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Abstract. Many algorithms have been designed to remove node over-
lapping, and many quality criteria and associated metrics have been pro-
posed to evaluate those algorithms. Unfortunately, a complete compari-
son of the algorithms based on some metrics that evaluate the quality has
never been provided and it is thus difficult for a visualization designer to
select the algorithm that best suits his needs. In this paper, we review 21
metrics available in the literature, classify them according to the qual-
ity criteria they try to capture, and select a representative one for each
class. Based on the selected metrics, we compare 8 node overlap removal
algorithms. Our experiment involves 854 synthetic and real-world graphs.

Keywords: Graph drawing - Layout adjustment - Node overlap
removal

1 Introduction

Graph drawing algorithms are good at creating rich expressive graph layouts but
often consider nodes as points with no dimensions. After changing the size of
nodes in the case of annotation or evolving graphs, it causes node overlap which
hides information. Post-process algorithms, named layout adjustment [15], have
been proposed to remove node overlap.

The objective of these algorithms is, given an initial positioning of the nodes
and a size for each one, to provide a new embedding so that there are no over-
lapping nodes any more. A classical zoom-in function maintaining the sizes of
the nodes (i.e. uniform scaling) provides such an embedding, but it expands
the visualisation, resulting in large areas without any objects. Therefore, a node
overlap removal algorithm must take into account the area of the drawing, and
try to minimise it. Positioning the nodes evenly on a grid meets this objective
but will result in the loss of the user’s mental picture of the original embedding.
Thus, it is also important to minimise the change on the layout.

Since a preliminary work in 1995 [15], many algorithms have been designed to
reach these purposes, and many quality criteria have been proposed to evaluate
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them. Unfortunately, a complete comparison of the algorithms based on the
different criteria has never been provided and it is thus difficult for a visualisation
designer to select the one that best suits his needs.

In this paper, our contribution comes in two forms: (1) We propose a clas-
sification of 21 quality metrics, grouping them according to the quality crite-
rion they try to capture. We also discuss their relevance and we select a rep-
resentative one for each class. (2) We compare state-of-the-art node overlap-
ping approaches in regards to the previously selected metrics. This experiment
involves 854 graphs, including synthetic ones (random, tree, scale-free, small-
world) and real world ones.

The paper is organised as follows: after a brief reminder in Sect.2 of the
definitions and the notations used in this paper, we present and discuss the
quality criteria and the metrics in Sect.3. Then we compare the algorithms in
Sect. 4. Finally we conclude in Sect. 5.

2 Preliminaries

In this paper, we use the following definitions and notations.

G = (V,E) denotes a graph where V is the set of nodes and E the set of
edges. The number of nodes |V| is denoted by n and the number of edges |E|
by m. We consider each node as a rectangle. Thus, for a node v € V, its width
and its height are denoted by the couple (w,, h,) which is not impacted by the
layout adjustment.

The initial embedding is defined as an injection £; : V — R? such that
Yo eV, Eq(v) = (zy,y,) where (2,,y,) are the coordinates of the center of the
node v. The overlapping-free embedding is denoted by £(;. To simplify notations,
we denote v = (z,,y,) instead of Eg(v), and v/ = (z,y),) instead of E(v).
Remark that two nodes (u,v) € V2 are overlapping when :

Wy + Wy,
2

hy + hy,

and |y, — yu| < 5

|2y — 20| <

The bounding box Bb of an embedding ¢ is defined as the smallest rectangle

containing all the nodes of G; wyy, (resp. hyp) denotes the width (resp. the height)

of the initial embedding, wy, (resp. h;,) denotes the width (resp. the height) of
the overlapping-free one. They are determined as follows:

= g (04 57) g (0 5
o ) I
i = ‘m&‘ (y N 2> ~ iy <y - 2> ‘ @)

The position of the center of the bounding box is denoted by cpp = (pp, ypp) in

the initial embedding, and ¢}, = (z},,;,) in the overlapping-free embedding.
The convex hull of an embedding £ is defined as the smallest convex region

containing all the nodes of G. Note that it is computed by using the 4 corners of
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the nodes, and not only their center, in a way that the rectangles representing
the nodes are fully included into it. In the following, Ch denotes the convex hull
of the original embedding, Ch’ the convex hull of the free-overlapping one, c.p,
the center of mass of Ch, ¢/, the center of mass of Ch/.

3 Quality Criteria

Many criteria have been proposed in the literature to evaluate the quality of the
embeddings resulting from adjustment algorithms. Unfortunately, the experi-
ments provided by the authors of the different approaches are not always based
on the same metrics. With a view to provide a uniform protocol of experiment
and a complete comparison of the algorithms, we need to review the quality crite-
ria and the metrics used to evaluate them. We also need to select a representative
metric for each criterion.

We identified 5 classes of metrics (Orthogonal Ordering preservation, Spread
minimisation, Global Shape preservation, Node Movement minimisation and
Edge Length preservation), each of them depicting a quality criterion. Table 1
shows the metrics assigned into the classes. The formulas are given in the dis-
cussion below.

The following subsections contain the metrics of a specific class. In each of
them, we select one representative metric, based on the corresponding quality
criterion and the properties that the metrics aim at capturing. Our discussion
also sometimes involves the coefficient of correlation of two metrics run following
the protocol described in the comparison section, Sect. 4.

3.1 Orthogonal Ordering Preservation

The orthogonal ordering class groups the metrics which try to quantify how much
an adjustment algorithm preserves the initial orthogonal ordering. We recall
that the orthogonal ordering is respected when all nodes satisfy the following
conditions:

Ty < Xy & ), < T

Yu < Yo & Yy <Y,

Ty = Ty S ), = T,

Yu = Yo < y; = yi}

The first metric of this class, oo o [15], is equal to 1 if the overlapping-free
graph embedding preserves the initial orthogonal ordering, 0 otherwise. Also, if
only one couple of nodes does not satisfy those conditions, the value of oo_o is
the same as when many ones do not satisfy it.

To overcome this issue, Huang et al. [11| proposed a metric based on the
Kendall’s Tau distance. For each couple of nodes, they first compute an inver-
sion number inv(u,v) corresponding to 0 if the orthogonal ordering is preserved
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Table 1. List of metrics classified by the quality criteria they try to capture: metrics
selected for the comparison appear in bold italics. The Abbreviations are based on
some initials of the names. For example, sp _bb a means that the metric is in the
class Spread minimisation, it uses the embedding Bounding Box to quantify the Area
spreading. The Range column contains the set of values that the metric can take. The
Target column refers to the target value to meet the corresponding criterion.

Abbreviation | Name Range Target
Orthogonal Ordering preservation

00_o0 Original [15] {0,1} 1

oo_kt Kendall’s Tau Distance [11] [0,1] 0

oo_mni Number of Inversions [17] 0,n(n—1)] 0

oo_nni Normalised Number of Inversions [0,1] 0
Spread minimisation

sp_bb_llml Bounding Box L1 Metric Length [12] (1, +o00] 1

sp_bb_a Bounding Box Area [15] 1, +o0] 1

sp_bb_na Bounding Box Normalised Area [11] [0, 1] 0

sp_ch_a Convex Hull Area [17] (1, +o00] 1
Global Shape preservation

gs_bb_ar Bounding Box Aspect Ratio [12] 10, +oo[ 1

gs_bb_iar Bounding Box I'mproved Aspect Ratio (1, 4o00]

gs_ch_sd Convex Hull Standard Deviation [17] [0, +00] 0
Node Movement minimization

nm_mn Moved Nodes [11] [0,1] 0

nm_dm_me | Distance Moved Mean Euclidean [17] [0, +o00] 0

nm_dm_ne | Distance Moved Normalized Euclidean [13] [0,1] 0

nm_dm_h Distance Moved Hamiltonian [10,11] [0, +o0] 0

nm_dm_se Distance Moved Squared Euclidean [14] [0, +o00] 0

nm_dm_imse | Distance Moved I'mproved Mean
Squared Euclidean [0, +o0] 0

nm_d Displacement [5] 10, +o0[

nm__knn K-Nearest Neighbours [16] [0, +o00] 0
Edge Length preservation

el r Ratio [12] [1, +o0]

el _rsdd Relative Standard Deviation Delaunay [5] | [0, +o0] 0

between them, 1 otherwise. The metric is then defined as the normalised sum of
the inversion numbers:
Z inv(u,v)

uFv

kt = ————
00— n(n—1)
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Strobelt et al. [17] introduced the number of inversions:

1 ifal, <z
oo_ni: Z {0 I x,, Ty,

otherwise
(u,v)eV2
Ty >Ty
: ! !
n Z 1 ify, <y,
0 otherwise
(uJJ)EV2
Ty >Ty

This metric has the drawback of providing non-normalized values. However,
it holds the benefit of penalizing inversions occurring on each axis independently
(z— and y — axis), instead of penalizing in the same manner an inversion occur-
ring in only one axis and an inversion occurring in the two axes. Thus, in our
study, we combine the two metrics by using a normalised version of the latter:

00_Mni

O00_nni = m

3.2 Spread Minimisation

A classical zoom-in function maintaining the sizes of the nodes (i.e. uniform
scaling) provides an overlapping-free embedding, but it expands the visualisa-
tion, resulting in large areas without any objects. To avoid this issue, quality
metrics have been introduced to quantify embedding spreading. Their purpose
is to favour algorithms inducing low spreading.

The L1 metric length [12] is the ratio:
sp_bb_Ilml = max(wy, i)
- = max(wbb, hbb)

The drawback of this technique is to consider only one dimension of the
embedding, width or height. For instance, considering an example where wy, = 4,
hoy = 2, wy, = 4, b, = 4, the value of the L1 metric length is 1 (which is the
target value), whereas the area of the overlapping-free embedding is twice as
large as in the initial embedding. The ratio between the bounding box areas of
the two embeddings [15] overcomes this issue:
sp_bb a= Wiy X My
T T wpp X hep

While the result gives an unbounded value greater than 1, Huang et al. [11]
proposes a normalised version producing values in the interval [0, 1[:

wWpp X h
sp_bb na=1-— H
wyy, Xy,
Unfortunately, this criterion is poorly intuitive and it is hard to figure out
what the values represent.
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In our comparison, we selected another version of the ratio of areas involving
convex hulls [17], as it better captures the concrete area of the drawing:

area(Ch')

h =
°p_ch_a area(Ch)

3.3 Global Shape Preservation

This class contains metrics that try to capture the ability of the algorithms to
preserve the global shape of the initial embedding. The first one was proposed
by Li et al. [12]:

/

Wy X hbb

: / / bb
if wy, > hy, T o
gs _bb_ar= o bb
- - . hbb X Wpp
otherwise —
Wy, X hbb

The underlying idea is to capture the variation of the aspect ratio (wpp/hpp)
between the initial and the overlapping-free embedding. For instance, let us
consider an example where wy, = 3, hyy, = 2, wj, = 6, hy, = 4. In this case,
the overlapping-free embedding is twice as large as the initial one but the aspect
ratio remains the same 3/2. The gs_bb_ar is 1, which is the target value. Now
let us consider another example where wy, = 3, hp, = 2, wy, = 4, hy, = 6. In
this case, the initial aspect ratio is 3/2 whereas the overlapping-free one is 2/3.
The gs_bb_ar is now 2.25, which is not the target value; it reveals a distortion
of the initial embedding during the overlap removal process. The main drawback
of this metric is that it can reach values in the interval |0, 400 while the target
value is 1. Thus, it is hard to decide, for instance, which algorithm is the best
between two of them if the first one obtains a score of 0.67 and the second one
a score of 4.56. To overcome this issue, we propose to refine it as follows:

/ /!
. Wy, X hbb hi, x Wpp
gs_bb_iar = max ( bb bb

h;)b X wbb’ wl/;b X hbb

In this case, the target value is 1 and the metric cannot reach values below
it. This criterion is the one we selected for our study.

An alternative to this approach based on the convex hull has been proposed
by Strobelt et al. [17]. The idea is to evaluate the distortion of the convex hull
by comparing, between both embeddings, the distances of convex hull points to
their center. Let g (resp. £)) be the euclidean distance between the center of
mass cqp (resp. ¢, ) of the convex hull Ch (resp. Ch’) and the intersection of
the convex hull with the line going through c., (resp. ¢;,) and with an angle ¢
(0 varying from 0° to 350° in 10° steps). Then, the difference is defined as the
ratio dp = ¢}/¢y. The metric is the standard deviation of the 36 measures of dg:

1 —
= —_— — 2
gs ch sd 36 E (dg — d)
510k
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- 1
where d = — Z dg is the mean value

36
0=10k
k=0, ,35

Based on the experiments presented below in Sect.4, we observed that
gs_bb_iar and gs_ch_sd have a correlation coefficient of 0.77, showing that
they both tend to capture similar aspects of the adjustment process. We selected
the former for its simplicity and its ease of interpretation.

3.4 Node Movement Minimisation

This class contains the metrics quantifying the changes in node positions after
running an adjustment algorithm. The underlying intuition is that an algorithm
involving high node movements will provide an overlapping-free configuration
different from the original one, and thus may result in a substantial loss of the
mental model.

The simplest metric of this class was presented by Huang et al. [11]:

nb
nm_mn = —
n
Here, nb represents the number of nodes which have moved between the initial
and the overlapping-free embedding. The main drawback of this approach is that
a node overlap removal algorithm may induce very small changes in most nodes,
which does not affect the mental model preservation, while inducing a very bad
result. To tackle this problem and add more granularity over the evaluation of
node movements, a series of metrics have been proposed, based on the same
underlying quality function:

nm_dm = f(n) x Z dist (v, v")

veV

where f is a normalising function of n = |V| and dist is a distance between v
and v’. Table 2 sums up the ones used in the literature.

Table 2. Functions used to tune the distances moved metric.

dist(v,v’) \ f(n) |1 1/n m

lv" — o] nm_dm_me [17] |nm_dm_ne [13]
o' — vl? nm_dm__se [14] |nm_dm__imse

|z, — zo| + Yy — yo| | nm_dm_h [10]

The function f comes in three different forms. Marriott et al. [14] and Huang
et al. [10] do not include any f, which is similar to having f(n) = 1. The
drawback is that the resulting value highly depends on the number of nodes
in the graph. That is why Strobelt et al. [17] proposed to use the mean of the
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distances, which corresponds to f(n) = 1/n. Finally, Lyons et al. [13] proposed
f(n) =1/(kv2 xn), where k is the maximum between wj, and hj,. In this case,
kv/2 is the diagonal of a square containing the embedding, thus a maximum
distance available for a node. Thus, this f function normalises the values of the
metric. Unfortunately, this normalisation induces very small values that are hard
to interpret. That is why we preferred using f(n) = 1/n for our study.

Three dist functions have been proposed in the literature. The most intuitive
one is the Euclidean distance ||v" — v|| [13,17]. The squared Euclidean distance
|/ — v||* [14] avoids the square root computation and discriminates high changes
better. It is the one we selected for our study. The Manhattan distance |x] —
Zy|+ |yl — y»| has also been used [10], but it is less intuitive and has close results
(nm_dm_se and nm__dm__h have a correlation coefficient of 0.9).

Let us consider an adjustment algorithm that pushes nodes on the x-axis.
The preservation of the global shape is not optimal but the preservation of
the configuration should reach a good score, as a node on right-top in the ini-
tial embedding would remain on right-top in the overlapping-free embedding.
In order to better capture the relative movement of a node between the two
embeddings, a shift function can be applied to align the center of the initial
bounding box with the center of the final one, and a scale function to align the
size of the initial bounding box to the size of the final one:

shift(v) = (@y + Ty — Tob, Yo + Yy — Yob)

Wy, bb
scale(v) =(x, x —2 X —2
( ) ( v wbbﬂ/v hbb>

Considering this, we selected the following node movement metric:

1
nm_dm _imse = — X Z [0/ — scale(shift(v))|
veV

nm_d [5] (the complete formula is available in the paper) is also based on
the idea that the metric should be based on modified initial positions to better
capture the relative movement of the nodes between the two embeddings. Besides
including the shift and the scale functions, it also rotates the initial embedding
with an angle 6 that minimizes the distances between the nodes of the initial
embedding and the ones of the overlapping-free embedding;:

rotation(v) = (x, cos — y, sin 6, x, sin 6 + y,, cos )

We have not included the rotation in our experiment as we consider that it
can induce a loss of the mental model (think about the recognition of a map
turned inside down).

An alternative to quantify how much an overlapping-free configuration may
result in a substantial loss of the mental model is to look at the neighbourhoods
at the nodes and compare them before and after the adjustment. Based on a
K NN approach, Nachmanson et al. [16] proposed the following metric:

nm__knn(k) = Z (k — [Nk(v) N Nk(vl)|)2
veV
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where Ng(v) (resp. Ni(v')) denotes the k nearest neighbours of v (resp. v'), in
terms of Euclidean distance, in the initial (resp. overlapping-free) embedding.
We did not select this metric because, unlike the other metrics of the class, it
requires to fix a parameter (k).

3.5 Edge Length Preservation

This class contains the two metrics based on edge lengths. The set of edges can
be E or can be another set derived from the graph.

Standard force-based layout algorithms tend to produce uniform lengths of
edges. Indeed, the first metric of this class captures whether the edge lengths of
a graph remain uniform or not after applying an adjustment algorithm [12]:

MaX(y,v)eFE2 HU/ - ’U/H

el r=

B min(u,v)€E2 Hu/ - UI”

While many layout algorithms are not designed to produce uniform edge lengths,
we did not select this approach, which is not related to the mental model preser-
vation for these algorithms. We preferred the next one, based on a Delaunay
triangulation.

Let E4: be the set of edges of a Delaunay triangulation performed on the
nodes of the initial embedding. The second metric of this class, el _rsdd, is based
on computing the coefficient of variation, also known as the relative standard
deviation, of the edge lengths ratio as follows [5]:

u —
Tuv = |I|’U,—’U|:|7 (U7U) € Egt
I
r= Tuv
E
| dt| (u,v)€E?,

1 Zurers, T =7V
t u,v Ezt uv
el _rsdd = \/lEd = )f -

7

4 Algorithms Comparison

In this section, we compare 8 algorithms of the literature in terms of quality
and running time: uniform Scaling, PFS [15], PFS’ [8], FTA [11]|, VPSC |[3],
PRISM [5], RWordle-L [17], and GTREE [16]. The quality of an overlapping-free
embedding is evaluated with the metrics identified in the last section, by follow-
ing a 3 steps procedure: Step 1: Datasets We generate 840 synthetic graphs
containing 10 to 1,000 nodes. These graphs are provided by 4 generation models
available on the OGDF library [2]: random graphs [4], random trees, small world
graphs [18], and scale-free graphs [1]. We also use 14 real-world graphs selected
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from the Graphviz test suite! [6], previously used by the authors of PRISM [5]
and GTREF [16]. Step 2: Overlapping-free embedding computation Syn-
thetic graphs resulting from the first step are initially positioned by the FA3
layout algorithm [7]. Then, we apply the 8 node overlap removal algorithms,
thus providing a set of 6,720 overlapping-free graph embeddings. Graphviz test
suite graphs are initially positioned by the SFDP layout algorithm [9] to follow
the same baseline embedding as Gansner et al. [5]. We then apply the 8 node
overlap removal algorithms thus providing 112 overlapping-free graph embed-
dings. Step 3: Metrics computation We finally compute the values of the
5 selected metrics on the 6.832 overlapping-free synthetic and real-world graph
embeddings. We also measure the computation time of the algorithms.

4.1 Quality

Figurel and 2 show the aggregated metrics values on the synthetic and real-
world datasets. Unsurprisingly, Scaling, PF'S and PFS’ obtain the best scores
at oo_mni as it is proved that they maintain the original orthogonal ordering.
Though, all the algorithms tested got good results for this criterion.

Scaling PFS PFES' FTA VPSC PRISM RWordle-L GTREE
o1 0.00 0.00 0.00 0.00 0.00 0.00
00_nni Median 0.00 0.01 0.00 001 0.01 0.02
03 0.00 0.04 0.03 0.02 0.10 0.03
o1 1.00 1.00 1.00 1.01 1.00 112
sp_ch.a  Median 122 1.02 1.00 112 1.01 1.49
03 5.04 421 230 422 1.99 5.94
o1 1.00 1.00 1.00 1.00 1.00 1.01
gs_bb_iar  Median 1.04 1.01 1.00 1.04 1.00 1.04
03 114 1.66 1.94 123 1.07 1.08
01 1.65 094 042 9.82 218
nm_dm_imse  Median 11606 3787 9.71 131.57 2760
= 03 17828 29660  283.6 688.1 597.7 -
o1 0.00 0.05 0.05 0.04 0.03 0.13 0.07 0.13
eb_rsdd ~ Median 0.00 025 021 022 0.17 031 025 028
03 0.00 033 026 0.60 047 038 068 036

Fig.1. Aggregated values of the selected metrics among the synthetic graphs: first
quartile, median and third quartile.

Scaling highly increases the size of the embedding, which induces a bad
score for sp_ch_a. PF'S also obtains a bad score for this criterion. VPSC and
RWordle-L produce the most compact embeddings, while the other algorithms
give intermediary results.

! https://gitlab.com/graphviz/graphviz/blob/master /rtest /graphs/ (accessed: 2019-
07).
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Scaling PFS PFS' FTA VPSC  PRISM RWordle-L GTREE
00_nni 0.00 0.00 0.00 0.07 0.01 0.02 0.04 0.02

spcha [ o 6.03 236 218 153 4.02
govior 10« [ > NN ¢ 0
nm_dm_imse | 000 |SICHISHON 6359474 [HBOHBBOMA 3461140 42919.66 3592891 37331.83

eb_rsdd 0.00 0.39 o2s G o3¢ 037 0.50 0.35

Fig. 2. Mean values of the selected metrics among the real-world graphs.

Scaling preserves the initial global shape® (gs_bb_iar score). PFS is the
worst algorithm on this criterion. The other algorithms obtained good median
scores on synthetic graphs, but the third quartile scores show that FTA and
VPSC can produce a certain amount of distorted embeddings. This is confirmed
by the tests on real-world graphs, where they obtain worse results.

Scaling obtains the best results for the node movement minimisation cri-
terion, followed by VPSC and RWordle-L. FTA also obtained a good median
score on synthetic graphs, but its third quartile value shows that it can generate
a certain amount of embeddings with high changes, as also illustrated by the
bad score obtained on the real-world graphs. PFS’ and PRISM obtained inter-
mediary results. Finally, GTREFE had bad results on the synthetic graphs, while
it obtained pretty good ones on the real-world graphs.

Scaling preserves relative edge lengths. All the other criteria obtained com-
parable median score between 0.17 and 0.31. However, the third quartile on
the synthetic graphs shows that FTA, VPSC and RWordle-L generate a certain
amount of embeddings with high variations. This observation is confirmed by
the results on the real-world graphs for FTA and RWordle-L.

4.2 Computation Time

Figure3 and 4 show the aggregated running time values on the synthetic and
real-world datasets. Scaling, PFS, PFS’ and VPSC require lower running time.
FTA and GTREFE induce intermediate running time, but the third quartile shows
that F'TA can induce a certain amount of time consuming embedding computa-
tions. Finally, PRISM is time consuming for small graphs, but have intermediate
results for larger graphs, while RWordle-L has good results for small graphs but
is very time-consuming for larger ones.

2 The global shape preservation score for Scaling is not 1 because of the size of the
nodes that remains the same between the initial and the overlapping-free embed-
dings.
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Scaling PFES PES' FTA VPSC  PRISM RWordle-L GTREE

o1
10 Median

o1
20 Median

o1

50 Median

100 Median

200 Median

500 Median

1000 Median

gle

Fig. 3. Aggregated running times among the synthetic graphs, function of number of
nodes (10 to 1,000): first quartile, median and third quartile.

Scaling PFS PFS' FTA VPSC PRISM RWordle-L GTREE
b100
b102
bi124
bi143

badvoro
dpd
mode
NaN
ngkl0 4
root
rowe
size

unix

XX

Fig. 4. Mean values of running times among the real-world graphs.

5 Conclusion

As a conclusion, even if Scaling optimises 4 out of 5 criteria and is very fast
to compute on the graphs of our datasets, it does not represent a satisfying
solution as it increases the size of the embedding too much. PFS is also not sat-
isfying as it got poor results on 3 criteria. F'TA obtained intermediate results over
all the criteria, which is less good than all its remaining competitors. PFS’ and
PRISM obtained comparable results but the latter is more time-consuming. Both
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have intermediate results for shape preservation and node movement minimisa-
tion, which might be considered as two essential criteria. GTREE suffers from
inducing high node movements on our datasets. Overall, VPSC and RWordle-
L obtained the best quality results. While RWordle-L outperforms VPSC on
global shape preservation and is comparable on the other criteria, VPSC out-
performs RWordle-L in terms of running time. Finally, considering the different
types of graphs (random graphs, random trees, small world graphs, and scale-free
graphs), we did not observe any significant differences in terms of results.
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