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Abstract. We study the 1-planar, quasi-planar, and fan-planar crossing
number in comparison to the (unrestricted) crossing number of graphs.
We prove that there are n-vertex 1-planar (quasi-planar, fan-planar)
graphs such that any 1-planar (quasi-planar, fan-planar) drawing has
Ω(n) crossings, while O(1) crossings suffice in a crossing-minimal draw-
ing without restrictions on local edge crossing patterns.

1 Introduction

The crossing number of a graph G, denoted by cr(G), is the smallest number
of pairwise edge crossings over all possible drawings of G. Many papers are
devoted to the study of this parameter, refer to [22,25] for surveys. In particu-
lar, minimizing the number of crossings is one of the seminal problems in graph
drawing (see, e.g., [2,3,23]), whose importance has been further witnessed by
user studies showing how edge crossings may deteriorate the readability of a dia-
gram [20,21,26]. On the other hand, determining the crossing number of a graph
is NP-hard [5] and can be solved exactly only on small/medium instances [7]. On
the positive side, the crossing number is fixed-parameter tractable in the num-
ber of crossings [15] and can be approximated by a constant factor for graphs of
bounded degree and genus [10].

A recent research stream studies graph drawings where, rather than mini-
mizing the number of crossings, some edge crossing patters are forbidden; refer
to [4,9,11,12] for surveys and reports. A key motivation for the study of so-called
beyond-planar graphs are recent cognitive experiments showing that already the
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Table 1. Lower and upper bounds the crossing ratio of beyond-planar graphs.

Graph class Lower bound Upper bound

1-planar n/2 − 1 n/2 − 1

quasi-planar Ω(n) O(n2)

k-quasi-planar Ω(n/k3) f(k) · n2 log2 n

fan-planar Ω(n) O(n2)

absence of specific kinds of edge crossing configurations has a positive impact on
the human understanding of a graph drawing [13,18]. Of particular interest for
us are three families of beyond-planar graphs that have been extensively stud-
ied, namely the k-planar, fan-planar, and k-quasi-planar graphs; refer to [9] for
additional families. A k-planar drawing is such that each edge is crossed at most
k ≥ 1 times [19] (see also [16] for a survey on 1-planarity). A k-quasi planar
drawing does not have k ≥ 3 mutually crossing edges [1]. A fan-planar drawing
does not contain two independent edges that cross a third one or two adjacent
edges that cross another edge from different “sides” [14]. A graph is k-planar
(k-quasi-planar, fan-planar) if it admits a k-planar (k-quasi-planar, fan-planar)
drawing; a 3-quasi-planar graph is simply called quasi-planar.

In this context, an intriguing question is to what extent edge crossings can
be minimized while forbidding such local crossing patterns. In particular, we ask
whether avoiding local crossing patterns in a drawing of a graph may enforce
an overall large number of crossings, whereas only a few crossings would suffice
in a crossing-minimal drawing of the graph. We answer this question in the
affirmative for the above-mentioned three families of beyond-planar graphs. Our
contribution are summarized in Table 1.

1. In Sect. 2, we prove that there exist n-vertex 1-planar graphs such that the
ratio between the minimum number of crossings in a 1-planar drawing of
one such graph and its crossing number is n/2 − 1. This result can be easily
extended to k-planar graphs if we allow parallel edges.

2. In Sect. 3, we prove that there exist n-vertex quasi-planar graphs such that the
ratio between the minimum number of crossings in a quasi-planar drawing of
one such graph and its crossing number is Ω(n). Similarly, a Ω(n/k3) bound
can be proved for k-quasi-planar graphs.

3. In Sect. 4, we prove that there exist n-vertex fan-planar graphs such that the
ratio between the minimum number of crossings in a fan-planar drawing of
one such graph and its crossing number is Ω(n).

The lower bound in Result 1 is tight. Since fan-planar and quasi-planar graphs
have O(n) edges, the lower bounds in Results 2 and 3 are a linear factor from the
trivial upper bound O(n2), and it remains open whether such an upper bound
can be achieved (see Sect. 5). All results are based on nontrivial constructions
that exhibit interesting structural properties of the investigated graphs.
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Notation and Definitions. We assume familiarity with standard definitions about
graph drawings and embeddings of planar and nonplanar graphs (see, e.g., [8,9]).
In a drawing of a graph, we assume that an edge does not contain a vertex other
than its endpoints, no two edges meet tangentially, and no three edges share
a crossing. It suffices to only consider simple drawings where any two edges
intersect in at most one point, which is either a common endpoint or an interior
point where the two edges properly cross. Thus, in a simple drawing, any two
adjacent edges do not cross and any two non-adjacent edges cross at most once.

We define the k-planar crossing number of a k-planar graph G, denoted by
crk-pl(G), as the minimum number of crossings over all k-planar drawings of G.
The k-planar crossing ratio �k-pl is the supremum of crk-pl(G)/cr(G) over all
k-planar graphs G. Analogously, we define the quasi-planar and the fan-planar
crossing number of a graph G, denoted by crquasi(G) and crfan(G), as well as the
quasi-planar and the fan-planar crossing ratio, denoted by �quasi and �fan.

2 The 1-planar Crossing Ratio

An n-vertex 1-planar graph has at most 4n − 8 edges and a 1-planar drawing
has at most n − 2 crossings, that is cr1-pl(G) ≤ n − 2 [16]. Observe that for
cr(G) < cr1-pl(G) it has to hold that cr(G) ≥ 2. It follows that the 1-planar
crossing ratio is �1-pl ≤ n/2 − 1. We show that this bound can be achieved.

Theorem 1. For every � ≥ 7, there exists a 1-planar graph G� with n = 11�+2
vertices such that cr1-pl(G�) = n − 2 and cr(G�) = 2, which yields the largest
possible 1-planar crossing ratio.

The construction of G� consists of three parts: a rigid graph P that has to be
drawn planar in any 1-planar drawing; its dual P ∗; a set of binding edges and
one special edge that force P and P ∗ to be intertwined in any 1-planar drawing.

To obtain P , we utilize a construction introduced by Korzhik and Mohar [17].
They construct graphs H� that are the medial extension of the Cartesian prod-
uct of the path of length 2 and the cycle of length �; see Fig. 1a. They prove
that H� has exactly one 1-planar embedding on the sphere, and that embedding
is crossing-free. We choose P = H� as our rigid graph and fix its (1−) planar
embedding (when we will refer to P , we will usually mean this embedding).

Let P ∗ be the dual of P , obtained by placing a dual vertex h∗ into each
face h of P and connecting two dual vertices if their corresponding faces share
an edge; see Fig. 1b. Since P has 5� vertices and 11� edges, by Euler’s polyhedra
formula it has 6� + 2 faces; thus, P ∗ has 6� + 2 vertices and 11� edges.

Obviously, P ∪ P ∗ can be drawn planar, as both P and P ∗ are planar and
disjoint. All faces of P have size 3 or 4, except two large (called polar) faces f
and g of size �. We create a graph G′ by adding � binding edges to P ∪ P ∗

between f∗ (the vertex of P ∗ corresponding to face f) and the vertices of P that
are incident to f . This forces f∗ to be drawn in face f in any 1-planar drawing.
In the full version [6] we prove the following lemma, cf. Fig. 1c and d.
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(a) The graph P

g∗

f∗

(b) The graph P ∪ P ∗

g∗

y∗

f∗

x

z

(c) cr1-pl(G�) ≤ n − 2

y∗

x

(d) cr(G�) ≤ 2

Fig. 1. Construction of the graph G� in the proof of Theorem 1. Blue circles and edges
are P ; red squares and bold edges are P ∗; green dashed edges are the binding edges;
and the orange very bold edge is the special edge. (Color figure online)

Lemma 2. G′ has only two types of 1-planar embeddings (up to the choice of
the outer face): a planar one where P ∗ lies completely inside face f of P ; and a
1-planar embedding where f∗ lies inside f , g∗ lies inside g, and each edge of P
crosses an edge of P ∗ and vice versa.

Let z be a vertex of P on the boundary of f . Let y be the face of size 4 that
has z on its boundary. Let x be the degree-6 vertex on the boundary of y. We
obtain G� from G′ by adding the special edge (x, y∗). In the planar embedding
of Lemma 2, P ∗ and thus y∗ lies inside face f of P , so (x, y∗) has to cross at
least two edges of P ; see Fig. 1d. Choosing the face that corresponds to z as the
outer face of P ∗ gives a non-1-planar drawing of G� with 2 crossings.

Hence, G′ has to be drawn in the second way of Lemma 2; see Fig. 1c. Here,
the edge (x, y∗) can be added without further crossings. Graph G� consists of
n = 11�+2 vertices in total. Both P and P ∗ have 11� edges, and each of them is
crossed, so there are n−2 crossings in total, which is the maximum possible in a
1-planar drawing. Hence, cr1-pl(G�) = n − 2 and cr(G�) = 2, so �1-pl ≤ n/2 − 1.

The construction used in the proof of Theorem 1 can be generalized to k-
planar multigraphs. It suffices to replace each edge of G�, except the special
edge, by a bundle of k parallel edges:
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(a) cr(G�) ≤ 3 (b) crquasi(G�)≤2�+1 (c) C is not crossed (d) C is crossed

Fig. 2. Illustration for the proof of Theorem 4.

Corollary 3. For every � ≥ 6, there exists a k-planar multigraph G�,k with
n = 11� + 2 vertices and maximum edge multiplicity k such that crk-pl(G�,k) =
k2 (n − 2) and cr(G�,k) = 2k, thus �k-pl ≥ k (n − 2)/2.

3 The Quasi-planar Crossing Ratio

An n-vertex quasi-planar graph G has at most 6.5n−20 edges, thus crquasi(G) ∈
O(n2) [9]. For cr(G) < crquasi it has to hold that cr(G) ≥ 2, and hence
�quasi ∈ O(n2). We show that the quasi-planar crossing ratio is unbounded,
even for cr(G) ≤ 3:

Theorem 4. For every � ≥ 2, there exists a quasi-planar graph G� with n =
12� − 5 vertices such that crquasi(G�) ≥ � and cr(G�) ≤ 3, thus �quasi ∈ Ω(n).

In order to prove Theorem 4, we begin with a technical lemma.

Lemma 5. Let G be a graph containing two independent edges (u, v) and (w, z).
Suppose that u and v (w and z, resp.) are connected by a set Πuv (Πwz, resp.)
of � − 1 paths of length two. Let Γ be a drawing of G. If (u, v) and (w, z) cross
in Γ , then Γ contains at least � crossings.

Proof. Suppose that (u, v) and (w, z) cross. If each of the � − 1 paths in Πwz

crosses (u, v), then the claim follows. Assume otherwise that at least one of these
paths does not cross (u, v). This path forms a 3-cycle t with (w, z); the � − 1
paths of Πuv all cross at least one edge of t, which proves the claim. ��

Proof (of Theorem 4). Let G� be the graph constructed as follows; cf. Fig. 2a.
Start with a 6-cycle C = 〈u0, u1, . . . , u5〉, and a vertex x connected to each of C,
yielding graph G′. Extend each edge of G′ by adding �−1 disjoint paths of length
two between its endpoints. Finally, add special edges (ui, ui+3), i = 0, 1, 2.

The resulting graph G� has n = 12(� − 1) + 7 = 12� − 5 vertices and admits
a drawing with 3 crossings, so cr(G�) ≤ 3; see Fig. 2a. Note that G� admits a
quasi-planar drawing with 2� + 1 crossings as shown in Fig. 2b. We prove that
crquasi(G�) ≥ �. Let Γ be a quasi-planar drawing of G�. If there are two edges
of G′ that cross each other, then the claim follows by Lemma 5.
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(a) cr(G�) ≤ 2. (b) crfan(G�) ≤ �.

Fig. 3. Illustration for the proof of Theorem 7.

If no special edge would cross G′, they would all be drawn within the unique
face of size 6 in G′. They would mutually cross, contradicting quasi-planarity.

Thus, at least one special edge, say s = (u0, u3), crosses an edge (a, b) of G′.
Consider the closed (possibly self-intersecting) curve L composed of s plus the
subpath of C connecting u0 to u3 and containing none of the vertices a and b.
This curve partitions the plane into two or more regions, and a and b lie in
different regions; see Fig. 2c and d for an illustration. Thus (a, b) and the � − 1
paths connecting a and b cross L, yielding � crossings in Γ , as desired. ��

The above proof can be straight-forwardly extended to k-quasi-planar graphs
by using exactly the same construction in which the cycle C has length 2k. Note
that any k-quasi-planar graph has at most ckn log n edges, where ck depends
only on k [24], so �quasi ≤ f(k) · n2 log2 n.

Corollary 6. For every � ≥ 2 and k ≥ 3, there exists a k-quasi-planar
graph G�,k with n = 2k(� + 1) + 1 vertices such that crquasi(G�,k) ≥ � and
cr(G�,k) ≤ k(k − 1)/2, thus �quasi ∈ Ω(n/k3).

4 The Fan-Planar Crossing Ratio

An n-vertex fan-planar graph G has at most 5n − 10 edges, thus crfan(G) ∈
O(n2) [9]. For cr(G) < crfan(G) it has to hold that cr(G) ≥ 2, and hence
�fan ∈ O(n2). We show that the fan-planar crossing ratio is unbounded, even for
cr(G) = 3.

Theorem 7. For every � ≥ 2, there exists a fan-planar graph G� with n = 9�+1
vertices such that crfan(G�) = � and cr(G�) = 3, thus �fan ∈ Ω(n).

Proof. Let G� be the graph constructed as follows; cf. Fig. 3a. Start with a K3,3.
Extend each edge of the K3,3 by adding �−1 disjoint paths of length two between
its endpoints, except for two independent edges (u, v) and (w, z). Add vertices
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w′ and z′, edges w̄ = (w,w′) and z̄ = (z, z′), � disjoint paths of length two
connecting w′ and z, and � disjoint paths of length two connecting z′ and w.

Graph G� has n = 6+7(�−1)+2+2� = 9�+1 vertices and admits a drawing
with three crossings, see Fig. 3a. Recall that we obtain a subdivision of a graph
G by subdividing (even multiple times) any subset of its edges. G� contains three
subdivisions of K3,3 sharing only edge (u, v), and thus each subdivision requires
at least one distinct crossing in any drawing. It follows that cr(G�) = 3. Note
that G� admits a fan-planar drawing with � crossings, cf. Fig. 3b. We prove that
crfan(G�) = �. Let Γ be a fan-planar drawing of G�. If any two extended edges
cross each other, then the claim follows by Lemma 5. Assume they do not:

G� contains � subdivions of K3,3 that share only (u, v) and w̄. Since each
K3,3 subdivision requires at least one crossing, there are either � crossings in Γ
(proving the claim), or (u, v) crosses w̄. Similarly, G� contains � K3,3 subdivisions
that share only (u, v) and z̄, and we can assume that (u, v) crosses z̄. But fan-
planarity forbids (u, v) to cross both w̄ and z̄. ��

5 Open Problems

The main open question is whether there exist fan-planar and quasi-planar
graphs whose crossing ratio is Ω(n2). In fact, we conjecture that this bound
can be reached, but proving our suspected constructions turns out to be elusive.
Another natural research direction is to extend our results to further families of
beyond-planar graphs, such as k-gap planar graphs or fan-crossing-free graphs
(refer to [9] for definitions). Finally, we may ask whether similar lower bounds can
be proved in the geometric setting (i.e., when the edges are drawn as straight-line
segments).
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