

– The tag randomly selects an m-bit binary vector b and also selects another
random n-bit vector v based on the noise parameter ε. Typically n = m − 1.

– Then it generates the circulant matrix C
[m×n]
K1

using K1 as the first row and
multiplies with b. The final n-bit output is XOR-ed with v and thus y is
generated.

– Next, it chooses another random variable r of length (m−n−1) and appends
it to y. This is finally multiplied with the matrix C

[(m−1)×m]
K2⊕a to produce z.

– The tag then sends (b, z) to the reader.
– The reader first decodes (y||r) from z and (K2 ⊕ a) using the algorithm

described in [19]. Finally it checks whether the Hamming weight of ((b ·
CK1) ⊕ y) is less than or equal to the threshold θ or not. If yes, then it
accepts the tag.

Keeping this in mind, we will next describe how tag impersonation attack can
be launched in the subsequent sections.

3 Tag Impersonation Attack on the Protocol

In this paper, we make a major observation about a weakness of the LCMQ
protocol, which to the best of our knowledge was not reported earlier: the recov-
ery of K2 is sufficient for the adversary to enable successful authentication! The
basic intuition behind the attack is: the adversary initially captures a transcript
(ac,bc, zc) of the authentication protocol exchanged between the reader and the
tag. Now, if the adversary has the knowledge of K2, it can successfully execute
Decode algorithm and retrieve the value of yc using K2,ac, zc. Once she gets
a valid yc, she can calculate z’s for new values of a’s and replay previously
captured bc everytime with new z’s. To understand the vulnerability and the
associated attack, consider the scenario as follows.

– Suppose that the adversary is able to monitor the communication network
between a tag and a reader. She eavesdrops to obtain a triplet ac,bc, zc that
leads to a successful authentication as shown in Fig. 1.

– We consider that she also knows the correct key K2.
– Using this, she can calculate yc = Decode(zc,K2 ⊕ ac). The Decode algo-

rithm corresponds to polynomial multiplication of zc and (K2 ⊕ ac)
−1 mod-

ulo (xm + 1) leading to the calculation of yc as mentioned in [19].
– Now, the adversary interacts with the reader.
– Let us assume that the reader sends the adversary a new challenge aw.
– Adversary reuses yc and calculates zw = yc · CK2⊕aw and sends zw,bc over

the network.
– The reader executes decode algorithm with zw and K2 ⊕ aw and obtains yc

which was already authenticated by the reader for bc.
– Hence, if the adversary obtains the key K2, it can impersonate as a valid tag,

without even having the knowledge of key K1.
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Fig. 2. Architecture of LCMQ - Tag.

In the subsequent sections, we present the first reported hardware architecture of
the RFID tag executing the LCMQ protocol. Please note that the dimension of
circulant matrix is m×n. Hence the hardware architecture needs m×n number
of registers to store the matrix in the tag. However this approach would have
made the design more resource-hungry. So, we implement the circulant matrix
in a 1 × m register. The idea is to do a circular right shift in each clock cycle
when we multiply a n-bit vector with the matrix. Next we try to induce accurate
stuck at one fault in the 1 × m register that holds the first row of the matrix.
The proposed HTH flips the first bit of the register and this fault propagates in
all of the m bits of the matrix in subsequent clock cycles. This eventually leaks
K2 depending on whether the authentication passes or fails.

4 Architecture of the LCMQ Hardware Implementation

As shown in Fig. 2, the components involved in the hardware architecture of the
tag are m-bit random number generator (RNG), (m − n − 1)-bit register Reg r,
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m-bit register Reg b, n-bit register Reg v for the variables r, b, v respectively.
The two blocks B1, B2, each consists of an Inner Product Module (IP), a 2:1
multiplexer, one right shift module (RS) and one shift register (SR). Block B2,
also contains a permutation module which is used to convert the initial input
key K2 ⊕ a into the first column of circulant matrix C

[(m−1)×m]
K2

. Since, the ran-
dom numbers are needed at different stages in an authentication round, control
signals load r, load b, load v are provided to load values into Reg r,Reg b,Reg v
respectively. An Finite State Machine (FSM) is also designed to control the clock
and other control signals. The components are discussed in details as follows.

4.1 RNG Module

The RNG module produces an m-bit random number using an 32-bit LFSR. This
LFSR is run for �[m/32� cycles to produce an m-bit output. An LFSR-based
RNG might not provide sufficient entropy in a practical situation; however, as
our attack is not based on the source of randomness, we use an LFSR as a source
of entropy required to imitate the tag.

4.2 Generate v Module

Generation of n-bit v is based on Bernoulli trials with parameter η. An 7-bit
binary random number simulates 1-bit of v. If this number is less than η∗128/100,
then the corresponding bit is 1, otherwise 0. Therefore, an m-bit random number
can generate �m/7� bits of v. Hence, total number of random numbers required
are

⌈
n

�m/7�
⌉
.

4.3 Matrix Multiplication Module

Typical matrix multiplication requires us to store the whole matrix, but it is
impractical for a RFID tag because of severe area constraints. According to
[18], an RFID protocol must not take more than 1000 Lookup Tables (LUTs)
for a Field Programmable Gate Array (FPGA) implementation. To solve this
problem, we exploit the property of circulant matrices to perform the matrix
multiplication with less memory and a relatively small computational overhead.
Recall from Sect. 2, there are two multiplication operations in the tag. We name
these two multiplication blocks as B1 and B2. The first multiplication block
B1, is for the multiplication of a portrait circulant matrix with a vector, (b ·
C

[m×n]
K1

). Similarly, the second block B2, is used to calculate the multiplication of

a landscape circulant matrix with a vector, ((y||r ·C [(m−1)×m]
K2⊕a )). In B1, b along

with secret key K1 are inputs. Multiplexer along with the right shift module
imitates ith column in ith clock cycle. IP is the module which calculates the
inner product modulo-2 of its inputs, thus in ith clock cycle, it calculates the
<b, C

[m×n]
K1,i >, where C

[m×n]
K1,i is the ith column of the circulant matrix C

[m×n]
K1

.
The output of IP is stored in a shift register which does a left circular shift at
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every clock cycle. Initially, sel signal is 0, which inputs the secret key as it is.
Afterwards, sel is 1, which inputs a right circular shifted value of the previous
output. These simulate the behavior of the circulant matrix C

[m×n]
K1

. It requires
n clock cycles to generate the n-bit vector. Similarly, y||r, and K2 are inputs to
B2 which calculates the value of z.

4.4 Overall Hardware Module Operation

Initially, the RNG generates a m-bit random number that is loaded into Reg b.
This binary vector is then fed into block B1. Meanwhile, the module generate v
generates the random vector v following a Bernoulli distribution. After n clock
cycles, the output of block B1, is XOR-ed with Reg v to produce y which sim-
ilarly calculates z after its concatenation with r and multiplication of concate-
nated result with C

[(m−1)×m]
K2

.

5 HTH Induced Safe Error Attack on the LCMQ
Protocol

The objective of building a lightweight FPGA implementation of LCMQ pro-
tocol is to create a testbed on which we can later integrate our proposed HTH
module. Therefore, the proposed hardware implementation and the subsequent
HTH insertion act as a case study of LCMQ protocol vulnerability analysis on
FPGAs. It must be noted that without loss of generality, such HTHs can also
be developed for RFID tags, albeit with different methodologies.

An HTH design usually comprises of two phases: Payload and Trigger. Pay-
load is the portion of the HTH circuitry that is responsible for inducing the
functional failure or information leakage, while the trigger is used to activate
the HTH. In an effective HTH, payload should have very low power and area
overhead, ideally zero. Moreover, the HTH should be rarely triggered so that
it can easily pass the verification test done after manufacturing of the chips or
circuits. In this section, we mainly focus on the design of payload, but before
that, we give a brief overview of the adversarial model and the trigger condition
of HTH.

5.1 Adversary Model

As shown in [33], nexus between two or more stages of RFID manufacturing and
deployment can be easily exploited in order to launch a tag impersonation attack.
In our adversary model, we assume that the adversary is herself the malicious
designer and maintains a malicious nexus with a personnel at a fabrication facil-
ity of the RFID tags. It is this personnel in the fabrication facility who injects
a HTH designed by the adversary in order to reveal secret information to her.
Hence, we can say that only these persons know the mechanism to activate the
HTH. Such a model would be of great significance for deployments in defence
mechanism [38].
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Fig. 3. Proposed HTH triggering methodology

As the HTH in an Intellectual Property (IP) core renders comparison with a
golden model extremely difficult, it is highly unlikely to detect the HTH using
Side Channel Analysis (SCA) [39]. However, one must ensure that the gate count
difference between actual design and the infected design should not be very high.
In order to ensure this, we implemented the HTH using the LUTs on the FPGAs
directly, which provides almost negligible overhead in terms of power as well as
hardware resources.

The adversary uses the HTH to retrieve the key K2 and then successfully
impersonates according to the observation mentioned earlier. The triggering
mechanism and mode of operation of the HTH is explained next.

5.2 Activation of HTH

Triggering of a HTH is usually done using two methods: (1) external triggering
which is done based on output of the some sensors, (2) internal triggering where
an internal logic is used to activate the HTH. Usually, triggering of HTH using
internal logic incurs overhead in terms of gates and power consumption, hence
an external triggering will be suitable for this case where the amount of gates
required is already very low as the protocol is lightweight. Now, it must be
noted that most of the modern systems where RFIDs are employed also requires
incorporation of sensors to monitor the external environmental conditions. Now,
an adversary can design a HTH which will get activated only when the external
environmental condition (for example temperature) reaches certain value. The
advantage of this type of triggering is that the overhead of such triggering is
practically zero as such sensors are already available in the system. To prevent
accidental activation of the HTH, an adversary can set the triggering condition
at an abnormal environmental condition which is not achieved during normal
operation.

Proposed Triggering Methodology: In our proposed HTH, we have used
the external triggering methodology as described in [39]. Modern FPGA devices
are now coupled with a temperature sensor which can be digitally monitored by
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the underlying FPGA designs through an in-built analog to digital converter. It
is often used to monitor the system temperature so that a designer can develop
safeguard in case of excessive increase in the temperature. As we validate the pro-
posed HTH on an FPGA platform, this temperature sensor becomes an ready-
to-use option which we can use to externally trigger the HTH. It must be noted
that in our adversary model, the confidentiality of the third-party IPs are main-
tained. Therefore, an evaluator can only observe that the temperature sensor
data is taken as an input to the design, but can not infer how the tempera-
ture sensor data is being used in the design. Therefore, it is not possible for the
evaluator to decide whether the temperature sensor is used as a safeguard, or
whether it is used as a trigger to a HTH circuit. In our implementation, to trigger
the HTH we have rapidly increased the temperature of the FPGA using a hair
dryer. It must be noted that the temperature reached by the device after being
heated by the hair dryer can not be attained during normal operation, which
prevents accidental triggering of the implemented HTH. A block diagram view
of the proposed HTH triggering methodology is shown in Fig. 3. Once the HTH
is activated, the circuitry then modifies some bits of the register by producing a
safe error as discussed next.

5.3 Payload of HTH

We present an ultra-low hardware footprint HTH which occupies only 4 LUTs.
Since, we are trying to obtain the secret key K2, it is necessary for us to inject
a fault in all of the m bits. However, if we add a multiplexer separately for all
the bits, then that would lead to an linear increase in the overhead. In order to
counter act this, we exploit the property of circulant matrices. Since, the input
key is right shifted at each clock cycle, as explained in Sect. 4.3, a stuck at 1
fault induced in the 1st bit of right shift register in t-th clock cycle is equivalent
in inducing a stuck at 1 fault in t-th bit of initial input key. We exploit this to
induce stuck at 1 fault in all bits of input key by inducing it at the first position
of right shift register at different clock cycles.

The malicious circuit is shown in the Fig. 2. The whole malicious circuit
can be incorporated in the design using only 4 LUT’s as shown in Fig. 4. The
objective of the HTH is to inject a stuck at one fault at either K2[0]th or at
K2[80]th bit at appropriate clock cycle determined by the value of least significant
byte of a[7:0]. The working principle of the HTH payload is given below:

– The architecture of the LCMQ protocol requires a counter during the com-
putation of inner product in B2 module to track the number of shifts. Now,
when the HTH is triggered, two scenarios can occur:
1. a[6:0] equals counter value and a[7] = 0: In this case, K2[0] gets

injected by the stuck at 1 fault at a[6:0]th clock cycle. As previously
mentioned, this is equivalent to injecting stuck at one fault at a[6:0]th bit
of K2.

2. a[6:0] equals counter value and a[7] = 1: In this case, K2[80] gets
injected by the stuck at 1 fault at a[6:0]th clock cycle. This is equivalent
to injecting stuck at one fault at (a[6:0]+80)th bit of K2.
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Fig. 4. LUT Diagram of Implanted HTH in architecture where m = 163.

Table 1. Power and execution time overhead

Overhead Original design Design with HTH Increase in number

Power 0.539 W 0.539 W 0

Timing 3.789 ns 3.794 ns 0.13

– Figure 4 shows the HTH circuitry. The first LUT compare the value of
counter[2:0] and a[2:0] and outputs 1 if they are same. Similarly, the sec-
ond LUT outputs 1 if and only if counter[5:3] and a[5:3] are equal. The third
LUT takes trigger, a[0], counter[0], and the output of the previous two LUTs
as input. The output of the third LUT is 1 when trigger along with the output
of the previous two LUTs are 1 and a[0] = counter[0]. If the output of the
third LUT is one, the fourth LUT injects stuck at one fault at either K2[0]
or K2[80] depending upon the value of a[7]. If the third LUT output is zero,
the value of K2[0] and K2[80] remains unaltered.

It must be noted that the fault injection can also be carried out by only
targeting K2[0]. However the advantage of targeting either one of K2[0] and
K2[80] is illustrated with an example. Let us assume that we want to inject
fault at 114th bit position of K2. If we only target K2[0], then we need to wait
114 cycles for the fault injection at the desired position and the corresponding
least significant byte of a should be set to 114. However, in our methodology,
if the value of a is 162 = 8′b10100100, we can still inject fault at 114th bit
of K2 by setting K2[80] as 1 in 34th cycle. Thus our proposed methodology
provides more flexibility in terms of location of fault injection. As LUT module of
Virtex 5 FPGA supports 5 input and 2 output function, we can easily integrate
our proposed methodology with it. After inducing the stuck at 1 fault, if the
authentication succeeds then the adversary infers that the corresponding bit
was 1, otherwise that corresponding bit 0.

6 Experimental Setup and Implementation Results

The hardware designs for both the hardware implementation of the LCMQ pro-
tocol and the proposed HTH were performed using Verilog HDL and executed
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Table 2. Hardware overhead

Components Original design Design with HTH Increase in number

LUT 714 717 0.4

SliceRegs 1507 1507 0

Slices 589 589 0.0

b ∈R {0, 1}m

v ∈R {{0, 1}n|
Pr[vi = 1] = ε,

where 0 ≤ i ≤ n − 1}
y = b · C[m×n]

k1
⊕ v

r ∈R {0, 1}m−n−1

Tag(k1,k2)

where θ ∈ (εn,n/2)

Calculates :
(y||r) = Decode(z,k2 ⊕ a)
Accepts the tag if

a
a ∈R E

z = (y||r) · C[n×m]
k2⊕a

Hwt((b · C[m×n]
k1

) ⊕ y) ≤ θ

b, z,Hash(a||K1)

Reader(K1,k2)

and hash value is correct.

ˆ

Fig. 5. A countermeasure to subvert the proposed attack at protocol level.

on Virtex-5 FPGA board. The results are shown for 80-bit security with param-
eter values m = 163, n = 162, θ = 18, η = 0.08. The designs were synthesized
and implemented using Xilinx ISE 14.5, and simulated using Xilinx Isim. The
power estimation of the circuit was carried out using Xilinx XPower Analyzer
and delay estimation using Xilinx Timing Analyzer.

Table 1 illustrates the percentage increase/decrease in the total power con-
sumption and the critical path delays of the design before and after HTH inser-
tion. Table 2 shows the comparison between the golden design and the overhead
of the HTH circuit. We have assigned the LUT combining sub-property of the
Map property to Area in the CAD software tool considering the reduced size of
RFID tags. Theoretically 163 rounds of authentication should be sufficient to
obtain all the 163 bits of the secret key K2. But in the experimental setup, the
number of authentication rounds required to successfully retrieve K2 is approxi-
mately 211. This happens because the value of a[7:0] is equally likely to produce
all the bits between 0 to 255. Hence, there will be some cases where the value
of a[7:0] will be greater than 163 and hence, will not result in information leak-
age. But since, the adversary controls the triggering of the HTH, this does not
decrease the potential of the attack.

6.1 Possible Countermeasure Against Proposed Attack

To subvert this attack, one potential countermeasure at the protocol level would
be to force the adversary to reveal both K1 and K2 in order to successfully break
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the LCMQ protocol. As shown in Fig. 5, this can be achieved by calculating
the hash value of (a||K1), and sending it along with b and z. As the reader has
knowledge about both a and K1, it can validate whether the hash value is correct
or not along with checking the Hamming weights of ((b ·CK1)⊕y) with respect
to θ. If both the conditions satisfy, then only the reader accepts the tag as a
legitimate one.

7 Conclusion

This paper addresses the issue of exploiting circulant matrix property to insert
a stealthy HTH that could use safe error to obtain all secret keys, thus making
impersonation of tag viable. First, we made an key observation that in an LCMQ
protocol an attacker can impersonate without the knowledge of key K1, thus
motivating a HTH designer to just target key K2. Subsequently, we gave an
effective and efficient architecture of tag part of the LCMQ problem. We provided
an ultra-lightweight HTH design which can induce safe errors surreptitiously to
leak K2 potentially. We summed up by providing the hardware implementation
of the LCMQ protocol and the design overheads, which confirm that the HTH
in this type of setup is viable and efficient.
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11. Hammouri, G., Öztürk, E., Birand, B., Sunar, B.: Unclonable lightweight authen-
tication scheme. In: Information and Communications Security, 10th International
Conference, ICICS 2008, Birmingham, UK, October 20–22, 2008, Proceedings, pp.
33–48 (2008). https://doi.org/10.1007/978-3-540-88625-9 3

12. Deng, G., Li, H., Zhang, Y., Wang, J.: Tree-LSHB+: an LPN-Based lightweight
mutual authentication RFID protocol. In: Wireless Personal Communications, vol.
72, no. 1, pp. 159–174 (2013). https://doi.org/10.1007/s11277-013-1006-2

13. Bringer, J., Chabanne, H.: Trusted-HB: a low-cost version of HB + secure against
man-in-the-middle attacks. In: IEEE Transition Information Theory, vol. 54, no.
9, pp. 4339–4342 (2008). https://doi.org/10.1109/TIT.2008.928290

14. Rizomiliotis, P., Gritzalis, S.: GHB #: a provably secure HB-Like lightweight
authentication protocol. In: Applied Cryptography and Network Security - 10th
International Conference, ACNS 2012, Singapore, June 26–29, 2012. Proceedings,
pp. 489–506 (2012). https://doi.org/10.1007/978-3-642-31284-7 29

15. Heyse, S., Kiltz, E., Lyubashevsky, V., Paar, C., Pietrzak, K.: Lapin: an efficient
authentication protocol based on ring-LPN. In: Fast Software Encryption - 19th
International Workshop, FSE 2012, Washington, DC, USA, March 19–21, 2012.
Revised Selected Papers, pp. 346–365 (2012). https://doi.org/10.1007/978-3-642-
34047-5 20

16. Gilbert, H., Robshaw, M.J.B., Sibert, H.: An Active Attack Against HB+ - A
Provably Secure Lightweight Authentication Protocol. IACR Cryptology ePrint
Archive, vol. 2005, p. 237 (2005). http://eprint.iacr.org/2005/237

17. Gilbert, H., Robshaw, M.J.B., Seurin, Y.: Good variants of HB+ are hard to find.
In: Financial Cryptography and Data Security, 12th International Conference, FC
2008, Cozumel, Mexico, January 28–31, 2008, Revised Selected Papers, pp. 156–170
(2008). https://doi.org/10.1007/978-3-540-85230-8 12

18. Avoine, G., Carpent, X., Hernandez-Castro, J.: Pitfalls in ultralightweight authen-
tication protocol designs, In: IEEE Transition Mobility Computation, vol. 15, no.
9, pp. 2317–2332 (2016). https://doi.org/10.1109/TMC.2015.2492553

19. Li, Z., Gong, G., Qin, Z.: Secure and efficient LCMQ entity authentication protocol.
In: IEEE Transition Information Theory, vol. 59, no. 6, pp. 4042–4054 (2013).
https://doi.org/10.1109/TIT.2013.2253892

http://caislab.kaist.ac.kr/publication/paper_files/2007/SCIS2007_Duc.pdf
http://caislab.kaist.ac.kr/publication/paper_files/2007/SCIS2007_Duc.pdf
https://doi.org/10.1016/j.comnet.2007.01.011
https://repository.royalholloway.ac.uk/file/1a749a12-a370-bc54-c2dd-5749004241ef/8/HB_MP_Protocol_An_Improvement_on_the_HB_MP_Protocol.pdf
https://repository.royalholloway.ac.uk/file/1a749a12-a370-bc54-c2dd-5749004241ef/8/HB_MP_Protocol_An_Improvement_on_the_HB_MP_Protocol.pdf
https://doi.org/10.1007/978-3-642-03748-1_16
https://doi.org/10.1007/978-3-540-68914-0_21
https://doi.org/10.1007/978-3-540-88625-9_3
https://doi.org/10.1007/s11277-013-1006-2
https://doi.org/10.1109/TIT.2008.928290
https://doi.org/10.1007/978-3-642-31284-7_29
https://doi.org/10.1007/978-3-642-34047-5_20
https://doi.org/10.1007/978-3-642-34047-5_20
http://eprint.iacr.org/2005/237
https://doi.org/10.1007/978-3-540-85230-8_12
https://doi.org/10.1109/TMC.2015.2492553
https://doi.org/10.1109/TIT.2013.2253892


Revisiting the Security of LPN Based RFID Authentication Protocol 229

20. Boneh, D., Lipton, R.J.: Effect of operators on straight line complexity. In: Fifth
Israel Symposium on Theory of Computing and Systems, ISTCS 1997, Ramat-
Gan, Israel, June 17–19, 1997, Proceedings, pp. 1–5 (1997). https://doi.org/10.
1109/ISTCS.1997.595151

21. Loubet-Moundi, P., Vigilant, D., Olivier, F.: Static Fault Attacks on Hardware
DES Registers, IACR Cryptology ePrint Archive, vol. 2011, p. 531 (2011). http://
eprint.iacr.org/2011/531

22. Piret, G., Quisquater, J.-J.: A differential fault attack technique against SPN struc-
tures, with application to the AES and Khazad. In: Walter, C.D., Koç, Ç.K., Paar,
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Length Preserving Symmetric Encryption:
Is It Important?

Debrup Chakraborty(B)

Cryptology and Security Research Unit, Indian Statistical Institute,
Kolkata 700108, India
debrup@isical.ac.in

Abstract. A length preserving encryption scheme, as the name sug-
gests, is a scheme where the lengths of the plaintext and ciphertext
are equal. These schemes are inherently deterministic and thus provides
“less” security than what is offered by encryption schemes which allows
ciphertext expansion. It has been argued that length preserving encryp-
tion is essential for in-place encryption of sector/block oriented storage
media like hard disks flash memories etc.

Tweakable enciphering schemes (TES) are a class of length preserving
encryption encryption schemes which has been widely studied. TES has
been formalized as the appropriate primitive for the application of stor-
age encryption and it has been argued that they provide the maximum
security possible for a length preserving scheme. In the last two decades
there has been several activities in designing, implementation and prov-
ing security of TES. There have been some standardization activities also
in this direction.

In the first part of this talk we will give an overview of TESs, dis-
cuss some notable constructions including their security and implemen-
tations. We will also discuss the current status of standardization of such
schemes.

A length preserving scheme has several limitations compared to a
scheme which allows length expansion. In the final part of the talk we
will revisit the requirement of length preservation for disk encryption
and show that a proper formating of the hard disks may allow the use of
length expanding encryption schemes. We will present a specially crafted
length expanding scheme called BCTR for this purpose and show its
superiority compared to existing TESs.
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Towards Automatic Application of Side
Channel Countermeasures

Francesco Regazzoni(B)

ALaRI - USI, Lugano, Switzerland
regazzoni@alari.ch

Abstract. Security is one of the most important extra functional
requirements that a system should provide. The importance of security
will certainly grow in the near future, when IoT devices will pervade every
aspect of our lives, including sensitive ones, and when cyber-physical sys-
tems will be massively deployed in our critical infrastructure.

Securing all these devices is however a complex tasks that goes beyond
the simple inclusion of cryptographic primitives. These devices often have
a limited amount of resources available for implementing security. Addi-
tionally, they are often deployed in an environment accessible to the
attacker, making thus necessary the use of protections against physical
attacks. Furthermore, CPSs and IoT devices often needs to fulfill other
design requirements, such as reliability, real-time, low power, and low
energy, that could be in contrast with security requirements.

So far, the problems involved in designing secure CPSs and IoT devices
have been analyzed and addressed independently, by expert designers
that were also in charge of the integration of the whole system. This
approach however is not optimal, since it does not scale with the com-
plexity of the systems and it does not allow, at least in a simple way, to
capture potential security weaknesses introduced by the integration of
countermeasures against different attacks.

Security can be achieved only with an holistic design methodology,
addressing the problem at each level of the design flow with the neces-
sary inclusion of a verification step. In turn, such a design approach can
be effectively put in practice only if supported by adequate toolchains,
capable of automatically apply countermeasures against known attacks
and capable of automatically verify their correct application.

This tutorial concentrates on this problem from a side channel attacks
perspective. Starting from the first works implementing hardware design
flow for security [3], the initial steps towards automatically driving design
tools using security variables [1] and the proposal of evaluation method-
ologies based on state of the art design tools [2], we will revise and sum-
marize the research efforts toward the goal of automatic design of IoTs
and CPSs secure against physical attacks and we will highlight future
research direction in this important field of research.

Acknowledgment. This tutorial was partially supported by European Union’s
Horizon 2020 research and innovation program under grant agreement No 732105
(CERBERO).
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