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Abstract

Hematogenous dissemination of single cancer 
cells is a common phenomenon in patients with 
solid tumors. These cells may experience differ-
ent fates: most will die during the process; some 
will grow into metastasis and some will persist 
in secondary homing sites for many years in a 
state referred to as dormancy. The mechanisms 
of this state are still not clear; single cancer cells 
can survive either by completely withdrawing 
from the cell cycle or by continuing to prolifer-
ate at a slow rate that is counterbalanced by cell 
death. Another hypothesis assumes that at least 
some of dormant tumor cells feature stem cell-
like characteristics that may contribute to their 
extremely long half-lives and enhance chemo-
therapy resistance. Breast cancer is particularly 
known for prolonged periods of clinical free-
dom of disease (sometimes up to 20–30 years), 
followed by a distant relapse. In this chapter, we 
explore the relationship between the clinical phe-
nomenon of tumor dormancy and the dissemi-
nated tumor cells and discuss the potential 
implications for treatment.
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3.1  Introduction

Breast cancer (BC) is the most commonly 
diagnosed cancer and the second leading cause 
of death due to malignant disease in women 
worldwide. Despite adequate surgical and (neo)
adjuvant systemic treatment, approximately one 
out of three to one out of four patients develops 
a relapse over time [1], suggesting that single 
tumor cells or tumor cell clusters, sometimes 
referred to as minimal residual disease (MRD), 
may survive at secondary sites and lead to tumor 
growth several years later [2]. The theory of 
hematogenous spread of solid tumors has been 
introduced by several researchers as early as 
nineteenth century, based on autopsy studies and 
the detection of cancer cells similar to those from 
the primary tumor in the blood [3, 4]. In the late 
twentieth century, the MRD research focused 
mostly on tumor cells found in the bone marrow. 
These disseminated tumor cells (DTCs) can be 
routinely detected in up to 40% of patients with 
primary BC and their presence predicts shorter 
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disease-free and overall survival [5]. Further, a 
subset of these DTCs have been shown to survive 
chemotherapy; their persistence is associated 
with impaired clinical outcome as well [6, 7].

The development of improved assays for single 
cell detection and the introduction of new enrich-
ment methods have enabled the research focus to 
shift to peripheral blood as an alternative compart-
ment hosting tumor cells. The major advantage 
over bone marrow is the easy accessibility without 
the necessity of an invasive procedure and the pos-
sibility of serial measurements. When encountered 
in the blood, cancer cells are usually referred to as 
circulating tumor cells (CTCs). Currently, the 
overwhelming majority of studies registered in the 
ClinicalTrials.gov and EudraCT registries focuses 
on the CTCs in the blood; only six studies concern 
DTCs in the bone marrow [8]. With regard to their 
clinical relevance, CTCs have been shown to pre-
dict worse survival in both metastatic and early BC 
in large meta-analyses [9, 10].

In this chapter, we will discuss the role of 
DTCs in cancer dormancy and the clinical impli-
cations of this phenomenon.

3.2  Cancer Dormancy

Tumor dormancy, a phenomenon well-known to 
clinical oncologists, refers to a period of time in 
which tumor cells are assumed to be present 
but disease progression is not clinically apparent. 
BC is one of the entities known for prolonged 
asymptomatic periods, sometimes as long as 
20–25 years, followed by a recurrence [11, 12]. 
About 20% of clinically disease-free breast can-
cer patients suffer from a relapse 7–25 years after 
mastectomy. Between 10 and 20 years after sur-
gery, the rate of recurrence is relatively steady at 
about 1% per year [11, 13]. Similar courses of 
disease have also been observed in melanoma, 
prostate, thyroid and renal carcinoma, while late 
relapses are comparatively rare in colon and lung 
carcinoma [14]. As dormant single cells or micro-
metastases at secondary homing sites are widely 
assumed to be precursors of disease progression, 
their detection and possible elimination with 
adjuvant targeted therapies is a major goal of care 
of BC survivors.

Late recurrences might be due to the ability of 
DTCs to survive in a dormant state, evade thera-
pies and finally transition to a proliferative state. 
Indeed, Meng et  al. were able to detect single 
tumor cells in the blood in 36% of asymptomatic 
and clinically disease-free BC patients 7–22 years 
after diagnosis [15]. Recently, two large trials 
prospectively investigated the clinical relevance 
of CTC persistence. Sparano et  al. showed that 
4.8% of patients with non-metastatic BC had at 
least one CTC/7.5 ml blood around 5 years after 
diagnosis; these patients had a risk of relapse that 
was 18 times higher than that of CTC-negative 
women [16, 17]. Interestingly, CTC status was 
the strongest predictor of disease recurrence in 
the multivariate analysis. Similar results were 
reported in the German SUCCESS A trial [18]. In 
patients with hormone receptor positive BC, the 
CTC status 5 years after diagnosis significantly 
predicted shorter disease-free survival.

Yet, despite DTCs/CTCs being an indepen-
dent prognostic predictor, the majority of patients 
with minimal residual disease does not develop 
metastases [5]. One possible explanation might 
be the phenomenon called “metastatic ineffi-
ciency”. Although large numbers of cancer cells 
enter blood circulation every day [19, 20], most 
are already apoptotic or dead and it is currently 
assumed that less than one cell out of a thousand 
might give rise to subsequent secondary growth 
[21, 22]. Possibly, a significant proportion of via-
ble tumor cells might be eliminated after entering 
blood vessels by shear mechanical forces of the 
blood stream [19, 23, 24].

There are currently no markers available to 
exactly predict the risk for late recurrence. 
Furthermore, it is not possible to predict which 
dormant tumor cells or micrometastases will 
eventually grow and which will stay dormant 
without ever becoming clinically relevant.

3.3  Potential Mechanisms 
and Clinical Relevance 
of Tumor Cell Dormancy

Despite major advances in therapy of BC leading 
to improvements in relapse-free and overall 
survival, a population of tumor cells is able to 
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survive systemic chemotherapy or targeted thera-
pies and persist in blood or secondary sites. 
Cytotoxic treatment regimens especially target 
highly proliferative cells. In contrast, dormant 
tumor cells are mostly either slowly proliferating 
or remain in a state of quiescence, which is deter-
mined by the lack of proliferating markers (Ki-
67, PCNA) accompanied by the lack of apoptotic 
markers (TUNEL, M30) and may explain the 
failure of conventional chemotherapy in some 
BC patients [25]. DTC dormancy was recently 
supported by DTCs expressing markers includ-
ing NR2F1, DEC2 and p27 [26]. Of these, NR2F1 
(Nuclear Receptor Subfamily 2 Group F Member 
1) has been shown to play a key role in dormancy 
signaling [27]. DEC2 (also known as SHARP1 or 
BHLHE41) is a metastasis suppressor and is 
assumed to induce dormancy by activating p27 
[28]. Moreover, current findings indicate that a 
subset of DTCs in breast cancer patients under-
goes an epithelial-to-mesenchymal transition 
(EMT) and obtain a stem cell-like phenotype. 
DTCs that hold a stem cell-like phenotype (e.g. 
expression of ALDH, presence of CD44 and 
absence of CD24) are called cancer stem cells 
(CSCs) [29, 30]. A stem cell-like phenotype 
might be responsible for their resistance to cyto-
static therapy [6, 31]. New treatment strategies 
that emerge from understanding the biology of 
dormant tumor cells include the ability to induce 
or maintain dormancy and induce the pro-
grammed cell death. Based on current dormancy 
studies, potential therapeutic strategies include: 
altering the microenvironment, targeting angio-
genesis, targeting signal transduction and activating 
the immune system.

3.3.1  Microenvironment

Several clinical and pre-clinical studies have pro-
vided ample evidence that not only the cancer 
itself but also the tumor microenvironment plays 
a significant role in BC progression, metastasis 
and therapeutic outcome. Cancer cells are sur-
rounded by various other cells with which they 
stay in constant interaction. The tumor microen-
vironment (TME) comprises of cancer cells, 

cancer associated fibroblasts (CAFs), endothelial 
cells and pericytes, immune and inflammatory 
cells, bone marrow derived cells and the extracel-
lular matrix [32, 33]. The bidirectional cross-talk 
between cancer cells and the TME determines 
the extent of cell proliferation, angiogenesis, 
invasion and survival. Systemic treatment should 
therefore not only target cancer cells but also 
the surrounding TME.  Treatment options are 
bisphosphonates (BPs) or the RANKL inhibitor 
denosumab, which are potent inhibitors of 
osteoclast- mediated bone resorption. Beyond 
their traditional use in bone metastatic disease, 
in vitro as well in vivo studies support a possible 
role as anticancer therapies by preventing cancer 
cell migration, and by promoting cancer cell 
death by changing the bone into a “hostile” 
environment. BPs and denosumab influence the 
TME by altered secretion of growth factors as 
well as cytokines and may act indirectly on can-
cer cells through microenvironmental changes 
using immunomodulatory and antiangiogenetic 
effects. Several studies confirmed the efficacy 
of BPs in preventing new bony and visceral 
metastases and their positive impact on progres-
sion-free and overall survival in selected BC 
patient subgroups (ABCSG-12, ZO-FAST, 
AZURE, NSABP B-34 trial) [34–38]. Small pilot 
studies have already demonstrated that BPs con-
tributed to eliminate dormant DTCs, even after 
years of first diagnosis [39–42]. Moreover, the 
DTC status might be predictive of the efficacy 
of bisphosphonate therapy [43]. A current non-
randomized phase II pilot study is evaluating 
the impact of denosumab on DTCs in patients 
with primary BC (NCT01545648). Patients with 
persistent DTCs received denosumab monthly 
for 6 months, then every 3 months for a total of 
1-year treatment. To date, there are no published 
results yet.

While hypoxia is a poor-prognosis microenvi-
ronmental feature of solid tumors, it also seems 
to play an important role in tumor cell dormancy. 
One of the early responses to oxygen deficit is the 
reduction of oxygen consumption, achieved by 
decreased proliferation allowing cells to stay via-
ble for long periods of time while dividing very 
slowly [44]. Primary tumors exposed to hypoxic 
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microenvironments have been shown to upregu-
late both hypoxia and dormancy genes. 
Interestingly, once cancer cells left the primary 
tumor, the expression of dormancy markers per-
sisted, but the hypoxic response did not, suggest-
ing that the dormancy-like response lasts longer 
than the hypoxic program [26]. Cell line-based 
studies have also demonstrated that repeated 
hypoxia leads to development of breast cancer 
cells adapted to hypoxic state by entering a dor-
mant state [45].

3.3.2  Angiogenesis

Angiogenic dormancy can be defined as the state 
in which tumor cell proliferation is counterbal-
anced by apoptosis owing to poor vasculariza-
tion. The lack of tumor angiogenesis impedes 
tumor growth beyond a microscopic size 
(2-3mm), resulting in an asymptomatic and non- 
metastatic state [46]. The angiogenic switch of 
cancer cells from a dormant, non-angiogenic 
phenotype to an active, angiogenic phenotype is 
a critical step and essential to promote fast- 
growing and expansion of tumor masses. 
Angiogenesis is therefore a critical feature of 
tumor growth and inhibition a potential treat-
ment method. There are many growth factors 
involved in the physiological regulation of blood 
vessel formation. Blockade of even a single 
growth factor might limit vascular growth, with 
the most compelling evidence to date supporting 
blockade of VEGF.  Several clinical trials on 
bevacizumab, a monoclonal antibody against 
VEGF, have shown improved progression-free 
survival when administered in combination with 
chemotherapy in the metastatic setting (E2100, 
RIBBON-1, AVADO) [47–49]. However, the 
overall survival was not affected. In early breast 
cancer, clinical studies on bevacizumab did not 
demonstrate a disease- free or overall survival 
benefit (ARTemis, GeparQuinto trial) [50, 51]. 
Besides bevacizumab, small inhibitors of 
VEGFR receptor tyrosine kinases (sunitinib) 
either alone or in combination with chemother-
apy showed no clinical benefit for patients with 
advanced breast cancer [52]. Future trials might 

help to clarify whether prevention of the angio-
genic switch with antiangiogenic agents might 
achieve clinically relevant results in terms of 
elimination of dormant tumor cells.

3.3.3  Targeting Signaling Pathways

Once dormant tumor cells leave their quiescent 
state, they may express specific receptors which, 
when activated can initiate downstream signaling 
resulting in the expression of genes for cancer 
cell proliferation, growth, survival, migration, 
and other vital cell cycle pathways. There is an 
increasing amount of targeted therapies which 
interfere with the function of specific molecules 
responsible for tumorigenesis and cell cycle.

The human epidermal growth factor receptor 
2 (HER2) is one of the main targets. Several stud-
ies revealed that HER2 expression on both DTCs 
and CTCs differed from HER2 expression of the 
primary tumor and HER2 expression on DTCs 
and CTCs was correlated with poor prognosis 
[53–60]. During disease progression, HER2 gene 
amplification can be acquired even if the primary 
tumor was negative for HER2. Based on these 
observations, two pilot studies showed that adju-
vant trastuzumab treatment is able to eliminate 
DTCs and CTCs [61, 62]. Yet, the recently pub-
lished randomized TREAT CTC trial and the 
NSABP-B47 trial both failed to confirm the 
hypothesis that adjuvant trastuzumab can benefit 
women with HER2 non-amplified early breast 
cancer [63, 64].

The expression of the estrogen receptor (ER) 
on cancer cells is another main factor because 
endocrine adjuvant therapy remains a corner-
stone of breast cancer treatment. In line to HER2, 
several studies have revealed a discordance of ER 
status between primary tumor and DTCs as well 
as CTCs [60, 65, 66]. This might be relevant for 
clinicians when selecting patients for adjuvant 
endocrine therapy. A loss of ER-positivity of 
MRD might explain the failure of adjuvant endo-
crine therapies in a subgroup of ER-positive BC 
patients. Moreover, the discordance could be 
important for patients lacking ER on the primary 
tumor but showing ER-positive DTCs/CTCs 

M. Banys-Paluchowski et al.



39

because they might benefit from an endocrine 
therapy. Determining the phenotype of DTCs and 
CTCs is therefore becoming more and more 
important, as occult tumor cells are the targets of 
all adjuvant treatment regimes. Besides local 
treatment of the primary tumor and lymph node 
metastases, the definitive success of BC therapy 
is dependent on the ability to eliminate residual 
cancer cells which are persistent after primary 
surgery, before they become clinically evident.

There are increasing numbers of other spe-
cific agents targeting the signal transduction, 
including everolimus (mTOR inhibitor), lapa-
tinib (EGFR and HER2 inhibitor), pyrotinib 
(HER1, HER2, and HER4 inhibitor), pertuzumab 
(HER2 dimerization inhibitor), ribociclib/abe-
maciclib/palbociclib (cyclin-dependent kinase 
4/6 inhibitors), T-DM1 (combination of trastu-
zumab and the chemotherapy medicine emtan-
sine) and alpelisib (an α-specific PI3K inhibitor). 
The ability to determine and monitor the biology 
of MRD cells and to follow changes on pro-
teomic, transcriptomic and genomic level in 
real-time may allow the tailoring of conventional 
medical treatment to individual characteristics. 
However, clinical studies demonstrated that 
elimination of dormant tumor cells may not 
directly impact the survival. Prospective ran-
domized controlled trials are therefore needed to 
investigate whether patients with persistent 
MRD benefit from these agents.

3.3.4  Immune System

The inherent capacity of the immune system has 
a major impact on the balance between dormant 
tumor cells and tumor growth. The dynamic pro-
cess consisting of immunosurveillance and tumor 
progression, referred to as immunoediting, is 
made up of three phases: elimination, equilib-
rium, and escape [67]. In the equilibrium phase, 
the immune system holds tumor cells in a state of 
functional dormancy or quiescence by host- 
derived cytotoxic T lymphocytes [68]. Various 
approaches have been developed to sustain such 
endogenous host-protective immune responses 

including immunomodulating antibodies which 
specifically block immune checkpoint inhibitors 
and potentially expand endogenous anticancer 
immune responses. Most promising immuno-
modulating antibodies are monoclonal anti-PD-1 
(pembrolizumab) or anti-PD-L1 (atezolizumab, 
durvalumab) antibodies for the treatment of 
patients with advanced triple negative breast 
cancer. Clinical trials showed objective response 
rates in the 5%–19% range [69–71]. Host- 
protective immune responses can be also ampli-
fied by vaccines, which boost naturally occurring 
antitumor immune responses. Many different 
types of cancer vaccines have been constructed 
from distinct immunogenic sources represented 
by whole tumor lysates, tumor antigenic 
peptides, DNA, RNA, and viruses. Moreover, 
they can be combined with immunoadjuvants, 
which contribute to the immune stimulation. 
Encouraging results are coming out during sev-
eral clinical phase II/III trials. NeuVax, AVX901, 
and INO-1400 are currently the most promising 
BC vaccines [72]. In (dormant) MRD, favorable 
effector-target ratios prevail and therefore might 
be optimally suited for vaccines and immuno-
therapy with antibodies.

3.4  Conclusions

Tumor dormancy is a clinically relevant phenom-
enon that reflects the ability of minimal residual 
disease to elude systemic therapy and persist as 
single cancer cells or micrometastasis at second-
ary homing sites. Dormant cells can either com-
pletely withdraw from cell cycle and remain in 
mitotic arrest or divide at a very slow rate coun-
terbalanced by cell death. However, the exact 
mechanisms underlying tumor dormancy and 
leading to activation of dormant cells are still 
unclear. Possibly, angiogenetic and immunomod-
ulatory factors contribute to the development of a 
microenvironment most suitable for hosting dor-
mant cells. To effectively target these cells, better 
understanding of tumor dormancy is necessary 
and might help to design new targeted approaches 
to control this step of disease progression.
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