
Daniel Archambault
Csaba D. Tóth (Eds.)

LN
CS

 1
19

04

27th International Symposium, GD 2019
Prague, Czech Republic, September 17–20, 2019
Proceedings

Graph Drawing 
and Network Visualization



Lecture Notes in Computer Science 11904

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693


More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Daniel Archambault • Csaba D. Tóth (Eds.)

Graph Drawing
and Network Visualization
27th International Symposium, GD 2019
Prague, Czech Republic, September 17–20, 2019
Proceedings

123



Editors
Daniel Archambault
Swansea University
Swansea, UK

Csaba D. Tóth
California State University, Northridge
Los Angeles, CA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-35801-3 ISBN 978-3-030-35802-0 (eBook)
https://doi.org/10.1007/978-3-030-35802-0

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019, corrected publication 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-4978-8479
https://orcid.org/0000-0002-8769-3190
https://doi.org/10.1007/978-3-030-35802-0


Preface

This volume contains the papers presented at GD 2019, the 27th International
Symposium on Graph Drawing and Network Visualization, held during
September 17–20, 2019, in Průhonice, near Prague. Graph drawing is concerned with
the geometric representation of graphs and constitutes the algorithmic core of network
visualization. Graph drawing and network visualization are motivated by applications
where it is crucial to visually analyze and interact with relational datasets. Information
about the conference series and past symposia is maintained at http://www.
graphdrawing.org. The 2019 edition of the conference was hosted by the Charles
University, with Jiří Fiala and Pavel Valtr as co-chairs of the Organizing Committee.
A total of 98 participants attended the conference.

Regular papers could be submitted to one of two distinct tracks: Track 1 for papers
on combinatorial and algorithmic aspects of graph drawing or Track 2 for papers on
experimental, applied, and network visualization aspects. Short papers were given a
separate category, which welcomed both theoretical and applied contributions. An
additional track was devoted to poster submissions. All tracks were handled by a single
Program Committee. In response to the call for papers, the Program Committee
received a total of 113 submissions, consisting of 100 papers (56 in Track 1, 25 in
Track 2, and 19 in the short paper category) and 13 posters. More than 350 single-blind
reviews were provided, more than a third of which were contributed by external
sub-reviewers. After extensive electronic discussions via EasyChair, the Program
Committee selected 42 papers and 12 posters for inclusion in the scientific program of
GD 2019. This resulted in an overall paper acceptance rate of 42% (45% in Track 1,
36% in Track 2, and 42% in the short paper category). Authors published an electronic
version of their accepted papers on the arXiv e-print repository; a conference index
with links to these contributions was made available before the conference.

There were three invited lectures at GD 2019, one on each day of the scientific
program. John T. Stasko, from the Georgia Institute of Technology, USA, presented
“Pushing the Boundaries of Interaction in Data Visualization,” Bartosz Walczak, from
the Jagiellonian University, Poland, talked about “Old and New Challenges in Coloring
Graphs with Geometric Representations,” and Giuseppe Di Battista, from the
Università Roma Tre, Italy, made the case that “This is Time in/for Graph Drawing.”
Abstracts of all three invited lectures are included in these proceedings.

The conference gave out best paper awards in Track 1 and Track 2, as well as a best
presentation award and a best poster award. As decided by a majority vote of the
Program Committee, the award for the best paper in Track 1 was assigned to “Exact
Crossing Number Parameterized by Vertex Cover” by Petr Hlinĕný and Abhisekh
Sankaran, and the award for the best paper in Track 2 was assigned to “Symmetry
Detection and Classification in Drawings of Graphs” by Felice De Luca, Md. Iqbal
Hossain, and Stephen Kobourov. Based on a majority vote of conference participants,
the best presentation award was given to Arthur van Goethem for his presentation

http://www.graphdrawing.org
http://www.graphdrawing.org


of the paper “Optimal Morphs of Planar Orthogonal Drawings II,” and the best poster
award was given to “Packing Trees into 1-planar Graphs” by Felice De Luca, Emilio Di
Giacomo, Seok-Hee Hong, Stephen Kobourov, William Lenhart, Giuseppe Liotta,
Henk Meijer, Alessandra Tappini, and Stephen Wismath. Congratulations to all the
award winners for their excellent contributions, and many thanks to Springer whose
sponsorship funded the prize money for these awards.

Following the tradition, the 26th Annual Graph Drawing Contest was held during
the conference. The contest was divided into two parts, creative topics and the live
challenge. The creative topics featured two graphs, the Marvel Cinematic Universe
graph and the Meal Ingredients graph. The live challenge focused on minimizing the
number of crossings in an upward drawing on a fixed grid, and had two categories:
manual and automatic. Awards were given in each of the four categories. We thank the
Contest Committee, chaired by Philipp Kindermann, for preparing interesting and
challenging contest problems. A report about the contest is included in these
proceedings.

Many people and organizations contributed to the success of GD 2019. We would
like to thank all members of the Program Committee and the external reviewers for
carefully reviewing and discussing the submitted papers and posters; this was crucial
for putting together a strong and interesting program. Thanks to all authors who chose
GD 2019 as the publication venue for their research. We are grateful for the support
of the “gold” sponsors Avast, RSJ, Tom Sawyer Software, Unicorn, and yWorks, the
“bronze” sponsor Springer, and contributor Znovín Znojmo. Their generosity helped
make this symposium a memorable event for all participants. Last but not least, we
would like to express our appreciation of the organizing team: all members of the
Organizing Committee, Martin Balko, Jiří Fiala, Anna Kotĕšovcová, and Pavel Valtr,
as well as all student volunteers, Jaroslav Hančl, Radek Hušek, Tomáš Masařík, Jana
Novotná, Michael Skotnica, Jana Syrovátková, Aneta Št’astná, and Peter Zeman.

The 28th International Symposium on Graph Drawing and Network Visualization
(GD 2020) will take place during September 16–18, 2020, in Vancouver, BC, Canada.
David Auber and Pavel Valtr will co-chair the Program Committee, and Will Evans
will chair the Organizing Committee.

October 2019 Daniel Archambault
Csaba D. Tóth

vi Preface



Organization

Steering Committee

Daniel Archambault Swansea University, UK
David Auber LaBRI, Université Bordeaux I, France
Therese Biedl University of Waterloo, Canada
Giuseppe Di Battista Università Roma Tre, Italy
Walter Didimo University of Perugia, Italy
Andreas Kerren Linnaeus University, Sweden
Stephen G. Kobourov

(Chair)
University of Arizona, USA

Martin Nöllenburg Technische Universität Wien, Austria
Roberto Tamassia Brown University, USA
Ioannis G. Tollis University of Crete, Greece, and Tom Sawyer

Software, USA
Csaba D. Tóth California State University, Northridge, USA
Pavel Valtr Charles University, Czech Republic

Program Committee

Daniel Archambault
(Co-chair)

Swansea University, UK

David Auber LaBRI, Université Bordeaux 1, France
Benjamin Bach The University of Edinburgh, UK
Fabian Beck University of Duisburg-Essen, Germany
Michael Bekos University of Tübingen, Germany
Prosenjit Bose Carleton University, Canada
Maike Buchin Ruhr University Bochum, Germany
Nan Cao Tongji University, China
Giordano Da Lozzo Università Roma Tre, Italy
Emilio Di Giacomo University of Perugia, Italy
Tim Dwyer Monash University, Australia
David Eppstein University of California, Irvine, USA
Yifan Hu Yahoo! Research, USA
Irina Kostitsyna TU Eindhoven, The Netherlands
Jan Kynčl Charles University, Czech Republic
Anna Lubiw University of Waterloo, Canada
Maarten Löffler Utrecht University, The Netherlands
Kwan-Liu Ma University of California, Davis, USA
Silvia Miksch Technische Universität Wien, Austria
Kazuo Misue University of Tsukuba, Japan
Helen Purchase University of Glasgow, UK



Ignaz Rutter Universität Passau, Germany
Alexandru Telea University of Groningen, The Netherlands
Csaba D. Tóth (Co-chair) California State University, Northridge, USA
Torsten Ueckerdt Karlsruhe Institute of Technology, Germany
Birgit Vogtenhuber Graz University of Technology, Austria
Hsiang-Yun Wu Technische Universität Wien, Austria

Organizing Committee

Martin Balko Charles University, Czech Republic
Jiří Fiala (Co-chair) Charles University, Czech Republic
Anna Kotĕšovcová Conforg Ltd, Czech Republic
Pavel Valtr (Co-chair) Charles University, Czech Republic

Contest Committee

Philipp Kindermann (Chair) Universität Würzburg, Germany
Tamara Mchedlidze Karlsruhe Institute of Technology, Germany
Ignaz Rutter Universität Passau, Germany

External Reviewers

Ábrego, Bernardo
Ackerman, Eyal
Aerts, Nieke
Aichholzer, Oswin
Akopyan, Arseniy
Almeida Leite, Roger
Angelini, Patrizio
Arroyo, Alan
Balko, Martin
Bhore, Sujoy
Biniaz, Ahmad
Binucci, Carla
Bläsius, Thomas
Borrazzo, Manuel
Brückner, Guido
Buchin, Kevin
Bärtschi, Andreas
Cano, Pilar
Cardinal, Jean
Carrière, Mathieu
Chaplick, Steven
Chimani, Markus
Cibulka, Josef
Cornelsen, Sabine

Crnovrsanin, Tarik
D’Angelo, Anthony
De Luca, Felice
Didimo, Walter
Dujmović, Vida
Felsner, Stefan
Frati, Fabrizio
Fulek, Radoslav
van Garderen, Mereke
Gonçalves, Daniel
Goodwin, Sarah
Grastien, Ban
Grelier, Nicolas
Grilli, Luca
Gronemann, Martin
Gschwandtner, Theresia
Gupta, Siddharth
Hidalgo-Toscano, Carlos
Hill, Darryl
Hoffmann, Michael
van der Hoog, Ivor
Isaacs, Kate
Itoh, Masahiko
Kaaser, Dominik

viii Organization



Kaufmann, Michael
Keszegh, Balázs
Kilgus, Bernhard
Kindermann, Philipp
Kleist, Linda
Klemz, Boris
Klute, Fabian
van Kreveld, Marc
Kriegel, Klaus
Kryven, Myroslav
Kwon, Oh-Hyun
Langerman, Stefan
Lhuillier, Antoine
Li, Guangping
Maheshwari, Anil
McGee, Fintan
Micek, Piotr
Miltzow, Till
Mondal, Debajyoti
Montecchiani, Fabrizio
Morin, Pat
Mulzer, Wolfgang
Mütze, Torsten
Niedermann, Benjamin
Okamoto, Yoshio
Onoue, Yosuke

Ortali, Giacomo
Palfrader, Peter
Parada, Irene
Patrignani, Maurizio
Pergel, Martin
Pupyrev, Sergey
Radermacher, Marcel
Ravsky, Alexander
van Renssen, André
Roy, Sasanka
Ryvkin, Leonie
Sallaberry, Arnaud
Schetinger, Victor
Schnider, Patrick
Schröder, Felix
Schulz, André
Selbach, Leonie
Stumpf, Peter
T. P., Sandhya
Tappini, Alessandra
Tóth, Géza
Verbeek, Kevin
Wakita, Ken
Wood, David R.
Wybrow, Michael

Organization ix



Sponsors

Gold Sponsors

x Organization



Bronze Sponsor

Contributors

Organization xi



Invited Lectures



Pushing the Boundaries of Interaction in Data
Visualization

John T. Stasko

Georgia Institute of Technology, Atlanta, GA, USA
stasko@cc.gatech.edu

Abstract. People use data visualization for two main purposes: communication
and analysis. On the analysis side, when the data being examined is of modest
size or larger, it is difficult to imagine an effective visualization system without
interaction. In this talk, I'll outline the value and uses of interaction for visu-
alization, focusing on recent challenges and opportunities that have arisen. For
example, what are good ways to interact with a visualization on a small screen
without a mouse and keyboard present? And how can multimodal input,
including speech and touch, assist people's interactions with visualizations? To
answer these questions, I'll show examples of recent visualization projects, with
a specific emphasis on graph and network visualizations.



Old and New Challenges in Coloring Graphs
with Geometric Representations

Bartosz Walczak

Jagiellonian University, Kraków, Poland
walczak@tcs.uj.edu.pl

Abstract. A central problem in graph theory is to compute or estimate the
chromatic number of a graph, i.e., the minimum number of colors to be put on
the vertices so that no two neighbors receive the same color. Being very hard in
general, it has been considered for various restricted classes of graphs, in which
the chromatic number remains in a tighter connection to the structure of the
graph. This includes, in particular, classes of graphs defined on families of
geometric objects: intersection graphs, disjointness graphs, visibility graphs,
etc., motivated by practical applications in resource allocation, map labeling,
and VLSI design. This area of research has seen remarkable progress in recent
years. In particular, we have already quite a good understanding of which
classes of graphs (with geometric representations) allow the chromatic number
to be bounded by a function of the maximum size of a clique and which do not.
Much less is known about the growth of these bounding functions, for instance,
whether the chromatic number can be bounded by a polynomial of the size of the
maximum clique.
The goal of this talk is to familiarize the audience with classical and new

problems in coloring graphs with geometric representations, and to present some
of the most recent developments, including a quadratic bound on the chromatic
number in terms of the maximum clique size for circle graphs (intersection
graphs of chords of a circle), due to Davies and McCarty.



This Is Time in/for Graph Drawing

Giuseppe Di Battista

Università Roma Tre, Rome, Italy
giuseppe.dibattista@uniroma3.it

Abstract. In all fields of science and technology graph-inspired models are used
to represent and understand reality, and the effectiveness of such models is often
related to their graphical representation. This motivates the birth and the
development of Graph Drawing as a self-standing scientific discipline.
During its evolution, lasting about half a century, Graph Drawing successfully

faced several challenges, in some cases originated by the requirements of the
reality to be represented, and in some cases, motivated by deep theoretical
questions. This happened at the meeting point of the fields whose combination is
the core of Graph Drawing, namely, Algorithmics, Computational Geometry,
Graph Theory and Combinatorics, and Information Visualization (in alphabet-
ical order).
One of the main challenges for Graph Drawing is the relationship between

drawings and time (i.e., the temporal evolution of the visualized graphs). This
relationship has been the subject of studies throughout the entire history of the
discipline, as it is witnessed by the presence of about 40 papers on this topic in
the Graph Drawing Conference Proceedings. On the other hand, this challenge
inspired an even larger body of literature in the Information Visualization field.
For several reasons, this literature has grown in a way that is largely independent
from the Graph Drawing one.
We will discuss the main methods and techniques that the Graph Drawing

community devised to deal with time, emphasizing their algorithmic, combi-
natorial, and geometric aspects, and considering their practical applicability to
Information Visualization. We will focus on dynamic algorithms, streaming,
animation, and morphing.

This research was supported in part by MIUR Project “AHeAD” under PRIN 20174LF3T8.



Contents

Cartograms and Intersection Graphs

Stick Graphs with Length Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Steven Chaplick, Philipp Kindermann, Andre Löffler, Florian Thiele,
Alexander Wolff, Alexander Zaft, and Johannes Zink

Representing Graphs and Hypergraphs by Touching Polygons in 3D . . . . . . . 18
William Evans, Paweł Rzążewski, Noushin Saeedi, Chan-Su Shin,
and Alexander Wolff

Optimal Morphs of Planar Orthogonal Drawings II . . . . . . . . . . . . . . . . . . . 33
Arthur van Goethem, Bettina Speckmann, and Kevin Verbeek

Computing Stable Demers Cartograms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Soeren Nickel, Max Sondag, Wouter Meulemans, Markus Chimani,
Stephen Kobourov, Jaakko Peltonen, and Martin Nöllenburg

Geometric Graph Theory

Bundled Crossings Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Steven Chaplick, Thomas C. van Dijk, Myroslav Kryven, Ji-won Park,
Alexander Ravsky, and Alexander Wolff

Crossing Numbers of Beyond-Planar Graphs . . . . . . . . . . . . . . . . . . . . . . . 78
Markus Chimani, Philipp Kindermann, Fabrizio Montecchiani,
and Pavel Valtr

On the 2-Colored Crossing Number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Oswin Aichholzer, Ruy Fabila-Monroy, Adrian Fuchs,
Carlos Hidalgo-Toscano, Irene Parada, Birgit Vogtenhuber,
and Francisco Zaragoza

Minimal Representations of Order Types by Geometric Graphs . . . . . . . . . . 101
Oswin Aichholzer, Martin Balko, Michael Hoffmann, Jan Kynčl,
Wolfgang Mulzer, Irene Parada, Alexander Pilz, Manfred Scheucher,
Pavel Valtr, Birgit Vogtenhuber, and Emo Welzl

Balanced Schnyder Woods for Planar Triangulations: An Experimental
Study with Applications to Graph Drawing and Graph Separators . . . . . . . . . 114

Luca Castelli Aleardi



Clustering

A Quality Metric for Visualization of Clusters in Graphs . . . . . . . . . . . . . . . 125
Amyra Meidiana, Seok-Hee Hong, Peter Eades, and Daniel Keim

Multi-level Graph Drawing Using Infomap Clustering . . . . . . . . . . . . . . . . . 139
Seok-Hee Hong, Peter Eades, Marnijati Torkel, Ziyang Wang,
David Chae, Sungpack Hong, Daniel Langerenken, and Hassan Chafi

On Strict (Outer-)Confluent Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Henry Förster, Robert Ganian, Fabian Klute, and Martin Nöllenburg

Quality Metrics

On the Edge-Length Ratio of Planar Graphs . . . . . . . . . . . . . . . . . . . . . . . . 165
Manuel Borrazzo and Fabrizio Frati

Node Overlap Removal Algorithms: A Comparative Study. . . . . . . . . . . . . . 179
Fati Chen, Laurent Piccinini, Pascal Poncelet, and Arnaud Sallaberry

Graphs with Large Total Angular Resolution . . . . . . . . . . . . . . . . . . . . . . . 193
Oswin Aichholzer, Matias Korman, Yoshio Okamoto, Irene Parada,
Daniel Perz, André van Renssen, and Birgit Vogtenhuber

Arrangements

Computing Height-Optimal Tangles Faster . . . . . . . . . . . . . . . . . . . . . . . . . 203
Oksana Firman, Philipp Kindermann, Alexander Ravsky,
Alexander Wolff, and Johannes Zink

On Arrangements of Orthogonal Circles. . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Steven Chaplick, Henry Förster, Myroslav Kryven, and Alexander Wolff

Extending Simple Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Alan Arroyo, Martin Derka, and Irene Parada

Coloring Hasse Diagrams and Disjointness Graphs of Curves . . . . . . . . . . . . 244
János Pach and István Tomon

A Low Number of Crossings

Efficient Generation of Different Topological Representations of Graphs
Beyond-Planarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Patrizio Angelini, Michael A. Bekos, Michael Kaufmann,
and Thomas Schneck

xx Contents



The QuaSEFE Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Patrizio Angelini, Henry Förster, Michael Hoffmann,
Michael Kaufmann, Stephen Kobourov, Giuseppe Liotta,
and Maurizio Patrignani

CHORDLINK: A New Hybrid Visualization Model . . . . . . . . . . . . . . . . . . . . . 276
Lorenzo Angori, Walter Didimo, Fabrizio Montecchiani,
Daniele Pagliuca, and Alessandra Tappini

Stress-Plus-X (SPX) Graph Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Sabin Devkota, Reyan Ahmed, Felice De Luca, Katherine E. Isaacs,
and Stephen Kobourov

Best Paper in Track 1

Exact Crossing Number Parameterized by Vertex Cover . . . . . . . . . . . . . . . 307
Petr Hliněný and Abhisekh Sankaran

Morphing and Planarity

Maximizing Ink in Partial Edge Drawings of k-plane Graphs . . . . . . . . . . . . 323
Matthias Hummel, Fabian Klute, Soeren Nickel, and Martin Nöllenburg

Graph Drawing with Morphing Partial Edges . . . . . . . . . . . . . . . . . . . . . . . 337
Kazuo Misue and Katsuya Akasaka

A Note on Universal Point Sets for Planar Graphs . . . . . . . . . . . . . . . . . . . 350
Manfred Scheucher, Hendrik Schrezenmaier, and Raphael Steiner

Parameterized Complexity

Parameterized Algorithms for Book Embedding Problems . . . . . . . . . . . . . . 365
Sujoy Bhore, Robert Ganian, Fabrizio Montecchiani,
and Martin Nöllenburg

Sketched Representations and Orthogonal Planarity of Bounded
Treewidth Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani

Collinearities

4-Connected Triangulations on Few Lines . . . . . . . . . . . . . . . . . . . . . . . . . 395
Stefan Felsner

Line and Plane Cover Numbers Revisited . . . . . . . . . . . . . . . . . . . . . . . . . 409
Therese Biedl, Stefan Felsner, Henk Meijer, and Alexander Wolff

Contents xxi



Drawing Planar Graphs with Few Segments on a Polynomial Grid . . . . . . . . 416
Philipp Kindermann, Tamara Mchedlidze, Thomas Schneck,
and Antonios Symvonis

Variants of the Segment Number of a Graph . . . . . . . . . . . . . . . . . . . . . . . 430
Yoshio Okamoto, Alexander Ravsky, and Alexander Wolff

Topological Graph Theory

Local and Union Page Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
Laura Merker and Torsten Ueckerdt

Mixed Linear Layouts: Complexity, Heuristics, and Experiments . . . . . . . . . 460
Philipp de Col, Fabian Klute, and Martin Nöllenburg

Homotopy Height, Grid-Major Height and Graph-Drawing Height . . . . . . . . 468
Therese Biedl, Erin Wolf Chambers, David Eppstein,
Arnaud De Mesmay, and Tim Ophelders

On the Edge-Vertex Ratio of Maximal Thrackles . . . . . . . . . . . . . . . . . . . . 482
Oswin Aichholzer, Linda Kleist, Boris Klemz, Felix Schröder,
and Birgit Vogtenhuber

Best Paper in Track 2

Symmetry Detection and Classification in Drawings of Graphs . . . . . . . . . . . 499
Felice De Luca, Md. Iqbal Hossain, and Stephen Kobourov

Level Planarity

An SPQR-Tree-Like Embedding Representation for Upward Planarity . . . . . . 517
Guido Brückner, Markus Himmel, and Ignaz Rutter

A Natural Quadratic Approach to the Generalized Graph
Layering Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532

Sven Mallach

Graph Stories in Small Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
Manuel Borrazzo, Giordano Da Lozzo, Fabrizio Frati,
and Maurizio Patrignani

Level-Planar Drawings with Few Slopes . . . . . . . . . . . . . . . . . . . . . . . . . . 559
Guido Brückner, Nadine Davina Krisam, and Tamara Mchedlidze

Graph Drawing Contest Report

Graph Drawing Contest Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
Philipp Kindermann, Tamara Mchedlidze, and Ignaz Rutter

xxii Contents



Poster Abstracts

A 1-planarity Testing and Embedding Algorithm . . . . . . . . . . . . . . . . . . . . 587
Carla Binucci, Walter Didimo, and Fabrizio Montecchiani

Stretching Two Pseudolines in Planar Straight-Line Drawings. . . . . . . . . . . . 590
Tamara Mchedlidze, Marcel Radermacher, Ignaz Rutter,
and Peter Stumpf

Adventures in Abstraction: Reachability in Hierarchical Drawings. . . . . . . . . 593
Panagiotis Lionakis, Giacomo Ortali, and Ioannis G. Tollis

On Topological Book Embedding for k-plane Graphs . . . . . . . . . . . . . . . . . 596
Michael Kaufmann and Axel Kuckuk

On Compact RAC Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
Henry Förster and Michael Kaufmann

FPQ-Choosable Planarity Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
Giuseppe Liotta, Ignaz Rutter, and Alessandra Tappini

Packing Trees into 1-Planar Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
Felice De Luca, Emilio Di Giacomo, Seok-Hee Hong,
Stephen Kobourov, William Lenhart, Giuseppe Liotta, Henk Meijer,
Alessandra Tappini, and Stephen Wismath

Geographic Network Visualization Techniques:
A Work-In-Progress Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608

Sarah Schöttler, Tobias Kauer, and Benjamin Bach

On the Simple Quasi Crossing Number of K11 . . . . . . . . . . . . . . . . . . . . . . 612
Arjun Pitchanathan and Saswata Shannigrahi

Minimising Crossings in a Tree-Based Network . . . . . . . . . . . . . . . . . . . . . 615
Jonathan Klawitter and Peter Stumpf

Crossing Families and Their Generalizations. . . . . . . . . . . . . . . . . . . . . . . . 618
William Evans and Noushin Saeedi

Which Sets of Strings Are Pseudospherical? . . . . . . . . . . . . . . . . . . . . . . . . 621
R. Bruce Richter and Xinyu L. Wang

Correction to: A Natural Quadratic Approach to the Generalized
Graph Layering Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C1

Sven Mallach

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625

Contents xxiii



Cartograms and Intersection Graphs



Stick Graphs with Length Constraints

Steven Chaplick , Philipp Kindermann , Andre Löffler, Florian Thiele,
Alexander Wolff , Alexander Zaft, and Johannes Zink(B)

Institut für Informatik, Universität Würzburg, Würzburg, Germany
zink@informatik.uni-wuerzburg.de

Abstract. Stick graphs are intersection graphs of horizontal and ver-
tical line segments that all touch a line of slope −1 and lie above this
line. De Luca et al. [GD’18] considered the recognition problem of stick
graphs when no order is given (STICK), when the order of either one of
the two sets is given (STICKA), and when the order of both sets is given
(STICKAB). They showed how to solve STICKAB efficiently.

In this paper, we improve the running time of their algorithm, and we
solve STICKA efficiently. Further, we consider variants of these problems
where the lengths of the sticks are given as input. We show that these
variants of STICK, STICKA, and STICKAB are all NP-complete. On the
positive side, we give an efficient solution for STICKAB with fixed stick
lengths if there are no isolated vertices.

1 Introduction

For a given collection S of geometric objects, the intersection graph of S has
S as its vertex set and an edge whenever S ∩ S′ �= ∅, for S, S′ ∈ S. This paper
concerns recognition problems for classes of intersection graphs of restricted geo-
metric objects, i.e., determining whether a given graph is an intersection graph
of a family of restricted sets of geometric objects. A classic (general) class of
intersection graphs is that of segment graphs, the intersection graphs of line seg-
ments in the plane1. For example, segment graphs are known to include planar
graphs [4]. The recognition problem for segment graphs is ∃R-complete2 [18,22].
On the other hand, one of the simplest natural subclasses of segment graphs is
that of the permutation graphs, the intersection graphs of line segments where
there are two parallel lines such that each line segment has its two end points
on these parallel lines3, we say that the segments are grounded on these two

1 We follow the common convention that parallel segments do not intersect and each
point in the plane belongs to at most two segments.

2 Note that ∃R includes NP, see [22,24] for background on the complexity class ∃R.
3 i.e., we think of the sequence of end points on the “bottom” line as one permutation

π on the vertices and the sequence on the top line as another permutation π′, where
uv is an edge if and only if the order of u and v differs in π and π′.

The full version of this article is available at ArXiv [8]. S.C. and A.W. acknowledge
support from DFG grants WO 758/11-1 and WO 758/9-1, respectively.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 3–17, 2019.
https://doi.org/10.1007/978-3-030-35802-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_1&domain=pdf
http://orcid.org/0000-0003-3501-4608
http://orcid.org/0000-0001-5764-7719
http://orcid.org/0000-0001-5872-718X
http://orcid.org/0000-0002-7398-718X
https://doi.org/10.1007/978-3-030-35802-0_1


4 S. Chaplick et al.

lines. The recognition problem for permutation graphs can be solved in linear
time [19]. Bipartite permutation graphs have an even simpler intersection repre-
sentation [25]: they are the intersection graphs of unit-length vertical and hori-
zontal line segments which are again double-grounded (without loss of generality
both lines have a slope of −1). The simplicity of bipartite permutation graphs
leads to a simpler linear-time recognition algorithm [27] than that of permutation
graphs.

Several recent articles [1,2,6,7] compare and study the geometric intersection
graph classes occurring between the simple classes, such as bipartite permutation
graphs, and the general classes, such a segment graphs. Cabello and Jejčič [1]
mention that studying such classes with constraints on the sizes or lengths of the
objects is an interesting direction for future work (and such constraints are the
focus of our work). Note that similar length restrictions have been considered
for other geometric intersection graphs such as interval graphs [15,16,23].

When the segments are not grounded, but still are only horizontal and ver-
tical, the class is referred to as grid intersection graphs and it also has a rich
history, see, e.g., [6,7,13,17]. In particular, note that the recognition problem is
NP-complete for grid intersection graphs [17]. But, if both the permutation of
the vertical segments and the permutation of the horizontal segments are given,
then the problem becomes a trivial check on the bipartite adjacency matrix [17].
However, for the variant where only one such permutation, e.g., the order of the
horizontal segments, is given, the complexity remains open. A few special cases
of this problem have been solved efficiently [5,9,10], e.g., one such case [5] is
equivalent to the problem of level planarity testing which can be solved in linear
time [14].

In this paper we study recognition problems concerning so-called stick graphs,
the intersection graphs of grounded vertical and horizontal line segments (i.e.,
grounded grid intersection graphs). Classes closely related to stick graphs appear
in several application contexts, e.g., in nano PLA-design [26] and detecting
loss of heterozygosity events in the human genome [3,12]. Note that, similar
to the general case of segment graphs, it was recently shown that the recog-
nition problem for grounded segments (where arbitrary slopes are allowed) is
∃R-complete [2]. So, it seems likely that the recognition problem for stick graphs
is NP-complete (similar to grid intersection graphs), but thus far it remains open.
The primary prior work on recognizing stick graphs is due to De Luca et al. [9].
Similarly to Kratochv́ıl’s approach to grid intersection graphs [17], De Luca et al.
characterized stick graphs through their bipartite adjacency matrix and used this
result as a basis to develop polynomial-time algorithms to solve two constrained
cases of the stick graph recognition problem called STICKA and STICKAB, defined
next. However, their algorithm for STICKA is incorrect [21], leaving STICKA open.

Definition 1 (STICK). Let G be a bipartite graph with vertex set A∪̇B, and
let � be a line with slope −1. Decide whether G has an intersection representa-
tion where the vertices in A are vertical line segments4 whose bottom end-points

4 Note that De Luca et al. [9] regarded A as horizontal segments.



Stick Graphs with Length Constraints 5

Table 1. Previously known and new results for deciding whether a given bipartite graph
G = (A∪̇B, E) is a stick graph. In O(·), we dropped | · |. NPC means NP-complete.

Given
order

Variable length Fixed length

Old results New results Isolated vertices No isolated vertices

∅ Unknown Unknown NPC [Theorem 3] NPC [Theorem 3]

A Unknown O(AB) [Theorem 2] NPC [Theorem 4] NPC [Theorem 4]

A,B O(AB) [9] O(E) [Theorem 1] NPC [Corollary 2] O((A+B)2) [Corollary 3]

lie on � and the vertices in B are horizontal line segments whose left end-points
lie on �. Such a representation is a stick representation of G, the line � is the
ground line, the segments are called sticks, and the point where a stick meets �
is its foot point.

Definition 2 (STICKA/STICKAB). In the problem STICKA (STICKAB) we
are given an instance of the STICK problem and additionally an order σA

(orders σA, σB) of the vertices in A (in A and B). The task is to decide whether
there is a stick representation that respects σA (σA and σB).

Our Contribution. We first revisit the problems STICKA and STICKAB defined by
De Luca et al. [9]. We provide the first efficient algorithm for STICKA and a faster
algorithm for STICKAB; see Sect. 2. Then we investigate the direction suggested
by Cabello and Jejčič [1] where specific lengths are given for the segments of
each vertex. In particular, this can be thought of as generalizing from unit stick
graphs (i.e., bipartite permutation graphs), where every segment has the same
length. While bipartite permutation graphs can be recognized in linear time [27],
it turns out that all of the new problem variants (which we call STICKfix, STICKfix

A ,
and STICKfix

AB) are NP-complete; see Sect. 3. Finally, we give an efficient solution
for STICKfix

AB (that is, STICKAB with fixed stick lengths) for the special case that
there are no isolated vertices (see Sect. 3.3). We conclude and state some open
problems in Sect. 4. Our results are summarized in Table 1.

2 Sticks of Variable Lengths

In this section, we provide algorithms for the STICKA problem in O(|A||B|) time
(Theorem 2) and the STICKAB problem in O(|A| + |B| + |E|) time (Theorem 1).
Both algorithms apply a sweep-line approach (with a vertical sweep-line moving
rightwards) where each vertical stick ai ∈ A corresponds to two events: the enter
event of ai (abbreviated by i) and the exit event of ai (abbreviated by i ).

Theorem 1. STICKAB can be solved in O(|A| + |B| + |E|) time.

Proof. Let σA = (a1, . . . , a|A|) and σB = (b1, . . . , b|B|). Let βi denote the largest
index such that bβi

has a neighbor in a1, . . . , ai. Let B̂i be the elements of
(b1, . . . , bβi

) that have a neighbor in ai, . . . , a|A| ordered by σB , and let B̂i be
the elements of (b1, . . . , bβi

) that have a neighbor in ai+1, . . . , a|A|. At every event



6 S. Chaplick et al.

p ∈ {i, i }, we maintain the invariants that (i) we have a valid representation
of the subgraph of G induced by b1, . . . , bβi

, a1, . . . , ai; (ii) for all these vertices,
their foot points are set as consecutive integers from 1 to βi + i; and (iii) for
those not in B̂p, their lengths are set.

Consider the enter event of ai. We place ai at position βi + i. We place
the vertices bβi−1+1, . . . bβi

(if they exist) between ai−1 and ai in this order and
create B̂i by appending them to B̂(i−1) in this order. All neighbors of ai have
to be before ai, and they have to be a suffix of B̂i. This is easily checked in
deg(ai) time. The end point of ai is placed directly above the foot point of its
first neighbor in this suffix. As such, the invariants (i)–(iii) are maintained.

Consider the exit event of ai and each neighbor bj of ai. If ai is the last
neighbor of bj in σA, then we end bj and set its endpoint at βi + i + 1/2. We
create B̂i by removing each such bj from B̂i. This again maintains invariants
(i)–(iii). Hence, if we complete the exit event of a|A|, we obtain a STICKAB

representation of G. Otherwise, G has no such representation. Clearly, the whole
algorithm works in O(|A| + |B| + |E|) time. Note that, even though we have not
explicitly discussed isolated vertices, these are easily handled with length 0. �	

Theorem 2. STICKA can be solved in O(|A| · |B|) time.

Proof. We assume that G is connected and discuss otherwise in the full ver-
sion [8].
Overview. For each event p ∈ {i, i }, we maintain a data structure T p that com-
pactly encodes all realizable permutations of certain horizontal sticks Bp ⊆ B.
Namely, each Bi (resp. Bi ) consists of all sticks of B with a neighbor in a1, . . . , ai

and a neighbor in ai, . . . , a|A| (resp. ai+1, . . . , a|A|). We denote by Gp the induced
subgraph of G containing a1, . . . , ai and their neighbors. A permutation π of Bp

is realizable if there is a stick representation of the graph obtained from Gp by
adding a vertical stick to the right of ai neighboring all horizontal sticks in Bp

where Bp is drawn top-to-bottom in order π. In the enter event of ai, we add to
the data structure all the vertices of B that neighbor ai and aren’t in the data
structure yet (we call these entering vertices), and constrain the data structure
so that all the neighbors of ai must occur after (below) the non-neighbors of ai.
In the exit event of ai, we remove all sticks of B that do not have any neighbor
aj with j > i, i.e., they have ai as their last neighbor (we call these leaving
vertices).
Data Structure. See Fig. 1 for an example. Consider any event p. Observe
that Gp may consist of several connected components Gp

1, . . . , G
p
kp

. Since G is
connected, the components are naturally ordered from left to right by σA. Let
Bp

j denote the vertices of Bp in Gp
j . In this case, in every realizable permutation

of Bp, the vertices of Bp
j must come before the vertices of Bp

j+1. Furthermore,
the vertices that will be introduced any time later can only be placed at the
beginning, end, or between the components. Hence, to compactly encode the
realizable permutations, it suffices to do so for each component Gp

j individually
via a data structure T p

i . Namely, our data structure will be T p = (T p
1 , . . . , T p

kp
).



Stick Graphs with Length Constraints 7

Fig. 1. An example for the data structure. In (b), the dotted stick has left the data
structure and the leaves are permuted among the children to match the representation.

Each data structure T p
j is a rooted tree. At each node, its children consist

of two types: the leaves (which correspond to the vertices of Bp
j ) and the non-

leaves. The non-leaves are ordered, while the leaves are unordered and can be
placed anywhere before, after, or between the non-leaves with the same parent.
A valid traversal of T p

j is a pre-order traversal where, for each node, the non-leaf
children are visited in the specified order and the leaves are permuted among
the non-leaf children. Each permutation expressed by T p

j corresponds to a valid
traversal. Note that the non-leaves are visited in the same order in every valid
traversal.
Correctness and Event Processing. We will argue that this data structure
is sufficient to express the realizable permutations of Bp by induction. In the
base case, consider the enter event of a1. Our data structure consists of a single
component G1

1 and clearly a single node with a leaf-child for every neighbor of a1

captures all possible permutations.
Consider the exit event of ai and assume that we have the data structure T i =(

T i
1, . . . , T

i
ki

)
. If there are no leaving vertices, we just keep the data structures

and are done. Otherwise, Bi is a strict subset of Bi. We delete all leaves from
T i corresponding to leaving vertices. If this results in any non-leaf node having
only one child and that child is not a leaf, we merge it with its parent. If all
children of an internal node get removed, we also remove the node. Obviously,
this procedure maintains all realizable permutations of Bi due to Gi .

Now consider the enter event of ai and assume that we have the data structure
T (i−1) = (T (i−1)

1 , . . . , T
(i−1)
ki−1

). The essential observation is that the neighbors
of ai must form a suffix of B(i−1) in every realizable permutation after the enter
event, which we will enforce in the following. Namely, either

– all vertices in B(i−1) are adjacent to ai,
– none of them are adjacent to ai, or
– there is an s such that (i) B

(i−1)
s contains at least one neighbor of ai; (ii)

all vertices in B
(i−1)
s+1 , . . . , B

(i−1)
ki−1

are neighbors of ai; and (iii) no vertices in

B
(i−1)
1 , . . . , B

(i−1)
s−1 are adjacent to ai; see Fig. 2a.



8 S. Chaplick et al.

Fig. 2. Construction of T i. The leaves at the new node x are the entering vertices.

Otherwise, there is no realizable permutation for this event and consequently
for G. The first two cases can be seen as degenerate cases (with s = 0 or s =
ki−1 + 1) of the general case below.

We first show how to process T
(i−1)
s ; see Fig. 2b. After that we will create

the data structure T i. We create a tree T whose realizable permutations are
precisely the subset of those of T

(i−1)
s where all leaves that are neighbors of ai

occur as a suffix. We initialize T = T
(i−1)
s . If all vertices in B

(i−1)
s are neighbors

of ai, then we are already done.
Otherwise, we define a marked node as one where all leaves in its subtree are

neighbors of ai; an unmarked node as one where no leaf in its induced subtree
is a neighbor of ai; and a node is half-marked otherwise. Note that the root is
half-marked. Since the neighbors of ai must form a suffix, the marked non-leaf
children of a half-marked node form a suffix, the unmarked non-leaf children
form a prefix, and there is at most one half-mark child. Hence, the half-marked
nodes form a path in T that starts in the root; otherwise, there are no realizable
permutations for this event and subsequently for G.

We traverse the path leaf-to-root. Let a be a half-marked node, and let b be
its half-marked child (if it exists). We have to enforce that in any valid traversal
of T the unmarked children of a are visited before b and the marked children
of a are visited after b. We create a new (marked) vertex a′ and move all marked
children of a to a′, preserving the order among the non-leaf children. Then we
create a new (half-marked) node a′′ and we hang a, b, and a′ from a′′ in this
order. Finally, we put a′′ into the former position of a in T . If this results in
any internal node z with no leaf-children and only one child, we merge z with
its parent. This ensures that all permutations realized by T have the neighbors
of ai as a suffix. Further, observe that the non-leaves of T

(i−1)
s are visited in

the same order in any valid traversal of T as in a valid traversal of T
(i−1)
s . The

marked (unmarked) leaf-children of any half-marked node a of T
(i−1)
s can be

placed anywhere before, between, or after its marked (unmarked) children, but
not before (after) b, since b has both marked and unmarked children. Hence, the
permutations realized by T are exactly those realized by T

(i−1)
s that have the

neighbors of ai as a suffix.



Stick Graphs with Length Constraints 9

(a) frame providing the pockets (b) number gadget for the number si

Fig. 3. Gadgets of our reduction from 3-PARTITION to STICKfix. (Color figure online)

Now, we create the data structure T i; see Fig. 2c. We set T i
1 =

T
(i−1)
1 , . . . , T i

s−1 = T
(i−1)
s−1 . We additionally create T i

s as follows. We hang
T

(i−1)
s+1 , . . . , T

(i−1)
ki−1

from a new node x in this order. We further insert the
entering vertices as leaf-children of x (note that this allows them to mix freely
before, after, or between the components G

(i−1)
s+1 , . . . , G

(i−1)
ki−1

. Then, we hang T

followed by x off another node r, and make r the root of T i
s . Finally, we set

T i = (T i
1, . . . , T

i
s). This way, the order of the components G

(i−1)
1 , . . . , G

(i−1)
ki−1

of
G(i−1) is maintained in the data structures for Gi. Furthermore, we ensure that
the entering vertices can be placed exactly before, after, or between the compo-
nents of G(i−1) that are completely adjacent to ai. Hence, this data structure
captures all realizable permutations of Bi due to Gi.

The decision problem of STICKA can easily be solved by this algorithm. To
find a stick representation, however, one has to backtrack through the data
structures to find a valid permutation for the input problem. In the full ver-
sion [8], we show how to do the backtracking and that the whole algorithm takes
O(|A||B|) time. �	

3 Sticks of Fixed Lengths

In this section, we consider the case that, for each vertex of the input graph,
its stick length is part of the input and fixed. We denote the variants of this
problem by STICKfix, by STICKfix

A if additionally σA is given, and by STICKfix
AB if

σA and σB given. Unlike the case with variable stick length, all three variants are
NP-hard; see Sects. 3.1 and 3.2. Surprisingly, STICKfix

AB can be solved efficiently
by a simple linear program if the input graph contains no isolated vertices (i.e.,
vertices of degree 0); see Sect. 3.3. With our linear program, we can check the
feasibility of any instance of STICKfix if we are given a total order of the sticks on
the ground line. With our NP-hardness results, this implies NP-completeness.

3.1 STICKfix

We show that STICKfix is NP-hard by reduction from 3-PARTITION, which is
strongly NP-complete [11]. In 3-PARTITION, one is given a multiset S of 3m



10 S. Chaplick et al.

integers s1, . . . , s3m such that, for i ∈ {1, . . . , 3m}, C/4 < si < C/2, where
C = (

∑3m
i=1 si)/m, and the task is to decide whether S can be split into m sets

of three integers, each summing up to C.

Theorem 3. STICKfix is NP-complete.

Proof. We describe a polynomial-time reduction from 3-PARTITION. Given a
3-PARTITION instance I = (S,C,m), we construct a fixed cage-like frame struc-
ture and introduce a number gadget for each number of S. A sketch of the frame
is given in Fig. 3a. The purpose of the frame is to provide pockets, which will host
our number gadgets (defined below). We add two long vertical (green) sticks y
and z of length mC +1+2ε and a shorter vertical (green) stick x of length 1 that
are all kept together by a short horizontal (violet) stick w of some length ε � 1.
We use m + 1 horizontal (black) sticks p1, p2, . . . , pm+1 to separate the pockets.
Each of them intersects y but not z and has a specific length such that the dis-
tance between two of these sticks is C ±ε. Additionally, p1 intersects x and pm+1

intersects a vertical (orange) stick o of length 2C. We use x and o to prevent
the number gadgets from being placed below the bottommost and above the
topmost pocket, respectively. It does not matter on which side of y the stick x
ends up since each bi of a number gadget intersects y but neither x nor z.

For each number si in S, we construct a number gadget; see Fig. 3b. We
introduce a vertical (red) stick ri of length si. Intersecting ri, we add a horizontal
(blue) stick bi of length at least mC+2. The stick bi intersects y and z, but neither
x nor o. Due to these adjacencies, every number gadget can only be placed in
one of the m pockets defined by p1, . . . , pm+1. It cannot span multiple pockets.
We require that ri and bi intersect each other close to their foot points, so we
introduce two short (violet) sticks hi and vi—one horizontal, the other vertical—
of lengths ε; they intersect each other, hi intersects ri, and vi intersects bi.

Given a yes-instance I = (S,C,m) and a valid 3-partition P of S, the graph
obtained by our reduction is realizable. Construct the frame as described before
and place the number gadgets into the pockets according to P . Since the lengths
of the three number gadgets’ ri sum up to C±3ε, all three can be placed into one
pocket. After distributing all number gadgets, we have a stick representation.

Given a stick representation of a graph G obtained from our reduction, we can
obtain a valid solution of the corresponding 3-PARTITION instance I = (S,C,m)
as follows. Clearly, the shape of the frame is fixed, creating m pockets. Since the
sticks b1, . . . , b3m are incident to y and z but neither to x nor to o, they can
end up inside any of the pockets. In the y-dimension, each two number gadgets
of numbers sk and s� overlap at most on a section of length ε; otherwise rk

and b� or r� and bk would intersect. Each pocket hosts precisely three number
gadgets: we have 3m number gadgets, m pockets, and no pocket can contain
four (or more) number gadgets; otherwise, there would be a number gadget of
height at most (C + ε)/4 + 2ε, contradicting the fact that si is an integer with
si > C/4. In each pocket, the height of the number gadgets would be too large
if the three corresponding numbers of S would sum up to C + 1 or more. Thus,
the assignment of number gadgets to pockets defines a valid 3-partition of S. �	



Stick Graphs with Length Constraints 11

(a) variable gadget set to false (b) variable gadget set to true

Fig. 4. Variable gadget in our reduction from MONOTONE-3-SAT to STICKfix
A . (Color

figure online)

fff fft ftf ftt tft ttf ttttff

Fig. 5. Positive clause gadget (empty sub-stripe at the bottom). Here, a clause gadget
for each of the eight possible truth assignments of a MONOTONE-3-SAT clause is
depicted. E.g., tft means that the first variable is set to true, the second to false, and
the third to true. Similarly, a negative clause gadget has an empty sub-stripe at the
top.

The sticks of lengths s1, . . . , s3m can be simulated by paths of sticks with
length ε each. Exploiting this, we can modify our reduction to use only three
distinct stick lengths. We prove the following corollary in the full version [8].

Corollary 1. STICKfix with only three different stick lengths is NP-complete.

3.2 STICKfix
A and STICKfix

AB

We show that STICKfix
A and STICKfix

AB are NP-hard by reduction from
MONOTONE-3-SAT, which is NP-complete [20]. In MONOTONE-3-SAT, one is
given a Boolean formula Φ in conjunctive normal form where each clause con-
tains three distinct literals that are all positive or all negative. The task is to
decide if Φ is satisfiable.

Theorem 4. STICKfix
A is NP-complete.

Proof. We describe a polynomial-time reduction from MONOTONE-3-SAT. A
schematization of our reduction is depicted in Figs. 4, 5 and 6. Given a
MONOTONE-3-SAT instance Φ over variables x1, . . . , xn, we construct for each
variable xi (with i ∈ {1, . . . , n}) a variable gadget as depicted in Fig. 4. Inside
a (black) cage, there is a vertical (red) stick ri with length 1 and from inside, a
long horizontal (green) stick gi leaves this cage. We can enforce the structure to



12 S. Chaplick et al.

look like in Fig. 4 as follows. We prescribe the order σA of the vertical sticks as
in Fig. 4. Since ai+1 has length ε � 1, the horizontal (black) stick hi intersects
the two vertical (black) sticks vi+1 and ai+1 close to its foot point. We have
σA(ai+1) < σA(ri) < σA(vi), so ri is inside the cage bounded by hi and vi and
fixed its height—as it does not intersect hi— making sticks hi and vi intersect
close to their end points (both have length 1+2ε). Moreover, ri cannot be below
hi−1 because ai is shorter than ri and intersects hi−1 to the right of ri. The
stick wi intersects ri close to ri’s foot point because wi has length ε. This leaves
the freedom of placing gi above or below ri (as gi does not intersect ri) but still
with its foot point inside the cage formed by hi and vi because it intersects vi,
but neither vi−1 nor vi+1.

We say that the variable xi is set to false if the foot point of gi is below the
foot point of ri, and true otherwise. For each xi, we add two long vertical (green)
sticks yi and zi that we keep close together by a short horizontal (violet) stick
of length ε (see Fig. 6 on the bottom right). We make gi intersect yi but not zi.
The three sticks gi, yi, and zi get the same length �i. Hence, yi and gi intersect
each other close to their end points as otherwise gi would intersect zi. We choose
�1 sufficiently large such that the foot point of y1 is to the right of the clause
gadgets (see Fig. 6) and for each �i with i ≥ 2, we set �i = �i−1 + 1 + 3ε. Now
compare the end points of gi when xi is set to false and when xi is set to true
relative to the (black) cage structure. When xi is set to true, the end point of
gi is 1 ± 2ε above and 1 ± 2ε to the left compared to the case when xi is set to
false. Observe that, since gi and yi intersect each other close to their end points,
this offset is also pushed to yi and zi and their foot points. Consequently, the
position of the foot point of yi (and zi) differs by 1 ± 2ε relative to the (black)
frame structure depending on whether xi is set to true or false. Our choice of �i

allows this movement. In other words, no matter which truth value we assign to
each xi, there is a stick representation of the variable gadgets respecting σA.

For each clause, we add a clause gadget (see Fig. 5) as shown in Fig. 6. It is a
stripe that is bounded by horizontal (black) sticks on its top and bottom. To
fix the height of each stripe, we introduce two vertical (black) sticks that we
keep close together by a short horizontal (black) stick of length ε. We make each
horizontal (black) stick intersect only the first of these vertical (black) sticks to
obtain clause gadgets of height of 4+2ε±ε. Moreover, we make the topmost hor-
izontal (black) stick intersect a1 and v1 to keep them connected to the variable
gadgets. We (virtually) divide each clause gadget into four horizontal sub-stripes
of height ≥1. For positive clause gadgets corresponding to all-positive clauses, we
leave the bottommost sub-stripe empty; for negative clause gadgets correspond-
ing to all-negative clauses, we leave the topmost sub-stripe empty. We add three
horizontal (orange) sticks—one per remaining horizontal sub-stripe—and assign
them bijectively to the variables of the clause. We make each horizontal (orange)
stick o that is assigned to xi intersect yi and all yj and zj for j < i, but not zi or
yk or zk for any k > i. Thus, o intersects yi close to oi’s end points. We choose
the length of each such o so that its foot point is at the bottom of its sub-stripe
if xi is set to false or is at the top of its sub-stripe if xi is set to true. Within the



Stick Graphs with Length Constraints 13

Var: x1

Var: x2

Var: x3

Var: x4

¬x
1 ∨ ¬x

2 ∨ ¬x
4

x
2 ∨

x
3 ∨

x
4

x
1 ¬x

1

x
2 ¬x

2

x
3 ¬x

3

x
4 ¬x

4

⎫
⎪⎪⎪

⎪⎪⎪
⎪⎪⎪

⎪⎪⎪
⎪⎪⎪

⎪⎪⎪
⎪⎪⎪

⎪⎪⎪
⎪⎪⎪

⎪⎪⎪
⎪⎪⎪

⎪⎪⎪
⎪⎪⎪

⎪⎪⎪
⎪⎪⎪

⎬
⎪⎪⎪

⎪⎪⎪
⎪⎪⎪

⎪⎪⎪
⎪⎪⎪

⎪⎪⎪
⎪⎪⎪

⎪⎪⎪
⎪⎪⎪

⎪⎪⎪
⎪⎪⎪

⎪⎪⎪
⎪⎪⎪

⎪⎪⎪
⎪⎪⎪

⎭

⎫
⎪⎪⎪

⎪⎪⎪
⎪⎪⎪

⎪⎪⎪
⎪⎪⎪

⎪⎪⎪
⎪⎪⎪

⎪⎪⎪
⎬

⎪⎪⎪
⎪⎪⎪

⎪⎪⎪
⎪⎪⎪

⎪⎪⎪
⎪⎪⎪

⎪⎪⎪
⎪⎪⎪

⎭

pos. clause gadgets

neg. clause gadgets

x
4 ¬x

4

x
3 ¬x

3

x
2 ¬x

2

x
1 ¬x

1

x
1 ∨

x
2 ∨

x
3

⎫
⎪⎪⎪

⎪⎪⎪
⎪⎪⎪

⎪⎪⎪
⎪⎪⎪

⎪⎪⎪
⎪⎪⎪

⎪⎪⎪
⎪⎪⎪

⎬
⎪⎪⎪

⎪⎪⎪
⎪⎪⎪

⎪⎪⎪
⎪⎪⎪

⎪⎪⎪
⎪⎪⎪

⎪⎪⎪
⎪⎪⎪

⎭

variable gadgets

V
ar:

x
4

V
ar:

x
3

V
ar:

x
2

V
ar:

x
1

Fig. 6. Illustration of our reduction from MONOTONE-3-SAT to STICKfix
A (Color figure

online)

positive and the negative clause gadgets, this gives us two times eight possible
configurations of the orange sticks depending on the truth assignment of the
three variables of the clause (see Fig. 5). Within each clause gadget, we have a
vertical (blue) stick b of length 2. Each horizontal (black) stick that bounds a
clause gadget intersects a short vertical (black) stick of length ε to force b into
its designated clause gadget. Moreover, b is not isolated because it intersects a
short (violet) stick of length ε.

Clearly, if Φ is satisfiable, there is a stick representation of the STICKfix
A

instance obtained from Φ by our reduction by placing the sticks as described
before (see also Fig. 6). In particular, the blue sticks can be placed as depicted
in Fig. 5.

On the other hand, if there is a stick representation of the STICKfix
A instance

obtained by our reduction, Φ is satisfiable. As argued before, the shape of the
(black) frame structure of all gadgets is fixed by the choice of the adjacencies
and lengths in the graph and σA. The only flexibility is, for each i ∈ {1, . . . n},
whether gi has its foot point above or below ri. This enforces one of eight distinct
configurations per clause gadget. As depicted in Fig. 5, precisely the configura-
tions that correspond to satisfying truth assignments are realizable. Thus, we
can read a satisfying truth assignment of Φ from the variable gadgets. �	



14 S. Chaplick et al.

We enforce an order of the horizontal sticks except for a set W of sticks, which
are the short (violet) sticks of length ε that are adjacent to the red and the blue
sticks in the variable and clause gadgets. For STICKAB we can prescribe σB if we
remove the sticks W and use the same reduction to obtain Corollary 2. Observe
that we now have isolated vertices (the red and blue vertical sticks).

Corollary 2. STICKfix
AB with isolated vertices in A or B is NP-complete.

3.3 STICKfix
AB Without Isolated Vertices

In this section, we constructively show that STICKfix is efficiently solvable if we
are given a total order of the vertices in A ∪ B on the ground line. Note that
if there is a stick representation for an instance of STICKAB (and consequently
also STICKfix

AB), the combinatorial order of the sticks on the ground line is always
the same except for isolated vertices, which we formalize in the following lemma.
The proof follows implicitly from the proof of Theorem 1. An explicit proof is
given in the full version [8].

Lemma 1. In all stick representations of an instance of STICKAB, the order of
the vertices A ∪ B on the ground line is the same after removing all isolated
vertices. This order can be found in time O(|E|).

We are given an instance of STICKfix and a total order v1, . . . , vn of the
vertices (n = |A| + |B|) with stick lengths �1, . . . , �n. We create a system of
difference constraints, that is, a linear program Ax ≤ b where each constraint
is a simple linear inequality of the form xj − xi ≤ bk, with n variables and
m ≤ 3n−1 constraints. Such a system can be modeled as a weighted graph with
a vertex per variable xi and a directed edge (xi, xj) with weight bk per constraint.
The system is solvable if and only if there is no directed cycle of negative weights,
and a solution can be found in O(nm) time with the Bellman–Ford algorithm.

For each stick vi, we create a variable xi that corresponds to the x-coordinate
of vi’s foot point on the ground line, with x1 = 0. To ensure the unique order, we
add n−1 constraints xi+1−xi ≤ −ε for some suitably small ε and i = 1, . . . , n−1.

Let vi ∈ A and vj ∈ B. If (vi, vj) ∈ E, then the corresponding sticks have to
intersect, which they do if and only if xj −xi ≤ min{�i, �j}. If i < j and (vi, vj) /∈
E, then the corresponding sticks must not intersect, so we require xj − xi >
min{�i, �j} ≥ min{�i, �j}+ ε. This easily gives a system of difference constraints
with O(n2) constraints. We argue that a linear number suffices.

Let vi ∈ A. Let j be the largest j such that (vi, vj) ∈ E and �j ≥ �i. We add
a constraint xj − xi ≤ �i. Further, let k be the smallest k such that (vi, vk) /∈ E
and �k ≥ �i. We add a constraint xk−xi > �i ⇔ xi−xk ≤ −�i−ε. Symmetrically,
let vi ∈ B. Let j be the smallest j such that (vj , vi) ∈ E and �j > �i. We add
a constraint xi − xj ≤ �i. Further, let k be the largest k such that (vk, vi) /∈ E
and �k > �i. We add a constraint xi − xk > �i ⇔ xk − xi ≤ −�i − ε.

We now argue that these constraints are sufficient to ensure that G is rep-
resented by a solution of the system. Let vi ∈ A and vj ∈ B. If i > j, then



Stick Graphs with Length Constraints 15

the corresponding sticks cannot intersect, which is ensured by the fixed order.
So assume that i < j. If �j ≥ �i and (vi, vj) ∈ E, then we either have the con-
straint xj −xi ≤ �i, or we have a constraint xk −xi ≤ �i with i < j < k; together
with the order constraints, this ensure that xj − xi ≤ xk − xi ≤ �i. If �j ≥ �i

and (vi, vj) /∈ E, then we either have the constraint xi −xj ≤ −�i −ε, or we have
a constraint xi−xk ≤ −�i−ε with i < k < j; together with the order constraints,
this ensure that xi − xj ≤ xi − xk ≤ −�i − ε. Symmetrically, the constraints are
also sufficient for �j < �i. We obtain a system of difference constraints with n
variables and at most 3n−1 constraints proving Theorem 5. By Lemma 1, there
is at most one realizable order of vertices for a STICKfix

AB instance without isolated
vertices, which can be found in linear time and proves Corollary 3.

Theorem 5. STICKfix can be solved in O((|A| + |B|)2) time if we are given a
total order of the vertices.

Corollary 3. STICKfix
AB without isolated vertices is solvable in O((|A| +

|B|)2) time.

4 Open Problems

We have shown that STICKfix is NP-complete even if the sticks have only three
different lengths, while STICKfix for unit-length sticks is solvable in linear time.
But what is the computational complexity of STICKfix for sticks with one of two
lengths? Also, the three different lengths in our proof depend on the number
of sticks. Is STICKfix still NP-complete if the fixed lengths are bounded? Beside
this, the complexity of the original problem STICK is still open.

References

1. Cabello, S., Jejčič, M.: Refining the hierarchies of classes of geometric intersection
graphs. Electr. J. Comb. 24(1), P1.33 (2017). http://www.combinatorics.org/ojs/
index.php/eljc/article/view/v24i1p33

2. Cardinal, J., Felsner, S., Miltzow, T., Tompkins, C., Vogtenhuber, B.: Intersection
graphs of rays and grounded segments. J. Graph Algorithms Appl. 22(2), 273–295
(2018). https://doi.org/10.7155/jgaa.00470

3. Catanzaro, D., Chaplick, S., Felsner, S., Halldórsson, B.V., Halldórsson, M.M.,
Hixon, T., Stacho, J.: Max point-tolerance graphs. Discrete Appl. Math. 216, 84–
97 (2017). https://doi.org/10.1016/j.dam.2015.08.019

4. Chalopin, J., Gonçalves, D.: Every planar graph is the intersection graph of seg-
ments in the plane: extended abstract. In: STOC 2009, pp. 631–638. ACM (2009).
https://doi.org/10.1145/1536414.1536500

5. Chaplick, S., Dorbec, P., Kratochv́ıl, J., Montassier, M., Stacho, J.: Contact repre-
sentations of planar graphs: extending a partial representation is hard. In: Kratsch,
D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 139–151. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-319-12340-0 12

6. Chaplick, S., Felsner, S., Hoffmann, U., Wiechert, V.: Grid intersection graphs and
order dimension. Order 35(2), 363–391 (2018). https://doi.org/10.1007/s11083-
017-9437-0

http://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i1p33
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i1p33
https://doi.org/10.7155/jgaa.00470
https://doi.org/10.1016/j.dam.2015.08.019
https://doi.org/10.1145/1536414.1536500
https://doi.org/10.1007/978-3-319-12340-0_12
https://doi.org/10.1007/s11083-017-9437-0
https://doi.org/10.1007/s11083-017-9437-0


16 S. Chaplick et al.

7. Chaplick, S., Hell, P., Otachi, Y., Saitoh, T., Uehara, R.: Ferrers dimension of grid
intersection graphs. Discrete Appl. Math. 216, 130–135 (2017). https://doi.org/10.
1016/j.dam.2015.05.035

8. Chaplick, S., Kindermann, P., Löffler, A., Thiele, F., Wolff, A., Zaft, A., Zink, J.:
Stick graphs with length constraints. Arxiv report (2019). http://arxiv.org/abs/
1907.05257

9. De Luca, F., Hossain, M.I., Kobourov, S.G., Lubiw, A., Mondal, D.: Recognition
and drawing of stick graphs. In: Biedl, T.C., Kerren, A. (eds.) GD 2018. LNCS,
vol. 11282, pp. 303–316. Springer, Heidelberg (2018). https://doi.org/10.1007/978-
3-030-04414-5 21

10. Felsner, S., Knauer, K., Mertzios, G.B., Ueckerdt, T.: Intersection graphs of L-
shapes and segments in the plane. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik,
Z. (eds.) MFCS 2014. LNCS, vol. 8635, pp. 299–310. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44465-8 26

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

12. Halldórsson, B.V., Aguiar, D., Tarpine, R., Istrail, S.: The Clark phaseable sample
size problem: long-range phasing and loss of heterozygosity in GWAS. J. Comput.
Biol. 18(3), 323–333 (2011). https://doi.org/10.1089/cmb.2010.0288

13. Hartman, I.B., Newman, I., Ziv, R.: On grid intersection graphs. Discrete Math.
87(1), 41–52 (1991). https://doi.org/10.1016/0012-365X(91)90069-E

14. Jünger, M., Leipert, S., Mutzel, P.: Level planarity testing in linear time. In: White-
sides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 224–237. Springer, Heidelberg
(1998). https://doi.org/10.1007/3-540-37623-2 17

15. Klav́ık, P., Otachi, Y., Sejnoha, J.: On the classes of interval graphs of limited
nesting and count of lengths. Algorithmica 81(4), 1490–1511 (2019). https://doi.
org/10.1007/s00453-018-0481-y

16. Köbler, J., Kuhnert, S., Watanabe, O.: Interval graph representation with given
interval and intersection lengths. J. Discrete Algorithms 34, 108–117 (2015).
https://doi.org/10.1016/j.jda.2015.05.011

17. Kratochv́ıl, J.: A special planar satisfiability problem and a consequence of its
NP-completeness. Discrete Appl. Math. 52(3), 233–252 (1994). https://doi.org/10.
1016/0166-218X(94)90143-0

18. Kratochv́ıl, J., Matoušek, J.: Intersection graphs of segments. J. Comb. Theory,
Series B 62(2), 289–315 (1994). https://doi.org/10.1006/jctb.1994.1071

19. Kratsch, D., McConnell, R.M., Mehlhorn, K., Spinrad, J.P.: Certifying algorithms
for recognizing interval graphs and permutation graphs. SIAM J. Comput. 36(2),
326–353 (2006). https://doi.org/10.1137/S0097539703437855

20. Li, W.N.: Two-segmented channel routing is strong NP-complete. Discrete Appl.
Math. 78(1–3), 291–298 (1997). https://doi.org/10.1016/S0166-218X(97)00020-6

21. Lubiw, A.: Private communication (2019)
22. Matoušek, J.: Intersection graphs of segments and ∃R. ArXiv. https://arxiv.org/

abs/1406.2636 (2014)
23. Pe’er, I., Shamir, R.: Realizing interval graphs with size and distance con-

straints. SIAM J. Discrete Math. 10(4), 662–687 (1997). https://doi.org/10.1137/
S0895480196306373

24. Schaefer, M.: Complexity of some geometric and topological problems. In: GD
2009. LNCS, vol. 5849, pp. 334–344. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-11805-0 32

https://doi.org/10.1016/j.dam.2015.05.035
https://doi.org/10.1016/j.dam.2015.05.035
http://arxiv.org/abs/1907.05257
http://arxiv.org/abs/1907.05257
https://doi.org/10.1007/978-3-030-04414-5_21
https://doi.org/10.1007/978-3-030-04414-5_21
https://doi.org/10.1007/978-3-662-44465-8_26
https://doi.org/10.1089/cmb.2010.0288
https://doi.org/10.1016/0012-365X(91)90069-E
https://doi.org/10.1007/3-540-37623-2_17
https://doi.org/10.1007/s00453-018-0481-y
https://doi.org/10.1007/s00453-018-0481-y
https://doi.org/10.1016/j.jda.2015.05.011
https://doi.org/10.1016/0166-218X(94)90143-0
https://doi.org/10.1016/0166-218X(94)90143-0
https://doi.org/10.1006/jctb.1994.1071
https://doi.org/10.1137/S0097539703437855
https://doi.org/10.1016/S0166-218X(97)00020-6
https://arxiv.org/abs/1406.2636
https://arxiv.org/abs/1406.2636
https://doi.org/10.1137/S0895480196306373
https://doi.org/10.1137/S0895480196306373
https://doi.org/10.1007/978-3-642-11805-0_32
https://doi.org/10.1007/978-3-642-11805-0_32


Stick Graphs with Length Constraints 17

25. Sen, M.K., Sanyal, B.K.: Indifference digraphs: a generalization of indifference
graphs and semiorders. SIAM J. Discrete Math. 7(2), 157–165 (1994). https://doi.
org/10.1137/S0895480190177145

26. Shrestha, A.M.S., Takaoka, A., Tayu, S., Ueno, S.: On two problems of nano-PLA
design. IEICE Trans. 94-D(1), 35–41 (2011). https://doi.org/10.1587/transinf.E94.
D.35

27. Spinrad, J., Brandstädt, A., Stewart, L.: Bipartite permutation graphs.
Discrete Appl. Math. 18(3), 279–292 (1987). https://doi.org/10.1016/S0166-
218X(87)80003-3

https://doi.org/10.1137/S0895480190177145
https://doi.org/10.1137/S0895480190177145
https://doi.org/10.1587/transinf.E94.D.35
https://doi.org/10.1587/transinf.E94.D.35
https://doi.org/10.1016/S0166-218X(87)80003-3
https://doi.org/10.1016/S0166-218X(87)80003-3


Representing Graphs and Hypergraphs
by Touching Polygons in 3D

William Evans1, Pawe�l Rz ↪ażewski2(B) , Noushin Saeedi1, Chan-Su Shin3 ,
and Alexander Wolff4

1 University of British Columbia, Vancouver, Canada
2 Faculty of Mathematics and Information Science,

Warsaw University of Technology, Warszawa, Poland
p.rzazewski@mini.pw.edu.pl

3 Hankuk University of Foreign Studies, Yongin, Republic of Korea
4 Universität Würzburg, Würzburg, Germany

Dedicated to Honza Kratochv́ıl on his 60th birthday.

Abstract. Contact representations of graphs have a long history. Most
research has focused on problems in 2d, but 3d contact representations
have also been investigated, mostly concerning fully-dimensional geomet-
ric objects such as spheres or cubes. In this paper we study contact repre-
sentations with convex polygons in 3d. We show that every graph admits
such a representation. Since our representations use super-polynomial
coordinates, we also construct representations on grids of polynomial
size for specific graph classes (bipartite, subcubic). For hypergraphs, we
represent their duals, that is, each vertex is represented by a point and
each edge by a polygon. We show that even regular and quite small
hypergraphs do not admit such representations. On the other hand, the
two smallest Steiner triple systems can be represented.

1 Introduction

Representing graphs as the contact of geometric objects has been an area of
active research for many years (see Hliněný and Kratochv́ıl’s survey [15] and
Alam’s thesis [1]). Most of this work concerns representation in two dimen-
sions, though there has been some interest in three-dimensional representation
as well [2,3,5,13,25]. Representations in 3d typically use 3d geometric objects

The full version of this article is available at ArXiv [12]. W.E. and N.S. were funded by
an NSERC Discovery grant and in part by the Institute for Computing, Information and
Cognitive Systems (ICICS) at UBC. P.Rz. was partially supported by the ERC grant
CUTACOMBS (no. 714704). A.W. was funded by the German Research Foundation
(DFG) under grant 406987503 (WO 758/10-1). C.-S.Sh. was supported by the National
Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)
(no. 2019R1F1A1058963).

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 18–32, 2019.
https://doi.org/10.1007/978-3-030-35802-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_2&domain=pdf
http://orcid.org/0000-0001-7696-3848
http://orcid.org/0000-0003-3073-6863
http://orcid.org/0000-0001-5872-718X
https://doi.org/10.1007/978-3-030-35802-0_2


Representing Graphs and Hypergraphs by Touching Polygons in 3D 19

that touch properly i.e., their intersection is a positive area 2d face. In con-
trast, our main focus is on contact representation of graphs and hypergraphs
using non-intersecting (open, “filled”) planar polygons in 3d. Two polygons are
in contact if they share a corner vertex. Note that two triangles that share two
corner vertices do not intersect and a triangle and rectangle that share two cor-
ners, even diagonally opposite ones, also do not intersect. However, no polygon
contains a corner of another except at its own corner. A contact representation
of a graph in 3d is a set of non-intersecting polygons in 3d that represent ver-
tices. Two polygons share a corner point if and only if they represent adjacent
vertices and each corner point corresponds to a distinct edge. We can see a
contact representation of a graph G = (V,E) as a certain drawing of its dual
hypergraph HG = (E, {E(v) | v ∈ V }) which has a vertex for every edge of G,
and a hyperedge for every vertex v of G, namely the set E(v) of edges incident
to v. We extend this idea to arbitrary hypergraphs: A non-crossing drawing of
a hypergraph in 3d is a set of non-intersecting polygons in 3d that represent
edges. Two polygons share a corner point if and only if they represent edges that
contain the same vertex and each corner point corresponds to a distinct vertex.
It is straightforward to observe that the set of contact representations of a graph
G is the same as the set of non-crossing drawings of HG.

Many people have studied ways to represent hypergraphs geometrically [4,
6,16], perhaps starting with Zykov [29]. A natural motivation of this line of
research was to find a nice way to represent combinatorial configurations [14]
such as Steiner systems (for an example, see Fig. 7). The main focus in repre-
senting hypergraphs, however, was on drawings in the plane. By using polygons
to represent hyperedges in 3d, we gain some additional flexibility though still not
all hypergraphs can be realized. Our work is related to Carmensin’s work [8] on
a Kuratowski-type characterization of 2d simplicial complexes (sets composed
of points, line segments, and triangles) that have an embedding in 3-space. Our
representations are sets of planar polygons (not just triangles) that arise from
hypergraphs. Thus they are less expressive than Carmensin’s topological 2d sim-
plicial complexes and are more restricted. In particular, if two hyperedges share
three vertices, the hyperedges must be coplanar in our representation.

Our work is also related to that of Ossona de Mendez [21]. He showed that a
hypergraph whose vertex–hyperedge inclusion order has poset dimension d can
be embedded into R

d−1 such that every vertex corresponds to a unique point
in R

d−1 and every hyperedge corresponds to the convex hull of its vertices. The
embedding ensures that the image of a hyperedge does not contain the image of
a vertex and, for any two hyperedges e and e′, the convex hulls of e \ e′ and of
e′ \e don’t intersect. In particular, the images of disjoint hyperedges are disjoint.
Note that both Ossona de Mendez and we use triangles to represent hyperedges
of size 3, but for larger hyperedges, he uses higher-dimensional convex subspaces.

Our Contribution. All of our representations in this paper use convex polygons
while our proofs of non-representability hold even permitting non-convex poly-
gons. We first show that recognizing segment graphs in 3d is ∃R-complete.



20 W. Evans et al.

We show that every graph on n vertices with minimum vertex-degree 3 has
a contact representation by convex polygons in 3d, though the volume of the
drawing using integer coordinates is at least exponential in n; see Sect. 2.

Table 1. Required volume and running times of our algorithms for drawing n-vertex
graphs of certain graph classes in 3d

Graph class General Bipartite 1-plane cubic 2-edge-conn.
cubic

Subcubic

Grid volume super-poly O(n4) O(n2) O(n2) O(n3)

Running time O(n2) linear linear O(n log2 n) O(n log2 n)

Reference Theorem 2 Theorem 3 Theorem 4 Lemma 2 Theorem 5

For some graph classes, we give 3d drawing algorithms which require poly-
nomial volume. Table 1 summarizes our results. When we specify the volume of
the drawing, we take the product of the number of grid lines in each dimension
(rather than the volume of a bounding box), so that a drawing in the xy-plane
has non-zero volume. Some graphs, such as the squares of even cycles, have par-
ticularly nice representations using only unit squares; see the full version of this
paper [12].

For hypergraphs our results are more preliminary. There are examples as
simple as the hypergraph on six vertices with all triples of vertices as hyperedges
that cannot be drawn using non-intersecting triangles; see Sect. 3. Similarly,
hypergraphs with too many edges of cardinality 4 such as Steiner quadruple
systems do not admit 3d drawings using convex quadrilaterals. On the other
hand, we show that the two smallest Steiner triple systems can be drawn using
triangles. (We define these two classes of hypergraphs in Sect. 3.)

2 Graphs

It is easy to draw graphs in 3d using points as vertices and non-crossing line
segments as edges – any set of points in general position (no three colinear and
no four coplanar) will support any set of edge segments without crossings. A
more difficult problem is to represent a graph in 3d using polygons as vertices
where two polygons intersect to indicate an edge (note that here we do not insist
on a contact representation, i.e., polygons are allowed to intersect arbitrarily).
Intersection graphs of convex polygons in 2d have been studied extensively [19].
Recognition is ∃R-complete [23] (and thus in PSPACE since ∃R ⊆ PSPACE [7])
even for segments (polygons with only two vertices).

Every complete graph trivially admits an intersection representation by line
segments in 2d. Not every graph, however, can be represented in this way, see e.g.,
Kratochv́ıl and Matoušek [18]. Moreover, they show that recognizing intersection
graphs of line segments in the plane, called segment graphs, is ∃R-complete.



Representing Graphs and Hypergraphs by Touching Polygons in 3D 21

It turns out that a similar hardness result holds for recognizing intersection
graphs of straight-line segments in 3d (and actually in any dimension). The proof
modifies the corresponding proof for 2d by Schaefer [23]. See also the excellent
exposition of the proof by Matoušek [20]. For the proof, as well as the proofs of
other theorems marked with ♠, see the full version of this paper [12].

Theorem 1 (♠). Recognizing segment graphs in 3d is ∃R-complete.

We consider contact representation of graphs in 3d where no polygons are
allowed to intersect except at their corners, and two polygons share a corner
if and only if they represent adjacent vertices. We start by describing how to
construct a contact representation for any graph using convex polygons, which
requires at least exponential volume, and then describe contructions for graph
families that use only polynomial volume.

2.1 General Graphs

Lemma 1. For every positive integer n ≥ 3, there exists an arrangement of n
lines �1, �2, . . . , �n with the following two properties:

(A1) line �i intersects lines �1, �2, . . . , �i−1, �i+1, . . . �n in this order, and
(A2) distances between the intersection points on line �i decrease exponentially,

i.e., for every i it holds that

di(j + 2, j + 1) ≤ di(j + 1, j)/2 for j ∈ {1, . . . , i − 3} (1)
di(i + 1, i − 1) ≤ di(i − 1, i − 2)/2 (2)
di(i + 2, i + 1) ≤ di(i + 1, i − 1)/2 (3)
di(j + 2, j + 1) ≤ di(j + 1, j)/2 for j ∈ {i + 1, . . . , n − 2}, (4)

where di(j, k) is the xy-plane distance between pi,j and pi,k and pi,j = pj,i

is the intersection point of �i and �j.

Proof. We construct the grid incrementally. We start with the x-axis as �1, the
y-axis as �2, and the line through (1, 0) and (0,−1) as �3; see Fig. 1. Now suppose
that i > 3, we have constructed lines �1, �2, . . . , �i−1, and we want to construct �i.
We fix pi−1,i to satisfy di−1(i, i − 2) = di−1(i − 2, i − 3)/2 then rotate a copy of
line �i−1 clockwise around pi−1,i until it (as �i) satisfies another of the inequalities
in (1) with equality. Note that during this rotation, all inequalities in (A2) are
satisfied and we do not move any previously constructed lines, so the claim of
the lemma follows. �	

Theorem 2. For every n ≥ 3, the complete graph Kn admits a contact rep-
resentation by non-degenerate convex polygons in 3d, each with at most n − 1
vertices. Such a representation can be computed in O(n2) time (assuming unit
cost for arithmetic operations on coordinates).



22 W. Evans et al.

�2

�1

�3

�4p12 p13
p14

p23

p34

Fig. 1. Construction of �4 in the proof of
Lemma 1.

pi,1

pi,i−2

pi,i−1

pi,i+1 pi,n

1

i− 1

i

i− 2

Fig. 2. The polygon Pi that represents
vertex i of Kn.

Proof. Take a grid according to Lemma 1. Set the z-coordinate of point pi,j to
min{i, j} and represent vertex i by the polygon Pi, which we define to be the
convex hull of {pi,1, pi,2, . . . , pi,i−1, pi,i+1, . . . pi,n}. Note that Pi is contained in
the vertical plane that contains line �i; see Fig. 2. To avoid that P1 is degenerate,
we reduce the z-coordinate of p1,2 slightly.

Note that, for i = 2, . . . , n − 1, the counterclockwise order of the vertices
around Pi is

pi,1, pi,2, . . . , pi,i−1, pi,n, pi,n−1, . . . , pi,i+1, pi,1.

We show that all these points are on the boundary of Pi by ensuring that the
angles formed by three consecutive points are bounded by π. Clearly the angles
∠pi,i+1pi,1pi,2 and ∠pi,i−1pi,npi,n−1 are at most π. For j = 2, . . . , i − 2, we
have that ∠pi,j−1pi,jpi,j+1 < π, which is due to the fact that the z-coordinates
increase in each step by 1, while the distances decrease (property (A2)). Note
that ∠pi,i+1, pi,i+2, pi,i+3 = · · · = ∠pi,n−2, pi,n−1, pi,n = π. Finally, we claim that
∠pi,i−2, pi,i−1, pi,n < π. Clearly, z(pi,i−1) − z(pi,i−2) = 1 = z(pi,n) − z(pi,i−1).
The claim follows by observing that, due to property (A2) and the geometric
series formed by the distances,

di(i−1, n) = di(i−1, i+1)+
n−1∑

k=i+1

di(k, k+1) < 2di(i−1, i+1) ≤ di(i−2, i−1).

It remains to show that, for 1 ≤ i < j ≤ n, polygons Pi and Pj do not intersect
other than in pi,j . This is simply due to the fact that Pj is above Pi in pi,j , and
lines �i and �j only intersect in (the projection of) this point. �	
Corollary 1. Every graph with minimum vertex-degree 3 admits a contact rep-
resentation by convex polygons in 3d.

Proof. Let n be the number of vertices of the given graph G = (V,E). We use the
contact representation of Kn and modify it as follows. For every pair {i, j} 
∈ E,
just remove the point pi,j before defining the convex hulls. �	



Representing Graphs and Hypergraphs by Touching Polygons in 3D 23

We can make the convex polygons of our construction strictly convex if we
slightly change the z-coordinates. For example, decrease the z-coordinate of pi,j

by δ/dmin{i,j}(1,max{i, j}), where δ is such that moving every point by at most
δ doesn’t change the orientation of any four non-coplanar points.

Let us point out that Erickson and Kim [11] describe a construction of pair-
wise face-touching 3-polytopes in 3d that may provide the basis for a different
representation in our model of a complete graph.

While we have shown that all graphs admit a 3d contact representation, these
representations may be very non-symmetric and can have very large coordinates.
This motivates the following question and specialized 3d drawing algorithms for
certain classes of (non-planar) graphs; see the following subsections.

Open Problem 1. Is there a polynomial p such that any n-vertex graph has a
3d contact representation with convex polygons on a grid of size p(n)?

Fig. 3. A 3d contact representation of a bipartite graph.

2.2 Bipartite Graphs

Theorem 3. Every bipartite graph G = (A∪B,E) admits a contact representa-
tion by convex polygons whose vertices are restricted to a cylindrical grid of size
|A|×2|B| or to a 3d integer grid of size |A|×2|B|×4|B|2. Such a representation
can be computed in O(|E|) time.

Proof. Let G be the given bipartite graph with bipartition (A,B). We place the
vertices of the A-polygons vertically above the corners of a regular 2|B|-gon in
the xy-plane. Each A-polygon goes to its own horizontal plane; the planes are
one unit apart. For an example, see Fig. 3. For each v ∈ B, the polygon pv

that represents v has a vertical edge above a unique even corner of the 2|B|-
gon. This vertical edge connects the bottommost A-polygon incident to pv to
the topmost A-polygon incident to pv. All the intermediate vertices of pv are



24 W. Evans et al.

placed on the vertical line through the clockwise next corner of the 2|B|-gon.
This makes sure that all vertices of pv lie in one plane, and pv does not intersect
any other B-polygon.

Due to convexity, the interiors of the A-polygons project to the interior of
the 2|B|-gon. Each B-polygon projects to an edge of the 2|B|-gon. Hence, the
A- and B-polygons are interior-disjoint.

Note that the polygons constructed by the argument above are not strictly
convex. We can obtain a representation with strictly convex polygons by using
a finer grid (|A| × |E|/2) on the cylinder. If we insist on representations on
the integer grid, we can replace the regular 2|B|-gonal base of the cylinder by
a strictly convex drawing of the 2|B|-cycle. Using grid points on the 2d unit
parabola, we obtain a 3d representation of size |A| × 2|B| × 4|B|2. �	

If we apply Theorem 3 to K3,3, we obtain a representation with three hori-
zontal equilateral triangles and three vertical isosceles triangles, but with a small
twist we can make all triangles equilateral. For the proof, see the full version.

Proposition 1 (♠). The graph K3,3 admits a contact representation in 3d using
unit equilateral triangles.

2.3 1-Planar Cubic Graphs

A simple consequence of the circle-packing theorem [17] is that every planar
graph (of minimum degree 3) is the contact graph of convex polygons in the
plane. In this section, we consider a generalization of planar graphs called 1-
planar graphs that have a drawing in 2d in which every edge (Jordan curve) is
crossed at most once.

Our approach to realizing these graphs will use the medial graph Gmed asso-
ciated with a plane graph G (or, to be more general, with any graph that has an
edge ordering). The vertices of Gmed are the edges of G, and two vertices of Gmed

are adjacent if the corresponding edges of G are incident to the same vertex of G
and consecutive in the circular ordering around that vertex. The medial graph
is always 4-regular. If G has no degree-1 vertices, Gmed has no loops. If G has
minimum degree 3, Gmed is simple. Also note that Gmed is connected if and only
if G is connected.

Theorem 4. Every 1-plane cubic graph with n vertices can be realized as a
contact graph of triangles with vertices on a grid of size (3n/2−1)×(3n/2−1)×3.
Given a 1-planar embedding of the graph, it takes linear time to construct such
a realization.

Proof. Let G be the given 1-plane graph. Let G′
med be the medial graph of G

with the slight modification that, for each pair {e, f} of crossing edges, G′
med

has only one vertex vef , which is incident to all (up to eight) edges that imme-
diately precede or succeed e and f in the circular order around their endpoints;



Representing Graphs and Hypergraphs by Touching Polygons in 3D 25

1
1

1
1

1
1

0

0

0

0

0

0

Fig. 4. 1-plane cubic graphs admit compact triangle contact representations.

ab

c d

Δa

Δc

Δb
Δd

0

−1

0 0a

dcb

view from above
view from below

xy-plane

Fig. 5. left: graphs G (here a B-configuration, gray) and G′
med; center: straight-line

drawing of G′
med; right: resulting 3d representation of G (numbers are z-coordinates).

see Fig. 4a. The order of the edges around vef is the obvious one. Using Schny-
der’s linear-time algorithm [24] for drawing 3-connected graphs1 straight-line,
we draw G′

med on a planar grid of size (3n/2 − 1) × (3n/2 − 1). Note that this is
nearly a contact representation of G except that, in each crossing point, all tri-
angles of the respective four vertices touch. Figure 4b is a sketch of the resulting
drawing (without using Schnyder’s algorithm) for the graph in Fig. 4a.

We add, for each crossing {e, f}, a copy v′
ef of the crossing point vef one unit

above. Then we select an arbitrary one of the two edges, say e = uv. Finally
we make the two triangles corresponding to u and v incident to v′

ef without
modifying the coordinates of their other vertices. The labels in Fig. 4b are the
resulting z-coordinates for our example; all unlabeled triangle vertices lie in the
xy-plane.

If a crossing is on the outer face of G, it can happen that a vertex of G incident
to the crossing becomes the outer face of G′

med; see Fig. 5 where this vertex is
called a and the crossing edges are ac and bd. Consider the triangle Δa that
represents a in G′

med. It covers the whole drawing of G′
med. To avoid intersections

1 If G′
med is not 3-connected, we add dummy edges to fully triangulate it and then

remove these edges to obtain a drawing of G′
med.



26 W. Evans et al.

with triangles that participate in other crossings, we put the vertex of Δa that
represents the crossing to z = −1, together with the vertex of the triangle Δc

that represents c.
Our 3d drawing projects vertically back to the planar drawing, so all triangles

are interior disjoint (with the possible exception of a triangle that represents the
outer face of G′

med). Triangles that share an edge in the projection are incident
to the same crossing – but this means that at least one of the endpoints of the
shared edge has a different z-coordinate. Hence, all triangle contacts are vertex–
vertex contacts. Note that some triangles may touch each other at z = 1/2 (as
the two central triangles in Fig. 4b), but our contact model tolerates this. �	

Fig. 6. Representing a 2-edge-connected cubic graph G by touching triangles in 3d:
(a) partition of the edge set into disjoint cycles and a perfect matching (the numbers
denote a permutation of the matching edges); (b) the graph H; (c) 3d contact represen-
tation of G; the numbers inside the triangles indicate the z-coordinates of the triangle
apexes (above h), the small numbers denote the non-zero z-coordinates of the vertices.

2.4 Cubic Graphs

We first solve a restricted case and then show how this helps us to solve the
general case of cubic graphs.

Lemma 2. Every 2-edge-connected cubic graph with n vertices can be realized
as a contact graph of triangles with vertices on a grid of size 3 × n/2 × n/2. It
takes O(n log2 n) time to construct such a realization.

Proof. By Petersen’s theorem [22], any given 2-edge-connected cubic graph G
has a perfect matching. Note that removing this matching leaves a 2-regular
graph, i.e., a set of vertex-disjoint cycles C1, . . . , Ck; see Fig. 6(a). Such a
partition can be computed in O(n log2 n) time [10]. Let n = |V (G)| and
n1 = |V (C1)|, . . . , nk = |V (Ck)|. Note that n = n1 + · · · + nk. We now con-
struct a planar graph H = (V,E) with n+1 vertices that will be the “floorplan”
for our drawing of G. The graph H consists of an n-wheel with outer cycle
v1,1, . . . , v1,n1 , . . . , vk,1, . . . , vk,nk

, n spokes and a hub h, with additional chords
v1,1v1,n1 , v2,1v2,n2 , . . . , vk,1vk,nk

. We call the edges v1,n1v2,1, . . . , vk,nk
v1,1 dummy



Representing Graphs and Hypergraphs by Touching Polygons in 3D 27

edges (thin gray in Fig. 6(b) and (c)) and the other edges on the outer face of
the wheel cycle edges.

The chords and cycle edges form triangles with apex h. More precisely, for
every i ∈ {1, . . . , k}, the chord-based triangle Δvi,1vi,ni

h and the ni − 1 cycle-
based triangles Δvi,1vi,2h, . . . ,Δvi,ni−1vi,ni

h together represent the ni vertices
in the cycle Ci of G. For each Ci, we still have the freedom to choose which vertex
of G will be mapped to the chord-based triangle of H. This will depend on the
perfect matching in G. The cycle edges will be drawn in the xy-plane (except
for those incident to a chord edge); their apexes will be placed at various grid
points above h such that matching triangles touch each other. The chord-based
triangles will be drawn horizontally, but not in the xy-plane.

In order to determine the height of the triangle apexes, we go through the
edges of the perfect matching in an arbitrary order; see the numbers in Fig. 6(a).
Whenever an endpoint v of the current edge e is the last vertex of a cycle,
we represent v by a triangle with chord base. We place the apexes of the two
triangles that represent e at the lowest free grid point above h; see the numbers
in Fig. 6(c). Our placement ensures that, in every cycle (except possibly one,
to be determined later), the chord-based triangle is the topmost triangle. This
guarantees that the interiors of no two triangles intersect (and the triangles of
adjacent vertices touch).

Now we remove the chords from H. The resulting graph is a wheel; we can
simply draw the outer cycle using grid points on the boundary of a (3 × n/2)-
rectangle and the hub on any grid point in the interior. (For the smallest cubic
graph, K4, we would actually need a (3 × 3)-rectangle, counting grid lines, in
order to have a grid point in the interior, but it’s not hard to see that K4 can
be realized on a grid of size 3 × 2 × 2.) If one of the k cycles encloses h in the
drawing (as C1 in Fig. 6(c)), we move its chord-based triangle from z = z� > 0
to the plane z = −1, that is, below all other triangles. Let i� be the index of
this cycle (if it exists). Note that this also moves the apex of the triangle that
is matched to the chord-based triangle from z = z� to z = −1. In order to keep
the drawing compact, we move each apex with z-coordinate z′ > z� to z′ − 1.
Then the height of our drawing equals exactly the number of edges in the perfect
matching, that is, n/2.

The correctness of our representation follows from the fact that, in the orthog-
onal projection onto the xy-plane, the only pairs of triangles that overlap are the
pairs formed by a chord-based triangle with each of the triangles in its cycle and,
if it exists, the chord-based triangle of Ci� with all triangles of the other cycles.
Also note that two triangles Δvi,j−1vi,jh and Δvi,jvi,j+1h (the second indices
are modulo ni) that represent consecutive vertices in Ci (for some i ∈ {1, . . . , k}
and j ∈ {1, . . . , ni}) touch only in a single point, namely in the image of vi,j .
This is due to the fact that vertices of G that are adjacent on Ci are not adjacent
in the matching, and for each matched pair its two triangle apexes receive the
same, unique z-coordinate.

We do not use all edges of H for our 3d contact representation of G. The
spokes of the wheel are the projections of the triangle edges incident to h. The



28 W. Evans et al.

k dummy edges don’t appear in the representation (but play a role in the proof
of Theorem 5 ahead). �	

In order to generalize Lemma 2 to any cubic graph G, we use the bridge-block
tree of G. This tree has a vertex for each 2-edge-connected component and an
edge for each bridge of G. The bridge-block tree of a graph can be computed
in time linear in the size of the graph [28]. The general idea of the construc-
tion is the following. First, remove all bridges from G and, using some local
replacements, transform each connected component of the obtained graph into
a 2-edge-connected cubic graph. Then, use Lemma 2 to construct a represen-
tation of each of these graphs. Finally, modify the obtained representations to
undo the local replacements and use the bridge-block tree structure to connect
the constructed subgraphs, restoring the bridges of G. The proof is in the full
version.

Theorem 5 (♠). Every cubic graph with n vertices can be realized as a contact
graph of triangles with vertices on a grid of size 3n/2 × 3n/2 × n/2. It takes
O(n log2 n) time to construct such a realization.

Corollary 2. Every graph with n vertices and maximum degree 3 can be realized
as a contact graph of triangles, line segments, and points whose vertices lie on a
grid of size 3�n/2× 3�n/2×�n/2. It takes O(n log2 n) time to construct such
a realization.

Proof. If n is odd, add a dummy vertex to the given graph. Then add dummy
edges until the graph is cubic. Apply Theorem5. From the resulting representa-
tion, remove the triangle that corresponds to the dummy vertex, if any. Discon-
nect the pairs of triangles that correspond to dummy edges. �	

3 Hypergraphs

We start with a negative result. Hypergraphs that give rise to simplicial 2-
complexes that are not embeddable in 3-space also do not have a realization
using touching polygons. Carmesin’s example of the cone over the complete
graph K5 is such a 2-complex2, which arises from the 3-uniform hypergraph on
six vertices whose edges are {{i, j, 6} : {i, j} ∈ [5]2}. Recall that d-uniform means
that all hyperedges have cardinality d. Any 3-uniform hypergraph that contains
these edges also cannot be drawn. For example, Kd

n, the complete d-uniform
hypergraph on n ≥ 6 vertices for d = 3 does not have a non-crossing drawing in
3d. For an elementary proof of this fact, see the full version.

Note that many pairs of hyperedges share two vertices in these graphs. This
motivates us to consider 3-uniform linear hypergraphs, i.e., hypergraphs where
pairs of edges intersect in at most one vertex. Very symmetric examples of such
2 Carmesin [8] credits John Pardon with the observation that the link graph at a

vertex v, which contains a node for every edge at v and an arc connecting two such
nodes if they share a face at v, must be planar for the 2-complex to be embeddable.



Representing Graphs and Hypergraphs by Touching Polygons in 3D 29

hypergraphs are Steiner systems. Recall that a Steiner system S(t, k, n) is an n-
element set S together with a set of k-element subsets of S (called blocks) such
that each t-element subset of S is contained in exactly one block. In particular,
examples of 3-uniform hypergraphs are Steiner triple systems S(2, 3, n) [27].
They exist for any vertex number in {6k+1, 6k+3: k ∈ N}. For n = 7, 9, 13, . . . ,
the corresponding 3-uniform hypergraph has n(n−1)/6 hyperedges and is ((n−
1)/2)-regular.

First we show that the two smallest triple systems, i.e., S(2, 3, 7) (also called
the Fano plane) and S(2, 3, 9), admit non-crossing drawings in 3d. See Fig. 7 for
the picture of the representation of the Fano plane. The proofs of the results
stated in this section can be found in the full version. Actually, the existence of
such representations follows from Ossona de Mendez’ work [21] (see introduc-
tion) since both hypergraphs have incidence orders of dimension 4 (which can
be checked by using an integer linear program). His approach, however, yields
coordinates that are exponential in the number of vertices.

Fig. 7. The Fano plane and a drawing using touching triangles in 3d

Proposition 2 (♠). The Fano plane S(2, 3, 7) and the Steiner triple system
S(2, 3, 9) admit non-crossing drawings using triangles in 3d.

Now we turn to a special class of 4-uniform hypergraphs; Steiner quadruple
systems S(3, 4, n) [26]. They exist for any vertex number in {6k + 2, 6k + 4: k ∈
N}. For n = 8, 10, 14, . . . , the corresponding 4-uniform hypergraph has m =(
n
3

)
/4 hyperedges and is 4m/n = (n−1)(n−2)/6-regular. We now show that no

Steiner quadruple system admits a drawing using convex quadrilaterals in 3d.

Observation 1. In a non-crossing drawing of a Steiner quadruple system using
quadrilaterals in 3d, every plane contains at most four vertices.

Proof. Suppose that there is a drawing R and a plane Π that contains at least
five vertices. Let ab be a maximum length edge of the convex hull of the points in
the plane Π. No four, say wxyz in that order, can be collinear or the quadrilateral
containing wyz is either wxyz, which is degenerate (a line segment), or it contains
x on its perimeter but x is not a corner, a contradiction. Thus the set S of
vertices on Π that are not on the edge ab has size at least two. If there exist



30 W. Evans et al.

u, v ∈ S such that abu and abv form3 two distinct quadrilaterals with ab then
these quadrilaterals intersect in the plane (they are both on the same side of ab),
a contradiction. If no such pair exists then S contains exactly two points and
they form one quadrilateral with ab, which must contain the other vertex in Π
(on the edge ab) that is not a corner, a contradiction. �	

Observation 1 is the starting point for the following result.

Proposition 3 (♠). The Steiner quadruple system S(3, 4, 8) does not admit a
non-crossing drawing using (convex or non-convex) quadrilaterals in 3d.

Theorem 6. No Steiner quadruple system admits a non-crossing drawing using
convex quadrilaterals in 3d.

Proof. Day and Edelsbrunner [9, Lemma 2.3] used an approach similiar to that
of Carmesin (mentioned in footnote 2) to show that the number of triangles
spanned by n points in 3d is less than n2 if no two triangles have a non-trivial
intersection. (A trivial intersection is a common point or edge.) We need to
redo their proof taking lower-order terms into account. If a Steiner quadruple
system S(3, 4, n) can be drawn using quadrilaterals in 3d, the intersection of these
quadrilaterals with a small sphere around a vertex is a planar graph. Recall that
any S(3, 4, n) has n vertices and m =

(
n
3

)
/4 quadruples. Let v be any vertex.

Then v is incident to 4m/n = (n − 1)(n − 2)/6 quadrilaterals. Breaking these
(convex) quadrilaterals into (n − 1)(n − 2)/3 triangles yields a graph on n − 1
vertices (that is, on all but v) with (n− 1)(n− 2)/3 edges. For n > 9, this graph
cannot be planar. The only Steiner quadruple system with at most nine vertices
is S(3, 4, 8), hence Proposition 3 yields our claim. �	

4 Conclusion and Open Problems

In Sect. 3 we discussed the Fano plane and other Steiner systems. The Fano
plane is the smallest projective plane. Can the second smallest projective plane,
PG(3), which is the Steiner quadruple system S(2, 4, 13), be drawn in 3d, such
that each edge is a (convex) quadrilateral? To this end, we make the following
observation (proved in the full version): If there is a drawing of PG(3) in which
every edge is a convex quadrilateral, then no two quadrilaterals are coplanar.

Acknowledgments. We are grateful to the organizers of the workshop Homonolo
2017, where the project originates. We thank Günter Rote for advice regarding strictly
convex drawings of polygons on the grid, and we thank Torsten Ueckerdt for bringing
Ossona de Mendez’ work [21] to our attention. We are indebted to Arnaud de Mesmay
and Eric Sedgwick for pointing us to the lemma of Dey and Edelsbrunner [9], which
yielded Theorem 6.

3 In a Steiner quadruple system, every triple of vertices appears in a unique quadruple.



Representing Graphs and Hypergraphs by Touching Polygons in 3D 31

References

1. Alam, M.J.: Contact representations of graphs in 2D and 3D. Ph.D. thesis, The
University of Arizona (2015)

2. Alam, J., Evans, W., Kobourov, S., Pupyrev, S., Toeniskoetter, J., Ueckerdt, T.:
Contact representations of graphs in 3D. In: Dehne, F., Sack, J.-R., Stege, U. (eds.)
WADS 2015. LNCS, vol. 9214, pp. 14–27. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-21840-3 2

3. Alam, M.J., Kaufmann, M., Kobourov, S.G.: On contact graphs with cubes and
proportional boxes. In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM
2016. LNCS, vol. 9587, pp. 107–120. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49192-8 9

4. Brandes, U., Cornelsen, S., Pampel, B., Sallaberry, A.: Path-based supports for
hypergraphs. J. Discret. Algorithms 14, 248–261 (2012). https://doi.org/10.1016/
j.jda.2011.12.009

5. Bremner, D., Evans, W., Frati, F., Heyer, L., Kobourov, S.G., Lenhart, W.J.,
Liotta, G., Rappaport, D., Whitesides, S.H.: On representing graphs by touching
cuboids. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp.
187–198. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36763-
2 17

6. Buchin, K., van Kreveld, M.J., Meijer, H., Speckmann, B., Verbeek, K.: On pla-
nar supports for hypergraphs. J. Graph Algorithms Appl. 15(4), 533–549 (2011).
https://doi.org/10.7155/jgaa.00237

7. Canny, J.F.: Some algebraic and geometric computations in PSPACE. In: Simon,
J. (ed.) Proceedings of the 20th Annual ACM Symposium on Theory of Computing
(STOC 1988), pp. 460–467 (1988). https://doi.org/10.1145/62212.62257

8. Carmesin, J.: Embedding simply connected 2-complexes in 3-space - I. A
Kuratowski-type characterisation. ArXiv report (2019). http://arxiv.org/abs/
1709.04642

9. Dey, T.K., Edelsbrunner, H.: Counting triangle crossings and halving planes. Dis-
crete Comput. Geom. 12(3), 281–289 (1994). https://doi.org/10.1007/BF02574381

10. Diks, K., Stańczyk, P.: Perfect matching for biconnected cubic graphs in
O(n log2 n) time. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe,
B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 321–333. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-11266-9 27

11. Erickson, J., Kim, S.: Arbitrarily large neighborly families of congruent symmetric
convex 3-polytopes. In: Bezdek, A. (ed.) Discrete Geometry, Pure and Applied
Mathematics, vol. 253, pp. 267–278. Marcel Dekker, New York (2003). In Honor
of W. Kuperberg’s 60th Birthday

12. Evans, W., Rz ↪ażewski, P., Saeedi, N., Shin, C.S., Wolff, A.: Representing graphs
and hypergraphs by touching polygons in 3D. ArXiv report (2019). http://arxiv.
org/abs/1908.08273

13. Felsner, S., Francis, M.C.: Contact representations of planar graphs with cubes. In:
Hurtado, F., van Kreveld, M.J. (eds.) Proceedings of the 27th Annual Symposium
on Computational Geometry (SoCG 2011), pp. 315–320. ACM (2011). https://doi.
org/10.1145/1998196.1998250

14. Gropp, H.: The drawing of configurations. In: Brandenburg, F.J. (ed.) GD 1995.
LNCS, vol. 1027, pp. 267–276. Springer, Heidelberg (1996). https://doi.org/10.
1007/BFb0021810

https://doi.org/10.1007/978-3-319-21840-3_2
https://doi.org/10.1007/978-3-319-21840-3_2
https://doi.org/10.1007/978-3-662-49192-8_9
https://doi.org/10.1007/978-3-662-49192-8_9
https://doi.org/10.1016/j.jda.2011.12.009
https://doi.org/10.1016/j.jda.2011.12.009
https://doi.org/10.1007/978-3-642-36763-2_17
https://doi.org/10.1007/978-3-642-36763-2_17
https://doi.org/10.7155/jgaa.00237
https://doi.org/10.1145/62212.62257
http://arxiv.org/abs/1709.04642
http://arxiv.org/abs/1709.04642
https://doi.org/10.1007/BF02574381
https://doi.org/10.1007/978-3-642-11266-9_27
http://arxiv.org/abs/1908.08273
http://arxiv.org/abs/1908.08273
https://doi.org/10.1145/1998196.1998250
https://doi.org/10.1145/1998196.1998250
https://doi.org/10.1007/BFb0021810
https://doi.org/10.1007/BFb0021810


32 W. Evans et al.

15. Hliněný, P., Kratochv́ıl, J.: Representing graphs by disks and balls (a survey of
recognition-complexity results). Discret. Math. 229(1–3), 101–124 (2001). https://
doi.org/10.1016/S0012-365X(00)00204-1

16. Johnson, D.S., Pollak, H.O.: Hypergraph planarity and the complexity of drawing
Venn diagrams. J. Graph Theory 11(3), 309–325 (1987). https://doi.org/10.1002/
jgt.3190110306

17. Koebe, P.: Kontaktprobleme der konformen Abbildung. Berichte über die Ver-
handlungen der Sächsischen Akad. der Wissen. zu Leipzig. Math.-Phys. Klasse 88,
141–164 (1936). https://doi.org/10.1007/BF02418546

18. Kratochv́ıl, J., Matoušek, J.: Intersection graphs of segments. J. Comb. Theory
Ser. B 62(2), 289–315 (1994). https://doi.org/10.1006/jctb.1994.1071

19. van Leeuwen, E.J., van Leeuwen, J.: Convex polygon intersection graphs. In: Bran-
des, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 377–388. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-18469-7 35

20. Matoušek, J.: Intersection graphs of segments and ∃R. ArXiv report (2014). http://
arxiv.org/abs/1406.2636

21. de Mendez, P.O.: Realization of posets. J. Graph Algorithms Appl. 6(1), 149–153
(2002). https://doi.org/10.7155/jgaa.00048

22. Petersen, J.: Die Theorie der regulären graphs. Acta Math. 15, 193–220 (1891).
https://doi.org/10.1007/BF02392606

23. Schaefer, M.: Complexity of some geometric and topological problems. In: Epp-
stein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 334–344. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11805-0 32

24. Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of the 1st
ACM-SIAM Symposium on Discrete Algorithms (SODA 1990), pp. 138–148 (1990).
https://dl.acm.org/citation.cfm?id=320176.320191

25. Thomassen, C.: Interval representations of planar graphs. J. Comb. Theory Ser. B
40(1), 9–20 (1986). https://doi.org/10.1016/0095-8956(86)90061-4

26. Weisstein, E.W.: Steiner quadruple system. From MathWorld – A Wol-
fram Web Resource. http://mathworld.wolfram.com/SteinerQuadrupleSystem.
html. Accessed 20 Aug 2019

27. Weisstein, E.W.: Steiner triple system. From MathWorld – A Wolfram Web
Resource. http://mathworld.wolfram.com/SteinerTripleSystem.html. Accessed 20
Aug 2019

28. Westbrook, J., Tarjan, R.E.: Maintaining bridge-connected and biconnected com-
ponents on-line. Algorithmica 7(1), 433–464 (1992). https://doi.org/10.1007/
BF01758773

29. Zykov, A.A.: Hypergraphs. Uspekhi Mat. Nauk 29(6), 89–154 (1974). https://doi.
org/10.1070/RM1974v029n06ABEH001303

https://doi.org/10.1016/S0012-365X(00)00204-1
https://doi.org/10.1016/S0012-365X(00)00204-1
https://doi.org/10.1002/jgt.3190110306
https://doi.org/10.1002/jgt.3190110306
https://doi.org/10.1007/BF02418546
https://doi.org/10.1006/jctb.1994.1071
https://doi.org/10.1007/978-3-642-18469-7_35
http://arxiv.org/abs/1406.2636
http://arxiv.org/abs/1406.2636
https://doi.org/10.7155/jgaa.00048
https://doi.org/10.1007/BF02392606
https://doi.org/10.1007/978-3-642-11805-0_32
https://dl.acm.org/citation.cfm?id=320176.320191
https://doi.org/10.1016/0095-8956(86)90061-4
http://mathworld.wolfram.com/SteinerQuadrupleSystem.html
http://mathworld.wolfram.com/SteinerQuadrupleSystem.html
http://mathworld.wolfram.com/SteinerTripleSystem.html
https://doi.org/10.1007/BF01758773
https://doi.org/10.1007/BF01758773
https://doi.org/10.1070/RM1974v029n06ABEH001303
https://doi.org/10.1070/RM1974v029n06ABEH001303


Optimal Morphs of Planar Orthogonal
Drawings II

Arthur van Goethem(B), Bettina Speckmann, and Kevin Verbeek

Department of Mathematics and Computer Science, TU Eindhoven,
Eindhoven, The Netherlands

{a.i.v.goethem,b.speckmann,k.a.b.verbeek}@tue.nl

Abstract. Van Goethem and Verbeek [12] recently showed how to
morph between two planar orthogonal drawings ΓI and ΓO of a connected
graph G while preserving planarity, orthogonality, and the complexity of
the drawing during the morph. Necessarily drawings ΓI and ΓO must be
equivalent, that is, there exists a homeomorphism of the plane that trans-
forms ΓI into ΓO. Van Goethem and Verbeek use O(n) linear morphs,
where n is the maximum complexity of the input drawings. However, if
the graph is disconnected their method requires O(n1.5) linear morphs.
In this paper we present a refined version of their approach that allows us
to also morph between two planar orthogonal drawings of a disconnected
graph with O(n) linear morphs while preserving planarity, orthogonality,
and linear complexity of the intermediate drawings.

Van Goethem and Verbeek measure the structural difference between
the two drawings in terms of the so-called spirality s = O(n) of ΓI relative
to ΓO and describe a morph from ΓI to ΓO using O(s) linear morphs. We
prove that s+1 linear morphs are always sufficient to morph between two
planar orthogonal drawings, even for disconnected graphs. The resulting
morphs are quite natural and visually pleasing.

1 Introduction

Continuous morphs of planar drawings have been studied for many years, start-
ing as early as 1944, when Cairns [7] showed that there exists a planarity-
preserving continuous morph between any two (compatible) triangulations that
have the same outer triangle. These results were extended by Thomassen [10]
in 1983, who gave a constructive proof of the fact that two compatible straight-
line drawings can be morphed into each other while maintaining planarity. The
resulting algorithm to compute such a morph takes exponential time (just as
Cairns’ result). Thomassen also considered the orthogonal setting and showed
how to morph between two rectilinear polygons with the same turn sequence.
For planar straight-line drawings the question was settled by Alamdari et al. [1],
following work by Angelini et al. [3]. They showed that O(n) uni-directional
linear morphs are sufficient to morph between any compatible pair of planar
straight-line drawings of a graph with n vertices while preserving planarity. The
corresponding morph can be computed in O(n3) time.
c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 33–45, 2019.
https://doi.org/10.1007/978-3-030-35802-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-35802-0_3


34 A. van Goethem et al.

In this paper we consider the orthogonal setting, that is, we study planarity-
preserving morphs between two planar orthogonal drawings ΓI and ΓO with
maximum complexity n, of a graph G. Here the complexity of an orthogonal
drawing is defined as the number of vertices and bends. All intermediate draw-
ings must remain orthogonal, as to not disrupt the mental map of the reader.
This immediately implies that the results of Alamdari et al. [1] do not apply,
since they do not preserve orthogonality. Biedl et al. [5] described the first results
in this setting, for so-called parallel drawings, where every edge has the same
orientation in both drawings. They showed how to morph between two parallel
drawings using O(n) linear morphs while maintaining parallelity and planarity.
More recently, Biedl et al. [4] showed how to morph between two planar orthogo-
nal drawings using O(n2) linear morphs, while preserving planarity, orthogonal-
ity, and linear complexity. Van Goethem and Verbeek [12] improved this bound
further to O(n) linear morphs for a connected graph G. This bound is tight,
based on the lower bound for straight-line graphs proven by Alamdari et al. [1].

If the graph G is disconnected, then Aloupis et al. [2] show how to connect G
in a way that is compatible with both ΓI and ΓO while increasing the complexity
of the drawings to at most O(n1.5). They also prove a matching lower bound if G
has at most n

4 connected components. This directly implies that Van Goethem
and Verbeek require O(n1.5) linear morphs for a disconnected graph G.

Paper Outline. We show how to refine the approach by Van Goethem and
Verbeek [12] to also morph between two planar orthogonal drawings of a discon-
nected graph G using O(n) linear morphs while preserving planarity, orthogo-
nality, and linear complexity. In Sect. 2 we describe the necessary background.
In particular, we discuss wires: equivalent sets of horizontal and vertical poly-
lines that capture the x- and y-order of the vertices in ΓI and ΓO. The spirality
of these wires guides the morph. In Sect. 3 we show how to find sets of wires
with linear spirality for equivalent orthogonal planar drawings ΓI and ΓO of a
disconnected planar graph G. Van Goethem and Verbeek are agnostic of the
connectivity of the graph once they create the wires. Hence, using the wires con-
structed in Sect. 3, we can directly apply their approach to disconnected graphs.

In the remainder of the paper we show how to “batch” intermediate morphs.
We argue solely based on sets of wires, hence the results apply to both connected
and disconnected graphs. In particular, in Sect. 4 we show how to combine all
intermediate morphs that act on segments of spirality s into one single linear
morph. Hence we need only s linear morphs to morph from ΓI to ΓO. However,
the rerouting and simplification operations introduced by van Goethem and Ver-
beek to lower the intermediate complexity are not compatible with batched linear
morphs and hence intermediate drawings have complexity of O(n3). In Sect. 5
we present refined versions of both operations which allow us to maintain linear
complexity through the s linear morphs. The initial setup for these operations
costs one additional morph, for a total of s + 1 linear morphs that preserve pla-
narity, orthogonality, and linear complexity. We implemented our algorithm and
believe that the resulting morphs are natural and visually pleasing1. We restrict
1 See https://youtu.be/n0ZaPtfg9TM for a short movie.



Optimal Morphs of Planar Orthogonal Drawings II 35

our arguments to proof sketches, all omitted details can be found in the full
version [11].

2 Preliminaries

Orthogonal Drawings. A drawing Γ of a graph G = (V,E) is a mapping from
every vertex v ∈ V to a unique point Γ (v) in the Euclidean plane and from
each edge (u, v) to a simple curve in the plane starting at Γ (u) and ending at
Γ (v). A drawing is planar if no two curves intersect in an internal point, and no
vertices intersect a curve in an internal point. A drawing is orthogonal if each
edge is mapped to an orthogonal polyline consisting of horizontal and vertical
segments meeting at bends. In a straight-line drawing every edge is represented
by a single line-segment. Two planar drawings Γ and Γ ′ are equivalent if there
exists a homeomorphism of the plane that transforms Γ into Γ ′.

We consider morphs between two equivalent drawings of a graph G. To sim-
plify the presentation, we assume that both drawings are straight-line drawings
with n vertices. If this is not the case then we first unify Γ and Γ ′. We sub-
divide segments, creating additional virtual bends, to ensure that every edge is
represented by the same number of segments in Γ and Γ ′. Next, we replace all
bends with vertices. All edges of the resulting graph G∗ are now represented by
straight segments (horizontal or vertical) in both Γ and Γ ′.

A linear morph of two drawings Γ and Γ ′ can be described by a continuous
linear interpolation of all vertices and bends, which are connected by straight
segments. For each 0 ≤ t ≤ 1 there exists an intermediate drawing Γt where
each vertex v is drawn at Γt(v) = (1 − t)Γv + tΓ ′

v (Γ0 = Γ and Γ1 = Γ ′).
A linear morph maintains planarity (orthogonality, linear complexity, resp.), if
every intermediate drawing Γt is planar (orthogonal, of linear complexity, resp.).

Wires. Following van Goethem and Verbeek [12] we use orthogonal polylines
called wires as the main tool to determine the morph. Wires consist of horizontal
or vertical segments called links. We use two sets of wires to capture the hori-
zontal and vertical order of the vertices in ΓI and ΓO. The lr-wires W→ traverse
the drawings from left to right, and the tb-wires W↓ traverse the drawings from
top to bottom. Since the horizontal and vertical order of the vertices in ΓO are

Fig. 1. Two unified drawings ΓI and ΓO of G (black) plus equivalent wires (red/blue).
(Color figure online)



36 A. van Goethem et al.

guiding our morph, the wires W→ and W↓ are simply horizontal and vertical
lines in ΓO separating consecutive vertices in the x- and y-order (only if their x-
or y-coordinates are distinct). ΓO and ΓI are equivalent, hence there exist wires
in ΓI that are equivalent to the wires in ΓO: there is a one-to-one matching
between the wires of ΓO and ΓI such that matching wires partition the vertices
identically, and cross both the segments of the drawings and the links of the
other wires in the same order (see Fig. 1). Any such two wires in ΓI do not cross
if they are from the same set and cross exactly once otherwise.

Van Goethem and Verbeek use the spirality of wires as a measure for the
distance to ΓO (where all wires are straight lines of spirality zero). Spirality is a
well-established measure in the context of orthogonal drawings and is frequently
used for bend-minimization [6,8,9]. Specifically, let w ∈ W→ be a lr-wire, and
�1, . . . , �k be the links ordered along w. Let bi be the orientation of the bend
from �i to �i+1, where bi = 1 for a left turn, bi = −1 for a right turn, and bi = 0
otherwise. The spirality of a link �i is defined as s(�i) =

∑i−1
j=1 bi. A maximum-

spirality link is any link with the largest absolute spirality. The spirality of a
wire is the maximum absolute spirality of any link in the wire, the spirality of a
set of wires is the maximum spirality of any wire in the set.

The spirality of a drawing Γ is not well defined: it is always relative to another
drawing Γ ′ and the straight-line wires induced by Γ ′. Furthermore, there are
possibly multiple sets of matching wires in Γ for the straight-line wires in Γ ′.
Still, whenever the drawing Γ ′ and the matching set of wires in Γ are clear from
the context, then by abuse of notation we will speak of the spirality of Γ . Unless
stated otherwise, we always consider spirality relative to ΓO.

Slides. Biedl et al. [4] introduced slides as a particular type of linear morph
that operates on the segments of the drawing. Van Goethem and Verbeek [12]
extended this concept to wires. Slides on wires may be accompanied by the
insertion or deletion of bends in the drawing. In the following we exclusively
consider slides on wires. A zigzag consists of three consecutive links of a wire
and two bends β and γ that form a left turn followed by a right turn or vice
versa. Consider the horizontal zigzag with bends β and γ in Fig. 2(a). Let V be
the set of vertices and bends of both the drawing and the wires that are (1) above
or at the same height as β and strictly to the left of β, (2) that are strictly above
γ, and (3) β. The corresponding region is shaded in Fig. 2. A zigzag-eliminating

Fig. 2. A drawing (black) with vertices (open marks) and bends (closed marks). (a)
A zigzag-eliminating slide with center link βγ. (b) Introducing two additional bends
in a crossing segment ensures orthogonality. (c) A bend-introducing slide.



Optimal Morphs of Planar Orthogonal Drawings II 37

slide is a linear morph that straightens a zigzag on a wire by moving all vertices
and bends in V up by the initial distance between β and γ.

By definition, wires do not contain any vertices or bends of the drawing or
other wires. However, the center link βγ might be crossed by a segment of the
drawing or a link of a wire in the other set (see Fig. 2(b) for a crossing with
a segment of the drawing). In this case we introduce two virtual bends in the
segment or the link on the crossing and symbolically offset one to the right
and one to the left. The left bend is thus included in V while the right bend
is not. We can prevent that multiple segments or links cross βγ using so-called
bend-introducing slides as discussed in [12] (see Fig. 2(c)).

3 Linear Morphs for Disconnected Graphs

Let ΓI and ΓO be two equivalent planar orthogonal drawings of a disconnected
graph G. For a connected graph there is a unique homotopy class in ΓI that
contains all possible wires that match a given wire w from ΓO. This statement
does not hold for disconnected graphs: there might be more than one homotopy
class in ΓI that matches w (see Fig. 3(a)). If we choose homotopy classes inde-
pendently for the wires in ΓI then their union might not be equivalent to the set
of wires in ΓO, for example, wires might cross more than once (see Fig. 3(c)).

Below we show that we can choose homotopy classes for the wires in ΓI

incrementally, first for the lr-wires and then for the tb-wires, while maintaining
the correct intersection pattern and hence equivalence with ΓO. For each of the
resulting equivalence classes we add the shortest wire to the set of wires. It
remains to argue that the resulting set of wires has spirality O(n) despite the
interdependence of the homotopy classes and the fact that the arrangement of
drawing and wires can have super-linear complexity (which invalidates the proofs
from [12]). Below we consider only W→, analogous results hold for W↓.

Lemma 1. For each right-oriented link �→ of a wire w ∈ W→ with positive
(negative) spirality s there exists a vertical line L and a subsequence of Ω(|s|)
links of w crossing L, such that the absolute spiralities of the links in sequence
are [0, 2, 4, . . . , |s|−2, |s|], and when ordered top-to-bottom (bottom-to-top) along
L form the sequence [2, 6, 10, . . . , |s| − 2, |s|, |s| − 4, . . . , 4, 0].

Fig. 3. (a) A (straight-line) wire w in ΓO (red) and two possible wires in ΓI from
different homotopy classes that both match w. (b) A graph with three connected
components. (c) Wires in ΓI that cross three times. (d) Set of wires equivalent to ΓO.
(Color figure online)



38 A. van Goethem et al.

Fig. 4. (a) Lemma 1 for a link �→ and sequence S = (�3, �5, �13, �15, �→). (b) The
i-core of a spiral for a link �i ∈ S (gray). (c) The i-layer of the spiral (gray). (d) A
layer cannot only contain wires as then we can shorten all wires.

Figure 4(a) illustrates Lemma 1. Let �→ be a right-oriented link on a wire w
and w.l.o.g. let s > 0 be the spirality of w. Further, let L be a vertical line through
�→ and S a subsequence from w with the properties guaranteed by Lemma 1.
Finally, let �i ∈ S be the unique link with spirality 0 ≤ i ≤ s in S. We define
the i-core for S (for 4 ≤ i ≤ s and i (mod 4) = 0) as the region enclosed by the
wire w from the intersection between �i−4 and L to the intersection between �i

and L and the straight line segment along L connecting them (see Fig. 4(b)). We
define the i-layer for S (for 4 ≤ i ≤ s − 4 and i (mod 4) = 0) as the difference
of the i-core and the (i + 4)-core (see Fig. 4(c)).

Lemma 2. An equivalent set of lr-wires with spirality O(n) exists.

Proof (Sketch). We prove by induction that we can add a new lr-wire with
spirality O(n). If a wire w has ω(n) layers, then we can argue via shortcuts (see
Fig. 4(d)) that w was not shortest with respect to previously inserted wires. ��
Lemma 3. An equivalent set of wires with spirality O(n) exists.

Proof (Sketch). By Lemma 2 we can insert all lr-wires with spirality O(n). By
Lemma 2 from [12] the spirality of intersecting links is the same. Apply Lemma 2
for the tb-wires in the regions between the intersections with lr-wires. ��
Theorem 1. Let ΓI and ΓO be two unified planar orthogonal drawings of a
(disconnected) graph G. We can morph ΓI into ΓO using Θ(n) linear morphs
while maintaining planarity and orthogonality.

Proof. By Lemma 3 an equivalent set of wires with spirality s = O(n) exists.
By Theorem 8 from [12] we can thus morph the drawings into each other using
O(s) = O(n) linear morphs. The lower bound of Ω(n) follows from [1]. ��

4 Combining Intermediate Linear Morphs

The proof of Theorem 1 implies a morph between two unified planar orthogonal
drawings ΓI and ΓO exists using O(s) linear morphs, where s is the spirality of
ΓI . In this section we show how to combine consecutive linear morphs into a total
number of only s linear morphs, while maintaining planarity and orthogonality.



Optimal Morphs of Planar Orthogonal Drawings II 39

The morphs we describe can be encoded by a sequence of drawings, start-
ing with ΓI and ending with ΓO, such that every consecutive pair of drawings
can be linearly interpolated while maintaining planarity and orthogonality. For
notational convenience let Γi −−� Γj indicate that Γi occurs before Γj during the
morph and Γi =� Γj that Γi −−� Γj or Γi = Γj .

Let an iteration of the original morph consist of all linear slides that jointly
reduce spirality by one. Let the first drawing of iteration s be the first drawing
in the original morph with spirality s and the last drawing be the first drawing
with spirality s−1. Consecutive iterations overlap in exactly one drawing. These
drawings in the overlap of iterations are the intermediate steps of the final morph.
Within this section let ΓI =� Γa −−� Γb =� ΓO, where Γa is the first drawing with
spirality s and Γb is the first drawing with spirality s − 1.

4.1 Staircases

Consider two distinct vertices v and w of the drawing. Define an x-inversion
(y-inversion) of v and w between Γa and Γb when the sign (+,−,0) of v.x − w.x
(v.y − x.y) differs in Γa and Γb. We say two vertices are x-inverted (y-inverted),
or simply inverted. Two vertices v and w are separated in a drawing by a link �
when they are both in the vertical (horizontal) strip spanned by �, and v and w
are on opposite sides of �.

Lemma 4. Two vertices v and w can be inverted by a zigzag-removing slide
along link �, if and only if v and w are separated by �.

w

vvA downward staircase is a sequence of horizontal links where:
(1) the left-endpoints are x-monotone increasing and y-monotone
decreasing, (2) the projection on the x-axis is overlapping or
touching for a pair if and only if they are consecutive in the
sequence, and (3) all links have positive spirality. Two vertices v
and w are separated by a downward staircase if v is in the ver-
tical strip spanned by the first link of the staircase and above it and w is in
the vertical strip spanned by the last link and below it. Similar concepts can be
defined for upwards staircases and for vertical links.

Fig. 5. Regions surrounding �s in Γi−1

and the matching regions in Γi.
Fig. 6. Sets SL and SR in Γa and Γb.



40 A. van Goethem et al.

Lemma 5. Two vertices v and w that are x-inverted (y-inverted) first during
a morph from Γa to Γb, are separated by a horizontal (vertical) staircase of
maximum spirality links in Γa.

Proof (Sketch). Assume w.l.o.g. that only one inversion occurs and it occurs
from Γb−1 to Γb. By Lemma 4, v and w are separated by a link � in Γb−1. Link
� must have maximum absolute spirality as it was selected for the morph. We
now prove inductively that a staircase exists in all drawings from Γa to Γb−1 by
“moving backwards” through the morph. To this end we define four rectangular
regions A,B,C,D surrounding �s in Γi−1 (see Fig. 5). During the linear slide
from Γi−1 to Γi two new regions F and G are created, which cannot contain
vertices. Using these rectangular regions and a case distinction on the type of
linear slide, we can argue inductively that a staircase separating v and w must
also exist in Γi−1. ��

4.2 Inversions

We show that every pair of vertices is inverted along at most one axis during the
morph from Γa to Γb. We then prove that Γa has spirality one relative to Γb.

Lemma 6. Two vertices v and w can be inverted along only one axis during the
morph from Γa to Γb.

Lemma 7. Each vertical (horizontal) line in Γb not crossing a vertex, can be
matched to a y- (x-)monotone wire in Γa.

Proof (Sketch). Consider a vertical line L↓ in Γb not intersecting any vertex. Line
L↓ partitions the set of vertices and vertical edges in Γb into two subsets SL and
SR. Consider a horizontal line L→ in Γa and consider the maximal intervals
formed along it by elements from the same set SL or SR (see Fig. 6). Set SL

and SR form exactly two maximal intervals along L→. Thus a y-monotone line
exists correctly splitting SL and SR. We can show that this y-monotone line
must intersect horizontal edges in the correct order as well. ��
Lemma 8. Drawing Γa has spirality one relative to Γb.

4.3 Single Linear Morph

We now show that any two planar orthogonal drawings Γi and Γj , where Γi

has spirality one relative to Γj , can be morphed into each other using a single
linear morph while maintaining planarity. Two drawings are shape-equivalent if
for each edge the sequence of left and right turns is identical and the orientation
of the initial segment is identical in both drawings. We say two drawings are
degenerate shape-equivalent if edges may contain zero-length segments but an
assignment of orientations to the segments exists that is consistent with both
drawings. Two (degenerate) shape-equivalent drawings are per definition also
unified. We can make Γa degenerate shape-equivalent to Γb by adding zero-
length edges whenever maximum absolute spirality links in Γa cross an edge.



Optimal Morphs of Planar Orthogonal Drawings II 41

Fig. 7. (a) Two points p and q on vertical segments of the drawing that are inverted
along both axes imply wires in ΓI that are not equivalent to ΓO. (b) Points p and q
on a horizontal and vertical segment. (c) Points p and q on horizontal segments.

We say two points p and q on the drawing are split by a wire when p and q lie
on different sides of the wire.

Lemma 9. Let ΓI and ΓO be two degenerate shape-equivalent drawings, where
ΓI has spirality one. There exists a single linear morph from ΓI to ΓO that
maintains planarity and orthogonality.

Proof (Sketch). The partition of the drawing by all wires defines cells: regions
of the plane not split by any wire. For each cell containing at least one bend
or vertex, we can linearly interpolate all vertices and bends in ΓI to the unique
vertex or bend location in ΓO. This directly defines a linear morph between ΓI

and ΓO. To argue planarity of this morph, we assume for contradiction that
there exist two points p and q on an edge or vertex of the drawing that coincide
during the morph (excluding ΓI and ΓO). Then p and q must be x- and y-
inverted in ΓO compared to ΓI and there must be two vertices r and s that
are x- and y-inverted and split by at least a tb-wire and a lr-wire. As the lr-
wire and the tb-wire are monotone they cross at least three times (see Fig. 7).
Contradiction. ��

Theorem 2. Let ΓI and ΓO be two unified planar orthogonal drawings of a
(disconnected) graph G, where ΓI has spirality s. We can morph ΓI into ΓO

using exactly s linear morphs while maintaining planarity and orthogonality.

5 Linear Complexity of Intermediate Drawings

Van Goethem and Verbeek [12] describe rerouting and a simplification operations
that reduce the complexity of intermediate drawings to O(n). These operations
are not compatible with the batched linear morphs we described in Sect. 4. Below
we show how to adapt these operations to the batched setting. These adaptations
come at the cost of a single additional linear morph.



42 A. van Goethem et al.

Fig. 8. (a) An ε-band adjacent to the edge. (b) Inserting an s-windmill. (c–d) Reroute
wires after linear slide without introducing new crossings.

5.1 Rerouting

To avoid that the linear morphs introduce too many bends in a single iteration
of the morph, we show how to route the wires such that only O(n) complexity is
added to the drawing in each iteration. The initial rerouting of the wires in ΓI

increases the maximum spirality by one, but it prevents any increase of spirality
during the morph. Thus, using Theorem 2, s + 1 morphs are sufficient to morph
two equivalent drawings into each other while maintaining planarity and keeping
complexity of the intermediate drawings to O(n2).

We reroute the wires in W↓ and W→ as follows. Consider an edge e that is
crossed by at least two wires in ΓI . By Lemma 9 from [12] all crossing links
have the same spirality. Assume w.l.o.g. that this spirality is positive, otherwise
mirror the rotations and replace right by left. Let ε be a small distance such that
the ε-band above e is empty except for the links crossing e and that there is more
than a 2ε distance between the right-most crossing link and the right-endpoint
of e (see Fig. 8(a)).

We insert an s-windmill of all crossing wires within the ε-band above e by
rerouting the wires as follows. First disconnect all crossing links within the ε-
band above e. Then reroute all wires in a parallel bundle to the right, beyond
the right-most wire wr crossing e. Now we spiral the bundle using right turns
until the spirality of the links reaches zero. Next we unwind the bundle again
within the spiral. Finally we reconnect the wires by routing back parallel to e
to maintain the original crossing points (see Fig. 8(b)). This rerouting can be
executed without introducing crossings between the wires. It does increase the
spirality of the drawing by one.

We now change each iteration as follows. Consider a horizontal edge e crossed
by k > 1 links of maximum absolute spirality s (assuming s > 0) at the start of
the iteration. Instead of performing a linear slide on all crossing links, we perform
a single linear slide only on the rightmost crossing link. This slide creates a new
vertical segment (see Fig. 8(c)). Thanks to the introduction of the s-windmill,
we can easily reroute the other crossing wires to intersect the new vertical seg-
ment instead of the horizontal segment without introducing other crossings (see
Fig. 8(d)). The newly created crossing links must have spirality s − 1 as all links
crossing the same segment have the same spirality (Lemma 9 from [12]). We can
reduce all remaining spirality s links without introducing additional complexity
in the drawing.



Optimal Morphs of Planar Orthogonal Drawings II 43

Lemma 10. At the start of iteration i of the morph, all wires crossing an edge
e with links of spirality i form an i-windmill in an empty ε-band next to e.

Lemma 11. Let Γs be the first drawing of an iteration and Γ r
s−1 the rerouted

last drawing. The spirality of Γs relative to Γ r
s−1 is one.

Proof (Sketch). We can argue that rerouting wires does not eliminate staircases.
A link that is rerouted may have been part of a staircase, but the new links
replacing it do not break any staircase properties. As rerouting links maintains
staircases, Lemmata 5–8 still apply. ��

Drawing Γ r
s−1 compared to Γs contains two additional bends in each edge

crossed by maximum absolute spirality links in Γs. We can make Γs and Γ r
s−1

degenerate shape-equivalent by inserting an additional zero-length segment at
the right-most (left-most for negative spirality) crossing link for each edge crossed
by maximum absolute spirality links. By Lemmata 9 and 11 we can morph the
resulting Γs into Γ r

s−1 in a single linear morph while maintaining planarity.
As, independently of how many wires are crossing it, each edge only intro-

duces two new bends, complexity increases by O(n) during each iteration. Thus
the overall complexity is O(s ·n). We conclude that we can morph two drawings
ΓI and ΓO, where ΓI has spirality s, into each other using s + 1 linear morphs
while maintaining planarity and O(s · n) complexity of the drawing.

5.2 Simplification

By using rerouting we can ensure that the complexity of the drawing increases
by at most O(n) in every iteration, but its complexity may still grow to O(n2)
over O(n) iterations. In this section we show how to simplify the intermediate
drawings to ensure that the complexity after each iteration is O(n).

We again consider a single iteration starting with Γs and ending with Γs−1.
Using rerouting we can find an alternative final drawing Γ r

s−1 that also maintains
planarity. We now introduce a redraw step that further simplifies Γ r

s−1 into
a straight-line drawing Γ ′

s−1 such that a linear morph from Γs to Γ ′
s−1 still

maintains planarity. The redraw step works as follows.
For each vertex v in Γ r

s−1, consider a 6ε-sized square box surrounding v that
contains only v and a 3ε-part of each outgoing edge from v. If an incident edge
e is crossed by a maximum absolute spirality link in Γs, then we reroute e inside
the 6ε-box around v. Specifically, for an edge e leaving v rightwards, we reroute e
within the 6ε-box using the coordinates (v, v+(0,−ε), v+(2ε,−ε), v+(2ε, 0), v+
(3ε, 0)) (see Fig. 9(a)). Analogous rerouting can be done for edges leaving v in
other directions. For an edge crossed by a negative spirality link invert the left
and right turns.

Lemma 12. We can redraw all edges in Γs−1 that were crossed by a maximum-
spirality link in Γs within 6ε-boxes while maintaining planarity of the drawing.



44 A. van Goethem et al.

Fig. 9. (a) A 6ε-box surrounding a vertex v (dashed) with four redrawn edges. (b)
Original drawing, rerouted drawing, and straightening the drawing.

Proof (Sketch). We can establish a relation between the spiralities of two seg-
ments incident at the same vertex. Using this relation we can argue that, after
redrawing, no two edges leave a vertex in the same direction. As a result, there
are no planarity violations within the 6ε-boxes around vertices. ��
Lemma 13. If Γs is a straight-line drawing with spirality s > 0 then there exists
a straight-line drawing Γ ′

s−1 with spirality s − 1.

Proof (Sketch). Let Γ r
s−1 be the drawing obtained by applying rerouting to the

last drawing of iteration s. Consider an edge e crossed by maximum absolute
spirality links in Γs. Edge e has three segments in Γ r

s−1 due to the two introduced
bends. The first and last segment do not cross any wires. We can apply the redraw
step to e, resulting in three more segments at the start and end of e. Finally we
eliminate all additional segments of e by performing zigzag-eliminating slides on
these segments (see Fig. 9(b)). ��
Lemma 14. The spirality of Γ ′

s−1 relative to Γs is one.

Proof (Sketch). Let the main wire set be the set of wires used to compute the
morph including rerouting from Γs to Γ r

s−1. Consider a reference wire grid that
is a straight-line wire grid in Γs. Using Lemmata 7, 8, and 11 but swapping the
roles of Γa and Γb, we obtain the result that there is an equivalent monotone
set of wires in Γ r

s−1 matching the reference grid in Γs. Thus the spirality of Γs

relative to Γ r
s−1 is one.

When straightening Γ r
s−1 to Γ ′

s−1 only zigzag-removing slides are performed
on segments not crossed by a wire from the main wire set. As such a segment
was not crossed by a wire from the main wire set, the orientation of the segment
is unchanged in Γ r

s−1. Specifically, any link of a wire from the reference wire grid
that crosses such a segment must have spirality zero. When straightening Γ r

s−1

to Γ ′
s−1 the zigzag-removing slides may insert additional bends in these reference

wires, but the wires will remain monotone. ��
We can make Γs degenerate shape-equivalent to Γ ′

s−1 as follows. For each edge
e crossed by maximum absolute spirality links, we split e at the crossing with
the right-most (or left-most if the links have negative spirality) crossing link and
insert a zero-length segment. Furthermore, we add three zero-length segments
at the endpoint of each such edge e coincident with the respective endpoint.



Optimal Morphs of Planar Orthogonal Drawings II 45

Theorem 3. Let ΓI and ΓO be two equivalent drawings of a (disconnected)
graph G, where ΓI has spirality s. We can morph ΓI into ΓO using s + 1 linear
morphs while maintaining planarity, orthogonality, and linear complexity of the
drawing during the morph.

Acknowledgements. Bettina Speckmann and Kevin Verbeek are supported by the
Netherlands Organisation for Scientific Research (NWO) under project no. 639.023.208
(B.S.) and no. 639.021.541 (K.V.). We want to thank the anonymous reviewers for their
extensive feedback.

References

1. Alamdari, S., Angelini, P., Barrera-Cruz, F., Chan, T., Da Lozzo, G., Di Battista,
G., Frati, F., Haxell, P., Lubiw, A., Patrignani, M., Roselli, V., Singla, S., Wilkin-
son, B.: How to morph planar graph drawings. SIAM J. Comput. 46(2), 824–852
(2017)

2. Aloupis, G., Barba, L., Carmi, P., Dujmović, V., Frati, F., Morin, P.: Compatible
connectivity augmentation of planar disconnected graphs. Discrete Comput. Geom.
54(2), 459–480 (2015)

3. Angelini, P., Frati, F., Patrignani, M., Roselli, V.: Morphing planar graph drawings
efficiently. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 49–60.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03841-4 5

4. Biedl, T., Lubiw, A., Petrick, M., Spriggs, M.J.: Morphing orthogonal planar graph
drawings. ACM Trans. Algorithms 9(4), 29:1–29:24 (2013)

5. Biedl, T., Lubiw, A., Spriggs, M.J.: Morphing planar graphs while preserving edge
directions. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 13–24.
Springer, Heidelberg (2006). https://doi.org/10.1007/11618058 2

6. Bläsius, T., Lehmann, S., Rutter, I.: Orthogonal graph drawing with inflexible
edges. Comput. Geom. 55, 26–40 (2016)

7. Cairns, S.: Deformations of plane rectilinear complexes. Am. Math. Monthly 51(5),
247–252 (1944)

8. Di Battista, G., Liotta, G., Vargiu, F.: Spirality and optimal orthogonal drawings.
SIAM J. Comput. 27(6), 1764–1811 (1998)

9. Didimo, W., Giordano, F., Liotta, G.: Upward spirality and upward planarity test-
ing. SIAM J. Discrete Math. 23(4), 1842–1899 (2009)

10. Thomassen, C.: Deformations of plane graphs. J. Comb. Theory Ser. B 34(3),
244–257 (1983)

11. van Goethem, A., Speckmann, B., Verbeek, K.: Optimal Morphs of Planar Orthog-
onal Drawings II. arXiv e-prints, August 2019. arXiv:1908.08365

12. van Goethem, A., Verbeek, K.: Optimal morphs of planar orthogonal drawings.
In: Proceedings of the 34th International Symposium on Computational Geometry
(SoCG 2018), pp. 42:1–42:14 (2018)

https://doi.org/10.1007/978-3-319-03841-4_5
https://doi.org/10.1007/11618058_2
http://arxiv.org/abs/1908.08365


Computing Stable Demers Cartograms

Soeren Nickel1 , Max Sondag2(B) , Wouter Meulemans2 ,
Markus Chimani3 , Stephen Kobourov4 , Jaakko Peltonen5 ,

and Martin Nöllenburg1

1 Algorithms and Complexity Group, TU Wien, Vienna, Austria
soeren.nickel@tuwien.ac.at, noellenburg@ac.tuwien.ac.at

2 TU Eindhoven, Eindhoven, The Netherlands
{m.f.m.sondag,w.meulemans}@tue.nl

3 University of Osnabrück, Osnabrück, Germany
markus.chimani@uni-onsabrueck.de

4 University of Arizona, Tucson, AZ, USA
kobourov@cs.arizona.edu

5 Tampere University, Tampere, Finland
jaakko.peltonen@tuni.fi

Abstract. Cartograms are popular for visualizing numerical data for
map regions. Maintaining correct adjacencies is a primary quality crite-
rion for cartograms. When there are multiple data values per region (over
time or different datasets) shown as animated or juxtaposed cartograms,
preserving the viewer’s mental map in terms of stability between car-
tograms is another important criterion. We present a method to com-
pute stable Demers cartograms, where each region is shown as a square
and similar data yield similar cartograms. We enforce orthogonal separa-
tion constraints with linear programming, and measure quality in terms
of keeping adjacent regions close (cartogram quality) and using similar
positions for a region between the different data values (stability). Our
method guarantees ability to connect most lost adjacencies with minimal
leaders. Experiments show our method yields good quality and stability.

Keywords: Time-varying data · Cartograms · Mental-map
preservation

1 Introduction

Myriad datasets are georeferenced and relate to specific places or regions. A
natural way to visualize such data in their spatial context is by cartographic
maps. A choropleth map is a prominent tool, which colors each region in a map

This research was initiated at NII Shonan Meeting 127 “Reimagining the Mental Map
and Drawing Stability”. M. Sondag is supported by The Netherlands Organisation for
Scientific Research (NWO) under project no. 639.023.20. S. Kobourov is supported
by NSF grants CCF-1740858, CCF-1712119 and DMS-1839274. M. Nöllenburg is sup-
ported by FWF grant P 31119.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 46–60, 2019.
https://doi.org/10.1007/978-3-030-35802-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_4&domain=pdf
http://orcid.org/0000-0001-5161-3841
http://orcid.org/0000-0003-3309-638X
http://orcid.org/0000-0002-4978-3400
http://orcid.org/0000-0002-4681-5550
http://orcid.org/0000-0002-0477-2724
http://orcid.org/0000-0003-3485-8585
http://orcid.org/0000-0003-0454-3937
https://doi.org/10.1007/978-3-030-35802-0_4


Computing Stable Demers Cartograms 47

by its data value. Such maps have several drawbacks: data may not be correlated
to region size and hence the visual salience of large vs small regions is not equal.
Moreover, colors are difficult to compare and not the most effective encoding for
numeric data [23], requiring a legend to facilitate relative assessment.

Cartograms, also called value-by-area maps, overcome the drawbacks by
reducing spatial precision in favor of clearer encoding of data values: the map
is deformed such that each region’s visual size is proportional to its data value.
Attention is then drawn to items with large data values and comparison of rel-
ative magnitudes becomes a task of estimating sizes – which relies on more
accurate visual variables for numeric data [23]. This also frees up color as a
visual variable. Cartogram quality is assessed by criteria [25] including 1. Spa-
tial deformation: regions should be placed close to their geographic position;
2. Shape deformation: each region should resemble its geographic shape;
3. Preservation of relative directions: spatial relations such as north-south
and east-west should be maintained. 4. Topological accuracy: geographically
adjacent regions should be adjacent in the cartogram, and vice versa. 5. Carto-
graphic error: relative region sizes should be close to the data values. Criteria
1–4 describe geographical accuracy of the region arrangement. Maintaining rela-
tive directions also helps preserve a viewer’s spatial mental model [30] Criterion
5 (also called statistical error) captures how well data values are represented.
Often techniques aim at zero cartographic error sacrificing other criteria.

Cartograms can also be effective for showing different datasets of the same
regions, arising from time-varying data such as yearly censuses yielding tempo-
rally ordered values for each region, or from available measurements of different
demographic variables that we want to explore, compare and relate, yielding a
vector or set of values for each region. Visualizations for multiple cartograms
include animations (especially for time series), small multiples showing a matrix
of cartograms, or letting a user interactively switch the mapped value in one
cartogram. See for example the interactive Demers cartogram accompanying an
article from the New York Times1. In such methods, cartograms should be as
similar as the data values allow: we thus want cartograms to be stable by using
similar layouts. This helps retain the viewer’s mental map [22], supporting link-
ing and tracking across cartograms. Thus, we obtain an important criterion with
multivariate or time-varying data. Stability: for high stability, cartograms for
the same regions using different data values should have similar layouts. The
relative importance of the criteria depends on the tasks to be facilitated. Nusrat
and Kobourov’s taxonomy of ten tasks [25] can also be considered with multiple
cartograms. Many tasks focus on the data values. As such, a representation of a
region of low complexity allows for easier estimation and size comparison.

Contribution. We focus on Demers cartograms (DC; [3]) which represent each
region by a suitably sized square, similar to Dorling cartograms [9] which use
circles. Their simplicity allows easy comparison of data values, since aspect
ratio is no longer a factor, unlike, e.g., for rectangular cartograms [19]. How-
1 https://archive.nytimes.com/www.nytimes.com/interactive/2008/09/04/business/

20080907-metrics-graphic.html, accessed June 2019.

https://archive.nytimes.com/www.nytimes.com/interactive/2008/09/04/business/20080907-metrics-graphic.html
https://archive.nytimes.com/www.nytimes.com/interactive/2008/09/04/business/20080907-metrics-graphic.html


48 S. Nickel et al.

ever, as abstract squares incur shape deformation, in spatial recognition tasks
the cartogram embedding as a whole must be informative, so the layout must
optimize as much as possible the other geographic criteria: spatial deformation,
preservation of relative directions and topological accuracy. We contribute an
efficient linear programming algorithm to compute high-quality stable DCs. Our
DCs have no cartographic error, satisfy given constraints on spatial relations,
and allow trade-off between topological error and stability. Linear interpolation
between different DCs yields no overlap during transformation. Lost adjacencies–
satisfying a mild assumption–can be shown as minimal-length planar orthogonal
lines. Figure 1 shows examples. Experiments compare settings of our linear pro-
gram to each other and to a force-directed layout we introduce (also novel for
DCs); results show that our linear program efficiently computes stable DCs.

CA
AZ

TX

WA

LA AL

FL

GA

CO
OK MO IL

IN
WI

MI

OH

TN NC

PA

MD
VA

WV

NJ

NY MA

KY

CT

CA TX

NY

FL

WA
MI

CO
IL

OH
PA NJ

MA

GA
NC

VA

OR

WA

CO

MN WI MI

ME

NHVT

MA

CT
NJ
DE

PA

MD

VA

NC

FL

OHILIANE

WA
OR MT

ID WY
NV

CA UTCO
NMAZ

KS
NE
SD
ND

MN

IA
MO

OK
TX

MI

INIL

WI
PAOH

KY

ALMS
AR

LA
FL

GA
SC
NC
VAWV

NY

ME
NH

VT

CT
MA
RI

NJ

DE
MD

TN

Fig. 1. Cartograms displaying drug poisoning mortality, total GDP and population
of the contiguous states of the US in 2016. The layout minimizes distance between
adjacent regions. Lost adjacencies are indicated with red leaders. Color is used only to
facilitate correspondences between the cartograms. (Color figure online)

Related Work. Cartogram-like representations date to the 1800s. In the 1900s
most standard cartogram types were defined, including rectangular value-by-area
cartograms [26] and more recent ones [13,19]. The first automatically gener-
ated cartograms are continuous deformation ones [29] followed by others [12,15].
Dorling cartograms [9] and DCs [3] exemplify the non-contiguous type repre-
senting regions by circles and squares respectively. Layouts representing regions
by rectangles and rectilinear polygons have received much attention in algorith-
mic literature, see e.g. [1,7,11], and typically focus on aspect ratio, topological
error and region complexity. Compared to DCs, rectilinear variants have higher
visual complexity and added difficulty to assessing areas. No cartogram type can
guarantee a both statistically and geographically accurate representation; see a
recent survey [25]. Measures exist to evaluate quality of cartogram types and
algorithms, see e.g. [2,17].

There is little work on evaluating or computing stable cartograms for time-
varying or multivariate data. Yet they are used in such manner, e.g., as a
sequence of contiguous cartograms showing the evolution of the Internet [16].

DCs relate to contact representations, encoding adjacencies between neigh-
boring regions as touching squares. The focus in graph theory and graph drawing



Computing Stable Demers Cartograms 49

literature lies on recognizing which graphs can be perfectly represented. Even
the unit-disk case is NP-hard [5], though efficient algorithms exist for some
restricted graph classes [8]. Klemz et al. [18] consider a vertex-weighted variant
using disks, that is, with varying disk sizes. Various other techniques are similar
to DCs, using squares or rectangles for geospatial information. Examples include
grid maps, see, e.g., [10] for algorithms and [21] for computational experiments.
Recently, Meulemans [20] introduced a constraint program to compute optimal
solutions under orthogonal order constraints for diamond-shaped symbols. We
use similar techniques, but refer to Sect. 2 for a discussion of the differences.

2 Computing a Single DC

First, we consider a DC for a single weight vector. We are given a set of weighted
regions with their adjacencies, and a set of directional relations. We compute a
layout realizing the weights with disjoint squares that may touch only if adjacent,
so that directional relations are “roughly” maintained. We quantify the quality
of the layout by considering the distances between any two squares represent-
ing adjacent regions. We show that the problem, under appropriate distance
measures, can be solved via linear programming in polynomial time.

Formal Setting. We are given an input graph G = (R, T ). For each region r ∈ R
we are given its centroid in R

2 and its weight w(r), the side length of the square
that represents it in output. The graph has an edge in T if and only if the
original regions are adjacent, thus their respective squares in the output should
be adjacent as well. We are also given two sets H, V of ordered region pairs.
A pair (r, r′) is in H, if r should be horizontally separated from r′ such that
there exists a vertical line � with the square of r being left of � and r′ to its
right. Analogously, V encodes vertical separation requirements. If r and r′ are
adjacent, then (r, r′) is either in H or in V (but not in H ∩ V ) and they should
touch �, otherwise we require a strict separation to avoid false adjacencies; we
are given a minimum gap ε to ensure that this non-adjacency can be visually
recognized.2 The sets H and V model the relative directions criterion for DCs
and any two regions are paired in at least one of those sets. To ensure a DC
exists satisfying the separation constraints, the directed graph D = (R,H ∪ V )
must be a directed acyclic graph (DAG). We consider these relations transitive:
if (r, r′) ∈ H and (r′, r′′) ∈ H, then this enforces that there exists a vertical line
separating (r, r′′) in any DCs and thus (r, r′′) is in H.

The output—a placement of a square for each region—can be stored as a
point P : R → R

2 for each region, encoding the center of its square. A placement
P is valid, if it satisfies the separation constraints of H and V . This implies all
squares are pairwise interior disjoint (or fully disjoint for nonadjacent regions).
We look for a valid placement where distances between non-touching squares of
originally adjacent regions are minimized; this will be made more precise below.

2 In the implementation, ε is the minimum of the side length of the smallest region
and 5% of the diagonal of the bounding box of the input regions R.



50 S. Nickel et al.

Deriving Separation Constraints. The regions’ weights are given and their adja-
cencies and centroids easily derived, but separation constraints H and V are not.
Various models can determine good directions or separation constraints [6]. We
use the following model; it is symmetric and ensures constraints form a DAG.

For two regions (r, r′) represented by centroids, we check whether their hor-
izontal or vertical distance is larger. In the former case, we add (r, r′) to H if r
is left of r′ and (r′, r) to H otherwise. In the latter case, we add the pair to V in
the appropriate order. We call this the weak setting. We call constraints added
in this setting primary separation constraints.

In the strong setting, we may add an extra constraint for nonadjacent region
pairs whose bounding boxes admit both horizontal and vertical separating lines:
if a pair has a primary separation constraint in H or V , we add a secondary
separation constraint to V or H respectively.

Linear Program. We model optimal solutions to the problem via a polynomially-
sized linear program (LP), which lets us solve the problem in polynomial time.
For each r ∈ R, we introduce variables xr and yr for the center P (r) = (xr, yr) of
the square. For any originally adjacent regions {r, r′} ∈ T we introduce variables
hr,r′ and vr,r′ for the (non-negative) distance between two squares. For any two
regions r, r′, we define shorthands: let wr,r′ := (w(r)+w(r′))

2 and let gapr,r′ = ε if
{r, r′} �∈ T , and 0 otherwise.

min
∑

{r,r′}∈T

hr,r′ + vr,r′ (1)

xr′ − xr ≥ wr,r′ + gapr,r′ ∀(r, r′) ∈ H (2)

yr′ − yr ≥ wr,r′ + gapr,r′ ∀(r, r′) ∈ V (3)

hr,r′ ≥ max{(xr − xr′) − wr,r′ , (xr′ − xr) − wr,r′} ∀{r, r′} ∈ T (4)
vr,r′ ≥ max{(yr − yr′) − wr,r′ , (yr′ − yr) − wr,r′} ∀{r, r′} ∈ T (5)
hr,r′ , vr,r′ ≥ 0 ∀{r, r′} ∈ T (6)

The objective (1) minimizes a sum of the distances between regions with
broken adjacencies in the L1 metric. Constraints (2) and (3) ensure separa-
tion requirements by forcing square centers far enough apart. For nonadjacent
regions, the gap function assures a recognizable gap of width ε between resulting
squares. Constraints (4)–(6) bind distance variables h, v with positional variables
x, y. Here (4) and (5) encode two linear constraints per line, one for each term
in the ‘max’ function. As (1) minimizes the distances, it suffices to enforce lower
bounds, hence the ‘≥’ in the constraints. In an optimal solution, either one of the
two versions, or the non-negativity constraint (6) will be satisfied with equality.

Improving the Gaps. The above model has two minor flaws. First, two squares
‘touch’ even if they only do so at corners; we resolve this by adding ε to the right-
hand side of (4) (or (5)) for vertically (or horizontally, respectively) separated
region pairs in T . This allows hr,r′ = 0 (vr,r′ = 0), when squares share a segment
at least ε long. Second, in the strong setting the LP asks for a minimum gap ε



Computing Stable Demers Cartograms 51

along both axes. This is not not needed for visual separation, so we remove the
gap requirement from the secondary separation constraint.

Fine-Tuning the Optimization Criteria. The LP minimizes a sum of distances
between adjacent regions. Cartogram literature emphasizes counting lost adja-
cencies between regions, not the distance between them. We prefer our mea-
sure since (1) there is a big difference if two neighboring countries are set
apart by a small or large gap; (2) while the LP can be turned to an inte-
ger linear program to count lost adjacencies, it greatly increases computational
complexity—optimizing for adjacencies is typically NP-hard, e.g., for disks [4,5]
or segments [14].

Our linear program typically admits several optimal solutions, due to trans-
lation invariance and since touching squares may slide freely along each other as
long as they touch. We introduce a secondary term to the objective to nuance
selection of better layouts, multiplied by a small constant to not interfere with
the original (primary) objective. The secondary term optimizes preservation of
relative directions between squares within the freedom of the optimal solution.

Consider regions r and r′. W.l.o.g., assume their original centroids are hor-
izontally farther apart than vertically, and r is left of r′, so (r, r′) ∈ H. We
compute a directional deviation drr′ = |(yr + α(xr′ − xr)) − yr′ |, where α is
the (finite) slope of the ray from r to r′ in the input graph G. Similar to (4),
the objective function will minimize drr′ ; we weigh this term more heavily for
adjacent regions. We thus turn the above formula into two linear inequalities.

Alternatives exist for the secondary criterion: displacement from the original
location helps find layouts maintaining many adjacencies for grid maps of equal-
size squares [10,21]. For each region we measure L1 displacement from its origin
(centroid of the original region in the geographic map) to the square center P (r).

Comparison to Overlap Removal. A technique placing disjoint squares exists to
remove overlap of diamond (45 degree rotated square) glyphs for spatial point
data [20], asking to minimally displace varying-size diamonds to remove all over-
lap, constrained to keep orthogonal order of their centers. Rotating the scenario
to yield squares does not yield axis-parallel order constraints but “diagonal”
ones, different from our strong setting. A “weak order constraints” variant is
mentioned, related to our LP in the weak setting, if we change our objective to
one only optimizing displacement relative to original locations. Figure 2 shows
similarities and differences considering the feasibility area between two regions.
Extensions in [20] can be applied in our scenario, e.g., reducing actively con-
sidered separation constraints by removing transitive relations (“dominance”
in [20]). Time-varying data is briefly considered in [20], only conceptualizing a
trade-off between origin-displacement and stability for artificial data; we discuss
several optimization criteria, also focusing on adjacencies which are not consid-
ered in [20], use real-world data experiments, and compare to a baseline DC
implementation to move beyond the limits of linear programming.

The lemma below matches an observation from [20] that carries over to our
setting. It implies that cartograms for different weight functions but with the



52 S. Nickel et al.

(a) (b) (c)

r r r
r′

r′

r′

Fig. 2. Feasibility area where r′ may be placed w.r.t r, when r′ is primarily to the
right of r. (a) In terms of feasibility, our weak setting and weak order constraints in
[20] coincide. (b) Feasibility using a rotated orthogonal order [20]. (c) Feasibility in the
strong setting.

same constraints have a smooth and simple transition between any such DCs
helping to retain the user’s mental map.

Lemma 1. Let R be a set of regions with separation constraints H and V . Let A
and B be two DCs for R, both satisfying H and V . Then, any linear interpolation
between A to B also satisfies H and V and is thus overlap-free.

3 Computing Stable DCs for Multiple Weights

The method can be extended for regions having multiple weights. We are given
a set of weight functions W = {w1, . . . , wk}. We aim to compute a DC for
each wi ∈ W , i.e., positions Pi(r) for each r ∈ R and wi ∈ W . If each weight
function represents the same data semantic, say population size, at different
times, we consider W = {w1, . . . , wk} ordered by the k time steps; we call this
setting time series. If each weight function represents measurements of different
data semantics (possibly at the same time), say population and gross domestic
product, we treat W as an unordered set; we call this setting weight vectors.

As we focus on cartogram stability over multiple datasets, we combine the
weight functions into one LP that computes the set of DCs, with potentially
different centers Pi(r) for each region r and weight function wi. This lets us add
constraints and optimization objectives for stability. We change objective (1) and
add constraints to minimize displacement between centers of the same region
for different weight functions. We re-use notation in Sect. 2 with superscript i
denoting respective variables for weight function wi ∈ W .

min
k∑

i=1

∑

{r,r′}∈T

(hi
r,r′ + vi

r,r′) +
∑

{i,j}∈I

∑

r∈R

(ci,jr + di,jr ) (7)

ci,jr ≥ max{(xi
r − xj

r), (x
j
r − xi

r)} ∀r ∈ R, {i, j} ∈ I (8)

di,jr ≥ max{(yi
r − yj

r), (y
j
r − yi

r)} ∀r ∈ R, {i, j} ∈ I (9)



Computing Stable Demers Cartograms 53

Here set I contains index pairs of weight functions {wi, wj} for which displace-
ment should be minimized. For each r ∈ R, variables ci,jr and di,jr measure the
horizontal and vertical displacement between Pi(r) and Pj(r) due to (8) and (9).

For which weight functions to relate in I, we consider two options: (1) relate
all pairs of functions so I =

(
W
2

)
, which is natural for weight vectors where

an analyst may want to compare the DCs for any two weight functions; and (2)
relating consecutive pairs in a predefined order of the functions so I = {(i, i+1) |
1 ≤ i ≤ k−1}, which is natural for time series. An alternative (3) for time series
initially computes a DC for w1 (e.g., minimizing displacement to region centroids
in the initial map) and then iteratively solves the LP for one DC and weight
function wi (i ≥ 2), where we minimize the displacement only with respect to
the previously solved DC for weight function wi−1. Due to its restricted solution
space (3) is expected to be faster to solve than (2) but with lower stability.
In some scenarios another option (4) may be worthwhile: one weight function,
say w1, may be considered central to the dataset and displacements are only
considered relative to it, so I contains pairs {1, i} for all 2 ≤ i ≤ k.

Not all planar graphs can be represented using touching squares of any size.
A real-world example is Luxembourg having three pairwise neighbors; the input
graph G is a K4. Thus any DC may need to break some adjacencies. To show lost
adjacencies we use leaders – orthogonal polylines connecting the two squares. We
want leaders to have minimal length and low complexity which we can guarantee
under mild assumptions: (1) leaders can coincide with square boundaries; (2)
regions to be connected are realisable, i.e., a valid DC (with possibly different
weights) exists for each pair of regions such that they are adjacent. Let LB

1 (r1, r2)
denote the minimal L1 distance between squares of regions r1 and r2 in DC B.
The following lemmas are proven in Appendix A in the full version [24] – the
proof of the first is constructive and gives a simple O(n2) algorithm to compute
all leaders.

Lemma 2. Consider DCs with separation constraints H, V and two regions
{r1, r2} ∈ T . Let (r1, r2) be a minimal pair in H or V . Then, in any DC B,
there is a monotone leader � between r1 and r2 with length LB

1 (r1, r2).

Lemma 3. Let {r1, r2} ∈ T and assume a DC A exists with r1 and r2 adjacent,
from which H and V are derived in the strong setting. Then, for any DC B
satisfying H and V , a leader � exists between r1 and r2 with at most two bends.

4 Experimental Setup

We compare 18 variants of our linear programs with each other and to 4 variants
of a baseline force-directed DC layout implementation, as described below.

Linear Programs. We categorize our method according to three criteria: (A)
optimization term, (B) method of deriving constraints, and (C) how we deal
with different time steps. For (A) our linear program admits three primary
optimization terms: TOP – distance between topologically adjacent regions;



54 S. Nickel et al.

CNT – number of lost adjacencies; ORG – distance to the origin (region’s cen-
troid in the geographic map). We use the indicated primary optimization term,
complemented by the secondary constraint of maintaining relative directions.
For (B), separation constraints are deduced from the input map in one of two
ways, S and W, matching the strong and weak case respectively. For (C), we deal
with different weight values (time series/weight vectors) in three ways called sta-
bility implementations: CO – we add an optimization term to minimize distance
between layouts of all (complete) weight value pairs; (2) SU – we add an opti-
mization term to minimize distance between layouts of successive weight values;
(3) IT – we iteratively solve a linear program including an optimization term
to minimize distance to previously calculated layouts. We specify our methods
by concatenating the three aspects in order, for example, TOP-S-SU indicates
the linear program optimized for distances of topologically adjacent regions with
strong separation constraints and with successive weight values linked.

Force-Directed Method. DCs are hard to track down in literature, especially
regarding computation. To our knowledge, there is no common baseline for com-
puting a DC; we introduce a simple one. As Dorling cartograms and DCs are
similar [3] and Dorling cartograms use a force-directed method, we implement
one here, too: FRC. For each pair of regions we define a disjointness force based
on Chebyshev distance between their centers, which grows quadratically to push
squares apart. We use the same desired distance as in Sect. 2 at which this force
becomes zero. We also add a force for cartogram quality, either towards their
original locations (FRC-O) or between adjacent regions (FRC-T). We initialize
the process with map locations (U; unstable) or the result for previous weights
(S; stable). See Appendix B in the full version [24] for more details.

Metrics: Cartogram Quality. Our algorithms inherently yield zero cartographic
error, and shape deformation is constant over all possible DCs. To evaluate car-
togram quality we use three metrics, each normalized between 0 and 1; smaller
values are better. We measure topological accuracy as the number of lost adja-
cencies (MADJ) in each of the k computed layouts, normalized by the number
of adjacencies k|T |. To measure preservation of relative directions (MREL) with
respect to the input map, we use the Relative Position Change Metric [28] which
captures the preservation of the spatial mental model (orthogonal order) in a
fine-grained way. Each rectangle defines eight zones by extending its sides to
infinite lines. Between a pair of input map regions (r, r′) we consider fractions
of the bounding box that fall into each zone; if bounding boxes overlap, we scale
values so they sum to 1. We do the same between the corresponding squares in
the cartogram layouts. The measure between two regions is half the sum over all
absolute differences between fractions per zone; the value is in [0, 1] but is not
symmetric. Finally, we take the average over all pairs. For spatial deformation
we measure distance to map origins (MDIS), average L1 distance of each region
r in the DC to its origin (centroid of r in the geographic map), normalized by
dividing with the L1 distance of the diagonal of the map.



Computing Stable Demers Cartograms 55

Metrics: Stability. We also want to assess stability, or layout similarity, between
the DCs by two quality metrics, based on treemap stability metrics [28], inter-
preting DCs as special treemaps with added whitespace. The first is based on
geometric distances between the layouts: the layout distance (SDIS) focuses
on the change in position of the squares. The layout distance change function
as presented by Shneiderman and Wattenberg [27] is the most common one. It
measures Euclidean distance between rectangles r and r′. We take the average
over all pairs, and normalize by dividing with the L1 distance of the largest
diagonal of the two DCs. The result is related to our optimization term for qual-
ity when dealing with multiple weights (see Sect. 3). The second metric, relative
directions between layouts (SREL), focuses on changes in relative directions; it
is analogous to MREL, but compares two layouts instead.

Datasets. We run experiments on real-world datasets. For time-series data, we
expect a gradual change and strong correlation between the different values.
For weight-vectors data, we expect more erratic changes and less correlation.
We use two maps with rather different geographic structures: the first (World)
is a map of world countries, having mixed region (country) sizes in a rather
unstructured manner; the second (US) is a map of the 48 contiguous US states,
having relatively high structure in sizes of its states, with large states in the
middle and along the west coast and many smaller states along the east coast.
We collected five time series for the World and four for the US map of which the
details are given in Appendix C in the full version [24]. We transformed these
into a weight-vectors dataset by taking the values of 2016 for each of these time
series, resulting in five weight vectors for the World map, and four for the US
map.

The various datasets have different scales, and need be projected into a rea-
sonable square size to compute a DC. We compute the diagonal Δ of the bound-
ing box of the map. For a time-series dataset, we find the region r with maximal
wi(r) for any i and scale values such that wi(r) = Δ/4. For a weight-vectors
dataset, we do the same, but scale the values for each DC separately.

Running Times. We ran the experiments using IBM ILOG CPLEX 12.8 to solve
the (I)LP. We observe the following running times on a normal laptop: *-*-IT and
FRC-O-* finished within seconds (USA) or a minute (World); *-*-{SU,CO} took
around a minute (USA) or below 5 min (World); FRC-T-* was completed in min-
utes (USA) or hours (World). CNT-*-* is an integer linear program rather than a
regular linear program (or force-directed method); its computational complexity
is significantly higher, and intractable in many cases. Only CNT-*-IT variants
were successfully solved, and only on the US map; for all other cases it ran out
of memory (48 GB allocated).

5 Experimental Results

We discuss results and four questions: (1) How much does the strong versus
weak setting affect quality? (2) How much does stability implementation matter?



56 S. Nickel et al.

(3) Which optimization criteria perform best? (4) What is the effect of separation
constraints in our LP, compared to a force-directed method for DCs? Figure 3
shows the result of two algorithms for the US. Appendix D and the supplemen-
tary video in the full version [24] show more DCs for different settings.

Fig. 3. US election turnout data DC in 2016, by TOP-W-CO and CNT-W-IT.

Strong Versus Weak Setting. Figure 4 shows the average metric values for the
iterative variants, over all datasets and linear programs. We find that the strong
case (additional separation constraints) reduces the error in relative direction
for both cartogram quality and stability: the average score for MREL, includ-
ing CNT variants where possible, reduces from 0.21 to 0.16; similarly, stability
(SREL) decreases from 0.059 to 0.045 due to decreased movement freedom of the
squares. This is at the expense of topological error (MADJ increases from 0.58
to 0.61) and origin displacement (MDIS increases from 0.16 to 0.17). The effect
is present independent of optimization criterion and stability implementation
though its strength varies. Effects remain noticeable but of varying strength
when we control for type of dataset, except MDIS slightly decreases for US
datasets (0.116 to 0.107) in the strong setting. We also see a clear difference
between optimization terms (CNT, TOP, ORG), discussed later.

Stability Implementation. In time-series datasets there is little difference in sta-
bility over the three settings: time series data change gradually over time so
choosing which pairs to optimize does not have much influence. In weight-vectors
datasets, even with only few weights per region (five for the World, four for the
US), an effect becomes noticeable in the IT setting. CO and SU behave nearly
identical, but this might be an artifact of only having a few weights per region.
Compared to CO (and SU) setting, the iterative version scores better on MDIS
(0.31 versus 0.26) but worse on the stability metric SDIS (0.084 versus 0.10). For
weight-vectors datasets it is thus better to use the SU variant as this achieves
better stability and is only slightly more expensive to compute compared to IT
variants. The added complexity of CO does not seem to pay off.

Optimization Criteria. We use three metrics for cartogram quality: MADJ and
MDIS are optimized explicitly with the CNT and ORG objectives respectively,



Computing Stable Demers Cartograms 57

Fig. 4. Bar chart of average metric scores, for IT settings of all linear programs and
the FRC directed variants. We see similar effects when switching from the weak version
to the strong version of the IT setting for all three optimization settings. We also see
a strong effect when choosing different optimization settings for the IT setting. FRC
is generally outperformed by the {TOP,ORG}-W-IT variants.

the third metric MREL corresponds to a secondary objective term. To compare
the TOP/CNT/ORG objective terms, we consider the IT variant (see Fig. 4),
as other stability implementations could not solve the CNT objective; still, we
found similar patterns for the SU and CO cases.

For MADJ, CNT finds the optimal value (0.31) under the given constraints.
TOP (0.57) does clearly better than ORG (0.70), somewhat in contrast to obser-
vations of [10,21]: for grid maps, the MDIS metric that ORG optimizes is a good
proxy for maintaining topology; our results suggest this is not so for DCs.

For MDIS and MREL metrics ORG performs best; for MDIS, CNT performs
slightly better compared to TOP and vice versa for MREL. Thus, in terms of
spatial quality, ORG seems a good objective, except for topological error – which
is typically of primary concern for cartograms.

For stability metrics SDIS and SREL, ORG outperforms TOP which outper-
forms CNT. We explain it by inherent stability of the map which is the same for
all DCs. CNT does poorly; it is fairly unconstrained for lost adjacencies whereas
TOP aims to keep such pairs close.

ORG scores best on all metrics except MADJ; its MADJ score is high, losing
70% of adjacencies on average. In contrast, CNT optimizes the number of adja-
cencies, but is clearly worse on other metrics and is computationally expensive.
There is thus a trade-off present between topological error and other quality
aspects. TOP makes this trade-off, scoring reasonably on most metrics.

Comparison to FRC. Our linear programs enforce separation constraints which
help maintain spatial relations and the spatial mental model; they are required
for the linear program but not in general. To study their effect, we compare
to FRC which does not enforce separation constraints; results are shown in
Fig. 4. Comparing FRC-T and FRC-O variants, we see the same behavior as in
the TOP versus ORG linear programs: FRC-O performs worse than FRC-T on
ADJ, and better on the other metrics. Layout initialization trades off stability
versus cartogram quality: FRC-*-S variants have better stability scores and worse
quality scores compared to FRC-*-U.



58 S. Nickel et al.

As it has the fewest constraints, we compare ORG-W-IT to FRC methods:
FRC-O-* are slightly worse or equal to ORG-W-IT on all metrics; FRC-T-* are
worse than ORG-W-IT on all metrics except ADJ where it is a lightly better,
but the number of adjacencies lost is still clearly higher compared to TOP-W-IT.

To conclude, in general we outperform FRC for the various metrics by an
appropriate setting in our linear program. No single setting outperforms all FRC
variants. The large difference with TOP-variants in terms of MADJ suggests
TOP variants are a good choice for high-quality stable DCs.

6 Discussion and Future Work

We described a linear program to compute stable Demers cartograms, based
on separation constraints and minimizing distance between adjacent regions.
It allows overlap-free transitions between weight functions and connecting lost
adjacencies with short, low-complexity leaders. Experiments show it offers a good
trade-off between topological error and other criteria. It outperforms basic force-
directed layouts, though there is not a unique variant that does so, suggesting
an interplay between separation constraints, optimization and quality metrics.

In future work we may consider stability in other cartogram styles, and
perform human-centered comparisons in addition to computational ones, with
methods implemented in interactive systems; such systems can, e.g., emphasize
adjacent regions by drawing leaders (at all or more clearly) or link regions back
to the geographic map. We focused on Demers cartograms, but there are many
different styles of cartograms. Future work may also investigate stable variants
of such other cartogram styles and quantitatively or qualitatively compare them.

References

1. Alam, M.J., Biedl, T., Felsner, S., Kaufmann, M., Kobourov, S.G., Ueckerdt, T.:
Computing cartograms with optimal complexity. Discrete Comput. Geom. 50(3),
784–810 (2013). https://doi.org/10.1007/s00454-013-9521-1

2. Alam, M.J., Kobourov, S.G., Veeramoni, S.: Quantitative measures for cartogram
generation techniques. Comput. Graph. Forum 34(3), 351–360 (2015). https://doi.
org/10.1111/cgf.12647

3. Bortins, I., Demers, S., Clarke, K.: Cartogram types (2002). http://www.ncgia.
ucsb.edu/projects/Cartogram Central/types.html

4. Bowen, C., Durocher, S., Löffler, M., Rounds, A., Schulz, A., Tóth, C.D.: Realiza-
tion of simply connected polygonal linkages and recognition of unit disk contact
trees. In: Di Giacomo, E., Lubiw, A. (eds.) Graph Drawing and Network Visual-
ization (GD). LNCS, vol. 9411, pp. 447–459. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-319-27261-0 37

5. Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is NP-hard. Comput.
Geom. 9(1–2), 3–24 (1998). https://doi.org/10.1016/S0925-7721(97)00014-X

6. Buchin, K., Kusters, V., Speckmann, B., Staals, F., Vasilescu, B.: A splitting
line model for directional relations. In: Advances in Geographic Information Sys-
tems (SIGSPATIAL), pp. 142–151. ACM (2011). https://doi.org/10.1145/2093973.
2093994

https://doi.org/10.1007/s00454-013-9521-1
https://doi.org/10.1111/cgf.12647
https://doi.org/10.1111/cgf.12647
http://www.ncgia.ucsb.edu/projects/Cartogram_Central/types.html
http://www.ncgia.ucsb.edu/projects/Cartogram_Central/types.html
https://doi.org/10.1007/978-3-319-27261-0_37
https://doi.org/10.1007/978-3-319-27261-0_37
https://doi.org/10.1016/S0925-7721(97)00014-X
https://doi.org/10.1145/2093973.2093994
https://doi.org/10.1145/2093973.2093994


Computing Stable Demers Cartograms 59

7. Buchin, K., Speckmann, B., Verdonschot, S.: Evolution strategies for optimizing
rectangular cartograms. In: Xiao, N., Kwan, M.P., Goodchild, M.F., Shekhar, S.
(eds.) Geographic Information Science (GIScience). LNCS, vol. 7478, pp. 29–42.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33024-7 3

8. Di Giacomo, E., Didimo, W., Hong, S.H., Kaufmann, M., Kobourov, S.G., Liotta,
G., Misue, K., Symvonis, A., Yen, H.C.: Low ply graph drawing. In: Information,
Intelligence, Systems and Applications (IISA). IEEE (2015). https://doi.org/10.
1109/IISA.2015.7388020

9. Dorling, D.: Area cartograms: their use and creation. No. 59 in Concepts and
Techniques in Modern Geography, University of East Anglia: Environmental Pub-
lications (1996). http://www.dannydorling.org/?page id=1448

10. Eppstein, D., van Kreveld, M., Speckmann, B., Staals, F.: Improved grid map
layout by point set matching. Int. J. Comput. Geom. Appl. 25(02), 101–122 (2015).
https://doi.org/10.1142/S0218195915500077

11. Eppstein, D., Mumford, E., Speckmann, B., Verbeek, K.: Area-universal rectan-
gular layouts. In: Symposium on Computational Geometry (SoCG), pp. 267–276.
ACM (2009). https://doi.org/10.1145/1542362.1542411

12. Gastner, M., Newman, M.: Diffusion-based method for producing density-
equalizing maps. Proc. Natl. Acad. Sci. U.S.A. 101, 7499–7504 (2004). https://
doi.org/10.1073/pnas.0400280101

13. Heilmann, R., Keim, D., Panse, C., Sips, M.: RecMap: rectangular map approxi-
mations. In: Information Visualization (InfoVis), pp. 33–40. IEEE (2004). https://
doi.org/10.1109/INFVIS.2004.57

14. Hliněný, P.: Contact graphs of line segments are NP-complete. Discrete Math.
235(1–3), 95–106 (2001). https://doi.org/10.1016/S0012-365X(00)00263-6

15. House, D.H., Kocmoud, C.J.: Continuous cartogram construction. In: IEEE Con-
ference on Visualization, pp. 197–204 (1998). https://doi.org/10.1109/VISUAL.
1998.745303

16. Johnson, T., Acedo, C., Kobourov, S., Nusrat, S.: Analyzing the evolution of the
Internet. In: Eurographics Conference on Visualization (EuroVis), pp. 43–47. Euro-
graphics Association (2015). https://doi.org/10.2312/eurovisshort.20151123

17. Keim, D.A., North, S.C., Panse, C.: CartoDraw: a fast algorithm for generating
contiguous cartograms. IEEE Trans. Vis. Comput. Graph. 10(1), 95–110 (2004).
https://doi.org/10.1109/TVCG.2004.1260761

18. Klemz, B., Nöllenburg, M., Prutkin, R.: Recognizing weighted disk contact graphs.
In: Di Giacomo, E., Lubiw, A. (eds.) Graph Drawing and Network Visualization
(GD). LNCS, vol. 9411, pp. 433–446. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-319-27261-0 36

19. van Kreveld, M., Speckmann, B.: On rectangular cartograms. Comput. Geom.
37(3), 175–187 (2007). https://doi.org/10.1016/j.comgeo.2006.06.002

20. Meulemans, W.: Efficient optimal overlap removal: algorithms and experiments.
Comput. Graph. Forum 38(3), 713–723 (2019). https://doi.org/10.1111/cgf.13722

21. Meulemans, W., Dykes, J., Slingsby, A., Turkay, C., Wood, J.: Small multiples
with gaps. IEEE Trans. Vis. Comput. Graph. 23(1), 381–390 (2017). https://doi.
org/10.1109/TVCG.2016.2598542

22. Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental
map. J. Vis. Lang. Comput. 6(2), 183–210 (1995). https://doi.org/10.1006/jvlc.
1995.1010

23. Munzner, T.: Visualization Analysis and Design. AK Peters/CRC Press, Nat-
ick/Boca Raton (2014)

https://doi.org/10.1007/978-3-642-33024-7_3
https://doi.org/10.1109/IISA.2015.7388020
https://doi.org/10.1109/IISA.2015.7388020
http://www.dannydorling.org/?page_id=1448
https://doi.org/10.1142/S0218195915500077
https://doi.org/10.1145/1542362.1542411
https://doi.org/10.1073/pnas.0400280101
https://doi.org/10.1073/pnas.0400280101
https://doi.org/10.1109/INFVIS.2004.57
https://doi.org/10.1109/INFVIS.2004.57
https://doi.org/10.1016/S0012-365X(00)00263-6
https://doi.org/10.1109/VISUAL.1998.745303
https://doi.org/10.1109/VISUAL.1998.745303
https://doi.org/10.2312/eurovisshort.20151123
https://doi.org/10.1109/TVCG.2004.1260761
https://doi.org/10.1007/978-3-319-27261-0_36
https://doi.org/10.1007/978-3-319-27261-0_36
https://doi.org/10.1016/j.comgeo.2006.06.002
https://doi.org/10.1111/cgf.13722
https://doi.org/10.1109/TVCG.2016.2598542
https://doi.org/10.1109/TVCG.2016.2598542
https://doi.org/10.1006/jvlc.1995.1010
https://doi.org/10.1006/jvlc.1995.1010


60 S. Nickel et al.

24. Nickel, S., Sondag, M., Meulemans, W., Chimani, M., Kobourov, S., Peltonen,
J., Nöllenburg, M.: Computing stable Demers cartograms. CoRR abs/1908.07291
(2019). http://arxiv.org/abs/1908.07291

25. Nusrat, S., Kobourov, S.: The state of the art in cartograms. Comput. Graph.
Forum 35(3), 619–642 (2016). https://doi.org/10.1111/cgf.12932

26. Raisz, E.: The rectangular statistical cartogram. Geogr. Rev. 24(2), 292–296
(1934). https://doi.org/10.2307/208794

27. Shneiderman, B., Wattenberg, M.: Ordered treemap layouts. In: Information Visu-
alization (InfoVis), pp. 73–78. IEEE (2001). https://doi.org/10.1109/INFVIS.2001.
963283

28. Sondag, M., Speckmann, B., Verbeek, K.: Stable treemaps via local moves. IEEE
Trans. Vis. Comput. Graph. 24(1), 729–738 (2018). https://doi.org/10.1109/
TVCG.2017.2745140

29. Tobler, W.R.: A continuous transformation useful for districting. Ann. New
York Acad. Sci. 219, 215–220 (1973). https://doi.org/10.1111/j.1749-6632.1973.
tb41401.x

30. Tversky, B.: Cognitive maps, cognitive collages, and spatial mental models. In:
Frank, A.U., Campari, I. (eds.) Spatial Information Theory (COSIT). LNCS, vol.
716, pp. 14–24. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57207-
4 2

http://arxiv.org/abs/1908.07291
https://doi.org/10.1111/cgf.12932
https://doi.org/10.2307/208794
https://doi.org/10.1109/INFVIS.2001.963283
https://doi.org/10.1109/INFVIS.2001.963283
https://doi.org/10.1109/TVCG.2017.2745140
https://doi.org/10.1109/TVCG.2017.2745140
https://doi.org/10.1111/j.1749-6632.1973.tb41401.x
https://doi.org/10.1111/j.1749-6632.1973.tb41401.x
https://doi.org/10.1007/3-540-57207-4_2
https://doi.org/10.1007/3-540-57207-4_2


Geometric Graph Theory



Bundled Crossings Revisited

Steven Chaplick1(B) , Thomas C. van Dijk1 , Myroslav Kryven1,
Ji-won Park2, Alexander Ravsky3, and Alexander Wolff1

1 Universität Würzburg, Würzburg, Germany
steven.chaplick@uni-wuerzburg.de
2 KAIST, Daejeon, Republic of Korea

3 Pidstryhach Institute for Applied Problems of Mechanics and Mathematics,
National Academy of Sciences of Ukraine, Lviv, Ukraine

Abstract. An effective way to reduce clutter in a graph drawing that
has (many) crossings is to group edges that travel in parallel into bundles.
Each edge can participate in many such bundles. Any crossing in this
bundled graph occurs between two bundles, i.e., as a bundled crossing.
We consider the problem of bundled crossing minimization: A graph is
given and the goal is to find a bundled drawing with at most k bundled
crossings. We show that the problem is NP-hard when we require a simple
drawing. Our main result is an FPT algorithm (in k) when we require a
simple circular layout. These results make use of the connection between
bundled crossings and graph genus.

1 Introduction

In traditional node–link diagrams, vertices are mapped to points in the plane
and edges are usually drawn as straight-line segments connecting the vertices.
For large and dense graphs, however, such layouts tend to be so cluttered that it
is hard to see any structure in the data. For this reason, Holten [16] introduced
bundled drawings, where edges that are close together and roughly go into the
same direction are drawn using Bézier curves such that the grouping becomes
visible. Due to the practical effectiveness of this approach, it has quickly been
adopted by the InfoVis community [9,15,17,18,24]. However, bundled drawings
have only recently attracted study from a theoretical point of view [1,11,13,14].

Crossing minimization is a fundamental problem in graph drawing [25]. Its
natural generalization in bundled drawings is bundled crossing minimization,
see Definition 1 for the formalization of a bundled crossing. In his survey on
crossing minimization, Schaefer lists the bundled crossing number as a variant
of the crossing number and suggests to study it [25, page 35].

Related Work. Fink et al. [14] considered bundled crossings (which they called
block crossings) in the context of drawing metro maps. A metro network is a

The full version of this article is available at ArXiv [5]. M.K. was supported by DAAD;
S.C. was supported by DFG grant WO 758/11-1.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 63–77, 2019.
https://doi.org/10.1007/978-3-030-35802-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_5&domain=pdf
http://orcid.org/0000-0003-3501-4608
http://orcid.org/0000-0001-6553-7317
http://orcid.org/0000-0001-5872-718X
https://doi.org/10.1007/978-3-030-35802-0_5


64 S. Chaplick et al.

planar graph where vertices are stations and metro lines are simple paths in
this graph. These paths representing metro lines can share edges. They enter
an edge at one endpoint in some linear order, follow the edge as x-monotone
curves (considering the edge as horizontal), and then leave the edge at the other
endpoint in some linear order. In order to improve the readability of metro
maps, the authors suggested to bundle crossings. The authors then studied the
problem of minimizing bundled crossings in such metro maps. Fink et al. also
introduced monotone bundled crossing minimization where each pair of lines
can intersect at most once. Later, Fink et al. [11] applied the concept of bundled
crossings to drawing storyline visualizations. A storyline visualization is a set
of x-monotone curves where the x-axis represents time in a story. Given a set
of meetings (subsets of the curves that must be consecutive at given points in
time), the task is to find a drawing that realizes the meetings and minimizes the
number of bundled crossings. Fink et al. showed that, in this setting, minimizing
bundled crossings is fixed-parameter tractable (FPT) and can be approximated
in a restricted case. Our research builds on recent works of Fink et al. [13] and
Alam et al. [1], who extended the notion of bundled crossings from sets of x-
monotone curves to general drawings of graphs – details below.

Notation and Definitions. In graph drawing, it is common to define a drawing
of a graph as a function that maps vertices to points in the plane and edges
to Jordan arcs that connect the corresponding points. In this paper, we are
less restrictive in that we sometimes allow edges to self-intersect. We will often
identify vertices with their points and edges with their curves. Moreover, we
assume that each pair of edges shares at most a finite number of points, that
edges can touch (that is, be tangent to) each other only at endpoints, and that
any point of the plane that is not a vertex is contained in at most two edges.
A drawing is simple if any two edges intersect at most once and no edge self-
intersects. We consider both simple and non-simple drawings; look ahead at
Fig. 2 for a simple and a non-simple drawing of K3,3.

Definition 1 (Bundled Crossing). Let D be a drawing, not necessarily sim-
ple, and let I(D) be the set of intersection points among the edges (not including
the vertices) in D. We say that a bundling of D is a partition of I(D) into
bundled crossings, where a set B ⊆ I(D) is a bundled crossing if the following
holds (see Fig. 1).

– B is contained in a closed Jordan region R(B) whose boundary consists of
four Jordan arcs ẽ1, ẽ2, ẽ3, and ẽ4 that are pieces of edges e1, e2, e3, and e4
in D (a piece of an edge e is D[e]

⋂
R(B)); when the edge pieces are not

distinct, we define R(B) not as a Jordan region but as an arc or a point.
– The pieces of the edges cut out by the region R(B) can be partitioned into

two sets Ẽ1 and Ẽ2 such that ẽ1, ẽ3 ∈ Ẽ1, ẽ2, ẽ4 ∈ Ẽ2, and each pair of edge
pieces in Ẽ1 × Ẽ2 has exactly one intersection point in R(B), whereas no two
edge pieces in Ẽ1 (respectively Ẽ2) have a common point in R(B).

Our definition is similar to that of Alam et al. [1] but defines the Jordan
region R(B) more precisely. We call the sets Ẽ1 and Ẽ2 of edge pieces bundles



Bundled Crossings Revisited 65

ẽ3

ẽ1

ẽ2 ẽ4

(a)

R(B)

ẽ3
ẽ1ẽ2

ẽ4

(b)

Fig. 1. (a) A non-degenerate bundled crossing B and (b) a degenerate bundled cross-
ing B′; crossings belonging to a bundled crossing are marked with crosses

and the Jordan arcs ẽ1, ẽ3 ∈ Ẽ1 and ẽ2, ẽ4 ∈ Ẽ2 frame arcs of the bundles
Ẽ1 and Ẽ2, respectively. For simple drawings, we accordingly call the edges that
bound the two bundles of a bundled crossing frame edges. We say that a bundled
crossing is degenerate if at least one of the bundles consists of only one edge piece;
see Fig. 1(b). In this case, the region of the plane associated with the crossing
coincides with that edge piece. In particular, any point in I(D) by itself is a
degenerate bundled crossing. Hence, every drawing admits a trivial bundling.

We use bc(G) to denote the bundled crossing number of a graph G, i.e., the
smallest number of bundled crossings over all bundlings of all simple drawings
of G. When we do not insist on simple drawings, we denote the corresponding
number by bc′(G). In the circular setting, where vertices are required to lie on
the boundary of a disk and edges inside this disk, we consider the analogous
circular bundled crossing numbers bc◦(G) and bc◦′(G) of a graph G.

Fink et al. [13] showed that it is NP-hard to compute the minimum number
of bundled crossings that a given drawing of a graph can be partitioned into.
They also showed that this problem generalizes the problem of partitioning a
rectilinear polygon with holes into the minimum number of rectangles, and they
exploited this connection to construct a 10-approximation for computing the
number of bundled crossings in the case of a fixed circular drawing. They left open
the computational complexity of the general and the circular bundled crossing
number for the case that the drawing is not fixed.

Alam et al. [1] showed that bc′(G) equals the orientable genus of G, which in
general is NP-hard to compute [26]. They also showed that there is a graph G
with bc′(G) �= bc(G) by proving that bc′(K6) = 1 < bc(K6). As it turns out,
the two problem variants differ in the circular setting, too (see Fig. 2 and Obser-
vation 2). For computing bc(G) and bc◦(G), Alam et al. [1] gave an algorithm
whose approximation factor depends on the density of the graph. They posed
the existence of an FPT algorithm for bc◦(G) as an open question.

Our Contribution. As some graphs G have bc′(G) �= bc(G) (see Fig. 2), Fink et
al. [13] posed the complexity of computing the bundled crossing number bc(G)
of a given graph G as an open problem. We settle this in Sect. 2 as follows:



66 S. Chaplick et al.

Theorem 1. Given a graph G, it is NP-hard to compute bc(G).

Our main result, which we prove in Sect. 3, resolves an open question of Alam
et al. [1] concerning the fixed-parameter tractability of bundled crossing mini-
mization in circular layouts as follows:

Theorem 2. There is a computable function f such that, for any n-vertex
graph G and integer k, we can check, in O(f(k)n) time, whether bc◦(G) ≤ k,
i.e., whether G admits a circular layout with k bundled crossings. Within the
same time bound, such a layout can be computed.

To prove this, we use an approach similar to that of Bannister and Eppstein [3]
for 1-page crossing minimization (that is, edge crossing minimization in a cir-
cular layout). Bannister and Eppstein observe that the set of crossing edges of
a circular layout with k edge crossings of a graph G forms an arrangement of
curves that partition the drawing into O(k) subgraphs, each of which occurs in
a distinct face of this arrangement. The subgraphs are obviously outerplanar.
This means that G has bounded treewidth (see the full version [5]). So, by enu-
merating all ways to draw the crossing edges of a circular layout with k edge
crossings, and, for each such way, expressing the edge partition problem (into
crossing edges and outerplanar components) in extended monadic second order
logic (MSO2), Courcelle’s Theorem [7] (stated as Theorem 5 in Sect. 3) can be
applied (leading to fixed-parameter tractability).

The difficulty in using this approach for bundled crossing minimization is
in showing how to partition the graph into a set of O(k) “crossing edges” (our
analogy will be the frame edges) and a collection of O(k) outerplanar graphs.
This is where we exploit the connection to genus. Moreover, constructing an
MSO2 formula is somewhat more difficult in our case due to the more complex
way our regions interact with our special set of edges.

2 Computing bc(G) Is NP-Hard

For a given graph G, finding a drawing with the fewest bundled crossings resem-
bles computing the orientable genus1 g(G) of G. In fact, Alam et al. [1] showed
that bc′(G) = g(G). Thus, deciding bc′(G) = k for some k is NP-hard and that
it is FPT in k, since the same holds for deciding g(G) = k [19,23,26].

Theorem 3 [1]. For every graph G with genus k, it holds that bc′(G) = k.

To show this, Alam et al. [1] first showed that a drawing with k bundled crossings
can be lifted onto a surface of genus k, and thus bc′(G) ≥ g(G):

Observation 1 [1]. A drawing D with k bundled crossings can be lifted onto
a surface of genus k via a one-to-one correspondence between bundled crossings
and handles, i.e., at each bundled crossing, we attach a handle for one of the
two edge bundles, thus providing a crossing-free lifted drawing; see Fig. 7.
1 I.e., computing the fewest handles to attach to the sphere so that G can be drawn

on the resulting surface without any crossings.



Bundled Crossings Revisited 67

Then, to see that bc′(G) ≤ g(G), Alam et al. [1] used the fundamental poly-
gon representation (or polygonal schema) [10] of a drawing on a genus-g sur-
face. More precisely, the sides of the polygon are numbered in circular order
a1, b1, a

′
1, b

′
1, . . . , ag, bg, a

′
g, b

′
g; for 1 ≤ k ≤ g, the pairs (ak, a′

k) and (bk, b′
k) of

sides are identified in opposite direction, meaning that an edge leaving side ak

appears on the corresponding position of side a′
k; see Fig. 3 for an example show-

ing K6 drawn in a fundamental square, which models a drawing on the torus.
In such a representation, all vertices lie in the interior of the fundamental poly-
gon and all edges leave the polygon avoiding vertices of the polygon. Alam et
al. [1] showed that such a representation can be transformed into a non-simple
bundled drawing with g many bundled crossings. It is not clear, however, when
such a representation can be transformed into a simple bundled drawing with g
bundled crossings, as this transformation can produce drawings with self-loops
and pairs of edges crossing multiple times, e.g., Alam et al. [1, Lemma 1] showed
that bc(K6) = 2 while bc′(K6) = g(K6) = 1.

We show that the problem remains NP-hard for simple drawings.

Proof (of Theorem 1). Let G′ be the graph obtained from G by subdividing
each edge O(|E(G)|2) times. We reduce from the NP-hardness of computing the
genus g(G) of G by showing that bc(G′) = g(G), with Observation 1 in mind.

Consider the embedding of G onto the genus-g(G) surface. By a result of
Lazarus et al. [21, Theorem 1], we can construct a fundamental polygon repre-
sentation of the embedding so that its boundary intersects with edges of the
graph O(g(G)|E(G)|) times. Note that each edge piece outside the polygon
intersects each other edge piece at most once; see Fig. 3. We then subdivide
the edges by adding a vertex to each intersection of an edge with the bound-
ary of the fundamental polygon. This subdividing of edges ensures that no edge
intersects itself or intersects another edge more than once in the correspond-
ing drawing of the graph on the plane; hence, the drawing is simple. Since
g(G) ≤ |E(G)|, by subdividing edges further whenever necessary, we obtain
a drawing of G′. Our subdivisions keep the integrity of all bundled crossings, so
bc(G′) ≤ g(G). On the other hand, since subdividing edges does not affect the
genus, g(G) = g(G′) = bc′(G′) ≤ bc(G′). ��

3 FPT Algorithms for Computing bc◦′(G) and bc◦(G)

We now consider circular layouts, where vertices are placed on a circle and edges
are routed inside the circle. We note that bc◦(G) and bc◦′(G) can be different.

Observation 2. bc◦′(K3,3) = 1 but bc◦(K3,3) > 1.

Proof. Let V (K3,3) = {a, b, c} ∪ {a′, b′, c′}. A drawing with bc◦′(K3,3) = 1 is
obtained by placing the vertices a, a′, b, b′, c, c′ in clockwise order around a circle;
see Fig. 2(b). If a graph G has bc◦(G) = 1 then G is planar because we can embed
edges for one bundle outside the circle. Hence, bc◦(K3,3) > 1.

Similarly to computing bc′(G), we use compute bc◦′(G) via computing genus.



68 S. Chaplick et al.

a′ b

cc′

(a)

a b′ a
a′ b

b′

cc′

(b)

Fig. 2. bc◦(K3,3) �= bc◦′(K3,3);
see Observation 2

Fig. 3. K6 drawn in a fundamental square;
the self-intersecting edge is bold [1, Fig. 2].

Theorem 4. Testing whether bc◦′(G) = k can be done in 2kO(1)
n time.

Proof (Sketch). This follows from the fact that bc◦′(G) = g(G�) where G� is a
graph with a vertex v� adjacent to every vertex of G (see the full version [5] and
the 2gO(1)

n time algorithm for genus [19]. ��
To prove our main result (Theorem 2) we develop an algorithm that tests

whether bc◦(G) = k in FPT time with respect to k. Our algorithm is inspired
by recent works on circular layouts with at most k crossings [3] and circular
layouts where each edge is crossed at most k times [6]. In both of these prior
works, it is first observed that the graphs admitting such circular layouts have
treewidth O(k), and then algorithms are developed using Courcelle’s theorem,
which establishes that expressions in MSO2 logic can be evaluated efficiently.
(For basic definitions of both treewidth and MSO2 logic, see the appendix of the
full version.)

Theorem 5 (Courcelle [7,8]). For any integer t ≥ 0 and any MSO2 for-
mula ψ of length �, an algorithm can be constructed which takes a graph G with
n vertices, m edges, and treewidth at most t and decides in O(f(t, �) · (n + m))
time whether G |= ψ where the function f from this time bound is a computable
function of t and �.

We proceed along the lines of Bannister and Eppstein [3], who used a similar
approach to show that edge crossing minimization in a circular layout is in
FPT (as mentioned in the introduction). We start by very carefully describing a
surface (in the spirit of Observation 1) onto which we will lift our drawing. We
will then examine the structure of this surface (and our algorithm) for the case
of one bundled crossing and finally for k bundled crossings.

3.1 Constructing the Surface Determined by a Bundled Drawing

Consider a bundled circular drawing D. Note that adding parallel edges to the
drawing (i.e., making our graph a multi-graph) allows us to assume that every
bundled crossing has four distinct frame edges and can be done without modify-
ing the number of bundled crossings; see Fig. 7. Each bundled crossing B defines



Bundled Crossings Revisited 69

a Jordan curve made up of the four Jordan arcs ẽ1, ẽ2, ẽ3, ẽ4 in clockwise order
taken from its four frame edges e1, . . . , e4 respectively (here (e1, e3) and (e2, e4)
frame the two bundles and ei = uivi). Similarly to Observation 1, we can con-
struct a surface S by creating a flat handle (note that this differs from the usual
definition of a handle since our flat handles have a boundary) on top of D which
connects ẽ2 to ẽ4 and doing so for each bundled crossing. We then lift the draw-
ing D onto S by rerouting the edges of one of the bundles over its corresponding
handle for each bundled crossing B obtaining the lifted drawing DS . To avoid
the crossings in DS of the frame edges that can occur at the foot of the handle
of B we can make the handle a bit wider and add corner-cuts (as illustrated in
Fig. 4) to preserve the topology of the surface. Thus, DS is crossing-free.

We now cut S into components (maximal connected subsets) along the frame
edges and corner-cuts of each bundled crossing, resulting in a subdivision Ω of S.

We use DΩ to denote the sub-drawing of DS on Ω, i.e., DΩ is missing the
frame edges since these have been cut out. We now consider the components
of Ω. Notice that every edge of DΩ is contained in one component of Ω. In order
for a component s of Ω to contain an edge e of DΩ , s must have both endpoints
of e on its boundary. With this in mind we focus on the components of Ω where
each one has a vertex of G on its boundary and call such components regions.
Observe that a crossing in D which does not involve a frame edge corresponds,
in DΩ , to a pair of edges where one goes over a handle and the other goes
underneath.

3.2 Recognizing a Graph with One Bundled Crossing

We now discuss how to recognize if an n-vertex graph G = (V,E) can be drawn
in a circular layout with one bundled crossing. Consider a bundled circular draw-
ing D of G consisting of one bundled crossing. The bundled crossing consists of
two bundles, and so a set F of four frame edges. By V (F ) we denote the set
of vertices incident to frame edges. Via the construction above, we obtain the
subdivided surface Ω; see Fig. 4. Let r1 and r2 be the regions that are each
bounded by a pair of frame edges corresponding to one of the bundles, and let
r3, . . . , r6 be the regions each bounded by one edge from one pair and one from
the other pair; see Fig. 4. These are all the regions of Ω. Since, as mentioned
before, each of the non-frame edges of G (i.e., each e ∈ E(G) \ F ) along with its
two endpoints is contained in exactly one of these regions, each component of
G\V (F ) including the edges connecting it to vertices of V (F ) is drawn in DΩ in
some region of Ω. In this sense, for each region r of Ω, we use Gr to denote the
subgraph of G induced by the components of G\V (F ) contained in r, including
the edges connecting them to vertices in V (F ). Additionally, each vertex of G is
either incident to an edge in F (in which case it is on the boundary of at least
two regions) or it is on the boundary of exactly one region.

Note that there are two types of regions: {r1, r2} and {r3, r4, r5, r6}. Consider
a region of the first type, say r1; see Fig. 4. Observe that r1 is a topological
disk, i.e., Gr1 is outerplanar. Moreover, Gr1 has a special outerplanar drawing
where on the boundary of r1 (in clockwise order) we see the frame edge e1,



70 S. Chaplick et al.

v2 v4

u2 u4

u1

u3

v1

v3e3

e1

e4e2

(a)

v2 v4

u2 u4

u1

u3
r3 r4

r5r6

r2

r1
v1

v3

(b)

b1 b2

w

v2 v4

u2 u4

u1

u3

v1

v3
r1

e3

e1

(c)

v2 v4

u2 u4

u1

u3

v1

v3

b
w

r3

(d)

Fig. 4. (a) Bundled crossing; (b) regions, corner-cuts in blue; (c),(d) augmented graphs
G∗

r1 and G∗
r3 consist of the edges of Gr1 and Gr3 (blue), augmentation vertices and

edges (black) (Color figure online)

the vertices mapped to the (u1, u3)-arc, the frame edge e3, then the vertices
mapped to the (v3, v1)-arc. We now describe how to augment Gr1 to a planar
graph G∗

r1
where in every planar embedding of G∗

r1
the sub-embedding of Gr1

has this special outerplanar form2. The vertex set of G∗
r1

is V (Gr1) ∪ {h, b1, b2}
where we call h hub vertex and b1 and b2 boundary vertices (one for each arc
of the boundary of r1 to which vertices can be mapped); see Fig. 4. The graph
G∗

r1
has four types of edges; the edges in E(Gr1), edges that make h the hub

of a wheel whose cycle is C = (v1, b2, v3, u3, b1, u1, v1), edges from b1 to the
vertices on the (u1, u3)-arc, and edges from b2 to the vertices on the (v3, v1)-arc
(both including the end points). Clearly, we can obtain a planar embedding of
G∗

r1
by drawing the elements of G∗

r1
\ Gr1 “outside” of the outerplanar drawing

of Gr1 described before. Moreover, every planar embedding of G∗
r1

contains an
outerplanar embedding of Gr1 that can be drawn in the special form needed to
“fit” into r1, in the sense that all of Gr1 lies (or can be put) inside the simple
cycle C. (For example, if, say, b1 is a cut vertex, the component hanging off b1
can be embedded in the face (h, b1, u3, h). But then it can easily be moved into C.
Similarly, a component that is incident only to u3 and v3 can end up in the face
(h, u3, v3, h), but again, the component can be moved inside C.)

Similarly, for a region of the second type, say r3, the graph Gr3 is outerplanar
with a special drawing where all the vertices must be on the (u3, u2)-arc of the
disk subtended by the two frame edges e3 and e2 bounding the region r3. We
augment similarly as for r1; see Fig. 4. For the augmented graph G∗

r3
, we add to

Gr3 a boundary vertex b neighboring all vertices on the (u3, u2)-arc and a hub
vertex h adjacent to u2, b, and u3. Again, G∗

r3
is planar since Gr3 is outerplanar

due to r3 being a topological disk. Moreover, as b is adjacent to all vertices
of Gr3 , in every planar embedding of G∗

r3
, Gr3 is embedded outerplanarly and,

since b occurs on one side of the triangle u3u2h, the edge u3u2 occurs on the
boundary of this outerplanar embedding of Gr3 . Thus, each planar embedding
of G∗

r3
provides an outerplanar embedding of Gr3 that fits into r3.

2 This augmentation may sound overly complicated, but is written as to easily gener-
alize to more bundled crossings.



Bundled Crossings Revisited 71

Note that each Gri
fits into ri because its augmented graph G∗

ri
is planar (�).

Moreover, as outerplanar graphs have treewidth at most two [22], each graph Gr

is outerplanar, and adding the (up to) eight frame vertices raises the treewidth
by at most 8, we see that the treewidth of G is at most 10. Namely, in order
for G to have bc◦(G) = 1, it must have treewidth at most 10 (and this can be
checked in linear time using an algorithm of Bodlaender [4]).

To sum up, G has a circular drawing D with at most one bundled cross-
ing because it has treewidth at most 10 and there exist (i) β ≤ 4 frame edges
e1, e2, . . . , eβ (this set is denoted F ) and v1, . . . , vξ frame vertices (this set is
denoted VF ), (ii) a particular circular drawing DF of frame edges, (iii) the draw-
ing of the one bundled crossing B, and (iv) γ ≤ 6 corresponding regions r1, . . . , rγ

of the subdivided surface Ω so that the following properties hold (note that the
frame vertices partition the boundary of the disk underlying Ω into η ≤ 8 (pos-
sibly degenerate) arcs p1, . . . , pη where each such pj is contained in a unique
region rij of Ω):

1. E(G) is partitioned into E0, E1, . . . , Eγ , where E0={f1, . . . , fβ}.
2. V (G) is partitioned into V0, V1, . . . , Vη, where V0={u1, . . . , uξ}.
3. The mapping ui ↔ vi and fi ↔ ei defines an isomorphism between the

subgraph of G formed by (V0, E0) and graph (VF , F ).
4. No vertex in V (G) \ V0 has incident edges e ∈ Ei, e′ ∈ Ej for i �= j.
5. For each v ∈ V0, and each edge e incident to v, exactly one of the following

is true: (i) e ∈ E0 or (ii) e ∈ Ei and v is on the boundary of ri.
6. For each v ∈ Vj , all edges incident to v belong to Eij .
7. For each region ri, let Gi be the graph (V0∪⋃

j : ij=i Vj , Ei) (i.e., the subgraph
that is to be drawn in ri), and let G∗

i be the corresponding augmented graph
(i.e., as in � above). Each G∗

i is planar.

We now describe the algorithm to test for a simple circular drawing with one
bundled crossing. First we check that treewidth of G is at most 10. We then
enumerate drawings of up to four edges in the circle. For the drawing DF that is
valid for the set F of frame edges of one bundled crossing, we define our surface
and its regions (which makes the augmentation well-defined). We have intention-
ally phrased these properties so that it is clear that they are expressible in MSO2

(see the full version [5]). The only property that is not obviously expressible is
the planarity of G∗

i . To this end, recall that planarity is characterized by two
forbidden minors (i.e., K5 and K3,3) and that, for every fixed graph H, there is
an MSO formula minorH so that for all graphs G, it holds that G |= minorH

if and only if G contains H as a minor [8, Corollary 1.14]. Additionally, each G∗
i

can be expressed as an MSO-transduction3 of G and our variables (our trans-
duction can be thought of as a kind of 2-copying transduction). Thus, by [8,
Theorem 7.10] using the transduction and the MSO formula testing planarity,
we can construct an MSO2 formula ι so that when G |= ι, G∗

i is planar for every
i. Therefore, Properties 1–7 can be expressed as an MSO2 formula ψ and, by
3 For the formalities of transductions, see the book of Courcelle and Engelfriet [8,

Section 1.7.1, and Definitions 7.6 and 7.25].



72 S. Chaplick et al.

(a) (b) (c)

Fig. 5. Configurations for p = 6: (a) DA(p), (b) DB(p), and (c) induced by a hole

Courcelle’s theorem, there is a computable function f such that we can test (in
O(f(ψ, t)n) time) whether G |= ψ for an input graph G of treewidth at most t.
Thus, since our graph has treewidth at most 10, applying Courcelle’s theorem
completes our algorithm.

3.3 Recognizing a Graph with k Bundled Crossings

We now generalize the above approach to k bundled crossings. In a drawing D of
G together with a solution consisting of k bundled crossings, there are 2k bundles
making (up to) 4k frame edges F . As described above, these bundled crossings
provide a surface S, its subdivision Ω, and the corresponding set of regions. The
key ingredient above was that every region was a topological disk. However, that
is now non-trivial as our regions can go over and under many handles. To show
this property, we first consider the following two partial drawings DA(p) and
DB(p) of a matching with p + 1 edges f0, f1 . . . , fp (see, e.g., Fig. 5) such that

– edge fi crosses only fi−1 mod p+1 and fi+1 mod p+1 for i = 0, . . . , p;
– the endpoints of each edge fi, i = 1, . . . , p − 2, are inside the cycle C formed

by the crossing points and the edge-pieces between these crossing points;
– both endpoints of fp−1, only one endpoint of f0, and only one endpoint of fp

are contained in C in the drawing DA(p);
– only one endpoint of fp−1, only one endpoint of f0, and no endpoints of fp

are contained in C in the drawing DB(p).

Note that the partial drawings DA(p) and DB(p) differ only in how the last
edge is drawn with respect to the previous edge. Arroyo et al. [2, Theorem 1.2]
showed that such partial drawings are obstructions for pseudolinearity, that is,
they cannot be part of any pseudoline arrangement. Therefore, neither of these
partial drawings can be completed to a simple circular drawing, that is, the
endpoints of the edges cannot be extended so that they lie on a circle which
contains the drawing. We highlight this fact in the following lemma.

Lemma 1. For a matching with p + 1 edges f0, f1, . . . , fp, neither the partial
drawing DA(p) nor DB(p) can be completed to a simple circular drawing.

Using this lemma we can now prove the following statement.

Lemma 2. Each region r of Ω is a topological disk4.

4 We slightly abuse this notion to also mean a simply connected set.



Bundled Crossings Revisited 73

r′

(a)

e2 e4

e1

e3
γ′

(b)

e2 e4

e3

e1
γ′

(c)

Fig. 6. (a) Projection r′ of the region r and its boundary (green, the corner-cuts are
in blue) onto the disk of the drawing D (b) projection γ′ of a Jordan arc γ that goes
over and under the same handle; (c) profile of edges of the projected boundary of r
enclosed by the loop made by γ′ form a partial drawing DA(p). (Color figure online)

Proof. First, we show that no region of Ω includes part of both a handle and
its undertunnel, that is, the part of the surface over which the handle was built.
Then we will show that a region also does not include holes.

Let r be a region of the surface subdivision Ω. The boundary of this region
is formed by pieces of frame edges that were lifted on the surface S as described
above and the additional corner-cuts as illustrated in Fig. 4 in red. Consider the
projection r′ of r and its boundary on the drawing D in the plane. Note that
the projected boundary either follows an edge in D or switches to some another
edge via a corner-cut at an intersection point; see Fig. 6(a).

Suppose now, for a contradiction, that r contains both a handle and its
undertunnel corresponding to the same bundled crossing B = ((e1, e3), (e2, e4)).

Then there is a Jordan arc γ ⊂ r going over and under this handle making
a loop; see Fig. 6(b). Note that the orthogonal projection γ′ of γ on the disk of
the drawing D self-intersects. The profile of edges along the projected boundary
of r that is enclosed by γ′ then inevitably contains a partial drawing DA(p);
see Fig. 6(c). And according to Lemma 1, such a partial drawing cannot be
completed to a valid simple circular drawing; contradiction.

As for holes, it is easy to see that if r had a hole, the profile of the boundary
edges around this hole would give a partial drawing of edges as illustrated in
Fig. 5(c). Therefore, the region r is a proper topological disk. ��

The next lemma concerning treewidth is a direct consequence of Lemma 2.

Lemma 3. If a graph G admits a circular layout with k bundled crossings then
its treewidth is at most 8k + 2.

Proof. If the graph G can be drawn in a circular layout with k bundled crossings
then there exist at most 4k frame edges. According to Lemma 2, the removal of
their endpoints breaks up the graph into outerplanar components. The treewidth
of an outerplanar graph is at most two [22]. Moreover, adding a vertex to a graph
raises its treewidth by at most one. Thus, since deleting at most 8k frame vertices
leaves behind an outerplanar graph, G has treewidth at most 8k + 2. ��



74 S. Chaplick et al.

(a)

c1 c2

c3

r

c4

(b)

p1

p2

p3

p4

u1

u′
1

u′
2u2

u′
4 u4

u3

u′
3

Fig. 7. (a) A bundled drawing D with six bundled crossings (pink); parallel (blue)
edges can be inserted to avoid degenerate bundled crossings; (b) the corresponding
surface of genus 6; the components of the surface that are not regions are marked in
green; the region r (light blue) has a boundary consisting of the arcs of the disk (red)
and the arcs c1, c2, c3, and c4 (traced in orange). (Color figure online)

We now prove Theorem 2, that deciding whether bc◦(G) ≤ k is FPT in k.

Proof (of Theorem 2). We use Lemma 2 and extend the algorithm of Sect. 3.2.
Suppose G has a circular drawing D with at most k bundled crossings. In D

we see the set F of (up to) 4k frame edges of these bundled crossings. As before,
F together with D defines a subdivided topological surface Ω containing a set of
regions R. As in the one bundled crossing case, each edge of G is in exactly one
such region, and each vertex of G either is incident to an edge in F (in which
case it belongs to at least two regions) or belongs to exactly one region.

Throughout the proof we will refer to Fig. 7 for an example. By Lemma 2,
each region r is a topological disk and as such its graph Gr is outerplanar with
a quite special drawing Dr described as follows. In particular, if we trace the
boundary of r in clockwise order, we see that it is made up of arcs p1, . . . , pα

of S, marked in red in Fig. 7(b) (such arcs can degenerate to single points), and
Jordan arcs c1, . . . , cα, traced in orange in Fig. 7(b), each of which connects two
such arcs of the disk. For i ∈ {1, . . . , α}, let ui and u′

i be the end points of pi, in
clockwise order. So u′

i and ui+1 are the endpoints of ci. No vertex of Gr lies in
the interior of ci.

We now describe G∗
r . First, we add a hub vertex h. Then, for each i ∈

{1, . . . , α}, if u′
i and ui+1 (where uα+1 is u1) are not adjacent, we add an edge

between them. If pi is non-degenerate, we add a boundary vertex bi adjacent to
all vertices on pi (including ui and u′

i) and make h adjacent to ui, bi, and u′
i.

Otherwise, we make h adjacent to ui = u′
i and, for technical reasons (see the full

version), we identify bi with ui and u′
i.



Bundled Crossings Revisited 75

Observe that the resulting graph G∗
r is planar due to the special outerplanar

drawing of Gr in r. Moreover, in every planar embedding of G∗
r , there is an

outerplanar embedding of Gr where the cyclic order of the arcs ci and the sets
of vertices mapped to the pi’s match their cyclic order in r, implying that Gr

fits into r. This is due to the fact that the simple cycle C ′ around h must
be embedded planarly, with all of Gr inside (with the possible and easy-to-
fix exceptions described in Sect. 3.2 concerning the cycle C there). Then the
order of the vertices in an outerplanar embedding of Gr is the order of the
vertices incident to b1, . . . , bα in a planar embedding of G∗

r . So the planarity
of G∗

r guarantees that Gr fits into r as needed.
The reason why G has a circular drawing D with at most k bundled crossings

is that there is a β-edge k-bundled crossing drawing DF (of the graph formed
by F ), whose corresponding surface S consists of regions r1, . . . , rγ (note: γ ≤
2β ≤ 8k) so that Properties 1–7 hold.

Our algorithm first checks that the treewidth of G is at most 8k + 2. Recall
that this can be done in linear time (FPT in k) [4]. It then enumerates all possible
simple drawings of at most 4k edges in the circle5. For each drawing, it further
enumerates the possible ways to form k bundled crossings so that every edge is a
frame edge of at least one bundled crossing. Then, for each such bundled drawing
DF , we build an MSO2 formula ϕ (see the full version) to express Properties 1–7.
Finally, since G has treewidth at most 8k +2, we can apply Courcelle’s theorem
on (G,ϕ). ��

4 Open Problems

Given our new FPT algorithm for simple circular layouts, it would be interesting
to improve its runtime and to investigate whether a similar result can be obtained
for general simple layouts. A starting point could be the FPT algorithm of
Kawarabayashi et al. [20] for computing the usual crossing number of a graph.

Acknowledgements. We thank Bruno Courcelle for clarifying discussions on the
tools available when working with his meta-theorem and in particular MSO2.

References

1. Alam, M.J., Fink, M., Pupyrev, S.: The bundled crossing number. In:
Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 399–
412. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50106-2 31.
http://arxiv.org/abs/1608.08161

2. Arroyo, A., Bensmail, J., Richter, R.B.: Extending drawings of graphs to arrange-
ments of pseudolines. ArXiv report (2018). https://arxiv.org/abs/1804.09317

5 i.e., at most 4k curves extending to infinity in both directions where each pair of
curves cross at most once. The number of such drawings is proportional to k, and
efficient enumeration has been done for the case when every pair of curves cross
exactly once [12].

https://doi.org/10.1007/978-3-319-50106-2_31
https://arxiv.org/abs/1804.09317


76 S. Chaplick et al.

3. Bannister, M.J., Eppstein, D.: Crossing minimization for 1-page and 2-page draw-
ings of graphs with bounded treewidth. J. Graph Algorithms Appl. 22(4), 577–606
(2018). https://doi.org/10.7155/jgaa.00479

4. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996). https://doi.org/10.1137/
S0097539793251219

5. Chaplick, S., van Dijk, T.C., Kryven, M., won Park, J., Ravsky, A., Wolff, A.: Bun-
dled crossings revisited. ArXiv report (2019). https://arxiv.org/abs/1812.04263

6. Chaplick, S., Kryven, M., Liotta, G., Löffler, A., Wolff, A.: Beyond outerplanarity.
In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp. 546–559. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-73915-1 42

7. Courcelle, B.: The monadic second-order logic of graphs. I. recognizable sets of
finite graphs. Inform. Comput. 85(1), 12–75 (1990). https://doi.org/10.1016/0890-
5401(90)90043-H

8. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic: A
Language-Theoretic Approach. Cambridge Univ Press, Cambridge (2012)

9. Cui, W., Zhou, H., Qu, H., Wong, P.C., Li, X.: Geometry-based edge clustering for
graph visualization. IEEE Trans. Vis. Comput. Graph. 14(6), 1277–1284 (2008).
https://doi.org/10.1109/TVCG.2008.135

10. de Verdière, É.C.: Computational topology of graphs on surfaces. In: Tóth, C.D.,
O’Rourke, J., Goodman, J.E. (eds.) Handbook of Discrete and Computational
Geometry, 3rd edn., chap. 23. CRC Press LLC, Boca Raton (2017)

11. van Dijk, T.C., Fink, M., Fischer, N., Lipp, F., Markfelder, P., Ravsky, A., Suri, S.,
Wolff, A.: Block crossings in storyline visualizations. J. Graph Algorithms Appl.
21(5), 873–913 (2017). https://doi.org/10.7155/jgaa.00443

12. Felsner, S.: On the number of arrangements of pseudolines. In: SoCG, pp. 30–37.
ACM (1996). https://doi.org/10.1145/237218.237232

13. Fink, M., Hershberger, J., Suri, S., Verbeek, K.: Bundled crossings in embedded
graphs. In: Kranakis, E., Navarro, G., Chávez, E. (eds.) LATIN 2016. LNCS, vol.
9644, pp. 454–468. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49529-2 34

14. Fink, M., Pupyrev, S., Wolff, A.: Ordering metro lines by block crossings. J. Graph
Algorithms Appl. 19(1), 111–153 (2015). https://doi.org/10.7155/jgaa.00351

15. Gansner, E.R., Hu, Y., North, S., Scheidegger, C.: Multilevel agglomerative edge
bundling for visualizing large graphs. In: Battista, G.D., Fekete, J.D., Qu, H. (eds.)
PACIFICVIS, pp. 187–194. IEEE (2011). https://doi.org/10.1109/PACIFICVIS.
2011.5742389

16. Holten, D.: Hierarchical edge bundles: visualization of adjacency relations in hier-
archical data. IEEE Trans. Vis. Comput. Graph. 12(5), 741–748 (2006). https://
doi.org/10.1109/TVCG.2006.147

17. Hurter, C., Ersoy, O., Fabrikant, S.I., Klein, T.R., Telea, A.C.: Bundled visual-
ization of dynamicgraph and trail data. IEEE Trans. Vis. Comput. Graph. 20(8),
1141–1157 (2014). https://doi.org/10.1109/TVCG.2013.246

18. Hurter, C., Ersoy, O., Telea, A.: Graph bundling by kernel density estimation.
Comput. Graph. Forum 31, 865–874 (2012). https://doi.org/10.1111/j.1467-8659.
2012.03079.x

19. Kawarabayashi, K., Mohar, B., Reed, B.A.: A simpler linear time algorithm for
embedding graphs into an arbitrary surface and the genus of graphs of bounded
tree-width. In: FOCS, pp. 771–780. IEEE (2008). https://doi.org/10.1109/FOCS.
2008.53

https://doi.org/10.7155/jgaa.00479
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1137/S0097539793251219
https://arxiv.org/abs/1812.04263
https://doi.org/10.1007/978-3-319-73915-1_42
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1109/TVCG.2008.135
https://doi.org/10.7155/jgaa.00443
https://doi.org/10.1145/237218.237232
https://doi.org/10.1007/978-3-662-49529-2_34
https://doi.org/10.1007/978-3-662-49529-2_34
https://doi.org/10.7155/jgaa.00351
https://doi.org/10.1109/PACIFICVIS.2011.5742389
https://doi.org/10.1109/PACIFICVIS.2011.5742389
https://doi.org/10.1109/TVCG.2006.147
https://doi.org/10.1109/TVCG.2006.147
https://doi.org/10.1109/TVCG.2013.246
https://doi.org/10.1111/j.1467-8659.2012.03079.x
https://doi.org/10.1111/j.1467-8659.2012.03079.x
https://doi.org/10.1109/FOCS.2008.53
https://doi.org/10.1109/FOCS.2008.53


Bundled Crossings Revisited 77

20. Kawarabayashi, K., Reed, B.: Computing crossing number in linear time. In:
STOC, pp. 382–390. ACM (2007). https://doi.org/10.1145/1250790.1250848

21. Lazarus, F., Pocchiola, M., Vegter, G., Verroust, A.: Computing a canonical polygo-
nal schema of an orientable triangulated surface. In: SoCG, pp. 80–89. ACM (2001).
https://doi.org/10.1145/378583.378630

22. Mitchell, S.L.: Linear algorithms to recognize outerplanar and maximal outerplanar
graphs. Inform. Process. Lett. 9(5), 229–232 (1979). https://doi.org/10.1016/0020-
0190(79)90075-9

23. Mohar, B.: A linear time algorithm for embedding graphs in an arbitrary surface.
SIAM J. Disc. Math. 12(1), 6–26 (1999)

24. Pupyrev, S., Nachmanson, L., Bereg, S., Holroyd, A.E.: Edge routing with ordered
bundles. Comput. Geom. Theory Appl. 52, 18–33 (2016). https://doi.org/10.1016/
j.comgeo.2015.10.005

25. Schaefer, M.: The graph crossing number and its variants: a survey. Electr. J.
Combin. Dynamic Survey DS21 (2017). http://www.combinatorics.org/ojs/index.
php/eljc/article/view/DS21

26. Thomassen, C.: The graph genus problem is NP-complete. J. Algorithms 10(4),
568–576 (1989). https://doi.org/10.1016/0196-6774(89)90006-0

https://doi.org/10.1145/1250790.1250848
https://doi.org/10.1145/378583.378630
https://doi.org/10.1016/0020-0190(79)90075-9
https://doi.org/10.1016/0020-0190(79)90075-9
https://doi.org/10.1016/j.comgeo.2015.10.005
https://doi.org/10.1016/j.comgeo.2015.10.005
http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS21
http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS21
https://doi.org/10.1016/0196-6774(89)90006-0


Crossing Numbers of Beyond-Planar
Graphs

Markus Chimani1 , Philipp Kindermann2(B) , Fabrizio Montecchiani3 ,
and Pavel Valtr4

1 Osnabrück University, Osnabrück, Germany
markus.chimani@uos.de

2 University of Würzburg, Würzburg, Germany
philipp.kindermann@uni-wuerzburg.de
3 University of Perugia, Perugia, Italy
fabrizio.montecchiani@unipg.it

4 Charles University in Prague, Prague, Czech Republic
valtr@kam.mff.cuni.cz

Abstract. We study the 1-planar, quasi-planar, and fan-planar crossing
number in comparison to the (unrestricted) crossing number of graphs.
We prove that there are n-vertex 1-planar (quasi-planar, fan-planar)
graphs such that any 1-planar (quasi-planar, fan-planar) drawing has
Ω(n) crossings, while O(1) crossings suffice in a crossing-minimal draw-
ing without restrictions on local edge crossing patterns.

1 Introduction

The crossing number of a graph G, denoted by cr(G), is the smallest number
of pairwise edge crossings over all possible drawings of G. Many papers are
devoted to the study of this parameter, refer to [22,25] for surveys. In particu-
lar, minimizing the number of crossings is one of the seminal problems in graph
drawing (see, e.g., [2,3,23]), whose importance has been further witnessed by
user studies showing how edge crossings may deteriorate the readability of a dia-
gram [20,21,26]. On the other hand, determining the crossing number of a graph
is NP-hard [5] and can be solved exactly only on small/medium instances [7]. On
the positive side, the crossing number is fixed-parameter tractable in the num-
ber of crossings [15] and can be approximated by a constant factor for graphs of
bounded degree and genus [10].

A recent research stream studies graph drawings where, rather than mini-
mizing the number of crossings, some edge crossing patters are forbidden; refer
to [4,9,11,12] for surveys and reports. A key motivation for the study of so-called
beyond-planar graphs are recent cognitive experiments showing that already the

Research in this work started at the Bertinoro Workshop on Graph Drawing 2019. MC
was supported by DFG under grant CH 897/2-2. FM was supported in part by MIUR
under grant 20174LF3T8 AHeAD: efficient Algorithms for HArnessing networked Data.
PV was supported by the Czech Science Foundation grant 18-19158S.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 78–86, 2019.
https://doi.org/10.1007/978-3-030-35802-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_6&domain=pdf
http://orcid.org/0000-0002-4681-5550
http://orcid.org/0000-0001-5764-7719
http://orcid.org/0000-0002-0543-8912
https://doi.org/10.1007/978-3-030-35802-0_6


Crossing Numbers of Beyond-Planar Drawings 79

Table 1. Lower and upper bounds the crossing ratio of beyond-planar graphs.

Graph class Lower bound Upper bound

1-planar n/2 − 1 n/2 − 1

quasi-planar Ω(n) O(n2)

k-quasi-planar Ω(n/k3) f(k) · n2 log2 n

fan-planar Ω(n) O(n2)

absence of specific kinds of edge crossing configurations has a positive impact on
the human understanding of a graph drawing [13,18]. Of particular interest for
us are three families of beyond-planar graphs that have been extensively stud-
ied, namely the k-planar, fan-planar, and k-quasi-planar graphs; refer to [9] for
additional families. A k-planar drawing is such that each edge is crossed at most
k ≥ 1 times [19] (see also [16] for a survey on 1-planarity). A k-quasi planar
drawing does not have k ≥ 3 mutually crossing edges [1]. A fan-planar drawing
does not contain two independent edges that cross a third one or two adjacent
edges that cross another edge from different “sides” [14]. A graph is k-planar
(k-quasi-planar, fan-planar) if it admits a k-planar (k-quasi-planar, fan-planar)
drawing; a 3-quasi-planar graph is simply called quasi-planar.

In this context, an intriguing question is to what extent edge crossings can
be minimized while forbidding such local crossing patterns. In particular, we ask
whether avoiding local crossing patterns in a drawing of a graph may enforce
an overall large number of crossings, whereas only a few crossings would suffice
in a crossing-minimal drawing of the graph. We answer this question in the
affirmative for the above-mentioned three families of beyond-planar graphs. Our
contribution are summarized in Table 1.

1. In Sect. 2, we prove that there exist n-vertex 1-planar graphs such that the
ratio between the minimum number of crossings in a 1-planar drawing of
one such graph and its crossing number is n/2 − 1. This result can be easily
extended to k-planar graphs if we allow parallel edges.

2. In Sect. 3, we prove that there exist n-vertex quasi-planar graphs such that the
ratio between the minimum number of crossings in a quasi-planar drawing of
one such graph and its crossing number is Ω(n). Similarly, a Ω(n/k3) bound
can be proved for k-quasi-planar graphs.

3. In Sect. 4, we prove that there exist n-vertex fan-planar graphs such that the
ratio between the minimum number of crossings in a fan-planar drawing of
one such graph and its crossing number is Ω(n).

The lower bound in Result 1 is tight. Since fan-planar and quasi-planar graphs
have O(n) edges, the lower bounds in Results 2 and 3 are a linear factor from the
trivial upper bound O(n2), and it remains open whether such an upper bound
can be achieved (see Sect. 5). All results are based on nontrivial constructions
that exhibit interesting structural properties of the investigated graphs.



80 M. Chimani et al.

Notation and Definitions. We assume familiarity with standard definitions about
graph drawings and embeddings of planar and nonplanar graphs (see, e.g., [8,9]).
In a drawing of a graph, we assume that an edge does not contain a vertex other
than its endpoints, no two edges meet tangentially, and no three edges share
a crossing. It suffices to only consider simple drawings where any two edges
intersect in at most one point, which is either a common endpoint or an interior
point where the two edges properly cross. Thus, in a simple drawing, any two
adjacent edges do not cross and any two non-adjacent edges cross at most once.

We define the k-planar crossing number of a k-planar graph G, denoted by
crk-pl(G), as the minimum number of crossings over all k-planar drawings of G.
The k-planar crossing ratio �k-pl is the supremum of crk-pl(G)/cr(G) over all
k-planar graphs G. Analogously, we define the quasi-planar and the fan-planar
crossing number of a graph G, denoted by crquasi(G) and crfan(G), as well as the
quasi-planar and the fan-planar crossing ratio, denoted by �quasi and �fan.

2 The 1-planar Crossing Ratio

An n-vertex 1-planar graph has at most 4n − 8 edges and a 1-planar drawing
has at most n − 2 crossings, that is cr1-pl(G) ≤ n − 2 [16]. Observe that for
cr(G) < cr1-pl(G) it has to hold that cr(G) ≥ 2. It follows that the 1-planar
crossing ratio is �1-pl ≤ n/2 − 1. We show that this bound can be achieved.

Theorem 1. For every � ≥ 7, there exists a 1-planar graph G� with n = 11�+2
vertices such that cr1-pl(G�) = n − 2 and cr(G�) = 2, which yields the largest
possible 1-planar crossing ratio.

The construction of G� consists of three parts: a rigid graph P that has to be
drawn planar in any 1-planar drawing; its dual P ∗; a set of binding edges and
one special edge that force P and P ∗ to be intertwined in any 1-planar drawing.

To obtain P , we utilize a construction introduced by Korzhik and Mohar [17].
They construct graphs H� that are the medial extension of the Cartesian prod-
uct of the path of length 2 and the cycle of length �; see Fig. 1a. They prove
that H� has exactly one 1-planar embedding on the sphere, and that embedding
is crossing-free. We choose P = H� as our rigid graph and fix its (1−) planar
embedding (when we will refer to P , we will usually mean this embedding).

Let P ∗ be the dual of P , obtained by placing a dual vertex h∗ into each
face h of P and connecting two dual vertices if their corresponding faces share
an edge; see Fig. 1b. Since P has 5� vertices and 11� edges, by Euler’s polyhedra
formula it has 6� + 2 faces; thus, P ∗ has 6� + 2 vertices and 11� edges.

Obviously, P ∪ P ∗ can be drawn planar, as both P and P ∗ are planar and
disjoint. All faces of P have size 3 or 4, except two large (called polar) faces f
and g of size �. We create a graph G′ by adding � binding edges to P ∪ P ∗

between f∗ (the vertex of P ∗ corresponding to face f) and the vertices of P that
are incident to f . This forces f∗ to be drawn in face f in any 1-planar drawing.
In the full version [6] we prove the following lemma, cf. Fig. 1c and d.



Crossing Numbers of Beyond-Planar Drawings 81

(a) The graph P

g∗

f∗

(b) The graph P ∪ P ∗

g∗

y∗

f∗

x

z

(c) cr1-pl(G�) ≤ n − 2

y∗

x

(d) cr(G�) ≤ 2

Fig. 1. Construction of the graph G� in the proof of Theorem 1. Blue circles and edges
are P ; red squares and bold edges are P ∗; green dashed edges are the binding edges;
and the orange very bold edge is the special edge. (Color figure online)

Lemma 2. G′ has only two types of 1-planar embeddings (up to the choice of
the outer face): a planar one where P ∗ lies completely inside face f of P ; and a
1-planar embedding where f∗ lies inside f , g∗ lies inside g, and each edge of P
crosses an edge of P ∗ and vice versa.

Let z be a vertex of P on the boundary of f . Let y be the face of size 4 that
has z on its boundary. Let x be the degree-6 vertex on the boundary of y. We
obtain G� from G′ by adding the special edge (x, y∗). In the planar embedding
of Lemma 2, P ∗ and thus y∗ lies inside face f of P , so (x, y∗) has to cross at
least two edges of P ; see Fig. 1d. Choosing the face that corresponds to z as the
outer face of P ∗ gives a non-1-planar drawing of G� with 2 crossings.

Hence, G′ has to be drawn in the second way of Lemma 2; see Fig. 1c. Here,
the edge (x, y∗) can be added without further crossings. Graph G� consists of
n = 11�+2 vertices in total. Both P and P ∗ have 11� edges, and each of them is
crossed, so there are n−2 crossings in total, which is the maximum possible in a
1-planar drawing. Hence, cr1-pl(G�) = n − 2 and cr(G�) = 2, so �1-pl ≤ n/2 − 1.

The construction used in the proof of Theorem 1 can be generalized to k-
planar multigraphs. It suffices to replace each edge of G�, except the special
edge, by a bundle of k parallel edges:



82 M. Chimani et al.

(a) cr(G�) ≤ 3 (b) crquasi(G�)≤2�+1 (c) C is not crossed (d) C is crossed

Fig. 2. Illustration for the proof of Theorem 4.

Corollary 3. For every � ≥ 6, there exists a k-planar multigraph G�,k with
n = 11� + 2 vertices and maximum edge multiplicity k such that crk-pl(G�,k) =
k2 (n − 2) and cr(G�,k) = 2k, thus �k-pl ≥ k (n − 2)/2.

3 The Quasi-planar Crossing Ratio

An n-vertex quasi-planar graph G has at most 6.5n−20 edges, thus crquasi(G) ∈
O(n2) [9]. For cr(G) < crquasi it has to hold that cr(G) ≥ 2, and hence
�quasi ∈ O(n2). We show that the quasi-planar crossing ratio is unbounded,
even for cr(G) ≤ 3:

Theorem 4. For every � ≥ 2, there exists a quasi-planar graph G� with n =
12� − 5 vertices such that crquasi(G�) ≥ � and cr(G�) ≤ 3, thus �quasi ∈ Ω(n).

In order to prove Theorem 4, we begin with a technical lemma.

Lemma 5. Let G be a graph containing two independent edges (u, v) and (w, z).
Suppose that u and v (w and z, resp.) are connected by a set Πuv (Πwz, resp.)
of � − 1 paths of length two. Let Γ be a drawing of G. If (u, v) and (w, z) cross
in Γ , then Γ contains at least � crossings.

Proof. Suppose that (u, v) and (w, z) cross. If each of the � − 1 paths in Πwz

crosses (u, v), then the claim follows. Assume otherwise that at least one of these
paths does not cross (u, v). This path forms a 3-cycle t with (w, z); the � − 1
paths of Πuv all cross at least one edge of t, which proves the claim. ��

Proof (of Theorem 4). Let G� be the graph constructed as follows; cf. Fig. 2a.
Start with a 6-cycle C = 〈u0, u1, . . . , u5〉, and a vertex x connected to each of C,
yielding graph G′. Extend each edge of G′ by adding �−1 disjoint paths of length
two between its endpoints. Finally, add special edges (ui, ui+3), i = 0, 1, 2.

The resulting graph G� has n = 12(� − 1) + 7 = 12� − 5 vertices and admits
a drawing with 3 crossings, so cr(G�) ≤ 3; see Fig. 2a. Note that G� admits a
quasi-planar drawing with 2� + 1 crossings as shown in Fig. 2b. We prove that
crquasi(G�) ≥ �. Let Γ be a quasi-planar drawing of G�. If there are two edges
of G′ that cross each other, then the claim follows by Lemma 5.



Crossing Numbers of Beyond-Planar Drawings 83

(a) cr(G�) ≤ 2. (b) crfan(G�) ≤ �.

Fig. 3. Illustration for the proof of Theorem 7.

If no special edge would cross G′, they would all be drawn within the unique
face of size 6 in G′. They would mutually cross, contradicting quasi-planarity.

Thus, at least one special edge, say s = (u0, u3), crosses an edge (a, b) of G′.
Consider the closed (possibly self-intersecting) curve L composed of s plus the
subpath of C connecting u0 to u3 and containing none of the vertices a and b.
This curve partitions the plane into two or more regions, and a and b lie in
different regions; see Fig. 2c and d for an illustration. Thus (a, b) and the � − 1
paths connecting a and b cross L, yielding � crossings in Γ , as desired. ��

The above proof can be straight-forwardly extended to k-quasi-planar graphs
by using exactly the same construction in which the cycle C has length 2k. Note
that any k-quasi-planar graph has at most ckn log n edges, where ck depends
only on k [24], so �quasi ≤ f(k) · n2 log2 n.

Corollary 6. For every � ≥ 2 and k ≥ 3, there exists a k-quasi-planar
graph G�,k with n = 2k(� + 1) + 1 vertices such that crquasi(G�,k) ≥ � and
cr(G�,k) ≤ k(k − 1)/2, thus �quasi ∈ Ω(n/k3).

4 The Fan-Planar Crossing Ratio

An n-vertex fan-planar graph G has at most 5n − 10 edges, thus crfan(G) ∈
O(n2) [9]. For cr(G) < crfan(G) it has to hold that cr(G) ≥ 2, and hence
�fan ∈ O(n2). We show that the fan-planar crossing ratio is unbounded, even for
cr(G) = 3.

Theorem 7. For every � ≥ 2, there exists a fan-planar graph G� with n = 9�+1
vertices such that crfan(G�) = � and cr(G�) = 3, thus �fan ∈ Ω(n).

Proof. Let G� be the graph constructed as follows; cf. Fig. 3a. Start with a K3,3.
Extend each edge of the K3,3 by adding �−1 disjoint paths of length two between
its endpoints, except for two independent edges (u, v) and (w, z). Add vertices



84 M. Chimani et al.

w′ and z′, edges w̄ = (w,w′) and z̄ = (z, z′), � disjoint paths of length two
connecting w′ and z, and � disjoint paths of length two connecting z′ and w.

Graph G� has n = 6+7(�−1)+2+2� = 9�+1 vertices and admits a drawing
with three crossings, see Fig. 3a. Recall that we obtain a subdivision of a graph
G by subdividing (even multiple times) any subset of its edges. G� contains three
subdivisions of K3,3 sharing only edge (u, v), and thus each subdivision requires
at least one distinct crossing in any drawing. It follows that cr(G�) = 3. Note
that G� admits a fan-planar drawing with � crossings, cf. Fig. 3b. We prove that
crfan(G�) = �. Let Γ be a fan-planar drawing of G�. If any two extended edges
cross each other, then the claim follows by Lemma 5. Assume they do not:

G� contains � subdivions of K3,3 that share only (u, v) and w̄. Since each
K3,3 subdivision requires at least one crossing, there are either � crossings in Γ
(proving the claim), or (u, v) crosses w̄. Similarly, G� contains � K3,3 subdivisions
that share only (u, v) and z̄, and we can assume that (u, v) crosses z̄. But fan-
planarity forbids (u, v) to cross both w̄ and z̄. ��

5 Open Problems

The main open question is whether there exist fan-planar and quasi-planar
graphs whose crossing ratio is Ω(n2). In fact, we conjecture that this bound
can be reached, but proving our suspected constructions turns out to be elusive.
Another natural research direction is to extend our results to further families of
beyond-planar graphs, such as k-gap planar graphs or fan-crossing-free graphs
(refer to [9] for definitions). Finally, we may ask whether similar lower bounds can
be proved in the geometric setting (i.e., when the edges are drawn as straight-line
segments).

References

1. Alon, N., Erdös, P.: Disjoint edges in geometric graphs. Disc. Comput. Geom. 4,
287–290 (1989). https://doi.org/10.1007/BF02187731

2. Batini, C., Furlani, L., Nardelli, E.: What is a good diagram? A pragmatic app-
roach. In: Proceedings of 4th International Conference on Entity-Relationship App-
roach (ER 1985), pp. 312–319 (1985). http://dl.acm.org/citation.cfm?id=647510.
726382

3. Batini, C., Nardelli, E., Tamassia, R.: A layout algorithm for data flow diagrams.
IEEE Trans. Softw. Eng. 12(4), 538–546 (1986). https://doi.org/10.1109/TSE.
1986.6312901

4. Bekos, M.A., Kaufmann, M., Montecchiani, F.: Guest editors’ foreword and
overview - special issue on graph drawing beyond planarity. J. Graph Algorithms
Appl. 22(1), 1–10 (2018). https://doi.org/10.7155/jgaa.00459

5. Bienstock, D.: Some provably hard crossing number problems. Disc. Comput.
Geom. 6, 443–459 (1991). https://doi.org/10.1007/BF02574701

6. Chimani, M., Kindermann, P., Montecchiani, F., Valtr, P.: Crossing numbers of
beyond-planar graphs. Arxiv report (2019). http://arxiv.org/abs/1908.03153

https://doi.org/10.1007/BF02187731
http://dl.acm.org/citation.cfm?id=647510.726382
http://dl.acm.org/citation.cfm?id=647510.726382
https://doi.org/10.1109/TSE.1986.6312901
https://doi.org/10.1109/TSE.1986.6312901
https://doi.org/10.7155/jgaa.00459
https://doi.org/10.1007/BF02574701
http://arxiv.org/abs/1908.03153


Crossing Numbers of Beyond-Planar Drawings 85

7. Chimani, M., Mutzel, P., Bomze, I.: A new approach to exact crossing minimiza-
tion. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 284–296.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87744-8 24

8. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice-
Hall, Upper Saddle River (1999)

9. Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond
planarity. ACM Comput. Surv. 52(1), 4:1–4:37 (2019). https://doi.org/10.1145/
3301281

10. Hliněný, P., Chimani, M.: Approximating the crossing number of graphs embed-
dable in any orientable surface. In: Charikar, M. (ed.) Proceedings 21sth Annual
ACM-SIAM Symposium Discrete Algorithms (SODA 2010), pp. 918–927. SIAM
(2010). https://doi.org/10.1137/1.9781611973075.74

11. Hong, S., Kaufmann, M., Kobourov, S.G., Pach, J.: Beyond-planar graphs: Algo-
rithmics and combinatorics (dagstuhl seminar 16452). In: Dagstuhl Reports, vol.
6, no. 11, pp. 35–62 (2016). https://doi.org/10.4230/DagRep.6.11.35

12. Hong, S., Tokuyama, T.: Algoritihmcs for beyond planar graphs (NII shonan meet-
ing 2016–17). NII Shonan Meeting Report 2016 (2016). http://shonan.nii.ac.jp/
shonan/report/no-2016-17/

13. Huang, W., Eades, P., Hong, S.: Larger crossing angles make graphs easier to read.
J. Vis. Lang. Comput. 25(4), 452–465 (2014). https://doi.org/10.1016/j.jvlc.2014.
03.001

14. Kaufmann, M., Ueckerdt, T.: The density of fan-planar graphs. Arxiv Report
(2014). http://arxiv.org/abs/1403.6184

15. Kawarabayashi, K., Reed, B.A.: Computing crossing number in linear time. In:
Johnson, D.S., Feige, U. (eds.) Proceedings 39th Annual ACM Symposium The-
ory Computing(STOC 2007). pp. 382–390. ACM (2007). https://doi.org/10.1145/
1250790.1250848

16. Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-
planarity. Comput. Sci. Rev. 25, 49–67 (2017). https://doi.org/10.1016/j.cosrev.
2017.06.002

17. Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness
of 1-planarity testing. J. Graph Theory 72(1), 30–71 (2013). https://doi.org/10.
1002/jgt.21630

18. Mutzel, P.: An alternative method to crossing minimization on hierarchical
graphs. SIAM J. Optim. 11(4), 1065–1080 (2001). https://doi.org/10.1137/
S1052623498334013

19. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica
17(3), 427–439 (1997). https://doi.org/10.1007/BF01215922

20. Purchase, H.C.: Effective information visualisation: a study of graph drawing aes-
thetics and algorithms. Interact. Comput. 13(2), 147–162 (2000). https://doi.org/
10.1016/S0953-5438(00)00032-1

21. Purchase, H.C., Carrington, D.A., Allder, J.A.: Empirical evaluation of aesthetics-
based graph layout. Empir. Softw. Eng. 7(3), 233–255 (2002)

22. Schaefer, M.: The graph crossing number and its variants: a survey. Electr. J.
Comb., Dynamic Surveys, DS21, 113 p. (2017). https://www.combinatorics.org/
ojs/index.php/eljc/article/view/DS21

23. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-
chical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981).
https://doi.org/10.1109/TSMC.1981.4308636

https://doi.org/10.1007/978-3-540-87744-8_24
https://doi.org/10.1145/3301281
https://doi.org/10.1145/3301281
https://doi.org/10.1137/1.9781611973075.74
https://doi.org/10.4230/DagRep.6.11.35
http://shonan.nii.ac.jp/shonan/report/no-2016-17/
http://shonan.nii.ac.jp/shonan/report/no-2016-17/
https://doi.org/10.1016/j.jvlc.2014.03.001
https://doi.org/10.1016/j.jvlc.2014.03.001
http://arxiv.org/abs/1403.6184
https://doi.org/10.1145/1250790.1250848
https://doi.org/10.1145/1250790.1250848
https://doi.org/10.1016/j.cosrev.2017.06.002
https://doi.org/10.1016/j.cosrev.2017.06.002
https://doi.org/10.1002/jgt.21630
https://doi.org/10.1002/jgt.21630
https://doi.org/10.1137/S1052623498334013
https://doi.org/10.1137/S1052623498334013
https://doi.org/10.1007/BF01215922
https://doi.org/10.1016/S0953-5438(00)00032-1
https://doi.org/10.1016/S0953-5438(00)00032-1
https://www.combinatorics.org/ojs/index.php/eljc/article/view/DS21
https://www.combinatorics.org/ojs/index.php/eljc/article/view/DS21
https://doi.org/10.1109/TSMC.1981.4308636


86 M. Chimani et al.

24. Suk, A., Walczak, B.: New bounds on the maximum number of edges in k-
quasi-planar graphs. Comput. Geom. 50, 24–33 (2015). https://doi.org/10.1016/j.
comgeo.2015.06.001

25. Vrt’o, I.: Crossing numbers of graphs: A bibliography (2014). ftp://ftp.ifi.savba.
sk/pub/imrich/crobib.pdf

26. Ware, C., Purchase, H.C., Colpoys, L., McGill, M.: Cognitive measurements
of graph aesthetics. Inform. Vis. 1(2), 103–110 (2002). https://doi.org/10.1057/
palgrave.ivs.9500013

https://doi.org/10.1016/j.comgeo.2015.06.001
https://doi.org/10.1016/j.comgeo.2015.06.001
ftp://ftp.ifi.savba.sk/pub/imrich/crobib.pdf
ftp://ftp.ifi.savba.sk/pub/imrich/crobib.pdf
https://doi.org/10.1057/palgrave.ivs.9500013
https://doi.org/10.1057/palgrave.ivs.9500013


On the 2-Colored Crossing Number

Oswin Aichholzer1 , Ruy Fabila-Monroy2 , Adrian Fuchs1,
Carlos Hidalgo-Toscano3 , Irene Parada1(B) , Birgit Vogtenhuber1 ,

and Francisco Zaragoza4

1 Graz University of Technology, Graz, Austria
{oaich,iparada,bvogt}@ist.tugraz.at, adrian.fuchs@student.tugraz.at

2 Departamento de Matemáticas, Cinvestav, Mexico City, Mexico
ruyfabila@math.cinvestav.edu.mx

3 Centro de Investigación e Innovación en Tecnoloǵıas de la Información y
Comunicación, Mexico City, Mexico

carlos.hidalgo@infotec.mx
4 Universidad Autónoma Metropolitana, Mexico City, Mexico

franz@correo.azc.uam.mx

Abstract. Let D be a straight-line drawing of a graph. The rectilinear
2-colored crossing number of D is the minimum number of crossings
between edges of the same color, taken over all possible 2-colorings of
the edges of D. First, we show lower and upper bounds on the rectilinear
2-colored crossing number for the complete graph Kn. To obtain this
result, we prove that asymptotic bounds can be derived from optimal
and near-optimal instances with few vertices. We obtain such instances
using a combination of heuristics and integer programming. Second, for
any fixed drawing of Kn, we improve the bound on the ratio between its
rectilinear 2-colored crossing number and its rectilinear crossing number.

Keywords: Complete graph · Rectilinear crossing number · k-colored
crossing number

1 Introduction

For a drawing of a non-planar graph G in the plane it is of interest from both
a theoretical and practical point of view, to minimize the number of crossings.
The minimum such number is known as the crossing number cr(G) of G. There
are many variants on crossing numbers, see the comprehensive dynamic survey

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sk�lodowska-Curie grant agreement No.
734922. O.A. and I.P. partially supported by the Austrian Science Fund (FWF) grant
W1230. R.F. and C.H. partially supported by CONACYT (Mexico), grant 253261.
B.V. partially supported by Austrian Science Fund within the collaborative DACH
project Arrangements and Drawings as FWF project I 3340-N35. F.Z. partially sup-
ported by UAM Azcapotzalco, research grant SI004-12, and SNI Conacyt.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 87–100, 2019.
https://doi.org/10.1007/978-3-030-35802-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_7&domain=pdf
http://orcid.org/0000-0002-2364-0583
http://orcid.org/0000-0002-2517-0298
http://orcid.org/0000-0003-3578-0193
http://orcid.org/0000-0003-3147-0083
http://orcid.org/0000-0002-7166-4467
https://doi.org/10.1007/978-3-030-35802-0_7


88 O. Aichholzer et al.

of Schaefer [25]. In this paper we focus on a version combining two of them: the
k-planar crossing number and the rectilinear crossing number.

The k-planar crossing number crk(G) of a graph G is the minimum of
cr(G1) + · · · + cr(Gk) over all sets of k graphs {G1, . . . , Gk} whose union is
G. For k = 2, it was introduced by Owens [22] who called it the biplanar cross-
ing number ; see [13,14] for a survey on biplanar crossing numbers. Shahrokhi et
al. [26] introduced the generalization to k ≥ 2.

A straight-line drawing of G is a drawing D of G in the plane in which
the vertices are drawn as points in general position, that is, no three points
on a line, and the edges are drawn as straight line segments. We identify the
vertices and edges of the underlying abstract graph with the corresponding ones
in the straight-line drawing. The rectilinear crossing number of G, cr(G), is the
minimum number of pairs of edges that cross in any straight-line drawing of G. Of
special relevance is cr(Kn), the rectilinear crossing number of the complete graph
on n vertices. The current best published bounds on cr(Kn) are 0.379972

(
n
4

)
<

cr(Kn) < 0.380473
(
n
4

)
+ Θ(n3) [3,16]. The upper bound was achieved using a

duplication process and has been improved in an upcoming paper [6] to cr(Kn) <
0.38044921

(
n
4

)
+ Θ(n3).

A k-edge-coloring of a drawing D of a graph is an assignment of one of k
possible colors to every edge of D. The rectilinear k-colored crossing number of
a graph G, crk(G), is the minimum number of monochromatic crossings (pairs
of edges of the same color that cross) in any k-edge-colored straight-line drawing
of G. This parameter was introduced before and called the geometric k-planar
crossing number [23]. In the same paper, as well as in [26], also the rectilin-
ear k-planar crossing number was considered, which asks for the minimum of
cr(G1) + . . . + cr(Gk) over all sets of k graphs {G1, . . . , Gk} whose union is G.
We prefer our terminology because the terms geometric and rectilinear are very
often used interchangeably and because the term k-planar is extensively used in
graph drawing with a different meaning; see for example [15,20]. We remark that
in graph drawing, rectilinear sometimes also refers to orthogonal grid drawings
(which is not the case here).

In this paper we focus on the case where G is the complete graph Kn, and
we prove the following lower and upper bounds on cr2(Kn):

0.03
(

n

4

)
+ Θ(n3) < cr2(Kn) < 0.11798016

(
n

4

)
+ Θ(n3).

Our approach is based on theoretical results that guarantee asymptotic bounds
from the information of small point sets. Thus, it implies computationally deal-
ing with small sets, both to guarantee a minimum amount of monochromatic
crossings (for the lower bound) and to find examples with few monochromatic
crossings and some other desired properties (for the upper bound).

From an algorithmic point of view, the decision variant of the crossing num-
ber problem was shown to be NP-complete for general graphs already in the
1980s by Garey and Johnson [18]. The version for straight-line drawings is also
known to be NP-hard, and actually, computing the rectilinear crossing number is



On the 2-Colored Crossing Number 89

∃R-complete [19]. So whenever considering crossing numbers, it is rather likely
that one faces computationally difficult problems.

In our case the challenge is twofold. On the one hand, we need to optimize the
point configuration (order type) to obtain a small number of crossings, which is
the original question about the rectilinear crossing number of Kn. On the other
hand, we need to determine a coloring of the edges of Kn that minimizes the
colored crossing number for a fixed point set.

For the first problem there is not even a conjecture of point configurations
that minimize the rectilinear crossing number of Kn for any n. The latter prob-
lem corresponds to finding a maximum cut in a segment intersection graph,
which in general is NP-complete [9]. Moreover, these two problems are not inde-
pendent. There exist examples where a point set with a non-minimal number of
uncolored crossings allows for a coloring of the edges so that the resulting colored
crossing number is smaller than the best colored crossing number obtained from
a set minimizing the uncolored crossing number. Thus, the two optimization pro-
cesses need to interleave if we want to guarantee optimality. But, as we will see
in Sect. 2, even this combined optimization does not guarantee to yield the best
asymptotic result. There are sets of fixed cardinality and with larger 2-colored
crossing number which—due to an involved duplication process—give a better
asymptotic constant than the best minimizing sets. This is in contrast to the
uncolored setting [2,3], where for any fixed cardinality, sets with a smaller cross-
ing number always give better asymptotic constants. Also, it clearly indicates
that our extended duplication process for 2-colored crossings differs essentially
from the original version.

As mentioned, drawings with few crossings do not necessarily admit a color-
ing with few monochromatic crossings. This observation motivates the following
question: given a fixed straight-line drawing D of Kn, what is the ratio between
the number of monochromatic crossings for the best 2-edge-coloring of D and the
number of (uncolored) crossings in D? A simple probabilistic argument shows
that this ratio is less than 1/2. In Sect. 4, we improve that bound, showing that
for sufficiently large n, it is less than 1/2 − c for some positive constant c.

In a slight abuse of notation, we denote with cr(D) the number of pairs
of edges in D that cross and call it the rectilinear crossing number of D. The
(rectilinear) 2-colored crossing number of a straight-line drawing D, cr2(D), is
then the minimum of cr(D1) + cr(D2), over all pairs of straight-line drawings
{D1,D2} whose union is D. For a given 2-edge-coloring χ of D, we denote with
cr2(D,χ) the number of monochromatic crossings in D. Thus, cr2(D) is the
minimum of cr2(D,χ) over all 2-edge-colorings χ of D.

Outline. In Sect. 2 we prove that, given a 2-colored straight-line drawing D of
Kn, there is a duplication process that allows us to obtain a 2-colored straight-
line drawing Dk of K2kn for any k ≥ 1 whose 2-colored crossing number cr2(Dk)
can be easily calculated. Moreover, we can obtain the asymptotic value when
k → ∞. By finding good sets of constant size as a seed for the duplication
process, we obtain an asymptotic upper bound for cr2(Kn). In Sect. 3 we obtain
a lower bound for cr2(Kn) using the crossing lemma, and we improve it with an



90 O. Aichholzer et al.

approach again using small drawings. For sufficiently large n, we show in Sect. 4
that for any straight-line drawing D of Kn, cr2(D)/cr(D) < 1/2−c for a positive
constant c, that is, using two colors saves more than half of the crossings. Finally,
in Sect. 5 we present some open problems.

2 Upper Bounds on cr2(Kn)

For the rectilinear crossing number cr(Kn), the best upper bound [6] comes from
finding examples of straight-line drawings of Kn (for a small value of n) with
few crossings which are then used as a seed for the duplication process in [2,3].
To be able to apply this duplication process, the starting set P with m points
has to contain a halving matching. If m is even (odd), a halving line of P is
a line that passes exactly through two (one) points of P and leaves the same
number of points of P to each side. If it is possible to match each point p of P
with a halving line of P through this point in such a way that no two points
are matched with the same line, P is said to have a halving matching. It is then
shown in [2] that every point of P can be substituted by a pair of points in its
close neighborhood such that the resulting set Q with 2m points contains again
a halving matching. Iterating this process leads to the mentioned upper bound
for cr(Kn), where this bound depends only on m and the number of crossings of
the starting set P .

In this section, we prove that a significantly more involved but similar app-
roach can be adopted for the 2-colored case. Unlike the original approach, we
cannot always get a matching which simultaneously halves both color classes.
Moreover, even for sets where such a halving matching exists, it cannot be guar-
anteed that this property is maintained after the duplication step. We will see
below that we need a more involved approach, where the matchings are related
to the distribution of the colored edges around a vertex. Consequently, the num-
ber of crossings which are obtained in the duplication, and thus, the asymptotic
bound we get, not only depends on the 2-colored crossing number of the start-
ing set, but also on the specific distribution of the colors of the edges. In that
sense, both the heuristics for small drawings and the duplication process for the
2-colored crossing number differ significantly from the uncolored case.

Throughout this section, P is a set of m points in general position in the
plane, where m is even. Let p be a point in P . By slight abuse of notation, in the
following we do not distinguish between a point set and the straight-line drawing
of Kn it induces. Given a 2-coloring χ of the edges induced by P , we denote by
L(p) and S(p) the edges incident to p ∈ P of the larger and smaller color class
at p, respectively. An edge e = (p, q) incident to p is called a χ-halving edge of
p if the number of edges of L(p) to the right of the line �e spanned by e (and
directed from q to p) and the number of edges of L(p) to the left of �e differ by
at most one. A matching between the points of P and their χ-halving edges is
called a χ-halving matching for P .



On the 2-Colored Crossing Number 91

Theorem 1. Let P be a set of m points in general position and let χ be a 2-
coloring of the edges induced by P . If P has a χ-halving matching, then the
2-colored rectilinear crossing number of Kn can be bounded by

cr2(Kn) ≤ 24A

m4

(
n

4

)
+ Θ(n3)

where A is a rational number that depends on P , χ, and the χ-halving matching
for P .

Proof. First we describe a process to obtain from P a set Q of 2m points, a
2-edge-coloring χ′ of the edges that Q induces, and a χ′-halving matching for
Q. The set Q is constructed as follows. Let p be a point in P and e = (p, q) its
χ-halving edge in the matching. We add to Q two points p1, p2 placed along the
line spanned by e and in a small neighborhood of p such that:

(i) if f is an edge different from e that is incident to p, then p1 and p2 lie on
different sides of the line spanned by f ;

(ii) if f is an edge different from e that is not incident to p, then p1 and p2 lie
on the same side of the line spanned by f as p; and

(iii) the point p1 is further away from q than p2.

The set Q has 2m points and the above conditions ensure that they are in general
position.

Next, we define a coloring χ′ and a χ′-halving matching for Q. For every
edge (p, q) of P , we color the four edges (pi, qj), i, j ∈ {1, 2} with the same color
as (p, q). Hence, the only edges remaining to be colored are the edges (p1, p2)
between the duplicates of a point p ∈ P . Let �e be the line spanned by e and
directed from q to p. Further, let q1 and q2 be the points that originated from
duplicating q, such that q1 lies to the left of �e and q2 lies to the right of �e.
Denote by Ll(p) and Lr(p) the number of edges in L(p) to the left and right of e,
respectively. Analogously, denote by Sl(p) and Sr(p) the number edges in S(p)
to the left and right of e. For the following case distinction, we assume that the
colors are red and blue and that the larger color class at p is blue.

There are six cases in which p can fall, depending on the color of the edge e
and on the relation between the numbers Ll(p) and Lr(p) of blue edges incident
to p on the left and the right side of �e; see Fig. 1. The edge e of P has color red
in the first three cases and color blue in the last three cases. The edge (p1, p2)
receives color blue in Cases 1 and 3, and color red in the remaining cases. The
thick edges in Fig. 1 represent the matching edges for p1 and p2 in Q, where the
arrow points to the point it is matched with. For each of p1 and p2, the resulting
numbers of incident red and blue edges that are to the left and to the right of
the line spanned by the matching edge are written next to those lines in the
figure. They also show that the matching edges are indeed χ′-halving edges in
each case. A detailed case distinction can be found in the full version [7].

Having completed the coloring χ′ for the edges induced by Q, we next con-
sider the number of monochromatic crossings in the resulting drawing on Q. We
claim the following for cr2(Q,χ′):



92 O. Aichholzer et al.

Fig. 1. The cases in the duplication process of Theorem 1 when the larger color class
at p is blue.The dotted lines represent the lines spanned by the χ-halving matching
edges for P . The numbers of blue (red) edges at p to the left and right of le, is denoted
with Ll and Lr (Sl and Sr), respectively. (Color figure online)

Claim 1. The pair (Q,χ′) satisfies

cr2(Q,χ′) = 16 cr2(P, χ) +
(

m

2

)
− m

+ 4
∑

p

((
Ll(p)

2

)
+

(
Lr(p)

2

)
+

(
Sl(p)

2

)
+

(
Sr(p)

2

))

+ 2
∑

p

(Hl(p) + Hr(p)).

The proof of this claim follows the same counting technique used in [2]. The
proof can be found in the full version [7].

We now apply the duplication process multiple times. To this end, consider
again the six different cases for a point p ∈ P when obtaining a coloring and a
matching for Q. Note that if one of the Cases 1, 2, 3, 4 and 6 applies for p, then
the same case applies for its duplicates p1, p2 ∈ Q (and will apply in all further
duplication iterations). If p falls in Case 5, then for p1 and p2 we have Case 2
and 4, respectively. As no point in Q falls in Case 5, from now on, we assume
that P is such that no point of P falls in Case 5 either.

Let k ≥ 1 be an integer and let (Qk, χk) be the pair obtained by iterating
the duplication process k times, with (Q0, χ0) = (P, χ). We claim the following
on cr2(Qk, χk), the number of monochromatic crossings in the 2-edge-colored
drawing of Kn induced by Qk and χk:

Claim 2. After k iterations of the duplication process, the following holds

cr2(Qk, χk) = A · 24k + B · 23k + C · 22k + D · 2k



On the 2-Colored Crossing Number 93

where A,B,C and D are rational numbers that depend on P and its χ-halving
matching.

The proof of this claim uses a careful analysis of the structure of (Qk, χk) in
dependence of (P, χ) and the χ-halving matching for P . This analysis, followed
by involved calculations to obtain the statement of Claim2, can be found in the
full version [7]. Applying Claim 2 to an initial drawing on m vertices and letting
n = 2km, we get:

cr2(Kn) ≤ cr2(Qk, χk) =
24A

m4

(
n

4

)
+ Θ(n3)

which completes the proof of Theorem1 when n is of the form 2km. The proof
for 2km < n < 2k+1m then follows from the fact that cr2(Kn) is an increasing
function. �	

We remark that the duplication process described in the proof of Theorem1
can also be applied if the initial set P has odd cardinality. However, then it might
happen that the resulting matching is not χ′-halving for the resulting set Q.
Moreover, a similar process can even be applied with any matching between the
points of P and the edges induced by P , where in that situation one needs to
specify how the colors for the edges between duplicates of points (and possibly
a matching for the resulting set) is chosen.

In the uncolored duplication process for obtaining bounds on cr(Kn), halving
matchings always yield the best asymptotic behavior, which only depends on |P |
and cr(P ). This is not the case for the 2-colored setting, where we ideally would
like to achieve simultaneously for every point p ∈ P that (i) both color classes
are of similar size, (ii) both color classes are evenly split by the matching edge,
and (iii) cr2(P ) is small. Yet, this is in general not possible. Starting with a χ-
halving matching for P we obtain (ii) at least for the larger color class at every
point of P . Moreover, this is hereditary by the design of our duplication process.

The results of this section imply that for large cardinality we can obtain
straight-line drawings of the complete graph with a reasonably small 2-colored
crossing number by starting from good sets of constant size. Similar as in [6] we
apply a heuristic combining different methods to obtain straight-line drawings
of the complete graph with low 2-colored crossing number. Our heuristic iterates
three steps of (1) locally improving a set, (2) generating larger good sets, and (3)
extracting good subsets, where also after steps (2) and (3) a local optimization
is done. The currently best (with respect to the crossing constant, see below)
straight-line drawing D with 2-edge coloring χ we found in this way1 has n = 135
vertices, a 2-colored crossing number of cr2(D,χ) = 1470756, and contains a χ-
halving matching.

Let cr2 be the rectilinear 2-colored crossing constant, that is, the constant
such that the best straight-line drawing of Kn for large values of n has at most
1 The interested reader can get a file with the coordinates of the points, the colors of the

edges, and a χ-halving matching from http://www.crossingnumbers.org/projects/
monochromatic/sets/n135.php.

http://www.crossingnumbers.org/projects/monochromatic/sets/n135.php
http://www.crossingnumbers.org/projects/monochromatic/sets/n135.php


94 O. Aichholzer et al.

cr2
(
n
4

)
monochromatic crossings. Its existence follows from the fact that the limit

limn→∞ cr2(Kn)/
(
n
4

)
exits and is a positive number (the proof goes along the

same lines as for the uncolored case [24]). Using the above-mentioned currently
best straight-line 2-edge colored drawing and plugging it into the machinery
developed in the proof of Theorem1 we get

Theorem 2. The rectilinear 2-colored crossing constant satisfies

cr2 ≤ 182873519
1550036250

< 0.11798016.

In [3] a lower bound of cr ≥ 277
729 > 0.37997267 has been shown for the

rectilinear crossing constant. We can thus give an upper bound on the asymptotic
ratio between the best rectilinear 2-colored drawing of Kn and the best rectilinear
drawing of Kn of cr2/cr ≤ 0.31049652.

3 Lower Bounds on cr2(Kn)

In this section we consider lower bounds for the 2-colored crossing number and
the biplanar crossing number of Kn.

In related work [23], the authors present lower and upper bounds on the
sup crk(G)/cr(G) where the supremum is taken over all non-planar graphs. We
remark that this lower bound does not yield a lower bound for cr2(Kn) as
their bound is obtained for “midrange” graphs (graphs with a subquadratic
but superlinear number of edges). Czabarka et al. mention a lower bound on
the biplanar crossing number of general graphs depending on the number of
edges [14, Equation 3]. For the complete graph, this yields a lower bound of
cr2(Kn) ≥ 1/1944n4 − O(n3). A better bound of cr2 ≥ 24

29·32 = 3/116 > 1/39
can be obtained from (an improved version of) the crossing lemma [4,21], which
states that for an undirected simple graph with n vertices and e edges with
e > 7n, the crossing number of the graph is at least e3

29n2 .
Alternatively, the following result shows that from the 2-colored rectilinear

crossing number of small sets we can obtain lower bounds for larger sets.

Lemma 1. Let cr2(m) = ĉ for some m ≥ 4. Then for n > m we have cr2(Kn) ≥
24ĉ

m(m−1)(m−2)(m−3)

(
n
4

)
which implies cr2 ≥ 24ĉ

m(m−1)(m−2)(m−3) .

Proof. Every subset of m points of Kn induces a drawing with at least ĉ crossings,
and thus we have ĉ

(
n
m

)
crossings in total. In this way every crossing is counted(

n−4
m−4

)
times. This results in a total of 24ĉ

m(m−1)(m−2)(m−3)

(
n
4

)
crossings. �	

As K8 can be drawn such that cr2(K8) = 0 (see Fig. 2 left) we next determine
cr2(K9). We use the optimization heuristic mentioned from Sect. 2 to obtain good
colorings for all 158 817 order types of K9 (which are provided by the order type
data base [5]). In this way, it is guaranteed that all (crossing-wise) different
straight-line drawings of K9 (uncolored) are considered.



On the 2-Colored Crossing Number 95

Fig. 2. Left: a 2-colored rectilinear drawing of K8 without monochromatic cross-
ings.Right: a 2-colored drawing of K9 with only one monochromatic (red) crossing.
(Color figure online)

To prove that the heuristics indeed found the best colorings we consider the
intersection graph for each drawing D. In the intersection graph every edge in
D is a vertex, and two vertices are connected if their edges in D cross. Note
that each odd cycle in the intersection graph of D gives rise to a monochromatic
crossing in D. On the other hand, several odd cycles might share a crossing and
only one monochromatic crossing is forced by them. We thus set up an integer
linear program, where for every crossing of D we have a non-negative variable
and for each odd cycle the sum of the variables corresponding to the crossings
of the cycle has to be at least 1. The objective function aims to minimize the
sum of all variables, which by construction is a lower bound for the number of
monochromatic crossings in D.

With that program and some additional methods for speedup (see [17] for
details), we have been able to obtain matching lower bounds and hence determine
the 2-colored crossing numbers for all order types of K9 within a few hours. The
best drawings we found have 2 monochromatic crossings, and thus cr2(K9) = 2.
Using Lemma 1 for m = 9 and ĉ = 2 we get a bound of cr2 ≥ 1/63, which is
worse than what we obtained from the crossing lemma. Repeating the process of
computing lower bounds for sets of small cardinality, we checked all order types
of size up to 11 [8] and obtained cr2(K10) = 5 and cr2(K11) = 10. By Lemma 1,
the latter gives the improved lower bound of cr2 ≥ 1/33.

3.1 Straight-Line Versus General Drawings

The best straight-line drawings of Kn with n ≤ 8 have no monochromatic cross-
ing, see again Fig. 2 left. In [23, Section 3], the authors state that no graph is
known were the k-planar crossing number is strictly smaller than the rectilin-
ear k-planar crossing number for any k ≥ 2. Moreover, according to personal



96 O. Aichholzer et al.

communication [27], the similar question whether a graph exists where the
k-planar crossing number is strictly smaller than the rectilinear k-colored cross-
ing number was open. We next argue that K9 is such an example. From the
previous section we know that cr2(K9) = 2. Inspecting rotation systems for
n = 9 [1] which have the minimum number of 36 crossings, we have been able to
construct a drawing of K9 which has only one monochromatic crossing, see Fig. 2
right. As the graph thickness of K9 is 3 [12,28], we cannot draw K9 with just
two colors without monochromatic crossings. Thus, we get the following result.

Observation 1. The biplanar crossing number for K9 is 1 and is thus strictly
smaller than the rectilinear 2-colored crossing number cr2(K9) = 2.

4 Upper Bounds on the Ratio cr2(D)/cr(D)

In this section we study the extreme values that cr2(D)/cr(D) can attain for
straight-line drawings D of Kn. Using a simple probabilistic argument as in [23],
2-coloring the edges uniformly at random, it can be shown that cr2(D)/cr(D) <
1/2 for every straight-line drawing D, even if the underlying graph is not Kn.

In the following, we show that for Kn this upper bound on cr2(D)/cr(D)
can be improved. To obtain our improved bound, we find subdrawings of D and
colorings such that many of the crossings in these drawings are between edges of
different colors. To this end, we need to find large subsets of vertices of D with
identical geometric properties. We use the following definition and theorem. Let
(Y1, ..., Yk) be a tuple of finite subsets of points in the plane. A transversal of
(Y1, ..., Yk) is a tuple of points (y1, . . . , yk) such that yi ∈ Yi for all i.

Theorem 3 (Positive fraction Erdős-Szekeres theorem). For every inte-
ger k ≥ 4 there is a constant ck > 0 such that every sufficiently large finite point
set X ⊂ R

2 in general position contains k disjoint subsets Y1, . . . , Yk, of size at
least ck|X| each, such that each transversal of (Y1, . . . , Yk) is in convex position.

The Positive Fraction Erdős-Szekeres theorem was proved by Bárány and
Valtr [11], see also Matoušek’s book [21]. Although it is not stated in the theorem,
every transversal of the Yi has the same (labelled) order type. Making use of that
result we obtained the following theorem.

Theorem 4. There exists an integer n0 > 0 and a constant c > 0 such that for
any straight-line drawing D of Kn on n ≥ n0 vertices, cr2(D)/cr(D) < 1

2 − c.

Proof. Let c4 be as in Theorem 3 and let n0 be such that Theorem 3 holds for
k = 4 and for point sets with at least n0 points. Let D be a straight-line drawing
of Kn, where n ≥ n0.

Our general strategy is as follows. We first find subsets of edges of D that can
be 2-colored such that many of the crossings between these edges are between
pairs of edges of different colors. We remove these edges and search for a subset
of edges with the same property. We repeat this process as long as possible. We



On the 2-Colored Crossing Number 97

2-color the remaining edges so that at most half of the crossings are monochro-
matic. Afterwards, we put back the edges we removed while 2-coloring them in
a convenient way.

We define a sequence of subsets V = X0 ⊃ X1 ⊃ · · · ⊃ Xm of vertices of D,
where V = X0 is the set of vertices of D, and tuples (F1, F

′
1), . . . , (Fm, F ′

m) of
sets of edges of D as follows. Suppose that Xi has been defined. If |Xi| < n0,
we stop the process. Otherwise we apply Theorem 3 to Xi, to obtain a tuple
(Y1, Y2, Y3, Y4) of disjoint subsets of points Xi, each with exactly �c4|Xi| ver-
tices, such that every transversal (y1, y2, y3, y4) of (Y1, Y2, Y3, Y4) is a convex
quadrilateral. Without loss of generality we assume that (y1, y2, y3, y4) appear
in clockwise order around this quadrilateral. This implies that the edge (y1, y3)
crosses the edge (y2, y4). Let Fi be the set of edges with an endpoint in Y1 and
an endpoint in Y3; let F ′

i be the set of edges with an endpoint in Y2 and an
endpoint in Y4; and finally, let Xi+1 = Xi \ (Y1 ∪ Y2). Note that every edge in
Fi crosses every edge in F ′

i .
We now consider the remaining edges. Let F be the set of edges of D that

are not contained in any Fi nor in any F ′
i for 1 ≤ i ≤ m. Let H be the straight-

line drawing with the same vertices as D and with edge set equal to F . By
a probabilistic argument 2-coloring the edges uniformly at random, there is a
coloring χ′ of the edges of H so that cr(H)/cr2(H,χ′) ≥ 2.

We now 2-color the edges in Fi and F ′
i . We define a sequence of straight-line

drawings H = Dm+1,⊂ Dm ⊂ · · · ⊂ D0 = D and a corresponding sequence of
2-edge-colorings χ′ = χm+1, χm, . . . , χ0 = χ that satisfies the following. Each χi

is a 2-edge-coloring of Di. Also χi−1 when restricted to Di equals χi. Suppose
that Di and χi have been defined and that 0 < i ≤ m + 1. Let Di−1 be the
straight-line drawing with the same vertices as D and with edge set Ei−1 equal
to Ei ∪ Fi−1 ∪ Fi′−1 (where Ei is the edge set of Di). Since χi−1 coincides with
χi in the edges of Ei, we only need to specify the colors of Fi−1 and F ′

i−1. We
color the edges of Fi with the same color and the edges of F ′

i−1 with the other
color. There are two options for doing this, and one of them guarantees that at
most half of the crossings between an edge of Fi−1 ∪ F ′

i−1 and an edge of Di are
monochromatic. We choose this option to define χi−1.

In what follows we assume that D has been colored by χ. Let C be the set of
pairs of edges of D that cross. Of these, let C1 be the subset of pairs of edges such
that both of them are contained in Fi ∪F ′

i for some 1 ≤ i ≤ m. Let C2 := C \C1.
Note that, by construction of χ, at most half of the pairs of edges in C2 are of
edges of the same color. For a given i, let E′

i be the subset of pairs of edges in C1

such that both edges are in Fi ∪ F ′
i . Let (Y1, Y2, Y3, Y4) be the tuple of disjoint

subsets of points Xi used to define Fi and F ′
i . Recall that each Yi consists of

�c4|Xi| points. Every pair of crossing edges defines a convex quadrilateral and,
conversely, every convex quadrilateral defines a unique pair of crossing edges.
Therefore, by construction there at most c4

4�|Xi|4/2 pairs of edges in E′
i such

that both edges are of the same color; and there are exactly �c4|Xi|4 pairs of
edges in E′

i such that the edges are of different color. Thus, at most 1
3 of the

pairs of edges in E′
i are edges of the same color.



98 O. Aichholzer et al.

Therefore, cr2(D,χ)
cr(D) ≤ 1

2 |C1|+ 1
3 |C2|

|C1|+|C2| . This is maximized when C1 is as large as
possible. Since there are in total at most

(
n
4

)
pairs of edges that cross, we have

|C1| ≤ (
n
4

) − |C2|. Thus,

cr2(D,χ)
cr(D)

≤
1
2

(
n
4

) − 1
6 |C2|(

n
4

) .

We now obtain a lower bound for the size of C2. Note that |X0| = n and
|Xi| ≥ (1 − 4c4)|Xi−1|. This implies that |Xi| ≥ (1 − 4c4)in and that |Ei| ≥
c4

4(1 − 4c4)4in4. Therefore,

|C2| =
m∑

i=1

|Ei| ≥
m∑

i=1

c4
4(1−4c4)4in4 = 24c4

4

(
1

1 − (1 − 4c4)4
− 1 − o(1)

) (
n

4

)
,

which completes the proof. �	
In the full version [7] we explore the ratio cr2(D)/cr(D) for certain classes of

straight-line drawings of Kn.

5 Conclusion and Open Problems

In this paper we have shown lower and upper bounds on the rectilinear 2-colored
crossing number for Kn as well as its relation to the rectilinear crossing num-
ber for fixed drawings of Kn. Besides improving the given bounds, some open
problems arise from our work.

(1) How fast can the best edge-coloring of a given straight-line drawing of Kn

be computed? This problem is related to the max-cut problem of segment
intersection graphs, which has been shown to be NP-complete for general
graphs [9]. But for the intersection graph of Kn the algorithmic complexity
is still unknown.

(2) What can we say about the structure of 2-colored crossing minimal sets?
For the rectilinear crossing number it is known that optimal sets have a
triangular convex hull [10]. For n = 8, 9 we have optimal sets with 3 and
4 extreme points, but so far all minimal sets for n ≥ 10 have a triangular
convex hull.

(3) We have seen that for convex sets asymptotically, the ratio cr2(D)/cr(D)
approaches 3/8 from below when n → ∞. It can be observed that among all
point sets (order types) of size 10, the convex drawing D of K10 is the only
one that provides the largest ratio of cr2(D)/cr(D) = 2/7, while the best
factor 5/76 is reached by sets minimizing cr2(D). Is it true that the convex
set has the worst (i.e., largest) factor? And is the best (smallest) factor
always achieved by optimizing sets, that is, sets with cr2(D) = cr2(Kn)?



On the 2-Colored Crossing Number 99

References

1. Ábrego, B.M., Aichholzer, O., Fernández-Merchant, S., Hackl, T., Pammer, J.,
Pilz, A., Ramos, P., Salazar, G., Vogtenhuber, B.: All good drawings of small com-
plete graphs. In: Proceedings of the 31st European Workshop on Computational
Geometry (EuroCG 2015), pp. 57–60 (2015)

2. Ábrego, B.M., Fernández-Merchant, S.: Geometric drawings of Kn with few cross-
ings. J. Comb. Theory Ser. A 114(2), 373–379 (2007). https://doi.org/10.1016/j.
jcta.2006.05.003

3. Ábrego, B.M., Fernández-Merchant, S., Leaños, J., Salazar, G.: A central approach
to bound the number of crossings in a generalized configuration. Electron. Notes
Discret. Math. 30, 273–278 (2008). https://doi.org/10.1016/j.endm.2008.01.047

4. Ackerman, E.: On topological graphs with at most four crossings per edge. ArXiv
e-Prints (2013). https://arxiv.org/abs/1509.01932

5. Aichholzer, O.: The order type data base. http://www.ist.tugraz.at/aichholzer/
research/rp/triangulations/ordertypes/. Accessed 1 Oct 2018

6. Aichholzer, O., Duque, F., Garćıa-Quintero, O.E., Fabila-Monroy, R., Hidalgo-
Toscano, C.: An ongoing project to improve the rectilinear and pseudolinear cross-
ing constants. ArXiv e-Prints (2018). https://arxiv.org/abs/1907.07796

7. Aichholzer, O., Fabila-Monroy, R., Fuchs, A., Hidalgo-Toscano, C., Parada, I.,
Vogtenhuber, B., Zaragoza, F.: On the 2-colored crossing number. ArXiv e-Prints
(2019). http://arxiv.org/abs/1908.06461

8. Aichholzer, O., Krasser, H.: Abstract order type extension and new results on the
rectilinear crossing number. Comput. Geom.: Theory Appl. 36(1), 2–15 (2006).
https://doi.org/10.1016/j.comgeo.2005.07.005

9. Aichholzer, O., Mulzer, W., Schnider, P., Vogtenhuber, B.: NP-completeness of
max-cut for segment intersection graphs. In: Proceedings of the 34th European
Workshop on Computational Geometry (EuroCG 2018), pp. 1–6 (2018)

10. Aichholzer, O., Orden, D., Ramos, P.: On the structure of sets attaining the recti-
linear crossing number. In: Proceedings of the 22nd European Workshop on Com-
putational Geometry (EuroCG 2006), pp. 43–46 (2006)

11. Bárány, I., Valtr, P.: A positive fraction Erdős-Szekeres theorem. Discret. Comput.
Geom. 19(3), 335–342 (1998). https://doi.org/10.1007/PL00009350

12. Battle, J., Harary, F., Kodama, Y.: Every planar graph with nine points has a
nonplanar complement. Bull. Am. Math. Soc. 68, 569–571 (1962). https://doi.
org/10.1090/S0002-9904-1962-10850-7

13. Czabarka, É., Sýkora, O., Székely, L.A., Vrt’o, I.: Biplanar crossing numbers I: a
survey of results and problems. In: Győri, E., Katona, G.O.H., Lovász, L., Fleiner,
T. (eds.) More Sets, Graphs and Numbers: A Salute to Vera Sós and András
Hajnal. BSMS, vol. 15, pp. 57–77. Springer, Heidelberg (2006). https://doi.org/
10.1007/978-3-540-32439-3 4

14. Czabarka, E., Sýkora, O., Székely, L.A., Vrt’o, I.: Biplanar crossing numbers II.
Comparing crossing numbers and biplanar crossing numbers using the probabilistic
method. Random Struct. Algorithms 33(4), 480–496 (2008). https://doi.org/10.
1002/rsa.20221

15. Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond
planarity. ACM Comput. Surv. 52(1), 4:1–4:37 (2019). https://doi.org/10.1145/
3301281

16. Fabila-Monroy, R., López, J.: Computational search of small point sets with small
rectilinear crossing number. J. Graph Algorithms Appl. 18(3), 393–399 (2014).
https://doi.org/10.7155/jgaa.00328

https://doi.org/10.1016/j.jcta.2006.05.003
https://doi.org/10.1016/j.jcta.2006.05.003
https://doi.org/10.1016/j.endm.2008.01.047
https://arxiv.org/abs/1509.01932
http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/ordertypes/
http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/ordertypes/
https://arxiv.org/abs/1907.07796
http://arxiv.org/abs/1908.06461
https://doi.org/10.1016/j.comgeo.2005.07.005
https://doi.org/10.1007/PL00009350
https://doi.org/10.1090/S0002-9904-1962-10850-7
https://doi.org/10.1090/S0002-9904-1962-10850-7
https://doi.org/10.1007/978-3-540-32439-3_4
https://doi.org/10.1007/978-3-540-32439-3_4
https://doi.org/10.1002/rsa.20221
https://doi.org/10.1002/rsa.20221
https://doi.org/10.1145/3301281
https://doi.org/10.1145/3301281
https://doi.org/10.7155/jgaa.00328


100 O. Aichholzer et al.

17. Fuchs, A.: On the number of monochromatic crossings in rectilinear embeddings of
complete graphs. Master’s thesis, University of Technology Graz, Austria (2019)

18. Garey, M., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Algebr. Dis-
cret. Methods 4(3), 312–316 (1983)

19. Hernández-Vélez, C., Leaños, J., Salazar, G.: On the pseudolinear crossing number.
J. Graph Theory 84(3), 297–310 (2016). https://doi.org/10.1002/jgt.22027

20. Hong, S.H., Kaufmann, M., Kobourov, S.G., Pach, J.: Beyond-planar graphs: algo-
rithmics and combinatorics (Dagstuhl seminar 16452). Dagstuhl Rep. 6(11), 35–62
(2017). https://doi.org/10.4230/DagRep.6.11.35

21. Matoušek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics,
vol. 212. Springer, New York (2002). https://doi.org/10.1007/978-1-4613-0039-7

22. Owens, A.: On the biplanar crossing number. IEEE Trans. Circuit Theory 18(2),
277–280 (1971). https://doi.org/10.1109/TCT.1971.1083266

23. Pach, J., Székely, L.A., Tóth, C.D., Tóth, G.: Note on k-planar crossing numbers.
Comput. Geom. 68, 2–6 (2018). https://doi.org/10.1016/j.comgeo.2017.06.015

24. Richter, R.B., Thomassen, C.: Relations between crossing numbers of complete
and complete bipartite graphs. Am. Math. Mon. 104(2), 131–137 (1997). https://
doi.org/10.1080/00029890.1997.11990611

25. Schaefer, M.: The graph crossing number and its variants: a survey. Electron. J.
Comb. Dyn. Surv. 21 (2013/2017)

26. Shahrokhi, F., Sýkora, O., Székely, L.A., Vrt’o, I.: On k-planar crossing numbers.
Discret. Appl. Math. 155(9), 1106–1115 (2007). https://doi.org/10.1016/j.dam.
2005.12.011. Advances in Graph Drawing: The 11th International Symposium on
Graph Drawing

27. Tóth, C.D.: Personal communication (2018)
28. Tutte, W.T.: The non-biplanar character of the complete 9-graph. Can. Math.

Bull. 6(3), 319–330 (1963). https://doi.org/10.4153/CMB-1963-026-x

https://doi.org/10.1002/jgt.22027
https://doi.org/10.4230/DagRep.6.11.35
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1109/TCT.1971.1083266
https://doi.org/10.1016/j.comgeo.2017.06.015
https://doi.org/10.1080/00029890.1997.11990611
https://doi.org/10.1080/00029890.1997.11990611
https://doi.org/10.1016/j.dam.2005.12.011
https://doi.org/10.1016/j.dam.2005.12.011
https://doi.org/10.4153/CMB-1963-026-x


Minimal Representations of Order Types
by Geometric Graphs

Oswin Aichholzer1 , Martin Balko2 , Michael Hoffmann3 , Jan Kynčl2 ,
Wolfgang Mulzer4 , Irene Parada1(B) , Alexander Pilz1 ,

Manfred Scheucher5 , Pavel Valtr2 , Birgit Vogtenhuber1 , and Emo Welzl3

1 Institute of Software Technology, Graz University of Technology, Graz, Austria
{oaich,iparada,apilz,bvogt}@ist.tugraz.at

2 Department of Applied Mathematics, Charles University,
Prague, Czech Republic

{balko,kyncl,valtr}@kam.mff.cuni.cz
3 Department of Computer Science, ETH Zürich, Zürich, Switzerland

{hoffmann,emo}@inf.ethz.ch
4 Institut für Informatik, Freie Universität Berlin, Berlin, Germany

mulzer@inf.fu-berlin.de
5 Institute of Mathematics, Technische Universität Berlin, Berlin, Germany

scheucher@math.tu-berlin.de

Abstract. In order to have a compact visualization of the order type of
a given point set S, we are interested in geometric graphs on S with few
edges that unequivocally display the order type of S. We introduce the
concept of exit edges, which prevent the order type from changing under
continuous motion of vertices. Exit edges have a natural dual character-
ization, which allows us to efficiently compute them and to bound their
number.

Keywords: Geometric graph · Straight-line drawing · Order type ·
Pseudoline arrangement · Triangular cell

1 Introduction

Let S, T ⊂ R2 be two sets of n labeled points in general position (no three
collinear). We say that S and T have the same order type if there is a bijection

Research supported by the German Science Foundation (DFG), the Austrian Science
Fund (FWF), and the Swiss National Science Foundation (SNSF) within the collabo-
rative DACH project Arrangements and Drawings. O.A., I.P., and B.V. were partially
supported by Austrian Science Fund (FWF) grant W1230. M.B., J.K., and P.V. are
supported by grant no. 18-19158S of the Czech Science Foundation (GAČR). M.B. and
J.K. are supported by Charles University project UNCE/SCI/004. M.B. has received
funding from European Research Council (ERC) under the European Union’s Hori-
zon 2020 research. M.H. and E.W. are supported by SNSF Project 200021E-171681.
A.P. was supported by a Schrödinger fellowship of the Austrian Science Fund (FWF):
J-3847-N35. M.S. was partially supported by DFG Grant FE 340/12-1. W.M. was
partially supported by ERC StG 757609 and DFG Grant 3501/3-1.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 101–113, 2019.
https://doi.org/10.1007/978-3-030-35802-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_8&domain=pdf
http://orcid.org/0000-0002-2364-0583
http://orcid.org/0000-0001-9688-9489
http://orcid.org/0000-0001-5307-7106
http://orcid.org/0000-0003-4908-4703
http://orcid.org/0000-0002-1948-5840
http://orcid.org/0000-0003-3147-0083
http://orcid.org/0000-0002-6059-1821
http://orcid.org/0000-0002-1657-9796
http://orcid.org/0000-0002-3102-4166
http://orcid.org/0000-0002-7166-4467
https://doi.org/10.1007/978-3-030-35802-0_8


102 O. Aichholzer et al.

Fig. 1. Left: representatives of the three order types of five points in general position.
Right: representatives of two order types of six points. Exit edges are drawn in black.

ϕ : S → T such that any triple (p, q, r) ∈ S3 of three distinct points has the same
orientation (clockwise or counterclockwise) as the image (ϕ(p), ϕ(q), ϕ(r)) ∈ T 3.
The resulting equivalence relation on planar n-point sets has a finite number
of equivalence classes, the order types [9]. Representatives of several distinct
order types of five or six points are illustrated in Fig. 1. Among other things,
the order type determines which geometric graphs can be drawn on a point
set without crossings. Thus, order types appear ubiquitously in the study of
extremal problems on geometric graphs.

Now, suppose we have discovered an interesting order type, and we would
like to illustrate it in a publication. One solution is to give explicit coordinates
of a representative point set S; see Fig. 2 left. This is unlikely to satisfy most
readers. We could also present S as a set of dots in a figure. For some point sets
(particularly those with extremal properties), the reader may find it difficult
to discern the orientation of an almost collinear point triple. To mend this, we
could draw all lines spanned by two points in S. In fact, it suffices to present
only the segments between the point pairs (the complete geometric graph on S).
The orientation of a triple can then be obtained by inspecting the corresponding
triangle; see Fig. 2 middle. However, such a drawing is rather dense, and we may
have trouble following an edge from one endpoint to the other. Therefore, we
want to reduce the number of edges in the drawing as much as possible, but so
that the order type remains uniquely identifiable; see Fig. 2 right.

Results. We introduce the concept of exit edges to capture which edges are suf-
ficient to uniquely describe a given order type in a robust way under continuous
motion of vertices. More precisely, in a geometric drawing of a representative
point set with all exit edges, at least one vertex needs to move across an (exit)
edge in order to change the order type. We give an alternative characterization of
exit edges in terms of the dual line arrangement, where an exit edge corresponds
to one or two empty triangular cells. This allows us to efficiently compute the
set of exit edges for a given set of n points in O(n2) time and space.

Using the more general framework of abstract order types and their dual
pseudoline arrangements, we prove that every set of n ≥ 4 points has at least
(3n−7)/5 exit edges. We also describe a family of n points with n−3 exit edges,
showing that this bound is asymptotically tight. An upper bound of n(n − 1)/3
follows from known results on the number of triangular cells in line arrange-
ments [10]. Thus, compared to the complete geometric graph with n(n − 1)/2
edges, using only exit edges we save at least one third of the edges.



Minimal Representations of Order Types by Geometric Graphs 103

(-1,1)

(1,1)

(-1,-1)

(1,-1)

(-0.6,0.4)

(-0.6,-0.4)

Fig. 2. Three different representations of an order type of six points.

Identification of Order Types. Let S be a set of n labeled points in the
plane. A geometric graph on S is a graph with vertex set S whose edges are
represented as line segments between their endpoints. A geometric graph is thus
a drawing of an abstract graph. Two geometric graphs G and H are isomorphic
if there is an orientation-preserving homeomorphism of the plane transforming G
into H. Each class of this equivalence relation may be described combinatorially
by the cyclic orders of the edge segments around vertices and crossings, and by
the incidences of vertices, crossings, edge segments, and faces. In the following,
we will consider topology-preserving deformations. An ambient isotopy of the
Euclidean plane is a continuous map f : R2 × [0, 1] → R2 such that f(·, t) is
a homeomorphism for every t ∈ [0, 1] and f(·, 0) = Id. Note that if there is an
ambient isotopy transforming a geometric graph G into another geometric graph
H, then G and H are isomorphic.

Definition 1. Let G be a geometric graph on a point set S. We say that G
is supporting for S if every ambient isotopy f of R2 that keeps the images of
the edges of G straight (thus, transforming G into another geometric graph) and
that allows at most three points of f(S, t) to be collinear for every t ∈ [0, 1], also
preserves the order type of the vertex set.

Related Work. The connection between order types and straight-line drawings
has been studied intensively, both for planar drawings and for drawings minimiz-
ing the number of crossings. For example, it is NP-complete to decide whether
a planar graph can be embedded on a given point set [5]. Continuous move-
ments of the vertices of plane geometric graphs have also been considered [2].
The continuous movement of points maintaining the order type was considered
by Mnëv [7,14]. He showed that there are point sets with the same order type
such that there is no ambient isotopy between them preserving the order type,
settling a conjecture by Ringel [15]. The orientations of triples that have to be
fixed to determine the order type are strongly related to the concept of minimal
reduced systems [4].

Outline. We introduce the concept of exit edges for a given point set. The
resulting exit graphs are always supporting, though they are not necessarily min-
imal. In Sect. 2 we show that some exit edges are rendered unnecessary by non-
stretchability of certain pseudoline arrangements. Despite being non-minimal in
general, we argue that exit graphs are good candidates for supporting graphs by



104 O. Aichholzer et al.

Fig. 3. Characterizing exit edges. Left: If the gray region is empty of points, then the
edge ab is an exit edge. Right: An illustration of the proof of Proposition 3.

discussing their dual representation in pseudoline arrangements (Sect. 3). This
connection allows us to both compute exit edges efficiently and give bounds on
their number (Sect. 4). Supporting graphs in general need not be connected, and
two minimal geometric graphs that are supporting for point sets with different
order types can be drawings of the same abstract graph; see Fig. 1 right. Thus,
the structure of the drawing is crucial. In Sect. 5 we provide some further prop-
erties of the exit graphs. We conjecture that graphs based on exit edges are not
only supporting but also they encode the order type, as discussed in Sect. 6.

2 Exit Edges

Clearly, every complete geometric graph is supporting. To obtain a supporting
graph with fewer edges, we select edges so that no vertex of the resulting geomet-
ric graph can be moved to change the order type while preserving isomorphism.

Definition 2. Let S ⊂ R2 be finite and in general position. Let a, b, c ∈ S be
distinct. Then, ab is an exit edge with witness c if there is no p ∈ S such that
the line ap separates b from c or the line bp separates a from c. The geometric
graph on S whose edges are the exit edges is called the exit graph of S.

Equivalently, ab is an exit edge with witness c if and only if the double-wedge
through a between b and c and the double-wedge through b between a and c
contain no point of S in their interior; see Fig. 3 left.

An exit edge has at most two witnesses. If |S| ≥ 4 and ab is an exit edge
in S with witness c, neither ac nor bc can be an exit edge with witness b or a,
respectively. We illustrate the set of exit edges for sets of 5 points in Fig. 1 left.

Exit edges can be characterized via 4-holes. For an integer k ≥ 3, a (general)
k-hole in S is a simple polygon P spanned by k points of S whose interior
contains no point of S. If P is convex, we call P a convex k-hole. A point a ∈ S
or an edge ab with a, b ∈ S is extremal for S if it lies on the boundary of the
convex hull of S. A point or an edge in S that is not extremal in S is internal
to S.



Minimal Representations of Order Types by Geometric Graphs 105

Proposition 3. Let S ⊂ R2 be a set of points in general position and let a, b ∈ S.
Then, ab is not an exit edge of S if and only if the following conditions hold:

1. If ab is extremal in S, then ab is an edge of at least one convex 4-hole in S.
2. If ab is internal in S, then there are two 4-holes abxy and bauv, in counter-

clockwise order, such that their reflex angles (if any) are incident to ab.

We remark that an internal exit edge either has a witness on both sides or is
incident to at least one general 4-hole on one side.

Proof. Let ab be an exit edge with a witness c that lies, without loss of generality,
to the left of

−→
ab. Suppose there is a general 4-hole abxy, traced counterclockwise,

such that the reflex angle of abxy (if it exists) is incident to ab. We can assume
that y lies to the left of

−→
ab, as in Fig. 3 right. First, suppose that abxy is convex

(this must hold if ab is extremal). Since ab is an exit edge with witness c, the line
ax does not separate c from b and the line by does not separate c from a. Thus, c
must be inside the 4-hole abxy, which is impossible. Second, suppose that abxy
is not convex (then, ab is internal), and x is to the right of ab. Since ab is an exit
edge with witness c, the line bx does not separate a from c and the line ay does
not separate b from c, so c lies inside the 4-hole abxy, again a contradiction.

Conversely, assume that ab is not an exit edge. First, let ab be extremal, and
let p be the closest point in S \ {a, b} to the line ab. The triangle abp is a 3-hole
in S. Since p is not a witness for ab, there is a point q ∈ S \ {a, b, p} such that,
without loss of generality, the line bq separates a from p. Since ab is extremal, q
lies on the same side of ab as p and, in particular, the polygon abpq is convex. If
we choose q so that it is the closest such point to the line ap, the triangles bpq
and abq are 3-holes in S. Altogether, we obtain a convex 4-hole abpq in S.

Second, let ab be internal. Let p be closest in S \ {a, b} to the line ab such
that p lies to the left of ab. The triangle abp is a 3-hole in S. Since p is not
a witness for ab, there is a point q ∈ S \ {a, b, p} such that either the line bq
separates a from p or the line aq separates b from p. If q lies to the left of ab, we
obtain a convex 4-hole as in the previous case. Thus, we can assume that all such
points q lie to the right of ab. We choose the point q so that it is (one of the)
closest to the line ab among all points that prevent ab from being an exit edge
with witness p. Without loss of generality, we assume that the line bq separates
a from p. The choice of q guarantees that bpq is a 3-hole in S. Thus, abqp is a
4-hole in S incident to ab from the left. An analogous argument with a point p′

from S \ {a, b} that is closest to ab such that p′ lies to the right of ab shows that
there is an appropriate 4-hole in S incident to ab from the right. ��
Proposition 4. Let S ⊂ R2 be finite and in general position and, for every
t ∈ [0, 1], let S(t) be a continuous deformation of S at time t. More formally,
let f : R2 × [0, 1] → R2 be an ambient isotopy and S(t) = {f(s, t) | s ∈ S},
for t ∈ [0, 1]. Let Sc ⊆ S be the first subset of at least three points to become
collinear. Let (a, b, c) be the first triple to become collinear, at time t0 > 0. If c
lies on the segment ab in S(t0), then ab is an exit edge of S(0) with witness c.



106 O. Aichholzer et al.

a
b

c

c

a b

c

a b

Fig. 4. Left: moving c over ab to orient (a, b, c) clockwise, without changing the orien-
tation of other triples, would contradict Pappus’s theorem [15]. Right: it is not always
possible to move a witness c continuously to the corresponding exit edge ab.

Proof. For t ∈ [0, t0), the triple orientations in S(t) remain unchanged, and
in S(t0), the point c lies on ab. Thus, for t ∈ [0, t0), there is no line through
two points of S(t) that strictly separates the relative interior of ab from c. In
particular, there is no such separating line through a or b in S(0). Hence, ab is
an exit edge with witness c. ��
Corollary 5. The exit graph of every point set is supporting.

The proof of Proposition 4 also shows that if a line separates c from the
relative interior of ab, then there is such a line through a or b. This may suggest
that the exit edges are necessary for a supporting graph. However, this is not true
in general. For example, in Fig. 4 left, we see a construction by Ringel [15]: ab is
an exit edge with witness c, but c cannot move over ab without violating Pappus’
theorem. We note that in this situation, we might consider the abstract order
type for the triple orientations we would obtain after moving c over ab. Since
there is no planar point set with this set of triple orientations, this abstract order
type is not realizable. Deciding realizability is (polynomial-time-)equivalent to
the existential theory of the reals [14]. We will revisit these concepts in Sect. 4.

We note that there are point sets where two or more other exit edges prevent
a witness c from crossing its corresponding exit edge ab; see, for example, Fig. 4
bottom right. Since the two geometric graphs in Fig. 4 right are not isomorphic,
they cannot be transformed into each other by a continuous deformation as the
one used in Definition 1. However, in this example, while c cannot move to ab
without changing the order type in Fig. 4 bottom right, if ab were not present,
we could first change the point set to the one in Fig. 4 top right and then move
c over ab. Thus, ab indeed has to be in a supporting graph.

3 Exit Edges and Empty Triangular Cells

The (real) projective plane P2 is a non-orientable surface obtained by augmenting
the Euclidean plane R2 by a line at infinity. This line has one point at infinity



Minimal Representations of Order Types by Geometric Graphs 107

for each direction, where all parallel lines with this direction intersect. Thus, in
P2, each pair of parallel lines intersects in a unique point.

For a point set S in the Euclidean plane, add a line �∞ to obtain the projective
plane. We use a duality transformation that maps a point s of P2 to a line s∗

in P2. In this way, we get a set of lines S∗ dual to S, giving a projective line
arrangement A. The removal of a line from A does not disconnect P2. Since P2

has non-orientable genus 1, removing any two lines �1 and �2 from P2 disconnects
it into two components. We call the closure of each of the two components a
halfplane determined by �1 and �2. The marked cell c∞ is the cell of A that
contains the point �∗

∞ dual to the line �∞. By appropriately choosing the duality
transformation, we can assume that �∗

∞ lies at vertical infinity.
The combinatorial structure of A, together with the marked cell, determines

the order type of S. We show how to identify exit edges and their witnesses in
dual line arrangements.

We use the marked cell c∞ to orient the lines from S∗: first, we orient the
lines on the boundary of c∞ in one direction. Then, we iteratively remove lines
that have already been oriented, and we define the orientation for the remaining
lines from S∗ by considering the new lines on the boundary of c∞. Then, c∞ is
the only cell whose boundary is oriented consistently, that is, it can be traversed
completely along the resulting orientation. In particular, for an unmarked trian-
gular cell 	 in A, the directed edges of 	 form a transitive order on its vertices,
with a unique vertex of 	 in the middle. We call this vertex the exit vertex of 	
and the line through the other two vertices of 	 the witness line of 	.

Note that if we consider the duality mapping a point p = (px, py) from
the real plane to the (non-vertical) line p∗ : y = pxx − py, then the described
orientation procedure corresponds to orienting these dual lines from left to right.

Theorem 6. Let S ⊂ R2 be in general position, and let a, b, c ∈ S. Then, ab
is an exit edge with witness c if and only if the lines a∗, b∗, and c∗ bound an
unmarked triangular cell 	 in the arrangement A of lines from S∗ so that c∗ is
the witness line of 	 and the point ab

∗
= a∗ ∩ b∗ is the exit vertex of 	.

Proof. For two points p, q ∈ S and their dual lines p∗, q∗ ∈ S∗, we denote by
w(p∗, q∗) the halfplane determined by p∗ and q∗ that does not contain the marked
cell. Thus, the boundary of w(p∗, q∗) is not oriented consistently. Since projective
duality preserves incidences, the condition that no line spanned by two points
of S intersects the edge pq is equivalent in S∗ to w(p∗, q∗) not containing any
vertex of A.

Let 	 be the triangular region determined by the intersection of the two
halfplanes w(a∗, c∗) and w(b∗, c∗). By the projective duality, ab is an exit edge
with witness c in S if and only if no line of S∗ intersects a∗ inside w(b∗, c∗) or
b∗ inside w(a∗, c∗). In other words, if and only if two sides of 	, lying on a∗ and
b∗, contain no intersection with lines from S∗. This is equivalent to 	 being a
cell of the arrangement A. Moreover, a∗ and b∗ share the exit vertex of 	; see
Fig. 5. Consequently, the exit vertex a∗ ∩ b∗ is the dual of the line containing the
exit edge ab. ��



108 O. Aichholzer et al.

c∗

a∗ b∗

w(b∗, c∗)w(a∗, c∗)

�

Fig. 5. An illustration of the proof of Theorem 6. If ab is an exit edge with witness
c in S, then the two bold drawn segments of the corresponding triangular cell are
unintersected, and thus, bound an unmarked triangular cell in S∗. The exit vertex is
represented with a black disk.

Corollary 7. Let S be a set of n points in general position. Then the exit edges
of S can be enumerated in O(n2) time by constructing the dual line arrangement
of S and checking which cells are unmarked triangular cells.

4 On the Number of Exit Edges

Line arrangements can be generalized to so-called pseudoline arrangements. A
pseudoline is a closed curve in the projective plane P2 whose removal does not
disconnect P2. A set of pseudolines in P2, where any two pseudolines cross
exactly once, determines a (projective) pseudoline arrangement. If no three pseu-
dolines intersect in a common point, the pseudoline arrangement is simple. All
notions that we have introduced for line arrangements, such as consistent orien-
tations, exit vertices, or witness lines, naturally extend to pseudolines.

A pseudoline arrangement is stretchable if it is isomorphic to a line arrange-
ment, that is, the corresponding cell complexes into which the two arrange-
ments partition P2 are isomorphic. The combinatorial dual analogues of line
arrangements and pseudoline arrangements are order types and abstract order
types, respectively. Thus, deciding if a pseudoline arrangement is stretchable is
(polynomial-time-)equivalent to the existential theory of the reals [7,14].

As discussed in Sect. 3, the maximum number of triangular cells in a simple
projective pseudoline arrangement gives an upper bound on the number of exit
edges of a point set. However, one triangular cell could be c∞, and there could
be pairs of triangular cells with the same exit vertex. We call a configuration of
the latter type an hourglass; see Fig. 6. We say that the two pseudolines p and q
that define the exit vertex of the two triangular cells of an hourglass H slice H
and that H is sliced by p and by q.

Observation 8. A triangular cell can be a part of at most one hourglass.

Observation 9. An exit edge ab with two witness points is dual to an hourglass
with exit vertex ab

∗
.

Any projective arrangement of n ≥ 4 lines has at least n triangular cells, as
each line is incident to at least three triangular cells [12]. This is known to be



Minimal Representations of Order Types by Geometric Graphs 109

�1

�2

v1

v2

�1

�2

v

Fig. 6. Left: the two triangular cells �1 and �2 do not form an hourglass, because
they share a vertex that is not an exit vertex. Right: the two triangular cells �1 and
�2 form an hourglass because they share an exit vertex.

tight. Therefore, taking into account the marked cell c∞ and possible hourglasses,
any set of n ≥ 4 points has at least �n−1

2 � exit edges. We improve this lower
bound by bounding from below the difference between the number of triangular
cells and the number of hourglasses.

Proposition 10. Any set of n ≥ 4 points in the plane has at least (3n − 7)/5
exit edges.

For the proof of Proposition 10 we use the following two lemmas. The first is a
theorem by Grünbaum [10, Theorem 3.7 on p. 50], and the second can be derived
from the proof of that theorem.

Lemma 11 (Grünbaum [10]). In a simple pseudoline arrangement L every
pseudoline from L is incident to at least three triangular cells.

Lemma 12 (Grünbaum [10]). Let L be a simple arrangement of pseudolines,
and let H be a closed halfplane determined by two pseudolines �1, �2 ∈ L. If two
other pseudolines of L cross in the interior of H, then there is a triangular cell
in H that is incident to �1 but not to �2.

Proof (of Proposition 10). Let L be a simple projective line arrangement of n ≥ 4
pseudolines �1, �2, . . . , �n. For each pseudoline �i ∈ L, let ti be the number of
triangular cells incident to �i and hi the number of hourglasses sliced by �i. Set
xi = ti − hi/2. For each pseudoline �i ∈ L, there are three possible cases.

Case (i): there is no hourglass sliced by �i. By Lemma 11, every pseudoline is
incident to at least three triangular cells. Thus, we have xi = ti ≥ 3.

Case (ii): the pseudoline �i slices an hourglass together with some pseudoline �j
and the interior of each of the two halfplanes determined by �i and �j contains at
least one crossing of some other pair of pseudolines. By Lemma 12, �i is incident
to the two triangular cells of the hourglass plus at least two other triangular
cells, one in each closed halfplane. (We ignore here that a cell might be the
marked one.) Thus, ti ≥ 4. Observation 8 implies hi ≤ ti/2. Overall we get
xi = ti − hi/2 ≥ ti − ti/4 ≥ (3/4) · 4 = 3.



110 O. Aichholzer et al.

�i

�j

�i

�j

H1

Fig. 7. In case (iii), both �1 and �2 must bound the marked cell, shown striped on the
right picture. Moreover, that cell is bounded by four pseudolines.

Case (iii): the pseudoline �i slices an hourglass together with some pseudoline
�j , and one of the two closed halfplanes H1 and H2 determined by �i and �j
contains no crossing of any other pair of pseudolines in its interior. Suppose the
closed halfplane that contains no further crossing is H1. Then, the hourglass
sliced by �i and �j is in H1, as the other two lines defining the hourglass do
not cross in that halfplane; see Fig. 7 (left). Since H1 contains no crossing in its
interior, it is divided by the other pseudolines into 4-gons and the two triangular
cells of the hourglass. In particular, the marked cell is bounded by only four
pseudolines, two of them being �i and �j ; see Fig. 7, right. Thus, there can be
at most four pseudolines for which case (iii) applies. Notice that in this case
hi = 1, since any other hourglass sliced by �i would have one triangular cell in
each of the two halfplanes H1 and H2 and the two triangular cells in H1 form the
already-counted hourglass (and by Observation 8 they cannot be part of another
hourglass). Thus, we can only guarantee that xi ≥ 3 − 1/2 = 5/2. However, as
we showed, this case can happen at most for two pairs of pseudolines.

Let T be the total number of triangular cells in L and let H be the total
number of hourglasses. Summing the contributions of cases (i)–(iii), we have

3T − H =
n∑

i=1

ti − 1
2

n∑

i=1

hi =
n∑

i=1

xi ≥ 3 · (n − 4) + 4 ·
(

5
2

)
= 3n − 2.

By Observation 8, we have T ≥ 2H. Combining these inequalities, we get

T − H =
3T − H + 2(T − 2H)

5
≥ 3T − H

5
≥ 3n − 2

5
.

By Theorem 6, the number of exit edges in a point set is equal to the number of
exit vertices in its dual line arrangement. In general, the number of exit vertices
in a pseudoline arrangement is bounded from below by T − H − 1. Therefore,
there are at least 3

5n − 7
5 exit edges. ��

We do not know if the lower bound in Proposition 10 is tight. The smallest
number of exit edges we could achieve is n − 3 for n ≥ 9; see Fig. 8.

The number of triangular cells in a simple arrangement of n lines in the pro-
jective plane P2 is at most n(n−1)/3 [10], so there are at most n2/3+O(n) exit
edges. This means that representing an order type with the exit graph instead



Minimal Representations of Order Types by Geometric Graphs 111

Fig. 8. Construction with n − 3 exit edges.

of the complete geometric graph saves at least one third of the edges. Palásti
and Füredi [17] showed that for every value of n there are simple arrangement
of n lines in P2 with n(n − 3)/3 triangular cells. Moreover, Roudneff [16] and
Harborth [11] proved that the upper bound n(n−1)/3 is tight for infinitely many
values of n (see also [3]). The point sets that are dual to the currently-known
arrangements that maximize the number of triangular cells have n2/6+O(n) exit
edges, since most of their exit edges have two witnesses. This gives a quadratic
lower bound in the worst case, but the leading coefficient remains unknown. It
is worth noting that there are line arrangements with no pair of adjacent trian-
gular cells [13], which implies the existence of point sets where every exit edge
has precisely one witness.

5 Properties of Exit Graphs

We present some further results on supporting graphs and exit graphs.

Theorem 13. Any geometric graph supporting a point set S, with |S| ≥ 9,
contains a crossing.

Proof. Let G be a geometric graph with vertex set S without crossings. There
is a point set S′ with a different order type that also admits G: Dujmović [6]
showed that every plane graph admits a plane straight-line embedding with at
least

√
n/2 points on a line; as we have a point set with a collinear triple that

admits G, there are at least two point sets in general position with a different
order type that admit G. Moreover, one can continuously morph S to S′ while
keeping the corresponding geometric graph planar and isomorphic to G (see, for
example, [2]). Therefore, G does not support S. ��
Proposition 14. Let S be a point set in general position in R2 and let G be its
exit graph. Every vertex in the unbounded face of G is extremal, that is, it lies
on the boundary of the convex hull of S.

Note that, as shown in Fig. 4 left, an analogous statement does not hold for
general supporting graphs. The proof can be found in the full version [1].



112 O. Aichholzer et al.

1
2
3
4
5
6

1
2
3
4
5
6

13 6

5

4
3

2

1

7

10

11

12
14

8
9

9

8
1

2

3

4
5

7

10
11

12
13 614

7
8
9
10
11
12
13
14

7
8
9
10
11
12
13
14

Fig. 9. Top: two arrangements of 14 pseudolines with the same set of triangular cells
(extending [8, Figure 3]). No triangular cell crossed by the line at infinity. Bottom:
corresponding dual point sets. The order types are not the same (see for example the
number of extremal points).

6 Concluding Remarks

We conjecture that the geometric graph G of exit edges not only is support-
ing for S, but also that any point set S′ that is the vertex set of a geometric
graph isomorphic to G has the same order type as S. One might conjecture that
already knowing all exit edges and their witnesses (in the dual line arrangement,
all triangular cells and their orientations) is sufficient to determine the order
type. Surprisingly, this turns out to be wrong. A counterexample is sketched in
Fig. 9 as a dual (stretchable) pseudoline arrangement of 14 lines in the projective
plane, based on an example by Felsner and Weil [8]. It consists of two arrange-
ments of six lines in the Euclidean plane that are combinatorially different, but
share the set of triangular cells and their orientations. While the exit edges are
the same for the two different order types, the corresponding exit graphs are
not isomorphic. In the dual of that example the order of the triangular cells
along each pseudoline differs, but that extra information is not enough to dis-
tinguish the two order types: We can modify the pseudoline arrangements in
Fig. 9 by, essentially, duplicating pseudolines 1–6 and making a pseudoline and
its duplication cross between the crossings with two green pseudolines (7–14).
An illustration is presented in the full version [1].



Minimal Representations of Order Types by Geometric Graphs 113

Acknowledgments. This work was initiated during the Workshop on Sidedness
Queries, October 2015, in Ratsch, Austria. We thank Thomas Hackl, Vincent Kusters,
and Pedro Ramos for valuable discussions.

References

1. Aichholzer, O., Balko, M., Hoffmann, M., Kynčl, J., Mulzer, W., Parada, I., Pilz,
A., Scheucher, M., Valtr, P., Vogtenhuber, B., Welzl, E.: Minimal representations
of order types by geometric graphs (2019). http://arxiv.org/abs/1908.05124

2. Alamdari, S., Angelini, P., Barrera-Cruz, F., Chan, T.M., Da Lozzo, G., Di Bat-
tista, G., Frati, F., Haxell, P., Lubiw, A., Patrignani, M., Roselli, V., Singla, S.,
Wilkinson, B.T.: How to morph planar graph drawings. SIAM J. Comput. 46(2),
824–852 (2017). https://doi.org/10.1137/16M1069171

3. Blanc, J.: The best polynomial bounds for the number of triangles in
a simple arrangement of n pseudo-lines. Geombinatorics 21, 5–17 (2011).
https://edoc.unibas.ch/47402

4. Bokowski, J., Sturmfels, B.: On the coordinatization of oriented matroids. Discret.
Comput. Geom. 1, 293–306 (1986). https://doi.org/10.1007/BF02187702

5. Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set
is NP-hard. J. Graph Algorithms Appl. 10(2), 353–363 (2006). https://doi.org/10.
7155/jgaa.00132

6. Dujmović, V.: The utility of untangling. J. Graph Algorithms Appl. 21(1), 121–134
(2017). https://doi.org/10.7155/jgaa.00407

7. Felsner, S., Goodman, J.E.: Pseudoline arrangements. In: Tóth, C.D., O’Rourke,
J., Goodman, J.E. (eds.) Handbook of Discrete and Computational Geometry, pp.
125–157, 3rd edn. CRC Press (2017). https://doi.org/10.1201/9781315119601

8. Felsner, S., Weil, H.: A theorem on higher Bruhat orders. Discret. Comput. Geom.
23(1), 121–127 (2000). https://doi.org/10.1007/PL00009485

9. Goodman, J.E., Pollack, R.: Multidimensional sorting. SIAM J. Comput. 12(3),
484–507 (1983). https://doi.org/10.1137/0212032

10. Grünbaum, B.: Arrangements and spreads. AMS (1972). https://bookstore.ams.
org/cbms-10/

11. Harborth, H.: Some simple arrangements of pseudolines with a maximum number
of triangles. Ann. N. Y. Acad. Sci. 440(1), 31–33 (1985). https://doi.org/10.1111/
j.1749-6632.1985.tb14536.x

12. Levi, F.: Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade. Ber.
Math.-Phys. Kl. Sächs. Akad. Wiss. Leipzig 78, 256–267 (1926). (in German)

13. Ljubić, D., Roudneff, J.P., Sturmfels, B.: Arrangements of lines and pseudolines
without adjacent triangles. J. Comb. Theory. Ser. A 50(1), 24–32 (1989). https://
doi.org/10.1016/0097-3165(89)90003-4

14. Mnev, N.E.: The universality theorems on the classification problem of configura-
tion varieties and convex polytopes varieties. In: Viro, O.Y., Vershik, A.M. (eds.)
Topology and Geometry — Rohlin Seminar. LNM, vol. 1346, pp. 527–543. Springer,
Heidelberg (1988). https://doi.org/10.1007/BFb0082792

15. Ringel, G.: Teilungen der Ebene durch Geraden oder topologische Geraden. Math.
Z. 64, 79–102 (1956)

16. Roudneff, J.P.: On the number of triangles in simple arrangements of pseudolines
in the real projective plane. Discret. Math. 60, 243–251 (1986). https://doi.org/
10.1016/0012-365X(86)90016-6

17. Füredi, Z., Palásti, I.: Arrangements of lines with a large number of triangles. Proc.
Am. Math. Soc. 92(4), 561–566 (1984). https://doi.org/10.2307/2045427

http://arxiv.org/abs/1908.05124
https://doi.org/10.1137/16M1069171
https://edoc.unibas.ch/47402
https://doi.org/10.1007/BF02187702
https://doi.org/10.7155/jgaa.00132
https://doi.org/10.7155/jgaa.00132
https://doi.org/10.7155/jgaa.00407
https://doi.org/10.1201/9781315119601
https://doi.org/10.1007/PL00009485
https://doi.org/10.1137/0212032
https://bookstore.ams.org/cbms-10/
https://bookstore.ams.org/cbms-10/
https://doi.org/10.1111/j.1749-6632.1985.tb14536.x
https://doi.org/10.1111/j.1749-6632.1985.tb14536.x
https://doi.org/10.1016/0097-3165(89)90003-4
https://doi.org/10.1016/0097-3165(89)90003-4
https://doi.org/10.1007/BFb0082792
https://doi.org/10.1016/0012-365X(86)90016-6
https://doi.org/10.1016/0012-365X(86)90016-6
https://doi.org/10.2307/2045427


Balanced Schnyder Woods for Planar
Triangulations: An Experimental Study
with Applications to Graph Drawing

and Graph Separators

Luca Castelli Aleardi(B)

LIX, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
amturing@lix.polytechnique.fr

Abstract. In this work we consider balanced Schnyder woods for planar
graphs, which are Schnyder woods where the number of incoming edges
of each color at each vertex is balanced as much as possible. We provide
a simple linear-time heuristic leading to obtain well balanced Schnyder
woods in practice. As test applications we consider two important algo-
rithmic problems: the computation of Schnyder drawings and of small
cycle separators. While not being able to provide theoretical guarantees,
our experimental results (on a wide collection of planar graphs) suggest
that the use of balanced Schnyder woods leads to an improvement of the
quality of the layout of Schnyder drawings, and provides an efficient tool
for computing short and balanced cycle separators.

1 Introduction

Schnyder woods [27] and its generalizations are a deep tool for dealing with
the combinatorics of planar [13] and surface maps [10,11,18]. They lead to effi-
cient algorithmic and combinatorial solutions for a broad collection of problems,
arising in several domains, from enumerative combinatorics to graph drawing
and computational geometry. For instance, the use of Schnyder woods has led
to linear-time algorithms for grid drawing [3,18,27], to the optimal encoding
and uniform sampling of planar maps [26], to the design of compact data struc-
tures [9] and to deal with geometric spanners [5]. Schnyder woods lead to fast
implementations (also integrated in open source libraries [25]) and provide strong
tools for establishing rigorous theoretical guarantees that hold in the worst case,
even for irregular, random or pathological cases. The main idea motivating this
work is that, in practice, most real-word graphs exhibit strong regularities which
make them far from the random and pathological cases. Based on this remark,
many geometry processing algorithms try to exploit this regularity in order to
obtain better results in practice. For instance, when applied to regular graphs,
many mesh compression schemes [19] achieve good compression rates, well below

This work is supported by the French ANR GATO (ANR-16-CE40-0009-01).

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 114–121, 2019.
https://doi.org/10.1007/978-3-030-35802-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_9&domain=pdf
http://orcid.org/0000-0002-1142-2562
https://doi.org/10.1007/978-3-030-35802-0_9


Balanced Schnyder Woods for Planar Triangulations 115

Fig. 1. (a) A planar triangulation endowed with a Schnyder wood. (b) a separator
(A, B, S) obtained from the Schnyder wood. (c) three Schnyder woods of the same
portion of a spherical grid: our heuristic leads to a majority of balanced vertices (white
circles), while the minimal Schnyder wood is strongly unbalanced. (Right chart) Eval-
uation of the balance of Schnyder woods (tests are repeated with 500 random seeds)
(Color figure online).

the worst-case optimal bound guaranteed by [26]. As far as we know, the prob-
lem of providing an adaptive analysis of Schnyder woods taking into account the
graph regularity has not been investigated so far. This work provides empirical
evidence about the fact that balanced Schnyder woods can lead to fast solu-
tions achieving good results in practice, especially for real-world graphs. As test
applications, we evaluate the layout quality of a Schnyder drawing depending
on the balance of the underlying Schnyder wood, and we consider the problem
of computing small separators for planar graphs, which has been extensively
investigated [22–24,28], due to its relevance for many graph algorithms.

Preliminaries and Related Works. In this work we deal with planar triangula-
tions, which are genus 0 simple maps where every face is triangulated (we will
denote by n the number of vertices and by m the number of edges). Given a pla-
nar triangulation with a distinguished root (outer) face (v0, v1, v2), a Schnyder
wood [27] is defined as a coloring (with colors 0, 1 or 2) and orientation of the
inner edges such that each inner vertex has exactly one outgoing incident edge
for each color, and the remaining incident edges must satisfy the local Schny-
der rule (see Fig. 1(a)). A given rooted triangulation may admit many Schnyder
woods [1,2,14]: among them, the minimal one (without ccw oriented triangles)
plays a fundamental role [9,26]. Here we focus on balanced Schnyder woods, for
which the ingoing edges are evenly distributed around inner vertices. A related
problem concerns the computation of egalitarian orientations: unfortunately the
results in [6] only apply to unconstrained orientations. Schnyder woods have
led to a linear-time algorithm providing an elegant solution to the grid drawing
problem (solved independently also in [17]): in its pioneristic work [27] Schnyder
showed that a planar graph with n vertices admits a straight-line drawing on a
grid of size O(n) × O(n). Schnyder drawings have a number of nice properties
that make them useful for addressing problems [4,5,12] involving planar graphs
in several distinct domains. While recent works [21] provide a probabilistic study



116 L. Castelli Aleardi

of the converge for uniformly sampled triangulations endowed with a Schnyder
wood, as far as we know there are no theoretical or empirical evaluations of
the quality of Schnyder drawings for regular graphs. Given a graph G we con-
sider small separators which are defined by a partition (A,B, S) of all vertices
such that S is a separating vertex set of small size (usually |S| = O(

√
m)), and

the remaining vertices in G \ S belong to a balanced partition (A,B) satisfying
|A| ≤ αn, |B| ≤ αn (usually, for planar graphs, the balance ratio is α = 2

3 ). Here
we focus on simple cycle separators [24], for which fast implementations [16,20]
have been recently proposed (some of them [16] are provided with a worst-case
bound of

√
8m on the cycle size).

2 Contribution

2.1 Balanced Schnyder Woods

Our first step is to measure the balance of a Schnyder wood: given an inner vertex
v of degree deg(v) having indegi(v) incoming edges of color i (for i ∈ {0, 1, 2}), we
define its defect as δ(v) = maxi indegi(v)−mini indegi(v) if deg(v) is a multiple
of 3, and δ(v) = maxi indegi(v) − mini indegi(v) − 1 otherwise. We say that a
vertex is balanced if δ(v) = 0 and a Schnyder wood is well balanced if a majority
of vertices have a small defect. For regular graphs is possible, in principle, to get
a Schnyder wood that is perfectly balanced (δ(v) = 0 everywhere) as shown in
Fig. 1(c). In practice many Schnyder woods are unbalanced and we are not aware
of existing theoretical or empirical results on the balance of Schnyder woods.

An Heuristic for Well Balanced Schnyder Woods. We make use of the well known
incremental vertex shelling procedure [7] that computes a Schnyder wood with
a sequence of vertex removals. This procedure has many degrees of freedom: at
each step the choice of the vertex to be removed can possibly lead to a different
Schnyder wood. In order to get as much as possible balanced vertices, we retard
the removal of some vertices according to a balance priority, defined as the total
number of ingoing edges incident to a vertex during the shelling procedure. The
balance can be further improved by performing the reversal of oriented triangles
in a post-processing1 step. We refer to [8] for more details.

2.2 From Schnyder Drawings to Small Simple Cycle Separators

Schnyder woods provides a very fast procedure for partitioning, given an arbi-
trary inner vertex v, the set of inner faces of a triangulation into three sets R0(v),
R1(v) and R2(v) (respectively blue, red and gray triangles in Fig. 1(b)), whose
boundaries consist of the three disjoint paths P0(v), P1(v) and P2(v) emanat-
ing from v. The computation of simple cycle separators can be done as follows:
for each vertex v check whether the two sets A = Int(Ri(v) ∪ Ri+1(v)) and
B = Int(Ri+2(v)) satisfy the prescribed balance ratio for at least one index

1 The results presented in Sect. 2.3 are obtained without post-processing step.



Balanced Schnyder Woods for Planar Triangulations 117

Isidore

Pierre’s hand
dragon

ErosArc triomphe

0.1 0.5 1 1.1

0.5

1

1.5

n

se
co
nd

s

Average timings (real-world graphs)

step 1: balanced orientation
step 2: Schnyder drawing
step 3: shortest separator

Random 2M

Random 1M

R100k

0.1 0.5 1 1.5 2

0.5

1

1.5

n

Average timings (random triangulations)

0.10.25 0.5 0.75 1 1.5 2

0.5

1

1.5

globe500k

globe750k
globe1M

globe2M

n

total timing cost (steps 1+2+3)

Fig. 2. Evaluation of timing costs over 100 executions (allocating 1 GB of RAM for
the JVM): timings are expressed as a function of the size (millions of vertices).

i ∈ {0, 1, 2} (indices are modulo 3, and Int(R) denotes the set of inner vertices
of a region R): then select the vertex for which the corresponding cycle length
|Pi(v)|+|Pi+1(v)|+1 is minimal. All this steps can be performed almost instanta-
neously, since all the quantities above are encoded in the Schnyder drawing itself
(see [27] for more details). As far as we know there are no theoretical guarantees
on both the partition balance and boundary size: as observed in practice, most
vertices lead to unbalanced partitions whose boundary size can be very large.

2.3 Experimental Results

Datasets and Experimental Setting. We run our experimental evaluations2 on a
broad variety of graphs3, including real-world meshes used in geometry process-
ing (made available by the aim@shape and Thingi10k repositories), synthetic
regular graphs with different shapes (sphere, cylinder, ...), random planar tri-
angulations (generated with uniform random sampling [26]), and Delaunay tri-
angulations of random points. As done in geometric modeling, we use the pro-
portion of degree 6 vertices, denoted by d6, to measure the regularity of a graph:
d6 is close to 1 for regular meshes, while is usually below 0.3 for irregular and
random graphs. To evaluate the balance of a Schnyder woods we use the pro-
portion of balanced vertices, denoted by δ0, and the average defect computed on
all vertices, denoted by δavg. As for previous works [16,20], the results (e.g. the
size of the separator) can depend on the choice of the initial seed (the root face
in our case). We perform tests with hundreds of random seeds: for each choice
of the seed, we adopt whisker plots to show the entire range of computed values,
while each box represents the middle 50% of values (as in Figs. 1 and 4).

Balance of Schnyder Woods. To evaluate the balance quality of the Schnyder
woods we plot the value δ0 as a function of d6: our balanced Schnyder woods
are compared to minimal ones in Fig. 1. Experimental results strongly suggests
that our heuristic leads to well balanced Schnyder woods. Our heuristic performs

2 Our datasets and code can be found at http://www.lix.polytechnique.fr/∼amturing/
software.html.

3 Previous works [16,20] triangulate the input graph in a preprocessing phase.

http://www.lix.polytechnique.fr/~amturing/software.html
http://www.lix.polytechnique.fr/~amturing/software.html


118 L. Castelli Aleardi
Sc
hn

yd
er

la
yo

ut
cy
cl
e
se
pa

ra
to
rs

well balanced unbalanced
(a)

(b)

0.5 1 1.5 2

0.9

0.95

1

our heuristic

our heuristic

our heuristic

δavg

el
(e
dg

e
le
ng

th
m
et
ri
c)

layout quality (higher values are better)

sphere12k (d6 = 0.99)
horse (d6 = 0.46)
Egea (d6 = 0.25)

0.5 1 1.5 2

√
n

√
m

√
8n

√
8m

our heuristic

our heuristic

our heuristic

δavg

b o
un

da
ry

si
ze

separator quality (lower values are better)

Fig. 3. For a fixed initial seed, we generate a sequence of Schnyder woods by starting
from a well balanced Schnyder wood (computed with our heuristic) and by randomly
reversing ccw oriented triangles. In the charts we plot the layout and separator quality
as functions of the average defect δavg of the corresponding Schnyder wood.

particularly well for regular graphs, for which a large majority of vertices are
balanced (79% in average for the sphere graph). The results are good also
for irregular graphs (egea), where about 45% of vertices are balanced. Also
observe that the choice of the initial seed has a limited effect on the balance
of the resulting Schnyder wood. Minimal Schnyder woods represent a bad case,
especially for regular graphs: most vertices have a large defect and the resulting
paths P0(v), P1(v) and P2(v) resemble very long spirals.

Runtime Performances. The algorithmic solutions relying on Schnyder woods
are simple to implement and extremely fast. As observed in practice (see Fig. 2),
our Java implementation allows processing between 1.43M and 1.92M vertices
per second: we run our tests on an EliteBook with a core i7-5600U 2.60 GHz (with
Ubuntu 16.04 and 1 GB of RAM allocated for the JVM). This has to be compared
to the C implementations of previous results on cycle separators [16,20], running
on an Intel Xeon X5650 2.67 GHz (with 48.4 GB of RAM): the fastest variant
of the procedures tested in [16] allows processing between 0.54M and 0.62M
vertices per second for the case of square grids. Our timing costs are little
affected by the choice of the initial seed and the structural properties of the
graph. Observe that once the Schnyder drawing is given, the extraction of the
cycle separator is instantaneous (0.01 s for a 1M vertices graph).

Layout Quality. A qualitative evaluation of the graph layouts based on the
balance Schnyder woods is provided by the pictures in Fig. 3(a) showing two
portions of the Schnyder drawings of a regular sphere graph. When starting
from a our well balanced Schnyder woods the shape of triangles is much more
balanced, and the resulting drawing partially captures the regularity of the grid.
When starting from an unbalanced Schnyder wood the drawing exhibits many
long edges and flat triangles, a typical drawback of Schnyder drawings. In order
to provide a quantitative measure of the layout quality we consider the edge
lengths aesthetic metric defined by el = 1 − del, where del is the average percent
deviation of edge lengths: values close to 1 mean that most edges have the
same length (see [15] for more details). For a fixed initial seed, we start from a



Balanced Schnyder Woods for Planar Triangulations 119

√
n

√
m

√
8n

√
8m

rc triomphe

Hack

Egea

Circular box

Dragon

Pierre’s hand

Eros

Iphigenia

Aphrodite

horse

B
ou

nd
ar
y
si
ze

Real-world graphs

stack

disk
random

Delaunay

sphere

globe

cylinder

thin cylinder

Synthetic and random graphs (n ≈ 12k) )

1
3n

1
2n

A
rc

tr
io
m
ph

e

L
am

pa
n
H
ac
k

E
ge
a

R
ed

ci
rc
ul
ar

bo
x

D
ra
go

n

P
ie
rr
e’
s
ha

nd

E
ro
s

Ip
hi
ge
ni
a

A
ph

ro
di
te

ho
rs
e

Se
pa

ra
to
r
ba

la
nc
e

Real-world graphs

st
ac
k

di
sk

ra
nd

om

D
el
au

na
y

sp
he
re

gl
ob

e

cy
lin

de
r

th
in

cy
lin

de
r

Synthetic and random graphs (n ≈ 12k

Egea

δ0 = 0.42

δavg = 1.18

|S| = 0.96
√

m

horse

δ0 = 0.485
δavg = 0.931

δ0 = 0.485
δavg = 0.921
|S| = 1.32

√
m|S| = 0.58

√
m

n = 8268

δ0 = 0.543
δavg = 1.153

|S| = 0.15
√

m

n = 2012

δ0 = 0.546
δavg = 1.148

|S| = 2.34
√

mdiam=59

diam=202

cylinder2k

n = 20000
diam=168

Fig. 4. We evaluate the quality of our simple cycle separators obtained from our bal-
anced Schnyder woods (tests are repeated using 200 random seeds). The left charts
report the boundary sizes, while the right charts show the plots of the separator bal-
ance (the normalized size of the smallest of the two sets A and B). The graphs are
listed from left to right according to the increasing values of their relative diameter.

balanced Schnyder wood obtained with our heuristic and we randomly reverse
ccw oriented triangles, obtaining a sequence of Schnyder woods which are more
and more unbalanced. The middle chart in Fig. 3 reports the values of el as a
function of the average defect: the layout quality tends to deteriorate as soon as
Schnyder woods get more unbalanced (high values of δavg).

Length and Balance of Separators. We look for separators with a balance ratio
α = 2

3 that are short : the boundary size is at most |S| ≤ √
8m, as required

in [16]. We plot in the charts of Fig. 4 the boundary sizes and partition balances
of the separators obtained from a Schnyder drawing as described in Sect. 2.1. Our
tests, repeated over several tens of graphs, confirm our intuition that balanced
Schnyder woods lead to good separators for a large majority of classes of graphs.
As for the layout quality, the separator size and balance strongly depend on the
balance of the underlying Schnyder wood (right chart in Fig. 3). The boundary
size of the separator is affected by the choice of the seed for graphs with large
diameter: a good choice of the seed would prevent from getting too long cycles.
For graphs with small diameter (e.g. random triangulations) Schnyder woods
lead to very short separators, while the size is closed to

√
m for most real-world

graphs. Our separators are often longer when compared with the results obtained
in [16], but well below the prescribed bound of

√
8m.

References

1. Bernardi, O., Bonichon, N.: Catalan’s intervals and realizers of triangulations.
J. Comb. Theory Ser. A 116(1), 55–75 (2009). https://hal.archives-ouvertes.fr/
hal-00143870(22 pages)

https://hal.archives-ouvertes.fr/hal-00143870
https://hal.archives-ouvertes.fr/hal-00143870


120 L. Castelli Aleardi

2. Bonichon, N.: A bijection between realizers of maximal plane graphs and
pairs of non-crossing Dyck paths. Discret. Math. 298, 104–114 (2005).
https://hal.archives-ouvertes.fr/hal-00307593

3. Bonichon, N., Felsner, S., Mosbah, M.: Convex drawings of 3-connected plane
graphs. Algorithmica 47(4), 399–420 (2007). https://doi.org/10.1007/s00453-006-
0177-6

4. Bonichon, N., Gavoille, C., Hanusse, N., Ilcinkas, D.: Connections between theta-
graphs, delaunay triangulations, and orthogonal surfaces. In: Thilikos, D.M. (ed.)
WG 2010. LNCS, vol. 6410, pp. 266–278. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-16926-7 25

5. Bonichon, N., Gavoille, C., Hanusse, N., Perković, L.: Plane spanners of maximum
degree six. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F.,
Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 19–30. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14165-2 3

6. Borradaile, G., Iglesias, J., Migler, T., Ochoa, A., Wilfong, G.T., Zhang, L.: Egal-
itarian graph orientations. J. Graph Algorithms Appl. 21(4), 687–708 (2017).
https://doi.org/10.7155/jgaa.00435

7. Brehm, E.: 3-orientations and Schnyder 3-tree-decompositions. Master’s thesis, FB
Mathematik und Informatik, Freie Universität Berlin (2000)

8. Castelli Aleardi, L.: Balanced Schnyder woods for planar triangulations: an exper-
imental study with applications to graph drawing and graph separators (2019).
https://arxiv.org/abs/1908.06688

9. Castelli Aleardi, L., Devillers, O.: Array-based compact data structures for tri-
angulations: practical solutions with theoretical guarantees. JoCG 9(1), 247–289
(2018). https://doi.org/10.20382/jocg.v9i1a8

10. Castelli Aleardi, L., Fusy, É., Lewiner, T.: Schnyder woods for higher genus tri-
angulated surfaces, with applications to encoding. Discret. Comput. Geom. 42(3),
489–516 (2009). https://hal.inria.fr/hal-00712046v1

11. Despré, V., Gonçalves, D., Lévêque, B.: Encoding toroidal triangulations.
Discret. Comput. Geom. 57(3), 507–544 (2017). https://doi.org/10.1007/s00454-
016-9832-0

12. Dhandapani, R.: Greedy drawings of triangulations. Discret. Comput. Geom.
43(2), 375–392 (2010). https://doi.org/10.1007/s00454-009-9235-6

13. Felsner, S.: Lattice structures from planar graphs. Electr. J. Comb. 11(1) (2004)
14. Felsner, S., Zickfeld, F.: On the number of planar orientations with prescribed

degrees. Electr. J. Comb. 15(1) (2008)
15. Fowler, J.J., Kobourov, S.G.: Planar preprocessing for spring embedders. In: 20th

International Symposium Graph Drawing, pp. 388–399 (2012)
16. Fox-Epstein, E., Mozes, S., Phothilimthana, P.M., Sommer, C.: Short and simple

cycle separators in planar graphs. ACM J. Exp. Algorithm 21(1), 2:2:1–2:2:24
(2016)

17. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1), 41–51 (1990)

18. Gonçalves, D., Lévêque, B.: Toroidal maps: Schnyder woods, orthogonal surfaces
and straight-line representations. Discret. Comput. Geom. 51(1), 67–131 (2014).
https://doi.org/10.1007/s00454-013-9552-7

19. Gotsman, C.: On the optimality of valence-based connectivity coding. Comput.
Graph. Forum 22(1), 99–102 (2003). https://doi.org/10.1111/1467-8659.t01-1-
00649

https://hal.archives-ouvertes.fr/hal-00307593
https://doi.org/10.1007/s00453-006-0177-6
https://doi.org/10.1007/s00453-006-0177-6
https://doi.org/10.1007/978-3-642-16926-7_25
https://doi.org/10.1007/978-3-642-16926-7_25
https://doi.org/10.1007/978-3-642-14165-2_3
https://doi.org/10.7155/jgaa.00435
https://arxiv.org/abs/1908.06688
https://doi.org/10.20382/jocg.v9i1a8
https://hal.inria.fr/hal-00712046v1
https://doi.org/10.1007/s00454-016-9832-0
https://doi.org/10.1007/s00454-016-9832-0
https://doi.org/10.1007/s00454-009-9235-6
https://doi.org/10.1007/s00454-013-9552-7
https://doi.org/10.1111/1467-8659.t01-1-00649
https://doi.org/10.1111/1467-8659.t01-1-00649


Balanced Schnyder Woods for Planar Triangulations 121

20. Holzer, M., Schulz, F., Wagner, D., Prasinos, G., Zaroliagis, C.D.: Engineering
planar separator algorithms. ACM J. Exp. Algorithm 14 (2009). https://doi.org/
10.1145/1498698.1571635

21. Li, Y., Sun, X., Watson, S.S.: Schnyder woods, sle(16), and liouville quantum
gravity. Technical report arXiv:1705.03573v1 [math.PR], ArXiV, May 2016

22. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl.
Math. 36(2), 177–189 (1979)

23. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J.
Comput. 9(3), 615–627 (1980). https://doi.org/10.1137/0209046

24. Miller, G.L.: Finding small simple cycle separators for 2-connected planar graphs.
J. Comput. Syst. Sci. 32(3), 265–279 (1986). https://doi.org/10.1016/0022-
0000(86)90030-9

25. PIGALE, Public Implementation of a Graph Algorithm Library and Editor.
http://pigale.sourceforge.net/

26. Poulalhon, D., Schaeffer, G.: Optimal coding and sampling of triangulations. Algo-
rithmica 46(3–4), 505–527 (2006)

27. Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of the Annual
ACM-SIAM Symposium on Discrete Algorithms, vol. 90, pp. 138–148 (1990).
http://departamento.us.es/dma1euita/PAIX/Referencias/schnyder.pdf

28. Spielman, D.A., Teng, S.: Disk packings and planar separators. In: Proceedings of
the Twelfth Annual Symposium on Computational Geometry, pp. 349–358 (1996).
https://doi.org/10.1145/237218.237404

https://doi.org/10.1145/1498698.1571635
https://doi.org/10.1145/1498698.1571635
http://arxiv.org/abs/1705.03573v1
https://doi.org/10.1137/0209046
https://doi.org/10.1016/0022-0000(86)90030-9
https://doi.org/10.1016/0022-0000(86)90030-9
http://pigale.sourceforge.net/
http://departamento.us.es/dma1euita/PAIX/Referencias/schnyder.pdf
https://doi.org/10.1145/237218.237404


Clustering



A Quality Metric for Visualization
of Clusters in Graphs

Amyra Meidiana1(B), Seok-Hee Hong1, Peter Eades1, and Daniel Keim2

1 University of Sydney, Sydney, Australia
amei2916@uni.sydney.edu.au, {seokhee.hong,peter.eades}@sydney.edu.au

2 University of Konstanz, Konstanz, Germany
keim@uni-konstanz.de

Abstract. Traditionally, graph quality metrics focus on readability, but
recent studies show the need for metrics which are more specific to the
discovery of patterns in graphs. Cluster analysis is a popular task within
graph analysis, yet there is no metric yet explicitly quantifying how well
a drawing of a graph represents its cluster structure.

We define a clustering quality metric measuring how well a node-link
drawing of a graph represents the clusters contained in the graph. Exper-
iments with deforming graph drawings verify that our metric effectively
captures variations in the visual cluster quality of graph drawings. We
then use our metric to examine how well different graph drawing algo-
rithms visualize cluster structures in various graphs; the results confirm
that some algorithms which have been specifically designed to show clus-
ter structures perform better than other algorithms.

1 Introduction

Clustering is an important task in graph analysis. Visualization can be a useful
tool in this task, where a good drawing of a network should be able to highlight
important group structures within the network and allow a user to accurately
answer group-level analytical tasks. To this end, a number of graph layout algo-
rithms specifically focused on faithfully depicting clusters within a graph have
been introduced.

The quality of a drawing of a graph is often measured using aesthetic crite-
ria which rate the readability of the visualization, such as the number of edge
crossings or symmetry. However, these measures become less significant when
working with large graphs (e.g. [19]). More recent work considers quality met-
rics more extensible to large graphs, such as shape-based metrics which compare
the original topology of a graph to one derived from the positioning of ver-
tices in its drawing [9]. Newly introduced is also the concept of more specific
quality metrics concerned with the discovery of specific patterns with visualiza-
tions [5]. Although general quality metrics are still necessary, these more specific
metrics are useful when developing visualizations geared for a more specific

This work is supported by ARC DP grant.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 125–138, 2019.
https://doi.org/10.1007/978-3-030-35802-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_10&domain=pdf
https://doi.org/10.1007/978-3-030-35802-0_10


126 A. Meidiana et al.

purpose - for example, clustered graph visualizations which can be used to sup-
port various classes of group-level tasks [34].

Despite a longstanding recognition of cluster discovery as one important goal
in graph visualization and the definition of quality metrics that regard the depic-
tion or discovery of specific structures, there is yet to be defined a metric that
explicitly quantifies how well a visualization represents the underlying clustering
structure of the graph. We therefore introduce a clustering quality metric which
scores a drawing of a graph based on how well the clustering structure of the
graph is displayed within it. We present the following contributions:

1. We define the clustering quality metric, a new metric to measure the visual
cluster quality of node-link graph drawings. In our framework, we compare
the ground truth clustering provided for the vertices a graph to the geometric
clustering derived from the graph’s drawing, and the similarity of both clus-
terings denotes the quality of the visualization of clusters within the drawing.

2. We validate the metric through deformation experiments of graph drawings.
Results of the experiment confirm that as the graphs are distorted resulting in
the clusters to become visually less distinct from each other in the drawings,
the scores computed using our metric decrease.

3. We compare various graph drawing algorithms using our metric to discover
which methods perform better in visualizing cluster structures. We com-
pare drawing algorithms of different types, including layouts that have been
designed specifically to emphasize clusters. Our experiments confirm that
these layouts perform better than others not explicitly geared towards clus-
ter visualization, especially for real world graphs.

2 Related Work

2.1 Graph Drawing Quality Metrics

Aesthetics have been described as one criterion to be achieved by graph drawing
algorithms [3]. The concept of aesthetics is concerned with the readability of
graphs and include standards such as the minimization of edge crossing and
bends, and minimization of drawing area used. A number of studies have verified
the correlation of such aesthetic metrics with the ability of users to execute tasks
on the graph (e.g. [17,30,31]). However, these studies tend to focus on smaller
graphs, and newer studies (e.g. [19]) have discovered that the effects of these
aesthetic criteria are not as apparent in larger graphs.

Shape-based metrics [9] attempt to address this limitation by computing a
shape graph based on the drawing of a graph, where two vertices are connected
with an edge if they are “close” to each other, and comparing it to the topology
of the original graph - a good drawing is expected to have a shape graph similar
to its actual topology. For recent work on visualization quality metrics, Behrisch
et al. [5] provides a survey covering various visualization techniques, including
but not limited to node-link drawings, and notes that measuring the effectiveness
of node-link drawings in supporting analytical tasks is an open research question.



A Quality Metric for Visualization of Clusters in Graphs 127

2.2 Clustering Comparison Metrics

Clustering refers to the division of a set of items into clusters, where items in
the same cluster are more similar to each other than to items in a different
cluster [1]. Despite the seemingly simple definition, the notions of “similarity”
and what constitutes a “cluster” differ between contexts, leading to the birth of
various clustering algorithms and thus multiple ways to cluster the same set [11].
To compare two clusterings C and C ′ of the same set, a number of metrics exist:

– Rand Index (RI) measures the similarity of C and C ′ based on the number
of pairs of elements classified into the same group in both C and C ′ and the
number of pairs of elements classified into different groups in both C and
C ′ [32]. Adjusted Rand Index (ARI) [18] is a version corrected for chance.

– Mutual Information (MI), when applied to two random variables, measures
how much information of one can be gathered from the other, and is also
applicable to comparisons between two clusterings C and C ′ [7]. Normalized
Mutual Information (NMI) [36] is a normalized version, while Adjusted Mutual
Information (AMI) [38] is a version adjusted for chance.

– Fowlkes-Mallows Index (FMI) compares a clustering C ′ to a target clustering
C using the number of true positives, false positives, and false negatives [12].

– Homogeneity (HOM) and completeness (CMP) have been described as desir-
able outcomes of a cluster assignment C ′ compared to a target clustering C,
where homogeneity measures to what extent each cluster in C ′ only contains
members of the same cluster in C, and completeness refers to the extent that
all members of a cluster in C are assigned to the same cluster in C ′ [33].

2.3 Graph Drawing Algorithms

In this section, we briefly describe a number of types of algorithms used to
compute graph layouts:

– Force-directed layouts model a graph as a system where repulsive forces exist
between all pairs of vertices and neighboring vertices attract each other [13].

– Multi-level layouts improve the time efficiency of force-directed layouts
through steps of coarsening the graph into a smaller graph such as through
clustering, applying the layout on the smaller graph, and using it as an ini-
tial layout to draw the less coarse graph until a layout for the original is
computed [15].

– Multi-dimensional scaling (MDS) methods are based on dimension reduction
techniques that aim to display high-dimensional data in fewer dimensions
while preserving the distances between the data points [37].

– Stress-based layouts utilize the stress function found in the MDS literature.
These methods compute a layout by minimizing an adapted stress function
that considers the geometric and theoretical distances between vertices [14].

– Spectral methods computes the layout of a graph using the eigenvectors of
matrices related to the graph, such as adjacency or Laplacian matrices [20].



128 A. Meidiana et al.

3 Clustering Metric for Graph Visualization

We propose a new task-specific metric for graph visualization, the clustering
quality metric, for measuring how well a drawing of a graph represents its under-
lying clustering structure. We compute the similarity between a ground truth
clustering of a graph’s vertices to a geometric clustering derived from its drawing
and compute the clustering quality using the similarity of the two clusterings.
Figure 1 summarizes the framework used for our proposed metric.

Fig. 1. The framework for the clustering quality metric. The framework takes as input
a graph G with a predefined ground truth clustering C. A drawing D is produced by
applying a layout algorithm to G, from which a geometric clustering C′ of the vertices
is computed. Computing the similarity of C and C′ produces the clustering quality CQ
score, which can be done using a variety of clustering comparison metrics.

Let G = (V,E) be a graph and C = {Ci, i = 1...k} be the ground truth
clustering of V , the vertex set of G. Although in some applications a vertex may
belong to multiple clusters, in this study, we focus on non-overlapping clusters
as a starting point in developing the metric.

Step 1: We apply a layout algorithm to G to obtain a graph drawing D,
which provides geometric positions for each node in G. A node-link drawing
of a graph with no additional visual variables implicitly denotes groupings of
vertices through the proximity of vertices to each other and a user is more likely
to perceive two vertices drawn close together as belonging to the same group
rather than two vertices drawn further apart.

Step 2: We compute a geometric clustering C ′ = {C ′
i, i = 1...k} purely based

on the geometric positions of vertices in D. Any geometric clustering algorithm
can be used, but in this work, we use k-means clustering, which partitions a
set into k subsets that minimize the within-class variance [25]. We use k-means
clustering as it is a widely used method applicable to geometric clustering with



A Quality Metric for Visualization of Clusters in Graphs 129

existing fast and efficient heuristic approximations and because for our experi-
ments, we know the number of ground truth clusters.

Step 3: Using C ′, we compute the clustering quality of D by computing the
similarity of C with C ′ to produce a clustering quality score CQ. Any clustering
comparison metrics can be used with our framework, however we use the fol-
lowing metrics discussed in Sect. 2.2: Adjusted Rand Index (CQARI), Adjusted
Mutual Information (CQAMI), Fowlkes-Mallows Index (CQFMI), Homogeneity
(CQHOM ), and Completeness (CQCMP ). These metrics have been established
for measuring a clustering’s quality when a target ground truth is available. In
the cases of CQARI and CQAMI , they were taken over other variants of RI and
MI as they are adjusted for chance. All these metrics produce a score of 1 for
perfect clustering, while independent clusterings attain values close to 0.

4 Validation Experiments

4.1 Experiment Design

To validate our metric, we designed deformation experiments for graph drawings.
We start with a drawing of a graph that displays its clusters such that the number
of visible clusters and their respective sizes accurately represent the ground truth
clusters and the clusters are well-separated from each other with no overlap.

We then progressively deform the drawing. In each experiment, we performed
10 steps of deformation, where in each step, the coordinates of each vertex from
the previous step are perturbed by a small value in the range [0, δ], with δ being in
the range of 0.05-0.1 multiplied by the drawing area. We compute the clustering
quality score and compare the scores across all steps of the deformation.

Based on the clustering comparison metrics, we expect our approach to pro-
duce scores in the range of [0, 1] where a higher value denotes a closer similar-
ity between the geometrical clustering C ′ derived from the drawing D and the
ground truth clustering C. Therefore, we formulate the following hypothesis in
order to validate our metric:

Hypothesis 1: The clustering quality metric scores will decrease as the graph
drawings are deformed.

To create the initial layout, we used the Backbone layout from Visone [4]
as this layout produced drawings scoring 1 or nearly 1 on our metric for
our datasets. The exception is that we used sfdp from Graphviz [10] for
cv−many−verydense−mid and gnm−many−mid−verysparse, where sfdp
produces drawings with higher clustering quality metric scores than backbone.
We used cluster comparison metrics implementations from scikit-learn [29].

Each dataset for our validation experiment is created by first creating a small
graph. Each vertex is replaced with a larger graph of a specified internal density
- each will become a cluster of the dataset. Then, each edge is replaced with
inter-cluster edges with a specified external density. Table 1 shows the dataset
details. |c| stands for the number of clusters and avg(cd) denotes the average



130 A. Meidiana et al.

internal density of the clusters, as opposed to the global density denoted in the
previous column.

Each graph is named in the format [name] − [no.ofclusters] −
[internaldensity]− [externaldensity], where we vary the parameters to increase
generality. The prefixes denote the structure used to generate the clustered
graph - c stands for a complete graph, b denotes a bipartite graph, s denotes a
star graph, t denotes a tree, p denotes a path, rn denotes an r-regular graph, cv
is a complete graph with variable cluster sizes, and gnm denotes a Gn,m random
graph.

Table 1. Validation datasets

Name |V | |E| |c| Density avg(cd)

c− few − verydense−mid 439 9552 9 0.0497 0.399

s− few − verydense− dense 2051 256108 10 0.122 0.400

t− few − dense−mid 2082 164180 15 0.0379 0.400

c− few − dense−mid 898 31516 9 0.0391 0.349

p− few − verydense− verysparse 3002 230055 15 0.0511 0.759

c−mid− verydense−mid 815 18674 15 0.0563 0.797

r3 −mid− dense− verysparse 1773 53103 20 0.0338 0.670

cv −many − verydense−mid 2000 54749 30 0.0274 0.788

r3 −many − verydense− sparse 3045 124727 30 0.0269 0.801

gnm−many −mid− verysparse 2685 26098 30 0.00724 0.214

4.2 Results

Figure 2 displays one deformation experiment example, where vertices are col-
ored based on their combinatorial cluster membership. In step 0 (Fig. 2 (a)),
vertices of the same cluster are positioned close to each other, there is minimal
overlap between each cluster and the layout produces CQ scores of 1. As the

(a) Step 0 (b) Step 2 (c) Step 5 (d) Step 9

Fig. 2. Deformation experiment for r3−mid−dense−verysparse, drawn using Back-
bone layout, showing how each subsequent step further deforms the clusters in the
drawing.



A Quality Metric for Visualization of Clusters in Graphs 131

positions are perturbed, vertices of the same cluster grow further apart. The
clusters also continue mixing with each other, until vertices are no less likely to
be placed closer to members of other clusters than vertices in its own cluster.

Figure 3 shows the clustering metric scores for each deformation step, with
the scores averaged for all datasets in Table 1. We expect to see the CQ scores
decreasing after each deformation step, which is indeed what the figure shows,
confirming Hypothesis 1 for a wide variety of clustered graphs.

Fig. 3. Average of clustering quality scores for all validation experiments. The decreas-
ing trend for all clustering comparison metrics show that our metric successfully cap-
tures the deteriorating visual clustering quality and validates Hypothesis 1. We also see
that CQAMI and CQFMI are more sensitive to changes in the visual cluster quality,
from the steeper curves. Also note that CQHOM and CQCMP produce highly similar
results such that their curves overlap.

4.3 Discussion and Summary

Figure 3 shows that the plots of the clustering quality metric scores produce a
downward slope. This validates our metric and the usage of all selected clustering
comparison metrics with our framework. It can also be seen that the scores of our
metric deteriorate at different rates when different clustering comparison metrics
are used: CQARI deteriorates at the fastest rate, followed closely by CQFMI .
CQHOM and CQCMP obtains very similar scores with their curves overlapping,
while CQAMI degrades at a slightly faster rate. Therefore, we conclude that
CQARI and CQFMI are more sensitive to changes in clustering visualisation
quality than the other metrics.

In summary, the validation experiments have shown that our metric reflects
the visual clustering quality of drawings of clustered graphs. Furthermore, from
the different rates of change of the clustering quality scores when different clus-
tering comparison metrics are used, we conclude that CQARI and CQFMI are
better at capturing changes in visual cluster quality and are recommended for
use with our framework.



132 A. Meidiana et al.

5 Layout Comparison Experiments

5.1 Experiment Design

After the validation experiments have shown that our metric effectively measures
visual cluster quality, we compare the performance of a number of graph drawing
algorithms against our metric. We selected layouts of different types:

– Force-directed: Fruchterman-Reingold (FR) [13] and Organic from yfiles [39].
– Multi-level: FM3 [15] and sfdp [10,16].
– MDS: Metric MDS based on classical scaling [37] and Pivot MDS [6].
– Stress-based: Stress Majorization [14] and Sparse Stress Minimization [28].
– Spectral: spectral layout with graph laplacian.

We also selected a few layouts which purport to focus on the discovery of
clusters or important community structures in a graph to test their claims:

– LinLog [26] modifies the force-directed model to emphasize clusters.
– Backbone [27] utilizes triadic or quadratic Simmelian backbones to extract

important community structures from “hairball” graphs.
– tsNET [22] is based on t-distributed Stochastic Neighbor Embedding (t-SNE),

a dimensionality reduction technique [24], and aims to preserve point neigh-
borhoods.

Based on the selection of algorithms, we formulate the following hypothesis:

Hypothesis 2: LinLog, backbone, and tsNET will score higher on our metric
than other selected layouts in visualizing clusters in graphs.

We used implementations provided from Tulip [8] (FR, FM3, Pivot MDS, Stress
Majorization, LinLog), visone [4] (Backbone, Metric MDS, Sparse Stress Min-
imization, Spectral), yEd [39] (Organic), Graphviz [10] (sfdp), and Kruiger’s
implementation of tsNET [21]. We re-used some datasets from the validation
experiments and created some new ones, listed in Table 2. We also selected real

Table 2. Additional layout comparison datasets

Name |V | |E| |c| Density avg(cd)

b−many − dense− sparse 1797 49210 30 0.0305 0.560

cv −mid− verydense−mid 939 21798 20 0.0495 0.162

s−mid−mid− sparse 2116 24175 20 0.0108 0.216

w −many −mid− verysparse 2485 68844 25 0.0223 0.554

r4 −many − verydense− verysparse 3045 124727 30 0.0269 0.801

revije− 90 124 1334 14 0.127 0.377

SS −Butterfly − 0 − 85 832 13009 10 0.0376 0.258

email − Eu− core− lcc 986 16687 34 0.0344 0.490



A Quality Metric for Visualization of Clusters in Graphs 133

world graph datasets with existing vertex categorization, which are listed under
the double line in Table 2. The datasets were taken from Pajek [2] and Stanford
Network Analysis Project’s (SNAP) repository [23,40].

5.2 Results

Tables 3 and 4 show layout comparison examples, with colours representing
ground truth clusters, with CQ scores displayed in Figs. 4 and 5 respectively.
LinLog, tsNET, and Backbone score higher than other layouts for both datasets,
supporting Hypothesis 2. In Table 3 and Fig. 4, where the number of clusters are
small, other layouts such as sfdp, FR, FM3, and spectral also score close to 1.
Meanwhile, in the example in Table 4 and Fig. 5 displaying a real world graph
with a larger number of clusters, LinLog, tsNET, and backbone’s performances
more clearly surpass the other layouts.

Table 3. Layout comparison for c− few − verydense−mid

FR Organic Stress Maj. Metric MDS Backbone FM3

Spectral S. Stress Min. tsNET Pivot MDS sfdp LinLog

Fig. 4. Clustering quality metrics for c − few − verydense − mid. LinLog, tsNET,
and Backbone produces scores of 1 on our metrics, in line with Hypothesis 2. For this
dataset, sfdp, FR, FM3, and spectral also score highly, close to 1.



134 A. Meidiana et al.

Table 4. Layout comparison for email − Eu− core− lcc

FR Organic Stress Maj. Metric MDS

Backbone FM3 Spectral S. Stress Min.

tsNET Pivot MDS sfdp LinLog

Fig. 5. Clustering quality metrics for email − Eu − core − lcc. LinLog, backbone,
and tsNET clearly outperform other layouts, as expected from Hypothesis 2. Among
non-cluster-focused layouts, sfdp produces the highest scores.



A Quality Metric for Visualization of Clusters in Graphs 135

(a) Average for all datasets

(b) Average for real world datasets

Fig. 6. Clustering quality metrics averaged per layout for all layout comparison
datasets (a) and for real world datasets only (b). In (a), we see that tsNET and LinLog
produce the highest scores, validating Hypothesis 2 for the two layouts. Meanwhile in
(b), we see that on real world datasets, LinLog, tsNET, and Backbone outperforms
other layout algorithms in accordance to Hypothesis 2.

Figure 6(a) shows the scores averaged across all layout comparison datasets
and Fig. 6(b) show the scores averaged across real world datasets. Averaged
across all datasets, LinLog scores the highest, with tsNET close behind, confirm-
ing Hypothesis 2 for these two layouts. Backbone scores well on many graphs, but
sometimes deteriorates in quality when the number of clusters becomes larger
compared to the total size of the graph, causing it to score lower than tsNET and
LinLog on average (see Fig. 6(a)). Even so, it still outperforms the other algo-
rithms on real world datasets as seen in Fig. 6(b), which supports Hypothesis 2
for Backbone on real world graphs.



136 A. Meidiana et al.

In the case of synthetic datasets, sfdp also tends to perform well, as seen in the
overall averaged clustering quality metric scores in Fig. 6(a). LinLog, backbone,
and tsNET still outperforms it with real world datasets as seen from Fig. 6(b),
however, in line with Hypothesis 2.

5.3 Discussion and Summary

Our experiments verify that LinLog and tsNET attains the highest average scores
on our metrics across all comparison datasets and Backbone attains equally high
average scores on real world datasets.

A point of note is that LinLog often has issues with excessive node overlaps,
especially when the internal cluster density is high - this can be seen in Table 3,
where the nodes of each cluster are positioned very close together such that they
almost appear as only one node, and to a lesser extent in Table 4 where the red
cluster is packed quite closely together. Backbone does not have this problem on
any tested graphs. Thus, we can conclude that Backbone also has its advantages
for practical applications of clustered graph visualization.

In summary, our experiments have confirmed Hypothesis 2 for LinLog and
tsNET, which consistently obtained the highest scores across all datasets, while
for Backbone it is more supported on real world structures.

6 Conclusion and Future Work

We have introduced a new graph drawing quality metric for the visualization of
clusters in graph. Deformation experiments has shown the effectiveness of the
metric in measuring how well a drawing of a graph depicts the clusters in the
graph. We have also compared graph drawings produced by layouts emphasizing
cluster structures to non-cluster-focused layouts and validated the claims of these
cluster-focused layouts especially on real world structures.

A direction for future work is to refine the metric by combining it with read-
ability metrics, such as to address node overlaps, and further validating it with
human evaluation. Other geometric clustering algorithms besides k-means can
also be tested, including fuzzy clustering algorithms that accomodate overlaps
between clusters, and concepts of visual cluster separations for scatterplots [35]
can also be considered.

References

1. Aldenderfer, M.S., Blashfield, R.: Cluster Analysis. Beverly Hills: Sage Publica-
tions, Thousand Oaks (1984)

2. Batagelj, V., Mrvar, A.: Pajek data sets (2003). http://pajek.imfm.si/doku.php?
id=data:index

3. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall PTR, Upper Saddle River (1998)

http://pajek.imfm.si/doku.php?id=data:index
http://pajek.imfm.si/doku.php?id=data:index


A Quality Metric for Visualization of Clusters in Graphs 137

4. Baur, M., Benkert, M., Brandes, U., Cornelsen, S., Gaertler, M., Köpf, B., Lerner,
J., Wagner, D.: Visone Software for Visual Social Network Analysis. In: Mutzel, P.,
Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 463–464. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45848-4 47

5. Behrisch, M., Blumenschein, M., Kim, N.W., Shao, L., El-Assady, M., Fuchs, J.,
Seebacher, D., Diehl, A., Brandes, U., Pfister, H., Schreck, T., Weiskopf, D., Keim,
D.A.: Quality metrics for information visualization. In: Computer Graphics Forum,
vol. 37, pp. 625–662. Wiley Online Library (2018)

6. Brandes, U., Pich, C.: Eigensolver methods for progressive multidimensional scaling
of large data. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp.
42–53. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70904-6 6

7. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience,
New York (1991)

8. David, A.: Tulip. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS,
vol. 2265, pp. 435–437. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45848-4 34

9. Eades, P., Hong, S.H., Nguyen, A., Klein, K.: Shape-based quality metrics for large
graph visualization. J. Graph Algorithms Appl. 21(1), 29–53 (2017)

10. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz—
open source graph drawing tools. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD
2001. LNCS, vol. 2265, pp. 483–484. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45848-4 57

11. Estivill-Castro, V.: Why so many clustering algorithms: a position paper. SIGKDD
Explor. Newsl. 4(1), 65–75 (2002). https://doi.org/10.1145/568574.568575

12. Fowlkes, E.B., Mallows, C.L.: A method for comparing two hierarchical clusterings.
J. Am. Stat. Assoc. 78(383), 553–569 (1983). https://doi.org/10.1080/01621459.
1983.10478008

13. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed place-
ment. Softw.: Practice Exp. 21(11), 1129–1164 (1991). https://doi.org/10.1002/
spe.4380211102

14. Gansner, E.R., Koren, Y., North, S.: Graph drawing by stress majorization. In:
Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31843-9 25

15. Hachul, S., Jünger, M.: Drawing large graphs with a potential-field-based multilevel
algorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285–295. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31843-9 29

16. Hu, Y.: Efficient, high-quality force-directed graph drawing. Math. J. 10(1), 37–71
(2005)

17. Huang, W., Hong, S.H., Eades, P.: Effects of crossing angles. In: 2008 IEEE Pacific
Visualization Symposium, pp. 41–46. IEEE (2008)

18. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985).
https://doi.org/10.1007/BF01908075

19. Kobourov, S.G., Pupyrev, S., Saket, B.: Are crossings important for drawing large
graphs? In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 234–
245. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45803-7 20

20. Koren, Y.: Drawing graphs by eigenvectors: theory and practice. Comput. Math.
Appl. 49(11–12), 1867–1888 (2005). https://doi.org/10.1016/j.camwa.2004.08.015

21. Kruiger, J.F.: tsnet (2017). https://github.com/HanKruiger/tsNET/
22. Kruiger, J.F., Rauber, P.E., Martins, R.M., Kerren, A., Kobourov, S., Telea, A.C.:

Graph layouts by t-SNE. Comput. Graph. Forum 36(3), 283–294 (2017). https://
doi.org/10.1111/cgf.13187

https://doi.org/10.1007/3-540-45848-4_47
https://doi.org/10.1007/978-3-540-70904-6_6
https://doi.org/10.1007/3-540-45848-4_34
https://doi.org/10.1007/3-540-45848-4_34
https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1145/568574.568575
https://doi.org/10.1080/01621459.1983.10478008
https://doi.org/10.1080/01621459.1983.10478008
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1007/978-3-540-31843-9_25
https://doi.org/10.1007/978-3-540-31843-9_29
https://doi.org/10.1007/BF01908075
https://doi.org/10.1007/978-3-662-45803-7_20
https://doi.org/10.1016/j.camwa.2004.08.015
https://github.com/HanKruiger/tsNET/
https://doi.org/10.1111/cgf.13187
https://doi.org/10.1111/cgf.13187


138 A. Meidiana et al.

23. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection,
June 2014. http://snap.stanford.edu/data

24. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res.
9(Nov), 2579–2605 (2008)

25. MacQueen, J., et al.: Some methods for classification and analysis of multivariate
observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, vol. 1, pp. 281–297. University of California Press (1967)

26. Noack, A.: An energy model for visual graph clustering. In: Liotta, G. (ed.) GD
2003. LNCS, vol. 2912, pp. 425–436. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24595-7 40

27. Nocaj, A., Ortmann, M., Brandes, U.: Untangling the hairballs of multi-centered,
small-world online social media networks. J. Graph Algorithms Appl. 19(2), 595–
618 (2015). https://doi.org/10.7155/jgaa.00370

28. Ortmann, M., Klimenta, M., Brandes, U.: A sparse stress model. In: Hu, Y.,
Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 18–32. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-50106-2 2

29. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine
learning in python. J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011)

30. Purchase, H.: Which aesthetic has the greatest effect on human understanding? In:
DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-63938-1 67

31. Purchase, H.C., Cohen, R.F., James, M.: Validating graph drawing aesthetics.
In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 435–446. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0021827

32. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am.
Stat. Assoc. 66(336), 846–850 (1971). https://doi.org/10.1080/01621459.1971.
10482356

33. Rosenberg, A., Hirschberg, J.: V-measure: a conditional entropy-based external
cluster evaluation measure. In: Proceedings of the 2007 Joint Conference on Empiri-
cal Methods in Natural Language Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pp. 410–420 (2007)

34. Saket, B., Simonetto, P., Kobourov, S.: Group-level graph visualization taxonomy.
CoRR abs/1403.7421 (2014)

35. Sedlmair, M., Tatu, A., Munzner, T., Tory, M.: A taxonomy of visual cluster sep-
aration factors. Comput. Graph. Forum 31(3pt4), 1335–1344 (2012). https://doi.
org/10.1111/j.1467-8659.2012.03125.x

36. Strehl, A., Ghosh, J.: Cluster ensembles–a knowledge reuse framework for combin-
ing multiple partitions. J. Mach. Learn. Res. 3(Dec), 583–617 (2002)

37. Torgerson, W.S.: Multidimensional scaling: I. Theory and method. Psychometrika
17(4), 401–419 (1952). https://doi.org/10.1007/BF02288916

38. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings
comparison: variants, properties, normalization and correction for chance. J. Mach.
Learn. Res. 11(Oct), 2837–2854 (2010)

39. Wiese, R., Eiglsperger, M., Kaufmann, M.: yfiles - visualization and automatic
layout of graphs. In: Jünger, M., Mutzel, P. (eds.) Graph Drawing Software. Math-
ematics and Visualization, pp. 173–191. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-642-18638-7 8

40. Zitnik, M., Sosič, R., Maheshwari, S., Leskovec, J.: BioSNAP Datasets: Stan-
ford biomedical network dataset collection, August 2018. http://snap.stanford.
edu/biodata

http://snap.stanford.edu/data
https://doi.org/10.1007/978-3-540-24595-7_40
https://doi.org/10.1007/978-3-540-24595-7_40
https://doi.org/10.7155/jgaa.00370
https://doi.org/10.1007/978-3-319-50106-2_2
https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1007/BFb0021827
https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.1111/j.1467-8659.2012.03125.x
https://doi.org/10.1111/j.1467-8659.2012.03125.x
https://doi.org/10.1007/BF02288916
https://doi.org/10.1007/978-3-642-18638-7_8
https://doi.org/10.1007/978-3-642-18638-7_8
http://snap.stanford.edu/biodata
http://snap.stanford.edu/biodata


Multi-level Graph Drawing Using
Infomap Clustering

Seok-Hee Hong1(B), Peter Eades1, Marnijati Torkel1, Ziyang Wang1,
David Chae1, Sungpack Hong2, Daniel Langerenken2, and Hassan Chafi2

1 University of Sydney, Sydney, Australia
{seokhee.hong,peter.eades,mtor0581,zwan0130,min.chae}@sydney.edu.au

2 Oracle Research Lab, Belmont, USA
{sungpack.hong,daniel.langerenken,hassan.chafi}@oracle.com

Abstract. Infomap clustering finds the community structures that min-
imize the expected description length of a random walk trajectory; algo-
rithms for infomap clustering run fast in practice for large graphs. In this
paper we leverage the effectiveness of Infomap clustering combined with
the multi-level graph drawing paradigm. Experiments show that our new
Infomap based multi-level algorithm produces good visualization of large
and complex networks, with significant improvement in quality metrics.

1 Introduction

The multi-level graph drawing is a popular approach to visualize large and com-
plex graphs to improve the quality of drawings. It recursively coarsens the graph
and then uncoarsens the drawing using layout refinement. There are a num-
ber of multi-level graph drawing algorithms available [7,9,11,14,17,18,20]. They
mainly differ in the coarsening method.

Clustering is a widely used analysis method for identifying groups with strong
similarity, or communities in the data. Graph clustering is to partition a graph
such that vertices in the same cluster are more interconnected. Infomap cluster-
ing computes clusters by translating a graph into a map, which decomposes the
myriad nodes and links into modules that represent the graph [19]. It maximizes
an objective function called the minimum description length of a random walk
trajectory, where the approximation to the optimal solution can be computed
quickly. Infomap performed the best in community finding experiments [15].

In this paper, we present a new multi-level graph drawing algorithm based
on Infomap clustering. More specifically, we leverage the effectiveness of Infomap
clustering, combined with the multi-level graph drawing paradigm. Experiments
with real-world large and complex networks such as protein-protein interaction
networks, Facebook graph, Autonomous Systems (AS) graphs as well as bench-
mark graphs show that our new multi-level algorithms produce good visual-
ization with significant improvement in quality metrics, including shape-based

Research supported by ARC Linkage Grant with Oracle labs.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 139–146, 2019.
https://doi.org/10.1007/978-3-030-35802-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-35802-0_11


140 S.-H. Hong et al.

metrics [4], edge crossing and stress. It also requires a small number of coarsening
steps for medium to large graphs, which makes it fast to run.

2 Related Work

Hadany and Harel presented the multi-scale method using an edge contraction
based coarsening method and a force-directed layout preserving topological prop-
erties such as cluster size and vertex degree [10]. Koren and Harel presented
FMS, which used a k-center approximation based coarsening method and a force-
directed layout with a beautification [14].

Walshaw presented a multi-level algorithm using a matching, by repeatedly
collapsing maximal independent subsets of graph edges, and a grid variant of
Fruchterman-Reingold [6] layout [20]. Gajer et al. presented GRIP using a max-
imum independent set filtration based coarsening method, and an intelligent
initial placement of vertices based on both graph and Euclidean distances [7].

Quigley and Eades presented FADE using the quad tree, and Barnes-Hut n-
body method [1] for approximation of the repulsive force computation in a force-
directed layout [18]. Hachul and Junger presented FM3 using similar method
to compute the repulsive forces between vertices, where subgraphs with small
diameter, called solar system, are partitioned and collapsed to obtain a multi-
level representation [9]. Hu presented the sfdp layout, also using the Barnes-Hut
approximation method [11]. Frishman and Tal [5] presented a multi-level force
directed graph layout on the GPU, based on spectral partitioning and Kamada-
Kawai layout [12]. Bartel et al. presented an experimental study for extensive
comparison of various multi-level algorithms, using a combination of coarsening
methods, initial placement and graph layout methods [2].

More recently, Meyerhenke et al. presented a multi-level algorithm using a
label propagation method for the coarsening step, and Maxent stress optimisa-
tion layout [8] on shared memory parallelization [16]. Nguyen and Hong used
fast k-core coarsening method, which can be computed in linear time [17].

3 Infomap Based Multi-level Algorithm

The multi-level graph drawing algorithm is an iterative process consisting of the
following three steps: coarsening, initialization (or placement), and graph layout
(or refinement). Roughly speaking, the coarsening step is to cluster vertices to
define a smaller graph, recursively until the size of the graph falls below the
threshold, resulting in a coarse graph hierarchy, G0, G1, . . . , GL. The layout of
graph GL is then extended to the layout of graph GL−1 by placement (i.e., add
vertices back to the layout) and refinement step. Recursively, these steps extend
the layout of graph GL to G0 by repetitively interpolating from Gi to Gi−1. In
each iteration, the layout of Gi is used to compute an initial placement of Gi−1,
and then the layout algorithm is applied to refine the layout.



Multi-level Graph Drawing Using Infomap Clustering 141

3.1 Coarsening: Infomap Clustering

Let G = (V,E) be a graph with vertex set V and edge set E. The coarsening
step computes a graph level hierarchy by iteratively computing a sequence of
smaller graphs G0, G1, G2, . . . , GL, where the original graph G = G0. At each
level, a coarser graph (or clustered graph) is computed by combining a sets of
vertices belong to the same cluster in Gi and replacing into a single vertex in
Gi+1, recursively until the predefined stop criterion is satisfied.

Infomap clustering finds community structure that minimizes the expected
description length of a random walk trajectory [19]. It computes clusters by
translating a graph into a map, which decomposes the myriad nodes and links
into modules that represent the graph. The algorithm maximizes an objective
function called the Minimum Description Length.

We first compute the Infomap clustering of G, and partition the vertex set V
into Vi based on the clusters. More specifically, we define a clustered graph with
a weighted vertex set (i.e., the number of vertices belong to each cluster) and a
weighted edge set (i.e., the number of edges between the partitioned vertex set).
The vertices u1, u2, . . . , uk ∈ Vi are merged to form a new cluster vertex v ∈ Vi+1,
where the weight of v is computed as |v| = |u1| + |u2| + . . . + |uk|. Similarly,
the weight of the collapsed edges are computed as the sum of the weights of the
edges that it replaces. This coarsening phase stops when the resulting clustered
graph has a small size (say 50) or there is no reduction in terms of size.

3.2 Initialization: Placement

This step aims to compute a good initial layout of Gi−1 using the layout of Gi.
Let vi ∈ Vi of Gi corresponds to a cluster of vertices u1, u2, . . . , uk ∈ Vi−1 of
Gi−1. We add back vertices uj , j = 1, . . . , k to the layout of Gi by initializing
the positions of uj using the position of vi. Here we use the following three
variations.

– Circle placement: It places all uj , j = 1, . . . , k at the circle with a small radius,
where the center of the circle is the location of vi.

– Barycenter placement: It places each vertex at the barycenter of its neigh-
bors [7].

– Zero placement: It places all uj , j = 1, . . . , k at the same position as vi with
small perturbation [20].

3.3 Refinement: Force-Directed Layout

The initial layout of Gi−1 is recursively refined at each level using a force-directed
algorithm. We use layout algorithms, previously used in other multi-level graph
drawing algorithm experiments [2]:

– FR: Fruchterman and Reingold layout [6].
– FRG: grid variant of Fruchterman and Reingold layout, used in [20].
– FME (Fast-Multipole Embedder): an improvement of NME (New Multipole

Method) layout of FM3 [9], designed for a multi-level method in [2].



142 S.-H. Hong et al.

4 Experiments

We implemented Infomap clustering based multi-level algorithm using OGDF [3],
which was used in the comparison experiments of multi-level algorithms [2]. We
used a standard Dell laptop with Intel Core i7, 16 GB RAM.

We first experimented with three different placement methods, and found
that there is no significant difference in terms of layout quality. We choose the
barycenter placement, which shows slightly better performance, with three lay-
outs FR, FRG and FME for comparison.

More specifically, we have the following variations for comparison:

– InfomapFR: Infomap multi-level algorithm with FR layout
– InfomapFRG: Infomap multi-level algorithm with FR grid variant layout
– InfomapFME: Infomap multi-level algorithm with FME layout.

The experiment was conducted with real-world benchmark data sets includ-
ing social networks such as facebook, biological networks such as protein-protein
interaction networks, and benchmark graphs used in previous work [2,17,20].

Table 1 shows the details of the data sets, the number of coarsening levels and
runtime (seconds), where D represents the density of a graph G and L represents
the number of levels. We can clearly see that the Infomap coarsening method

Table 1. Data sets, size, number of levels (L) and runtime.

Graph G |V0| |E0| D L Time |V1| |E1| |V2| |E2| |V3| |E3|
G 15 0 1785 20459 11.5 2 0.02 59 100 9 8

nasa1824 1824 18692 10.3 2 0.02 53 217 5 7

G 4 0 2075 4769 2.3 2 0.02 89 326 8 11

yeastppi 2361 7182 3.0 2 0.04 302 1923 101 0

soc h 2426 11630 4.8 2 0.02 301 1088 149 1

oflights 2939 15677 5.3 2 0.03 170 477 19 24

ecolippi 3796 78120 20.6 2 0.03 245 2453 53 1

facebook 4039 88234 21.9 2 0.02 93 272 7 11

3elt 4720 13722 2.9 2 0.05 189 489 17 35

USpowerGrid 4941 6594 1.3 2 0.18 489 963 44 104

as19990606 5188 10974 2.1 2 0.17 368 2034 12 38

commanche dual 7920 19800 2.5 2 0.24 503 1365 34 71

p2p-Gnutella05 8846 31839 3.6 2 0.20 830 18154 3 0

astroph2001 16046 121251 7.6 3 0.61 1219 9333 395 68 369 0

condmat2001 16264 47594 2.9 3 1.33 1720 4574 798 774 726 0

crack-dual 20141 30043 1.5 3 1.16 1357 3633 84 216 10 18

bcsstk31 35588 608502 17.1 2 0.36 453 2295 25 44

shock-9 36476 71290 2.0 3 1.17 1351 3852 74 191 8 14

del16 65536 196575 3.0 3 1.95 1981 5921 101 290 8 16



Multi-level Graph Drawing Using Infomap Clustering 143

(a) Shape-based (larger, bet-
ter)

(b) stress (smaller, better) (c) crossing (smaller, better)

(d) Shape-based (e) stress (f) crossing (g) Improvement (h) Infomap vs.
FM3

Fig. 1. Significant improvement in quality metrics: (a) (b) (c) Average of met-
rics per layout: InfomapFME (blue), FME (red), InfomapFR (yellow), FR (green),
InfomapFRG (brown), FRG (cyan); (d) (e) (f) Average of metrics: Infomap (blue) vs.
Original (red); (g) Average of improvement by Infomap over Original in Shape-based
metrics: InfomapFME (blue), InfomapFR (red), InfomapFRG (yellow); (h) Average
of shape-based metrics: InfomapFR (blue), InfomapFRG (red), FM3 (yellow). (Color
figure online)

produced small number of levels such as 2 or 3 for most of data sets. Overall,
Infomap clustering runs quite fast for medium size graphs.

Comparison of Quality Metrics: For large and complex graphs, edge cross-
ing may not a suitable metric to measure the quality of drawings [4,13]. We
used the shape-based metrics [4]; this is a new graph drawing quality measure
specially designed for large graphs. Roughly speaking, the shape-based metrics
measure the faithfulness of graph drawing, i.e., how well the shape of the drawing
represents the structure (or shape) of the graph.

Figures 1(a), (b) and (c) show the comparison of average metrics between
six layouts (i.e., Infomap multi-level vs. FME, FRG, FR original layouts) using
shape-based quality metrics (Q), stress and edge crossings. Clearly, we can see
that Infomap multi-level layouts perform significantly better than the orig-
inal layouts. In general, InfomapFR and InfomapFRG perform better than
InfomapFME. Figures 1(d), (e) and (f) show the average metrics between
Infomap multi-level and original layouts. Overall, we can see that Infomap multi-
level layouts outperform original layouts. Figure 1(g) shows the average improve-
ment by Infomap multi-level layouts over original layouts in shape-based metrics
(i.e., (QInfomap/QOriginal − 1)). Clearly, significant improvement was achieved
by InfomapFME and InfomapFRG.



144 S.-H. Hong et al.

Visual Comparison: Overall, Infomap multi-level layouts perform significantly
better than original layouts. In general, InfomapFR and InfomapFRG perform
significantly better than other layouts, and InfomapFME achieved the most sig-
nificant improvement over FME. For example, Fig. 2 shows visual comparison
between layouts of 3elt.

Comparison with FM3: Figure 1(h) shows average shape-based metrics
between InfomapFR, InfomapFRG and FM3, excluding the outlier. Clearly, we
can see that InfomapFR and Infomap FRG perform similar to FM3 in shape-
based metrics. For layout comparison, see Fig. 3. We can see that InfomapFR
perform similar to FM3, and for some instances perform better than FM3.

(a) FME (b) FRG (c) FR

(d) Infomap FME (e) Infomap FRG (f) Infomap FR

Fig. 2. Visual comparison of 3elt.

(a) FM3 (b) Infomap FR (c) FM3 (d) Infomap FR

Fig. 3. Comparison with FM3: (a) (b) USpowerGrid; (c) (d) shock-9

Summary: Our experimental results provide strong evidence that our Infomap
based multi-level algorithm performs considerably well for real-world social net-
works, biological networks and benchmark graphs.

– Overall, Infomap multi-level layouts perform significantly better than original
layouts in terms of quality metrics and visualisation.



Multi-level Graph Drawing Using Infomap Clustering 145

– Metric wise, InfomapFR and InfomapFRG perform better than InfomapFME.
– InfomapFME achieved the most significant improvement.
– InfomapFR and InfomapFRG perform similar to FM3 in terms of shape-

based metrics and visual comparison.

References

1. Barnes, J., Hut, P.: A hierarchical O (N log N) force-calculation algorithm. Nature
324, 446 (1986)

2. Bartel, G., Gutwenger, C., Klein, K., Mutzel, P.: An experimental evaluation of
multilevel layout methods. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS,
vol. 6502, pp. 80–91. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-18469-7 8

3. Chimani, M., Gutwenger, C., Jünger, M., Klau, G.W., Klein, K., Mutzel, P.: The
open graph drawing framework (OGDF). In: Handbook on Graph Drawing and
Visualization, pp. 543–569 (2013)

4. Eades, P., Hong, S.-H., Klein, K., Nguyen, A.: Shape-based quality metrics for
large graph visualization. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS,
vol. 9411, pp. 502–514. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
27261-0 41

5. Frishman, Y., Tal, A.: Multi-level graph layout on the GPU. IEEE Trans. Vis.
Comput. Graph. 13(6), 1310–1319 (2007)

6. Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement.
Softw.: Pract. Exper. 21(11), 1129–1164 (1991)

7. Gajer, P., Kobourov, S.G.: GRIP: graph drawing with intelligent placement. J.
Graph Algorithms Appl. 6(3), 203–224 (2002)

8. Gansner, E.R., Hu, Y., North, S.C.: A maxent-stress model for graph layout. IEEE
Trans. Vis. Comput. Graph. 19(6), 927–940 (2013)

9. Hachul, S., Jünger, M.: Drawing large graphs with a potential-field-based multilevel
algorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285–295. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31843-9 29

10. Hadany, R., Harel, D.: A multi-scale algorithm for drawing graphs nicely. Discrete
Appl. Math. 113(1), 3–21 (2001)

11. Hu, Y.: Efficient, high-quality force-directed graph drawing. Mathematica J. 10(1),
37–71 (2005)

12. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf.
Process. Lett. 31(1), 7–15 (1989)

13. Kobourov, S.G., Pupyrev, S., Saket, B.: Are crossings important for drawing large
graphs? In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 234–
245. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45803-7 20

14. Koren, D., Harel, Y.: A fast multi-scale method for drawing large graphs. J. Graph
Algorithms Appl. 6(3), 179–202 (2002)

15. Lancichinetti, A., Fortunato, S.: Community detection algorithms: a comparative
analysis. Phys. Rev. E 80, 056117 (2009)

16. Meyerhenke, H., Nöllenburg, M., Schulz, C.: Drawing large graphs by multilevel
maxent-stress optimization. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS,
vol. 9411, pp. 30–43. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
27261-0 3

https://doi.org/10.1007/978-3-642-18469-7_8
https://doi.org/10.1007/978-3-642-18469-7_8
https://doi.org/10.1007/978-3-319-27261-0_41
https://doi.org/10.1007/978-3-319-27261-0_41
https://doi.org/10.1007/978-3-540-31843-9_29
https://doi.org/10.1007/978-3-662-45803-7_20
https://doi.org/10.1007/978-3-319-27261-0_3
https://doi.org/10.1007/978-3-319-27261-0_3


146 S.-H. Hong et al.

17. Nguyen, A., Hong, S.: k-core based multi-level graph visualization for scale-free
networks. In: 2017 IEEE Pacific Visualization Symposium, PacificVis 2017, Seoul,
South Korea, 18–21 April 2017, pp. 21–25 (2017)

18. Quigley, A., Eades, P.: FADE: graph drawing, clustering, and visual abstraction.
In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 197–210. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44541-2 19

19. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal
community structure. Proc. Nat. Acad. Sci. 105(4), 1118–1123 (2008)

20. Walshaw, C., et al.: A multilevel algorithm for force-directed graph-drawing. J.
Graph Algorithms Appl. 7(3), 253–285 (2003)

https://doi.org/10.1007/3-540-44541-2_19


On Strict (Outer-)Confluent Graphs

Henry Förster1 , Robert Ganian2 , Fabian Klute2(B) ,
and Martin Nöllenburg2

1 University of Tübingen, Tübingen, Germany
foersth@informatik.uni-tuebingen.de

2 Algorithms and Complexity Group, TU Wien, Vienna, Austria
{rganian,fklute,noellenburg}@ac.tuwien.ac.at

Abstract. A strict confluent (SC) graph drawing is a drawing of a graph
with vertices as points in the plane, where vertex adjacencies are rep-
resented not by individual curves but rather by unique smooth paths
through a planar system of junctions and arcs. If all vertices of the graph
lie in the outer face of the drawing, the drawing is called a strict outer-
confluent (SOC) drawing. SC and SOC graphs were first considered by
Eppstein et al. in Graph Drawing 2013. Here, we establish several new
relationships between the class of SC graphs and other graph classes,
in particular string graphs and unit-interval graphs. Further, we extend
earlier results about special bipartite graph classes to the notion of strict
outerconfluency, show that SOC graphs have cop number two, and estab-
lish that tree-like (Δ-)SOC graphs have bounded cliquewidth.

1 Introduction

Confluent drawings of graphs are geometric graph representations in the
Euclidean plane, in which vertices are mapped to points, but edges are not drawn
as individually distinguishable geometric objects. Instead, an edge between two
vertices u and v is represented by a smooth path between the points of u and v
through a crossing-free system of arcs and junctions. Since multiple edge repre-
sentations may share some arcs and junctions of the drawing, this allows dense
and non-planar graphs to be drawn in a plane way (e.g., see Fig. 2 for a confluent
drawing of K5). Hence confluent drawings can be seen as theoretical counter-
part of heuristic edge bundling techniques, which are frequently used in network
visualizations to reduce visual clutter in layouts of dense graphs [2,25].

More formally, a confluent drawing D of a graph G = (V,E) consists of a
set of points representing the vertices of G, a set of junction points, and a set
of smooth arcs, such that each arc starts and ends at either a vertex point or
a junction, no two arcs intersect (except at common endpoints), and all arcs
meeting in a junction share the same tangent line in the junction point. There

A poster containing some of the results of this paper was presented at GD 2017. Robert
Ganian acknowledges support by the Austrian Science Fund (FWF, project P31336)
and is also affiliated with FI MUNI, Brno, Czech Republic.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 147–161, 2019.
https://doi.org/10.1007/978-3-030-35802-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_12&domain=pdf
http://orcid.org/0000-0002-1441-4189
http://orcid.org/0000-0002-7762-8045
http://orcid.org/0000-0002-7791-3604
http://orcid.org/0000-0003-0454-3937
https://doi.org/10.1007/978-3-030-35802-0_12


148 H. Förster et al.

alternation

strict-outerconfluent

bipartite permutation ∩ domino-free

bipartite permutation

strict bipartite outerconfluent

distance-hereditary

string

strict-confluent

circle-trapezoid

outer-string

subtree-filament

circular arc

trapezoid

series-parallel

pseudo-splitchordal

polygon-circle

Δ-confluent

comparability

circle [24]

〈1752〉

[10]

〈1388〉

D

[34]

[32]

D

D

D

〈1450〉

〈600, 1450〉

D

D

D

D

D

〈600〉

〈600〉

Thm 1

Thm 2

Thm 5

D

〈1348〉 co-comparabilityinterval-filamentD D

chordal ∪
co-chordalunit interval

Thm 3

D

unit interval
[20]

Fig. 1. Inclusions among graph classes related to SOC graphs. Arrows point from sub-
to superclass, where edge label ‘D’ marks an inclusion by definition. Fat arrows are
inclusions shown in this paper and are labelled with the corresponding theorem. Green
boxes are confluent graph classes. Red, dashed boxes are classes that are incomparable
to SOC graphs. Orange boxes are classes that are potential superclasses of SOC graphs.
Blue boxes are potential subclasses of the SOC graphs. The numbers in 〈·〉 indicate
references of graphclasses.org. (Color figure online)

is an edge (u, v) ∈ E if and only if there is a smooth path from u to v in D not
passing through any other vertex.

Confluent drawings were introduced by Dickerson et al. [8], who identified
classes of graphs that admit or do not admit confluent drawings. Subsequently,
the notions of strong and tree confluency have been introduced [27], as well as
Δ-confluency [10]. Confluent drawings have further been used for drawings of
layered graphs [11] and Hasse diagrams [13].

Eppstein et al. [12] defined the class of strict confluent (SC) drawings, which
require that every edge of the graph must be represented by a unique smooth
path and that there are no self-loops. They showed that for general graphs it is
NP-complete to decide whether an SC drawing exists. An SC drawing is called
strict outerconfluent (SOC) if all vertices lie on the boundary of a (topologi-
cal) disk that contains the SC drawing. For graphs with a given cyclic vertex
order, Eppstein et al. [12] presented a constructive efficient algorithm for test-
ing the existence of an SOC drawing. Without a given vertex order, neither the
recognition complexity nor a characterization of such graphs is known.

We approach the characterization problem by comparing the SOC graph
class with a hierarchy of classes of intersection graphs. In general a geometric
intersection graph G = (V,E) is a graph with a bijection between the vertices V
and a set of geometric objects such that two objects intersect if and only if the
corresponding vertices are adjacent. Common examples include interval graphs,
string graphs [9] and circle graphs [15]. Since confluent drawings make heavy use

http://graphclasses.org/


On Strict (Outer-)Confluent Graphs 149

of intersecting curves to represent edges in a planar way, it seems natural to ask
what kind of geometric intersection models can represent a confluent graph.

Contributions. After introducing basic definitions and properties in Sect. 2,
we show in Sect. 3 that SC and SOC graphs are, respectively, string and out-
erstring graphs [28]. Section 4 shows that every unit interval graph [30,33] can
be drawn strict confluent. In Sect. 5, we consider the so-called strict bipartite-
outerconfluent drawings: by following up on an earlier result of Hui et al. [27],
we show that graphs which admit such a drawing are precisely the domino-free
bipartite permutation graphs. Inspired by earlier work of Gavenčiak et al. [16],
we examine in Sect. 6 the cop number of SOC graphs and show that it is at most
two. In [14], we show additionally that many natural subclasses of outer-string
graphs are incomparable to SOC graphs (see red, dashed boxes in Fig. 1). More
specifically, we show that circle [15], circular-arc [26], series-parallel [31], chordal
[17], co-chordal [4], and co-comparability [22] graphs are all incomparable to
SOC graphs. This list may help future research by excluding a series of natu-
ral candidates for sub- and super-classes of SOC graphs. Finally, in Sect. 7, we
show that the cliquewidth of so-called tree-like Δ-SOC graphs is bounded by a
constant, generalizing a previous result of Eppstein et al. [10].

Due to space constraints some proofs are omitted; we refer to [14] for full details.

2 Preliminaries

A confluent diagram D = (N, J, Γ ) in the plane R
2 consists of a set N of points

called nodes, a set J of points called junctions and a set Γ of simple smooth
curves called arcs whose endpoints are in J ∪ N . Further, two arcs may only
intersect at common endpoints. If they intersect in a junction they must share
the same tangent line, see Fig. 2.

u
v

w

x

y

j i

k
�

p

Fig. 2. A strict outercon-
fluent diagram representing
K5. Nodes are disks, junc-
tions are squares.

Let D = (N, J, Γ ) be a confluent diagram and let
u, v ∈ N be two nodes. A uv-path p = (γ0, . . . , γk)
in D is a sequence of arcs γ0 = (u, j1), γ1 =
(j1, j2), . . . , γk = (jk, v) ∈ Γ such that j1, . . . jk are
junctions and p is a smooth curve. In Fig. 2 the
unique uy-path passes through junctions i, j, k. If
there is at most one uv-path for each pair of nodes
u, v in N and if there are no self-loops, i.e., no uu-
path for any u ∈ N , we say that D is a strict conflu-
ent diagram. The uniqueness of uv-paths and the
absence of self-loops imply that every uv-path is
actually a path in the graph-theoretic sense, where
no vertex is visited twice. We further define P (D)
as the set of all smooth paths between all pairs of
nodes in N . Let p ∈ P (D) be a path and j ∈ J a junction in D, then we write
j ∈ p, if p passes through j.

As observed by Eppstein et al. [12], we may assume that every junction is
a binary junction, where exactly three arcs meet such that the three enclosed



150 H. Förster et al.

angles are 180◦, 180◦, 0◦. In other words two arcs from the same direction merge
into the third arc, or, conversely, one arc splits into two arcs. A (strict) con-
fluent diagram with higher-degree junctions can easily be transformed into an
equivalent (strict) one with only binary junctions.

Let j ∈ J be a binary junction with the three incident arcs γ1, γ2, γ3. Let the
angle enclosed by γ1 and γ2 be 0◦ and the angle enclosed by γ3 and γ1 (or γ2) be
180◦. Then we say that j is a merge-junction for γ1 and γ2 and a split-junction
for γ3. We also say that γ1 and γ2 merge at j and that γ3 splits at j. Given two
nodes u, v ∈ N and a junction j ∈ J we say that j is a merge-junction for u
and v if there is a third node w ∈ N , a uw-path p and a vw-path q such that
j ∈ p and j ∈ q, the respective incoming arcs γp = (jp, j) and γq = (jq, j) are
distinct and the suffix paths of p and q from j to w are equal. Conversely, we
say that a junction j ∈ J is a split-junction for a node u ∈ N if there are two
nodes v, w ∈ N , a uv-path p, and a uw-path q such that j ∈ p and j ∈ q, the
prefix paths of p and q from u to j are equal and the respective subsequent arcs
γp = (j, jp) and γq = (j, jq) are distinct. In Fig. 2, junction i is a merge-junction
for u and v, while it is a split junction for each of w, x, y. Two junctions i, j ∈ J
are called a merge-split pair if i and j are connected by an arc γ and both i and
j are split-junctions for γ; in Fig. 2, junctions i and j form a merge-split pair, as
well as junctions � and p.

We call an arc γ ∈ Γ essential if we cannot delete γ without changing
adjacencies in the represented graph. We call a confluent diagram D reduced, if
every arc is essential. Notice that this is a different notion than strictness, since
it is possible that in a confluent diagram we find two essential arcs between a
pair of nodes. Without loss of generality we can assume that the nodes of an
outerconfluent diagram are placed on a circle with all arcs and junctions inside
the circle. We can infer a cyclic order π from an outerconfluent diagram D by
walking clockwise around the boundary of the unbounded face and adding the
nodes to π in the order they are visited.

From a confluent diagram D = (N, J, Γ ) we derive a simple, undirected graph
GD = (VD, ED) with VD = N and ED = {(u, v) | ∃uv-path p ∈ P (D)}. We say
D is a confluent drawing of a graph G if G is isomorphic to GD and that G is a
(strict) (outer-)confluent graph if it admits a (strict) (outer-)confluent drawing.

3 Strict (Outer-)Confluent ⊂ (Outer-)String

The class of string graphs [28] contains all graphs G = (V,E) which can be
represented as the intersection graphs of open curves in the plane. We show that
they form a superclass of SC graphs and that every SOC graph is an outer-string
graph [28]. Outer-string graphs are string graphs that can be represented so that
strings lie inside a disk and intersect the boundary of the disk in one endpoint.
Note that strings are allowed to self-intersect and cross each more than once.

Let D = (N, J, Γ ) be a strict confluent diagram. For every node u ∈ N we
construct the junction tree Tu of u, with root u and a leaf for each neighbor v of u
in GD. The interior vertices of Tu are the junctions which lie on the (unique) uv-
paths. The strictness of D implies that Tu is a tree. Observe that every internal



On Strict (Outer-)Confluent Graphs 151

node of Tu has at most two children. Further, every merge-junction for u is a
vertex with one child in Tu, and every split-junction for u has two children. For
every junction j in Tu we can define the sub-tree Tu,j of Tu with root j.

Lemma 1. Let D = (N, J, Γ ) be a strict confluent diagram, let u, v ∈ N be two
nodes and let i, j be two distinct merge-junctions for u, v. Then i is neither an
ancestor nor a descendant of j in Tu (and, by symmetry, in Tv).

To create a string representation of an SC graph we trace the paths of a strict
confluent diagram D = (N, J, Γ ), starting from each node u ∈ N and combine
them into a string representation. Figure 3 shows an example. We traverse the
junction tree for each u ∈ N on the left-hand side of each arc (seen from its
root u) and create a string t(u), the trace of u, with respect to Tu as follows.

Start from u and traverse Tu in left-first DFS order. Upon reaching a leaf �
make a clockwise U-turn and backtrack to the previous split-junction of Tu.
When returning to a split-junction we have two cases. (a) coming from the left
subtree: cross the arc from the left subtree at the junction and descend into the
right subtree. (b) coming from the right subtree: cross the arc to the left subtree
again and backtrack upward in the tree along the existing trace to the previous
split-junction of Tu.

t(u)

t(v) t(u)

t(v)

i i

w

t(w)

w

t(w)

Fig. 3. Two possible configurations for
inserting a new trace t(u) that meets an
existing trace t(v) at a merge junction i; t(v)
is cut and re-routed.

Finally, at a merge-junction i
with at least one trace from the other
arc merging into i already drawn: Let
v ∈ N such that u and v merge
at i and t(v) is already tracing the
subtree Tu,i = Tv,i.In this case we
temporarily cut open the part of
trace t(v) closest to t(u), route t(u)
through the gap and let it follow t(v)
along Tu,i until it returns to junction
i, where t(u) passes through the gap
again. Since Tu,i = Tv,i this is pos-
sible without t(u) intersecting t(v).
Now it remains to reconnect the two open ends of t(v), but this can again be
done without any new intersections by winding t(v) along the “outside” of t(u).
See Fig. 3 for an illustration. If there are multiple traces with this property, they
can all be treated as a single “bundled” trace within Tu,i.

Theorem 1. Every SC graph is a string graph.

Proof. Given an SC graph G = (V,E) with a strict confluent drawing D =
(N, J, Γ ) we construct the traces as described above for every node u ∈ N . In
the following let u, v be two nodes of D. We distinguish three cases.

Case 1 (uv-path in P (D)): We draw t(u) and t(v) as described above. Since
there is a uv-path in P (D) we have to guarantee that t(u) and t(v) intersect at
least once. We introduce crossings at the leaves corresponding to u and v in Tu



152 H. Förster et al.

and Tv when t(u) and t(v) make a U-turn; see how the trace t(u) intersects t(w)
near the leaf w in Fig. 3.

Case 2 (No uv-path in P (D) and u, v share no merge-junction): In this case
Tu and Tv are disjoint trees. Traces can meet only at shared junctions and around
leaves, but since t(u) and t(v) trace disjoint trees intersections are impossible.

Case 3 (No uv-path in P (D) and u, v share a merge-junction): First assume u
and v share a single merge-junction i ∈ J and assume t(v) is already drawn when
creating trace t(u). We have to be careful that t(v) and t(u) do not intersect. If
we route the traces at the merge-junction i as depicted in Fig. 3, they visit the
shared subtree Tu,i = Tv,i without intersecting each other.

Now assume u and v share k > 1 merge-junctions j1, . . . , jk ∈ J and u
and v merge at each ji. Consequently we find k shared subtrees T 1, . . . , T k. By
Lemma 1, however, we know that the intersection of these subtrees is empty.
Hence we can treat every merge-junction and its subtree independently as in the
case of a single merge-junction.

These are all the cases how two junction trees can interact. Hence the traces
t(u) and t(v) for nodes u, v ∈ N intersect if and only if there is a uv-path in
P (D) and, equivalently, the edge (u, v) ∈ ED. Further, every trace is a continuous
curve, so this set of traces yields a string representation of G. ��

A construction following the same principle can in fact be used to show:

Theorem 2. Every SOC graph is an outer-string graph.

4 Unit Interval Graphs and SC

In this section we consider so-called unit interval graphs. Let G = (V,E) be a
graph, then G is a unit interval graph if there exists a unit-interval layout ΓUI

of G, i.e. a representation of G where each vertex v ∈ V is represented as an
interval of unit length and edges are given by the intersections of the intervals.

Theorem 3. Every unit-interval graph is an SC graph.

Proof (Sketch). Our proof technique is constructive and describes how to com-
pute a strict confluent diagram D for a given graph G based on its unit-interval
layout ΓUI . Based on the ordering of intervals in ΓUI , we first greedily compute
a set of cliques which are subgraphs of G. In particular, we ensure that the left-
to-right-ordered set of cliques has the property that vertices in a clique are only
incident to vertices in the same clique and to the two neighboring cliques; see
Fig. 4(a). We then create an SOC diagram for each clique; see the red, blue and
green layouts of the three cliques in Fig. 4(b).

In order to realize the remaining edges we first make the following useful
observation. Let (v1, . . . , vk) denote the vertices of some clique C ordered from
left to right according to ΓUI . Then since all vertices are represented by unit
intervals, if vi is incident to a vertex w in the subsequent clique, also vj must be
incident to w for i < j ≤ k. We use this observation to insert a split junction bi



On Strict (Outer-)Confluent Graphs 153

(a) (b)

C1

C3

v1
v4 w1
C2 w5x1x2

v1
v2 v3

v4 x1 x2

d2 d2

b2

Hd3 d3 d4

b3 b4
w1
w2 w3 w4

w5b4b3

br

Fig. 4. (a) A unit interval graph G with a decomposition of its vertices into a set of
cliques as described in the proof of Theorem 3; and (b) a strict confluent layout of G
computed by the algorithm described in the proof of Theorem 3. (Color figure online)

in the SOC diagram of C such that all vertices with index at least i can access
a smooth arc that connects them with w; see the black arcs in Fig. 4(b). We
route arcs between cliques Ci and Ci+1 first above clique Ci, then let it intersect
with a line H that passes through all the cliques (which intuitively inverts the
ordering of such arcs) and then finish the drawing below clique Ci+1; refer to
Fig. 4(b) for an illustration. By adopting this scheme for each pair of consecutive
cliques, intersections can be prevented. ��

5 Strict Bipartite-Outerconfluent Drawings

Let G be a bipartite graph with bipartition (X,Y ). An outerconfluent drawing
of G is bipartite-outerconfluent if the vertices in X (and hence also Y ) occur
consecutively on the boundary. Graphs admitting such a drawing are called
bipartite-outerconfluent. The bipartite permutation graphs are just the graphs
that are bipartite and permutation graphs, where a permutation graph is a graph
that has an intersection model of straight lines between two parallel lines [29].

Theorem 4 (Hui et al. [27]). The class of bipartite-permutation graphs is
equal to the class of bipartite-outerconfluent graphs, i.e., the class of bipartite
graphs admitting an intersection representation of straight-line segments between
two parallel lines.

It is natural to consider the idea of bipartite drawings also in the strict
outerconfluent setting. We call a strict outerconfluent drawing D of G bipartite if
it is bipartite-outerconfluent and strict. The graphs admitting such a drawing are
called strict bipartite-outerconfluent graphs. In this section we extend Theorem 4
to the notion of strictness. The next lemma and observation are required in the
proof of our theorem. The domino graph is the graph resulting from gluing two
4-cycles together at an edge.

Lemma 2. Suppose that a reduced confluent diagram D = (N, J, Γ ) contains
two distinct uv-paths. Then we can find in GD = (VD, ED) a set V ′ ⊆ VD such
that G[V ′] is isomorphic to C6 with at least one chord.

Observation 1. Let G = (V,E) be a graph and V ′ ⊆ V a subset of six vertices
such that G[V ′] is isomorphic to a domino graph and let X ∪ Y = V ′ be the



154 H. Förster et al.

corresponding bipartition. Now let π be a cyclic order of V ′ in which the vertices
in X and in Y are contiguous, respectively. Then there is no strict outerconfluent
diagram D = (N, J, Γ ) with order π and GD = G[V ′] or, consequently, GD = G.

Theorem 5. The (bipartite-permutation ∩ domino-free)-graphs are exactly the
strict bipartite-outerconfluent graphs.

Proof (Sketch). Let G = (V,E) be a (bipartite-permutation ∩ domino-free)
graph. By Theorem 4 we can find a bipartite-outerconfluent diagram D =
(N, J, Γ ) which has GD = G. Now assume that D is reduced but not strict.
In this case we find six nodes N ′ ⊆ N corresponding to a vertex set V ′ ⊆ VD

in GD such that GD[V ′] = (V ′, E′) is a C6 with at least one chord by Lemma 2.
In addition, since D (and hence also GD) is bipartite and domino-free, we know
there are two or three chords. Then GD[V ′] is a K3,3 minus one edge e ∈ E′ or
K3,3. In a bipartite diagram these can always be drawn in a strict way.

For the other direction, consider a strict bipartite-outerconfluent diagram
D = (N, J, Γ ). By Theorem 4, GD is a bipartite permutation graph, and by
Observation 1, it must be domino-free. Thus, GD must be as described. ��

6 Strict Outerconfluent Graphs Have Cop Number Two

The cops-and-robbers game [1] on a graph G = (V,E) is a two-player game with
perfect information. The cop-player controls k cop tokens, while the robber-player
has one robber token. In the first move the cop-player places the cop tokens on
vertices of the graph, and then the robber places his token on another vertex.
In the following the players alternate, in each turn moving their tokens to a
neighboring vertex or keeping them at the current location. The cop-player is
allowed to move all cops at once and multiple cops may be at the same vertex.
The goal of the cop-player is to catch the robber, i.e., place one of its tokens on
the same vertex as the robber.

The cop number cop(G) of a graph G is the smallest integer k such that
the cop-player has a winning strategy using k cop tokens. Gavenc̆iak et al. [16]
showed that the cop number of outer-string graphs is between three and four,
while the cop-number of many other interesting classes of intersection graphs,
such as circle graphs and interval filament graphs, is two. We show that the cop
number of SOC graphs is two as well.

Consider a SOC drawing D = (N, J, Γ ) of a graph G = (V,E), which we can
assume to be connected. For nodes u, v ∈ N , let the node interval N [u, v] ⊂ N be
the set of nodes in clockwise order between u and v on the outer face, excluding
u and v. Let the cops be located on nodes C ⊆ N and the robber be located
on r ∈ N . We say that the robber is locked to a set of nodes N ′ ⊂ N if r ∈ N ′

and every path from r to N \ N ′ contains at least one node that is either in C
or adjacent to a node in C; in other words, a robber is locked to N ′ if it can be
prevented from leaving N ′ by a cop player who simply remains stationary unless
the robber can be caught in a single move. The following lemma establishes that
a single cop can lock the robber to one of two “sides” of a SOC drawing.



On Strict (Outer-)Confluent Graphs 155

u

w

v

r

u

v

u

x

v

r
x

w

w

r
y

z

(a) (b) (c)

Fig. 5. Moves of the cops to confine the robber to a strictly smaller range.

Lemma 3. Let D = (N, J, Γ ) be a SOC diagram of a graph G. Let a cop be
placed on node u, the robber on node r �= u and not adjacent to u, and let v �= r
be an arbitrary neighbor of u. Then the robber is either locked to N [u, v] or locked
to N [v, u].

Let u, v ∈ N be two nodes of a SOC diagram D = (N, J, Γ ). We call a neigh-
bor w of u in N [u, v] cw-extremal (resp. ccw-extremal) for u, v (assuming such
a neighbor exists), if it is the last neighbor of u in the clockwise (resp. coun-
terclockwise) traversal of N [u, v]. Now let u, v be two neighboring nodes in N ,
w ∈ N [u, v] be the cw-extremal node for u and x ∈ N [u, v] be the ccw-extremal
node for v. If w appears before x in the clockwise traversal of N [u, v] we call
w, x the extremal pair of the uv-path, see Fig. 5(b) and (c). In the case where
only one node of u, v has an extremal neighbor w, say u, we define the extremal
pair as v, w. In the following we assume that for a given uv-path the extremal
pair exists.

Lemma 4. Let D = (N, J, Γ ) be a SOC diagram of a graph G, u, v ∈ N be two
nodes connected by a uv-path in P (D) and w, x ∈ N [u, v] the extremal pair of
the uv-path. If the cops are placed at u and v and the robber is at r ∈ N [u, v],
r �= w, r �= x, there is a move that locks the robber to N [u,w], N [w, x] or N [x, v].

Lemma 5. Let D = (N, J, Γ ) be a SOC diagram of a graph G, u, v ∈ N be two
nodes connected by a uv-path in P (D) and w, x ∈ N [u, v] be the extremal pair of
the uv-path such that there is no wx-path in P (D). If the robber is at r ∈ N [w, x]
and the cops are placed on w, x we can find y, z ∈ N [w, x] ∪ {w, x} such that the
yz-path exists in P (D) and the robber is locked to N [y, z].

Combining Lemmas 3, 4 and 5 yields the result.

Theorem 6. SOC graphs have cop number two.

Proof (Sketch). Let D = (N, J, Γ ) be a strict-outerconfluent diagram of a (con-
nected) graph G. Choose any uv-path in P (D) and place the cops on u and v as
the initial move. The robber must be placed on a node r that is either in N [u, v]
or in N [v, u]; by symmetry, let us assume the former. By Lemma 3, the robber
is now locked to N [u, v] �= ∅.



156 H. Förster et al.

In every move we will shrink the locked interval until eventually the robber
is caught. We distinguish three cases, based on the extremal neighbors w and
x of u and v in N [u, v] and their ordering along the outer face. If w, x form no
extremal pair, we can use Lemma 3, if they do form an extremal pair, we use
first Lemma 4 and then, depending on the configuration, again Lemma3 (see
Fig. 5(b)) or go into the case of Lemma 5 (see Fig. 5(c)). ��

Theorem 6 suggests a closer link between SOC graphs and interval-filament
graphs [18], another subclass of outer-string graphs with cop number two.

7 Clique-Width of Tree-Like Strict Outerconfluent
Graphs

In 2005, Eppstein et al. [10] showed that every strict confluent graph whose
arcs in a strict confluent drawing topologically form a tree is distance heredi-
tary and hence exhibits certain well-understood structural properties—in par-
ticular, every such graph has bounded clique-width [6]. These graphs are called
Δ-confluent graphs. In their tree like confluent drawings an additional type of
3-way junction is allowed, the Δ-junction, which smoothly links together all
three incident arcs. See Fig. 6, where the junctions j′ and k′ now form a single
Δ-junction instead of three separate merge or split junctions.

u
v

w

x

y

i

j′ k′

Fig. 6. A Δ-confluent diagram
representing K5 − (u, v). Nodes
are disks, junctions are squares.
Δ-junctions are marked with a
grey circle.

In this section, we lift the result of
Eppstein et al. [10] to the class of strict out-
erconfluent graphs: in particular, we show
that as long as the arcs incident to junctions
(including Δ-junctions) topologically form a
tree, strict outerconfluent graphs also have
bounded clique-width. Equivalently, we show
that “extending” any drawing covered by
Eppstein et al. [10] through the addition of
outerplanar drawings of subgraphs in order to
produce a strict outerconfluent drawing does
not substantially increase the clique-width of
the graph. Since the notion of clique-width
will be central to this section, we formally
introduce it below (see also the work of Cour-
celle et al. [6]). A k-graph is a graph whose
vertices are labeled by [k] = {1, 2, . . . , k}; formally, the graph is equipped with
a labeling function γ : V (G) → [k], and we also use γ−1(i) to denote the set of
vertices labeled i for i ∈ [k]. We consider an arbitrary graph as a k-graph with
all vertices labeled by 1. We call the k-graph consisting of exactly one vertex v
(say, labeled by i) an initial k-graph and denote it by i(v). The clique-width of
a graph G is the smallest integer k such that G can be constructed from initial
k-graphs by means of repeated application of the following three operations:



On Strict (Outer-)Confluent Graphs 157

1. Disjoint union (denoted by ⊕);
2. Relabeling: changing all labels i to j (denoted by pi→j);
3. Edge insertion: adding an edge between every vertex labeled by i and every

vertex labeled by j, where i �= j (denoted by ηi,j or ηj,i).

The construction sequence of a k-graph G using the above operations can be
represented by an algebraic term composed of i(v), ⊕, pi→j and ηi,j (where
v ∈ V (G), i �= j and i, j ∈ [k]). Such a term is called a k-expression defining G,
and the clique-width of G is the smallest integer k such that G can be defined
by a k-expression. Distance-hereditary graphs are known to have clique-width at
most 3 [23] and outerplanar graphs have clique-width at most 5 due to having
treewidth at most 2 [3,7].

Let (tree-like) Δ -SOC graphs be the class of all graphs which admit strict
outerconfluent drawings (including Δ-junctions) such that the union of all arcs
incident to at least one junction topologically forms a tree. Clearly, the edge
set E of every tree-like Δ-SOC graph G = (V,E) with confluent diagram DG

can be partitioned into sets Es and Ec, where Es (the set of simple edges)
contains all edges represented by single-arc paths in D not passing through any
junction and Ec (the set of confluent edges) contains all remaining edges in G.
Let Gc = G[Ec] = (Vc, Ec) be the subgraph of G induced by Ec, i.e., Vc is
obtained from V by removing all vertices without incident edges in Ec.

We note that even though Gc is known to be distance-hereditary [10] and
G−Ec is easily seen to be outerplanar, this does not imply that tree-like Δ-SOC
graphs have bounded clique-width—indeed, the union of two graphs of bounded
clique-width may have arbitrarily high clique-width (consider, e.g., the union of
two sets of disjoint paths that create a square grid). Furthermore, one cannot
easily adapt the proof of Eppstein et al. [10] to tree-like Δ-SOC graphs, as that
explicitly uses the structure of distance-hereditary graphs; note that there exist
outerplanar graphs which are not distance-hereditary, and hence tree-like Δ-
SOC graphs are a strict superclass of distance hereditary graphs. Before proving
the desired theorem, we introduce an observation which will later allow us to
construct parts of G in a modular manner.

Observation 2. Let H = (V,E) be a graph of clique-width k ≥ 2, let V1, V2 be
two disjoint subsets of V , and let s ∈ V \ (V1 ∪V2). Then there exists a (3k +1)-
expression defining H so that in the final labeling all vertices in V1 receive label
1, all vertices in V2 receive label 2, s receives label 3 and all remaining vertices
receive label 4.

Theorem 7. Every tree-like Δ-SOC graph has clique-width at most 16.

Proof (Sketch). We begin by partitioning the edge set of the considered Δ-
SOC graph into Ec and Es, as explained above, and by setting an arbitrary
arc incident to a junction as the root r. Given a tree-like Δ-SOC drawing of the
graph, our aim will be to pass through the confluent arcs of the drawing in a
leaves-to-root manner so that at each step we construct a 16-expression for a
certain circular segment of the outer face. This way, we will gradually build up



158 H. Förster et al.

the 16-expression for G from modular parts, and once we reach the root we will
have a complete 16-expression for G.

At its core, the proof partitions nodes in the drawing into regions, delimited
by arcs connecting nodes and junctions (such nodes are not part of any region).
Each region is an outerplanar graph (which has clique-width at most 5), and
furthermore the nodes in a region can only be adjacent to the nodes on the
boundary of that region. Hence, by Observation 2 using k = 5, each region can
be constructed by a 16-expression which also uses separate labels to capture the
neighborhood of that region to its border. See Fig. 7 for an illustration.

j

a1

a2

R1

R2

s
R3

j′
a

Fig. 7. Sketch of a tree-like Δ-SOC
graph G with its regions. (Color
figure online)

The second ingredient used in the proof
is tied to the tree-like structure of the draw-
ing. In particular, one cannot construct a 16-
expression (and even any k-expression for con-
stant k) by simply joining the regions together
in the order they appear along the outer face.
Instead, to handle the adjacencies imposed by
the paths in the drawing, one needs to pro-
cess regions (and their bordering vertices) in
an order which respects the structure of the
tree. To do so, we introduce a notion of depth:
nodes have a depth of 0, while junctions have
depth equal to the largest depth of its “chil-
dren” plus 1. Regions are then processed in
an order which matches the depth of the cor-
responding junctions: for instance, if in Fig. 7
one of the junctions a1 and a2 has depth d then junction j′ has depth d + 1,
and so the blue regions will be constructed by modular 16-expressions before
the yellow one. Afterwards, all three regions R1, R2, R3 will be merged together
into a blue region with a single 16-expression. By iterating this process, upon
reaching the root r we obtain a 16-expression that constructs the whole Δ-SOC
graph. ��

8 Conclusion

While this work provides the first in-depth study of SC and SOC graphs, a
number of interesting open questions remain. One such question is motivated by
our results on the cop-number of SOC graphs: we showed that SOC graphs are
incomparable to most classes identified to have cop number two by Gavenc̆iak
et al. [16], but we could not show such a result for the class of interval-filament
graphs [18]. It seems likely that SOC graphs are contained in this class. Sim-
ilarly, it is open whether SC graphs are contained in subtree-filament graphs.
Furthermore, it is conceivable that a similar construction for the inclusion in
string graphs, Sect. 3, could be used to show similar results for non-strict conflu-
ent graphs. Finally, investigating the curve complexity of our construction might
provide insight into the curve complexity of SC and SOC diagrams.



On Strict (Outer-)Confluent Graphs 159

On the algorithmic side, Sect. 7 raises the question of whether clique-width
might be used to recognize SOC graphs, and perhaps even for finding SOC
drawings. Another decomposition-based approach would be to use so-called split-
decompositions [19], which we did not consider here. It is also open whether
all bipartite permutation and trapezoid graphs [5,21] are SOC graphs. Since
bipartite permutation graphs are equivalent to bipartite trapezoid graphs [5,21],
the former represents a promising first step in this direction. It also remains open
if it is possible to drop the unit length condition on the intervals in Sect. 4. We
did not see an obvious way of adapting the construction for confluent drawings
of interval graphs [8].

References

1. Aigner, M., Fromme, M.: A game of cops and robbers. Discrete Appl. Math. 8(1),
1–12 (1984). https://doi.org/10.1016/0166-218X(84)90073-8

2. Bach, B., Riche, N.H., Hurter, C., Marriott, K., Dwyer, T.: Towards unambigu-
ous edge bundling: investigating confluent drawings for network visualization.
IEEE Trans. Vis. Comput. Graph. 23(1), 541–550 (2017). https://doi.org/10.1109/
TVCG.2016.2598958

3. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. J. ACM 41(1), 153–180 (1994). https://doi.org/10.1145/174644.174650

4. Benzaken, C., Crama, Y., Duchet, P., Hammer, P.L., Maffray, F.: More character-
izations of triangulated graphs. J. Graph Theory 14(4), 413–422 (1990). https://
doi.org/10.1002/jgt.3190140404

5. Brandstädt, A., Spinrad, J., Stewart, L.: Bipartite permutation graphs are bipartite
tolerance graphs. Congressus Numerantium 58, 165–174 (1987)

6. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150
(2000). https://doi.org/10.1007/s002249910009

7. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Dis-
crete Appl. Math. 101(1–3), 77–114 (2000). https://doi.org/10.1016/S0166-
218X(99)00184-5

8. Dickerson, M., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings:
visualizing non-planar diagrams in a planar way. J. Graph Algorithms Appl. 9(1),
31–52 (2005). https://doi.org/10.7155/jgaa.00099

9. Ehrlich, G., Even, S., Tarjan, R.E.: Intersection graphs of curves in the plane.
J. Comb. Theory Ser. B 21(1), 8–20 (1976). https://doi.org/10.1016/0095-
8956(76)90022-8

10. Eppstein, D., Goodrich, M.T., Meng, J.Y.: Delta-confluent drawings. In: Healy, P.,
Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 165–176. Springer, Heidelberg
(2006). https://doi.org/10.1007/11618058 16

11. Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent layered drawings. Algorith-
mica 47, 439–452 (2007). https://doi.org/10.1007/s00453-006-0159-8

12. Eppstein, D., Holten, D., Löffler, M., Nöllenburg, M., Speckmann, B., Verbeek, K.:
Strict confluent drawing. J. Comput. Geom. 7(1), 22–46 (2016). https://doi.org/
10.20382/jocg.v7i1a2

13. Eppstein, D., Simons, J.A.: Confluent Hasse diagrams. J. Graph Algorithms Appl.
17(7), 689–710 (2013). https://doi.org/10.1007/978-3-642-25878-7 2

https://doi.org/10.1016/0166-218X(84)90073-8
https://doi.org/10.1109/TVCG.2016.2598958
https://doi.org/10.1109/TVCG.2016.2598958
https://doi.org/10.1145/174644.174650
https://doi.org/10.1002/jgt.3190140404
https://doi.org/10.1002/jgt.3190140404
https://doi.org/10.1007/s002249910009
https://doi.org/10.1016/S0166-218X(99)00184-5
https://doi.org/10.1016/S0166-218X(99)00184-5
https://doi.org/10.7155/jgaa.00099
https://doi.org/10.1016/0095-8956(76)90022-8
https://doi.org/10.1016/0095-8956(76)90022-8
https://doi.org/10.1007/11618058_16
https://doi.org/10.1007/s00453-006-0159-8
https://doi.org/10.20382/jocg.v7i1a2
https://doi.org/10.20382/jocg.v7i1a2
https://doi.org/10.1007/978-3-642-25878-7_2


160 H. Förster et al.

14. Förster, H., Ganian, R., Klute, F., Nöllenburg, M.: On strict (outer-)confluent
graphs. CoRR abs/1908.05345 (2019). http://arxiv.org/abs/1908.05345

15. Gabor, C.P., Supowit, K.J., Hsu, W.L.: Recognizing circle graphs in polynomial
time. J. ACM 36(3), 435–473 (1989). https://doi.org/10.1145/65950.65951

16. Gavenčiak, T., Jeĺınek, V., Klav́ık, P., Kratochv́ıl, J.: Cops and robbers on inter-
section graphs. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS,
vol. 8283, pp. 174–184. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-45030-3 17, https://doi.org/10.1016/j.ejc.2018.04.009

17. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering
by cliques, and maximum independent set of a chordal graph. SIAM J. Comput.
1(2), 180–187 (1972). https://doi.org/10.1137/0201013

18. Gavril, F.: Maximum weight independent sets and cliques in intersection graphs
of filaments. Inf. Process. Lett. 73(5–6), 181–188 (2000). https://doi.org/10.1016/
S0020-0190(00)00025-9

19. Gioan, E., Paul, C.: Split decomposition and graph-labelled trees: characteriza-
tions and fully dynamic algorithms for totally decomposable graphs. Discrete Appl.
Math. 160(6), 708–733 (2012). https://doi.org/10.1016/j.dam.2011.05.007

20. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, vol. 57. Elsevier,
Amsterdam (2004). https://doi.org/10.1002/net.3230130214

21. Golumbic, M.C., Monma, C.L., Trotter Jr., W.T.: Tolerance graphs. Discrete Appl.
Math. 9(2), 157–170 (1984). https://doi.org/10.1016/0166-218X(84)90016-7

22. Golumbic, M.C., Rotem, D., Urrutia, J.: Comparability graphs and intersec-
tion graphs. Discrete Math. 43(1), 37–46 (1983). https://doi.org/10.1016/0012-
365X(83)90019-5

23. Golumbic, M.C., Rotics, U.: On the clique-width of some perfect graph classes.
Int. J. Found. Comput. Sci. 11(3), 423–443 (2000). https://doi.org/10.1142/
S0129054100000260

24. Halldórsson, M.M., Kitaev, S., Pyatkin, A.: Alternation graphs. In: Kolman, P.,
Kratochv́ıl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 191–202. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25870-1 18

25. Holten, D.: Hierarchical edge bundles: visualization of adjacency relations in hier-
archical data. IEEE Trans. Vis. Comput. Graph. 12(5), 741–748 (2006). https://
doi.org/10.1109/TVCG.2006.147

26. Hsu, W.L.: Maximum weight clique algorithms for circular-arc graphs and circle
graphs. SIAM J. Comput. 14(1), 224–231 (1985). https://doi.org/10.1137/0214018

27. Hui, P., Pelsmajer, M.J., Schaefer, M., Stefankovic, D.: Train tracks and confluent
drawings. Algorithmica 47(4), 465–479 (2007). https://doi.org/10.1007/s00453-
006-0165-x

28. Kratochv́ıl, J.: String graphs. I. The number of critical nonstring graphs is infi-
nite. J. Comb. Theory Ser. B 52(1), 53–66 (1991). https://doi.org/10.1016/0095-
8956(91)90090-7

29. Pnueli, A., Lempel, A., Even, S.: Transitive orientation of graphs and identification
of permutation graphs. Can. J. Math. 23(1), 160–175 (1971). https://doi.org/10.
4153/CJM-1971-016-5

30. Roberts, F.S.: Indifference graphs. In: Proof Techniques in Graph Theory, pp. 139–
146 (1969)

31. Takamizawa, K., Nishizeki, T., Saito, N.: Linear-time computability of combina-
torial problems on series-parallel graphs. J. ACM 29(3), 623–641 (1982). https://
doi.org/10.1145/322326.322328

32. Trotter, W.T.: Combinatorics and Partially Ordered Sets: Dimension Theory, vol.
6. JHU Press, Baltimore (2001). https://doi.org/10.1137/1035116

http://arxiv.org/abs/1908.05345
https://doi.org/10.1145/65950.65951
https://doi.org/10.1007/978-3-642-45030-3_17
https://doi.org/10.1007/978-3-642-45030-3_17
https://doi.org/10.1016/j.ejc.2018.04.009
https://doi.org/10.1137/0201013
https://doi.org/10.1016/S0020-0190(00)00025-9
https://doi.org/10.1016/S0020-0190(00)00025-9
https://doi.org/10.1016/j.dam.2011.05.007
https://doi.org/10.1002/net.3230130214
https://doi.org/10.1016/0166-218X(84)90016-7
https://doi.org/10.1016/0012-365X(83)90019-5
https://doi.org/10.1016/0012-365X(83)90019-5
https://doi.org/10.1142/S0129054100000260
https://doi.org/10.1142/S0129054100000260
https://doi.org/10.1007/978-3-642-25870-1_18
https://doi.org/10.1109/TVCG.2006.147
https://doi.org/10.1109/TVCG.2006.147
https://doi.org/10.1137/0214018
https://doi.org/10.1007/s00453-006-0165-x
https://doi.org/10.1007/s00453-006-0165-x
https://doi.org/10.1016/0095-8956(91)90090-7
https://doi.org/10.1016/0095-8956(91)90090-7
https://doi.org/10.4153/CJM-1971-016-5
https://doi.org/10.4153/CJM-1971-016-5
https://doi.org/10.1145/322326.322328
https://doi.org/10.1145/322326.322328
https://doi.org/10.1137/1035116


On Strict (Outer-)Confluent Graphs 161

33. Wegner, G.: Eigenschaften der Nerven homologisch-einfacher Familien im Rn.
Ph.D. thesis, Universität Göttingen (1967)

34. Yu, C.W., Chen, G.H.: Efficient parallel algorithms for doubly convex-bipartite
graphs. Theoret. Comput. Sci. 147(1–2), 249–265 (1995). https://doi.org/10.1016/
0304-3975(94)00220-D

https://doi.org/10.1016/0304-3975(94)00220-D
https://doi.org/10.1016/0304-3975(94)00220-D


Quality Metrics



On the Edge-Length Ratio
of Planar Graphs

Manuel Borrazzo and Fabrizio Frati(B)

University Roma Tre, Rome, Italy
{borrazzo,frati}@dia.uniroma3.it

Abstract. The edge-length ratio of a straight-line drawing of a graph is
the ratio between the lengths of the longest and of the shortest edge in
the drawing. The planar edge-length ratio of a planar graph is the mini-
mum edge-length ratio of any planar straight-line drawing of the graph.

In this paper, we study the planar edge-length ratio of planar graphs.
We prove that there exist n-vertex planar graphs whose planar edge-
length ratio is in Ω(n); this bound is tight. We also prove upper bounds
on the planar edge-length ratio of several families of planar graphs,
including series-parallel graphs and bipartite planar graphs.

1 Introduction

The reference book for the graph drawing research field “Graph Drawing: Algo-
rithms for the Visualization of Graphs”, by Di Battista, Eades, Tamassia, and
Tollis [6], mentions that the minimization of the maximum edge length, provided
that the minimum edge length is a fixed value, is among the most important aes-
thetic criteria that one should aim to satisfy in order to guarantee the readability
of a graph drawing. A measure that naturally captures this concept is the edge-
length ratio of a drawing; this is defined as the ratio between the lengths of the
longest and shortest edge in the drawing.

In this paper we are interested in the construction of planar straight-line
drawings with small edge-length ratio. From an algorithmic point of view, it has
long been known that deciding whether a graph admits a planar straight-line
drawing with edge-length ratio equal to 1 is an NP-hard problem. This was first
proved by Eades and Wormald [7] for biconnected planar graphs and then by
Cabello et al. [3] for triconnected planar graphs. From a combinatorial point
of view, the study of planar straight-line drawings with small edge-length ratio
started only recently, when Lazard, Lenhart, and Liotta [11] proved that every
outerplanar graph admits a planar straight-line drawing with edge-length ratio
smaller than 2 and that, for every fixed ε > 0, there exist outerplanar graphs
whose every planar straight-line drawing has edge-length ratio larger than 2− ε.

Adopting the notation and the definitions from [10,11], we denote by ρ(Γ )
the edge-length ratio of a straight-line drawing Γ of a graph G, i.e., ρ(Γ ) =

max
e1,e2∈E(G)

�Γ (e1)
�Γ (e2)

, where �Γ (e) denotes the length of the segment representing an

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 165–178, 2019.
https://doi.org/10.1007/978-3-030-35802-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_13&domain=pdf
https://doi.org/10.1007/978-3-030-35802-0_13


166 M. Borrazzo and F. Frati

Fig. 1. (a) A drawing with edge-length ratio less than 1 + ε of the nested-triangle
graph. (b) A drawing with edge-length ratio less than 3 of the plane 3-tree obtained as
the join of a path with an edge.

edge e in Γ . The planar edge-length ratio ρ(G) of G is the minimum edge-length
ratio of any planar straight-line drawing of G. We prove the following results.

First, we prove that there exist n-vertex planar graphs whose planar edge-
length ratio is in Ω(n). This bound is asymptotically tight, as every planar
graph admits a planar straight-line drawing on an O(n)×O(n) grid [5,13]; such
a drawing has edge-length ratio in O(n). While our lower bound is not surprising,
it was unexpectedly challenging to prove it. Some classes of graphs which are
often used in order to prove lower bounds for graph drawing problems turn out
to have constant planar edge-length ratio; see Fig. 1.

Second, we provide upper bounds for the planar edge-length ratio of several
families of planar graphs. Namely, we prove that plane 3-trees have planar edge-
length ratio bounded by their “depth” and that, for every fixed ε > 0, bipartite
planar graphs have planar edge-length ratio smaller than 1+ε. Most interestingly,
we prove that every n-vertex graph with treewidth at most two, including 2-trees
and series-parallel graphs, has sub-linear planar edge-length ratio; our upper
bound is O(nlog2 φ) ⊆ O(n0.695), where φ = 1+

√
5

2 is the golden ratio. Lazard
et al. [11] asked whether the planar edge-length ratio of 2-trees is bounded by
a constant; recently, at the 14th Bertinoro Workshop on Graph Drawing, Fiala
announced a negative answer to the above question. Thus, our upper bound
provides a significant counterpart to Fiala’s result; further, our result sharply
contrasts with the fact that there exist n-vertex 2-trees whose every planar
straight-line grid drawing requires an edge to have length in Ω(n) [9].

The paper is organized as follows. In Sect. 2, we introduce some definitions; in
Sect. 3, we prove a lower bound for the planar edge-length ratio of planar graphs;
in Sect. 4, we prove upper bounds for the planar edge-length ratio of families of
planar graphs; finally, in Sect. 5, we conclude and present some open problems.
The proofs marked (*) are deferred to the full version of the paper [1].

2 Definitions and Preliminaries

A drawing of a graph represents each vertex as a point in the plane and each
edge as an open curve between its end-vertices. A drawing is straight-line if each



On the Edge-Length Ratio of Planar Graphs 167

ak

bk−1ck−1
Gk−1

ak−1

ck bk

a

d

bc

p
q

r

)b()a(

Fig. 2. (a) Construction of the graph Gk from the graph Gk−1. (b) Illustration for the
proofs of Lemmata 2 and 3.

edge is represented by a straight-line segment. A drawing is planar if no two
edges intersect, except at common end-vertices. A planar drawing of a graph
defines connected regions of the plane, called faces. The only unbounded face
is the outer face, while the other faces are internal. Two planar drawings of a
(connected) graph are equivalent if: (i) the clockwise order of the edges incident
to each vertex is the same in both drawings; and (ii) the clockwise order of the
edges along the boundary of the outer face is the same in both drawings. A
plane embedding is an equivalence class of planar drawings and a plane graph is
a graph with a prescribed plane embedding. Throughout the paper, whenever we
talk about a planar drawing of a plane graph G, we always assume, even when
not explicitly stated, that it respects the plane embedding associated to G.

For any two distinct points a and b in the plane, we denote by ab the straight-
line segment between a and b and by ||ab|| the Euclidean length of such a segment.
For any three distinct and non-collinear points a, b, and c in the plane, we denote
by abc the triangle whose vertices are a, b, and c. Further, for a triangle Δ, we
denote by p(Δ) its perimeter and by ∠a(Δ) the angle at a vertex a of Δ.

We will use the following lemma more than once.

Lemma 1 (*). For a planar graph G and a subgraph G′ of G, we have ρ(G′) ≤
ρ(G).

3 A Lower Bound for Planar Graphs

In this section we prove the following result.

Theorem 1. For every n = 3k with k ∈ N>0, there exists an n-vertex planar
graph whose planar edge-length ratio is in Ω(n).

We start by defining the class of planar graphs that we use in order to prove
the theorem. For a 3-cycle C in a plane graph G, we denote by abc the clockwise
order in which the vertices a, b, and c of C occur along C. For any integer
k ≥ 1, we define a 3k-vertex plane graph Gk as follows; refer to Fig. 2(a). Let G1

coincide with a 3-cycle C1 = a1b1c1. Now suppose that, for some integer k ≥ 2,
a plane graph Gk−1 has been defined so that its outer face is delimited by a



168 M. Borrazzo and F. Frati

3-cycle Ck−1 = ak−1bk−1ck−1. Let Gk consist of (i) a 3-cycle Ck = akbkck, (ii)
the plane graph Gk−1, embedded inside Ck, and (iii) the edges akak−1, akbk−1,
akck−1, bkbk−1, bkck−1, ckck−1. Note that Gk has 3k vertices.

We first prove a lower bound for the edge-length ratio ρ(Γ ) of any planar
straight-line drawing Γ of Gk in which the outer face is delimited by Ck. Assume,
without loss of generality up to a scaling of Γ , that the length of the shortest edge
is 1. We prove that, for i = 1, 2, . . . , k, the perimeter p(Δi) of the triangle Δi

representing Ci in Γ is at least γ · i, for a constant γ to be determined later. This
implies that p(Δk) ∈ Ω(k), hence the longest of the three segments composing
Δk has length in Ω(k), and the edge-length ratio ρ(Γ ) of Γ is in Ω(k).

The perimeter p(Δ1) of Δ1 is at least 3, given that each of the three segments
composing Δ1 has length greater than or equal to 1. Now assume that p(Δi−1) ≥
γ · (i − 1), for some integer i ≥ 2 and some constant γ ≤ 3. We prove that
p(Δi) ≥ p(Δi−1) + γ, which implies that p(Δi) ≥ γ · i.

We introduce two geometric lemmata; refer to Fig. 2(b). Let Δ = abc be a
triangle and let d be a point outside Δ such that a either lies inside the triangle
Δ′ = bcd, or it lies in the interior of bd, or it lies in the interior of cd.

Lemma 2 (*). p(Δ′) > p(Δ).

Lemma 3. If ||ad|| ≥ 1 and ∠a(Δ) ≤ 90◦, then p(Δ′) > p(Δ) + 1.

Proof: Suppose first that a lies in the interior of cd. Since ∠a(Δ) ≤ 90◦, we
have that ∠a(bad) ≥ 90◦, hence ||bd|| > ||ba||. It follows that p(Δ′) − p(Δ) =
||bd||+||ad||−||ba|| > 1. The case in which a lies in the interior of bd is analogous.

Suppose next that a lies inside Δ′. Let p (q) be the intersection point of
the straight line through a and b (through a and c) with cd (with bd). Since
∠a(Δ) ≤ 90◦, we have that ∠a(cap) = ∠a(baq) ≥ 90◦, hence ||cp|| > ||ca|| and
||bq|| > ||ba||. It follows that p(Δ′) − p(Δ) > ||dp|| + ||dq||.

We claim that ||dp|| > ||aq||. Let r be the intersection point between bd
and the line passing through p that is parallel to the line through a and c.
The triangles baq and bpr are similar, hence ∠p(bpr) = ∠a(baq) ≥ 90◦. Thus,
∠r(bpr) < 90◦ and ∠r(dpr) > 90◦. It follows that ||dp|| > ||pr||; further, ||pr|| >
||aq||, again by the similarity of the triangles baq and bpr. This proves the claim.
It can be analogously proved that ||dq|| > ||ap||.

By the triangular inequality, we have ||ap||+||dp|| > ||ad|| and ||aq||+||dq|| >
||ad||, hence ||ap|| + ||dp|| + ||aq|| + ||dq|| > 2||ad|| ≥ 2. Since ||dp|| > ||aq|| and
||dq|| > ||ap||, it follows that ||dp|| + ||dq|| > 1. ��

We now return the proof that p(Δi) ≥ p(Δi−1) + γ; refer to Fig. 3. Assume,
w.l.o.g. that bi−1ci−1 is horizontal, with bi−1 to the right of ci−1 and with ai−1

above them. Let Δ′
i−1 and Δ′′

i−1 be the triangles aibi−1ci−1 and aibici−1 in Γ ,
respectively. By Lemma 2, we have p(Δi) > p(Δ′′

i−1) > p(Δ′
i−1) > p(Δi−1). If

∠ai−1(Δi−1) ≤ 90◦, then by Lemma 3 we have p(Δ′
i−1) > p(Δi−1) + 1, thus

p(Δi) > p(Δi−1) + 1 and we are done, as long as γ ≤ 1. Assume hence that
∠ai−1(Δi−1) > 90◦; this implies that ai−1 is to the left of the vertical line
�b through bi−1. Further, if ∠bi−1(Δ

′
i−1) ≤ 90◦, then by Lemma 3 we have



On the Edge-Length Ratio of Planar Graphs 169

ti
qi

ai

pi

ai−1

bi

bi−1ci
ci−1

Fig. 3. Illustration for the proof that p(Δi) ≥ p(Δi−1) + γ.

p(Δ′′
i−1) > p(Δ′

i−1) + 1, thus p(Δi) > p(Δi−1) + 1 and we are done, as long
as γ ≤ 1. Assume hence that ∠bi−1(Δ

′
i−1) > 90◦; this implies that ai is to the

right of �b.
Let pi (qi) be the intersection point of the straight line through ai−1 and bi−1

(through ai−1 and ci−1) with ci−1ai (with bi−1ai).
Assume first that ||aiqi|| ≥ 0.4. By Lemma 2, we have that p(bi−1ci−1qi) >

p(Δi−1); further, since ∠qi
(ci−1qiai) > ∠bi−1(ci−1bi−1ai) > 90◦, we have that

||ci−1ai|| > ||ci−1qi||, hence p(Δ′
i−1) = p(bi−1ci−1qi) + ||ci−1ai|| + ||aiqi|| −

||ci−1qi|| > p(Δi−1) + 0.4 and we are done, as long as γ ≤ 0.4.
Assume next that ||aiqi|| < 0.4. We show that this implies that ||aipi|| ≥ 0.4.

Suppose, for a contradiction, that ||aipi|| < 0.4. Consider the intersection point ti
of bi−1ai with the line through ai−1 parallel to the line through ci−1 and ai. Since
∠qi

(ai−1qiti) = ∠qi
(ci−1qiai) > 90◦, we have ||ai−1qi|| < ||ai−1ti||. Further, by

the similarity of the triangles bi−1aipi and bi−1tiai−1, we have ||ai−1ti|| < ||aipi||.
Hence, ||ai−1qi|| < 0.4. Then the triangular inequality implies that ||ai−1ai|| <
||ai−1qi|| + ||aiqi|| < 0.8, while ||ai−1ai|| ≥ 1, given that ai−1ai is an edge of Gi,
a contradiction. We can hence assume that ||aipi|| ≥ 0.4. In order to conclude
our argument, we are going to use the following.

Lemma 4 (*). Let T be a triangle with vertices u, v, and w, where ∠uuvw <
90◦. Then ||vw|| <

√||uv||2 + ||uw||2.
Let x = ||bi−1ai||, y = ||aipi||, and z = ||bi−1pi||. By Lemma 2, we have

p(bi−1ci−1pi) > p(Δi−1), hence p(Δ′
i−1)− p(Δi−1) > x+ y − z. Note that x ≥ 1,

since bi−1ai is an edge of Gi, and y ≥ 0.4, by assumption. By Lemma 4, we
have that z <

√
x2 + y2, hence p(Δ′

i−1) − p(Δi−1) > x + y −
√

x2 + y2. The

derivative ∂(x+y−
√

x2+y2)

∂x =
√

x2+y2−x√
x2+y2

is positive for every value of x and y;

the same is true for the derivative ∂(x+y−
√

x2+y2)

∂y . Hence, the minimum value

of x + y −
√

x2 + y2 is achieved when x and y are minimum, that is, when
x = 1 and y = 0.4. With such values we get x + y −

√
x2 + y2 > 0.32. Hence,

p(Δ′
i−1) > p(Δi−1) + 0.32 and we are done, as long as γ ≤ 0.32.
By picking γ = 0.3, we conclude the proof that p(Δi) ≥ p(Δi−1) + γ, which

implies that p(Δk) ∈ Ω(k) and hence that ρ(Γ ) ∈ Ω(k).



170 M. Borrazzo and F. Frati

Finally, we remove the assumption that the outer face of Γ is delimited by
Ck. This is done as follows. Consider the complete graph K4 on four vertices,
say a, b, c, and d; further, consider two copies G′

k and G′′
k of Gk, where C′

k and
C′′

k denote the copies of the cycle Ck in G′
k and G′′

k , respectively. Glue G′
k and

G′′
k with K4 by identifying the 3-cycle abc with C′

k and the 3-cycle abd with C′′
k .

Denote by G the resulting n-vertex planar graph. In any planar drawing Γ of
G, the planar drawing of G′

k has its outer face delimited by C′
k or the planar

drawing of G′′
k has its outer face delimited by C′′

k , hence ρ(Γ ) ∈ Ω(k). The proof
of Theorem 1 is concluded by observing that k ∈ Ω(n).

4 Upper Bounds for Planar Graph Classes

In this section we prove upper bounds for the planar edge-length ratio of various
families of planar graphs.

4.1 Plane 3-Trees

A plane 3-tree is a maximal plane graph that can be constructed as follows.
The only plane 3-tree with 3 vertices is a plane 3-cycle. For n ≥ 4, an n-vertex
plane 3-tree G is obtained from an (n − 1)-vertex plane 3-tree G′ by inserting a
vertex v inside an internal face f of G′ and by connecting v to the three vertices
of G′ incident to f . An n-vertex plane 3-tree G is naturally associated with a
rooted ternary tree TG whose internal nodes represent the internal vertices of G
and whose leaves represent the internal faces of G (TG is called representative
tree of G in [12]). Formally, TG is defined as follows. If n = 3, then TG is a
single node, representing the unique internal face of G. If n > 3, then G can
be obtained by inserting a vertex v inside an internal face f of a plane 3-tree
G′ and by connecting v to the three vertices of G′ incident to f . Let tf be the
leaf representing f in TG′ . Then TG is obtained from TG′ by inserting three new
leaves as children of tf . In TG, tf represents v and its children represent the
faces of G incident to v. The depth of TG is the maximum number of nodes in
any root-to-leaf path in TG. The depth of G is the depth of TG. We have the
following.

Theorem 2. Every plane 3-tree with depth k has planar edge-length ratio in
O(k).

Proof: Let G be any plane 3-tree with depth k. Fix any constant ε > 0 and
represent the 3-cycle C delimiting the outer face of G as any triangle Δ whose
y-extension is ε and whose three sides have x-extension equal to 1, k, and k + 1.

Now assume that we have constructed a drawing Γ ′ of a plane 3-tree G′

which is a subgraph of G that includes C. Assume that Γ ′ satisfies the following
invariant: every internal face f of G′ is delimited by a triangle whose three sides
have x-extension equal to 1, greater than or equal to kf , and greater than or
equal to kf + 1, where kf is the depth of the subtree of TG rooted at the node



On the Edge-Length Ratio of Planar Graphs 171

b

a

c

v

≥ kf + 1

1
1 ≥ kf

Fig. 4. Inserting a vertex v of G in a face f of G′.

corresponding to f . Initially, this is the case with G′ = C and Γ ′ = Δ; note that
the only internal face of G′ corresponds to the root of TG, which has depth k.

Let tf be any leaf of TG′ which is not a leaf of TG. Let f be the internal
face of G′ represented by tf in TG′ , let Δf be the triangle representing f in Γ ′,
let abc be the 3-cycle delimiting f in G, and let v be the internal vertex of G
represented by tf in TG; see Fig. 4. By the invariant, we can assume that the
x-extensions of ab, ac, and bc are equal to 1, greater than or equal to kf , and
greater than or equal to kf + 1, respectively. Place v inside f in Γ ′ so that the
x-extension of vc is equal to 1 and draw the edges va, vb, and vc as straight-line
segments. This results in a planar straight-line drawing Γ ′′ of a plane 3-tree G′′

which is a subgraph of G and which has one more vertex than G′. The invariant
is satisfied by Γ ′′; in particular, av and bv have x-extension greater than or equal
to kf − 1 and greater than or equal to kf , respectively, hence each face f ′ of G′′

incident to v is delimited by a triangle whose sides have the desired x-extension,
since the subtree of TG rooted at the node corresponding to f ′ has depth kf −1.

Eventually, we get a planar straight-line drawing of G such that every edge
has length at least 1, given that it has x-extension greater than or equal to 1,
and at most k+1+ ε ∈ O(k), given that it has x-extension smaller than or equal
to k + 1 and y-extension smaller than or equal to ε. ��

The bound in Theorem2 is tight, as Theorem 1 shows that a plane 3-tree
with depth k might have planar edge-length ratio in Ω(k). Further, Theorem2
implies that any balanced n-vertex plane 3-tree, i.e., a plane 3-tree G such that
TG is a balanced tree, has planar edge-length ratio in O(log n).

4.2 2-Trees

For any integer n ≥ 2, an n-vertex 2-tree G is a graph whose vertex set has
an ordering v1, v2, . . . , vn such that v1v2 is an edge of G, called root of G,
and, for i = 3, . . . , n, the vertex vi has exactly two neighbors p(vi) and q(vi)
in {v1, v2, . . . , vi−1}, where p(vi) and q(vi) are adjacent in G. The vertices
v3, v4, . . . , vn, i.e., the vertices of G not in its root are called internal. For an
edge vivj of G, an apex of vivj is a vertex vk, with k > i and k > j, such that
p(vk) = vi and q(vk) = vj ; further, the side edges of vivj are all the edges vivk

and vjvk such that vk is an apex of vivj ; finally, an edge vivj is trivial if it has no
apex, otherwise it is non-trivial. In this section we prove the following theorem.



172 M. Borrazzo and F. Frati

v1 v2

u v

3

3
1

1
3

32
2
2
2

33

a3

a1
=c1

a=b1

p

≥ �1-3 ≥ �2-3

a
2=

d
1

cn

bn

dn

v1
v2

)c()b()a(

Fig. 5. (a) A linear 2-tree H. The apexes and the side edges of the edge uv are gray;
the only non-trivial side edge of uv is thicker. The numbers show the classes of the
vertices. (b) The points b1, b2, . . . , bn, c1, c2, . . . , cn, d1, d2, . . . , dn inside a1a2a3 (for the
sake of readability, there are fewer points than there should be). (c) The drawing of H
constructed by the algorithm L2T-drawer.

Theorem 3. Every n-vertex 2-tree has planar edge-length ratio in O(nlog2 φ) ⊆
O(n0.695), where φ = 1+

√
5

2 is the golden ratio.

In the following, we first define a family of 2-trees, which we call linear 2-
trees, and show that they admit drawings with constant edge-length ratio. We
will later show how to find, in any 2-tree G, a subgraph which is a linear 2-
tree and whose removal splits G into “small” components. This decomposition,
together with the drawing algorithm for linear 2-trees, will be used in order to
construct a planar straight-line drawing of G with sub-linear edge-length ratio.

A linear 2-tree is a 2-tree such that every edge has at most one non-trivial side
edge; see Fig. 5(a). We now classify the vertices of a linear 2-tree H into vertices
of class 1, class 2, and class 3, so that every edge of H has its end-vertices in
different classes. First, v1 and v2 are vertices of class 1 and class 2, respectively,
where v1v2 is the root of H. Now we repeatedly consider an edge uv of H such
that u and v have been already classified and the apexes of uv have not been
classified yet. We let every apex be in the unique class different from the classes
of u and v. Based on the classification of the vertices of H, we also classify the
edges of H into edges of class 1-2, class 1-3, and class 2-3, where an edge is of
class a-b if its end-vertices are of classes a and b.

We now show an algorithm, called L2T-drawer, that constructs a planar
straight-line drawing ΓH of a linear 2-tree H. The algorithm L2T-drawer receives
in input a triangle a1a2a3 and three real values �1-2, �1-3, �2-3 ≥ 1 such that
�1-3 + �2-3 ≤ ||a1a2|| and �1-2 < ||a1a2||. The algorithm constructs a planar
straight-line drawing ΓH of H with the following properties: (L1) for i = 1, 2,
the vertex vi lies at ai; (L2) every internal vertex of H lies inside a1a2a3; and (L3)
the length of every edge of class x-y is at least �x-y, for each x-y ∈ {1-2, 1-3, 2-3}.

Refer to Fig. 5(b). Let a be a point inside a1a2a3 such that the line through
a orthogonal to a1a2 intersects a1a2 in a point p with ||a1p|| ≥ �1-3 and ||a2p|| ≥
�2-3; this exists since �1-3 + �2-3 ≤ ||a1a2||. Let ε = min{||aa1|| − �1-3, ||aa2|| −
�2-3, ||a1a2|| − �1-2} and note that ε > 0. Let b1, b2, . . . , bn be n points on ap, in
this order from a to p, with ||abn|| ≤ ε

3 . Further, let c1 = a1, c2, . . . , cn be n points



On the Edge-Length Ratio of Planar Graphs 173

on a1bn, in this order from a1 to bn, with ||a1cn|| ≤ ε
3 , and let d1 = a2, d2, . . . , dn

be n points on a2bn, in this order from a2 to bn, with ||a2dn|| ≤ ε
3 .

The algorithm L2T-drawer is as follows. Refer to Fig. 5(c). We initialize ΓH

by drawing the root v1v2 of H as the straight-line segment a1a2, where ai rep-
resents vi, for i = 1, 2. Now L2T-drawer proceeds in steps. During one step, all
the apexes and side edges of a single non-trivial edge of H are drawn. The algo-
rithm maintains the invariant that, before each step, ΓH is a planar straight-line
drawing of an m-vertex subgraph Hm of H such that the following properties
are satisfied for some integers j, k, l with m = j + k + l: (i) the vertices of Hm

of classes 1, 2, and 3 are drawn at the points c1, . . . , ck, at the points d1, . . . , dl,
and at the points b1, . . . , bj , respectively; further, if Hm does not coincide with
H, then (ii) there is exactly one edge em that is a non-trivial edge of H, that is
in Hm, and whose apexes are not in Hm, and (iii) the end-vertices of em lie at
bj and ck, or at ck and dl, or at bj and dl. The invariant is indeed satisfied after
the initialization of ΓH to a drawing of v1v2, with m = 2, k = l = 1, and j = 0.

We now perform one step. Assume that em is a 1-2 edge, hence its end-
vertices lie at ck and dl; the other cases are analogous. Draw the x ≥ 1 apexes
of em, which are vertices of class 3, at the points bj+1, . . . , bj+x, so that the
only non-trivial side edge em+x of em, if any, is incident to the apex drawn at
bj+x. Draw the side edges of em as straight-line segments. After this step, ΓH is a
planar straight-line drawing of an (m+x)-vertex subgraph Hm+x of H satisfying
the invariant; in particular, at most one side edge em+x of em is non-trivial in
H, given that H is a linear 2-tree; this implies property (ii).

Eventually, the algorithm constructs a planar straight-line drawing ΓH of H.
By construction, the vertices v1 and v2 are placed at a1 and a2, respectively,
hence ΓH satisfies property (L1). Further, the internal vertices of H are placed
at the points b1, b2, . . . , bn, c2, c3, . . . , cn, d2, d3, . . . , dn, which are inside a1a2a3,
by construction, hence ΓH satisfies property (L2). Finally, consider any edge of
class 1-3, which is represented by a straight-line segment ckbj . By the triangular
inequality we have ||ckbj || ≥ ||aa1|| − ||a1ck|| − ||abj || ≥ �1-3 + ε − 2ε

3 > �1-3.
Analogously, any edge of class 2-3 has length larger than �2-3 and any edge of
class 1-2 has length larger than �1-2 in ΓH ; hence ΓH satisfies property (L3).

We now deal with general 2-trees. Let G be a 2-tree with root v1v2. Let H be
any subgraph of G that is a linear 2-tree and that has v1v2 as its root. For any
edge uv of H we define an H-component Guv of G as follows. Remove from G the
vertices of H and their incident edges; this splits G into connected components
and we let Guv be the 2-tree which is the subgraph of G induced by u, by v, and
by the vertex sets of the connected components containing a vertex adjacent to
both u and v; see Fig. 6(a). The edge uv is the root of Guv. An H-component of
G is of class 1-2, 1-3, or 2-3 if its root is of class 1-2, 1-3, or 2-3, respectively.

For technical reasons, we let n be the number of vertices of G minus one.
The plan is: (1) to find a subgraph H of G that is a linear 2-tree with root v1v2
such that every H-component of G has “few” internal vertices; (2) to construct
a planar straight-line drawing ΓH of H by means of the algorithm L2T-drawer;
and (3) to recursively draw each H-component, plugging such drawings into ΓH ,



174 M. Borrazzo and F. Frati

v2v1 e0

e2
e1

e3

e4

a1=
v1

≥ f(x) ≥ f(y)

a
2=

v
2

a3

)b()a(

Fig. 6. (a) A 2-tree G and a subgraph H of G which is a linear 2-tree; the vertices
and edges of H are represented by larger disks and thicker lines, respectively. The H-
components of G are shown within shaded regions. (b) The planar straight-line drawing
Γ of G constructed by the algorithm in the proof of Theorem3.

thus obtaining a drawing of G. We start with the following lemma, which draws
inspiration from a technique for decomposing binary trees proposed by Chan [4].

Lemma 5 (*). There exists a subgraph H of G that is a linear 2-tree, that has
v1v2 as its root, and that satisfies the following property. Let x, y, and z be the
maximum number of vertices of an H-component of G of class 1-3, 2-3, and 1-2,
respectively, minus one. Then z ≤ n

2 ; further (i) x ≤ n
2 and y ≤ n−x

2 , or (ii)
y ≤ n

2 and x ≤ n−y
2 , or (iii) x + y ≤ 2n

3 .

We now show an algorithm to construct a planar straight-line drawing Γ of G.
Let f(n) = nlog2 φ, where φ = 1+

√
5

2 . The algorithm receives in input a triangle
a1a2a3, whose hypotenuse a1a2 is such that ||a1a2|| ≥ f(n), and constructs a
planar straight-line drawing Γ of G satisfying the following properties: (T0) the
length of every edge is at least 1 and at most ||a1a2||; (T1) for i = 1, 2, the vertex
vi lies at ai; and (T2) every internal vertex of G lies inside a1a2a3.

If n = 1, that is, G coincides with the edge v1v2, then Γ is the straight-line
segment a1a2. Then property (T1) is trivially satisfied, property (T2) is vacuous,
and property (T0) is satisfied since ||a1a2|| ≥ nlog2 φ = 1.

Assume next that n > 1; refer to Fig. 6(b). Let H be a subgraph of G
satisfying the properties of Lemma 5; in particular (i) x ≤ n

2 and y ≤ n−x
2 , or

(ii) y ≤ n
2 and x ≤ n−y

2 , or (iii) x + y ≤ 2n
3 , where x and y are the maximum

number of vertices of an H-component of G of class 1-3 and 2-3, respectively,
minus one. We construct a planar straight-line drawing ΓH of H by applying
the algorithm L2T drawer with input the triangle a1a2a3 and the real values
�1-3 = f(x), �2-3 = f(y), and �1-2 = f(z); note that �1-2 = f(z) < f(n) ≤ ||a1a2||,
as z < n; we will prove later that f(n) ≥ f(x) + f(y), which implies that
||a1a2|| ≥ �1-3 + �2-3.

Let G1, . . . , Gk be the H-components of G; for i = 1, . . . , k, let uivi be the
root of Gi. Note that uivi is an edge of H, hence it is represented by a straight-
line segment uivi in ΓH . For i = 1, . . . , k, let wi be a point such that the triangle
Δi = uiviwi lies inside a1a2a3, does not intersect ΓH other than at uivi, and
does not intersect any distinct triangle Δj , except at common vertices. Since



On the Edge-Length Ratio of Planar Graphs 175

ΓH is planar, choosing wi sufficiently close to uivi suffices to accomplish these
objectives. For i = 1, . . . , k, we recursively draw Gi so that ui and vi lie at the
same points as in ΓH and so that every internal vertex of Gi lies inside Δi. This
concludes the construction of a planar straight-line drawing Γ of G.

We prove that Γ satisfies properties (T0)–(T2). Property (T1) is satisfied
since ΓH satisfies property (L1); further, property (T2) is satisfied since ΓH

satisfies property (L2), since the internal vertices of Gi lie inside the triangle
Δi, and since Δi lies inside a1a2a3, by construction. We now deal with prop-
erty (T0). The length of every edge of H in Γ is at least min{f(x), f(y), f(z)}
by property (L3) of ΓH ; further, f(x) = xlog2 φ ≥ 1, f(y) = ylog2 φ ≥ 1, and
f(z) = zlog2 φ ≥ 1, given that x, y, z ≥ 1. The length of every edge of H in Γ
is at most ||a1a2||, given that every vertex of H lies inside or on the bound-
ary of a1a2a3, by properties (L1) and (L2) of ΓH , and given that a1a2 is the
hypotenuse of a1a2a3. The length of every edge of G not in H is at least 1 and
at most ||a1a2|| by induction and since every triangle Δi lies inside a1a2a3.

We now prove that f(n) ≥ f(x) + f(y). In the case in which (i) x ≤ n
2 and

y ≤ n−x
2 , or (ii) y ≤ n

2 and x ≤ n−y
2 , the inequality f(n) ≥ f(x)+f(y) has been

already proved by Chan [4]. Assume hence that (iii) x + y ≤ 2n
3 .

We use Hölder’s inequality, that is,
∑k

i=1 risi ≤ (
∑k

i=1 rp
i )

1
p (

∑k
i=1 sq

i )
1
q , for

every real p, q > 1 with 1
p+ 1

q = 1 and every vectors (r1, . . . , rk), (s1, . . . , sk) ∈ R
k.

By employing the values 1
p = log2 φ, 1

q = 1− log2 φ, r1 = xlog2 φ, r2 = ylog2 φ,
and s1 = s2 = 1, we get f(x)+f(y) = xlog2 φ+ylog2 φ ≤ (x+y)log2 φ ·2(1−log2 φ) ≤
(2n

3 )log2 φ · 2
2log2 φ = 2

3log2 φ nlog2 φ < 0.933 · nlog2 φ < nlog2 φ = f(n).
Applying the described algorithm with a triangle a1a2a3 whose hypotenuse

has length ||a1a2|| = f(n) results in a planar straight-line drawing of G with
edge-length ratio at most f(n) = nlog2 φ. This concludes the proof of Theorem3.

We remark that f(n) = nlog2 φ is the smallest possible function when using
the decomposition of Lemma 5, as an example in which x = n

2 and y = n
4 shows.

We also remark that a graph has treewidth at most 2 if and only if it is a
subgraph of a 2-tree; hence, Lemma 1 and Theorem 3 imply the following.

Corollary 1. Every graph with treewidth at most 2 has planar edge-length ratio
in O(nlog2 φ) ⊆ O(n0.695), where φ = 1+

√
5

2 is the golden ratio.

The bound on the treewidth in the above result is the best possible, as the
proof of Theorem 1 shows that an n-vertex planar graph with treewidth 3 might
have planar edge-length ratio in Ω(n). Observe that graphs with treewidth 1,
i.e., trees, have planar edge-length ratio equal to 1.

4.3 Bipartite Planar Graphs

In this section we deal with bipartite planar graphs.

Theorem 4. For every ε > 0, every n-vertex bipartite planar graph has planar
edge-length ratio smaller than 1 + ε.



176 M. Borrazzo and F. Frati

u

w

u

w

v z v x z

u u

w

v

w

v x

u

w

v z

u

w

v x z

u

w

v

u

w

v
x

(a) (b) (c) (d)

Fig. 7. (a) The operation P0. (b) The operation P1. (c) and (d) show how to transform
Γ ′ into Γ by applying P0 or P1, respectively. The gray disk is D.

Proof: First, by Lemma 1 and since any bipartite planar graph can be aug-
mented to maximal by adding edges to it, it suffices to prove the statement for
maximal bipartite planar graphs. Second, Brinkmann et al. [2] proved that every
n-vertex maximal bipartite plane graph G is either a plane 4-cycle, or can be
obtained from an (n − 1)-vertex maximal bipartite plane graph G′ by applying
either the operation P0 shown in Fig. 7(a), in which a path uxw is inserted in a
face f of G′ delimited by a 4-cycle uvwz, or the operation P1 shown in Fig. 7(b),
in which a path uvw of G′ is transformed into a 4-cycle uvwx.

We now prove that, for every ε > 0, any n-vertex maximal bipartite plane
graph G admits a planar straight-line drawing Γ in which every edge has length
larger than 1 and smaller than 1 + ε. The proof is by induction on n. If n = 4,
then G is a 4-cycle embedded in the plane, and the desired drawing Γ of G is
any square with side length equal to 1 + δ, with 0 < δ < ε.

If n > 4, then let G′ be an (n − 1)-vertex maximal bipartite plane graph
such that G can be obtained from G′ by applying either the operation P0 or
the operation P1. Fix any δ such that 0 < δ < ε; inductively construct a planar
straight-line drawing Γ ′ of G′ in which every edge has length larger than 1 and
smaller than 1 + δ. Let �1 = mine{�Γ ′(e) − 1}, �2 = mine{1 + ε − �Γ ′(e)}, and
� = min{�1, �2}. Let D be a disk with radius � centered at v in Γ ′.

Both the operations P0 and P1 correspond to the expansion of a vertex v
into an edge vx, followed by the removal of vx. Hence, by standard continuity
arguments (see, e.g., the proof of Fáry’s theorem [8]), a planar straight-line
drawing Γ of G can be obtained from Γ ′ by suitably replacing the vertex v with
the edge vx, so that the position of v in Γ is the same as in Γ ′, and so that
x is arbitrarily close to v. Thus, both if P0 or if P1 transforms G′ into G, we
can obtain a planar straight-line drawing Γ of G in which every vertex other
than x is at the same position as in Γ ′, and in which x is inside the disk D; see
Figs. 7(c) and (d). Note that, for every edge e of G that is not incident to x, we
have 1 < �Γ (e) < 1+ ε, given that 1 < �Γ ′(e) < 1+δ. Further, consider any edge
e = tx of G and note that e′ = tv is an edge of G′. By the triangular inequality
we have ||tx|| < ||tv||+ ||vx|| < �Γ ′(e′)+� ≤ �Γ ′(e′)+(1+ε−�Γ ′(e′)) = 1+ε, and
||tx|| > ||tv|| − ||vx|| > �Γ ′(e′) − � ≥ �Γ ′(e′) − (�Γ ′(e′) − 1) = 1. This concludes
the induction and hence the proof of the theorem. ��



On the Edge-Length Ratio of Planar Graphs 177

Note that the bound in Theorem4 is the best possible, as there exist bipartite
planar graphs (for example any complete bipartite graph K2,m with m ≥ 3) that
admit no planar straight-line drawing with edge-length ratio equal to 1.

5 Conclusions and Open Problems

In this paper we have proved that there exist n-vertex planar graphs whose
planar edge-length ratio is in Ω(n); that is, in any planar straight-line drawing
of one of such graphs, the ratio between the length of the longest edge and the
length of the shortest edge is in Ω(n). Further, we have proved upper bounds for
the planar edge-length ratio of several graph classes, most notably an O(n0.695)
upper bound for the planar edge-length ratio of 2-trees.

Several problems remain open; we mention some of them. First, what is the
asymptotic behavior of the planar edge-length ratio of 2-trees? In particular, we
wonder whether our geometric construction can lead to a better upper bound if
coupled with a decomposition technique better than the one in Lemma5. Second,
is the planar edge-length ratio of cubic planar graphs sub-linear? The proof of
Theorem 1 shows that this question has a negative answer when extended to
all bounded-degree planar graphs. Finally, is the planar edge-length ratio of k-
outerplanar graphs bounded by some function of k? The results from [11] show
that this is indeed the case for k = 1.

References

1. Borrazzo, M., Frati, F.: On the edge-length ratio of planar graphs. CoRR
abs/1908.03586 (2019)

2. Brinkmann, G., Greenberg, S., Greenhill, C.S., McKay, B.D., Thomas, R., Wollan,
P.: Generation of simple quadrangulations of the sphere. Discrete Math. 305(1–3),
33–54 (2005)

3. Cabello, S., Demaine, E.D., Rote, G.: Planar embeddings of graphs with specified
edge lengths. J. Graph Algorithms Appl. 11(1), 259–276 (2007)

4. Chan, T.M.: A near-linear area bound for drawing binary trees. Algorithmica
34(1), 1–13 (2002)

5. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1), 41–51 (1990)

6. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall, Upper Saddle River (1999)

7. Eades, P., Wormald, N.C.: Fixed edge-length graph drawing is NP-hard. Discrete
Appl. Math. 28(2), 111–134 (1990)

8. Fáry, I.: On straight line representions of planar graphs. Acta Sci. Math. (Szeged)
11, 229–233 (1948)

9. Frati, F.: Lower bounds on the area requirements of series-parallel graphs. Discrete
Math. Theoret. Comput. Sci. 12(5), 139–174 (2010)

10. Lazard, S., Lenhart, W., Liotta, G.: On the edge-length ratio of outerplanar graphs.
In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp. 17–23. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-73915-1 2

https://doi.org/10.1007/978-3-319-73915-1_2


178 M. Borrazzo and F. Frati

11. Lazard, S., Lenhart, W.J., Liotta, G.: On the edge-length ratio of outerplanar
graphs. Theoret. Comput. Sci. 770, 88–94 (2019)

12. Mondal, D., Nishat, R.I., Rahman, M.S., Alam, M.J.: Minimum-area drawings of
plane 3-trees. J. Graph Algorithms Appl. 15(2), 177–204 (2011)

13. Schnyder, W.: Embedding planar graphs on the grid. In: Johnson, D.S. (ed.) ACM-
SIAM Symposium on Discrete Algorithms (SODA 1990), pp. 138–148 (1990)



Node Overlap Removal Algorithms:
A Comparative Study

Fati Chen1,2(B) , Laurent Piccinini2, Pascal Poncelet1,
and Arnaud Sallaberry1,2

1 LIRMM - CNRS - Université de Montpellier, Montpellier, France
{fati.chen,pascal.poncelet,arnaud.sallaberry}@lirmm.fr

2 Université Paul-Valéry Montpellier 3, Montpellier, France
{fati.chen,laurent.piccinini,arnaud.sallaberry}@univ-montp3.fr

Abstract. Many algorithms have been designed to remove node over-
lapping, and many quality criteria and associated metrics have been pro-
posed to evaluate those algorithms. Unfortunately, a complete compari-
son of the algorithms based on some metrics that evaluate the quality has
never been provided and it is thus difficult for a visualization designer to
select the algorithm that best suits his needs. In this paper, we review 21
metrics available in the literature, classify them according to the qual-
ity criteria they try to capture, and select a representative one for each
class. Based on the selected metrics, we compare 8 node overlap removal
algorithms. Our experiment involves 854 synthetic and real-world graphs.

Keywords: Graph drawing · Layout adjustment · Node overlap
removal

1 Introduction

Graph drawing algorithms are good at creating rich expressive graph layouts but
often consider nodes as points with no dimensions. After changing the size of
nodes in the case of annotation or evolving graphs, it causes node overlap which
hides information. Post-process algorithms, named layout adjustment [15], have
been proposed to remove node overlap.

The objective of these algorithms is, given an initial positioning of the nodes
and a size for each one, to provide a new embedding so that there are no over-
lapping nodes any more. A classical zoom-in function maintaining the sizes of
the nodes (i.e. uniform scaling) provides such an embedding, but it expands
the visualisation, resulting in large areas without any objects. Therefore, a node
overlap removal algorithm must take into account the area of the drawing, and
try to minimise it. Positioning the nodes evenly on a grid meets this objective
but will result in the loss of the user’s mental picture of the original embedding.
Thus, it is also important to minimise the change on the layout.

Since a preliminary work in 1995 [15], many algorithms have been designed to
reach these purposes, and many quality criteria have been proposed to evaluate
c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 179–192, 2019.
https://doi.org/10.1007/978-3-030-35802-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_14&domain=pdf
http://orcid.org/0000-0002-9203-4229
http://orcid.org/0000-0001-7068-176X
https://doi.org/10.1007/978-3-030-35802-0_14


180 F. Chen et al.

them. Unfortunately, a complete comparison of the algorithms based on the
different criteria has never been provided and it is thus difficult for a visualisation
designer to select the one that best suits his needs.

In this paper, our contribution comes in two forms: (1) We propose a clas-
sification of 21 quality metrics, grouping them according to the quality crite-
rion they try to capture. We also discuss their relevance and we select a rep-
resentative one for each class. (2) We compare state-of-the-art node overlap-
ping approaches in regards to the previously selected metrics. This experiment
involves 854 graphs, including synthetic ones (random, tree, scale-free, small-
world) and real world ones.

The paper is organised as follows: after a brief reminder in Sect. 2 of the
definitions and the notations used in this paper, we present and discuss the
quality criteria and the metrics in Sect. 3. Then we compare the algorithms in
Sect. 4. Finally we conclude in Sect. 5.

2 Preliminaries

In this paper, we use the following definitions and notations.
G = (V,E) denotes a graph where V is the set of nodes and E the set of

edges. The number of nodes |V | is denoted by n and the number of edges |E|
by m. We consider each node as a rectangle. Thus, for a node v ∈ V , its width
and its height are denoted by the couple (wv, hv) which is not impacted by the
layout adjustment.

The initial embedding is defined as an injection EG : V → R
2 such that

∀v ∈ V , EG(v) = (xv, yv) where (xv, yv) are the coordinates of the center of the
node v. The overlapping-free embedding is denoted by E ′

G. To simplify notations,
we denote v = (xv, yv) instead of EG(v), and v′ = (x′

v, y′
v) instead of E ′

G(v).
Remark that two nodes (u, v) ∈ V 2 are overlapping when :

|xv − xu| <
wv + wu

2
and |yv − yu| <

hv + hu

2

The bounding box Bb of an embedding EG is defined as the smallest rectangle
containing all the nodes of G; wbb (resp. hbb) denotes the width (resp. the height)
of the initial embedding, w′

bb (resp. h′
bb) denotes the width (resp. the height) of

the overlapping-free one. They are determined as follows:

wbb =
∣
∣
∣
∣
max
v∈V

(

xv +
wv

2

)

− min
u∈V

(

xu − wu

2

)
∣
∣
∣
∣

(1)

hbb =
∣
∣
∣
∣
max
v∈V

(

yv +
hv

2

)

− min
u∈V

(

yu − hu

2

)∣
∣
∣
∣

(2)

The position of the center of the bounding box is denoted by cbb = (xbb, ybb) in
the initial embedding, and c′

bb = (x′
bb, y

′
bb) in the overlapping-free embedding.

The convex hull of an embedding EG is defined as the smallest convex region
containing all the nodes of G. Note that it is computed by using the 4 corners of



Node Overlap Removal Algorithms: A Comparative Study 181

the nodes, and not only their center, in a way that the rectangles representing
the nodes are fully included into it. In the following, Ch denotes the convex hull
of the original embedding, Ch′ the convex hull of the free-overlapping one, cch

the center of mass of Ch, c′
ch the center of mass of Ch′.

3 Quality Criteria

Many criteria have been proposed in the literature to evaluate the quality of the
embeddings resulting from adjustment algorithms. Unfortunately, the experi-
ments provided by the authors of the different approaches are not always based
on the same metrics. With a view to provide a uniform protocol of experiment
and a complete comparison of the algorithms, we need to review the quality crite-
ria and the metrics used to evaluate them. We also need to select a representative
metric for each criterion.

We identified 5 classes of metrics (Orthogonal Ordering preservation, Spread
minimisation, Global Shape preservation, Node Movement minimisation and
Edge Length preservation), each of them depicting a quality criterion. Table 1
shows the metrics assigned into the classes. The formulas are given in the dis-
cussion below.

The following subsections contain the metrics of a specific class. In each of
them, we select one representative metric, based on the corresponding quality
criterion and the properties that the metrics aim at capturing. Our discussion
also sometimes involves the coefficient of correlation of two metrics run following
the protocol described in the comparison section, Sect. 4.

3.1 Orthogonal Ordering Preservation

The orthogonal ordering class groups the metrics which try to quantify how much
an adjustment algorithm preserves the initial orthogonal ordering. We recall
that the orthogonal ordering is respected when all nodes satisfy the following
conditions: ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

xu < xv ⇔ x′
u < x′

v

yu < yv ⇔ y′
u < y′

v

xu = xv ⇔ x′
u = x′

v

yu = yv ⇔ y′
u = y′

v

The first metric of this class, oo_o [15], is equal to 1 if the overlapping-free
graph embedding preserves the initial orthogonal ordering, 0 otherwise. Also, if
only one couple of nodes does not satisfy those conditions, the value of oo_o is
the same as when many ones do not satisfy it.

To overcome this issue, Huang et al. [11] proposed a metric based on the
Kendall’s Tau distance. For each couple of nodes, they first compute an inver-
sion number inv(u, v) corresponding to 0 if the orthogonal ordering is preserved



182 F. Chen et al.

Table 1. List of metrics classified by the quality criteria they try to capture: metrics
selected for the comparison appear in bold italics. The Abbreviations are based on
some initials of the names. For example, sp_bb_a means that the metric is in the
class Spread minimisation, it uses the embedding Bounding Box to quantify the Area
spreading. The Range column contains the set of values that the metric can take. The
Target column refers to the target value to meet the corresponding criterion.

Abbreviation Name Range Target

Orthogonal Ordering preservation
oo_o Original [15] {0, 1} 1

oo_kt Kendall’s Tau Distance [11] [0, 1] 0

oo_ni Number of Inversions [17] [0, n(n − 1)] 0

oo_nni Normalised Number of Inversions [0, 1] 0

Spread minimisation
sp_bb_l1ml Bounding Box L1 Metric Length [12] [1,+∞[ 1

sp_bb_a Bounding Box Area [15] [1,+∞[ 1

sp_bb_na Bounding Box Normalised Area [11] [0, 1[ 0

sp_ch_a Convex Hull Area [17] [1,+∞[ 1

Global Shape preservation
gs_bb_ar Bounding Box Aspect Ratio [12] ]0,+∞[ 1

gs_bb_iar Bounding Box Improved Aspect Ratio [1,+∞[ 1

gs_ch_sd Convex Hull Standard Deviation [17] [0,+∞[ 0

Node Movement minimization
nm_mn Moved Nodes [11] [0, 1] 0

nm_dm_me Distance Moved Mean Euclidean [17] [0,+∞[ 0

nm_dm_ne Distance Moved Normalized Euclidean [13] [0, 1] 0

nm_dm_h Distance Moved Hamiltonian [10,11] [0,+∞[ 0

nm_dm_se Distance Moved Squared Euclidean [14] [0,+∞[ 0

nm_dm_imse Distance Moved Improved Mean
Squared Euclidean [0,+∞] 0

nm_d Displacement [5] ]0,+∞[ 0

nm_knn K-Nearest Neighbours [16] [0,+∞[ 0

Edge Length preservation
el_r Ratio [12] [1,+∞[ 1

el_rsdd Relative Standard Deviation Delaunay [5] [0,+∞] 0

between them, 1 otherwise. The metric is then defined as the normalised sum of
the inversion numbers:

oo_kt =

∑

u�=v

inv(u, v)

n(n − 1)



Node Overlap Removal Algorithms: A Comparative Study 183

Strobelt et al. [17] introduced the number of inversions:

oo_ni =
∑

(u,v)∈V 2
xu>xv

{

1 if x′
u < x′

v

0 otherwise

+
∑

(u,v)∈V 2
xu>xv

{

1 if y′
u < y′

v

0 otherwise

This metric has the drawback of providing non-normalized values. However,
it holds the benefit of penalizing inversions occurring on each axis independently
(x− and y −axis), instead of penalizing in the same manner an inversion occur-
ring in only one axis and an inversion occurring in the two axes. Thus, in our
study, we combine the two metrics by using a normalised version of the latter:

oo_nni =
oo_ni

n(n − 1)

3.2 Spread Minimisation

A classical zoom-in function maintaining the sizes of the nodes (i.e. uniform
scaling) provides an overlapping-free embedding, but it expands the visualisa-
tion, resulting in large areas without any objects. To avoid this issue, quality
metrics have been introduced to quantify embedding spreading. Their purpose
is to favour algorithms inducing low spreading.

The L1 metric length [12] is the ratio:

sp_bb_l1ml =
max(w′

bb, h
′
bb)

max(wbb, hbb)

The drawback of this technique is to consider only one dimension of the
embedding, width or height. For instance, considering an example where wbb = 4,
hbb = 2, w′

bb = 4, h′
bb = 4, the value of the L1 metric length is 1 (which is the

target value), whereas the area of the overlapping-free embedding is twice as
large as in the initial embedding. The ratio between the bounding box areas of
the two embeddings [15] overcomes this issue:

sp_bb_a =
w′

bb × h′
bb

wbb × hbb

While the result gives an unbounded value greater than 1, Huang et al. [11]
proposes a normalised version producing values in the interval [0, 1[:

sp_bb_na = 1 − wbb × hbb

w′
bb × h′

bb

Unfortunately, this criterion is poorly intuitive and it is hard to figure out
what the values represent.



184 F. Chen et al.

In our comparison, we selected another version of the ratio of areas involving
convex hulls [17], as it better captures the concrete area of the drawing:

sp_ch_a =
area(Ch′)
area(Ch)

3.3 Global Shape Preservation

This class contains metrics that try to capture the ability of the algorithms to
preserve the global shape of the initial embedding. The first one was proposed
by Li et al. [12]:

gs_bb_ar =

⎧

⎪⎪⎨

⎪⎪⎩

if w′
bb > h′

bb

w′
bb × hbb

h′
bb × wbb

otherwise
h′

bb × wbb

w′
bb × hbb

The underlying idea is to capture the variation of the aspect ratio (wbb/hbb)
between the initial and the overlapping-free embedding. For instance, let us
consider an example where wbb = 3, hbb = 2, w′

bb = 6, h′
bb = 4. In this case,

the overlapping-free embedding is twice as large as the initial one but the aspect
ratio remains the same 3/2. The gs_bb_ar is 1, which is the target value. Now
let us consider another example where wbb = 3, hbb = 2, w′

bb = 4, h′
bb = 6. In

this case, the initial aspect ratio is 3/2 whereas the overlapping-free one is 2/3.
The gs_bb_ar is now 2.25, which is not the target value; it reveals a distortion
of the initial embedding during the overlap removal process. The main drawback
of this metric is that it can reach values in the interval ]0,+∞[ while the target
value is 1. Thus, it is hard to decide, for instance, which algorithm is the best
between two of them if the first one obtains a score of 0.67 and the second one
a score of 4.56. To overcome this issue, we propose to refine it as follows:

gs_bb_iar = max
(

w′
bb × hbb

h′
bb × wbb

,
h′

bb × wbb

w′
bb × hbb

)

In this case, the target value is 1 and the metric cannot reach values below
it. This criterion is the one we selected for our study.

An alternative to this approach based on the convex hull has been proposed
by Strobelt et al. [17]. The idea is to evaluate the distortion of the convex hull
by comparing, between both embeddings, the distances of convex hull points to
their center. Let �θ (resp. �′

θ) be the euclidean distance between the center of
mass cch (resp. c′

ch) of the convex hull Ch (resp. Ch′) and the intersection of
the convex hull with the line going through cch (resp. c′

ch) and with an angle θ
(θ varying from 0◦ to 350◦ in 10◦ steps). Then, the difference is defined as the
ratio dθ = �′

θ/�θ. The metric is the standard deviation of the 36 measures of dθ:

gs_ch_sd =

√
√
√
√

1
36

∑

θ=10k
k=0,··· ,35

(dθ − d)2



Node Overlap Removal Algorithms: A Comparative Study 185

where d =
1
36

∑

θ=10k
k=0,··· ,35

dθ is the mean value

Based on the experiments presented below in Sect. 4, we observed that
gs_bb_iar and gs_ch_sd have a correlation coefficient of 0.77, showing that
they both tend to capture similar aspects of the adjustment process. We selected
the former for its simplicity and its ease of interpretation.

3.4 Node Movement Minimisation

This class contains the metrics quantifying the changes in node positions after
running an adjustment algorithm. The underlying intuition is that an algorithm
involving high node movements will provide an overlapping-free configuration
different from the original one, and thus may result in a substantial loss of the
mental model.

The simplest metric of this class was presented by Huang et al. [11]:

nm_mn =
nb

n

Here, nb represents the number of nodes which have moved between the initial
and the overlapping-free embedding. The main drawback of this approach is that
a node overlap removal algorithm may induce very small changes in most nodes,
which does not affect the mental model preservation, while inducing a very bad
result. To tackle this problem and add more granularity over the evaluation of
node movements, a series of metrics have been proposed, based on the same
underlying quality function:

nm_dm = f(n) ×
∑

v∈V

dist(v, v′)

where f is a normalising function of n = |V | and dist is a distance between v
and v′. Table 2 sums up the ones used in the literature.

Table 2. Functions used to tune the distances moved metric.

dist(v, v′) \ f(n) 1 1/n 1

k
√
2×n

‖v′ − v‖ nm_dm_me [17] nm_dm_ne [13]
‖v′ − v‖2

nm_dm_se [14] nm_dm_imse

|x′
v − xv| + |y′

v − yv| nm_dm_h [10]

The function f comes in three different forms. Marriott et al. [14] and Huang
et al. [10] do not include any f , which is similar to having f(n) = 1. The
drawback is that the resulting value highly depends on the number of nodes
in the graph. That is why Strobelt et al. [17] proposed to use the mean of the



186 F. Chen et al.

distances, which corresponds to f(n) = 1/n. Finally, Lyons et al. [13] proposed
f(n) = 1/(k

√
2×n), where k is the maximum between w′

bb and h′
bb. In this case,

k
√
2 is the diagonal of a square containing the embedding, thus a maximum

distance available for a node. Thus, this f function normalises the values of the
metric. Unfortunately, this normalisation induces very small values that are hard
to interpret. That is why we preferred using f(n) = 1/n for our study.

Three dist functions have been proposed in the literature. The most intuitive
one is the Euclidean distance ‖v′ − v‖ [13,17]. The squared Euclidean distance
‖v′ − v‖2 [14] avoids the square root computation and discriminates high changes
better. It is the one we selected for our study. The Manhattan distance |x′

v −
xv|+ |y′

v −yv| has also been used [10], but it is less intuitive and has close results
(nm_dm_se and nm_dm_h have a correlation coefficient of 0.9).

Let us consider an adjustment algorithm that pushes nodes on the x-axis.
The preservation of the global shape is not optimal but the preservation of
the configuration should reach a good score, as a node on right-top in the ini-
tial embedding would remain on right-top in the overlapping-free embedding.
In order to better capture the relative movement of a node between the two
embeddings, a shift function can be applied to align the center of the initial
bounding box with the center of the final one, and a scale function to align the
size of the initial bounding box to the size of the final one:

shift(v) = (xv + x′
bb − xbb, yv + y′

bb − ybb)

scale(v) =(xv × w′
bb

wbb
, yv × h′

bb

hbb
)

Considering this, we selected the following node movement metric:

nm_dm_imse =
1
n

×
∑

v∈V

‖v′ − scale(shift(v))‖2

nm_d [5] (the complete formula is available in the paper) is also based on
the idea that the metric should be based on modified initial positions to better
capture the relative movement of the nodes between the two embeddings. Besides
including the shift and the scale functions, it also rotates the initial embedding
with an angle θ that minimizes the distances between the nodes of the initial
embedding and the ones of the overlapping-free embedding:

rotation(v) = (xv cos θ − yv sin θ, xv sin θ + yv cos θ)

We have not included the rotation in our experiment as we consider that it
can induce a loss of the mental model (think about the recognition of a map
turned inside down).

An alternative to quantify how much an overlapping-free configuration may
result in a substantial loss of the mental model is to look at the neighbourhoods
at the nodes and compare them before and after the adjustment. Based on a
KNN approach, Nachmanson et al. [16] proposed the following metric:

nm_knn(k) =
∑

v∈V

(k − |Nk(v) ∩ Nk(v′)|)2



Node Overlap Removal Algorithms: A Comparative Study 187

where Nk(v) (resp. Nk(v′)) denotes the k nearest neighbours of v (resp. v′), in
terms of Euclidean distance, in the initial (resp. overlapping-free) embedding.
We did not select this metric because, unlike the other metrics of the class, it
requires to fix a parameter (k).

3.5 Edge Length Preservation

This class contains the two metrics based on edge lengths. The set of edges can
be E or can be another set derived from the graph.

Standard force-based layout algorithms tend to produce uniform lengths of
edges. Indeed, the first metric of this class captures whether the edge lengths of
a graph remain uniform or not after applying an adjustment algorithm [12]:

el_r =
max(u,v)∈E2 ‖u′ − v′‖
min(u,v)∈E2 ‖u′ − v′‖

While many layout algorithms are not designed to produce uniform edge lengths,
we did not select this approach, which is not related to the mental model preser-
vation for these algorithms. We preferred the next one, based on a Delaunay
triangulation.

Let Edt be the set of edges of a Delaunay triangulation performed on the
nodes of the initial embedding. The second metric of this class, el_rsdd, is based
on computing the coefficient of variation, also known as the relative standard
deviation, of the edge lengths ratio as follows [5]:

ruv =
||u′ − v′||
||u − v|| , (u, v) ∈ E2

dt

r =
1

|Edt|
∑

(u,v)∈E2
dt

ruv

el_rsdd =

√
1

|Edt|
∑

(u,v)∈E2
dt
(ruv − r)2

r

4 Algorithms Comparison

In this section, we compare 8 algorithms of the literature in terms of quality
and running time: uniform Scaling, PFS [15], PFS’ [8], FTA [11], VPSC [3],
PRISM [5], RWordle-L [17], and GTREE [16]. The quality of an overlapping-free
embedding is evaluated with the metrics identified in the last section, by follow-
ing a 3 steps procedure: Step 1: Datasets We generate 840 synthetic graphs
containing 10 to 1,000 nodes. These graphs are provided by 4 generation models
available on the OGDF library [2]: random graphs [4], random trees, small world
graphs [18], and scale-free graphs [1]. We also use 14 real-world graphs selected



188 F. Chen et al.

from the Graphviz test suite1 [6], previously used by the authors of PRISM [5]
and GTREE [16]. Step 2: Overlapping-free embedding computation Syn-
thetic graphs resulting from the first step are initially positioned by the FM3

layout algorithm [7]. Then, we apply the 8 node overlap removal algorithms,
thus providing a set of 6,720 overlapping-free graph embeddings. Graphviz test
suite graphs are initially positioned by the SFDP layout algorithm [9] to follow
the same baseline embedding as Gansner et al. [5]. We then apply the 8 node
overlap removal algorithms thus providing 112 overlapping-free graph embed-
dings. Step 3: Metrics computation We finally compute the values of the
5 selected metrics on the 6.832 overlapping-free synthetic and real-world graph
embeddings. We also measure the computation time of the algorithms.

4.1 Quality

Figure 1 and 2 show the aggregated metrics values on the synthetic and real-
world datasets. Unsurprisingly, Scaling, PFS and PFS’ obtain the best scores
at oo_nni as it is proved that they maintain the original orthogonal ordering.
Though, all the algorithms tested got good results for this criterion.

Fig. 1. Aggregated values of the selected metrics among the synthetic graphs: first
quartile, median and third quartile.

Scaling highly increases the size of the embedding, which induces a bad
score for sp_ch_a. PFS also obtains a bad score for this criterion. VPSC and
RWordle-L produce the most compact embeddings, while the other algorithms
give intermediary results.

1 https://gitlab.com/graphviz/graphviz/blob/master/rtest/graphs/ (accessed: 2019-
07).

https://gitlab.com/graphviz/graphviz/blob/master/rtest/graphs/


Node Overlap Removal Algorithms: A Comparative Study 189

Fig. 2. Mean values of the selected metrics among the real-world graphs.

Scaling preserves the initial global shape2 (gs_bb_iar score). PFS is the
worst algorithm on this criterion. The other algorithms obtained good median
scores on synthetic graphs, but the third quartile scores show that FTA and
VPSC can produce a certain amount of distorted embeddings. This is confirmed
by the tests on real-world graphs, where they obtain worse results.

Scaling obtains the best results for the node movement minimisation cri-
terion, followed by VPSC and RWordle-L. FTA also obtained a good median
score on synthetic graphs, but its third quartile value shows that it can generate
a certain amount of embeddings with high changes, as also illustrated by the
bad score obtained on the real-world graphs. PFS’ and PRISM obtained inter-
mediary results. Finally, GTREE had bad results on the synthetic graphs, while
it obtained pretty good ones on the real-world graphs.

Scaling preserves relative edge lengths. All the other criteria obtained com-
parable median score between 0.17 and 0.31. However, the third quartile on
the synthetic graphs shows that FTA, VPSC and RWordle-L generate a certain
amount of embeddings with high variations. This observation is confirmed by
the results on the real-world graphs for FTA and RWordle-L.

4.2 Computation Time

Figure 3 and 4 show the aggregated running time values on the synthetic and
real-world datasets. Scaling, PFS, PFS’ and VPSC require lower running time.
FTA and GTREE induce intermediate running time, but the third quartile shows
that FTA can induce a certain amount of time consuming embedding computa-
tions. Finally, PRISM is time consuming for small graphs, but have intermediate
results for larger graphs, while RWordle-L has good results for small graphs but
is very time-consuming for larger ones.

2 The global shape preservation score for Scaling is not 1 because of the size of the
nodes that remains the same between the initial and the overlapping-free embed-
dings.



190 F. Chen et al.

Fig. 3. Aggregated running times among the synthetic graphs, function of number of
nodes (10 to 1,000): first quartile, median and third quartile.

Fig. 4. Mean values of running times among the real-world graphs.

5 Conclusion

As a conclusion, even if Scaling optimises 4 out of 5 criteria and is very fast
to compute on the graphs of our datasets, it does not represent a satisfying
solution as it increases the size of the embedding too much. PFS is also not sat-
isfying as it got poor results on 3 criteria. FTA obtained intermediate results over
all the criteria, which is less good than all its remaining competitors. PFS’ and
PRISM obtained comparable results but the latter is more time-consuming. Both



Node Overlap Removal Algorithms: A Comparative Study 191

have intermediate results for shape preservation and node movement minimisa-
tion, which might be considered as two essential criteria. GTREE suffers from
inducing high node movements on our datasets. Overall, VPSC and RWordle-
L obtained the best quality results. While RWordle-L outperforms VPSC on
global shape preservation and is comparable on the other criteria, VPSC out-
performs RWordle-L in terms of running time. Finally, considering the different
types of graphs (random graphs, random trees, small world graphs, and scale-free
graphs), we did not observe any significant differences in terms of results.

Acknowledgement. This research has been partly funded by a national French grant
(ANR Daphne 17-CE28-0013-01).

References

1. Barabaśi, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

2. Chimani, M., Gutwenger, C., Jünger, M., Klau, G.W., Klein, K., Mutzel, P.: The
open graph drawing framework (OGDF). In: Tamassia, R. (ed.) Handbook on
Graph Drawing and Visualization, pp. 543–569. Chapman and Hall/CRC, London
(2013)

3. Dwyer, T., Marriott, K., Stuckey, P.J.: Fast node overlap removal. In: Healy, P.,
Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 153–164. Springer, Heidelberg
(2006). https://doi.org/10.1007/11618058_15

4. Erdös, P., Rényi, A.: On random graphs. Publicationes Mathematicae Debrecen 6,
290–291 (1959)

5. Gansner, E., Hu, Y.: Efficient, proximity-preserving node overlap removal. J. Graph
Algorithms Appl. 14(1), 53–74 (2010)

6. Gansner, E.R., North, S.C.: An open graph visualization system and its applica-
tions to software engineering. Softw. Pract. Exp. 30(11), 1203–1233 (2000)

7. Hachul, S., Jünger, M.: Drawing large graphs with a potential-field-based multilevel
algorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285–295. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31843-9_29

8. Hayashi, K., Inoue, M., Masuzawa, T., Fujiwara, H.: A layout adjustment problem
for disjoint rectangles preserving orthogonal order. In: Whitesides, S.H. (ed.) GD
1998. LNCS, vol. 1547, pp. 183–197. Springer, Heidelberg (1998). https://doi.org/
10.1007/3-540-37623-2_14

9. Hu, Y.: Efficient, high-quality force-directed graph drawing. Math. J. 10(1), 37–71
(2005)

10. Huang, X., Lai, W.: Force-transfer: a new approach to removing overlapping nodes
in graph layout. In: Proceedings of the 26th Australasian computer science confer-
ence, vol. 16, pp. 349–358. Australian Computer Society, Inc. (2003)

11. Huang, X., Lai, W., Sajeev, A., Gao, J.: A new algorithm for removing node
overlapping in graph visualization. Inf. Sci. 177(14), 2821–2844 (2007)

12. Li, W., Eades, P., Nikolov, N.: Using spring algorithms to remove node overlapping.
In: Proceedings of the 2005 Asia-Pacific Symposium on Information Visualisation,
vol. 45, pp. 131–140. APVis 2005. Australian Computer Society Inc, Darlinghurst
(2005)

13. Lyons, K.A., Meijer, H., Rappaport, D.: Algorithms for cluster busting in anchored
graph drawing. J. Graph Algorithms Appl. 2(1), 1–24 (1998)

https://doi.org/10.1007/11618058_15
https://doi.org/10.1007/978-3-540-31843-9_29
https://doi.org/10.1007/3-540-37623-2_14
https://doi.org/10.1007/3-540-37623-2_14


192 F. Chen et al.

14. Marriott, K., Stuckey, P., Tam, V., He, W.: Removing node overlapping in graph
layout using constrained optimization. Constraints 8(2), 143–171 (2003)

15. Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental
map. J. Vis. Lang. Comput. 6(2), 183–210 (1995)

16. Nachmanson, L., Nocaj, A., Bereg, S., Zhang, L., Holroyd, A.: Node overlap
removal by growing a tree. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS,
vol. 9801, pp. 33–43. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
50106-2_3

17. Strobelt, H., Spicker, M., Stoffel, A., Keim, D., Deussen, O.: Rolled-out wordles: a
heuristic method for overlap removal of 2D data representatives. Comput. Graph.
Forum 31(3), 1135–1144 (2012)

18. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature
393, 440–442 (1998)

https://doi.org/10.1007/978-3-319-50106-2_3
https://doi.org/10.1007/978-3-319-50106-2_3


Graphs with Large Total Angular
Resolution

Oswin Aichholzer1 , Matias Korman2, Yoshio Okamoto3 , Irene Parada1 ,
Daniel Perz1(B) , André van Renssen4 , and Birgit Vogtenhuber1

1 Graz University of Technology, Graz, Austria
{oaich,iparada,daperz,bvogt}@ist.tugraz.at

2 Tufts University, Medford, MA, USA
matias.korman@tufts.edu

3 The University of Electro-Communications and RIKEN Center for Advanced
Intelligence Project, Tokyo, Japan

okamotoy@uec.ac.jp
4 The University of Sydney, Sydney, Australia

andre.vanrenssen@sydney.edu.au

Abstract. The total angular resolution of a straight-line drawing is the
minimum angle between two edges of the drawing. It combines two prop-
erties contributing to the readability of a drawing: the angular resolution,
which is the minimum angle between incident edges, and the crossing
resolution, which is the minimum angle between crossing edges. We con-
sider the total angular resolution of a graph, which is the maximum total
angular resolution of a straight-line drawing of this graph. We prove that,
up to a finite number of well specified exceptions of constant size, the
number of edges of a graph with n vertices and a total angular resolution
greater than 60◦ is bounded by 2n− 6. This bound is tight. In addition,
we show that deciding whether a graph has total angular resolution at
least 60◦ is NP-hard.

Keywords: Graph drawing · Total angular resolution · Angular
resolution · Crossing resolution · NP-hardness

1 Introduction

The total angular resolution of a drawing D, or short TAR(D), is the smallest
angle occurring in D, either between two edges incident to the same vertex or
between two crossing edges. In other words, TAR(D) is the minimum of the

This work started during the Japan-Austria Joint Seminar Computational Geometry
Seminar with Applications to Sensor Networks supported by the Japan Society for the
Promotion of Science (JSPS) and the Austrian Science Fund (FWF) under grant AJS
399. O.A., I.P., D.P., and B.V. are partially supported by the FWF grants W1230 (Doc-
toral Program Discrete Mathematics) and I 3340-N35 (Collaborative DACH project
Arrangements and Drawings).

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 193–199, 2019.
https://doi.org/10.1007/978-3-030-35802-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_15&domain=pdf
http://orcid.org/0000-0002-2364-0583
http://orcid.org/0000-0002-9826-7074
http://orcid.org/0000-0003-3147-0083
http://orcid.org/0000-0002-6557-2355
http://orcid.org/0000-0002-9294-9947
http://orcid.org/0000-0002-7166-4467
https://doi.org/10.1007/978-3-030-35802-0_15


194 O. Aichholzer et al.

angular resolution AR(D) and the crossing resolution CR(D) of the same draw-
ing. Furthermore, the total angular resolution of a graph G is defined as the
maximum of TAR(D) over all drawings D of G. Similarly, the angular resolu-
tion and the crossing resolution of G are the maximum of AR(D) and CR(D),
respectively, over all drawings D of G. The total angular resolution of a graph
is in general smaller than the minimum of its crossing resolution and its angular
resolution. Note that all drawings considered in this work are straight-line.

Formann et al. [8] were the first to introduce the angular resolution of graphs
and showed that finding a drawing of a graph with angular resolution at least
90◦ is NP-hard. Fifteen years later experiments by Huang et al. [9,11] showed
that the crossing resolution plays a major role in the readability of drawings.
Consequently research in that direction was intensified. In particular right angle
crossing drawings (or short RAC drawings) were studied [6,12], and NP-hardness
of the decision version for right angles was proven [3].

The upper bound for the number of edges of αAC drawings (drawings with
crossing resolution α) is 180◦

α (3n − 6) [7]. For the two special classes of RAC
drawings and 60◦AC drawings better upper bounds are known. More precisely,
RAC drawings have at most 4n − 10 edges [6] and αAC drawings with α > 60◦

have at most 6.5n − 20 edges [1].
Argyriou et al. [4] were the first to study the total angular resolution, calling it

just total resolution. They presented drawings of complete and complete bipartite
graphs with asymptotically optimal total angular resolution. Recently Bekos
et al. [5] presented a new algorithm for finding a drawing of a given graph with
high total angular resolution which was performing superior to earlier algorithms
like [4,10] on the considered test cases.

2 Upper Bound on the Number of Edges

We say a drawing D is planarized if we replace every crossing by a vertex so
that this new vertex splits both crossing edges into two edges. We denote this
planarized drawing by P (D). Furthermore, every edge in P (D) has two sides
and every side is incident to exactly one cell of D. Note that both sides of an
edge can be incident to the same cell. We define the size of a cell of a connected
drawing D as the number of sides in P (D) incident to this cell.

In this section we show that for almost all graphs with TAR(G) > 60◦ the
number of edges is bounded by 2n−6. We start by showing a bound for the num-
ber of edges in a connected drawing D depending on the size of the unbounded
cell of D.

Lemma 1. Let D be a connected drawing with n ≥ 1 vertices and m edges. If
the unbounded cell of D has size k and TAR(D) > 60◦, then m ≤ 2n−2−�k/2�.
Proof. If at least three edges cross each other in a single point, then there exists
an angle with at most 60◦ at this crossing point. Therefore every crossing is
incident to two edges. We planarize the drawing D and get n′ = n + cr(D) and
m′ = m+2 cr(D) where cr(D) is the number of crossings in D, n′ is the number



Graphs with Large Total Angular Resolution 195

of vertices of P (D), and m′ is the number of edges of P (D). Since we have a
planar graph, we can use Euler’s formula to compute the number f of faces in
P (D) as

f = −n + m + cr(D) + 2. (1)

Moreover, every bounded cell of D has at least size 4, as otherwise P (D) contains
a triangle which implies an angle of at most 60◦. By definition, the unbounded
cell of D has size k and we obtain the following inequality

2m′ ≥ 4(f − 1) + k. (2)

Combining Equation (1) and Inequality (2) gives m ≤ 2n − 2 − �k/2�. ��
From Lemma 1 it follows directly that a connected drawing D on n ≥ 3

vertices and with TAR(D) > 60◦ fulfills m ≤ 2n − 4.
Observation 1, which will be useful to prove Lemma 2, follows from the fact

that the sum of interior angles in a simple polygon is 180◦(p − 2).

Observation 1. Let D be a plane drawing where the boundary of the unbounded
cell is a simple polygon P with p > 3 vertices. Let the inner degree of a vertex vi

of P be the number d′
i of edges incident to vi that lie in the interior of P . If

TAR(D) > 60◦, then
∑

vi∈V (P ) d′
i ≤ 2p − 7 holds.

Lemma 2. Let D be a connected plane drawing on n ≥ 3 vertices, where D is
not a path on 3 vertices and not a 4-gon. If TAR(D) > 60◦, then m ≤ 2n − 5.

Proof. The unbounded cell of D cannot have size 3, as in this case the convex hull
of the drawing is a triangle and we have TAR(D) ≤ 60◦. If the drawing D has
an unbounded cell of size at least 5 and TAR(D) > 60◦, then m ≤ 2n−5 follows
directly from Lemma 1. Otherwise, the unbounded cell of D has size 4, which, as
D is not a path on 3 vertices, implies that the boundary of D is a 4-gon F . By
Observation 1 and the fact that D is not a 4-cycle, there is precisely one edge e
in the interior of and incident to F . Let D′ be the drawing we get by deleting all
vertices and edges of F and also the edge e. The drawing D′ is connected and
has n′ ≥ 1 vertices and m′ edges, where n = n′ +4 and m = m′ +5. By Lemma 1
we know that m′ ≤ 2n′ − 2 and we derive m = m′ + 5 ≤ 2n′ − 2 + 5 ≤ 2n − 5. ��

Two drawings are combinatorially equivalent if all cells are bounded by the
same edges, all crossing edge pairs are the same, and the order of crossings along
an edge are the same. We can extend Lemma 2 in the following way.

Lemma 3. Let D be a connected plane drawing on n ≥ 3 vertices with
TAR(D) > 60◦. If D is not combinatorially equivalent to one of the exceptions
E1–E9 as listed below and depicted in Appendix B of [2], then m ≤ 2n − 6.

E1 A tree on at most 4 vertices.
E2 An empty 4-gon.
E3 A 4-gon with one additional vertex connected to one vertex of the 4-gon.



196 O. Aichholzer et al.

(a) (b)

Fig. 1. (a) The drawings of exception E9. (b) A drawing D of a graph with m=2n−6
and TAR(D) > 60◦.

E4 An empty 5-gon.
E5 A 5-gon with one inner vertex connected to two non-neighboring vertices of

the 5-gon.
E6 A 5-gon with an edge inside, connected with 3 edges to the 5-gon such that

the 5-gon is partitioned into two empty 4-gons and one empty 5-gon.
E7 A 6-gon with an additional diagonal between opposite vertices.
E8 A 6-gon with an additional vertex or edge inside, connected with 3 or 4,

respectively, edges to the 6-gon such that the 6-gon is partitioned into 3 or
4, respectively, empty 4-gons.

E9 A 6-gon with either a path on 3 vertices or a 4-cycle inside, connected as
depicted also in Fig. 1(a).

The proof of Lemma 3 is similar to the one of Lemma 2 and can be found
in Appendix A of [2]. Note that Lemma 3 considers plane drawings. If D has a
crossing, then P (D) has a vertex of degree 4. The only drawings in the exceptions
with a vertex with degree 4 are shown in Fig. 1(a). It can be shown that, when
replacing the vertices of degree 4 in any of them by a crossing, the resulting
drawings have TAR(D) ≤ 60◦. A detailed proof of this fact can be found in
Appendix C of [2] and will be useful for the proof of the next theorem.

Theorem 1. Let G be a graph with n ≥ 3 vertices, m edges and TAR(G) > 60◦.
Then m ≤ 2n − 6 except if G is either a graph of an exception for Lemma 3 or
only consists of three vertices and one edge.

Proof. Assume there exists a graph which is not in the list of exceptions for
Lemma 3 with TAR(G) > 60◦. Consider a drawing D of G with TAR(D) > 60◦

and its planarization P (D).
Applying Lemma 1 to every component gives m ≤ 2m − 6, with the only

exception consisting of three vertices and one edge (Exception E0). For details
see Appendix D of [2]. So for the rest of the proof only consider connected graphs.

If three edges cross in a single point, then in P (D) this point has degree 6
and therefore an angle with at most 60◦. Hence P (D) has mP = m + 2 cr(D)
edges and nP = n + cr(D) vertices. Let m = 2n − c. This is equivalent to
mP = 2nP − c. Since TAR(P (D)) ≥ TAR(D) > 60◦, by applying Lemma 3 we
get that mP ≤ 2nP −6 or P (D) is in the exceptions. If mP ≤ 2nP −6, then also
m ≤ 2n − 6. If P (D) is in the exceptions, then, as observed before, D is in the
exceptions. ��



Graphs with Large Total Angular Resolution 197

The bound of Theorem1 is the best possible in the sense that there are infinitely
many graphs with m = 2n − 6 and TAR(G) > 60◦. Consider for example the
layered 8-gon with two edges in the middle depicted in Fig. 1(b), which can be
generalized to any n = 8k with k ∈ N. In the full version of this work we present
examples for every n ≥ 9 and also discuss plane drawings of planar graphs.

3 NP-hardness

Formann et al. [8] showed that the problem of determining whether there exists
a drawing of a graph with angular resolution of 90◦ is NP-hard. Their proof,
which is by reduction from 3SAT with exactly three different literals per clause,
also implies NP-hardness of deciding whether a graph has a drawing with total
angular resolution of 90◦. We adapt their reduction to show NP-hardness of the
decision problem for TAR(G) ≥ 60◦. A full version of the proof of Theorem2
can be found in Appendix E of [2].

Theorem 2. It is NP-hard to decide whether a graph G has TAR(G) ≥ 60◦.

Proof (sketch). Given a 3SAT formula with variables x1, x2, . . . , xn and clauses
c1, c2, . . . , cm, where every clause contains exactly three different literals, we first
construct a graph G for it. The basic building blocks of G consist of triangles,
which must be equilateral in any drawing with total angular resolution 60◦.

We use three types of gadgets; see Fig. 2(a). The clause gadget has a desig-
nated clause vertex Cj and the variable gadget has two literal vertices Xi,j ,Xi,j

per clause cj . For each gadget, the embedding with total angular resolution 60◦

is unique up to rotation, scaling and reflection.

Xi,2

Xi,1

Xi,2

Xi,1

Xi,mXi,m

Ai,1

Ai,2

Cj

Ai,4

Ai,3

Connector
gadget

Clause
gadget

Ai,1

Variable gadget
(a) All used gadgets

C2

C1

Cm

B1

B2X ′
1 X ′

2 X ′
n

X1 X2 Xn

l2

l1

(b) Frame with clause gadgets

Fig. 2. Gadgets and frame of the NP-hardness proof.

For connecting the gadgets, we build a 3-sided frame; see Fig. 2(b). It consists
of a straight bottom path of 2n + 2m − 1 triangles alternatingly facing up and



198 O. Aichholzer et al.

Cj

Xi,jXi,j

Cj

Xi,j
Xi,j

(a) True connection, two versions

CjXi,j
Xi,j

(b) False connection

Fig. 3. Connections between clause and literal vertices in the NP-hardness proof.

down, a sequence of m clause gadgets stacked on top of each other to the right
(one for each clause, with the clause vertices C1, . . . , Cm facing to the right),
and a top path of 2n + 2m − 1 triangles alternatingly facing down and up.
The leftmost n vertices of degree three on the upper side of the bottom path
and the lower side of the top path (X1, . . . , Xn and X ′

1, . . . , X
′
n) are used for

the variables: For each variable xi, we add a variable gadget and a connector
gadget by identifying Ai,1 with Xi, Ai,2 with Ai,3, and Ai,4 with X ′

i, respectively.
Finally, a clause-literal path consisting of three consecutive edges between Xi,j

(Xi,j) and Cj is added whenever xi (xi) is a literal of clause cj .
The following holds for any drawing D of the graph G with TAR(D) ≥ 60◦.

(1) The embedding of the frame is unique up to rotation, scaling, and reflection.
Hence we can assume that it is embedded as in Fig. 2(b). (2) Each variable
gadget together with its connector gadget must be drawn vertically between its
Xi and X ′

i, either with all Xi,j to the right of the Xi,j or the other way around.
(3) All clause-literal paths leave from their clause vertices to the right, and one
path per clause leaves horizontally to the right.

We claim that TAR(G) ≥ 60◦ if and only if the initial 3SAT formula is
satisfiable. For the one direction, consider a satisfying truth assignment of the
formula. We draw the variable gadgets with all true literal sides to the right and
scaled (via the connector gadgets) such that different gadgets have their vertices
at different heights, and we draw the clause-literal paths as indicated in Fig. 3.
For the other direction, consider a drawing of C with TAR(D) = 60◦. Using the
straight lines �1 and �2 sketched in Fig. 2(b), one can show that every clause-
literal path that leaves the clause vertex horizontally must end at a literal vertex
facing to the right. Setting the according literals to true gives a non-contradicting
variable assignment that in turn fulfills all clauses. ��

4 Conclusion

In this work we have shown that, up to a finite number of well specified excep-
tions of constant size, any graph G with TAR(G) > 60◦ has at most 2n − 6
edges. In addition we have been able to obtain similar bounds for graphs with
TAR(G) ≥ 90◦ and TAR(G) > 120◦: For graphs with TAR(G) ≥ 90◦ we have
m ≤ 2n − 2

√
n and for TAR(G) > 120◦ we have m ≤ n for n ≥ 7, which is best

possible. We conjecture that almost all graphs with TAR(G) > k−2
k 90◦ have at

most 2n − 2 − 
k
2 � edges.



Graphs with Large Total Angular Resolution 199

From a computational point of view, we have proven that finding a drawing
of a given graph with total angular resolution at least 60◦ is NP-hard. The same
was known before for at least 90◦ [8]. On the other hand, for large angles, the
recognition problem eventually becomes easy (for example, G can be drawn with
TAR(G) > 120◦ if and only if it is the union of cycles of at least 7 vertices and
arbitrary paths). This yields the following open problem: At which angle(s) does
the decision problem change from NP-hard to polynomially solvable?

References

1. Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar
graphs. J. Comb. Theory Ser. A 114, 563–571 (2007). https://doi.org/10.1016/j.
jcta.2006.08.002

2. Aichholzer, O., Korman, M., Okamoto, Y., Parada, I., Perz, D., van Renssen, A.,
Vogtenhuber, B.: Graphs with large total angular resolution (2019). https://arxiv.
org/abs/1908.06504v1

3. Argyriou, E.N., Bekos, M.A., Symvonis, A.: The straight-line RAC drawing prob-
lem Is NP-hard. In: Černá, I., et al. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp.
74–85. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18381-2 6

4. Argyriou, E.N., Bekos, M.A., Symvonis, A.: Maximizing the total resolution of
graphs. Comput. J. 56(7), 887–900 (2013). https://doi.org/10.1093/comjnl/bxs088

5. Bekos, M.A., Förster, H., Geckeler, C., Holländer, L., Kaufmann, M., Spallek,
A.M., Splett, J.: A heuristic approach towards drawings of graphs with high cross-
ing resolution. In: Biedl, T., Kerren, A. (eds.) GD 2018. LNCS, vol. 11282, pp.
271–285. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04414-5 19

6. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings.
Theoret. Comput. Sci. 412(39), 5156–5166 (2011). https://doi.org/10.1016/j.tcs.
2011.05.025

7. Dujmovic, V., Gudmundsson, J., Morin, P., Wolle, T.: Notes on large angle crossing
graphs. Chic. J. Theor. Comput. Sci. 4, 1–14 (2011). https://doi.org/10.4086/cjtcs.
2011.004

8. Formann, M., Hagerup, T., Haralambides, J., Kaufmann, M., Leighton, F.T.,
Symvonis, A., Welzl, E., Woeginger, G.J.: Drawing graphs in the plane with
high resolution. SIAM J. Comput. 22, 1035–1052 (1993). https://doi.org/10.1137/
0222063

9. Huang, W.: Using eye tracking to investigate graph layout effects. In: 2007 6th
International Asia-Pacific Symposium on Visualization, pp. 97–100. IEEE (2007).
https://doi.org/10.1109/APVIS.2007.329282

10. Huang, W., Eades, P., Hong, S.H., Lin, C.: Improving multiple aesthetics produces
better graph drawings. J. Vis. Lang. Comput. 24(4), 262–272 (2013). https://doi.
org/10.1016/j.jvlc.2011.12.002

11. Huang, W., Hong, S.H., Eades, P.: Effects of crossing angles. In: 2008 IEEE
Pacific Visualization Symposium, pp. 41–46 (2008). https://doi.org/10.1109/
PACIFICVIS.2008.4475457

12. Kreveld, M.: The quality ratio of RAC drawings and planar drawings of planar
graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 371–
376. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18469-7 34

https://doi.org/10.1016/j.jcta.2006.08.002
https://doi.org/10.1016/j.jcta.2006.08.002
https://arxiv.org/abs/1908.06504v1
https://arxiv.org/abs/1908.06504v1
https://doi.org/10.1007/978-3-642-18381-2_6
https://doi.org/10.1093/comjnl/bxs088
https://doi.org/10.1007/978-3-030-04414-5_19
https://doi.org/10.1016/j.tcs.2011.05.025
https://doi.org/10.1016/j.tcs.2011.05.025
https://doi.org/10.4086/cjtcs.2011.004
https://doi.org/10.4086/cjtcs.2011.004
https://doi.org/10.1137/0222063
https://doi.org/10.1137/0222063
https://doi.org/10.1109/APVIS.2007.329282
https://doi.org/10.1016/j.jvlc.2011.12.002
https://doi.org/10.1016/j.jvlc.2011.12.002
https://doi.org/10.1109/PACIFICVIS.2008.4475457
https://doi.org/10.1109/PACIFICVIS.2008.4475457
https://doi.org/10.1007/978-3-642-18469-7_34


Arrangements



Computing Height-Optimal
Tangles Faster

Oksana Firman1(B), Philipp Kindermann1 , Alexander Ravsky2,
Alexander Wolff1 , and Johannes Zink1

1 Institut für Informatik, Universität Würzburg, Würzburg, Germany
oksana.firman@uni-wuerzburg.de

2 National Academy of Sciences of Ukraine, Lviv, Ukraine
alexander.ravsky@uni-wuerzburg.de

Abstract. We study the following combinatorial problem. Given a set
of n y-monotone wires, a tangle determines the order of the wires on
a number of horizontal layers such that the orders of the wires on any
two consecutive layers differ only in swaps of neighboring wires. Given
a multiset L of swaps (that is, unordered pairs of numbers between 1
and n) and an initial order of the wires, a tangle realizes L if each pair of
wires changes its order exactly as many times as specified by L. The aim
is to find a tangle that realizes L using the smallest number of layers.
We show that this problem is NP-hard, and we give an algorithm that
computes an optimal tangle for n wires and a given list L of swaps in

O((2|L|/n2 + 1)n
2/2 · ϕn · n) time, where ϕ ≈ 1.618 is the golden ratio.

We can treat lists where every swap occurs at most once in O(n!ϕn)
time. We implemented the algorithm for the general case and compared
it to an existing algorithm. Finally, we discuss feasibility for lists with a
simple structure.

1 Introduction

The subject of this paper is the visualization of so-called chaotic attractors,
which occur in chaotic dynamic systems. Such systems are considered in physics,
celestial mechanics, electronics, fractals theory, chemistry, biology, genetics, and
population dynamics. Birman and Williams [3] were the first to mention tangles
as a way to describe the topological structure of chaotic attractors. They inves-
tigated how the orbits of attractors are knotted. Later Mindlin et al. [6] showed
how to characterize attractors using integer matrices that contain numbers of
swaps between the orbits. Our research is based on a recent paper of Olszewski
et al. [7]. In the framework of their paper, one is given a set of wires that hang
off a horizontal line in a fixed order, and a multiset of swaps between the wires;
a tangle then is a visualization of these swaps, i.e., an order in which the swaps
are performed, where only adjacent wires can be swapped and disjoint swaps
can be done simultaneously. For an example of a list of swaps (described by an

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 203–215, 2019.
https://doi.org/10.1007/978-3-030-35802-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_16&domain=pdf
http://orcid.org/0000-0001-5764-7719
http://orcid.org/0000-0001-5872-718X
http://orcid.org/0000-0002-7398-718X
https://doi.org/10.1007/978-3-030-35802-0_16


204 O. Firman et al.

(n × n)-matrix) and a tangle that realizes this list, see Fig. 1. Olszewski et al.
gave an algorithm for minimizing the height of a tangle. They didn’t analyze
the asymptotic running time of their algorithm (which we estimate below), but
tested it on a benchmark set.

Wang [8] used the same optimization criterion for tangles, given only the final
permutation. She showed that there is always a height-optimal tangle where no
swap occurs more than once. She used odd-even sort, a parallel variant of bubble
sort, to compute tangles with at most one layer more than the minimum. Bereg
et al. [1,2] considered a similar problem. Given a final permutation, they showed
how to minimize the number of bends or moves (which are maximal “diagonal”
segments of the wires).

Framework, Terminology, and Notation. We modify the terminology of
Olszewski et al. [7] in order to introduce a formal algebraic framework for the
problem. Given n wires, a (swap) list L = (lij) of order n is a symmetric
n × n matrix with non-negative entries and zero diagonal. The length of L is
|L| =

∑
i<j lij . A list L′ = (l′ij) is a sublist of L if l′ij ≤ lij for each i, j ∈ [n]. A

list is simple if all its entries are zeros or ones.
A permutation is a bijection of the set [n] = {1, . . . , n} onto itself. The set Sn

of all permutations of the set [n] is a group whose multiplication is a composition
of maps (i.e., (πσ)(i) = π(σ(i)) for each pair of permutations π, σ ∈ Sn and each
i ∈ [n]). The identity of the group Sn is the identity permutation idn. We write
a permutation π ∈ Sn as the sequence of numbers π−1(1)π−1(2) . . . π−1(n). For
instance, the permutation π of [4] with π(1) = 3, π(2) = 4, π(3) = 2, and
π(4) = 1 is written as 4312. We denote the set of all permutations of order 2
in Sn by Sn,2, that is, π ∈ Sn,2 if and only if ππ = idn and π �= idn. For example,
2143 ∈ S4,2.

For i, j ∈ [n] with i �= j, the swap ij is the permutation that exchanges i
and j, whereas the other elements of [n] remain fixed. A set S of swaps is
disjoint if each element of [n] participates in at most one swap of S. Therefore,
the product

∏
S of all elements of a disjoint set S of swaps does not depend

on the order of factors and belongs to Sn,2. Conversely, for each permutation
ε ∈ Sn,2 there exists a unique disjoint set S(ε) of swaps such that ε =

∏
S(ε).

A permutation π ∈ Sn supports a permutation ε ∈ Sn,2 if, for each swap
ij ∈ S(ε), i and j are neighbors in the sequence π. By induction with respect
to n, we can easily show that any permutation π ∈ Sn supports exactly Fn+1−1
permutations of order 2, where Fn is the n-th number in the Fibonacci sequence.

Permutations π and σ are adjacent if there exists a permutation ε ∈ Sn,2

such that π supports ε and σ = πε. In this case, σε = πεε = π and σ supports ε,
too. A tangle T of height h is a sequence 〈π1, π2, . . . , πh〉 of permutations in
which every two consecutive permutations are adjacent. A tangle can also be
viewed as a sequence of h − 1 layers, each of which is a set of disjoint swaps.
A subtangle of T is a sequence 〈πk, πk+1, . . . , π�〉 of consecutive permutations
of T . For a tangle T , we define L(T ) = (lij) as the symmetric n × n matrix with
zero diagonal, where lij is the number of occurrences of swap ij in T . We say



Computing Height-Optimal Tangles Faster 205

Ln =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 . . . 1 0 2
1 0 1 . . . 1 2 0
1 1 0 . . . 1 0 2
...
...
...
. . .

...
...

...
1 1 1 . . . 0 0 2
0 2 0 . . . 0 0 n − 1
2 0 2 . . . 2 n − 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(The bold zeros and twos must be
swapped if n is even.) πh−1

π2

πi

· · ·1 2 n−2 n−1 n

· · ·n−2 1 n−1 n2

idn

π4

idnLn

π1

πh

Fig. 1. A list Ln for n wires and a tangle of minimum height h = 3n − 4 realizing Ln

for idn. Here, n = 7. The tangle is not simple because π2 = π4.

that T realizes the list L(T ). To make the reader familiar with our formalism,
we observe the following.

Observation 1. The tangle in Fig. 1 realizes the list Ln specified there; all tan-
gles that realize Ln have the same order of swaps along each wire.

Proof. For i, j ∈ [n − 2] with i �= j, the wires i and j swap exactly once, so
their order reverses. Additionally, each wire i ∈ [n − 2] swaps twice with the
wire k ∈ {n − 1, n} that has the same parity as i. Observe that wire i ∈ [n − 2]
must first swap with each j ∈ [n − 2] with j > i, then twice with the correct
k ∈ {n−1, n}, say k = n, and finally with each j′ ∈ [n−2] with j′ < i. Otherwise,
if i swaps with i−1 before swapping with n, then i cannot reach n because i−1
swaps only with n− 1 among the two wires {n− 1, n} and thus separates i from
n. This establishes the unique order of swaps along each wire. ��

A list is π-feasible if it can be realized by a tangle starting from a permuta-
tion π. An idn-feasible list is feasible. For example, the list defined by the two
swaps 13 and 24 is not feasible.

By E, we denote the (simple) list E = (eij) with eij = 1 if i �= j, and
eij = 0 otherwise. This list is feasible for any permutation; a tangle realizing E
is commonly known as pseudo-line arrangement. So tangles can be thought of
as generalizations of pseudo-line arrangements where the numbers of swaps are
prescribed and even feasibility becomes a difficult question.

A list L = (lij) can also be considered a multiset of swaps, where lij is the
multiplicity of swap ij. By ij ∈ L we mean lij > 0. A tangle is simple if all its
permutations are distinct. Note that the height of a simple tangle is at most n!.

The height h(L) of a feasible list L is the minimum height of a tangle that
realizes L. A tangle T is optimal if h(T ) = h(L(T )). In the Tangle-Height
Minimization problem, we are given a swap list L and the goal is to compute
an optimal tangle T realizing L. As initial wire order, we always assume idn.



206 O. Firman et al.

Our Contribution. We show that Tangle-Height Minimization is NP-hard
(see Sect. 2). We give an exact algorithm for simple lists running in O(n!ϕn) time,
where ϕ =

√
5+1
2 ≈ 1.618 is the golden ratio, and an exact algorithm for general

lists running in O((2|L|/n2+1)n2/2ϕnn) time, which is polynomial in |L| for fixed
n ≥ 2 (see Sect. 3). We implemented the algorithm for general lists and compared
it to the algorithm of Olszewski et al. [7] using their benchmark set (see Sect. 4).
We show that the asymptotic runtimes of the algorithms of Olszewski et al. [7]
for simple and for general lists are O(ϕ2|L|5−|L|/nn) and 2O(n2), respectively. In
Sect. 5, we discuss feasibility for lists with simple structure.

2 Complexity

We show the NP-hardness of Tangle-Height Minimization by reduction from
3-Partition. An instance of 3-Partition is a multiset A of 3m positive integers
n1, . . . , n3m, and the task is to decide whether A can be partitioned into m groups
of three elements each that all sum up to the same value B =

∑3m
i=1 ni/m.

3-Partition remains NP-hard if restricted to instances where B is polynomial
in m, and B/4 < ni < B/2 for each i ∈ [3m] [5]. We reduce from this version.

Theorem 1. The decision version of Tangle-Height Minimization is NP-
hard.

Proof. Given an instance A of 3-Partition, we construct in polynomial time
a list L of swaps such that there is a tangle T realizing L with height at most
H = 2m4B + 7m2 if and only if A is a yes-instance of 3-Partition.

In L, we use two inner wires ω and ω′ with ω′ = ω + 1 that swap 2m times.
Thus, in a tangle realizing L, ω and ω′ provide a twisted structure with m + 1
“loops” of ω and ω′ (ω on the left side and ω′ on the right side) and m “loops”
of ω′ and ω (ω′ on the left side and ω on the right side). We call them ω–ω′ loops
and ω′–ω loops, respectively. The first ω–ω′ loop is open, that is, it is bounded
by the start permutation and the first ω–ω′ swap. Symmetrically, the last ω–ω′

loop is open. All other ω–ω′ loops and all ω′–ω loops are closed, that is, they are
bounded by two consecutive ω–ω′ swaps. Apart from ω and ω′, the list L uses
three different types of wires. Refer to Fig. 2 for an illustration.

We use the first type of wires of L to represent the numbers in A. To
this end, we introduce wires α1, α2, . . . , α3m, which we call α-wires, and wires
α′
1, α

′
2, . . . , α

′
3m, which we call α′-wires. Initially, these wires are ordered α3m <

· · · < α1 < ω < ω′ < α′
1 < · · · < α′

3m. For each i ∈ [3m], we have 2m3ni swaps
αi–α′

i. We use the factor 2 in the number of αi–α′
i swaps to make the initial per-

mutation and the final permutation of this part the same. The factor m3 helps us
to prove the correctness because it dominates the number of intermediate swaps,
which are swaps that cannot occur on the same layer as any αi–α′

i swap. The
intermediate swaps together will require a total height of only O(m2). Clearly,
all ω–ω′ swaps are intermediate swaps, but we will identify more below.



Computing Height-Optimal Tangles Faster 207

Mn1

Mn5

Mn7

Mn2

Mn4

Mn9

Mn3

Mn6

Mn8

α1

α1

ω ω′

ω ω′

β1β3γ1 γ3γ2 1β223 β′
3γ′

1 γ′
3γ′

2
′
1 β′

2
′
2

′
3β′

1

β3γ1 γ3γ21 β2 2 3β1 β′
1β′

3 γ′
1 γ′

3γ′
2

′
1β′

2
′
2

′
3

α9 α1· · · α′
1 α′

9

α9 α1· · · α′
1 α′

9· · ·

2
M

B

M
B

3
M

B

2
M

B

M
B

3
M

B

· · ·

Fig. 2. Example of our reduction from 3-Partition to Tangle-Height Minimization
with A1 = {n1, n5, n7}, A2 = {n2, n4, n9}, A3 = {n3, n6, n8}, m = 3, B =

∑3m
i=1 ni/m,

and M = 2m3.



208 O. Firman et al.

We now argue why no two αi–α′
i swaps can appear on the same layer. Clearly,

the same swap cannot appear multiple times on the same layer. Also, there
cannot be two swaps αi–α′

i and αj–α′
j with i �= j on the same layer because L

does not contain any swap αi–α′
j or αj–α′

i. For the α-wires and the α′-wires to
swap with each other, for each i ∈ [3m], L has two αi–ω′ swaps and two α′

i–ω
swaps, but no αi–ω swaps and no α′

i–ω′ swaps. Therefore, αi–α′
i swaps can only

occur within ω′–ω loops. Every pair of α-wires swaps twice, and so does every
pair of α′-wires. This allows each α-wire to once pass all α-wires to its right in
order to reach an ω′–ω loop, and then to go back. Observe that the order in
which the α-wires do this is not fixed. Note that some of the α–ω′ and α′–ω
swaps are intermediate swaps that are needed for the α- and α′-wires to enter
and to leave the ω′–ω loops.

Using the second type of wires, we now build a rigid structure around the
ω–ω′ loops. We use the construction of Fig. 1 on both sides of the wires ω and ω′,
as follows. For each i ∈ [m], we introduce wires βi, δi and β′

i, δ
′
i such that δm <

βm < · · · < δ1 < β1 < α3m and α′
3m < δ′

1 < β′
1 < · · · < δ′

m < β′
m. On each side,

every pair of wires of the second type swaps exactly once – as the green wires
in Fig. 1. Hence, in the final permutation, their order is reversed on both sides.
For every i ∈ [m], each of the wires βi and δ′

i has two swaps with ω and each of
the wires δi and β′

i has two swaps with ω′. To allow them to pass the α-wires,
each β- and each δ-wire swaps twice with each α-wire. The same holds on the
right-hand side for the α′-, β′- and δ′-wires. Note that this does not restrict the
choice of the ω′–ω loops where the αi–α′

i swaps take place. This is important for
the correctness of our reduction.

Further note that some of the swaps of the β- and δ-wires with the wires ω,
ω′, and the α-wires are intermediate swaps. For example, β1 has to swap with
all α-wires and twice with the wire ω before any swap of an α- and an α′-wire
can occur. Accordingly, some of the swaps of the β′- and δ′-wires with ω, ω′, and
the α′-wires are intermediate swaps as well. Still, it is obvious that the number
of layers needed to accommodate all intermediate swaps is O(m2).

We denote the third type of wires by γi, γ
′
i for i ∈ [m]. On the left side, the

γ-wires are initially on the far left, that is, we set γ1 < · · · < γm < δm. In the
final permutation π, these γ-wires end up in between the β- and δ-wires in the
order π(γ1) < π(β1) < π(δ1) < · · · < π(γm) < π(βm) < π(δm). On the right
side, the γ′-wires start in a similarly interwoven configuration: δ′

1 < β′
1 < γ′

1 <
· · · < δ′

m < β′
m < γ′

m. The γ′-wires end up in order on the far right; see Fig. 2.
To ensure that each ω′–ω loop has a fixed minimum height, we introduce

many swaps between the γ- and β-wires, and between the γ′- and β′-wires: For
i ∈ [m], every γi has (m− i+1) ·2m3B swaps with βi, and every γ′

i has i ·2m3B
swaps with β′

i. Additionally, every γi has one swap with every βj and δj with
j < i, and every γ′

i has one swap with every β′
j and δ′

j with j > i. Recall that the
subinstance of L induced by δm, βm, . . . , δ1, β1, ω, ω′ is the same as the instance
Ln with wires 1, 2, . . . , n in Fig. 1. Observe that, for any realization of the list
Ln, the order of the swaps along each wire is the same as in the tangle on the
right side. Therefore, by Observation 1, no γi–βi swap is above the i-th ω–ω′



Computing Height-Optimal Tangles Faster 209

loop; see Fig. 2. (Recall that we start counting from the first open ω–ω′ loop.)
Accordingly, no γ′

i–β′
i swap is below the (i + 1)-th ω–ω′ loop. Since there are

(m − i + 1) · 2m3B swaps of γi–βi, occurring on different layers, the subtangle
below and including the i-th ω–ω′ loop has height at least (m − i + 1) · 2m3B.
Accordingly, since there are i·2m3B swaps of γ′

i–β′
i, occurring on different layers,

the subtangle above and including the (i + 1)-th ω–ω′ loop has height at least
i · 2m3B. Thus, the whole tangle has height at least 2m4B.

It remains to prove that there is a tangle T realizing L with height at most
H = 2m4B + 7m2 if and only if A is a yes-instance of 3-Partition.

First, assume that A is a yes-instance. Let L be a tangle constructed in the
same way as the example given in Fig. 2. Then it is clear that T realizes L. We
now estimate the height of T . For each partition of three elements ni, nj , nk

of a solution of A, we assign exactly one ω′–ω loop, in which we let the swaps
of the pairs (αi, α

′
i), (αj , α

′
j), (αk, α′

k) occur. Therefore, every ω′–ω loop has
height 2m3B + c, where c is a small constant for the involved wires to enter and
leave the loop. Observe that the additional height for the intermediate swaps
we need at the beginning, at the end, and between each two consecutive ω′–
ω loops is always at most 6m + k for some small constant k. So in total, the
height of the constructed tangle is m · (2m3B + c) + (m + 1) · (6m + k) =
2m4B + 6m2 + (c + k + 6)m + k. This is at most H for m > c + 2k + 6.

Now, assume that A is a no-instance. This means that any tangle realizing L
has an ω′–ω loop of height at least 2m3(B + 1) because there is no 3-Partition
of A and, for each unit of an item in A, there are 2m3 swaps. Assume that the
i-th ω′–ω loop has height at least 2m3(B + 1). We know that the subtangle
from the very beginning to the end of the i-th ω–ω′ loop has height at least
(i − 1) · 2m3B and the subtangle from the beginning of the (i + 1)-th ω–ω′ loop
to the very end has height at least (m − i) · 2m3B. In between, there is the i-th
ω′–ω loop with height 2m3(B + 1). Summing these three values up, we have a
total height of at least 2m4B + 2m3. Since this is greater than H for m > 3.5,
we conclude that L cannot be realized by a tangle of height at most H, and thus
our reduction is complete. ��

3 Exact Algorithms

The two algorithms that we describe in this section test whether a given list is
feasible and, if yes, construct an optimal tangle realizing the list.

For a permutation π ∈ Sn and a list L = (lij), we define a map πL : [n] →
[n], i �→ π(i) + |{j : π(i) < π(j) ≤ n and lij odd}| − |{j : 1 ≤ π(j) <
π(i) and lij odd}|. For each wire i ∈ [n], πL(i) is the position of the wire after
all swaps in L have been applied to π. A list L is called π-consistent if πL ∈ Sn,
or, more rigorously, if πL induces a permutation of [n]. An idn-consistent list is
consistent. For example, the list {12, 23, 13} is consistent, whereas the list {13}
is not. If L is not consistent, then it is clearly not feasible. However, not all
consistent lists are feasible e.g., the list {13, 13} is consistent but not feasible.
For a list L = (lij), we define 1(L) = (lij mod 2). Since idn L = idn 1(L), the list



210 O. Firman et al.

L is consistent if and only if 1(L) is consistent. We can compute 1(L) and check
its consistency in O(n + |1(L)|) = O(n2) time. Hence, in the sequel we assume
that all lists are consistent. For any permutation π ∈ Sn, we define the simple
list L(π) = (lij) such that for 0 ≤ i < j ≤ n, lij = 0 if π(i) < π(j), and lij = 1
otherwise.

We use the following two lemmas which are proved in the full version [4].

Lemma 1. For every permutation π ∈ Sn, L(π) is the unique simple list with
idn L(π) = π.

Lemma 2. For every tangle T = 〈π1, π2, . . . , πh〉, we have π1L(T ) = πh.

Simple lists. Let L be a consistent simple list. Wang’s algorithm [8] creates a
simple tangle from idn L, so L is feasible. Let T = (idn =π1, π2, . . . , πh= idn L)
be any tangle such that L(T ) is simple. Then, by Lemma 2, idn L(T ) = πh.
By Lemma 1, L(πh) is the unique simple list with idn L(πh) = πh = idn L, so
L(T ) = L(πh) = L and thus T is a realization of L.

We compute an optimal tangle realizing L = (lij) as follows. Consider
the graph GL whose vertex set V (GL) consists of all permutations π ∈ Sn

with L(π) ≤ L (componentwise). A directed edge (π, σ) between vertices
π, σ ∈ V (GL) exists if and only if π and σ are adjacent as permutations and
L(π) ∩ L(π−1σ) = ∅; the latter means that the set of (disjoint) swaps whose
product transforms π to σ cannot contain swaps from the set whose product
transforms idn to π. The graph GL has at most n! vertices and maximum degree
Fn+1 − 1, see introduction (page 2). Notice, that Fn = (ϕn − (−ϕ)−n)/

√
5 ∈

Θ(ϕn). Furthermore, for each h ≥ 0, there is a natural bijection between tangles
of height h+1 realizing L and paths of length h in the graph GL from the initial
permutation idn to the permutation idn L. A shortest such path can be found
by BFS in O(E(GL)) = O(n!ϕn) time.

Theorem 2. For a simple list of order n, Tangle-Height Minimization can
be solved in O(n!ϕn) time.

General lists. W.l.o.g., assume that |L| ≥ n/2; otherwise, there is a wire k ∈ [n]
that doesn’t belong to any swap. This wire splits L into smaller lists with inde-
pendent realizations. (If there is a swap ij with i < k < j, then L is infeasible.)

Let L = (lij) be the given list. We compute an optimal tangle realizing L (if it
exists) as follows. Let λ be the number of distinct sublists of L. We consider them
ordered non-decreasingly by their length. Let L′ be the next list to consider. We
first check its consistency by computing the map idn L′. If L′ is consistent, we
compute an optimal realization T (L′) of L′ (if it exists), adding a permutation
idn L′ to the end of a shortest tangle T (L′′) = 〈π1, . . . , πh〉 with πh adjacent
to idn L′ and L′′ + L(〈πh, idn L′〉) = L′. This search also checks the feasibility
of L′ because such a tangle T (L′) exists if and only if the list L′ is feasible. Since
there are Fn+1 − 1 permutations adjacent to idn L′, we have to check at most
Fn+1−1 lists L′′. Hence, in total we spend O(λ(Fn+1−1)n) time for L. Assuming
that n ≥ 2, we bound λ as follows, where we obtain the first inequality from



Computing Height-Optimal Tangles Faster 211

the inequality between arithmetic and geometric means, the second one from
Bernoulli’s inequality, and the third one from 1 + x ≤ ex.

λ =
∏

i<j

(lij +1) ≤
(∑

i<j(lij + 1)
(
n
2

)

)(n2)
=

(
|L|
(
n
2

) + 1

)(n2)
≤

(
2|L|
n2

+ 1
)n2

2

≤ e|L|.

Theorem 3. For a list L of order n, Tangle-Height Minimization can be
solved in O((2|L|/n2 + 1)n2/2 · ϕn · n) time.

4 Theoretical and Experimental Comparison

In order to be able to compare the algorithm of Olszewski et al. [7] to ours,
we first analyze the asymptotic runtime behavior of the algorithm of Olszewski
et al. Their algorithm constructs a search tree whose height is bounded by the
height h(L) of an optimal tangle for the given list L. The tree has 1 + d + d2 +
· · · + dh(L)−1 = (dh(L) − 1)/(d − 1) vertices, where d = Fn+1 − 1 is a bound
on the number of edges leaving a vertex. Neglecting the time it takes to deal
with each vertex, the total running time is Ω(ϕ(n+1)(h(L)−1) ·5−(h(L)−1)/2). Since
2|L|/n ≤ h(L)−1 ≤ |L|, this is at least Ω(ϕ2|L| ·5−|L|/n ·n), which is exponential
in |L| for fixed n ≥ 2 and, hence, slower than our algorithm for the general case
if we assume that |L| ≥ n/2 (see Theorem 3).

It is known (see, e.g., Wang [8]) that, for any simple list L, h(L) ≤ n + 1.
This implies that, on simple lists, the algorithm of Olszewski et al. runs in
O(ϕ(n+1)n · 5−n · n) = 2O(n2) time, whereas our algorithm for simple lists runs
in O(n!ϕn) = 2O(n log n) time.

We implemented the algorithm for general lists (see Theorem 3) and com-
pared the running time of our implementation with the one of Olszewski et al. [7].
Their code and a database of all possible elementary linking matrices (most of
them non-simple) of 5 wires (14 instances), 6 wires (38 instances), and 7 wires
(115 instances) are available at https://gitlab.uni.lu/PCOG. We used their code
and their benchmarks to compare our implementations. Both their and our code
is implemented in Python3.

The matrices in the benchmark are quite small: the largest instance for 5
wires has 8 swaps, the largest instance for 6 wires has 15 swaps, and the largest
instance for 7 wires has 27 swaps. Further, the algorithm of Olszewski et al.
could not solve any of the six instances with 7 wires and ≥22 swaps within two
hours (while our algorithm solved four of them within 10 s and the other two
within 50 s), so we removed them from the data set. For better comparisons, we
additionally created 10 random matrices each for n = 5 and |L| = 9, . . . , 49, for
n = 6 and |L| = 16, . . . , 49, and for n = 7 and |L| = 22, . . . , 49. To this end,
we randomly and uniformly generated vectors of length n(n + 1)/2 and sum |L|
by drawing samples from a multinomial distribution and rejecting them if the
corresponding swap list is not feasible. This gave us 414 instances for 5 wires,
358 instances for 6 wires, and 379 instances for 7 wires in total. Our source code,

https://gitlab.uni.lu/PCOG


212 O. Firman et al.

Fig. 3. Comparison of our algorithm (blue circles) with the algorithm of Olszewski
et al. [7] (red triangles). The means are plotted as a trend curve. The elapsed time is
plotted on a log-scale. The shaded regions correspond to randomly generated instances.
(Color figure online)

the benchmarks, and the experimental data are available at https://github.com/
PhKindermann/chaotic-attractors.

We ran our experiments on a single compute node of the High Performance
Computing Cluster of the University of Würzburg1. This node consists of two
Intel Xeon Gold 6134 processors, both with eight cores of 3.20 GHz. The node
runs under Debian 4.9.144-3 and has 384 GB of memory. Both algorithms used
only a single core. We gave both algorithms 12 h of computation time for each
n = 5, 6, 7 to solve as many instances as possible (ordered by the number of
swaps), stopping an instance after 1 h if no solution has been found yet. To avoid
noise, we repeated these experiments five times and took the arithmetic mean.
The results are summarized in Fig. 3.

Among the benchmark instances of Olszewski et al., our algorithm could
solve almost all in less than 1 s, and the maximum running time was 8 s for one
instance. The benchmark instances that could not be solved within 2 h by the
algorithm of Olszewski et al. could also all be solved in less than 1 min by our
algorithm. We solved all 414 instances for 5 wires within 2 h. Within the 12-hour
time, we solved 303 instances with 6 wires and 333 instances with 7 wires. The

1 https://www.rz.uni-wuerzburg.de/dienste/rzserver/high-performance-computing/.

https://github.com/PhKindermann/chaotic-attractors
https://github.com/PhKindermann/chaotic-attractors
https://www.rz.uni-wuerzburg.de/dienste/rzserver/high-performance-computing/


Computing Height-Optimal Tangles Faster 213

algorithm by Olszewski et al. solved 163 instances with 5 wires, 97 instances
with 6 wires, and 120 instances with 8 wires, within 12 h each. Our algorithm
used at most 2 GB memory, whereas for the algorithm of Olszewski et al. the
384 GB RAM did not suffice for many instances.

5 Deciding Feasibility

Since computing a tangle of minimum height realizing a given list turned out
to be NP-hard, the question arises whether it is already NP-hard to decide if a
given list is feasible. As we could not answer this question in its full generality,
we are investigating the feasibility for special classes of lists in this section.

Recall that for a list L = (lij), we defined 1(L) = (lij mod 2), see Sect. 3.
Now we also define 2(L) = (l′ij), where l′ij = 0 if lij = 0, l′ij = 1 if lij is odd, and
l′ij = 2 otherwise. Clearly, π1(L) = π2(L) = πL for each π ∈ Sn. A list (lij) is
even if all lij are even, and odd if all non-zero lij are odd. A list L is even if and
only if the list 1(L) is the zero list. A list L is odd if and only if 1(L) = 2(L).

Simple Lists. If we restrict our study to simple lists, we can easily decide feasi-
bility. We use the following lemma, which is well-known (see, e.g., Wang [8]).

Lemma 3 (Wang [8]). For any n ≥ 2 and permutations π, σ ∈ Sn, there is a
tangle T of height at most n + 1 that starts from π, ends at σ, and the list L(T )
is simple.

Proposition 1. A simple list L is feasible if and only if L is consistent. Thus,
we can check the feasibility of L in O(n + |L|) time.

Proof. Clearly, if L is feasible, then L is also consistent. If L is consistent,
then idn L is a permutation. By Lemma 3, there exists a tangle T which starts
from idn, ends at idn L, and the list L(T ) is simple. By Lemma 2, πL(T ) = πL.
By Lemma 1, L(T ) = L. So L is also feasible. As discussed in the beginning of
Sect. 3, we can check the consistency of L in O(n+ |L|) time, which is equivalent
to checking the feasibility of L. ��

Odd Lists. For odd lists, feasibility reduces to that of simple lists. For A ⊆ [n],
let LA be the list that consists of all swaps ij of L such that i, j ∈ A. We prove
the following Proposition 2 in the full version [4].

Proposition 2. For n ≥ 3 and an odd list L, the following statements are
equivalent:

1. The list L is feasible.
2. The list 1(L) is feasible.
3. For each triple A ⊆ [n], the list LA is feasible.
4. For each triple A ⊆ [n], the list 1(LA) is feasible.
5. The list L is consistent.
6. The list 1(L) is consistent.



214 O. Firman et al.

7. For each triple A ⊆ [n], the list LA is consistent.
8. For each triple A ⊆ [n], the list 1(LA) is consistent.

Note that, for any feasible list L, it does not necessarily hold that 2(L) is
feasible; see, e.g. list Ln from Observation 1.

Even Lists. For even lists, it is not as clear as for odd lists whether we can
decide feasibility efficiently. An even list is always consistent, since it does not
contain odd swaps and the final permutation is the same as the initial one.
We conjecture that the following characterization is true, and we give some
alternative formulations (see Proposition 3).

We say that a list (lij) is non-separable if, for every 1 ≤ i < k < j ≤ n,
lik = lkj = 0 implies lij = 0. Clearly, non-separability is a necessary condition
for a list to be feasible. For even lists, we conjecture that this is also sufficient.
Note that any triple A ⊆ [n] of an even list is feasible if and only if it is non-
separable (which is not true for general lists, e.g., L = {12, 23} is not feasible).

Conjecture 1. Every non-separable even list L is feasible.

We have verified the correctness of Conjecture 1 for n ≤ 8 by testing all
lists using a computer. Moreover, Conjecture 1 is true for sufficiently “rich” lists
according to the following lemma, which we prove in the full version [4].

Lemma 4. Every even non-separable list L = (lij) with lij ≥ n or lij = 0 for
every 1 ≤ i, j ≤ n is feasible.

We now give some alternative formulations of Conjecture 1. To this end, we
define a minimal feasible (even) list to be a(n even) list where we cannot remove
swaps to obtain another feasible (even) list without creating new zero-entries.
We say that a list is 0–2 if all its entries are either 0 or 2.

Proposition 3. The following claims are equivalent:

1. Every non-separable even list L is feasible. (Conjecture 1)
2. Every non-separable 0–2 list L is feasible.
3. For each feasible even list L, the list 2(L) is feasible.
4. Every minimal feasible even list L is a 0–2 list.

Proof. 1 ⇒ 2. By definition.
2 ⇒ 3. Since the list L is feasible, it is non-separable and, thus, also the

list 2(L) is non-separable. Since 2(L) is non-separable and 0–2 (because L is
even), 2(L) is feasible.

3 ⇒ 4. Clearly, a list L never has fewer swaps than 2(L). Therefore, all
minimal feasible lists are 0–2.

4 ⇒ 1. Let L = (lij) be an even non-separable list. By Lemma 4, the list
nL := (n·lij) is feasible. Let L′ be a minimal feasible even list that we obtain from
nL by removing swaps without creating new zero-entries. Since every minimal
feasible even list is 0–2 by assumption, we have L′ = 2(L). Hence, any tangle
realizing L′ can be extended to a tangle realizing L using the same procedure as
in the proof of Proposition 2 (2 ⇒ 1), so L is feasible. ��



Computing Height-Optimal Tangles Faster 215

6 Conclusions and Open Problems

Inspired by the practical research of Olszewski et al. [7], we have considered
tangle-height minimization. We have shown that the problem is NP-hard, but
we note that membership in NP is not obvious because the minimum height can
be exponential in the size of the input. We leave open the complexity of the
feasibility problem for general lists. Even if feasibility turns out to be NP-hard,
can we decide it faster than finding optimal tangles?

For the special case of simple lists, we have a faster algorithm, but its running
time of O(n!ϕn) is still depressing given that odd-even sort [8] can compute a
solution of height at most one more than the optimum in O(n2) time. This leads
to the question whether height-minimization is NP-hard for simple lists.

Our most tantalizing open problem, however, is whether Conjecture 1 holds.

Acknowledgments. We thank Thomas C. van Dijk for stimulating discussions and
the anonymous reviewers for helpful comments.

References

1. Bereg, S., Holroyd, A., Nachmanson, L., Pupyrev, S.: Representing permutations
with few moves. SIAM J. Disc. Math. 30(4), 1950–1977 (2016). https://doi.org/10.
1137/15M1036105. http://arxiv.org/abs/1508.03674

2. Bereg, S., Holroyd, A.E., Nachmanson, L., Pupyrev, S.: Drawing permutations with
few corners. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 484–
495. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03841-4 42. http://
arxiv.org/abs/1306.4048

3. Birman, J.S., Williams, R.F.: Knotted periodic orbits in dynamical systems–I:
Lorenz’s equation. Topology 22(1), 47–82 (1983). https://doi.org/10.1016/0040-
9383(83)90045-9

4. Firman, O., Kindermann, P., Ravsky, A., Wolff, A., Zink, J.: Computing height-
optimal tangles faster. Arxiv report (2019). http://arxiv.org/abs/1901.06548

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York (1979)

6. Mindlin, G., Hou, X.J., Gilmore, R., Solari, H., Tufillaro, N.B.: Classification of
strange attractors by integers. Phys. Rev. Lett. 64, 2350–2353 (1990). https://doi.
org/10.1103/PhysRevLett.64.2350

7. Olszewski, M., Meder, J., Kieffer, E., Bleuse, R., Rosalie, M., Danoy, G., Bouvry,
P.: Visualizing the template of a chaotic attractor. In: Biedl, T., Kerren, A. (eds.)
GD 2018. LNCS, vol. 11282, pp. 106–119. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-04414-5 8. http://arxiv.org/abs/1807.11853

8. Wang, D.C.: Novel routing schemes for IC layout part I: two-layer channel routing.
In: Proceedings of 28th ACM/IEEE Design Automation Conference (DAC 1991),
pp. 49–53 (1991). https://doi.org/10.1145/127601.127626

https://doi.org/10.1137/15M1036105
https://doi.org/10.1137/15M1036105
http://arxiv.org/abs/1508.03674
https://doi.org/10.1007/978-3-319-03841-4_42
http://arxiv.org/abs/1306.4048
http://arxiv.org/abs/1306.4048
https://doi.org/10.1016/0040-9383(83)90045-9
https://doi.org/10.1016/0040-9383(83)90045-9
http://arxiv.org/abs/1901.06548
https://doi.org/10.1103/PhysRevLett.64.2350
https://doi.org/10.1103/PhysRevLett.64.2350
https://doi.org/10.1007/978-3-030-04414-5_8
https://doi.org/10.1007/978-3-030-04414-5_8
http://arxiv.org/abs/1807.11853
https://doi.org/10.1145/127601.127626


On Arrangements of Orthogonal Circles

Steven Chaplick1 , Henry Förster2, Myroslav Kryven1(B),
and Alexander Wolff1

1 Universität Würzburg, Würzburg, Germany
myroslav.kryven@uni-wuerzburg.de

2 Universität Tübingen, Tübingen, Germany
foersth@informatik.uni-tuebingen.de

Dedicated to Honza Kratochv́ıl on his 60th birthday.

Abstract. In this paper, we study arrangements of orthogonal circles,
that is, arrangements of circles where every pair of circles must either be
disjoint or intersect at a right angle. Using geometric arguments, we show
that such arrangements have only a linear number of faces. This implies
that orthogonal circle intersection graphs have only a linear number of
edges. When we restrict ourselves to orthogonal unit circles, the resulting
class of intersection graphs is a subclass of penny graphs (that is, contact
graphs of unit circles). We show that, similarly to penny graphs, it is NP-
hard to recognize orthogonal unit circle intersection graphs.

1 Introduction

For the purpose of this paper, an arrangement is a (finite) collection of curves
such as lines or circles in the plane. The study of arrangements has a long
history; for example, Grünbaum [15] studied arrangements of lines in the pro-
jective plane. Arrangements of circles and other closed curves have also been
studied extensively [1,2,13,19,22]. An arrangement is simple if no point of the
plane belongs to more than two curves and every two curves intersect. A face
of an arrangement A in the projective or Euclidean plane P is a connected
component of the subdivision induced by the curves in A, that is, a face is a
component of P \ ⋃ A.

For a given type of curves, people have investigated the maximum number of
faces that an arrangement of such curves can form. In 1826, Steiner [23] showed
that a simple arrangement of straight lines can have at most

(
n
2

)
+

(
n
1

)
+

(
n
0

)

faces while an arrangement of circles can have at most 2
((

n
2

)
+

(
n
0

))
faces.

Alon et al. [2] and Pinchasi [22] studied the number of digonal faces, that
is, faces that are bounded by two edges, for various kinds of arrangements of

The full version of this article is available at ArXiv [5]. M.K. was supported by DAAD;
S.C. was supported by DFG grant WO758/11-1, H.F. was supported by DFG grant
Ka812/17-1.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 216–229, 2019.
https://doi.org/10.1007/978-3-030-35802-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_17&domain=pdf
http://orcid.org/0000-0003-3501-4608
http://orcid.org/0000-0001-5872-718X
https://doi.org/10.1007/978-3-030-35802-0_17


On Arrangements of Orthogonal Circles 217

α β
rα rβ

X

Cα Cβ

Y

Fig. 1. Circles α and β are orthogonal if and only if �CαXCβ is orthogonal.

circles. For example, any arrangement of n unit circles has O(n4/3 log n) digonal
faces [2] and at most n + 3 digonal faces if every pair of circles intersects [22],
whereas arrangements of circles with arbitrary radii have at most 20n−2 digonal
faces if every pair of circles intersects [2].

The same arrangements can, however, have quadratically many triangular
faces, that is, faces that are bounded by three edges. A lower bound exam-
ple with quadratically many triangular faces can be constructed from a simple
arrangement A of lines by projecting it on a sphere (disjoint from the plane con-
taining A) and having each line become a great circle. This is always possible
since the line arrangement is simple; for more details see [12, Section 5.1]. In
this process we obtain 2p3 triangular faces, where p3 is the number of triangular
faces in the line arrangement. The great circles on the sphere can then be trans-
formed into a circle arrangement in a different plane using the stereographic
projection. This gives rise to an arrangement of circles with 2p3 triangular faces
in this plane. Füredi and Palásti [14] provided simple line arrangements with
n2/3+O(n) triangular faces. With the argument above, this immediately yields
a lower bound of 2n2/3+O(n) on the number of triangular faces of arrangements
of circles. Felsner and Scheucher [13] showed that this lower bound is tight by
proving that an arrangement of pseudocircles (that is, closed curves that can
intersect at most twice and no point belongs to more than two curves) can have
at most 2n2/3 + O(n) triangular faces.

One can also specialize circle arrangements by fixing an angle (measured as
the angle between the two tangents at either intersection point) at which each
pair of intersecting circles intersect; this was recently discussed by Eppstein [10].
In this paper, we consider arrangements of circles with the restriction that each
pair of circles must intersect at a right angle. An arrangement of circles in which
each intersecting pair intersect at a right angle is called orthogonal. We make
the following simple observation regarding orthogonal circles; see Fig. 1.

Observation 1. Let α and β be two circles with centers Cα, Cβ and radii rα,
rβ, respectively. Then α and β are orthogonal if and only if r2α + r2β = |CαCβ |2.

We discuss further basic properties of orthogonal circles in Sect. 2. In par-
ticular, in an arrangement of orthogonal circles no two circles can touch and no
three circles can intersect at the same point.

The main result of our paper is that arrangements of n orthogonal circles have
at most 14n intersection points and at most 15n + 2 faces; see Theorem 1 (in
Sect. 3). This is different from arrangements of orthogonal circular arcs, which



218 S. Chaplick et al.

can have quadratically many quadrangular faces; see the arcs inside the blue
square in Fig. 5. In Sect. 3.2 we also consider small (that is, digonal and trian-
gular) faces and provide bounds on the number of such faces in arrangements of
orthogonal circles.

Given a set of geometric objects, their intersection graph is a graph whose
vertices correspond to the objects and whose edges correspond to the pairs of
intersecting objects. Restricting the geometric objects to a certain shape restricts
the class of graphs that admit a representation with respect to this shape. For
example, graphs represented by disks in the Euclidean plane are called disk inter-
section graphs. The special case of unit disk graphs—intersection graphs of unit
disks—has been studied extensively. Recognition of such graphs as well as many
combinatorial problems restricted to these graphs such as coloring, independent
set, and domination are all NP-hard [6]; see also the survey of Hliněný and Kra-
tochv́ıl [17]. Instead of restricting the radii of the disks, people have also studied
restrictions of the type of intersection. If the disks are only allowed to touch, the
corresponding graphs are called coin graphs. Koebe’s classical result says that
the coin graphs are exactly the planar graphs. If all coins have the same size,
the represented graphs are called penny graphs. These graphs have been studied
extensively, too [4,8,11]. For example, they are NP-hard to recognize [3,7].

As with the arrangements above, we again consider a restriction on the inter-
section angle. We define the orthogonal circle intersection graphs as the inter-
section graphs of arrangements of orthogonal circles. In Sect. 4, we investigate
properties of these graphs. For example, similar to the proof of our linear bound
on the number of intersection points for arrangements of orthogonal circles (The-
orem 1), we observe that such graphs have only a linear number of edges.

We also consider orthogonal unit circle intersection graphs, that is, orthogonal
circle intersection graphs with a representation that consists only of unit circles.
We show that these graphs are a proper subclass of penny graphs. It is NP-hard
to recognize penny graphs [9]. We modify the NP-hardness proof of Di Battista
et al. [7, Section 11.2.3], which uses the logic engine, to obtain the NP-hardness
of recognizing orthogonal unit circle intersection graphs (Theorem4).

2 Preliminaries

We will use the following type of Möbius transformation [20]. Let α be a circle
having center at Cα and radius rα. The inversion with respect to α is a mapping
that maps any point P �= Cα to a point P ′ on the ray CαP so that |CαP ′| ·
|CαP | = r2α. Inversion maps each circle not passing through Cα to another circle
and a circle passing through Cα to a line; see Fig. 2. Inversion and orthogonal
circles are closely related. For example, in order to construct the image P ′ of
some point P that lies inside the inversion circle α, consider the intersection
points X and Y of α and the line that is orthogonal to the line through Cα and P
in P ; see Fig. 2c. The point P ′ then is simply the center of the circle β that is
orthogonal to α and goes through X and Y . This follows from the similarity of
the orthogonal triangles �CαXP ′ and �CαXP . A useful property of inversion,



On Arrangements of Orthogonal Circles 219

Cα

α

(a) a circle passing through
Cα is mapped to a line (and
vice versa)

α

Cα

(b) a circle not passing
through Cα is mapped to
another circle

α

Cα P P ′

βX

Y
(c) constructing the inversion P ′ of
a point P w.r.t. α via a circle β
orthogonal to α

Fig. 2. Examples of inversion

α β

γ

σ

Y

X

(a)

α′

β′

γ′
Y ′

(b)

Fig. 3. (a) Three pairwise intersecting circles,
the red inversion circle is centered at X; (b)
image of the inversion. (Color figure online)

α′

β′

′

γ′

Cγ′

Cβ′

O

X

Fig. 4. Illustration for the proof
of Lemma 2

as of any other Möbius transformation, is that it preserves angles. Using inversion
we can easily show several properties of orthogonal circles.

Lemma 1. No orthogonal circle intersection graph contains a K4. In other
words, in an arrangement of orthogonal circles there cannot be four pairwise
orthogonal circles.

Proof. Assume that there are four pairwise orthogonal circles α, β, γ, and δ.
Let X and Y be the intersection points of α and β. Consider the inversion with
respect to a circle σ centered at X. The images of α and β are orthogonal lines
α′ and β′ that intersect at Y ′, which is the image of Y ; see Fig. 3. The image
of γ is a circle γ′ centered at Y ′ but so is the image δ′ of δ. Thus γ′ and δ′ are
either disjoint or equal, but not orthogonal to each other, a contradiction. ��

Lemma 2. No orthogonal circle intersection graph contains an induced C4. In
other words, in an arrangement of orthogonal circles there cannot be two pairs of
circles such that each circle of one pair is orthogonal to each circle of the other
pair and the circles within the pairs are not orthogonal.

Proof. Assume there are two pairs (α, β) and (γ, δ) of circles such that the circles
within each pair do not intersect each other and each circle of one pair intersects
both circles of the other pair. Consider an inversion via a circle σ centered at
one of the intersection points of the circles α and δ. In the image they will



220 S. Chaplick et al.

Fig. 5. Apollonian circles con-
sisting of two parabolic pen-
cils of circles (one in black, the
other in gray). (Color figure
online)

Fig. 6. (a) Apollonian circles consisting of an elliptic
(in gray) and hyperbolic (in black) pencil of circles;
(b) its inversion via a circle centered at A (in red).
(Color figure online)

become lines α′ and δ′. The image β′ of the circle β must intersect δ′ but not
α′, therefore, its center must lie on the line δ′ and it should be to one side of the
line α′; see Fig. 4. Similarly the center of the image γ′ of the circle γ must lie
on the line α′ and γ′ should be to one side of the line δ′. Shift the drawing so
that the intersection of α′ and δ′ is at the origin O and observe that the triangle
�Cβ′OCγ′ is orthogonal, where Cβ′ and Cγ′ are the centers of the circles β′ and
γ′. Let X be the intersection point of these circles that is closer to the origin.
This point X is contained in the triangle �Cβ′OCγ′ . Therefore the triangle
�Cβ′XCγ′ cannot be orthogonal—a contradiction. ��

A pencil is a family of circles who share a certain characteristic. In a parabolic
pencil all circles have one point in common, and thus are all tangent to each
other; see Fig. 5. In an elliptic pencil all circles go through two given points; see
the gray circles in Fig. 6a. In a hyperbolic pencil all circles are orthogonal to a
set of circles that go through two given points, that is, to some elliptic pencil;
see the black circles in Fig. 6a.

For an elliptic pencil whose circles share two points A and B and the corre-
sponding hyperbolic pencil, the circles in the hyperbolic pencil possess several
properties useful for our purposes [20]. Their centers are collinear and they con-
sist of non-intersecting circles that form two nested structures of circles, one
containing A, the other one containing B in its interior; see Fig. 6a.

Two pencils of circles such that each circle in one pencil is orthogonal to
each circle in the other are called Apollonian circles. There can be two such
combinations of pencils, that is, one with two parabolic pencils and one with an
elliptic and a hyperbolic pencil. We focus on the latter since such Apollonian
circles contain arbitrarily large arrangements of orthogonal circles, that is, two
orthogonal circles from the elliptic pencil and arbitrary many circles from the
hyperbolic pencil. Equivalently, such Apollonian circles are an inversion image
of a family of concentric circles centered at some point X and concurrent lines
passing through X; see Fig. 6b. We use this equivalence in the next proof.



On Arrangements of Orthogonal Circles 221

Lemma 3. Three circles such that one is orthogonal to the two others belong to
the same family of Apollonian circles. Two sets of circles such that each circle
in one set is orthogonal to each circle in the other set and each set has at least
two circles belong to the same family of Apollonian circles. In particular the set
belonging to the elliptic pencil can contain at most two circles.

Proof. Consider three circles such that one is orthogonal to two others. If all
three are pairwise orthogonal, then their inversion via a circle centered at one
of their intersection points (see Fig. 3a) is two perpendicular lines and a circle
centered at their intersection point (see Fig. 3b), therefore, they belong to the
same family of Apollonian circles. If two circles do not intersect, then by [20,
Theorem 13], it is always possible to invert them into two concentric circles. Since
inversion preserves angles, the image of the third circle must be orthogonal to
both concentric circles and therefore it must be a straight line passing through
the center of both circles. Therefore, the three circles belong to the same family
of Apollonian circles.

Consider now two sets S1 and S2 of circles such that each circle in one set is
orthogonal to each circle in the other set and each set has at least two circles. By
Lemma 2 there must be two circles α and β in one of the sets, say S1, that are
orthogonal. Consider an inversion via a circle σ centered at one of the intersection
points X of the circles α and β. In the image they will become orthogonal lines
α′ and β′ intersecting at a point Y . Because inversion preserves angles, the image
of each circle in S2 is a circle centered at Y . Since S2 contains at least two circles,
the image of each circle in S1 must be orthogonal to two circles centered at Y ,
therefore, it must be a straight line passing through Y . Thus, the circles in S1

and S2 belong to the same family of Apollonian circles and S1 contains at most
two circles. ��

Because each triangular or quadrangular face consists of either three circles
such that one is orthogonal to two others or two pairs of circles such that each
circle in one pair is orthogonal to each circle in the other pair, we obtain the
following observation from Lemma3.

Observation 2. In any arrangement of orthogonal circles, each triangular and
each quadrangular face is formed by Apollonian circles.

3 Arrangements of Orthogonal Circles

In this section we study the number of faces of an arrangement of orthogonal
circles. In Sect. 3.1, we give a bound on the total number of faces. In Sect. 3.2,
we separately bound the number of faces formed by two and three edges.

Let A be an arrangement of orthogonal circles in the plane. By a slight
abuse of notation, we will say that a circle α contains a geometric object o and
mean that the disk bounded by α contains o. We say that a circle α ∈ A is
nested in a circle β ∈ A if α is contained in β. We say that a circle α ∈ A is
nested consecutively in a circle β ∈ A if α is nested in β and there is no other



222 S. Chaplick et al.

Fig. 7. Deepest circles in bold Fig. 8. ∠CβCαCγ ≥ π/3

circle γ ∈ A such that α is nested in γ and γ is nested in β. Consider a subset
S ⊆ A of maximum cardinality such that for each pair of circles one is nested in
the other. The innermost circle α in S is called a deepest circle in A; see Fig. 7.

Lemma 4. Let α be a circle of radius rα, and let S be a set of circles orthogonal
to α. If S does not contain nested circles and each circle in S has radius at
least rα, then |S| ≤ 6. Moreover, if |S| = 6, then all circles in S have radius rα

and α is contained in the union of the circles in S.

Proof. Let Cα be the center of α. Consider any two circles β and γ in S with
centers Cβ and Cγ and with radii rβ and rγ , respectively. Since rβ ≥ rα and
rγ ≥ rα, the edge CβCγ is the longest edge of the triangle �CβCαCγ ; see Fig. 8.
So the angle ∠CβCαCγ is at least π/3. Thus, |S| ≤ 6.

Moreover, if |S| = 6 then, for each pair of circles β and γ in S that are
consecutive in the circular ordering of the circle centers around Cα, it holds that
∠CβCαCγ = π/3. This is only possible if rβ = rγ = rα. Thus, all the circles in S
have radius rα and α is contained in the union of the circles in S; see Fig. 9b. ��

3.1 Bounding the Number of Faces

Theorem 1. Every arrangement of n orthogonal circles has at most 14n inter-
section points and 15n + 2 faces.

The above theorem (whose formal proof is at the end of the section) follows from
the fact that any arrangement of orthogonal circles contains a circle α with at
most seven neighbors (that is, circles that are orthogonal to α).

Lemma 5. Every arrangement of orthogonal circles has a circle that is orthog-
onal to at most seven other circles.

Proof. If no circle is nested within any other, Lemma 4 implies that the smallest
circle has at most six neighbors, and we are done.

So, among the deepest circles in A, consider a circle α with the smallest
radius. Let rα be the radius of α. Note that α is nested in at least one circle.
Let β be a circle such that α and β are consecutively nested. Denote the set of
all circles in A that are orthogonal to α but not to β by Sα. All circles in Sα are
nested in β. Since α is a deepest circle, Sα contains no nested circles; see Fig. 9a.
Since the radius of every circle in Sα is at least rα, Lemma 4 ensures that Sα



On Arrangements of Orthogonal Circles 223

Fig. 9. Illustrations to the proof of Lemma 5

contains at most six circles. Given the structure of Apollonian circles (Lemma3),
there can be at most two circles that intersect both α and β. This together with
Lemma 4 immediately implies that α cannot be orthogonal to more than eight
circles. In the following we show that there can be at most seven such circles.

If there is only one circle intersecting both α and β, then α is orthogonal to
at most seven circles in total, and we are done.

Otherwise, there are two circles orthogonal to both α and β. Let these circles
be γ1 and γ2. We assume that Sα contains exactly six circles. Hence, by Lemma 4,
all circles in Sα have radius rα. Let Sα = (δ0, . . . , δ5) be ordered clockwise around
α so that every two circles δi and δj with i ≡ j + 1 mod 6 are orthogonal.

Let X and Y be the intersection points of γ1 and γ2; see Fig. 9a. Note that, by
the structure of Apollonian circles, one of the intersection points, say X, must be
contained inside α, whereas the other intersection point Y must lie in the exterior
of β. Since the circles in Sα are contained in β, none of them contains Y . Further,
no circle δi in Sα contains X, as otherwise the circles δi, α, γ1, and γ2 would
be pairwise orthogonal, contradicting Lemma1. Recall that, by Lemma 4, α is
contained in the union of the circles in Sα. Since X is not contained in this
union, γ1 intersects two different circles δi and δj , and γ2 intersects two different
circles δk and δl. Note that γ1 and γ2 cannot intersect the same circle ε in Sα,
because ε, α, γ1, and γ2 would be pairwise orthogonal, contradicting Lemma1.
Therefore, the indices i, j, k, and l are pairwise different.

We now consider possible values of the indices i, j, k, and l, and show that
in each case we get a contradiction to Lemma 1 or Lemma 2. If j ≡ i + 1 mod 6,
then γ1, α, δi, and δj would be pairwise orthogonal, contradicting Lemma1; see
Fig. 9b. If j ≡ i + 2 mod 6, then γ1, δi, δi+1, and δj would form an induced C4

in the intersection graph; see Fig. 9c. This would contradict Lemma 2. If j ≡
i+3 mod 6 and k ≡ l +3 mod 6, then either k ≡ i+1 mod 6 or i ≡ l +1 mod 6;
see Fig. 9d. W.l.o.g., assume the latter and observe that then γ2, δi, γ1, δl would
form an induced C4, again contradicting Lemma 2.

We conclude that Sα contains at most five circles. Together with γ1 and γ2,
at most seven circles are orthogonal to α. ��

Using the lemma above and Euler’s formula, we now can prove Theorem1.



224 S. Chaplick et al.

Fig. 10. Region s is a face in the arrangement
of the bold circles

Fig. 11. Angles subtended by
the regions s1 and s2 in the circle
α; ∠(s1, α) = −∠(s2, α)

Proof (of Theorem 1). Let A be an arrangement of orthogonal circles. By
Lemma 5, A contains a circle α orthogonal to at most seven circles. The cir-
cle α yields at most 14 intersection points. By induction, the whole arrangement
has at most 14n intersection points.

Consider the planarization G′ of A, and let n′, m′, f ′, and c′ denote the
numbers of vertices, edges, faces, and connected components of G′, respectively.
Since every vertex in the planarization corresponds to an intersection, the result-
ing graph is 4-regular and therefore m′ = 2n′. By Euler’s formula, we obtain
f ′ = n′ + 1 + c′. This yields f ′ ≤ 15n + 1 since n′ ≤ 14n and c′ ≤ n. ��

3.2 Bounding the Number of Small Faces

In the following we study the number of faces of each type, that is, the number of
digonal, triangular, and quadrangular faces. We begin with some notation. Let A
be an arrangement of orthogonal circles in the plane. Let S be some subset of
the circles of A. A face in S is called a region in A formed by S; see for instance
Fig. 10. Note that each face of A is also a region.

Let s be the region formed by some circular arcs a1, a2, . . . , ak enumerated in
counterclockwise order around s. For an arc ai with i ∈ {1, . . . , k}, let α be the
circle that supports ai. If Cα = (xα, yα) is the center of α and rα its radius, we
can write α as

{
Cα + rα(cos t, sin t) : t ∈ [0, 2π]

}
. Let u and v be the endpoints

of ai so that we meet u first when we traverse s counterclockwise when starting
outside of ai. Let u = Cα + rα(cos t1, sin t1) and v = Cα + rα(cos t2, sin t2). We
say that the region s subtends an angle in the circle α of size ∠(s, ai) = t2 − t1
with respect to the arc ai. Note that ∠(s, ai) is negative if ai forms a concave side
of s; see Fig. 11. If the circle α forms only one side of the region s, then we just
say that the region s subtends an angle in the circle α of size ∠(s, α) = t2 − t1.
Moreover, if s is a digonal region, that is, it is formed by only two circles α and
β, then we simply say that β subtends an angle of ∠(β, α) = t2− t1 in α to mean
∠(s, α).

By total angle we denote the sum of subtended angles by s with respect to
all the arcs that form its sides, that is,

∑k
i=1 ∠(s, ai).

We now give an upper bound on the number of digonal and triangular faces in
an arrangement A of n orthogonal circles. The tool that we utilize in this section



On Arrangements of Orthogonal Circles 225

is the Gauss–Bonnet formula [24] which, in the restricted case of orthogonal
circles in the plane, states that, for every region s formed by some circular arcs
a1, a2, . . . , ak, it holds that

k∑

i=1

∠(s, ai) +
kπ

2
= 2π.

This formula implies that each digonal or triangular face subtends a total angle
of size π and of size π/2, respectively. Thus, we obtain the following bounds.

Theorem 2. Every arrangement of n orthogonal circles has at most 2n digo-
nal faces and at most 4n triangular faces.

Proof. Because faces do not overlap, each digonal or triangular face uses a unique
convex arc of a circle bounding this face. Therefore, the sum of angles subtended
by digonal or triangular faces formed by the same circle must be at most 2π.
Analogously, the sum of total angles over all digonal or triangular faces cannot
exceed 2nπ. By the Gauss–Bonnet formula each digonal or triangular face sub-
tends a total angle of size π or π/2, respectively. This gives an upper bound of
2n on the number of digonal faces and an upper bound of 4n on the number of
triangular faces. ��

Theorem 2 can be generalized to all convex orthogonal closed curves since
the Gauss–Bonnet formula does not require curves to be circular. In contrast to
this, for example, a grid made of axis parallel rectangles has quadratically many
quadrangular faces. This makes circles a special subclass of convex orthogonal
closed curves. We refer to the full version for more details [5].

The Gauss–Bonnet formula does not help us to get an upper bound on the
number of quadrangular faces. Using Observation 2, however, it is possible to
restrict the types of quadrangular faces to several shapes and obtain bounds
on the number of faces of each type. Apart from being interesting in its own
right, such a bound also provides a bound on the total number of faces in an
arrangement of orthogonal circles. Namely, since the average degree of a face in
an arrangement of orthogonal circles is 4, a bound on the number of faces of
degree at most 4 gives a bound on the number of all faces in the arrangement
(via Euler’s formula). Unfortunately, the bound on the number of quadrangular
faces that we achieved was 17n and thus higher than the bound 15n+2 that we
now have for the number of all faces in an arrangement of n orthogonal circles.

4 Intersection Graphs of Orthogonal Circles

Given an arrangement A of orthogonal circles, consider its intersection graph,
which is the graph with vertex set A that has an edge between any pair of
intersecting circles in A. Lemmas 1 and 2 imply that such a graph does not
contain any K4 and any induced C4. We show that such graphs can be non-
planar (Lemma 6), then we bound their edge density (Theorem3), and finally we
consider the intersection graphs arising from orthogonal unit circles (Theorem 4).



226 S. Chaplick et al.

Fig. 12. Construction of an orthogonal circle intersection graph that contains Kn as a
minor (here n = 5).

Lemma 6. For every n, there is an intersection graph of orthogonal circles that
contains Kn as a minor. The representation uses circles of three different radii.

Proof. Let a chain be an arrangement of orthogonal circles whose intersection
graph is a path. We say that two chains C1 and C2 cross if two disjoint circles α
and β of one chain, say C1, are orthogonal to the same circle γ of the other
chain C2; see Fig. 12a (left). If two chains cross, their paths in the intersection
graph are connected by two edges; see the dashed edges in Fig. 12a (right).

Consider an arrangement of n rectilinear paths embedded on a grid where
each pair of curves intersect exactly once; see the inset in Fig. 12b. We convert
the arrangement of paths into an arrangement of chains such that each pair of
chains crosses; see Fig. 12b. Now consider the intersection graph of the orthogonal
circles in the arrangement of chains. If we contract each path in the intersection
graph that corresponds to a chain, we obtain Kn. ��

Next, we discuss the density of orthogonal circle intersection graphs. Gyárfás
et al. [16] have shown that any C4-free graph on n vertices with average degree
at least a has clique number at least a2/(10n). Due to Lemma 1, we know that
orthogonal circle intersection graphs have clique number at most 3. Thus, their
average degree is bounded from above by

√
30n, leading to at most

√
7.5n

3
2 edges

in total. However, Lemma 5 implies the following stronger bound.

Theorem 3. The intersection graph of a set of n orthogonal circles has at most
7n edges.

Proof. The geometric representation of an orthogonal circle intersection graph is
an arrangement of orthogonal circles. By Lemma5, an arrangement of n orthog-
onal circles always has a circle orthogonal to at most seven circles. Therefore, the
corresponding intersection graph always has a vertex of degree at most seven.
Thus, it has at most 7n edges. ��



On Arrangements of Orthogonal Circles 227

Fig. 13. Penny graphs vs. orthogonal unit circle intersection graphs

Fig. 14. Arrangements of n orthogonal circles with many digonal, triangular, and quad-
rangular faces.

The remainder of this section concerns a natural subclass of orthogonal circle
intersection graphs, the orthogonal unit circle intersection graphs. Recall that
these are orthogonal circle intersection graphs with a representation that consists
of unit circles only. As Fig. 13a shows, every representation of an orthogonal unit
circle intersection graph can be transformed (by scaling each circle by a factor of√

2/2) into a representation of a penny graph, that is, a contact graph of equal-
size disks. Hence, every orthogonal unit circle intersection graph is a penny
graph – whereas the converse is not true. For example, C4 or the 5-star are
penny graphs but not orthogonal unit circle intersection graphs (see Fig. 13b).

Orthogonal unit circle intersection graphs being penny graphs implies that
they inherit the properties of penny graphs, e.g., their maximum degree is at
most six and their edge density is at most �3n − √

12n − 6, where n is the
number of vertices [21, Theorem 13.12, p. 211]. Because triangular grids are
orthogonal unit circle intersection graphs, this upper bound is tight.

As it turns out, orthogonal unit circle intersection graphs share another fea-
ture with penny graphs: their recognition is NP-hard. The hardness of penny-
graph recognition can be shown using the logic engine [7, Section 11.2], which
simulates an instance of the Not-All-Equal-3-Sat (NAE3SAT) problem. We
establish a similar reduction for the recognition of orthogonal unit circle inter-
section graphs; the details are in the full version [5].

Theorem 4. It is NP-hard to recognize orthogonal unit circle intersection
graphs.

5 Discussions and Open Problems

In Sect. 3 we have provided upper bounds for the number of faces of an orthogonal
circle arrangement. As for lower bounds on the number of faces, we found only
very simple arrangements containing 1.5n digonal, 2n triangular, and 4(n − 3)



228 S. Chaplick et al.

quadrangular faces; see Figs. 14a, b, and c, respectively. Can we construct better
lower bound examples or improve the upper bounds?

Recognizing (unit) disk intersection graphs is ∃R-complete [18]. But what is
the complexity of recognizing (general) orthogonal circle intersection graphs?

Acknowledgments. We thank Alon Efrat for useful discussions and an anonymous
reviewer for pointing us to the Gauss-Bonnet formula.

References

1. Agarwal, P.K., Aronov, B., Sharir, M.: On the complexity of many faces in arrange-
ments of pseudo-segments and circles. In: Aronov, B., Basu, S., Pach, J., Sharir, M.
(eds.) Discrete and Computational Geometry: The Goodman-Pollack Festschrift,
pp. 1–24. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-642-55566-
4 1

2. Alon, N., Last, H., Pinchasi, R., Sharir, M.: On the complexity of arrangements of
circles in the plane. Discret. Comput. Geom. 26(4), 465–492 (2001). https://doi.
org/10.1007/s00454-001-0043-x

3. Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is NP-hard. Com-
put. Geom. Theory Appl. 9(1–2), 3–24 (1998). https://doi.org/10.1016/S0925-
7721(97)00014-X

4. Cerioli, M.R., Faria, L., Ferreira, T.O., Protti, F.: A note on maximum indepen-
dent sets and minimum clique partitions in unit disk graphs and penny graphs:
complexity and approximation. RAIRO Theor. Inf. Appl. 45(3), 331–346 (2011).
https://doi.org/10.1051/ita/2011106

5. Chaplick, S., Förster, H., Kryven, M., Wolff, A.: On arrangements of orthogonal
circles. ArXiv report (2019). https://arxiv.org/abs/1907.08121

6. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discret. Math. 86(1–
3), 165–177 (1990). https://doi.org/10.1016/0012-365X(90)90358-O

7. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall, Upper Saddle River (1999)

8. Dumitrescu, A., Pach, J.: Minimum clique partition in unit disk graphs. Graphs
Combin. 27(3), 399–411 (2011). https://doi.org/10.1007/s00373-011-1026-1

9. Eades, P., Whitesides, S.: The logic engine and the realization problem for nearest
neighbor graphs. Theoret. Comput. Sci. 169(1), 23–37 (1996). https://doi.org/10.
1016/S0304-3975(97)84223-5

10. Eppstein, D.: Circles crossing at equal angles (2018). https://11011110.github.io/
blog/2018/12/22/circles-crossing-equal.html. Accessed 11 May 2019

11. Eppstein, D.: Triangle-free penny graphs: degeneracy, choosability, and
edge count. In: Frati, F., Ma, K.L. (eds.) GD 2017. LNCS, vol. 10692.
Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-73915-1 39.
https://arxiv.org/abs/1708.05152

12. Felsner, S.: Geometric Graphs and Arrangements: Some Chapters from Combina-
torial Geometry. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-322-
80303-0

13. Felsner, S., Scheucher, M.: Arrangements of pseudocircles: triangles and drawings.
In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp. 127–139. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-73915-1 11

https://doi.org/10.1007/978-3-642-55566-4_1
https://doi.org/10.1007/978-3-642-55566-4_1
https://doi.org/10.1007/s00454-001-0043-x
https://doi.org/10.1007/s00454-001-0043-x
https://doi.org/10.1016/S0925-7721(97)00014-X
https://doi.org/10.1016/S0925-7721(97)00014-X
https://doi.org/10.1051/ita/2011106
https://arxiv.org/abs/1907.08121
https://doi.org/10.1016/0012-365X(90)90358-O
https://doi.org/10.1007/s00373-011-1026-1
https://doi.org/10.1016/S0304-3975(97)84223-5
https://doi.org/10.1016/S0304-3975(97)84223-5
https://11011110.github.io/blog/2018/12/22/circles-crossing-equal.html
https://11011110.github.io/blog/2018/12/22/circles-crossing-equal.html
https://doi.org/10.1007/978-3-319-73915-1_39
https://arxiv.org/abs/1708.05152
https://doi.org/10.1007/978-3-322-80303-0
https://doi.org/10.1007/978-3-322-80303-0
https://doi.org/10.1007/978-3-319-73915-1_11


On Arrangements of Orthogonal Circles 229

14. Füredi, Z., Palásti, I.: Arrangements of lines with a large number of triangles.
Proc. Amer. Math. Soc. 92(4), 561–566 (1984). https://doi.org/10.1090/S0002-
9939-1984-0760946-2

15. Grünbaum, B.: Arrangements and spreads. In: CBMS Regional Conference Series
in Mathmatics, vol. 10. AMS, Providence (1972)

16. Gyárfás, A., Hubenko, A., Solymosi, J.: Large cliques in C4-free graphs. Combina-
torica 22(2), 269–274 (2002). https://doi.org/10.1007/s004930200012

17. Hliněný, P., Kratochv́ıl, J.: Representing graphs by disks and balls (a survey of
recognition complexity results). Discret. Math. 229(1–3), 101–124 (2001). https://
doi.org/10.1016/S0012-365X(00)00204-1

18. Kang, R.J., Müller, T.: Sphere and dot product representations of graphs.
Discret. Comput. Geom. 47(3), 548–568 (2012). https://doi.org/10.1007/s00454-
012-9394-8

19. Kang, R.J., Müller, T.: Arrangements of pseudocircles and circles. Discret. Com-
put. Geom. 51(4), 896–925 (2014). https://doi.org/10.1007/s00454-014-9583-8

20. Ogilvy, C.S.: Excursions in Geometry. Oxford University Press, New York (1969)
21. Pach, J., Agarwal, K.P.: Combinatorial Geometry. Wiley-Interscience Series in Dis-

crete Mathematics and Optimization. Wiley, Hoboken (1995)
22. Pinchasi, R.: Gallai-Sylvester theorem for pairwise intersecting unit circles.

Discret. Comput. Geom. 28(4), 607–624 (2002). https://doi.org/10.1007/s00454-
002-2892-3

23. Steiner, J.: Einige Gesetze über die Theilung der Ebene und des Raumes. Journal
für die reine und angewandte Mathematik 1, 349–364 (1826). https://doi.org/10.
1515/crll.1826.1.349

24. Weisstein, E.W.: Gauss-Bonnet formula (2019). http://mathworld.wolfram.com/
Gauss-BonnetFormula.html. Accessed 27 July 2019

https://doi.org/10.1090/S0002-9939-1984-0760946-2
https://doi.org/10.1090/S0002-9939-1984-0760946-2
https://doi.org/10.1007/s004930200012
https://doi.org/10.1016/S0012-365X(00)00204-1
https://doi.org/10.1016/S0012-365X(00)00204-1
https://doi.org/10.1007/s00454-012-9394-8
https://doi.org/10.1007/s00454-012-9394-8
https://doi.org/10.1007/s00454-014-9583-8
https://doi.org/10.1007/s00454-002-2892-3
https://doi.org/10.1007/s00454-002-2892-3
https://doi.org/10.1515/crll.1826.1.349
https://doi.org/10.1515/crll.1826.1.349
http://mathworld.wolfram.com/Gauss-BonnetFormula.html
http://mathworld.wolfram.com/Gauss-BonnetFormula.html


Extending Simple Drawings

Alan Arroyo1 , Martin Derka2, and Irene Parada3(B)

1 IST Austria, Klosterneuburg, Austria
alanmarcelo.arroyoguevara@ist.ac.at

2 University of Waterloo, Waterloo, ON, Canada
mderka@uwaterloo.ca

3 Graz University of Technology, Graz, Austria
iparada@ist.tugraz.at

Abstract. Simple drawings of graphs are those in which each pair of
edges share at most one point, either a common endpoint or a proper
crossing. In this paper we study the problem of extending a simple draw-
ing D(G) of a graph G by inserting a set of edges from the complement
of G into D(G) such that the result is a simple drawing. In the context
of rectilinear drawings, the problem is trivial. For pseudolinear draw-
ings, the existence of such an extension follows from Levi’s enlargement
lemma. In contrast, we prove that deciding if a given set of edges can be
inserted into a simple drawing is NP-complete. Moreover, we show that
the maximization version of the problem is APX-hard. We also present
a polynomial-time algorithm for deciding whether one edge uv can be
inserted into D(G) when {u, v} is a dominating set for the graph G.

Keywords: Simple drawings · Edge insertion · NP-hardness ·
APX-hardness

1 Introduction

A simple drawing of a graph G (also known as good drawing or as simple topo-
logical graph in the literature) is a drawing D(G) of G in the plane such that
every pair of edges share at most one point that is either a proper crossing (no
tangent edges allowed) or an endpoint. Moreover, no three edges intersect in
the same point and edges must neither self-intersect nor contain other vertices
than their endpoints. Simple drawings, despite often considered in the study of
crossing numbers, have basic aspects that are yet unknown.

The long-standing conjectures on the crossing numbers of Kn and Kn,m,
known as the Harary-Hill and Zarankiewicz’s conjectures, respectively, have

This work was started at the Crossing Numbers Workshop 2016 in Strobl (Austria).
M.D. was partially supported by NSERC. I.P. is supported by the Austrian Science
Fund (FWF): W1230. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sk�lodowska-Curie
grant agreement No. 754411.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 230–243, 2019.
https://doi.org/10.1007/978-3-030-35802-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_18&domain=pdf
http://orcid.org/0000-0003-2401-8670
http://orcid.org/0000-0003-3147-0083
https://doi.org/10.1007/978-3-030-35802-0_18


Extending Simple Drawings 231

Fig. 1. Drawings in which the edge uv cannot be inserted.

drawn particular interest in the study of simple drawings of complete and com-
plete bipartite graphs. The intensive study of these conjectures has produced
deep results about simple drawings of Kn [14,18] and Kn,m [8].

In contrast to our knowledge about Kn, little is known about simple drawings
of general graphs. In [16] it was observed that, when studying simple drawings of
general graphs, it is natural to try to extend them, by inserting the missing edges
between non-adjacent vertices. One of the main results in this paper suggests that
there is no hope for efficiently deciding when such operation can be performed.

The complement G of a graph G is the graph with the same vertex set as G
and where two distinct vertices are adjacent if and only they are not adjacent
in G. Given a simple drawing D(G) of a graph G = (V,E) and a subset M
of candidate edges from G, an extension of D(G) with M is a simple drawing
D′(H) of the graph H = (V,E ∪ M) that contains D(G) as a subdrawing. If
such an extension exists, then we say that M can be inserted into D(G).

Given a simple drawing, an extension with one given edge is not always
possible, as shown by Kynčl [15] (in Fig. 1a the edge uv cannot be inserted,
because uv would cross an edge incident either to u or to v). We can extend this
example to a simple drawing of K2,4 (Fig. 1b) and we can then use it to construct
drawings of Kn,m with larger values of m and n in which an edge uv cannot be
inserted. Moreover, Kynčl’s drawing can be extended to a simple drawing of K6

minus one edge where the missing edge cannot be inserted (Fig. 1c). From this
drawing one can construct drawings of Kn with n ≥ 6 minus one edge where the
only missing edge cannot be inserted.

Extensions, by inserting both vertices and edges, have received a great deal
of attention in the last decade, specially for (different classes of) plane draw-
ings [2,4,6,9,13,17,19]. It has also been of interest to study crossing number
questions on planar graphs with one additional edge [7,11,20]. Note that the
term augmentation has also been used in the literature for the similar problem
of inserting edges and/or vertices to a graph [10]. Extensions of simple drawings
have been previously considered in the context of saturated drawings, that is,
drawings where no edge can be inserted [12,16].

Our Contribution. We study the computational complexity of extending a simple
drawing D(G) of a graph G. In Sect. 2, we show that deciding if D(G) can be
extended with a set M of candidate edges is NP-complete. Moreover, in Sect. 3,
we prove that finding the largest subset of edges from M that extend D(G) is



232 A. Arroyo et al.

Fig. 2. Basic gadgets for the proof of Theorem 1.

APX-hard. Finally, in Sect. 4, we present a polynomial-time algorithm to decide
whether an edge uv can be inserted into D(G) when {u, v} is a dominating set
for G.

2 Inserting a Given Set of Edges Is NP-complete

In this section we prove the following result:

Theorem 1. Given a simple drawing D(G) of a graph G = (V,E) and a set
M of edges of the complement of G, it is NP-complete to decide if D(G) can be
extended with the set M .

Notice first that the problem is in NP, since it can be described combinato-
rially. Our proof of Theorem1 is based on a reduction from monotone 3SAT [5].
An instance of that problem consists of a Boolean formula φ in 3-CNF with a set
of variables X = {x1, . . . , xn} and a set of clauses K = {C1, . . . , Cm}. Moreover,
in each clause either all the literals are positive (positive clause) or they are all
negative (negative clause). The bipartite graph G(φ) associated to φ is the graph
with vertex set X ∪ K and where a variable xi is adjacent to a clause Cj if and
only if xi ∈ Cj or xi ∈ Cj .

We now show how to construct a simple drawing from a given formula. We
start by introducing our three basic gadgets, the variable gadget, the clause
gadget, and the wire gadget, shown in Fig. 2.

The variable gadget contains two nested cycles, avbu on the outside and
cvdu on the inside, drawn in the plane without any crossings. Two additional
vertices x and y are drawn in the interior of avcu and dvbu, respectively. They
are connected with an edge that, starting in x, crosses the edges au, ub, dv, cv,
av, and vb, in this order, and ends in y. Another two vertices i and j are drawn
inside the region in the interior of avcu that is incident to x. They are connected
with an edge that, starting in i, crosses the edges uc, ud, vd, and vc, in this order,



Extending Simple Drawings 233

Fig. 3. Reduction from monotone 3SAT. (Color figure online)

and ends in j; see Fig. 2a. Notice that the edge uv can be inserted only in two
possible regions: either inside the cycle avcu or inside the cycle dvbu. Drawing
the edge uv in any other region would force it to cross uj or xy more than once.
The clause gadget and the wire gadget are similarly defined; see Fig. 2b–c.

In each of these three gadgets shown in Fig. 2, the edge uv can only be inserted
in the regions where the dashed arcs are drawn. In the rest of the paper, when
we refer to the regions in a gadget we mean these regions where the edge uv can
be inserted.

In a variable gadget, these regions encode the truth assignment of the cor-
responding variable xi: inserting the edge uv in the left region corresponds to
the assignment xi = true, while inserting it in the right region corresponds to
xi = false. We call these left and right regions in a variable gadget the true
and false regions, respectively. In a clause gadget, each of the three regions is
associated to a literal in the corresponding clause. Wire gadgets propagate the
truth assignment of the variables to the clauses. They are drawn between the
gadgets corresponding to clauses and variables that are incident in G(φ). The
idea is that if an assignment makes a literal not satisfy a clause, then the edge
uv in the wire gadget blocks the region in the clause gadget corresponding to
that literal by forcing uv to cross that region twice.

Let w(G) denote vertex w in gadget G. The following lemma shows that we
can get the desired behavior with a wire gadget connecting a variable gadget
and a clause gadget. The precise placement of a wire gadget with respect to the
variable gadget and the clause gadget that it connects is illustrated in Fig. 3.

Lemma 2. We can combine a variable gadget X , a clause gadget C, and a wire
gadget W to produce a simple drawing with the following properties.

– If u(X )v(X ) is inserted in the false region in X , then inserting u(W)v(W)

prevents u(C)v(C) from being inserted in one specified target region in C.
– If u(X )v(X ) is inserted in the true region in X , then we can insert u(W)v(W)

in a way such that u(C)v(C) can then be inserted in any region in C.



234 A. Arroyo et al.

Proof. We start with a drawing of the variable gadget X and the clause gadget
C such that the two gadgets are drawn on a line and they are disjoint. A repre-
sentation of how the wire gadget is then inserted is shown in Fig. 3. In this proof
we focus on the wire gadget drawn with blue edges and vertices.

In Fig. 3, gadget X lies to the left of gadget C. The true and false regions
in X are shaded in green and red, respectively. We assume that the target region
in C is the leftmost one, shaded in yellow. The left and right regions in the wire
gadget are shaded in red and yellow, respectively.

If the edge u(X )v(X ) is inserted in the false region in X then the edge
u(W)v(W) cannot be inserted in the yellow region in W, since it would cross
u(X )v(X ) twice. Thus, u(W)v(W) can only be inserted in the red region in W.
If inserted in that region, u(C)v(C) cannot be inserted in the yellow region in C,
since it would cross u(W)v(W) twice. In contrast, if the edge u(X )v(X ) is inserted
in the true (green) region in X , then u(W)v(W) can be inserted in either of the
two regions in W. In particular, it can be inserted in the yellow region in a way
such that u(C)v(C) can then be inserted in any region in C.

Finally, notice that if the target region in C is not the leftmost one, we can
adapt the construction by leaving the region(s) to the left in C uncrossed by the
wire gadget W; see the clause gadget in the middle of Fig. 3. ��

Let φ be an instance of monotone 3SATand let G(φ) be the bipartite graph
associated to φ. Let D(φ) be a 2-page book drawing of G(φ) in which (i) all ver-
tices lie on an horizontal line, and from left to right, first the ones corresponding
to negative clauses, then to variables, and finally to positive clauses; and (ii) the
edges incident to vertices corresponding to positive clauses are drawn as circular
arcs above that horizontal line, while the ones incident to vertices corresponding
to negative clauses are drawn as circular arcs below it. In an slight abuse of
notation, we refer to the vertices in D(φ) corresponding to variables and clauses
simply as variables and clauses, respectively.

We construct a simple drawing D′ from D(φ) by first replacing the variables
and clauses by variable gadgets and clause gadgets, respectively, and drawn in
disjoint regions. Moreover, the clause gadgets corresponding to negative clauses
are rotated 180◦. We then insert the wire gadgets. The edges in D(φ) connecting
variables to positive clauses are replaced by wire gadgets drawn as in the proof of
Lemma 2; see Fig. 3. Similarly, the edges in D(φ) connecting variables to negative
clauses are replaced by wire gadgets drawn as the ones before, but rotated 180◦.

We now describe how to draw the wire gadgets with respect to each other, so
that the result is a simple drawing; see Fig. 3 for a detailed illustration. First, we
focus on the drawing locally around the variable gadgets. Consider a set of edges
in D(φ) connecting a variable with some positive clauses. The drawing D(φ)
defines a clockwise order of these edges around the common vertex starting from
the horizontal line. We insert the corresponding wire gadgets locally around the
variable gadget following this order. Each new gadget is inserted shifted up and to
the right with respect to the previous one (as the blue and green gadgets depicted
in Fig. 3). Edges in D(φ) connecting a variable with some negative clauses are
replaced by wire gadgets in an analogous manner with a 180◦ rotation. We assign



Extending Simple Drawings 235

the three different regions in a clause gadget to the target regions in the wire
gadgets following the rotation of the edges around the clause in D(φ). (Note that
we can assume without loss of generality, by possibly duplicating variables, that
each clause in φ contains three literals.) Thus, locally around a clause gadget,
it is then possible to draw the different wire gadgets connecting to it without
crossing. Since D(φ) is a 2-page book drawing, the constructed drawing D′ is a
simple drawing.

Let M be the set of uv edges of all the gadgets. The fact that φ is satisfiable
if and only if M can be inserted into D′ follows now from Lemma 2, finishing
the proof of Theorem 1.

3 Maximizing the Number of Edges Inserted Is APX-hard

In this section we show that the maximization version of the problem of inserting
missing edges from a prescribed set into a simple drawing is APX-hard. This
implies that, if P �= NP, then no PTAS exists for this problem. We start by
showing that this maximization problem is NP-hard.

Theorem 3. Given a simple drawing D(G) of a graph G = (V,E) and a set M
of edges in the complement G, it is NP-hard to find a maximum subset of edges
M ′ ⊆ M that extends D(G).

Our proof of Theorem3 is based on a reduction from the maximum indepen-
dent set problem (MIS). By showing that the reduction when the input graph has
vertex degree at most three is actually a PTAS-reduction we will then conclude
that the problem is APX-hard.

An independent set of a graph G = (V,E) is a set of vertices S ⊆ V such that
no two vertices in S are incident with the same edge. The problem of determining
the maximum independent set (MIS) of a given graph is APX-hard even when the
graph has vertex degree at most three [1]. We first describe the construction of a
simple drawing D′(G′) from the graph G of a given MIS instance. Then we argue
that for a well-selected set of edges M that are not present in D′(G′), finding
a maximum subset M ′ ⊆ M that can be inserted into D′(G′) is equivalent to
finding a maximum independent set of G.

3.1 Constructing a Drawing from a Given Graph

We begin by introducing our two basic gadgets, the vertex gadget V and the edge
gadget E , shown in Fig. 4. They are reminiscent of the gadgets in the previous
section, but adapted to this different reduction. Similarly as in the previous
gadgets, there is only one region in which the edge uv can be inserted into V
and only two regions in which the edge uv can be inserted into E . These regions
are the ones in which the dashed arcs in Fig. 4b are drawn.

In Fig. 4c we combined an edge gadget and two vertex gadgets. This figure
shows a copy E(e) of the gadget E (that corresponds to an edge e = wz) drawn



236 A. Arroyo et al.

Fig. 4. Basic gadgets and drawings for the proof of Theorem 3.

over two different copies, V(w) and V(z), of the gadget V (that correspond to ver-
tices w and z, respectively). We relabel the vertices in the copies of these gadgets
by using the vertex or edge to which they correspond as their superscripts. Since
there is only one region in which v(w)u(w) and v(z)u(z) can be drawn, inserting
both of these edges prevents v(e)u(e) from being inserted. Inserting either only
v(w)u(w) or only v(z)u(z) leaves exactly one possible region where v(e)u(e) can be
inserted.

We have all the ingredients needed for our construction. Suppose that we
are given a simple graph G = (V,E). This graph admits a 1-page book drawing
D(G) in which the vertices are placed on a horizontal line and the edges are
drawn as circular arcs in the upper halfplane. Since the edge gadget does not
interlink the vertex gadgets symmetrically, we consider the edges in D(G) with
an orientation from their left endpoint to their right one.

The following lemma shows that is possible to replace each vertex w ∈ V in
the drawing by a vertex gadget V(w) and each edge e ∈ E by an edge gadget
E(e), and obtain simple drawing D′(G′) (where G′ is the disjoint union of the
underlying graphs of the vertex- and edge-gadgets).

Lemma 4. Given a 1-page book drawing D(G) of a graph G = (V,E), then we
can replace every vertex by a vertex gadget and every edge by an edge gadget to
obtain a simple drawing.

Proof. We show that the copies {E(e) : e ∈ E} can be inserted into
⋃

w∈V V(w)

such that such that vertex gadgets corresponding to different vertices are drawn



Extending Simple Drawings 237

F
ig
.
5
.
D

ra
w

in
g

o
b
ta

in
ed

b
y

a
re

d
u
ct

io
n

fr
o
m

K
4
.



238 A. Arroyo et al.

in disjoint regions and for every edge e = wz ∈ E, V(w) ∪ V(z) ∪ E(e) is as in
Fig. 4c (up to interchanging the indices w and z), and such that the resulting
drawing is simple.

First, for each vertex w ∈ V we place the gadget V(w) in its position, so all
the copies of V lie (equidistant) on a horizontal line and do not cross each other.
For the edges of G, since the drawing in Fig. 4c is not symmetric, we choose
an orientation. We orient all the edges in the 1-page book drawing D(G) of G
from left to right. We start by inserting the corresponding E gadgets from left
to right and from the shortest edges in D(G) to the longest. For an edge wz,
the intersections of the gadget E(wz): (i) with the edges u(w)a(w) and u(w)b(w)

are placed to the left of all the previous intersections of other edge gadgets with
that edge; (ii) with the edge v(w)b(w) are placed to the right of all the previous
intersections with that edge; (iii) with the edge v(w)a(w) are placed to the right of
previous intersections with gadgets E(wt) and to the left of previous intersections
with gadgets E(tw); (iv) with the edges u(z)a(z) and u(z)b(z) are placed to the
left of the previous intersections with gadgets E(tz); (v) with the edge v(z)b(z)

are placed to the left of all previous intersections; and (vi) with the edge v(z)a(z)

are placed to the left of all previous intersections with gadgets E(tz); see Fig. 5.
Moreover, the arcs of an edge gadget connecting two vertex gadgets are drawn

either completely in the upper half-plane or completely in the lower one with
respect to the horizontal line and two arcs cross at most twice. If they are
part of edges in edge gadgets connected to the same vertex gadget, they might
cross locally around this vertex gadget. However, after this crossing, they follow
the circular-arc routing induced by D(G) (or its mirror image) and do not cross
again. Otherwise, with respect to each other, they follow the circular-arc routing
induced by D(G) (or its mirror image) and thus cross at most once; see Fig. 5.

Since in neither of the gadgets two incident edges cross, and edges of different
gadgets are vertex-disjoint, we only have to worry about edges from different
gadgets crossing more than once. By construction, no edge in an edge gadget
intersects more than once with an edge in a vertex gadget. Thus, it remains
to show that any two edges from two distinct edge gadgets cross at most once.
Such two edges are included in a subgraph H of G with exactly four vertices. The
drawing induced by the four vertex gadgets and the at most six edge gadgets is
homeomorphic to a subdrawing of the drawing in Fig. 5. It is routine to check
that it is a simple drawing, and thus any two edges cross at most once. ��

3.2 Reduction from Maximum Independent Set

Proof (of Theorem 3). Given a graph G = (V,E), we reduce the problem of
deciding whether G has an independent set of size k to the problem of deciding
whether the simple drawing D′(G′) constructed as in Lemma 4 with a candidate
set of edges M (where M = {u(w)v(w) : w ∈ V } ∪ {u(e)v(e) : e ∈ E}) can be
extended with a set of edges M ′ ⊆ M of cardinality |M ′| = |E| + k.

To show the correctness of the (polynomial) reduction, we first show that if
G has an independent set I of size k, then we can extend D′(G′) with a set M ′ of
|E| + k edges of M . Clearly, the k edges {u(w)v(w) : w ∈ I} can be inserted into



Extending Simple Drawings 239

D′(G′) by the construction of the drawing. Since I is an independent set, each
edge has at most one endpoint in I. Thus, in every edge gadget E(e) at most one
of the two possibilities for inserting the edge u(e)v(e) is blocked by the previous
k inserted edges. We therefore can also insert the |E| edges {u(e)v(e) : e ∈ E}.

Conversely, let M ′ ⊂ M be a set of |E|+k edges can be inserted into D′(G′)
and that contains the minimum number of uv edges from vertex gadgets. If the
set of vertices {w ∈ V : u(w)v(w) ∈ M ′} is an independent set of G, then we are
done, since at most |E| edges of M ′ can be from edge gadgets, so at least k are
from vertex gadgets. Otherwise, there are two edges u(w)v(w) and u(z)v(z) in M ′

such that the corresponding vertices w, z ∈ V are connected by the edge wz ∈ E.
By the construction of D′(G′) this implies that the edge u(wz)v(wz) belongs to
M , but it cannot be in M ′. By removing the edge u(w)v(w) and inserting the
edge u(wz)v(wz) into D′(G′), we obtain another valid extension with the same
cardinality but one less uv edge from a vertex gadget. This contradicts our
assumption. ��

The presented reduction can be further analyzed to show that the problem
is actually APX-hard. Note that the problem we are reducing from, maximum
independent set in simple graphs, is APX-hard [1] even in graphs with vertex
degree at most three. Our reduction can be shown to be an �L-reduction in that
case, implying a PTAS-reduction. This shows the following result (details are
provided in the full version [3]):

Corollary 5. Given a simple drawing D(G) of a graph G and a set of edges M
of the complement of G, finding the size of the largest subset of edges from M
extending D(G) is APX-hard.

4 Inserting One Edge in a Simple Drawing

In this section, we consider the problem of extending a simple drawing of a graph
by inserting exactly one edge uv for a given pair of non-adjacent vertices u and
v. We start by rephrasing our problem as a problem of finding a certain path in
the dual of the planarization of the drawing.

Given a simple drawing D(G) of a graph G = (V,E), the dual graph G∗(D)
has a vertex corresponding to each cell of D(G) (where a cell is a component
of R2 \ D(G)). There is an edge between two vertices if and only if the corre-
sponding cells are separated by the same segment of an edge in D(G). Notice
that G∗(D) can also be defined as the plane dual of the planarization of D(G),
where crossings are replaced by vertices so that the resulting drawing is plane.

We define a coloring χ of the edges of G∗(D) by labeling the edges of the
original graph G using numbers from 1 to |E|, and assigning to each edge of
G∗(D) the label of the edge that separates the cells corresponding to its incident
vertices. Given two vertices u, v ∈ V , let G∗(D, {u, v}) be the subgraph of G∗(D)
obtained by removing the edges corresponding to connections between cells sep-
arated by an (arc of an) edge incident to u or to v, and let χ′ be the coloring
of the edges coinciding with χ in every edge. The problem of extending D(G)



240 A. Arroyo et al.

Fig. 6. Reduction to the path problem with holes.

with one edge uv is equivalent to the existence of a heterochromatic path in
G∗(D, {u, v}) (i.e., no color is repeated) with respect to χ, between two vertices
that corresponds to a cell incident to u and a cell incident to v, respectively.

We remark that, from this dual perspective, it is clear that the problem of
deciding if a simple drawing can be extended with a given set of edges is in NP.

The general problem of finding an heterochromatic path in an edge-colored
graph is NP-complete, even when each color is assigned to at most two edges.
The proof can be found in the full version [3].

Theorem 6. Given a (multi)graph G with an edge-coloring χ and two vertices
x and y, it is NP-complete to decide whether there is a heterochromatic path in
G from x to y, even when each color is assigned to at most two edges.

However, in our setting the multigraph and the coloring come from a simple
drawing. The following theorem shows a particular case in which we can decide
in polynomial time if an edge can be inserted.

Theorem 7. Let D(G) be a simple drawing of a graph G = (V,E) and let u,
v ∈ V (G) be non-adjacent vertices. If {u, v} is a dominating set for G, that is,
every vertex in V \ {u, v} is a neighbor of u or v, then the problem of extending
D(G) with the edge uv can be decided in polynomial time.

An algorithm proving this result can be found in the full version [3]. We
sketch here the idea. The first step is to reduce our problem to the path problem
with holes (PPH): Given two open disks h1, h2 ⊆ R

2 whose closures (called holes)
are either disjoint or they coincide h1 = h2, a set J of colored Jordan curves in
Γ = R

2 \ (h1 ∪ h2), and two distinct points p, q ∈ Γ \ ⋃ J , we want to decide if
there is a pq-arc intersecting at most one arc in J from each color. If h1 = h2,
we say that the instance of the PPH has one hole.

Consider the subdrawing Du,v of D(G) consisting of u, v, all vertices adjacent
to them and all the edges incident to u or to v. Figure 6 illustrates the reduction
from the problem of inserting uv in Du,v to the PPH. Based on our reduction,
one can make further assumptions on any instance (Γ,J , p, q) that we consider
of the PPH problem: (i) for every two different arcs α1, α2 ∈ J , |α1 ∩ α2| ≤ 1;
(ii) pairs of arcs in J with the same color do not cross; and (iii) each arc in J
has both ends on the union of the boundaries of the holes ∂h1 ∪ ∂h2.

Given an instance (Γ,J , p, q) of the PPH, an arc α ∈ J is separating if p
and q are on different connected components of Γ \ α. We divide the arcs in J



Extending Simple Drawings 241

Fig. 7. Transforming an instance of PPH: (a) enlarging a hole along an arc and (b)
cutting through an arc.

into three different types: (T1) arcs with ends on different holes; (T2) separating
arcs with ends on the same hole; and (T3) non-separating arcs with ends on the
same hole.

Arcs of type T3 can be preprocessed with the operation that we denote
enlarging one hole using α, as showed in Fig. 7(a). Once all the arcs in J are of
type either T1 or T2, the algorithm determines the existence of a feasible pq-arc
based on the colors of the arcs in J . If all the arcs have different colors we have
a solution. Otherwise we consider two arcs of the same color. If both arcs are
of type T2, then there is no valid pq-arc and our algorithm stops. For handling
the cases in which at least one of these arcs is of type T1, the idea is to try to
find a solution that does not cross it. To do so, we use the operation denoted
cutting through an arc illustrated in Fig. 7(b). If of the two arcs of the same color
is of type T1 and the other is of type T2, there is a valid pq-arc if and only if
there is a valid pq-arc after cutting through the T1 arc. Otherwise, if both are of
type T1, there is a solution if and only if either there is a solution after cutting
through the first arc or there is a solution after cutting through the second one.
Note that the operation of cutting through an arc produces an instance with
only one from an instance with two holes. This guarantees that the algorithm
runs in polynomial time.

5 Conclusions

In this paper we showed that given a simple drawing D(G) of a graph G = (V,E)
and a prescribed set M of edges of the complement of G, it is NP-complete to
decide whether M can be inserted into D(G). Moreover, it is APX-hard to find
the maximum subset of edges in M that can be inserted into D(G). We remark
that the reduction showing APX-hardness cannot replace the one showing NP-
hardness of inserting the whole set M of edges, since, by construction, in the
APX-hardness reduction some of the edges in M cannot be inserted.

Focusing on the case |M | = 1, we showed that a generalization of this problem
is NP-complete and we found sufficient conditions guaranteeing a polynomial
time decision. We hope that this paves the way to solve the following question.

Problem 1. Given a simple drawing D(G) of a graph G and a pair u, v of non-
adjacent edges, what is the computational complexity of deciding whether we
can insert uv into D(G) such that the result is a simple drawing?

Acknowledgments. We want to thank the anonymous reviewers for their insightful
comments.



242 A. Arroyo et al.

References

1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs.
Theoret. Comput. Sci. 237(1), 123–134 (2000). https://doi.org/10.1016/S0304-
3975(98)00158-3

2. Angelini, P., Di Battista, G., Frati, F., Jeĺınek, V., Kratochv́ıl, J., Patrignani, M.,
Rutter, I.: Testing planarity of partially embedded graphs. ACM Trans. Algorithms
11(4), 32 (2015). https://doi.org/10.1145/2629341

3. Arroyo, A., Derka, M., Parada, I.: Extending simple drawings. ArXiv e-Prints
(2019). http://arxiv.org/abs/1908.08129

4. Bagheri, A., Razzazi, M.: Planar straight-line point-set embedding of trees with
partial embeddings. Inf. Process. Lett. 110(12–13), 521–523 (2010). https://doi.
org/10.1016/j.ipl.2010.04.019

5. de Berg, M., Khosravi, A.: Optimal binary space partitions in the plane.
Int. J. Comput. Geom. Appl. 22(03), 187–205 (2010). https://doi.org/10.1142/
S0218195912500045

6. Brückner, G., Rutter, I.: Partial and constrained level planarity. In: Klein,
P.N. (ed.) Proceedings of the 28th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA 2017), pp. 2000–2011 (2017). https://doi.org/10.1137/
1.9781611974782.130

7. Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number
and 1-planarity hard. SIAM J. Comput. 42(5), 1803–1829 (2013). https://doi.org/
10.1137/120872310

8. Cardinal, J., Felsner, S.: Topological drawings of complete bipartite graphs. J.
Comput. Geom. 9(1), 213–246 (2018). https://doi.org/10.20382/jocg.v9i1a7

9. Da Lozzo, G., Di Battista, G., Frati, F.: Extending upward planar graph drawings.
In: Friggstad, Z., Sack, J.-R., Salavatipour, M.R. (eds.) WADS 2019. LNCS, vol.
11646, pp. 339–352. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
24766-9 25

10. Eswaran, K.P., Tarjan, R.E.: Augmentation problems. SIAM J. Comput. 5(4),
653–665 (1976)

11. Gutwenger, C., Mutzel, P., Weiskircher, R.: Inserting an edge into a planar graph.
Algorithmica 41(4), 289–308 (2005). https://doi.org/10.1007/s00453-004-1128-8

12. Hajnal, P., Igamberdiev, A., Rote, G., Schulz, A.: Saturated simple and 2-simple
topological graphs with few edges. J. Graph Algorithms Appl. 22(1), 117–138
(2018). https://doi.org/10.7155/jgaa.00460

13. Jeĺınek, V., Kratochv́ıl, J., Rutter, I.: A Kuratowski-type theorem for planarity of
partially embedded graphs. Comput. Geom.: Theory Appl. 46(4), 466–492 (2013).
https://doi.org/10.1016/j.comgeo.2012.07.005

14. Kynčl, J.: Simple realizability of complete abstract topological graphs simplified.
In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 309–320.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27261-0 26

15. Kynčl, J.: Improved enumeration of simple topological graphs. Discret. Comput.
Geom. 50(3), 727–770 (2013). https://doi.org/10.1007/s00454-013-9535-8

16. Kynčl, J., Pach, J., Radoičić, R., Tóth, G.: Saturated simple and k-simple topo-
logical graphs. Comput. Geom. 48(4), 295–310 (2015). https://doi.org/10.1016/j.
comgeo.2014.10.008

17. Mchedlidze, T., Nöllenburg, M., Rutter, I.: Extending convex partial drawings
of graphs. Algorithmica 76(1), 47–67 (2015). https://doi.org/10.1007/s00453-015-
0018-6

https://doi.org/10.1016/S0304-3975(98)00158-3
https://doi.org/10.1016/S0304-3975(98)00158-3
https://doi.org/10.1145/2629341
http://arxiv.org/abs/1908.08129
https://doi.org/10.1016/j.ipl.2010.04.019
https://doi.org/10.1016/j.ipl.2010.04.019
https://doi.org/10.1142/S0218195912500045
https://doi.org/10.1142/S0218195912500045
https://doi.org/10.1137/1.9781611974782.130
https://doi.org/10.1137/1.9781611974782.130
https://doi.org/10.1137/120872310
https://doi.org/10.1137/120872310
https://doi.org/10.20382/jocg.v9i1a7
https://doi.org/10.1007/978-3-030-24766-9_25
https://doi.org/10.1007/978-3-030-24766-9_25
https://doi.org/10.1007/s00453-004-1128-8
https://doi.org/10.7155/jgaa.00460
https://doi.org/10.1016/j.comgeo.2012.07.005
https://doi.org/10.1007/978-3-319-27261-0_26
https://doi.org/10.1007/s00454-013-9535-8
https://doi.org/10.1016/j.comgeo.2014.10.008
https://doi.org/10.1016/j.comgeo.2014.10.008
https://doi.org/10.1007/s00453-015-0018-6
https://doi.org/10.1007/s00453-015-0018-6


Extending Simple Drawings 243

18. Pach, J., Solymosi, J., Tóth, G.: Unavoidable configurations in complete topological
graphs. Discret. Comput. Geom. 30(2), 311–320 (2003). https://doi.org/10.1007/
s00454-003-0012-9

19. Patrignani, M.: On extending a partial straight-line drawing. Int. J. Found. Com-
put. Sci. 17(5), 1061–1070 (2006). https://doi.org/10.1142/S0129054106004261

20. Riskin, A.: The crossing number of a cubic plane polyhedral map plus an edge.
Studia Scientiarum Mathematicarum Hungarica 31(4), 405–414 (1996)

https://doi.org/10.1007/s00454-003-0012-9
https://doi.org/10.1007/s00454-003-0012-9
https://doi.org/10.1142/S0129054106004261


Coloring Hasse Diagrams
and Disjointness Graphs of Curves

János Pach1,2 and István Tomon1(B)

1 École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
{janos.pach,istvan.tomon}@epfl.ch
2 Rényi Institute, Budapest, Hungary

Abstract. Given a family of curves C in the plane, its disjointness graph
is the graph whose vertices correspond to the elements of C, and two
vertices are joined by an edge if and only if the corresponding sets are
disjoint. We prove that for every positive integer r and n, there exists a
family of n curves whose disjointness graph has girth r and chromatic
number Ω( 1

r
log n). In the process we slightly improve Bollobás’s old

result on Hasse diagrams and show that our improved bound is best
possible for uniquely generated partial orders.

Keywords: String graph · Hasse diagram · Chromatic number

1 Introduction

There are two important, seemingly unrelated, concepts that play important
roles in Geometric Graph Theory and in Graph Drawing: Hasse diagrams and
string graphs.

Hasse diagrams were introduced by Vogt [26] at the end of the 19th century
for concise representation of partial orders. Today they are widely used in graph
drawing algorithms. Let P be a partially ordered set with partial ordering ≺.
For any x, y ∈ P , we say that y covers x if x ≺ y and there is no z ∈ P such that
x ≺ z ≺ y. The Hasse diagram of P is the directed graph on the elements of P ,
where there is an edge from x to y if and only if y covers x. If we disregard the
direction of the edges, we obtain the cover graph of P . The graph on P whose
two elements are connected by an edge if and only if they are related by ≺ is the
comparability graph of P . The cover graph is a subgraph of the comparability
graph.

The intersection graph of a family of sets C is the graph whose vertices
correspond to the elements of C and two vertices are joined by an edge if and only
if the corresponding sets have a nonempty intersection. The disjointness graph
of C is the complement of the intersection graph of C. A string, or curve, γ is the
image of a continuous function f : [0, 1] → R

2. A curve γ is grounded if one of its

Research partially supported by Swiss National Science Foundation grants no. 200020-
162884 and 200021-175977.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 244–250, 2019.
https://doi.org/10.1007/978-3-030-35802-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_19&domain=pdf
http://orcid.org/0000-0002-2389-2035
http://orcid.org/0000-0001-8344-3592
https://doi.org/10.1007/978-3-030-35802-0_19


Coloring Hasse Diagrams and Disjointness Graphs of Curves 245

endpoints is on the y-axis, and γ lies in the nonnegative half-plane. See Fig. 1 for
an illustration of a grounded family of curves and its disjointness graph. A string
graph is the intersection graph of curves. The notion was introduced by Benzer [2]
and Sinden [24] to describe the incidence structures of intervals in chromosomes
and metallic layers in printed networks, respectively. The systematic study of
string graphs was initiated in [5] and [10].

A

B

C

D

A B C D

Fig. 1. A family of grounded curves and its disjointness graph.

The first sign that the above concepts are intimately related was the following
simple fact discovered by Golumbic, Rotem, Urrutia [9], and Lovász [15]: Every
comparability graph is the disjointness graph of a collection of curves in the
plane. A partial converse of this statement was established in [8].

A useful characterization of cover graphs in terms of strings follows directly
from Corollary 2.7 of Middendorf and Pfeiffer [16] and Theorem 1 in [24]. See
also [13] and [23] (page 2).

Theorem 1. [16], [24] A triangle-free graph is a cover graph of a partially
ordered set if and only if it is isomorphic to the disjointness graph of a fam-
ily of grounded curves.

The girth of a graph G is the length of the shortest cycle in G. Obviously,
every triangle-free graph has girth at least four. According to a classical result
of Erdős [6], for every r ≥ 3, there exist graphs with n vertices and girth at
least r which have arbitrarily large chromatic numbers. Erdős’s construction is
probabilistic and does not posses any geometric structure.



246 J. Pach and I. Tomon

For geometrically defined graphs, the situation is more complicated. The
chromatic number of intersection graphs of axis-parallel rectangles [1] or chords
of a cycle [4,11,12] and disjointness graphs of segments in the plane [21,25] can be
bounded from above by a function of their clique numbers. In sharp contrast to
this, Pawlik, Kozik, Krawczyk, Lasoń, Micek, Trotter, and Walczak [22] proved
that there exist triangle-free intersection graphs of n segments with chromatic
number Ω(log log n), which disproved a longstanding conjecture of Erdős. In [19],
triangle-free disjointness graphs of n curves were constructed, with chromatic
number Ω(log n), cf. [17]. This construction is based on shift graphs, defined by
Erdős and Hajnal [7]. It appears to be difficult to extend this method to obtain
disjointness graphs of curves with high girth and high chromatic number.

The aim of the present note is to construct such graphs.

Theorem 2. For every positive integer r and for every sufficiently large n, there
exists a family of n curves whose disjointness graph has girth at least r and
chromatic number at least Ω( 1r log n).

This result does not remain true if we are allowed to use only x-monotone
curves, that is, if every vertical line meets each curve in at most one point. In
this case, the chromatic number of the cover graph is bounded from above by a
constant [20,21].

In view of Theorem 1, in order to prove Theorem 2, it is sufficient to establish
the following.

Theorem 3. For every positive integer r and for every sufficiently large n, there
exists a poset on n vertices whose cover graph has girth at least r and chromatic
number Ω(1r log n).

The study of combinatorial properties of cover graphs (Hasse diagrams) is an
extensive area of research in the theory of partial orders. Bollobás [3] was the first
to show the existence of partial orders (actually, lattices) whose cover graphs have
arbitrarily large girth and chromatic number. Alternative constructions were
found by Nešetřil et al. [14,18]. Bollobás’s proof, which gives the best known
asymptotic bound, builds on Erdős’s probabilistic construction [6] mentioned
above. It shows that for a fixed girth r and n → ∞, the chromatic number of
a cover graph with n vertices can be as large as Ω( logn

log log n ). Our Theorem 3
improves on this bound.

It is possible that Theorem 3 can be further improved. However, we can
show that our bound is tight for an interesting family of cover graphs. A partially
ordered set P is called uniquely generated if for every comparable pair of vertices
x ≺ y, there exists a unique sequence of vertices x = v1 ≺ · · · ≺ vk = y such
that vi+1 covers vi for i = 1, . . . , k − 1. Obviously, if there is no chain with 3
elements in P , then P is uniquely generated and its cover graph is bipartite.

Theorem 4. (i) If P is a uniquely generated poset on n vertices, then the chro-
matic number of its cover graph is at most �log2 n� + 1.
(ii) For every integer r > 3 and for every sufficiently large n, there exists a
uniquely generated poset on n vertices whose cover graph has girth at least r and
chromatic number at least Ω( 1r log n).



Coloring Hasse Diagrams and Disjointness Graphs of Curves 247

2 Cover Graphs with Large Chromatic Number

In this section, we prove Theorem 4. Note that then Theorem 3 is an immediate
consequence of part (ii) of Theorem 4. We omit floors an ceilings for easier
readability.

Proof of Theorem 4, part (i). Let G be the cover graph of P , let <P be the
partial ordering on P , and let ≺ be a linear extension of <P . For any x ∈ P , let
C(x) denote the set of vertices of P covered by x.

We prove that the greedy coloring of G with respect to ≺ uses at most
1 + �log2 n� colors. Let v1 ≺ · · · ≺ vn be the vertices of G. Color them with the
elements of Z

+, as follows. For i = 1, . . . , n, if v1, . . . , vi−1 have already been
colored, then color vi with the smallest positive integer k that does not appear
among the colors of C(vi).

For each vertex v ∈ V (G), let T (v) denote the set of vertices u ∈ V (G) such
that u ≤P v. Note that, as P is uniquely generated, the subgraph of G induced
by T (v) is a tree. We claim that if v received color k, then |T (v)| ≥ 2k−1. This
clearly implies (i), because if the total number of colors used by our coloring is
K, then we have n ≥ 2K−1.

We prove the claim by induction on k. For k = 1, the statement is trivial.
Suppose that k ≥ 2 and that the claim is true for all positive integers smaller
than k. As v received color k, we can find k − 1 vertices u1, . . . , uk−1 ∈ C(v)
such that the color of ui is i, for i = 1, . . . , k − 1. By the induction hypothesis,
we have |T (ui)| ≥ 2i−1. Since the trees T (u1), . . . , T (uk−1) ⊂ T (v) are pairwise
disjoint, we obtain |T (v)| ≥ 1 +

∑k−1
i=1 2i−1 = 2k−1, as required. �

For the proof of part (ii) of Theorem 4, we need the following technical
lemma.

Lemma 1. Let A and B be two m-element sets and let G be the random graph
on A ∪ B in which every a ∈ A and b ∈ B are joined by an edge independently
with probability p = d

m .
Then the probability that there exist X ⊂ A and Y ⊂ B such that |X||Y | ≥

3m2/d and there is no edge between X and Y is at most 2−m.

Proof. Let N = 3m2

d . For any X ⊂ A and Y ⊂ B, let I(X,Y ) denote the event
that there exists no edge between X and Y . Obviously, we have P(I(X,Y )) =
(1 − p)|X||Y | ≤ e−p|X||Y |. This yields

P

⎛

⎜
⎜
⎝

⋃

X⊂A,Y ⊂B
|X||Y |≥N

I(X,Y )

⎞

⎟
⎟
⎠ ≤

∑

X⊂A,Y ⊂B
|X||Y |≥N

e−p|X||Y | ≤ 22me−pN < 2−m.

�

Proof of Theorem 4, part (ii). Assume that n ≥ 210r, and let N = 3n,
k = log2 N

10r , and m = N
k . If G is a graph whose vertex set is a subset of the



248 J. Pach and I. Tomon

integers, a monotone path in G is a path with vertices c0 < c1 < · · · < ct and
edges cici+1 for i = 1, . . . , t − 1. A pair of vertices {a, b} of G is called bad, if
there exist two edge-disjoint monotone paths whose endpoints are a and b.

Our goal is to construct a graph G on the vertex set {1, ..., N} satisfying the
following three conditions:

1. G has no independent set of size larger than 7m,
2. G has at most N

3 bad pairs of vertices,
3. the number of cycles in G of length smaller than r is at most N

3 .

Suppose that such a graph G exists. Let G′ denote the graph obtained from G
by deleting 2N

3 vertices: at least one vertex from every bad pair and at least one
vertex from every cycle of length smaller than r. Then G′ has n vertices and
girth at least r. Condition 1 implies that the chromatic number of G′ is at least
n
7m > 1

103r log2 n. Define a partially ordered set P with partial ordering <P on
V (G′) in such a way that a <P b if and only if a < b and there exists a monotone
path in G′ with endpoints a and b. Then P meets all the requirements of part
(ii) of the theorem. Indeed, as G′ has no bad pair of vertices, the cover graph of
P is equal to G′, and P is uniquely generated.

We construct a graph G with the above three properties, as follows. Divide
{1, . . . , N} into k intervals of size m, denoted by A1, ..., Ak. For every 1 ≤ i <
j ≤ k and for any x ∈ Ai, y ∈ Aj , join x and y by an edge independently with
probability pij = 2j−i

m . Denote the resulting graph by G.
First, we show that, with probability larger than 2

3 , condition 1 is satisfied:
G does not contain an independent set of size larger than 7m. Let A denote
the event that for every pair (i, j) with 1 ≤ i < j ≤ k, and for every pair of
subsets X ⊂ Ai and Y ⊂ Aj with no edge running between X and Y , we have
|X||Y | < 3m22i−j . By Lemma 1, for a fixed pair (i, j) with 1 ≤ i < j ≤ k,
with probability at least 1 − 2−m there exists no X ⊂ Ai and Y ⊂ Aj such that
|X||Y | ≥ 3m22i−j and there is no edge between X and Y . As there are fewer
than k2 different pairs (i, j) with 1 ≤ i < j ≤ k, we have P(A) ≥ 1−k22−m > 2

3 .
We show that if A happens, then G has no independent set of size larger

than 7m. Suppose for contradiction that I ⊂ V (G) is an independent set with
|I| > 7m. For i = 1, ..., k, let Ii = I ∩Ai. Clearly, there exists an index 1 ≤ h ≤ k

such that
∑h

i=1 |Ii| ≥ 3m and
∑k

i=h+1 |Ii| ≥ 3m. Then we have

9m2 ≤
(

h∑

i=1

|Ii|
) (

k∑

i=h+1

|Ii|
)

=
h∑

i=1

k∑

j=h+1

|Ii||Ij | ≤
h∑

i=1

k∑

j=h+1

3m22i−j , (1)

where the last inequality holds if A occurs. However,

h∑

i=1

k∑

j=h+1

2i−j ≤
k∑

l=1

l2−l < 2,

which contradicts the left-hand side of (1).



Coloring Hasse Diagrams and Disjointness Graphs of Curves 249

Next, we prove that the probability that G satisfies condition 2 is larger than
2
3 . Let X stand for the number of bad pairs of vertices in G, and let B denote
the event that X ≤ N

3 . Let x ∈ Ai and y ∈ Aj , where 1 ≤ i < j ≤ k. Let x =
v0, v2, . . . , vl = y such that vt ∈ Ait for t = 0, . . . , l, where i = i0 < · · · < il = j.
The probability that v0, . . . , vl is a monotone path in G is

l−1∏

t=0

2il+1−il

m
=

2j−i

ml
<

2k

ml
.

There are
(
j−i−1
l−1

)
ml−1 < 2kml−1 ways to choose the vertices of a monotone

path of length l with endpoints x and y. Hence, the probability that there exist
two edge-disjoint monotone paths with endpoints x and y, where one of these
paths has length l and the other has length l′, is at most

(2kml−1)(2kml′−1)
2k

ml

2k

ml′ =
24k

m2
.

There are fewer than k2 ways to choose (l, l′), so the probability that {x, y} is a
bad pair of vertices is less than k224k

m2 < 1
9n . Therefore, we have E(X) < N2 1

9N =
N
9 . Applying Markov’s inequality, we obtain that 1 − P(B) = P(X > N

3 ) < 1
3 .

Finally, we show that G satisfies condition 3, with probability larger than 2
3 .

Let Y be the number of cycles of length at most r − 1 in G, and let C denote
the event that Y ≤ N

3 . Let p = n−(r−1)/r. Note that each pair of vertices in G

is joined by an edge with probability at most 2k

m < p. Then we have

E(Y ) <
r−1∑

l=3

N lpl < rN
r−1
r <

N

9
.

Indeed, there are (l−1)!
2

(
N
l

)
< N l possible copies of the cycle of length l, and the

probability that a fixed copy of such a cycle appears in G is at most pl. Applying
Markov’s inequality, we get 1 − P(C) = P(Y > N

3 ) < 1
3 .

In conclusion, we proved that P(A),P(B),P(C) > 2
3 . Thus, the probability

that the event A∧B ∧C occurs is nonzero. This means that there exists a graph
G satisfying conditions 1, 2, and 3, which completes the proof of the theorem.�

Acknowledgements. We are grateful to Bartosz Walczak for valuable discussions. He
gave a direct construction proving Theorem 1 and pointed out where the components
of the statement appeared in the literature.

References

1. Asplund, E., Grünbaum, B.: On a coloring problem. Math. Scand. 8, 181–188
(1960)

2. Benzer, S.: On the topology of the genetic fine structure. Proc. Natl. Acad. Sci.
U.S.A. 45(11), 1607–1620 (1959)



250 J. Pach and I. Tomon

3. Bollobás, B.: Colouring lattices. Algebra Universalis 7, 313–314 (1977)
4. Davies, J., McCarty, R.: Circle graphs are quadratically χ-bounded.

arXiv:1905.11578
5. Ehrlich, G., Even, S., Tarjan, R.E.: Intersection graphs of curves in the plane. J.

Comb. Theory Ser. B 21(1), 8–20 (1976)
6. Erdős, P.: Graph theory and probability. Can. J. Math. 11, 34–38 (1959)
7. Erdős, P., Hajnal, A.: Some remarks on set theory. IX. Combinatorial problems in

measure theory and set theory. Mich. Math. J. 11(2), 107–127 (1964)
8. Fox, J., Pach, J.: String graphs and incomparability graphs. Adv. Math. 230(3),

1381–1401 (2012)
9. Golumbic, M., Rotem, D., Urrutia, J.: Comparability graphs and intersection

graphs. Discrete Math. 43, 37–46 (1983)
10. Graham, R.L.: Problem 1, Open Problems at 5th Hungarian Colloquium on Com-

binatorics (1976). In: Hajnal, A., Sós, V.T. (eds.) Combinatorics, vol. II. North-
Holland, Amsterdam, p. 1195 (1978)

11. Gyárfás, A.: On the chromatic number of multiple interval graphs and overlap
graphs. Discrete Math. 55, 161–166 (1985)

12. Kostochka, A., Kratochv́ıl, J.: Covering and coloring polygon-circle graphs. Dis-
crete Math. 163(1–3), 299–305 (1997)

13. Kratochv́ıl, J.: String graphs. I. The number of critical nonstring graphs is infinite.
J. Comb. Theory Ser. B 52(1), 53–66 (1991)

14. Kř́ıž, I., Nešetřil, J.: Chromatic number of Hasse diagrams, eyebrows and dimen-
sion. Order 8(1), 41–48 (1991)

15. Lovász, L.: Perfect graphs. In: Selected Topics in Graph Theory, vol. 2, pp. 55–87.
Academic Press, London (1983)

16. Middendorf, M., Pfeiffer, F.: Weakly transitive orientations, Hasse diagrams and
string graphs. Discrete Math. 111(1–3), 393–400 (1993). In: Graph theory and
combinatorics (Marseille-Luminy 1990)

17. Mütze, T., Walczak, B., Wiechert, V.: Realization of shift graphs as disjointness
graphs of 1-intersecting curves in the plane. arXiv:1802.09969

18. Nešetřil, J., Rödl, V.: A short proof of the existence of highly chromatic hyper-
graphs without short cycles. J. Comb. Theory Ser. B 27(2), 225–227 (1979)

19. Pach, J., Tardos, G., Tóth, G.: Disjointness graphs of segments. In: 33rd Interna-
tional Symposium on Computational Geometry, SoCG 2017, 77, Leibniz Zentrum,
Dagstuhl, pp. 59:1–59:15 (2017)

20. Pach, J., Tomon, I.: On the chromatic number of disjointness graphs of curves.
In: 35th International Symposium on Computational Geometry, SoCG 2019, 129
Leibniz Zentrum, Dagstuhl, pp. 54:1–54:17 (2019)

21. Pach, J., Törőcsik, J.: Some geometric applications of Dilworth’s theorem. Discrete
Comput. Geom. 12(1), 1–7 (1994)

22. Pawlik, A., Kozik, J., Krawczyk, T., Lasoń, M., Micek, P., Trotter, W.T., Walczak,
B.: Triangle-free intersection graphs of line segments with large chromatic number.
J. Comb. Theory Ser. B 105, 6–10 (2014)

23. Rok, A., Walczak, B.: Outerstring graphs are χ-bounded. https://arxiv.org/abs/
1312.1559

24. Sinden, F.W.: Topology of thin film RC-circuits. Bell System Tech. J. 45, 1639–
1662 (1966)

25. Tóth, G.: Note on geometric graphs. J. Comb. Theory Ser. A 89(1), 126–132 (2000)
26. Vogt, H. G.: Leçons sur la résolution algébrique des équations, Nony, p. 91 (1895)

http://arxiv.org/abs/1905.11578
http://arxiv.org/abs/1802.09969
https://arxiv.org/abs/1312.1559
https://arxiv.org/abs/1312.1559


A Low Number of Crossings



Efficient Generation of Different
Topological Representations of Graphs

Beyond-Planarity

Patrizio Angelini , Michael A. Bekos(B) , Michael Kaufmann ,
and Thomas Schneck

Institut für Informatik, Universität Tübingen, Tübingen, Germany
{angelini,bekos,mk,schneck}@informatik.uni-tuebingen.de

Abstract. Beyond-planarity focuses on combinatorial properties of
classes of non-planar graphs that allow for representations satisfying cer-
tain local geometric or topological constraints on their edge crossings.
Beside the study of a specific graph class for its maximum edge density,
another parameter that is often considered in the literature is the size of
the largest complete or complete bipartite graph belonging to it.

Overcoming the limitations of standard combinatorial arguments, we
present a technique to systematically generate all non-isomorphic topo-
logical representations of complete and complete bipartite graphs, taking
into account the constraints of the specific class. As a proof of concept,
we apply our technique to various beyond-planarity classes and achieve
new tight bounds for the aforementioned parameter.

Keywords: Beyond planarity · Complete (bipartite) graphs ·
Generation of topological representations

1 Introduction

Beyond-planarity is an active research area concerned with combinatorial prop-
erties of non-planar graphs that lie in the “neighborhood” of planar graphs.
More concretely, these graphs allow for non-planar drawings in which certain
geometric or topological crossing configurations are forbidden. The most studied
beyond-planarity classes, with early results dating back to 60’s [10,43], are the
k-planar graphs [40], which forbid an edge to be crossed more than k times,
and the k-quasiplanar graphs [4], which forbid k mutually crossing edges; see
Fig. 1a–b.

More recently, several other classes have been suggested (e.g., [6,12]), also
motivated by cognitive experiments [33,38] indicating that the absence of certain
types of crossings helps in improving the readability of a drawing; for a survey,
refer to [25]. Some of the most studied are: (i) fan-planar graphs, in which no
edge can be crossed by two independent edges or by two adjacent edges from

This project was supported by DFG grant KA812/18-1.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 253–267, 2019.
https://doi.org/10.1007/978-3-030-35802-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_20&domain=pdf
http://orcid.org/0000-0002-7602-1524
http://orcid.org/0000-0002-3414-7444
http://orcid.org/0000-0001-9186-3538
http://orcid.org/0000-0003-4061-8844
https://doi.org/10.1007/978-3-030-35802-0_20


254 P. Angelini et al.

different directions [13,14,34], (ii) fan-crossing free graphs, in which no edge
can be crossed by two adjacent edges [17,20], (iii) gap-planar graphs, in which
each crossing is assigned to one of its two involved edges, such that each edge
can be assigned at most one crossing [12], and (iv) RAC graphs, in which edge
crossings occur only at right angles [23,24,26]; see Fig. 1c–e. Note that all the
aforementioned graph classes are topological, i.e., each edge is represented as a
simple curve, with the only exception of the class of RAC graphs, which is a
purely geometric graph class, i.e., each edge must be represented as a straight-
line segment. In this work, we refer to the aforementioned topological graph
classes as beyond-planarity classes of topological graphs.

(a) (b) (c) (d) (e) (f)

Fig. 1. Different forbidden crossing configurations in: (a) 1-planar, (b) 3-quasiplanar,
(c) fan-planar, (d) fan-crossing free, (e) gap-planar, and (f) RAC graphs.

A common characteristic of these graph classes is that their edge density is at
most linear in the number of vertices, e.g., 1-planar graphs with n vertices have
at most 4n−8 edges [40]; see Table 1. Another common measure to determine the
extent of a specific class is the size of the largest complete or complete bipartite
graph belonging to it [12,15,21,22], which also provides a lower bound on their
chromatic number [31] and has been studied in related fields (e.g., [9,18,27,32]).

For 1-planar graphs, Czap and Hudák [21] proved that the complete graph
Kn is 1-planar if and only if n ≤ 6, and that the complete bipartite graph Ka,b,
with a ≤ b, is 1-planar if and only if a ≤ 2, or a = 3 and b ≤ 6, or a = b = 4.
An analogous characterization is known for the class of RAC graphs by Didimo
et al. [22,23], who proved that Kn is a RAC graph if and only if n ≤ 5, while
Ka,b, with a ≤ b, is a RAC graph if and only if a ≤ 2, or a = 3 and b ≤ 4.
For the classes of 3-quasiplanar (also known as quasiplanar), gap-planar, and
fan-crossing free graphs, characterizations exist only for complete graphs, i.e.,
Kn is quasiplanar if and only if n ≤ 10 [3,15], gap-planar if and only if n ≤ 8
[12], and fan-crossing free if and only if n ≤ 6 [20,21]; Table 1 gives more details.

To prove the “if part” of these characterizations, one has to provide a certifi-
cate drawing of the respective graph. The proof for the “only if part” is generally
more complex, as it requires arguments to show that no such drawing exists.

One of the main techniques is provided by the linear edge density of the
graph classes; e.g., K7 is neither 1-planar nor fan-crossing free, as it has more
than 4n − 8 edges [20,40]. However, this technique has a limited applicability;
e.g., for 2-planar and fan-planar graphs, which have at most 5n−10 edges, it only
ensures that K9 is not a member of these classes. Proving that K8 is also not



Generation of Topological Representations 255

a member requires a different approach. The limitations are even more evident
for complete bipartite graphs, as they are sparser than the complete ones (see
Sect. 4).

Table 1. Known results and our findings. For each class, we present the largest com-
plete and complete bipartite graphs that belong to this class (col. “∈”), and the smallest
ones that do not (col. “/∈”). Color gray indicates weaker results that follow from other
entries.

Class Density Complete Complete bipartite

∈ Ref /∈ Ref ∈ Ref /∈ Ref

1-planar 4n − 8 K6 [21, Fig. 1]K7 [40, Theorem 1] K3,6 [21, Fig. 2] K3,7 [21, Lemma 4.2]

K4,4 [21, Fig. 3] K4,5 [21, Lemma 4.3]

2-planar 5n − 10 K7 [14, Fig. 7]K8 Char. 2 K3,10 [6, Lemma 1]K3,11 [6, Lemma 1]

K4,6 Char. 3 K4,7 Char. 3

K4,5 K5,5 Char. 3 [35]

3-planar 11
2 n − 11K8 Char. 2 K9 Char. 2 K3,14 [6, Lemma 1]K3,15 [6, Lemma 1]

K4,9 Char. 4 K4,10Char. 4

K5,6 Char. 4 K5,7 Char. 4

K5,6 K6,6 Char. 4

4-planar 6n − 12 K9 Char. 2 K10Char. 2 K3,18 [6, Lemma 1]K3,19 [6, Lemma 1]

K4,11Obs.5 K4,19

K5,8 Obs.5 K5,19

K6,6 Obs.5 K6,19

fan-planar 5n − 10 K7 [14, Fig. 7]K8 Char. 6 K4,n [34, Fig. 3] K5,5 Char. 7

fan-crossing4n − 8 K6 [21, Fig. 1]K7 [20, Theorem 1] K3,6 K3,7 Char. 9

free K4,6 Char. 9 K4,7

K4,5 K5,5 Char. 9

gap-planar 5n − 10 K8 [12, Fig. 7]K9 [12, Theorem 23]K3,12 [12, Fig. 7] K3,14 [11, Theorem 1]

K4,8 [12, Fig. 9] K4,9 Obs.11

K5,6 [12, Fig. 9] K5,7 [12]

K5,6 K6,6 [11, Theorem 1]

RAC 4n − 10 K5 [26, Fig. 5]K6 [23, Theorem 1] K3,4 [22, Fig. 4] K3,5 [22, Theorem 2]

K3,4 K4,4 [22, Theorem 2]

quasiplanar 13
2 n − 20K10 [15, Fig. 1]K11 [3, Theorem 5] K4,n [34, Fig. 3] –

K5,18Obs.13 ?

K6,10Obs.13 ?

K7,7 Obs.13 K7,52 [3, Theorem 5]

Another technique consists of showing that the minimum number of cross-
ings required by any drawing of a certain graph (as derived by, e.g., the Crossing
Lemma [2,5,39] or closed formulas [44]) exceeds the maximum number of cross-
ings allowed in the considered graph class. However, this technique only applies
to classes that impose such restrictions, e.g., gap- and 1-planar graphs [11,21].

This difficulty in finding combinatorial arguments to prove that certain com-
plete (bipartite) graphs do not belong to specific classes often results in the
need of a large case analysis on the different topological representations of the
graph. Beside the proofs in [22,35], we give in [8] another example of a combi-
natorial proof that, based on a tedious case analysis, yields a characterization of



256 P. Angelini et al.

the complete bipartite fan-crossing free graphs. The range of the cases in these
proofs justifies the need of a tailored approach to systematically explore them.
Our Contribution. We suggest a technique to engineer the analysis of all
topological representations of a graph that satisfy certain beyond-planarity con-
straints. Our technique does not extend to classes of geometric graphs, and is tai-
lored for complete and complete bipartite graphs, as we exploit their symmetry
to reduce the search space, by discarding equivalent topological representations.

In Sect. 3, we present an algorithm to generate all possible representations
of such graphs under different topological constraints on the crossing configura-
tions. Our algorithm builds on two key ingredients, which allow to drastically
reduce the search space. First, the representations are constructed by adding a
vertex at a time, directly taking into account the topological constraints, thus
avoiding constructing unnecessary representations. Second, at each intermediate
step, the produced drawings are efficiently tested for equivalence (up to a rela-
beling of the vertices), which usually allows to discard a large set of them. Using
this algorithm, we derived characterizations for several classes, as described in
Sect. 4; Table 1 positions our results with respect to the state of the art. We give
preliminary definitions in Sect. 2 and discuss future directions in Sect. 5.

2 Preliminaries

We assume familiarity with standard definitions on planar graphs and drawings
(see, e.g., [8]). We assume simple drawings, in which there are no self-crossing
edges, two edges cross at most once, and adjacent edges do not cross; note this
assumption is not without loss of generality [3]. Given a planarization Γ of a
graph G, a half-pathway for a vertex u in Γ is a path in the dual of Γ from
a face incident to u to some face in Γ , called its destination; see Fig. 2a. The
length of a half-pathway is the number of edges in this path. A half-pathway
for u is valid with respect to a beyond-planarity class C of topological graphs,
if Γ can be augmented such that (i) a vertex v is placed in its destination, (ii)
edge (u, v) is drawn as a curve from u to v that crosses only the edges that are
dual to the edges in this half-pathway, in the same order, and (iii) the drawing
of (u, v) violates neither the simplicity of the resulting drawing nor the crossing
restrictions of class C. Accordingly, a pathway for an edge (u, v) is a half-pathway
for vertex u in Γ , whose destination is a face incident to vertex v. A valid pathway
is defined analogously, with the only exception that v is already part of Γ .

Another ingredient of our algorithm is an equivalence-relationship between
different drawings of a graph G, i.e, drawings D1 and D2 of G are isomorphic
[36] if there exists a homeomorphism of the sphere transforming D1 into D2.
Namely, D1 and D2 are isomorphic if D1 can be transformed into D2 by relabel-
ing vertices, edges, and faces of D1, and by moving vertices and edges of D1, so
that at no time of this process new crossings are introduced, existing crossings
are eliminated, or the order of the crossings along an edge is modified. We define
a valid bijective mapping between vertices, crossings, edges, and faces of the
planarizations Γ1 and Γ2 of D1 and D2 such that: (P.1) if an edge (v1, w1) is



Generation of Topological Representations 257

mapped to an edge (v2, w2) in Γ1 and Γ2, respectively, and v1 is mapped to v2,
then w1 is mapped to w2; (P.2) if a face f1 is mapped to a face f2 in Γ1 and
Γ2, respectively, and an edge e1 incident to f1 is mapped to an edge e2 inci-
dent to f2, then the predecessor (successor) of e1 is mapped to the predecessor
(successor) of e2 when walking along the boundaries of f1 and f2 in clockwise
direction. Also, the face incident to the other side of e1 is mapped to the face
incident to the other side of e2. Clearly, Properties P.1 and P.2 are sufficient
for D1 and D2 to be isomorphic. We believe they are also necessary, but this
is beyond the scope of this work. Note that Property P.2 guarantees that two
vertices are mapped to each other only if they have the same degree.

Fig. 2. The prohibited edges (blue solid) for a half-pathway (red dashed) that ends in
a face fp. The thick blue edges are prohibited, because they are crossed by the half-
pathway. In (a) edges e1 and e2 are prohibited, since they are incident to u1. In (b)
edge e3 is prohibited, since, in order to cross this edge, the half-pathway would make a
self-crossing. In (c) edge e4 is prohibited since it is part of a crossed edge. (Color figure
online)

Several works [1,30,42] that generate simple drawings of complete graphs
adopt a weaker definition of isomorphism; two drawings D1 and D2 are weakly
isomorphic [36], if there exists an incidence preserving bijection between their
vertices and edges, such that two edges cross in D1 if and only if they do in D2.
Weakly isomorphic drawings that are non-isomorphic differ in the order in which
their edges cross [29]. Two simple drawings of a complete graph with the same
cyclic order of the edges around each vertex (called rotation system) are weakly
isomorphic, and vice versa [29,41]; hence, generating all simple drawings of a
complete graph reduces to finding all rotation systems that determine simple
drawings [37]. However, this property holds only for complete graphs [1], while
for the complete bipartite graphs, which are more difficult to handle, only partial
results exist in this direction [19]. Thus, we decided not to follow this approach.

3 Generation Procedure

Let C be a beyond-planarity class of topological graphs and let G be a graph
with n ≥ 3 vertices. Assuming that G is either complete or complete bipartite,
we describe in this section an algorithm to generate all non-isomorphic simple
drawings of G that are certificates that G belongs to C (if any). We stress that,
if G is neither complete nor complete bipartite, then it is a more involved task



258 P. Angelini et al.

to recognize isomorphic drawings [28], and thus to eliminate them, which is a
key point in the efficiency of our approach (we provide more details in Sect. 4).

Our algorithm aims at computing a set S containing all non-isomorphic sim-
ple drawings of G. In the base of the recursion, graph G is a cycle of length 3 or
4, depending on whether G is the complete graph K3 or the complete bipartite
graph K2,2. In the former case, set S only contains a planar drawing of K3, while
in the latter case, S contains a planar drawing and one with a crossing between
two non-adjacent edges. This is because, in both cases, any other drawing is
either isomorphic to one of these, or non-simple.

In the recursive step, we consider a vertex v of G and assume that we have
recursively computed the set S for G \ {v}. We may assume w.l.o.g. that S �= ∅,
as otherwise G would not belong to C. Then, we consider each drawing of S
and our goal is to report all non-isomorphic simple drawings of G that have it
as a subdrawing. In other words, we aim at reporting all non-isomorphic simple
drawings that can be derived by all different placements of vertex v and the
routing of its incident edges in the drawings of S. To this end, let Γ be the
planarization of one of the drawings in S, and let u1, . . . , uk be the neighbors of
v in G, where k = deg(v). If G is a complete graph, then k = n − 1; otherwise,
G is a complete bipartite graph Ka,b with a + b = n, and k = a or k = b holds.

We start by computing all possible valid half-pathways for u1 in Γ with
respect to C, which corresponds to constructing all possible drawings of edge
(v, u1) that respect simplicity and the restrictions of class C. To compute these
half-pathways, we again use recursion. For each half-pathway, we maintain a list
of so-called prohibited edges, which are not allowed to be crossed when inserting
edge (u1, v), as otherwise either the simplicity or the crossing restrictions of class
C would be violated; see Fig. 2. This list is initialized with all edges incident to
u1 and is updated at every recursive step.

In the base of this inner recursion, we determine all valid half-pathways for
u1 of length zero; this means that, for each face f incident to u1, we create a
half-pathway that starts at f and has its destination also at f , which corresponds
to placing v in f and drawing edge (v, u1) crossing-free. Assume now that we
have computed all valid half-pathways of some length i ≥ 0 in Γ . We show how
to compute all valid half-pathways for u1 of length i + 1 (if any). Consider a
half-pathway p of length i. Let fp be its destination. Every non-prohibited edge
e of fp implies a new half-pathway of length i + 1, composed of p followed by
the edge that is dual to e in Γ . Note that this process will eventually terminate,
since the length of a half-pathway is bounded by the number of edges of Γ .

For each valid half-pathway p computed by the procedure above, we obtain
a new drawing by inserting (u1, v) into Γ following p and by inserting v into
the destination of p. It remains to insert the remaining edges incident to v, i.e.,
(v, u2), . . . , (v, uk), into each of these drawings – again in all possible ways. For
this, we proceed mostly as above with one difference. Instead of half-pathways,
we search for valid pathways for each edge (v, ui), 2 ≤ i ≤ k, i.e., we only
consider pathways that start in a face incident to v and end in a face incident
to ui.



Generation of Topological Representations 259

If we find an edge (v, ui) for which no valid pathway exists, we declare that Γ
cannot be extended to a simple drawing of G that respects the crossing restric-
tions of C. Otherwise, the computed drawings of G are added to S, once all the
drawings of G \ {v} have been removed from it. To maintain our initial invari-
ant, however, once a new drawing is to be added to S, it will be first checked
for isomorphism against all previously added drawings. If there is an isomorphic
one, then the current drawing is discarded; otherwise, it is added to S.

We stress that we test isomorphism using Properties P.1 and P.2 of a valid
bijection. Since these properties are sufficient but we do not know whether they
are also necessary, set S might contain some isomorphic drawings. However, our
experiments indicate that the vast majority of them will be discarded.
Testing for Isomorphism. We describe a procedure to test whether the pla-
narizations Γ1 and Γ2 of two drawings of G comply with Properties P.1 and P.2 of
a valid bijection. We start by selecting two edges e1 = (v1, w1) and e2 = (v2, w2)
in Γ1 and Γ2, respectively, whose end-vertices have compatible types (i.e., v1 and
v2 are both real vertices or both crossings, and the same holds for w1 and w2). We
bijectively map e1 to e2, v1 to v2, and w1 to w2, which complies with Property
P.1. We call this a base mapping and try to extend it to a valid bijection.

We map to each other the face f1 of Γ1 that is “left” of e1 (when walking
along e1 from v1 to w1) and the face f2 of Γ2 that is “left” of e2 (when walking
along e2 from v2 to w2). If the degrees of f1 and f2 are different, then the base
mapping cannot be extended. Otherwise, both f1 and f2 have degree δ, and we
walk simultaneously along their boundaries, starting at e1 and e2 respectively;
in view of Property P.2, for each i = 1, . . . , δ, we bijectively map the i-th vertex
(either real or crossing) of f1 to the i-th vertex of f2, and the i-th edge of f1 to
the i-th edge of f2. If a crossing is mapped to a real vertex, or if the degrees of
two mapped vertices are different, then the base mapping cannot be extended.

If the vertices and edges of f1 and f2 have been mapped successfully, we
proceed by considering the two maximal connected subdrawings Γ ′

1 and Γ ′
2 of

Γ1 and Γ2, respectively, such that each edge of Γ ′
1 and Γ ′

2 has at least one face
incident to it that is already mapped. Consider an edge e′

1 of Γ ′
1 that is incident

to only one mapped face f ′
1 (such an edge exists, as long as the base mapping has

not been completely extended). Let e′
2 be the edge of Γ ′

2 mapped to e′
1; note that

e′
2 must be incident to a face f ′

2 that is mapped to f ′
1 and to a face that is not

mapped yet. We map to each other the faces incident to e′
1 end e′

2 that are not
mapped yet, and we proceed by applying the procedure described above (i.e., we
walk along the boundaries of f ′

1 and f ′
2 simultaneously, while ensuring that the

mapping remains valid). If this procedure can be performed successfully, then we
have computed two subdrawings Γ ′′

1 and Γ ′′
2 , such that Γ ′

1 ⊆ Γ ′′
1 , Γ ′

2 ⊆ Γ ′′
2 , and

each edge of them has at least one face incident to it that is already mapped.
Hence, we can recursively apply the aforementioned procedure to Γ ′′

1 and Γ ′′
2 .

Drawings Γ1 and Γ2 are isomorphic, if the base mapping can be eventually
extended. If not, then we have to consider another base mapping and check
whether this can be extended. Note that the case where e1 is bijectively mapped
to e2, v1 to w2, and w1 to v2 defines a different base mapping than the one



260 P. Angelini et al.

we were currently considering. If none of the base mappings can be extended,
then we consider Γ1 and Γ2 as non-isomorphic. To reduce the number of base
mappings that we have to consider, we first count the number of edges of Γ1 and
Γ2 whose endpoints are both real vertices, both crossings, and those consisting
of one real vertex and one crossing. These numbers have to be the same in Γ1

and Γ2. Since it is enough to consider base mappings only restricted to one of
the three types of edges, we choose the type with the smallest positive number
of occurrences. We summarize the above discussion in the following theorem.

Theorem 1. Let G be a complete (or a complete bipartite) graph and let C be
a beyond-planarity class of topological graphs. Then, G belongs to C if and only
if, under the restrictions of class C, our algorithm returns a valid drawing of G.

4 Proof of Concept - Applications

In this section we use the algorithm described in Sect. 3 to test whether certain
complete or complete bipartite graphs belong to specific beyond-planarity graph
classes. We give corresponding characterizations and discuss how our findings
are positioned within the literature. Our lower bound examples are drawings
that certify membership to particular beyond-planarity graph classes, computed
by an implementation (https://github.com/beyond-planarity/complete-graphs)
of our algorithm; for typesetting reasons we redrew them. Our upper bounds are
the smallest corresponding instances reported as negative by our algorithm.
The Class of k-planar Graphs. We start our discussion with the case of
complete graphs. As already mentioned in the introduction, the complete graph
Kn is 1-planar if and only if n ≤ 6 [21].

For the case of complete 2-planar graphs, the fact that a 2-planar graph with
n vertices has at most 5n−10 edges [40] implies that K9 is not a member of this
class. Figure 7 in [14], on the other hand, shows that K7 is 2-planar. We close
this gap by showing, with our implementation, that even K8 is not 2-planar.

For the cases of complete 3-, 4-, and 5-planar graphs, the application of a
similar density argument as above proves that K10, K11, and K19 are not 3-,
4-, and 5-planar, respectively [2,39]. With our implementation, we could show
that even K9 is not 3-planar, while K10 is neither 4- nor 5-planar. On the other
hand, our algorithm was able to construct 3- and 4-planar drawings of K8 and
K9, respectively; see Fig. 3a and b. Note that a 6-planar drawing of K10 can be
easily derived from the 4-planar drawing of K9 in Fig. 3b by adding one extra
vertex inside the red colored triangle. We have the following characterization.

Characterization 2. For k ∈ {1, 2, 3, 4}, the complete graph Kn is k-planar if
and only if n ≤ 5 + k. Also, Kn is 5-planar if and only if n ≤ 9.

Note that the 3-planarity of K8 implies that the chromatic number of 3-planar
graphs is lower bounded by 8. Analogous implications can be derived for the
classes of 4-, 5-, and 6-planar graphs. Another observation that came out from
our experiments is that, up to isomorphism, K6 has a unique 1-planar drawing,

https://github.com/beyond-planarity/complete-graphs


Generation of Topological Representations 261

K7 has only two 2-planar drawings, and K8 has only three 3-planar drawings,
while the number of non-isomorphic 4-planar drawings of K9 is significantly
larger, namely 35. For more details, refer to Table 2, and to [8].

(a) (b) (c) (d) (e)

Fig. 3. Illustration of (a) a 3-planar drawing of K8, (b) a 4-planar drawing of K9, (c)
a drawing of K4,6 that is both 2-planar and fan-crossing free, (d) a 3-planar drawing
of K4,9, and (e) a 3-planar drawing of K5,6.

Consider now a complete bipartite graph Ka,b with a ≤ b. Note that a ≤ 2
implies that Ka,b is planar; thus, it trivially belongs to all beyond-planarity
graph classes. Also, recall that Ka,b is 1-planar if and only if a ≤ 2, or a = 3 and
b ≤ 6, or a = b = 4 [21]. Further, a recent combinatorial result states that K3,b

is k-planar if and only if b ≤ 4k + 2 [6]. So, in the following we assume a ≥ 4.
For complete bipartite 2-planar graphs, the fact that a bipartite 2-planar

graph with n vertices has at most 3.5n−7 edges [7] implies that neither K4,15 nor
K5,8 is 2-planar. With our implementation, we could show that K4,7 and K5,5 are
not 2-planar, while K4,6 is (see Fig. 3c), yielding the following characterization.

Characterization 3. The complete bipartite graph Ka,b (with a ≤ b) is 2-
planar if and only if (i) a ≤ 2, or (ii) a = 3 and b ≤ 10, or (iii) a = 4
and b ≤ 6.

As opposed to the corresponding 2-planar case, there exists no upper bound
on the edge density of 3-planar graphs tailored for the bipartite setting. The
upper bound of 5.5n − 11 edges [39] for general 3-planar graphs with n vertices
does not provide any negative instance for a ≤ 5, and only proves that K6,b, with
b ≥ 45, is not 3-planar. With our implementation, we could provide significant
improvements, by showing that K4,10, K5,7, and K6,6 are not 3-planar, while K4,9

and K5,6 are (see Fig. 3d and e), which yields the following characterization.

Characterization 4. The complete bipartite graph Ka,b (with a ≤ b) is 3-
planar if and only if (i) a ≤ 2, or (ii) a = 3 and b ≤ 14, or (iii) a = 4
and b ≤ 9, or (iv) a = 5 and b ≤ 6.

For complete bipartite 4-planar graphs, we were unable to derive a char-
acterization, but only some partial results, because the search space becomes
drastically larger and, as a consequence, our generation technique could not ter-
minate. To give an intuition, note that K4,4 has 81817 non-isomorphic 4-planar



262 P. Angelini et al.

drawings, which makes the computation of the corresponding non-isomorphic
drawings of K4,5 infeasible in reasonable time; for more details refer to [8].

However, we were at least able to report some positive certificate drawings
by slightly refining our generation technique. Instead of computing all possible
non-isomorphic simple drawings of graph Ka−1,b or Ka,b−1, in order to compute
the corresponding ones for Ka,b, we only computed few samples, hoping that we
will eventually find a positive certificate drawing. With this so-called DFS-like
approach, we managed to derive 4-planar drawings for K4,11, K5,8, and K6,6; see
Fig. 4. We summarize these findings in the following observation.

(a) (b) (c)

Fig. 4. Illustration of 4-planar drawings of (a) K4,11, (b) K5,8 and (c) K6,6.

Observation 5. The complete bipartite graph Ka,b (with a ≤ b) is 4-planar if
(i) a ≤ 2, or (ii) a = 3 and b ≤ 18, or (iii) a = 4 and b ≤ 11, or (iv) a = 5 and
b ≤ 8, or (v) a = 6 and b = 6. Further, Ka,b is not 4-planar if a ≥ 3 and b ≥ 19.

The Class of Fan-Planar Graphs. We start our discussion with complete
graphs. The fact that a fan-planar graph with n vertices has at most 5n − 10
edges [34] implies that K9 is not fan-planar, while Fig. 7 in [14] shows that K7 is.
With our implementation, we showed that K8 is not fan-planar, even relaxing the
requirement that an edge crossed by two or more adjacent edges must be crossed
from the same direction; see, e.g., [16]. This yields the following characterization.

Characterization 6. The complete graph Kn is fan-planar if and only if n ≤ 7.

Consider now a complete bipartite graph Ka,b with a ≤ b. For a ≤ 4, Ka,b is
fan-planar for any value of b [34]. On the other hand, the fact that a bipartite
fan-planar graph has at most 4n−12 edges [7] implies that K5,9 is not fan-planar.
Using our implementation, we could show that even K5,5 is not fan-planar (again
by relaxing the requirement of having the crossings from the same direction).
These two results together imply the following characterization.

Characterization 7. The complete bipartite graph Ka,b (with a ≤ b) is fan-
planar if and only if a ≤ 4.



Generation of Topological Representations 263

The Class of Fan-Crossing Free Graphs. A characterization for the case
of complete graphs can be derived by combining two known results. First, K6

is fan-crossing free, as it is 1-planar. We additionally show in [8] that, up to
isomorphism, K6 has a unique fan-crossing free drawing. Second, the fact that
a fan-crossing free graph with n vertices has at most 4n − 8 edges [20] implies
that K7 is not fan-crossing free. Hence, we have the following characterization.

Characterization 8 (Cheong et al. [20], Czap et al. [21]). The complete
graph Kn is fan-crossing free if and only if n ≤ 6.

As already stated, for the complete bipartite fan-crossing free graphs, we
provide in [8] a combinatorial proof of their characterization. The same result
was also obtained by our implementation.

Characterization 9. The complete bipartite graph Ka,b (with a ≤ b) is fan-
crossing free if and only if (i) a ≤ 2, or (ii) a ≤ 4 and b ≤ 6.

The Class of Gap-Planar Graphs. A characterization of the complete gap-
planar graphs has already been provided [12] as follows.

Characterization 10 (Bae et al. [12]). The complete graph Kn is gap-planar
if and only if n ≤ 8.

For the case of complete bipartite graphs, Bae et al. [12] proved that K3,12,
K4,8, and K5,6 are gap-planar, while K3,15, K4,11, and K5,7 are not. These neg-
ative results were derived using the technique discussed in Sect. 1 that compares
the crossing number of these graphs with their number of edges, which is an
upper bound to the number of crossings allowed in a gap-planar drawing. By
refining this technique, Bachmaier et al. [11] proved that even K3,14, K4,10, and
K6,6 are not gap-planar. Hence, towards a characterization the cases that are
left open are K3,13 and K4,9. Here, we address one of these two open cases by
showing that K4,9 is not gap-planar, thus yielding the following observation.

Observation 11. The complete bipartite graph Ka,b (with a ≤ b) is gap-planar
if (i) a ≤ 2, or (ii) a = 3 and b ≤ 12, or (iii) a = 4 and b ≤ 8, or (iv) a = 5 and
b ≤ 6. Further, Ka,b is not gap-planar if (i) a = 3 and b ≥ 14, or (ii) a = 4 and
b ≥ 9, or (iii) a = 5 and b ≥ 7, or (iv) a ≥ 6 and b ≥ 6.

The Class of Quasiplanar Graphs. A characterization for the complete quasi-
planar graphs can be also derived by combining two known results. Namely, the
fact that a quasiplanar graph with n vertices has at most 6.5n − 20 edges [3]
implies that K11 is not quasiplanar, while K10 is in fact quasiplanar [15].

Characterization 12 (Ackerman et al. [3], Brandenburg [15]). The com-
plete graph Kn is quasiplanar if and only if n ≤ 10.



264 P. Angelini et al.

Consider now a complete bipartite graph Ka,b with a ≤ b. First, we observe
that for a ≤ 4, graph Ka,b is quasiplanar for any value of b, since it is even fan-
planar [34]. On the other hand, the fact that a quasiplanar graph with n vertices
has at most 6.5n − 20 edges [3] does not provide any negative answer for a ≤ 6,
while for a = 7 it only implies that K7,52 is not quasiplanar. We stress that we
were not able to find any improvement on the latter result. The reason is the
same as the one that we described for the class of complete bipartite 4-planar
graphs. To give an intuition, we note that K4,4 has in total 46711 non-isomorphic
quasiplanar drawings, which makes the computation of the corresponding non-
isomorphic drawings of K4,5 infeasible in reasonable time; refer to [8] for details.
Notably, using the DFS-like variant of our algorithm, we were able to derive at
least positive certificate drawings for K5,18, K6,10, and K7,7, which are given in
[8]. We summarize these findings in the following observation.

Observation 13. The complete bipartite graph Ka,b (with a ≤ b) is quasiplanar
if (i) a ≤ 4, or (ii) a = 5 and b ≤ 18, or (iii) a = 6 and b ≤ 10, or (iv) a = 7
and b ≤ 7. Further, Ka,b is not quasiplanar if a ≥ 7 and b ≥ 52.

Table 2. A comparison of the number of drawings reported by our algorithm with
the elimination of isomorphic drawings (col. “Non-Iso”) and without it (col. “All”) for
the classes of 1- and 2-planar graphs; the corresponding execution times (in sec.) to
compute these drawings are reported next to them.

Class Complete Complete bipartite
Graph Non-Iso Time All Time Graph Non-Iso Time All Time

1-planar K4 2 0.043 8 0.043 K2,3 3 0.061 34 0.061
K5 1 0.043 30 0.206 K3,3 2 0.049 84 0.539
K6 1 0.020 120 0.737 K3,4 3 0.065 960 5.642
K7 0 0.006 0 0.448 K4,4 2 0.044 1584 10.871

K4,5 0 0.010 0 7.198

Total: 4 0.112 158 1.434 total: 10 0.229 2662 24.311

2-planar K4 2 0.028 8 0.028 K2,3 6 0.090 76 0.090
K5 4 0.105 294 2.661 K3,3 19 0.254 2352 10.571
K6 6 0.233 2664 3.292 K3,4 71 1.458 52248 244.964
K7 2 0.119 8400 55.323 K4,4 38 1.152 168624 1128.457
K8 0 0.029 0 51.321 K4,5 37 1.826 1200384 8135.843

K5,5 0 0.357 0 12639.293

Total: 14 0.514 11366 112.625 total: 171 5.137 1423684 22159.218

5 Conclusions and Open Problems

We conclude this work by noting that our results also have some theoretical
implications. In particular, K5,5 was conjectured in [7] not to be fan-planar;
Characterization 7 settles in the positive this conjecture. By Characterization
7 and Observation 11, we deduce that K5,5 is a certificate that there exist



Generation of Topological Representations 265

graphs which are gap-planar but not fan-planar. Since K4,9 is fan-planar but not
gap-planar, the two classes are incomparable, which answers a related question
posed in [12] about the relationship between 1-gap-planar graphs and fan-planar
graphs.

We stress that the elimination of isomorphic drawings is a key step in our
algorithm, as shown in Table 2. For example, to test whether K5,5 is 2-planar
without the elimination of intermediate isomorphic drawings, one would need to
investigate 1423684 drawings, while in the presence of this step only 171. This
significantly reduced the required time to roughly 5 seconds, including the time
to perform all isomorphism tests and eliminations. We provide further insights
in [8], where we broaden our description to the other classes.

Our work leaves two open problems. Is it possible to extend our approach
to graphs that are neither complete nor complete bipartite, e.g., to k-trees or
to k-degenerate graphs (for small values of k)? A major difficulty is that, in the
absence of symmetry, discarding isomorphic drawings becomes more complex. A
general observation from our proof of concept is that our approach was of limited
applicability on the classes of complete bipartite k-planar graphs, for k > 3, and
complete bipartite quasiplanar graphs, for which we could report partial results.
So, is it possible to broaden these results by deriving improved upper bounds on
the edge densities of these classes tailored for the bipartite setting (see, e.g., [7]).

References

1. Ábrego, B.M., Aichholzer, O., Fernández-Merchant, S., Hackl, T., Pammer, J., Pilz,
A., Ramos, P., Salazar, G., Vogtenhuber, B.: All good drawings of small complete
graphs. In: EuroCG, pp. 57–60 (2015)

2. Ackerman, E.: On topological graphs with at most four crossings per edge. CoRR
abs/1509.01932 (2015)

3. Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar
graphs. J. Comb. Theory Ser. A 114(3), 563–571 (2007). https://doi.org/10.1016/
j.jcta.2006.08.002

4. Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs
have a linear number of edges. Combinatorica 17(1), 1–9 (1997). https://doi.org/
10.1007/BF01196127

5. Aigner, M., Ziegler, G.M.: Proofs from THE BOOK, 3rd edn. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-662-05412-3

6. Angelini, P., Bekos, M.A., Kaufmann, M., Kindermann, P., Schneck, T.: 1-fan-
bundle-planar drawings of graphs. Theor. Comput. Sci. 723, 23–50 (2018). https://
doi.org/10.1016/j.tcs.2018.03.005

7. Angelini, P., Bekos, M.A., Kaufmann, M., Pfister, M., Ueckerdt, T.: Beyond-
planarity: Turán-type results for non-planar bipartite graphs. In: ISAAC. LIPIcs,
vol. 123, pp. 28:1–28:13. Schloss Dagstuhl (2018). https://doi.org/10.4230/LIPIcs.
ISAAC.2018.28

8. Angelini, P., Bekos, M.A., Kaufmann, M., Schneck, T.: Efficient generation of dif-
ferent topological representations of graphs beyond-planarity. CoRR 1908.03042v2
(2019)

https://doi.org/10.1016/j.jcta.2006.08.002
https://doi.org/10.1016/j.jcta.2006.08.002
https://doi.org/10.1007/BF01196127
https://doi.org/10.1007/BF01196127
https://doi.org/10.1007/978-3-662-05412-3
https://doi.org/10.1016/j.tcs.2018.03.005
https://doi.org/10.1016/j.tcs.2018.03.005
https://doi.org/10.4230/LIPIcs.ISAAC.2018.28
https://doi.org/10.4230/LIPIcs.ISAAC.2018.28


266 P. Angelini et al.

9. Arleo, A., Binucci, C., Di Giacomo, E., Evans, W.S., Grilli, L., Liotta, G., Meijer,
H., Montecchiani, F., Whitesides, S., Wismath, S.K.: Visibility representations of
boxes in 2.5 dimensions. Comput. Geom. 72, 19–33 (2018). https://doi.org/10.
1016/j.comgeo.2018.02.007

10. Avital, S., Hanani, H.: Graphs. Gilyonot Lematematika 3, 2–8 (1966)
11. Bachmaier, C., Rutter, I., Stumpf, P.: 1-gap planarity of complete bipartite graphs.

In: Biedl, T.C., Kerren, A. (eds.) Graph Drawing and Network Visualization.
LNCS, vol. 11282, pp. 646–648. Springer, Heidelberg (2018)

12. Bae, S.W., Baffier, J., Chun, J., Eades, P., Eickmeyer, K., Grilli, L., Hong, S.,
Korman, M., Montecchiani, F., Rutter, I., Tóth, C.D.: Gap-planar graphs. Theor.
Comput. Sci. 745, 36–52 (2018). https://doi.org/10.1016/j.tcs.2018.05.029

13. Bekos, M.A., Cornelsen, S., Grilli, L., Hong, S., Kaufmann, M.: On the recognition
of fan-planar and maximal outer-fan-planar graphs. Algorithmica 79(2), 401–427
(2017)

14. Binucci, C., Di Giacomo, E., Didimo, W., Montecchiani, F., Patrignani, M., Symvo-
nis, A., Tollis, I.G.: Fan-planarity: properties and complexity. Theor. Comp. Sci.
589, 76–86 (2015)

15. Brandenburg, F.J.: A simple quasi-planar drawing of K10. In: Graph Drawing.
LNCS, vol. 9801, pp. 603–604. Springer (2016)

16. Brandenburg, F.J.: A first order logic definition of beyond-planar graphs. J. Graph
Algorithms Appl. 22(1), 51–66 (2018)

17. Brandenburg, F.J.: On fan-crossing and fan-crossing free graphs. Inf. Process. Lett.
138, 67–71 (2018). https://doi.org/10.1016/j.ipl.2018.06.006

18. Bruckdorfer, T., Cornelsen, S., Gutwenger, C., Kaufmann, M., Montecchiani, F.,
Nöllenburg, M., Wolff, A.: Progress on partial edge drawings. J. Graph Algorithms
Appl. 21(4), 757–786 (2017). https://doi.org/10.7155/jgaa.00438

19. Cardinal, J., Felsner, S.: Topological drawings of complete bipartite graphs. JoCG
9(1), 213–246 (2018)

20. Cheong, O., Har-Peled, S., Kim, H., Kim, H.: On the number of edges of fan-
crossing free graphs. Algorithmica 73(4), 673–695 (2015). https://doi.org/10.1007/
s00453-014-9935-z

21. Czap, J., Hudák, D.: 1-planarity of complete multipartite graphs. Discrete Appl.
Math. 160(4–5), 505–512 (2012). https://doi.org/10.1016/j.dam.2011.11.014

22. Didimo, W., Eades, P., Liotta, G.: A characterization of complete bipartite RAC
graphs. Inf. Process. Lett. 110(16), 687–691 (2010)

23. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings.
Theor. Comput. Sci. 412(39), 5156–5166 (2011)

24. Didimo, W., Liotta, G.: The crossing-angle resolution in graph drawing. In: Pach,
J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 167–184. Springer, New
York (2013). https://doi.org/10.1007/978-1-4614-0110-0 10

25. Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond
planarity. ACM Comput. Surv. 52(1), 4:1–4:37 (2019)

26. Eades, P., Liotta, G.: Right angle crossing graphs and 1-planarity. Discrete Appl.
Math. 161(7–8), 961–969 (2013)

27. Eppstein, D., Kindermann, P., Kobourov, S.G., Liotta, G., Lubiw, A., Maignan,
A., Mondal, D., Vosoughpour, H., Whitesides, S., Wismath, S.K.: On the planar
split thickness of graphs. Algorithmica 80(3), 977–994 (2018). https://doi.org/10.
1007/s00453-017-0328-y

28. Garey, M., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

https://doi.org/10.1016/j.comgeo.2018.02.007
https://doi.org/10.1016/j.comgeo.2018.02.007
https://doi.org/10.1016/j.tcs.2018.05.029
https://doi.org/10.1016/j.ipl.2018.06.006
https://doi.org/10.7155/jgaa.00438
https://doi.org/10.1007/s00453-014-9935-z
https://doi.org/10.1007/s00453-014-9935-z
https://doi.org/10.1016/j.dam.2011.11.014
https://doi.org/10.1007/978-1-4614-0110-0_10
https://doi.org/10.1007/s00453-017-0328-y
https://doi.org/10.1007/s00453-017-0328-y


Generation of Topological Representations 267

29. Gioan, E.: Complete graph drawings up to triangle mutations. In: Kratsch, D. (ed.)
WG 2005. LNCS, vol. 3787, pp. 139–150. Springer, Heidelberg (2005). https://doi.
org/10.1007/11604686 13

30. Gronau, H.D.O., Harborth, H.: Numbers of nonisomorphic drawings for small
graphs. Congressus Numerantium 71, 105–114 (1990)

31. Hadwiger, H.: Über eine Klassifikation der Streckenkomplexe. Vierteljschr. Natur-
forsch. Ges. Zürich 88, 133–143 (1943)

32. Hartsfield, N., Jackson, B., Ringel, G.: The splitting number of the complete graph.
Graphs Comb. 1(1), 311–329 (1985). https://doi.org/10.1007/BF02582960

33. Huang, W., Hong, S., Eades, P.: Effects of crossing angles. In: PacificVis 2008, pp.
41–46. IEEE (2008)

34. Kaufmann, M., Ueckerdt, T.: The density of fan-planar graphs. CoRR 1403.6184
(2014)

35. Kehribar, Z.: K5,5 kann nicht 2-planar gezeichnet werden: Analyse und Beweis,
Bachelor Thesis, Universität Tübingen (2018)

36. Kynčl, J.: Simple realizability of complete abstract topological graphs in P. Discrete
Comput. Geom. 45(3), 383–399 (2011). https://doi.org/10.1007/s00454-010-9320-
x

37. Kynčl, J.: Improved enumeration of simple topological graphs. Discrete Comput.
Geom. 50(3), 727–770 (2013). https://doi.org/10.1007/s00454-013-9535-8

38. Mutzel, P.: An alternative method to crossing minimization on hierarchical
graphs. SIAM J. Optimiz. 11(4), 1065–1080 (2001). https://doi.org/10.1137/
S1052623498334013

39. Pach, J., Radoičić, R., Tardos, G., Tóth, G.: Improving the crossing lemma by
finding more crossings in sparse graphs. Discrete Comput. Geom. 36(4), 527–552
(2006)

40. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica
17(3), 427–439 (1997)

41. Pach, J., Tóth, G.: How many ways can one draw a graph? Combinatorica 26(5),
559–576 (2006). https://doi.org/10.1007/s00493-006-0032-z

42. Rafla, N.H.: The good drawings Dn of the complete graph Kn. Ph.D. thesis, McGill.
University, Montreal, Quebec (1988)

43. Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abh. Math. Sem. Univ. Hamb.
29, 107–117 (1965)

44. Zarankiewicz, K.: On a problem of P. Turán concerning graphs. Fundamenta Math-
ematicae 41, 137–145 (1954)

https://doi.org/10.1007/11604686_13
https://doi.org/10.1007/11604686_13
https://doi.org/10.1007/BF02582960
https://doi.org/10.1007/s00454-010-9320-x
https://doi.org/10.1007/s00454-010-9320-x
https://doi.org/10.1007/s00454-013-9535-8
https://doi.org/10.1137/S1052623498334013
https://doi.org/10.1137/S1052623498334013
https://doi.org/10.1007/s00493-006-0032-z


The QuaSEFE Problem

Patrizio Angelini1(B) , Henry Förster1 , Michael Hoffmann2 ,
Michael Kaufmann1 , Stephen Kobourov3 , Giuseppe Liotta4,

and Maurizio Patrignani5

1 University of Tübingen, Tübingen, Germany
angelini@informatik.uni-tuebingen.de

2 ETH Zürich, Zürich, Switzerland
3 University of Arizona, Tucson, USA
4 University of Perugia, Perugia, Italy
5 University Roma Tre, Rome, Italy

Abstract. We initiate the study of Simultaneous Graph Embedding
with Fixed Edges in the beyond planarity framework. In the QuaSEFE

problem, we allow edge crossings, as long as each graph individually is
drawn quasiplanar, that is, no three edges pairwise cross. We show that
a triple consisting of two planar graphs and a tree admit a QuaSEFE.
This result also implies that a pair consisting of a 1-planar graph and a
planar graph admits a QuaSEFE. We show several other positive results
for triples of planar graphs, in which certain structural properties for
their common subgraphs are fulfilled. For the case in which simplicity is
also required, we give a triple consisting of two quasiplanar graphs and a
star that does not admit a QuaSEFE. Moreover, in contrast to the planar
SEFE problem, we show that it is not always possible to obtain a QuaSEFE

for two matchings if the quasiplanar drawing of one matching is fixed.

Keywords: Quasiplanar · SEFE · Simultaneous graph drawing

1 Introduction

Simultaneous Graph Embedding is a family of problems where one is given a set
of graphs G1, . . . , Gk with shared vertex set V and is required to produce draw-
ings Γ1, . . . , Γk of them, each satisfying certain readability properties, so that
each vertex has the same position in every Γi. The readability property that is
usually pursued is the planarity of the drawing, and a large body of research has
been devoted to establish the complexity of the corresponding decision problem,
or to determine whether such embeddings always exist, given the number and
the types of the graphs; for a survey refer to [9].

Work started at Dagstuhl Seminar 19092, “Beyond-Planar Graphs: Combinatorics,
Models and Algorithms”. Research supported by MIUR Project “MODE” under PRIN
20157EFM5C, by MIUR Project “AHeAD” under PRIN 20174LF3T8, by Roma Tre
University Azione 4 Project “GeoView”, by DFG grant Ka812/17-1, by NSF under
grants CCF-1740858 and CCF-1712119, and by SNSF Project 200021E-171681.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 268–275, 2019.
https://doi.org/10.1007/978-3-030-35802-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_21&domain=pdf
http://orcid.org/0000-0002-7602-1524
http://orcid.org/0000-0002-1441-4189
http://orcid.org/0000-0001-5307-7106
http://orcid.org/0000-0001-9186-3538
http://orcid.org/0000-0002-0477-2724
https://doi.org/10.1007/978-3-030-35802-0_21


The QuaSEFE Problem 269

These problems have been studied both from a geometric (Geometric Simul-
taneous Embedding - GSE) [6,16] and from a topological point of view (Simulta-
neous Embedding with Fixed Edges - SEFE) [10,12,19]. In particular, in GSE the
edges are straight-line segments, while in SEFE they are topological curves, but
the edges shared between two graphs Gi and Gj have to be drawn in the same
way in Γi and Γj . Unless otherwise specified, we focus on the topological setting.

We study a relaxation of the SEFE problem, where the graphs can be drawn
with edge crossings. However, we prohibit certain crossing configurations in the
drawings Γ1, . . . , Γk, to guarantee their readability, i.e., we require that they
satisfy the conditions of a graph class in the area of beyond-planarity ; see [15]
for a survey on this topic. We initiate this study with the class of quasiplanar
graphs [2,3,18], by requiring that no Γi contains three mutually crossing edges.

Definition 1 (QuaSEFE). Given a set of graphs G1 = (V,E1), . . . , Gk = (V,Ek)
with shared vertex set V , we say that 〈G1, . . . , Gk〉 admits a QuaSEFE if there
exist quasiplanar drawings Γ1, . . . , Γk of G1, . . . , Gk, respectively, so that each
vertex of V has the same position in every Γi and each edge shared between two
graphs Gi and Gj is drawn in the same way in Γi and Γj. Further, the QuaSEFE

problem asks whether an instance 〈G1, . . . , Gk〉 admits a QuaSEFE.

It may be worth mentioning that the problem of computing quasiplanar
simultaneous embeddings of graph pairs has been studied in the geometric set-
ting [13,14]. Also, simultaneous embeddings have been considered in relation to
another beyond-planarity geometric graph class, namely RAC graphs [7,8,17,20].

We prove in Sect. 2 that any triple of two planar graphs and a tree admits a
QuaSEFE, which also implies that any pair consisting of a 1-planar graph1 and
a planar graph admits a QuaSEFE. Recall that, for the original SEFE problem,
there exist even negative instances composed of two outerplanar graphs [19].
Further, we investigate triples of planar graphs in which the common subgraphs
have specific structural properties. Finally, we show negative results in more
specialized settings in Sect. 3 and conclude with open problems in Sect. 4.

2 Sufficient Conditions for QuaSEFEs

In this section, we provide several sufficient conditions for the existence of a
QuaSEFE, mainly focusing on instances composed of three planar graphs G1, G2,
and G3. We start with a theorem relating the existence of a SEFE of two of the
input graphs to the existence of a QuaSEFE of the three input graphs.

Theorem 1. Let G1 = (V,E1), G2 = (V,E2), and G3 = (V,E3) be planar
graphs with shared vertex set V . If 〈G1 \ G3, G2 \ G3〉 admits a SEFE, then
〈G1, G2, G3〉 admits a QuaSEFE, in which the drawing of G3 is planar.

1 A graph is k-planar if it admits a drawing where each edge has at most k crossings.



270 P. Angelini et al.

Proof. First construct a SEFE of 〈G1 \G3, G2 \G3〉, and then construct a planar
drawing of G3, whose vertices have already been placed, but whose edges have
not been drawn yet, using the algorithm by Pach and Wenger [23].

The drawing of G3 is planar, by construction. The drawing of G1 is quasipla-
nar, as it is partitioned into two subgraphs, G1 \ G3 and G1 ∩ G3, each of which
is drawn planar. Analogously, the drawing of G2 is quasiplanar. ��

Since every pair composed of a planar graph and a tree admits a SEFE [19],
we derive from Theorem 1 the following positive result for the QuaSEFE problem.

Corollary 1. Let G1 = (V,E1) and G3 = (V,E3) be planar graphs and T2 =
(V,E2) be a tree with shared vertex set V . Then 〈G1, T2, G3〉 admits a QuaSEFE,
in which the drawing of G3 is planar.

Corollary 1 already shows that allowing quasiplanarity significantly enlarges
the set of positive instances. We further strengthen this result, by additionally
guaranteeing that even the tree is drawn planar. For this, we use a result on
the partially embedded planarity [5] problem (PEP): Given a planar graph G, a
subgraph H of G, and a planar embedding H of H, is there a planar embedding
of G whose restriction to H coincides with H? In particular, we will exploit the
following characterization, which is the core of a linear-time algorithm for PEP.

Lemma 1 ([5]). Let (G,H,H) be an instance of PEP. A planar embedding G of
G is a solution for (G,H,H) if and only if the following conditions hold: (C.1)
for every vertex v ∈ V , the edges incident to v in H appear in the same cyclic
order in the rotation schemes of v in H and in G; and (C.2) for every cycle C
of H, and for every vertex v of H \ C, we have that v lies in the interior of C
in G if and only if it lies in the interior of C in H.

Theorem 2. Let G1 = (V,E1) and G3 = (V,E3) be planar graphs and T2 =
(V,E2) be a tree with shared vertex set V . Then 〈G1, T2, G3〉 admits a QuaSEFE,
in which the drawings of G1 and T2 are planar.

Proof. Consider planar embeddings G1 and G∗
3 of G1 and G3 \ G1, respectively.

We draw G1 according to G1. This fixes the embedding of the subgraph T2 ∩ G1

of T2, thus resulting in an instance of the PEP problem. Since T2 is acyclic,
Condition C.1 of Lemma 1 is trivially fulfilled. Also, since every rotation scheme
of T2 is planar, we choose for the edges of (T2∩G3)\G1 an order compatible with
G∗
3 , still satisfying Condition C.1. Finally, we draw the remaining edges of G3 by

considering the instance of PEP defined by its embedded subgraph (T2∩G3)\G1.
Condition C.1 is trivially satisfied, and Condition C.1 is satisfied by construction,
if we add the edges of G3 according to G∗

3 . Since crossings edges of the same graph
belong to G3 \ G1 and G3 ∩ G1, the drawing of G3 is quasiplanar. ��

The additional property guaranteed by Theorem 2 is crucial to infer the first
result in the simultaneous embedding setting for a class of beyond-planar graphs.

Theorem 3. Let G1 = (V,E1) be a 1-planar graph and G2 = (V,E2) be a planar
graph. Then 〈G1, G2〉 admits a QuaSEFE.



The QuaSEFE Problem 271

Proof. As G1 is 1-planar, it is the union of a planar graph G′
1 and a forest F1 [1].

We augment F1 to a tree T1. By Theorem 2, there is a QuaSEFE of 〈G′
1, T1, G2〉

where G′
1 and T1 are drawn planar. Thus, G1 is drawn quasiplanar. ��

We now study properties of the subgraphs induced by the edges that belong
to one, to two, or to all the input graphs. We denote by Hi the subgraph induced
by the edges only in Gi; by Hi,j the subgraph induced by the edges only in Gi

and Gj ; and by H the subgraph induced by the edges in all graphs; see Fig. 1a.
The following two corollaries of Theorem 1 list sufficient conditions for G1\G3

and G2\G3 to have a SEFE. In the first case, H1,2 has a unique embedding, which
fulfills the conditions of Lemma 1 with respect to any planar embedding of G1

and of G2. In the second case, this is because G1 \ G3 is a subgraph of G2 \ G3.

Corollary 2. Let G1 = (V,E1), G2 = (V,E2), G3 = (V,E3) be planar graphs
with shared vertex set V . If H1,2 is acyclic and has maximum degree 2, then
〈G1, G2, G3〉 admits a QuaSEFE.

Corollary 3. Let G1 = (V,E1), G2 = (V,E2), G3 = (V,E3) be planar graphs
with shared vertex set V . If H1 = ∅, then 〈G1, G2, G3〉 admits a QuaSEFE.

Contrary to the previous corollaries, Theorem 1 has no implication for the
graph H, as there are instances with H = ∅ where no pair of graphs has a SEFE.
However, we show that a simple structure of H is still sufficient for a QuaSEFE.

Theorem 4. Let G1 = (V,E1), G2 = (V,E2), G3 = (V,E3) be planar graphs
with shared vertex set V . If H has a planar embedding that can be extended to a
planar embedding Gi of each graph Gi, then 〈G1, G2, G3〉 admits a QuaSEFE.

Proof. We draw the graph G1 \ H1,3 = H1 ∪ H1,2 ∪ H with embedding G1, the
graph G2 \H1,2 = H2 ∪H2,3 ∪H with embedding G2, and the graph G3 \H2,3 =
H3 ∪ H1,3 ∪ H with embedding G3. Then, the edges of G1 are partitioned into
two sets, one belonging to G1 \H1,3 and one to G3 \H2,3, each of which is drawn
planar. As the same holds for the edges of G2 and G3, the statement follows. ��
Corollary 4. Let G1 = (V,E1), G2 = (V,E2), G3 = (V,E3) be planar graphs
with shared vertex set V . If H is acyclic and has maximum degree 2, then
〈G1, G2, G3〉 admits a QuaSEFE.

The above discussion shows that, if one of the seven subgraphs in Fig. 1a
is empty, or has a sufficiently simple structure, 〈G1, G2, G3〉 admits a QuaSEFE.
Most notably, this is always the case in the sunflower setting [4,21,24], in which
every edge belongs either to a single graph or to all graphs, i.e., H1,2 = H1,3 =
H2,3 = ∅. We extend this result to any set of planar graphs. We remark that
SEFE is NP-complete in the sunflower setting for three planar graphs [4,24].

Theorem 5. Let G1 = (V,E1), . . . , Gk = (V,Ek) be planar graphs with shared
vertex set V in the sunflower setting. Then 〈G1, . . . , Gk〉 admits a QuaSEFE.



272 P. Angelini et al.

Fig. 1. (a) Subgraphs induced by the edges in one, two, or three graphs. (b) A simple
quasiplanar drawing of Q1 in Theorem 6, obtained by adding w to the drawing of K10

by Brandenburg [11]. (c) Theorem 7: Edge (v18, v20) crosses either all dotted blue or
all dashed red edges, making (v5, v6) and (v7, v8) uncrossable (Color figure online).

Proof. Let H be the graph induced by the edges belonging to all graphs. We
independently draw planar the graph H and every subgraph Gi \ H, for i =
1, . . . , k. This guarantees that each Gi is drawn quasiplanar. ��

We remark that all our proofs are constructive. Moreover, the corresponding
algorithms run in linear time, as they exploit linear-time algorithms for con-
structing planar embeddings of graphs [22], for extending their partial embed-
dings [5], and for partitioning 1-planar graphs into planar graphs and forests [1].

3 Counterexamples for QuaSEFE

In this section we complement our positive results, by providing negative
instances of the QuaSEFE problem in two specific settings. We start with a neg-
ative result about the existence of a simple QuaSEFE for two quasiplanar graphs
and one star. Here simple means that a pair of independent edges in the same
graph is allowed to cross at most once and a pair of adjacent edges in the same
graph is not allowed to cross. Note that our algorithms in Sect. 2 may produce
non-simple drawings. Also, the maximum number of edges in a quasiplanar graph
with n vertices depends on whether simplicity is required or not [2].

Theorem 6. There exist two quasiplanar graphs Q1 = (V,E1), Q2 = (V,E2)
and a star S3 = (V,E3) with shared vertex set V such that 〈Q1, Q2, S3〉 does not
admit a simple QuaSEFE.

Proof. Let V = {v1, . . . , v10, w} and let E10 be the edges of the complete graph
on V \ {w}. Further, let E1 = E10 ∪ {(w, v1), . . . , (w, v6)}, let E2 = E10 ∪
{(w, v7)}, and let E3 = {(w, v1), . . . , (w, v10}. By construction, S3 is the star
on all eleven vertices with center w, while Fig. 1b shows that there is a simple
quasiplanar drawing of Q1 (and of Q2, which is a subgraph of Q1, up to vertex
relabeling).



The QuaSEFE Problem 273

Suppose that 〈Q1, Q2, S3〉 has a simple QuaSEFE, and let Γ1,2 be the drawing
of the union of Q1 and Q2 that is part of it. Since the union of Q1 and Q2 has 52
edges, which exceeds the upper bound of 6.5n−20 edges in a simple quasiplanar
graph [2], Γ1,2 is not simple or not quasiplanar. Since (w, v7) is the only edge
in Γ1,2 that is not in Q1, edge (w, v7) is involved in every crossing violating
simplicity or quasiplanarity. Analogously, one of (w, v1), . . . , (w, v6), say (w, v1),
is involved in every crossing violating simplicity or quasiplanarity; in particular,
(w, v1) crosses (w, v7). Since both (w, v1) and (w, v7) belong to S3, the drawing
of S3 that is part of the simple QuaSEFE is not simple, a contradiction. ��

The second special setting is the one in which one of the input graphs is
already drawn in a quasiplanar way, and the goal is to draw the other input
graphs so that the resulting simultaneous drawing is a QuaSEFE. This setting is
motivated by the natural approach, for an instance 〈G1, . . . , Gk〉, of first con-
structing a solution for 〈G1, . . . , Gk−1〉 and then adding the remaining edges
of Gk. Note that, since the drawing of the first graph partially fixes a draw-
ing of the second graph, this can be seen as a version of the PEP problem for
quasiplanarity.

For the original SEFE problem, this setting always has a solution when the
graph that is already drawn (in a planar way) is a general planar graph, and
the other graph is a tree [19]. In a surprising contrast, we construct negative
instances for the QuaSEFE problem that are composed of two matchings only.

Theorem 7. Let M1 = (V,E1) and M2 = (V,E2) be two matchings on the same
vertex set V and let Γ1 be a quasiplanar drawing of M1. Instance 〈M1,M2〉 does
not always admit a QuaSEFE in which the drawing of M1 is Γ1.

Proof. First recall that the edges in E1 ∩ E2 have to be drawn in the quasiplanar
drawing Γ2 of G2 as they are in Γ1. Consider the quasiplanar drawing Γ1 of the
matching (v2i−1, v2i), with i = 1, . . . , 10, in Fig. 1c, and let E2 contain the edges
(v17, v19) and (v18, v20). Since v17 is enclosed in a region bounded by the crossing
edges (v1, v2) and (v3, v4), in any quasiplanar drawing of M2 edge (v17, v19)
crosses exactly one of (v1, v2) and (v3, v4). In the first case, (v17, v19) crosses also
(v13, v14) and (v15, v16) (dotted blue). In the second case, (v17, v19) crosses also
(v9, v10) and (v11, v12) (dashed red). In both cases, (v5, v6) and (v7, v8) cannot
be crossed, and thus (v17, v19) cannot be drawn so that Γ2 is quasiplanar. ��

4 Conclusions and Open Problems

We initiated the study of simultaneous embeddability in the beyond planar set-
ting, which is a fertile and almost unexplored research direction that promises
to significantly enlarge the families of representable graphs when compared with
the planar setting. We conclude the paper by listing a few open problems.

– A natural question is whether two 1-planar graphs, a quasiplanar graph and
a matching, three outerplanar graphs, or four paths admit a QuaSEFE. All



274 P. Angelini et al.

our algorithms construct drawings with a stronger property than quasipla-
narity, namely that they are composed of two sets of planar edges. Exploiting
quasiplanarity in full generality may lead to further positive results.

– Motivated by Theorem 6, we ask whether some of the constructions presented
in Sect. 2 can be modified to guarantee the simplicity of the drawings.

– Another intriguing direction is to determine the computational complexity of
the QuaSEFE problem, both in its general version and in the two restrictions
studied in Sect. 3. In particular, the setting in which one of the graphs is
already drawn can be considered as a quasiplanar version of the PEP problem,
which is known to be linear-time solvable in the planar case [5].

– Extend the study to other beyond-planarity classes. For example, do any two
planar graphs admit a k-planar SEFE for some constant k?

References

1. Ackerman, E.: A note on 1-planar graphs. Discret. Appl. Math. 175, 104–108
(2014). https://doi.org/10.1016/j.dam.2014.05.025

2. Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar
graphs. J. Comb. Theor. Ser. A 114(3), 563–571 (2007). https://doi.org/10.1016/
j.jcta.2006.08.002

3. Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs
have a linear number of edges. Combinatorica 17(1), 1–9 (1997). https://doi.org/
10.1007/BF01196127

4. Angelini, P., Da Lozzo, G., Neuwirth, D.: Advancements on SEFE and partitioned
book embedding problems. Theor. Comput. Sci. 575, 71–89 (2015). https://doi.
org/10.1016/j.tcs.2014.11.016

5. Angelini, P., Di Battista, G., Frati, F., Jeĺınek, V., Kratochv́ıl, J., Patrignani, M.,
Rutter, I.: Testing planarity of partially embedded graphs. ACM Trans. Algorithms
11(4), 32:1–32:42 (2015). https://doi.org/10.1145/2629341

6. Angelini, P., Geyer, M., Kaufmann, M., Neuwirth, D.: On a tree and a path with
no geometric simultaneous embedding. J. Graph Algorithms Appl. 16(1), 37–83
(2012)

7. Argyriou, E.N., Bekos, M.A., Kaufmann, M., Symvonis, A.: Geometric RAC simul-
taneous drawings of graphs. J. Graph Algorithms Appl. 17(1), 11–34 (2013).
https://doi.org/10.7155/jgaa.00282

8. Bekos, M.A., van Dijk, T.C., Kindermann, P., Wolff, A.: Simultaneous drawing
of planar graphs with right-angle crossings and few bends. J. Graph Algorithms
Appl. 20(1), 133–158 (2016). https://doi.org/10.7155/jgaa.00388

9. Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs.
In: Tamassia, R. (ed.) Handbook on Graph Drawing and Visualization, pp. 349–
381. Chapman and Hall/CRC, London (2013)

10. Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained
embedding problems. ACM Trans. Algorithms 12(2), 16:1–16:46 (2016). https://
doi.org/10.1145/2738054

11. Brandenburg, F.J.: A simple quasi-planar drawing of K10. In: Hu, Y., Nöllenburg,
M. (eds.) Graph Drawing. LNCS, vol. 9801, pp. 603–604 (2016)

12. Braß, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov,
S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. Com-
put. Geom. 36(2), 117–130 (2007). https://doi.org/10.1016/j.comgeo.2006.05.006

https://doi.org/10.1016/j.dam.2014.05.025
https://doi.org/10.1016/j.jcta.2006.08.002
https://doi.org/10.1016/j.jcta.2006.08.002
https://doi.org/10.1007/BF01196127
https://doi.org/10.1007/BF01196127
https://doi.org/10.1016/j.tcs.2014.11.016
https://doi.org/10.1016/j.tcs.2014.11.016
https://doi.org/10.1145/2629341
https://doi.org/10.7155/jgaa.00282
https://doi.org/10.7155/jgaa.00388
https://doi.org/10.1145/2738054
https://doi.org/10.1145/2738054
https://doi.org/10.1016/j.comgeo.2006.05.006


The QuaSEFE Problem 275

13. Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H., Wismath, S.K.: Planar and
quasi-planar simultaneous geometric embedding. Comput. J. 58(11), 3126–3140
(2015). https://doi.org/10.1093/comjnl/bxv048

14. Didimo, W., Kaufmann, M., Liotta, G., Okamoto, Y., Spillner, A.: Vertex angle
and crossing angle resolution of leveled tree drawings. Inf. Process. Lett. 112(16),
630–635 (2012). https://doi.org/10.1016/j.ipl.2012.05.006

15. Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond
planarity. ACM Comput. Surv. 52(1), 4:1–4:37 (2019). https://doi.org/10.1145/
3301281

16. Estrella-Balderrama, A., Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz,
M.: Simultaneous geometric graph embeddings. In: Hong, S.-H., Nishizeki, T.,
Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 280–290. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-77537-9 28

17. Evans, W.S., Liotta, G., Montecchiani, F.: Simultaneous visibility representations
of plane st-graphs using L-shapes. Theor. Comput. Sci. 645, 100–111 (2016).
https://doi.org/10.1016/j.tcs.2016.06.045

18. Fox, J., Pach, J., Suk, A.: The number of edges in k-quasi-planar graphs. SIDMA
27(1), 550–561 (2013). https://doi.org/10.1137/110858586

19. Frati, F.: Embedding graphs simultaneously with fixed edges. In: Kaufmann, M.,
Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 108–113. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70904-6 12

20. Grilli, L.: On the NP-hardness of GRacSim drawing and k-SEFE problems. J.
Graph Algorithms Appl. 22(1), 101–116 (2018). https://doi.org/10.7155/jgaa.
00456

21. Haeupler, B., Jampani, K.R., Lubiw, A.: Testing simultaneous planarity when the
common graph is 2-connected. J. Graph Algorithms Appl. 17(3), 147–171 (2013).
https://doi.org/10.7155/jgaa.00289

22. Hopcroft, J.E., Tarjan, R.E.: Efficient planarity testing. J. ACM 21(4), 549–568
(1974). https://doi.org/10.1145/321850.321852

23. Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graphs
Comb. 17(4), 717–728 (2001). https://doi.org/10.1007/PL00007258

24. Schaefer, M.: Toward a theory of planarity: Hanani-tutte and planarity variants.
J. Graph Algorithms Appl. 17(4), 367–440 (2013). https://doi.org/10.7155/jgaa.
00298

https://doi.org/10.1093/comjnl/bxv048
https://doi.org/10.1016/j.ipl.2012.05.006
https://doi.org/10.1145/3301281
https://doi.org/10.1145/3301281
https://doi.org/10.1007/978-3-540-77537-9_28
https://doi.org/10.1016/j.tcs.2016.06.045
https://doi.org/10.1137/110858586
https://doi.org/10.1007/978-3-540-70904-6_12
https://doi.org/10.7155/jgaa.00456
https://doi.org/10.7155/jgaa.00456
https://doi.org/10.7155/jgaa.00289
https://doi.org/10.1145/321850.321852
https://doi.org/10.1007/PL00007258
https://doi.org/10.7155/jgaa.00298
https://doi.org/10.7155/jgaa.00298


ChordLink: A New Hybrid
Visualization Model

Lorenzo Angori1, Walter Didimo1 , Fabrizio Montecchiani1 ,
Daniele Pagliuca1,2, and Alessandra Tappini1(B)

1 Dipartimento di Ingegneria, Università degli Studi di Perugia, Perugia, Italy
{lorenzo.angori,alessandra.tappini}@studenti.unipg.it

{walter.didimo, fabrizio.montecchiani}@unipg.it
2 Agenzia delle Entrate, Arezzo, Italy
daniele.pagliuca@agenziaentrate.it

Abstract. Many real-world networks are globally sparse but locally
dense. Typical examples are social networks, biological networks, and
information networks. This double structural nature makes it difficult
to adopt a homogeneous visualization model that clearly conveys an
overview of the network and the internal structure of its communities
at the same time. As a consequence, the use of hybrid visualizations has
been proposed. For instance, NodeTrix combines node-link and matrix-
based representations (Henry et al., 2007). In this paper we describe
ChordLink, a hybrid visualization model that embeds chord diagrams,
used to represent dense subgraphs, into a node-link diagram, which shows
the global network structure. The visualization is intuitive and makes it
possible to interactively highlight the structure of a community while
keeping the rest of the layout stable. We discuss the intriguing algo-
rithmic challenges behind the ChordLink model, present a prototype
system, and illustrate case studies on real-world networks.

1 Introduction

The challenges in the design of effective visualizations for the analysis of real-
world networks are not only related to the size of these networks, but also to
the complexity of their structure. In particular, many networks in a variety
of application domains are globally sparse but locally dense, i.e., they contain
communities (or clusters) of highly connected nodes, and such communities are
loosely connected to each other (see, e.g., [17,20,34]). Typical examples are social
networks such as collaboration and financial networks [6,12,33,42]. Other exam-
ples include biological networks (e.g., metabolic and protein-protein interaction
networks) and information networks; see, e.g., [16,24,31]. A visual exploration

Work partially supported by: (i) MIUR, under grant 20174LF3T8 “AHeAD: efficient
Algorithms for HArnessing networked Data”, (ii) Dipartimento di Ingegneria - Uni-
versità degli Studi di Perugia, under grants RICBASE2017WD and RICBA18WD:
“Algoritmi e sistemi di analisi visuale di reti complesse e di grandi dimensioni”.
c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 276–290, 2019.
https://doi.org/10.1007/978-3-030-35802-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_22&domain=pdf
http://orcid.org/0000-0002-4379-6059
http://orcid.org/0000-0002-0543-8912
http://orcid.org/0000-0001-9192-2067
https://doi.org/10.1007/978-3-030-35802-0_22


ChordLink: A New Hybrid Visualization Model 277

of these networks should allow users to perform two main tasks [37]: (T1) get-
ting an overview of the high-level structure of the network; (T2) identifying and
analyzing in detail the communities of the network. However, the heterogeneity
of the network connectivity level makes it difficult to adopt a homogeneous visu-
alization that supports both the aforementioned tasks simultaneously.

This scenario naturally motivates the use of hybrid visualizations that com-
bine different drawing styles, depending on the connectivity degree of the various
portions of the network. A notable example is NodeTrix [22], which adopts a
node-link diagram to represent the (sparse) global structure of the network and
the more compact matrix representation to visualize denser subgraphs; the user
can select the portions of the diagram to be represented as adjacency matrices.

Fig. 1. A ChordLink visualization of a co-authorship network. The drawing has four
clusters, represented as chord diagrams. In each chord diagram, circular arcs of the
same color are copies of the same author. For example, in the smallest cluster, F.
Montecchiani has two (green) copies, each connected to some nodes external to the
cluster. (Color figure online)

Contribution. Inspired by NodeTrix, we aim to design a hybrid visualization
model that supports tasks (T1) and (T2), and that can be integrated into an
interactive visual analytics system. In particular, our design is driven by two
main requirements: (R1) the model must support the drawing stability through-
out the user interaction, so to maintain the user’s mental map during an inter-
active analysis of the network; (R2) the drawing styles to convey the different
portions of the network should be intuitive for non-expert users, as for a node-
link representation. Our contribution is as follows:



278 L. Angori et al.

(i) We propose ChordLink, a new model that embeds chord diagrams, used
for the visualization of dense subgraphs (communities), into a node-link dia-
gram, which shows the global network structure (Sect. 3). Chord diagrams are
an extension of circular drawings, where nodes are represented as circular arcs
instead of points (see, e.g., [29]). Figure 1 shows a ChordLink visualization.
(ii) As a proof-of-concept of our model, we describe a prototype system that
implements it and we discuss some case studies on different kinds of real-world
networks, namely fiscal networks and co-authorship networks (Sect. 4). A short
video of the system can be found at https://youtu.be/ezphnPEdA8Y.
(iii) Finally, our model introduces new optimization problems (Sect. 3.2) that
are of independent interest, and that may inspire future research (Sect. 5).

For space reasons some details have been omitted and can be found in [2].
Methodology. The ChordLink model represents a community C selected in
a node-link diagram Γ as a specific type of chord diagram, which we denote
as Γ (C). Regarding (R1), a suitable replication of the nodes of C allows us to
preserve the geometry of the nodes and edges outside Γ (C); this avoids new
edge crossings out of the cluster and supports the user’s mental map during an
interactive analysis of the network. Such a node-replication also gives additional
freedom to reduce the number of edge crossings in Γ (C). Regarding (R2), the
representation Γ (C) remains intuitive for users who are familiar with the node-
link style, because an edge in C is still represented as a geometric curve. This
makes it easy, for example, to recognize paths in C, a basic task that is sometimes
difficult to perform in a matrix-based representation [19,22].

2 Related Work

Early works in graph visualization propose hybrid models that combine
Euler/Venn Diagrams, used to represent inclusion relationships between sets
of objects, with Jordan arcs, which convey other types of relationships between
these sets [21,38]. Similar drawing styles are extensively used to represent com-
pound graphs, where the nodes are hierarchically grouped into clusters and where
there can be binary relationships between clusters other than between nodes (see,
e.g., [14,28,40] for surveys on the subject). Hybrid visualizations that mix node-
link and treemaps are also studied [15,43], sometimes in terms of algorithmic
techniques for quick computation of clustered layouts [13,32].

The NodeTrix model is the first attempt to visually convey both the global
structure of a sparse network and its locally dense subgraphs by combining node-
link and matrix-based representations [22]. This work has inspired a subsequent
array of papers, either devoted to the development of visual analytics systems
for complex graphs or focused on the theoretical properties of visualizations in
the NodeTrix model. In the first direction, an interesting variant of the Node-
Trix model is proposed in [5]; while in NodeTrix the clusters represented as
an adjacency matrix are selected by the user, in [5] the set of clusters is com-
puted by the drawing algorithm so that the resulting graph of clusters (drawn
as an orthogonal layout) is planar; the user can choose the drawing style inside

https://youtu.be/ezphnPEdA8Y


ChordLink: A New Hybrid Visualization Model 279

each cluster region, including the possibility of using a matrix-based representa-
tion. In the second direction, several papers study the so-called hybrid planarity
testing problem, both in the NodeTrix model [8,10] and in a different model
where clusters are intersection graphs of geometric objects [1]. This problem
asks whether a given graph admits a hybrid visualization such that the edges
represented as geometric links do not cross any cluster region and do not cross
each other. Also, complexity results on a relaxation of the hybrid planarity test-
ing problem are given in [9]; similar to ChordLink, this relaxation allows for a
limited replication of the nodes of a cluster, but in [9] the clusters are defined
by the algorithm and intra-cluster edges are not considered.

Our ChordLink model uses a specific type of chord diagram to represent
clusters. Chord diagrams are effectively adopted in several visualization systems
to analyze dense networks in various contexts, including comparative genomics
[29], urban mobility trajectories [18], and software profiling on distributed graph
processing systems [4]. Other applications of chord diagrams can be found at
http://www.circos.ca/. They have also been extended to support hierarchical data
sets (see, e.g., [3,25]). We finally remark that the use of circular layouts for
visualizing clustered graphs is proposed in [39]. In that approach, the node set
of the input network is partitioned into user-defined clusters, and each cluster is
represented as a circular layout with nodes drawn as points and edges drawn as
straight segments; hence, each node of the network belongs to a circular layout
and the whole drawing of the network is computed by knowing in advance the
set of clusters. In the ChordLink model we assume that the user can define
the clusters interactively, and that the drawing of the network must be updated
accordingly, while controlling the drawing stability.

3 The ChordLink Model

Let G = (V,E) be a network and let Γ be a node-link diagram of G. The
ChordLink model is conceived to work in an interactive system, in which the
user can iteratively select a cluster C of nodes in Γ and the system automatically
redraws the subgraph G[C] induced by C as a chord diagram Γ (C). The nodes
of C are required to lie within a topologically connected region of the plane (e.g.,
within a circular or a rectangular region); the drawing of nodes and edges of Γ
out of G[C] should change as little as possible to enforce stability.

If a node w ∈ C is connected to a node outside C, we say that w is extrovert,
else w is introvert. To maintain the drawing outside Γ (C) stable, the ChordLink
model allows for a suitable replication of the nodes. Namely, every extrovert node
w ∈ C can have multiple occurrences in Γ (C), while an introvert node of C will
occur exactly once in Γ (C). The occurrences of w are called copies of w. A copy
of w is represented in Γ (C) by a circular arc cw, coinciding with a portion of the
circumference of Γ (C). The set of arcs cw, over all copies of the nodes w of C,
partitions the circumference of Γ (C). An edge (u,w) /∈ G[C], with u /∈ C and
w ∈ C, is drawn as a straight-line segment incident to one of the circular arcs
cw. An edge (w, z) ∈ G[C] is drawn as a simple curve, called chord, connecting
one of the circular arcs cw to one of the circular arcs cz.

http://www.circos.ca/


280 L. Angori et al.

3.1 General Strategy

Assume that all nodes of a selected cluster C in Γ lie in a circular region R(C)
and that all the other nodes of Γ are outside R(C); also, assume that no node of
C is located exactly at the center of R(C) (otherwise slightly perturb the region).
According to the ChordLink model, we locally redraw Γ so that the boundary
of the chord diagram Γ (C) coincides with the boundary of R(C). This is done
through a general strategy that consists of the following phases (see Fig. 2):

(a) Initial Drawing (b) NodeReplication

(c) NodePermutation (d) NodeMerging+ChordInsertion

Fig. 2. Illustration of the general strategy for the ChordLink model. (a) An initial
node-link diagram with two selected clusters (dashed regions). (b) Drawing after the
NodeReplication phase. (c) Output of the NodePermutation phase; for example, in the
left cluster the copies of the nodes adjacent to 1 and to 4 are permuted so to reduce the
number of non-consecutive copies of 5 and 9. (d) Final drawing after the NodeMerging
and ChordInsertion phases; chords are inserted so to minimize their number of crossings.

NodeReplication. For each extrovert node w ∈ C connected to a node u /∈ C,
create a copy v of w at the intersection point between (u,w) and the boundary
of R(C), and replace the segment uw with its subsegment uv. For each introvert
node w ∈ C, create a unique copy of w at the intersection point between the
boundary of R(C) and the radius of R(C) passing through w. Then, remove all
the elements of Γ that are properly inside R(C). At the end we have a circular
sequence of copies of the nodes of C along the boundary of R(C); two copies of
the same node may not be consecutive in this sequence.
NodePermutation. Permute the copies of the nodes of C along the boundary of
R(C) in such a way to minimize the total number of non-consecutive copies



ChordLink: A New Hybrid Visualization Model 281

of the same node. To preserve the geometry of the drawing outside R(C), two
copies can be permuted only if they are adjacent to the same node u /∈ C.
NodeMerging. For each maximal subsequence of consecutive copies of a node w
(possibly a single copy) along the boundary of R(C), replace all these copies by
a circular arc cw that spans at least the whole subsequence.
ChordInsertion. For each edge (w, z) ∈ G[C], select one of the copies cw and one
of the copies cz, and insert a chord inside R(C) connecting cw and cz. This
selection can be done in order to optimize some desired function; for example,
one can try to minimize the total number of crossings between chords and/or to
maximize the angles formed by two crossing chords.

3.2 Algorithms

In the following we describe specific algorithms to solve the optimization prob-
lems posed by the NodePermutation and ChordInsertion phases. In the full version
[2], we explain how to handle the NodeMerging phase and the case in which for
a selected cluster there is not a circular region that includes exactly its nodes.
Algorithm for the NodePermutation Phase. Let C be a selected cluster in
the current drawing Γ . The optimization problem in the NodePermutation phase
asks to find a permutation of the copies of the nodes of C along the boundary of
R(C) such that the total number of non-consecutive copies of the same node is
minimized. However, to preserve the geometry of the links outside R(C) (thus
avoiding the introduction of edge crossings), two copies can be permuted only if
they have a common neighbor u /∈ C. Formally, we model the problem as follows.

Let u1, u2, . . . , uk be the set of nodes not in C that are adjacent to some
node of C. For each ui (i = 1, . . . , k), denote by 〈vi,1, vi,2, . . . , vi,hi

〉 the clock-
wise sequence of copies of extrovert nodes of C along R(C) attached to ui. For
example, assume that C is the left-side cluster in Fig. 2(b); if we set u1 = 1,
u2 = 2, u3 = 10, and u4 = 4 then we have: 〈v1,1 = 8, v1,2 = 9, v1,3 = 5〉; 〈v2,1 =
9, v2,2 = 6〉; 〈v3,1 = 6〉; 〈v4,1 = 5, v4,2 = 9〉. The sequence 〈vi,1, vi,2, . . . , vi,hi

〉 is
called the group of ui. Clearly, two elements of the same group never represent
copies of the same node of C. Denote by E the set of copies of the extrovert nodes
of C on the boundary of R(C). Suppose that v ∈ E is a copy of a node w ∈ C
and that n(v) is the next copy of w encountered by walking clockwise on the
boundary of R(C). We denote by χ(v,n(v)) the cost of {v,n(v)} and we define
it as follows: χ(v,n(v)) = 0 if no copies of nodes of C are encountered between
v and n(v) while walking clockwise on the boundary of R(C); χ(v,n(v)) = 1
otherwise. Our optimization problem asks to find a permutation of the copies
in the group of ui (for each i = 1, . . . , k) that minimizes the objective function∑

v∈E χ(v,n(v)).
We describe a dynamic programming algorithm that we designed with the

aim of computing an exact solution for this optimization problem when all the
copies in each group are consecutive along the boundary of R(C) (like in Fig. 2);
if this is not the case, our algorithm is used as a heuristic for the problem. If
all the copies of each group are consecutive, two node permutations π and π′



282 L. Angori et al.

yield the same cost if for each group the first element is the same in both π and
π′ and the same holds for the last element. Hence, it suffices to minimize the
pairs of consecutive groups such that their two neighboring elements are copies of
different nodes. More formally, let B0, B1, . . . , Bk−1 be the clockwise sequence of
groups along R(C), starting from an arbitrary group B0. For each group Bi, let fi
and li be its first and its last element, respectively, i.e., li and fi+1 (indexes taken
modulo k) are consecutive along R(C). Our dynamic programming formulation
considers the cost of choosing the first and the last element of Bi assuming that
this choice has been already done for the groups Bi+1, . . . , Bk−1. Namely, denote
by Oi(vi,j , vi,z) the cost of choosing fi = vi,j and li = vi,z. For each possible
pairs of elements vi,j , vi,z in Bi and vi+1,j′ , vi+1,z′ in Bi+1, the following holds:

Oi(vi,j , vi,z) = Oi+1(vi+1,j′ , vi+1,z′) +

{
0, if vi+1,j′ = vi,z

1, if vi+1,j′ �= vi,z
(1)

The optimal solution is then χopt = minv0,j ,v0,z∈B0 O0(v0,j , v0,z). To solve the
above recurrence we fix f0 and compute a table of size

∑k−1
i=0

(
hi

2

) ≤ m2, where
m is the number of edges of G. We repeat this procedure for each of the h0 ≤
m possible values of f0 and we select the optimal solution among them; this
algorithm takes O(m3) time. Note that, to speed up the algorithm, the elements
vi,j such that there is no element vi+1,j′ = vi,j in Bi+1 (resp. vi−1,j′ = vi,j
in Bi−1) can be ignored, since selecting them as first or last element of Bi

always increases the cost of the solution. In particular, we first remove them in
a preprocessing step, and then reinsert them in any position between fi and li.

Fig. 3. Example of different choices in the ChordInsertion phase. The set of chords in
each drawing represents the edges (1, 2), (1, 4), (2, 3), (2, 5), (3, 4), (4, 5). In (a) the
chords form 3 crossings, while in (b) they do not cross, due to a more convenient
choice of the representative pair of arcs for the edges (1, 2) and (3, 4). The dashed lines
represent stubs of possible outside edges incident to the cluster.

Algorithm for the ChordInsertion Phase. In this phase, for each edge (w, z) ∈
G[C] we have to select one of the circular arcs cw associated with w and one
of the circular arcs cz associated with z, and we add a chord connecting cw



ChordLink: A New Hybrid Visualization Model 283

to cz. The specific selection of a pair {cw, cz} for each edge (w, z) determines the
total number of crossings between chords. For example, Fig. 3 shows a schematic
illustration of two different chord diagrams for a cluster C. The cluster has seven
circular arcs, associated with nodes 1, 2, 3, 4, 5; the edges of G[C] are (1, 2),
(1, 4), (2, 3), (2, 5), (3, 4), and (4, 5). The chords representing these edges cause in
total 3 crossings in Fig. 3(a), while they do not cross in the drawing of Fig. 3(b),
where we have chosen a different pair of arcs for the edges (1, 2) and (3, 4).

Our algorithm for selecting the set of chords aims to minimize the number
of crossings and to maximize the minimum angle at a crossing point of two
crossing chords. This optimization goal is motivated by several works that show
the negative impact of the number of crossings (e.g., [35,36,41]) and in particular
of small crossing angles (e.g., [26,27]) in graph layouts.

We model the above optimization problem as follows. We assume that each
circular arc cw is collapsed into a single point pw, coinciding with the center of cw.
Once the set of chords incident to pw is decided by the algorithm, we expand back
pw to cw and equally distribute the chords incident to pw along cw. Note that, the
number of crossings between non-adjacent chords only depends on the circular
order of their end-points along R(C) and not on their exact position. Hence,
two non-adjacent chords (pw, pz), (px, py) cross if and only the corresponding
chords (cw, cz), (cx, cy) cross, independent of the position of the end-points of
the chords along cw, cz, cx, and cy. Also, two adjacent chords (pw, pz) and
(pw, px) never cross, and therefore the corresponding chords (cw, cz) and (cw, cx)
will not cross if we use the same circular order. Moreover, if (pw, pz) and (px, py)
are two crossing chords, we denote by a(wz, xy) the minimum angle formed by
the segments wz and xy at their crossing point; this gives an estimation of the
crossing angular resolution of the two chords if each chord is drawn as a monotone
curve approximating the straight segment between its end-points. For any two
chords ewz = (pw, pz) and exy = (px, py), we define the cost of the unordered
pair {ewz, exy} as a function α(ewz, exy) such that: α(ewz, exy) = 0 if ewz and exy
do not cross; α(ewz, exy) = 1−a(wz, xy)/π otherwise. Since a(wz, xy) ∈ (0, π/2],
we have α(ewz, exy) ∈ [0.5, 1). We aim to select a set S of chords for the edges
of G[C] that minimizes the cost function α(S) =

∑
{ewz,exy}∈S×S α(ewz, exy).

To solve this problem we use a heuristic algorithm based on a greedy strategy.
Let E(C) be the set of edges of G[C] and let E1(C) ⊆ E(C) be the subset of edges
having one representative chord (pw, pz), i.e., (w, z) ∈ E1(C) if and only if w and
z have a unique copy on the boundary of R(C). Also, let E2(C) = E(C)\E1(C)
be the remaining subset of edges of G[C]. For example, in the cluster C of Fig. 3
we have E1(C) = {(4, 5)} and E2(C) = {(1, 2), (1, 4), (2, 3), (2, 5), (3, 4)}. Our
algorithm first adds to the drawing Γ (C) the chords representing the edges of
E1(C) (in any order), because for these edges there are no alternative choices.
After that, the algorithm executes |E2(C)| iterations. Each iteration i (1 ≤ i ≤
|E2(C)|) removes an edge (w, z) from E2(C) and adds to the drawing one of its
representative chords (pw, pz). More precisely, let S0 be the set of chords added
for the edges in E1(C) and let Si denote the set of chords added at the end of
iteration i. At the beginning of iteration i, for each edge (w, z) ∈ E2(C) and for



284 L. Angori et al.

each chord (pw, pz) that is representative of (w, z), the algorithm computes the
cost of inserting (pw, pz) in the current drawing, i.e., the cost α(Si−1∪{(pw, pz)});
then it selects the chord that yields the minimum cost and removes from E2(C)
the corresponding edge. Denote by S′ the whole set of representative chords for
the edges of E(C). Since the cost α(Si−1 ∪ {(pw, pz)}) can be easily computed
in O(|Si−1|) time from the cost α(Si−1) and from the set of chords in Si−1, and
since |Si−1| = O(|E(C)|), the whole greedy algorithm takes O(|S′||E(C)|2) time.

4 A Prototype System

As a proof-of-concept of the ChordLink model, we realized a prototype system
that implements it. The system is developed in Javascript (so to run in a Web
browser) and the implementation uses the D3.js library [7], https://d3js.org.
We first describe the main features of the system interface and its interaction
functionalities. Then, we discuss two case studies that show how the system can
be used to perform the analysis tasks (T1) and (T2) on different kinds of real
networks, namely a fiscal network and a co-authorship network.

Interface and Interaction. Through the interface of our system, the user can
import a network in the GML file format [23]. The system initially computes a
node-link diagram of the network using a force-directed algorithm; we exploit
an implementation available in the D3.js library. The interface supports the
visualization of weighted edges by using different levels of edge thickness to con-
vey this information. The user can execute some common operations, like node
movement, zooming, and panning. Node labels can be displayed according to dif-
ferent policies. One can show/hide all labels at the same time or enable/disable
each label individually. Alternatively, the system can automatically manage the
visualization of labels based on node-degrees and on the current zoom level of
the layout (labels of low-degree nodes are hidden after a zoom-out operation).
Regardless of the labeling policy, a mouse-hover operation on a node or on an
edge causes the display of a tooltip that reports the label of that element.

In order to represent a desired cluster C as a chord diagram Γ (C), the user
can select the nodes of C in the layout (e.g., through a rectangular region selec-
tion). The visualization of Γ (C) is such that: (i) All the circular arcs cw asso-
ciated with the same node w ∈ C are assigned the same color; the label of w
is displayed near to one of its corresponding arcs, namely the longest one. (ii)
Each chord between two arcs cw and cz has a color that gradually goes from
the color of cw to that of cz; this helps to visually detect the end-nodes of the
chord. (iii) The size of each chord reflects the weight of the corresponding edge
(the maximum thickness for the chords in Γ (C) depends on the minimum length
of the circular arcs and on their inner degree). A mouse-hover operation on a
circular arc cw of Γ (C) highlights all the arcs associated with w, as well as all
the edges incident to cw (see Fig. 6(a) in [2]). The user can move a chord dia-
gram Γ (C) or drag a node u /∈ C to drop it in Γ (C); this operation adds u to C
and causes an immediate update of the drawing. The user can click on Γ (C) to
collapse it into a single cluster-node (whose size is proportional to the number of

https://d3js.org


ChordLink: A New Hybrid Visualization Model 285

nodes in C); a click operation on a cluster-node expands back it into the original
chord diagram. Collapsing/expanding each cluster individually helps focusing on
specific portions of the network without losing the general context where they
are embedded (see Fig. 6(b) in [2]).

Case Studies: Fiscal Networks. The first case study falls into the domain of
fiscal risk analysis. We considered a real network of taxpayers and their economic
transactions. The network is provided by the IRV (Italian Revenue Agency) and
refers to a portion of data for the fiscal year 2014, consisting of 174 subjects with
high fiscal risk and 200 economic transactions between them [11]. Figure 4 depicts
a ChordLink visualization of this network computed by our system after the
selection of six clusters (Fig. 7 in [2] reports the initial node-link diagram). The
thickness of an edge (u, v) reflects the amount of transactions between u and
v in the considered year (we discretized the range of amounts into 5 values of
thickness). For privacy reasons data are anonymized; a node’s label reports the
ID number and the geographic area of the corresponding taxpayer.

Fig. 4. A visualization obtained by selecting some communities in a node-link diagram.

Regarding task (T1), we observe that the network consists of several com-
munities and of few nodes with high degree. A visual analysis of the network
reveals that the node with ID 272 (marked with an arrow in the figure) acts as
a broker between three communities, since it has strong connections with them.
Regarding task (T2), the chord diagram of each community makes it possible to
analyze the connections between its nodes, by overcoming the node overlaps in
the node-link diagram. The position of nodes and the geometry of edges outside
the chord diagrams do not change with respect to the initial node-link diagram,
since all nodes of every selected community lie in a circular region not containing



286 L. Angori et al.

other nodes of the network. Focusing on the rightmost chord diagram Γ (C) in
Fig. 4, we can see that the node with ID 272 is connected to two nodes of high
degree inside Γ (C) (those with IDs 195 and 198), which belong to the same
geographic area. An analyst of the IRV identified this subgraph as a suspicious
scheme characterized by several economic transactions, where the seller is a so-
called “missing trader” with serious tax irregularities (omitted VAT payments
or tax declarations); nodes with IDs 195 and 198 are missing traders. From a
deepest inspection of the connections in Γ (C) and from additional attributes
of its taxpayers, the analyst confirmed the presence of a tax evasion pattern.
Similar conclusions were derived from the analysis of other communities in the
network.

Fig. 5. A co-authorship network extracted from DBLP. Bigger nodes are cluster-nodes.
(Color figure online)

Case Studies: Co-authorship Networks. The second case study considers
co-authorship networks extracted from the DBLP dataset [30], which contains
publication data in computer science. Through a query consisting of keywords
and Boolean operators, one can retrieve a set of publications on a desired topic.
We use the results returned by DBLP to construct networks where nodes are
authors and edges indicate co-authorships, weighted by the number of papers
shared by their end-nodes. Nodes are labeled with authors’ names and edges
with the titles of the corresponding publications.



ChordLink: A New Hybrid Visualization Model 287

We performed the query “network AND visualization” and limited to 500 the
number of search results (i.e., publications) to be returned. The resulting net-
work consists of 1766 nodes, 3780 edges, and 382 connected components. The
largest of these components contains 118 nodes and 322 edges. A ChordLink
visualization of this component is shown in Fig. 5, where several dense portions
of the original node-link layout have been identified as communities. To make the
diagram easier to read, some communities (on the left side) have been expanded
and some others (on the right side) have been collapsed. We now discuss some
findings that involve tasks (T1) and (T2) in an interleaved manner.

From the general structure of the clustered network one can clearly distin-
guish several central actors. For example, on the left side of the drawing we can
observe that H. C. Purchase is connected to four distinct communities. Follow-
ing the links incident to this author and the connections between the related
authors inside the clusters, we can see that H. C. Purchase forms a 3-cycle with
A. Kerren and M. O. Ward (this author has two copies in his cluster), who
fall into two distinct communities. By exploring the edge labels, we see that this
cycle originates from a work titled “Introduction to Multivariate Network Visualiza-
tion”, while the communities to which A. Kerren and M. O. Ward belong mainly
derive from the works “Heterogeneous Networks on Multiple Levels” and “Novel
Visual Metaphors for Multivariate Networks”, respectively. By analyzing the liter-
ature more in detail, one can observe that these three works appear in the same
book, referring to the Dagstuhl Seminar Multivariate Network Visualization. The
orange cluster-node in the bottom of the drawing, call it C, seems to be strongly
related to nodes S. Miksch, D. W. Archambault, and M. X. Zhou. Indeed, the
links of these three authors with C refer to a common work, “Temporal Multivari-
ate Networks” . Since D. W. Archambault has only two connections with nodes
outside C, it seems reasonable to move it inside C by a drag operation.

If we analyze this community in detail (Fig. 8 in [2] shows its chord dia-
gram), the connections reveal that the aforementioned work has other 5 authors
in addition to the 3 already cited. Two of them, K. Ma and C. Muelder, have
a connection thicker than the other pairs of nodes, which indicates a stronger
cooperation. Also, there are two nodes of C, namely S. Diehl and F. Tzeng, that
are loosely connected in this cluster. We deduce that it would be convenient to
keep them out of the community, even if the original node-link diagram locates
them very close to the other nodes of C.

5 Final Remarks and Future Work

The ChordLink model proposed in this paper is a new kind of hybrid visu-
alization. It can complement previous models conceived for the visual analysis
of networks that are globally sparse but locally dense. Among its advantages,
ChordLink makes it possible to keep the visualization stable during the inter-
action. This is especially true when the nodes of a community, that is going
to be represented as a chord diagram, are close to each other in the node-link
layout (which is most often the case if it is computed by a force-directed algo-
rithm). Nonetheless, ChordLink has also some clear limits. In particular, the



288 L. Angori et al.

readability of a chord diagram may degrade when the size of a cluster increases;
our current visualization can be effectively used for clusters up to 20–25 nodes,
while it becomes less effective for bigger clusters.

Besides these considerations, we believe that the ChordLink model opens
the way for intriguing research directions: (i) We conjecture that the optimization
problems at the core of a ChordLink visualization are computationally hard.
It would be interesting to prove NP-hardness and to design new algorithms
to be compared with our heuristics. (ii) It may be worth developing a system
that combines the ChordLink and the NodeTrix models, allowing users to
switch from a visualization to the other for each cluster. This would merge
the advantages of both models. (iii) One can exploit an automatic clustering
algorithm for the ChordLink model, e.g., one that guarantees the planarity of
the inter-cluster graph [5].

References

1. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.:
Intersection-link representations of graphs. J. Graph Algorithms Appl. 21(4), 731–
755 (2017). https://doi.org/10.7155/jgaa.00437

2. Angori, L., Didimo, W., Montecchiani, F., Pagliuca, D., Tappini, A.: ChordLink: a
new hybrid visualization model. CoRR abs/1908.08412 (2019). http://arxiv.org/
abs/1908.08412

3. Argyriou, E.N., Symvonis, A., Vassiliou, V.: A fraud detection visualization sys-
tem utilizing radial drawings and heat-maps. In: Laramee, R.S., Kerren, A., Braz,
J. (eds.) IVAPP 2014, pp. 153–160. SciTePress (2014). https://doi.org/10.5220/
0004735501530160

4. Arleo, A., Didimo, W., Liotta, G., Montecchiani, F.: Profiling distributed graph
processing systems through visual analytics. Future Gener. Comput. Syst. 87, 43–
57 (2018). https://doi.org/10.1016/j.future.2018.04.067

5. Batagelj, V., Brandenburg, F., Didimo, W., Liotta, G., Palladino, P., Patrignani,
M.: Visual analysis of large graphs using (X, Y)-clustering and hybrid visualiza-
tions. IEEE Trans. Vis. Comput. Graph. 17(11), 1587–1598 (2011). https://doi.
org/10.1109/TVCG.2010.265

6. Bedi, P., Sharma, C.: Community detection in social networks. Wiley Interdiscip.
Rev. Data Min. Knowl. Discov. 6(3), 115–135 (2016). https://doi.org/10.1002/
widm.1178

7. Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE Trans. Vis.
Comput. Graph. 17(12), 2301–2309 (2011). https://doi.org/10.1109/TVCG.2011.
185

8. Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M.: Computing NodeTrix
representations of clustered graphs. J. Graph Algorithms Appl. 22(2), 139–176
(2018). https://doi.org/10.7155/jgaa.00461

9. Di Giacomo, E., Lenhart, W.J., Liotta, G., Randolph, T.W., Tappini, A.: (k, p)-
planarity: a relaxation of hybrid planarity. In: Das, G.K., Mandal, P.S., Mukhopad-
hyaya, K., Nakano, S. (eds.) WALCOM 2019. LNCS, vol. 11355, pp. 148–159.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10564-8_12

10. Di Giacomo, E., Liotta, G., Patrignani, M., Rutter, I., Tappini, A.: NodeTrix pla-
narity testing with small clusters. Algorithmica (2019). https://doi.org/10.1007/
s00453-019-00585-6

https://doi.org/10.7155/jgaa.00437
http://arxiv.org/abs/1908.08412
http://arxiv.org/abs/1908.08412
https://doi.org/10.5220/0004735501530160
https://doi.org/10.5220/0004735501530160
https://doi.org/10.1016/j.future.2018.04.067
https://doi.org/10.1109/TVCG.2010.265
https://doi.org/10.1109/TVCG.2010.265
https://doi.org/10.1002/widm.1178
https://doi.org/10.1002/widm.1178
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.7155/jgaa.00461
https://doi.org/10.1007/978-3-030-10564-8_12
https://doi.org/10.1007/s00453-019-00585-6
https://doi.org/10.1007/s00453-019-00585-6


ChordLink: A New Hybrid Visualization Model 289

11. Didimo, W., Giamminonni, L., Liotta, G., Montecchiani, F., Pagliuca, D.: A visual
analytics system to support tax evasion discovery. Decis. Support Syst. 110, 71–83
(2018). https://doi.org/10.1016/j.dss.2018.03.008

12. Didimo, W., Liotta, G., Montecchiani, F.: Network visualization for financial crime
detection. J. Vis. Lang. Comput. 25(4), 433–451 (2014). https://doi.org/10.1016/
j.jvlc.2014.01.002

13. Didimo, W., Montecchiani, F.: Fast layout computation of clustered networks:
algorithmic advances and experimental analysis. Inf. Sci. 260, 185–199 (2014).
https://doi.org/10.1016/j.ins.2013.09.048

14. Dogrusöz, U., Giral, E., Cetintas, A., Civril, A., Demir, E.: A layout algorithm for
undirected compound graphs. Inf. Sci. 179(7), 980–994 (2009). https://doi.org/10.
1016/j.ins.2008.11.017

15. Fekete, J.D., Wang, D., Dang, N., Aris, A., Plaisant, C. (eds.): Overlaying graph
links on treemaps. In: IEEE Symposium on Information Visualization Conference
Compendium (demonstration) (2003)

16. Flake, G.W., Lawrence, S., Giles, C.L., Coetzee, F.: Self-organization and identifi-
cation of web communities. IEEE Comput. 35(3), 66–71 (2002). https://doi.org/
10.1109/2.989932

17. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174
(2010). https://doi.org/10.1016/j.physrep.2009.11.002

18. Gabrielli, L., Rinzivillo, S., Ronzano, F., Villatoro, D.: From tweets to semantic
trajectories: mining anomalous urban mobility patterns. In: Nin, J., Villatoro, D.
(eds.) CitiSens 2013. LNCS (LNAI), vol. 8313, pp. 26–35. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-04178-0_3

19. Ghoniem, M., Fekete, J., Castagliola, P.: On the readability of graphs using node-
link and matrix-based representations: a controlled experiment and statistical anal-
ysis. Inf. Visual. 4(2), 114–135 (2005)

20. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proc. Natl. Acad. Sci. USA 99(12), 7821–7826 (2002). https://doi.org/10.
1073/pnas.122653799

21. Harel, D.: On visual formalisms. Commun. ACM 31(5), 514–530 (1988). https://
doi.org/10.1145/42411.42414

22. Henry, N., Fekete, J., McGuffin, M.J.: NodeTrix: a hybrid visualization of social
networks. IEEE Trans. Vis. Comput. Graph. 13(6), 1302–1309 (2007). https://doi.
org/10.1109/TVCG.2007.70582

23. Himsolt, M.: GML: a portable graph file format (technical report Universität Pas-
sau) (2010)

24. Holme, P., Huss, M., Jeong, H.: Subnetwork hierarchies of biochemical pathways.
Bioinformatics 19(4), 532–538 (2003). https://doi.org/10.1093/bioinformatics/
btg033

25. Holten, D.: Hierarchical edge bundles: visualization of adjacency relations in hier-
archical data. IEEE Trans. Vis. Comput. Graph. 12(5), 741–748 (2006). https://
doi.org/10.1109/TVCG.2006.147

26. Huang, W., Eades, P., Hong, S.: Larger crossing angles make graphs easier to read.
J. Vis. Lang. Comput. 25(4), 452–465 (2014). https://doi.org/10.1016/j.jvlc.2014.
03.001

27. Huang, W., Hong, S., Eades, P.: Effects of sociogram drawing conventions and
edge crossings in social network visualization. J. Graph Algorithms Appl. 11(2),
397–429 (2007). https://doi.org/10.7155/jgaa.00152

https://doi.org/10.1016/j.dss.2018.03.008
https://doi.org/10.1016/j.jvlc.2014.01.002
https://doi.org/10.1016/j.jvlc.2014.01.002
https://doi.org/10.1016/j.ins.2013.09.048
https://doi.org/10.1016/j.ins.2008.11.017
https://doi.org/10.1016/j.ins.2008.11.017
https://doi.org/10.1109/2.989932
https://doi.org/10.1109/2.989932
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1007/978-3-319-04178-0_3
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1145/42411.42414
https://doi.org/10.1145/42411.42414
https://doi.org/10.1109/TVCG.2007.70582
https://doi.org/10.1109/TVCG.2007.70582
https://doi.org/10.1093/bioinformatics/btg033
https://doi.org/10.1093/bioinformatics/btg033
https://doi.org/10.1109/TVCG.2006.147
https://doi.org/10.1109/TVCG.2006.147
https://doi.org/10.1016/j.jvlc.2014.03.001
https://doi.org/10.1016/j.jvlc.2014.03.001
https://doi.org/10.7155/jgaa.00152


290 L. Angori et al.

28. Kaufmann, M., Wagner, D. (eds.): Drawing Graphs, Methods and Models (The
Bookgrow out of a Dagstuhl Seminar, April 1999). LNCS, vol. 2025. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44969-8

29. Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones,
S.J., Marra, M.A.: Circos: an information aesthetic for comparative genomics.
Genome Res. 19(9), 1639–1645 (2009). https://doi.org/10.1101/gr.092759.109

30. Ley, M.: The DBLP computer science bibliography. https://dblp.uni-trier.de
31. Mahmoud, H., Masulli, F., Rovetta, S., Russo, G.: Community detection in protein-

protein interaction networks using spectral and graph approaches. In: Formenti,
E., Tagliaferri, R., Wit, E. (eds.) CIBB 2013 2013. LNCS, vol. 8452, pp. 62–75.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09042-9_5

32. Muelder, C., Ma, K.: A treemap based method for rapid layout of large graphs. In:
PacificVis, pp. 231–238. IEEE Computer Society (2008). https://doi.org/10.1109/
PACIFICVIS.2008.4475481

33. Onnela, J., Kaski, K., Kertész, J.: Clustering and information in correlationbased
financial networks. Eur. Phys. J. B-Condens. Matter Complex Syst. 38(2), 353–362
(2004). https://doi.org/10.1140/epjb/e2004-00128-7

34. Porter, M.A., Onnela, J.P., Mucha, P.J.: Communities in networks. Not. Am. Math.
Soc. 56(1082–1097), 1164–1166 (2009)

35. Purchase, H.C.: Effective information visualisation: a study of graph drawing aes-
thetics and algorithms. Interact. Comput. 13(2), 147–162 (2000). https://doi.org/
10.1016/S0953-5438(00)00032-1

36. Purchase, H.C., Carrington, D.A., Allder, J.: Empirical evaluation of aesthetics-
based graph layout. Empir. Softw. Eng. 7(3), 233–255 (2002)

37. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information
visualizations. In: Proceedings of the 1996 IEEE Symposium on Visual Languages,
Boulder, Colorado, USA, 3–6 September 1996, pp. 336–343 (1996). https://doi.
org/10.1109/VL.1996.545307

38. Sindre, G., Gulla, B., Jokstad, H.G.: Onion graphs: asthetics and layout. In: VL,
pp. 287–291. IEEE Computer Society (1993). https://doi.org/10.1109/VL.1993.
269613

39. Six, J.M., Tollis, I.Y.G.: A framework for user-grouped circular drawings. In:
Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 135–146. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24595-7_13

40. Sugiyama, K.: Graph Drawing and Applications for Software and Knowledge Engi-
neers, Series on Software Engineering and Knowledge Engineering, vol. 11. World
Scientific (2002). https://doi.org/10.1142/4902

41. Ware, C., Purchase, H.C., Colpoys, L., McGill, M.: Cognitive measurements
of graph aesthetics. Inf. Visual. 1(2), 103–110 (2002). https://doi.org/10.1057/
palgrave.ivs.9500013

42. Wu, H., He, J., Pei, Y., Long, X.: Finding research community in collaboration net-
work with expertise profiling. In: Huang, D.-S., Zhao, Z., Bevilacqua, V., Figueroa,
J.C. (eds.) ICIC 2010. LNCS, vol. 6215, pp. 337–344. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14922-1_42

43. Zhao, S., McGuffin, M.J., Chignell, M.H.: Elastic hierarchies: Combining treemaps
and node-link diagrams. In: INFOVIS, pp. 57–64. IEEE Computer Society (2005).
https://doi.org/10.1109/INFVIS.2005.1532129

https://doi.org/10.1007/3-540-44969-8
https://doi.org/10.1101/gr.092759.109
https://dblp.uni-trier.de
https://doi.org/10.1007/978-3-319-09042-9_5
https://doi.org/10.1109/PACIFICVIS.2008.4475481
https://doi.org/10.1109/PACIFICVIS.2008.4475481
https://doi.org/10.1140/epjb/e2004-00128-7
https://doi.org/10.1016/S0953-5438(00)00032-1
https://doi.org/10.1016/S0953-5438(00)00032-1
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1993.269613
https://doi.org/10.1109/VL.1993.269613
https://doi.org/10.1007/978-3-540-24595-7_13
https://doi.org/10.1142/4902
https://doi.org/10.1057/palgrave.ivs.9500013
https://doi.org/10.1057/palgrave.ivs.9500013
https://doi.org/10.1007/978-3-642-14922-1_42
https://doi.org/10.1109/INFVIS.2005.1532129


Stress-Plus-X (SPX) Graph Layout

Sabin Devkota(B) , Reyan Ahmed , Felice De Luca ,
Katherine E. Isaacs , and Stephen Kobourov

Department of Computer Science, University of Arizona, Tucson, USA
{devkotasabin,abureyanahmed,felicedeluca}@email.arizona.edu,

{kisaacs,kobourov}@cs.arizona.edu

Abstract. Stress, edge crossings, and crossing angles play an impor-
tant role in the quality and readability of graph drawings. Most stan-
dard graph drawing algorithms optimize one of these criteria which may
lead to layouts that are deficient in other criteria. We introduce an opti-
mization framework, Stress-Plus-X (SPX), that simultaneously optimizes
stress together with several other criteria: edge crossings, minimum cross-
ing angle, and upwardness (for directed acyclic graphs). SPX achieves
results that are close to the state-of-the-art algorithms that optimize
these metrics individually. SPX is flexible and extensible and can opti-
mize a subset or all of these criteria simultaneously. Our experimental
analysis shows that our joint optimization approach is successful in draw-
ing graphs with good performance across readability criteria.

1 Introduction

Several criteria have been proposed for evaluating the quality of graph lay-
outs [37], including minimizing stress, minimizing the number of edge cross-
ings, minimizing drawing area, as well as maximizing the angle between edge
crossings, maintaining separation between marks (“resolution”), and preserving
highly connected neighborhoods. In the case of directed acyclic graphs (DAGs),
maintaining consistent edge direction, i.e., upwardness, is preferable. While these
criteria have been shown to improve human performance for graph tasks, auto-
matic layout approaches actively target at most one from the list.

We propose a framework, Stress-Plus-X (SPX ), for automatic layout of node-
link diagrams that targets multiple graph layout criteria simultaneously. SPX
formulates the layout as an optimization problem that combines stress minimiza-
tion with penalty terms representing other criteria. Composing and weighting
the terms in the objective function provides the flexibility and extensibility.

With the adage “Don’t let perfect be the enemy of good” in mind, the goal of
SPX is not to optimize any one particular criterion at the cost of all others, but to
find a balance across the criteria as optimizing only one criterion can lead to poor
quality drawings [21]. As an extreme example, for minimum drawing area we can

This work is supported in part by NSF grants CCF-1740858, CCF-1712119 and DMS-
1839274, DMS-1839307.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 291–304, 2019.
https://doi.org/10.1007/978-3-030-35802-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_23&domain=pdf
http://orcid.org/0000-0002-0610-6573
http://orcid.org/0000-0001-6830-9053
http://orcid.org/0000-0001-5937-7636
http://orcid.org/0000-0002-9947-928X
http://orcid.org/0000-0002-0477-2724
https://doi.org/10.1007/978-3-030-35802-0_23


292 S. Devkota et al.

Fig. 1. Different layouts of the same graph from the crossing angle maximization Graph
Drawing Contest: (a) from the Tübingen algorithm that won in 2018 [3]; (b) from the
KIT algorithm that won in 2017 [8]; (c-d) from SPX with different balance in the
optimization of stress, crossing angle, and edge crossings.

place all vertices on top of each other, yet perform poorly in the other quality
criteria. A similar example is shown in Fig. 1 where (a–b) show the outputs on
a Graph Drawing Contest graph produced by two state-of-the-art algorithms
for crossing angle maximization [3,8] while (c–d) show the outputs of SPX with
different balance in the optimization of stress, crossing angle, and edge crossings.
Note that the SPX approach better preserves topology and produces visually
appealing results and although (d) has the lowest crossing angle, it arguably
provides the most recognizable drawing. Delving further into this observation,
we examined the contest graphs across several metrics, as shown in Fig. 2, noting
that optimizing for one criterion could yield extreme drawings. Graph 2018-8 in
the middle row is a case where optimal crossing angle (center) requires a very
large drawing area. Graph 2017-2 in the last row is a case where the best crossing
angle (left) exhibits poor vertex resolution. These observations motivated us to
seek a balance of criteria to improve drawings.

To demonstrate our framework, we formulate optimization terms for three
criteria: minimizing edge crossings, maximizing the crossing angle, and upward-
ness (all of which have been used in Graph Drawing Contests). We compare
our edge crossing formulation to state-of-the-art approaches on a corpus of com-
munity graphs. SPX achieves better edge crossing results than just optimizing
stress, and frequently outperforms several of the crossing-centric algorithms.
Similarly, we show that aiming only at the optimization of crossing angle tends
to significantly impact the quality of the layout for other criteria. Although
the angle-centric algorithms outperform SPX, our algorithm generates compa-
rable crossing angle values and sometimes outperforms the angle-centric ones,
while still achieving better performance on other drawing aspects. Finally, we
compare our upwardness preserving approach to existing directed graph layout
approaches [6,14,18,27].

In summary, our contributions are: (1) Stress-Plus-X (SPX), a framework for
optimizing multiple graph drawing criteria simultaneously (Sect. 3); (2) Opti-
mization terms for maximizing edge crossing angles (Sect. 3.2) and upwardness
preservation (Sect. 3.3); and (3) An evaluation of our optimization terms in com-
parison to state-of-the-art single criterion approaches (Sect. 4). An extended ver-
sion of this paper is available at arxiv [11].



Stress-Plus-X (SPX) Graph Layout 293

Graph KIT SPX

2018-3

CA:89.56, AA:89.84, ST:41.24, NP:0.7 CA:89.98, AA:89.99, ST:3.72, NP:0.91 CA:89.69, AA:89.91, ST:2.95, NP:0.92

2018-8

CA:42.66, AA:72.27, ST:1654.21, NP:1.0 CA:14.79, AA:62.69, ST:5052.9, NP:1.0 CA:3.01, AA:60.0, ST:846.21, NP:1.0

2017-2

CA:88.68, AA:89.22, ST:20.94, NP:1.0 CA:54.66, AA:68.52, ST:11.57, NP:1.0 CA:70.63, AA:82.77, ST:15.56, NP:1.0

Fig. 2. Graphs from the 2017-18 Graph Drawing Contests. In graph 2018-3, the cross-
ing angles are all within 1% of the optimal, yet SPX best shows the underlying graph
structure. The best crossing angle layout for Graph 2018-8 (center) yields a large draw-
ing area. The best crossing angle layout for Graph 2017-2 (left) yields poor vertex
resolution. We report crossing angle (CA), average angle (AA), stress (ST), and neigh-
borhood preservation (NP).

2 Background and Related Work

Existing graph layout algorithms usually optimize a single drawing criterion, e.g.,
minimizing stress or maximizing the minimum edge crossing angle. We define
these criteria formally and discuss layout approaches that focus on them.

Stress: Stress measures the difference between node-pair distances in a layout
and their graph-theoretic distances, based on an all-pairs shortest path compu-
tation. It is a natural measure of how well the layout captures the structure
in the underlying graph. Let Ci be the position of the ith node in a layout
C and dij be the graph distance between node pair i, j. Then stress(C) =∑

i<j(wij ||Ci − Cj || − dij)2. A typical normalization value is wij = d−2
ij .



294 S. Devkota et al.

Kamada and Kawai [22] formulate the graph layout problem as that of min-
imizing stress and use energy-based optimization. Gansner et al. [17] use stress
majorization instead. Stress-based graph visualization can also be seen as a spe-
cial case of a multi-dimensional scaling (MDS) [24,34], which is a powerful dimen-
sionality reduction technique. Variants of MDS are used in many graph layout
systems, including [5,17,28]. None of these methods aim to optimize other cri-
teria such as minimizing edge crossings or maximizing crossing angles.

Wang et al. [36] reformulate stress to incorporate target edge directions
and lengths and propose constraints to reduce crossings or improve crossing
angle in given subgraphs, but not in the entire graph. Constrained layout algo-
rithms [13,14] combine stress minimization or force-directed layout with sep-
aration constraints between node pairs. Constrained layouts, however, do not
optimize for edge crossings or crossing angles. When used with force-directed
layout algorithms (such as Fruchterman-Reingold [16]) instead of with stress
minimization, stress is also not optimized.

Edge Crossings and Crossing Angles: Minimizing the number of crossings
between edges in a graph layout has been shown to be an important heuris-
tic in readability of graphs [29], prompting interest in several graph drawing
contests [1,4]. Other than recent works by Radermacher et al. [30] and Shabbeer
et al. [33] (discussed in Sect. 2), there is little work on directly minimizing edge
crossings in general graphs.

The crossing angle of a straight-line drawing of a graph is the smallest
angle between two crossing edges in the layout. Large crossing angles have been
shown [2,20,21] to improve graph readability and several heuristics have been
proposed to maximize crossing angles. Demel et al. (KIT) [8] propose a greedy
heuristic to select the best position for a single vertex from a random set of
points. Bekos et al. (Tübingen) [3] propose selecting a vertex arbitrarily from
a set of vertices, called the vertex-pool, which contains a subset of the vertices
which are adjacent to the pairs of edges that have the minimum crossing angle.
Both approaches above performed very well in crossing angle maximization, but
neither is concerned with stress minimization or other criteria.

Upward Drawing: A drawing of a directed acyclic graph is upward if the target
vertex of each directed edge has a strictly higher y-coordinate than the source
vertex. Upward drawing is used to show ordering or precedence between enti-
ties in a variety of settings [14,18]. Sugiyama layout [35] is the most common
approach for creating upward drawings. The layout algorithm assigns ranks to
the vertices to determine their y-coordinates followed by computing their x-
coordinates to minimize crossings between consecutive layers. Examples include
dot [18], dagre [6], and OGDF [27]. Mixed graphs, where only subgraphs are
drawn upward, have also been drawn using this approach [32].

Neighborhood Preservation and Drawing Area: While stress captures how well
global graph distances are realized in the layout, neighborhood preservation cap-
tures how well local neighborhoods are preserved in the layout. This is the



Stress-Plus-X (SPX) Graph Layout 295

optimization goal of more recent dimensionality reduction techniques such as
t-SNE [25] and UMap [26]. Specifically, in the context of graph drawing, neigh-
borhood preservation is defined as the Jaccard similarity between the adjacent
nodes in the graph and the nearest nodes in the layout, averaged over all nodes
in the graph [23].

Drawing area refers to the size of the canvas used to layout the graph and is
implicit when nodes are placed on an integer grid. Large drawing area is unde-
sirable due to difficulties navigating the visualization or resolving the marks.
Minimizing drawing area has also been used in Graph Drawing Contest chal-
lenges [12,19].

Joint Optimization: Our work aims to jointly optimize several graph drawing
heuristics simultaneously. Huang et al. [21] previously optimized for two criteria
simultaneously, namely crossing angle and angular resolution of the graph in a
force-directed setting. Shabbeer et al. [33] minimized stress and edge crossings
simultaneously using an optimization-based approach.

The objective function of Shabbeer et al. contains penalties for edge crossings.
Edge crossings can be expressed as a system of non-linear constraints. Consider

two edges A =
(ax

1 ay
1

ax
2 ay

2

)
and B =

(bx1 by1
bx2 by2

)
where the two nodes of A are (ax

1 , ay
1),

and (ax
2 , ay

2) and similarly for B. Farkas’ Theorem can be used to state that the
edges A and B do not cross if and only if there exists u, and γ, such that

Au + γe ≥ 0,Bu + (1 + γ)e ≤ 0 (1)

where e is a 2-dimensional vector of ones. Intuitively, Eq. 1 states that for a pair
of edges A and B to not cross, there must exist a line that strictly separates the
edges A and B, i.e., there is a non-zero margin between them. Here, u refers to
a vector that is perpendicular to the direction of the separating line and γ is a
scalar value that ensures the non-zero margin of separation between the edges.

This set of inequalities can be transformed into a penalty term,
penalty(A,B), for edge pair A,B such that it is zero for non-crossing edge
pairs and strictly positive for crossing edge pairs.

penalty(A,B) = min
u,v

||(−Au − γe)+||1 + ||(Bu + (1 + γ)e)+||1 (2)

where (z)+ = max(0, z). The penalty term is combined with stress as a cost
function and then iterative optimization is used to compute a layout. They
demonstrate their approach on small biological networks.

Our approach differs in that our goal is a framework for balancing multi-
ple criteria to achieve good results across them. We introduce penalties and
constraints for crossing angle maximization and upward drawings. We further
introduce a weighting to the edge crossings. Finally, we introduce a hyperparam-
eter to directly balance across criteria.



296 S. Devkota et al.

3 SPX Algorithm

Stress-Plus-X (SPX) is a unified framework that can simultaneously optimize
stress along with other graph drawing criteria. The “X” in SPX refers to the
constraints that encode the additional criteria. We describe cost functions for
encoding the number of edge crossings and crossing angle respectively, as well
as constraints for preserving upwardness. The general SPX model is as follows:

cost(C,u, γ,ρ) = stress(C) + K ×
∑

Penalties(C,u, γ,P) (3)

with node coordinates C, balancing hyperparameter K, optional penalty param-
eters P (e.g., ρi in Sect. 3.1), and γ and u as described in Sect. 2.

Intuitively, decreasing stress, decreasing the penalty term for X, or decreas-
ing both results in a decrease in the objective function. Hence, minimizing the
objective function simultaneously optimizes for both stress and “X.”

Modifying the value of K allows us to control the balance between the stress
and the “X” terms. Figure 1(c) and (d) show two layouts of the same graph cre-
ated with different K parameterizations. Adjusting K to better balance criteria
can result in a more intuitive drawing.

Optimization Procedure: We optimize the cost function iteratively in two
phases. We first compute the optimal u and γ for each pair of edges (A,B) via
linear programming to minimize the penalties, penalty(A,B). Then, keeping
the u′s and γ’s constant, for all edge pairs, we optimize the cost function by
modifying C using gradient descent; see Algorithm 1.

Algorithm 1. Stress-plux-X(G)
Compute initial layout C0 (using stress majorization, force-directed layout, or ran-
dom initialization)
for Number-of-iterations do

Keeping the node coordinates C constant, find optimal u and γ for each edge
pair (A,B) using linear programming to minimize penalty(A,B)

Keeping u’s and γ’s constant, minimize cost(C,U, γ, ρ) by updating C using
gradient descent
end for

3.1 Stress Plus Crossing Minimization

The edge crossings penalty is:
∑l

i=1(ρi/2) ∗ {||(−Ai(C)ui − γie)+||1 +
||(Bi(C)ui + (1 + γi)e)+||1} where l is the number of edge pairs, Ai(C) and
Bi(C) are the first and second edges of edge pair i as matrices A and B, ui, γi

are the u, γ terms for edge pair i, and ρi is a weight on the penalty for edge
pair i.



Stress-Plus-X (SPX) Graph Layout 297

Shabbeer et al. [33] use a compounding weight where each edge crossing gets
penalized more the longer it persists through the optimization iterations. We
found that such a penalty can result in the introduction of new edge crossings
for graphs that are larger and denser. With this in mind, we use a binary weight
for ρi: the value is 1 when edges intersect and 0 otherwise.

The cost function for stress plus crossing minimization further differs from
Shabbeer et al. in the criteria weighting parameter K. Figure 4 (Sect. 4) shows
that the use of binary weights and hyperparameter K helps SPX achieve better
results compared to Shabbeer et al.

3.2 Stress Plus Crossing Angle Maximization

Our crossing angle maximization penalty is the edge crossing penalty with an
additional factor of cos2(θi) in each factor of the summation, where θi is the
angle between a pair of crossing edges. We use cos2 to constrain to positive
values and give a heavier weight to smaller crossing angles. Note this modified
penalty function explicitly maximizes the minimum crossing angle and implicitly
minimizes the number of crossings, as when a crossings is removed altogether it
cannot contribute to the minimum crossing angle.

3.3 Stress Plus Upward Crossing Minimization

We add the upwardness criteria to SPX by adding constraints to the model. Let
(u, v) be a directed edge. Then, in the drawing of the graph the y coordinate of
v should be strictly larger than the y coordinate of u. We enforce this directly
with a linear constraint (yv > yu). If the input graph is a DAG then we add this
constraint for all edges. If the graph is mixed then we add the constraints only
for the directed edges.

3.4 Implementation

We implemented SPX in Python. It uses the stress majorization formulation of
Gansner et al. [17] to minimize stress and the edge crossing detection code from
Demel et al. [8]. SPX source code and experimental material are available at
https://github.com/devkotasabin/SPX-graph-layout.

Initial Layouts: We ran our experiments using 3 different layout algorithms as
input to the SPX algorithm: stress majorization (neato), force-directed layout
(sfdp), and random initialization. Both neato and sfdp are available in the
GraphViz package [15]. To ameliorate the effects of sensitivity to initial layout,
we employ random starts of SPX, using each method multiple times and choosing
the layout that maximizes the objective.

https://github.com/devkotasabin/SPX-graph-layout


298 S. Devkota et al.

Gradient Descent Algorithms: We experimented with the following algo-
rithms for gradient descent (GD) [31]: bfgs, l-bfgs, vanilla GD, momentum-
based GD, Nesterov momentum-based GD, Adagrad, RMSprop, and Adam. We
found that for different types of graphs, different GD variants yielded better
results and we kept all but bfgs and l-bfgs in our parameter sweep based on
their performance in our pilot experiments. Section 3.5 contains further analysis
of different GD variants and their convergence plots.

Parallelization: Each combination of random initial layout, gradient descent
algorithm, and value of K is independent and thus can be run in parallel. Oper-
ations on each edge pair, such as computing u and γ, as well as summing the
penalties, can also be parallelized. However, running edge pairs fully in parallel
would incur significant overhead. We leave the implementation of this approach
as future work.

3.5 Convergence Analysis

Figure 3 illustrates the convergence behavior of SPX using the six variants of gra-
dient descent from Sect. 3.4 on two graphs, graph 5 from the community graphs
of Sect. 4 (top row) and graph 9 from 2018 Graph Drawing contest (bottom row).
Convergence behavior of the variants differ depending on graph. Figure 3 shows
the values for number of crossings, stress, and crossing angle over 100 iterations
for a fixed value of K(= 2) for both graphs.

For both graphs, at least one gradient descent variant converges within 100
iterations.

In the first graph, Momentum and Nesterov converge rapidly and then get
stuck in local minima. In the first graph, they overcome the local minima to
continue convergence, while on the second graph they diverge after the minima.
We hypothesize convergence per variant is dependent on graph properties and
thus use all six. Further analysis and optimization is left for future work.

4 Results

As SPX is designed to be a flexible framework, we evaluate it in three different
contexts. First, we compare SPX to Shabbeer et al. [33] on stress and number
of crossings showing SPX performs better.

Second, we compare SPX to two state-of-the-art algorithms for crossing angle
optimization: Demel et al. from KIT [8] and Bekos et al. from Tübingen [3].
We compare across five readability metrics discussed earlier: stress (ST), num-
ber of crossings (NC), crossing angle (CA), drawing area (DA), and neighbor-
hood preservation (NP). We show SPX balanced multiple criteria simultaneously
rather than optimizing one at the expense of others.



Stress-Plus-X (SPX) Graph Layout 299

Fig. 3. Number of crossings, stress, and crossing angle over 100 iterations for 6 variants
of GD algorithms on 2 graphs run with fixed K(= 2). The 2 graphs are graph 5 from
random subset of 25 community graphs (top row) and graph 9 from 2018 graph drawing
contest (bottom row).

Third, we compare SPX to existing approaches that directly optimize cross-
ings [6,14,18,27] for upward drawings of DAGs. Our results show that SPX can
preserve upwardness while performing better across other readability criteria.

4.1 Datasets and Experimental Settings

For the first two evaluations we used the 2017 and 2018 graph drawing contest
graphs [9,10], as well as a collection of 400 graphs used in a crossings minimiza-
tion study by Radermacher et al. [30]. For the third evaluation (upward drawing
of DAGs) we generated 4 trees and 30 DAGs of different sizes.

We ran our experiments using all six gradient descent variants discussed in
Sect. 3.4. We swept the values of K in the range of 2−5 to 25 in exponential
increments. We used three different initial layout algorithms as input: neato,
sfdp, and random initialization with five different starts each. Metrics were
calculated using the graphmetrics library of De Luca [7].

4.2 Comparison to Shabbeer et al.

We compare SPX with two algorithms - Shabbeer et al. [33] and stress majoriza-
tion [17] on the corpus of 100 community graphs. The crossings value for stress
is taken from Radermacher et al. [30] and the stress value calculated as lowest
from five random neato [15] layouts. We run the SPX variant that performs



300 S. Devkota et al.

stress-plus-crossing minimization only and compare using two metrics, number
of crossings and stress, because Shabbeer et al. minimizes only for these two
metrics. We do not perform the same two-metric comparison with the cross-
ing minimization algorithms of Radermacher et al. [30] because they are not
concerned with stress. We provide details about crossing minimization only for
SPX and the algorithms of Radermacher et al.

Figure 4a shows that on average SPX produces fewer crossings than both
other approaches. Figure 4b shows that on average SPX produces layouts with
lower stress than both other approaches. We hypothesize that SPX performs
better than stress majorization on stress because of SPX’s multiple random
starts and the use of neato as one of the initializations.

(a) Crossing minimization (b) Stress minimization

Fig. 4. Comparing SPX, Shabbeer et al. and stress majorization in terms of the number
of crossing and stress minimization using 100 community graphs.

4.3 Comparison Across Several Criteria

We examine several readability criteria across the layouts obtained by the three
algorithms designed to minimize crossing angle: KIT [8], Tübingen [3], and SPX.
In particular, we consider stress, neighborhood preservation, edge crossings,
drawing area, and crossing angle.

Though our impetus was the graph drawing contest graphs, they are diverse
in structure, making it difficult to compare across them. To perform a bulk
comparison, we randomly select a subset of 25 graphs from community graphs
described above.

Figure 5 shows the results for the 25 graphs, presented in a pairwise fashion
of metrics. We plot the metrics so that points in the lower left corner indicate
good performance in the two metrics. From the plots we can see that most of
the SPX drawings are in the well-performing corner.

Figure 6 shows an example of a community graph, drawn by all three algo-
rithms. SPX achieves best stress and crossing angle while performing very close
to the winner, KIT, in terms of number of crossings.



Stress-Plus-X (SPX) Graph Layout 301

Fig. 5. Pairwise metric evaluation of the KIT, Tübingen, and SPX algorithms using
stress (ST), number of crossings (NC), crossing angle (CA), neighborhood preservation
(NP), and drawing area (DA).

Graph KIT SPX

Community:13

CA:33.15, AA:66.57, ST:2003.44, NP:0.15 CA:69.44, AA:78.58, ST:660.7, NP:0.35 CA:79.32, AA:87.02, ST:615.04, NP:0.3

Fig. 6. Outputs of the Tübingen, KIT, SPX algorithms on a community graph.

4.4 Comparison of Upward Drawings

To evaluate SPX for upward drawing, we compare it to several state-of-the-art
directed graph algorithms across several metrics on a corpus of 4 trees and 30
DAGs, described in [11].

We compared SPX to dot [18]; dagre [6] and both variants of Sugiyama
in OGDF [27]: the barycenter heuristic (“ogdfb”) and the median heuristic
(“ogdfm”). We verified all algorithms, including SPX, produced completely



302 S. Devkota et al.

upward drawings. We measured drawing area (A), stress (ST), and number of
crossings (CR). We also measured height and width separately, but found their
behavior to be the same as those for drawing area. The results of the experiment
are reported in Table 1. Each cell indicates the number of times each algorithm
had the best value for the metric, with ties being attributed to both algorithms.

Table 1. The number of times each algorithm had the best metric value for upward
drawings of 4 complete balanced binary trees (left) and 30 DAGs (right).

dagre dot ogdfb ogdfm SPX
ST 0 0 0 0 4
A 0 0 0 0 4
CR 4 4 4 4 4

4 binary trees

dagre dot ogdfb ogdfm SPX
ST 0 0 0 0 30
A 0 0 0 0 30
CR 2 5 8 11 14

30 directed acyclic graphs

Table 1 shows that SPX consistently produces the best drawings across the
metrics, although all other algorithms also produce planar layouts for the com-
plete binary trees. However, there is a caveat in the measure of area. We do not
impose any resolution to the upwardness of the drawings. The SPX drawings
are very small in area compared to those generated by the other algorithms.
Imposing a resolution constraint could increase crossings and stress, indicating a
post-processing to enforce resolution may be a better option. We experimented
with a näıve scaling parameter which results in very large area. We leave a more
appropriate post-processing algorithm as future work.

5 Conclusions and Future Work

As some of the drawings in this paper show, optimizing just one layout crite-
rion can result in unreadable drawings. It seems like a natural idea to consider
approaches that balance multiple layout criteria. SPX is an example of such a
graph layout framework that balances the optimization of multiple criteria and
achieves quality that is close to one criterion state-of-the-art algorithms. Cur-
rently SPX considers stress minimization, crossing minimization, crossing angle
maximization, and upwardness. A natural direction for future work is to incor-
porate additional layout criteria. Our current implementation of SPX relies on a
combination of stress minimization and a linear program solver. As a result the
algorithm is prohibitively slow for large graphs. Possible ways to speed up the
algorithm, such as multi-level computation, are worth exploring.

References

1. Ábrego, B.M., Fernández-Merchant, S., Salazar, G.: The rectilinear crossing num-
ber of kn: closing in (or are we?). Thirty Essays Geom. Gr. Theory (2012). https://
doi.org/10.1007/978-1-4614-0110-0 2

https://doi.org/10.1007/978-1-4614-0110-0_2
https://doi.org/10.1007/978-1-4614-0110-0_2


Stress-Plus-X (SPX) Graph Layout 303

2. Argyriou, E.N., Bekos, M.A., Symvonis, A.: Maximizing the total resolution of
graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 62–
67. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18469-7 6

3. Bekos, M.A., Förster, H., Geckeler, C., Holländer, L., Kaufmann, M., Spallek,
A.M., Splett, J.: A heuristic approach towards drawings of graphs with high cross-
ing resolution. CoRR abs/1808.10519 (2018). http://arxiv.org/abs/1808.10519

4. Buchheim, C., Chimani, M., Gutwenger, C., Jünger, M., Mutzel, P.: Crossings and
planarization. In: Handbook of Graph Drawing and Visualization, pp. 43–85 (2013)

5. Chen, L., Buja, A.: Local multidimensional scaling for nonlinear dimension reduc-
tion, graph drawing, and proximity analysis. J. Am. Stat. Assoc. 104(485), 209–219
(2009)

6. Dagrejs: dagrejs/dagre. https://github.com/dagrejs/dagre/wiki
7. De Luca, F.: graphmetrics library (2019). https://github.com/felicedeluca/

graphmetrics
8. Demel, A., Dürrschnabel, D., Mchedlidze, T., Radermacher, M., Wulf, L.: A greedy

heuristic for crossing-angle maximization. In: Biedl, T., Kerren, A. (eds.) GD 2018.
LNCS, vol. 11282, pp. 286–299. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-04414-5 20

9. Devanny, W., Kindermann, P., Löffler, M., Rutter, I.: Graph drawing contest
report. In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp. 575–582.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73915-1 44

10. Devanny, W., Kindermann, P., Löffler, M., Rutter, I.: Graph drawing contest
report. In: Biedl, T., Kerren, A. (eds.) GD 2018. LNCS, vol. 11282, pp. 609–617.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04414-5 43

11. Devkota, S., Ahmed, R., De Luca, F., Isaacs, K., Kobourov, S.: Stress-Plus-X
(SPX) graph layout (2019)

12. Duncan, C.A., Gutwenger, C., Nachmanson, L., Sander, G.: Graph drawing contest
report. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 575–
579. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36763-2 58

13. Dwyer, T.: Scalable, versatile and simple constrained graph layout. Comput.
Graph. Forum 28, 991–998 (2009)

14. Dwyer, T., Koren, Y., Marriott, K.: Ipsep-cola: an incremental procedure for sep-
aration constraint layout of graphs. IEEE Trans. Vis. Comput. Gr. 12, 821–828
(2006). https://doi.org/10.1109/TVCG.2006.156

15. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz—
open source graph drawing tools. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD
2001. LNCS, vol. 2265, pp. 483–484. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45848-4 57

16. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed place-
ment. Softw. Pract. Exp. 21(11), 1129–1164 (1991). https://doi.org/10.1002/spe.
4380211102

17. Gansner, E.R., Koren, Y., North, S.: Graph drawing by stress majorization. In:
Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31843-9 25

18. Gansner, E.R., North, S.C., Vo, K.P.: Technique for drawing directed graphs
(1990). uS Patent 4,953,106

19. Gutwenger, C., Löffler, M., Nachmanson, L., Rutter, I.: Graph drawing contest
report. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 501–
506. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45803-7 42

https://doi.org/10.1007/978-3-642-18469-7_6
http://arxiv.org/abs/1808.10519
https://github.com/dagrejs/dagre/wiki
https://github.com/felicedeluca/graphmetrics
https://github.com/felicedeluca/graphmetrics
https://doi.org/10.1007/978-3-030-04414-5_20
https://doi.org/10.1007/978-3-030-04414-5_20
https://doi.org/10.1007/978-3-319-73915-1_44
https://doi.org/10.1007/978-3-030-04414-5_43
https://doi.org/10.1007/978-3-642-36763-2_58
https://doi.org/10.1109/TVCG.2006.156
https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1007/978-3-540-31843-9_25
https://doi.org/10.1007/978-3-662-45803-7_42


304 S. Devkota et al.

20. Huang, W., Eades, P., Hong, S.H.: Larger crossing angles make graphs easier to
read. J. Vis. Lang. Comput. 25(4), 452–465 (2014). https://doi.org/10.1016/j.jvlc.
2014.03.001

21. Huang, W., Eades, P., Hong, S.H., Lin, C.C.: Improving multi-
ple aesthetics produces better graph drawings. J. Vis. Lang. Com-
put. 24(4), 262–272 (2013). https://doi.org/10.1016/j.jvlc.2011.12.002.
http://www.sciencedirect.com/science/article/pii/S1045926X11000814

22. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf.
Process. Lett. 31(1), 7–15 (1989). https://doi.org/10.1016/0020-0190(89)90102-6.
http://www.sciencedirect.com/science/article/pii/0020019089901026

23. Kruiger, J.F., Rauber, P.E., Martins, R.M., Kerren, A., Kobourov, S., Telea, A.C.:
Graph layouts by t-sne. Comput. Graph. Forum 36(3), 283–294 (2017). https://
doi.org/10.1111/cgf.13187

24. Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a non-
metric hypothesis. Psychometrika 29(1), 1–27 (1964)

25. Maaten, L.V.D., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res.
9(Nov), 2579–2605 (2008)

26. McInnes, L., Healy, J., Melville, J.: Umap: uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)

27. Mutzel, P., Chimani, M., Gutwenger, C., Klein, K.: OGDF an open graph drawing
framework. In: 15th International Symposium on Graph Drawing (2007). https://
doi.org/10.17877/DE290R-7670

28. Pich, C.: Applications of multidimensional scaling to graph drawing. Ph.D. thesis
(2009)

29. Purchase, H.: Which aesthetic has the greatest effect on human understanding? In:
DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-63938-1 67

30. Radermacher, M., Reichard, K., Rutter, I., Wagner, D.: A geometric heuristic for
rectilinear crossing minimization. In: Pagh, R., Venkatasubramanian, S. (eds.) The
20th Workshop on Algorithm Engineering and Experiments (ALENEX 2018), pp.
129–138 (2018). https://doi.org/10.1137/1.9781611975055.12

31. Ruder, S.: An overview of gradient descent optimization algorithms. CoRR
abs/1609.04747 (2016). http://arxiv.org/abs/1609.04747

32. Seemann, J.: Extending the sugiyama algorithm for drawing uml class diagrams:
towards automatic layout of object-oriented software diagrams. In: DiBattista, G.
(ed.) GD 1997. LNCS, vol. 1353, pp. 415–424. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-63938-1 86

33. Shabbeer, A., Ozcaglar, C., Gonzalez, M., Bennett, K.P.: Optimal embedding of
heterogeneous graph data with edge crossing constraints. In: NIPS Workshop on
Challenges of Data Visualization (2010)

34. Shepard, R.N.: The analysis of proximities: multidimensional scaling with an
unknown distance function. Psychometrika 27(2), 125–140 (1962)

35. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-
chical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981)

36. Wang, Y., Wang, Y., Sun, Y., Zhu, L., Lu, K., Fu, C., Sedlmair, M., Deussen,
O., Chen, B.: Revisiting stress majorization as a unified framework for interactive
constrained graph visualization. IEEE Trans. Vis. Comput. Gr. 24(1), 489–499
(2018). https://doi.org/10.1109/TVCG.2017.2745919

37. Ware, C., Purchase, H., Colpoys, L., McGill, M.: Cognitive measurements of graph
aesthetics. Inf. Vis. 1(2), 103–110 (2002)

https://doi.org/10.1016/j.jvlc.2014.03.001
https://doi.org/10.1016/j.jvlc.2014.03.001
https://doi.org/10.1016/j.jvlc.2011.12.002
http://www.sciencedirect.com/science/article/pii/S1045926X11000814
https://doi.org/10.1016/0020-0190(89)90102-6
http://www.sciencedirect.com/science/article/pii/0020019089901026
https://doi.org/10.1111/cgf.13187
https://doi.org/10.1111/cgf.13187
http://arxiv.org/abs/1802.03426
https://doi.org/10.17877/DE290R-7670
https://doi.org/10.17877/DE290R-7670
https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1137/1.9781611975055.12
http://arxiv.org/abs/1609.04747
https://doi.org/10.1007/3-540-63938-1_86
https://doi.org/10.1007/3-540-63938-1_86
https://doi.org/10.1109/TVCG.2017.2745919


Best Paper in Track 1



Exact Crossing Number Parameterized
by Vertex Cover

Petr Hliněný1(B) and Abhisekh Sankaran2

1 Faculty of Informatics of Masaryk University, Brno, Czech Republic
hlineny@fi.muni.cz

2 Department of Computer Science and Technology, University of Cambridge,
Cambridge, UK

abhisekh.sankaran@cl.cam.ac.uk

Abstract. We prove that the exact crossing number of a graph can
be efficiently computed for simple graphs having bounded vertex cover.
In more precise words, Crossing Number is in FPT when parameter-
ized by the vertex cover size. This is a notable advance since we know
only very few nontrivial examples of graph classes with unbounded and
yet efficiently computable crossing number. Our result can be viewed as
a strengthening of a previous result of Lokshtanov [arXiv, 2015] that
Optimal Linear Arrangement is in FPT when parameterized by the
vertex cover size, and we use a similar approach of reducing the prob-
lem to a tractable instance of Integer Quadratic Programming as
in Lokshtanov’s paper.

Keywords: Graph drawing · Crossing number · Parameterized
complexity · Vertex cover

1 Introduction

The crossing number cr(G) of a graph G is the minimum number of pairwise edge
crossings in a drawing of G in the plane. We refer to Sect. 2 for the definitions of
a drawing and edge crossings. Finding the crossing number of a graph is one of
the most prominent combinatorial optimization problems in graph theory and
is NP-hard already in very special cases, e.g., even when considering a planar
graph with one added edge [5]. Moreover, we know that computing the crossing
number is APX-hard [3], i.e., there does not exist a PTAS (unless P=NP).

On the other hand, there is an algorithm [1] that approximates not directly
the crossing number, but the quantity n+cr(G) where n = |V (G)|; its currently
best incarnation does so within a factor of O(log2 n) [11]. The first sublinear
approximation factor of Õ(n0.9) has been achieved by [9]. Concerning rectilinear

P. Hliněný—Supported by the Czech Science Foundation, project no. 17-00837S.
A. Sankaran—Supported by the Leverhulme Trust through a Research Project Grant
on ‘Logical Fractals’.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 307–319, 2019.
https://doi.org/10.1007/978-3-030-35802-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_24&domain=pdf
http://orcid.org/0000-0003-2125-1514
https://doi.org/10.1007/978-3-030-35802-0_24


308 P. Hliněný and A. Sankaran

drawings of dense graphs there is another recent approximation result [12]. Much
better crossing number approximation results are known for some restricted
graph classes, such as for graphs embeddable in a fixed surface [15,17] and for
graphs from which few edges or vertices can be removed to make them planar
[4,6,7,18].

Despite this recent progress in crossing number approximations in special
cases, there are nearly no nontrivial formulas or efficient algorithms for comput-
ing the exact crossing number in sufficiently “rich” graph classes. Even for very
nicely structured classes such as the complete graphs, the complete bipartite
graphs and the toroidal grids (Cartesian products of cycles), their exact crossing
numbers are only conjectured, but not proved (e.g., we do not know cr(K13) ).

One notable exception (to near-impossibility of computing efficiently the
exact crossing number) is that the exact crossing number can be efficiently com-
puted (even in linear time) when it is bounded [16,19]; more precisely, that
Crossing Number is in linear-time FPT when parameterized by the solu-
tion value. However, considering nontrivially rich graph classes with unbounded
crossing number, there currently seems to be only one such further efficient result
by Biedl et al. [2]; computing the exact crossing number for maximal graphs of
pathwidth exactly 3.

Our paper brings one more small piece to this crossing-number puzzle. A
vertex cover in a graph G is a set X of vertices of G such that every edge of G
has at least one end in X. We prove that it is possible to compute in FPT the
exact crossing number of a simple graph G when the minimum vertex cover size
of G is bounded as a parameter.

Theorem 1. Given a simple graph G, the problem to compute the crossing num-
ber of G and the corresponding optimal drawing of G is fixed-parameter tractable
with respect to the parameter k = |X| where X ⊆ V (G) is a vertex cover of G.

We remark that computing the minimum vertex cover X is itself in FPT when
parameterized by |X| [10], and so we do not need X on the input.

Although bounding the vertex cover also bounds the pathwidth of a graph,
our Theorem 1 is incomparable with [2] since their result gives exact values only
for pathwidth 3 (for higher values of pathwidth [2] gives an approximation).
Another notable point is that the classes of graphs of bounded vertex cover
are monotone (closed under taking subgraphs), while the exact algorithm in [2]
requires maximal graphs of pathwidth 3 (again, for non-maximal such graphs
there is only a 2-approximation).

In the algorithm of Theorem 1 we follow the approach of Lokshtanov [20], who
showed that Integer Quadratic Programming is in FPT when parameter-
ized by the number of variables and the maximum of the absolute values of the
coefficients. Lokshtanov then used his IQP algorithm to show that the problem
Optimal Linear Arrangement of a graph G is in FPT when parameterized
by the minimum vertex cover size of G. In the Optimal Linear Arrange-
ment problem of a graph G, the task is to find a linear ordering of the vertex
set of G which minimizes the sum of “lengths” of the edges of G. With respect



Exact Crossing Number Parameterized by Vertex Cover 309

to this, it is worth to note that the first NP-hardness proof for Crossing Num-
ber [14] used a simple reduction from Optimal Linear Arrangement, one
which asymptotically preserves almost any reasonable graph parameter includ-
ing vertex cover. Although we cannot directly apply our algorithm to the result
of that reduction (due to a presence of parallel edges, as explained below), a sim-
ple modification along the lines of that reduction allows to deduce Lokshtanov’s
result for Optimal Linear Arrangement from our algorithm.

2 Basic Definitions

We use the standard terminology of graph theory. A special attention has to be
paid to simplicity of graphs – while (non-)simplicity is usually not an issue for
the crossing number (just subdivide parallel edges), it becomes important with
respect to the minimum vertex cover. Therefore, we will consider simple graphs
throughout the paper by default, and we will use the term multigraph otherwise.

A drawing of a graph G = (V,E) is a mapping of the vertices V to distinct
points in the plane, and of the edges E to simple curves connecting their respec-
tive end points but not containing any other vertex point. When convenient,
we will refer to the elements (vertices and edges) of the drawing as to the cor-
responding elements of G. A crossing is a common point of two distinct edge
curves, other than their common end point. It is well established that the search
for an optimal solution to the crossing number problem can be restricted to so
called good drawings: any pair of edges crosses at most once, adjacent edges do
not cross, and there is no crossing point in common of three or more edges.

Definition 2. The problem Crossing Number asks for a good drawing D of
a given graph G with the least possible number of crossings.

The number of crossings in a particular drawing D is denoted by cr(D) and
the minimum over all good drawings D of a graph G by cr(G). We call cr(D)
and cr(G) the crossing number of the drawing D and the graph G, respectively.

We will also need to deal with weighted crossing number. Consider a graph
H with a weight assignment w : E(H) → N. Then a crossing between edges
e, f ∈ E(H) naturally counts as w(e) ·w(f) crossings (as if they were bunches of
w(e) and w(f) parallel edges). The weighted crossing number cr(H) of weighted
H is defined as in Definition 2 while counting crossings this weighted way.

Following [20], we introduce the problem Integer Quadratic Program-
ming (IQP) in a generalized form. 1 Its input consists of a k×k integer matrix Q ,
an m × k and m′ × k integer matrices A and C , a k-dimensional integer vector
p, and m- and m′-dimensional integer vectors b and d . The task is to find an
optimal solution z ◦ to the following optimization problem:

1 The stated generalized form comes from page 4 of [20], formula (2) and below.



310 P. Hliněný and A. Sankaran

Minimize zTQz + pT z

subject to Az ≤ b (1)
Cz = d

z ∈ Z
k

Note that “finding a solution” of an IQP instance means exactly one of the
following three outcomes: the instance is infeasible and we correctly detect that,
or the instance is feasible and unbounded and we again detect that, or the
instance is feasible and bounded and we output an optimal solution z ◦.

Theorem 3. (Lokshtanov [20]). Consider the Integer Quadratic Pro-
gramming problem as above (1), where the input consists of the integer matrices
A, C, Q and the integer vectors b, d, p. Let L denote the length of the com-
bined bit-representation of this input, and let λ be the largest absolute value of the
entries in the matrices A, C and Q, and the entries in the vector p. There exists
an algorithm which finds a solution of this instance of IQP in time f(k, λ) ·LO(1)

for some computable function f (that is, fixed-parameter tractable with input size
L and parameters k and λ).

3 Clustered Optimal Drawings

We start with a high-level idea of our solution. Consider a simple graph G and a
vertex cover X ⊆ V (G) of fixed size k = |X|. Then V (G) \ X is an independent
set and every vertex of V (G) \ X can be classified by its neighbourhood in X
(and this classification is unique up to automorphisms). At the first sight it thus
appears natural to form “uniform” clusters of the vertices with the same neigh-
bourhood (to be treated the same way, whatever this means), and so seemingly
“reduce” the input size to O(2k) and then solve it in FPT by brute force. This
is, unfortunately, not at all sufficient.2

As we will see, while solving the crossing number problem, it would be enough
to additionally classify the vertices of V (G) \ X by the cyclic ordering of their
edges in the (yet to be found) optimal drawing of G. Furthermore, it will also
be useful to restrict the arguments to the aforementioned good drawings (pairs
of edges crosses at most once and adjacent pairs do not cross). In particular,
in a good drawing the edges incident to one common vertex always form an
uncrossed star. We give the following core definition (see also Fig. 1):

2 In the exemplary case of Optimal Linear Arrangement [20], one may easily
see the problem on the graph Kk,n, whose smaller part X of size k is the minimum
vertex cover and all vertices of the larger part form one cluster with the same neigh-
bourhood X. Yet, an optimal linear arrangement solution for Kk,n has to alternate
the vertices of X and those of the large part in the middle of the arrangement. Hence
in this particular case of OLA, one has to consider at least the relative position of
vertices with respect to X in addition to their neighbourhoods.



Exact Crossing Number Parameterized by Vertex Cover 311

Definition 4. Let G be a graph with a vertex cover X, and D be a good drawing
of G. Then two vertices x, y ∈ V (G) \ X belong to the same topological cluster
in D (with implicit respect to X) if their neighbourhood in X is the same, and
the clockwise cyclic order of the neighbours of x within D is the same as the
clockwise cyclic order of the neighbours of y.
(Note that a vertex of X does not belong to any topological cluster in D.)

Fig. 1. An illustration of topological clusters with respect to the vertex cover formed
by the middle four black vertices: any two blue (square) vertices on the left belong to
the same topological cluster, and likewise for any two red (diamond) vertices. Any blue
and a red vertex belong to different topological clusters. (Color figure online)

We aim to show that an optimal drawing of our graph G can be obtained in
such a form that the topological clusters of vertices and the incident edges are
“drawn closely together”. The same idea, only for the special case of the com-
plete bipartite graph G = Kk,n, has already been used by Christian, Richter and
Salazar [8] (their research goal, though, was different). Our paper can be consid-
ered a generalization of (a part of) [8]. To achieve our goal, we separate two kinds
of crossings and rigorously describe a topological clustering of a drawing of G.

Assume a good drawing D of G. Having two edges e, f ∈ E(G) such that
one end of e belongs to the same topological cluster in D as one end of f , we
say that a (possible) crossing of e and f is a cluster crossing. All other edge
crossings occurring in D are called non-cluster crossings (and they include all
crossings on edges with both ends in X). Here we denote by crn(D) the number
of non-cluster crossings (possibly weighted) in the drawing D.

In the following definition we, informally, select one weighted “representative”
of each topological cluster of a drawing D.

Definition 5. A drawing DX is called a topological clustering of the drawing
D (of a graph G) with respect to its vertex cover X if the following hold:

– DX is an induced subdrawing of D and V (DX) ⊇ X,
– every vertex of V (D)\X belongs to the same topological cluster in D as some

vertex of V (DX) \ X,
– no two vertices of V (DX) \ X are in the same topological cluster in DX , and



312 P. Hliněný and A. Sankaran

– DX is equipped with a weight function c : V (DX) \ X → N such that, for
every t ∈ V (DX) \ X, the size of the topological cluster in D containing t
equals c(t).

Note that there can be many (topologically) different topological clusterings
DX of the same drawing D, depending on how the “representative” vertices
from V (DX) \ X are chosen. See also Fig. 2

3

2

3

3

2 3

Fig. 2. An illustration: the graph on the left has a vertex cover X formed by the
three black vertices. There are three topological clusters wrt. X, depicted by the blue
(square), red (diamond) and yellow (triangle) vertices. On the right, we can see two
different topological clusterings of this graph, with the weights in the node circles.
(Color figure online)

In view of Definition 5, it will be useful to consider the crossing number of
the following independently weighted graphs. For a graph H, an independent set
Y ⊆ V (H), and a weight function c : Y → N, let the edge weights in H be as
follows: for e ∈ E(H) having one end x ∈ Y we set c′(e) := c(x), and for edges e
with both ends in V (H) \ Y we set c′(e) = 1. This defines the weighted crossing
number of H and, in particular for Y = V (DX) \ X, the weighted crossing
number cr(DX) of DX with respect to its weight function c.

We can now formulate and prove the core claim:

Lemma 6. For every good drawing D of a graph G with a vertex cover X, there
exists its topological clustering DX such that the number of non-cluster crossings
in D is at least cr(DX).

Proof. We start by setting D′ := D, and then we will inductively choose suitable
representatives of the topological clusters of D′ until we arrive at desired DX .

Let the cost of a vertex x of D′ be the sum of all non-cluster(!) crossings
carried by the edges of D′ incident to x. We pick any (nonempty) topological
cluster S ⊆ V (D′) \ X and choose a vertex s0 ∈ S having the least cost among
those of S. If |S| > 1, we iterate the following over all s ∈ S \ {s0};



Exact Crossing Number Parameterized by Vertex Cover 313

– remove s and its incident edges from the drawing D′,
– choose a new vertex s′ in a tiny neighbourhood of s0 in D′, and draw the edges

of s′ in a tiny strip along the edges of s0 while making only such non-cluster
crossings as those that exist on the edges of s0.

Since s0 and s have had the same neighbourhood, the new drawing D′′ as a
graph (with s′) is isomorphic to D′ and the vertices s0 and s′ still belong to the
same topological cluster. Moreover, since s0 has been chosen with the least cost,
we have crn(D′′) ≤ crn(D′). (New cluster crossings can be simply ignored.)

At the end of the previous procedure, we get a drawing D◦ (isomorphic to D′)
which has no more non-cluster crossings than D′, and all edges of the cluster S
are drawn “the same way closely together” in D◦. From this it follows that the
number of non-cluster crossings carried by the edges incident to the cluster S in
D◦ equals |S|-times this number on the edges incident to s0 in D′. We therefore
define D1 as the induced subdrawing of D′ obtained by deleting the vertices of
S \ {s0} and assigning the weight c(s0) = |S|. In the setting of independently
weighted graph underlying D1, we get crn(D1) = crn(D◦) ≤ crn(D′).

We finish the proof inductively. Let r be the number of topological clusters
of given D. For i = 1, 2, . . . , r−1, we now repeat the previous steps for D′ := Di,
obtaining a subdrawing Di+1 such that crn(Di+1) ≤ crn(Di). Finally, Dr is a
topological clustering of D with respect to X by Definition 4 and we conclude
cr(Dr) = crn(Dr) ≤ . . . ≤ crn(D1) ≤ crn(D). ��

4 Counting the Crossings in Clusters and Between

In order to complement Lemma 6, we need to estimate also the number of
cluster crossings in a drawing D. This is actually quite easy using the fact that
two vertices in the same topological cluster have the same cyclic ordering of their
neighbours. We use the following simple claim (cf. Fig. 3):

Lemma 7 ([8, Lemma 2.1]). Let x, y be the two vertices of degree m in K2,m

for m ≥ 3. Consider any good drawing D of K2,m such that the clockwise cyclic
order of the neighbours of x within D is the same as the clockwise cyclic order
of the neighbours of y. Then cr(D) ≥ 
m

2 � · 
m−1
2 � := Z(m).

Corollary 8. Consider a good drawing D of a graph G with a vertex cover X,
and a topological cluster S ⊆ V (D) \ X of size c = |S|. Let the degree of vertices
in S be m. Then the number of cluster crossings in D between the edges incident
with S is at least

(
c
2

) · 
m
2 � · 
m−1

2 � =
(

c
2

) · Z(m).

Readers may notice that the formula
(

c
2

) · 
m
2 � · 
m−1

2 � in the lemma is not
symmetric in c and m – it grows on one hand with c2/2 and on the other hand
with m2/4. This is correct since the setting is also not symmetric. The vertices
in S are required to have the same cyclic order of neighbours in D, but the
neighbours of S do not have this property.



314 P. Hliněný and A. Sankaran

Proof. Let Z(m) = 
m
2 � · 
m−1

2 �. For s ∈ S, denote by Rs ⊆ G the subgraph
(a star) induced by s and the incident edges of s in G.

There is nothing to prove (the bound equals 0) for m ≤ 2 or c = 1. Otherwise,
for every pair s1, s2 ∈ S, s1 �= s2, we apply Lemma 7 to the subdrawing Ds1,s2

of D induced by Rs1 ∪ Rs2 , getting at least Z(m) crossings within Ds1,s2 . If
s3 ∈ S is different from s1 and s2, then the crossings in Ds1,s3 are all distinct
from the crossings in Ds1,s2 ; this is since E(Ds1,s2) ∩ E(Ds1,s3) = E(Rs1), but
the edges on Rs1 are all incident to s1 and so they cannot mutually cross in a
good drawing. Consequently, each of the

(
c
2

)
invocations of Lemma 7 contributes

a collection of at least Z(m) new crossings, providing the overall lower bound of(
c
2

) · Z(m) cluster crossings between the edges incident with S. ��

...

Fig. 3. Left: an optimal drawing of K2,7 achieving the minimum number of Z(7) = 9
crossings among all drawings in which the two vertices of degree 7 have the same cyclic
order of their neighbours (as in Lemma 7). Right: “stacking” the left subdrawings
such that the total number of cluster crossings here matches the lower bound given by
Corollary 8.

The next step is to introduce an “abstract level” of a topological clustering.
Simply put, a drawing D is an abstract topological clustering of a graph G with
respect to its vertex cover X if D is a topological clustering of some drawing of
G, but without the weight function. More precisely:

Definition 9. A drawing CX is an abstract topological clustering of a graph G
with respect to its vertex cover X if the following hold:

– CX is a good drawing of an induced subgraph of G containing X,
– for every vertex w ∈ V (G) \ X there is a vertex in V (CX) \ X having the

same neighbourhood as w in G, and
– no two vertices of V (CX) \ X are in the same topological cluster in CX .

We will further use the term of planarization of a drawing D, which is the
plane graph obtained from D by turning every crossing into a new degree-4 ver-
tex. Two drawings D1 and D2 of the same graph are combinatorially equivalent
if the same pairs of edges cross in D1 as in D2, moreover in the same order of
the crossings on each edge, and their planarizations are equivalent plane graphs
(i.e., with the same collection of faces).



Exact Crossing Number Parameterized by Vertex Cover 315

Lemma 10. Consider a graph G with a vertex cover X of size k = |X|. Then
every abstract topological clustering of G has size at most singly exponential in k,
and the number of combinatorially non-equivalent abstract topological clusterings
of G is bounded from above by a doubly exponential function of k.

Proof. A topological cluster in a drawing of G is uniquely determined by one of
2k possible neighbourhood subsets in X, and one of up to (k − 1)! cyclic orders
of the neighbours. Hence an abstract topological clustering C of G has at most
k + 2k(k − 1)! ≤ kO(k) vertices. Hence the number of edges and of pairs of edges
of C is bounded from above by kO(k), which also implies cr(C) ≤ kO(k). Hence
the planarization of C has at most kO(k) vertices, and there are altogether at
most 2kO(k)

such possible nonequivalent planarizations of abstract topological
clusterings of G. ��

A consequence of Lemma 10 is that we can, in FPT time, process all pos-
sible abstract topological clusterings of any graph G with a small vertex cover.
Therefore, from now on, we may just fix one abstract topological clustering CX

of G and discuss how to optimize the crossing number over all such drawings
of G whose topological clustering comes from CX . The latter problem will be
reduced to a bounded instance of IQP, similarly as the special case of complete
bipartite graphs has been handled in aforementioned [8].

4.1 IQP Formulation for Crossings

In regard of Definition 9 and the coming arguments, it will be useful to consider
the following “compressed” representation of a graph G with a small vertex
cover X. Let GX denote the subgraph of G induced by X, and consider the
function h : 2X → N0 such that, for any Y ⊆ X, h(Y ) is the number of vertices
of G outside of X whose neighbourhood in G is exactly Y . Clearly, GX and h
determine G up to an isomorphism (and the size of this description can be only
logarithmic compared to the size of G).

For given G and X, let us fix any abstract topological clustering CX of G
with respect to X. For Y ⊆ X, let S(Y ) be the set of vertices of V (CX) \ X
whose neighborhood in X is exactly Y . Note that h(Y ) is non-zero iff S(Y ) is
non-empty. Let Y1, . . . , Yl be an enumeration of all subsets of X which map to
a non-zero value under h; then

⋃ l
i=1 S(Yi) = V (CX) \ X. For i ∈ {1, . . . , l}, let

g(i) = |S(Yi)| and let S(Yi) = {v(i,1), . . . , v(i,g(i))}.
For an illustration, in Fig. 2 (on the right, but ignoring the weights since we

are considering an abstract clustering) we have got l = 2 (Y1 = X and Y2 are the
two bottom vertices of X), and g(1) = 2 (blue and red clusters) and g(2) = 1
(yellow cluster). Altogether, V (CX) \ X has three vertices there.

Let I be an index set defined as I := {(i, j) | 1 ≤ i ≤ l, 1 ≤ j ≤ g(i)}.
Similarly as in [8], we define the following crossing vector p = (pα | α ∈ I) and
the crossing matrix Q = (qα,β | α, β ∈ I), such that the intended use of p is
to count the crossings between the edges of GX and the edges incident to each
topological cluster corresponding to a vertex of V (CX) \ X, and the intended



316 P. Hliněný and A. Sankaran

use of Q is to count the cluster crossings of each one of the topological clusters
(the diagonal entries) and the non-cluster crossings between pairs of the clusters
(the other entries):

– The crossing vector p : Let e1, . . . , er be an enumeration of the edges in GX .
For α ∈ I and i ∈ {1, . . . , r}, let pi

α be the number of edges incident to vα

that cross ei in CX . Then pα =
∑r

i=1 pi
α.

– The crossing matrix Q : Let α, β ∈ I. If α �= β, define qα,β as the number
of crossings in CX between the edges incident to vα and the edges incident
to vβ . If α = β = (i, j), then qα,α := Z(|Yi|) =

⌊ |Yi|
2

⌋ · ⌊ |Yi|−1
2

⌋
.

(Z(·) has been defined in Lemma 7 and Corollary 8.)
To recapitulate where we stand now; we have fixed an abstract topological

clustering CX of G, and in order to proceed to a drawing of G (underlied by CX),
we first need to assign suitable integer weights to the vertices of V (CX)\X. Our
goal is to minimize the total number of crossings in the constructed drawing
of G. However, we only have CX and some assigned weights on V (CX) \ X,
which together define the topological clustering DX of a drawing of G. The
crossing number cr(DX) is, via Lemma 6, related to the number of non-cluster
crossings in a desired drawing of G (refer to the proof of Theorem 12 for a
precise formulation). But it is not sufficient to minimize cr(DX) since the cluster
crossings in a drawing of G also play important role.

To complete the picture with cluster crossings, we define (cf. Corollary 8)

cl(DX) :=
∑

t∈V (DX)\X

(
c(t)
2

)
·Z(

d(t)
)

=
∑

t∈V (DX)\X

(
c(t)
2

)
·
⌊

d(t)
2

⌋
·
⌊

d(t) − 1
2

⌋
,

where c is the weight function of DX and d(t) denotes the degree of t (which is
the same in DX as in G). Again, we refer to the proof of Theorem 12 for further
treatment of the relation of cl(DX) to the cluster crossings in a drawing of G.

Lemma 11. Let CX be an abstract topological clustering of G with respect to a
vertex cover X, and denote by D(CX) the set of all topological clusterings of good
drawings of G whose unweighted topological clustering is CX . Let, furthermore,
Yi, g, I, p and Q be as above. Then the following IQP

Minimize f(z) = zTQz + 2 · pT z (2)
over all z =

(
z(1,1), . . . , z(1,g(1)), . . . , z(l,1), . . . , z(l,g(l))

)

subject to
g(i)∑

j=1

z(i,j) = h(Yi) for i ∈ {1, . . . , l}

z(i,j) ≥ 0 for (i, j) ∈ I

z ∈ Z
|I|

computes the minimum value of 2 · (cr(D) + cl(D) − r) over all D ∈ D(CX),
where r = cr(CX |X) is the number of crossings in the subdrawing of CX induced
by the vertex set X.



Exact Crossing Number Parameterized by Vertex Cover 317

Proof. First, note that for any D ∈ D(CX) we have cr(D|X) = r by definition.
For a particular weight assignment z , consider the corresponding topological
clustering D = D(CX , z ) ∈ D(CX). We write cr(D) = r + r1(D) + r2(D) where
r1(D) counts the (weighted) crossings in D which involve one edge with both
ends in X, and r2(D) counts the crossings of which neither edge has both ends
in X. From the definition of the crossing vector p we immediately have r1(D) =
pT z . From the definition of the crossing matrix Q and that of cl(·) we also
get r2(D) + cl(D) = 1

2 · zTQz . Altogether, 1
2f(z ) = r1(D) + r2(D) + cl(D) =

cr(D) + cl(D) − r. ��
We are now ready to prove the main result of this paper, which is as stated

below.

Theorem 12 (refinement of Theorem 1). Consider a simple graph G given
on the input as follows: there is a set X (a vertex cover of G), a simple graph
GX (which is the subgraph of G induced by X), and a function h : 2X → N0

such that, for Y ⊆ X, h(Y ) is the number of vertices of G outside of X whose
neighbourhood in G is exactly Y . The size of this input G equals the size of GX

plus the length of the bit-representation of function h.
Then the problem to compute the crossing number of G and the corresponding

topological clustering of an optimal drawing of G is fixed-parameter tractable with
respect to the parameter k = |X|.

Note that, when the vertex cover size k = |X| is fixed, the size of the input G
described in Theorem 12 is logarithmic in the number of vertices of G. Although,
in a typical use case, in which we do not get the input graph G in a parsed form
as in Theorem 12, but rather as a list of vertices and edges, we can first compute,
again in FPT [10], a vertex cover X of size ≤k and the corresponding function h.
Then, from the output topological clustering of an optimal drawing of G, we
can easily in polynomial time construct the corresponding drawing of G. Hence
Theorem 12 implies Theorem 1.

Proof Consider an optimal drawing D0 of G, i.e., one for which cr(D0) = cr(G)
holds. Then D0 may be assumed a good drawing by folklore arguments. By
Lemma 6, there is a topological clustering DX of D0 such that crn(D0) ≥ cr(DX).
Recall that DX is equipped with the weight function c, and that cl(DX) =∑

t∈V (DX)\X

(
c(t)
2

) · Z
(
d(t)

)
where d(t) denote the degree of t. By Corollary 8,

the total number of cluster crossings in D0 is at least cl(DX).
Now, let CX be the abstract topological clustering underlying DX . Although

we do not (yet) know DX , we can “find” CX by a brute force enumeration of
all abstract topological clusterings of G, which is still in FPT by Lemma 10.
Precisely, for every possible CX (where “possible” is checked simply by brute
force with respect to the parameter k), we compose an IQP as above (2). Then,
using Theorem 3, we solve it to get an assignment z of weights to CX , leading to
a clustering D′

X , such that the objective value cl(D′
X)+cr(D′

X) is minimized over
all D′

X ∈ D(CX) by Lemma 11. Let, furthermore, C◦
X be an abstract topological

clustering of G achieving the overall minimum value of the IQP solutions – this
leads to a clustering D◦

X with globally minimal cl(D◦
X) + cr(D◦

X) for given G.



318 P. Hliněný and A. Sankaran

Consequently, counting separately the cluster and non-cluster crossings
in D0, and then considering the minimality of D◦

X , we get

cr(D0) ≥ cl(DX) + crn(D0) ≥ cl(DX) + cr(DX) ≥ cl(D◦
X) + cr(D◦

X).

It is now enough to “lift” the clustering D◦
X into a corresponding drawing D1 of

G with cl(D◦
X) + cr(D◦

X) crossings, which follows straightforwardly in the same
way as in [8], see Fig. 3. Hence cl(D◦

X) + cr(D◦
X) ≥ cr(G) = cr(D0), and so

cr(D1) = cr(D0) = cr(G).
It remains to address runtime of our procedure. In the IQP (2) we have |I|

bounded from above by the size of CX , which is at most singly exponential
in k by Lemma 10. The same asymptotic upper bound kO(k) from the proof
of Lemma 10 applies also to cr(CX), and this clearly bounds all the entries of
the matrix Q and the vector p. Let L be the length of the bit representation
of h (from the input representation of G); then the length of the combined bit
representation of the IQP (2) is at most f1(k)·LO(1) for some computable (singly
exponential) function f1. Then from Theorem 3, (2) is solved by an algorithm
in FPT time f2(k) · LO(1) for some computable function f2. This IQP step is
repeated, by brute force and independently of L, at most f3(k) times where f3
is a computable function (doubly exponential) coming from the bound on the
number of abstract clusterings in Lemma 10. ��

5 Conclusions

In our work we have stressed simplicity of the considered graphs. A natural ques-
tion is about what happens if we consider multigraphs with a vertex cover of
size k. There is, unfortunately, no easy answer to this question since deep prob-
lems arise in two different places of our arguments. First, since the multiplicity
of an edge may be unbounded in k, the entries of the crossing vector p and
the crossing matrix Q would no longer be bounded in k. Second, when defining
topological clusters, it would no longer be enough to consider a bounded num-
ber of neighbourhoods in X and a bounded number of cyclic orders, but also a
potentially unbounded number of different multiplicities of the edges in a cluster.
Each of these problems would completely ruin the runtime of our procedure.

Therefore, we leave the problem of computational complexity of the exact
crossing number of multigraphs parameterized by a vertex cover size as open,
for future research. On the other hand, in the special case of multigraphs with a
vertex cover of size k and edge multiplicities bounded by a computable function
of k, it is not difficult to extend our approach to obtain again an FPT algorithm
(which we skip here due to space restrictions).

At last, we would like to very briefly mention the problem of minimizing
the crossing number of a small perturbation of a given map of a graph, e.g. [13],
which shares some common ground with our arguments. Although the objectives
of the two problems are not easily comparable, we suggest that our approach
can provide an efficient solution of the latter problem on graphs of small vertex
cover.



Exact Crossing Number Parameterized by Vertex Cover 319

References

1. Bhatt, S.N., Leighton, F.T.: A framework for solving VLSI graph layout problems.
J. Comput. Syst. Sci. 28(2), 300–343 (1984)

2. Biedl, T.C., Chimani, M., Derka, M., Mutzel, P.: Crossing number for graphs
with bounded pathwidth. In: ISAAC 2017. LIPIcs, vol. 92, pp. 13:1–13:13. Schloss
Dagstuhl (2017)

3. Cabello, S.: Hardness of approximation for crossing number. Discrete Comput.
Geom. 49(2), 348–358 (2013)

4. Cabello, S., Mohar, B.: Crossing and weighted crossing number of near-planar
graphs. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 38–
49. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00219-9 5

5. Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number
and 1-planarity hard. SIAM J. Comput. 42(5), 1803–1829 (2013)

6. Chimani, M., Hliněný, P., Mutzel, P.: Vertex insertion approximates the crossing
number for apex graphs. Eur. J. Comb. 33, 326–335 (2012)

7. Chimani, M., Hliněný, P.: A tighter insertion-based approximation of the crossing
number. J. Comb. Optim. 33(4), 1183–1225 (2017)

8. Christian, R., Richter, R.B., Salazar, G.: Zarankiewicz’s conjecture is finite for
each fixed m. J. Comb. Theory, Ser. B 103(2), 237–247 (2013)

9. Chuzhoy, J.: An algorithm for the graph crossing number problem. In: Proceedings
of STOC 2011, pp. 303–312. ACM (2011)

10. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness.
Congr. Numer. 87, 161–178 (1992)

11. Even, G., Guha, S., Schieber, B.: Improved approximations of crossings in graph
drawings and VLSI layout areas. SIAM J. Comput. 32(1), 231–252 (2002)

12. Fox, J., Pach, J., Suk, A.: Approximating the rectilinear crossing number. Comput.
Geom. 81, 45–53 (2019)

13. Fulek, R., Tóth, C.D.: Crossing minimization in perturbed drawings. In: Biedl, T.,
Kerren, A. (eds.) GD 2018. LNCS, vol. 11282, pp. 229–241. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-04414-5 16

14. Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Alg. Discr.
Meth. 4, 312–316 (1983)

15. Gitler, I., Hliněný, P., Leanos, J., Salazar, G.: The crossing number of a projective
graph is quadratic in the face-width. Electron. Notes Discrete Math. 29, 219–223
(2007)

16. Grohe, M.: Computing crossing numbers in quadratic time. J. Comput. Syst. Sci.
68(2), 285–302 (2004)

17. Hliněný, P., Chimani, M.: Approximating the crossing number of graphs embed-
dable in any orientable surface. In: Proceedings of SODA 2010, pp. 918–927. ACM
(2010)

18. Hliněný, P., Salazar, G.: On the crossing number of almost planar graphs. In: Kauf-
mann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 162–173. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-70904-6 17

19. Kawarabayashi, K., Reed, B.A.: Computing crossing number in linear time. In:
Proceedings of STOC 2007, pp. 382–390. ACM (2007)

20. Lokshtanov, D.: Parameterized integer quadratic programming: Variables and coef-
ficients. CoRR abs/1511.00310 (2015)

https://doi.org/10.1007/978-3-642-00219-9_5
https://doi.org/10.1007/978-3-030-04414-5_16
https://doi.org/10.1007/978-3-540-70904-6_17


Morphing and Planarity



Maximizing Ink in Partial Edge Drawings
of k-plane Graphs

Matthias Hummel , Fabian Klute , Soeren Nickel ,
and Martin Nöllenburg(B)

Algorithms and Complexity Group, TU Wien, Vienna, Austria
matthiashummel@ymail.com, {fklute,noellenburg}@ac.tuwien.ac.at,

soeren.nickel@tuwien.ac.at

Abstract. Partial edge drawing (PED) is a drawing style for non-planar
graphs, in which edges are drawn only partially as pairs of opposing
stubs on the respective end-vertices. In a PED, by erasing the central
parts of edges, all edge crossings and the resulting visual clutter are
hidden in the undrawn parts of the edges. In symmetric partial edge
drawings (SPEDs), the two stubs of each edge are required to have the
same length. It is known that maximizing the ink (or the total stub
length) when transforming a straight-line graph drawing with crossings
into a SPED is tractable for 2-plane input drawings, but NP-hard for
unrestricted inputs. We show that the problem remains NP-hard even for
3-plane input drawings and establish NP-hardness of ink maximization
for PEDs of 4-plane graphs. Yet, for k-plane input drawings whose edge
intersection graph forms a collection of trees or, more generally, whose
intersection graph has bounded treewidth, we present efficient algorithms
for computing maximum-ink PEDs and SPEDs. We implemented the
treewidth-based algorithms and show a brief experimental evaluation.

1 Introduction

Visualizing non-planar graphs as node-link diagrams is challenging due to the
visual clutter caused by edge crossings. The layout readability deteriorates as
the edge density and thus the number of crossings increases [19]. Therefore alter-
native layout styles are necessary for non-planar graphs. A radical approach first
used in applied network visualization work by Becker et al. [2] is to start with a
traditional straight-line graph drawing and simply drop a large central part of
each edge and with it many of the edge crossings. This idea relies on the closure
and continuation principles in Gestalt psychology [17], which imply that humans
can still see a full line segment based only on the remaining edge stubs by fill-
ing in the missing information. User studies have confirmed that such drawings
remain readable while reducing clutter significantly [9,12] and Burch et al. [11]
presented an interactive graph visualization tool using partially drawn edges
combined with fully drawn edges.

The authors thank Michael Höller and Birgit Schreiber for the fruitful discussions
during the “Seminar in Algorithms: Graphs and Geometry” held in 2017 at TU Wien.
A preliminary abstract of this paper has been presented at EuroCG 2018.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 323–336, 2019.
https://doi.org/10.1007/978-3-030-35802-0_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_25&domain=pdf
http://orcid.org/0000-0002-1780-6110
http://orcid.org/0000-0002-7791-3604
http://orcid.org/0000-0001-5161-3841
http://orcid.org/0000-0003-0454-3937
https://doi.org/10.1007/978-3-030-35802-0_25


324 M. Hummel et al.

Fig. 1. Drawings of the same graph. (a) A straight-line drawing, (b) a maximum-ink
SPED, (c) a maximum-ink PED, and (d) a maximum-ink SHPED.

The idea of drawing edges only partially has subsequently been formalized in
graph drawing as follows [7]. A partial edge drawing (PED) is a graph drawing
that maps vertices to points and edges to pairs of crossing-free edge stubs of
positive length pointing towards each other. These edge stubs are obtained by
erasing one contiguous central piece of the straight-line segment connecting the
two endpoints of each edge. In other words each straight-line edge is divided
into three parts, of which only the two outer ones are drawn (see Fig. 1). More
restricted and better readable [4] variations of PEDs are symmetric PEDs, in
which both stubs of an edge must have the same length (see Fig. 1(b)), and homo-
geneous PEDs, in which the ratio of the stub length to the total edge length is the
same constant for all edges. Symmetric stubs facilitate finding adjacent vertices
due to the identical stub lengths at both vertices, and symmetric homogeneous
stubs (see Fig. 1(d)) additionally indicate the distance at which to find a neigh-
boring vertex. Clearly, for very short stubs it is easy to hide all edge crossings,
but reading adjacency information gets very difficult [12]. Therefore, the natural
optimization problem in this formal setting is ink maximization, i.e., maximiz-
ing the total stub length, so that as much information as possible is given in the
drawing while all crossings disappear in the negative background space.

We study the ink maximization problem for partial edge drawings (PEDs)
and symmetric partial edge drawings (SPEDs) with a given geometric input
drawing. These problems are known as MaxPED and MaxSPED, respec-
tively [6,7]. Note that with a given input drawing, the ink maximization problem
for symmetric homogeneous PEDs (SHPEDs) is trivial, as we can simply iterate
over all crossings, choose the larger of the two stub ratios resolving the crossing
and take the minimum of all these stub ratios, which yields the best solution.

Related Work. As a first result, Bruckdorfer and Kaufmann [7] presented an
integer linear program for solving MaxSPED on general input drawings. Later,
Bruckdorfer et al. [6] gave an O(n log n)-time algorithm for MaxSPED on the
class of 2-plane input drawings (no edge has more than two crossings), where
n is the number of vertices. They also described an efficient 2-approximation
algorithm for the dual problem of minimizing the amount of erased ink for arbi-
trary input drawings. The PhD thesis of Bruckdorfer [5] presents a sketch of an
NP-hardness proof for MaxSPED, but left the complexity of MaxPED as an
open problem, as well as the design of algorithms for MaxPED.



Maximizing Ink in Partial Edge Drawings of k-plane Graphs 325

There are a number of additional results for PEDs without a given input
drawing, i.e., having the additional freedom of placing the vertices in the plane.
For example, the existence or non-existence of SHPEDs with a specified stub
ratio δ for certain graph classes such as complete graphs, complete bipartite
graphs, or graphs of bounded bandwidth has been investigated [6,7]. From a
practical perspective, Bruckdorfer et al. [8] presented a force-directed layout
algorithm to compute SHPEDs for stubs of 1/4 of the total edge length, but
without a guarantee that all crossings are eliminated. Moreover, the idea of
partial edge drawings has also been extended to orthogonal graph layouts [10].

Contribution. We extend the results of Bruckdorfer et al. [6] on 2-plane geo-
metric graph drawings to k-plane graph drawings for k > 2, where a given
graph drawing is k-plane, if every edge has at most k crossings. In particular,
we strengthen the NP-hardness of MaxSPED [5] to the case of 3-plane input
drawings without three (or more) mutually crossing edges. For MaxPED we
show NP-hardness, even for 4-plane input drawings, which settles a conjecture of
Bruckdorfer [5]. On the positive side, we give polynomial-time dynamic program-
ming algorithms for both MaxSPED and MaxPED of k-plane graph drawings
whose edge intersection graphs are collections of trees. More generally, we extend
the algorithmic idea and obtain FPT algorithms if the edge intersection graph
has bounded treewidth and also provide a proof-of-concept implementation. We
evaluate the implementation using non-planar drawings from two classical layout
algorithms, namely a force-based and a circular layout algorithm.

2 Preliminaries

Let G be a simple graph with edge set E(G) = S = {s1, . . . , sm} and Γ a
straight-line drawing of G in the plane. We call Γ k-plane if every edge si ∈ S
is crossed by at most k other edges from S in Γ . We often use edge in S and
segment in Γ interchangeably. Hence S can be seen as a set of line segments.

The intersection graph C of Γ is the graph containing a vertex vi in V (C)
for every si ∈ S and an edge vivj ∈ E(C) between vertices vi, vj ∈ V (C) if the
corresponding edges si, sj ∈ S intersect in Γ . We also denote the segment in S
corresponding to a vertex v ∈ V (C) by s(v). Observe that the intersection graph
C of a k-plane drawing Γ has maximum degree k. Using a standard sweep-line
algorithm, computing the intersection graph C of a set of m line segments takes
O(m log m + |E(C)|) time [3], where |E(C)| is the number of intersections.

A partial edge drawing (PED) D of Γ draws a fraction 0 < fs ≤ 1 of each
edge s = uv ∈ S by drawing edge stubs of length fu|s| at u and fv|s| at v, s.t.,
fu + fv = fs. The ink or ink value I(D) of a PED D is the total stub length
I(D) =

∑
s∈S fs|s|. In the problem MaxPED, the task is to find for a given

drawing Γ a PED D∗ such that I(D∗) is maximum over all PEDs. A symmetric
partial edge drawing (SPED) D of Γ is a PED, s.t., fu = fv = fs/2 for every edge
s = uv ∈ S. Then the MaxSPED problem is defined analogously to MaxPED.



326 M. Hummel et al.

Treewidth. A tree decomposition [20] for a graph G is a pair (T,X ) with T being
a tree and X a collection of subsets Xi ⊆ V (G). For every edge uv ∈ E(G)
we find t ∈ V (T ) such that {u, v} ⊆ Xt and for every vertex v ∈ V (G) we get
T [{t | v ∈ Xt}] is a connected and non-empty subtree of T . To differentiate the
vertices of G and T we call the vertices of T nodes and a set Xi ∈ X a bag. Now
the width of a tree decomposition (T,X ) is defined as max{|Xt| − 1 | t ∈ V (T )}.
For a graph G we say it has treewidth ω, if the tree decomposition with minimum
width has width ω. For a node t ∈ T we denote with Vt ⊆ V (G) the union of all
bags Xt′ ∈ X such that t′ is either t or a descendent of t in T .

In our algorithms we are using the well known nice tree decomposition [14].
For a graph G a nice tree decomposition (T,X ) is a special tree decomposition,
where T is a rooted tree and we require that every node in T has at most two
children. In case t ∈ V (T ) has two children t1, t2 ∈ T , then Xt = Xt1 = Xt2 .
Such a node is called join node. For a node t ∈ T with a single child t1 ∈ T we
find either |Xt| = |Xt1 | + 1, Xt1 ⊂ Xt or |Xt| = |Xt1 | − 1, Xt ⊂ Xt1 . The former
we call insert node and the latter forget node. A leaf t ∈ T is called a leaf node
and its bag contains a single vertex. Finally let r ∈ T be the root of T , then
Xr = ∅. It is known that a tree decomposition can be transformed into a nice
tree decomposition of the same width ω and with O(ω|V (G)|) tree nodes in time
linear in the size of the graph G [14].

3 Complexity

We first investigate the complexity of MaxSPED and MaxPED, and prove both
problems to be NP-hard for 3-plane and 4-plane input drawings, respectively.

3.1 Hardness of MaxSPED for k ≥ 3

We close the gap between the known NP-hardness of MaxSPED [5] for general
input drawings and the polynomial-time algorithm for 2-plane drawings [6].

Theorem 1. MaxSPED is NP-hard even for 3-plane graph drawings.

Proof. We reduce from the NP-hard problem planar 3-Sat [18] using similar
ideas as in Bruckdorfer’s sketch of the hardness proof for general MaxSPED [5].
Here we specify precisely the maximum ink contributions of all gadgets needed
for a satisfying variable assignment. Our variable gadgets are cycles of edge
pairs that admit exactly two maximum-ink states. We construct clause gadgets
consisting of three pairwise intersecting edges so that all crossings are between
two edges only, while Bruckdorfer’s gadgets have multiple edges intersecting in
the same point. Let φ be a planar 3-Sat formula with n variables {x1, . . . , xn}
and m clauses {c1, . . . , cm}, each consisting of three literals. We can assume
that φ comes with a planar drawing of its variable-clause graph Hφ, which has
a vertex for each variable xi and a vertex for each clause cj . Each clause vertex
is connected to the three variables appearing in the clause. In the drawing of
Hφ all variable vertices are placed on a horizontal line and the clause vertices



Maximizing Ink in Partial Edge Drawings of k-plane Graphs 327

connect to the adjacent variable vertices either from above or from below the
horizontal line. In our reduction (see Fig. 2) we mimic the drawing of Hφ by
creating a 3-plane drawing Γφ as a set of line segments of two distinct lengths
and define a value L such that Γφ has a SPED with ink at least L if and only if
φ is satisfiable. The whole construction will be drawn onto a triangular grid of
polynomial size.

x2 = falsex1 = true x3 = false

x1 ∨ ¬x2 ∨ x3

Fig. 2. Three variables and a satisfied clause gad-
get. Dotted parts do not belong to the SPED.
(Color figure online)

All segments in the clause or
variable gadgets are of length 8.
The segments used for the con-
nections are of length 4. We use
pairs of intersecting segments,
alternatingly colored red and
green. The intersection point of
each red-green segment pair is
at distance 1 from an endpoint.
Thus, the maximum amount of
ink contributed by such a pair
is 10 or 6, respectively (one full
segment of length 8 or 4, respec-
tively, and two stubs of length 1
each).

Each variable gadget is a cycle of segment pairs, with (at least) one pair
for each occurrence of the variable in φ, see Fig. 2. This cycle has exactly two
ink-maximal SPEDs: either all red edges are full segments and all green edges
are length-1 stubs or vice versa. We associate the configuration with green stubs
and full red segments with the value true and the configuration with red stubs
and full green segments with false.

For each clause we construct a triple of mutually intersecting segments, see
the gadget on yellow background in the upper part of Fig. 2. Again, their inter-
section points are at distance 1 from the endpoints. It is clear that in such a
clause triangle at most one of the three segments can be fully drawn, while the
stubs of the other two can have length at most 1. Hence, the maximum amount
of ink in a SPED contributed by a clause gadget is 12.

Finally, we connect variable and clause gadgets, such that a clause gadget can
contribute its maximum ink value of 12 if and only if the clause is satisfied by the
selected truth assignment to the variables. For a positive (negative) literal, we
create a path of even length between a green (red) edge of the variable gadget
and one of the three edges of the clause gadget as shown in Fig. 2. The first
edge s of this path intersects the corresponding variable segment s′ such that s′

is split into a piece of length 3 and a piece of length 5, whereas s is split into a
piece of length 1 and a piece of length 3. The last edge of the path intersects the
corresponding clause edge again with a length ratio of 3 to 5. The path consists
of a chain of red-green segment pairs, each contributing an ink value of at most 6.

It remains to argue that the resulting drawing has polynomial size and is
a correct reduction. All segments are drawn on the underlying triangular grid
and have integer lengths; all intersection points are grid points, too. Since the



328 M. Hummel et al.

drawing of Hφ has polynomial size, so do the constructed gadgets. Additionally,
no segment intersects more than three other segments, so the drawing is 3-plane.

For the correctness of the reduction, let L be the ink value obtained by
counting 10 for each red-green segment pair in a variable, 6 for each red-green
segment pair in a wire, and 12 for each clause gadget. First assume that φ has
a satisfying truth assignment and put each variable gadget in its corresponding
state. For each clause, select exactly one literal with value true in the satisfying
truth assignment. We draw the clause segment that connects to the selected
literal as a full segment and the other two as length-1 stubs. Recall that the
literal paths are oriented from the variable gadget to the clause gadget. Since
the last segment of the selected literal path must be drawn as two length-1 stubs,
the only way of having a maximum contribution of that path is by alternating
stubs and full segments. Hence, the first segment of the path must be a full
segment. But because the variable is in the state that sets the literal to true, the
intersecting variable segment is drawn as two stubs and the path configuration
is valid. For the two non-selected literals, we can draw the last segments of their
paths as full segments, as well as every segment at an even position, while the
segments at odd positions are drawn as stubs. This is compatible with any of the
two variable configurations and proves that we can indeed achieve ink value L.

Conversely, assume that we have a SPED with ink value L. By construc-
tion, every red-green segment pair and every clause gadget must contribute its
respective maximum ink value. In particular, each variable gadget is either in
state true or false. By design of the gadgets it is straight-forward to verify that
the corresponding truth assignment satisfies φ. ��

3.2 Hardness of MaxPED for k ≥ 4

We adapt our NP-hardness proof for MaxSPED to show that MaxPED is
NP-hard for k-plane drawings with k ≥ 4; see [16] for the full proof.

Theorem 2. MaxPED is NP-hard even for 4-plane graph drawings.

Proof (Sketch). As in the proof of Theorem 1, we show the result via a reduction
from planar 3-Sat. The key change for MaxPED comes from the fact, that
the two stubs are now independent from each other. Take two crossing edges as
an example. We now can draw the two segments with almost full ink value by
just excluding an ε-sized gap in one of the two segments for some small ε > 0.
We will use this placement of a gap in the variable and wire gadgets, to create
two possible states. As before we use an underlying triangular grid, which we
omit in the figures of this section for ease of presentation.

Let φ be a planar 3-Sat formula. For a variable x of φ we construct a variable
gadget consisting of a cycle of p line segments t1, . . . , tp, see Fig. 3a. Such a cycle
has exactly two maximum-ink drawings. One, where for each segment ti the gap
is placed at its intersection with ti+1 (mod p) and another drawing, in which
the gap is placed at its intersection with ti−1 (mod p). Figure 3a shows a gadget
in its true state. The length of each segment ti is α+2β, where α is the distance
between the two intersection points and β is the length of each stub sticking out.



Maximizing Ink in Partial Edge Drawings of k-plane Graphs 329

A clause gadget is a cycle of three pairwise intersecting segments r1, r2, r3,
which we call triangle segments. All segments are elongated at one end, such
that the total length of a segment ri, i ∈ {1, 2, 3}, is 4α+2β. Since the stubs are
independent we could draw all three triangle segments. To avoid this we attach a
big 4-cycle to each ri. Then ri intersects the 4-cycle at a segment rw, see Fig. 3b.
If we place the gap of rw at its intersection with ri, we lose more units of ink
than we gain by drawing every triangle segment ri completely. Hence it is never
possible to draw more than one full triangle segment in an ink-maximal PED.

Finally, a wire is a chain of segments s1, . . . , sz for each variable occurrence
in a clause c in φ. We place the wire such that s1 intersects the corresponding
variable gadget at some segment tj , and sz intersects the clause gadget of c at
one if its triangle segments ri. For the variable we place this intersection point
at distance β to its intersection with si+1, if it occurs positively, or with si−1, if
it occurs negated. At the clause gadget we place the intersection of sz with the
corresponding ri at distance β from the intersection between ri and its successor
ri+1, see the small squares in Fig. 3b. Each segment si has length α/2 + 2β.

Fig. 3. Gadgets of our reduction. Squares mark con-
nection points for wires.

Correctness follows simi-
larly to the proof of Theo-
rem 1. Let Γφ be the set of
line segments constructed as
above for a planar 3-Sat for-
mula φ. We determine an ink
value L, s.t., Γφ has a PED
D with I(D) ≥ L if and only
if φ has a satisfying variable
assignment. The key property
is that for each clause we find
one wire such that its last seg-
ment is forced to place its gap
at the intersection with the clause gadget in an ink-maximal PED. Then for each
other segment si, i ∈ {1, . . . , z−1}, we must place its gap at the intersection with
si+1. Otherwise we would have to remove either α/2 units of ink in the middle
part of some si, or remove α − β units of ink at the variable gadget intersected
by s1. Both can be avoided if and only if φ has a satisfying assignment. ��
Corollary 1. MaxPED and MaxSPED for k-plane drawings are not fixed-
parameter tractable, when parameterized solely by k.

4 Algorithms

Sections 3.1 and 3.2 showed that MaxSPED and MaxPED are generally NP-
hard for k ≥ 3 and k ≥ 4 respectively. Now we consider the special case that
the intersection graph of the k-plane input drawing is a tree or has bounded
treewidth. In both cases we present polynomial-time dynamic programming algo-
rithms for MaxSPED (Sects. 4.1 and 4.2) and MaxPED (Sect. 4.3).



330 M. Hummel et al.

p(u)
s(u)

Fig. 4. A segment s(u) with five intersecting segments and the induced stub lengths.
The boxed stub lengths are considered in short(u) and do not affect p(u).

Let C be the intersection graph of a given drawing Γ of a graph G as defined
in Sect. 2. Let u ∈ V (C) and δu = deg(u). Then for the corresponding segment
s(u) ∈ S there are δu + 1 relevant stub pairs including the whole segment, see
Fig. 4. Let 	1(u), . . . , 	δu(u) ∈ R+ be the stub lengths induced by the intersection
points of s(u) with the segments of the neighbors of u, sorted from shorter to
longer stubs. We define 	0(u) as the length of the whole segment s(u).

4.1 Trees

Here we assume that C is a rooted tree of maximum degree k. We give a bottom-
up dynamic programming algorithm for solving MaxSPED on C. For each
vertex u ∈ V (C) we compute and store the maximum ink values Wi(u) for
i = 0, . . . , δu for the subtree rooted at u such that s(u) is drawn as a pair of
stubs of length 	i(u). For u ∈ V (C) let p(u) denote the parent of u in C and let
c(u) denote the set of its children. For u ∈ V (C) let ip be the index of the stub
length 	ip(u) induced by the intersection point of s(u) and s(p(u)). We define
the following two values, which allow us to categorize the stub lengths into those
not affecting the stubs of the parent and those that do affect the parent:

short(u) = max{W1(u), . . . , Wip(u)} long(u) = max{W0(u), . . . , Wδu(u)}.

Figure 4 highlights the stub lengths that are considered in short(u). We recur-
sively define

Wi(u) = 	i(u) +
∑

v∈c(u)

{
short(v) if s(u) with length 	i(u) intersects s(v)
long(v) otherwise.

(1)

The correctness of Recurrence (1) follows by induction. For a leaf u in C the set
c(u) is empty and the correctness of Wi(u) is immediate. Further, short(u) =
W1(u) and long(u) = W0(u) are set correctly for the parent p(u). For an inner
vertex u with degree δu we can assume by the induction hypothesis that the
values short(v) and long(v) are computed correctly for all children v ∈ c(u).
Each value Wi(u) for 0 ≤ i ≤ δu is then the stub length 	i(u) plus the sum of
the maximum ink we can achieve among the children subject to the stubs of u
being drawn with length 	i(u). Setting long(u) and short(u) as above yields the
two maximum ink values that are relevant for p(u).

Recurrence (1) can be solved naively in O(mk2) time, where m = |V (C)|.
Using the order on the stub lengths we can improve this to O(mk) time by



Maximizing Ink in Partial Edge Drawings of k-plane Graphs 331

computing all Wi(u) for one u ∈ V (C) in O(k) time. Let u ∈ V (C) be a vertex
with degree δu. The values W0(u) = 	0(u) +

∑
v∈c(u) short(v) and W1(u) =

	1(u) +
∑

v∈c(u) long(v) for the whole segment s(u) and the shortest stubs can
be computed in O(k) time each. Now Wj+1(u) can be computed from Wj(u) in
O(1) time as follows. Let vj be the neighbor of u that induces stub length 	j(u)
and assume vj 
= p(u). In Wj(u) we could still count the value long(vj), but in
Wj+1(u) the stub length of u implies that vj can contribute only to short(vj).
Then Wj+1(u) = Wj(u)− long(vj)+short(vj). If vj = p(u) the two values Wj(u)
and Wj+1(u) are equal, as the corresponding change in stub length has no effect
on the children of u. Then computing short(u) and long(u) takes O(k) time.

Using standard backtracking we are able to find an optimal solution to the
MaxSPED problem on G with drawing Γ by solving Recurrence (1) in O(mk)
time. Furthermore, the intersection graph C with m edges can be computed in
O(m log m) time. We obtain the following theorem.

Theorem 3. Let G be a simple graph with m edges and Γ a straight-line drawing
of G. If the intersection graph C of Γ is a tree with maximum degree k ∈ N,
then MaxSPED can be solved in O(mk + m log m) time and space.

4.2 Bounded Treewidth

Now we extend the case of a simple tree to the case that the intersection graph
C has treewidth at most ω; see [16] for the omitted proofs. Our algorithm and
proof of correctness follow a similar approach as the weighted independent set
algorithm presented by Cygan et al. [13]. Let (T,X ) be a nice tree decomposition
of C and k the maximum degree in C. For V ′ ⊆ V (C) we define the stub set
S(V ′) := {(u, 	i(u)) | u ∈ V ′ and i = 0, . . . , δu}. For (u, 	u), (v, 	v) ∈ S(V ′),
u 
= v, we say (u, 	u) intersects (v, 	v) if s(u) drawn with stub length 	u intersects
s(v) drawn with length 	v. Further we call S(V ′) valid if S(V ′) contains exactly
one pair (u, 	) for each u ∈ V ′ and no two pairs in S(V ′) intersect, i.e., the stub
lengths in S(V ′) imply a SPED in the input drawing Γ . Further we define the
ink of a stub set S(V ′) as I(S(V ′)) :=

∑
(u,�)∈S(V ′) 	.

Lemma 1. Let G be a simple graph, Γ a straight line drawing of G, C the
intersection graph of Γ , and (T,X ) a tree decomposition of C. For any fixed
S ⊆ S(Xt), t ∈ T , any two valid stub sets S1, S2 ⊆ S(V (C)) with maximum
ink and S1 ∩ S(Xt) = S2 ∩ S(Xt) = S have equal ink value I(S1 ∩ S(Vt)) =
I(S2 ∩ S(Vt)).

As a consequence of Lemma 1 we get that it suffices to store for every set of
vertices Vt and a node t ∈ T the value of a maximum-ink valid stub set for the
choices of vertices in S(Xt). Let t ∈ T and S ⊆ S(Xt) a stub set, then we define

W (t, S) = max{I(Ŝ) | Ŝ is a valid stub set, S ⊆ Ŝ ⊆ S(Vt), and Ŝ∩S(Xt) = S}.

If no such Ŝ exists, we set W (t, S) = −∞. In other words, W (t, S) is the
maximum ink value achievable by any valid stub set in S(Vt) choosing S as the



332 M. Hummel et al.

stub set for the vertices in Xt. If the values W (t, S) are computed correctly
for every t ∈ T we find the ink-value of a maximum-ink SPED by evaluating
W (r, ∅) with r being the root of T . Applying standard backtracking we can also
reconstruct the stubs themselves. We now describe how to compute W (t, S) for
every node type t ∈ T of a nice tree decomposition of C. All the recursion for-
mulas are stated here. We provide the correctness proof for the introduce nodes;
see [16] for the forget and join nodes.

Leaf Node. Let t ∈ T be a leaf node and v ∈ Xt the vertex contained in its bag,
then we store W (t, {(v, 	i(v))}) for each pair (v, 	i(v)) ∈ S(Xt) with i ∈ [0, δv].

Introduce Node. Suppose next t ∈ T is an introduce node and t′ its only child.
Let v ∈ Xt be the vertex introduced by t, S ⊆ S(Xt), and i ∈ [0, δv], s.t.,
(v, 	i(v)) ∈ S. If S is not a valid stub set we set W (t, S) = −∞, else

W (t, S) = W (t′, S \ {(v, 	i(v))}) + 	i(v).

Correctness follows by considering a valid stub set Ŝ whose maximum is attained
in the definition of W (t, S). Then for the set Ŝ \ {(v, 	i(v))} it follows that it is
considered in the definition of W (t′, S \ {(v, 	i(v))}) and hence we get

W (t′, S \ {(v, 	i(v))}) ≥ I(Ŝ \ {(v, 	i(v))}) = I(Ŝ) − 	i(v) = W (t, S) − 	i(v)
W (t, S) ≤ W (t′, S \ {(v, 	i(v))}) + 	i(v).

On the other hand consider a valid stub set Ŝ′ for which the maximum
is attained in the definition of W (t′, S \ {(v, 	i(v))}). We need to argue that
Ŝ′ ∪ {(v, 	i(v))} is again a valid stub set. First, by assumption that S is
a valid stub set, we immediately get that (v, 	i(v)) does not intersect any
(u, 	u) ∈ S \ {(v, 	i(v))} = Ŝ′ ∩ Xt′ . Additionally, by the properties of the
nice tree decomposition, we get that v has no neighbors in Vt′ \ Xt′ and with
Ŝ′ \ Xt′ ⊆ Vt′ \ Xt′ we can conclude that Ŝ′ ∪ {(v, 	i(v))} is a valid stub set.
Furthermore it is considered in the definition of W (t, S) and we have that

W (t, S) ≥ I(Ŝ′ ∪ {(v, 	i(v))}) = I(Ŝ′) + 	i(v) = W (t′, S \ {(v, 	i(v))}) + 	i(v).

Forget Node. Suppose t is a forget node and t′ its only child such that Xt =
Xt′\{v} for some v ∈ Xt′ . Let S be any subset of S(Xt), if S is not a valid stub set
we set W (t, S) = −∞, else W (t, S) = max{W (t′, S∪{(v, 	i(v))}) | i = 0, . . . , δv}.

Join Node. Suppose that t is a join node and t1, t2 its two children with Xt =
Xt1 = Xt2 . Again let S be any subset of S(Xt). If S is not a valid stub set we
set W (t, S) = −∞, else W (t, S) = W (t1, S) + W (t2, S) − I(S).

It remains to argue about the running time. Let m = |V (C)|. We know
there are O(ωm) many nodes in the tree T of the nice tree decomposition [14].



Maximizing Ink in Partial Edge Drawings of k-plane Graphs 333

For each bag t ∈ T we know it has at most ω + 1 many elements and each
element has at most k + 1 many possible stubs, hence we have to compute
at most (k + 1)ω+1 values W (t, S) per node t ∈ T . At each forget node we
additionally need to compute the maximum of up to k entries. Consequently we
perform O((k + 1)ω+2) many operations per node t ∈ T . All operations can be
implemented in O(kω) time. The only problematic one is to test a stub set for
validity. We use a modified version of the data structure used in the independent
set algorithm by Cygan et al. [13]. See [16] for the implementation details.

Theorem 4. Let G be a simple graph with m edges and Γ a straight-line drawing
of G. If the intersection graph C of Γ has treewidth at most ω ∈ N and maximum
degree k ∈ N, MaxSPED can be solved in O(m(k + 1)ω+2ω2 + m log m) time
and space.

We remark that Theorem 3 shows a better running time in the case of C
being a tree, than would follow from Theorem 4 with ω = 1. Furthermore,
since Theorem 4 is exponential only in the treewidth ω of C, it implies that
MaxSPED is in the class XP1 when parametrized by ω.

4.3 Algorithms for MaxPED

Let C be the intersection graph in a MaxPED problem. In contrast to
MaxSPED we need to consider more combinations of stub lengths since they
are not necessarily symmetric anymore. In fact there are O(k2) possible com-
binations of left and right stub lengths 	i(u), 	j(u) for a vertex u ∈ V (C). For
the case of C being a tree our whole argumentation was based solely on the fact
that we can subdivide the stub pairs into sets affecting the parent segment or
not. This can also be done with the quadratic size sets of all stub pairs and we
only get an additional factor of k in the running time.

Corollary 2. Let G be a simple graph with m edges and Γ a straight-line draw-
ing of G. If the intersection graph C of Γ is a tree with maximum degree k ∈ N,
then MaxPED can be solved in O(mk2 + m log m) time and space.

In case of C having bounded treewidth we again did never depend on the
symmetry of the stubs, but only on them forming a finite set for each vertex.
Consequently we can again just use these quadratic size sets of stub pairs, adding
a factor of k + 1 compared to MaxSPED, and obtain the following.

Corollary 3. Let G be a simple graph with m edges and Γ a straight-line draw-
ing of G. If the intersection graph C of Γ has treewidth at most ω ∈ N and
maximum degree k ∈ N, MaxPED can be solved in O(m(k+1)ω+3ω2+m log m)
time and space.

1 The class XP contains problems that can be solved in time O(nf(k)), where n is the
input size, k is a parameter, and f is a computable function.



334 M. Hummel et al.

5 Experiments

We implemented and tested the tree decomposition based algorithms.2 To com-
pute the nice tree decomposition we used the “htd” library [1] version 1.2, com-
piled with gcc version 8.3. The algorithm itself was implemented in Python 3.7,
using the libraries3 NetworkX 2.3 and Shapely 1.6. To run the experiments we
used a cluster, each node equipped with an Intel Xeon E5-2640 v4 processor
clocked at 2.4 GHz, 160 GB of Ram, and operating Ubuntu 16.04. Each run had
a memory limit of at most 80 GB of RAM.

We generated random graphs using the NetworkX gnm algorithm. The graphs
have n = 40 vertices and between m = 40 and 75 edges in increments of 5. This
makes a total of 800 graphs, 100 for each m ∈ {40, 45, . . . , 75}. For the layouts
we used the NetworkX implementation of the spring embedder by Fruchterman
and Reingold [15] and the graphviz4 implementation “circo” of a circular layout,
version 2.40.1. We could successfully run MaxSPED for all but four of the
spring layouts and for all circle layouts with up to 60 edges.

0 50 100
Crossings

10−3

10−1

101

103

105

T
im

e
in

se
co
nd

s

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
Treewidth

layout
circle
spring

Fig. 5. Experimental results for the MaxSPED algorithm.

Since the time complexity of the algorithm depends exponentially on the
treewidth of the intersection graph, we evaluated the running time relative to
treewidth and number of crossings, see Fig. 5. The results are as expected, with
the runtime quickly increasing to about 16 min (1,000 sec) for 80 crossings in case
of the spring and 50 crossings in case of the circle layouts – or for a treewidth
of 6 for both layouts. On the other hand we can handle up to 50 crossings and
a treewidth of 4 for the spring layouts in about 10 seconds. The discrepancy
in the runtime relative to the number of crossings between spring and circle
layouts likely comes from different numbers of crossings per edge. To confirm
this we took for each intersection graph its maximum degree k divided by the

2 https://www.ac.tuwien.ac.at/partial-edge-drawing/.
3 https://networkx.github.io/ and https://github.com/Toblerity/Shapely.
4 https://www.graphviz.org/.

https://www.ac.tuwien.ac.at/partial-edge-drawing/
https://networkx.github.io/
https://github.com/Toblerity/Shapely
https://www.graphviz.org/


Maximizing Ink in Partial Edge Drawings of k-plane Graphs 335

total number of input crossings. For the spring layouts this resulted in a ratio of
0.24 and for the circle layouts 0.33. Recall that the running time is dominated
by O((k + 1)ω+2). Hence an increase by a of factor 1.5 in the aforementioned
value also results in an additional factor of 1.5ω+2 in the asymptotic running
time. Concerning ink, for the circle layouts an average of 84% (σ = 0.09) and
for spring layouts an average of 90% (σ = 0.06) of the ink could be preserved.

For MaxPED we conducted the same experiments. In general one can say
that the additional factor of (k +1)ω makes a big difference. For details see [16].

In summary, our experiment confirmed the predicted running time behavior
and showed that the amount of removed ink was moderate. Moreover, the “htd”
library [1] performed very well for computing a nice tree decomposition so that
we could focus on implementing the dynamic programming algorithm itself.

6 Conclusion

We extended the work by Bruckdorfer et al. [6] and showed NP-hardness for the
MaxPED and MaxSPED problems, as well as polynomial-time algorithms for
the case of the intersection graph of the input drawing being a tree or having
bounded treewidth. For the latter, our proof-of-concept implementation worked
reasonably well for small to medium-size instances.

An interesting open problem is to close the gap for MaxPED. While we
showed it to be NP-hard for k ≥ 4 and it is easy to solve for k ≤ 2 [7], the case
of k = 3 remains open. Another direction is to consider the existential question
for homogeneous (but non-symmetric) PEDs with a fixed ratio δ, for which we
can freely distribute the δ fraction of the ink to both stubs. We expect that our
algorithms for trees and intersection graphs of bounded treewidth extend to that
case, but we could not resolve if the problem is NP-hard or not.

References

1. Abseher, M., Musliu, N., Woltran, S.: htd - a free, open-source framework for
(customized) tree decompositions and beyond. In: Salvagnin, D., Lombardi, M.
(eds.) CPAIOR 2017. LNCS, vol. 10335, pp. 376–386. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-319-59776-8 30

2. Becker, R.A., Eick, S.G., Wilks, A.R.: Visualizing network data. IEEE Trans. Vis.
Comput. Graph. 1(1), 16–28 (1995). https://doi.org/10.1109/2945.468391

3. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geom-
etry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-77974-2

4. Binucci, C., Liotta, G., Montecchiani, F., Tappini, A.: Partial edge drawing: homo-
geneity is more important than crossings and ink. In: Information, Intelligence, Sys-
tems Applications (IISA 2016). IEEE (2016). https://doi.org/10.1109/IISA.2016.
7785427

5. Bruckdorfer, T.: Schematics of Graphs and Hypergraphs. Ph.D. thesis, Universität
Tübingen (2015). http://dx.doi.org/10.15496/publikation-8904

https://doi.org/10.1007/978-3-319-59776-8_30
https://doi.org/10.1109/2945.468391
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1109/IISA.2016.7785427
https://doi.org/10.1109/IISA.2016.7785427
http://dx.doi.org/10.15496/publikation-8904


336 M. Hummel et al.

6. Bruckdorfer, T., Cornelsen, S., Gutwenger, C., Kaufmann, M., Montecchiani, F.,
Nöllenburg, M., Wolff, A.: Progress on partial edge drawings. J. Graph Algorithms
Appl. 21(4), 757–786 (2017). https://doi.org/10.7155/jgaa.00438

7. Bruckdorfer, T., Kaufmann, M.: Mad at edge crossings? Break the edges! In:
Kranakis, E., Krizanc, D., Luccio, F. (eds.) FUN 2012. LNCS, vol. 7288, pp. 40–50.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30347-0 7

8. Bruckdorfer, T., Kaufmann, M., Lauer, A.: A practical approach for 1/4-SHPEDs.
In: Information, Intelligence, Systems and Applications (IISA 2015). IEEE (2015).
https://doi.org/10.1109/IISA.2015.7387994

9. Bruckdorfer, T., Kaufmann, M., Leibßle, S.: PED user study. In: Di Giacomo, E.,
Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 551–553. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-319-27261-0 47

10. Bruckdorfer, T., Kaufmann, M., Montecchiani, F.: 1-bend orthogonal partial edge
drawings. J. Graph Algorithms Appl. 18(1), 111–131 (2014). https://doi.org/10.
7155/jgaa.00316

11. Burch, M., Schmauder, H., Panagiotidis, A., Weiskopf, D.: Partial link drawings
for nodes, links, and regions of interest. In: Information Visualisation (IV 2014),
pp. 53–58 (2014). https://doi.org/10.1109/IV.2014.45

12. Burch, M., Vehlow, C., Konevtsova, N., Weiskopf, D.: Evaluating partially drawn
links for directed graph edges. In: van Kreveld, M., Speckmann, B. (eds.) GD
2011). LNCS, vol. 7034, pp. 226–237. Springer, Heidelberg (2012).https://doi.org/
10.1007/978-3-642-25878-7 22

13. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms, vol. 3. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-319-21275-3

14. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(2012)

15. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed place-
ment. Softw. Pract. Exper. 21(11), 1129–1164 (1991). https://doi.org/10.1002/
spe.4380211102

16. Hummel, M., Klute, F., Nickel, S., Nöllenburg, M.: Maximizing ink inpartial edge
drawings of k-plane graphs. CoRR abs/1908.08905 (2019). http://arxiv.org/abs/
1908.08905

17. Koffka, K.: Principles of Gestalt Psychology. Routledge, Abingdon (1935)
18. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343

(1982). https://doi.org/10.1137/0211025
19. Purchase, H.: Which aesthetic has the greatest effect on human understanding? In:

Di Battista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-63938-1 67

20. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb.
Theory Ser. B 36(1), 49–64 (1984). https://doi.org/10.1016/0095-8956(84)90013-
3

https://doi.org/10.7155/jgaa.00438
https://doi.org/10.1007/978-3-642-30347-0_7
https://doi.org/10.1109/IISA.2015.7387994
https://doi.org/10.1007/978-3-319-27261-0_47
https://doi.org/10.7155/jgaa.00316
https://doi.org/10.7155/jgaa.00316
https://doi.org/10.1109/IV.2014.45
https://doi.org/10.1007/978-3-642-25878-7_22
https://doi.org/10.1007/978-3-642-25878-7_22
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1002/spe.4380211102
http://arxiv.org/abs/1908.08905
http://arxiv.org/abs/1908.08905
https://doi.org/10.1137/0211025
https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1016/0095-8956(84)90013-3


Graph Drawing with Morphing
Partial Edges

Kazuo Misue(B) and Katsuya Akasaka

University of Tsukuba, Tsukuba, Japan
misue@cs.tsukuba.ac.jp, akasaka@vislab.cs.tsukuba.ac.jp

Abstract. A partial edge drawing (PED) of a graph is a variation of a
node-link diagram. PED draws a link, which is a partial visual represen-
tation of an edge, and reduces visual clutter of the node-link diagram.
However, more time is required to read a PED to infer undrawn parts.
The authors propose a morphing edge drawing (MED), which is a PED
that changes with time. In MED, links morph between partial and com-
plete drawings; thus, a reduced load for estimation of undrawn parts in
a PED is expected. Herein, a formalization of MED is shown based on a
formalization of PED. Then, requirements for the scheduling of morph-
ing are specified. The requirements inhibit morphing from crossing and
shorten the overall time for morphing the edges. Moreover, an algorithm
for a scheduling method implemented by the authors is illustrated and
the effectiveness of PED from a reading time viewpoint is shown through
an experimental evaluation.

Keywords: Graph drawing · Partial edge drawing · Morphing edge

1 Introduction

The partial edge drawing (PED) of a graph is a variation of a node-link diagram
that is a visual representation of a graph. In PED, a link is drawn, which is
a partial visual representation of an edge; that is, a part of the link is omit-
ted, and then intersections of links are eliminated. Therefore, PED can reduce
visual clutter of node-link diagrams. An experimental evaluation by Bruckdorfer
et al. shows that PEDs reduces errors and provides higher accuracy when read-
ing graphs than traditional node-link diagrams; however, longer reading time is
required [6].

We propose a morphing edge drawing (MED), which is a PED that changes
with time. In MED, links are morphed between partial and complete drawings.
Therefore, reduced loads are expected to infer undrawn parts in a PED. How-
ever, the effect depends on the scheduling of morphing edges. We designed a
scheduling algorithm that did not unnecessarily cause links to cross. Then, we
performed a user study to evaluate the effectiveness of MEDs by implementa-
tion. The contributions herein are as follows: Proposal and formalization of MED.
Setting scheduling requirements. Proposal of algorithm for scheduling morphing.
Evaluation of MED via user study.
c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 337–349, 2019.
https://doi.org/10.1007/978-3-030-35802-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_26&domain=pdf
http://orcid.org/0000-0003-0216-8969
https://doi.org/10.1007/978-3-030-35802-0_26


338 K. Misue and K. Akasaka

2 Partial Edge Drawing

Let G = (V,E) be a simple undirected graph and let Γ (G) = (Γ (V ), Γ (E))
be a drawing of G, where Γ (V ) = {Γ (v)|v ∈ V } and Γ (E) = {Γ (e)|e ∈ E}.
Let Γ (G) be a traditional straight-line drawing. Let the drawing Γ (v) of a node
v ∈ V be a small disk placed at a position pv and let Γ (e) of an edge e ∈ E be
a straight-line segment between two nodes (disks) incident to the edge. That is,
Γ (e) = {s · pw + (1 − s) · pv|s ∈ [0, 1]} when e = (v, w). We call Γ (G) a complete
edge drawing (CED) because it draws every straight-line representing an edge
completely.

We express the partial drawing of an edge e = (v, w) as a function γe :
[0, 1]2 → 2Γ (e) shown in Exp. (1).

γe(α, β) =

{
{s · pw + (1 − s) · pv|s ∈ [0, α] ∪ [β, 1]} for α < β

Γ (e) for α ≥ β
(1)

That is, γe(α, β) of edge e comprise the parts that remain after removing
the corresponding parts (α, β) from Γ (e) when the entire Γ (e) corresponds to
the interval [0, 1]. Each of the remaining continuous parts is called a stub. The
parameters α and β, which determine the stub lengths, are partial edge param-
eters. When 0 < α and β < 1 for γe, the part to be deleted is not the end of
Γ (e); two stubs remain at the two nodes incident to the edge e. These are called
a pair of stubs.

Drawing ΓPED(G) = (Γ (V ), ΓPED(E)) is a partial edge drawing (PED) if
for all edges e ∈ E, αe and βe are given, and at least an edge e1 ∈ E exists with
αe1 < βe1 , where ΓPED(E) = {γe(αe, βe)|e ∈ E}. When αe = 1 − βe, i.e., the
lengths of a pair of stubs are the same, the drawing is a symmetric PED (SPED).
The smaller parameter αe is the stub-edge ratio. If the stub-ratios for all edges
are the same δ, the drawing is a δ-symmetric homogeneous PED (δ-SHPED).

Herein, we assume that Γ (G) is given in advance and stubs may have inter-
sections.

3 Related Work

Becker et al. conceived a drawing concept in which only half the links are used to
reduce the visual clutter during the development of a tool called SeeNet [2]. Par-
allel Tagcloud, developed by Collins et al., adopts a method similar to PED [9].
Although Parallel Tagcloud is an extension of Tag Cloud, it can be regarded as
a hierarchical layout of directed graphs; thus, it is useful against visual clutter
caused by crossing of links. They can avoid drawing intersections by representing
links as straight lines without drawing in the middle of the links.

Bruckdorfer et al. formalized the PED in their study [5]; our formalization of
PED in Sect. 2 is a modified version of their formalization. They added continuity
of the omitted parts of links as a condition, we have incorporated this into
the formalization herein. Moreover, although they focused on a layout without



Graph Drawing with Morphing Partial Edges 339

crossing stubs in PED, this study allows stub crossings. Burch et al. applied
PED to directed graphs using tapered links [8]. Schmauder et al. applied PED
to weighted graphs by representing weights with edge colors [14].

Bruckdorfer et al. performed a comparison between CED1 and 1/4-SHPED
on reading performance of graphs [6]. Although the statistical significance was
not shown, from their chart that visualizes the experimental results, in the task
of reading graphs (for adjacency check of two nodes or search for adjacent nodes),
we can guess that 1/4-SHPED is slightly more accurate than CED; however, the
response time of 1/4-SHPED is longer. Binucci et al. conducted a more detailed
evaluation to reveal that SHPED has high accuracy in reading graphs within
SPED [3]. Burch examined the effect of stub orientation and length on graph
reading accuracy [7].

Blass et al. avoided using arrows to facilitate grasping high-dimensional tran-
sitions in the state transition diagram and proposed moving the dashed pattern
with animation [4]. Holten et al. compared the recognition accuracy of graphs in
various edge drawing methods, such as tapered links and curved links, including
animation [11]. They showed that the recognition accuracy of the graph is high
by representation using animation. Romat et al. attempted to extend the design
space using animation of edge textures [13]. The proposal herein can be con-
sidered as an application of animation to graph drawing, especially to drawing
edges. However, the purpose is not to express the orientation, but to improve
the reading accuracy and efficiency for graphs.

4 Morphing Edge Drawing

Let T be a set of times. Then, function μe : T → 2Γ (e), which determines
a partial drawing of edge e for time t ∈ T , a morphing function. A dynamic
drawing ΓMED(G) = (Γ (V ), ΓMED(E)) of graph G with morphing functions
is a morphing edge drawing (MED), where ΓMED(E) = {μe|e ∈ E} is a set of
morphing functions.

Then, a function ρe : T → [0, 1]2, which determines the partial edge param-
eters for a time t ∈ T , is a ratio function. The morphing function μe can be
constructed as μe(t) = γe(ρe(t)) using the ratio function.

4.1 Symmetric MED

When all ρe for all e ∈ E satisfies ρe(t) = (δt, 1 − δt) (0 ≤ δt ≤ 1/2) for all
t ∈ T , we get SPED at any time. Thus, such a ratio function is a symmetric
ratio function; furthermore, if a MED is composed of symmetric ratio functions,
it is referred to as a symmetric MED (SMED). As the two values obtained by
a symmetric ratio function depend on each other, we can define the function as
ρe : T → [0, 1/2] without ambiguity.

Morphing of edge e extending from stub-edge ratio δe to ηe and then shrinking
to δe is expressed by a symmetric ratio function ρe, expressed as Exp. (2), where
1 They call it the traditional straight-line model (TRA).



340 K. Misue and K. Akasaka

t0 is the start time of the morphing, l is the length of Γ (e), and s is the speed of
the tips of the stubs (morphing speed). Here, let the morphing speed be constant.
Figure 1 shows the graph of the function.

ρe(t) =

⎧⎪⎨
⎪⎩

δe for t ≤ t0 or t2 < t

δe + (t − t0)s/l for t0 < t ≤ t1

ηe − (t − t1)s/l for t1 < t ≤ t2,

(2)

where t1 is the time when the stub-edge ratio becomes ηe, and t2 is the time when
the stub-edge ratio returns to δe. Using one-way travel time d1 = (ηe − δe)l/s,
t1 = t0 + d1 and t2 = t0 + 2d1.

Fig. 1. Graph of ρe. Each pair (top and bottom) of dashed lines represent a pair of
stubs expanding and contracting.

If the ratio functions have the same δ and η for all edges, the drawing is
a (δ, η)-symmetric homogeneous MED ((δ, η)-SHMED). Note, this homogeneity
does not always mean synchronicity. Drawings by (δ, η)-SHMED may not be
SHPED at any time.

When η = 1/2, we omit η, like δ-symmetric homogeneous MED (δ-SHMED).
In the drawing by δ-SHMED, a pair of stubs of edge e becomes Γ (e) at a certain
moment. Intuitively, the drawing by δ-SHMED changes between δ-SHPED and
CED. However, a moment when it becomes CED does not always exist.

5 Scheduling of Morphing

We have set requirements to design the scheduling of morphing of all edges as
follows:

R1: Morphing Does Not Make Crossings. To maintain the reading accu-
racy, visual clutter should be minimized. Therefore, morphing should not result
in new crossings among stubs. However, if another edge exists that crosses a stub
with a stub-edge ratio δ, then the crossing is inevitable. As mentioned earlier,



Graph Drawing with Morphing Partial Edges 341

rearrangements to avoid such crossings are beyond the scope of this paper. The
requirement is to avoid crossings in the center area undrawn by δ-SHPED, (we
refer to these areas as blank areas).

R2: Shorten Morphing Time for All Edges. The time taken for a viewer
to focus on a stub should be minimized before morphing of the stub. We do not
know in advance which stubs the viewer will focus on. Therefore, it is necessary
to repeat morphing of all edges, and it is necessary to shorten the total morphing
time of all edges.

5.1 Morphing Group

First, two non-crossing edges do not generate new crossings of stubs at any timing
when morphing, i.e., they can morph simultaneously and independently. How-
ever, two edges that do not intersect may not be able to morph independently,
depending on the relationship with other edges (see Fig. 2).

Fig. 2. Dependency between edges. The edges e1 and e2 do not intersect, but both
intersect e3, so they cannot be morphed independently. Dotted lines represent the
omitted parts (blank areas).

A set of edges where the timing of morphing may affect each other is a
morphing group. Different morphing groups can be scheduled independently. To
determine the morphing groups, another graph is generated from the graph to
be drawn. To avoid ambiguity, we will express the newly generated graph and its
components as 〈graph〉, 〈node〉, and 〈edge〉. Let each edge be a 〈node〉. Suppose
that there is an 〈edge〉 between 〈nodes〉 (i.e., edges) that intersect each other in
a blank area. 〈Nodes〉 (i.e., edges) included in each connected component of the
〈graph〉 generated in this manner constitute a morphing group.

As two edges belonging to different morphing groups do not intersect, it is
possible to schedule them independently in units of morphing groups. Hereafter,
we describe scheduling of morphing of edges included in a morphing group.

5.2 Sequential Morphing

To prevent new stub crossings from being generated by morphing of two edges
intersecting in blank areas, entry into a blank area should be exclusive. That



342 K. Misue and K. Akasaka

is, the safest scheduling, satisfying requirement R1 (morphing does not result in
crossings), is to perform edge morphing sequentially. However, with such simple
scheduling, R2 cannot be satisfied.

5.3 Packing Morphing Intervals

Assume there are two intersecting edges e1 and e2, as shown in Fig. 3. If the
scheduling is such that when a stub of edge e1 has been stretched and con-
tracted to the crossing point, a stub of e2 extends to the crossing point, then
no intersection will occur. Let the time it takes for the stub of e1 to contract to
the crossing point after it starts morphing be t1 and the time it takes for the
stub of e2 to start morphing and then extend to the crossing point be t2. If the
stub of edge e2 starts morphing t1 − t2 after the stub of e1 starts morphing, no
crossing occurs. In addition, when morphing is repeated alternately, e1 will start
morphing again next to e2.

Fig. 3. Packing morphing intervals.

5.4 Parallel Morphing

Even if edges belong to the same morphing group, morphing of two non-
intersecting edges may be performed simultaneously. By appropriately morph-
ing parallelly, it is possible to shorten the total morphing time of all edges. For
example, as edges e1 and e2 in Fig. 2 are not intersecting, their morphing can be
parallelized if we can find adequate timing to avoid crossing with e3. This can
reduce the overall time.

5.5 Algorithm for Finding Morphing Start Time

In scheduling morphing, we decided to determine the start time from longer
edges. Assuming that every stub has the same morphing speed, the longer the
edge, the longer one cycle of morphing takes. By determining the start time from
longer edges, while a long edge is morphing, the morphing of short edges that
do not intersect with it can be embedded in the same time range.

Given a morphing group E (a set of edges), Algorithm 1 determines the
morphing start time ts(e) for all edges e ∈ E. The algorithm determines the



Graph Drawing with Morphing Partial Edges 343

morphing start time in descending order of edge length. It checks the timing of
every morphing stub of all edges in C(e) that intersect with edge e, and allows
the morphing start time of edge e to be the earliest time that does not result in
intersection with the morphing stubs.

The r1(e, c) and r2(e, c) appearing in the algorithm represents the first and
last time of the time range, respectively, when the start of the morphing of edge
e is prohibited to avoid crossing with edge c. They are described as Exp. (3) and
Exp. (4).

r1(e, c) = ts(c) + tp(c, e) − tr(e, c) (3)
r2(e, c) = ts(c) + tr(c, e) − tp(e, c), (4)

where tp(e, c) is the time it takes from the start of morphing of the stub of edge
e to the first passing (passing while stretching) at the crossing point with edge
c (cf. tp(e2, e1) = t2 in Fig. 3), and tr(e, c) is the time it takes from the start of
morphing to the second passing (passing while shrinking) at the crossing point
(cf. tr(e1, e2) = t1 in Fig. 3).

Algorithm 1. Determining the start time of morphing
Input: E — Set of edges included in a morphing group
Output: Start time is determined for all edges of E
1: function findStartTime(E)
2: for e in sortByLength(E) do
3: I ← {(r1(e, c), r2(e, c))|c ∈ C(e) ∧ ts(c) is defined.}
4: ts(e) ← earliestSpace(I)
5: end for
6: end function

Function earliestSpace(I) yields the smallest value not included in the time
ranges (intervals) in a given set I. If each pair (r1, r2) included in the set I
is regarded as an interval [r1, r2) of real numbers, function earliestSpace(I) is
defined as Exp. (5). We calculate earliestSpace(I) using Algorithm 2. Note that
T is a nonnegative real number in Algorithm2.

earliestSpace(I) = min

{(⋃
r∈I

r

)c}
(5)

6 Evaluation Experiment

To investigate the effectiveness of MED, we conducted a comparative experiment
with three types of visual representations: CED, 1/4-SHPED, and 1/4-SHMED.



344 K. Misue and K. Akasaka

Algorithm 2. Finding time when morphing can start
Input: I — Set of time ranges (pairs of times) during which morphing should not

start
Output: Earliest time morphing can start
1: function earliestSpace(I)
2: t ← 0
3: for (r1, r2) in sortByStartT ime(I) do
4: if r2 < t then
5: continue
6: else if t < r1 then
7: return t
8: else
9: t ← r2

10: end if
11: end for
12: return t
13: end function

6.1 Hypothesis

We made the following hypothesis.

H1 1/4-SHMED requires less time to read a graph than 1/4-SHPED
H2 1/4-SHMED is more accurate at reading graphs than CED.

6.2 Tasks

We designed the following tasks to test the above hypotheses.

T1 Check if the two highlighted nodes are adjacent (connected by an edge).
T2 Select all the nodes to which the highlighted node is adjacent.

For T1, as shown in Fig. 4, a graph in which two nodes are highlighted is
displayed. Participants respond by pressing “Y” or “N” on the keyboard. When
creating sample graphs, the number of crossings of the edges connecting two
nodes were set to 8 or 16 when the nodes were adjacent.

For T2, as shown in Fig. 5, a graph in which one node is highlighted is dis-
played. Node selection is performed using a trackpad. When clicked, the pointed
node is selected and turns orange. Participants can also cancel the selection by
clicking again. Answers are confirmed by pressing the Enter key. When creating
sample graphs, we selected nodes to be highlighted such that the number of
adjacent nodes to it were 3, 6, and 9. Furthermore, we set the average number
of intersections of the edges of interest to be within 7.9–8.1 and the average of
lengths of the edges to be in the range of 3.3–3.7 cm on the screen to ensure
that the task difficulty was not excessively low or high. In this experiment, we
assumed that the distance between the participant’s eyes and the screen was
40 cm.



Graph Drawing with Morphing Partial Edges 345

Fig. 4. Examples of visual representations used in T1

Fig. 5. Examples of visual representations used in T2

6.3 Graphs Used for the Experiment

We used the Barabási-Albert model [1] as a guideline to create a graph with
50 nodes and 144 edges. We used the Fruchterman-Reingold algorithm [10] to
determine the layout of the graph.

6.4 Morphing Speed

We set the morphing speed of each stub as 10◦/s. If morphing is too fast, the
human eye cannot track it. Conversely, if it is too slow, reading efficiency is
reduced. We derived the speed based on Robinson’s experiment [12] such that
it is human eye-trackable while being as fast as possible. However, we set a
minimum one-way travel time 300 ms to make capturing morphing stubs easy.

6.5 Experimental Settings

We used a MacBook Pro 2017 (screen size 13.3 inches, screen resolution 1440 ×
900) for the experiment. We set the display area to 1000 × 800 so the graph can
be viewed without scrolling.

The participants in this experiment were 12 students (4 university students
and 8 graduate students).



346 K. Misue and K. Akasaka

6.6 Experimental Procedure

The following procedure was used to conduct the experiment:

1 Overall explanation
2 Visual representation #1

2-1 T1 practice (one question)
2-2 T1 actual (nine questions)
2-3 T2 practice (one question)
2-4 T2 actual (nine questions)
2-5 Questionnaire for visual representation #1

3 Visual representation #2 (flow similar to visual representation #1)
4 Visual representation #3 (flow similar to visual representation #1)
5 Questionnaire for whole experiment

We varied the order of presenting visual representations from each participant
to eliminate the effects of order. Therefore, visual representations #1, #2, and
#3 differ depending on the participant. We assigned two participants for each
of the six (= 3!) orders.

6.7 Response Time

Figure 6 shows the distribution (boxplots) of response time (in millisecond) for
each task and representation method. In both tasks, the average response time
was the lowest for CED and highest for 1/4-SHPED. As the 1/4-SHMED is
located in the middle, an improvement in the reading time for 1/4-SHPED can
be expected. From the Shapiro-Wilk test (α = 0.05), the time taken either task
did not follow a normal distribution. Therefore, we performed multiple tests
using the Friedman and Holm methods. Tables 1 and 2 show the test results for
the response time for T1 and T2, respectively. As shown in Table 1, a significant
difference was observed between the representation methods, i.e., 1/4-SHMED
can shorten the time taken to confirm the adjacency between nodes, compared
to 1/4-SHPED (H1). In contrast, no significant difference was found between
the representation methods with respect to the response time of T2.

Table 1. Test result of response time of T1

Comparison Test result (p value) Significance level

CED vs 1/4-SHPED 2.035e−7 <0.0167

CED vs 1/4-SHMED 0.0343 <0.0500

1/4-SHPED vs 1/4-SHMED 0.0011 <0.0250



Graph Drawing with Morphing Partial Edges 347

CED 1/4-SHPED 1/4-SHMED

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0

10000

20000

30000

40000

50000

60000

70000

CED 1/4-SHPED 1/4-SHMED

(a) Task T1 [ms] (b) Task T2 [ms]

Fig. 6. Distribution of response time

Table 2. Test result of response time of Task T2

Comparison Test result (p value) Significance level

CED vs 1/4-SHPED 0.0543 >0.0167

CED vs 1/4-SHMED 0.1237 —

1/4-SHPED vs 1/4-SHMED 0.8474 —

6.8 Answer Accuracy

Figure 7(a) shows the number of correct answers and the number of incorrect
answers for T1 in a stacked bar chart. The correct answer rate of 1/4-SHMED is
the highest. However, independence between the representation methods was not
recognized from the chi-square test. We defined the score for T2 as the Jaccard
coefficient between the set of adjacent nodes and the set of answered nodes, i.e., it
is 1 when the two sets completely match, and 0 when there is no common element.
Figure 7(b) shows the distribution of scores according to each representation
method for T2 in a boxplot. From the Shapiro-Wilk test (α = 0.05), T2 did not
followed a normal distribution. Therefore, we performed multiple tests using the
Friedman and Holm methods. Table 3 shows the test results for the scores T2.
As seen above, regarding the accuracy of answers, no significant difference was
observed between the representation methods. Therefore, H2 is not supported.

Table 3. Test result of score of T2

Comparison Test result (p value) Significance level

CED vs 1/4-SHPED 0.5862 —

CED vs 1/4-SHMED 0.1489 —

1/4-SHPED vs 1/4-SHMED 0.07817 >0.0167



348 K. Misue and K. Akasaka

103 99
105

5 9
3

0

20

40

60

80

100

CED 1/4-SHPED 1/4-SHMED

Correct Error CED 1/4-SHPED 1/4-SHMED

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Task T1 (b) Task T2

Fig. 7. Correct answer rate

6.9 Qualitative Feedback

We asked the participants for opinions on visual representations using question-
naires. The following comments were obtained on 1/4-SHMED.

– Positive opinions
• Morphing made it easy to confirm the exact adjacency.
• It can be judged whether two nodes are adjacent by observing the mor-

phing of two stabs works simultaneously.
– Negative opinions

• It is messy and difficult to see. My eyes are strained.
• The stubs change too fast. The time for stubs to connect is too short.

Positive opinions indicate that morphing contributes to reading graphs. In
contrast, from the negative opinions, it appears that visual clutter was not always
resolved. The following can be considered as the main reasons. The first is that
the morphing speed is too fast. In the implementation used for the experiment,
to shorten the overall morphing time, the morphing speed was determined based
on the tracking speed of human eyes; however, this appears to be too fast. The
second is that there were a large number of stubs applying morphing. In the
graph used in the experiment, out of the 144 edges, the average number of non-
morphing edges is 24.5. Given that approximately 120 edges repeated morphing,
the entire graph is considered to have caused visual clutter.

7 Concluding Remarks

We proposed morphing edge drawing (MED) which is time-varying partial edge
drawing (PED) and showed the formalization of MED. We also developed a
scheduling scheme for morphing such that dynamic stubs do not cause new
crossings. We compared three visual representations, CED, 1/4-SHPED, and
1/4-SHMED, via a user study, and showed that 1/4-SHMED is better than 1/4-
SHPED in terms of graph reading time. Thus, MED can function as a counter-
measure against the time to read a graph by PED. In the future, it is important



Graph Drawing with Morphing Partial Edges 349

to investigate eye-friendly morphing that causes less strain and has improved
scheduling.

References

1. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999). https://doi.org/10.1126/science.286.5439.509

2. Becker, R.A., Eick, S.G., Wilks, A.R.: Visualizing network data. IEEE Trans. Vis.
Comput. Graph. 1(1), 16–28 (1995). https://doi.org/10.1109/2945.468391

3. Binucci, C., Liotta, G., Montecchiani, F., Tappini, A.: Partial edge drawing: homo-
geneity is more important than crossings and ink. In: 2016 7th International Con-
ference on Information, Intelligence, Systems Applications (IISA), pp. 1–6, July
2016. https://doi.org/10.1109/IISA.2016.7785427

4. Blaas, J., Botha, C., Grundy, E., Jones, M., Laramee, R., Post, F.: Smooth graphs
for visual exploration of higher-order state transitions. IEEE Trans. Vis. Comput.
Graph. 15(6), 969–976 (2009). https://doi.org/10.1109/TVCG.2009.181

5. Bruckdorfer, T., Kaufmann, M.: Mad at edge crossings? Break the edges!. In:
Kranakis, E., Krizanc, D., Luccio, F. (eds.) FUN 2012. LNCS, vol. 7288, pp. 40–
50. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30347-0 7

6. Bruckdorfer, T., Kaufmann, M., Leibßle, S.: PED user study. In: Di Giacomo, E.,
Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 551–553. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-27261-0 47

7. Burch, M.: A user study on judging the target node in partial link drawings. In:
2017 21st International Conference Information Visualisation (IV), pp. 199–204,
July 2017. https://doi.org/10.1109/iV.2017.43

8. Burch, M., Vehlow, C., Konevtsova, N., Weiskopf, D.: Evaluating partially drawn
links for directed graph edges. In: van Kreveld, M., Speckmann, B. (eds.) GD
2011. LNCS, vol. 7034, pp. 226–237. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-25878-7 22

9. Collins, C., Viégas, F.B., Wattenberg, M.: Parallel tag clouds to explore and ana-
lyze faceted text corpora. In: 2009 IEEE Symposium on Visual Analytics Science
and Technology, pp. 91–98, October 2009. https://doi.org/10.1109/VAST.2009.
5333443

10. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed place-
ment. Softw.: Pract. Exp. 21(11), 1129–1164 (1991). https://doi.org/10.1002/spe.
4380211102

11. Holten, D., Isenberg, P., van Wijk, J.J., Fekete, J.: An extended evaluation of
the readability of tapered, animated, and textured directed-edge representations
in node-link graphs. In: 2011 IEEE Pacific Visualization Symposium, pp. 195–202,
March 2011. https://doi.org/10.1109/PACIFICVIS.2011.5742390

12. Robinson, D.A.: The mechanics of human smooth pursuit eye movement. J. Phys-
iol. 180(3), 569–591 (1965). https://doi.org/10.1113/jphysiol.1965.sp007718

13. Romat, H., Appert, C., Bach, B., Henry-Riche, N., Pietriga, E.: Animated edge
textures in node-link diagrams: a design space and initial evaluation. In: Proceed-
ings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI
2018, pp. 187:1–187:13. ACM, New York (2018). https://doi.org/10.1145/3173574.
3173761

14. Schmauder, H., Burch, M., Weiskopf, D.: Visualizing dynamic weighted digraphs
with partial links. In: Proceedings of 6th International Conference on Information
Visualization Theory and Applications (IVAPP), pp. 123–130 (2015)

https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1109/2945.468391
https://doi.org/10.1109/IISA.2016.7785427
https://doi.org/10.1109/TVCG.2009.181
https://doi.org/10.1007/978-3-642-30347-0_7
https://doi.org/10.1007/978-3-319-27261-0_47
https://doi.org/10.1109/iV.2017.43
https://doi.org/10.1007/978-3-642-25878-7_22
https://doi.org/10.1007/978-3-642-25878-7_22
https://doi.org/10.1109/VAST.2009.5333443
https://doi.org/10.1109/VAST.2009.5333443
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1109/PACIFICVIS.2011.5742390
https://doi.org/10.1113/jphysiol.1965.sp007718
https://doi.org/10.1145/3173574.3173761
https://doi.org/10.1145/3173574.3173761


A Note on Universal Point Sets
for Planar Graphs

Manfred Scheucher(B), Hendrik Schrezenmaier, and Raphael Steiner

Institut für Mathematik, Technische Universität Berlin, Berlin, Germany
{scheucher,schrezen,steiner}@math.tu-berlin.de

Abstract. We investigate which planar point sets allow simultaneous
straight-line embeddings of all planar graphs on a fixed number of ver-
tices. We first show that at least (1.293 − o(1))n points are required to
find a straight-line drawing of each n-vertex planar graph (vertices are
drawn as the given points); this improves the previous best constant
1.235 by Kurowski (2004).

Our second main result is based on exhaustive computer search: We
show that no set of 11 points exists, on which all planar 11-vertex graphs
can be simultaneously drawn plane straight-line. This strengthens the
result by Cardinal, Hoffmann, and Kusters (2015), that all planar graphs
on n ≤ 10 vertices can be simultaneously drawn on particular n-universal
sets of n points while there are no n-universal sets of size n for n ≥ 15.
We also provide 49 planar 11-vertex graphs which cannot be simultane-
ously drawn on any set of 11 points. This, in fact, is another step towards
a (negative) answer of the question, whether every two planar graphs can
be drawn simultaneously – a question raised by Brass, Cenek, Duncan,
Efrat, Erten, Ismailescu, Kobourov, Lubiw, and Mitchell (2007).

Keywords: Simultaneously embedded · Stacked triangulation · Order
type · Boolean satisfiability (SAT) · Integer programming (IP)

1 Introduction

A point set S in the Euclidean plane is called n-universal for a family G of
planar n-vertex graphs if every graph G from G admits a plane straight-line
embedding such that the vertices are drawn as points from S. A point set, which
is n-universal for the family of all planar graphs, is simply called n-universal. We
denote by fp(n) the size of a minimal n-universal set (for planar graphs), and
by fs(n) the size of a minimal n-universal set for stacked triangulations, where
stacked triangulations (a.k.a. planar 3-trees) are defined as follows:

M. Scheucher supported by DFG Grant FE 340/12-1. H. Schrezenmaier supported by
DFG Grant FE-340/11-1. R. Steiner supported by DFG-GRK 2434.

Earlier versions of this paper (EuroCG 2019; arXiv versions 1 and 2) contained a
flaw, which has been corrected. For more details see the full paper [27].

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 350–362, 2019.
https://doi.org/10.1007/978-3-030-35802-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_27&domain=pdf
https://doi.org/10.1007/978-3-030-35802-0_27


A Note on Universal Point Sets for Planar Graphs 351

Definition 1 (Stacked Triangulations). Starting from a triangle, one may
obtain any stacked triangulation by repeatedly inserting a new vertex inside a face
(including the outer face) of the current triangulation and making it adjacent to
all the three vertices contained in the face.

An example of a stacked triangulation is shown in Fig. 1.

Fig. 1. A (labeled) stacked triangulation on 11 vertices in which every face is incident
to a degree-3-vertex.

De Fraysseix, Pach, and Pollack [15] showed that every planar n-vertex graph
admits a straight-line embedding on a (2n − 4) × (n − 2) grid – even if the
combinatorial embedding (including the choice of the outer face) is prescribed.
Moreover, the graphs are only embedded on a triangular subset of the grid.
Hence, fp(n) ≤ n2 − O(n). This bound was further improved to the currently
best known bound fp(n) ≤ n2

4 −O(n) [7] (see also [8,28]). Also various subclasses
of planar graphs have been studied intensively: Any stacked triangulation on
n vertices (with a fixed outer face) can be drawn on a particular set of fs(n) ≤
O(n3/2 log n) points [19]. For outerplanar graphs, it is known that any set of n
points in general position is n-universal [13,24]. For 2-outerplanar graphs and
for simply nested graphs an upper bound of O(n log n) is known [5].

Concerning the lower bound on fp(n) and fs(n), respectively, the obvious
relation n ≤ fs(n) ≤ fp(n) holds for any n ∈ N. The first non-trivial lower
bound on the size of n-universal sets was also given by de Fraysseix, Pach, and
Pollack [15], who showed a lower bound of fp(n) ≥ n + (1 − o(1))

√
n. Chrobak

and Karloff [14] further improved the lower bound to (1.098 − o(1))n, and the
multiplicative constant was later on improved to 1.235 by Kurowski [22]. In fact,
Kurowski’s lower bound even applies to fs(n).

Cardinal, Hoffmann, and Kusters [12] showed that n-universal sets of size n
exist for every n ≤ 10, whereas for n ≥ 15 no such set exists – not even for stacked
triangulations. Hence fp(n) = fs(n) = n for n ≤ 10 and fp(n) ≥ fs(n) > n for



352 M. Scheucher et al.

n ≥ 15. Moreover, they found a collection of 7,393 planar graphs on n = 35
vertices which cannot be simultaneously drawn straight-line on a common set
of 35 points. We call such a collection of graphs a conflict collection. This was a
first big step towards an answer to the question by Brass and others [9]:

Question 1 ([9]). Is there a conflict collection of size 2?

2 Outline

Our first result is the following theorem, which further improves the lower bound
on fs(n). We present its proof in Sect. 3.

Theorem 1. It holds that fs(n) ≥ (α−o(1))n, where α = 1.293 . . . is the unique
real-valued solution of the equation αα · (α − 1)1−α = 2.

In Sect. 4 we present our second result, which is another step towards a
(negative) answer of Question 1 and strengthens the results from [12]. Its proof
is based on exhaustive computer search.

Theorem 2 (Computer-assisted). There is a conflict collection consisting
of 49 stacked triangulations on 11 vertices. Furthermore, there is no conflict
collection consisting of 36 triangulations on 11 vertices.

Corollary 1. There is no 11-universal set of size 11 – even for stacked trian-
gulations. Hence, fp(11) ≥ fs(11) ≥ 12.

Last but not least, since all known proofs for lower bounds make use of sepa-
rating triangles, we also started the investigation of 4-connected triangulations.
In Sect. 5 we present some n-universal sets of size n for 4-connected planar graphs
for all n ≤ 17.

3 Proof of Theorem 1

To prove the theorem, we use a refined counting argument based on a construc-
tion of a set of labeled stacked triangulations that was already introduced in
[12]. There it was used to disprove the existence of n-universal sets of n ≥ 15
points for the family of stacked triangulations.

Definition 2 (Labeled Stacked Triangulations, cf. [12, Sect. 3]). For every
integer n ≥ 4, we define the family Tn of labeled stacked triangulations on the
set of vertices Vn := {v1, ..., vn} inductively as follows:

– T4 consists only of the complete graph K4 with labels v1, . . . , v4.
– If T is a labeled graph in Tn−1 with n ≥ 5, and vivjvk defines a face of T ,

then the graph obtained from T by stacking the new vertex vn to vivjvk (i.e.,
connecting it to vi, vj, and vk) is a member of Tn.



A Note on Universal Point Sets for Planar Graphs 353

It is important to notice that, when speaking of Tn, we distinguish between
elements if they are distinct as labeled graphs, even if their underlying graphs
are isomorphic. The essential ingredient we will need from [12] is the following.

Lemma 1 (cf. [12, Lemmas 1 and 2])

(i) For any n ≥ 4, the family Tn contains exactly 2n−4(n − 3)! labeled stacked
triangulations.

(ii) Let Pn = {p1, . . . , pn} be a set of n ≥ 4 labeled points in the plane. Then
for any bijection π : Vn → Pn, there is at most one T ∈ Tn such that the
embedding of T , which maps each vertex vi to point π(vi), defines a straight-
line-embedding of T .

Figure 1 illustrates the idea of item (ii) of Lemma 1.
We need the following simple consequence of the above:

Corollary 2. Let P = {p1, . . . , pm} be a set of m ≥ n ≥ 4 labeled points in the
plane. Then for any injection π : Vn → P , there is at most one T ∈ Tn such
that the embedding of T , which maps each vertex vi to point π(vi), defines a
straight-line-embedding of T .

Proof. Let T1, T2 ∈ Tn be two stacked triangulations such that π describes a
plane straight-line embedding of both. Since π is an injection, this means that π
defines a straight-line embedding of both T1, T2 on the sub-point set Q := π(Vn)
of P of size n. Applying Lemma 1(ii) to the bijection π : Vn → Q and T1, T2, we
deduce T1 = T2. This proves the claim. ��

We are now ready to prove Theorem 1.

Proof (Proof of Theorem 1). Let n ≥ 4 be arbitrary and m := fs(n) ≥ n. There
exists an n-universal point set P = {p1, . . . , pm} for all stacked triangulations,
hence for every T ∈ Tn there exists a straight-line embedding of T on P , with
(injective) vertex-mapping π : Vn → P . By Corollary 2, we know that no two
stacked triangulations from Tn (each of which has the same vertex set) yield the
same injection π. Consequently, by Lemma 1(i), we have

2n−4(n − 3)! = |Tn| ≤ m!
(m − n)!

,

which means
1

16n(n − 1)(n − 2)
2n ≤

(
m

n

)
=

(
fs(n)

n

)
.

Let β(n) := fs(n)
n . Using the fact that (Stirling-approximation)

(
fs(n)

n

)
∼

√
fs(n)

2πn(fs(n) − n)︸ ︷︷ ︸
≤1

fs(n)fs(n)

nn(fs(n) − n)fs(n)−n
≤

(
β(n)β(n)

(β(n) − 1)β(n)−1

)n

,



354 M. Scheucher et al.

we deduce (taking logarithms) that:

(1 − o(1))n ≤ log2

(
β(n)β(n)

(β(n) − 1)β(n)−1

)
n ⇐⇒ 2 − o(1) ≤ β(n)β(n)

(β(n) − 1)β(n)−1
.

Consequently, β(n) ≥ (1−o(1))α, where α is the unique solution to αα

(α−1)α−1 = 2.
This proves fs(n) = n · β(n) ≥ (1 − o(1))αn, which is the claim. ��

4 Proof of Theorem 2 and Corollary 1

In the following, we outline the strategy which we have used to find a conflict
collection of 49 stacked 11-vertex triangulations. We refer the reader who is
mainly interested in verifying our computational results directly to Sect. 4.5.

One fundamental observation is the following: if an n-universal point set has
collinear points, then by perturbation one can obtain another n-universal point
set in general position, i.e., with no collinear points. Hence, in the following we
only consider point sets in general position. Also it is not hard too see that,
if two point sets are combinatorially equivalent, i.e., there is a bijection such
that the corresponding triples of points induce the same orientations, then both
sets allow precisely the same straight-line drawings. Hence, in the following we
further restrict our considerations to (non-degenerated) order types, i.e., the set
of equivalence classes of point sets (in general position).

4.1 Enumeration of Order Types

The database of all order types of up to n = 11 points was developed by Auren-
hammer, Aichholzer, and Krasser [3,4] (see also Krasser’s dissertation [21]). The
file for all order types of up to n = 10 points (each represented by a point set)
is available online, while the file for n = 11 requires almost 100 GB of storage
and is available on demand [2]. Their algorithm starts with an abstract order
type on k − 1 points (which only encodes the triple orientations of a point set),
computes its dual pseudoline arrangement, and inserts a k-th pseudoline in all
possible ways. Due to geometrical constraints, there are in fact abstract order
types enumerated which do not have a realization as a point set. However, since
every order type is in fact also an abstract order type, it is sufficient for our
purposes to test all abstract order types – independent from realizability.

For means of redundancy and to provide a fully checkable and autonomous
proof, we have implemented an alternative algorithm to enumerate all abstract
order types based on the following idea: Given a set of points s1, . . . , sn with
si = (xi, yi) sorted left to right1, and let

χijk := sgn det

⎛
⎝ 1 1 1

xi xj xk

yi yj yk

⎞
⎠ ∈ {−1, 0,+1}

1 In the dual line arrangement the lines are sorted by increasing slope.



A Note on Universal Point Sets for Planar Graphs 355

denote the induced triple orientations, then the signotope axioms assert that,
for every 4-tuple si, sj , sk, sl with i < j < k < l, the sequence

χijk, χijl, χikl, χjkl

(index-triples in lexicographic order) changes its sign at most once. For more
information on the signotope axioms we refer to Felsner and Weil [18] (see
also [6]).

Given an abstract order type on k − 1 points, we insert a k-th point in all
possible ways, such that the signotope axioms are preserved. With our C++
implementation, we managed to verify the numbers of abstract order types from
[3,4,21]. In fact, the enumeration of all 2,343,203,071 abstract order types of
up to n = 11 points (cf. OEIS/A6247) can be done within about 20 CPU hours.

4.2 Enumeration of Planar Graphs

To enumerate all non-isomorphic maximal planar graphs on 11 vertices (i.e,
triangulations), we have used the plantri graph generator (version 4.5) [10]. It
is worth to note that also the nauty graph generator [23] can be used for the
enumeration because the number of all (not necessarily planar) graphs on 11
vertices is not too large and the database can be filtered for planar graphs in
reasonable time – negligible compared to the CPU time which we have used for
later computations. For various computations on graphs, such as filtering stacked
triangulations or to produce graphs for this paper, we have used SageMath [29]2.

4.3 Deciding Universality Using a SAT Solver

For a given point set S and a planar graph G = (V,E) we model a propositional
formula in conjunctive normal form (CNF) which has a solution if and only if G
can be embedded on S – in fact, the variables encode a straight-line drawing.3

To model the CNF, we have used the variables Mvp to describe whether
vertex v is mapped to point p, and the variables Apq to describe whether the
straight-line segment pq between the two points p and q is “active” in a drawing.

It is not hard to use a CNF to assert that such a vertex-to-point mapping
is bijective. Also it is easy to assert that, if two adjacent vertices u and v are
mapped to points p and q, then the straight-line segment pq is active. For each
pair of crossing straight-line segments pq and rs (dependent on the order type
of the point set) at least one of the two segments is not allowed to be active.

Implementation Detail: We have implemented a C++ routine which, given a
point set and a graph as input, creates an instance of the above described model
and then uses the solver MiniSat 2.2.0 [16] to decide whether the graph admits
a straight-line embedding.
2 We recommend the Sage Reference Manual on Graph Theory [30] and its collection

of excellent examples.
3 Cabello [11] showed that deciding embeddability is NP-complete in general. His

reduction, however, constructs a 2-connected graph, and therefore the hardness
remains unknown for 3-connected planar graphs.

http://oeis.org/A6247


356 M. Scheucher et al.

4.4 Finding Conflict Collections – A Quantitive Approach

Before we actually tested whether a set of 11 points is 11-universal or not, we
discovered a few necessary criteria for the point set, which can be checked much
more efficiently. These considerations allowed a significant reduction of the total
computation times.

Phase 1: There are various properties that a universal point set has to fulfill:
Property 1: The planar graph depicted in Fig. 2 asserts an 11-universal set S

– if one exists – to have a certain structure. If the embedding is as on the left of
Fig. 2, then one of the two degree 3 vertices is drawn as extremal point of S, i.e.,
lies on the boundary of the convex hull conv(S) of S. After the removal of this
particular point, the remaining 10 points have 4 convex layers of sizes 3, 3, 3,
and 1, respectively. If the embedding is as on the right of Fig. 2, then either one
or two points of the blue triangle are drawn as extremal points of S (recall the
triangular convex hull of S). And again, the points inside the blue triangle and
outside the blue triangle have convex layers of sizes 3, 3, 1, and 3, 1, respectively.

Fig. 2. The two embeddings of a graph, which forces the point set to have a certain
structure. Each of the vertices of the blue triangle connects to one of the vertices of
the two copies of K4.

Property 2: There exist a stacked triangulations on 11 points in which every
face is incident to a degree-3-vertex; see for example Fig. 1. Independent from
the embedding of this graph, there is a degree-3-vertex on the outer face, and
hence all inner points lie inside a triangle spanned by an interior point and two
extremal points. In particular, such a point set must have a triangular convex
hull.

Altogether, only 262,386,428 of the 2,343,203,071 abstract order types on
11 points fulfill Properties 1 and 2. (The computation time was about 10 CPU
hours.)

Phase 2: For each of the 262,386,428 abstract order types on 11 points which
fulfill the conditions above, we have tested the embeddability of all maximal
planar graphs on n vertices separately using a SAT-solver based approach. In
fact, as soon as one graph was not embeddable, the remaining graphs needed
not to be checked. To speed up the computations we have used a priority queue:



A Note on Universal Point Sets for Planar Graphs 357

a graph which does not admit an embedding gets increased priority for other
point sets to be tested first.

To keep the conflict collection as small as possible, we first filtered out all
point sets which do not allow a simultaneous embedding of all planar graphs on
11 vertices with maximum degree 10. Only 287,871 of the 262,386,428 abstract
order types remained (about 100 CPU days). It is worth to note that there are 82
maximal planar graphs on 11 vertices with maximum degree 10 (cf. OEIS/A207),
and that each of these graphs is a stacked triangulation.

At this point one can check with only a few CPU hours that the remaining
287,871 abstract order types are not 11-universal. Moreover, since some stacked
triangulations on 11 vertices (e.g., G12 in [25]) contain the graph from Fig. 2 as
a subgraph, the statement even applies to stacked triangulations. Consequently,
the family of all 434 stacked triangulations on 11 vertices (cf. OEIS/A27610) is
a conflict collection, and Corollary 1 follows directly.

Phase 3: To find a smaller conflict collection, we tested for each of the 434 stacked
triangulations and each of the 287,871 remaining abstract order types, whether
an embedding is possible (additional 35 CPU days). We used this binary informa-
tion to formulate an integer program searching for a minimal set of triangulations
without simultaneous embedding. Using the Gurobi solver (version 8.0.0) [20],
we managed to find a collection G of 27 stacked triangulations which cannot be
embedded simultaneously; see [25].

Since we asserted in Phases 1 and 2 that

(1) the graph in Fig. 2,
(2) a triangulation where every face is incident to a vertex of degree 3, and
(3) all 82 triangulations with maximum degree 10.

occur in the conflict collection, this yields a conflict collection of size 111 =
1 + 1 + 82 + 27. In fact, since this subset of 27 stacked triangulations contains
triangulations fulfilling properties (1) and (2) (see, e.g., graphs G12 und G10 in
[25]), we indeed have a conflict collection of size 109.

We have also ran the computations for the collection of all 1,249 triangula-
tions (cf. OEIS/A109), and the Gurobi solver showed that any conflict collection
of (arbitrary) 11-vertex triangulations has size at least 26.

Phase 4: Recall that a minimal conflict collection not necessarily needs to fulfill
the properties (1)–(3). Hence we again repeat the strategy from Phase 2, except
that we test for the embeddability of the 27 stacked triangulations from the
collection G obtained in Phase 3 instead of the 82 maximal planar graphs on 11
vertices with maximum degree 10.

After another 230 days of CPU time, our program had filtered out 2,194
of the 262,386,428 abstract order types (obtained in Phase 1) which allow a
simultaneous embedding of the 27 stacked triangulations from G.

http://oeis.org/A207
http://oeis.org/A27610
http://oeis.org/A109


358 M. Scheucher et al.

Phase 5: As the reader might already guess, we proceed as in Phase 3: we tested
for each of the 434 stacked triangulations and each of the 2,194 order types from
Phase 4, whether an embedding is possible (only 2 CPU days). Using the Gurobi
solver, we managed to find a collection H of 22 stacked triangulations, which
cannot be simultaneously embedded on those order types; see [25].

Together with the 27 stacked triangulations from G we obtain a conflict
collection of size 49, and the first part of Theorem2 follows.

Phase 6: To further improve the lower bound, we have repeated our computa-
tions for the union of the two sets of point sets obtained in Phase 3 and Phase 5,
respectively. Using Gurobi, we obtained that

– any conflict collection of stacked triangulations must have size at least 40,
and

– any conflict collection of (arbitrary) triangulations must have size at least 37.

For means of redundancy, we have verified all obtained lower bounds also
using CPLEX (version 12.8.0.0) [1], which performed similar to Gurobi.

This completes the proof of the second part of Theorem2.

4.5 How to Verify Our Results?

To verify the computational results which are essential for the proof of the
first part of Theorem2, one can enumerate all order types on 11 points and
test the conflict collection of 49 triangulations (data/triangulations/n11
conflicting49.txt). Starting with the unique order type on 3 points
(data/order_types/n3_order_types.bin), it takes about 1 CPU day to enu-
merate all order types on 11 points. By falsifying simultaneous embeddability of
the 49 graphs (about 200 CPU days, but can be run parallelized), the first part
of Theorem 2 is then verified.

For the second part of the Theorem2, one can filter the order types,
which allow a simultaneous embedding of the triangulations from Phase 2
and 4, and then – using CPLEX or Gurobi – compute the minimum size
of a conflicting collection among all 11-vertex triangulations and 11-vertex
stacked triangulations, respectively. To save some computation time, we pro-
vide the filtered list in data/triangulations/n11_after_phase2.bin.zip
and n11_after_phase4.bin.zip. The list of all (stacked) triangulations
is provided in data/triangulations/n11_all_triangulations.txt and
n11_all_stacked_triangulations.txt.

A more detailed description is provided in the full version [27]. The source
codes of our programs and relevant data are available on the companion web-
site [25].

5 Universal Sets for 4-Connected Graphs

For n ≤ 10, examples of n-universal sets of n points for planar n-vertex graphs
were already given in [12]. To provide n-universal sets for 4-connected planar



A Note on Universal Point Sets for Planar Graphs 359

graphs for n = 11, . . . , 17, we slightly adapted our framework. Again, we enu-
merated 4-connected planar triangulations using the plantri graph generator,
and using our C++ implementation, tested for universality. Our idea to find the
proposed point sets for n = 11, . . . , 17 was to start with an (n − 1)-universal set
of n − 1 points and insert an n-th point in all possible ways (cf. Sect. 4.1). The
abstract order types obtained in this way – if they turned out to be universal –
were then realized as point sets using our framework pyotlib4. The obtained sets
are given in Listing 1.1.

[ ( 6 12 , 666 ) , ( 754 , 635 ) , ( 415 , 709 ) , ( 884 , 597 ) , ( 596 , 695 ) , ( 890 , 977 ) ,
( 384 , 716 ) , ( 834 , 609 ) , ( 424 , 707 ) , ( 974 , 10 ) , ( 890 , 962 ) , ( 306 , 805 ) ,
( 3 01 , 8 10 ) , ( 4 , 7 36 ) , ( 0 , 7 35 ) , ( 9 75 , 6 ) , ( 9 80 , 0 ) ]

Listing 1.1. A set {p1, . . . , p17} of 17 points such that {p1, . . . , pk} is universal for
4-connected planar k-vertex graphs for all k ∈ {11, . . . , 17}.

It is also worth to note that the numbers of 4-connected triangulations for
n = 11, . . . , 20 are 25; 87; 313; 1,357; 6,244; 30,926; 158,428; 836,749; 4,504,607;
24,649,284 (cf. OEIS/A7021). Hence, even if a universal point set is known, it is
getting more and more time consuming to verify n-universality as n gets larger
(at least using our SAT solver approach).

6 Discussion

In Sect. 3, we provided an improved lower bound for fp(n) and fs(n). However,
the best known general upper bounds remain far from linear.

In Sect. 4, we have applied the ideas from Phases 2 and 3 twice (cf. Phases 4
and 5) to reduce the size of a conflict collection. One could further proceed with
this strategy to find even smaller conflict collections (if such exist). Also one could
simply test whether all elements from the conflict collection are indeed necessary,
or whether certain elements can be removed. Note that, to compute a minimal
conflict collection for n = 11, one could theoretically check which graphs admit
an embedding on which point set and then find a minimal set cover as described
in Phase 3 (Sect. 4). In practice, however, formulating such a minimal set cover
instance (as integer program) is not reasonable because testing the embeddability
of every graph in every point set would be an extremely time consuming task.
(Recall that we used a priority queue to speed up our computation, so only a few
pairs were actually tested. Also recall that, to generate the set cover instances,
we only looked at a comparably small number of order types.) And even if such
an instance was formulated, due to its size, the IP/set cover might not be solvable
optimally in reasonable time.

4 The “python order type library” was initiated during the Bachelor’s studies of the
first author [26] and provides many features to work with (abstract) order types
such as local search techniques, realization or proving non-realizability of abstract
order types, coordinate minimization and “beautification” for nicer visualizations.
For more information, please consult the author.

http://oeis.org/A7021


360 M. Scheucher et al.

Besides the computations for n = 11 points, we also adapted our program to
find all n-universal order types on n points for every n ≤ 10, and hence could
verify the results from [12, Table 1]. To be precise, we found 5,956 9-universal
abstract order types on n = 9 points, whereas only 5,955 are realizable as point
sets. It is worth to note that there is exactly one non-realizable abstract order
type on 9 points in the projective plane, which is dual to the simple non-Pappus
arrangement, and that all abstract order types on n ≤ 8 points are realizable.
Besides the already known 2,072 realizable order types on 10 points, no further
non-realizable 10-universal abstract order types were found. For more details on
realizability see for example [21] or [17].

Unfortunately, we do not have an argument for subsets or supersets of n-
universal point sets, and thus the question for n = 12, 13, 14 remains open.
However, based on computational evidence (see also [12, Table 1]), we strongly
conjecture that no n-universal set of n points exists for n ≥ 11. It is also worth
to note that 11-universal sets of 12 points exist (cf. Listing 1.2).

[ ( 2 1 4 , 0 ) , ( 0 , 1 3 ) , ( 2 , 1 6 ) , ( 9 , 2 6 ) , ( 1 2 4 , 1 2 ) , ( 1 3 3 , 1 1 ) ,
( 1 48 , 9 ) , ( 2 13 , 1 ) , ( 2 11 , 4 ) , ( 2 10 , 6 ) , ( 1 16 , 1 79 ) , ( 1 22 , 1 97 ) ]

Listing 1.2. An 11-universal set of 12 points.

As mentioned in the introduction of this paper, various graph classes have
been studied for this problem. Even though our contribution on 4-connected
planar graphs in Sect. 5 is rather small, it gives some evidence that comparably
less points are needed to embed 4-connected planar graphs. In fact, we would not
be surprised if n-universal sets of n points exist for 4-connected planar graphs.

References

1. IBM ILOG CPLEX Optimization Studio (2018). http://www.ibm.com/products/
ilog-cplex-optimization-studio/

2. Aichholzer, O.: Enumerating Order Types for Small Point Sets with Applications.
http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/ordertypes/

3. Aichholzer, O., Aurenhammer, F., Krasser, H.: Enumerating order types for small
point sets with applications. Order 19(3), 265–281 (2002). https://doi.org/10.
1023/A:1021231927255

4. Aichholzer, O., Krasser, H.: Abstract order type extension and new results on the
rectilinear crossing number. Comput. Geom.: Theory Appl. 36(1), 2–15 (2006).
https://doi.org/10.1016/j.comgeo.2005.07.005

5. Angelini, P., Bruckdorfer, T., Di Battista, G., Kaufmann, M., Mchedlidze, T.,
Roselli, V., Squarcella, C.: Small universal point sets for k-outerplanar graphs.
Discret. Comput. Geom. 1–41 (2018). https://doi.org/10.1007/s00454-018-0009-x

6. Balko, M., Fulek, R., Kynčl, J.: Crossing numbers and combinatorial characteriza-
tion of monotone drawings of Kn. Discret. Comput. Geom. 53(1), 107–143 (2015).
https://doi.org/10.1007/s00454-014-9644-z

7. Bannister, M.J., Cheng, Z., Devanny, W.E., Eppstein, D.: Superpatterns and uni-
versal point sets. J. Graph Algorithms Appl. 18(2), 177–209 (2014). https://doi.
org/10.7155/jgaa.00318

http://www.ibm.com/products/ilog-cplex-optimization-studio/
http://www.ibm.com/products/ilog-cplex-optimization-studio/
http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/ordertypes/
https://doi.org/10.1023/A:1021231927255
https://doi.org/10.1023/A:1021231927255
https://doi.org/10.1016/j.comgeo.2005.07.005
https://doi.org/10.1007/s00454-018-0009-x
https://doi.org/10.1007/s00454-014-9644-z
https://doi.org/10.7155/jgaa.00318
https://doi.org/10.7155/jgaa.00318


A Note on Universal Point Sets for Planar Graphs 361

8. Brandenburg, F.J.: Drawing planar graphs on 8
9
n2 area. Electron. Notes Discret.

Math. 31, 37–40 (2008). https://doi.org/10.1016/j.endm.2008.06.005
9. Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D.P.,

Kobourov, S.G., Lubiw, A., Mitchell, J.S.: On simultaneous planar graph embed-
dings. Comput. Geom. 36(2), 117–130 (2007). https://doi.org/10.1016/j.comgeo.
2006.05.006

10. Brinkmann, G., McKay, B.D.: Fast generation of some classes of planar graphs.
Electron. Notes Discret. Math. 3, 28–31 (1999). https://doi.org/10.1016/S1571-
0653(05)80016-2

11. Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set
is NP-hard. J. Graph Algorithms Appl. 10(2), 353–363 (2006). https://doi.org/10.
7155/jgaa.00132

12. Cardinal, J., Hoffmann, M., Kusters, V.: On universal point sets for planar graphs.
J. Graph Algorithms Appl. 19(1), 529–547 (2015). https://doi.org/10.7155/jgaa.
00374

13. Castañeda, N., Urrutia, J.: Straight line embeddings of planar graphs on point
sets. In: Proceedings of the 8th Canadian Conference on Computational Geom-
etry (CCCG 1996), pp. 312–318 (1996). http://www.cccg.ca/proceedings/1996/
cccg1996 0052.pdf

14. Chrobak, M., Karloff, H.J.: A lower bound on the size of universal sets for planar
graphs. ACM SIGACT News 20(4), 83–86 (1989). https://doi.org/10.1145/74074.
74088

15. De Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1), 41–51 (1990). https://doi.org/10.1007/BF02122694

16. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

17. Felsner, S., Goodman, J.E.: Pseudoline arrangements. In: Toth, C.D., O’Rourke,
J., Goodman, J.E. (eds.) Handbook of Discrete and Computational Geometry, 3rd
edn. CRC Press (2018). https://doi.org/10.1201/9781315119601

18. Felsner, S., Weil, H.: Sweeps, arrangements and signotopes. Discret. Appl. Math.
109(1), 67–94 (2001). https://doi.org/10.1016/S0166-218X(00)00232-8

19. Fulek, R., Tóth, C.D.: Universal point sets for planar three-trees. J. Discret. Algo-
rithms 30, 101–112 (2015). https://doi.org/10.1016/j.jda.2014.12.005

20. Gurobi Optimization, LLC: Gurobi Optimizer (2018). http://www.gurobi.com
21. Krasser, H.: Order Types of Point Sets in the Plane. Ph.D. thesis, Institute for

Theoretical Computer Science, Graz University of Technology, Austria (2003)
22. Kurowski, M.: A 1.235n lower bound on the number of points needed to draw all

n-vertex planar graphs. Inf. Process. Lett. 92(2), 95–98 (2004). https://doi.org/
10.1016/j.ipl.2004.06.009

23. McKay, B.D., Piperno, A.: Practical graph isomorphism, II. J. Symb. Comput. 60,
94–112 (2014). https://doi.org/10.1016/j.jsc.2013.09.003

24. Pach, J., Gritzmann, P., Mohar, B., Pollack, R.: Embedding a planar triangulation
with vertices at specified points. Am. Math. Mon. 98, 165–166 (1991). https://doi.
org/10.2307/2323956

25. Scheucher, M.: Webpage: Source Codes and Data for Universal Point Sets. http://
page.math.tu-berlin.de/∼scheuch/supplemental/universal sets

26. Scheucher, M.: On Order Types, Projective Classes, and Realizations. Bachelor’s
thesis, Graz University of Technology, Austria (2014). http://www.math.tu-berlin.
de/∼scheuch/publ/bachelors thesis tm 2014.pdf

https://doi.org/10.1016/j.endm.2008.06.005
https://doi.org/10.1016/j.comgeo.2006.05.006
https://doi.org/10.1016/j.comgeo.2006.05.006
https://doi.org/10.1016/S1571-0653(05)80016-2
https://doi.org/10.1016/S1571-0653(05)80016-2
https://doi.org/10.7155/jgaa.00132
https://doi.org/10.7155/jgaa.00132
https://doi.org/10.7155/jgaa.00374
https://doi.org/10.7155/jgaa.00374
http://www.cccg.ca/proceedings/1996/cccg1996_0052.pdf
http://www.cccg.ca/proceedings/1996/cccg1996_0052.pdf
https://doi.org/10.1145/74074.74088
https://doi.org/10.1145/74074.74088
https://doi.org/10.1007/BF02122694
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1201/9781315119601
https://doi.org/10.1016/S0166-218X(00)00232-8
https://doi.org/10.1016/j.jda.2014.12.005
http://www.gurobi.com
https://doi.org/10.1016/j.ipl.2004.06.009
https://doi.org/10.1016/j.ipl.2004.06.009
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.2307/2323956
https://doi.org/10.2307/2323956
http://page.math.tu-berlin.de/~scheuch/supplemental/universal_sets
http://page.math.tu-berlin.de/~scheuch/supplemental/universal_sets
http://www.math.tu-berlin.de/~scheuch/publ/bachelors_thesis_tm_2014.pdf
http://www.math.tu-berlin.de/~scheuch/publ/bachelors_thesis_tm_2014.pdf


362 M. Scheucher et al.

27. Scheucher, M., Schrezenmaier, H., Steiner, R.: A Note On Universal Point Sets for
Planar Graphs. arXiv:1811.06482 (2018)

28. Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of the First
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 138–148. Society for
Industrial and Applied Mathematics (1990)

29. Stein, W.A., et al.: Sage Mathematics Software (Version 8.1). The Sage Develop-
ment Team (2018). http://www.sagemath.org

30. Stein, W.A., et al.: Sage Reference Manual: Graph Theory (Release 8.1) (2018).
http://doc.sagemath.org/pdf/en/reference/number fields/number fields.pdf

http://arxiv.org/abs/1811.06482
http://www.sagemath.org
http://doc.sagemath.org/pdf/en/reference/number_fields/number_fields.pdf


Parameterized Complexity



Parameterized Algorithms for Book
Embedding Problems

Sujoy Bhore1 , Robert Ganian1 , Fabrizio Montecchiani2 ,
and Martin Nöllenburg1(B)

1 Algorithms and Complexity Group, TU Wien, Vienna, Austria
{sujoy,rganian,noellenburg}@ac.tuwien.ac.at

2 Engineering Department, University of Perugia, Perugia, Italy
fabrizio.montecchiani@unipg.it

Abstract. A k-page book embedding of a graph G draws the vertices
of G on a line and the edges on k half-planes (called pages) bounded
by this line, such that no two edges on the same page cross. We study
the problem of determining whether G admits a k-page book embedding
both when the linear order of the vertices is fixed, called Fixed-Order
Book Thickness, or not fixed, called Book Thickness. Both problems
are known to be NP-complete in general. We show that Fixed-Order
Book Thickness and Book Thickness are fixed-parameter tractable
parameterized by the vertex cover number of the graph and that Fixed-
Order Book Thickness is fixed-parameter tractable parameterized by
the pathwidth of the vertex order.

1 Introduction

A k-page book embedding of a graph G is a drawing that maps the vertices of G
to distinct points on a line, called spine, and each edge to a simple curve drawn
inside one of k half-planes bounded by the spine, called pages, such that no two
edges on the same page cross [21,26]; see Fig. 1 for an illustration. This kind of
layout can be alternatively defined in combinatorial terms as follows. A k-page
book embedding of G is a linear order ≺ of its vertices and a coloring of its
edges which guarantee that no two edges uv, wx of the same color have their
vertices ordered as u ≺ w ≺ v ≺ x. The minimum k such that G admits a k-page
book embedding is the book thickness of G, denoted by bt(G), also known as
the stack number of G. Book embeddings have been extensively studied in the
literature, among others due to their applications in bioinformatics, VLSI, and
parallel computing (see, e.g., [8,20] and refer also to [12] for a survey). A famous
result by Yannakakis [30] states that every planar graph has book thickness at

Research of Fabrizio Montecchiani supported in part by MIUR under Grant
20174LF3T8 AHeAD: efficient Algorithms for HArnessing networked Data. Robert
Ganian acknowledges support by the FWF (Project P 31336, “NFPC”) and is also
affiliated with FI MUNI, Brno, Czech Republic. Research of Sujoy Bhore and Martin
Nöllenburg is supported by the Austrian Science Fund (FWF) grant P 31119.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 365–378, 2019.
https://doi.org/10.1007/978-3-030-35802-0_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_28&domain=pdf
http://orcid.org/0000-0003-0104-1659
http://orcid.org/0000-0002-7762-8045
http://orcid.org/0000-0002-0543-8912
http://orcid.org/0000-0003-0454-3937
https://doi.org/10.1007/978-3-030-35802-0_28


366 S. Bhore et al.

Fig. 1. (a) A planar graph G with book thickness two. (b) A 2-page book embedding
of G. (c) A linear order of G such that its fixed-order book thickness is three (and the
corresponding 3-page book embedding).

most four. Several other bounds are known for special graph families, for instance
planar graphs with vertex degree at most four have book thickness two [3], while
graphs of treewidth w > 2 have book thickness w + 1 [13,18].

Given a graph G and a positive integer k, the problem of determining whether
bt(G) ≤ k, called Book Thickness, is known to be NP-complete. Namely, Bern-
hart and Kainen [4] proved that bt(G) ≤ 2 if and only if G is subhamiltonian,
i.e., G is a subgraph of a planar Hamiltonian graph. Since deciding whether
a graph is subhamiltonian is an NP-complete problem, Book Thickness is
also NP-complete in general [8]. Book Thickness has been studied also when
the linear order ≺ of the vertices is fixed, indeed, this is one of the original
formulations of the problem, which arises in the context of sorting with parallel
stacks [8]. We call this problem Fixed-Order Book Thickness and we denote
by fo-bt(G,≺) the fixed-order book thickness of a graph G. Obviously, we have
fo-bt(G,≺) ≥ bt(G), see Fig. 1. Deciding whether fo-bt(G,≺) ≤ 2 corresponds
to testing the bipartiteness of a suitable conflict graph, and thus it can be solved
in linear time. On the other hand, deciding if fo-bt(G,≺) ≤ 4 is equivalent to
finding a 4-coloring of a circle graph and hence is an NP-complete problem [29].

Our Results. In this paper we study the parameterized complexity of Book
Thickness and Fixed-Order Book Thickness. For both problems, when the
answer is positive, we naturally also expect to be able to compute a correspond-
ing k-page book embedding as a witness. While both problems are NP-complete
already for small fixed values of k on general graphs, it is natural to ask which
structural properties of the input (formalized in terms of structural parame-
ters) allow us to solve these problems efficiently. Indeed, already Dujmovic and
Wood [14] asked whether Book Thickness can be solved in polynomial time
when the input graph has bounded treewidth [28]—a question which has turned
out to be surprisingly resilient to existing algorithmic techniques and remains
open to this day. Bannister and Eppstein [2] made partial progress towards
answering Dujmovic and Wood’s question by showing that Book Thickness is
fixed-parameter tractable parameterized by the treewidth of G when k = 2.

We provide the first fixed-parameter algorithms for Fixed-Order Book
Thickness and also the first such algorithm for Book Thickness that can be
used when k > 2. In particular, we provide fixed-parameter algorithms for:



Parameterized Algorithms for Book Embedding Problems 367

1. Fixed-Order Book Thickness parameterized by the vertex cover number
of the graph;

2. Fixed-Order Book Thickness parameterized by the pathwidth of the
graph and the vertex order; and

3. Book Thickness parameterized by the vertex cover number of the graph.

Results 1 and 2 are obtained by combining dynamic programming techniques
with insights about the structure of an optimal book embedding. Result 3 then
applies a kernelization technique to obtain an equivalent instance of bounded size
(which can then be solved, e.g., by brute force). All three of our algorithms can
also output a corresponding k-page book embedding as a witness (if it exists).

The remainder of this paper is organized as follows. Section 2 contains prelim-
inaries and basic definitions. Results 1 and 2 on Fixed-Order Book Thick-
ness are presented in Sect. 3, while Result 3 on Book Thickness is described
in Sect. 4. Conclusions and open problems are found in Sect. 5. Some proofs are
omitted due to space constraints; they are included in the full version [5].

2 Preliminaries

We use standard terminology from graph theory [10]. For r ∈ N, we write [r]
as shorthand for the set {1, . . . , r}. Parameterized complexity [9,11] focuses on
the study of problem complexity not only with respect to the input size n but
also a parameter k ∈ N. The most desirable complexity class in this setting is
FPT (fixed-parameter tractable), which contains all problems that can be solved
by an algorithm running in time f(k) · nO(1), where f is a computable function.
Algorithms running in this time are called fixed-parameter algorithms.

A k-page book embedding of a graph G = (V,E) will be denoted by a pair
〈≺, σ〉, where ≺ is a linear order of V , and σ : E → [k] is a function that maps
each edge of E to one of k pages [k] = {1, 2, . . . , k}. In a k-page book embedding
〈≺, σ〉 it is required that for no pair of edges uv,wx ∈ E with σ(uv) = σ(wx)
the vertices are ordered as u ≺ w ≺ v ≺ x, i.e., each page is crossing-free.

We consider two graph parameters for our algorithms. A vertex cover C of
a graph G = (V,E) is a subset C ⊆ V such that each edge in E has at least
one end-vertex in C. The vertex cover number of G, denoted by τ(G), is the size
of a minimum vertex cover of G. The second parameter is pathwidth, a classical
graph parameter [27] which admits several equivalent definitions. The definition
that will be most useful here is the one tied to linear orders [22]; see also [23,24]
for recent works using this formulation. Given an n-vertex graph G = (V,E)
with a linear order ≺ of V such that v1 ≺ v2 ≺ · · · ≺ vn, the pathwidth of (G,≺)
is the minimum number κ such that for each vertex vi (i ∈ [n]), there are at
most κ vertices left of vi that are adjacent to vi or a vertex right of vi. Formally,
for each vi we call the set Pi = {vj | j < i,∃q ≥ i such that vjvq ∈ E} the guard
set for vi, and the pathwidth of (G,≺) is simply maxi∈[n] |Pi|. The elements of
the guard sets are called the guards (for vi). We remark that the pathwidth of
G is equal to the minimum pathwidth over all linear orders ≺.



368 S. Bhore et al.

3 Algorithms for Fixed-Order Book Thickness

Recall that in Fixed-Order Book Thickness the input consists of a graph
G = (V,E), a linear order ≺ of V , and a positive integer k. We assume that
V = {v1, v2, . . . , vn} is indexed such that i < j ⇔ vi ≺ vj . The task is to
decide if there is a page assignment σ : E → [k] such that 〈≺, σ〉 is a k-page
book embedding of G, i.e., whether fo-bt(G,≺) ≤ k. If the answer is ‘YES’ we
shall return a corresponding k-page book embedding as a witness. In fact, our
algorithms will return a book embedding with the minimum number of pages.

3.1 Parameterization by the Vertex Cover Number

As our first result, we will show that Fixed-Order Book Thickness is fixed-
parameter tractable when parameterized by the vertex cover number. We note
that the vertex cover number is a graph parameter which, while restricting the
structure of the graph in a fairly strong way, has been used to obtain fixed-
parameter algorithms for numerous difficult problems [1,15,16].

Let C be a minimum vertex cover of size τ = τ(G); we remark that such a
vertex cover C can be computed in time O(2τ +τ ·n) [7]. Moreover, let U = V \C.
Our first observation shows that the problem becomes trivial if τ ≤ k.

Observation 1. Every n-vertex graph G with a vertex cover C of size k admits
a k-page book embedding with any vertex order ≺. Moreover, if G and C are
given as input, such a book embedding can be computed in O(n + k · n) time.

Proof. Let C = {c1, . . . , ck} be a vertex cover of size k and let σ be a page
assignment on k pages defined as follows. For each i ∈ [k] all edges uci with
u ∈ U ∪ {c1, . . . , ci−1} are assigned to page i. Now, consider the edges assigned
to any page i ∈ [k]. By construction, they are all incident to vertex ci, and thus
no two of them cross each other. Therefore, the pair 〈≺, σ〉 is a k-page book
embedding of G and can be computed in O(n + k · n) time. �

We note that the bound given in Observation 1 is tight, since it is known
that complete bipartite graphs with bipartitions of size k and h > k(k − 1) have
book thickness k [4] and vertex cover number k.

We now proceed to a description of our algorithm. For ease of presentation,
we will add to G an additional vertex of degree 0, add it to U , and place it at
the end of ≺ (observe that this does not change the solution to the instance).

If τ ≤ k then we are done by Observation 1. Otherwise, let S be the set of
all possible non-crossing page assignments of the edges whose both endpoints lie
in C, and note that |S| < τ τ2

and S can be constructed in time O(τ τ2
) (recall

that k < τ by assumption). As its first step, the algorithm branches over each
choice of s ∈ S, where no pair of edges assigned to the same page crosses.

For each such non-crossing assignment s, the algorithm performs a dynamic
programming procedure that runs on the vertices of the input graph in sequential
(left-to-right) order. We will define a record set that the algorithm is going to
compute for each individual vertex in left-to-right order. Let c1 ≺ . . . ≺ cτ be



Parameterized Algorithms for Book Embedding Problems 369

Fig. 2. A partial 2-page book embedding of a graph G with a vertex cover C of size 7.
The visibilities of vertices in C (squares) from u2 are marked by dashed edges (left).
Corresponding visibility matrix M2(2, α, s) (right).

the ordering of vertices of C, and let u1 ≺ . . . ≺ un−τ be the ordering of vertices
of U .

In order to formalize our records, we need the notion of visibility. Let i ∈
[n − τ ] and let Ei = {ujc ∈ E | j < i, c ∈ C} be the set of all edges with one
endpoint outside of C that lies to the left of ui. We call α : Ei → [k] a valid
partial page assignment if α ∪ s maps edges to pages in a non-crossing fashion.
Now, consider a valid partial page assignment α : Ei → [k]. We say that a vertex
c ∈ C is (α, s)-visible to ut (for t ∈ [n − τ ]) on page p if it is possible to draw an
edge from ut to c on page p without crossing any other edge mapped to page p
by α ∪ s. Figure 2 shows the visibilities of a vertex in two pages.

Based on this notion of visibility, for an index a ∈ [n − τ ] we can define
a k × τ visibility matrix Mi(a, α, s), where an entry (p, b) of Mi(a, α, s) is 1 if
cb is (α, s)-visible to ua on page p and 0 otherwise (see Fig. 2). Intuitively, this
visibility matrix captures information about the reachability via crossing-free
edges (i.e., visibility) to the vertices in C from ua on individual pages given a
particular assignment α of edges in Ei. Note that for a given tuple (i, a, α, s), it
is straightforward to compute Mi(a, α, s) in polynomial time.

Observe that while the number of possible choices of valid partial page assign-
ments α : Ei → [k] (for some i ∈ [n − τ ]) is not bounded by a function of τ , for
each i, a ∈ [n − τ ] the number of possible visibility matrices is upper-bounded
by 2τ2

. On a high level, the core idea in the algorithm is to dynamically process
the vertices in U in a left-to-right fashion and compute, for each such vertex, a
bounded-size “snapshot” of its visibility matrices—whereas for each such snap-
shot we will store only one (arbitrarily chosen) valid partial page assignment.
We will later (in Lemma 1) show that all valid partial page assignments leading
to the same visibility matrices are “interchangeable”.

With this basic intuition, we can proceed to formally defining our records.
Let X = {x ∈ [n − τ ] | ∃c ∈ C : ux is the immediate successor of c in ≺} be
the set of indices of vertices in U which occur immediately after a cover ver-
tex; we will denote the integers in X as x1, . . . , xz (in ascending order), and
we note that z ≤ τ . For a vertex ui ∈ U , we define our record set as fol-
lows: Ri(s) = {(Mi(i, α, s),Mi(x1, α, s),Mi(x2, α, s), . . . ,Mi(xz, α, s)

) | ∃ valid
partial page assignment α : Ei → [k]}. Note that each entry in Ri(s) captures
one possible set (a “snapshot”) of at most τ + 1 visibility matrices: the visi-



370 S. Bhore et al.

bility matrix for ui itself, and the visibility matrices for the z non-cover ver-
tices which follow immediately after the vertices in C. The intuition behind
these latter visibility matrices is that they allow us to update our visibility
matrix when our left-to-right dynamic programming algorithm reaches a ver-
tex in C (in particular, as we will see later, for i ∈ X it is not possible
to update the visibility matrix Mi(i, α, s) only based on Mi−1(i − 1, α, s)).
Along with Ri(s), we also store a mapping Λs

i from Ri(s) to valid partial
page assignments of Ei which maps (M0, . . . , Mz) ∈ Ri(s) to some α such that
(M0, . . . , Mz) = (Mi(i, α, s),Mi(x1, α, s),Mi(x2, α, s), . . . ,Mi(xz, α, s)).

Let us make some observations about our records Ri(s). First, |Ri(s)| ≤
2τ3+τ2

. Second, if Rn−τ (s) �= ∅ for some s, since un−τ is a dummy vertex of
degree 0, then there is a valid partial page assignment α : En−τ → [k] such that
s∪α is a non-crossing page assignment of all edges in G. Hence we can output a
k-page book embedding by invoking Λs

n−τ on any entry in Rn−τ (s). Third (see
the full version [5] for the proof):

Observation 2. If for all s ∈ S it holds that Rn−τ (s) = ∅, then (G,≺, k) is a
NO-instance of Fixed-Order Book Thickness.

The above implies that in order to solve our instance, it suffices to compute
Rn−τ (s) for each s ∈ S. As mentioned earlier, we do this dynamically, with
the first step consisting of the computation of R1(s). Since E1 = ∅, the visibil-
ity matrices M1(1, ∅, s),M1(x1, ∅, s), . . . ,M1(xz, ∅, s) required to populate R1(s)
depend only on s and are easy to compute in polynomial time.

Finally, we proceed to the dynamic step. Assume we have computed Ri−1(s).
We branch over each possible page assignment β of the (at most τ) edges incident
to ui−1, and each tuple ρ ∈ Ri−1(s). For each such β and γ = Λs

i−1(ρ), we check
whether β ∪ γ is a valid partial page assignment (i.e., whether β ∪ γ ∪ s is
non-crossing); if this is not the case, we discard this pair of (β, ρ). Otherwise we
compute the visibility matrices Mi(i, β∪γ, s),Mi(x1, β∪γ, s), . . . ,Mi(xz, β∪γ, s),
add the corresponding tuple into Ri(s), and set Λs

i to map this tuple to β ∪ γ.
We remark that here the use of Λs

i−1(ρ) allows us not to distinguish between
i ∈ X and i �∈ X—in both cases, the partial page assignment γ will correctly
capture the visibility matrix for ui.

Lemma 1. The above procedure correctly computes Ri(s) from Ri−1(s).

Proof. Consider an entry (M0, . . . , Mz) computed by the above procedure from
some β ∪ γ. Since we explicitly checked that β ∪ γ is a valid partial page assign-
ment, this implies that (M0, . . . , Mz) ∈ Ri(s), as desired.

For the opposite direction, consider a tuple (M0, . . . , Mz) ∈ Ri(s). By def-
inition, there exists some valid partial page assignment α of Ei such that
M0 = Mi(i, α, s), M1 = Mi(x1, α, s), . . . , Mz = Mi(xz, α, s). Now let β be the
restriction of α to the edges incident to ui−1, and let γ′ be the restriction of α to
all other edges (i.e., all those not incident to ui−1). Since γ′ ∪ s is non-crossing
and in particular γ′ is a valid partial page assignment for Ei−1, Ri−1(s) must
contain an entry ω = (Mi−1(i − 1, γ′, s), . . . , (Mi−1(xz, γ

′, s))—let γ = Λs
i−1(ω).



Parameterized Algorithms for Book Embedding Problems 371

To conclude the proof, it suffices to show that (1) β ∪ γ is a valid par-
tial page assignment, and (2) (Mi(i, β ∪ γ′, s), . . . , Mi(xz, β ∪ γ′, s)), which is
the original tuple corresponding to the hypothetical α, is equal to (Mi(i, β ∪
γ, s), . . . ,Mi(xz, β ∪ γ, s)), which is the entry our algorithm computes from β
and γ. Point (1) follows from the fact that Mi−1(i − 1, γ′, s) = Mi−1(i − 1, γ, s)
in conjunction with the fact that ui−1 is adjacent only to vertices in C. Point
(2) then follows by the same argument, but applied to each visibility matrix in
the respective tuples: for each x ∈ X we have Mi−1(x, γ′, s) = Mi−1(x, γ, s)—
meaning that the visibilities of ux were identical before considering the edges
incident to ui−1—and so assigning these edges to pages as prescribed by β leads
to an identical outcome in terms of visibility. �

This proves the correctness of our algorithm. The runtime is upper-bounded
by the product of |S| < τ τ2

(the initial branching factor), n (the number of times
we compute a new record set Ri(s)), and 2τ3+τ2 ·τ τ (to consider all combinations
of γ and β so to compute a new record set from the previous one). A minimum-
page book embedding can be computed by trying all possible choices for k ∈ [τ ].
We summarize Result 1 below.

Theorem 1. There is an algorithm which takes as input an n-vertex graph G
with a vertex order ≺, runs in time 2O(τ3) ·n where τ is the vertex cover number
of G, and computes a page assignment σ such that (≺, σ) is a (fo-bt(G,≺))-page
book embedding of G.

3.2 Parameterization by the Pathwidth of the Vertex Ordering

As our second result, we show that Fixed-Order Book Thickness is fixed-
parameter tractable parameterized by the pathwidth of (G,≺). We note that
while the pathwidth of G is always upper-bounded by the vertex cover number,
this does not hold when we consider a fixed ordering ≺, and hence this result is
incomparable to Theorem 1. For instance, if G is a path, it has arbitrarily large
vertex cover number while (G,≺) may have a pathwidth of 1, while on the other
hand if G is a star, it has a vertex cover number of 1 while (G,≺) may have
arbitrarily large pathwidth. To begin, we can show that the pathwidth of (G,≺)
provides an upper bound on the number of pages required for an embedding (see
the full version [5] for the proof).

Lemma 2. Every n-vertex graph G = (V,E) with a linear order ≺ of V such
that (G,≺) has pathwidth k admits a k-page book embedding 〈≺, σ〉, which can
be computed in O(n + k · n) time.

We note that the bound given in Lemma 2 is also tight for the same reason
as for Observation 1: complete bipartite graphs with bipartitions of size k and
h > k(k−1) have book thickness k [4], but admit an ordering ≺ with pathwidth k.

We now proceed to a description of our algorithm. Our input consists of
the graph G, the vertex ordering ≺, and an integer k that upper-bounds the
desired number of pages in a book embedding. Let κ be our parameter, i.e., the



372 S. Bhore et al.

Fig. 3. An assignment of the edges of Si to a page p, where the edge vcvd is the (α, i, p)-
important edge of va. Any vertex w with vc ≺ w ≺ va is visible to va, and any vertex
w′ ≺ vc is not visible to va.

pathwidth of (G,≺); observe that due to Lemma 2, we may assume that k ≤
κ. The algorithm performs a dynamic programming procedure on the vertices
v1, v2, . . . , vn of the input graph G in right-to-left order along ≺. For technical
reasons, we initially add a vertex v0 of degree 0 to G and place it to the left of
v1 in ≺; note that this does not increase the pathwidth of G.

We now adapt the concept of visibility introduced in Sect. 3.1 for use in this
algorithm. First, let us expand our notion of guard set (see Sect. 2) as follows:
for a vertex vi, let P ∗

vi
= {gi

1, . . . , g
i
m} where for each j ∈ [m − 1], gi

j is the
j-th guard of vi in reverse order of ≺ (i.e., gi

1 is the guard that is nearest to
vi in ≺), and gi

m = v0. For a vertex vi, let Ei = {vavb | vavb ∈ E, b > i}
be the set of all edges with at least one endpoint to the right of vi and let
Si = {gi

jvb | gi
j ∈ P ∗

vi
, gi

jvb ∈ Ei} be the restriction of Ei to edges between
a vertex to the right of vi and a guard in P ∗

vi
. An assignment α : Ei → [k] is

called a valid partial page assignment if α maps the edges in Ei to pages in a
non-crossing manner. Given a valid partial page assignment α : Ei → [k] and a
vertex va with a ≤ i, we say a vertex vx (x < a) is α-visible to va on a page p
if it is possible to draw the edge vavx in page p without crossing any other edge
mapped to p by α.

Before we proceed to describing our algorithm, we will show that the visibil-
ities of vertices w.r.t. valid partial page assignments exhibit a certain regularity
property. Given a ≤ i ≤ n, p ∈ [k], and a valid partial page assignment α of Ei,
let the (α, i, p)-important edge of va be the edge vcvd ∈ Si with the following
properties: (1) α(vcvd) = p, (2) c < a, and (3) |a−c| is minimum among all such
edges in Si. If multiple edges with these properties exist, we choose the edge
with minimum |d − c|. Intuitively, the (α, i, p)-important edge of va is simply
the shortest edge of Si which encloses va on page p; note that it may happen
that va has no (α, i, p)-important edge. Observe that, if the edge exists, its left
endpoint is vc ∈ P ∗

vi
, and we call vc the (α, i, p)-important guard of va. The next

observation easily follows from the definition of (α, i, p)-important edge, see also
Fig. 3.

Observation 3. If va has no (α, i, p)-important edge, then every vertex vx with
x < a is α-visible to va. If the (α, i, p)-important guard of va is vc, then vx

(x < a) is α-visible to va if and only if x ≥ c.

Observation 3 not only provides us with a way of handling vertex visibilities
in the pathwidth setting, but also allows us to store all the information we



Parameterized Algorithms for Book Embedding Problems 373

require about vertex visibilities in a more concise way than via the matrices
used in Sect. 3.1. For an index i ∈ [n], a vertex va where a ≤ i and a valid
partial page assignment α, we define the visibility vector Ui(va, α) as follows:
the p-th component of Ui(va, α) is the (α, i, p)-important guard of va, and � if
va has no (α, i, p)-important guard. Observe that since the number of pages is
upper-bounded by κ by assumption and the cardinality of P ∗

vi
is at most κ + 1,

there are at most (κ + 2)κ possible distinct visibility vectors for any fixed i.
Observe that thanks to Observation 3 the visibility vector Ui(vi, α) provides

us with complete information about the visibility of vertices vb (b < i) from vi—
notably, vb is not α-visible to vi on page p if and only if vb lies to the left of the
(α, i, p)-important guard Ui(vi, α)[p] (and, in particular, if Ui(vi, α)[p] = � then
every such vb is α-visible to vi on page p). On a high level, the algorithm will
traverse vertices in right-to-left order along ≺ and store the set of all possible
visibility vectors at each vertex. To this end, it will use the following observation
to update its visibility vectors.

Observation 4. Let α be a valid partial page assignment of Ei and p be a page.
If vi−1 �∈ P ∗

vi
, then a vertex vb (b < i − 1) is α-visible to vi−1 on page p if and

only if vb is α-visible to vi on page p.

Proof. By definition vi−1 and vi are consecutive in ≺. Let vb (for b < i − 1) be
a vertex that is α-visible to vi−1 on page p. If vb is not α-visible to vi on p, then
there must be a vertex w between vi−1 and vi that is incident to an edge in
Ei separating vi−1 and vi on page p. But this contradicts that vi−1 and vi are
consecutive in ≺. The other direction follows by the same argument. �

There is, however, a caveat: Observation 4 does not (and in fact cannot)
allow us to compute the new visibility vector if vi−1 ∈ P ∗

i . To circumvent this
issue, our algorithm will not only store the visibility vector Ui(vi, α) but also the
visibility vectors for each guard of vi. We now prove that we can compute the
visibility vector for any vertex from the visibility vectors of the guards—this is
important when updating our records, since we will need to obtain the visibility
records for new guards that are introduced at some step of the algorithm.

Lemma 3. Let va ≺ vi, α be a valid partial page assignment of Ei, p ∈ [k] be a
page, and assume va /∈ P ∗

i . Let vb ∈ P ∗
i ∪ {vi} be such that b > a and |b − a| is

minimized, i.e., vb is the first guard to the right of va. Then Ui(va, α) = Ui(vb, α).

Proof. Let vx for x < a be any vertex that is α-visible to va in page p and
assume vx is not α-visible to vb. Then there must be an edge wz ∈ Ei separating
va from vb in page p, i.e., va ≺ w ≺ vb. But in that case w is a guard in P ∗

i

closer to va contradicting the choice of vb. Conversely, let vx for x < a be a
vertex that is not α-visible to va in page p. Then there must be an edge wz ∈ Ei

separating vx from va on page p. Then edge wz also separates vx from vb and
vx is not α-visible to vb. Therefore, the visibility vectors Ui(va, α) and Ui(vb, α)
corresponding to the vertices va and vb, respectively, are equal. �



374 S. Bhore et al.

We can now formally define our record set as Qi = {(Ui(vi, α),
Ui(gi

1, α), . . . , Ui(gi
m−1, α)) | ∃ valid partial page assignment α : Ei → [k]},

where each individual element (record) in Qi can be seen as a queue start-
ing with the visibility vector for vi and then storing the visibility vectors for
individual guards (note that there is no reason to store an “empty” visibility
vector for gi

m). To facilitate the construction of a solution, we will also store a
function Λi from Qi to valid partial page assignments of Ei which maps each
tuple ω ∈ Qi to some α such that ω = (Ui(vi, α), Ui(gi

1, α), . . . , Ui(gi
m−1, α)).

Let us make some observations about our records Qi. First of all, since there
are at most (κ+2)κ many visibility vectors, |Qi| ≤ (κ+2)κ2

. Second, if |Q0| > 0
then, since E0 = E, the mapping Λ0(ω) will produce a valid page assignment of
E for any ω ∈ Q0. On the other hand, if G admits a k-page book embedding α
with order ≺, then α witnesses the fact that Q0 cannot be empty. Hence, the
algorithm can return one, once it correctly computes Q0 and Λ0.

The computation is carried out dynamically and starts by setting Qn =
{ω}, where ω = (�), and Λn(ω) = ∅. For the inductive step, assume that we
have correctly computed Qi and Λi, and the aim is to compute Qi−1 and Λi−1.
For each ω = (ω1, . . . , ωm) ∈ Qi, we compute an intermediate record ω′ which
represents the visibility vector of vi−1 w.r.t. α = Λi(ω) as follows:

– if vi−1 ∈ P ∗
i , then ω′ = (ω2, . . . , ωm), and

– if vi−1 �∈ P ∗
i , then ω′ = (ω1, . . . , ωm) (Recall Observation 4).

We now need to update our intermediate record ω′ to take into account the
new guards. In particular, we expand ω′ by adding, for each new guard gi−1

j ∈
P ∗

i−1 \ P ∗
i , an intermediate visibility vector Ui−1(gi−1

j , α) at the appropriate
position in ω′ (i.e., mirroring the ordering of guards in P ∗

i−1). Recalling Lemma 3,
we compute this new intermediate visibility vector Ui−1(gi−1

j , α) by copying the
visibility vector that immediately succeeds it in ω′.

Next, let Fi−1 = Ei−1 \ Ei be the at most κ new edges that we need to
account for, and let us branch over all assignments β : Fi−1 → [k]. For each such
β, we check whether α∪β is a valid partial page assignment of Ei−1, i.e., whether
the new edges in Fi−1 do not cross with each other or other edges in Ei when
following the chosen assignment β and the assignment α obtained from Λi. As
expected, we discard any β such that α ∪ β is not valid.

Our final task is now to update the intermediate visibility vectors Ui−1(∗, α)
(with ∗ being a placeholder) to Ui−1(∗, α∪β). This can be done in a straightfor-
ward way by, e.g., looping over each edge e ∈ Fi−1, obtaining the page p = β(e)
that e is mapped to, reading Ui−1(∗, α)[p] and replacing that value by the guard
g incident to e if g occurs to the right of Ui−1(∗, α)[p] and to the left of ∗. Finally,
we enter the resulting record ω′ into Qi−1.

Lemma 4. The above procedure correctly computes Qi−1 from Qi.

Proof. Consider an entry ω′ computed by the above procedure from some α ∪ β
and ω. Since we explicitly checked that α ∪ β is a valid partial page assign-
ment for Ei−1, there must exist a record (Ui−1(vi−1, α ∪ β), Ui−1(gi−1

1 , α ∪



Parameterized Algorithms for Book Embedding Problems 375

β), . . . , Ui−1(gi−1
m−1)) ∈ Qi−1, and by recalling Observation 3, Lemma 3 and

Observation 4 it can be straightforwardly verified that this record is equal to ω′.
For the opposite direction, consider a tuple ω0 ∈ Qi−1 that arises from the

valid partial page assignment γ of Ei−1, and let β, α be the restrictions of γ
to Fi−1 and Ei, respectively. Since α is a valid partial page assignment of Ei,
there must exist a tuple ω ∈ Qi that arises from α. Let α′ = Λi(ω). To conclude
the proof, it suffices to note that during the branching stage the algorithm will
compute a record from a combination of α′ (due to ω being in Qi) and β, and
the record computed in this way will be precisely ω0. �

This proves the correctness of the algorithm. The runtime is upper bounded
by O(n · (κ + 2)κ2 · κκ) (the product of the number of times we compute a new
record, the number of records and the branching factor for β). A minimum-page
book embedding can be obtained by trying all possible choices for k ∈ [κ]). We
summarize Result 2 below.

Theorem 2. There is an algorithm which takes as input an n-vertex graph G =
(V,E) with a vertex ordering ≺ and computes a page assignment σ of E such
that (≺, σ) is a (fo-bt(G,≺))-page book embedding of G. The algorithm runs in
n · κO(κ2) time where κ is the pathwidth of (G,≺).

4 Algorithms for Book Thickness

We now turn our attention to the general definition of book thickness (without
a fixed vertex order). We show that, given a graph G, in polynomial time we can
construct an equivalent instance G∗ whose size is upper-bounded by a function
of τ(G). Such an algorithm is called a kernelization and directly implies the
fixed-parameter tractability of the problem with this parameterization [9,11].

Theorem 3. There is an algorithm which takes as input an n-vertex graph G =
(V,E) and a positive integer k, runs in time O(τ τO(τ)

+ 2τ · n) where τ = τ(G)
is the vertex cover number of G, and decides whether bt(G) ≤ k. If the answer
is positive, it can also output a k-page book embedding of G.

Proof. If k > τ , by Observation 1 we can immediately conclude that G admits a
k-page book embedding. Hence we shall assume that k ≤ τ . We will also compute
a vertex cover C of size τ in time O(2τ · n) using well-known results [7].

For any subset U ⊆ C we say that a vertex of V \ C is of type U if its set
of neighbors is equal to U . This defines an equivalence relation on V \ C and
partitions V \ C into at most

∑τ
i=0

(
τ
i

)
= 2τ distinct types. In what follows, we

denote by VU the set of vertices of type U . We claim the following.

Claim. Let v ∈ VU such that |VU | ≥ 2 · kτ + 2. Then G admits a k-page book
embedding if and only if G′ = G\{v} does. Moreover, a k-page book embedding
of G′ can be extended to such an embedding for G in linear time.



376 S. Bhore et al.

Proof. (of the Claim). One direction is trivial, since removing a vertex from
a book embedding preserves the property of being a book embedding of the
resulting graph. So let 〈≺, σ〉 be a k-page book embedding of G′. We prove that
a k-page book embedding of G can be easily constructed by inserting v right
next to a suitable vertex u in VU and by assigning the edges of v to the same
pages as the corresponding edges of u. We say that two vertices u1, u2 ∈ VU

are page equivalent, if for each vertex w ∈ U , the edges u1w and u2w are both
assigned to the same page according to σ. Each vertex in VU has degree exactly
|U |, hence this relation partitions the vertices of VU into at most k|U | ≤ kτ sets.
Since |VU | \ {v} ≥ 2 · kτ + 1, at least three vertices of this set, which we denote
by u1, u2, and u3, are page equivalent. Consider now the graph induced by the
edges of these three vertices that are assigned to a particular page. By the above
argument, such a graph is a Kh,3, for some h > 0. However, since already K2,3

does not admit a 1-page book embedding, we have h ≤ 1, that is, each ui has
at most one edge on each page. Then we can extend ≺ by introducing v right
next to u1 and assign each edge vw to the same page as u1w. Since each such
edge vw runs arbitrarily close to the corresponding crossing-free edge u1w, this
results in a k-page book embedding of G and concludes the proof of the claim. �

We now construct a kernel G∗ from G of size O(kτ ) as follows. We first
classify each vertex of G based on its type. We then remove an arbitrary subset
of vertices from each set VU with |VU | > 2 · kτ + 1 until |VU | = 2 · kτ + 1. Thus,
constructing G∗ can be done in O(2τ + τ · n) time, where 2τ is the number of
types and τ · n is the maximum number of edges of G. From our claim above we
can conclude that G∗ admits a k-page book embedding if and only if G does.
Determining the book thickness of G∗ can be done by guessing all possible linear
orders and page assignments in O(kτ ! · kkτ

) = O(τ τO(τ)
) time. A k-page book

embedding of G∗ (if any) can be extended to one of G by iteratively applying
the constructive procedure from the proof of the above claim, in O(τ ·n) time. �

The next corollary easily follows from Theorem 3, by applying a binary search
on the number of pages k ≤ τ and by observing that a vertex cover of minimum
size τ can be computed in 2O(τ) + τ · n time [7].

Corollary 1. Let G be a graph with n vertices and vertex cover number τ .
A book embedding of G with minimum number of pages can be computed in
O(τ τO(τ)

+ τ log τ · n) time.

5 Conclusions and Open Problems

We investigated the parameterized complexity of Book Thickness and Fixed-
Order Book Thickness. We proved that both problems can be parameterized
by the vertex cover number of the graph, and that the second problem can be
parameterized by the pathwidth of the fixed linear order. The algorithm for
Book Thickness is the first fixed-parameter algorithm that works for general
values of k, while, to the best of our knowledge, no such algorithms were known
for Fixed-Order Book Thickness.



Parameterized Algorithms for Book Embedding Problems 377

We believe that our techniques can be extended to the setting in which we
allow edges on the same page to cross, with a given budget of at most c crossings
over all pages. This problem has been studied by Bannister and Eppstein [2] with
the number of pages k restricted to be either 1 or 2. It would also be interesting
to investigate the setting where an upper bound on the maximum number of
crossings per edge is given as part of the input, which is studied in [6].

The main question that remains open is whether Book Thickness (and
Fixed-Order Book Thickness) can be solved in polynomial time (and even
fixed-parameter time) for graphs of bounded treewidth, which was asked by
Dujmović and Wood [14]. As an intermediate step towards solving this problem,
we ask whether the two problems can be solved efficiently when parameterized
by the treedepth [25] of the graph. Treedepth restricts the graph structure in a
stronger way than treewidth, and has been used to obtain algorithms for several
problems which have proven resistant to parameterization by treewidth [17,19].

References

1. Bannister, M.J., Cabello, S., Eppstein, D.: Parameterized complexity of 1-planarity.
J. Graph Algorithms Appl. 22(1), 23–49 (2018). https://doi.org/10.7155/jgaa.
00457

2. Bannister, M.J., Eppstein, D.: Crossing minimization for 1-page and 2-page draw-
ings of graphs with bounded treewidth. J. Graph Algorithms Appl. 22(4), 577–606
(2018). https://doi.org/10.7155/jgaa.00479

3. Bekos, M.A., Gronemann, M., Raftopoulou, C.N.: Two-page book embeddings
of 4-planar graphs. Algorithmica 75(1), 158–185 (2016). https://doi.org/10.1007/
s00453-015-0016-8

4. Bernhart, F., Kainen, P.C.: The book thickness of a graph. J. Comb. Theory Ser.
B 27(3), 320–331 (1979). https://doi.org/10.1016/0095-8956(79)90021-2

5. Bhore, S., Ganian, R., Montecchiani, F., Nöllenburg, M.: Parameterized algorithms
for book embedding problems. CoRR abs/1908.08911 (2019). http://arxiv.org/
abs/1908.08911

6. Binucci, C., Di Giacomo, E., Hossain, M.I., Liotta, G.: 1-page and 2-page drawings
with bounded number of crossings per edge. Eur. J. Comb. 68, 24–37 (2018).
https://doi.org/10.1016/j.ejc.2017.07.009

7. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor.
Comput. Sci. 411(40–42), 3736–3756 (2010). https://doi.org/10.1016/j.tcs.2010.
06.026

8. Chung, F., Leighton, F., Rosenberg, A.: Embedding graphs in books: a layout
problem with applications to VLSI design. SIAM J. Algebraic Discret. Methods
8(1), 33–58 (1987). https://doi.org/10.1137/0608002

9. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21275-3

10. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173. Springer,
Heidelberg (2012)

11. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. TCS.
Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

https://doi.org/10.7155/jgaa.00457
https://doi.org/10.7155/jgaa.00457
https://doi.org/10.7155/jgaa.00479
https://doi.org/10.1007/s00453-015-0016-8
https://doi.org/10.1007/s00453-015-0016-8
https://doi.org/10.1016/0095-8956(79)90021-2
http://arxiv.org/abs/1908.08911
http://arxiv.org/abs/1908.08911
https://doi.org/10.1016/j.ejc.2017.07.009
https://doi.org/10.1016/j.tcs.2010.06.026
https://doi.org/10.1016/j.tcs.2010.06.026
https://doi.org/10.1137/0608002
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1


378 S. Bhore et al.

12. Dujmović, V., Wood, D.R.: On linear layouts of graphs. Discrete Math. Theor.
Comput. Sci. 6(2), 339–358 (2004)

13. Dujmovic, V., Wood, D.R.: Graph treewidth and geometric thickness parameters.
Discrete Comput. Geom. 37(4), 641–670 (2007). https://doi.org/10.1007/s00454-
007-1318-7

14. Dujmović, V., Wood, D.R.: On the book thickness of k-trees. Discrete Math. Theor.
Comput. Sci. 13(3), 39–44 (2011)

15. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph
layout problems parameterized by vertex cover. In: Algorithms and Computation
(ISAAC 2008), pp. 294–305 (2008). https://doi.org/10.1007/978-3-540-92182-0 28

16. Ganian, R.: Improving vertex cover as a graph parameter. Discrete Math. Theor.
Comput. Sci. 17(2), 77–100 (2015)

17. Ganian, R., Ordyniak, S.: The complexity landscape of decompositional parameters
for ILP. Artif. Intell. 257, 61–71 (2018). https://doi.org/10.1016/j.artint.2017.12.
006

18. Ganley, J.L., Heath, L.S.: The pagenumber of k-trees is O(k). Discrete Appl. Math.
109(3), 215–221 (2001). https://doi.org/10.1016/S0166-218X(00)00178-5

19. Gutin, G.Z., Jones, M., Wahlström, M.: The mixed Chinese postman problem
parameterized by pathwidth and treedepth. SIAM J. Discrete Math. 30(4), 2177–
2205 (2016). https://doi.org/10.1137/15M1034337

20. Haslinger, C., Stadler, P.F.: RNA structures with pseudo-knots: graph-theoretical,
combinatorial, and statistical properties. Bull. Math. Biol. 61(3), 437–467 (1999).
https://doi.org/10.1006/bulm.1998.0085

21. Kainen, P.C.: Some recent results in topological graph theory. In: Bari, R.A.,
Harary, F. (eds.) Graphs and Combinatorics, pp. 76–108. Springer, Berlin (1974).
https://doi.org/10.1007/BFb0066436

22. Kinnersley, N.G.: The vertex separation number of a graph equals its path-
width. Inf. Process. Lett. 42(6), 345–350 (1992). https://doi.org/10.1016/0020-
0190(92)90234-M

23. Lodha, N., Ordyniak, S., Szeider, S.: SAT-encodings for special treewidth and
pathwidth. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp.
429–445. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3 27

24. Mallach, S.: Linear ordering based MIP formulations for the vertex separation or
pathwidth problem. In: Brankovic, L., Ryan, J., Smyth, W.F. (eds.) IWOCA 2017.
LNCS, vol. 10765, pp. 327–340. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78825-8 27

25. Nešetřil, J., Ossona de Mendez, P.: Sparsity. AC, vol. 28. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-27875-4

26. Ollmann, L.T.: On the book thicknesses of various graphs. In: 4th Southeastern
Conference on Combinatorics, Graph Theory and Computing, vol. 8, p. 459 (1973)

27. Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Comb. Theory
Ser. B 35(1), 39–61 (1983). https://doi.org/10.1016/0095-8956(83)90079-5

28. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.
J. Algorithms 7(3), 309–322 (1986). https://doi.org/10.1016/0196-6774(86)90023-
4

29. Unger, W.: The complexity of colouring circle graphs. In: Finkel, A., Jantzen, M.
(eds.) STACS 1992. LNCS, vol. 577, pp. 389–400. Springer, Heidelberg (1992).
https://doi.org/10.1007/3-540-55210-3 199. (extended abstract)

30. Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci.
38(1), 36–67 (1989). https://doi.org/10.1016/0022-0000(89)90032-9

https://doi.org/10.1007/s00454-007-1318-7
https://doi.org/10.1007/s00454-007-1318-7
https://doi.org/10.1007/978-3-540-92182-0_28
https://doi.org/10.1016/j.artint.2017.12.006
https://doi.org/10.1016/j.artint.2017.12.006
https://doi.org/10.1016/S0166-218X(00)00178-5
https://doi.org/10.1137/15M1034337
https://doi.org/10.1006/bulm.1998.0085
https://doi.org/10.1007/BFb0066436
https://doi.org/10.1016/0020-0190(92)90234-M
https://doi.org/10.1016/0020-0190(92)90234-M
https://doi.org/10.1007/978-3-319-66263-3_27
https://doi.org/10.1007/978-3-319-78825-8_27
https://doi.org/10.1007/978-3-319-78825-8_27
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1016/0095-8956(83)90079-5
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1007/3-540-55210-3_199
https://doi.org/10.1016/0022-0000(89)90032-9


Sketched Representations and Orthogonal
Planarity of Bounded Treewidth Graphs

Emilio Di Giacomo , Giuseppe Liotta , and Fabrizio Montecchiani(B)

Department of Engineering, University of Perugia, Perugia, Italy
{emilio.digiacomo,giuseppe.liotta,fabrizio.montecchiani}@unipg.it

Abstract. Given a planar graph G and an integer b, OrthogonalPla-
narity is the problem of deciding whether G admits an orthogonal draw-
ing with at most b bends in total. We show that OrthogonalPlanarity
can be solved in polynomial time if G has bounded treewidth. Our proof
is based on an FPT algorithm whose parameters are the number of bends,
the treewidth and the number of degree-2 vertices of G. This result is
based on the concept of sketched orthogonal representation that synthet-
ically describes a family of equivalent orthogonal representations. Our
approach can be extended to related problems such as HV-Planarity
and FlexDraw. In particular, both OrthogonalPlanarity and HV-
Planarity can be decided in O(n3 log n) time for series-parallel graphs,
which improves over the previously known O(n4) bounds.

1 Introduction

An orthogonal drawing of a planar graph G is a planar drawing where each edge
is drawn as a chain of horizontal and vertical segments; see Fig. 1a. Orthogonal
drawings are among the most investigated research subjects in graph drawing,
see, e.g., [3–5,11,13,17,25,28,30,31] for a limited list of references, and also [12,
23] for surveys. The OrthogonalPlanarity problem asks whether G admits
an orthogonal drawing with at most b bends in total, for a given b ∈ N.

In a seminal paper, Garg and Tamassia [25] proved that OrthogonalPla-
narity is NP-complete when b = 0, which implies that minimizing the number
of bends is also NP-hard. In fact, it is even NP-hard to approximate the mini-
mum number of bends in an orthogonal drawing with an O(n1−ε) error for any
ε > 0 [25]. On the positive side, Tamassia [30] showed that OrthogonalPla-
narity can be decided in polynomial time if the input graph is plane, i.e., it has
a fixed embedding in the plane. When a planar embedding is not given as part
of the input, polynomial-time algorithms exist for some restricted cases, namely
subcubic planar graphs and series-parallel graphs, see, e.g., [11,13,17,28,31].

Research partially supported by: (i) MIUR, grant 20174LF3T8 AHeAD: efficient Algo-
rithms for HArnessing networked Data.; (ii) Engineering Dep. - University of Perugia,
grants RICBASE2017WD and RICBA18WD: “Algoritmi e sistemi di analisi visuale di
reti complesse e di grandi dimensioni”.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 379–392, 2019.
https://doi.org/10.1007/978-3-030-35802-0_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_29&domain=pdf
http://orcid.org/0000-0002-9794-1928
http://orcid.org/0000-0002-2886-9694
http://orcid.org/0000-0002-0543-8912
https://doi.org/10.1007/978-3-030-35802-0_29


380 E. Di Giacomo et al.

Given the hardness result for OrthogonalPlanarity, a natural research
direction is to investigate its parameterized complexity [19]. Despite the rich
literature about orthogonal drawings, this direction has been surprisingly dis-
regarded. The only exception is a result by Didimo and Liotta [16], who
described an algorithm for biconnected planar graphs that runs in O(6rn4 log n)
time, where r is the number of degree-4 vertices. We recall that FPT algo-
rithms have been proposed for other graph drawing problems, such as upward
planarity [10,15,26], layered drawings [20], linear layouts [2,21,22], and 1-
planarity [1].

Contribution. We describe an FPT algorithm for OrthogonalPlanarity
whose parameters are the number of bends, the treewidth and the number of
degree-2 vertices of the input graph. We recall that the notion of treewidth [29]
is commonly used as a parameter in the parameterized complexity analysis (see
also Sect. 2). The algorithm works for planar graphs of degree four with no
restriction on the connectivity. Our main contribution is summarized as follows.

Theorem 1. Let G be an n-vertex planar graph with σ degree-2 vertices and
let b ∈ N. Given a tree-decomposition of G of width k, there is an algorithm
that decides OrthogonalPlanarity in f(k, σ, b) · n time, where f(k, σ, b) =
kO(k)(σ + b)k log(σ + b). The algorithm computes a drawing of G, if one exists.

For an n-vertex graph G of treewidth k, a tree-decomposition of G of width k
can be found in kO(k3) n time [7], while a tree-decomposition of width O(k) can
be computed in 2O(k) n time [9]. The function f(k, σ, b) depends exponentially on
neither σ nor b. Since both σ and b are O(n) [3], OrthogonalPlanarity can
be solved in time ng(k) for some polynomial function g(k), and thus it belongs to
the XP class when parameterized by treewidth [19]. Moreover, since the number
of bends in a bend-minimum orthogonal drawing is O(n), the next result follows
from Theorem 1, performing a binary search on b.

Corollary 1. Let G be an n-vertex planar graph. Given a tree-decomposition
of G of width k, there is an algorithm that decides OrthogonalPlanarity
in kO(k)nk+1 log n time. Also, a bend-minimum orthogonal drawing of G can be
computed in kO(k)nk+1 log2 n time.

By Corollary 1 OrthogonalPlanarity can be decided in O(n3 log n) time for
graphs of treewidth two, and hence bend-minimum orthogonal drawings can be
computed in O(n3 log2 n) time. We remark that the best previous result for these
graph, dating back to twenty years ago, is an O(n4) algorithm by Di Battista
et al. [13] which however is restricted to biconnected graphs (whereas ours is
not).

Our FPT approach can be applied to related problems, namely to HV-
Planarity and FlexDraw. HV-Planarity takes as input a planar graph G
whose edges are each labeled H (horizontal) or V (vertical) and it asks whether
G admits an orthogonal drawing with no bends and in which the direction of
each edge is consistent with its label. As a corollary of our results, we can decide
HV-Planarity in O(n3 log n) time for series-parallel graphs, which improves a
recent O(n4) bound by Didimo et al. [18] and addresses one of the open problems



Sketched Representations and Orthogonal Planarity 381

in that paper. FlexDraw takes as input a planar graph G whose edges have
integer weights and it asks whether G admits an orthogonal drawing where each
edge has a number of bends that is at most its weight [5,6].

Proof Strategy and Paper Organization. The first ingredient of our app-
roach is a well-known combinatorial characterization of orthogonal drawings
(see [12,30]) that transforms OrthogonalPlanarity to the problem of test-
ing the existence of a planar embedding along with a suitable angle assignment
to each vertex-face and edge-face incidence (see Sect. 2). The second ingredient
is the definition of a suitable data structure, called orthogonal sketches, that
encodes sufficient information about any such combinatorial representation, and
in particular it makes it possible to decide whether the representation can be
extended with further vertices incident to a given vertex cutset of the graph (see
Sect. 3). The proposed algorithm (see Sect. 4) traverses a tree-decomposition of
the input graph and stores a limited number of orthogonal sketches for each
node of the tree, rather than all its possible orthogonal drawings. This number
depends on the width of the tree-decomposition, on the number of bends, and on
the number of degree-2 vertices. The key observation is that a vertex of degree
greater than two may correspond to a right turn when walking clockwise along
the boundary of a face but not to a left turn, while a degree-2 vertex may cor-
respond to both a left or a right turn. Thus, the number of degree-2 vertices, as
well as the number of bends, have an impact in how much a face can “roll-up”
in the drawing, which in our approach translates in possible weights that can be
assigned to the edges of an orthogonal sketch. The extensions of our approach
can be found in Sect. 5, while conclusions and open problems are in Sect. 6. For
reasons of space, some proofs have been omitted and can be found in [14] (the
corresponding statements are marked with an asterisk (*)).

2 Preliminaries

Embeddings. We assume familiarity with basic notions about graph drawings.
A planar drawing of a planar graph G subdivides the plane into topologically
connected regions, called faces. The infinite region is the outer face. A planar
embedding of G is an equivalence class of planar drawings that define the same set
of faces and with the same outer face. A planar embedding of a connected graph
can be uniquely identified by specifying its rotation system, i.e., the clockwise
circular order of the edges around each vertex, and the outer face. A plane graph
G is a planar graph with a given planar embedding. The number of vertices
encountered in a closed walk along the boundary of a face f of G is the degree of
f , denoted as δ(f). If G is not 2-connected, a vertex may be encountered more
than once, thus contributing more than one unit to the degree of the face.

Orthogonal Representations. Let G = (V,E) be a planar graph with vertex
degree at most four. A planar drawing Γ of G is orthogonal if each edge is a
polygonal chain consisting of horizontal and vertical segments. A bend of an edge
e in Γ is a point shared by two consecutive segments of e. An angle formed by



382 E. Di Giacomo et al.

two consecutive segments incident to the same vertex (resp. bend) is a vertex-
angle (resp. bend-angle). An orthogonal representation of G can be derived from
Γ and it specifies the values of all vertex- and bend-angles (see [12,30]). More
formally, let E be a planar embedding of G, and let e = (u, v) be an edge that
belongs to the boundary of a face f of E . The two possible orientations (u, v) and
(v, u) of e are called darts. A dart is counterclockwise with respect to f , if f is
on the left side when walking along the dart following its orientation. Let D(u)
be the set of darts exiting from u and let D(f) be the set of counterclockwise
darts with respect to f .

Definition 1. Let G = (V,E) be a planar graph with vertex degree at most four.
An orthogonal representation H of G is a planar embedding E of G and an
assignment to each dart (u, v) of two values α(u, v) = cα · π

2 and β(u, v) = cβ · π
2 ,

where cα ∈ {1, 2, 3, 4} and cβ ∈ N, that satisfies the following conditions.

C1. For each vertex u:
∑

(u,v)∈D(u)

α(u, v) = 2π;

C2. For each internal face f :
∑

(u,v)∈D(f)

(α(u, v)+β(v, u)−β(u, v)) = π(δ(f)−2);

C3. For the outer face fo:
∑

(u,v)∈D(fo)

(α(u, v)+β(v, u)−β(u, v)) = π(δ(fo)+2).

Let f be the face counterclockwise with respect to dart (u, v). The value α(u, v)
represents the vertex-angle that dart (u, v) forms with the dart following it in
the circular counterclockwise order around u; we say that α(u, v) is a vertex-
angle of u in f . The value β(u, v) represents the sum of the π

2 bend-angles that
dart (u, v) forms in f . Condition C1 guarantees that the sum of angles around
each vertex is valid, while C2 (respectively, C3) guarantees that the sum of the
angles at the vertices and at the bends of an internal face (respectively, outer
face) is also valid. Given an orthogonal representation of an n-vertex graph G,
a corresponding orthogonal drawing can be computed in O(n) time [30].

Tree-Decompositions. Let (X , T ) be a pair such that X = {X1,X2, . . . , X�}
is a collection of subsets of vertices of a graph G called bags, and T is a tree
whose nodes are in a one-to-one mapping with the elements of X . With a slight
abuse of notation, Xi will denote both a bag of X and the node of T whose
corresponding bag is Xi. The pair (X , T ) is a tree-decomposition of G if : (i) For
every edge (u, v) of G, there exists a bag Xi that contains both u and v, and (ii)
For every vertex v of G, the set of nodes of T whose bags contain v induces a
non-empty (connected) subtree of T . The width of a tree-decomposition (X , T )
of G is max�

i=1 |Xi| − 1, and the treewidth of G is the minimum width of any
tree-decomposition of G. We use a particular tree-decomposition (which always
exists [27]) that limits the number of possible transitions between bags.

Definition 2 [27]. A tree-decomposition (X , T ) of G is nice if T is a rooted tree
and: (a) Every node of T has at most two children, (b) If a node Xi of T has
two children whose bags are Xj and Xj′ , then Xi = Xj = Xj′ , (c) If a node Xi

of T has only one child Xj, then there exists a vertex v ∈ G such that either
Xi = Xj ∪ {v} or Xi ∪ {v} = Xj. In the former case of (c) we say that Xi

introduces v, while in the latter case Xi forgets v.



Sketched Representations and Orthogonal Planarity 383

3 Orthogonal Sketches

Recall that an orthogonal representation of a planar graph G corresponds to a
planar embedding of G and to an assignment of vertex- and bend-angles in each
face of G. A fundamental observation for our approach is that the conditions that
make an assignment of such angles a valid orthogonal representation of G can
be verified for each vertex and for each face independently. In what follows we
define two equivalence relations on the set of orthogonal representations of G that
yields a set of equivalence classes whose size is bounded by some function of the
width of T , of the number of degree-2 vertices of G, and of the number of bends.

Fig. 1. (a) An orthogonal drawing Γ of a graph G = (V, E) with 8 bends; the white
vertices define a set X ⊆ V . (b) The representing cycles of the active faces of H with
respect to X, where H denotes the orthogonal representation of Γ . (c) The connected
sketched embedding C∗(H, G). (d) The orthogonal sketch 〈C(H, X), φ, ρ〉.

Sketched Embeddings. Let H be an orthogonal representation of a planar
graph G = (V,E) and let X ⊆ V ; see for example Fig. 1a. The vertices in X are
called active. A face f of H is active if it contains at least one active vertex. A
representing cycle Cf of an active face f is an oriented cycle such that: (i) It
contains all and only the active vertices of f in the order they appear in a closed



384 E. Di Giacomo et al.

walk along the boundary of f . (ii) Cf is counterclockwise with respect to f , that
is, Cf is oriented coherently with the counterclockwise darts of face f . Notice
that Cf may be non-simple because a cut-vertex may appear multiple times
when walking along Cf . Also, if H contains distinct components, the outer face
of each component is considered independently. See Fig. 1b for an illustration.

Let H be an orthogonal representation of a planar graph G. We may con-
veniently focus on an orthogonal drawing Γ that falls in the equivalence class
of drawings having H as an orthogonal representation. Assume first that H is
connected. The sketched embedding of H with respect to X is the plane graph
C(H,X) constructed as follows. For each active face f we draw in Γ its repre-
senting cycle Cf by identifying the vertices of Cf with the corresponding vertices
of f and by drawing the edges of Cf inside f without creating crossings. Graph
C(H,X) is the embedded graph formed by the edges that we drew inside the
active faces. This is a plane graph by construction, it may be disconnected, and
it may contain self-loops and multiple edges. Graph C(H,X) has a face f ′ for
each representing cycle Cf of an active face f of H; we call f ′ an active face of
C(H,X). If H is not connected, a sketched embedding C(Hi,X) is computed for
each connected component Hi of H (i = 1, . . . , h) and the sketched embedding
of H is C(H,X) =

⋃h
i=1 C(Hi,X). See for example Fig. 1b.

Definition 3. Let G = (V,E) be a planar graph and let X ⊆ V . Let H1 and
H2 be two orthogonal representations of G. H1 and H2 are X-equivalent if they
have the same sketched embedding.

Suppose that H is connected. We now aim at computing a connected super-
graph of C(H,X). By construction, the active faces of C(H,X) may share ver-
tices but not edges and hence C(H,X) also contains faces that are not active. For
each non-active face g of C(H,X), we add a dummy vertex vg in its interior and
we connect it to all vertices on the boundary of g by adding dummy edges. This
turns C(H,X) to a connected plane graph C∗(H,X), which we call a connected
sketched embedding of H with respect to X. If H is not connected, a connected
sketched embedding C∗(Hi,X) is computed for each C(Hi,X) independently,
and the connected sketched embedding of H is C∗(H,X) =

⋃h
i=1 C∗(Hi,X).

Figure 1c shows a connected sketched embedding obtained from Fig. 1b. Observe
that it may be possible to construct different connected sketched embeddings
of the same sketched embedding. However, any connected sketched embedding
encodes the information about the global structure of H that is sufficient for
the purposes of our algorithm. C∗(H,X) (and hence C(H,X)) has a number
of vertices that is O(|X|) and a number of edges that is also O(|X|) because
C∗(H,X) is planar and the multiplicity of an edge in C∗(H,X) is at most four.

Lemma 1 (*). Let G = (V,E) be a planar graph and let X ⊆ V . Let H be
the set of all possible orthogonal representations of G. The X-equivalent relation
partitions H in at most wO(w) equivalence classes, where w = |X|.

Orthogonal Sketches. Let H be an orthogonal representation of a plane graph
G = (V,E) and let X ⊆ V . Let C(H,X) be a sketched embedding of H with



Sketched Representations and Orthogonal Planarity 385

respect to X. Recall that H is defined by two functions, α and β, that assign the
vertex- and bend-angles made by darts inside their faces. The shape of C(H,X)
consists of two functions φ and ρ defined as follows. Let (u, v) be a dart of
C(H,X), which corresponds to a path Πuv in H. Let z be the vertex of Πuv

adjacent to u (possibly z = v). We set φ(u, v) = α(u, z); the value φ(u, v) still
represents the vertex-angle that u makes in the face on the left of (u, v). Function
ρ assigns to each dart (u, v) of C(H,X) a number that describes the shape of Πuv

in H. More precisely, for each representing cycle Cf and for each dart (u, v) of Cf ,
ρ(u, v, f) = nπ

2
(u, v) − n 3π

2
(u, v) − 2n2π(u, v), where na(u, v) (a ∈ {π

2 , 3π
2 , 2π})

is the number of vertex- and bend-angles between u and v whose value is a.
For example, Fig. 1d shows a sketched embedding together with its shape. We
call ρ(u, v, f) the roll-up number1 of (u, v) in f . If φ(u, v) > π

2 and f is the
counterclockwise face with respect to dart (u, v), we say that u is attachable in
f . Two X-equivalent sketched embeddings have the same shape, if they have the
same values of φ and ρ. A sketched embedding C(H,X), together with its shape
〈φ, ρ〉, is called an orthogonal sketch and it is denoted by 〈C(H,X), φ, ρ〉.
Definition 4. Let G = (V,E) be a planar graph and let X ⊆ V . Let H1 and H2

be two orthogonal representations of G. H1 and H2 are shape-equivalent if they
are X-equivalent and their orthogonal sketches have the same shape.

Lemma 2 (*). Let 〈C(H,X), φ, ρ〉 be an orthogonal sketch. Let Cf be a rep-
resenting cycle of C(H,X) and consider a closed walk along its boundary. Let
ρ∗ be the sum of the roll-up numbers over all the traversed edges, and let na

be the number of encountered vertex-angles with value a ∈ {π
2 , 3π

2 , 2π}. Then
ρ∗ + nπ

2
− n 3π

2
− 2n2π = c, with c = 4 (c = −4) if f is an inner (the outer) face.

Lemma 3 (*). Let G = (V,E) be a planar graph with σ vertices of degree
two. Let H be the set of all possible orthogonal representations of G with at
most b bends in total. The shape-equivalent relation partitions H in at most
wO(w) · (σ + b)w−1 equivalence classes, where w = |X|.
Proof sketch. We shall prove that nX · nS ≤ wO(w) · (σ + b)w−1, where nX

is the number of X-equivalent classes and nS is the number of possible shapes
for each X-equivalent class. By Lemma 1, nX ≤ wO(w); we can show that nS ≤
wO(w)(σ + b)w−1. For a fixed sketched embedding C(H,X), a shape is defined
by assigning to each dart (u, v) of C(H,X) the two values φ(u, v) and ρ(u, v, f).
The number of choices for the values φ(u, v) is at most 44w ≤ wO(w). As for the
possible choices for ρ(u, v, f), we claim that −(σ+b) ≤ ρ(u, v, f) ≤ σ+b+4 based
on two observations. (1) The number of vertices and bends forming an angle of
3π
2 inside a face cannot be greater than b + σ. (2) For each vertex forming an

angle of 2π inside a face there are two vertex-angles of π
2 inside the same face.

Finally, once the vertex-angles are fixed, the number of darts for which the roll-
up number can be fixed independently is at most w − 1. Thus, we have w − 1
values to choose and 2(σ + b) + 5 choices for each of them. �	
1 It may be worth observing that other papers used conceptually similar definitions,

called rotation (see, e.g., [5]) and spirality (see, e.g., [13]).



386 E. Di Giacomo et al.

4 The Parameterized Algorithm

Overview. We describe an algorithm, called OrthoPlanTester, that decides
whether a planar graph G admits an orthogonal drawing with at most b bends in
total, by using a dynamic programming approach on a nice tree-decomposition
T of G. The algorithm traverses T bottom-up and decides whether the subgraph
associated with each subtree admits an orthogonal drawing with at most b bends.
For each bag X, it stores all possible orthogonal sketches and, for each of them,
the minimum number of bends of any orthogonal representation encoded by that
orthogonal sketch. To generate this record, OrthoPlanTester executes one
of three possible procedures based on the type of transition with respect to the
children of X in T . If the execution of the procedure results in at least one
orthogonal sketch, then the algorithm proceeds, otherwise it halts and returns
a negative answer. If the root bag contains at least one orthogonal sketch, then
the algorithm returns a positive answer. In the positive case, the information
corresponding to the embedding of the graph and to the vertex- and bend-
angles can be reconstructed through a top-down traversal of T so to obtain an
orthogonal representation of G, and consequently an orthogonal drawing [30].

The Algorithm. Let G be an n-vertex planar graph with vertex degree at
most four and with σ vertices of degree two, and let (X , T ) be a nice tree-
decomposition of G of width k. Following a bottom-up traversal of T , let Xi be
the next bag to be visited and let Bi the set of all orthogonal sketches of Xi.
Let w = k +1 and recall that |Xi| ≤ w. Let Ti be the subtree of T rooted at Xi.
Let Gi be the subgraph of G induced by all the vertices that belong to the bags
in Ti. We distinguish the following four cases.

Xi is a Leaf. Without loss of generality, we can assume that Xi contains only
one vertex v (as otherwise we can root in Xi a chain of bags that introduce
the vertices of Xi one by one). Thus, Gi contains only v and it admits exactly
one orthogonal representation with no bends. In particular, there is a unique
sketched embedding consisting of a single representing cycle Cf having v and no
edges on its boundary. Also, the functions φ and ρ are undefined.

Xi Forgets a Vertex. Let v be the vertex forgotten by Xi. Let Xj be the child
of Xi in T . In this case Gi = Gj and we generate the orthogonal sketches for Bi

by suitably updating those in Bj . For each orthogonal sketch 〈C(H,Xj), φ, ρ〉 in
Bj and for each representing cycle Cf of C(H,Xj) containing v, we apply the
following operation. If v is the only vertex of Cf , we remove Cf from C(H,X).
Otherwise there are at most eight edges of Cf incident to v, based on whether
v appears one or more times in a closed walk along Cf . We first remove all self-
loops incident to v, if any. Let (u1, v), (v, u2) be any two edges of Cf incident to
v that appear consecutively in a counterclockwise walk along Cf . For any such
pair of edges we apply the following procedure. We remove the edges (u1, v),
(v, u2) from Cf and we add an edge (u1, u2). We assign to the dart (u1, u2) roll-
up number equal to the sum of the roll-up numbers of darts (u1, v) and (v, u2)
plus a constant c defined as follows. If φ(v, u2) = π, then c = 0; if φ(v, u2) = π

2 ,



Sketched Representations and Orthogonal Planarity 387

then c = 1; if φ(v, u2) = 3π
2 , then c = −1; if φ(v, u2) = 2π, then c = −2. Once

all consecutive pairs of edges incident to v have been processed, v is removed
from Cf . It is immediate to verify that Lemma 2 holds for Cf after applying
this operation. See Fig. 2a and b for an illustration.

Fig. 2. A portion of a orthogonal sketch before and after removing the bigger vertices.

The above operation does not change the number of bends associated with the
resulting orthogonal sketches, but it may create duplicated orthogonal sketches
for Bi, which we delete. When deleting the duplicates, we shall pay attention on
pairs of orthogonal sketches that are the same but with a different number of
bends. To see this, let (u, v) be a dart of an orthogonal sketch 〈C(H,Xj), φ, ρ〉,
which corresponds to a path Πuv in H, and let f be the face on the left of this
path in H. An angle along Πuv in f may be both a vertex-angle or a bend-angle.
Hence, removing v from different orthogonal sketches (with different numbers of
bends) may result in a set of orthogonal sketches that differ only in the number
of bends. In this case, the algorithm stores the one with fewer bends, because in
every step of the algorithm (see also the next two cases), the information about
the total number of bends of an orthogonal sketch is only used to verify that it
does not exceed the given parameter b.

Xi Introduces a Vertex. Let v be the vertex introduced in Xi. Let Xj be the
child of Xi in T . If v does not have neighbors in Xi, then Bi is the union of Bj

and the (unique) orthogonal sketch of the graph with the single vertex v (see the
leaf case). Otherwise, let u1, . . . , uh be the neighbors of v in Xi, with h ≤ w. We
generate Bi from Bj by applying the following procedure. At a high level, we
first update each sketched embedding that can be extracted from an orthogonal
sketch in Bj by adding v, we then generate all shapes for the resulting sketched
embeddings, and we finally discard those shapes that are not valid.

Let C(H,Xj) be a sketched embedding for which there is at least one orthog-
onal sketch in Bj . Suppose first that u1, . . . , uh all belong to the same component
of C(H,Xj). By planarity, an orthogonal representation of Gj , whose sketched
embedding is C(H,Xj), can be extended with v only if it contains at least one
face having all of v’s neighbors on its boundary. This corresponds to verifying



388 E. Di Giacomo et al.

first the existence of a representing cycle Cf in C(H,Xj) with all of v’s neigh-
bors on its boundary. We thus identify the representing cycles in which vertex v
can be inserted and connected to its neighbors. We consider each possible choice
independently; for each choice we duplicate C(H,Xj) and insert v accordingly.
For each of the resulting sketched embeddings, we generate all possible shapes.
Namely, for each representing cycle, we generate all possible vertex-angle assign-
ments for its vertices and all possible roll-up numbers for its edges that satisfy
Lemma 2. Next, for every such assignment, denoted by 〈φ, ρ〉, we verify its valid-
ity. Let Sj be the set of orthogonal sketches 〈C(H,Xj), φ, ρ〉 of Bj such that the
restriction of 〈φ, ρ〉 to the edges of C(H,Xj) corresponds to 〈φ, ρ〉. If Sj is empty,
〈φ, ρ〉 is discarded as it would not be possible to obtain it from Bj . Furthermore,
observe that ρ(v, ui) corresponds to the number of bends along the edge (v, ui).
Thus, we should ensure that b∗ +

∑h
i=1 ρ(v, ui) ≤ b, where b∗ is the number of

bends of 〈C(H,Xj), φ, ρ〉. If this is not the case, again the shape is discarded.
Finally, among the putative orthogonal sketches generated, we store in Bi only
those for which Lemma 2 holds for each of its representing cycles.

Xi Has Two Children. Let Xj and Xj′ be the children of Xi in T . Recall
that these three bags are all the same, although Gj and Gj′ differ. The only
orthogonal representations of Gi are those that can be obtained by merging at
the common vertices of Xi an orthogonal representation of Gj with an orthogonal
representation of Gj′ in such a way that the resulting representation has a planar
embedding, it has at most b bends in total, and it satisfies Definition 1. At a high
level, this can be done by merging two connected sketched embeddings (one in
Bj and one in Bj′) and then by verifying that there is a planar embedding for
the merged graph such that Lemma 2 is verified for each representing cycle, and
the overall number of bends is at most b. We split this procedure in two phases.

Let C(H,Xj) be a sketched embedding for which there is at least one orthog-
onal sketch in Bj and let C(H ′,Xj′) be a sketched embedding for which there
is at least one orthogonal sketch in Bj′ . We first compute a connected sketched
embedding C∗(H,Xj) and a connected sketched embedding C∗(H ′,Xj′). Let
C be the union of these two graphs disregarding the rotation system and the
choice of the outer face. For each connected component of C, we generate all
possible planar embeddings. (The embeddings of C that are not planar are dis-
carded because they correspond to non-planar embeddings of Gi.) For each pla-
nar embedding of C, we verify that the planar embedding of C restricted to the
edges of C(H,Xj) corresponds to the planar embedding of C(H,Xj) and the
same holds for the edges of C(H ′,Xj′). This condition ensures that the embed-
ding of C can be obtained from those of C(H,Xj) and C(H ′,Xj′). We then
remove the dummy vertices and the dummy edges from C and we analyze each
face of the resulting plane graph to verify whether the orientation of its edges
is consistent. Namely, a face of a sketched embedding contains only edges that
are either all counterclockwise or clockwise with respect to it. If this condition
is not satisfied, the candidate sketched embedding is discarded.

In the second phase, for each generated sketched embedding, we compute all
of its possible shapes and test the validity of each of them. Let C be a sketched



Sketched Representations and Orthogonal Planarity 389

embedding. For each representing cycle of C, we generate all possible vertex-
angle assignments for its vertices and roll-up numbers for its edges, keeping only
those that satisfy Lemma 2. For every such assignment 〈φ, ρ〉, let Sj be the set
of orthogonal sketches 〈C(H,Xj), φ, ρ〉 of Bj such that the restriction of 〈φ, ρ〉
to the edges of C(H,Xj) corresponds to 〈φ, ρ〉. Similarly, let Sj′ be the set of
orthogonal sketches 〈C(H ′,Xj′), φ′, ρ′〉 of Bj′ such that the restriction of 〈φ, ρ〉
to the edges of C(H ′,Xj′) corresponds to 〈φ′, ρ′〉. If any of Sj and Sj′ is empty,
〈φ, ρ〉 is discarded as it would not be possible to obtain it from Bj and Bj′ .
Finally, let b∗

j and b∗
j′ be the minimum number of bends among the orthogonal

sketches of Sj and Sj′ , respectively. The set Ei of edges shared by C(H,Xj)
and C(H ′,Xj′) contains edges (if any) that connect pairs of vertices of Xi and
that belong to G. In particular, for each edge in Ei, the absolute value of its
roll-up number corresponds to the number of bends along it. Hence, we verify
that b∗

j + b∗
j′ − ∑

(u,v)∈Ei
|ρ(u, v)| ≤ b, otherwise we discard 〈φ, ρ〉. We conclude:

Lemma 4. Graph G admits an orthogonal drawing with at most b bends if and
only if algorithm OrthoPlanTester returns a positive answer.

Lemma 5 (*). Algorithm OrthoPlanTester runs in kO(k)(b + σ)k log(b +
σ) · n time, where k is the treewidth of G, σ is the number of degree-two vertices
of G, and b is the maximum number of bends.

Proof sketch. Let T ′ be a tree-decomposition of G of width k and with O(n)
nodes. We compute, in O(k · n) time, a nice tree-decomposition T of G of width
k and O(n) nodes [8,27]. In what follows, we prove that OrthoPlanTester
spends kO(k)(b+σ)k log(b+σ) time for each bag Xi of T . The claim trivially fol-
lows if Xi is a leaf of T . If Xi forgets a vertex v, OrthoPlanTester considers
each orthogonal sketch of the child bag Xj , which are kO(k) · (b+σ)k by Lemma
3 (a bag of T has at most k + 1 vertices). For each orthogonal sketch, Ortho-
PlanTester removes v from each of its O(1) representing cycles. Clearly, this
can be done in O(1) time. Also, OrthoPlanTester removes possible dupli-
cates in Bi. Note that, before removing the duplicates, the elements in Bi are
at most as many as those in Bj . To efficiently remove the duplicates in Bi, we
represent each orthogonal sketch as a concatenation of three arrays, encoding its
sketched embedding (i.e., the rotation system and the outer face), its function
φ, and its function ρ. Thus we have a set of N = kO(k)(b + σ)k arrays each of
size O(k). Sorting the elements of this set, and hence deleting all duplicates,
takes O(k) · N log N time, which, with some manipulations, can be rewritten as
kO(k)(b+σ)k log(b+σ). If Xi introduces a vertex v, OrthoPlanTester consid-
ers each sketched embedding that can be extracted from Bj . Each of them, is then
extended with v in all possible ways, which are kO(k) (observe that |Xj | ≤ k−1).
Next OrthoPlanTester generates at most kO(k)(σ + b)k orthogonal sketches.
We remark that, as explained in the proof of Lemma 3, for each cycle of length
w ≤ k + 1 it suffices to generate the roll-up numbers of w − 1 edges. More-
over, for the edges incident to v the roll-up number is restricted to the range
[−b,+b] and it is subject to the additional constraint that the total number
of bends should not exceed b. For each generated shape, OrthoPlanTester



390 E. Di Giacomo et al.

checks whether the corresponding subsets of the values of φ and ρ exist in the
orthogonal sketches of Bj having the fixed sketched embedding. This can be
done by encoding the values of φ and ρ as two concatenated arrays, each of
size O(k), by sorting the set of arrays, and by searching among this set. Since
the number of orthogonal sketches is N = kO(k)(σ + b)k, this can be done in
O(k) ·N log N = O(k) ·kO(k)(σ+b)k O(k) log(k(σ+b)) = kO(k)(σ+b)k log(σ+b)
for a fixed sketched embedding, and in kO(k)(σ + b)k log(σ + b) time in total.
Finally, it remains to check Lemma 2 for each representing cycle, which takes
O(k2) time for each of the kO(k) · (σ + b)k orthogonal sketches in Bi. �	

Lemmas 4 and 5 imply Theorem 1 and Corollary 1.

5 Applications

HV Planarity. Let G be a graph such that each edge is labeled H (horizontal)
or V (vertical). HV-Planarity asks whether G has a planar drawing such that
each edge is drawn as a horizontal or vertical segment according to its label,
called a HV-drawing (see, e.g., [18,24]). This problem is NP-complete [18]. The
next theorem follows from our approach.

Theorem 2 (*). Let G be an n-vertex planar graph with σ vertices of degree
two. Given a tree-decomposition of G of width k, there is an algorithm that solves
HV-Planarity in kO(k)σk log σ · n time.

The next corollary improves the O(n4) bound in [18].

Corollary 2. Let G be an n-vertex series-parallel graph. There is a O(n3 log n)-
time algorithm that solves HV-Planarity.

Flexible Drawings. Let G = (V,E) be a planar graph with vertex degree at
most four, and let ψ : E → N. The FlexDraw problem [5,6] asks whether G
admits an orthogonal drawing such that for each edge e ∈ E the number of bends
of e is b(e) ≤ ψ(e). The problem becomes tractable when ψ(e) ≥ 1 [5] for all
edges, while it can be parameterized by the number of edges e such that ψ(e) =
0 [6]. By subdividing ψ(e) times each edge e, we can conclude the following.

Theorem 3 (*). Let G = (V,E) be an n-vertex planar graph, and let ψ : E →
N. Given a tree-decomposition of G of width k, there is an algorithm that solves
FlexDraw in kO(k)(n · b∗)k+1 log(n · b∗) time, where b∗ = maxe∈E ψ(e).

6 Open Problems

The results in this paper suggest some interesting questions. First, we ask
whether OrthogonalPlanarity is FPT when parameterized by the number
of bends and by treewidth. Improving the time complexity of Corollary 1 is also
an interesting problem on its own. Since HV-Planarity is NP-complete even
for graphs with vertex degree at most three [18], another research direction is to
devise new FPT approaches for HV-Planarity on subcubic planar graphs.



Sketched Representations and Orthogonal Planarity 391

References

1. Bannister, M.J., Cabello, S., Eppstein, D.: Parameterized complexity of 1-planarity.
J. Graph Algorithms Appl. 22(1), 23–49 (2018). https://doi.org/10.7155/jgaa.
00457

2. Bannister, M.J., Eppstein, D.: Crossing minimization for 1-page and 2-page draw-
ings of graphs with bounded treewidth. J. Graph Algorithms Appl. 22(4), 577–606
(2018). https://doi.org/10.7155/jgaa.00479

3. Biedl, T.C., Kant, G.: A better heuristic for orthogonal graph drawings. Comput.
Geom. 9(3), 159–180 (1998)

4. Biedl, T.C., Lubiw, A., Petrick, M., Spriggs, M.J.: Morphing orthogonal planar
graph drawings. ACM Trans. Algorithms 9(4), 29:1–29:24 (2013)

5. Bläsius, T., Krug, M., Rutter, I., Wagner, D.: Orthogonal graph drawing with
flexibility constraints. Algorithmica 68(4), 859–885 (2014)

6. Bläsius, T., Lehmann, S., Rutter, I.: Orthogonal graph drawing with inflexible
edges. Comput. Geom. 55, 26–40 (2016)

7. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

8. Bodlaender, H.L., Bonsma, P., Lokshtanov, D.: The fine details of fast dynamic
programming over tree decompositions. In: Gutin, G., Szeider, S. (eds.) IPEC 2013.
LNCS, vol. 8246, pp. 41–53. Springer, Cham (2013). https://doi.org/10.1007/978-
3-319-03898-8 5

9. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D.,
Pilipczuk, M.: A ck n 5-approximation algorithm for treewidth. SIAM J. Com-
put. 45(2), 317–378 (2016)

10. Chan, H.: A parameterized algorithm for upward planarity testing. In: Albers, S.,
Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 157–168. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30140-0 16

11. Chang, Y., Yen, H.: On bend-minimized orthogonal drawings of planar 3-graphs.
In: SOCG 2017. LIPIcs, vol. 77, pp. 29:1–29:15. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2017)

12. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice-
Hall, Upper Saddle River (1999)

13. Di Battista, G., Liotta, G., Vargiu, F.: Spirality and optimal orthogonal drawings.
SIAM J. Comput. 27(6), 1764–1811 (1998)

14. Di Giacomo, E., Liotta, G., Montecchiani, F.: Sketched representations and orthog-
onal planarity of bounded treewidth graphs. CoRR abs/1908.05015 (2019). http://
arxiv.org/abs/1908.05015

15. Didimo, W., Giordano, F., Liotta, G.: Upward spirality and upward planarity test-
ing. SIAM J. Discrete Math. 23(4), 1842–1899 (2009). https://doi.org/10.1137/
070696854

16. Didimo, W., Liotta, G.: Computing orthogonal drawings in a variable embedding
setting. In: Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, pp.
80–89. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49381-6 10

17. Didimo, W., Liotta, G., Patrignani, M.: Bend-minimum orthogonal drawings in
quadratic time. In: Biedl, T., Kerren, A. (eds.) GD 2018. LNCS, vol. 11282, pp.
481–494. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04414-5 34

18. Didimo, W., Liotta, G., Patrignani, M.: HV-planarity: algorithms and complexity.
J. Comput. Syst. Sci. 99, 72–90 (2019)

https://doi.org/10.7155/jgaa.00457
https://doi.org/10.7155/jgaa.00457
https://doi.org/10.7155/jgaa.00479
https://doi.org/10.1007/978-3-319-03898-8_5
https://doi.org/10.1007/978-3-319-03898-8_5
https://doi.org/10.1007/978-3-540-30140-0_16
http://arxiv.org/abs/1908.05015
http://arxiv.org/abs/1908.05015
https://doi.org/10.1137/070696854
https://doi.org/10.1137/070696854
https://doi.org/10.1007/3-540-49381-6_10
https://doi.org/10.1007/978-3-030-04414-5_34


392 E. Di Giacomo et al.

19. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer, Heidelberg (1999)

20. Dujmović, V., Fellows, M.R., Kitching, M., Liotta, G., McCartin, C., Nishimura,
N., Ragde, P., Rosamond, F.A., Whitesides, S., Wood, D.R.: On the parameterized
complexity of layered graph drawing. Algorithmica 52(2), 267–292 (2008)

21. Dujmović, V., Fernau, H., Kaufmann, M.: Fixed parameter algorithms for one-
sided crossing minimization revisited. J. Discrete Algorithms 6(2), 313–323 (2008)

22. Dujmović, V., Whitesides, S.: An efficient fixed parameter tractable algorithm for
1-sided crossing minimization. Algorithmica 40(1), 15–31 (2004)

23. Duncan, C.A., Goodrich, M.T.: Planar orthogonal and polyline drawing algo-
rithms. In: Handbook of Graph Drawing and Visualization, pp. 223–246. Chapman
and Hall/CRC (2013)

24. Durocher, S., Felsner, S., Mehrabi, S., Mondal, D.: Drawing HV -restricted planar
graphs. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 156–167.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54423-1 14

25. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear
planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)

26. Healy, P., Lynch, K.: Two fixed-parameter tractable algorithms for testing upward
planarity. Int. J. Found. Comput. Sci. 17(5), 1095–1114 (2006). https://doi.org/
10.1142/S0129054106004285

27. Kloks, T.: Treewidth, Computations and Approximations. LNCS, vol. 842.
Springer, Heidelberg (1994)

28. Rahman, M.S., Egi, N., Nishizeki, T.: No-bend orthogonal drawings of subdivisions
of planar triconnected cubic graphs. IEICE Trans. 88–D(1), 23–30 (2005)

29. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.
J. Algorithms 7(3), 309–322 (1986)

30. Tamassia, R.: On embedding a graph in the grid with the minimum number of
bends. SIAM J. Comput. 16(3), 421–444 (1987)

31. Zhou, X., Nishizeki, T.: Orthogonal drawings of series-parallel graphs with mini-
mum bends. SIAM J. Discrete Math. 22(4), 1570–1604 (2008)

https://doi.org/10.1007/978-3-642-54423-1_14
https://doi.org/10.1142/S0129054106004285
https://doi.org/10.1142/S0129054106004285


Collinearities



4-Connected Triangulations on Few Lines

Stefan Felsner(B)

Institut für Mathematik, Technische Universität Berlin, Berlin, Germany
felsner@math.tu-berlin.de

Abstract. We show that 4-connected plane triangulations can be
redrawn such that edges are represented by straight segments and the
vertices are covered by a set of at most

√
2n lines each of them horizontal

or vertical. The same holds for all subgraphs of such triangulations.
The proof is based on a corresponding result for diagrams of planar

lattices which makes use of orthogonal chain and antichain families.

1 Introduction

Given a planar graph G we denote by π(G) the minimum number � such that
G has a plane straight-line drawing in which the vertices can be covered by a
collection of � lines. Clearly π(G) = 1 if and only if G is a forest of paths. The
set of graphs with π(G) = 2, however, is already surprisingly rich, it contains
trees, outerplanar graphs and subgraphs of grids, see [1,7].

The parameter π(G) has received some attention in recent years, here is a
list of known results:

• It is NP-complete to decide whether π(G) = 2 (Biedl et al. [2]).
• For a stacked triangulation G, a.k.a. planar 3-tree or Apollonian network, let

dG be the stacking depth (e.g. K4 has stacking depth 1). On this class lower
and upper bounds on π(G) are dG + 1 and dG + 2 respectively, see Biedl
et al. [2] and for the lower bound also Eppstein [6, Thm. 16.13].

• Eppstein [7] constructed a planar, cubic, 3-connected, bipartite graph G� on
O(�3) vertices with π(G�) ≥ �.

Related parameters have been studied by Chaplick et al. [3,4].
The main result of this paper is the following theorem.

Theorem 1. If G is a 4-connected plane triangulation on n vertices, then
π(G) ≤ √

2n.

The result is not far from optimal since, using a constant number of additional
vertices and many additional edges, the graph G� mentioned above can be trans-
formed into a 4-connected plane triangulation, i.e., in the class we have graphs
with π(G) ∈ Ω(n1/3).

The full version of the paper with complete proofs is available at http://page.math.tu-
berlin.de/∼felsner/Paper/grid-lines.pdf and on arXiv:1908.04524 as version 2.
Partially supported by DFG grant FE-340/11-1.
Figures in this paper use colors which can be seen in the online versions.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 395–408, 2019.
https://doi.org/10.1007/978-3-030-35802-0_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_30&domain=pdf
http://orcid.org/0000-0002-6150-1998
http://page.math.tu-berlin.de/{}~{}felsner/Paper/grid-lines.pdf
http://page.math.tu-berlin.de/{}~{}felsner/Paper/grid-lines.pdf
https://doi.org/10.1007/978-3-030-35802-0_30


396 S. Felsner

The proof of the theorem makes use of transversal structures, these are special
colorings of the edges of a 4-connected inner triangulation of a 4-gon with colors
red and blue.

In Sect. 2.1 we survey transversal structures. The red subgraph of a transver-
sal structure can be interpreted as the diagram of a planar lattice. Background
on posets and lattices is given in Sect. 2.2. Dimension of posets and the connec-
tion with planarity are covered in Sect. 2.3. In Sect. 2.4 we survey orthogonal
partitions of posets. The theory implies that every poset on n elements can be
covered by at most

√
2n − 1 subsets such that each of the subsets is a chain or

an antichain.
In Sect. 3 we prove that the diagram of a planar lattice on n elements has a

straight-line drawing with vertices placed on a set of
√

2n − 1 lines. All the lines
used for the construction are either horizontal or vertical.

Finally in Sect. 4 we prove the main result: transversal structures can be
drawn on at most

√
2n − 1 lines. In fact, the red subgraph of the transversal

structure has such a drawing by the result of the previous section. It is rather
easy to add the blue edges to this drawing. Theorem1 is obtained as a corollary.

2 Preliminaries

2.1 Transversal Structures

Fig. 1. The two local
properties.

Let G be an internally 4-connected inner triangulation of
a 4-gon, in other words G is a plane graph with quadran-
gular outer face, triangular inner faces, and no separating
triangle. Let s, a, t, b be the outer vertices of G in clockwise
order. A transversal structure for G is an orientation and
2-coloring of the inner edges of G such that

(1) All edges incident to s, a, t and b are red outgoing, blue
outgoing, red incoming, and blue incoming, respec-
tively.

(2) The edges incident to an inner vertex v come in clock-
wise order in four non-empty blocks consisting solely
of red outgoing, blue outgoing, red incoming, blue
incoming edges, respectively.

Figure 1 illustrates the properties and Fig. 2 shows an
example. Transversal structures have been studied in [17],
[12], and [13]. In particular it has been shown that every internally 4-connected
inner triangulation of a 4-gon admits a transversal structure. Fusy [13] used
transversal structures to prove the existence of straight-line drawings with ver-
tices being placed on integer points (x, y) with 0 ≤ x ≤ W , 0 ≤ y ≤ H, and
H + W ≤ n − 1.

An orientation of a graph G is said to be acyclic if it has no directed cycle.
Given an acyclic orientation of G, a vertex having no incoming edge is called a



4-Connected Triangulations on Few Lines 397

source, and a vertex having no outgoing edge is called a sink. A bipolar orienta-
tion is an acyclic orientation with a unique source s and a unique sink t, cf. [11].
Bipolar orientations of plane graphs are also required to have s and t incident
to the outer face.

Fig. 2. An example of a transver-
sal structure.

A bipolar orientation of a plane graph has
the property that at each vertex v the outgoing
edges form a contiguous block and the incom-
ing edges form a contiguous block. Moreover,
each face f of G has two special vertices sf

and tf such that the boundary of f consists of
two non-empty oriented paths from sf to tf .

Let G = (V,E) be an internally 4-
connected inner triangulation of a 4-gon with
outer vertices s, a, t, b in clockwise order, and
let ER and EB respectively be the red and
blue oriented edges of a transversal structure
on G. We define E+

R = ER ∪ {(s, a), (s, b), (a, t), (b, t)} and E+
B = EB ∪

{(a, s), (a, t), (s, b), (t, b)}, i.e., we think of the outer edges as having both, a
red direction and a blue direction. The following has been shown in [17] and
in [12].

Proposition 1. The red graph GR = (V,E+
R ) and the blue graph GB = (V,E+

B )
are both bipolar orientations. GR has source s and sink t, and GB has source a
and sink b.

The following two properties are easy consequences of the previous discussion.

(R) The red and the blue graph are both transitively reduced, i.e., if (v, v′) is
an edge, then there is no directed path v, u1, . . . , uk, v′ with k ≥ 1.

(F) For every blue edge e there is a face f in the red graph such that e has one
endpoint on each of the two oriented sf to tf paths on the boundary of f .

2.2 Posets

We assume basic familiarity with concepts and terminology for posets, refer-
ring the reader to the monograph [20] and survey article [21] for additional
background material. In this paper we consider a poset P = (X,<) as being
equipped with a strict partial order.

A cover relation of P is a pair (x, y) with x < y such that there is no z with
x < z < y, we write x ≺ y to denote a cover relation of the two elements. A
diagram (a.k.a. Hasse diagram) of a poset is an upward drawing of its transitive
reduction. That is, X is represented by a set of points in the plane and a cover
relation x ≺ y is represented by a y-monotone curve going upwards from x
to y. In general these curves (edges) may cross each other but must not touch
any vertices other than their endpoints. A diagram uniquely describes a poset,
therefore, we usually show diagrams in our figures. A poset is said to be planar
if it has a planar diagram.



398 S. Felsner

It is well known that in discussions of graph planarity, we can restrict our
attention to straight-line drawings. In fact, using for example a result of Schny-
der [19], if a planar graph has n vertices, then it admits a planar straight-line
drawing with vertices on an (n − 2) × (n − 2) grid. Discussions of planarity for
posets can also be restricted to straight-line drawings; however, this may come
at some cost in visual clarity. Di Battista et al. [5] have shown that an exponen-
tially large grid may be required for upward planar drawings of directed acyclic
planar graphs with straight lines. In the next subsection we will see that for
certain planar posets the situation is more favorable.

2.3 Dimension of Planar Posets

Let P = (X,<) be a poset. A realizer of P is a collection L1, L2, . . . , Lt of linear
extensions of P such that P = L1 ∩ L2 ∩ · · · ∩ Lt. The dimension of P = (X,<),
denoted dim(P ), is the least positive integer t such that P has a realizer of size t.
Obviously, a poset P has dimension 1 if and only if it is a chain (total order).
Also, there is an elementary characterization of posets of dimension at most 2
that we shall use.

Proposition 2. A poset P = (X,P ) has dimension as most 2 if and only if its
incomparability graph is also a comparability graph.

There are a number of results concerning the dimension of posets with planar
order diagrams. Recall that an element is called a zero of a poset P when it is
the unique minimal element. Dually, a one is a unique maximal element. A finite
lattice, i.e., a poset which has well defined meet and join operations, always has
a zero and a one.

The following result may be considered part of the folklore of the subject.

Theorem 2. Let P be a finite lattice. Then P is planar if and only if it has
dimension at most 2.

Fig. 3. Diagrams of a planar poset of dimension 3 (left), a non-planar lattice (middle),
and a planar lattice (right).

For the reverse direction in the theorem, let P be a lattice of dimension at
most 2. Let L1 and L2 be linear orders on X so that P = L1 ∩ L2. For each



4-Connected Triangulations on Few Lines 399

x ∈ X, and each i = 1, 2, let xi denote the height of x in Li. Then a planar
diagram of P is obtained by locating each x ∈ X at the point in the plane with
integer coordinates (x1, x2) and joining points x and y with a straight segment
when one of x and y covers the other in P . A pair of crossing edges in this
drawing would violate the lattice property, indeed if x ≺ y and x′ ≺ y′ are two
covers whose edges cross, then x ≤ y′ and x′ ≤ y whence x and x′ have no
unique least upper bound.

A planar digraph D with a unique sink and source, both of them on the outer
face, and no transitive edges is the digraph of a planar lattice. Hence, the above
discussion directly implies the following classical result.

Proposition 3. A planar digraph D on n vertices with a unique sink and source
on the outer face and no transitive edges has an upward planar drawing on an
(n − 1) × (n − 1) grid.

Fig. 4. The planar lattice from Fig. 3
with a realizer L1, L2.

In this paper we will, henceforth, use
the terms 2-dimensional poset and pla-
nar lattice respectively to refer to a poset
P = (X,<) together with a fixed ordered
realizer [L1, L2]. In the case of the lat-
tice, fixing the realizer can be interpreted
as fixing a plane drawing of the diagram.
By fixing the realizer of P we also have a
well-defined primary conjugate, this is the
poset Q on X with realizer [L1, L2], where
L2 is the reverse of L2. Define the left of
relation on X such that x is left of y if and
only of x = y or x and y are incomparable
in P and x < y in Q.

2.4 Orthogonal Partitions of Posets

Let P be a finite poset, Dilworth’s theorem states that the maximum size of an
antichain equals the minimum number of chains partitioning the elements of P.

Greene and Kleitman [16] found a nice generalization of Dilworth’s result.
Define a k-antichain to be a family of k pairwise disjoint antichains.

Theorem 3. For any partially ordered set P and any positive integer k

max
∑

A∈A
|A| = min

∑

C∈C
min(|C|, k)

where the maximum is taken over all k-antichains A and the minimum over all
chain partitions C of P .

Greene [15] stated the dual of this theorem. Let an �-chain be a family of �
pairwise disjoint chains.



400 S. Felsner

Theorem 4. For any partially ordered set P and any positive integer �

max
∑

C∈C
|C| = min

∑

A∈A
min(|A|, �)

where the maximum is taken over all �-chains C and the minimum over all
antichain partitions A of P .

A further theorem of Greene [15] can be interpreted as a generalization of the
Robinson-Schensted correspondence and its interpretation given by Greene [14].
With a partially ordered set P with n elements there is an associated partition
λ of n, such that for the Ferrer’s diagram G(P ) corresponding to λ we get:

Theorem 5. The number of squares in the � longest columns of G(P ) equals
the maximal number of elements covered by an �-chain of P and the number of
squares in the k longest rows of G(P ) equals the maximal number of elements
covered by a k-antichain.

Figure 5 shows an example, in this case the Ferrer’s diagram G(P ) corre-
sponds to the partition 6 + 3 + 3 + 1 + 1 |= 14. Several proofs of Greene’s results
are known, e.g. [8],[10], and [18]. For a not so recent, but at its time comprehen-
sive survey we recommend [22].

The approach taken by Frank [10] is particularly elegant. Following Frank
we call a chain family C and an antichain family A an orthogonal pair iff

1. P =
( ⋃

A∈A
A

)
∪

( ⋃

C∈C
C

)
, and

2. |A ∩ C| = 1 for all A ∈ A, C ∈ C.

If C is orthogonal to a k-antichain A and C+ is obtained from C by adding the
rest of P as singletons, then

∑

A∈A
|A| =

∑

C∈C+

∑

A∈A
|A ∩ C| =

∑

C∈C+

min(|C|, k).

Thus C+ is a k optimal chain partition in the sense of Theorem 3. Similarly an �
optimal antichain partition in the sense of Theorem 4 can be obtained from an
orthogonal pair A, C where C is an �-chain.

Using the minimum cost flow algorithm of Ford and Fulkerson [9], Frank
proved the existence of a sequence of orthogonal chain and antichain families.
This sequence is rich enough to allow the derivation of the whole theory. The
sequence consists of an orthogonal pair for every point from the boundary of
G(P ). With the point (k, �) from the boundary of G(P ) we get an orthogonal
pair A, C such that A is a k-antichain and C an �-chain, see Fig. 5. Since G(P ) is
the Ferrer’s diagram of a partition of n we can find a point (k, �) on the boundary
of G(P ) with k+� ≤ √

2n−1 (This is because every Ferrer’s shape of a partition
of m which contains no point (x, y) with x+y ≤ s on the boundary contains the
shape of the partition (1, 2, . . . , s + 1). From m ≥ (

s+2
2

)
we get s + 1 <

√
2m).



4-Connected Triangulations on Few Lines 401

Fig. 5. The Ferrer’s shape of the lattice L from Fig. 4 together with two orthogonal
pairs of L corresponding to the boundary points (1, 3) and (3, 1) of G(L); chains of C
are blue, antichains of A are red, green, and yellow.

We will use the following corollary of the theory:

Corollary 1. Let P = (X,<) be a partial order on n elements, then there is
an orthogonal pair A, C where A is a k-antichain and C an �-chain and k + � ≤√

2n − 1.

For our application we will need some additional structure on the antichains
and chains of an orthogonal pair A, C.

The canonical antichain partition of a poset P = (X,<) is constructed by
recursively removing all minimal elements from P and make them one of the
antichains of the partition. More explicitely A1 = Min(X) and Aj = Min

(
X \⋃{Ai : 1 ≤ i < j}) for j > 1. Note that by definition for each element y ∈ Aj

with j > 1 there is some x ∈ Aj−1 with x < y. Due to this property there
is a chain of h elements in P if the canonical antichain partition consists of h
non-empty antichains. This in essence is the dual of Dilworth’s theorem, i.e., the
statement: the maximal size of a chain equals the minimal number of antichains
partitioning the elements of P.

Lemma 1. Let A, C be an orthogonal pair of P = (X,<) and let PA be the order
induced by P on the set XA =

⋃{A : A ∈ A}. If A′ is the canonical antichain
partition of PA, then A′, C is again an orthogonal pair of P

Proof. Let A be the family A1, . . . , Ak. Starting with this family we will change
the antichains in the family while maintaining the invariant that the family of
antichains together with C forms an orthogonal pair. At the end of the process
the family of antichains will be the canonical antichain partition of PA.

The first phase of changes is the uncrossing phase. We iteratively choose two
antichains Ai, Aj with i < j from the present family and let Bi = {y ∈ Ai :
there is an x ∈ Aj with x < y} and Bj = {x ∈ Aj : there is a y ∈ Ai with x <

y}. Define A′
i = Ai − Bi + Bj and A′

j = Aj − Bj + Bi. It is easy to see that
A′

i and A′
j are antichains and that the family obtained by replacing Ai, Aj by

A′
i, A

′
j is orthogonal to C. This results in a family of k antichains such that if

i < j and x ∈ Ai and y ∈ Aj are comparable, then x < y.



402 S. Felsner

The second phase is the push-down phase. We iteratively choose i ∈ [k−1] and
let B = {y ∈ Ai+1 : there is no x ∈ Ai with x < y} and define A′

i+1 = Ai+1−B
and A′

i = Ai + B. It is again easy to see that A′
i and A′

i+1 are antichains and
that the family obtained by replacing Ai, Ai+1 by A′

i, A
′
i+1 is orthogonal to C.

This results in a family of k antichains such that if y ∈ Ai+1, then there is an
x ∈ Ai with x < y. This implies that Aj = Min(XA \⋃{Ai : 1 ≤ i < j}), whence
the family is the canonical antichain partition. 	


Let P = (X,<) be a 2-dimensional poset with realizer [L1, L2] and recall
that the primary conjugate has realizer [L1, L2]. The order Q corresponds to
a transitive relation on the complement of the comparability graph of P , in
particular chains of P and antichains of Q are in bijection.

The canonical antichain partition of Q yields the canonical chain partition
of P . The canonical chain partition C1, C2, . . . , Cw of P can be characterized by
the property that for each 1 ≤ i < j ≤ w and each element y ∈ Cj there is some
x ∈ Ci with x || y and in L1 element x comes before y. In particular C1 is a
maximal chain of P .

Let A, C be an orthogonal pair of the 2-dimensional P = (X,<). Applying
the proof of Lemma 1 to the orthogonal pair C,A of Q we obtain:

Lemma 2. Let A, C be an orthogonal pair of P = (X,<) and let PC be the
order induced by P on the set XC =

⋃{C : C ∈ C}. If C′ is the canonical chain
partition of PC, then C′,A is again an orthogonal pair of P

In a context where edges of the diagram are of interest, it is convenient to
work with maximal chains. The canonical chain partition C1, C2, . . . , Cw of a
2-dimensional P induces a canonical chain cover of P which consists of maximal
chains. With chain Ci associate a chain C+

i which is obtained by successively
adding to Ci all compatible elements of Ci−1, Ci−2, . . . in this order. Alternatively
C+

i can be described by looking at the conjugate of P with realizer [L1, L2] (this
is the dual of the primary conjugate Q), and defining C+

i as the first chain
in the canonical chain partition of the order induced by

⋃{Cj : 1 ≤ j ≤ i}.
The maximality of C+

i follows from the characterization of the canonical chain
partition given above.

3 Drawing Planar Lattices on Few Lines

In this section we prove that planar lattices with n elements have a straight-line
diagram with all vertices on a set of

√
2n − 1 horizontal and vertical lines. The

following proposition covers the case where the lattice has an antichain partition
of small size. We assume that a planar lattice is given with a realizer [L1, L2]
and, hence, with a fixed plane drawing of its diagram.

Proposition 4. For any planar lattice L = (X,<) with an extension h : X → IR
of L there is a plane straight-line drawing Γ of the diagram DL of L such that
each element x ∈ X is represented by a point with y-coordinate h(x). Additionally
all elements of the left boundary chain of DL are aligned vertically in the drawing.



4-Connected Triangulations on Few Lines 403

The proof of this proposition can be found in the full version. The idea is to
extend the drawing of a chain on a vertical line by ears. Such ear-extensions are
also used in the proof of the next theorem.

Theorem 6. For every planar lattice L = (X,<) with |X| = n, there is a plane
straight-line drawing of the diagram such that the elements are represented by
points on a set of at most

√
2n − 1 lines. Additionally

• each of the lines is either horizontal or vertical,
• each crossing of a horizontal and a vertical line hosts an element of X.

Proof. Let A, C be an orthogonal pair of L such that A is a k-antichain, C an
�-chain, and k + � ≤ √

2n − 1. It follows from Corollary 1 that such a pair exists.
Since L has a fixed ordered realizer [L1, L2], we can apply Lemma 1 to A

and Lemma 2 to C to get an orthogonal pair (A1, . . . , Ak), (C1, . . . , C�) where
the antichain family and the chain family are both canonical. Fix an extension
h : X → IR of L with the property that h(x) = i for all x ∈ Ai.

In the following we will construct a drawing Γ of DL such that each element
x ∈ X is represented by a point with y-coordinate h(x), and in addition all
elements of chain Ci lie on a common vertical line gi for 1 ≤ i ≤ �. By Property 1
of orthogonal pairs, for each x ∈ X there is an i such that x ∈ Ai or a j such
that x ∈ Cj or both. Therefore, Γ will be a drawing such that the k horizontal
lines y = i with i = 1, . . . , k together with the � vertical lines gj with j = 1, . . . , �
cover all the elements of X. Property 2 of orthogonal pairs implies the second
extra property mentioned in the theorem.

If the number � of chains is zero, then we get a drawing Γ with all the
necessary properties from Proposition 4. Now let � > 0.

The chain family C1, . . . , C� is the canonical chain partition of the order
induced on XC =

⋃{Ci : i = 1 . . . �}. Let C+
1 , . . . , C+

� be the corresponding
canonical chain covering of XC .

Let Xi for 1 ≤ i ≤ � be the set of all elements which are left of some element
of C+

i in L, and let X�+1 = X. Define Si as the suborder of L induced by Xi.
Also let Yi = Xi+1 − Xi + C+

i and let Ti be the suborder of L induced by Yi.
Note the following properties of these sets and orders:

• Xi ∩ Cj = ∅ for 1 ≤ i < j ≤ �.
• Each Si is a planar sublattice of L, its right boundary chain is C+

i .
• Ti is a planar sublattice of L.

A drawing Γ1 of S1 with the right boundary chain being aligned vertically is
obtained by applying Proposition 4 to the vertical reflection of the diagram
DL[X1] and reflecting the resulting drawing vertically.

We construct the drawing Γ of DL in phases. In phase i we aim for a drawing
Γi+1 of Si+1 extending the given drawing Γi of Si, i.e., we need to construct a
drawing Λi of Ti such that

(1) The left boundary chain of Λi matches the right boundary chain of Γi.
(2) In Λi all elements of Ci+1 are on a common vertical line gi+1.



404 S. Felsner

The construction of Λi is done in three stages. First we extend C+
i to the right

by adding ‘ears’. Then we extend C+
i+1 to the left by adding ‘ears’. Finally we

show that the left and the right part obtained from the first two stages can be
combined to yield the drawing Λi.

To avoid extensive use of indices let Y = Yi, T = Ti, C+ = C+
i , and let γ

be a copy of the y-monotone polygonal right boundary of Γi, i.e., γ is a drawing
of C. We initialize Λ′ = γ.

A left ear of T is a face F in the diagram DL[Y ] of T such that the left
boundary of F is a subchain of the left boundary chain C+ of DL[Y ]. The ear
is feasible if the right boundary chain contains no element of Ci+1. Given a
feasible ear we use the method from the proof of Proposition 4 to add F to γ.
We represent the right boundary z0 < z1 < . . . < zl excluding z0 and zl of F on
a vertical line g by points q1, . . . , ql−1 with y-coordinates as prescribed by h. The
points q0 and ql representing z0 and zl respectively are already represented on
γ. Then we place g at some distance β to the right of γ. The value of β has to be
chosen large enough to ensure that edges q0, q1 and ql−1, ql are drawn such that
they do not interfere with γ. Let Λ′ be the drawing augmented by the polygonal
path q0, q1, . . . , ql−1, ql and let C+ again refer to the right boundary chain γ of
Λ′. Delete all elements of the left boundary of F except z0 and zl from Y and T .
This shelling of a left ear from T is iterated until there remains no left feasible
ear. Upon stopping we have a drawing Λ′ which can be glued to the right side
of Γi. Let γ′ be the right boundary chain of Λ′.

In the second stage the procedure is quite similar; starting from C = Ci+1

on a line g right ears taken from T are added to the drawing until there remains
no feasible right ear. This yields a drawing Λ′′ with left boundary γ′′.

In the final stage we have to combine the drawings Λ′, Λ′′ into a single draw-
ing. This is done by drawing the edges and chains which remain in T between
the two boundary chains as straight segments between γ′ and γ′′. This will be
possible because we can shift γ′ and γ′′ as far apart horizontally as necessary.

First we draw all the edges connecting the two chains. If we place γ′ and γ′′

at sufficient horizontal distance, then the edges of E can be drawn such that
they do not interfere (introduce crossings) with γ′ and γ′′. Let Λ be the drawing
consisting of γ′, γ′′, and the deges between them. An important feature of Λ is
that if we move the two chains γ′ and γ′′ even further apart the drawing keeps
the needed properties, i.e., the height of elements remains unaltered, vertices of
a chain which should be vertically aligned remain vertically aligned because they
are vertically aligned in either γ′ or γ′′ and the drawing is crossing-free.

Now assume that T contains elements which are not represented in Λ. Let B
be a connected component of such elements where connectivity is with respect
to DL. All the elements of B have to be placed in a face FB of Λ. Let δ′ and δ′′

be the left and right boundary of FB .
In the following we will repeat the choice of a component B and a chain C

from B which is to be drawn in the corresponding face FB of Λ such that the
minimum and the maximum of C have connecting edges to the two sides of the
boundary of FB . Let us consider the case that in DL the maximum of C has



4-Connected Triangulations on Few Lines 405

an outgoing edge to an element which is represented by a point p ∈ δ′ and the
minimum of C has an incoming edge from an element represented by q ∈ δ′′.
We represent the elements of C as points on the prescribed heights on a line
segment ζ with endpoints p and q. It may become necessary to stretch the face
horizontally to be able to place C. In this case we stretch the whole drawing
between γ′ and γ′′ with a uniform stretch factor. There may be additional edges
between elements of C and elements on δ′ and δ′′. They can also be drawn
without crossing when the distance of δ′ and δ′′ exceeds some value b.

Stretching the whole drawing between γ′ and γ′′ allows us to draw the seg-
ment ζ and additional edges inside of FB because of the following invariant. For
each face F of the drawing Λ and two points x and y from the boundary of F
it holds that: if the segment x, y is not in the interior of F , then the parts of
the boundary obstructing the segment x, y belong to γ′ or γ′′.

When including a chain C in the drawing Λ, we place the elements of C at
the prescribed heights on a common line segment ζ. This ensures that each new
element contributes convex corners in all incident faces. Hence, new elements can
not obstruct a visibility within a face. Therefore, obstructing corners correspond
to elements of γ′ or γ′′ and the invariant holds.

Now consider the case where maximum and minimum of the chain C connect
to two elements p and q on the same side of F . Since γ′ and γ′′ do not admit
ear extensions we know that not both of p and q belong to one of γ′ and γ′′.
If the segment from p to q is obstructed, then the invariant ensures that with
sufficient horizontal stretch the segment ζ connecting p and q will be inside F .
Hence, chain C can be drawn and Λ can be extended.

When there remains no component B containing a chain C which can be
included in the drawing using the above strategy, then either all elements of
Y are drawn or we have the following: every component B only connects to
elements of a line segment ζB .

In this situation B is kind of a big ear over ζB . The details of how to draw B
are given in the full version. But note, that in this situation we will not maintain
or need the invariant.

Glueing the drawings Λ′ with Λ at the polygonal path γ′ and Λ with Λ′′ at
γ′′ (a y-monotone collection of paths) yields a drawing Λi of Ti. The drawing
Λi can be glued to Γi to form a drawing Γi+1 of Si+1. Eventually the drawing
Γ� will be constructed. From there the drawing Γ = Γ�+1 is obtained by adding
some left ears. 	


4 Transversal Structures on Few Lines

Theorem 7. For every internally 4-connected inner triangulation of a 4-gon
G = (V,E) with n vertices there is a planar straight-line drawing such that the
vertices are represented by points on a set of at most

√
2n−1 lines. Additionally

• each of the lines is either horizontal or vertical,
• each crossing point of a horizontal and a vertical line hosts a vertex.



406 S. Felsner

Due to Theorem 6 it is possible to draw the red subgraph GR of a transversal
structure on

√
2n − 1 lines. It would be nice if we could include the blue edges

of the transversal structure in the drawing. This, however, may yield crossings.
Therefore we have to go through the proof of Theorem6 and take care of blue
edges while constructing the drawing of the red graph. The proof can be found
in the full version. An example for an intermediate stage of the construction is
shown in Fig. 6.

Fig. 6. A partially drawn transversal structure. The figure shows a drawing of Γ4, these
are the vertices left of some element in C+

4 together with the induced edges.

It remains to see how Theorem 1 follows from Theorem 7. Let G be a 4-
connected triangulation and let G′ be obtained from G by deleting one of the
outer edges. Now G′ is an internally 4-connected inner triangulation of a 4-gon.
Label the outer vertices of G′ such that the deleted edge is the edge s, t. Slightly
stretching Theorem 7 we prescribe h(s) = −∞ and h(t) = ∞, this yields a
planar straight-line drawing Γ of G′ such that the vertices except s and t are
represented by points on a set of at most

√
2n−1 lines and the edges connecting

to s and t are vertical rays. Moreover with every edge v, s or v, t there is an
open cone K containing the vertical ray, such that the point representing v is
the apex of K and this is the only vertex contained in K. Now let g be a vertical
line which is disjoint from Γ . On g we find a point ps which is contained in all
the upward cones and a point pt contained in all the downward cones. Taking ps

and pt as representatives for s and t we can tilt the rays and make them finite
edges ending in ps and pt respectively, and in addition draw the edge ps, pt.

We conclude with a remark and two open problems.

• Our results are constructive and can be complemented with algorithms run-
ning in polynomial time.

• Is π(G) ∈ O(
√

n) for every planar graph G on n vertices?
• What size of a grid is needed for drawings of 4-connected plane graphs on

O(
√

n) lines?

Acknowledgments. Work on this problem began at the 2018 Bertinoro Workshop of
Graph Drawing. I thank the organizers of the event for making this possible. Special
thanks go to Pavel Valtr, Alex Pilz and Torsten Ueckerdt for helpful discussions.



4-Connected Triangulations on Few Lines 407

References

1. Bannister, M.J., Devanny, W.E., Dujmovic, V., Eppstein, D., Wood, D.R.: Track
layouts, layered path decompositions, and leveled planarity. Algorithmica 81, 1561–
1583 (2019)

2. Biedl, T., Felsner, S., Meijer, H., Wolff, A.: Line and plane cover numbers revis-
ited. In: Archambault, D., Tóth, C.D. (eds.) GD 2019, LNCS 11904, pp. 409–415.
Springer, Heidelberg (2019)

3. Chaplick, S., Fleszar, K., Lipp, F., Ravsky, A., Verbitsky, O., Wolff, A.: Drawing
graphs on few lines and few planes. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016.
LNCS, vol. 9801, pp. 166–180. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-50106-2 14

4. Chaplick, S., Fleszar, K., Lipp, F., Ravsky, A., Verbitsky, O., Wolff, A.: The com-
plexity of drawing graphs on few lines and few planes. In: Ellen, F., Kolokolova,
A., Sack, J.R. (eds.) WADS 2017. LNCS, vol. 10389, pp. 265–276. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-62127-2 23

5. Di Battista, G., Tamassia, R., Tollis, I.G.: Area requirement and symmetry display
of planar upward drawings. Discrete Comput. Geom. 7, 381–401 (1992)

6. Eppstein, D.: Forbidden Configurations in Discrete Geometry. Cambridge Univer-
sity Press, Cambridge (2018)

7. Eppstein, D.: Cubic planar graphs that cannot be drawn on few lines. In: Proceed-
ings of SoCG 2019. LIPIcs (2019)

8. Fomin, S.V.: Finite partially ordered sets and Young tableaux. Soviet Math. Dokl.
19, 1510–1514 (1978)

9. Ford Jr., L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press,
Princeton (1962)

10. Frank, A.: On chain and antichain families of partially ordered sets. J. Combin.
Theory Ser. B 29, 176–184 (1980)

11. de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: Bipolar orientations revisited.
Discrete Appl. Math. 56(2–3), 157–179 (1995)

12. Fusy, E.: Combinatoire des cartes planaires et applications algorithmiques. Ph.D.
thesis, LIX Polytechnique (2007). www.lix.polytechnique.fr/∼fusy/Articles/these
eric fusy.pdf

13. Fusy, E.: Transversal structures on triangulations: a combinatorial study and
straight-line drawings. Discr. Math. 309(7), 1870–1894 (2009)

14. Greene, C.: An extension of Schensted’s theorem. Adv. Math. 14, 254–265 (1974)
15. Greene, C.: Some partitions associated with a partially ordered set. J. Combin.

Theory Ser. A 20, 69–79 (1976)
16. Greene, C., Kleitman, D.J.: The structure of Sperner k-families. J. Combin. Theory

Ser. A 20, 41–68 (1976)
17. Kant, G., He, X.: Regular edge labeling of 4-connected plane graphs and its appli-

cations in graph drawing problems. Theor. Comput. Sci. 172, 175–193 (1997)
18. Saks, M.: A short proof of the existence of k-saturated partitions of partially

ordered sets. Adv. Math. 33, 207–211 (1979)
19. Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of SODA

1990, pp. 138–148. ACM-SIAM (1990)
20. Trotter, W.T.: Combinatorics and Partially Ordered Sets: Dimension Theory.

Johns Hopkins Series in the Mathematical Sciences. Johns Hopkins University
Press, Baltimore (1992)

https://doi.org/10.1007/978-3-319-50106-2_14
https://doi.org/10.1007/978-3-319-50106-2_14
https://doi.org/10.1007/978-3-319-62127-2_23
www.lix.polytechnique.fr/~fusy/Articles/these_eric_fusy.pdf
www.lix.polytechnique.fr/~fusy/Articles/these_eric_fusy.pdf


408 S. Felsner

21. Trotter, W.T.: Partially ordered sets. In: Graham, R.L., Grötschel, M., Lovás, L.
(eds.) Handbook of Combinatorics, North-Holland, vol. I, pp. 433–480 (1995)

22. West, D.B.: Parameters of partial orders and graphs: packing, covering and repre-
sentation. In: Rival, I. (ed.) Graphs and Orders, pp. 267–350. D. Reidel, Dordrecht
(1985)



Line and Plane Cover Numbers Revisited

Therese Biedl1 , Stefan Felsner2 , Henk Meijer3, and Alexander Wolff4(B)

1 University of Waterloo, Waterloo, Canada
2 TU Berlin, Berlin, Germany

3 University College Roosevelt, Middelburg, The Netherlands
4 Universität Würzburg, Würzburg, Germany
usetheemailaddressonmyhomepage@gmail.com

http://www1.informatik.uni-wuerzburg.de/en/staff/wolff-alexander

Abstract. A measure for the visual complexity of a straight-line
crossing-free drawing of a graph is the minimum number of lines needed
to cover all vertices. For a given graph G, the minimum such number
(over all drawings in dimension d ∈ {2, 3}) is called the d-dimensional
weak line cover number and denoted by π1

d(G). In 3D, the minimum
number of planes needed to cover all vertices of G is denoted by π2

3(G).
When edges are also required to be covered, the corresponding num-
bers ρ1

d(G) and ρ2
3(G) are called the (strong) line cover number and the

(strong) plane cover number.
Computing any of these cover numbers—except π1

2(G)—is known to
be NP-hard. The complexity of computing π1

2(G) was posed as an open
problem by Chaplick et al. [WADS 2017]. We show that it is NP-hard
to decide, for a given planar graph G, whether π1

2(G) = 2. We fur-
ther show that the universal stacked triangulation of depth d, Gd, has
π1
2(Gd) = d+1. Concerning 3D, we show that any n-vertex graph G with

ρ2
3(G) = 2 has at most 5n − 19 edges, which is tight.

1 Introduction

Recently, there has been considerable interest in representing graphs with as
few objects as possible. The idea behind this objective is to keep the visual
complexity of a drawing low for the observer. The types of objects that have
been used are straight-line segments [5,8,14,15] and circular arcs [14,16].

Chaplick et al. [3] considered covering straight-line drawings of graphs by
lines or planes and defined the following new graph parameters. Let 1 ≤ l < d,
and let G be a graph. The l-dimensional affine cover number of G in R

d, denoted
by ρld(G), is defined as the minimum number of l-dimensional planes in R

d such
that G has a crossing-free straight-line drawing that is contained in the union of
these planes. The weak l-dimensional affine cover number of G in R

d, denoted by
πl
d(G), is defined similarly to ρld(G), but under the weaker restriction that only

the vertices are contained in the union of the planes. Clearly, πl
d(G) ≤ ρld(G),

The full version of this article is available at Arxiv [2]. S.F. was supported by DFG
grant FE 340/11-1, A.W. by DFG grant WO 758/9-1, and T.B. by NSERC.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 409–415, 2019.
https://doi.org/10.1007/978-3-030-35802-0_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_31&domain=pdf
http://orcid.org/0000-0002-9003-3783
http://orcid.org/0000-0002-6150-1998
http://orcid.org/0000-0001-5872-718X
https://doi.org/10.1007/978-3-030-35802-0_31


410 T. Biedl et al.

and if l′ ≤ l and d′ ≤ d then πl
d(G) ≤ πl′

d′(G) and ρld(G) ≤ ρl
′
d′(G). It turns out

that it suffices to study the parameters ρ12, ρ13, ρ23, and π1
2 , π1

3 , π2
3 :

Theorem 1 (Collapse of the Affine Hierarchy [3]). For any integers 1 ≤
l < 3 ≤ d and for any graph G, it holds that πl

d(G) = πl
3(G) and ρld(G) = ρl3(G).

Disproving a conjecture of Firman et al. [12], Eppstein [10] constructed pla-
nar, cubic, 3-connected, bipartite graphs on n vertices with π1

2(G) ≥ n1/3.
Answering a question of Chaplick et al. [3] he also constructed a family of
subcubic series-parallel graphs with unbounded π1

2-value. Felsner [11] proved
that, for every 4-connected plane triangulation G on n vertices, it holds that
π1
2(G) ≤ √

2n. Chaplick et al. [4] also investigated the complexity of computing
the affine cover numbers. Among others, they showed that in 3D, for l ∈ {1, 2},
it is NP-complete to decide whether πl

3(G) ≤ 2 for a given graph G. In 2D,
the question has still been open, but a related question was raised by Dujmović
et al. [7] already in 2004. They investigated so-called track layouts which are
defined as follows. A graph admits a k-track layout if its vertices can be parti-
tioned into k ordered independent subsets such that any pair of subsets induces
a plane graph (w.r.t. the order of the subsets). The track number of a graph G,
tn(G), is the smallest k such that G admits a k-track layout. See also [6] for
some recent developments. Note that in general π1

2(G) �= tn(G); for example,
π1
2(K4) = 2, whereas tn(K4) = 4. Note further that a 3-track layout is necessar-

ily plane (which is not the case for k-track layouts with k > 3). Dujmović posed
the computational complexity of k-track layout as an open question.

While it is easy to decide efficiently whether a graph admits a 2-track layout,
Bannister et al. [1] answered the open question of Dujmović et al. already for
3-track layouts in the affirmative. They first showed that a graph has a leveled
planar drawing if and only if it is bipartite and has a 3-track layout. Combin-
ing this results with the NP-hardness of level planarity, proven by Heath and
Rosenberg [13], immediately showed that it is NP-hard to decide whether a given
graph has a 3-track layout. For k > 3, deciding the existence of a k-track layout
is NP-hard, too, since it suffices to add to the given graph k − 3 new vertices
each of which is incident to all original vertices of the graph [1].

Our contribution. We investigate several problems concerning the weak line cover
number π1

2(G) and the strong plane cover number ρ23(G):

– We settle the open question of Chaplick et al. [4, p. 268] by showing that it is
NP-hard to test whether, for a given planar graph G, π1

2(G) = 2; see Sect. 2.
– We show that Gd, the universal stacked triangulation of depth d, (which has

treewidth 3) has π1
2(Gd) = d + 1 = log3(2nd − 5)+ 1, where nd is the number

of vertices of Gd; see Sect. 3.
– Eppstein has identified classes of treewidth-2 graphs with unbounded π1

2-
value. We give an easy direct argument showing that some 2-tree Hd with n′

d

vertices has π1
2(Hd) ∈ Ω(log n′

d); see the full version [2].
– Concerning 3D, we show that any n-vertex graph G with ρ23(G) = 2 has at

most 5n − 19 edges; see Sect. 4. This bound is tight.



Line and Plane Cover Numbers Revisited 411

2 Complexity of Computing Weak Line Covers in 2D

In this section we investigate the computational complexity of deciding whether
a graph can be drawn on two lines.

Theorem 2. It is NP-hard to decide whether a given plane (or planar) graph G
admits a drawing with π1

2(G) = 2.

Proof. Our proof is by reduction from the problem Level Planarity, which
Heath and Rosenberg [13] proved to be NP-hard. The problem is defined as
follows. A planar graph G is leveled-planar if its vertex set can be partitioned
into sets V1, . . . , Vm such that G has a planar straight-line drawing where, for
every i ∈ {1, . . . , m}, vertices in Vi lie on the vertical line �i : y = i and each
edge vjvk of G connects two vertices on consecutive lines (that is, |j − k| = 1).

Chaplick et al. [3] have shown that every leveled-planar graph can be drawn
on two lines. The converse, however, is not true. For example, K4 is not leveled-
planar, but π1

2(K4) = 2. Therefore, we modify the given graph in three ways.
(a) We replace each edge of G by a K2,4-gadget where the two nodes in one set
of the bipartition replace the endpoints of the former edge; see Fig. 1a. (b) We
add to the graph G′ that resulted from the previous step a new subgraph G0

(two copies of K4 sharing exactly two vertices), which we connect by a path to
a vertex on the outer face of G. (If the outer face is not fixed, we can try each
vertex.) In Fig. 1b, G0 is yellow and the path is red. The length L of the path is
any upper bound on the number of levels of G′, e.g., the diameter of G′ (plus 1).
(c) We attach to G0 a triangulated spiral S (dark green in Fig. 1b). The spiral
makes L+2 right turns; its final vertex is identified with the outermost vertex of
the previous turn. Hence, apart from its many triangular faces, the graph S+G0

has a large inner face F of degree 2(L+2) and a quadrangular outer face. Let G′′

be the resulting graph. It remains to show that G is leveled-planar if and only
if π1

2(G
′′) = 2.

“⇒”: Fix a leveled-planar drawing of G. By doubling the layers and using the
new layers to place the large sides of K2,4’s, one easily sees that G′ is also leveled-
planar, see Fig. 1a. As shown in Fig. 1b, the large inner face F of S + G0 can be
drawn so that it partitions the halflines emanating from the origin into L levels.
(It is no problem that consecutive levels are turned by 90◦.) Since we chose L
large enough (in particular L ≥ 2m − 1), we can easily draw G′ inside F . Note
that the red path attached to G0 is long enough to reach any vertex on the outer
face of G′. Hence, π1

2(G
′′) = 2.

“⇐”: Fix a drawing of G′′ on two lines. The two lines cannot be parallel
since G′′ contains K2,4 and is not outer-planar; so after translation and/or skew
we may assume that these two lines are the two coordinate axes. It is not hard
to verify that G0 must be drawn such that the origin is in its interior, at the
common edge of the two K4’s. Furthermore, given this drawing of G0, the 3-
connected spiral S must be drawn as in Fig. 1b. Due to planarity and the fact
that G′ is connected to G0 via the red path, G′ can only be drawn in the interior
of F . The drawing of S + G0 partitions the halflines emanating from the origin



412 T. Biedl et al.

Fig. 1. Our reduction from Level Planarity

into levels, which we number 1, 2, . . . starting from the innermost level that
contains a vertex of G′. Inside this face, the only way to draw the K2,4-gadgets
is as in Fig. 1a, spanning three consecutive levels. This forces all vertices of G
to be placed on the odd-numbered levels and the vertices in G′ − G on the
even-numbered levels. Now we can get a level assignment for G by reverting the
transformation in Fig. 1a. Hence, G is leveled-planar.

This shows that our reduction is correct. It runs in polynomial time. 	


3 Weak Line Covers of Planar 3-Trees in 2D

In this section we consider the weak line cover number π1
2 for planar graphs, i.e.,

we are interested in crossing-free straight-line drawings with vertices located on
a small collection of lines. Clearly π1

2(G) = 1 if and only if G is a forest of
paths. The set of graphs with π1

2(G) = 2, however, is already surprisingly rich,
it contains all trees, outerplanar graphs and subgraphs of grids [1,10].

Stacked triangulations, a.k.a. planar 3-trees or Apollonian networks, are
obtained from a triangle by repeatedly selecting a triangular face T and adding
a new vertex (the vertex stacked inside T ) inside T with edges to the vertices
of T . This subdivides T into three smaller triangles, the children of T .

For d ≥ 0 let Gd be the universal stacked triangulation of depth d, defined as
follows. The graph G0 is a triangle T0, and Gd (for d ≥ 1) is obtained from Gd−1

by adding a stack vertex in each bounded face of Gd−1. Graph Gd has nd =
1
2 (3d+5) vertices and 3d bounded faces. We show that its weak line cover number
is d + 1 = log3(2nd − 5) + 1 ∈ Θ(log nd). (A lower bound of d can also be found
in Eppstein’s recent book [9, Thm. 16.13].)

Theorem 3. For d ≥ 1 it holds that π(Gd) = d + 1.



Line and Plane Cover Numbers Revisited 413

Fig. 2. A drawing of G2 that can be extended to a drawing of G3 on 5 parallel lines.

Proof. Here we prove only the lower bound; the construction for the upper bound
is illustrated in Fig. 2 and given in the full version. Let L be a family of lines
covering the vertices of a drawing of Gd. Let a, b, and c be the vertices of T0.
We first argue that at least d lines are needed to cover V \T0. Let x1 be stacked
into T0. There is a line L1 ∈ L covering x1. Note that L1 can intersect only two
of the three child triangles of T0 (where “intersect” here means “in the interior”).
Let T1 be a child triangle avoided by L1, and let x2 be the vertex stacked into T1.
There is a line L2 ∈ L covering x2. Let T2 be a child triangle of T1 avoided by L2.
Iterating this yields d pairwise distinct lines in L.

To find one additional line in L, we distinguish some cases. If a line L ∈ L
covers two vertices of T0, then it covers no inner vertex, and we are done.

Assume some line La ∈ L intersects x1 and one vertex of T0, say a. Let Lb

and Lc be the lines intersecting b and c. The lines La, Lb, and Lc are pairwise
different, else we are in the previous case. Of the three child triangles of T0, at
most one is intersected by La and at most two each are intersected by Lb and Lc.
Therefore, some child triangle T1 of T0 is intersected by at most one of La, Lb,
or Lc. The graph Gd−1 inside T1 requires at least d − 1 lines for its interior
points, and at most one of those lines is La, Lb, or Lc, so in total at least d + 1
lines are needed.

The argument is similar if no line covers two of a, b, c, and x1. The four
distinct lines supporting a, b, c, and x1 then intersect at most two child trian-
gles each. So one child triangle T1 is intersected by at most two of these lines.
Combining the d − 1 lines needed for the interior of T1 with the two lines that
do not intersect it, shows that d + 1 lines are needed. 	


4 Maximal Graphs on Two Planes in 3D

We now switch to dimension d = 3 and the strong cover number. Obviously
any graph G with a drawing that is covered by two planes has at most 6n − 12
edges since it is the union of two planar graphs. Using maximality arguments
and counting, we show that in fact G has at most 5n − 19 edges if n ≥ 7. (The
restriction n ≥ 7 is required since for n = 3, 4, 5, 6 we can have 3, 6, 9, 12 edges.)

We argue first that our bound is tight. The spine is the intersection of two
planes A and B. Put a path with n − 4 vertices on the spine. Add one vertex in
each of the four halfplanes and connect each of these vertices to all vertices on
the spine and to the vertex on the opposite halfplane. (We provide a figure in



414 T. Biedl et al.

the full version.) This yields n − 5 edges on the path and 2(n − 4) + 1 edges in
each of the two planes, so 5n − 19 edges in total.

Theorem 4. Any graph G with ρ23(G) = 2 and n ≥ 7 vertices has at most
5n − 19 edges.

Proof. Fix a drawing of G on planes A and B, inducing planar graphs GA and GB

within those planes. Let G+
A and G+

B be the graphs obtained from GA and GB by
adding any edge that can be inserted without crossing, within the same plane,
and with at most one bend on the spine. Clearly it suffices to argue that G+

A

and G+
B together have at most 5n−19 edges. Let s be the number of vertices on

the spine, let a be the number of vertices of G+
A not on the spine, and let b be

the number of vertices of G+
B not on the spine. Clearly, a + b + s = n. We may

assume a ≤ b. We also assume that 1 ≤ s ≤ n − 4 and that at least one edge
of G+

A crosses the spine (so 2 ≤ a ≤ b); see the full version.
Let t be the number of edges drawn along the spine. These are the only edges

that belong to G+
A and G+

B . Since G+
A and G+

B have at least three vertices each,
we can bound the number of edges of G, m(G), as follows:

m(G) ≤ m(G+
A) + m(G+

B) − t ≤ 3(s + a) − 6 + 3(s + b) − 6 − t (1)
= 3n − 12 + 3s − t ≤ 4n − 16 + 2s − t.

So we must show that 2s − t ≤ n − 3. Let an internal gap be a line segment
connecting two consecutive, non-adjacent vertices on the spine. There are s−t−1
internal gaps. Let the external gap be the two infinite parts of the spine. Note that
at least one edge of G+

A must cross the external gap, because G+
A has at least one

vertex on each side of the gap, and we could connect the extreme such vertices
(or re-route an existing edge) to cross the external gap, perhaps using a bend on
the spine. We may further assume that even after such re-routing every internal
gap is crossed by at least one edge of G+

A. Otherwise we could delete all edges
of G+

B passing through the gap, insert the edge between the spine vertices, and
re-triangulate the drawing of G+

B where we removed edges. This would remove
an internal gap, but would not decrease the number of edges. Since no edge can
cross two gaps, at least s − t edges of G+

A cross gaps. These edges form a planar
bipartite graph with at most a vertices; therefore s − t ≤ 2a − 3. 1 This yields
2s − t ≤ s + 2a − 3 ≤ s + a + b − 3 = n − 3 as desired. 	

We conjecture that the following more general statement holds:

Any n-vertex graph G with ρ23(G) = k has at most (2k+1)(n−2k)+k−1
edges, for all large enough n.

Acknowledgments. This research started at the Bertinoro Workshop on Graph
Drawing 2017. We thank the organizers and other participants, in particular Will
Evans, Sylvain Lazard, Pavel Valtr, Sue Whitesides, and Steve Wismath. We also
thank Alex Pilz and Piotr Micek for enlightening conversations.

1 One might be tempted to write a bound of 2a − 4 here, but we must allow for the
possibility of a = 2, in case of which the planar bipartite graph may have 1 = 2a− 3
edges.



Line and Plane Cover Numbers Revisited 415

References

1. Bannister, M.J., Devanny, W.E., Dujmović, V., Eppstein, D., Wood, D.R.: Track
layouts, layered path decompositions, and leveled planarity. Algorithmica 81(4),
1561–1583 (2019). https://doi.org/10.1007/s00453-018-0487-5

2. Biedl, T., Felsner, S., Meijer, H., Wolff, A.: Line and plane cover numbers revisited.
Arxiv report (2019). http://arxiv.org/abs/1908.07647

3. Chaplick, S., Fleszar, K., Lipp, F., Ravsky, A., Verbitsky, O., Wolff, A.: Drawing
graphs on few lines and few planes. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016.
LNCS, vol. 9801, pp. 166–180. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-50106-2 14. https://arxiv.org/abs/1607.01196

4. Chaplick, S., Fleszar, K., Lipp, F., Ravsky, A., Verbitsky, O., Wolff, A.: The com-
plexity of drawing graphs on few lines and few planes. Algorithms and Data Struc-
tures. LNCS, vol. 10389, pp. 265–276. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-62127-2 23. https://arxiv.org/abs/1607.06444

5. Dujmović, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs
with few slopes and segments. Comput. Geom. Theory Appl. 38(3), 194–212
(2007). https://doi.org/10.1016/j.comgeo.2006.09.002

6. Dujmovic, V., Joret, G., Micek, P., Morin, P., Ueckerdt, T., Wood, D.R.: Planar
graphs have bounded queue-number. Arxiv report (2019). http://arxiv.org/abs/
1904.04791

7. Dujmović, V., Pór, A., Wood, D.R.: Track layouts of graphs. Discrete Math. Theor.
Comput. Sci. 6(2), 497–522 (2004). https://hal.inria.fr/hal-00959023

8. Durocher, S., Mondal, D.: Drawing plane triangulations with few segments. In:
Proceedings of 26th Canadian Confernce on Computational Geometry (CCCG
2014), pp. 40–45 (2014). http://cccg.ca/proceedings/2014/papers/paper06.pdf

9. Eppstein, D.: Forbidden Configurations in Discrete Geometry. Cambridge Univer-
sity Press, Cambridge (2018)

10. Eppstein, D.: Cubic planar graphs that cannot be drawn on few lines. In: Pro-
ceedings of 35th International Symposium on Computational Geometry (SoCG
2019). LIPIcs, vol. 129, pp. 32:1–32:15 (2019). https://doi.org/10.4230/LIPIcs.
SoCG.2019.32. https://arxiv.org/abs/1903.05256

11. Felsner, S.: 4-connected triangulations on few lines. In: Archambault, D., Tóth,
C.D. (eds.) Proceedings of 27th International Symposium on Graph Drawing &
Network Visualization (GD 2019). LNCS, vol. 11904, pp. 395–408. Springer (2019).
https://arxiv.org/abs/1908.04524

12. Firman, O., Lipp, F., Straube, L., Wolff, A.: Examining weak line covers with two
lines in the plane. In: Biedl, T., Kerren, A. (eds.) Proceedings of International Sym-
posium on Graph Drawing Network Visualization (GD 2018). LNCS, vol. 11282,
pp. 643–645 (2018). https://link.springer.com/content/pdf/bbm:978-3-030-04414-
5/1.pdf (poster)

13. Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J. Comput.
21(5), 927–958 (1992). https://doi.org/10.1137/0221055

14. Hültenschmidt, G., Kindermann, P., Meulemans, W., Schulz, A.: Drawing planar
graphs with few geometric primitives. J. Graph Alg. Appl. 22(2), 357–387 (2018).
https://doi.org/10.7155/jgaa.00473

15. Kindermann, P., Meulemans, W., Schulz, A.: Experimental analysis of the accessi-
bility of drawings with few segments. J. Graph Alg. Appl. 22(3), 501–518 (2018).
https://doi.org/10.7155/jgaa.00474

16. Schulz, A.: Drawing graphs with few arcs. J. Graph Alg. Appl. 19(1), 393–412
(2015). https://doi.org/10.7155/jgaa.00366

https://doi.org/10.1007/s00453-018-0487-5
http://arxiv.org/abs/1908.07647
https://doi.org/10.1007/978-3-319-50106-2_14
https://doi.org/10.1007/978-3-319-50106-2_14
https://arxiv.org/abs/1607.01196
https://doi.org/10.1007/978-3-319-62127-2_23
https://doi.org/10.1007/978-3-319-62127-2_23
https://arxiv.org/abs/1607.06444
https://doi.org/10.1016/j.comgeo.2006.09.002
http://arxiv.org/abs/1904.04791
http://arxiv.org/abs/1904.04791
https://hal.inria.fr/hal-00959023
http://cccg.ca/proceedings/2014/papers/paper06.pdf
https://doi.org/10.4230/LIPIcs.SoCG.2019.32
https://doi.org/10.4230/LIPIcs.SoCG.2019.32
https://arxiv.org/abs/1903.05256
https://arxiv.org/abs/1908.04524
https://springerlink.bibliotecabuap.elogim.com/content/pdf/bbm:978-3-030-04414-5/1.pdf
https://springerlink.bibliotecabuap.elogim.com/content/pdf/bbm:978-3-030-04414-5/1.pdf
https://doi.org/10.1137/0221055
https://doi.org/10.7155/jgaa.00473
https://doi.org/10.7155/jgaa.00474
https://doi.org/10.7155/jgaa.00366


Drawing Planar Graphs with Few
Segments on a Polynomial Grid

Philipp Kindermann1(B) , Tamara Mchedlidze2, Thomas Schneck3,
and Antonios Symvonis4

1 Universität Würzburg, Würzburg, Germany
philipp.kindermann@uni-wuerzburg.de

2 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
mched@iti.uka.de

3 Universitä Tübingen, Tübingen, Germany
thomas.schneck@uni-tuebingen.de

4 National Technical University of Athens, Athens, Greece
symvonis@math.ntua.gr

Abstract. The visual complexity of a graph drawing can be measured
by the number of geometric objects used for the representation of its
elements. In this paper, we study planar graph drawings where edges
are represented by few segments. In such a drawing, one segment may
represent multiple edges forming a path. Drawings of planar graphs with
few segments were intensively studied in the past years. However, the
area requirements were only considered for limited subclasses of planar
graphs. In this paper, we show that trees have drawings with 3n/4 − 1
segments and n2 area, improving the previous result of O(n3.58). We
also show that 3-connected planar graphs and biconnected outerplanar
graphs have a drawing with 8n/3 − O(1) and 3n/2 − O(1) segments,
respectively, and O(n3) area.

1 Introduction

The quality of a graph drawing can be assessed in a variety of ways: area, crossing
number, bends, angular resolution, and many more. All these measures have
their justification, but in general it is challenging to optimize all of them in a
single drawing. Recently, the visual complexity was suggested as another quality
measure for drawings [22]. The visual complexity denotes the number of simple
geometric entities used in the drawing.

The visual complexity of a straight-line graph drawing can be formalized as
the number of segments formed by its edges, which we refer to as segment com-
plexity. Notice that edges constituting a single segment form a path in the graph.
The idea of representing graphs with fewer segments complies with the Gestalt
principles of perception, which are rules for the organization of perceptual scenes

This work was initiated at the Workshop on Graph and Network Visualization 2017.
The work of P. Kindermann was partially supported by DFG grant SCHU 2458/4-1.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 416–429, 2019.
https://doi.org/10.1007/978-3-030-35802-0_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_32&domain=pdf
http://orcid.org/0000-0001-5764-7719
https://doi.org/10.1007/978-3-030-35802-0_32


Drawing Planar Graphs with Few Segments on the Grid 417

introduced in the area of psychology in the 19th century [16]. According to the
law of continuation, the edges forming a segment may be easier grouped by our
perception into a single entity. Therefore, drawing graphs with fewer segments
may ease their perceptual processing. A recent user study [15] suggests that low-
ering the segment complexity may positively influence aesthetics, depending on
the background of the observer, as long as it does not introduce unnecessarily
sharp corners. From the theoretical perspective, it is natural to ask for a drawing
of a graph with the smallest segment complexity. It is not surprising that it is
NP-hard to determine whether a graph has a drawing with segment complexity
k [9]. However, we can still expect to prove bounds for certain graph classes.

Dujmović et al. [7] were the first to study drawings with few segments and
provided upper and lower bounds for several planar graph classes. Since then,
several new results have been provided ([8,12,13,19,20], refer also to Table 1).
These results shed only a little light on the area requirements of the drawings. In
particular, in his thesis, Mondal [19] gives an algorithm for triangulations that
produces drawings with 8n/3−O(1) segments on a grid of size 2O(n log n) in gen-
eral and 2O(n) for triangulations of bounded degree. Even with this large grid, the
algorithm uses substantially more segments than the best-known algorithm for
triangulations without the grid requirement by Durocher and Mondal [8], which
uses 7n/3 − O(1) segments. Recently, Hültenschmidt et al. [12] presented algo-
rithms that produce drawings with 3n/4 segments and O(n3.58) area for trees,
and 3n/2 and 8n/3 segments for outerplanar graphs and 3-trees, respectively,
and O(n3) area. Igamberdiev et al. [13] have provided an algorithm to construct
drawings of planar cubic 3-connected graphs with n/2 segments and O(n2) area.

Our Contribution. In this paper, we concentrate on finding drawings with low
segment complexity on a small grid. Our contribution is summarized in Table 1.
In Sect. 2, we show that every tree has a drawing with at most 3n/4−1 segments
on the n × n grid, improving the area bound by Hültenschmidt et al. [12]. We
then focus on drawing 3-connected planar graphs in Sect. 3. Using a combination
of Schnyder realizers and orderly spanning trees, we show that every 3-connected
planar graph can be drawn with m − (n − 4)/3 ≤ (8n − 14)/3 segments on an
O(n) × O(n2) grid. Finally, in Sect. 4, we use this result to draw on an O(n) ×
O(n2) grid maximal 4-connected graphs with 5n/2 − 4 segments, biconnected
outerplanar graphs with (3n−3)/2 segments, connected outerplanar graphs with
(7n − 9)/4 segments, and connected planar graphs with (17n − 38)/6 segments.
All our proofs are constructive and yield algorithms to obtain such drawings in
O(n) time. As a side result, we also prove that the total number of leaves in
every Schnyder realizer of a 3-connected planar graph is at most 2n + 1, which
was only known for maximal planar graphs [2,18]. For the results on biconnected
outerplanar 3- and 4-connected graphs, we use techniques that have been used
to construct monotone drawings; thus, as a side result, these drawings are also
monotone1.

1 A path P in a straight-line drawing of a graph is monotone if there exists a line l
such that the orthogonal projections of the vertices of P on l appear along l in the
order induced by P . A drawing is monotone if there is a monotone path between
every pair of vertices.



418 P. Kindermann et al.

Table 1. Upper and lower bounds on the visual complexity of segment drawings.
Here, n is the number of vertices, m is the number of edges, ϑ is the number of odd-
degree vertices, and b is the number of maximal biconnected components. Constant-
term additions or subtractions have been omitted. Entries marked by a * are monotone
drawings. FV corresponds to the full version [14].

dirgehtnostnemgeSstnemgeSssalC

Lower b. Upper b. Segments Grid Ref.

3n/4 O(n2) × O(n1.58) [12]
tree ϑ/2 [7] ϑ/2 [7] 3n/4 n×n Th. 1

ϑ/2 quasipoly. [12]
max. outerplanar n [7] n [7] 3n/2 O(n) × O(n2) [12]

* m − n/2 O(n)×O(n2) FV
2-conn. outerplanar n [7]

* 3n/2 O(n)×O(n2) FV
3n/2 + b O(n)×O(n2) FV

outerplanar n [7]
7n/4 O(n)×O(n2) FV

2-tree 3n/2 [7] 3n/2 [7]
planar 3-tree 2n [7] 2n [7] 8n/3 O(n) × O(n2) [12]
2-conn. planar 2n [7] 8n/3 [8] → planar

* m − n/3 O(n)×O(n2) Th. 2
3-conn. planar 2n [7] 5n/2 [7]

* 8n/3 O(n)×O(n2) Cor. 1
cubic 3-conn. planar n/2 [20] n/2 [13] n/2 O(n) × O(n) [13]
triangulation 2n [8] 7n/3 [8] * 8n/3 O(n)×O(n2) Cor. 1
4-conn. planar 2n [8] 21n/8 [8] * → 3-conn.
4-conn. triang. 2n [8] 9n/4 [8] * 5n/2 O(n)×O(n2) FV

17n/3 − m O(n)×O(n2) FV
planar 2n [8] 8n/3 [8]

17n/6 O(n)×O(n2) FV

We note that there are three trivial lower bounds for the segment complexity
of a general graph G = (V,E) with n vertices and m edges:(i) ϑ/2, where ϑ is
the number of odd-degree vertices, (ii) maxv∈V �deg(v)/2�, and (iii) �m/(n−1)�.
These trivial lower bounds are the same as for the slope number of graphs [23],
that is, the minimum number of slopes required to draw all edges, and the slope
number is upper bounded by the number of segments required.

Relevant to segment complexity are the studies by Chaplick et al. [3,4] who
consider drawings where all edges are to be covered by few lines (or planes); the
difference to our problem is that collinear segments are counted only once in
their model. In the same fashion, Kryven et al. [17] aim to cover all edges by
few circles (or spheres).



Drawing Planar Graphs with Few Segments on the Grid 419

Fig. 1. (a) A tree T . Degree-2 vertices are squared, leaves are filled. (b) The tree T ′

obtained from T by contracting the degree-2 vertices. (c) The tree T ′′ obtained from
T ′ by removing all leaves. (d) The drawing of our algorithm.

2 Trees

Let T = (V,E) be a tree with n vertices. In this section, we describe an algorithm
to draw T with at most 3n/4 − 1 segments on an n × n grid in O(n) time.

If T consist only of vertices of degree 1 and 2, then it is a path and we can
draw it with 1 segment and n × 1 area. So, we will assume that there is at
least one vertex with higher degree. We choose such a vertex as the root of T .
Denote the number of degree-2 vertices by β and the number of leaves by α. In
the first step, we create another tree T ′ with n − β vertices by contracting all
edges incident to a degree-2 vertex. We say that a degree-2 vertex u belongs to
a vertex v if v is the first descendent of u in T that has degree greater than 2.
Note that T ′ has the same number of leaves as T . In the next step, we remove
all leaves from T ′ and obtain a tree T ′′ with n − β − α vertices; see Fig. 1.

The main idea of our algorithm is as follows. We draw T ′′ with n−β −α− 1
segments. Then, we add the α leaves in such a way that they either extend the
segment of an edge, or that two of them share a segment, which results in at most
α/2 new segments. Finally, we place the β degree-2 vertices onto the segments
without increasing the number of segments. This way, we get a drawing with at
most n − β − α/2 segments. Since T ′ has no degree-2 vertices, more than half
of its vertices are leaves, so α > (n − β)/2. Hence, the drawing has at most
3(n − β)/4 < 3n/4 segments. Unfortunately, there are a few more details we
have to take care of to achieve this bound.

Let v be a vertex in T ′′, and let T [v] be the subtree of T rooted at v. Let nv

denote the number of vertices in T [v]. Let v1, . . . , vk be the children of v in T ′′.
As induction hypotheses, we assume that each T [vi] is drawn inside a polygon Bi

of dimensions (edge lengths) �i, ri, ti, bi, wi, hi as indicated in Fig. 2a such that

(I1) no vertex of T [vi] lies to the top-left of vi, and
(I2) Bi has area ni × ni.

Using three steps, we describe how to draw T [v] inside a polygon Bv of
dimensions �v, rv, tv, bv, wv, hv such that v lies at coordinate (0, 0). First, we place
T [v1], . . . , T [vk]. Second, we add the degree-2 vertices that belong to v1, . . . , vk.
Finally, we add the leaf-children of v and the degree-2 vertices belonging to them.



420 P. Kindermann et al.

Fig. 2. Drawing of T [v] with k = 4. (a) Bv; (b) the children of v in T ′′; (c) the degree-2
vertices belonging to these children; and (d) the remaining vertices of T [v] which form
Cv.

Step 1. We aim at placing v1 directly below v, and each polygon Bi, i ≥ 2,
to the right of polygon Bi−1, aligning vi with the top boundary of Bi−1; see
Fig. 2b. We place v1 at coordinate (0,−1 − ∑k

i=1 ti), and each vi at coordinate
(x(vi−1) + ri−1 + �i + 1, y(vi−1) + ti−1), where x(v) and y(v) are the x- and
y-coordinates of v, respectively. By invariant (I2), the total width and height of
the drawings of B1, . . . , Bk are both at most

∑k
i=1 nvi

.

Step 2. Let βi be the number of degree-2 vertices that belong to vi. We move
each polygon Bi downwards by βi, and place the degree-2 vertices above vi; see
Fig. 2c. This does not change the placement of any edge of v, the polygons are
only moved downwards and are still disjoint, so the drawing remains planar. The
height of the drawing increases by at most maxk

i=1 βi ≤ ∑k
i=1 βi to

∑k
i=1(nvi

+
βi), while the width remains

∑k
i=1 nvi

.

Step 3. Let Cv the subtree of T [v] that consists of v, its leaf-children in T ′, and
the degree-2 vertices belonging to them. Let u1, . . . , ua be the leaves of Cv and
let γ1, . . . , γa be the number of degree-2 vertices that belong to them. Without
lost of generality, assume that γ1 ≥ . . . ≥ γa. We first consider the case where a
is even. We place the leaves alternatively to the bottom-left and to the top-right
of v with as many rows between them and v as degree-2 vertices belong to them;
we draw each u2i−1 and u2i on a segment through v with slope 1/i. To this end,
we place u2i−1 at coordinate (−(γ2i−1 + 1) · i,−γ2i−1 − 1) and u2i at coordinate
((γ2i + 1) · i, γ2i + 1) (recall that u is placed at (0, 0)). We are able to place the
degree-2 vertices that belong to these leaves between them and v; see Fig. 2d.

If a is odd, then we apply the procedure described above for u1, . . . , ua−1.
Vertex ua is placed as follows. If v is a leaf in T ′′, then we place ua below v at
coordinate (0,−γa − 1). If v is not a leaf in T ′′, and no degree-2 vertex belongs
to v, and v is not the first child of its parent in T ′′ (that is, there will be no edge
that leaves v vertically above), then we place ua above v at coordinate (0, γa +1)
such that it shares a segment with (v, v1). Otherwise, we place ua as every other
vertex ui with odd index at coordinate (−(γa + 1) · i,−γa − 1).

By construction, the segments through v drawn at step 3 cannot intersect
B2, . . . , Bk, but there might be an intersection between the segment from u1

to v and B1. In this case, we move B1 downwards until the crossing disappears,



Drawing Planar Graphs with Few Segments on the Grid 421

which makes the drawing planar again. We call this action Step 4. Thus, we
have created a drawing of T [v] inside the polygon Bv that complies with invariant
(I1). In the following, we show that Bv satisfies invariant (I2).

We analyze the width and height of the part of the drawing of Cv. Let
γL =

∑�a/2�
i=1 γ2i−1 and γR =

∑�a/2�
i=1 γ2i be the number of degree-2 vertices

drawn to the left and right of v, respectively, and let γ = γL + γR.
Recall that γ1 ≥ . . . ≥ γa and leaf ui was placed at y-coordinate ±(γi + 1).

Hence, the vertices with the lowest and highest y-coordinate are u1 at y(u1) =
−γ1 − 1 and u2 at y(u2) = γ2 + 1, respectively. Thus, the height of the drawing
of Cv is 1 = 1 + a + γ if a = 0; 2 + γ1 = 1 + a + γ if a = 1; and 3 + γ1 + γ2 ≤
1 + a + γ if a ≥ 2, so at most 1 + a + γ in total.

For analyzing the width of the drawing of Cv, we first consider those vertices
that are drawn to the right of v. Let r be such that u2r is the rightmost vertex
at x-coordinate (γ2r + 1) · r. Since γ1 ≥ . . . ≥ γa, we have that

γR =
�a/2�∑

i=1

γ2i ≥
r∑

i=1

γ2i ≥ r · γ2r.

Symmetrically, let � be such that u2�−1 is the leftmost vertex at x-coordinate
−(γ2�−1 + 1) · �. We have that

γL =
�a/2�∑

i=1

γ2i−1 ≥
�∑

i=1

γ2i−1 ≥ � · γ2�−1.

Hence, the total width of this part of the drawing is at most

1 + (γ2r + 1) · r + (γ2�−1 + 1) · � ≤ 1 + � + r + γL + γR ≤ 1 + a + γ.

Recall that before step 3 the width of the drawing of T [v] was
∑k

i=1 nvi
and

the height was at most
∑k

i=1(nvi
+βi). In step 3, the width increases by at most

1 + a + γ. In step 4, we move the drawing of T [v1] downwards if it is crossed by
the segment between u1 and v until this crossing is resolved. There cannot be a
crossing if y(u1) > y(v1), so we move it by at most |y(u1)| downwards, which is
exactly the height of the part of the drawing of Cv that lies below v. Hence, the
height in Steps 3 and 4 increases by at most the height of the drawing of Cv,
which is 1 + a + γ. Since nv = 1 +

∑k
i=1(nvi

+ βi) + a + γ, the width and the
height of Bv is at most nv. With this we complete the proof of invariant (I2).

We will now discuss the number of segments in T . Let r be the root of T ,
and let v ∈ T ′′ \ {r}. We need a few definitions; see Fig. 3. Let pv be the parent
of v in T ′′. Let Pv be the path between v and pv in T ; let T+[v] = T [v] ∪ Pv;
let n+

v be the number of vertices in T+[v]\{pv};let ev be the edge of Pv incident
to pv; and let sv be the number of segments used in the drawing of T+[v].

Lemma 1. For any vertex v �= r of T ′′, if ev is drawn vertical, then sv ≤
(3n+

v − 1)/4, otherwise sv ≤ 3n+
v /4.



422 P. Kindermann et al.

Fig. 3. Illustration of T+[v] in the proof of Lemma 1.

Proof. We prove the lemma by induction on the height of T ′′, so we can assume
that the bound holds for all children of v in T ′′. Recall that u1, . . . , ua are the leaf-
children of v in T ′, v1, . . . , vk are the children of v in T ′′, and v1 is connected to v
by a vertical segment. Let b be the number of degree-2 vertices that belong to v.
Let n′ =

∑k
i=1 n+

vi
; then, n+

v ≥ n′ + a + b + 1. (There might be degree-2 vertices
between v and its leaf-children in T ′ which we do not count.) By induction,
sv1 ≤ 3(n+

v1
− 1)/4 and svi

≤ 3n+
vi

/4 for 2 ≤ i ≤ k, so
∑k

i=1 svi
≤ (3n′ − 1)/4. It

remains to analyze the number of segments for Cv and for the path Pv.

Case 1. v is a leaf in T ′′ and b = 0. Then, n+
v ≥ a + 1. Since v is a leaf in T ′′,

it has at least two children in T , so a ≥ 2.
Case 1.1. a is even. We use a/2 for Cv plus one for the edge ev. Thus, sv ≤
a/2 + 1 ≤ (n+

v − 1)/2 + 1 = (3n+
v − n+

v + 2)/4 ≤ (3n+
v − 1)/4 since n+

v ≥ 3.

Case 1.2. a is odd and ev is vertical, so a ≥ 3 and n+
v ≥ 4. We use (a − 1)/2

segments for u1, . . . , ua−1 and one segment for ua and ev. Thus, sv ≤ (a−1)/2 +
1 ≤ n+

v /2 ≤ 3n+
v /4 − 1.

Case 1.3. a is odd and ev is not vertical. We use one more segment than in
Case 1.2, so sv ≤ 3n+

v /4.

Case 2. v is a leaf in T ′′ and b > 0. Then, a ≥ 2 and n+
v ≥ a+ b+1 ≥ a+2 ≥ 4

Case 2.1. a is even and ev is vertical. We use a/2 segments for u1, . . . , u2, and
the degree-2 vertices that belong to v lie on a vertical segment with ev. Hence,
we have sv ≤ a/2 + 1 ≤ n+

v /2 ≤ 3n+
v /4 − 1.

Case 2.2. a is even and ev is not vertical. We again have n+
v ≥ 4. The degree-2

vertices that belong to v now lie on a different segment than ev, so we have one
more segment than in Case 2.1, so sv ≤ 3n/4.

Case 2.3. a is odd. We have a ≥ 3 and thus n+
v ≥ 5. We have drawn u1, . . . , ua−1

paired up. We have drawn ua on a vertical segment with the degree-2 vertices
that belong to v, and we have possibly one more segment for ev. Hence, we have
sv ≤ (a − 1)/2 + 2 ≤ (n+

v + 1)/2 = (3n+
v − n+

v + 2)/4 ≤ (3n+
v − 3)/4.

Case 3. v is not a leaf in T ′′ and b = 0. We have n+
v ≥ n′ + a + 1, so

n′ ≤ n+
v − a − 1.



Drawing Planar Graphs with Few Segments on the Grid 423

Case 3.1. a = 0 and ev is vertical. Then, n+
v = n′ + 1 and ev lies on a vertical

segment with the edge ev1 . Hence, sv ≤ (3n′ − 1)/4 = (3n+
v − 4)/4.

Case 3.2. a = 0 and ev is not vertical. Again, n+
v = n′ +1. We use one segment

for ev, so we have sv ≤ (3n′ − 1)/4 + 1 = 3n+
v /4.

Case 3.3. a ≥ 2 is even. We use a/2 segments for Cv and one more for ev. Hence,
sv ≤ (3n′ − 1)/4 + a/2 + 1 = (3n′ + 2a + 3)/4 ≤ (3n+

v − a)/4 ≤ (3n+
v − 2)/4.

Case 3.4. a is odd and ev is vertical. We use (a + 1)/2 segments for u1, . . . , ua,
but ev shares its vertical segment with ev1 . Hence, sv ≤ (3n′ −1)/4+(a+1)/2 =
(3n′ + 2a + 1)/4) ≤ (3n+

v − a − 2)/4 ≤ (3n+
v − 3)/4.

Case 3.5. a is odd and ev is not vertical. In this case, we place ua above v such
that it lies on a segment with ev1 . We use (a − 1)/2 segments for u1, . . . , ua−1

and one segment for ev, so we have the same number of segments as in Case 3.4.

Case 4. v is not a leaf in T ′′ and b > 0. We have n+
v ≥ n′ +a+b+1 ≥ n′ +a+2.

Case 4.1. a is even. We use a/2 segments for u1, . . . , ua. The edges of the path
Pv share a vertical segment with ev1 . We use at most one more segment for ev,
so sv ≤ (3n′ −1)/4+a/2+1 = (3n′ +2a+3)/4 ≤ (3n+

v −a−3)/4 ≤ (3n+
v −3)/4.

Case 4.2. a is odd and ev is vertical. We use the exact same number of segments
as in Case 3.4, so sv ≤ (3n+

v − 3)/4.

Case 4.3. a is odd and ev is not vertical. We use (a+1)/2 segments for u1, . . . , ua.
The edges of the path Pv share a vertical segment with ev1 , and we need one
more segment for ev. Hence, sv ≤ (3n′ −1)/4+(a+1)/2+1 = (3n′ +2a+5)/4 ≤
(3n+

v − a − 1)/4 ≤ (3n+
v − 2)/4. 	


Now we can bound the total number of segments in the drawing of T .

Lemma 2. Our algorithm draws T with at most 3n/4 − 1 segments if n ≥ 3.

Proof. If T is a path with n ≥ 3, then the bound trivially holds. If T is a
subdivision of a star, then the bound also clearly holds. Otherwise, T ′′ consists
of more than one vertex. Let v1, . . . , vk be the children of the root r of T ′′ such
that v1 is connected by a vertical edge. Recall that n′ =

∑k
i=1 n+

vi
. By Lemma 1,

the subtrees T [vi]+, i = 1, . . . , k contribute at most (3n′ − 1)/4 segments to
the drawing of T . Let a be the number of leaf children of r in T ′. If a is even,
then we use a/2 segments to draw them. If a is odd, then we align one of
them with the vertical segment of v1, and draw the remaining with (a − 1)/2
segments. Since n ≥ n′ + a + 1, the total number of segments is at most
(3n′ − 1)/4 + a/2 ≤ 3n/4 − a/4 − 1 ≤ 3n/4 − 1. 	


All steps of the algorithm work in linear time. Sorting the leaf-children by the
number of degree-2 vertices belonging to them can also be done in linear time
with, e.g., CountingSort, as the numbers are bounded by n. Thus, Theorem 1
follows. Figure 1d shows the result of our algorithm for the tree of Fig. 1a.

Theorem 1. Any tree with n ≥ 3 vertices can be drawn planar on an n×n grid
with 3n/4 − 1 segments in O(n) time.



424 P. Kindermann et al.

Fig. 4. Edges in a
Schnyder realizer.

Fig. 5. Definition of orderly
spanning tree (bold).

Fig. 6. Definition of
slope-disjointness.

3 3-Connected Planar Graphs

In this section, we present an algorithm to compute planar drawings with at
most (8n − 14)/3 segments for 3-connected planar graphs.

Let G be a triangulation. Let v1, v2, v3 be the vertices of the outer face. We
decompose the interior edges into three Schnyder trees T1, T2, and T3 rooted
at v1, v2, and v3, respectively. The edges of the trees are oriented towards their
roots. For k ∈ {1, 2, 3}, we call each edge in Tk a k-edge and the parent of
a vertex in Tk its k-parent. The decomposition is a Schnyder realizer [21] if
at every interior vertex the edges are counter-clockwise ordered as: outgoing 1-
edge, incoming 3-edges, outgoing 2-edge, incoming 1-edges, outgoing 3-edge, and
incoming 2-edges; see Fig. 4. A Schnyder tree Tk also contains the exterior edges
of vk, so each exterior edges lies in two Schnyder trees and each vk is a leaf in
the other two Schnyder trees; hence, each Schnyder tree is a spanning tree.

For 3-connected planar graphs, Schnyder realizers also exist [6,10], but the
interior edges can be bidirected : an edge (u, v) is bidirected if it is an outgoing i-
edge at u and an outgoing j-edge at v with i �= j. All other edges are unidirected,
that is, they are an outgoing i-edge at u and an incoming i-edge at v (or vice-
versa). The restriction on the cyclic ordering around each vertex remains the
same, but now the Schnyder trees are not necessarily edge-disjoint.

Chiang et al. [5] have introduced the notion of orderly spanning trees.
Recently, orderly spanning trees were redefined by Hossain and Rahman [11]
as good spanning trees. We will use the definition by Chiang et al., but note that
these two definitions are equivalent. Two vertices in a rooted spanning tree are
unrelated if neither of them is an ancestor of the other one. A tree is ordered if
the circular order of the edges around each vertex is fixed. Let G = (V,E) be a
plane graph and let r ∈ V lie on the outer face. Let T be an ordered spanning
tree of G rooted at r that respects the embedding of G. Let v1, . . . , vn be the
vertices of T as encountered in a counter-clockwise pre-order traversal. For any
vertex vi, let p(vi) be its parent in T , let C(vi) be the children of v in T , let
N(vi) be the neighbors of vi in G that are unrelated to vi; see Fig. 5. Further,
let N−(vi) = {vj ∈ N(vi) | j < i} and N+(vi) = {vj ∈ N(vi) | j > i}. Then, T
is called orderly if the neighbors around every vertex vi are in counter-clockwise
order p(vi), N−(vi), C(vi), N+(vi). In particular, this means that there is no



Drawing Planar Graphs with Few Segments on the Grid 425

edge in G between vi and an ancestor in T that is not its parent and there is
no edge in G between vi and a descendent in T that is not its child. This fact
is crucial, as it allows us to draw a path in an orderly spanning tree on a single
segment without introducing overlapping edges.

Angelini et al. [1] have introduced the notion of a slope-disjoint drawing of
a rooted tree T , which is defined as follows; see Fig. 6.

(S1) For every vertex u in T , there exist two slopes α1(u) and α2(u) with
0 < α1(u) < α2(u) < π, such that, for every edge e that is either (p(u), u)
or lies in T [u], it holds that α1(u) < slope(e) < α2(u);

(S2) for every directed edge (v, u) in T , it holds that α1(u) < α1(v) < α2(v) <
α2(u) (recall that edges are directed towards the root); and

(S3) for every two vertices u, v in T with p(u) = p(v), it holds that either
α1(u) < α2(u) < α1(v) < α2(v) or α1(v) < α2(v) < α1(u) < α2(u).

Lemma 3 ([1]). Every slope-disjoint drawing of a tree is planar and monotone.

We will now create a special slope-disjoint drawing for rooted orderly trees.

Lemma 4. Let T = (V,E) be an ordered tree rooted at a vertex r with λ leaves.
Then, T admits a slope-disjoint drawing with λ segments on an O(n) × O(n2)
grid such that all slopes are integer. Such a drawing can be found in O(n) time.

Proof sketch. Let v1, . . . , vn = r be the vertices of T as encountered in a counter-
clockwise post-order traversal. Let ei = (vi, p(vi)), 1 ≤ i < n. We assign the
slopes to the edges of T in the order e1, . . . , en−1. We start with assigning
slope s1 = 1 to e1. For any other edge ei, 1 < i < n, if vi is a leaf in T ,
then we assign the slope si = si−1 + 1 to ei. Otherwise, since we traverse the
vertices in a post-order, p(vi−1) = vi and we assign the slope si = si−1 to ei.

We create a drawing Γ of T as follows. We place r = vn at coordinate (0, 0).
For every other vertex v with parent p that is drawn at coordinate (x, y), we
place v at coordinate (x + 1, y + slope(v)).

We now analyze the number of segments used in Γ; slope-disjointness, area,
and running time are proven in the full version [14]. The root r is an endpoint
of deg(r) segments and every leaf is an endpoint of exactly 1 segment. For every
other vertex v, its incoming edge and one of its outgoing edges lie on the same
segment, so it is an endpoint of deg(v) − 2 segments. Since every segment has
two endpoints, the total number of segments is

1
2

⎛

⎝deg(r) +
∑

v not leaf,v 	=r

(deg(v) − 2) +
∑

v leaf

deg(v)

⎞

⎠

=
1
2

(
∑

v

deg(v) − 2(n − λ − 1)

)

=
1
2

(2n − 2 − 2n + 2λ + 2) = λ.

	




426 P. Kindermann et al.

Lemma 5. Let G = (V,E) be a planar graph and let T be an orderly spanning
tree of G with λ leaves. Then, G admits a planar monotone drawing with at
most m − n + 1 + λ segments on an O(n) × O(n2) grid in O(n) time.

Proof. We first create a drawing of T according to Lemma 4. Now, we will plug
this tree drawing into the algorithm by Hossain and Rahman [11].

This algorithm takes a slope-disjoint drawing of an orderly spanning tree T
of G and stretches the edges of T such that the remaining edges of G can be
inserted without crossings. In this stretching operation, the slopes of the edges
of T are not changed. Further, the total width of the drawing only increases by a
constant factor. Since T is drawn slope-disjoint, this produces a planar monotone
drawing of G on an O(n) × O(n2) grid. The algorithm runs in O(n) time.

To count the number of segments, assume that every edge of G that does
not lie on T is drawn with its own segment. We have drawn T with λ segments
and the slopes of the edges of T . Hence, our algorithm draws G with λ segments
for T and with m − n + 1 segments for the remaining edges. 	


Both Chiang et al. [5] and Hossain and Rahman [11] have shown that every
planar graph has an embedding that admits an orderly spanning tree. However,
we do not know anything about the number of leaves in an orderly spanning tree.
Miura et al. [18] have shown that Schnyder trees are orderly spanning trees, and
it is known that every 3-connected planar graph has a Schnyder realizer.

Lemma 6 ([18]). Let G = (V,E) be a 3-connected planar graph and let T1, T2,
and T3 be the Schnyder trees of a Schnyder realizer of G. Then, T1, T2, and T3

are orderly spanning trees of G.

Bonichon et al. [2] showed that there is a Schnyder realizer for every trian-
gulated graph such that the total number of leaves in T1, T2, and T3 is at most
2n+1, which already gives us a good bound on the number of segments for trian-
gulations. We will now show that the same holds for every Schnyder realizer of a
3-connected graph. Let v be a leaf in one of the Schnyder trees Tk, k ∈ {1, 2, 3},
that is not the root of a Schnyder tree, so v has no incoming k-edge. Hence, the
outgoing (k +1)-edge (v, u) and the outgoing (k − 1)-edge (v, w) are consecutive
in the cyclical ordering around v, so they lie on a common face f . We assign the
pair (v, k) to f . We first show two lemmas.

Lemma 7. Let u1, . . . , up be the vertices on an interior face f in ccw order. If
(u1, k) and (u2, i) are assigned to f for some i, k ∈ {1, 2, 3}, then i = k.

Proof. Refer to Fig. 7. By definition, (u1, u2) is an outgoing (k + 1)-edge at u1.
Since u1 is a leaf in Tk, (u1, u2) cannot be an outgoing k-edge at u2. Hence,
(u1, u2) is either an incoming (k + 1)-edge at u2 (if it is unidirected), or an
outgoing (k −1)-edge at u2 (if it is bidirected); it cannot be an outgoing (k +1)-
edge since bidirected edges have to belong to two different Schnyder trees. For
(u2, i) to be assigned to f , u2 must have two outgoing edges at f , so we are in
the latter case. Hence, (u2, u3) is outgoing at u2, and by the cyclical ordering of
the edges around u2, it is an outgoing (k + 1)-edge. Thus, u2 has an outgoing
(k + 1)-edge and an outgoing (k − 1)-edge at f , so i = k. 	




Drawing Planar Graphs with Few Segments on the Grid 427

Fig. 7. (Left) Proof of Lemma 7 and (right) proof of Lemma 8.

Lemma 8. Let u1, u2, . . . , up be vertices on an interior face f in counter-
clockwise order. If u3, . . . , up are assigned to f , then neither u1 nor u2 are.

Proof sketch. From Lemma 7, it follows that (u3, k), . . . , (up, k) are assigned to f
for some k ∈ {1, 2, 3}, so (u1, up) is an outgoing (k + 1)-edge at up and (u2, u3)
is an outgoing (k − 1)-edge at u3; since u1 and up are leaves in Tk, (u1, up) is
either an incoming (k +1)-edge or an outgoing (k − 1)-edge at u1 and (u2, u3) is
either an incoming (k−1)-edge or an outgoing (k+1)-edge at u2. However, each
of the four possible configurations violates the properties of a Schnyder realizer,
as illustrated in Fig. 7. The full proof is given in the full version [14]. 	


Now we prove the bound on the number of leaves in a Schnyder realizer.

Lemma 9. Let T1, T2, T3 be a Schnyder realizer of a 3-connected planar
graph G = (V,E). Then, there are at most 2n + 1 leaves in total in T1, T2,
and T3.

Proof. Consider any interior face f of G. By definition of the assignment, no
vertex can be assigned to f twice. By Lemma 8, at least two vertices on f are
not assigned to f , so we assign at most deg(f) − 2 leaves to f . At the outer
face f∗, every vertex that is not the root of a Schnyder tree can be assigned
as a leaf at most once. However, the root of each of the Schnyder trees has no
outgoing edges, but it can be a leaf in both the other two Schnyder trees. Hence,
we assign at most deg(f∗) + 3 leaves to the outer face. Let F be the faces in G.
Since, for every Schnyder tree, each of its leaves gets assigned to exactly one
face, the total number of leaves in T1, T2, and T3 is at most

∑

f∈F

(deg(f) − 2) + 5 = 2m − 2|F | + 5 = 2m + 2n − 2m − 4 + 5 = 2n + 1.

	

Now we have the tools to prove the main result of this section.

Theorem 2. Any 3-connected planar graph can be drawn planar monotone on
an O(n) × O(n2) grid with m − (n − 4)/3 segments in O(n) time.

Proof. Let G = (V,E) be a 3-connected planar graph. We compute a Schnyder
realizer of G, which is possible in O(n) time. By Lemma 9, the Schnyder trees
have at most 2n+1 leaves in total, so one of them, say T1, has at most (2n+1)/3



428 P. Kindermann et al.

leaves. By Lemma 6, T1 is an orderly spanning tree, so we can use Lemma 5 to
obtain a planar monotone drawing of G on an O(n) × O(n2) grid with at most
m − n + 1 + (2n + 1)/3 = m − n/3 + 4/3 segments in O(n) time. 	


Since a planar graph has at most m ≤ 3n − 6 edges, we have the following.

Corollary 1. Any 3-connected planar graph can be drawn planar monotone on
an O(n) × O(n2) grid with (8n − 14)/3 segments in O(n) time.

4 Other Planar Graph Classes

We can use the results of Sect. 3 to obtain grid drawings with few segments for
other planar graph classes on an O(n)×O(n2) grid in O(n) time. In particular, we
can draw (i) 4-connected triangulations with 5n/2−4 segments; (ii) biconnected
outerplanar graphs with m − (n − 3)/2 ≤ (3n − 3)/2 segments; (iii) outerplanar
graphs with (7n − 9)/4 segments, or with (3n − 5)/2 + b segments, where b is its
number of maximal biconnected components; and (iv) planar graphs with (17n −
38)/3 − m or (17n − 38)/6 segments. Details are given in the full version [14].

Acknowledgements. We thank Roman Prutkin for the initial discussion of the prob-
lem and Therese Biedl for helpful comments.

References

1. Angelini, P., Colasante, E., Battista, G.D., Frati, F., Patrignani, M.: Monotone
drawings of graphs. J. Graph Algorithms Appl. 16(1), 5–35 (2012). https://doi.
org/10.7155/jgaa.00249

2. Bonichon, N., Le Saëc, B., Mosbah, M.: Wagner’s theorem on realizers. In: Wid-
mayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M.
(eds.) ICALP 2002. LNCS, vol. 2380, pp. 1043–1053. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45465-9 89

3. Chaplick, S., Fleszar, K., Lipp, F., Ravsky, A., Verbitsky, O., Wolff, A.: Drawing
graphs on few lines and few planes. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016.
LNCS, vol. 9801, pp. 166–180. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-50106-2 14

4. Chaplick, S., Fleszar, K., Lipp, F., Ravsky, A., Verbitsky, O., Wolff, A.: The com-
plexity of drawing graphs on few lines and few planes. In: Ellen, F., Kolokolova,
A., Sack, J.R. (eds.) WADS 2017. LNCS, vol. 10389, pp. 265–276. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-62127-2 23

5. Chiang, Y.T., Lin, C.C., Lu, H.I.: Orderly spanning trees with applications. SIAM
J. Comput. 34(4), 924–945 (2005). https://doi.org/10.1137/s0097539702411381

6. Di Battista, G., Tamassia, R., Vismara, L.: Output-sensitive reporting of disjoint
paths. Algorithmica 23(4), 302–340 (1999). https://doi.org/10.1007/PL00009264

7. Dujmović, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs
with few slopes and segments. Comput. Geom. Theory Appl. 38(3), 194–212
(2007). https://doi.org/10.1016/j.comgeo.2006.09.002

8. Durocher, S., Mondal, D.: Drawing plane triangulations with few segments. Com-
put. Geom. 77, 27–39 (2019). https://doi.org/10.1016/j.comgeo.2018.02.003

https://doi.org/10.7155/jgaa.00249
https://doi.org/10.7155/jgaa.00249
https://doi.org/10.1007/3-540-45465-9_89
https://doi.org/10.1007/978-3-319-50106-2_14
https://doi.org/10.1007/978-3-319-50106-2_14
https://doi.org/10.1007/978-3-319-62127-2_23
https://doi.org/10.1137/s0097539702411381
https://doi.org/10.1007/PL00009264
https://doi.org/10.1016/j.comgeo.2006.09.002
https://doi.org/10.1016/j.comgeo.2018.02.003


Drawing Planar Graphs with Few Segments on the Grid 429

9. Durocher, S., Mondal, D., Nishat, R.I., Whitesides, S.: A note on minimum-segment
drawings of planar graphs. J. Graph Algorithms Appl. 17(3), 301–328 (2013).
https://doi.org/10.7155/jgaa.00295

10. Felsner, S., Zickfeld, F.: Schnyder woods and orthogonal surfaces. Discret. Comput.
Geom. 40(1), 103–126 (2008). https://doi.org/10.1007/s00454-007-9027-9

11. Hossain, M.I., Rahman, M.S.: Good spanning trees in graph drawing. Theor. Com-
put. Sci. 607, 149–165 (2015). https://doi.org/10.1016/j.tcs.2015.09.004

12. Hültenschmidt, G., Kindermann, P., Meulemans, W., Schulz, A.: Drawing planar
graphs with few geometric primitives. J. Graph Algorithms Appl. 22(2), 357–387
(2018). https://doi.org/10.7155/jgaa.00473

13. Igamberdiev, A., Meulemans, W., Schulz, A.: Drawing planar cubic 3-connected
graphs with few segments: algorithms & experiments. J. Graph Algorithms Appl.
21(4), 561–588 (2017). https://doi.org/10.7155/jgaa.00430

14. Kindermann, P., Mchedlidze, T., Schneck, T., Symvonis, A.: Drawing planar graphs
with few segments on a polynomial grid. arXiv report (2019). http://arxiv.org/abs/
1903.08496

15. Kindermann, P., Meulemans, W., Schulz, A.: Experimental analysis of the acces-
sibility of drawings with few segments. J. Graph Algorithms Appl. 22(3), 501–518
(2018). https://doi.org/10.7155/jgaa.00474

16. Kobourov, S.G., Mchedlidze, T., Vonessen, L.: Gestalt principles in graph drawing.
In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 558–560.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27261-0 50

17. Kryven, M., Ravsky, A., Wolff, A.: Drawing graphs on few circles and few spheres.
In: Panda, B.S., Goswami, P.P. (eds.) CALDAM 2018. LNCS, vol. 10743, pp. 164–
178. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74180-2 14

18. Miura, K., Azuma, M., Nishizeki, T.: Canonical decomposition, realizer, schnyder
labeling and orderly spanning trees of plane graphs. Int. J. Found. Comput. Sci.
16(01), 117–141 (2005). https://doi.org/10.1142/s0129054105002905

19. Mondal, D.: Visualizing graphs: optimization and trade-offs. Ph.d. thesis, Univer-
sity of Manitoba (2016). http://hdl.handle.net/1993/31673

20. Mondal, D., Nishat, R.I., Biswas, S., Rahman, M.S.: Minimum-segment convex
drawings of 3-connected cubic plane graphs. J. Comb. Optim. 25(3), 460–480
(2013). https://doi.org/10.1007/s10878-011-9390-6

21. Schnyder, W.: Embedding planar graphs on the grid. In: Johnson, D.S. (ed.) SODA
1990, pp. 138–148. SIAM (1990). http://dl.acm.org/citation.cfm?id=320191

22. Schulz, A.: Drawing graphs with few arcs. J. Graph Algorithms Appl. 19(1), 393–
412 (2015). https://doi.org/10.7155/jgaa.00366

23. Wade, G.A., Chu, J.: Drawability of complete graphs using a minimal slope set.
Comput. J. 37(2), 139–142 (1994). https://doi.org/10.1093/comjnl/37.2.139

https://doi.org/10.7155/jgaa.00295
https://doi.org/10.1007/s00454-007-9027-9
https://doi.org/10.1016/j.tcs.2015.09.004
https://doi.org/10.7155/jgaa.00473
https://doi.org/10.7155/jgaa.00430
http://arxiv.org/abs/1903.08496
http://arxiv.org/abs/1903.08496
https://doi.org/10.7155/jgaa.00474
https://doi.org/10.1007/978-3-319-27261-0_50
https://doi.org/10.1007/978-3-319-74180-2_14
https://doi.org/10.1142/s0129054105002905
http://hdl.handle.net/1993/31673
https://doi.org/10.1007/s10878-011-9390-6
http://dl.acm.org/citation.cfm?id=320191
https://doi.org/10.7155/jgaa.00366
https://doi.org/10.1093/comjnl/37.2.139


Variants of the Segment Number
of a Graph

Yoshio Okamoto1,2 , Alexander Ravsky3, and Alexander Wolff4(B)

1 University of Electro-Communications, Chōfu, Japan
2 RIKEN Center for Advanced Intelligence Project, Tokyo, Japan

3 Pidstryhach Institute for Applied Problems of Mechanics and Mathematics,
National Academy of Sciences of Ukraine, Lviv, Ukraine

alexander.ravsky@uni-wuerzburg.de
4 Universität Würzburg, Würzburg, Germany
usetheemailaddressonmyhomepage@gmail.com

http://www1.informatik.uni-wuerzburg.de/en/staff/wolff-alexander

Abstract. The segment number of a planar graph is the smallest num-
ber of line segments whose union represents a crossing-free straight-line
drawing of the given graph in the plane. The segment number is a
measure for the visual complexity of a drawing; it has been studied
extensively.

In this paper, we study three variants of the segment number: for
planar graphs, we consider crossing-free polyline drawings in 2D; for
arbitrary graphs, we consider crossing-free straight-line drawings in 3D
and straight-line drawings with crossings in 2D. We first construct an
infinite family of planar graphs where the classical segment number is
asymptotically twice as large as each of the new variants of the segment
number. Then we establish the ∃R-completeness (which implies the NP-
hardness) of all variants. Finally, for cubic graphs, we prove lower and
upper bounds on the new variants of the segment number, depending on
the connectivity of the given graph.

1 Introduction

When drawing a graph, a way to keep the visual complexity low is to use few
geometric objects for drawing the edges. This idea is captured by the segment
number of a (planar) graph, that is, the smallest number of crossing-free line
segments that together constitute a straight-line drawing of the given graph.
The arc number of a graph is defined analogously with respect to circular-arc
drawings. So far, both numbers have only been studied for planar graphs. Two
obvious lower bounds for the segment number are known [5]: (i) η(G)/2, where
η(G) is the number of odd-degree vertices of G, and (ii) the planar slope number
of G, that is, the smallest number k such that G admits a crossing-free straight-
line drawing whose edges have k different slopes.

A.W. acknowledges support from DFG grant WO 758/9-1.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 430–443, 2019.
https://doi.org/10.1007/978-3-030-35802-0_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_33&domain=pdf
http://orcid.org/0000-0002-9826-7074
http://orcid.org/0000-0001-5872-718X
https://doi.org/10.1007/978-3-030-35802-0_33


Variants of the Segment Number of a Graph 431

Dujmović et al. [5], who introduced segment number and planar slope num-
ber, showed among others that trees can be drawn without crossings such
that the optimum segment number and the optimum planar slope number are
achieved simultaneously. In fact, any tree T admits a drawing with η(T )/2 seg-
ments and Δ(T )/2 slopes, where Δ(T ) is the maximum degree of T . Unfortu-
nately, these drawings need exponential area. Therefore, Schulz [19] suggested
to study the arc number of planar graphs. Among other things, he showed that
any n-vertex tree can be drawn on a polynomial-size grid (O(n1.81) × n) using
at most 3n/4 arcs.

Another measure for the visual complexity of a drawing of a graph is the min-
imum number of lines whose union contains a straight-line crossing-free drawing
of the given graph. This parameter is called the line cover number of a graph G
and denoted by ρ12(G) for 2D (where G must be planar) and ρ13(G) for 3D.
Together with the plane cover number ρ23(G) and other variants, these param-
eters have been introduced by Chaplick et al. [2]. They also showed that both
line cover numbers are ∃R-hard to compute [3]. (For background on ∃R, see
Schaefer’s work [18]).

Upper bounds for the segment number and the arc number (in terms of the
number of vertices, n, ignoring constant additive terms) are known for series-
parallel graphs (3n/2 vs. n), planar 3-trees (2n vs. 11n/6), and triconnected
planar graphs (5n/2 vs. 2n) [5,19]. The upper bound on the segment number for
triconnected planar graphs has been improved for the special cases of triangula-
tions and 4-connected triangulations (from 5n/2 to 7n/3 and 9n/4, respectively)
by Durocher and Mondal [6]. For the special case of triconnected cubic graphs,
Dujmović et al. [5] showed that the segment number is upperbounded by n + 2.
(A cubic graph with n vertices has 3n/2 edges.) The result of Dujmović et al.
was improved by Mondal et al. [16] who gave two linear-time algorithms based
on cannonical decompositions; one that uses at most n/2+3 segments for n ≥ 6
and one that uses n/2+4 segments but places all vertices on a grid of size n×n.
Both algorithms use at most six different slopes. Note that n/2 + 3 segments
are optimal for cubic planar graphs since in every vertex at least one segment
must end and in the at least three vertices on the convext hull all three inci-
dent segments must end. Igamberdiev et al. [12] fixed a bug in the algorithm of
Mondal et al., presented two conceptually different (but slower) algorithms that
meet the lower bound and compared them experimentally in terms of common
metrics such as angular resolution.

Hültenschmidt et al. [11] provided bounds for segment and arc number under
the additional constraint that vertices must lie on a polynomial-size grid. They
also showed that n-vertex triangulations can be drawn with at most 5n/3 arcs,
which is better than the lower bound of 2n for the segment number on this
class of graphs. For 4-connected triangulations, they need at most 3n/2 arcs.
Kindermann et al. [13] recently strengthened some of these results by showing
that many classes of planar graphs admit nontrivial bounds on the segment
number even when restricting vertices to a grid of size O(n) × O(n2). For draw-
ing n-vertex trees with at most 3n/4 segments, they reduced the grid size to



432 Y. Okamoto et al.

n×n. Among other things, Durocher et al. [7] showed that the segment number
is NP-hard to compute with respect to a fixed embedding, even in the special
case of arrangement graphs. They also showed that the following partial
representation extension problem is NP-hard: given an outerplanar graph G,
an integer k, and a straight-line drawing δ of a subgraph of G, is there a
k-segment drawing that contains δ? It is still open, however, whether the segment
number is fixed-parameter tractable.

In this paper, we consider several variants of the planar segment number seg2
that has been studied extensively. In particular, we study the 3D segment number
seg3, which is the most obvious generalization of the planar segment number. It is
the smallest number of straight-line segments needed for a crossing-free straight-
line drawing of a given graph in 3D. We also study the crossing segment number
seg× in 3D, where edges are allowed to cross, but they are not allowed to overlap
or to contain vertices in their interiors. In this case, by Lemma 1, the minimum
number of segments constituting a drawing of a given graph can be achieved by
a plane drawing. Finally, for planar graphs, we study the bend segment number
seg∠ in 2D, which is the smallest number of straight-line segments needed for a
crossing-free polyline drawing of a given graph in 2D.

Durocher et al. [7] were also interested in the 3D segment number. They
stated that their proof of the NP-hardness of the above-mentioned partial repre-
sentation problem can be adjusted to 3D. They suspected that the 3D segment
number remains NP-hard to compute even if the given graph is subcubic. Instead,
they showed that a variant of the 3D segment number is NP-hard where one is
given a 3D drawing and additional co-planarity constraints that must be fulfilled
in the final drawing.

Our Contribution. First, we establish some relationships between the variants of
the segment number; see Sect. 2. Then we turn to the complexity of computing
the new variants of the segment number; see Sect. 3. By re-using ideas from the
∃R-completeness proof of Chaplick et al. [3] regarding the computation of the
line cover numbers ρ12 and ρ13, we establish the ∃R-completeness (and hence the
NP-hardness) of all variants of the segment number – seg2, seg3, seg×, and seg∠ –
even for graphs of maximum degree 4. Thus, we nearly answer the open problem
of Durocher et al. [7] concerning the computational complexity of the 3D segment
number for subcubic graphs. Note that Hoffmann [10] recently established the
∃R-hardness of computing the slope number slope(G) of a planar graph G.

Our main contribution consists in algorithms and lower-bound constructions
for connected (γ = 1), biconnected (γ = 2), and triconnected (γ = 3) cubic
graphs; see Table 1. To put these results into perspective, recall that any cubic
graph with n vertices needs at least n/2 + 3 and at most 3n/2 segments to be
drawn, regardless of the drawing style. (In contrast, four slopes suffice for cubic
graphs [17]). We prove our bounds in Sect. 4. Note that for cubic graphs, vertex-
and edge-connectivity are the same [4, Thm. 2.17].

Before we start, we introduce the following notation. For a given polyline
drawing δ of a graph in 2D or 3D, we denote by seg(δ) the number of (inclusion-
wise maximal) straight-line segments of which the drawing δ consists.



Variants of the Segment Number of a Graph 433

Table 1. Overview over existing and new bounds on variants of the segment number
of cubic graphs. The upper bounds hold for all n-vertex graphs of a certain vertex
connectivity γ. The lower bounds are existential; there exist graphs for which they hold.
Note that seg2 and seg∠ are defined only for planar graphs. We skip more specialized
known results (e.g., concerning grid size [11] or triangulations [6]).

γ seg2(G) seg3(G) seg∠(G) seg×(G)

1 ≥ 5n/6 [Prp. 2] ≥ 5n/6 [Prp. 2] ≥ 5n/6 [Prp. 2] ≥ 5n/6 [Prp. 2]

2 ≤ n + 2 [Th. 5] ≤ n + 1 [Th. 4] ≤ n + 2 [Th. 5]

≥ 3n/4 [Prp. 4] ≥ 5n/6 [Prp. 3] ≥ 3n/4 [Prp. 4] ≥ 3n/4 [Prp. 4]

3 = n/2 + 3 [12,16] ≤ n + 2 [Th. 5] ≤ n + 2 [Th. 5]

(except for G = K4) ≥ 7n/10 [Prp. 5] seg∠ ≡ seg2

2 Relationships Between Segment Number Variants

Lemma 1. Given a graph G and a straight-line drawing δ of G in 3D with the
property that no two edges overlap and no edge contains a vertex in its interior,
then there exists a plane drawing δ′ of G with seg(δ′) ≤ seg(δ) and with the same
property as δ. (Note that both in δ and δ′ edges may cross).

Proof. For each triplet u, v, w of points in δ that correspond to three distinct
vertices of G, let P (u, v, w) be the plane or line spanned by the vectors −→uv
and −→wv, and let P be the set of all such planes or lines. Choose a point A in
R

3 \
⋃

P that does not lie in the xy-plane. Let δ′ be the drawing that results
from projecting δ parallel to the vector OA onto the xy-plane. Due to the
choice of the projection, δ′ may contain crossings, but no edge contains a ver-
tex to which it is not incident, and no two edges overlap. By construction,
seg(δ′) ≤ seg(δ). ��

Corollary 1. For any graph G it holds that seg×(G) ≤ seg3(G).

Proposition 1. There is an infinite family of planar graphs (Si)i≥3 such that Si

has ni = i3 − i + 6 vertices and the ratios seg2(Si)/ seg3(Si), seg2(Si)/ seg∠(Si),
and seg2(Si)/ seg×(Si) all converge to 2 with increasing i.

Proof. We construct, for i ≥ 3, a triangulation Ti with maximum degree 6
and ti = i2 − 2i + 3 vertices (and, hence, 3ti − 6 edges and 2ti − 4 faces),
as follows. Take two triangular grids of side length i − 1 (a single triangle is a
grid of side length 1) and glue their boundaries, identifying corresponding ver-
tices and edges. Clearly, the result is a (planar) triangulation. Let si = seg2(Ti).
Then, by the result of Dujmović et al. [5], si ≤ 5ti/2.

We assume that i is even. To each vertex v of the triangulation, we attach an
i-fan, that is, a path of length i each of whose vertices is connected to v. Let Si

be the resulting graph, which has ni = ti(i + 2) vertices.
In 2D, no matter how the triangulation is drawn, only three vertices lie on

the outer face. Consider an i-fan incident to one of the ti − 3 inner vertices; see



434 Y. Okamoto et al.

Fig. 1. Attaching a fan (thin edges) to a vertex of a triangulation (thick edges) of
maximum degree 6

Fig. 1a. Each such i-fan must be placed into a triangular face and needs at least
i − 3 segments that are disjoint from the drawing of the triangulation. (Here we
use that every vertex has degree at most 6.) Hence, seg2(Si) ≥ (ti −3) · (i−3) =
i3 − O(i2).

In 3D on the other hand, we can draw every fan in a plane different from the
triangulation such that the fan’s path lies on three segments and the remain-
ing edges are paired such that each pair shares a segment; see Fig. 1b. Hence,
seg3(Si) ≤ ti·(i/2+3)+si = i3/2+O(i2). Due to Corollary 1, seg×(Si) ≤ seg3(Si).

To bound seg∠(Si), observe that we can modify the layout of the triangulation
as in Fig. 1c such that every vertex is incident to an angle greater than π without
any incoming edges. This can be achieved as follows. On each inner vertex v,
place a disk Dv whose radius is (slightly smaller than) the minimum over the
lengths of the incident edges divided by 2 and over the distances to all non-
incident edges. The resulting disks have positive radii and are pairwise disjoint.
Now we go through all vertices. Let v be the current vertex and let ∂Dv be the
boundary of Dv. We bend all edges incident to v at ∂Dv and place v on some
unused point on ∂Dv. As a result, every vertex is incident to an angle greater
than π without any incoming edges. In this area (marked red in Fig. 1c), we can
place the corresponding fan. The modification introduces at most two bends in
every edge of the triangulation. Hence, seg∠(Si) ≤ ti · (i/2 + 3) + 3 · (3ti − 6) =
i3/2 + O(i2). ��

Open Problem 1. What are upper bounds for the ratios seg2(G)/ seg3(G),
seg2(G)/ seg∠(G), and seg2(G)/ seg×(G) with G ranging over all planar graphs?

3 Computational Complexity

Chaplick et al. [3, Theorem 1] showed that it is ∃R-hard to decide for a planar
graph G and an integer k whether ρ12(G) ≤ k and whether ρ13(G) ≤ k. We follow
their approach to show the hardness of all variants of the segment number that
we study in this paper.

A simple line arrangement is a set L of k lines in R
2 such that each pair

of lines has one intersection point and no three lines share a common point.
We define the arrangement graph for a set of lines as follows [1]: The vertices



Variants of the Segment Number of a Graph 435

correspond to the intersection points of lines and two vertices are adjacent in the
graph if and only if they lie on the same line and no other vertex lies between
them. The Arrangement Graph Recognition problem is to decide whether
a given graph is the arrangement graph of some set of lines.

Bose et al. [1] showed that this problem is NP-hard by reduction from a
version of Pseudoline Stretchability for the Euclidean plane, whose NP-
hardness was proved by Shor [20]. It turns out that Arrangement Graph
Recognition is actually an ∃R-complete problem [8, p. 212]. This stronger
statement follows from the fact that the Euclidean Pseudoline Stretchabil-
ity is ∃R-hard as well as the original projective version [15,18].

Theorem 1. Given a planar graph G of maximum degree 4 and an integer k,
it is ∃R-hard to decide whether seg2(G) ≤ k, whether seg∠(G) ≤ k, and whether
seg×(G) ≤ k.

Proof. Similarly to Chaplick et al. [3, proof of Theorem 1], we first observe
that if G is an arrangement graph, there must be an integer 	 such that G has
	(	 − 1)/2 vertices (of degree d ∈ {2, 3, 4}) and 	(	 − 2) edges. This uniquely
determines 	. We set the parameter k from the statement of our theorem to
this value of 	. Again, as Chaplick et al., we construct a graph G′ from G by
appending a tail (i.e., a degree-1 vertex) to each degree-3 vertex of G and two
tails to each degree-2 vertex of G.

We claim that the following five conditions are equivalent: (i) G is an arrange-
ment graph on k lines, (ii) ρ12(G

′) ≤ k, (iii) seg2(G′) ≤ k, (iv) seg∠(G′) ≤ k,
and (v) seg×(G′) ≤ k. Once the equivalence is established, the ∃R-hardness of
deciding (i) implies the ∃R-hardness of deciding any of the other statements.

Indeed, according to Chaplick et al. [3, proof of Theorem 1], G is an arrange-
ment graph if and only if ρ12(G

′) ≤ k, that is, (i) and (ii) are equivalent.
Assume (i). If G corresponds to a line arrangement of k lines, all edges of G lie

on these k lines and the tails of G′ can be added without increasing the number
of lines. This arrangement shows that seg2(G′) ≤ k, that is, (i) implies (iii).

Assume (iii), i.e., seg2(G′) ≤ k. Then seg∠(G′) ≤ k (iv) and seg×(G′) ≤ k (v).
Assume (iv), i.e., seg∠(G′) ≤ k. Let Γ ′ be a polyline drawing of G′ on

seg∠(G′) segments. The graph G′ contains
(
k
2

)
degree-4 vertices. As each of

these vertices lies on the intersection of two segments in Γ ′, we need k segments
to get enough intersections, that is, seg∠(G′) ≥ k. Thus seg∠(G′) = k and
each intersection of the segments of Γ ′ (in particular, each bend) is a vertex
of G′. Therefore edges in Γ ′ do not bend in interior points and Γ ′ witnesses that
seg2(G) ≤ k. Thus (iv) implies (ii).

Finally, assume (v), i.e., seg×(G′) ≤ k. Let Γ be a straight-line drawing
with possible crossings on seg×(G′) segments. Again, we need k segments to
get enough intersections, that is, seg×(G′) ≥ k. Thus seg×(G′) = k and each
intersection of the segments of Γ ′ is a vertex of G′. Therefore edges in Γ ′ do not
cross and Γ ′ witnesses that seg2(G) ≤ k. Thus (v) implies (ii).

Summing up, (iii) implies (iv) and (v), which both imply (ii), which
implies (i), which implies (iii). Hence, all statements are equivalent. ��



436 Y. Okamoto et al.

Theorem 2. Given a graph G of maximum degree 4 and an integer k, it is
∃R-hard to decide whether seg3(G) ≤ k.

Proof. Chaplick et al. [3, proof of Theorem 1] argued that for the graph G′

constructed in the proof of Theorem 1 above, it holds that ρ12(G
′) = ρ13(G

′).
Then, by the proof of Theorem 1, we have ρ13(G

′) = seg×(G′).
By definition, we immediately obtain seg3(G′) ≤ ρ13(G

′). By Corollary 1, we
have that seg×(G′) ≤ seg3(G′). Therefore, seg×(G′) = seg3(G′). Together with
the arguments in the proof of Theorem 1, this implies the theorem. ��

Theorem 3. Given a planar graph G and an integer k, it is ∃R-complete to
decide whether seg2(G) ≤ k, whether seg3(G) ≤ k, whether seg∠(G) ≤ k, and
whether seg×(G) ≤ k.

Proof. Given the hardness results in Theorems 1 and 2, it remains to show
that each of the four problems lies in ∃R. Chaplick et al. [3] [ArXiv version,
Sect. 2] have shown that deciding whether ρ21(G) ≤ k and ρ31(G) ≤ k both lie in
∃R. To this end, they showed that these questions can be formulated as first-
order existential expressions over the reals. We now show how to extend their
expression for deciding whether ρ21(G) ≤ k to an expression for deciding whether
seg2(G) ≤ k. The expressions for the other variants can be extended in a similar
way.

Their existential statement over the reals starts with the quantifier prefix
∃v1 . . . ∃vn∃p1∃q1 . . . ∃pk∃qk, where quantification ∃a over a point a = (x, y)
means the quantifier block ∃x∃y, the points v1, . . . , vn are the points to which the
vertices of G, {1, . . . , n}, are mapped, and the pairs (p1, q1) . . . , (pk, qk) define the
k lines that cover the drawing of G. The expression Π over which they quantify
uses a subexpression that takes as input three points in R

2; for a, b, and c, they
define the expression B(a, b, c) such that it is true if and only if a lies on the line
segment bc.

To the expression Π we simply add a term that ensures that, for each pair of
consecutive points vi and vj on the same line, vertices i and j are adjacent in G:

∧

l∈{1,...,k},i,j,k∈V

B(vi, pl, ql) ∧ B(vj , pl, ql) ∧ ¬B(vk, vi, vj) ⇒ {i, j} ∈ E,

where V is the vertex set and E is the edge set of the graph G. ��

4 Algorithms and Lower Bounds for Cubic Graphs

Consider a polyline drawing δ of a cubic graph (in 2D or 3D). Note that there
are two types of vertices; those where exactly one segment ends and those where
three segments end. We call these vertices flat vertices and tripods, respectively.
Let f(δ) be the number of flat vertices, t(δ) the number of tripods, and b(δ) the
number of bends in δ.



Variants of the Segment Number of a Graph 437

Fig. 2. The graph Gk (here k = 4) is a caterpillar with k − 2 inner vertices of degree 3
where each leaf has been replaced by a copy of the 5-vertex graph K′

4 (shaded gray).

Lemma 2. For any straight-line drawing δ of a cubic graph with n vertices,
seg(δ) = 3n/2 − f(δ) + b(δ) = n/2 + t(δ) + b(δ).

Proof. Clearly, n = f(δ)+ t(δ). The number of “segment ends” is 3t(δ)+ f(δ)+
2b(δ) = 3n − 2f(δ) + 2b(δ) = n + 2t(δ) + 2b(δ). The claim follows since every
segment has two ends. ��

4.1 Singly-Connected Cubic Graphs

Proposition 2. There is an infinite family (Gk)k≥1 of connected cubic graphs
such that Gk has nk = 6k − 2 vertices and seg2(Gk) = seg3(Gk) = seg∠(Gk) =
seg×(Gk) = 5k − 1 = 5nk/6 + 2/3.

Proof. Let K ′
4 be the graph K4 with a subdivided edge. Consider the graph Gk

depicted in Fig. 2 (for k = 4). It consists of a caterpillar with k −2 inner vertices
(of degree 3) where each of the k leaf nodes is replaced by a copy of K ′

4. The
convex hull of every polyline drawing of K ′

4 has at least three extreme points.
One of these points may connect K ′

4 to Gk − K ′
4, but each of the remaining two

must be a tripod or a bend. This holds for every copy of K ′
4. Hence, for any

drawing δ of G, t(δ) + b(δ) ≥ 2k. Now Lemma 2 yields that seg(δ) ≥ 5k − 1. For
the drawing in Fig. 2, the bound is tight. ��

4.2 Biconnected Cubic Graphs

Proposition 3. There is an infinite family of Hamiltonian (and hence bicon-
nected) cubic graphs (Hk)k≥3 such that Hk has nk = 6k vertices, seg3(Hk) =
5k = 5nk/6, and seg×(Hk) = 4k = 2nk/3.

Proof. Consider the graph Hk depicted in Fig. 3 (for k = 4). It is a k-cycle where
each vertex is replaced by a copy of a 6-vertex graph K (K3,3 minus an edge).
The graph Hk has nk = 6k vertices and is not planar.

In any 2D drawing of the subgraph K, at least three vertices lie on the convex
hull of the drawing of K. Two of these vertices may connect K to Hk − K, but
at least one of the convex-hull vertices is a tripod. This holds for every copy
of K. Hence, for any (3D) drawing δ of Hk, t(δ) ≥ k. Now Lemma 2 yields that
seg(δ) ≥ nk/2 + k = 2nk/3. The same bound holds for seg×(Hk).



438 Y. Okamoto et al.

Fig. 3. The cubic graph Hk (here k = 4)
is a k-cycle whose vertices are replaced by
K3,3 minus an edge (shaded).

Fig. 4. The planar cubic graph Ik (here
k = 9) is a k-cycle whose vertices are
replaced by K4 minus an edge (shaded).

In order to bound seg3(Hk) we consider two possibilities for the drawing
of the subgraph K; either it lies in a plane or it doesn’t. In the planar case,
the two vertices that connect K to Hk − K cannot lie in the same face of the
planar embedding of K (otherwise we could connect these two vertices without
crossings, contradicting the fact that K3,3 is not planar). Hence, at least two
vertices on the convex hull of K must be tripods. In the non-planar case, the
convex hull consists of four vertices. Two of these may connect K to Hk − K,
but again at least two must be tripods. In both cases we hence have t(δ) ≥ 2k
for any 3D drawing δ of Hk. Now Lemma 2 yields seg(δ) ≥ nk/2 + 2k = 5nk/6.
The same bound holds for seg3(Hk).

For the drawing in Fig. 3, the bound for seg× is tight. Lifting the k white
vertices that do not lie on the outer face from the xy-plane (z = 0) to the plane
z = 1, yields a crossing-free 3D drawing where the bound for seg3 is tight. ��

Proposition 4. There is an infinite family of planar cubic Hamiltonian (and
hence biconnected) graphs (Ik)k≥3 such that Ik has nk = 4k vertices and
seg2(Ik) = seg3(Ik) = seg∠(Ik) = seg×(Ik) = 3k = 3nk/4.

Proof. Consider the graph Ik depicted in Fig. 4 (for k = 9). It is a k-cycle where
each vertex is replaced by a copy of the graph K ′, which is K4 minus an edge.
Therefore, Ik has 4k vertices. The depicted drawing consists of 3k segments.
This yields the upper bounds.

Concerning the lower bounds, note that, in any drawing style, each sub-
graph K ′ has an extreme point not connected to Ik − V (K ′). This point must
be a tripod or a bend. Hence, in any drawing δ of Ik, t(δ) + b(δ) ≥ k and, by
Lemma 2, seg2(Ik) = seg3(Ik) = seg∠(Ik) = seg×(Ik) ≥ 2k + t(δ) + b(δ) ≥ 3k. ��

Theorem 4. For any biconnected planar cubic graph G with n vertices, it holds
that seg∠(G) ≤ n + 1. A corresponding drawing can be found in linear time.

Proof. We draw G using the algorithm of Liu et al. [14] that draws any planar
biconnected cubic graph except the tetrahedron orthogonally with at most one



Variants of the Segment Number of a Graph 439

bend per edge and at most n/2+1 bends in total. It remains to count the number
of segments in this drawing. In any vertex exactly one segment ends; in any bend
exactly two segments end. In total, this yields at most n + 2 · (n/2 + 1) = 2n + 2
segment ends and at most n + 1 segments.

Concerning the special case of the tetrahedron (K4), note that it can be
drawn with five segments when bending one of its six edges. ��

Open Problem 2. What about 4-regular graphs? They have 2n edges. If we
bend every edge once, we already need 2n segments – and not all 4-regular graphs
can be drawn with at most one bend per edge.

Every biconnected graph G admits an st-numbering, that is, an order-
ing 〈v1, . . . , vn〉 of the vertex set {v1, . . . , vn} of G such that for every j ∈
{2, . . . , n − 1} vertex vj has at least one predecessor (that is, a neighbor vi
with i < j) and at least one successor (that is, a neighbor vk with k > j). Such
a numbering can be computed in linear time [9]. Given a cubic graph with an
st-numbering 〈v1, . . . , vn〉, we call a vertex vj with j ∈ {1, . . . , n} a p-vertex if it
has p predecessors; p ∈ {0, 1, 2, 3}.

Lemma 3. Given a biconnected cubic graph with an st-numbering 〈v1, . . . , vn〉,
there is one 0-vertex and one 3-vertex and there are (n − 2)/2 1-vertices and
(n − 2)/2 2-vertices.

Proof. Direct every edge from the vertex with smaller index to the vertex with
higher index. In the resulting directed graph, the sum of the indegrees equals
the sum of the outdegrees. Hence, the number of 1-vertices (with indegree 1 and
outdegree 2) and the number of 2-vertices (with indegree 2 and outdegree 1)
must be equal. It is obvious that there is one 0- and 3-vertex each. ��

Theorem 5. For any biconnected cubic graph G with n vertices, seg3(G) ≤ n+2
and seg×(G) ≤ n + 21.

Proof. We show that seg3(G) ≤ n + 2. Then Corollary 1 yields seg×(G) ≤ n + 2.
For two different points x and y in R

3, we denote the line that goes through x
and y by xy.

Let 〈v1, . . . , vn〉 be an st-numbering of G. We construct a drawing δ
of G, going through the vertices according to the st-numbering and using x-
coordinate j ± ε for vertex vj , where 0 < ε  1. We place v1 at (1, 1, 1). At
every step j = 2, . . . , n, we maintain a set L of lines that are directed to the
right such that any two lines in L are either skew (that is, they don’t lie in the
same plane) or they intersect and their unique intersection point is the location
of a vertex vk with k ≤ j (that is, the intersection point is vj or it lies to the
left of vj). Initially, L is empty.

1 After submitting this article, we realized that our proof is incomplete. The correct
statement of the theorem and its proof can be found in the full version https://arxiv.
org/abs/1908.08871.

https://arxiv.org/abs/1908.08871
https://arxiv.org/abs/1908.08871


440 Y. Okamoto et al.

If vj is a 1-vertex, we differentiate two cases depending on the unique prede-
cessor vi of vj .

Case I: If vi is the last vertex on a line 	 in L, we place vj on the intersection
point of 	 with the plane x = j. In this case, the set L doesn’t change.

Case II: Otherwise, we place vj in the plane x = j such that the line vivj is
skew with respect to all lines in L except for the line 	 that contains vi and the
unique predecessor of vi. (Note that the predecessor of vi and the line 	 don’t
exist if i = 1). Clearly, vivj and 	 intersect in vi and i < j. Hence, we can add
the line vivj to the set L.

If vj is a 2-vertex, let vi and vi′ be the two predecessors of vj . Again, we
consider two cases.

Case I’: At least one of vi or vi′ is flat (that is, it lies on an inner point of the
segment created by its incident edges that have already been drawn) or one of
them is the vertex v1.

In this case, we treat vj similarly as in Case II above; we make sure that the
lines vivj and vi′vj are skew with respect to all lines in L except that vivj won’t
be skew with respect to the at most two lines that connect vi to its predecessors
and vi′vj won’t be skew with respect to the at most two lines that connect vi′ to
its predecessors. Note that vivj intersects any line through vi and its neighbors
in vi, and it holds that i < j. Similarly, vi′vj intersects any line through vi′ and
its neighbors in vi′ , and it holds that i′ < j. The lines vivj and vi′vj intersect
in vj . Hence, we can add the lines vivj and vi′vj to the set L.

Case II’: Both vi and vi′ are the last vertices on their lines 	 and 	′, respectively.
If one of them, say vi, has a successor vk with k > j, we extend the line 	

of vi and put vj on the intersection of 	 and the plane x = j.
Otherwise vi has a successor vk with k < j and vi′ has a successor vk′ with

k′ < j, which both don’t lie on the lines 	 and 	′. In this case, we put vj on one of
	 and 	′, say 	, and add the line vi′vj to the set L. Now we pick some 0 < ε  1
such that we can place vj at the intersection of 	 and x = j + ε. We must avoid
to place vj on a plane spanned by any two non-skew lines in L (intersecting to
the left of x = j). With this trick, the invariant for L still holds since the new
line in L, vi′vj , intersects only 	′ (in vi′ , hence to the left).

Finally, we place vn (which is a 3-vertex) at a point in the plane x = n that
does not lie on any of the lines spanned by pairs and planes spanned by triples
of previously placed vertices.

This finishes the description of the drawing δ of G. Due to our invariant
regarding the set L, no two edges of G intersect in δ.

To bound the number of segments in δ, we use a simple charging argument.
Each non-first and non-last vertex v has a predecessor which is a flat vertex or v1.
To this predecessor v pays a coin. On the other hand, v1 receives at most three
coins and every flat vertex receives at most two coins. Hence, f(δ) ≥ (n − 5)/2.
Since n is even, f(δ) ≥ n/2 − 2. Now, Lemma 2 yields the claim. ��



Variants of the Segment Number of a Graph 441

4.3 Triconnected Cubic Graphs

Proposition 5. There is an infinite family of triconnected cubic graphs (Fk)k≥4

such that Fk has nk = 5k vertices and seg3(Fk) = 3.5k = 7nk/10.

Proof. Let Gk be an arbitrary triconnected cubic graph with k vertices (k even).
By Steinitz’s theorem, there exists a drawing of the graph Gk as a 1-skeleton of
a 3D convex polyhedron. Replace each vertex v of Gk by a copy of K2,3 as shown
in Fig. 5, where v is the central (orange) vertex—a tripod—, all other vertices of
the copy are flat, and the three arrows correspond to the three edges of Gk. The
resulting geometric graph Fk has nk = 5k vertices and is not planar. Since Fk

has k tripod vertices, by Lemma 2, seg3(Fk) ≤ nk/2 + k = 3.5k = 7nk/10.

Fig. 5. Gadget for the
proof of Proposition 5
(Color figure online)

In order to bound seg3(Fk) from below, we consider
two possibilities for the drawing of each subgraph K2,3;
either it lies in a plane or it doesn’t. In the planar case,
the convex hull of the drawing has at least three extreme
points. If none of them was a tripod then there would be
exactly three extreme points, each a black vertex. Thus
we could place an additional white vertex in the exterior
of the convex hull and connect it to all black vertices,
obtaining an impossible plane drawing of K3,3. In the
non-planar case, the convex hull consists of at least four vertices. Three of these
may connect K2,3 to Fk − V (K2,3), but again at least one must be a tripod.

In both cases we hence have t(δ) ≥ k for any 3D drawing δ of Fk. Now
Lemma 2 yields seg(δ) = nk/2 + t(δ) ≥ 3.5k. ��

5 Open Problems

Apart from improving our bounds, we have the following open problem.

Open Problem 3. Can we produce drawings in 3D (or with bends or crossings
in 2D) that fit on grids of small size?

Acknowledgments. We thank the organizers and participants of the 2019 Dagstuhl
seminar “Beyond-planar graphs: Combinatorics, Models and Algorithms”. In particu-
lar, we thank Günter Rote and Martin Gronemann for suggestions that led to some of
this research. We also thank Carlos Alegŕıa. We thank our reviewers for an idea that
improved the bound in Proposition 5, for suggesting the statement of Lemma 1, and
for many other helpful comments.

References

1. Bose, P., Everett, H., Wismath, S.K.: Properties of arrangement graphs.
Int. J. Comput. Geom. Appl. 13(6), 447–462 (2003). https://doi.org/10.1142/
S0218195903001281

https://doi.org/10.1142/S0218195903001281
https://doi.org/10.1142/S0218195903001281


442 Y. Okamoto et al.

2. Chaplick, S., Fleszar, K., Lipp, F., Ravsky, A., Verbitsky, O., Wolff, A.: Drawing
graphs on few lines and few planes. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016.
LNCS, vol. 9801, pp. 166–180. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-50106-2 14

3. Chaplick, S., Fleszar, K., Lipp, F., Ravsky, A., Verbitsky, O., Wolff, A.: The com-
plexity of drawing graphs on few lines and few planes. In: Ellen, F., Kolokolova,
A., Sack, J.R. (eds.) Algorithms and Data Structures. LNCS, vol. 10389, pp.
265–276. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62127-2 23.
arxiv.org/1607.06444

4. Chartrand, G., Zhang, P.: Chromatic Graph Theory, 1st edn. Chapman &
Hall/CRC, Boca Raton (2008)

5. Dujmović, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs
with few slopes and segments. Comput. Geom. Theory Appl. 38(3), 194–212
(2007). https://doi.org/10.1016/j.comgeo.2006.09.002

6. Durocher, S., Mondal, D.: Drawing plane triangulations with few segments. In:
Proceedings Canadian Conference on Computational Geometry (CCCG 2014), pp.
40–45 (2014). http://cccg.ca/proceedings/2014/papers/paper06.pdf

7. Durocher, S., Mondal, D., Nishat, R., Whitesides, S.: A note on minimum-segment
drawings of planar graphs. J. Graph Algorithms Appl. 17(3), 301–328 (2013).
https://doi.org/10.7155/jgaa.00295

8. Eppstein, D.: Drawing arrangement graphs in small grids, or how to play planarity.
J. Graph Algorithms Appl. 18(2), 211–231 (2014). https://doi.org/10.7155/jgaa.
00319

9. Even, S., Tarjan, R.E.: Computing an st-numbering. Theoret. Comput. Sci. 2(3),
339–344 (1976). https://doi.org/10.1016/0304-3975(76)90086-4

10. Hoffmann, U.: On the complexity of the planar slope number problem. J. Graph
Algorithms Appl. 21(2), 183–193 (2017). https://doi.org/10.7155/jgaa.00411

11. Hültenschmidt, G., Kindermann, P., Meulemans, W., Schulz, A.: Drawing planar
graphs with few geometric primitives. In: Bodlaender, H.L., Woeginger, G.J. (eds.)
WG 2017. LNCS, vol. 10520, pp. 316–329. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-68705-6 24

12. Igamberdiev, A., Meulemans, W., Schulz, A.: Drawing planar cubic 3-connected
graphs with few segments: algorithms and experiments. J. Graph Algorithms Appl.
21(4), 561–588 (2017). https://doi.org/10.7155/jgaa.00430

13. Kindermann, P., Mchedlidze, T., Schneck, T., Symvonis, A.: Drawing planar graphs
with few segments on a polynomial grid. In: Archambault, D., Tóth, C.D. (eds.)
GD 2019. LNCS, vol. 11904, pp. 416–429. Springer. Cham (2019). https://arxiv.
org/abs/1903.08496

14. Liu, Y., Marchioro, P., Petreschi, R.: At most single-bend embeddings of cubic
graphs. Appl. Math. 9(2), 127–142 (1994). https://doi.org/10.1007/BF02662066

15. Matoušek, J.: Intersection graphs of segments and ∃R. ArXiv report (2014). http://
arxiv.org/abs/1406.2636

16. Mondal, D., Nishat, R.I., Biswas, S., Rahman, M.S.: Minimum-segment convex
drawings of 3-connected cubic plane graphs. J. Comb. Optim. 25(3), 460–480
(2013). https://doi.org/10.1007/s10878-011-9390-6

17. Mukkamala, P., Szegedy, M.: Geometric representation of cubic graphs with four
directions. Comput. Geom. Theory Appl. 42(9), 842–851 (2009). https://doi.org/
10.1016/j.comgeo.2009.01.005

18. Schaefer, M.: Complexity of some geometric and topological problems. In: Epp-
stein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 334–344. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11805-0 32

https://doi.org/10.1007/978-3-319-50106-2_14
https://doi.org/10.1007/978-3-319-50106-2_14
https://doi.org/10.1007/978-3-319-62127-2_23
http://arxiv.org/abs/org/1607.06444
https://doi.org/10.1016/j.comgeo.2006.09.002
http://cccg.ca/proceedings/2014/papers/paper06.pdf
https://doi.org/10.7155/jgaa.00295
https://doi.org/10.7155/jgaa.00319
https://doi.org/10.7155/jgaa.00319
https://doi.org/10.1016/0304-3975(76)90086-4
https://doi.org/10.7155/jgaa.00411
https://doi.org/10.1007/978-3-319-68705-6_24
https://doi.org/10.1007/978-3-319-68705-6_24
https://doi.org/10.7155/jgaa.00430
https://arxiv.org/abs/1903.08496
https://arxiv.org/abs/1903.08496
https://doi.org/10.1007/BF02662066
http://arxiv.org/abs/1406.2636
http://arxiv.org/abs/1406.2636
https://doi.org/10.1007/s10878-011-9390-6
https://doi.org/10.1016/j.comgeo.2009.01.005
https://doi.org/10.1016/j.comgeo.2009.01.005
https://doi.org/10.1007/978-3-642-11805-0_32


Variants of the Segment Number of a Graph 443

19. Schulz, A.: Drawing graphs with few arcs. J. Graph Algorithms Appl. 19(1), 393–
412 (2015). https://doi.org/10.7155/jgaa.00366

20. Shor, P.W.: Stretchability of pseudolines is NP-hard. In: Gritzmann, P., Sturmfels,
B. (eds.) Applied Geometry and Discrete Mathematics-The Victor Klee Festschrift.
DIMACS Series in Mathematics and Theoretical Computer Science, vol. 4, pp.
531–554. American Mathematical Society (1991)

https://doi.org/10.7155/jgaa.00366


Topological Graph Theory



Local and Union Page Numbers

Laura Merker and Torsten Ueckerdt(B)

Karlsruhe Institute of Technology (KIT), Institute of Theoretical Informatics,
Karlsruhe, Germany

laura.merker@student.kit.edu, torsten.ueckerdt@kit.edu

Abstract. We introduce the novel concepts of local and union book
embeddings, and, as the corresponding graph parameters, the local page
number pn�(G) and the union page number pnu(G). Both parameters
are relaxations of the classical page number pn(G), and for every graph
G we have pn�(G) � pnu(G) � pn(G). While for pn(G) one minimizes
the total number of pages in a book embedding of G, for pn�(G) we
instead minimize the number of pages incident to any one vertex, and
for pnu(G) we instead minimize the size of a partition of G with each part
being a vertex-disjoint union of crossing-free subgraphs. While pn�(G)
and pnu(G) are always within a multiplicative factor of 4, there is no
bound on the classical page number pn(G) in terms of pn�(G) or pnu(G).
We show that local and union page numbers are closer related to the
graph’s density, while for the classical page number the graph’s global
structure can play a much more decisive role. We introduce tools to
investigate local and union book embeddings in exemplary considerations
of the class of all planar graphs and the class of graphs of tree-width k.
As an incentive to pursue research in this new direction, we offer a list
of intriguing open problems.

Keywords: Book embedding · Page number · Stack number · Local
covering number · Planar graph · Tree-width

1 Introduction

A linear embedding of a graph G = (V,E) is a tuple (≺,P) where ≺ is a total
ordering1 of the vertex set V and P = {P1, . . . , Pk} is a partition of the edge set
E. The ordering ≺ is sometimes called the spine ordering, and each part Pi of P
is called a page. For a given spine ordering ≺, two edges uv, xy ∈ E with u ≺ v
and u ≺ x ≺ y are said to be crossing if u ≺ x ≺ v ≺ y. A linear embedding
(≺,P) is a book embedding if for any two edges uv and xy in E we have

if u ≺ x ≺ v ≺ y and uv ∈ Pi, xy ∈ Pj then i �= j. (1)

1 We define ≺ as a linear ordering. However, in a few places we shall think of ≺ as
a cyclic ordering. This is legitimate as we are interested in crossing edges only, and
these are preserved under cyclic shifts.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 447–459, 2019.
https://doi.org/10.1007/978-3-030-35802-0_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_34&domain=pdf
https://doi.org/10.1007/978-3-030-35802-0_34


448 L. Merker and T. Ueckerdt

So Eq. (1) simply states that no two edges in the same page are crossing, or
equivalently, any two crossing edges are assigned to distinct pages in P.

Book embeddings were introduced by Ollmann [24] as well as Bernhart and
Kainen [3], see also [17]. Besides their apparent applications in real-world prob-
lems (see e.g. [8,26] and the numerous references in [9]), book embeddings enjoy
steady popularity in graph theory; see for example [11,16,21,27,30,33], just
to name a few. In most cases (also including the generalizations for directed
graphs [4] or pages with limited crossings [5]), one seeks to find a book embed-
ding with as few pages as possible for given graph G. In particular, (≺,P) is
a k-page book embedding if |P| = k, and the page number of G, denoted by
pn(G), is the smallest k for which we can find a k-page book embedding of G.
(We remark that pn(G) is sometimes also called the book thickness [3] or stack
number [9] of G.)

As the main contribution of the present paper, we propose two relaxations
of the page number parameter: The local page number pn�(G) and the union
page number pnu(G). We initiate the study of these parameters by compar-
ing pn�(G), pnu(G), and pn(G) for graphs G in some natural graph classes,
such as planar graphs (c.f. Sect. 3), graphs of bounded density (c.f. Sect. 2), and
graphs of bounded tree-width (c.f. Sect. 4). Besides these bounds, a (perhaps not
surprising) result showing computational hardness (c.f. Theorem 4), and a few
structural observations, we also give some intriguing open problems at the end
of the paper in Sect. 5.

Before listing our specific results in Sect. 1.1 below, let us define and motivate
the novel parameters local and union page numbers.

Local Page Numbers. For a book embedding (≺,P) of graph G = (V,E)
and a vertex v ∈ V , let us denote by Pv the subset of pages that contain at least
one edge incident to v. Then we define:

– A book embedding is k-local if |Pv| � k for each v ∈ V , i.e., each vertex has
incident edges on at most k pages.

– The local page number, denoted by pn�(G), is the smallest k for which we can
find a k-local book embedding of G.

Thus, we seek to find a book embedding with any number of pages (possibly
more than pn(G)), but with no vertex having incident edges on more than k of
these pages. As each k-page book embedding is a k-local book embedding,

for any graph G we have pn�(G) � pn(G). (2)

However, pn�(G) can be strictly smaller than pn(G). For example, K5 and K3,3

both have page number 3 and local page number 2. As illustrated in Fig. 1, K5

admits a 2-local 3-page book embedding, i.e., this book embedding simultane-
ously certifies pn(K5) � 3 and pn�(K5) � 2. In the left of Fig. 1 we have a 2-local
4-page book embedding of K3,3 (when the three orange/thick edges are put into
three separate pages). So here, the introduction of “extra” pages, additionally
to the necessary pn(K3,3) = 3 pages in every book embedding of K3,3, allowed



Local and Union Page Numbers 449

us to actually reduce the maximum number of pages incident to any one vertex
from 3 to pn�(K3,3) = 2. And for some graphs G with pn�(G) = k, in fact all
k-local book embeddings have more than pn(G) pages.

Fig. 1. Comparison of local, union, and classical page numbers on the examples of K3,3

and K5. Left: 2-page union embedding of K3,3. Right: 2-local book embedding of K5.

Union Page Numbers. For a linear embedding (≺,P) (so not necessarily a
book embedding) of graph G = (V,E) and a page P ∈ P, let us denote by GP

the subgraph of G on all edges in P and all vertices with some incident edge in
P . Then we define:

– A linear embedding (≺,P) is a union embedding if (≺, {E(C)}) is a (1-page)
book embedding for each connected component C of GP and each P ∈ P,
i.e., each connected component of each page is crossing-free.

– The union page number, denoted by pnu(G), is the smallest k for which we
can find a k-page union embedding of G.

In other words, in a union embedding, each page is the vertex-disjoint union of
crossing-free graphs; hence the name “union page number”. So we allow crossing
edges on a single page P , as long as these are contained in different components
of GP . For the union page number pnu(G) we minimize the number of pages,
just like for the classical page number pn(G).

Again, each k-page book embedding is also a k-page union embedding, giving
pnu(G) � pn(G). Moreover, each k-page union embedding can be transformed
into a k-local book embedding by putting each component of each page onto a
separate page, giving pn�(G) � pnu(G). Summarizing,

for any graph G we have pn�(G) � pnu(G) � pn(G). (3)

Consider again the linear embedding of K3,3 in the left of Fig. 1, but this time
put all three orange/thick edges on the same page P . These edges are pairwise
crossing, so this is not a book embedding. However these edges lie in separate
connected components of GP , so this is a union embedding. As we found a 2-page
union embedding of K3,3, we see pnu(K3,3) � 2 < 3 = pn(K3,3).

Comparing union and local page numbers, we have that pn�(G) can be strictly
smaller than pnu(G). For example, we have already seen in Fig. 1 that pn�(K5) �
2, and we claim that pnu(K5) > 2. Indeed, for the cyclic spine ordering v1 ≺
· · · ≺ v5 and pages P1, P2 we may assume by symmetry that v1v3, v1v4, v2v5 ∈ P1

and v2v4, v3v5 ∈ P2. As each connected component of GP1 and GP2 is crossing-
free, v2 and v3 are in distinct components in both page P1 and page P2, leaving
no way to assign the edge v2v3.



450 L. Merker and T. Ueckerdt

Motivation. Local and union page numbers are motivated by local and union
covering numbers as introduced by Knauer and the second author [19]. In order
to give a brief summary of the covering number framework, consider a graph H
and a graph class G. An injective G-cover of H is a set S = {G1, . . . , Gm} of
subgraphs2 of H such that H = G1 ∪ · · · ∪ Gm and Gi ∈ G for i = 1, . . . , m.
In other words, H is covered by (is the union of) some m (possibly isomorphic)
graphs from G. Moreover, let G denote the class of all finite vertex-disjoint unions
of graphs in G, meaning that G ∈ G if and only if G is the vertex-disjoint union
of some number of graphs in G.

The global G-covering number of H, denoted by cnG
g (H), is the smallest m

such that there exists an injective G-cover of H of size m, i.e., using m graphs
in G. The union G-covering number of H, denoted by cnG

u(H), is the smallest m
such that there exists an injective G-cover of H of size m, i.e., using m vertex-
disjoint unions of graphs in G. The local G-covering number of H, denoted by
cnG

� (H), is the smallest k such that there exists an injective G-cover of H in
which every vertex of H is contained in at most k graphs of the cover, i.e., using
any number of graphs from G but with no vertex of H being contained in more
than k of these.3

Many graph parameters (including arboricities, thickness parameters, vari-
ants of chromatic numbers, several Ramsey numbers, and interval representa-
tions) are G-covering numbers of a certain type and for a certain graph class G.
Moreover, recently the global-union-local framework was extended to settings
that do not directly concern graph covers, such as the local and union boxic-
ity [6], and the local dimension of posets [29], which has stimulated research
drastically [2,7,12,18,20,28]. Our proposed local and union page numbers nat-
urally arise from the covering number framework by using ordered graphs and
ordered subgraphs in the above definitions and taking G to be the class of all
crossing-free ordered graphs.

Particularly the local page number might be very useful in applications. For
example, oftentimes the spine ordering ≺ of G is already given from the prob-
lem formulation (by time stamps, geographic positions or a genetic sequence).
Then the edges of G model some kind of connections and classical book embed-
dings are used to distribute the connections to machines that can process sets of
connections that satisfy the LIFO (last-in-first-out) property. Local book embed-
dings could be used to model situations in which the total number of machines
is not the scarce resource but rather the number of machines working on the
same element, i.e., vertex. Imagine for example limited capacity at each element
in terms of computing power (as for cell phones) or simply spatial restrictions
(as for genes). This kind of task is precisely modeled by local book embeddings
and the local page numbers.

2 In a general G-cover one considers graph homomorphisms from graphs in G into H.
However, we consider here only injective G-covers, which is equivalent to considering
subgraphs of H.

3 The covering number framework includes a fourth covering number, the folded G-
covering number of H, which we omit here, so as not to congest the discussion.



Local and Union Page Numbers 451

1.1 Our Contribution

First, we show that the new parameters pn�(G) and pnu(G) can be arbitrarily
smaller than the classical page number pn(G), while local and union page number
are always at most a multiplicative factor of 4 apart.

Theorem 1. For any k � 3 and infinitely many values of n, there exist n-vertex
graphs G with

pn�(G) � pnu(G) � k + 2 and pn(G) = Ω
(√

kn1/2−1/k
)

.

In contrast, for every graph G we have pnu(G) � 4 pn�(G) + 2.

While for every planar graph G we have pn(G) � 4 [33], it is not known
whether there is a planar graph G with pn(G) = 4. The best known lower bound
was given by Bernhart and Kainen [3], who presented a planar graph G with
pn(G) = 3. That very graph satisfies pn�(G) = 2, but we can augment it to a
planar graph with local page number 3.

Theorem 2. There is a planar graph G with pn�(G) = 3.

For graphs G with tree-width k, it is known that pn(G) � k if k ∈ {1, 2} [25]
and pn(G) � k + 1 if k � 3 [13], and both bounds are best possible [10,30]. For
the local and union page number we get a lower bound of k.

Theorem 3. For every k � 1 there is a graph G of tree-width k with pnu(G) �
pn�(G) � k.

Finally, it is known that pn(G) � 2 if and only if G is a subgraph of a planar
Hamiltonian graph [3]. Hence, it follows from [31] that deciding pn(G) � 2 is
NP-complete, which easily generalizes to pn(G) � k for each k � 2. (Since
pn(G) = 1 is equivalent to G being outerplanar, this can be efficiently tested.) If
the spine ordering ≺ is already given, the problem of finding an edge partition
into k crossing-free pages is equivalent to that of properly k-coloring circle graphs
and hence determining the smallest such k is NP-complete [14]. While properly
k-coloring circle graphs is polynomial-time solvable for k = 2, it is open whether
the problem becomes NP-hard for fixed k � 3. For the local page number we
have NP-completeness for fixed spine ordering ≺ and each fixed k � 3.

Theorem 4. For any k � 3, it is NP-complete to decide for a given graph G
and given spine ordering ≺, whether there exists an edge partition P such that
(≺,P) is a k-local book embedding.

For a proof of Theorem 4 we refer the interested reader to the Bachelor’s
thesis of the first author [22].



452 L. Merker and T. Ueckerdt

2 Bounds in Terms of Density

Though not a fixed mathematical concept, the density of a graph G = (V,E)
quantifies the number |E| of edges in terms of the number |V | of vertices. An
important specification of density is the maximum average degree of G defined
by

mad(G) = max
{

2|E(H)|
|V (H)| | H ⊆ G,H �= ∅

}
.

Recall that for a linear embedding (≺,P) of G = (V,E) and a page P ∈ P we
denote by GP = (VP , P ) the subgraph of G on all edges in P and all vertices of
G with at least one incident edge in P . Clearly, if P is crossing-free, then GP is
outerplanar and thus |P | � 2|VP | − 3. As

⋃
P∈P P = E and VP ⊆ V for each

page P , we immediately get an upper bound on the density of any graph with a
k-local book embedding.

Lemma 5. For any graph G = (V,E) we have

pn�(G) � max
{ |E(H)|

2|V (H)| − 3
| H ⊆ G,H �= ∅

}
.

Proof. Let H be any non-empty subgraph of a graph G of local page number
pn�(G) = k. Then there is a k-local book embedding (≺,P) of H, each page P
of which describes an outerplanar graph HP = (VP , P ). Thus

|E(H)| �
∑
P∈P

(2|VP | − 3) � 2k|V (H)| − 3|P| � pn�(G) · (2|V (H)| − 3).

	

From Lemma 5 and Eq. (3) we conclude for every graph G that

pn(G) � pnu(G) � pn�(G) � mad(G)/4. (4)

In other words, the graph’s density gives a lower bound on all three kinds of
page numbers. Perhaps surprisingly, there is also an upper bound on the union
and local page numbers in terms of the graph’s density.

Nash-Williams [23] proved that any graph G edge-partitions into k forests if
and only if

k � max
{ |E(H)|

|V (H)| − 1
| H ⊆ G, |V (H)| � 2

}
.

The smallest such k, the arboricity a(G) of G, thus satisfies 1
2 mad(G) < a(G) �

1
2 mad(G) + 1. The star arboricity sa(G) of G is the minimum k such that G
edge-partitions into k star forests. Thus sa(G) is the union G-covering number
of G with respect to the class G = {K1,n | n ∈ N} of all stars. Using the
covering number framework, Knauer and the second author [19] introduced the
corresponding local G-covering number, the local star arboricity sa�(G), as the
minimum k such that G edge-partitions into some number of stars, but with each



Local and Union Page Numbers 453

vertex having an incident edge in at most k of these stars. It is known [1,19]
that sa(G) and sa�(G) can be bound in terms of a(G) as

a(G) � sa(G) � 2 a(G) and a(G) � sa�(G) � a(G) + 1.

Theorem 6. For any graph G we have pn�(G) � sa�(G) and pnu(G) � sa(G).
In particular, we have

mad(G)
4

� pn�(G) � mad(G)
2

+ 2 and
mad(G)

4
� pnu(G) � mad(G) + 2.

Proof. Take an arbitrary spine ordering ≺ and an edge-partition P into stars.
Then each page is crossing-free, which shows pn�(G) � sa�(G). Now take an
arbitrary spine ordering ≺ and an edge-partition P into star forests. Then each
connected component on each page is a star and thus crossing-free, which shows
pnu(G) � sa(G). 	


Though Theorem 6 is merely an observation, it has a number of interesting
consequences. First of all, the local and union page number are not too far
apart: pn�(G) � pnu(G) � 4 pn�(G) + 2. However, the local and union page
numbers can be very far from the classical page number. For example, we have
sa�(G) � k = mad(G) for every k-regular graph G, and hence pn�(G) � k and
pnu(G) � k + 2 whenever G is k-regular. On the other hand, Malitz [21] proved
that for every k � 3 there are n-vertex k-regular graphs G with page number
pn(G) = Ω(

√
kn1/2−1/k). Together this proves Theorem 1.

For planar G we have a(G) � 3 [23], hence sa�(G) � 4 [19], as well as
sa(G) � 5 [15]. Hence, Theorem 6 immediately gives the following (without
relying on Yannakakis’ result [33]).

Corollary 7. For every planar graph G we have pn�(G) � 4 and pnu(G) � 5.

3 Planar Graphs

In this section we consider planar graphs. In particular, we prove Theorem 2
stating the existence of a planar graph with local page number 3. Our planar
graph will be a large enough stacked triangulation (also known as planar 3-trees,
chordal triangulations, or Apollonian networks). For this let T0

∼= K3 and for
n � 1 define Tn as obtained from Tn−1 by placing a new vertex vΔ in each facial
triangle Δ of Tn−1, and connecting vΔ by edges to each of the three vertices of
Δ. Thus, for n � 0 we have |V (Tn)| = 3n + 2.

Suppose for the sake of contradiction there is a 2-local book embedding (≺,P)
of T9. We consider the subgraphs T0 ⊆ T1 ⊆ · · · ⊆ T9 of T9.

Claim. There exists an edge vw in T1 with Pv = Pw and |Pv| = |Pw| = 2.

Indeed, consider the four vertices v1, v2, v3, v4 of one of the two K4 subgraphs
in T1. Without loss of generality assume that |Pv1 | = · · · = |Pv4 | = 2. As
Pvi

∩ Pvj
�= ∅ for any i, j ∈ {1, . . . , 4}, we can see Pv1 , . . . ,Pv4 as four pairwise



454 L. Merker and T. Ueckerdt

Fig. 2. Part of the planar graph with local page number 3 (left) and part of the
hypothetical 2-local book embedding (right).

incident edges in a multigraph I on vertex set P, where two vertices of I are
connected by an edge if there is common vertex of G on the two respective
pages. Thus, if Pv1 , . . . ,Pv4 were pairwise distinct, they would form a star, i.e.,
all pairwise intersections would be the same page P ∈ P. But then the whole
K4 subgraph on v1, . . . , v4 would be embedded on page P , which is impossible
as K4 is not outerplanar.

So let vw be an edge in T1 with Pv = Pw = {P1, P2}. By the inductive
construction of stacked triangulations, there is a set X = {x1, . . . , x7} of seven
vertices in T8 − T1 that are incident to v and w and induce a path in T9; see
Fig. 2. By pigeon-hole principle and cyclic shifts of ≺, we may assume that
v ≺ x1 ≺ x2 ≺ x3 ≺ x4 ≺ w, where x1, . . . , x4 are consecutive in ≺ when
restricted to X. Each of vxi and wxi, i = 1, . . . , 4, lies on P1 or P2; say vx4 ∈
P1. Then wx1, wx2, wx3 ∈ P2, and thus vx2, vx3 ∈ P1. In particular, we have
Px2 = Px3 = {P1, P2}.

Now observe that x2 cannot be adjacent to any vertex y with x3 ≺ y and
y �= w. Indeed, such an edge x2y would cross the edge vx3 ∈ P1 and one of
wx1, wx3 ∈ P2. Symmetrically, x3 cannot be adjacent to any vertex y with
y ≺ x2 and y �= v. As X induces a path in T9 and no vertex of X lies between
x2 and x3 in ≺, it follows that x2x3 is an edge of the path. By symmetry
assume x2x3 ∈ P1. This implies that v cannot be adjacent to any vertex y with
x2 ≺ y ≺ x3, as such an edge vy would cross the edges x2x3 ∈ P1 and wx2 ∈ P2.

But then v, x2, x3 form a facial triangle Δ of T8 with all three edges on page
P1. However, there is no possible placement for the vertex y = vΔ in T9 that is
adjacent to each of v, x2, x3. Thus, the planar graph T9 admits no 2-local book
embedding, which proves Theorem 2.

4 Graphs with Bounded Tree-Width

In this section we investigate the largest union page number and the largest
local page number among all graphs of tree-width k. Clearly it suffices to consider
edge-maximal graphs of tree-width k, the so-called k-trees, which are inductively
defined as follows: A graph G is a k-tree if and only if G ∼= Kk+1 or G is obtained
from a smaller k-tree G′ by adding one new vertex v whose neighborhood in G′

is a clique of order k.
As our main tool in this section, let us define a linear embedding (≺,P) to be

a forest embedding if the edges on each page P ∈ P form a forest. For a graph G,



Local and Union Page Numbers 455

we say that a book embedding (≺,P) of some other graph Ḡ = (V̄ , Ē) contains
a forest embedding of G if there exists a set X ⊆ V̄ such that G ∼= Ḡ[X] and
(≺,P) restricted to Ḡ[X] is a forest embedding of G.

Lemma 8. For every � ∈ N and every k-tree G there exists a k-tree Ḡ such that
every �-local book embedding of Ḡ contains a forest embedding of G.

Proof. We find Ḡ based on G = (V,E) by induction on |V | as follows.
In the base case we have G ∼= Kk+1 and we find Ḡ by induction on k. In the

base case of this inner induction we have k = 1 and it suffices (for any �) to take
Ḡ = G ∼= K2. For k > 1, we get from induction a (k − 1)-tree Ḡk−1 all of whose
�-local book embeddings contain a forest embedding of Kk. Starting with Ḡk−1,
add for each k-clique C in Ḡk−1 an independent set IC of 3k2� vertices, together
with all possible edges between C and IC . The resulting graph has tree-width k
and hence can be augmented to a k-tree Ḡ. Consider any book embedding (≺,P)
of Ḡ. The inherited book embedding of Ḡk−1 ⊆ Ḡ contains a forest embedding
of Kk, i.e., we have a forest embedding of some k-clique C in Ḡk−1. If one vertex
v in IC has its k incident edges on k pairwise different pages, then we have a
forest embedding of C ∪ v ∼= Kk+1, as desired. Otherwise, each vertex v in IC

has two incident edges on the same page in P joining v with two vertices in C.
By pigeon-hole principle, for a set I ′ of at least |IC |/k2 = 3� vertices of IC these
are the same two vertices c, c′ of C. Since each of c, c′ has incident edges on at
most � pages, again by pigeon-hole principle, one page in P contains the edges
between c, c′ and at least |I ′|/� = 3 vertices in I ′. However this is a contradiction
as K2,3 is not outerplanar.

Now for the induction step of the outer induction, assume that G is a k-tree
with |V | > k + 1 vertices. Then G is obtained from a k-tree G′ by adding one
vertex v whose neighborhood in G′ is a clique of order k. From induction we get
a k-tree Ḡ′ all of whose �-local book embeddings contain a forest embedding of
G′. Now we can do the same argument as before: Obtain Ḡ from Ḡ′ by adding
for each k-clique C in Ḡ′ an independent set IC of size 3k2�, together with all
possible edges between C and IC . Then any �-local book embedding of Ḡ induces
an �-local book embedding of Ḡ′, which hence contains a forest embedding of
G′. Let C be the k-clique in G′ that forms the neighborhood of v in G. The
same argumentation as above then shows that at least one vertex in IC has its k
incident edges to C on k distinct pages, giving the desired forest embedding of G.
(Essentially, the only difference to the base case is that adding the independent
sets to Ḡ′ gives a full k-tree, since Ḡ′ is already a k-tree.) 	


Having Lemma 8, Theorem 3 (the existence of a k-tree with local page num-
ber k) follows with two simple edge counts.

If G = (V,E) admits a �-local forest embedding (≺,P), then

|E| �
∑
P∈P

(|VP | − 1) � �|V | − |P| � �(|V | − 1). (5)



456 L. Merker and T. Ueckerdt

If G = (V,E) is a k-tree, then

|E| = k|V | −
(

k + 1
2

)
. (6)

To prove Theorem 3, we shall find for each k � 1 a k-tree whose local
page number is at least k. For k = 1 there is nothing to show. For k � 2,
let G0 = (V,E) be any k-tree with |V | >

(
k+1
2

) − (k − 1) (Note that this is a
vertex count!) and let G = Ḡ0 be the corresponding k-tree given by Lemma 8
for � = k − 1. Assuming for the sake of contradiction that pn�(G) � k − 1, we
obtain a (k − 1)-local forest embedding (≺,P) of G0. Then

|E| 5
� (k − 1)(|V | − 1) = k|V | − (|V | + (k − 1)) < k|V | −

(
k + 1

2

)
6= |E|,

a contradiction. Hence pn�(G) � k, as desired.
To end this section, let us also discuss some further implications of Lemma

8. We leave it open whether every k-tree has local page number at most k, i.e.,
whether the lower bound in Theorem 3 is tight. By Lemma 8 this is equivalent
to every k-tree admitting a k-local forest book embedding. By putting each
tree in each forest on a separate page, we even get a k-local forest embedding
(≺,P) with a tree on each page. Moreover, by Eqs. (5) and (6) we would have
|P| �

(
k+1
2

)
, i.e., no more than

(
k+1
2

)
trees in total, while at most k at any one

vertex.
And we get a similar statement for the maximum union page number of k-

trees. Suppose (≺,P) is an �-union embedding of some graph, and that on all
pages in P together we have m connected components. Putting each connected
component on a separate (new) page, we obtain an �-local book embedding
(≺, P̃) with |P̃| = m pages. Now if pnu(G) � k for all k-trees, then Lemma 8
implies that every k-tree even admits a k-union forest embedding. Moreover, by
Eqs. (5) and (6) we get a forest embedding with m �

(
k+1
2

)
trees in total, while

having at most k at any one vertex.
Specifically, in order to prove pn�(G) � k for every k-tree G, our task is to

find a partition P of the edges in G into at most
(
k+1
2

)
trees, such that every

vertex is contained in no more than k of these trees, as well as a spine ordering
≺ for which each of the trees is non-crossing. The first part has a very natural
solution: Every k-tree G has chromatic number k+1 and admits a unique4 proper
(k + 1)-vertex coloring φ. Moreover, there are exactly

(
k+1
2

)
pairs of colors in φ,

any pair of color classes induces a tree in G, and each vertex of G is contained
in exactly k of these trees. Hence every k-tree G edge-partitions into

(
k+1
2

)
trees

with each vertex being contained in k of these trees. Note that in this cover,
every (k + 1)-clique in G has all

(
k+1
2

)
edges in pairwise distinct trees.

We have however not been able to prove (or disprove) the existence of a
spine ordering ≺ under which no pair of color classes induces a crossing. If such
exists, it would show pn�(G) � k for all k � 1 and pnu(G) � k for k odd and

4 Up to relabeling of color classes.



Local and Union Page Numbers 457

Fig. 3. Illustrations of some k-local book embeddings of Kn for n = 6, 9, 11, 15. The
shown page for n = 6 (n = 11, n = 15) is repeated 3 times (11 times, 15 times), each
shifted cyclically by one position.

pnu(G) � k +1 for k even. Note that for the union page number we also need to
group the

(
k+1
2

)
trees into as few forests of vertex-disjoint trees as possible. Due

to the nature of our coloring, this is equivalent to properly edge-coloring Kk+1;
hence the distinction on the parity of k.

5 Conclusions and Open Problems

In this paper we presented two novel graph parameters: the local page number
pn�(G) and the union page number pnu(G). Both parameters are weakenings of
the classical page number pn(G) and we have pn�(G) � pnu(G) � pn(G). Hence,
one might be able to strengthen existing lower bounds of the form pn(G) � X
by showing pnu(G) � X or even pn�(G) � X. On the other hand, one might be
able to support conjectured upper bounds of the form pn(G) � X by showing
the weaker bounds pn�(G) � X or even pnu(G) � X.

In this paper we started to pursue this direction of research. Let us list some
concrete cases that are still open:

– For the complete graph Kn it is known [3] that pn(Kn) = n/2�. On the
other hand, the density of Kn implies that pn�(Kn) � (n − 1)/4� (Lemma
5). In Fig. 3 we indicate some k-local book embeddings of Kn for some small
values of n. According to this pn�(K6) � 2, pn�(K9) � 3, pn�(K11) � 4, and
pn�(K15) � 5. Using the inequality |E(G)| � 2 pn�(G)|V (G)| − 3 pn(G) from
the proof of Lemma 5, we see that pn�(K7) � 3. (And with one further trick
we get pn�(K10) � 4.) We refer to [22] for more details, and state it is an
open problem to improve the following general bounds:

⌈
n − 1

4

⌉
� pn�(Kn) � pnu(Kn) � pn(Kn) =

⌈n

2

⌉

– In 1989, Yannakakis [33] proved that for any planar graph G we have pn(G) �
4, while removing an earlier claim [32] that there would be some planar graph
G with pn(G) � 4. Ganley and Heath [13] observed that stacked triangulation
T2 (using our notation from Sect. 3, but also known as the Goldner-Harary



458 L. Merker and T. Ueckerdt

graph) is a planar graph with pn(T2) = 3, which remains until today the best
known lower bound. While pn�(T2) = 2, we show in Sect. 3 that pn�(T9) = 3,
while we leave it as an open problem to improve on the bounds

3 � max
G planar

pn�(G) � max
G planar

pnu(G) � max
G planar

pn(G) � 4.

– We have a similar open problem for k-trees, where we refer to the detailed
discussion at the end of Sect. 4.

k � max
G k-tree

pn�(G) � max
G k-tree

pnu(G) � max
G k-tree

pn(G) =

{
k if k � 2
k + 1 if k � 3

Besides determining the local and union page numbers for other graph classes
(like for example regular graphs), it is also interesting to further analyze the rela-
tion between pn�(G),pnu(G), a(G) and sa(G). For example, what is the maxi-
mum of pnu(G)/pn�(G) over all graphs G?

Finally, let us mention that changing the non-crossing condition Eq. (1)
underlying the notion of book embeddings to for example a non-nesting condi-
tion, we get local and union versions of queue numbers. Interestingly, the proof
of Theorem 6 remains valid and so does Corollary 7, giving that every planar
graph has local queue number at most 4 and union queue number at most 5.

References

1. Alon, N., McDiarmid, C., Reed, B.: Star arboricity. Combinatorica 12(4), 375–380
(1992)

2. Barrera-Cruz, F., Prag, T., Smith, H., Taylor, L., Trotter, W.T.. Comparing
Dushnik-Miller dimension, Boolean dimension and local dimension. CoRR (2017)

3. Bernhart, F., Kainen, P.C.: The book thickness of a graph. J. Comb. Theory Ser.
B 27(3), 320–331 (1979)

4. Binucci, C., Da Lozzo, G., Di Giacomo, E., Didimo, W., Mchedlidze, T., Patrignani,
M.: Upward book embeddings of st-graphs. CoRR, abs/1903.07966 (2019)

5. Binucci, C., Di Giacomo, E., Hossain, M.I., Liotta, G.: 1-page and 2-page drawings
with bounded number of crossings per edge. Eur. J. Comb. 68, 24–37 (2018)

6. Bläsius, T., Stumpf, P., Ueckerdt, T.: Local and union boxicity. Discrete Math.
341(5), 1307–1315 (2018)

7. Bosek, B., Grytczuk, J., Trotter, W.T.: Local dimension is unbounded for planar
posets. CoRR (2017)

8. Chung, F.R., Leighton, F.T., Rosenberg, A.L.: Embedding graphs in books: a lay-
out problem with applications to VLSI design. SIAM J. Algebr. Discrete Methods
8(1), 33–58 (1987)

9. Dujmovic, V., Wood, D.R.: On linear layouts of graphs. Discrete Math. Theor.
Comput. Sci. 6(2) (2004)

10. Dujmović, V., Wood, D.R.: Graph treewidth and geometric thickness parameters.
Discrete Comput. Geom.d 37(4), 641–670 (2007)

11. Enomoto, H., Nakamigawa, T., Ota, K.: On the pagenumber of complete bipartite
graphs. J. Comb. Theory Ser. B 71(1), 111–120 (1997)



Local and Union Page Numbers 459

12. Felsner, S., Ueckerdt, T.: A note on covering Young diagrams with applications to
local dimension of posets. CoRR (2019). to appear at EUROCOMB 2019

13. Ganley, J.L., Heath, L.S.: The pagenumber of k-trees is O(k). Discrete Appl. Math.
109(3), 215–221 (2001)

14. Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.H.: The complexity of
coloring circular arcs and chords. SIAM J. Algebr. Discrete Methods 1(2), 216–227
(1980)

15. Hakimi, S.L., Mitchem, J., Schmeichel, E.: Star arboricity of graphs. Discrete Math.
149(1), 93–98 (1996)

16. Heath, L.S., Istrail, S.: The pagenumber of genus g graphs is o(g). J. ACM 39(3),
479–501 (1992)

17. Kainen, P.C.: Some recent results in topological graph theory. In: Bari, R.A.,
Harary, F. (eds.) Graphs and Combinatorics, pp. 76–108. Springer, Heidelberg
(1974). https://doi.org/10.1007/BFb0066436

18. Kim, J., Martin, R.R., Masař́ık, T., Shull, W., Smith, H.C., Uzzell, A., Wang,
Z.: On difference graphs and the local dimension of posets. CoRR abs/1812.00832
(2018)

19. Knauer, K., Ueckerdt, T.: Three ways to cover a graph. Discrete Math. 339(2),
745–758 (2016)

20. Majumder, A., Mathew, R.: Local boxicity, local dimension, and maximum degree.
CoRR (2018)

21. Malitz, S.M.: Graphs with e edges have pagenumber o(
√
e). J. Algorithms 17(1),

71–84 (1994)
22. Merker, L.: Local page numbers. Bachelor‘s thesis, Karlsruhe Institute of Technol-

ogy, Germany (2018)
23. Nash-Williams, C.S.J.A.: Decomposition of finite graphs into forests. J. Lond.

Math. Soc. 39(1), 12 (1964)
24. Ollmann, L.T.: On the book thicknesses of various graphs. In: Proceeedings 4th

Southeastern Conference on Combinatorics, Graph Theory and Computing, vol. 8,
p. 459 (1973)

25. Rengarajan, S., Veni Madhavan, C.E.: Stack and queue number of 2-trees. In:
Du, D.Z., Li, M. (eds.) Computing and Combinatorics, pp. 203–212. Springer,
Heidelberg (1995). https://doi.org/10.1007/BFb0030834

26. Rosenberg, A.L.: The Diogenes approach to testable fault-tolerant arrays of pro-
cessors. IEEE Trans. Comput. C-32(10), 902–910 (1983)

27. Togasaki, M., Yamazaki, K.: Pagenumber of pathwidth-k graphs and strong
pathwidth-k graphs. Discrete Math. 259(1), 361–368 (2002)

28. Trotter, W.T., Walczak, B.: Boolean dimension and local dimension. Electron.
Notes Discrete Math. 61, 1047–1053 (2017). The European Conference on Combi-
natorics, Graph Theory and Applications (EUROCOMB’17)

29. Ueckerdt, T.: Order & geometry workshop (2016). Gu�ltowy
30. Vandenbussche, J., West, D.B., Gexin, Y.: On the pagenumber of k-trees. SIAM

J. Discrete Math. 23(3), 1455–1464 (2009)
31. Wigderson, A.: The complexity of the Hamiltonian circuit problem for maximal

planar graphs. Technical report, Technical Report EECS 198, Princeton University,
USA (1982)

32. Yannakakis, M.: Four pages are necessary and sufficient for planar graphs. In:
Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing,
STOC 1986, pp. 104–108. ACM, New York (1986)

33. Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci.
38(1), 36–67 (1989)

https://doi.org/10.1007/BFb0066436
https://doi.org/10.1007/BFb0030834


Mixed Linear Layouts:
Complexity, Heuristics, and Experiments

Philipp de Col , Fabian Klute , and Martin Nöllenburg(B)

Algorithms and Complexity Group, TU Wien, Vienna, Austria
philipp.decol@gmx.at, {fklute,noellenburg}@ac.tuwien.ac.at

Abstract. A k-page linear graph layout of a graph G = (V, E) draws
all vertices along a line � and each edge in one of k disjoint halfplanes
called pages, which are bounded by �. We consider two types of pages.
In a stack page no two edges should cross and in a queue page no edge
should be nested by another edge. A crossing (nesting) in a stack (queue)
page is called a conflict. The algorithmic problem is twofold and requires
to compute (i) a vertex ordering and (ii) a page assignment of the edges
such that the resulting layout is either conflict-free or conflict-minimal.
While linear layouts with only stack or only queue pages are well-studied,
mixed s-stack q-queue layouts for s, q ≥ 1 have received less attention.
We show NP-completeness results on the recognition problem of certain
mixed linear layouts and present a new heuristic for minimizing conflicts.
In a computational experiment for the case s, q = 1 we show that the new
heuristic is an improvement over previous heuristics for linear layouts.

1 Introduction

Linear graph layouts, in particular book embeddings [1,12] (also known as stack
layouts) and queue layouts [9,10], form a classic research topic in graph drawing
with many applications beyond graph visualization as surveyed by Dujmović and
Wood [6]. A k-page linear layout Γ = (≺,P) of a graph G = (V,E) consists of an
order ≺ on the vertex set V and a partition of E into k subsets P = {P1, . . . , Pk}
called pages. Visually, we may represent Γ by mapping all vertices of V in the
order ≺ onto a line �. Each page can be represented by mapping all edges to
semi-circles connecting their endpoints in a halfplane bounded by �. If a page
P is a stack page, then no two edges in P may cross, or at least the number
of crossings should be minimized. More precisely, two edges uv, wx in P cross
(assuming u ≺ v, w ≺ x, and u ≺ w) if and only if their vertices are ordered as
u ≺ w ≺ v ≺ x. Conversely, if a page P is a queue page, then no two edges in P
may be nested, or at least the number of nestings should be minimized. Here,
an edge wx is nested by an edge uv if and only if their vertices are ordered as
u ≺ w ≺ x ≺ v (under the same assumptions as above).

Stack and queue layouts have mostly been studied for planar graphs with
a focus on investigating the stack number (also called book thickness) and the
queue number of graphs, which correspond to the minimum integer k, for which

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 460–467, 2019.
https://doi.org/10.1007/978-3-030-35802-0_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_35&domain=pdf
http://orcid.org/0000-0002-9405-3300
http://orcid.org/0000-0002-7791-3604
http://orcid.org/0000-0003-0454-3937
https://doi.org/10.1007/978-3-030-35802-0_35


Mixed Linear Layouts: Complexity, Heuristics, and Experiments 461

a graph admits a k-stack or k-queue layout. It is known that recognizing graphs
with queue number 1 or with stack number 2 is NP-complete [1,10]. Further, it
is known that every planar graph admits a 4-stack layout [16], but it is open
whether the stack number of planar graphs is actually 3. Due to their practi-
cal relevance, book drawings, i.e., stack layouts in which crossings are allowed,
have also been investigated from a practical point of view. Klawitter et al. [11]
surveyed the literature and performed an experimental study on several state-
of-the-art book drawing algorithms aiming to minimize the number of crossings
in layouts on a fixed number of stack pages. Conversely, for queue layouts it
was a longstanding open question whether planar graphs have bounded queue
number [9]; this was recently answered positively by Dujmović et al. [5].

Mixed layouts, which combine s ≥ 1 stack pages and q ≥ 1 queue pages,
are studied less. For an s-stack q-queue layout Γ = (≺,P), the set of pages P
is itself partitioned into the stack pages S = {S1, . . . , Ss} and the queue pages
Q = {Q1, . . . , Qq}. Heath and Rosenberg [10] conjectured that every planar
graph admits a 1-stack 1-queue layout, but this has been disproved recently by
Pupyrev [13], who conjectured that instead every bipartite planar graph has a
1-stack 1-queue layout. Pupyrev further provides a SAT-based online tool for
testing the existence of an s-stack q-queue layout1.

Contributions. We first show two NP-completeness results in Sect. 2. The first
one shows that testing the existence of a 2-stack 1-queue layout is NP-complete,
and the other proves that an NP-complete mixed layout recognition problem
with fixed vertex order remains NP-complete under addition of stack or queue
pages. Next, we focus our attention on 1-stack 1-queue layouts and propose, to
the best of our knowledge, the first heuristic targeted at minimizing conflicts in
1-stack 1-queue layouts, see Sect. 3. In a computational experiment in Sect. 4 we
show that our heuristic achieves fewer conflicts compared to previous heuristics
for stack layouts with a straightforward adaptation to mixed layouts.
Due to space constraints, proofs of statements marked with �, as well as some
additional plots are available only in the full version of this paper [4].

2 Complexity

In this section we give new complexity results regarding mixed linear layouts.
For Theorem 1 we first make some useful observations, see the full paper [4]
for details. Let K8 be the complete graph on eight vertices and Γ = (≺,
{S1, S2}, {Q}) a 2-stack 1-queue layout of a K8. Using exhaustive search2 we
verified that in such a 2-stack 1-queue layout the three longest edges are in
S1 ∪ S2 and the edges between the first and third, and the sixth and eighth
vertex in ≺ are in Q. Finally, for two K8’s only the last and first vertex from
each K8 can interleave.

1 http://be.cs.arizona.edu.
2 Source code available at https://github.com/pdecol/mixed-linear-layouts.

http://be.cs.arizona.edu
https://github.com/pdecol/mixed-linear-layouts


462 P. de Col et al.

Fig. 1. (a) A 2-stack 1-queue layout of a double-K8. Only the left K8 is drawn fully,
dashed edges are in the queue page. (b) Sketch of the gadget for Theorem 1.

Let G1 = (V1, E1) and G2 = (V2, E2) be two distinct K8’s. A double-K8

G is formed, by identifying two so-called shared vertices u, v of G1 and G2

with each other and adding one more edge wz between so-called outer vertices
w ∈ V1, z ∈ V2 such that neither w nor z is one of the shared vertices, see
Fig. 1(a). For any 2-stack, 1-queue layout Γ = (≺, {S1, S2}, {Q}) of a double-K8

we verified with exhaustive search that the shared vertices have to be the two
middle vertices in ≺ and that the outer vertices are always the first and last
vertices in the ordering of such a layout.

Lemma 1 (�). Let G = (V,E) be a double-K8 with outer vertices w, z and two
additional vertices a, b ∈ V with an edge ab ∈ E. In every 2-stack 1-queue layout
Γ = (≺, {S1, S2}, {Q}) of G, with w ≺ a ≺ z and b ≺ w or z ≺ b, it holds that
ab ∈ Q and a is between the first or last three vertices in the double-K8.

Corollary 1 (�). Let G1 = (V1, E1) and G2 = (V2, E2) be two double-K8’s. In
a 2-stack 1-queue layout Γ of G1 ∪G2 with linear order ≺, either u ≺ v or v ≺ u
for all u ∈ V1, v ∈ V2.

Let G = (V,E) be a graph consisting of two double-K8’s G1 = (V1, E1) and
G2 = (V2, E2). Let w1 ∈ V1 and w2 ∈ V2 be two outer vertices. Further, let
x1, x2 ∈ V1 and y1, y2 ∈ V2 be four vertices such that x1, x2 are in the same K8

as w1, w2 respectively for y1, y2, and none of them is a shared vertex. Finally,
add a vertex u to V and the edges x1y1, x2y2, w1u, and w2u to E, see Fig. 1(b).

Lemma 2 (�). Let G = (V,E) be the graph constructed as above. Then in any 2-
stack 1-queue layout Γ = (≺, {S1, S2}, {Q}) of G we find, w.l.o.g., w1 ≺ u ≺ w2

and w1u,w2u ∈ S1 ∪ S2.

Theorem 1. Let G = (V,E) be a simple undirected graph. It is NP-complete to
decide if G admits a 2-stack 1-queue layout.

Proof. The problem is clearly in NP. We show the result by a reduction from the
problem of deciding the existence of a 2-stack layout, which is NP-complete and
equivalent to decide whether a graph is subhamiltonian [1,2]. Let G′ = (V ′, E′)
be a graph constructed as in Lemma 2. Identify the special vertex u in V ′ with
any vertex in G and add the rest of G to G′. Clearly, if G has a 2-stack layout, we



Mixed Linear Layouts: Complexity, Heuristics, and Experiments 463

can construct a 2-stack 1-queue layout of G′ as sketched in Fig. 1(b). Conversely,
let Γ = (≺, {S1, S2}, {Q}) be a 2-stack 1-queue layout of G′. As for u in Lemma 2,
we find that w1 ≺ v ≺ w2 for every neighbor v ∈ V of u. By induction we find
for all v′ ∈ V that w1 ≺ v′ ≺ w2. Hence all edges in G are nested by x1y1 and
x2y2, which are both in Q. It follows that G has a 2-stack layout. ��

Our second complexity result shows that adding stack or queue pages to the
specification of an already NP-complete mixed linear layout problem with given
vertex order ≺ remains NP-complete. Note that for s = 4 and q = 0 the problem
of deciding if the edges can be assigned to the pages even when the vertex order
is fixed is known to be NP-complete [15].

Theorem 2. (�). Let G = (V,E) be a simple undirected graph and ≺ a fixed
order of V . If it is NP-complete to decide if G admits an s-stack q-queue layout
respecting ≺, then it is also NP-complete to decide if G admits (i) an s-stack (q+
1)-queue layout or (ii) an (s+1)-stack q-queue layout respecting ≺, respectively.

3 Heuristic Algorithm

Most heuristics for minimizing crossings in book drawings work in two steps [11].
First compute a vertex order and then a page assignment. We propose a new
page assignment heuristic, specifically tailored to mixed linear layouts. To the
best of our knowledge, this is the first heuristic for minimizing crossings and
nestings in mixed linear layouts. It uses stack and queue data structures for
keeping track of conflicts and estimating possible future conflicts. The design
allows us to consider the assigned and unassigned edges at the same time while
efficiently processing them to run in O(m2) time for a graph with m edges.

In the following, we describe how the algorithm works for a 1-stack 1-queue
layout. We note that it is straight forward to adapt our approach to s-stack,
q-queue layouts for arbitrary s and q. A stack (queue) can be used to validate
that a given page has no crossings (nestings) by visiting the vertices in their
linear order and inserting (removing) each edge when the left (right) end-vertex
is visited, respectively [9]. We can use a similar strategy for our heuristic. Here it
is allowed to remove edges even if they are not on top of the stack or in front of
the queue, but of course this might produce conflicts. Let S be a stack and Q a
queue. We additionally keep two counters for each edge e, the so called crossing
counter c(e) and the nesting counter n(e). The vertices are processed from left
to right in a given vertex order. For the current vertex u we insert all edges
e = uv into S and Q. If there are multiple edges uv, we add them according to
their length to S and Q. For S we sort them from long to short, for Q from short
to long. Once the second vertex v of an edge e = uv is visited, we remove e from
S and Q, and decide to which page we assign it. Let se be the number of edges
on top of e in S and qe the number of edges in front of e in Q. Then we assign e
to the stack page if c(e) + 0.5se ≤ n(e) + 0.5qe and update c(e′) for each edge e′

on top of e in S. Otherwise we assign e to the queue page and update n(e′) for
each edge e′ in front of e in Q. Intuitively we estimate for each edge e how many



464 P. de Col et al.

conflicts this edge produces for edges e′ to be processed later. The advantage of
this estimation is that we potentially assign the edge to a page that adds more
conflicts now, but might create fewer conflicts in the future.

4 Experiments

We denote our algorithm as stack-queue heuristic and compare it with the two
page assignment heuristics eLen [3] and ceilFloor [14] that are commonly usedwith
book drawings [11] (For the source code and benchmark instances see footnote 2).
Both can be adapted to mixed layouts, while other book drawing heuristics try
to explicitly partition the edges into planar sets, which is obviously not suitable
for queue pages in mixed layouts. Both process the edges by decreasing length
and greedily assign each edge to the page where it causes fewer conflicts at
the time of insertion. In case of ties, a stack page is preferred over a queue
page. The difference is that eLen computes the length based on the linear vertex
order and ceilFloor based on the corresponding cyclic vertex order as follows.
Given a vertex order 1 ≺ 2 ≺ . . . ≺ n, eLen considers the edge (1, n) first
and the edges (i, i + 1) last. In ceilFloor the length of an edge uv is defined as
min(|u − v|, n − |u − v|). All three heuristics run in O(m2).

The goal of our experiment is to explore the performance differences in terms
of the number of conflicts per edge of the adapted book drawing algorithms com-
pared to our new heuristic. We thus measure the resulting number of conflicts
per edge for all three algorithms, as well as record for each instance the algo-
rithm with the fewest number of conflicts. We first tested the algorithms on the
complete graphs with up to 50 vertices. Furthermore, we generated 500 ran-
dom graphs for each number of vertices in {25, 50, . . . , 400} from different sparse
graph classes, see Fig. 2, since it is known that both, stack and queue page,
can contain at most 2n − 3 conflict-free edges [1,10]. All experiments ran on a
Linux cluster (Ubuntu 16.04.6 LTS), where each node has two Intel Xeon E5540
(2.53 GHz Quad Core) processors and 24 GB RAM. The running time of one run
of each algorithm was relatively low, taking less than one second on average and
at most 2.5 s for the denser random graphs with 400 vertices.

For the complete graphs stack-queue was the best page assignment heuristic
producing about 2/3 of the conflicts of eLen and ceilFloor. For other graphs,
the vertex order has a strong effect on the results. In our experiments we
first compared three state-of-the-art vertex order heuristics (breadth-first search
(rbfs [14]), depth-first search (AVSDF [8]) and connectivity (conGreedy [11]))
before applying the page assignment heuristics. It turned out that for all of them
the same vertex order heuristic performed best on the same graph class, so that
all experiments could be run without bias on exactly the same input order.

Benchmark Graphs. We first generated random (not necessarily planar) graphs
of n vertices and either m = 3n or m = 6n edges. The graphs were created by
drawing uniformly at random the required number of edges, discarding discon-
nected graphs. The best vertex order heuristic was conGreedy.



Mixed Linear Layouts: Complexity, Heuristics, and Experiments 465

(a) Random m = 3n (b) Random m = 6n (c) Delaunay triangulations

(d) Planar bipartite graphs (e) 2-trees (f) 3-trees

Fig. 2. How many times each algorithm obtained the fewest conflicts in percent.

Since 1-stack 1-queue layouts are especially interesting for planar and planar
bipartite graphs [13], we generated random planar and maximal planar bipartite
graphs. The planar graphs are generated as Delaunay triangulations of n ran-
dom points in the plane. Since every planar bipartite graph has a 2-stack embed-
ding [7], we randomly generated a vertex order of alternating vertices from both
vertex sets to ensure that a Hamiltonian path exists. We then randomly selected
two vertices of the two sets and added the edge to the graph if it was possible
to do so without a crossing. We repeated the process of randomly selecting the
vertices until the maximum number of 2n−4 edges had been reached. The vertex
order for the Delaunay triangulations was computed by rbfs and for maximal
planar bipartite graphs by AVSDF. As it turned out that stack-queue did not
perform as well as ceilFloor and eLen on the Delaunay triangulations, which is
in contrast to the random and planar bipartite graphs, we wondered whether the
presence of many triangles might be the reason. Hence, we considered two graph
classes with many triangles and the same maximal edge densities as planar and
planar bipartite graphs, respectively, namely planar 3- and 2-trees. For 2-trees
the best vertex order was computed by AVSDF and for 3-trees by conGreedy.

Results. Aggregated results of our experiments are shown in Fig. 2. Additional
plots are provided in the full version [4]. For random graphs stack-queue per-
forms best among the three heuristics for almost all instances, even though the
difference to ceilFloor in conflicts per edge is small. For Delaunay triangulations,
stack-queue performs best for small graphs (n ≤ 25), but for the larger instances
ceilFloor computes better solutions for the majority of instances. In terms of
conflicts per edge, however, all three algorithms are quite close together. In the
case of planar bipartite graphs, stack-queue is the best algorithm for up to 300
vertices. Afterwards ceilFloor performs slightly better, but in both cases, again,
the difference in the number of conflicts is small. For 2-trees, the results are more
or less evenly split among all three algorithms. Yet, for 3-trees, stack-queue com-
putes the best solutions for 70–80% of the instances with up to 100 vertices. The



466 P. de Col et al.

differences in the number of conflicts per edge is also more noticeable. For larger
instances ceilFloor catches up with stack-queue.

Discussion. The results of our experiments showed that the proposed stack-queue
heuristic beats or competes with previously existing and suitably adapted page
assignment heuristics for book drawings on most of the tested benchmark graph
classes with the exception of Delaunay triangulations, where ceilFloor performed
best. Since the running time of all three algorithms is O(m2) this does make
stack-queue a suitable method for computing 1-stack 1-queue layouts.

5 Conclusion

We believe it is possible to adapt our technique from Theorem1 for s > 2
and q = 1. The biggest obstacle is to find such rigid structures as the double-
K8. In the algorithmic direction it could be interesting to investigate specialized
heuristics for finding vertex orders in the queue- and mixed layout case. Whether
every planar bipartite graph admits a 1-stack 1-queue layout remains open.

References

1. Bernhart, F., Kainen, P.C.: The book thickness of a graph. J. Comb. Theory Ser.
B 27(3), 320–331 (1979). https://doi.org/10.1016/0095-8956(79)90021-2

2. Chung, F., Leighton, F., Rosenberg, A.: Embedding graphs in books: a layout
problem with applications to VLSI design. SIAM J. Alg. Discret. Meth. 8(1), 33–
58 (1987). https://doi.org/10.1137/0608002

3. Cimikowski, R.J.: Algorithms for the fixed linear crossing number problem.
Discret. Appl. Math. 122(1–3), 93–115 (2002). https://doi.org/10.1016/S0166-
218X(01)00314-6

4. de Col, P., Klute, F., Nöllenburg, M.: Mixed linear layouts: complexity, heuristics,
and experiments. CoRR abs/1908.08938 (2019). http://arxiv.org/abs/1908.08938

5. Dujmovic, V., Joret, G., Micek, P., Morin, P., Ueckerdt, T., Wood, D.R.: Planar
graphs have bounded queue-number. CoRR abs/1904.04791 (2019)

6. Dujmović, V., Wood, D.R.: On linear layouts of graphs. Discret. Math. Theor.
Comput. Sci. 6(2), 339–358 (2004)

7. de Fraysseix, H., de Mendez, P.O., Pach, J.: A left-first search algorithm for pla-
nar graphs. Discret. Comput. Geom. 13, 459–468 (1995). https://doi.org/10.1007/
BF02574056

8. He, H., Sýkora, O.: New circular drawing algorithms. In: Workshop on Information
Technologies - Applications and Theory (ITAT) (2004)

9. Heath, L.S., Leighton, F.T., Rosenberg, A.L.: Comparing queues and stacks as
mechanisms for laying out graphs. SIAM J. Discret. Math. 5(3), 398–412 (1992).
https://doi.org/10.1137/0405031

10. Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J. Comput.
21(5), 927–958 (1992). https://doi.org/10.1137/0221055

11. Klawitter, J., Mchedlidze, T., Nöllenburg, M.: Experimental evaluation of book
drawing algorithms. In: Frati, F., Ma, K.L. (eds.) GD 2017. LNCS, vol. 10692, pp.
224–238. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73915-1 19

https://doi.org/10.1016/0095-8956(79)90021-2
https://doi.org/10.1137/0608002
https://doi.org/10.1016/S0166-218X(01)00314-6
https://doi.org/10.1016/S0166-218X(01)00314-6
http://arxiv.org/abs/1908.08938
https://doi.org/10.1007/BF02574056
https://doi.org/10.1007/BF02574056
https://doi.org/10.1137/0405031
https://doi.org/10.1137/0221055
https://doi.org/10.1007/978-3-319-73915-1_19


Mixed Linear Layouts: Complexity, Heuristics, and Experiments 467

12. Ollmann, L.T.: On the book thicknesses of various graphs. In: 4th Southeastern
Conference on Combinatorics, Graph Theory and Computing, vol. 8, p. 459 (1973)

13. Pupyrev, S.: Mixed linear layouts of planar graphs. In: Frati, F., Ma, K.L. (eds.)
GD 2017. LNCS, vol. 10692, pp. 197–209. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-73915-1 17

14. Satsangi, D., Srivastava, K., Srivastava, G.: K-page crossing number minimiza-
tion problem: an evaluation of heuristics and its solution using GESAKP. Memet.
Comput. 5(4), 255–274 (2013). https://doi.org/10.1007/s12293-013-0115-5

15. Unger, W.: On the k-colouring of circle-graphs. In: Cori, R., Wirsing, M. (eds.)
STACS 1988. LNCS, vol. 294, pp. 61–72. Springer, Heidelberg (1988). https://doi.
org/10.1007/BFb0035832

16. Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci.
38(1), 36–67 (1989). https://doi.org/10.1016/0022-0000(89)90032-9

https://doi.org/10.1007/978-3-319-73915-1_17
https://doi.org/10.1007/978-3-319-73915-1_17
https://doi.org/10.1007/s12293-013-0115-5
https://doi.org/10.1007/BFb0035832
https://doi.org/10.1007/BFb0035832
https://doi.org/10.1016/0022-0000(89)90032-9


Homotopy Height, Grid-Major Height
and Graph-Drawing Height

Therese Biedl1, Erin Wolf Chambers2, David Eppstein3(B),
Arnaud De Mesmay4, and Tim Ophelders5

1 David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, Canada

biedl@uwaterloo.ca
2 Department of Computer Science, Saint Louis University, St. Louis, USA

erin.chambers@gmail.com
3 Computer Science Department, University of California, Irvine, Irvine, USA

eppstein@uci.edu
4 Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France

ademesmay@gmail.com
5 Department of Computational Mathematics, Science and Engineering,

Michigan State University, East Lansing, USA
tim.ophelders@gmail.com

Abstract. It is well-known that both the pathwidth and the outer-
planarity of a graph can be used to obtain lower bounds on the height
of a planar straight-line drawing of a graph. But both bounds fall short
for some graphs. In this paper, we consider two other parameters, the
(simple) homotopy height and the (simple) grid-minor height. We discuss
the relationship between them and to the other parameters, and argue
that they give lower bounds on the straight-line drawing height that are
never worse than the ones obtained from pathwidth and outer-planarity.

1 Introduction

Straight-line drawings of planar graphs are one of the oldest and most intensely
studied problems in graph drawing [1–6]. It has been known since the 1990s
that every planar graph has a straight-line drawing of height n−1 [5,6] and
that some planar graphs require height 2

3n if the outer-face must be respected
[7,8]. Nevertheless many problems surrounding the height of planar straight-line
drawings remain open; it is not even known whether minimizing height is NP-
hard (although the problem is NP-hard when edges may only connect adjacent
rows [9] and it is fixed-parameter tractable in the output height [10]).

Erin Chambers was supported in part by NSF grants CCF-1614562 and DBI-1759807.
David Eppstein was supported in part by NSF grants CCF-1618301 and CCF-1616248.
Arnaud de Mesmay was supported in part by grants ANR-18-CE40-0004-01 (FOCAL)
and ANR-16-CE40-0009-01 (GATO). This work began at the Fifth Annual Workshop
on Geometry and Graphs, at the Bellairs Research Institute of McGill University.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 468–481, 2019.
https://doi.org/10.1007/978-3-030-35802-0_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_36&domain=pdf
https://doi.org/10.1007/978-3-030-35802-0_36


Homotopy Height, Grid-Major Height and Graph-Drawing Height 469

One of the chief obstacles is that very few tools are known for arguing that a
planar graph requires a certain height in all planar straight-line drawings. Two
graph parameters are commonly used for this: the pathwidth (as the height is
at least pw(G) [10,11]) and the outer-planarity (as the height is at least twice
the outer-planarity minus 1 [7,8]); for detailed definitions see Sect. 2. However,
both parameters may be constant in graphs that require linear height [12].

In this paper, we study two other graph parameters, the homotopy height
Hh(G) and the grid-major height GMh(G) and their simple variants sHh(G) and
sGMh(G). Roughly speaking, the homotopy height is defined as the minimum k
such that a sequence of paths of length at most k sweep the graph1, while the
grid-major height is the minimum height of a grid of which the graph is a minor.
Figure 1 illustrates this and graph parameters used in the paper. Our simple
variants add simplicity constraints to the paths involved in the sweeping or the
columns of the grid-major representation. We show that despite their apparent
differences, homotopy height and grid-major height are equal, and that both the
normal and the simple variants are lower bounds on the graph drawing height.
More precisely, any planar triangulated graph G has

pw(G)
(∗)
≤ Hh(G) = GMh(G)

(∗)
≤ sHh(G) = sGMh(G)

(∗)
≤ VRh(G) = SLh(G),

(1)
where VRh(G) and SLh(G) are the minimum height of a visibility representation
and straight-line drawing of G. As we will show, the inequalities marked with
(∗) are strict for some planar graphs. More strongly, the parameters separated
by these inequalities can differ by non-constant factors from each other.

In particular, the (simple) grid-major height and homotopy-height can both
serve as lower bounds on the height of a straight-line drawing. For some graphs
(e.g. the one in Fig. 4(b)) this gives a better lower bound than can be achieved
via pathwidth, though not a better lower bound than what was known [12]. We
should mention that the outer-planarity op is also related to these parameters
via

2op(G) − 1
(∗)
≤ GMh(G), (2)

so the homotopy-height and grid-major height can also can replace outer-
planarity as lower-bound tool for graph-drawing height, and in fact, provide
a convenient vehicle for unifying both tools. While these results have not yet led
us to new lower bound results for straight-line drawings, they provide new tools
which had not been considered previously, and suggest a promising new line of
inquiry.

Our results naturally raise the question of the complexity of computing these
parameters. Computing the optimal height of homotopies is conjectured but not

1 We note that there are many possible variants of homotopy height, all quantifying
in slightly different ways the optimal way to sweep a planar graph with a curve. We
have chosen here one particular variant that seems to be most suitable for graph
drawing purposes, and we only study it for triangulated graphs. We refer the reader
to other recent works on this parameter [13–15] for further discussion.



470 T. Biedl et al.

Fig. 1. The same graph with (a) a straight-line drawing, (b) a flat visibility rep-
resentation, (c) a simple grid-major representation, (d) the corresponding contact-
representation, (e) a simple homotopy. The height is always four. The moves of the
homotopy are: a face-flip at {u, v, x}, a boundary-move, an edge-slide at (v, y), a face-
flip at {x, y, w} and face-flip at {u, x, w}.

known to be NP-hard [13]; even arguing that it is in NP is non-trivial [15],
although it has a logarithmic approximation [14,15]. Our equalities imply that
computing the homotopy-height k = Hh(G) is (non-uniform) fixed-parameter
tractable in k. Indeed, it equals grid-major height, which is closed under taking
minors. Minor testing can be expressed in second-order logic, and the graphs of
bounded grid-major height have bounded pathwidth, so it follows from graph
minor theory and Courcelle’s theorem [16] that for any k, the graphs with grid-
major height k can be recognized in linear time. However, this method uses
the (unknown!) forbidden minors for grid-major height; finding them remains
an open problem of independent interest. We can also show more directly using
Courcelle’s theorem that simple grid-major height is fixed-parameter tractable.

All our results are only for triangulated planar graphs, planar graphs where
all faces (including the outer-face) are triangles. This is not a big restriction
for graph drawing height, as any planar graph G is a subgraph of a triangulated
planar graph G′ that has a straight-line drawing of the same height, up to a small
additive term. (Obtain G′ by triangulating the convex hull of a drawing of G
and adding three vertices that surround the drawing.) Most of our parameters
naturally carry over to non-triangulated planar graphs, but some parameters
would be much more cumbersome to define and work with for non-triangle faces.

For space reasons we defer our algorithmic results and many proof details to
the full version of this paper.

2 Definitions

All graphs in this paper are planar : they can be drawn in the plane without
crossings. Their faces are maximal connected regions that remain when removing
the drawing); we call the unbounded face the outer-face. Unless otherwise stated,
we study only simple graphs that have no loops and at most one edge between
any two vertices, and we almost always study triangulated graphs, where all
faces (including the outer-face) are bounded by a simple cycle of length 3. Such
a graph is maximal planar : no edge can be added without violating simplicity
or planarity. Its planar embedding is unique up to the choice of outer-face.



Homotopy Height, Grid-Major Height and Graph-Drawing Height 471

Let G be a triangulated graph with fixed outer-face f . We define outer-
planarity op(G) via a removal process as follows: In a first step, remove all
vertices on the outer-face. In each subsequent step, remove all vertices on the
outer-face of the remaining graph. Then op(G, f) is the number of steps until no
vertices remain, and op(G) is the minimum of op(G, f) over all choices of face f .

Graph-Drawing Parameters: The W × H-grid has vertices at the grid-points
{1, . . . , W} × {1, . . . , H} and an edge between any two grid-points of distance
one. A straight-line drawing of G consists of a mapping of G to grid-points such
that if all edges are drawn as straight-line segments between their endpoints, no
two edges cross and no edge overlaps a non-incident vertex. Every planar graph
has such a drawing [1–3] whose supporting grid has height at most n − 1 [5,6].
We use SLh(G) to denote the smallest height h of a straight-line drawing of G.

A flat visibility-representation of G consists of an assignment of a horizontal
segment (bar) to every vertex of G such that for any edge (v, w) there exists
a line of visibility, i.e., a line segment connecting bars of v, w that intersects
no other bar. In the original definition lines of visibility had to be horizontal;
for us it will be more convenient to allow both horizontal and vertical lines of
visibility, as long as they do not cross. Every planar graph has a flat visibility
representation [17–19]. We use VRh(G) to denote the smallest height h of such
a representation, presuming all bars reside at positive integral y-coordinates.

Width Parameters: A path decomposition of a graph G is a collection X1, . . . , XL

of vertex-sets (bags) that satisfies the following: each vertex v appears in at least
one bag, the bags containing v are consecutive, and for each edge (v, w) at least
one bag contains both v and w. The width of a path decomposition of G is the
largest bag-size minus 1, and the pathwidth pw(G) of a graph is the smallest
possible width of a path decomposition.

We introduce another width parameter which is quite natural, but to our
knowledge has not been studied before. A grid-representation of a graph G con-
sists of a W × H-grid where each gridpoint is labelled with one vertex of G in
such a way that (1) every vertex appears at least once as a label, (2) for any
vertex v the grid-points that are labelled v induce a connected subgraph of the
grid, and (3) for any edge (v, w) of G there exists a grid-edge where the ends are
labelled v and w. In particular, if G has a grid-representation then it is a minor
of the W × H-grid. Let GMh(G) be the grid-major height, i.e., the smallest h
such that G has a grid-representation where the grid has height h.

We say that a grid-major representation of G is simple if in every column c
of the grid and for any vertex v of G, the nodes labeled v in c form a path. The
simple grid-major height of G, denoted sGMh(G), is the smallest h such that G
has a simple grid-major representation of height h.

A grid-major representation of height h can be viewed, equivalently, as a
contact-representation with integral orthogonal polygons as follows: Assign to
every vertex v the polygon P (v) that we obtain if we replace every grid-point
labelled v with a unit square centered at that grid-point and take their union.
Since the grid-representation uses integral points, the coordinates of sides of



472 T. Biedl et al.

P (v) are halfway between integers. See Fig. 1(d). We get a set of interior-disjoint
orthogonal polygons with integer edge-lengths whose union is a rectangle of
height h, where (v, w) is an edge of G if and only if P (v) and P (w) share
at least one unit-length segment on their boundaries. Conversely any contact-
representation with integral orthogonal polygons that uses all points inside a
bounding rectangle can be viewed as a grid-major representation. A simple grid-
major representation becomes a contact representation with x-monotone poly-
gons (every vertical line intersects the polygon in an interval) and vice versa.
Contact-representations of graphs have been studied extensively (see e.g. [20]
and the references therein), but to our knowledge the question of the required
height of such representations has not previously been considered.

Homotopy Parameters: A (discrete) simple homotopy is defined for a planar tri-
angulated graph G with a fixed outer-face {u, v, w}, and it consists of a sequence
h0, . . . , hW of walks in G (we call these curves) such that:

1. h0 and hW are trivial curves at two distinct vertices of the outer-face, say u
and v.

2. The vertices u and v partition the outer-face into two subpaths s(uv) and
t(uv). For 0 ≤ i ≤ W , the curve hi starts on s(uv) and ends on t(uv).

3. For all 0 ≤ i < W we can obtain hi+1 from hi with a face-flip, edge-slide, a
boundary-move or a boundary-edge-slide.

4. Each curve hi is a simple path and for any 0 ≤ i < j ≤ W , if vertex v belongs
to hi and hj then it also belongs to all curves in between.

Here a face-flip consists of picking an inner face {x, y, z} such that the subse-
quence x-y is in hi, and replacing the sub-path x-y by x-z-y to obtain hi+1. The
reverse move, going from x-z-y to x-y, is also allowed. An edge-slide2 consists
of picking an edge e = (x, y) adjacent to two inner faces {x, y, z} and {x, y, t},
such that the subsequence z-x-t is in hi. Then replace the subpath z-x-t in hi

by z-y-t to obtain hi+1. A boundary-move consists of picking an edge e = (x, y)
on the outer face, and, if e ∈ s(uv), and x is the start of hi, it appends y so that
it becomes the new starting point (thus replacing x by the subsequence y-x). If
e ∈ t(uv) and x is the end of hi, it appends y at the end. The reverse operations
are also allowed. A boundary-edge-slide consists of picking an edge e = (x, y) on
the outer face adjacent to an inner face {x, y, z}, and, if e ∈ s(uv) and hi starts
with x-z, we flip {x, y, z} and remove e, i.e., we replace the starting subsequence
x-z by y-x. The symmetric operation for edges on t(uv) is also allowed. (Observe
that this boundary-edge-slide is the same as flipping a face and removing the
boundary edge with a boundary move.) see Fig. 1(e).

The height of a simple homotopy is the length of the longest path hi, counting
as path-length the number of vertices. Let sHh(G, f) be the minimum height of
a simple homotopy of G that uses f as outer-face, and set sHh(G) (the simple

2 Edge-slides are typically not allowed in discrete homotopies, but the result of one
edge-slide is the same as flipping two inner faces consecutively. Thus, allowing edge-
slides only results in an additive difference of at most one for the homotopy height.



Homotopy Height, Grid-Major Height and Graph-Drawing Height 473

homotopy height) to be the minimum of sHh(G, f) over all choices of outer-faces
f . (Since we only study triangulated graphs the rotation scheme is unique and
so this covers all possible planar embeddings.)

The definition of a (non-simple) homotopy is obtained by removing the sim-
plicity assumption on the curves hi, and allowing two other kinds of moves
(spikes and unspikes) leveraging the non-simplicity of the curves. For technical
reasons and to obtain a maximal generality, we will also relax the conditions on
the endpoints and the starting and ending curves. Since the precise definition is
somewhat technical, we postpone it to Sect. 3.2 and the full version.

Some Simple Results: We briefly review some relationships that are well-known,
or easily derived.

– pw(G) ≤ GMh(G) since a W × H-grid has pathwidth at most H and path-
width is closed under taking minors.

– Obviously GMh(G) ≤ sGMh(G).
– sGMh(G) ≤ VRh(G) since a flat visibility representation can easily be con-

verted into a simple grid-major representation by assigning label v to all
grid-points of the bar of v as well as all grid-points that this bar can see
downward or rightward without intersecting other bars or non-incident edges.
See Fig. 1(b–c).

– VRh(G) = SLh(G) since flat visibility representations can be transformed into
straight-line drawings of the same height, and vice versa ([21]. using [22,23]).

– Finally we have 2op(G) − 1 ≤ GMh(G). To this end, assume that we have
a grid-major representation Γ of G of height h. Observe that the grid-graph
Γ has outer-planarity �h/2�. Since outer-planarity does not increase when
taking minors it follows that op(G) ≤ �h/2� ≤ h+1

2 .

3 Homotopy-Height and Grid-Major Height

The above inequalities fill in most of the chain in Eq. 1, but one key new part is
missing: how does the (simple) homotopy height relate to the (simple) grid-major
height?

3.1 Simple Grid-Major Height and Simple Homotopy Height

Lemma 1. For any triangulated planar graph G we have sGMh(G) ≤ sHh(G).

Proof. (Sketch) Let h0, . . . , hW be a simple homotopy of height k = sHh(G). The
rough idea is to label a W ×k-grid by giving the gridpoints in the ith column the
labels of the vertices in hi, in top-to-bottom-order, and adding some duplicate
copies of vertices in hi to fill the column. However, we must insert more columns
in between to ensure the properties of a simple grid-major representation.

It will be easier to describe this by giving a contact-representation of G
where all polygons are x-monotone and the height is k. Curve h0 is a vertex u;
we initialize P (u) as a 1 × k rectangle. Now assume that for some i ≥ 0, we



474 T. Biedl et al.

x y

edge-slide

boundary-
slide

v w

a

b

d

c

a′

c′

b′

decreasing
face-flip

increasing
face-flip

Fig. 2. Converting a discrete simple homotopy into a contact-representation.

have built a contact representation Γi of the graph that was swept by h0, . . . , hi.
Furthermore, the right boundary of the bounding box of Γi contains sides of the
vertices in hi, in order. Figure 2 sketches how to expand Γi rightwards, depending
on the next move used for the homotopy; full details are in the full version.

In all cases the polygons remain connected and are x-monotone. Furthermore
we realized exactly those incidences that were added to the graph when sweeping
to hi+1, and the right boundary contains exactly the polygons of vertices of hi+1,
in order. Therefore, repeating gives a contact-representation of height k that uses
x-monotone polygons, and thus the desired simple grid-major representation. �	

Lemma 2. For any triangulated planar graph G we have sHh(G) ≤ sGMh(G).

Proof. (Sketch) Fix a simple grid representation Γ of G of height sGMh(G). For
this proof it will be easier to interpret Γ as a contact representation. So for
any vertex z, let P (z) be the orthogonal polygon obtained by taking the unions
of all unit squares whose centerpoint is a grid point labelled z. Since the grid-
representation uses integral points, the coordinates of sides of P (v) are halfway
between integers.

A junction is a point that belongs to at least three sides of polygons; we call it
interior/exterior depending on whether it lies on the boundary of the rectangle
R that encloses the contact representation. No junction can belong to four sides
since G is maximal, so it can be classified as horizontal or vertical depending
on the majority among its incident sides. A corner is a point that belongs to
exactly two sides of polygons. It is not possible for both ends of a side to be
exterior junctions, or else the corresponding edge of G would be a bridge of the
graph, contradicting the 3-connectivity of the triangulated graph G.

We show in the full version that with suitable local changes to the contact
representation, we can ensure the following while maintaining the same height:



Homotopy Height, Grid-Major Height and Graph-Drawing Height 475

(1) Every interior junction is horizontal, (2) no two interior vertical sides have the
same x-coordinate, (3) exactly one vertex u touches the left boundary, exactly
one vertex v touches the right boundary, and u 
= v, and (4) exactly three
vertices u, v, w touch the boundary. Therefore {u, v, w} forms a face f ; declare f
to be the outer-face. As in the definition of homotopy, let s(uv) and t(uv) be the
subpaths of G between u and v on f . By definition, they consist of the vertices
occupying the top and bottom boundaries of R.

Let the contact representation now have x-range [− 1
2 ,W + 1

2 ]. For i =
0, . . . ,W , define hi to be the vertices whose polygons intersect the vertical line
{x = i}, enumerated from top to bottom. Clearly h0 = 〈u〉, hW = 〈v〉, and any
hi begins on s(uv) and ends on t(uv). It remains to show that for 0 ≤ i < W
going from hi to hi+1 is one of the permitted moves. Consider some vertical side
e that has x-coordinate i + 1

2 (if there is none then hi = hi+1 and we are done).
Note that the change from hi to hi+1 affects only vertices that are incident to
e or participate in junctions at the ends of e, because no other vertical side has
x-coordinate i + 1

2 (by 0 ≤ i < W and assumption) and so there is no difference
between the curves elsewhere. Figure 3 shows (up to symmetry) all possibilities
for what the ends of e are. One observe that this results in the following situ-
ations: (a) hi = hi+1 and no move is needed, (b) this is impossible if polygons
are x-monotone, (c) a face-flip, (d) a boundary-move, (e) an edge-slide and (f)
a boundary-edge-slide. Therefore we only use allowed moves and have found a
homotopy. It is simple since polygons are x-monotone. The height equals the
maximum number of intersected polygons, which is no more than the height of
the contact representation, hence the height of the grid representation. �	

Fig. 3. The cases of how curves change.

Putting the two results together, the homotopy-height and the simple grid-
major-height are exactly the same value.

3.2 Homotopy Height and Grid-Major Height

One can reasonably argue that the notion of grid-major height is more natural
than simple grid-major height. Furthermore, it is trivially a minor-closed quan-
tity, which is advantageous from a structural and algorithmic point of view. In



476 T. Biedl et al.

this subsection we show that grid-major height can also be interpreted as the
height of a more general notion of homotopy than the one defined in the prelimi-
naries. Compared to the case of simple homotopies, in a (non-simple) homotopy,
we remove the hypothesis that the curves are simple and we allow two new moves,
spikes and unspikes, leveraging this non-simplicity. Figure 3(b) illustrates a spike.
Furthermore, the conditions are slightly relaxed: the endpoints are allowed to
move along an edge instead of a face, and the starting and ending vertices are
allowed to be the same. This could allow “trivial” homotopies (for example an
empty one, idling on a single vertex), and thus we add a new condition on
topological non-triviality to disallow those. The precise definition of a discrete
homotopy can be found in the full version.

Lemma 3. For any triangulated planar graph we have gmh(G) ≤ Hh(G).

Lemma 4. For any triangulated graph we have Hh(G) ≤ gmh(G).

The proofs are in spirit very similar to those in the previous subsection (we
may now have spikes or unspikes as moves, but these simply correspond to
Fig. 3b). However, numerous details need attention, in particular it is not at all
obvious why the polygons created from a homotopy would be connected if they
are not x-monotone, and some of the steps in the proof of Lemma2 do not seem
to hold in the non-simple setting anymore (this is why we relaxed the conditions
on the outer-face and the distinctness of the start and the end of the homotopy).
The full version gives the (somewhat lengthy) details.

Since grid-major height is trivially minor-closed, testing whether a graph has
grid-major height at most k can be decided in time O(f(k)|G|3) by testing the
(unknown!) forbidden minors, which are in finite number by Robertson-Seymour
theory. Because minor testing can be expressed in second-order logic, and the
graphs of bounded grid-major height have bounded pathwidth, it follows from
Courcelle’s theorem [16] that these minors can be tested in linear time. Therefore,
the two previous lemmas give us the following corollary.

Corollary 1. We can decide whether a triangulated planar graph has homotopy
height Hh(G) at most k in time O(f(k)poly(|G|)) for some computable function
f(k). In particular, the problem of computing the homotopy height is FPT when
parameterized by the output.

4 Strictness Examples

We have now given all the inequalities needed for Eqs. 1 and 2. In this section,
we argue that many of these inequalities are strict by exhibiting suitable planar
triangulations.

Lemma 5. There exists a planar triangulated graph G with pw(G) = 3 and
GMh(G) ∈ Ω(n).



Homotopy Height, Grid-Major Height and Graph-Drawing Height 477

Fig. 4. (a) Nested triangles. (b) The graph from [12]. (c) A graph of which it is a
minor.

Proof. Graph G is the “nested triangles graph” from [7,8], consisting of n/3
triangles that are stacked inside each other and connected in such a way that
the result is triangulated and has pathwidth 3. See Fig. 4(a). For any choice of
outer-face there are at least n/6 triangles that remain stacked inside each other.
Therefore op(G) ≥ n/6 and GMh(G) ≥ n/3 − 1. �	
Lemma 6. There exists a planar triangulated graph that has grid-major height
at most 4, but simple grid-major-height Ω(n).

Proof. Consider graph G in Fig. 4(b), which is taken from [12]. It is a minor of
the graph G′ in Fig. 4(c), which has a straight-line drawing of height 4. Therefore
sGMh(G′) ≤ SLh(G′) ≤ 4, which implies GMh(G) ≤ 4 since G is a minor of G′.

We claim that sGMh(G) ∈ Ω(n), and prove this by arguing that sHh(G) ∈
Ω(n); the two parameters are the same. Crucial to our argument is that for many
vertex-pairs any path connecting them without using x has length Ω(n); we will
find such a path from the curves in a homotopy.

So consider a simple discrete homotopy of height k, and let f be the face it
uses as the outer-face (it need not be the outer-face used in Fig. 4(b)). Graph
G \ x is connected, but dG\x(a, b) = (n − 3)/2. Define da to be the minimum
distance in G\x from a to some vertex on face f , and similarly define db. Since f
is a triangle, we can combine two such shortest paths to obtain a path from a to
b in G\x of length at most da+db+1, therefore (up to renaming) da ≥ (n−5)/4.

In particular, for n ≥ 7 vertex a is not on f . Let hi be a curve of the
homotopy that contains a and note that it begins and ends on f . Split hi into
two paths π1 and π2 at vertex a. These paths are vertex-disjoint except for a
since the homotopy is simple. At most one of these paths contains x. Say π1

does not contain x and hence connects f to a without visiting x. Therefore
|π1| ≥ da ≥ (n − 5)/4, and the height of the homotopy is Ω(n). �	

In particular, Lemma6 provides a different (and in our opinion more acces-
sible) proof that the graph in Fig. 4(b) requires Ω(n) height in any straight-line
drawing [12].

We now want to show that the inequality sGMh(G) ≤ SLh(G) can be strict,
and for this, need a definition. A graph G is called a series-parallel graph (with
terminals s and t) if it either is an edge (s, t), or if it was obtained via a combina-
tion in series or in parallel. Here, a combination in series takes two such graphs



478 T. Biedl et al.

Gi with terminals si, ti for i = 1, 2, and identifies t1 with s2. A combination in
parallel also takes two such graphs and identifies s1 with s2 and t1 with t2. It is
well-known that such graphs are planar.

Lemma 7. Any series-parallel graph has a simple grid-major representation of
height O(log n).

Proof. Roughly speaking, we “bend” some of the bars in the visibility representa-
tions of series-parallel graphs from [12] to guarantee logarithmic height. Formally
we proceed by induction on m, and prove that if G has m edges, then it has a sim-
ple grid-major representation of height 2�log m� + 2 where the top-right corner
is labelled s and the bottom-right corner is labelled t. Furthermore, any column
that contains s and/or t also has its topmost/bottommost grid point labelled
with s/t. In the base case G is an edge (s, t) and we can simply label a 1 × 2
grid with s and t.

Assume first that G was obtained by parallel combinations of G1 and G2.
Consider Fig. 5. After renaming we may assume m(G2) ≤ m(G1), so m(G2) ≤
m/2. Recursively obtain a grid-major representation Γ1 of G1, and pad it with
duplicate rows (if needed) so that it has height 2�log m� + 2. Recursively obtain
a grid-major representation Γ2 of G2 of height at most 2�log(m(G2)� + 2 ≤
2�log m�. Place Γ2 to the right of Γ1, leaving the top and bottom row unused.
Label the points above Γ2 with s and the points below Γ2 with t and verify all
conditions.

Now assume that G was obtained by a series combination of two graphs
G1, G2 where G1 had terminals s, x and G2 had terminals x, t. We assume
m(G2) ≤ m(G1), the other case is symmetric. Recursively obtain grid-major
representations Γ1 and Γ2 of G1 and G2 of height 2�log m� + 2 and 2�log m� as
before. Place Γ2 to the right of Γ1, leaving the top two rows unused, and leaving
one column between the representations unused. All grid-points in this column,
as well as in the row above Γ2, are labelled x. (In particular, the grid-points
labelled x form an “S-shape” as if we had bent a bar in the middle.) The sec-
ond row above Γ2 is labelled s so that again the top-right corner has s. One
easily verifies that this is a simple grid-major representation of G with height
2�log m� + 2 ∈ O(log n). �	

Fig. 5. Grid-Major representations of series-parallel graphs.



Homotopy Height, Grid-Major Height and Graph-Drawing Height 479

Fig. 6. A graph with op(G) = 2 but GMh(G) ∈ Ω(log n) (Lemma 8): a complete
binary tree (thick black edges), augmented to become maximal outer-planar (dashed
blue edges), with a new vertex added in the outer face (thin red edges). (Color figure
online)

Theorem 1. There exists a planar triangulated graph G for which sGMh(G) ∈
O(log n) but SLh(G) ∈ Ω(2

√
logn).

Proof. (Sketch) We know from Frati [24] that for any N , there exists a series-
parallel graph GN with n ≥ N vertices for which any planar straight-line drawing
has height Ω(2

√
logn). Also sGMh(GN ) ∈ O(log n) by Lemma 7. A suitable super-

graph of GN (see the full version) is triangulated and satisfies all properties. �	
Lemma 8. There exists a planar triangulated graph G with op(G) = 2 but
GMh(G) ∈ Ω(log n).

Proof. Take any tree T that has pathwidth Ω(log n), for example a complete
binary tree. This is an outer-planar graph; add edges to the graph while maintain-
ing outer-planarity until the graph is maximal outer-planar, hence 2-connected
and all faces except the outer-face are triangles. Insert a new vertex in the
outer-face and make it adjacent to all other vertices; the result (see Fig. 6) is
a triangulated planar graph G with outer-planarity 2 and GMh(G) ≥ pw(G) ≥
pw(T ) ∈ Ω(log n). �	

5 Outlook

In this paper, we studied two parameters of planar triangulated graphs, the homo-
topy height (well-known in computational geometry but not previously used for
graph drawing) and the grid-major height (related to contact-representations,
but not explicitly expressed as a graph parameter before). We argue that these
two seemingly unrelated parameters are actually equal, and that they, as well as
their variations that require simplicity in some sense, can serve as lower bounds
for the height of straight-line drawings of planar graphs. Their equality also
implies that testing whether homotopy height is at most k is fixed-parameter
tractable in k. We leave many open problems:



480 T. Biedl et al.

– What is the complexity of computing these various graph parameters? In
particular, while it is strongly believed that computing the minimum height
of a planar drawing is NP-hard, we are not aware of any proof of this. Similarly,
it is not known whether computing the homotopy height, or equivalently the
grid-major height, is NP-hard or polynomial. The same goes for the simple
variants. On the other hand, computing the pathwidth is NP-hard even for
planar graphs [25], while computing the outerplanarity is polynomial [26].

– The trivial minor-closedness of grid-major height proves the existence of an
FPT algorithm to compute it when parameterized by the output. However,
this algorithm relies on finding the forbidden minors, which are unknown.
Finding an explicit algorithm for this problem is still open.

– We focused on straight-line drawings, but poly-line drawings of G (i.e.,
straight-line drawings of some subdivision G′ of G) are also of interest. Let-
ting PLh(G) be the smallest height of such drawings, one sees that GMh(G) ≤
sGMh(G′) ≤ SLh(G′) ≤ PLh(G), but is it true that sGMh(G) ≤ PLh(G)?

References

1. Wagner, K.: Bemerkungen zum Vierfarbenproblem. Jahresber. Dtsch. Math. Ver.
46, 26–32 (1936)

2. Fáry, I.: On straight line representation of planar graphs. Acta Sci. Math. (Szeged)
11(4), 229–233 (1948)

3. Stein, S.K.: Convex maps. Proc. Am. Math. Soc. 2, 464–466 (1951)
4. Tutte, W.T.: How to draw a graph. Proc. London Math. Soc. 13, 743–767 (1963)
5. Fraysseix, H.D., Pach, J., Pollack, R.: How to draw a planar graph on a grid.

Combinatorica 10, 41–51 (1990)
6. Schnyder, W.: Embedding planar graphs on the grid. In: Symposium on Discrete

Algorithms (SODA 1990), pp. 138–148. SIAM (1990)
7. Dolev, D., Leighton, T., Trickey, H.: Planar embedding of planar graphs. Adv.

Comput. Res. 2, 147–161 (1984)
8. Fraysseix, H.D., Pach, J., Pollack, R.: Small sets supporting Fáry embeddings of

planar graphs. In: Symposium Theory of Computing (STOC 1988), pp. 426–433.
ACM (1988)

9. Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J. Comput.
21(5), 927–958 (1992)

10. Dujmović, V., Fellows, M.R., Kitching, M., Liotta, G., McCartin, C., Nishimura,
N., Ragde, P., Rosamond, F., Whitesides, S., Wood, D.R.: On the parameterized
complexity of layered graph drawing. Algorithmica 52(2), 267–292 (2008)

11. Felsner, S., Liotta, G., Wismath, S.: Straight-line drawings on restricted integer
grids in two and three dimensions. J. Graph Algorithms Appl. 7(4), 335–362 (2003)

12. Biedl, T.: Small drawings of outerplanar graphs, series-parallel graphs, and other
planar graphs. Discret. Comput. Geom. 45(1), 141–160 (2011)

13. Chambers, E.W., Letscher, D.: On the height of a homotopy. In: Canadian Confer-
ence on Computational Geometry (CCCG 2009), pp. 103–106 (2009)

14. Har-Peled, S., Nayyeri, A., Salavatipour, M., Sidiropoulos, A.: How to walk your
dog in the mountains with no magic leash. Discret. Comput. Geom. 55(1), 39–73
(2016)



Homotopy Height, Grid-Major Height and Graph-Drawing Height 481

15. Chambers, E.W., de Mesmay, A., Ophelders, T.: On the complexity of optimal
homotopies. In: Symposium on Discrete Algorithms (SODA 2018), pp. 1121–1134.
SIAM (2018)

16. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990)

17. Wismath, S.K.: Characterizing bar line-of-sight graphs. In: Symposium on Com-
putational Geometry (SoCG 1985), pp. 147–152. ACM (1985)

18. Tamassia, R., Tollis, I.: A unified approach to visibility representations of planar
graphs. Discret. Comput. Geom. 1, 321–341 (1986)

19. Rosenstiehl, P., Tarjan, R.E.: Rectilinear planar layouts and bipolar orientation of
planar graphs. Discret. Comput. Geom. 1, 343–353 (1986)

20. Alam, M.J., Biedl, T., Felsner, S., Kaufmann, M., Kobourov, S.G., Ueckerdt, T.:
Computing cartograms with optimal complexity. Discret. Comput. Geom. 50(3),
784–810 (2013)

21. Biedl, T.: Height-preserving transformations of planar graph drawings. In: Dun-
can, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 380–391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45803-7 32

22. Pach, J., Tóth, G.: Monotone drawings of planar graphs. J. Graph Theory 46(1),
39–47 (2004)

23. Eades, P., Feng, Q., Lin, X., Nagamochi, H.: Straight-line drawing algorithms for
hierarchical graphs and clustered graphs. Algorithmica 44(1), 1–32 (2006)

24. Frati, F.: Lower bounds on the area requirements of series-parallel graphs. Discret.
Math. Theor. Comput. Sci. 12(5), 139–174 (2010)

25. Gustedt, J.: On the pathwidth of chordal graphs. Discret. Appl. Math. 45(3), 233–
248 (1993)

26. Bienstock, D., Monma, C.L.: On the complexity of embedding planar graphs to
minimize certain distance measures. Algorithmica 5(1), 93–109 (1990)

https://doi.org/10.1007/978-3-662-45803-7_32


On the Edge-Vertex Ratio
of Maximal Thrackles

Oswin Aichholzer1, Linda Kleist2(B), Boris Klemz3, Felix Schröder4,
and Birgit Vogtenhuber1

1 Graz University of Technology, Graz, Austria
{oaich,bvogt}@ist.tugraz.at

2 Technische Universität Braunschweig, Brunswick, Germany
kleist@ibr.cs.tu-bs.de

3 Freie Universität Berlin, Berlin, Germany
klemz@inf.fu-berlin.de

4 Technische Universität Berlin, Berlin, Germany
fschroed@math.tu-berlin.de

Abstract. A drawing of a graph in the plane is a thrackle if every pair
of edges intersects exactly once, either at a common vertex or at a proper
crossing. Conway’s conjecture states that a thrackle has at most as many
edges as vertices. In this paper, we investigate the edge-vertex ratio of
maximal thrackles, that is, thrackles in which no edge between already
existing vertices can be inserted such that the resulting drawing remains
a thrackle. For maximal geometric and topological thrackles, we show
that the edge-vertex ratio can be arbitrarily small. When forbidding iso-
lated vertices, the edge-vertex ratio of maximal geometric thrackles can
be arbitrarily close to the natural lower bound of 1/2. For maximal topo-
logical thrackles without isolated vertices, we present an infinite family
with an edge-vertex ratio of 5/6.

1 Introduction

A drawing of a graph in the plane is a thrackle if every pair of edges inter-
sects exactly once, either at a common vertex or at a proper crossing. Conway’s
conjecture from the 1960s states that a thrackle has at most as many edges
as vertices [7]. While it is known that the conjecture holds true for geometric
thrackles in which edges are drawn as straight-line segments [18], it is widely
open in general. In this paper, we investigate maximal thrackles. A thrackle is
maximal if no edge between already existing vertices can be inserted such that
the resulting drawing remains a thrackle. Our work is partially motivated by the
results of Hajnal et al. [11] on saturated k-simple graphs. A graph is k-simple if
every pair of edges has at most k common points, either proper crossings and/or
a common endpoint. A k-simple graph is saturated if no further edge can be
added while maintaining th k-simple property. In [11], simple graphs on n ver-
tices with only 7n edges are constructed, as well as saturated 2-simple graphs
on n vertices with 14.5n edges.
c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 482–495, 2019.
https://doi.org/10.1007/978-3-030-35802-0_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_37&domain=pdf
https://doi.org/10.1007/978-3-030-35802-0_37


On the Edge-Vertex Ratio of Maximal Thrackles 483

If true, Conway’s conjecture implies that in every thrackle the ratio between
the number of edges and the number of vertices is at most 1. We denote the
edge-vertex ratio of a thrackle T by ε(T ). In this paper, we investigate the other
extreme, namely maximal thrackles with a low edge-vertex ratio.

In Sect. 2, we consider geometric thrackles. We show that for this class the
edge-vertex ratio can be arbitrarily small. This is done by a construction that
allows to add isolated vertices while maintaining maximality. If we disallow iso-
lated vertices, then a natural lower bound for the edge-vertex ratio is 1

2 . A similar
construction can be used to get arbitrarily close to this bound.

Theorem 1. For any c > 0, there exists

(a) a maximal geometric thrackle Ta such that ε(Ta) < c, as well as
(b) a maximal geometric thrackle Tb without isolated vertices such that

ε(Tb) < 1
2 + c.

We then consider topological thrackles in Sect. 3. Similar as before we show
that the edge-vertex ratio can approach zero using isolated vertices.

Theorem 2. For every c > 0, there is a maximal thrackle T ′ with ε(T ′) < c.

Note that Theorem 2 is not just a trivial implication of Theorem 1, as a maximal
geometric thrackle is not necessarily a maximal topological thrackle. As our main
result, in Sect. 4, we show that there exists an infinite family of thrackles without
isolated vertices which has an edge-vertex ratio of 5

6 .

Theorem 3. There exists an infinite family of thrackles F without isolated ver-
tices, such that for all T ∈ F it holds that ε(T ) = 5

6 .

Our construction is based on an example presented by Kynčl [12] in the context of
simple drawings where he showed that not every simple drawing can be extended
to a simple drawing of the complete graph. The example was also used in [13]
for a related problem.

Due to space constraints, several proofs of this work are either sketched or
completely omitted. They can be found in the arXiv version [1].

Related Work. In one of the first works on Conway’s Thrackle Conjecture,
Woodall [22] characterized all thrackles under the assumption that the conjecture
is true. For example, he showed that a cycle Cn has a thrackle embedding with
straight edges if and only if n is odd. It is not hard to come up with other
graphs on n vertices with n edges that have a thrackle embedding, but adding
an additional edge always seems to be impossible. Consequently, two lines of
research emerged from Conway’s conjecture. In the first, the goal is to prove
the conjecture for special classes of drawings, while the second direction aims
for upper bounds on the number of pairwise crossing or incident edges in any
simple topological drawing with n vertices.

For straight line drawings of thrackles, so called geometric thrackles, already
Erdős provided a proof for the conjecture, actually answering a question from
1934 by Hopf and Pannwitz on distances between points. Probably the most



484 O. Aichholzer et al.

elegant argument is due to Perles and can be found in [18]. Extending geometric
drawings, a drawing is called x-monotone if each curve representing an edge is
intersected by every vertical line in at most one point. In the same paper, Pach
and Sterling [18] show that the conjecture holds for x-monotone drawings by
imposing a partial order on the edges.

A drawing of a graph is called outerplanar if its vertices lie on a circle and
its edges are represented by continuous curves contained in the interior of this
circle. In [5] several properties for outerplanar thrackles are shown, with the
final result that outerplanar thrackles are another class where the conjecture is
true. Misereh and Nikolayevsky [16] generalized this further to thrackle drawings
where all vertices lie on the boundaries of d ≤ 3 connected domains which are in
the complement of the drawing. They characterize annular thrackles (d = 2) and
pants thrackles (d = 3) and show that in all cases Conway’s conjecture holds.
Finally, Cairns, Koussas, and Nikolayevsky [2] prove that the conjecture holds
for spherical thrackles, that is, thrackles drawn on the sphere such that the edges
are arcs of great circles.

In a similar direction, several attempts show that some types of thrackles are
non-extensible. A thrackle is called non-extensible if it cannot be a subthrackle
of a counterexample to Conway’s conjecture. Wehner [21] stated the hypothe-
sis that a potential counterexample to Conway’s conjecture would have certain
graphtheoretic properties. Li, Daniels, and Rybnikov [14] support this hypoth-
esis by reducing Conway’s conjecture to the problem of proving that thrackles
from a special class (which they call 1-2-3 group) are non-extensible. Actually,
already Woodall [22] had shown that if the conjecture is false, then there exists
a counterexample consisting of two even cycles that share a vertex.

On the negative side, we mention tangled- and generalized thrackles. A tan-
gled-thrackle is a thrackle where two edges can have a common point of tangency
instead of a proper crossing. Besides the fact that tangled-thrackles with at
least �7n/6� edges are known [17] – and therefore Conway’s conjecture can not
be extended to tangled-thrackles – Ruiz-Vargas, Suk, and Tóth [20] show that
the number of edges for tangled-thrackles is O(n). A generalized thrackle is a
drawing where any pair of edges shares an odd number of points. Lovász, Pach,
and Szegedy [15] showed that a bipartite graph can be drawn as a generalized
thrackle if and only if it is planar. As planar bipartite graphs can have up to
2n − 4 edges, this implies that generalized thrackles exist with a edge-vertex
ratio close to 2. A tight upper bound of 2n − 2 edges for generalized thrackles
was later provided by Cairns and Nikolayevsky [3].

The race for an upper bound on the number m of edges of a thrackle was
started by the two just mentioned papers. Lovász, Pach, and Szegedy [15] pro-
vided the first linear bound of m ≤ 2n − 3 and Cairns and Nikolayevsky [3]
improved this to m ≤ 3

2 (n − 1). They also consider more general drawings of
thrackles on closed orientable surfaces; see also [4].

By exploiting certain properties of the structure of possible counterexamples,
Fulek and Pach [8] gave an algorithm that, for any c > 0, decides whether the
number of edges are at most (1 + c)n for all thrackles with n ≥ 3. As the



On the Edge-Vertex Ratio of Maximal Thrackles 485

running time of this algorithm is exponential in 1/c, the possible improvement
by the algorithm is limited, but the authors managed to show an upper bound of
m ≤ 167

117n ≈ 1.428n. Combining several previous results in a clever way, Goddyn
and Xu [10] slightly improved this bound to m ≤ 1.4n − 1.4. Among other
observations they also used the fact that it was known that Conway’s conjecture
holds for n ≤ 11. This has been improved to n ≤ 12 in the course of enumerating
all path-thrackles for n up to 12 in [19]. The currently best known upper bound
of m ≤ 1.3984n is again provided by Fulek and Pach [9]. They also show that for
quasi-thrackles Conway’s conjecture does not hold. A quasi-thrackle is a thrackle
where two edges that do not share a vertex are allowed to cross an odd number
of times. For this class they provide an upper bound of m ≤ 3

2 (n − 1) and show
that this bound is tight for infinitely many values of n.

2 Geometric Thrackles

For maximal geometric thrackles, the edge-vertex ratio can be arbitrarily small.
Even if we forbid isolated vertices, it may be arbitrarily close to the natural
lower bound of 1

2 , which is implied by the handshaking lemma.

Theorem 1. For any c > 0, there exists

(a) a maximal geometric thrackle Ta such that ε(Ta) < c, as well as
(b) a maximal geometric thrackle Tb without isolated vertices such that

ε(Tb) < 1
2 + c.

Proof sketch. Consider the thrackle T formed by the seven dark, thick edges
in Fig. 1, which we call the butterfly. The butterfly is a maximal thrackle: Any
segment between the bottom three vertices b1, b2, b3 or between the top seven

Fig. 1. The butterfly T (thick, dark edges).



486 O. Aichholzer et al.

vertices t1, . . . , t7 is disjoint from the central edge b3t6 or from one of the long
edges b1t2, b1t7, b2t1, and b2b5. Moreover, aside from b1t6 and b2t6, all segments
with one bottom and one top vertex as an endpoint are disjoint from the central
edge or one of the long edges. Finally, the two remaining segments b1t6 and b2t6
are disjoint from b3t4 or b3t3, respectively.
To prove the theorem, we extend the butterfly in two different ways.

(a) To obtain Ta from T , we insert a sufficient number of isolated vertices in
a small circular region R (indicated in Fig. 1) that is placed to the left of t6 such
that the lower tangent of R that passes through t6 is below all top vertices other
than t6, and the upper tangent of R that passes through b3 is above all bottom
vertices except for b3. These properties imply each segment between R and a
vertex of T is disjoint from the central edge or one of the long edges. Hence, Ta

is indeed a maximal thrackle.
(b) To obtain Tb from T , we add a sufficient number of segments uivi with i =

1, 2, . . . ,m as indicated in Fig. 2. All these segments pass through a common
point along the central edge. All upper endpoints ui are placed on the line
through t1 and t2, and all lower endpoints vi are placed on the line through b1
and b2. For each index i, the slope s(uivi) is negative. Moreover, we have s(uivi) <
s(ujvj) for i < j.

Fig. 2. The thrackle Tb is obtained by adding several segments uivi.

Suppose that the first i−1 segments have already been created for some i ≥ 1.
Then we choose the slope of uivi such that the vertices

– V +
i = {v1, v2, . . . , vi−1} ∪ {b1, b2} are below the line uib3; and

– V −
i = {u1, u2, . . . , ui−1} ∪ {t1, t2, t3, t4, t5, t7} are above the line vit6.

This choice implies that all non-edge segments between vertices of Tb are disjoint
from the central edge or one of the long edges. Hence, Tb is maximal. 	




On the Edge-Vertex Ratio of Maximal Thrackles 487

3 Topological Thrackles of Arbitrarily Small Edge-Vertex
Ratio

In this section, we show that the edge-vertex ratio of a maximal thrackle in
the topological setting may be arbitrarily small, unless isolated vertices are
forbidden.

Theorem 2. For every c > 0, there is a maximal thrackle T ′ with ε(T ′) < c.

Proof sketch. Consider the thrackle T of a simple cycle on six vertices depicted
in Fig. 3. Adding a sufficiently large number of isolated vertices into the central
triangular face f0 of T yields a thrackle T ′ with ε(T ′) < c. It remains to show
that T ′ is maximal. Towards a contradiction, assume that it is possible to insert
an edge uv into T ′ such that the resulting drawing remains a thrackle. Our plan
is to show that uv is self-intersecting or intersects one of the edges of T twice,
which yields the desired contradiction. To this end, we explore the drawing of e,
going from u to v. We distinguish three cases, depending on how many of the
vertices u, v are isolated vertices of T ′.

Fig. 3. Case 1 in Theorem 2. Fig. 4. Case 2 in Theorem 2.

Case 1: Both u and v are isolated vertices of T ′. To begin with, the edge uv has to
leave f0 and, by symmetry, we may assume that it does so by intersecting ab. The
thereby entered face f1 has degree four. Consequently, there are three options
for uv to proceed. First, assume that uv leaves f1 by intersecting the edge af , as
depicted in Fig. 3. By planarity, in order to reach v, the edge uv has to intersect
the closed curve C1 formed by parts of ab and af , and the part of uv that
intersects f1. This implies that uv intersects itself, or it intersects ab or af at
least twice, which yields the desired contradiction. It follows that uv leaves f1
via cd or ef . This implies that leaving f0 via f1 already requires crossings with
two of the three segments ab, cd, and ef that bound f0. However, traversing e
in reverse, that is, going from v to u, requires us to leave f0 via one of the other
adjacent faces f2 and f3. By symmetry, this requires two additional crossings



488 O. Aichholzer et al.

with the segments ab, cd, and ef . Consequently, one of these segments is crossed
at least twice, which again yields a contradiction.
Case 2: Precisely one of u and v is isolated in T ′. Without loss of generality, we
may assume that u is the isolated endpoint of uv. As in the previous case, we
may assume that uv leaves f0 via ab and enters f1. Given that uv has to intersect
the edge de (among others), it has to leave f1 (by passing through af , ef , or cd).

The case that f1 is left via af can be excluded using similar arguments
as in Case 1. It remains to consider the cases that uv leaves f1 via cd or ef ,
respectively. First, consider the former case, for an illustration refer to Fig. 4.
Given that uv has already intersected ab and cd, it follows that v ∈ {e, f}.
By planarity, it is not possible that v = f , since this would imply that uv
has to intersect the closed curve C2, which is composed of parts of the already
intersected edges ab and cd and the edge af , which is incident to f . It follows
that v = e. At some point, the edge uv intersects the edge af in its interior
and, thereby, enters the region interior to C2 that does not contain e. However,
the edges bounding C2 have now all been intersected and, hence, it is no longer
possible to reach e. It follows that uv does actually not leave f1 via cd. It remains
to consider the case that f1 is left via ef . While not symmetric, this case can be
handled similarly to the previous one.
Case 3: Both u and v belong to T . Note that this implies that T + uv is a
counterexample to Conways’s conjecture. We obtain a contradiction, as it was
established in the master’s thesis by Pammer [19] that Conways’s conjecture
holds for n ≤ 12. 	


4 Topological Thrackles Without Isolated Vertices

In this section, we investigate maximal thrackles without isolated vertices, such
that the edge-vertex ratio is strictly smaller than 1. An example of such a
thrackle, depicted in Fig. 5, was presented by Kynčl [12] in the context of simple
drawings, i.e., drawings in which every two edges intersect at most once.

Fig. 5. Kynčl’s example K.

Proposition 1. Kynčl’s example K is a maximal thrackle.

Note that the edge-vertex ratio of Kynčl’s example is 4
6 = 2

3 . To date, we know
of no maximal thrackle without isolated vertices that has a lower edge-vertex
ratio, with the exception of the trackle consisting of one edge, namely K1,1. Now,
we present an infinite family of thrackles with a low edge-vertex ratio.



On the Edge-Vertex Ratio of Maximal Thrackles 489

Theorem 3. There exists an infinite family of thrackles F without isolated ver-
tices, such that for all T ∈ F it holds that ε(T ) = 5

6 .

We start with a high-level overview of the proof strategy. We start our construc-
tion with a geometric star-shaped thrackle T of the cycle C2n+1, for some n ≥ 2,
as depicted in Fig. 6 for n = 4. In the first step, we duplicate every vertex and
edge of T . This results in a thrackle drawing T1 of the cycle C4n+2. Then we
apply another vertex/edge duplication step that consists of adding a copy of
Kynčl’s example to each edge. This yields a thrackle T2. We show that if T2 was
not maximal, we can assume that the additional edge starts from vertices of T1.
Therefore, the maximality of T1 implies the maximality of T2.

Fig. 6. C2n+1 as a star trackle. Fig. 7. C4n+2 as a blown up star trackle.

Now, we define T1 precisely. To this end, we choose an orientation of C2n+1

and consider three consecutive vertices u,v, and w of C2n+1. We replace every
vertex v of T by two vertices v1 and v2 very close to v. Every directed edge uv
of T is replaced by the edges u2v1 and u1v2, which are routed in a thin tunnel
around uv in the following way: The edge starting at u1 goes along uv without
crossing it, surrounds v1, and then crosses the edge vw of T to connect to v2.
Analogously, the edge starting at u2 goes along uv, surrounds v2, and then crosses
the edge vw of T as well as u1v2 to connect to v1; see Fig. 8 for an illustration.
The edges emanating from v1 and v2 are drawn analogously and hence intersect
the edges u1v2 and u2v1, respectively.

Fig. 8. Step 1: Duplicating the vertices and edges. The tunnel of uv is depicted by the
gray region.



490 O. Aichholzer et al.

The result T1 is a drawing of the cycle C4n+2; a drawing for n = 4 is depicted
in Fig. 7. It is not hard to see that every pair of edges of T1 intersects and, hence,
T1 is a thrackle.

Lemma 1. T1 is a thrackle.

Moreover, T1 is maximal.

Proposition 2. The thrackle T1 of C4n+2 is maximal.

For the next step, we introduce the Kynčl belt construction, which is applied to T1

in order to obtain a drawing T2. We will show that T2 is a maximal thrackle with
edge-vertex-ratio of 5

6 .
The Kynčl belt construction creates a copy of Kynčl’s example for each edge

of T1. The edges of T1 are preserved and the Kynčl copy Ke created for an edge e
of T1 is drawn very close to e and interlaced with e and its incident edges, in
order to ensure that the edges of Ke intersect with all edges of T1 (and T2). For
an illustration consider Fig. 9.

Fig. 9. Kynčl belt construction, the original edges (thick) are preserved

More precisely, the construction works as follows: for each vertex v of T1 there
exists a small disk Dv containing v such that the intersection of Dv with T1 is a
simple curve consisting of parts of the two edges incident to v. In particular, the
disk Dv is disjoint from all edges that are not incident to v. We refer to Dv as the
vicinity of v. We may assume without loss of generality that the vertex vicinities
are pairwise disjoint. As in the previous step, we consider the edges of T1 to be
directed. Consider a directed edge e = uv of T1 and let f and g denote the edges
that precede and succeed e along T1, respectively. The vertices of the Kynčl
copy Ke that is created for e are denoted by ae, be, ce and xe, ye, ze, where ie
corresponds to its pendant i ∈ {a, b, c, x, y, z} of Kynčl’s example illustrated in
Fig. 5. We may assume that the small triangular faces incident to e are to the
right side of e at u and to the left side of e at v; note that this property holds for



On the Edge-Vertex Ratio of Maximal Thrackles 491

every second edge of T1; see again Fig. 7. The vertices ae, ye, and ze are placed
in Dv, to the left side of the directed path eg. On the other hand, the vertices ce
and xe are placed in Du, to the right side of the directed path fe. Finally, the
vertex be is identified with u.

All intersections between the edges of Ke are placed inside Dv as illustrated
in Fig. 9. All edges of Ke cross g in Dv and then follow the edge e closely in
order to reach Du. In particular, we draw the edges close enough to e such that
they are disjoint from all vertex vicinities except for Dv and Du. Note that in
this way, the edges pass through all edges of E(T1) \ {f, e, g}. Finally, inside Du,
the edges of Ke that are non-incident to be cross e and then f .

This construction is repeated for every second edge of T1; recall that T1 is
a cycle of even length. For the remaining edges of T1, we proceed analogously,
except that we use a reflected version of Kynčl’s example and we exchange the
roles of the two sides of the directed paths eg and fe inside the disks Du and Dv,
as illustrated in Fig. 9, by this ensuring that all additional vertices are located
in the small triangular cells. Note that this ensures that each edge e′ of Ke

crosses each edge of Kf (and Kg) precisely once. Additionally, the edges of the
remaining Kynčl copies are intersected by the part of e′ that is disjoint from Du

and Dv. This shows that T2 is indeed a thrackle. Moreover, for each edge of the
cycle T1, we have added four new edges and five new vertices, which results in
the claimed edge-vertex-ratio of 5

6 . We will refer to Be := E(Ke) ∪ {e} as the
edge bundle of e. Note that these are exactly the edges that run in parallel close
to each other, when outside of Du or Dv. The region Re of this bundle is the
region of T2\(Du∪Dv) that is enclosed by its outer edges e and aebe (see Fig. 9).

It remains to prove that T2 is a maximal thrackle. Therefore, we assume
by contradiction that there exists a new edge s that can be introduced into T2

such that T2 ∪ s is a thrackle. To arrive at contradiction, we show the following
properties of s.

Property 1. For every vertex u and edge e = uv of T1 it holds that a new edge s
does not enter Du within a bundle, i.e., s ∩ Re ∩ ∂Du = ∅.
Property 2. Let e and f be two edges of T1 sharing an endpoint u. If s has
one of its endpoints v in Du \ {u}, it intersects all edges of Be ∪ Bf inside Du.
Moreover, v ∈ {af , yf , zf}.
Property 3. If there exists a new edge s with vertices in T2 such that T2 ∪ s is
a thrackle, then there exists an edge s′ such that T2 ∪s′ is a thrackle, the vertices
of s′ belong to T1, and the vertices of s′ do not share an edge in T1.

Proof sketch. Let UV := s. If both U, V are vertices of T1, then the claim is
proved. Therefore, we may assume that U does not belong to T1. Let u denote
the vertex of T1 such that U is contained in Du; likewise, let v denote the vertex
of T1 such that V is contained in Dv. When constructing T2 from T1, we ensure
to place all new vertices in the small triangular faces incident to each vertex
of T1, see Fig. 7. Due to this placement, it may be derived from Property 2 that
u = v.



492 O. Aichholzer et al.

We now show that u and v do not share an edge in T1. Suppose for a contra-
diction, that e := uv is an edge of T1. If U = u and V = v, then by Property 2,
s intersects all edges of Be in both Du and Dv; a contradiction. Similarly, if
U = u and V = v, then s intersects all edges of Be in Du and e = Uv in Dv ; a
contradiction. Consequently, u and v do not share an edge.

Now we use the fact that s intersects all edges present in Du (by Property 2)
to reroute s inside Du. As before, let the sections of e and f inside Du parti-
tion Du in its top and bottom half.

Let w1, w2, . . . , wk denote the sequence of intersections of s with ∂Du. Since
the vertex U of s is inside Du, k is an odd integer. Moreover, by Properties
1 and 2, no section w2i−1w2i connects the top and bottom half. Consequently,
w1w2, . . . , wk−2wk−1 form pairs contained in the top or bottom part that are
additionally nested since s has no self-intersections. We replace the sections
w2i−1w2i of s by curves close to the boundary of DU such that no edge of Du is
intersected.

The last part wkU we reroute as follows, see also Fig. 10: If wk is contained in
the top half of Du, we replace the part of s inside Du by a straight line segment
that connects u and ∂Du ∩ s; note that this segment intersects all edges in Du.
If wk is contained in the bottom half of Du, we replace wkU inside Du with a
curve from u to ∂Du ∩ s as illustrated; note that this curve intersects all edges
of Du.

After this replacement, the new edge s′ intersects the same set of edges as s.
Therefore, T2 + s′ is a thrackle. Moreover, the vertex U of s is replaced by the
vertex u of s′ where u is in T1. If V = v, we apply the same rerouting for the
other vertex V of s. �

Property 3 implies that if T1 is maximal, then T2 is maximal. Therefore,
Proposition 2 implies that T2 is a maximal thrackle with ε(T2) = 5

6 . This com-
pletes the proof of Theorem 3.

Fig. 10. Illustration of Property 3.



On the Edge-Vertex Ratio of Maximal Thrackles 493

5 Ongoing Work and Open Problems

We believe that by repeating the Kynčl belt construction, one obtains a class
of maximal trackles such that for every c, there exists maximal thrackle T with
ε(T ) < 4

5 +c. The idea is as follows: Since the original edges of T1 are preserved in
T2, we can apply the Kynčl belt construction to T2 by using only the edges of T1.
This results in a thrackle T3. To do this, we find new, smaller vicinities around
every vertex of T1 which are free of other vertices and non-incident edges. For
an illustration, consider Fig. 11. By repeating the procedure k times, we obtain
a trackle Tk with

ε(Tk) =
2n + 1 + 4k

2n + 1 + 5k
=

4
5

+
2n + 1

10n + 5 + 25k
<

4
5

+ c ⇔ k >
(1 − 5c)(2n + 1)

25c
.

Showing that Tk is (potentially) maximal is more involved and ongoing work, in
which we are done with proving most appearing cases.

Fig. 11. Applying the Kynčl belt construction multiple times.

We conclude with a list of interesting open problems:

– What is the minimal number of edges that a maximal thrackle without iso-
lated vertices can have? Can such a maximal thrackle T have ε(T ) < 4

5?
– Is it true that for every maximal thrackle T it holds that ε(T ) > 1

2 or do
maximal matching thrackles (other than K1,1) exist? It has been very recently
shown [6] that geometric matching thrackles are not maximal. The question
remains open for topological thrackles.

– Does Conway’s conjecture hold?



494 O. Aichholzer et al.

Acknowledgements. This research was initiated during the 15th European Research
Week on Geometric Graphs (GGWeek 2018) at Haus Tornow am See (Märkische
Schweiz, Germany) and Freie Universität Berlin. The workshop was supported by
the Deutsche Forschungsgemeinschaft (DFG) through the Research Training Network
Facets of Complexity and the collaborative DACH project Arrangements and Draw-
ings. We thank the organizers and all participants for the stimulating atmosphere. In
particular, we thank André Schulz for proposing the study of maximal thrackles as
a research question, and Viola Mészáros and Stefan Felsner for joining some of our
discussions and contributing valuable ideas.

Within the collaborative DACH project Arrangements and Drawings, O.A. and
B.V. were partially supported by the Austrian Science Fund (FWF) under grant I
3340-N35 and F.S. was partially supported by the DFG under grant FE 340/12-1.

References

1. Aichholzer, O., Kleist, L., Klemz, B., Schröder, F., Vogtenhuber, B.: On the edge-
vertex ratio of maximal thrackles. https://arxiv.org/abs/1908.08857v2

2. Cairns, G., Koussas, T., Nikolayevsky, Y.: Great-circle spherical thrackles. Discrete
Math. 338(12), 2507–2513 (2015)

3. Cairns, G., Nikolayevsky, Y.: Bounds for generalized thrackles. Discrete Comput.
Geometry 23(2), 191–206 (2000)

4. Cairns, G., Nikolayevsky, Y.: Generalized thrackle drawings of non-bipartite
graphs. Discrete Comput. Geometry 41(1), 119–134 (2009)

5. Cairns, G., Nikolayevsky, Y.: Outerplanar thrackles. Graphs Comb. 28(1), 85–96
(2012)

6. Cleve, J., Mulzer, W., Perz, D., Steiner, R., Welzl, E.: Personal communication,
August 2019

7. Conway, J.H.: Unsolved problems in combinatorics, pp. 351–363. Mathematical
Institute, Oxford (1972)

8. Fulek, R., Pach, J.: A computational approach to Conway’s Thrackle Conjecture.
Comput. Geom. Theor. Appl. 44(6–7), 345–355 (2011)

9. Fulek, R., Pach, J.: Thrackles: an improved upper bound. Discrete Appl. Math.
259, 226–231 (2019)

10. Goddyn, L., Xu, Y.: On the bounds of Conway’s thrackles. Discrete Comput. Geom.
58(2), 410–416 (2017)

11. Hajnal, P., Igamberdiev, A., Rote, G., Schulz, A.: Saturated simple and 2-simple
topological graphs with few edges. J. Graph Algorithms Appl. 22(1), 117–138
(2018)

12. Kynčl, J.: Improved enumeration of simple topological graphs. Discrete Comput.
Geom. 50, 727 (2013). https://doi.org/10.1007/s00454-013-9535-8

13. Kynčl, J., Pach, J., Radoičić, R., Tóth, G.: Saturated simple and k-simple topo-
logical graphs. Comput. Geom. 48(4), 295–310 (2015). https://doi.org/10.1016/j.
comgeo.2014.10.008

14. Li, W., Daniels, K., Rybnikov, K.: A study of Conway’s Thrackle Conjecture.
Vertex 2(4), 1 (2006)

15. Lovász, L., Pach, J., Szegedy, M.: On Conway’s thrackle conjecture. Discrete Com-
put. Geom. 18(4), 369–376 (1997)

16. Misereh, G., Nikolayevsky, Y.: Annular and pants thrackles. Discrete Math. Theor.
Comput. Sci. 20(1) (2018). https://doi.org/10.23638/DMTCS-20-1-16

https://arxiv.org/abs/1908.08857v2
https://doi.org/10.1007/s00454-013-9535-8
https://doi.org/10.1016/j.comgeo.2014.10.008
https://doi.org/10.1016/j.comgeo.2014.10.008
https://doi.org/10.23638/DMTCS-20-1-16


On the Edge-Vertex Ratio of Maximal Thrackles 495

17. Pach, J., Radoičić, R., Tóth, G.: Tangled thrackles. In: Márquez, A., Ramos, P.,
Urrutia, J. (eds.) EGC 2011. LNCS, vol. 7579, pp. 45–53. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-34191-5 4

18. Pach, J., Sterling, E.: Conway’s conjecture for monotone thrackles. Am. Math.
Mon. 118(6), 544–548 (2011)

19. Pammer, J.: Rotation Systems and Good Drawings, pp. 1–83. TUGraz (2014)
20. Ruiz-Vargas, A.J., Suk, A., Tóth, C.D.: Disjoint edges in topological graphs and

the tangled-thrackle conjecture. Eur. J. Comb. 51, 398–406 (2016)
21. Wehner, S.: On the thrackle problem (2013). http://www.thrackle.org/thrackle.

html
22. Woodall, D.: Thrackles and deadlock. Comb. Math. Appl. 348, 335–347 (1969)

https://doi.org/10.1007/978-3-642-34191-5_4
http://www.thrackle.org/thrackle.html
http://www.thrackle.org/thrackle.html


Best Paper in Track 2



Symmetry Detection and Classification
in Drawings of Graphs

Felice De Luca , Md. Iqbal Hossain(B) , and Stephen Kobourov

Department of Computer Science, University of Arizona, Tucson, USA
{felicedeluca,hossain,kobourov}@cs.arizona.edu

Abstract. Symmetry is a key feature observed in nature (from flow-
ers and leaves, to butterflies and birds) and in human-made objects
(from paintings and sculptures, to manufactured objects and architec-
tural design). Rotational, translational, and especially reflectional sym-
metries, are also important in drawings of graphs. Detecting and clas-
sifying symmetries can be very useful in algorithms that aim to create
symmetric graph drawings and in this paper we present a machine learn-
ing approach for these tasks. Specifically, we show that deep neural net-
works can be used to detect reflectional symmetries with 92% accuracy.
We also build a multi-class classifier to distinguish between reflectional
horizontal, reflectional vertical, rotational, and translational symmetries.
Finally, we make available a collection of images of graph drawings with
specific symmetric features that can be used in machine learning systems
for training, testing and validation purposes. Our datasets, best trained
ML models, source code are available online.

1 Introduction

The surrounding world contains symmetric patterns in objects, animals, plants
and celestial bodies. A symmetric feature is defined by the repetition of a pattern
along one of more axes, called axes of symmetry. Depending on how the repeti-
tion occurs the symmetry is classified as reflection when the feature is reflected
across the reflection axis, and translation when the pattern is shifted in the
space. Special cases of reflection symmetries are horizontal (reflective) symme-
try when the axis of symmetry is horizontal or a vertical (reflective) symmetry
when such axis is vertical. Rotational symmetries occur when the translational
axes of symmetry are radial.

Symmetry has been studied in many different fields such as psychology, art,
computer vision, and even graph drawing. In psychology, for example, studies on
the impact of symmetry on humans show that the vertical symmetry in objects
is perceived pre-attentively. A similar study conducted in the context of graph
drawing also shows that the vertical symmetry in drawings of graphs is best
perceived among all others [8]. In this context, algorithms to measure symmetries
in graph drawings have been proposed although it has been shown that these
measures do not always agree with what humans perceive as symmetric [34].

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 499–513, 2019.
https://doi.org/10.1007/978-3-030-35802-0_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_38&domain=pdf
http://orcid.org/0000-0001-5937-7636
http://orcid.org/0000-0001-6212-7638
http://orcid.org/0000-0002-0477-2724
https://doi.org/10.1007/978-3-030-35802-0_38


500 F. De Luca et al.

Convolutional Neural Networks (CNN) have become a standard image clas-
sification technique [18]. CNNs automatically extract features by using informa-
tion about adjacent pixels to down-sample the image in the first layers, followed
by a prediction layer at the end.

Led by the lack of a reliable way to identify a symmetric layout and eventually
classify it by the symmetry it contains, in this paper we consider CNNs for
the detection and classification of symmetries in graph drawing. Specifically we
consider the following two problems: (i) Binary classification of symmetric and
non-symmetric layout; and (ii) multi-class classification of symmetric layouts
by their type: horizontal, vertical, rotational, translational. In particular, our
contributions are as follows:

1. We describe a machine learning model that can be used to determine whether
a given drawing of a graph has reflectional symmetry or is not-symmetric
(binary classification). This model provides 92% accuracy on our test dataset.

2. We describe a multi-class classification model to determine whether a given
drawing of a graph has vertical, horizontal, rotational, or translational sym-
metry. This model provides 99% accuracy on our test dataset.

3. We make available training datasets, as well as the algorithms to generate
them.

The full version of this paper contains more details, figures and tables [7].

2 Related Work

Symmetry detection has applications in different areas such as computer vision,
computer graphics, medical imaging, and robotics. Competitions for symme-
try detection algorithms have taken place several times; for example, see Liu
et al. [20]. For reflection and translation symmetries the problem can be inter-
preted as computing one or more axes of symmetry [17]. In the context of graph
drawing, symmetry is one of the main aesthetic criteria [26].

Symmetry Detection and Computer Vision: Detection of symmetry is an impor-
tant subject of study in computer vision [1,21,24]. The last decades have seen
a growing interest in this area although the study of bilateral symmetries in
shapes dates back to the 1930s [2]. The main focus is on the detection of sym-
metry in real-world 2D or 3D images. As Park et al. [25] point out, although
symmetry detection in real-world images has been widely studied it still remains
a challenging, unsolved problem in computer vision. The method proposed by
Loy and Eklundh [22] performed best in a competition for symmetry detec-
tion [20] and is considered a state-of-the-art algorithm for computer vision sym-
metry detection [6,25]. Symmetries in 2D points set have also been studied and
Highnam [11] proposes an algorithm for discovering mirror symmetries. More
recently, Cicconet et al. [6] proposed a computer vision technique to detect the
line of reflection (mirror) symmetry in 2D and the straight segment that divides
the symmetric object into its mirror symmetric parts. Their technique outper-
forms the winner of the 2013 competition [20] on single symmetry detection.



Symmetry Detection and Classification in Drawings of Graphs 501

Symmetry Detection and Graphs: In graph theory the symmetry of a graphs is
known as automorphism [23] and testing whether a graph has any axial sym-
metry is an NP-complete problem [3]. A mathematical heuristic to detect sym-
metries in graphs is given in [9]. Klapaukh [15,16] and Purchase [26] describe
algorithms for measuring the symmetry of a graph drawing. While the first mea-
sure analyzes the drawing to find reflection, rotation and translation symmetries,
the latter considers only the reflection. Welsh and Kobourov [34] evaluate how
well the measures of symmetry agree with human evaluation of symmetry. The
results show that in cases where the Klapaukh and Purchase measures strongly
disagreed on the scoring of symmetry, human judgment agrees more often with
the Purchase metric.

Symmetry Detection and Machine Learning: Convolutional neural networks
can be a powerful tool for the automatic detection of symmetries. Vasude-
van et al. [33] use this approach for the detection of symmetries in atomically
resolved imaging data. The authors train a deep convolutional neural network for
symmetry classification using 4000 simulated images, 3 convolutional layers, a
fully connected layer, and a final “softmax” output layer on this training dataset.
After training over 30 epochs, the authors obtained an accuracy of 85% on the
validation set. Tsogkas and Kokkinos [32] propose a learning-based approach to
detect symmetry axes in natural images, where the symmetry axes are contours
lying in the middle of elongated structures. To the best of our knowledge, there
are no prior machine learning approaches for detecting or classifying symmetries
in graph drawings.

Neural Networks for Image Classification and Detection: Convolutional Neural
Networks (CNNs) are standard in image recognition and classification, object
detection, and video analysis. The Mark I Perception machine was the first imple-
mentation of the perceptron algorithm in 1957 by Rosenblatt [27]. Widrow and
Hoff proposed a multilayer perceptron [35]. Back-propagation was introduced by
Rumelhart et al. [28]. LeNet-5 [19] was deployed for zip code and digit recog-
nition. In 2012, Alex Krizhevsky [18] introduced CNNs with AlexNet. Szegedy
et al. [14] introduced GoogLeNet and the Inception module. Other notable devel-
opments include VGGNet [30] and residual networks (ResNet) [10].

3 Background and Preliminaries

In this section we give a brief overview of machine learning in the context of our
experiments. We also attempt to clarify some of the terminology we use through-
out the paper, focusing in particular on Deep Neural Networks and Convolutional
Neural Networks.

A deep neural network is made of several layers of neurons. Information flows
through a neural network in two ways: via the feedforward network and via
backpropagation. During the training phase, information is fed into the network
via the input units, which trigger the layers of hidden units, and these in turn



502 F. De Luca et al.

arrive at the output units. This common design is called a feedforward network.
Not all units fire all the time. Each unit receives inputs from the units of the
previous layer, and the inputs are multiplied by the weights of the connections
they travel along. Every unit adds up all the inputs it receives in this way and
if the sum exceeds a certain threshold value, the unit fires and triggers the units
it is connected to in the next layer.

Importantly, there is a feedback process called backpropagation that can be
used to improve the weights. This involves the comparison of the output the net-
work produces with the output it was meant to produce, and using the difference
between them to modify the weights of the connections between the units in the
network, working from the output units, through the hidden units, and to the
input units. Over time, backpropagation helps the network to “learn,” reducing
the difference between actual and intended outputs.

Convolutional neural network (CNN) are used mainly for image data classifi-
cation where intermediate layers and computations are a bit different then fully
connected neural networks. Each pixel of input image is mapped with a neuron
of the input layer. Output neurons are mapped to target classes. Figure 1 shows
a simple CNN architecture. Different types of layers in a typical CNN include:

Fig. 1. A typical convolutional neural network.

– convolution layer (convnet): in this layer a small filter (usually 3×3) is taken
and moved over the image. Applying filters in the layer helps to detect low
and high level features in the image so that spatial features are preserved in
the layer. The convolutional layer helps to reduce the number of parameters
compared to a fully connected layer. Keeping the same set of filters helps to
share parameters and sparsity helps to further reduce the parameters. For
example, in a 3 × 3 filter every node in the next layer is only connected to 9
nodes in the previous layer. This sparse connection helps to avoid over-fitting.

– activation layer : this layer applies an activation function from the previous
layer. Example functions include ReLU, tanh and sigmoid.

– pooling : the pooling layer is used to reduce size of the convnet. Filter size
f , stride s, padding p are used as parameters of the pooling layer. Average
pooling or max pooling are the standard options. After applying the pooling to
a given image shape (Nh×Nw×Nc), it turns into �Nh−f

s +1�×�Nw−f
s +1�×Nc.



Symmetry Detection and Classification in Drawings of Graphs 503

– Fully Connected Layer (FCL): a fully connected layer creates a complete
bipartite graph with the previous layer. Adding a fully-connected layer is
useful when learning combinations of non-linear features.

We now review some common machine learning terms. Training loss is the error
on the training set of data, and validation loss is the error after running the
validation set of data through the trained network. Ideally, train loss and valida-
tion loss should gradually decrease, and training and validation accuracy should
increase over training epochs. The training set is the data used to adjust the
weights on the neural network. The validation set is used to verify that increase
in accuracy over the training data actually yields an increase in accuracy. If the
accuracy over the training data set increases, but the accuracy over the valida-
tion data decreases, it is a sign of overfitting. The testing set is used only for
testing the final solution in order to confirm the actual predictive power of the
network. A confusion matrix is a table summarizing the performance in clas-
sification tasks. Each row of the matrix represents the instances in a predicted
class while each column represents the instances in an actual class. The precision
p represents how many selected item are relevant and recall r represents how
many relevant items are selected. F1 -score is measured by the formula 2 ∗ r∗p

p+r .

4 Datasets

In this section we describe how we generated datasets for our machine learning
systems. To the best of our knowledge, there is no dataset of images suitable
for training machine learning systems for symmetry detection in graph drawings.
Our dataset contains images that feature different types of symmetries, including
reflection, translation or rotation symmetries and variants thereof. An overview
all types of layouts is given in Fig. 2.

We started with a dataset of simple symmetric images and inspected the
results trying to identify which characteristic of the layout leads to its classi-
fication as symmetric or not symmetric. If we observed a characteristic in the
symmetric layouts we generated non symmetric layouts that expose it and sym-
metric layouts without it. Then we fed them to the system for the classification.
In case of inaccurate results we included the new layouts (that we call breaking
instances of the dataset) in the training system and repeated the process until
we could not identify any other specific feature.

In order to distinguish inputs of different sizes, we refer to layouts in our
dataset as small or large based on the number of vertices, |V |. A small layout
has |V | ∈ [5, 8] while a large layout has |V | ∈ [10, 20]. The number of edges is a
random integer |E| ∈ [|V |, �1.2�∗|V |]. The layouts included in the global dataset
used for all experiments can be summarized as follows:

– SmallSym: small reflective symmetric layout
– SmallNonSym: non symmetric generated from SmallSym with random node

positions



504 F. De Luca et al.

Fig. 2. Examples of the different layout instances in our dataset.

– ReflectionalLarge: large reflective symmetric layouts with random axis of sym-
metry

– NonSymLarge: non symmetric generated from ReflectionalLarge layouts
– HorizontalLarge: large reflective symmetric layouts with a 0◦ axis of symmetry



Symmetry Detection and Classification in Drawings of Graphs 505

– VerticalLarge: large reflective symmetric layouts with a 90◦ axis of symmetry
– RotationalLarge: rotational symmetric with random axes between 4 and 10
– TranslationalLarge: translational symmetric translated along x-axis

In the remainder of this section we discuss how we generated our layouts and
the process that led to them.

4.1 Reflectional Layout Generation

A reflectional symmetric layout may expose different characteristics such as “par-
allel lines” orthogonal to the axis of symmetry and edge crossings on the axis of
symmetry.

The generation procedure for symmetric graphs and layouts thereof differs
slightly depending on the type of symmetry we attempt to capture.

We used the procedure for generating a graph and a reflectional symmetric
layout with the “parallel lines” feature following the algorithm in [8] as follows.
Given a graph with n

2 vertices, called a component, we assign to each vertex of
the component positive random coordinates. Then we copy this component and
replace the x-coordinates of each vertex with the negative value of the original.
This results in a layout with two disjoint components that are then connected
by a random number of edges in [1, �|V |/3�] selecting random vertices in one
component and connecting them to their corresponding vertices in the other
component. This results in layouts with vertical axis of symmetry; see Fig. 3(b).
To create layouts with horizontal axis of symmetry we add a 90◦ rotation; see
Fig. 3(a).

The procedure for generating a graph and a reflectional symmetric layout
without the “parallel lines” feature is described in Algorithm SymGG. This
algorithm gives an overview on how to create the symmetric versions with the
different features. In the following we explain how we defined SymGG based
on experimental improvements of our dataset. Given a symmetric graph with
n vertices by Algorithm SymGG, we create a non-symmetric layout by assign-
ing to each vertex of the input graph any random y-coordinate and a positive
random x-coordinate to the vertices with identifier < n

2 and a negative random
x-coordinate, otherwise.

To create reflectional symmetric layouts, instead, if a vertex with identifier
i < n

2 gets coordinates (xr, yr) then the vertex with identifier ic = i + n
2 gets

assigned coordinates (−xr, yr). If the graph has an odd number of vertices then
the vertex with identifier n − 1 gets x = 0. Note that, by construction, the
resulting layouts have a vertical axis of symmetry; see Fig. 3(e). To create layouts
with horizontal axis of symmetry we add a 90◦ rotation; see Fig. 3(f).

4.2 Dataset Definition

Here we describe the process that led to us to the dataset of reflectional sym-
metric layouts.

To this aim we generated the SmallSym, SmallNonSym, NonSymLarge and
ReflectionalLarge layouts.



506 F. De Luca et al.

Algorithm SymGG(n,m): Symmetric graph generation with n vertices and
m edges
1: define G = (V,E) where |V | = n with id [0, n − 1] and |E| = 0
2: add m edges to G selecting one or more edge types from [3-6] and continuing with

steps [7-12]
3: for a random edge choose random integers u, v in [0, n − 1] such as (u, v) /∈ E;
4: for a random edge that does not cross the axis of reflection choose random integers

u, v in [0, �� ∗ n/2 − 1] such as (u, v) /∈ E;
5: for parallel edge feature choose random integer u in [0, �� ∗ n/2 − 1] and v =

u + �� ∗ n/2 such as (u, v) /∈ E;
6: for crossing edge feature choose random integer u in [0, �� ∗ n/2 − 1] and v in

[n/2, n − 1] such as (u, v) /∈ E;
7: Generate the symmetric edge (u sym, v sym) of (u, v)
8: u sym = u ∓ �� ∗ n/2 if u ≷ �� ∗ n/2
9: v sym = v ∓ �� ∗ n/2 if v ≷ �� ∗ n/2

10: u sym = u if n is odd and u = n − 1
11: v sym = v if n is odd and v = n − 1
12: add (u, v) and (u sym, v sym) to E

First Improvement: At first, we trained our system with the reflective sym-
metric layouts and random layouts generated using the approach in [8] as
described above.

Observations: Using this simple dataset we observed that the system could
always classify the layouts correctly for any of the used layouts.

Layouts Characteristic: Analyzing the used dataset we observed that the gener-
ation algorithm used gives symmetric layout for reflective symmetry with a clear
symmetric feature that is ‘parallel lines’ orthogonal to the reflection axis. These
lines separate two identical but reflected subcomponents, as Fig. 3(a-b) show.

Breaking Layout: After identifying the ‘parallel lines’ feature, we generated non-
symmetric layouts with the same feature. These layouts were created starting
from the symmetric layouts and then assigning random positions to the vertices
not linked to the parallel edges; an example of random layout with parallel
edges is shown in Fig. 4b. Without re-training the system, these layouts are
misclassified as symmetric, breaking the previously built model.

Second Improvement: Here we added to our dataset the breaking instances
of the previous model and new symmetric layouts that do not show the ‘parallel
lines’ feature. The parallel lines of a symmetric layouts are given by vertices that
are connected to their reflected copy (since they share either the x or y coordinate
in the space). The new layouts we generated have the two subcomponents not
only connected by edges between a vertex and his reflected copy but also by
edges connecting a random vertex of one component to a random vertex of the



Symmetry Detection and Classification in Drawings of Graphs 507

Fig. 3. Symmetric layouts in the dataset: (a) Horizontal, (b) Vertical, (c) Translational,
(d) Rotational, (e) Vertical without parallel lines, (f) Horizontal without parallel lines.

(a) (b) (c)

Fig. 4. Non symmetric layouts in the dataset: (a) Random, (b) with Parallel Lines, (c)
with Crossings

other (and viceversa to keep the symmetry). These edges generate crossings
on the axis of symmetry of the symmetric layout, instead of the parallel lines.
Pseudocode for the symmetric graph generation Algorithm SymGG (with even
number of edges as input) can be found above.

Analogously we generated some random layouts that show the same fea-
ture, starting from a symmetric layout with non-parallel edges and shuffling
the position of the vertices not connected to such edges. Figure 3(e) illustrates
and example of symmetric layout with crossings while Fig. 4(c) depicts a non
symmetric layout with crossings.

Observations: Training the system with these new layouts we obtained good
results on all layouts, including those misclassified in the previous setup.

Breaking Instance: Inspecting the current dataset we identified another char-
acteristic of the current symmetric layouts: an even number of vertices. We
then generates symmetric layouts with an odd number of vertices. The genera-
tion algorithm for these layouts is given in Algorithm SymGG. Again, without
training, the the current system fails on such layouts misclassifying them as a
non-symmetric. Further, we observed that rotating the symmetric layouts also
makes our machinery fail.

Final Improvement: Here we added to our dataset instances with odd num-
ber of vertices for both symmetric and non symmetric layouts. We also added
instances rotated by a random angle between 0 and 360. Since we could not find
further breaking instance for this dataset, we used it for our experiments.



508 F. De Luca et al.

4.3 Other Symmetric Layouts

In addition to the instances above we generated the translational layouts and
rotational layouts using the algorithm in [8], as follows.

To create translational symmetric layouts we use the same process of gen-
eration of reflectional symmetric layout with parallel edges above but instead
of taking the negative value of the x-coordinate of the copied component we
shift each component by a predefined value δ. If a vertex in the given compo-
nent gets coordinates (x, y) then the vertex in the copied component is assigned
coordinates (x − δ, y); see Fig. 3(c).

The generation process for rotational symmetric layouts is different, since the
number of vertices depends on the number of symmetric axes. To generate such
layouts we start from a given graph component with n vertices and then we select
a random number of radial symmetric axes in the range [4, 10]. After assigning a
random position to the vertices of the component we copy and shift it over the
reflection axes. Then we choose two random vertices in the component and use
them to connect pairs of rotationally consecutive components; see Fig. 3(d).

5 Experimental Setup

Our images are in black and white with a size of 200×200 pixels. We use 1 pixel
for the edge width and 3 × 3 pixels for a vertex. We configured our system with
the following settings: 1 grayscale channel, with resealing by 1/255, batch size
16 and number of epochs 20. In all of our experiment we use 80% of our data
as training set, 10% as validation set, and 10% as test set. Test sets are never
used in during training, those are reserved for computing the final accuracy.
During training, in every epoch we check the validation accuracy and save the
best trained model as checkpoint. The best trained model is used on the final
test set.

Since images of graph drawings have different features than that of real-world
images (e.g., textures and shapes), we tested different popular CNN architectures
with same parameter settings.

We use CNN architectures from the Keras implementation; Keras is a high-
level API of Tensorflow that supports training with multiple CPUs1. For our
experiments, we used the High Performance Computing system at the University
of Arizona. Specifically, training was done on 28 CPUs, each with Intel Xeon
3.2 GHz processor and 6 GB of memory. Training time for the different models
ranged from 6 to 29 h; see Table 1.

6 Detecting Reflectional Symmetry

Small Binary Classification (SPBC) Experiment: In this experiment
we test how accurately we can distinguish between drawings of graphs with

1 https://github.com/keras-team/keras/tree/master/keras/applications.

https://github.com/keras-team/keras/tree/master/keras/applications


Symmetry Detection and Classification in Drawings of Graphs 509

Table 1. Overview of the CNN models used in the experiment.

Name Parameters Layers References Our training time (h)

ResNet50 23.59M 177 [10] 15.25

MobileNet 3.23M 93 [12] 6.22

MobileNetV2 2.26M 157 [29] 8.36

NASNetMobile 4.27M 771 [36] 5.79

NASNetLarge 84.93M 1041 [36] 10.21

VGG16 107.01M 23 [30] 24.24

VGG19 112.32M 26 [4] 25.32

Xception 20.87M 134 [5] 19.59

InceptionResNetV2 54.34M 782 [31] 15.18

DenseNet121 7.04M 429 [13] 20.11

DenseNet201 18.32M 709 [13] 28.49

reflectional symmetry and ones without. We use a binary classifier trained on
SmallSym and SmallNonSym instances from our dataset; see Fig. 2. We use the
InceptionResNet CNN model with 12000 images for training, 2000 images for
validation, and 2000 image for testing. The model achieves 92% accuracy. We
evaluated several different models before settling on InceptionResNet ; see the
full paper for more details [7].

We cross-validate our results with two earlier metrics specifically designed to
evaluate the symmetry in drawing of graphs, namely the Purchase metric [26]
and the Klapaukh metric [15]. These two metrics were not designed for binary
classification, but given a graph layout they provide a score in the range [0, 1].
We interpret a score of ≥ 0.5 as a vote for “symmetry” and a score of < 0.5 as
a vote of “no symmetry”. We can now compare the performance of our CNN
model against those of the Purchase metric and the Klapaukh metric on the
same set of 2000 test images. We report accuracy, precision, recall and F1-score
in Table 2. We can see that while the two older metrics perform well, the CNN
is better in all aspects (except recall, where the Purchase metric is .01% better).

Table 2. Comparison between the CNN model and existing symmetry metrics.

Model Accuracy Precision recall F1-Score

Purchase [26] 82% 0.67 0.96 0.79

Klapaukh [15] 82% 0.80 0.86 0.83

InceptionResNet 92% 0.90 0.95 0.93

Training loss, validation loss, training accuracy and validation accuracy for
our Experiment SPBC are shown in the full version of the paper [7].



510 F. De Luca et al.

7 Detecting Different Types of Symmetries

Multi-class symmetric layouts classification (LHVRT) Experiement:
In this experiment we test how accurately we can distinguish between draw-
ings of graphs with different types of symmetries. We use a multi-class classi-
fier trained on several types of symmetries: Horizontal, Vertical, Rotational and
Translational. Recall that Horizontal and Vertical are special cases of reflection
symmetry, where the axis of reflection is horizontal or vertical, respectively.

We train the CNN with HorizontalLarge, VerticalLarge, RotationalLarge, and
TranslationalLarge instances from our dataset; see Fig. 2.

We use the ResNet50 CNN model with 16000 images for training, 2000 images
for validation, and 4480 images for testing. The model achieves 99% accuracy.
Table 3 shows the corresponding confusion matrix. We evaluated several differ-
ent models before settling on ResNet50. Training loss, validation loss, training
accuracy and validation accuracy for our Experiment LHVRT are shown in the
full version of the paper, where more results and discussion thereof can also be
found [7].

Table 3. Confusion matrix from ResNet50. Each row of the matrix represents the
instances in a predicted class while each column represents the instances in an actual
class.

HorizontalLarge RotationalLarge TranslationalLarge VerticalLarge

HorizontalLarge 1280 0 0 0

RotationalLarge 0 800 0 0

TranslationalLarge 0 0 798 2

VerticalLarge 0 0 1 1599

8 Conclusions

In the experiments above we achieved high accuracy for both detection and
classification. Compared to existing evaluation metrics for symmetric layout we
observed that our machinery outperforms the mathematical formulae proposed
when used as classifiers.

Note, however, that there are many limitations to consider. First of all, we
generated all the datasets and have not tested the models on layouts obtained
from other layout algorithms. Further, the graphs we used are small and we have
not confirmed how well humans agree with the decisions of the machine learning
system. Finally, the two tasks we performed are limited in power, and we do
not yet have a model that can accurately predict whether a graph drawing is
symmetric or not, or which of two drawings of the same graph is more symmetric.

Nevertheless, we believe our dataset can be useful for future experiments and
our initial results on limited tasks indicate that a machine learning framework



Symmetry Detection and Classification in Drawings of Graphs 511

can be useful for symmetry detection and classification. Our dataset, models,
results details can be found in https://github.com/enggiqbal/mlsymmetric.

Acknowledgement. This work is supported in part by NSF grants CCF-1740858,
CCF-1712119, DMS-1839274, and DMS-1839307. This experiment uses High Perfor-
mance Computing resources supported by the University of Arizona TRIF, UITS, and
RDI and maintained by the University of Arizona Research Technologies department.

References

1. Atallah, M.J.: On symmetry detection. IEEE Trans. Comput. C–34(7), 663–666
(1985). https://doi.org/10.1109/TC.1985.1676605

2. Birkhoff, G.D.: Aesthetic Measure. Cambridge (1932)
3. Manning, J.B.: Geometric symmetry in graphs. ETD Collection for Purdue Uni-

versity (1990)
4. Chen, L., Zhang, H., Xiao, J., Nie, L., Shao, J., Liu, W., Chua, T.S.: SCA-CNN:

spatial and channel-wise attention in convolutional networks for image captioning.
In: Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2017, vol. 2017, pp. 6298–6306 (2017). https://doi.org/10.1109/CVPR.
2017.667

5. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In:
Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2017. vol. 2017, pp. 1800–1807 (2017). https://doi.org/10.1109/CVPR.
2017.195

6. Cicconet, M., Birodkar, V., Lund, M., Werman, M., Geiger, D.: A convolu-
tional approach to reflection symmetry. Pattern Recognit. Lett. 95, 44–50 (2016).
https://doi.org/10.1016/j.patrec.2017.03.022

7. De Luca, F., Hossain, M.I., Kobourov, S.: Symmetry detection and classification
in drawings of graphs. arXiv preprint arXiv:1907.01004 (2019)

8. De Luca, F., Kobourov, S., Purchase, H.: Perception of symmetries in drawings of
graphs. In: Biedl, T., Kerren, A. (eds.) GD 2018. LNCS, vol. 11282, pp. 433–446.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04414-5 31

9. de Fraysseix, H.: An heuristic for graph symmetry detection. In: Kratochv́ıyl, J.
(ed.) GD 1999. LNCS, vol. 1731, pp. 276–285. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-46648-7 29

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, vol. 2016, pp. 770–778 (2016). https://doi.org/10.1109/
CVPR.2016.90

11. Highnam, P.T.: Optimal algorithms for finding the symmetries of a planar point
set. Technical report 5, Carnegie Mellon University, Pittsburgh, PA, August 1986.
https://doi.org/10.1016/0020-0190(86)90097-9

12. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,
Andreetto, M., Adam, H.: MobileNets: efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

13. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings - 30th IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017. vol. 2017, pp. 2261–2269 (2017).
https://doi.org/10.1109/CVPR.2017.243

https://github.com/enggiqbal/mlsymmetric
https://doi.org/10.1109/TC.1985.1676605
https://doi.org/10.1109/CVPR.2017.667
https://doi.org/10.1109/CVPR.2017.667
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1016/j.patrec.2017.03.022
http://arxiv.org/abs/1907.01004
https://doi.org/10.1007/978-3-030-04414-5_31
https://doi.org/10.1007/3-540-46648-7_29
https://doi.org/10.1007/3-540-46648-7_29
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/0020-0190(86)90097-9
http://arxiv.org/abs/1704.04861
https://doi.org/10.1109/CVPR.2017.243


512 F. De Luca et al.

14. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: 32nd International Conference on Machine
Learning, ICML 2015, vol. 1, pp. 448–456 (2015)

15. Klapaukh, R.: An Empirical Evaluation of Force-Directed Graph Layout. Ph.D.
thesis, Victoria University of Wellington (2014)

16. Klapaukh, R., Marshall, S., Pearce, D.: A symmetry metric for graphs and line
diagrams. In: Chapman, P., Stapleton, G., Moktefi, A., Perez-Kriz, S., Bellucci,
F. (eds.) Diagrams 2018. LNCS (LNAI), vol. 10871, pp. 739–742. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91376-6 71

17. Kokkinos, I., Maragos, P., Yuille, A.: Bottom-up amp;amp; top-down object detec-
tion using primal sketch features and graphical models. In: 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR 2006),
vol. 2, pp. 1893–1900, June 2006. https://doi.org/10.1109/CVPR.2006.74

18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, vol. 2, pp. 1097–1105 (2012)

19. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2323 (1998). https://doi.org/10.
1109/5.726791

20. Liu, J., Slota, G., Zheng, G., Wu, Z., Park, M., Lee, S., Rauschert, I., Liu, Y.: Sym-
metry detection from realworld images competition 2013: summary and results. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pp. 200–205 (2013)

21. Liu, Y., Hel-Or, H., Kaplan, C.S., Van Gool, L.: Computational Symmetry in
Computer Vision and Computer Graphics. Now, Delft (2010)

22. Loy, G., Eklundh, J.-O.: Detecting symmetry and symmetric constellations of fea-
tures. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952,
pp. 508–521. Springer, Heidelberg (2006). https://doi.org/10.1007/11744047 39

23. Lubiw, A.: Some NP-complete problems similar to graph isomorphism. SIAM J.
Comput. 10(1), 11–21 (1981). https://doi.org/10.1137/0210002

24. Mitra, N.J., Pauly, M., Wand, M., Ceylan, D.: Symmetry in 3D geometry: extrac-
tion and applications. Comput. Graph. Forum 32(6), 1–23 (2013). https://doi.org/
10.1111/cgf.12010

25. Park, M., Lee, S., Chen, P.C., Kashyap, S., Butt, A.A., Liu, Y.: Performance eval-
uation of state-of-the-art discrete symmetry detection algorithms. In: 26th IEEE
Conference on Computer Vision and Pattern Recognition, CVPR, pp. 1–8, June
2008. https://doi.org/10.1109/CVPR.2008.4587824

26. Purchase, H.C.: Metrics for graph drawing aesthetics. J. Vis. Lang. Comput. 13(5),
501–516 (2002). https://doi.org/10.1016/S1045-926X(02)90232-6

27. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and
organization in the brain. Psychol. Rev. 65(6), 386–408 (1958). https://doi.org/
10.1037/h0042519

28. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Nature 323(6088), 533–536 (1986). https://doi.org/10.1038/
323533a0

29. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2:
inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pp. 4510–4520
(2018). https://doi.org/10.1109/CVPR.2018.00474

30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

https://doi.org/10.1007/978-3-319-91376-6_71
https://doi.org/10.1109/CVPR.2006.74
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1007/11744047_39
https://doi.org/10.1137/0210002
https://doi.org/10.1111/cgf.12010
https://doi.org/10.1111/cgf.12010
https://doi.org/10.1109/CVPR.2008.4587824
https://doi.org/10.1016/S1045-926X(02)90232-6
https://doi.org/10.1037/h0042519
https://doi.org/10.1037/h0042519
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1109/CVPR.2018.00474
http://arxiv.org/abs/1409.1556


Symmetry Detection and Classification in Drawings of Graphs 513

31. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-ResNet
and the impact of residual connections on learning. In: 31st AAAI Conference on
Artificial Intelligence, AAAI 2017, pp. 4278–4284 (2017)

32. Tsogkas, S., Kokkinos, I.: Learning-based symmetry detection in natural images.
In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV
2012. LNCS, vol. 7578, pp. 41–54. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33786-4 4

33. Vasudevan, R.K., Dyck, O., Ziatdinov, M., Jesse, S., Laanait, N., Kalinin, S.V.:
Deep convolutional neural networks for symmetry detection. Microsc. Microanal.
24(S1), 112–113 (2018). https://doi.org/10.1017/s1431927618001058

34. Welch, E., Kobourov, S.: Measuring symmetry in drawings of graphs. Comput.
Graph. Forum 36(3), 341–351 (2017). https://doi.org/10.1111/cgf.13192

35. Widrow, B., Lehr, M.A.: 30 years of adaptive neural networks: perceptron, mada-
line, and backpropagation. Proc. IEEE 78(9), 1415–1442 (1990). https://doi.org/
10.1109/5.58323

36. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 8697–8710 (2018)

https://doi.org/10.1007/978-3-642-33786-4_4
https://doi.org/10.1007/978-3-642-33786-4_4
https://doi.org/10.1017/s1431927618001058
https://doi.org/10.1111/cgf.13192
https://doi.org/10.1109/5.58323
https://doi.org/10.1109/5.58323


Level Planarity



An SPQR-Tree-Like Embedding
Representation for Upward Planarity

Guido Brückner1(B), Markus Himmel1, and Ignaz Rutter2

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
brueckner@kit.edu, markus.himmel@studentkit.edu

2 University of Passau, Passau, Germany
rutter@fim.uni-passau.de

Abstract. The SPQR-tree is a data structure that compactly represents
all planar embeddings of a biconnected planar graph. It plays a key role
in constrained planarity testing.

We develop a similar data structure, called the UP-tree, that com-
pactly represents all upward planar embeddings of a biconnected single-
source directed graph. We demonstrate the usefulness of the UP-tree by
solving the upward planar embedding extension problem for biconnected
single-source directed graphs.

1 Introduction

A natural extension of planarity to directed graphs (digraphs) is to consider
planar drawings where each edge is drawn as a y-monotone curve. Such draw-
ings are called upward planar, and a graph admitting an upward planar drawing
is upward planar. A planar (combinatorial) embedding E of a graph G is an
upward planar embedding if G has an upward planar drawing whose (combina-
torial) embedding is E . Whereas undirected graphes can be tested for planarity
in linear time, upward planarity testing is NP-complete in general, though there
are efficient algorithms for graphs with a single source [4,24] and graphs with a
fixed embedding [3]. In the special case of st-graphs, i.e., graphs with a single
source s and a single sink t with s and t on the same face, planar embeddings
are the same as the upward planar embeddings [28], and hence upward planarity
and planarity are equivalent.

A related but different planarity notion for digraphs is level planarity, where
the vertices of the graph have fixed levels that correspond to horizontal lines in
the drawing. The task is to order the vertices on each level so that the drawing
is planar. Level planarity can be tested in linear time [26] by a quite involved
algorithm, or in quadratic time by several simpler algorithms [11,20,29].

In a constrained embedding problem, one seeks a planar embedding of a given
graph that satisfies additional constraints. Typical examples are simultaneous

This work was partially supported by grant RU 1903/3-1 of the German Research
Foundation (DFG).

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 517–531, 2019.
https://doi.org/10.1007/978-3-030-35802-0_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_39&domain=pdf
https://doi.org/10.1007/978-3-030-35802-0_39


518 G. Brückner et al.

embeddings with fixed edges [5], cluster planarity [19], constraints on the face
sizes [13,14], optimizing the depth of the embedding [2] and optimizing the bends
in an orthogonal drawing [6,7,18]. One of the most prominent examples of the
last years is the partial drawing extension problem, which asks whether a given
drawing of a subgraph can be extended to a planar drawing of the whole graph.
The partial embedding extension problem is strongly related, here the input is a
planar embedding of a subgraph and the question is whether it can be extended
to a planar embedding of the whole graph. For undirected planar graphs the two
problems are equivalent and can be solved in linear time [1,25].

One of the key tools for all of these applications is the SPQR-tree, which
compactly represents all planar embeddings of a biconnected planar graph G
and breaks down the complicated task of choosing a planar embedding of G
into simpler independent embedding choices of its triconnected components [15–
17,23,27,30]. In fact, these embeddings are either uniquely determined up to
reversal, or they consist in arbitrarily choosing a permutation of parallel edges
between two pole vertices. The common approach for attacking the above-
mentioned constrained embedding problems is to project the constraints on the
global embedding to local constraints on the skeleton embeddings that can then
be satisfied by consistent local choices. While the implementation details are
often highly technical and non-trivial, the approach has proven to be extremely
successful.

In comparison, relatively little is known about constrained planarity problems
for planarity notions of digraphs. Brückner and Rutter [10] study the problem
of extending a given partial drawing of a level graph and Da Lozzo et al. [12]
study the same question for upward planarity. In general, extending a given par-
tial upward planar drawing requires to determine an upward planar embedding
that (i) extends the embedding of the partial drawing, and (ii) admits a drawing
that extends the given drawing. Here step (i) requires solving the embedding
extension problem but with additional constraints that ensure that a drawing
extension is feasible. It is worth noting that for upward planarity the embedding
extension problem and the drawing extension problem are distinct; Da Lozzo
et al. show that, generally, even if an upward planar embedding of the whole
graph is given, it is NP-complete to decide whether it can be drawn such that
it extends a given partial drawing [12, Theorem 2]. On the positive side, they
present tractability results for directed paths and cycles with a given upward
planar embedding, and for st-graphs. The restriction to st-graphs allows a rela-
tively simple characterization of the upward planar embeddings that extend the
given partial drawings [12, Lemma 6], which yields an O(n log n)-time algorithm
for step (ii). For step (i), Da Lozzo et al. exploit the fact that for st-graphs, the
choice of an upward planar embedding is equivalent to choosing a planar embed-
ding, and hence the SPQR-tree allows to efficiently search for an upward planar
embedding satisfying the additional constraints required by condition (ii).

In this paper, we seek to generalize the approach of Da Lozzo et al. to bicon-
nected single-source graphs. The key difficulty in this case is that neither do we
have access to all the upward planar embeddings of such graphs, nor is it known



An SPQR-Tree-Like Embedding Representation for Upward Planarity 519

what the necessary and sufficient conditions are for an upward planar embedding
to admit a drawing that extends a given subdrawing.

Contribution and Outline. We construct a novel SPQR-tree-like embedding
representation, called the UP-tree, that represents exactly the upward planar
embeddings of a biconnected single-source graph. As in SPQR-trees, the embed-
ding choices in the UP-tree are broken down into independent embedding choices
of skeleton graphs that are either unique up to reversal or allow to arbitrarily
permute parallel edges between two poles. As such, UP-trees can take the role
of SPQR-trees for constrained embedding problems in upward planarity, making
them a powerful tool with a broad range of applications. We demonstrate this by
giving an quadratic-time algorithm for the upward planar embedding extension
problem for biconnected single-source graphs.

After introducing some preliminaries in Sect. 2, we review the results on
decomposing upward planar single-source digraphs due to Hutton and Lubiw [24]
in Sect. 3. We proceed to extend this idea from a single decomposition to decom-
position trees. Proofs of statements marked with a star (�) can be found in the
full version [9]. In Sect. 4, we define the UP-tree and in Sect. 5 we use it to solve
the partial upward embedding extension problem.

2 Preliminaries

Let G = (V,E) be a connected simple undirected graph. A cutvertex of G is a
vertex whose removal disconnects G. We say that G is biconnected if it has no
cutvertex. We say that {u, v} is a cutpair if there are connected subgraphs H1,H2

of G with H1 ∪ H2 = G and H1 ∩ H2 = {u, v}. If a graph has no cutpair it is
triconnected.

Decomposition Trees. Assume that G is biconnected. A decomposition along a
cutpair {u, v} of G is defined as follows. Let μ1, μ2 be two nodes connected
by an undirected arc (μ1, μ2). Node μi is equipped with a multigraph Hi ∪
{(u, v)} called its skeleton denoted by skel(μi). The newly added edge (u, v) is
a virtual edge and corresponds to μ2 in μ1 and to μ1 in μ2, respectively. This
is formalized as functions corrμ1 : (u, v) �→ μ2 and corrμ2 : (u, v) �→ μ1. If there
exists a cutpair {u′, v′} in skel(μi) and we may once again decompose along that
cutpair. By repeating this process we obtain an unrooted decomposition tree T .

Let a = (μ, ν) be an arc of T . Then skel(μ) and skel(ν) share two vertices u, v
and the existence of a can be traced back to a decomposition along u, v. We then
say that the poles of μ in ν are u and v. When ν is clear from the context we
also simply refer to u and v as the poles of μ.

A decomposition can be reverted by contracting an arc (μ, ν) of T and merg-
ing the skeletons of μ and ν. To merge skel(μ) and skel(ν), remove from skel(μ)
the virtual edge e with corrμ(e) = ν and from skel(ν) the virtual edge e′

with corrν(e′) = μ and set the union of these two graphs as the skeleton of
the node obtained by contracting (μ, ν) in T . This is a composition along (μ, ν).



520 G. Brückner et al.

Consider an arc a = (μ, ν) of T . Removing a from T separates T into two
subtrees Tμ and Tν containing μ and ν, respectively. Define the pertinent graph
of μ in ν as the skeleton of the single node obtained by contracting all arcs
in Tμ. Again, when ν is clear from the context we simply refer to this graph as
the pertinent graph of μ and denote it by G(μ).

Rooted Decomposition Trees and Planar Embeddings. Throughout this paper
let an embedding of a graph denote a rotation system together with an outer
face. Decomposition trees can be used to decompose not only a graph, but also
an embedding of it. Consider a biconnected graph G together with a planar
embedding E . Let e� be an edge of G incident to the outer face of E . Further, let T
be a decomposition tree of G rooted at a node whose skeleton contains e�. Equip
the skeleton of each node μ of T with an embedding as follows. The embedding
of skel(μ) is obtained from E by contracting for each virtual edge (u, v) of skel(μ)
the pertinent graph G(corrμ(u, v)) into a single edge. These embeddings of the
skeletons of the nodes of T are referred to as a configuration. The fact that e�

is incident to the outer face gives two properties. First, the edge e� lies on the
outer face of the skeleton of the root node of T . Second, every non-root node ν
of T has some parent node μ and the virtual edge e with corrν(e) = μ lies on
the outer face of skel(ν). We extend our notion of a configuration to any set of
embeddings of the skeletons of the nodes of T that fulfills these two properties.

Recall that decomposition trees allow for (graph) composition along arcs. We
can also compose embeddings. When contracting an arc (μ, ν), we merge skel(μ)
and skel(ν) as described above. Obtain the embedding of the merged skeleton by
replacing the occurrences of the virtual edge in the rotation system around its
poles by the appropriate rotation system in the embedding of the other skeleton.
This means that G together with a planar embedding can be decomposed into
a decomposition tree T together with a configuration. And symmetrically, T
together with any configuration can be composed into a planar embedding of G.

SPQR-Trees. As described in the previous paragraph, decomposition trees sepa-
rate independent choices in finding planar embeddings of a graph. We may either
choose an embedding of the entire graph, which is generally very complex, or we
may decompose the graph into smaller skeletons, independently choose embed-
dings of these skeletons and compose them into an embedding of the entire
graph. In this sense decomposition trees implement a tradeoff between making
few complex choices or many simple choices.

The SPQR-tree is a decomposition tree that makes this tradeoff in favor of
many simple choices. SPQR-trees have four kinds of nodes, all of whose skeletons
offer only few and well-structured embedding choices. (i) R-nodes are nodes
whose skeleton is triconnected. Such skeletons have a unique planar embedding
up to flipping. (ii) S-nodes are nodes whose skeleton is a simple cycle. Such
skeletons offer no embedding choice (recall that the outer face is fixed by the
rooting). Adjacent S-nodes are contracted into one larger S-node, i.e., an S-node
whose skeleton is a larger simple cycle. This means that in SPQR-trees no two
S-nodes are adjacent. (iii) P-nodes are nodes whose skeleton is a multigraph that



An SPQR-Tree-Like Embedding Representation for Upward Planarity 521

ws u v u u
v

wtvwtu v
Ms Mt Muv Muvt

Fig. 1. The four markers used by Hutton and Lubiw. The markers are digraphs; in the
figure, all edges are directed upward.

consists of two vertices connected by three or more edges. The order of these
edges may be arbitrarily permuted. Again, adjacent P-nodes are contracted into
one larger P-node, i.e., no two P-nodes are adjacent. (iv) Q-nodes are nodes
whose skeleton consists of two vertices connected by two edges, namely one
virtual edge and one non-virtual edge. They offer no embedding choice. Note that
only the skeletons of Q-nodes contain non-virtual edges. See Fig. 3(a) and (b)
for a graph and its SPQR-tree decomposition.

3 Decomposition Trees and Upward Planar Embeddings

Recall from the previous section that for biconnected graphs we can decompose
any planar embedding into planar embeddings of the skeletons of a decomposi-
tion tree; and symmetrically, we can compose a planar embedding of the whole
graph from planar embeddings of the skeletons. In this section we find a similar
relationship between upward planar embeddings of a biconnected single-source
digraph G and upward planar embeddings of the skeletons of a suitably-defined
decomposition tree of G.

3.1 Decompositions and Upward Planar Embeddings

In this section we review the decomposition result of Hutton and Lubiw and
formulate the interface between their result and our results.

Let G be a biconnected single-source digraph together with an upward planar
embedding E . Further, let e� denote the edge around the source of G that is
leftmost in E . Now let H1,H2 be two subgraphs of G with (i) H1 ∪ H2 = G, (ii)
H1 ∩ H2 = {u, v}, (iii) e� ∈ H1 and (iv) H1 \ {u, v} or H2 \ {u, v} is connected.

Hutton and Lubiw construct two graphs H ′
1 and H ′

2 from H1 and H2 by
including one of the markers shown in Fig. 1. Markers are simple digraphs with
two vertices u, v that connect the marker to the remaining graph. The marker
in H ′

1 is designed to represent H2 and the marker in H ′
2 is designed to repre-

sent H1. If there exists a directed path from u to v we say that u dominates v
and write u < v for short. Otherwise u and v are incomparable. The vertex v is
a source if it has no incoming edges in G, a sink if it has no outgoing edges in G
and an internal vertex if it has both incoming and outgoing edges in G. Markers
are determined based on whether u < v and whether v is a source, sink or inter-
nal vertex in H1 and H2: If u and v are incomparable in G, set H ′

1 = H1 ∪ Mt

and H ′
2 = H2 ∪ Ms. Otherwise, assume u < v. Define H ′

1 as follows. If v is a



522 G. Brückner et al.

source in H2 set H ′
1 = H1 ∪ Mt. If v is a sink in H2 set H ′

1 = H1 ∪ Muv. Oth-
erwise v is an internal vertex in H2 and we set H ′

1 = H1 ∪ Muvt. Define H ′
2 as

follows. If v is a source in H1 set H ′
2 = H2 ∪ Mt, otherwise set H ′

2 = H2 ∪ Muv.
See Fig. 4 in the full version for example decompositions.

Recall that decomposition trees of planar graphs allow for (de-)composition
of planar embeddings. Hutton and Lubiw provide a similar property for the
graphs G,H ′

1 and H ′
2.

Theorem 1 (�, implicit in [24]). Let E be an upward planar embedding of G
with e� as the leftmost edge around s. Then E induces upward planar embed-
dings F1,F2 of H ′

1,H
′
2, respectively with the following properties. In F1, e� is

the leftmost edge around the source of H ′
1. In F2, the edges of the marker are

leftmost around the source of H ′
2. Conversely, if F1 and F2 are upward planar

embeddings of H ′
1 and H ′

2 such that e� is the leftmost edge around the source
of H ′

1 and the edges of the marker are leftmost around the source of H ′
2, then

the composition of these embeddings is upward planar.

Hutton and Lubiw do not explicitly state Theorem1. Instead, Theorems 6.5,
6.7, 6.8 and 6.9 in [24] discuss the same situation as Theorem 1, but are only
concerned with upward planarity, not with the embeddings involved. See the full
version for a detailed discussion.

3.2 Decomposition Trees and Upward Planar Embeddings

The approach of Hutton and Lubiw is to decompose a single-source digraph G
into two smaller single-source digraphs G1, G2 and use Theorem 1 to trans-
late upward-planarity testing of G to upward-planarity testing of two smaller
instances H ′

1,H
′
2. Observe that the markers and the replacement rules are defined

so that both H ′
1 and H ′

2 are single-source digraphs. This means that H ′
1 and H ′

2

can be recursively decomposed. Note that in the context of connectivity markers
are treated simply as edges, i.e., markers are not decomposed further. When a
graph cannot be further decomposed it is triconnected and therefore has a unique
planar embedding which can be tested for upward planarity in linear time using
the algorithm of Bertolazzi et al. [4]. In the context of upward planarity testing
the full marker graph is considered. Upward planar embeddings of H ′

1 and H ′
2

can then be composed to an upward planar embedding of G. In the context of
embedding composition markers are again treated simply as edges. In particular,
it does not matter whether the clockwise order of the edges incident to u in Muvt

is (u, v), (u, x), (u,wt) or (u,wt), (u, x), (u, v).
We use a different approach. Instead of testing H ′

1 and H ′
2 for upward-

planarity separately, we manage them as the skeletons of two nodes in a decom-
position tree T . Note that Theorem 1 requires H1 \ {u, v} or H2 \ {u, v} to
be connected. We call such a decomposition maximal. We then decompose these
skeletons further, which grows the decomposition tree. A maximal-decomposition
tree is a decomposition tree obtained by performing only maximal decompo-
sitions. A configuration equips the skeleton of each node in the tree with an



An SPQR-Tree-Like Embedding Representation for Upward Planarity 523

upward planar embedding. In this embedding, e� or the marker that represents
the component that contains e� must be incident to the outer face and leftmost
around the source of the skeleton. See Fig. 3(c) for an example of a maximal-
decomposition tree. Applying Theorem 1 at each decomposition step gives the
following.

Theorem 2. Let G be a biconnected graph with a single source s, let e� be an
edge of G incident to s and let T denote a maximal-decomposition tree of G. Then
the upward-planar embeddings of G in which e� is the leftmost edge around s
correspond bijectively to the configurations of T .

We could use Theorem 2 directly to represent all upward planar embeddings
of a graph. But we also show that decomposition trees are uniquely defined by the
decompositions that are executed, but not by the order of these decompositions.
This means that just like we can talk about the SPQR-tree decomposition for
a graph we will be able to talk about the UP-tree decomposition. The benefit
of this is that we can use a UP-tree decomposition to determine that some
constrained representation problem has no solution without having to consider
other conceivable UP-tree decompositions.

To prove uniqueness, we show that the order of the decompositions is irrele-
vant. We then apply the decompositions as defined by the SPQR-tree decompo-
sition, which is unique, and obtain the unique UP-tree decomposition. To this
end, we prove that the marker replacement rules do not depend on the order of
the decompositions. Recall that the marker replacement rules depend on vertex
dominance and the local neighborhood of certain vertices. We prove Lemma1,
which states that decompositions preserve vertex dominance and Lemma 2,
which states that decompositions preserve the local neighborhood of certain
vertices.

Lemma 1 (�). Let G be a biconnected single-source digraph and let H ′
1,H

′
2

denote the result of decomposing along a cutpair {u, v} of G. For i = 1, 2 and
any two vertices x, y in H ′

i it is x < y in H ′
i if and only if x < y in G.

Lemma 2 (�). Let G be a biconnected single-source digraph and let H ′
1,H

′
2

denote the result of decomposing along a cutpair {u, v} of G. For i = 1, 2
let {x, y} denote a cutpair of H ′

i that separates H ′
i into F1 and F2 and G into D1

and D2. Then y is a source in F1 if and only if y is a source in D1. Moreover, y
is a source, sink or internal vertex in F2 if and only if y is a source, sink or
internal vertex in D2, respectively.

Lemmas 1 and 2 immediately give the following.

Lemma 3. Let G be a biconnected graph with a single source s, let e� be an edge
of G incident to s and let T denote a decomposition tree of G. Then T relative
to e� is uniquely defined by the decompositions regardless of their order.

A configuration of T can be computed as follows. Recall that all skele-
tons are single-source digraphs. We may therefore run the algorithm due to



524 G. Brückner et al.

Bertolazzi et al. [4] on each skeleton. Observe that in a configuration of T rel-
ative to e� the skeleton of each node μ of T must be embedded so that e� or
the marker that corresponds to the component that contains e� must appear
leftmost around the source of skel(μ). We can enforce this by rooting the decom-
position tree constructed by the algorithm of Bertolazzi et al. at the Q-node
corresponding to e� or an edge of the marker that corresponds to the component
that contains e�.

4 UP-Trees

We are ready to construct the UP-tree, a maximal-decomposition tree designed
to mimic the SPQR-tree. Let G be a biconnected directed single-source graph.
The base of the construction is the decomposition tree obtained by perform-
ing the same set of decompositions as in the construction of the SPQR-tree
decomposition of the underlying undirected graph of G. We then perform two
additional steps. The first step is to split P-nodes into chains of smaller nodes.
The second step is to determine whether skeletons of R-nodes can be reversed
and to contract some arcs of the decomposition tree. In both steps, we reason
about upward planarity of fixed embeddings with the following lemma due to
Bertolazzi et al. [4].

Let G be a biconnected single-source graph together with a planar embed-
ding. The face-sink graph F of G has the vertices and faces of G as its vertices.
It contains an undirected edge {f, v} if f is a face of G and v is a vertex of G
that is incident to f and both edges incident to v and f are directed towards v.
The following lemma implies a linear-time algorithm that tests an embedding
for upward planarity and outputs for each face whether it can be the outer face.

Lemma 4 ([4, Theorem 1]). Let G be an embedded planar single-source digraph
and let h be a face of G. Graph G has an upward planar drawing that preserves
the embedding with outer face h if and only if all of the following is true: (i)
graph F is a forest (ii) there is exactly one tree T of F with no internal vertices
of G, while the remaining trees have exactly one internal vertex; (iii) h is in
tree T ; and (iv) the source of G is in the boundary of h.

4.1 P-Node Splits

In SPQR-trees, the edges of P-nodes may be arbitrarily permuted. In decompo-
sition trees for upward planar graphs there are stricter rules for the ordering of
the markers in P-nodes. In this section, we determine these rules and find that
by breaking up the P-nodes into chains of smaller nodes we obtain a decom-
position tree for upward planarity whose P-nodes exhibit the same behavior as
in SPQR-trees, i.e., their edges may be arbitrarily permuted. The idea is that
certain kinds of markers must appear consecutively.

First, we argue that all Muv markers must appear consecutively. To see this,
note that if Ms appears between two Muv markers then the outer face is not



An SPQR-Tree-Like Embedding Representation for Upward Planarity 525

Fig. 2. Splitting a P-node λ obtained from the SPQR-tree (a) into a chain of smaller
nodes μ, ν, ξ (b). The bold marker represents the component that contains the edge e�.

incident to the source of the skeleton, which is vertex ws of Ms. If a marker M
with M = Mt or M = Muvt appears between two Muv markers then the face
incident to wt of M and a marker Muv is not connected to the outer face and
not connected to an internal vertex. In all cases the conditions from Lemma 4
are violated.

Moreover, all Muv and Muvt markers must appear consecutively. To see this,
note that if Mt appears between two markers Muv or Muvt the vertex wt of Mt

cannot be connected to an internal vertex or the outer face and apply Lemma4.
These observations motivate the following restructuring of P-nodes. Let λ

denote a P-node obtained from the SPQR-tree. The parent marker in skel(λ)
is the marker that corresponds to the parent node of λ. If the parent marker
in skel(λ) is Ms all other markers must be Mt. In this case these markers can
already be arbitrarily permuted and nothing further needs to be shown. Other-
wise the parent marker is Mt or Mu (recall that by definition of H ′

2 the parent
marker is not Muvt). See Fig. 2(a) where the parent marker is Mt (the case for Mu

is similar). Because all Muv and Muvt markers must appear consecutively, we
create a new P-node μ that contains the parent marker of skel(λ), all Mt mark-
ers of skel(λ) and a single Muvt marker to represent all Muv and Muvt markers
of skel(λ). This marker corresponds to a new node ν that contains all Muvt

markers of skel(λ) and—because all Muv markers must appear consecutively—
a single Muv marker. This marker corresponds to a new node ξ that contains
all Muv markers of skel(λ). If skel(λ) contains no Muvt marker we can include
a Muv marker instead of a Muvt marker in skel(μ) and connect it directly to ξ,
the node ν can then be omitted.

The new node μ has the property that its markers can be arbitrarily per-
muted, i.e., it is a P-node. Observe that there can be at most two Muvt markers
in skel(λ). This means that skel(ν) has at most four markers and its embedding
is fixed up to reversal, i.e., it is an R-node. Finally, the new node ξ also has
the property that its markers can be arbitrarily permuted, i.e., it is also a P-
node. See Fig. 2(b) and Fig. 3(c) and (d) for a larger example. We conclude the
following.

Lemma 5. Let G be a biconnected digraph with a single source s and let e�

denote an edge incident to s. There exists a decomposition tree T that (i) rep-
resents all upward planar embeddings of G in which e� is the leftmost edge
around s, and (ii) the children of all P-nodes in T can be arbitrarily permuted.



526 G. Brückner et al.

4.2 Arc Contractions

Recall that in SPQR-trees the skeletons of R-nodes are triconnected, i.e., their
planar embedding is fixed up to reversal. So, every R-node offers one degree
of freedom, namely, whether it has some reference embedding or the reversal
thereof. In this section we alter our decomposition tree so that it has this same
property.

By definition the marker corresponding to the parent node is leftmost in
any embedding of a skeleton. Hence, this marker is incident to the outer face.
Reversing the embedding of the skeleton is equivalent to choosing the other
face incident to the marker as the outer face. Theorem2 guarantees that any
configuration of T can be composed to an upward planar embedding. This means
that a skeleton can be reversed if and only if both faces incident to the parent
marker can be chosen as the outer face. This can be checked with the upward
planarity test for embedded single-source graphs due to Bertolazzi et al. [4],
which also outputs the set of faces that can be chosen as the outer face. If
both incident faces are candidates for the outer face this node does indeed offer
a degree of freedom and we leave it unchanged. Otherwise, if only one incident
face is a candidate for the outer face this node does not offer a degree of freedom.
We then merge it with its parent node and contract the corresponding arc in the
decomposition tree. This leads to an R-node with a larger skeleton.

See Fig. 5 (a) in the full version for an upward planar graph G and (b) a
decomposition tree thereof. Parts of the face sink graphs of skel(μ) and skel(ν)
are shown in red, namely the two quadratic vertices dual to the faces incident
to the parent marker and the edges incident to those vertices. One criterion for
a face to be a candidate for becoming the outer face due to Bertolazzi et al. is
that there has to be a path from this face to the outer face in the face sink
graph. This holds true for both faces incident to the parent marker in skel(ν),
but not in skel(μ). Therefore the arc (μ, ν) is not contracted but the arc (λ, μ) is
contracted. This leads to the decomposition tree shown in (c). See also Fig. 3(c)
and (d) for a larger example.

Lemma 6. Let G be a biconnected digraph with a single source s and let e�

denote an edge incident to s. There exists a decomposition tree T that (i) rep-
resents all upward planar embeddings of G in which e� is the leftmost edge
around s, and (ii) the children of all P-nodes in T can be arbitrarily permuted.
(iii) the skeletons of all R-nodes in T can be reversed.

We call the decomposition tree T the UP-tree of G relative to e�.

4.3 Computation in Linear Time

Let G be a biconnected digraph with a single source s and let e� denote an
edge incident to s. Recall that the construction of the UP-tree T of G relative
to e� consists of the following seven steps. 1. Construct the SPQR-tree T of G
in linear time [22,23]. 2. For each pair of vertices u, v that are the poles of
a marker in some skeleton of T , we have to determine whether u < v in G.



An SPQR-Tree-Like Embedding Representation for Upward Planarity 527

Fig. 3. Construction of the UP-tree. An upward planar biconnected single-source
graph (a), the SPQR-tree of its underlying undirected graph (b) with the Q-nodes
omitted, the result of replacing virtual edges with markers (c) and the UP-tree after
splitting P-nodes and contracting arcs (d).

To compute this information for all pairs in linear time, we use a union-find-
based technique described by Bläsius et al. [8]. Process all skeletons of T and
for every pair of poles u, v that is encountered register v as a candidate at u
and register u as a candidate at v. Next, initialize every vertex of G in its own
singleton set. Then, process each vertex u in some reverse topological order of G.
Unify the singleton set of u with the sets of its direct descendants in G. Now
for any candidate v stored at u we can query in whether u and v belong to
the same set, which is equivalent to u < v. Note that the operands to all unify
operations are completely determined by the structure of G. We exploit this fact
to run the linear-time union-find algorithm due to Gabow and Tarjan [21]. 3.
For each arc a = (μ, ν) of T , decide whether the poles of a are sources, sinks
or internal vertices in G(μ) and G(ν). This information can be found using a
simple bottom-up technique. We first compute the indegree and outdegree of
every node of G. We then perform a depth-first traversal of T . We maintain
a list of the number of incoming and outgoing edges for each node seen so
far, which is updated when a Q-node is visited. Upon entering a subtree, we
store these numbers for the poles of the arc leaving the subtree at the root
of the subtree. Upon leaving a subtree, we can now calculate the differences
between the current numbers and the stored numbers, which gives the in- and
outdegree of the poles in the graph G(μ). Using the in- and outdegree of the
poles in G computed earlier, we can also compute the in- and outdegree of the
poles in G(ν). This step clearly takes linear time. 4. In each skeleton, replace
all virtual edges with their respective markers. With the information that was
computed in the previous step and the fact that all markers have constant size
this step is feasible in linear time. 5. Construct a configuration of T by running



528 G. Brückner et al.

the linear-time upward planar embedding algorithm of Bertolazzi et al. [4] on
every skeleton. Because the size of all skeletons is linear in the size of G this
step takes linear time. 6. Perform P-node splits. The running time spent on
one P-node is clearly linear in the size of its skeleton. This gives linear running
time overall. 7. Perform arc contractions. The upward planarity test for fixed
embeddings due to Bertolazzi et al. runs in linear time. Contracting an arc is
feasible in constant time. This gives linear running time overall.

Theorem 3. Let G be a biconnected digraph with a single source s and let e�

denote an edge incident to s. The UP-tree T of G relative to e� is a decom-
position tree whose internal nodes are (i) S-nodes whose skeletons have a fixed
embedding, (ii) R-nodes whose skeletons have a fixed embedding up to reversal,
or (iii) P-nodes where the markers can be arbitrarily permuted in the skeleton
and whose leaves are Q-nodes that offer no embedding choice. The configura-
tions of T correspond bijectively to the upward planar embeddings of G where e�

appears leftmost around s. Moreover, T can be computed in linear time.

5 Partial Upward Embedding

In this section we apply the UP-tree to solve the partial upward embedding prob-
lem in quadratic time. A partially embedded graph is a tuple (G,H,H), where G
is a planar graph, H is a subgraph of G and H is a planar embedding of H. An
embedding G of G extends the partial embedding H if all edges e, f, g in H that
share a common endpoint v appear in the same cyclic order around v in G and H.
The partial embedding problem asks whether there exists an embedding G of G
that extends H. Angelini et al. solve the partial embedding problem in linear
time [1]. The algorithm considers every triple of edges (e, f, g) in H that share a
common endpoint v and enforces the constraints imposed by these edges in the
SPQR-tree T . Note that e, f, g each correspond to a Q node in T . Because T is
a tree there is exactly one node μ in T so that the paths from μ to these Q nodes
are disjoint. The relative order of e, f, g in the embedding represented by T is
determined by the embedding of skel(μ). If skel(μ) offers no embedding choice
(as in S nodes) determine whether the ordering of e, f, g given by H is the same
as the one given by the unique embedding of skel(μ). If not, reject the instance.
If skel(μ) has two possible embeddings (as in R nodes) the ordering of e, f, g
given by H fixes one of the two embeddings of skel(μ) as the only candidate.
Finally, if μ is a P node the ordering of e, f, g given by H restricts the set of
admissible permutations of the virtual edges in skel(μ). The algorithm collects
all these constraints and checks whether they can be fulfilled at the same time.

A partially embedded upward graph is defined as a tuple (G,H,H), where G
is an upward planar graph, H is a subgraph of H and H is an upward planar
embedding of H. Note that UP-trees have all properties of SPQR-trees that are
needed in the algorithm described above. In particular, the markers in P-nodes
may be arbitrarily permuted, R-nodes may be reversed and all other nodes offer
no embedding choice. Hence, we use the UP-tree as a drop-in replacement for



An SPQR-Tree-Like Embedding Representation for Upward Planarity 529

the SPQR-tree in the algorithm of Angelini et al. to obtain an algorithm that
solves the partial upward embedding problem. Note that the UP-tree is rooted
at some edge that must be embedded as the leftmost edge around the source of
the graph. We may have to try a linear number of candidate edges in the worst
case. This gives the following.

Theorem 4. The partial upward embedding problem can be solved in quadratic
running time for biconnected single-source digraphs.

6 Conclusion

We have developed the UP-tree, which is an SPQR-tree-like embedding represen-
tation for upward planarity. We expect that the UP-tree is a valuable tool that
makes it possible to translate existing constrained planar embedding algorithms
that use SPQR-trees to the upward planar setting. As an example, we have
demonstrated how to use the UP-tree as a drop-in replacement for the SPQR-
tree in the partial embedding extension problem, solving the previously open
partial upward embedding extension problem for the biconnected single-source
case.

References

1. Angelini, P., Di Battista, G., Frati, F., Jeĺınek, V., Kratochv́ıl, J., Patrignani, M.,
Rutter, I.: Testing planarity of partially embedded graphs. ACM Trans. Algorithms
11(4), 32:1–32:42 (2015). https://doi.org/10.1145/2629341

2. Angelini, P., Di Battista, G., Patrignani, M.: Finding a minimum-depth embedding
of a planar graph in o(n4) time. Algorithmica 60(4), 890–937 (2011). https://doi.
org/10.1007/s00453-009-9380-6

3. Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C.: Upward drawings of tri-
connected digraphs. Algorithmica 12(6), 476–497 (1994)

4. Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward pla-
narity testing of single-source digraphs. SIAM J. Comput. 27(1), 132–169 (1998)

5. Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs.
In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization, Discrete
Mathematics and its Applications, pp. 349–373. CRC Press (2014)

6. Bläsius, T., Lehmann, S., Rutter, I.: Orthogonal graph drawing with inflexible
edges. Comput. Geom. 55, 26–40 (2016). https://doi.org/10.1016/j.comgeo.2016.
03.001

7. Bläsius, T., Rutter, I., Wagner, D.: Optimal orthogonal graph drawing with convex
bend costs. ACM Trans. Algorithms 12(3), 33:1–33:32 (2016). https://doi.org/10.
1145/2838736

8. Bläsius, T., Karrer, A., Rutter, I.: Simultaneous embedding: edge orderings, rela-
tive positions, cutvertices. Algorithmica 80(4), 1214–1277 (2018)

9. Brückner, G., Himmel, M., Rutter, I.: An SPQR-tree-like embedding representation
for upward planarity. CoRR abs/1908.00352v1 (2019). https://arxiv.org/abs/1908.
00352v1

https://doi.org/10.1145/2629341
https://doi.org/10.1007/s00453-009-9380-6
https://doi.org/10.1007/s00453-009-9380-6
https://doi.org/10.1016/j.comgeo.2016.03.001
https://doi.org/10.1016/j.comgeo.2016.03.001
https://doi.org/10.1145/2838736
https://doi.org/10.1145/2838736
https://arxiv.org/abs/1908.00352v1
https://arxiv.org/abs/1908.00352v1


530 G. Brückner et al.

10. Brückner, G., Rutter, I.: Partial and constrained level planarity. In: Klein, P.N.
(ed.) Proceedings of 28th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2017), pp. 2000–2011. SIAM (2017)

11. Brückner, G., Rutter, I., Stumpf, P.: Level planarity: transitivity vs. even crossings.
In: Biedl, T., Kerren, A. (eds.) GD 2018. LNCS, vol. 11282, pp. 39–52. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-04414-5 3

12. Da Lozzo, G., Di Battista, G., Frati, F.: Extending upward planar graph drawings.
CoRR abs/1902.06575 (2019)

13. Da Lozzo, G., Jeĺınek, V., Kratochv́ıl, J., Rutter, I.: Planar embeddings with small
and uniform faces. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889,
pp. 633–645. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13075-
0 50

14. Da Lozzo, G., Rutter, I.: Approximation algorithms for facial cycles in planar
embeddings. In: Hsu, W.L., Lee, D.T., Liao, C.S. (eds.) Proceedings of the 29th
International Symposium on Algorithms and Computation (ISAAC 2018). LIPIcs,
vol. 123, pp. 41:1–41:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2018). https://doi.org/10.4230/LIPIcs.ISAAC.2018.41

15. Di Battista, G., Tamassia, R.: Incremental planarity testing. In: Proceedings of
the 30th Annual Symposium on Foundations of Computer Science, pp. 436–441,
October 1989. https://doi.org/10.1109/SFCS.1989.63515

16. Di Battista, G., Tamassia, R.: On-line graph algorithms with SPQR-trees. In:
Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 598–611. Springer, Heidel-
berg (1990). https://doi.org/10.1007/BFb0032061

17. Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components
with SPQR-trees. Algorithmica 15(4), 302–318 (1996). https://doi.org/10.1007/
BF01961541

18. Didimo, W., Liotta, G., Patrignani, M.: Bend-minimum orthogonal drawings in
quadratic time. In: Biedl, T., Kerren, A. (eds.) GD 2018. LNCS, vol. 11282, pp.
481–494. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04414-5 34

19. Feng, Q.-W., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Spirakis, P.
(ed.) ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-60313-1 145

20. Fulek, R., Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Hanani-Tutte, monotone
drawings, and level-planarity. In: Pach, J. (ed.) Thirty Essays on Geometric Graph
Theory, pp. 263–287. Springer, New York (2013). https://doi.org/10.1007/978-1-
4614-0110-0 14

21. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint
set union. J. Comput. Syst. Sci. 30(2), 209–221 (1985)

22. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks,
J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44541-2 8

23. Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM
J. Comput. 2(3), 135–158 (1973)

24. Hutton, M.D., Lubiw, A.: Upward planar drawing of single-source acyclic digraphs.
SIAM J. Comput. 25(2), 291–311 (1996)

25. Jeĺınek, V., Kratochv́ıl, J., Rutter, I.: A Kuratowski-type theorem for planarity of
partially embedded graphs. Comput. Geom.: Theory Appl. 46(4), 466–492 (2013)

26. Jünger, M., Leipert, S.: Level planar embedding in linear time. In: Kratochv́ıyl, J.
(ed.) GD 1999. LNCS, vol. 1731, pp. 72–81. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-46648-7 7

https://doi.org/10.1007/978-3-030-04414-5_3
https://doi.org/10.1007/978-3-319-13075-0_50
https://doi.org/10.1007/978-3-319-13075-0_50
https://doi.org/10.4230/LIPIcs.ISAAC.2018.41
https://doi.org/10.1109/SFCS.1989.63515
https://doi.org/10.1007/BFb0032061
https://doi.org/10.1007/BF01961541
https://doi.org/10.1007/BF01961541
https://doi.org/10.1007/978-3-030-04414-5_34
https://doi.org/10.1007/3-540-60313-1_145
https://doi.org/10.1007/3-540-60313-1_145
https://doi.org/10.1007/978-1-4614-0110-0_14
https://doi.org/10.1007/978-1-4614-0110-0_14
https://doi.org/10.1007/3-540-44541-2_8
https://doi.org/10.1007/3-540-44541-2_8
https://doi.org/10.1007/3-540-46648-7_7
https://doi.org/10.1007/3-540-46648-7_7


An SPQR-Tree-Like Embedding Representation for Upward Planarity 531

27. Mac Lane, S.: A structural characterization of planar combinatorial graphs. Duke
Math. J. 3(3), 460–472 (1937). https://doi.org/10.1215/S0012-7094-37-00336-3

28. Platt, C.R.: Planar lattices and planar graphs. J. Comb. Theory Ser. B 21(1),
30–39 (1976)

29. Randerath, B., Speckenmeyer, E., Boros, E., Hammer, P., Kogan, A., Makino, K.,
Simeone, B., Cepek, O.: A satisfiability formulation of problems on level graphs.
Electron. Notes Discret. Math. 9, 269–277 (2001). lICS 2001 Workshop on Theory
and Applications of Satisfiability Testing (SAT 2001)

30. Tutte, W.T.: Connectivity in Graphs. University of Toronto Press, Toronto (1966)

https://doi.org/10.1215/S0012-7094-37-00336-3


A Natural Quadratic Approach to the
Generalized Graph Layering Problem

Sven Mallach(B)

Department of Mathematics and Computer Science,
University of Cologne, Cologne, Germany

mallach@informatik.uni-koeln.de

Abstract. We propose a new exact approach to the generalized graph
layering problem that is based on a particular quadratic assignment for-
mulation. It expresses, in a natural way, the associated layout restrictions
and several possible objectives, such as a minimum total arc length, min-
imum number of reversed arcs, and minimum width, or the adaptation
to a specific drawing area. Our computational experiments show a com-
petitive performance compared to prior exact models.

Keywords: Graph drawing · Layering · Integer programming

1 Introduction

Hierarchical graph drawing is an indispensable tool to automate the cleaned-
up illustration of e.g. flow diagrams or data dependency representations. Here,
the dominant methodological framework studied in research and implemented in
software is the one proposed by Sugiyama et al. [9]. It involves four successive and
interdependent steps for cycle removal, vertex layering, crossing minimization,
and, finally, horizontal coordinate assignment and arc routing.

Classically, the workflow is carried out by solving the feedback arc set prob-
lem, i.e., reversing (a minimum number of) arcs, in the first step such that all
arcs have a common direction during the others. Then, for the final drawing,
original directions are restored. As a result, the height of a graph’s layering is
bounded from below by the total height or number of vertices on a longest path
after the first step. In particular, a poor aspect ratio of the final drawing may
thus be inevitable from the very beginning. Also, the number and placement of
dummy vertices, usually introduced if an arc spans a layer to facilitate the other
steps and to more accurately account for the width, is strongly affected.

This motivates the recently studied integration of the first two steps [4,6–8].
Here, the central idea is to identify (a small number of) suitable arcs to be drawn
reverse to the intended hierarchical direction such that this enables a layout that
is two-dimensionally compact, possibly meets other common aesthetic criteria
such as a minimum total arc length, or even adapts to a drawing area of a certain
aspect ratio. Figure 1 exemplifies the potential effects on aesthetics and readabil-
ity. Moreover, previous experimental studies in the referenced articles show that

The original version of this chapter was revised: the final formula in section 4.1 was
corrected. The correction to this chapter is available at https://doi.org/10.1007/978-
3-030-35802-0 44

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 532–544, 2019.
https://doi.org/10.1007/978-3-030-35802-0_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_40&domain=pdf
https://doi.org/10.1007/978-3-030-35802-0_44
https://doi.org/10.1007/978-3-030-35802-0_44
https://doi.org/10.1007/978-3-030-35802-0_40


A Natural Quadratic Approach to the Generalized Graph Layering Problem 533

Fig. 1. Two layered drawings of the same directed acyclic graph. On the left a classic
one, i.e., adhering to its longest path with all arcs pointing downwards, and on the right
with a better aspect ratio achieved by reversing only two arcs (drawn dash-dotted).

significant improvements in terms of the drawing area or aspect ratio are frequent
when optimizing the layering with respect to the corresponding objectives.

In this paper, we present a new exact approach to integrate vertex layering,
the feedback arc set problem, and width or drawing area optimization. Its most
appealing novelty is that it adheres to the quadratic nature of the problem rather
than avoiding it. This quadratic nature does not only exist geometrically. Even
when optimizing only for one direction (e.g. width), several aspects of a layered
drawing depend on conjunctive decisions. For instance, the questions whether an
arc is reversed, or whether it causes a dummy vertex on a particular layer, depend
on the layer assignments of both of the arc’s end vertices at the same time.

Our approach allows to express such conditions that depend on two simul-
taneous decisions, and thus all the present generalizations of the classical graph
layering problem and their objective functions, in a natural and intuitive way. It
is based on a quadratic assignment problem (QAP) formulated and solved as a
mixed-integer program (MIP). As our computational results show, it can com-
pete with the currently best known, but less intuitive MIP formulations. This
is surprising since the QAP is considered to be among the hardest NP-hard
optimization problems. However, the graph layering problem poses a particu-
larly well-suited special case: Our model does not require artificial constructions
to model common drawing restrictions and objectives as linear expressions but
profits from a sophisticated linearization technique, is compact in the number of
constraints, and comparably insensitive to a graph’s density. Ideally, our drawn
links to the QAP inspire also new models for related layout styles or heuristic
approaches to tackle larger instances or to support interactive user applications.

The paper is organized as follows. In Sect. 2, we give a quick survey of the
state of the art generalizations of the classical graph layering problem. The
major existing exact approaches to solve these are highlighted in Sect. 3. We
then present our quadratic formulation of the most generalized graph layering
problem variants in Sect. 4. Finally, we report in Sect. 5 on our computational
evaluation, and close with a conclusion in Sect. 6.



534 S. Mallach

2 A Landscape of Graph Layering Problems

A layering L of a directed graph G = (V,A) with vertex set V and arc set A is a
mapping L : V → N

+ that assigns each vertex v ∈ V a unique layer index L(v).
Classically, and presuming that G is acyclic, a layering L is considered feasible if
L(v) − L(u) ≥ 1 holds for all uv ∈ A. In 1993, the following associated problem
was introduced and shown to be polynomial time solvable by Gansner et al. [2]:

Problem 1. Directed Layering Problem (DLP). Let G = (V,A) be a directed
acyclic graph. Find a feasible layering L of G minimizing the total arc length

∑

uv∈A

(
L(v) − L(u)

)
.

Since, in a final layered drawing of non-acyclic graphs, the presence of
reversed arcs is inevitable, and to overcome the limitations mentioned in the
introduction (as well for acyclic graphs), a straightforward generalization of
DLP discussed by Rüegg et al. [6,7], is to integrate arc reversals into the lay-
ering phase, and thus to consider a layering L feasible if L(v) �= L(u), i.e.,
|L(v) − L(u)| ≥ 1, holds for all uv ∈ A. This gives rise to a second objective
besides edge length minimization, namely the minimization of the number of
reversed arcs. The trade off between both goals may be addressed by introduc-
ing respective weights ωlen and ωrev into the objective function. The resulting
optimization problem is then:

Problem 2. Generalized Layering Problem (GLP). Let G = (V,A) be a directed
graph. Find a feasible layering L of G minimizing

ωlen

( ∑

uv∈A

|L(v) − L(u)|
)

+ ωrev |{uv ∈ A | L(v) < L(u)}|.

As opposed to DLP, GLP is NP-hard, and it remains so even if one of ωlen and
ωrev is zero [6]. Both problems have also been combined with width minimization
which is worthwhile, even though the final drawing width is further influenced
by the horizontal coordinate assignment and arc routing [7]. In this context, the
estimated width W of a layering is given by the maximum number or maximum
total width of original and dummy vertices in any of its layers. With an associated
objective function weight ωwid, we have the two according problems:

Problem 3. Minimum Width Directed Layering Problem (DLP-W). Find a lay-
ering L of a directed acyclic graph G = (V,A) feasible for DLP that minimizes

ωlen

( ∑

uv∈A

(L(v) − L(u))
)

+ ωwid W.

Problem 4. Minimum Width Generalized Layering Problem (GLP-W)1. Find
a layering L of a directed graph G = (V,A) feasible for GLP that minimizes
1 This problem is called Compact Generalized Layering Problem (CGLP) in [4,8] but

renamed here to harmonize with the other variants.



A Natural Quadratic Approach to the Generalized Graph Layering Problem 535

ωlen

( ∑

uv∈A

|L(v) − L(u)|) + ωrev |{uv ∈ A | L(v) < L(u)}| + ωwid W.

Here, it should be mentioned that DLP-W is equivalent to the precedence-
constrained multiprocessor scheduling problem (when ignoring dummy vertices),
and thus as well NP-hard [10].

Finally, Rüegg et al. propose to optimize a layering with respect to a target
drawing area of width rW and height rH [8]. Informally, a ‘best’ such drawing is
considered one that can be maximally scaled (‘zoomed in’) until it exhausts one
of the two dimensions (cf. Figs. 1 and 2).

Fig. 2. A directed graph drawn based on a layering created by solving GLP-MS with
the ratio rW : rH set to 1 : 2 (left), 1 : 1 (middle), and 2 : 1 (right). The obtained
optimal W : H combinations are respectively 5 : 10, 6 : 6, and 8 : 4.

Formally, define H := maxv∈V L(v) to be the height of a layering L. This defi-
nition is suitable as we may assume w.l.o.g. (and, if necessary, enforce a posteriori
for any given and feasible layering) that vertices are assigned to consecutive lay-
ers starting from index one. The scaling factor S to be maximized is then the
minimum of the ratios between the targeted and the actually used width and
height, respectively, i.e., S = min{ rW

W , rH

H }. Adding once more a corresponding
weight ωscl, the problem can be expressed as follows:

Problem 5. Maximum Scale Generalized Layering Problem (GLP-MS). Given
a drawing area of (normalized2) width rW and (normalized) height rH , find a
feasible layering L of a directed graph G = (V,A) that minimizes the expression

ωlen

( ∑

uv∈A

|L(v) − L(u)|) + ωrev |{uv ∈ A | L(v) < L(u)}| − ωscl S.

2 We remark that the parameters rW and rH used to characterize the target drawing
area introduce undesired economies of scale since different values representing the
same aspect ratio lead to different numeric maxima of S. At the same time, it is
not necessary to specify the dimensions of the drawing area in absolute values as the
goal is a best effort layering for the relative aspect ratio of the targeted area. We
thus propose to normalize rW and rH to rW

min{rW ,rH} and rH
min{rW ,rH} , respectively.



536 S. Mallach

A slight variation of GLP-MS as well proposed in [8] will be denoted GLP-
MS∗: Here, instead of minimizing −ωscl S, one minimizes ωscl S̄ where S̄ := 1

S .

3 Evolution of Exact Approaches to Graph Layering

To our best knowledge, all existing exact methods are based on integer program-
ming, and can be coarsely classified based on three different types of variables
involved to model the layering of the vertices of a directed graph G = (V,A):

– Assignment-based: Binary variables xv,k taking on value one if L(v) = k, and
taking on value zero otherwise.

– Ordering-based: This refers to binary variables yk,v taking on value one if
L(v) > k, and taking on value zero otherwise (see, e.g., the appendix).

– Direct: L(v) is directly modeled as a general integer variable.

Table 1 gives a quick overview of the formulations proposed so far. Some
of them are named to ease their reference. Of course, GLP models can solve
DLP (by setting ωrev = ∞), width minimization may be turned off (by setting
ωwid = 0), and models to maximize the scaling factor can be used to minimize
the width (by setting rW = 1 and rH = ∞).

Table 1. An overview of pre-existing MIP models for the different layering problems.

Problem Assignment-based Ordering-based Direct

DLP [2]

DLP-W WHS [3]

GLP [7]

GLP-W EXT [4] CGL-W [4]

GLP-MS∗ CGL-MS∗ [8]

The direct approach is a perfect fit for the DLP since the resulting problem
can be solved in polynomial time by combinatorial algorithms as discussed by
Gansner et al. [2]. However, this property (more precisely, the underlying struc-
ture) is lost when incorporating width constraints or arc reversals, and the direct
method becomes inferior to models with binary variables in practice [4,7].

The first assignment-based formulation (WHS) was proposed by Healy and
Nikolov in [3]. They considered width constraints, but their model may be easily
altered to solve DLP-W. Here, the breakthrough to computational tractability
for small and medium-sized graphs was to exploit the fixed direction of arcs.

Naturally, this could again not be preserved when it comes to GLP. Rather,
modeling whether an arc is reversed or causes a dummy vertex comes then at the
cost of additional variables and linearization constraints. Moreover, as Jabrayilov
et al. [4] show, the corresponding assignment-based formulation (model EXT)



A Natural Quadratic Approach to the Generalized Graph Layering Problem 537

for GLP-W rendered inferior to the first ordering-based one (called CGL-W).
Consequently, in [8], Rüegg et al. used the latter as a basis to design a MIP
model (that is, to the best of our knowledge, the only one so far) for GLP-MS∗

and that we thus consistently refer to as CGL-MS∗.
However, as described in the following, a quadratic assignment-based app-

roach re-enables the possibility to express conditions regarding arc reversals and
dummy vertices intuitively, and without artificial linearization constraints.

4 A Natural Quadratic Graph Layering Framework

4.1 A Basic Quadratic Layer Assignment Model (QLA)

Let G = (V,A) be a directed graph, and let Y be an upper bound on the number
of layers such that assignment variables xv,k are to be introduced for all v ∈ V
and all k ∈ {1, . . . , Y }. Consider as well the variables pu,k,v,�, for all uv ∈ A
and all k, � ∈ {1, . . . , Y }, that shall express the product xu,k ·xv,�. Then, a basic
formulation of the layering constraints for any of the GLP problems (DLP as
well, but this would permit to be more restrictive) can be expressed as follows:

Y∑
k=1

xv,k = 1 for all v ∈ V (1)

Y∑
�=1

pu,k,v,� = xu,k for all uv ∈ A, k ∈ {1, . . . , Y } (2)

Y∑
k=1

pu,k,v,� = xv,� for all uv ∈ A, � ∈ {1, . . . , Y } (3)

pu,k,v,k = 0 for all uv ∈ A, k ∈ {1, . . . , Y } (4)
xv,k ∈ {0, 1} for all v ∈ V, k ∈ {1, . . . , Y }
pu,k,v,� ∈ [0, 1] for all uv ∈ A, k, � ∈ {1, . . . , Y }

Equations (1) let each vertex be assigned a unique layer. Following the
compact linearization approach [5], Eqs. (2) and (3) establish that variable
pu,k,v,� = xu,k ·xv,� if the latter two take binary values3. As a nice feature of this
model, the condition that two adjacent vertices cannot share a common layer
can simply be expressed as the variable fixings (4), i.e., the variables may just
be omitted in practice. Without accounting for these, the total number of con-
straints is 2|A|·Y +|V |, and the total number of variables is |V |·Y +|A|·(Y −1)2.

3 An intuitive interpretation for (2) is: If xu,k is zero, all products involving it must
be zero as well. Conversely, if xu,k is one, then exactly one of the pu,k,v,� on the left
hand side (which are all the products of xu,k with different xv,� for some fixed v ∈ V ,
v �= u) need to be equal to one as well due to (1). Equations (3) imply the same for
the second factor of any product variable pu,k,v,�. Of course, these as well as (2) and
(3) could be avoided under employment of an evolved non-linear solution method.



538 S. Mallach

In terms of the latter, the ordering-based CGL models (a compacted refor-
mulation of those in [4] and [8] is displayed in the appendix) are more econom-
ical. Even if auxiliary variables for arc reversals or dummy vertices are intro-
duced, their total number is still only (|V | + |A|) · (Y − 1). However, the CGL
models induce about twice the number of constraints compared to the model
above (which is more critical to a MIP solver), and they are more sensitive to a
graph’s density.

For any arc uv ∈ A, there is exactly one pair of layers � and k, � �= k, such
that xu,� · xv,k = 1. All other products are zero. The length of uv ∈ A thus
equals

Y∑
�=2

�−1∑
k=1

((� − k) · (xu,k · xv,� + xu,� · xv,k)) =
Y∑

�=2

�−1∑
k=1

((� − k) · (pu,k,v,� + pu,�,v,k)) .

Similarly, the arc uv ∈ A is reversed if and only if the expression

Y∑
�=2

(
xu,� ·

�−1∑
k=1

xv,k

)
=

Y∑
�=2

�−1∑
k=1

pu,�,v,k

evaluates to one. Otherwise, the expression will evaluate to zero.
Finally, an arc uv ∈ A causes a dummy vertex on a layer k ∈ {2, . . . , Y −1} if

and only if k is between the layers u and v are assigned to, i.e., if the expression

k−1∑

�=1

Y∑

m=k+1

(pu,�,v,m + pu,m,v,�)

evaluates to one. Again, it will be zero otherwise.

4.2 Quadratic Layer Assignment for GLP-W (QLA-W)

To build model QLA-W from the above basis, it suffices to add a additional con-
tinuous variable W ∈ R≥0 to capture the width together with the Y constraints:

∑
v∈V

xv,k ≤ W for all k ∈ {1, Y }

∑
uv∈A

k−1∑
�=1

Y∑
m=k+1

(pu,�,v,m + pu,m,v,�) +
∑

v∈V

xv,k ≤ W for all k ∈ {2, . . . , Y − 1}

The objective function can be stated as

minimize
∑

uv∈A

( Y∑
�=2

�−1∑
k=1

ωlen(� − k)(pu,k,v,� + pu,�,v,k) + ωrev pu,�,v,k

)
+ ωwid W.

4.3 Quadratic Layer Assignment for GLP-MS∗ (QLA-MS∗)

Recalling the definitions from Sect. 2, GLP-MS∗ asks for the (weighted) mini-
mization of the inverse scaling factor

S̄ =
1
S =

1
min{ rW

W , rH

H } = max
{ W

rW
,

H
rH

}
.



A Natural Quadratic Approach to the Generalized Graph Layering Problem 539

Thus, to obtain model QLA-MS∗, the basic model is to be extended with an
according variable S̄ ∈ R≥0, and with the Y + |V | constraints:

∑
v∈V

xv,k ≤ rW S̄ for all k ∈ {1, Y }

∑
uv∈A

k−1∑
�=1

Y∑
m=k+1

(pu,�,v,m + pu,m,v,�) +
∑

v∈V

xv,k ≤ rW S̄ for all k ∈ {2, . . . , Y − 1}
Y∑

k=1

k xv,k ≤ rH S̄ for all v ∈ V

Finally, the objective function is

minimize
∑

uv∈A

( Y∑
�=2

�−1∑
k=1

ωlen(� − k)(pu,k,v,� + pu,�,v,k) + ωrev pu,�,v,k

)
+ ωscl S̄.

5 Experimental Evaluation

The aesthetic effects when integrating GLP-MS and GLP-W into the hierarchical
framework by Sugiyama et al. were extensively studied already in [4,6–8]. Here,
we thus confine ourselves to evaluate (i) the computational effects when targeting
different aesthetic objectives and aspect ratios, and (ii) the competitiveness of
QLA-W and QLA-MS∗ with respect to CGL-W and CGL-MS∗.

To accomplish this, we employed the original models CGL-W from [4] and
CGL-MS∗ from [8], except for leaving out constraints that enforce at least one
vertex to be placed on the first layer4. Also, we employ the same two instance
sets as in the mentioned prior studies: The first set ATTar are the AT&T graphs
from [1] whereof we extracted all non-tree instances with 20 ≤ |V | ≤ 60, and
20 ≤ |A| ≤ 168. Their density |A|

|V | is within [1, 4.72] (on average 1.47). The
second set Random consists of 180 randomly generated and also acyclic and
non-tree graphs with 17 to 60 vertices, and 30 to 91 arcs. These were obtained
as follows: First, a respective number of vertices was created. Then, for each
vertex, a random number of outgoing arcs (with arbitrary random target) is
added such that the total number of arcs is 1.5 times the number of vertices.
Finally, isolated vertices were removed.

During our experiments, all MIPs were solved using Gurobi5 (release version
8) single-threadedly on a Debian Linux system with an Intel Core i7-3770T CPU
(2.5 GHz) and 8 GB RAM, and with a time limit set to half an hour.

4 Any solution violating these constraints may be normalized a posteriori by sim-
ply ignoring empty layers. Moreover, in case of GLP-MS∗, they are implied if the
height imposes a stronger restriction on the minimization of S̄ than the width (which
depends on the adjacency structure of the graph as well as on the choice of rW , rH ,
and Y ). In any other case, they do break some symmetries, but did not lead to better
experimental results.

5 A proprietary MIP solver, see https://www.gurobi.com.

https://www.gurobi.com


540 S. Mallach

5.1 GLP and GLP-W

Here, we consider two experiments. In experiment (1), we set Y = �1.6 · √|V |	,
ωlen = 1, ωrev = Y ωlen|A|, and ωwid = 1 as in [4]. This can be seen as an almost
pure GLP setting, since one saved unit of width has the same (small) effect in
the objective function as one saved unit of (total) edge length. Moreover, arcs
are reversed only if this is inevitable due to the choice of Y or because they are
part of a cycle. In experiment (2), we instead give priority to width minimization
by increasing ωwid to ωrev|A| + |A| · Y + 1.

The results are shown in Fig. 3. The most distinctive observation is that the
layering problem is considerably harder to solve with both MIPs if emphasis
is given to width minimization. In this case, the solution times are higher and
several timeouts occur for the larger graphs, while the pure GLP setting can be
solved routinely for all instances considered. With respect to experiment (2), the
results obtained with QLA-W are slightly better on average than with CGL-W
for the ATTar graphs, whereas the opposite is true for the Random graphs,
especially due to the increased number of timeouts for the larger ones. Thus,
in total, there is no clear superior or inferior model – on average both show a
comparable or competitive performance with the MIP solver employed.

0.01

0.1

1

10

100

1000
≥ 1800

(1) (2)

1 1

ATTar 20 ≤ |V | ≤ 30 (# = 58)

0.1

1

10

100

1000
≥ 1800

(1) (2)

1 1

ATTar 31 ≤ |V | ≤ 45 (# = 39)

1

10

100

1000
≥ 1800

(1) (2)

15 19

ATTar 46 ≤ |V | ≤ 60 (# = 30)

0.1

1

10

100

1000
≥ 1800

(1) (2)

Random 17 ≤ |V | ≤ 30 (# = 60)

1

10

100

1000
≥ 1800

(1) (2)

8 5

Random 31 ≤ |V | ≤ 45 (# = 61)

10

100

1000

≥ 1800

(1) (2)

55 42

Random 46 ≤ |V | ≤ 60 (# = 59)

QLA-W CGL-W

Fig. 3. The plots depict the solution times in seconds (a cross per graph) for GLP
with neglected (1) and emphasized width minimization (2). Crosses at the top (1800 s)
correspond to timeouts, their quantities are given to the left of the respective cross.



A Natural Quadratic Approach to the Generalized Graph Layering Problem 541

5.2 GLP-MS∗

In this experiment, the parameters are set (almost) as in [8]: Y = |V |, ωlen = 1,
ωrev = Y ωlen|A|, and ωscl = ωrev|A| + |A| · Y + 1. Priorities are thus the same
as in experiment (2) before, except now emphasizing on a maximum scaling
factor instead of the width alone. The rH : rW ratios considered are 1 : 2, 1 : 1,
and 2 : 1.

0.01

0.1

1

10

100

1000
≥ 1800

1 : 2 1 : 1 2 : 1

1 2 51 1 4

ATTar 20 ≤ |V | ≤ 30 (# = 58)

0.1

1

10

100

1000
≥ 1800

1 : 2 1 : 1 2 : 1

91 3131

ATTar 31 ≤ |V | ≤ 45 (# = 39)

1

10

100

1000
≥ 1800

1 : 2 1 : 1 2 : 1

10 14 2612 16 23

ATTar 46 ≤ |V | ≤ 60 (# = 30)

0.1

1

10

100

1000
≥ 1800

1 : 2 1 : 1 2 : 1

1 2

Random 17 ≤ |V | ≤ 30 (# = 60)

1

10

100

1000
≥ 1800

1 : 2 1 : 1 2 : 1

141 541

Random 31 ≤ |V | ≤ 45 (# = 61)

10

100

1000

≥ 1800

1 : 2 1 : 1 2 : 1

5 41 599 42 59

Random 46 ≤ |V | ≤ 60 (# = 59)

QLA-MS∗ CGL-MS∗

Fig. 4. The plots depict the solution times in seconds (a cross per graph) for the
different rH : rW combinations. Crosses at the top (1800 s) correspond to timeouts,
their quantities are given to the left of the respective cross.

As Fig. 4 shows, the results are again diverse under fine-grained inspection,
and comparable from a coarse perspective. For both QLA-MS∗ and CGL-MS∗

there are instance subsets and rH : rW ratios where the use of either one leads
to faster solutions and less timeouts.

Also, for both formulations, the 2 : 1-case, where the height is constrained to
be at most twice the width, turns out to be the hardest - which is not surprising
as e.g. the ATTar graphs are at least twice as high as wide when drawn with
the classic framework [4]. As opposed to that, in the 1 : 2-case, the condition
that the height is restricted to be no more than half of the width is a strong



542 S. Mallach

one, as most of the considered graphs cannot be layered very widely. This entails
better bounds on the objective function during the MIP solution process.

An interesting question is the relative tractability of GLP-W and (especially
the 2 : 1-case of) the more general GLP-MS∗, since (in a sense) both aim at a
(relatively) small width, but the first with respect to a fixed (but larger) height
limit, and the second additionally requiring to find the best H : W-pair under the
given aspect ratio constraint. As could be expected, comparing the two results
indicates that GLP-W appears to be considerably easier to solve to optimality,
at least with the present modeling techniques.

6 Conclusion

In recent years, several extensions of the graph layering problem of increasing
generality have been studied, and several algorithmic solution approaches have
been proposed. Exact methods are based on integer programming where assign-
ment and ordering variables have dominated the most successful models for the
more general variants of the problem.

In this paper, we proposed a new quadratic assignment approach that can
be adapted to each of these, allows a natural expression of the associated layout
restrictions or aesthetic objectives, and turns out to be computationally com-
petitive. However, as soon as the emphasis is on width minimization or even a
particular drawing area is targeted, still neither of the present methods is able to
routinely solve arbitrary instances beyond about 50 vertices. Moreover, as long
as the proposed quadratic model is solved based on linearization, its problem
size will become a limitation if the number of vertices is considerably increased.
Nevertheless, depending on the adjacency structure of the graphs to be layered,
this may be possible, and our results show that different settings (aspect ratios,
emphasis or neglection of the width, restrictive or non-restrictive heights) have
a strong impact on the tractability of the problem – which also means that some
can be handled quite well.

Also, the recent generalizations of the layering problem are a clear step
towards the requirements of real-world applications – and real-world displays. We
hope that our drawn links to the quadratic assignment problem inspire also some
novel heuristic solution approaches, or exact models for related graph drawing
paradigms.

A Ordering-Based Reference Models

As a reference, we display here slightly more compact reformulations of CGL-W
and CGL-MS∗ compared to their respective original presentations in [4] and [8].

Let G = (V,A) be a directed graph, and let Y be an upper bound on the
height of the layering to be chosen a priori. A basic CGL model then involves
binary variables yk,v, for all v ∈ V and all layer indices k ∈ {1, . . . , Y −1}, being
equal to 1 if k < L(v) and being equal to zero otherwise. In particular L(v) = 1
if and only if y1,v = 0, L(v) = Y if and only if yk,v = 1 for all k ∈ {1, . . . , Y −1},



A Natural Quadratic Approach to the Generalized Graph Layering Problem 543

and L(v) = k if and only if yk−1,v −yk,v = 1. The number of basic variables thus
amounts to |V | · (Y − 1).

Moreover, there are only the following |V | · (Y − 2) basic constraints that
establish transitivity in the sense that L(v) > k implies L(v) > k − 1 for each
k ∈ {2, . . . , Y − 1}:

yk,v − yk−1,v ≤ 0 for all v ∈ V, k ∈ {2, . . . , Y − 1}
However, to model GLP, |A| further auxiliary variables ruv as well as |A| · Y

constraints – ensuring that ruv is equal to one if uv ∈ A is reversed and equal
to zero otherwise – are required.

These constraints are:

y1,u − ruv ≥ 0 for all uv ∈ A
y1,v + ruv ≥ 1 for all uv ∈ A
yk−1,u − yk,v − ruv ≤ 0 for all uv ∈ A, k ∈ {2, . . . , Y − 1}
yk−1,v − yk,u + ruv ≤ 1 for all uv ∈ A, k ∈ {2, . . . , Y − 1}
yY −1,u − ruv ≤ 0 for all uv ∈ A
yY −1,v + ruv ≤ 1 for all uv ∈ A

Moreover, to model dummy vertices (and thus the width), |A|·(Y −2) further
variables duv,k for each arc uv ∈ A and each layer k ∈ {2, . . . , Y − 1} are
required. The associated constraints enforcing duv,k to be one if uv ∈ A causes
a dummy vertex on layer k (otherwise, an optimum solution has duv,k = 0
whenever ωlen > 0) are:

yk,u − yk−1,v − duv,k ≤ 0 for all uv ∈ A, k ∈ {2, . . . , Y − 1}
yk,v − yk−1,u − duv,k ≤ 0 for all uv ∈ A, k ∈ {2, . . . , Y − 1}

To obtain CGL-W, one further adds a variable W and the Y constraints:
∑

v∈V

(1 − y1,v) ≤ W (5)

∑
v∈V

yY −1,v ≤ W (6)

∑
v∈V

(yk−1,v − yk,v) +
∑

uv∈A

duv,k ≤ W for all k ∈ {2, . . . , Y − 1} (7)

The total number of constraints is then (4|A|+|V |+1)·(Y −2)+4|A|+2. One
can now exploit that the length of an arc (i.e., the difference of the layer indices
its endpoints are assigned to) is equivalent to the number of dummy vertices it
causes plus one. Thus, the objective function for CGL-W can be expressed as:

minimize
∑

uv∈A

(
ωrev ruv + ωlen(1 +

Y −1∑
k=2

duv,k)
)

+ ωwid W



544 S. Mallach

To rather obtain CGL-MS∗, it suffices to introduce the variable S̄ instead,
replace W with rW S̄ in (5)–(7), and to add the |V | additional constraints:

1 +
∑

k∈{1,...,Y −1}
yk,v ≤ rH S̄ for all v ∈ V

Then, the objective is

minimize
∑

uv∈A

(
ωrev ruv + ωlen(1 +

Y −1∑
k=2

duv,k)
)

+ ωscl S̄.

and the total number of constraints amounts to (4|A|+ |V |+1) · (Y −2)+4|A|+
|V | + 2.

References

1. Di Battista, G., Garg, A., Liotta, G., Parise, A., Tamassia, R., Tassinari, E., Vargiu,
F., Vismara, L.: Drawing directed acyclic graphs: an experimental study. In: North,
S. (ed.) GD 1996. LNCS, vol. 1190, pp. 76–91. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-62495-3 39

2. Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.P.: A technique for drawing
directed graphs. Softw. Eng. 19(3), 214–230 (1993)

3. Healy, P., Nikolov, N.S.: A branch-and-cut approach to the directed acyclic graph
layering problem. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS,
vol. 2528, pp. 98–109. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36151-0 10

4. Jabrayilov, A., Mallach, S., Mutzel, P., Rüegg, U., von Hanxleden, R.: Compact
layered drawings of general directed graphs. In: Hu, Y., Nöllenburg, M. (eds.) GD
2016. LNCS, vol. 9801, pp. 209–221. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-50106-2 17

5. Mallach, S.: Compact linearization for binary quadratic problems subject to assign-
ment constraints. 4OR 16(3), 295–309 (2018). https://doi.org/10.1007/s10288-
017-0364-0

6. Rüegg, U., Ehlers, T., Spönemann, M., von Hanxleden, R.: A generalization of the
directed graph layering problem. Technical Report 1501, Kiel University, Depart-
ment of Computer Science (2015). ISSN 2192–6247

7. Rüegg, U., Ehlers, T., Spönemann, M., von Hanxleden, R.: A generalization of
the directed graph layering problem. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016.
LNCS, vol. 9801, pp. 196–208. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-50106-2 16

8. Rüegg, U., Ehlers, T., Spönemann, M., von Hanxleden, R.: Generalized layerings
for arbitrary and fixed drawing areas. J. Graph Algorithms Appl. 21(5), 823–856
(2017). https://doi.org/10.7155/jgaa.00441

9. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-
chical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981)

10. Ullman, J.D.: NP-complete scheduling problems. J. Comput. Syst. Sci. 10(3), 384–
393 (1975). https://doi.org/10.1016/S0022-0000(75)80008-0

https://doi.org/10.1007/3-540-62495-3_39
https://doi.org/10.1007/3-540-62495-3_39
https://doi.org/10.1007/3-540-36151-0_10
https://doi.org/10.1007/3-540-36151-0_10
https://doi.org/10.1007/978-3-319-50106-2_17
https://doi.org/10.1007/978-3-319-50106-2_17
https://doi.org/10.1007/s10288-017-0364-0
https://doi.org/10.1007/s10288-017-0364-0
https://doi.org/10.1007/978-3-319-50106-2_16
https://doi.org/10.1007/978-3-319-50106-2_16
https://doi.org/10.7155/jgaa.00441
https://doi.org/10.1016/S0022-0000(75)80008-0


Graph Stories in Small Area

Manuel Borrazzo, Giordano Da Lozzo(B), Fabrizio Frati,
and Maurizio Patrignani

Roma Tre University, Rome, Italy
{borrazzo,dalozzo,frati,patrigna}@dia.uniroma3.it

Abstract. We study the problem of drawing a dynamic graph, where
each vertex appears in the graph at a certain time and remains in the
graph for a fixed amount of time, called the window size. This defines a
graph story, i.e., a sequence of subgraphs, each induced by the vertices
that are in the graph at the same time. The drawing of a graph story
is a sequence of drawings of such subgraphs. To support readability,
we require that each drawing is straight-line and planar and that each
vertex maintains its placement in all the drawings. Ideally, the area of
the drawing of each subgraph should be a function of the window size,
rather than a function of the size of the entire graph, which could be too
large. We show that the graph stories of paths and trees can be drawn on
a 2W × 2W and on an (8W + 1)× (8W + 1) grid, respectively, where W
is the window size. These results yield linear-time algorithms. Further,
we show that there exist graph stories of planar graphs whose subgraphs
cannot be drawn within an area that is only a function of W .

1 Introduction

We consider a graph that changes over time. Its vertices enter the graph one after
the other and persist in the graph for a fixed amount of time, called the window
size. We call such a dynamic graph a graph story. More formally, let V be the
set of vertices of a graph G. Each vertex v ∈ V is equipped with a label τ(v),
which specifies the time instant at which v appears in the graph. The labeling
τ : V → {1, 2, . . . , |V |} is a bijective function specifying a total ordering for V .
At any time t, the graph Gt is the subgraph of G induced by the set of vertices
{v ∈ V : t − W < τ(v) ≤ t}. We denote a graph story by 〈G, τ,W 〉.

We are interested in devising an algorithm for visualizing graph stories. The
input of the algorithm is an entire graph story and the output is what we call
a drawing story. A drawing story is a sequence of drawings of the graphs Gt.
The typical graph drawing conventions can be applied to a drawing story. E.g.,
a drawing story is planar, straight-line, or on the grid if all its drawings are
planar, straight-line, or on the grid, respectively.

This research was supported by MIUR Proj. “MODE” n◦ 20157EFM5C, by MIUR
Proj. “AHeAD” n◦ 20174LF3T8, by MIUR-DAAD JMP n◦ 34120, by H2020-MSCA-
RISE Proj. “CONNECT” n◦ 734922, and by Roma Tre University Proj. “GeoView”.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 545–558, 2019.
https://doi.org/10.1007/978-3-030-35802-0_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_41&domain=pdf
https://doi.org/10.1007/978-3-030-35802-0_41


546 M. Borrazzo et al.

A trivial way for constructing a drawing story would be to first produce a
drawing of G and then to obtain a drawing of Gt, for each time t, by filtering
out vertices and edges that do not belong to Gt. However, if the number of
vertices of G is much larger than W , this strategy might produce unnecessarily
large drawings. Ideally, the area of the drawing of each graph Gt should be a
(polynomial) function of W , rather than a function of the size of the entire graph.

In this paper we show that the graph stories of paths and trees can be drawn
on a 2W × 2W and on an (8W + 1) × (8W + 1) grid, respectively, so that all
the drawings of the story are straight-line and planar, and so that vertices do
not change their position during the drawing story. Further, we show that there
exist graph stories of planar graphs that cannot be drawn within an area that
is only a function of W , if planarity is required and vertices are not allowed to
change their position during the drawing story.

The visualization of dynamic graphs is a classic research topic in graph draw-
ing. In what follows we compare our model and results with the literature. We
can broadly classify the different approaches in terms of the following features [2].
(i) The objects that appear and disappear over time can be vertices or edges.
(ii) The lifetime of the objects may be fixed or variable. (iii) The story may be
entirely known in advance (off-line model) or not (on-line model). In this paper,
the considered objects are vertices, the lifetime is fixed and the model is off-line.

A considerable amount of the literature on the theoretical aspects of dynamic
graphs focuses on trees. In [3], the objects are edges, the lifetime W is fixed, and
the model is on-line; an algorithm is shown for drawing a tree in O(W 3) area,
under the assumption that the edges arrive in the order of a Eulerian tour of the
tree. In [10], the objects are vertices, the lifetime W is fixed, the model is off-line
(namely, the sequence of vertices is known in advance, up to a certain threshold
k), and the vertices can move. A bound in terms of W and k is given on the
total amount of movement of the vertices. In [22], each subgraph of the story is
given (each subgraph is a tree, whereas the entire graph may be arbitrary), each
object can have an arbitrary lifetime, the model is off-line, and the vertices can
move. Aesthetic criteria as in the classical Reingold-Tilford algorithm [19] are
pursued.

Other contributions consider more general types of graphs. In [15], the objects
are edges, which enter the drawing and never leave it, the model is on-line, the
considered graphs are outerplanar, and the vertices are allowed to move by a
polylogarithmic distance. In [8], the objects are edges, the lifetime is fixed, and
the model is off-line; NP-completeness is shown for the problem of computing
planar topological drawings of the graphs in the story; other results for the
topological setting are presented in [1,21]. Further related results appear in [7,11,
12,16,18,20]; in particular, geometric simultaneous embeddings [4,6] are closely
related to the setting we consider in this paper. Contributions focused on the
information-visualization aspects of dynamic graphs are surveyed in [2]; further,
a survey on temporal graph problems appears in [17].

Missing proofs can be found in the full version of the paper [5].



Graph Stories in Small Area 547

2 Preliminaries

In this section, we present definitions and preliminaries.

Graphs and Drawings. We denote the set of vertices and edges of a graph
G by V (G) and E(G), respectively. A drawing of G maps each vertex in V (G)
to a distinct point in the plane and each edge in E to Jordan arc between its
end-points. A drawing is straight-line if each arc is a straight-line segment, it
is planar if no two arcs intersect, except at a common endpoint, and it is on
the grid (or, a grid drawing) if each vertex is mapped to a point with integer
coordinates.

Rooted Ordered Forests and Their Drawings. A rooted tree T is a tree
with one distinguished vertex, called root and denoted by r(T ). We denote by
T (u) the subtree of T rooted at a node u.

A rooted ordered tree T is a rooted tree such that, for each vertex v ∈ V (T ), a
left-to-right (linear) order u1, . . . , uk of the children of v is specified. A sequence
F = T1, T2, . . . , Tk of rooted ordered trees is a rooted ordered forest.

A strictly-upward drawing of a rooted tree T is such that each edge is repre-
sented by a curve monotonically increasing in the y-direction from a vertex to its
parent. A strictly-upward drawing Γ of a rooted forest F is such that the draw-
ing of each tree Ti ∈ F in Γ is strictly-upward. A strictly-upward drawing of an
ordered tree T is order-preserving if, for each vertex v ∈ V (T ), the left-to-right
order of the edges from v to its children in the drawing is the same as the order
associated with v in T . A strictly-upward drawing of a rooted ordered forest F
is order-preserving if the drawing of each tree Ti ∈ F is order-preserving. The
definitions of (order-preserving) strictly-leftward, strictly-downward, and strictly-
rightward drawings of (ordered) rooted trees and forests are similar.

Geometry. Given two points p1 and p2 in R
2, we denote by [p1, p2] the closed

straight-line segment connecting p1 and p2. The width and height of a grid [a, b]×
[c, d] are |[a, b] ∩ Z| = b − a + 1 and |[c, d] ∩ Z| = d − c + 1, respectively. A grid
drawing Γ of a graph lies on a W ×H grid if Γ is enclosed by the bounding box
of some grid of width W and height H, and lies on the grid [a, b] × [c, d] if Γ is
enclosed by the bounding box of the grid [a, b] × [c, d].

Graph Stories. A graph story 〈G, τ,W 〉 is naturally associated with a sequence
〈G1, G2, . . . , Gn+W−1〉; for any t ∈ {1, . . . , n + W − 1}, the graph Gt is the
subgraph of G induced by the set of vertices {v ∈ V : t − W < τ(v) ≤ t}.
Clearly, |V (Gt)| ≤ W . Note that G1, G2, . . . , GW−1 are subgraphs of GW and
Gn+1, Gn+2, . . . , Gn+W−1 are subgraphs of Gn, while each of Gt and Gt+1 has
a vertex that the other graph does not have, for t = W, . . . , n− 1. A graph story
〈G, τ,W 〉 in which G is a planar graph, a path, or a tree is a planar graph story,
a path story, or a tree story, respectively.

A drawing story for 〈G, τ,W 〉 is a sequence 〈Γ1, Γ2, . . . , Γn+W−1〉 of drawings
such that, for every t = 1, . . . , n+W −1: (i) Γt is a drawing of Gt, (ii) a vertex v is
drawn at the same position in all the Γt’s such that v ∈ V (Gt), and (iii) an edge
(u, v) is represented by the same curve in all the Γt’s such that (u, v) ∈ E(Gt).



548 M. Borrazzo et al.

The above definition implies that the drawings Γ1, Γ2, . . . , ΓW−1 are the restric-
tions of ΓW to the vertices and edges of G1, G2, . . . , GW−1, respectively, and that
the drawings Γn+1, Γn+2, . . . , Γn+W−1 are the restrictions of Γn to the vertices
and edges of Gn+1, Gn+2, . . . , Gn+W−1, respectively. Hence, an algorithm that
constructs a drawing story only has to specify the drawings ΓW , ΓW+1, . . . , Γn.

We only consider drawing stories Γ that are planar, straight-line, and on the
grid. Storing each drawing in Γ would require Ω(n ·W ) space in total. However,
since each vertex has the same position in all the drawings where it appears,
since edges are straight-line segments, and since any two consecutive graphs in
a graph story differ by O(1) vertices, we can encode Γ in total O(n) space.

Let Γ be a straight-line drawing story of a graph story 〈G, τ,W 〉 and let
G′ be a subgraph of G (possibly G′ = G). The drawing of G′ induced by Γ is
the straight-line drawing of G′ in which each vertex has the same position as in
every drawing Γt ∈ Γ where it appears. Note that the drawing of G′ induced by
Γ might have crossings even if Γ is planar. For a subset B ⊆ V (G), let G[B] be
the subgraph of G induced by the vertices in B and let Γ [B] be the straight-line
drawing of G[B] induced by Γ .

Given a graph story 〈G, τ,W 〉, we will often consider a partition of V into
buckets B1, . . . , Bh, where h = 	 n

W 
. For i = 1, . . . , h, the bucket Bi is the set of
vertices v such that (i − 1)W + 1 ≤ τ(v) ≤ min{i · W,n}. Note that all buckets
have W vertices, except, possibly, for Bh. We have the following useful property.

Property 1. For any t, let i = 	 t
W 
. Then Gt is a subgraph of G[Bi−1 ∪ Bi].

3 Planar Graph Stories

In this section we prove a lower bound on the size of any drawing story of a planar
graph story. Let n ≡ 0 mod 3. An n-vertex nested triangles graph G contains
the vertices and the edges of the 3-cycle Ci = (vi−2, vi−1, vi), for i = 3, 6, . . . , n,
plus the edges (vi, vi+3), for i = 1, 2, . . . , n − 3. The nested triangles graphs
with n ≥ 6 vertices are 3-connected and thus they have a unique combinatorial
embedding (up to a flip) [23]. We have the following.

Theorem 1. Let 〈G, τ, 9〉 be a planar graph story such that G is an n-vertex
nested triangles graph and τ(vi) = i. Then any drawing story of 〈G, τ, 9〉 lies on
a Ω(n) × Ω(n) grid.

Proof. In order to prove the statement we show that, for any drawing story Γ
of 〈G, τ, 9〉, the straight-line drawing of G induced by Γ is planar. Then the
statement follows from well-known lower bounds in the literature [9,13,14].

Let Γ = Γ1, Γ2, . . . , Γn+8. Note that, for any m = 9, 12, . . . , n, the graph Gm

contains the cycles Cm−6 = (vm−8, vm−7, vm−6), Cm−3 = (vm−5, vm−4, vm−3),
and Cm = (vm−2, vm−1, vm). For any m = 9, 12, . . . , n, let Hm and Im be the sub-
graphs of G induced by v1, v2, . . . , vm and by vm−5, vm−4, . . . , vm, respectively,
and let ΓH

m and Γ I
m be the drawings of Hm and Im induced by Γ , respectively.



Graph Stories in Small Area 549

Bx
1 Bx

2 Bx
3

By
1 By

2 By
3

B1 B2 B3 B4 B5
τ -1(1) τ -1(n)

Fig. 1. Examples of buckets, x-buckets, and y-buckets when W = 4.

Since G = Hn, in order to show that the drawing of G induced by Γ is
planar, it suffices to show that ΓH

m is planar, for each m = 9, 12, . . . , n. We prove
this statement by induction on m. The induction also proves that the cycle Cm

bounds a face of ΓH
m and of Γ I

m.
Suppose first that m = 9. Then H9 = G9 and the drawing ΓH

9 = Γ9 of G9

is planar since Γ is a planar straight-line drawing of 〈G, τ, 9〉 and Γ9 ∈ Γ . The
3-connectivity of H9 and I9 implies that C9 bounds a face of ΓH

9 and Γ I
9 .

Suppose now that m > 9. We show that ΓH
m is planar. By induction, ΓH

m−3 is
planar. Thus, we only need to prove that no crossing is introduced by placing the
vertices vm−2, vm−1, and vm, which belong to Hm and not to Hm−3, in ΓH

m−3

as they are placed in Γm and by drawing their incident edges as straight-line
segments. First, by induction, the cycle Cm−3 = (vm−5, vm−4, vm−3) bounds a
face of ΓH

m−3 and of Γ I
m−3. Second, the vertices vm−2, vm−1, and vm, as well

as their incident edges, lie inside such a face in Γm. Namely, vm−2, vm−1, and
vm lie inside the same face of Γ I

m−3 in Γm, as otherwise the cycle Cm would
cross edges of Im−3 in Γm; further, the face of Γ I

m−3 in which vm−2, vm−1, and
vm lie in Γm is incident to all of vm−5, vm−4, and vm−3, as otherwise the edges
(vm−5, vm−2), (vm−4, vm−1), and (vm−3, vm) would cross edges of Im−3 in Γm;
however, no face of Γ I

m−3 other than the one delimited by Cm−3 is incident to
all of vm−5, vm−4, and vm−3. This proves the planarity of ΓH

m . The induction
and the proof of the theorem are completed by observing that Cm bounds a face
of ΓH

m and Γ I
m. ��

4 Path Stories

Let 〈G, τ,W 〉 be a path story, where G = (v1, v2, . . . , vn). Note that the ordering
of V (G) given by the path is, in general, different from the ordering given by τ .

The x-buckets of G are the sets Bx
i , with i = 1, . . . , 	h+1

2 
, such that Bx
1 = B1,

and Bx
i = B2i−2 ∪ B2i−1, for i = 2, . . . , 	h+1

2 
. Note that each x-bucket has 2W
vertices, except for B1 and, possibly, the last x-bucket; see Fig. 1. The y-buckets
of G are the sets By

j , with j = 1, . . . , 	h
2 
, such that By

j = B2j−1∪B2j . Note that
each y-bucket has 2W vertices, except possibly for the last y-bucket; see Fig. 1.
Also, each vertex belongs to exactly one x-bucket and to exactly one y-bucket.

We now present the following theorem; its proof is similar in spirit to the
proof that any two paths admit a simultaneous geometric embedding [6].

Theorem 2. For any path story 〈G, τ,W 〉, it is possible to compute in O(n)
time a drawing story that is planar, straight-line, and lies on a 2W × 2W grid.



550 M. Borrazzo et al.

Proof. Let G be the path (v1, v2, . . . , vn) and let h = 	 n
W 
 be the number of buck-

ets of V (G). We now order the vertices in each x-bucket and in each y-bucket;
this is done according to the ordering in which the vertices appear in the path G.
Formally, for i = 1, 2, . . . , 	h+1

2 
, let xi : Bx
i → {1, . . . , |Bx

i |} be a bijective func-
tion such that, for any va, vb ∈ Bx

i , we have xi(va) < xi(vb) if and only if a < b.
Similarly, for i = 1, 2, . . . , 	h

2 
, let yi : By
i → {1, . . . , |By

i |} be a bijective function
such that, for any va, vb ∈ By

i , we have yi(va) < yi(vb) if and only if a < b. We
assign the coordinates to the vertices of G in Γ as follows. For any vertex v of G,
let Bx

i and By
j be the x-bucket and the y-bucket containing v, respectively. We

place v at the point (xi(v), yj(v)) in all the drawings Γt ∈ Γ such that v belongs
to Gt. Also, we draw each edge as a straight-line segment.

We now prove that the constructed drawing story Γ satisfies the properties in
the statement. Since x-buckets and y-buckets have size at most 2W , we have that
each drawing Γt ∈ Γ lies on the [1, 2W ] × [1, 2W ] grid. We have the following.

Property 2. For i = 1, . . . , 	h+1
2 
, the straight-line drawing Γ [Bx

i ] of G[Bx
i ] is

planar. For j = 1, . . . , 	h
2 
, the straight-line drawing Γ [By

j ] of G[By
j ] is planar.

Proof. By Property 1, there exists an x-bucket Bx
i or a y-bucket By

j that contains
V (Gt). Then Γt coincides with Γ [Bx

i ] or with Γ [By
j ], respectively, restricted to

the vertices in V (Gt). By Property 2, we have that Γt is planar.
Finally, the time needed to compute Γ coincides with the time needed

to compute the functions xi and yj , for each i ∈ {1, 2, . . . , 	h+1
2 
} and j ∈

{1, 2, . . . , 	h
2 
}. This can be done in total O(n) time as follows. For i = 1, . . . , n,

traverse the path G from v1 to vn. When a vertex vk is considered, the buckets
Bx

i and By
j where vk should be inserted are determined in O(1) time; then vk

is inserted in each of these buckets as the currently last vertex. This process
provides each x-bucket Bx

i and each y-bucket By
j with the desired orderings xi

and yj , respectively. ��

5 Tree Stories

In this section we show how to draw a tree story 〈T, τ,W 〉. Our algorithm parti-
tions V (T ) into buckets B1, . . . , Bh and then partitions the subtrees of T induced
by each bucket Bi into two rooted ordered forests. For odd values of i, the forests
corresponding to Bi are drawn “close” to the y-axis, while for even values of i,
the forests corresponding to Bi are drawn “close” to the x-axis. The drawings
of these forests need to satisfy strong visibility properties, as edges of T might
connect vertices in a bucket Bi with the roots of the forests corresponding to the
bucket Bi+1, and vice versa. We now introduce a drawing standard for (static)
rooted ordered forests that guarantees these visibility properties.

For a vertex v in a drawing Γ , denote by � (v) the half-line originating at v
with slope −2. Also, consider a horizontal half-line originating at v and directed
rightward; rotate such a line in clockwise direction around v until it overlaps
with � (v); this rotation spans a closed wedge centered at v, which we call the

of v and denote by . We have the following definition.



Graph Stories in Small Area 551

Fig. 2. Construction of a -drawing: the first inductive case, in which k = 1 and m > 1.

Definition 1. Let F = T1, T2, . . . , Tk be a rooted ordered forest, with a total of
m ≤ W vertices. A Γ of F is a planar straight-line strictly-upward
strictly-leftward order-preserving grid drawing of F such that:

(i) Γ lies on the [0,m − 1] × [4W − 2m + 2, 4W ] grid;
(ii) the roots r(T1), r(T2), . . . , r(Tk) lie along the segment

[
(0, 2W +2), (0, 4W )

]
,

in this order from bottom to top, and r(Tk) lies on (0, 4W );
(iii) the vertices of Ti have y-coordinates strictly smaller than the vertices of

Ti+1, for i = 1, . . . , k − 1;
(iv) for each tree Ti and for each vertex v of Ti, let u1, u2, . . . , u� be the children

of v in left-to-right order; then the vertices of Ti(uj) have y-coordinates
strictly smaller than the vertices of Ti(uj+1), for j = 1, . . . , � − 1; and

(v) for each vertex v of F , the wedge does not intersect Γ other than
along � (v).

We are going to use the following property.

Property 3. For each vertex v in a -drawing Γ of F , the wedge contains
the segment

[
(2W + 2, 0), (4W, 0)

]
in its interior.

We can similarly define -, -, and -drawings; in particular, a drawing of
F is a -, -, or - drawing if and only if it can be obtained from a -drawing



552 M. Borrazzo et al.

Fig. 3. Construction of a -drawing: the second inductive case, in which k > 1.

by a clockwise rotation around the origin of the Cartesian axes by 90◦, 180◦,
or 270◦, respectively. A property similar to Property 3 can be stated for such
drawings.

We now present an algorithm, called -Drawer, that constructs a -drawing
Γ of F = T1, . . . , Tk. The algorithm -Drawer constructs Γ by induction,
primarily, on k and, secondarily, on the number of vertices m of F .

The base case of the algorithm -Drawer happens when m = 1 (and thus
k = 1); then we obtain Γ by placing r(T1) at (0, 4W ). In the first inductive
case, we have k = 1 and m > 1; see Fig. 2. Let F1 be the rooted ordered
forest T1(u1), T1(u2), . . . , T1(u�1), where u1, u2, . . . , u�1 are the children of r(T1)
in left-to-right order. Inductively construct a -drawing Γ1 of F1. We obtain Γ by
placing r(T1) at (0, 4W ) and by translating Γ1 one unit to the right and two units
down. In the second inductive case, we have k > 1; see Fig. 3. We inductively
construct a -drawing Γ1 of T1 and a -drawing Γ2 of the rooted ordered forest
F2 = T2, T3, . . . , Tk. Then, we obtain Γ from Γ1 and Γ2 by translating Γ1 down
so that r(T1) lies two units below the lowest vertex in Γ2. We have the following.

Lemma 1. The algorithm -Drawer constructs a -drawing of F in
O(m) time.

Algorithms -Drawer, -Drawer, and -Drawer that construct a -
drawing, a -drawing, and a -drawing of F can be defined analogously.



Graph Stories in Small Area 553

We now go back to the problem of drawing a tree story 〈T, τ,W 〉. Let n =
|V (T )|. Recall that V (T ) is partitioned into buckets B1, . . . , Bh, where h = 	 n

W 
.
We now show how to partition the subtrees of T induced by each bucket into
up to two rooted ordered forests, so that the algorithms -, -, -, and -
Drawer can be exploited in order to draw such forests, thus obtaining a drawing
story of 〈T, τ,W 〉. We proceed in several phases as follows.

Phase 1: We label each vertex v of T belonging to a bucket Bi with the label
b(v) = i and we remove from T all the edges (u, v) such that |b(u) − b(v)| > 1.
Observe that such edges are not visualized in a drawing story of 〈T, τ,W 〉.
Phase 2: As T might be a forest because of the previous edge removal, we add
dummy edges to T to turn it back into a tree, while ensuring that |b(u)−b(v)| ≤ 1
for every edge (u, v) of T . This is possible due to the following.

Lemma 2. Dummy edges can be added to T in total O(n) time so that T
becomes a tree and every edge (u, v) of T is such that |b(u) − b(v)| ≤ 1.

Phase 3: We now root T at an arbitrary vertex r(T ) in B1. A pertinent compo-
nent of T is a maximal connected component of T composed of vertices in the
same bucket. We assign a label b(P ) = i to a pertinent component P if every
vertex of P belongs to Bi. We now construct the following sets R1, R2, . . . , Rk

of pertinent components of T ; see Fig. 4. The set R1 only contains the pertinent
component of T the vertex r(T ) belongs to. For j > 1, the set Rj contains every
pertinent component P of T such that (i) P does not belong to

⋃j−1
i=1 Ri and

(ii) P contains a vertex that is adjacent to a vertex belonging to a pertinent
component in Rj−1.

By the construction of the Rj ’s, since |b(u) − b(v)| ≤ 1 for every edge (u, v)
of T , and by the rooting of T , we have the following simple property.

Property 4. For every vertex v ∈ Rj , each child of v belongs to either
Rj or Rj+1.

Phase 4: Next, we turn T into an ordered tree. Consider any vertex v and let
Rj be the set v belongs to. Then, by Proposition 4, each child of v is either in
Rj or in Rj+1. We set the left-to-right order of the children of v so that all those
in Rj come first, in any order, and all those in Rj+1 come next, in any order.

Phase 5: We now define rooted ordered forests. For i = 1, . . . , h with i odd, let
(resp., ) be the forest containing all the pertinent components P such

that b(P ) = i and such that P ∈ Rj with j ≡ 1 mod 4 (resp., j ≡ 3 mod 4).
Also, for i = 1, . . . , h with i even, let (resp., ) be the forest containing
all the pertinent components P such that b(P ) = i and such that P ∈ Rj with
j ≡ 2 mod 4 (resp., j ≡ 0 mod 4). We have the following.

Observation 1. Let v be a vertex of T and u be its parent. Let Ri and Rj be
the sets containing the pertinent components u and v belong to, respectively,
where j = i or j = i + 1, by Property 4. Then the following cases are possible.



554 M. Borrazzo et al.

1a If j = i, then u and v both belong to either , , , or .
1b If j = i + 1, then v is the root of a pertinent component in Rj . Also, either:

(i) i is odd, , and ;
(ii) i is even, , and ;
(iii) i is odd, , and ; or
(iv) i is even, , and .

For each pertinent component P in any Fi·X , with i ∈ {1, . . . , h} and
, let Rj be the set P belongs to. If j = 1, then the root of

P is r(T ), otherwise the root of P is the vertex of P that is adjacent to a vertex
in Rj−1. Further, the left-to-right order of the children of every vertex of P is the
one inherited from T . Finally, the linear ordering of the pertinent components
in Fi·X is defined as follows. Let P1 and P2 be any two pertinent components in
Fi·X and let Rj and Rk be the sets containing P1 and P2, respectively. If j < k,
then P1 precedes P2 in Fi·X . If j > k, then P1 follows P2 in Fi·X . Otherwise
j = k; let x be the lowest common ancestor of the roots of P1 and of P2 in T .
Also, let p1 and p2 be the paths connecting the roots of P1 and of P2 with x,
respectively. Further, let x1 and x2 be the children of x belonging to p1 and to
p2, respectively. Then, P1 precedes P2 in Fi·X if and only if x1 precedes x2 in
the left-to-right order of the children of x. We have the following.

Lemma 3. Given the sets R1, . . . , Rk, the rooted ordered forests Fi·X , with
i = 1, . . . , h and , can be computed in total O(n) time.

We are now ready to state the following main result.

Theorem 3. For any tree story 〈T, τ,W 〉 such that T has n vertices, it is pos-
sible to construct in O(n) time a drawing story that is planar, straight-line, and
lies on an (8W + 1) × (8W + 1) grid.

Proof. We construct a planar straight-line drawing story Γ of 〈T, τ,W 〉. We
perform Phases 1–5 in order to construct the rooted ordered forests Fi·X with
i ∈ {1, . . . , h} and . Note that Phase 2 introduces in T some
dummy edges, which are removed from the actual drawing story of 〈T, τ,W 〉
after the construction of Γ . Since Γ is a straight-line drawing, we only need
to assign coordinates to the vertices of T ; see Fig. 4. We apply the algorithm
X-Drawer to construct an X-drawing Γi·X of each rooted ordered forest Fi·X .
We let the coordinates of each vertex v of Fi·X in Γ coincide with its coordinates
in Γi·X .

We now prove that Γ satisfies the properties in the statement of the theorem.
By Condition i of Definition 1, a -drawing lies on the [0, 4W ] × [0, 4W ] grid.
Similarly, a -, a -, and a -drawing lies on the [0, 4W ] × [−4W, 0] grid, on
the [−4W, 0] × [−4W, 0] grid, and on the [−4W, 0] × [0, 4W ] grid, respectively.
Thus, Γ lies on the [−4W, 4W ] × [−4W, 4W ] grid.



Graph Stories in Small Area 555

Fig. 4. Illustration for the proof of Theorem 3, with W = 12. The upper part of the
figure shows the rooted ordered tree T ; vertices and edges that are not in T [B1,2] are
gray. A pertinent component P j

i of T belongs to the bucket Bi; further, the index j
represents the order of the components in the corresponding rooted forests. The lower
part of the figure shows the drawing Γ [B1,2] of T [B1,2] constructed by the algorithm.

Concerning the running time for the construction of Γ , we have that the
initial modification of T , which ensures that |b(u) − b(v)| ≤ 1 for every edge
(u, v) of T , can be done in O(n) time, by Lemma 2. The labeling b(u) of each
vertex u of T is easily done in O(n) time. The construction of the sets R1, . . . , Rk

can be accomplished by an O(n)-time traversal of T starting from r(T ). The
construction of the rooted ordered forests Fi·X , with i = 1, . . . , h and with



556 M. Borrazzo et al.

, can be performed in total O(n) time by Lemma 3. Finally,
by Lemma 1, the algorithm X-Drawer runs in linear time in the size of its
input Fi·X .

It remains to show that each drawing Γt ∈ Γ is planar. We exploit the
following lemma. Let Bi,i+1 = Bi ∪ Bi+1.

Lemma 4. For i = 1, . . . , h − 1, the drawing Γ [Bi,i+1] of T [Bi,i+1] is planar.

Proof. Suppose that i is odd; the case in which i is even can be treated analo-
gously. Let (u, v) and (w, z) be any two edges of T [Bi,i+1]. We prove that (u, v)
and (w, z) do not cross in Γ [Bi,i+1]. We only discuss the most interesting case,
in which u and w both belong to and v and z both belong to ; see
the full version of the paper for a proof that covers the other cases.

By Observation 1b, we have that v and z are the roots of two pertinent
components Pv and Pz of , respectively. By Condition ii of Definition 1,
the vertices v and z lie on the segment

[
(2W + 2, 0), (4W, 0)

]
. Assume w.l.o.g.

that z lies to the right of v. We have the following.

Claim 1. The vertex w lies above the vertex u in Γ [Bi,i+1].

Proof. Let Rj and Rk be the sets containing v and z, respectively. By the con-
struction of and since z lies to the right of v, two cases are possible.

In the first case j < k. By Observation 1b, we have that u and w belong
to Rj−1 and Rk−1, respectively. Since j − 1 < k − 1, we have that u and w
belong to distinct pertinent components Pu and Pw of T , respectively, where Pu

precedes Pw in . By Condition iii of Definition 1, we have that w lies above
u in Γ [Bi,i+1].

In the second case j = k. Let x be the lowest common ancestor of v and z
in T . Also, let v′ and z′ be the children of x on the paths from x to v and z,
respectively. Then v′ precedes z′ in the left-to-right order of the children of x.
Note that j−1 = k−1 and that x is also the lowest common ancestor of u and w
in T , where u lies on the path between v and x and w lies on the path between
z and x.

If u and w belong to distinct pertinent components Pu and Pw of T then, as
in the first case, Pu precedes Pw in . By Condition iii of Definition 1 we have
that w lies above u in Γ [Bi,i+1].

If u and w belong to the same pertinent component of T and neither of them
is x, then by Condition iv of Definition 1 we have that w lies above u in Γ [Bi,i+1].

If u and w belong to the same pertinent component of T and w = x, then
we have that w lies above u in Γ [Bi,i+1] since is strictly-upward.

Finally, note that u �= x. Indeed, suppose, for a contradiction, that u is the
lowest common ancestor of v and z. By the choice of the left-to-right ordering of
the children of u (given in Phase 4), we have that z′ precedes v in this ordering.
Therefore, by the construction of the ordering of (given in Phase 5),
we have that Pz precedes Pv in ; by Condition ii of Definition 1, this
contradicts the assumption that z lies to the right of v. ��



Graph Stories in Small Area 557

By Claim 1 and by Condition i of Definition 1, we have that w lies above u,
which lies above v and z; recall that these last two vertices lie on the segment[
(2W + 2, 0), (4W, 0)

]
. Hence, the edge (u, v) crosses the edge (w, z) if and only

if u lies to the right of the edge (w, z). By Property 3, the edge (w, z) lies in the
wedge , except at w. However, if u lies to the right of the edge (w, z), then

contains u, which contradicts Condition v of Definition 1. ��
By Property 1 and Lemma 4, we have that Γ is planar. ��

6 Conclusions and Open Problems

We have shown how to draw dynamic trees with straight-line edges, using an area
that only depends on the number of vertices that are simultaneously present in
the tree, while maintaining planarity. This result is obtained by partitioning the
vertices of the tree into buckets and by establishing topological and geometric
properties for the forests induced by pairs of consecutive buckets. Further, we
proved that this result cannot be generalized to arbitrary planar graphs.

Several interesting problems arise. (OP1) Which families of planar graphs
admit a planar straight-line drawing story on a grid whose size is polynomial in
W? How about outerplanar graphs? (OP2) Which bounds can be shown for a
dynamic graph that is not a tree, while each graph of the story is a forest?

Acknowledgments. We are indebted to Giuseppe Di Battista for interesting conver-
sations and suggestions that helped us improve and direct our investigation.

References

1. Angelini, P., Bekos, M.A.: Hierarchical partial planarity. Algorithmica 81(6), 2196–
2221 (2019). https://doi.org/10.1007/s00453-018-0530-6

2. Beck, F., Burch, M., Diehl, S., Weiskopf, D.: The state of the art in visualiz-
ing dynamic graphs. In: Borgo, R., Maciejewski, R., Viola, I. (eds.) Eurographics
Conference on Visualization, EuroVis 2014 - State of the Art Reports, STARs,
Swansea, UK, 9–13 June 2014. Eurographics Association (2014). https://doi.org/
10.2312/eurovisstar.20141174

3. Binucci, C., Brandes, U., Di Battista, G., Didimo, W., Gaertler, M., Palladino, P.,
Patrignani, M., Symvonis, A., Zweig, K.A.: Drawing trees in a streaming model.
Inf. Process. Lett. 112(11), 418–422 (2012). https://doi.org/10.1016/j.ipl.2012.02.
011

4. Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs.
In: Tamassia, R. (ed.) Handbook on Graph Drawing and Visualization, pp. 349–
381. Chapman and Hall/CRC (2013)

5. Borrazzo, M., Da Lozzo, G., Frati, F., Patrignani, M.: Graph stories in small area.
CoRR abs/1908.09318 (2019)

6. Braß, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov,
S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. Com-
put. Geom. 36(2), 117–130 (2007). https://doi.org/10.1016/j.comgeo.2006.05.006

https://doi.org/10.1007/s00453-018-0530-6
https://doi.org/10.2312/eurovisstar.20141174
https://doi.org/10.2312/eurovisstar.20141174
https://doi.org/10.1016/j.ipl.2012.02.011
https://doi.org/10.1016/j.ipl.2012.02.011
https://doi.org/10.1016/j.comgeo.2006.05.006


558 M. Borrazzo et al.

7. Cohen, R.F., Di Battista, G., Tamassia, R., Tollis, I.G.: Dynamic graph drawings:
trees, series-parallel digraphs, and planar ST-digraphs. SIAM J. Comput. 24(5),
970–1001 (1995). https://doi.org/10.1137/S0097539792235724

8. Da Lozzo, G., Rutter, I.: Planarity of streamed graphs. In: Paschos, V.T., Wid-
mayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp. 153–166. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-18173-8 11

9. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1), 41–51 (1990)

10. Demetrescu, C., Di Battista, G., Finocchi, I., Liotta, G., Patrignani, M., Pizzonia,
M.: Infinite trees and the future. In: Kratochv́ıyl, J. (ed.) GD 1999. LNCS, vol.
1731, pp. 379–391. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
46648-7 39

11. Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5),
956–997 (1996). https://doi.org/10.1137/S0097539794280736

12. Di Battista, G., Tamassia, R., Vismara, L.: Incremental convex planarity testing.
Inf. Comput. 169(1), 94–126 (2001). https://doi.org/10.1006/inco.2001.3031

13. Dolev, D., Leighton, F., Trickey, H.: Planar embedding of planar graphs. Adv.
Comput. Res. 2, 147–161 (1984)

14. Frati, F., Patrignani, M.: A note on minimum-area straight-line drawings of pla-
nar graphs. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol.
4875, pp. 339–344. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-77537-9 33

15. Goodrich, M.T., Pszona, P.: Streamed graph drawing and the file maintenance
problem. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 256–
267. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03841-4 23

16. Italiano, G.F.: Fully dynamic planarity testing. In: Kao, M.Y. (ed.) Encyclopedia
of Algorithms, pp. 806–808. Springer, New York (2016). https://doi.org/10.1007/
978-1-4939-2864-4 157

17. Michail, O.: An introduction to temporal graphs: an algorithmic perspective. Inter-
net Math. 12(4), 239–280 (2016)

18. Poutré, J.A.L.: Alpha-algorithms for incremental planarity testing (preliminary
version). In: Leighton, F.T., Goodrich, M.T. (eds.) Proceedings of the Twenty-
Sixth Annual ACM Symposium on Theory of Computing, Montréal, Québec,
Canada, 23–25 May 1994, pp. 706–715. ACM (1994). https://doi.org/10.1145/
195058.195439

19. Reingold, E.M., Tilford, J.S.: Tidier drawings of trees. IEEE Trans. Softw. Eng.
7(2), 223–228 (1981). https://doi.org/10.1109/TSE.1981.234519

20. Rextin, A., Healy, P.: A fully dynamic algorithm to test the upward planarity of
single-source embedded digraphs. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008.
LNCS, vol. 5417, pp. 254–265. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00219-9 24

21. Schaefer, M.: Picking planar edges; or, drawing a graph with a planar subgraph. In:
Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 13–24. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45803-7 2

22. Skambath, M., Tantau, T.: Offline drawing of dynamic trees: algorithmics and doc-
ument integration. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp.
572–586. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50106-2 44

23. Whitney, H.: Congruent graphs and the connectivity of graphs. Am. J. Math.
54(1), 150–168 (1932). http://www.jstor.org/stable/2371086

https://doi.org/10.1137/S0097539792235724
https://doi.org/10.1007/978-3-319-18173-8_11
https://doi.org/10.1007/3-540-46648-7_39
https://doi.org/10.1007/3-540-46648-7_39
https://doi.org/10.1137/S0097539794280736
https://doi.org/10.1006/inco.2001.3031
https://doi.org/10.1007/978-3-540-77537-9_33
https://doi.org/10.1007/978-3-540-77537-9_33
https://doi.org/10.1007/978-3-319-03841-4_23
https://doi.org/10.1007/978-1-4939-2864-4_157
https://doi.org/10.1007/978-1-4939-2864-4_157
https://doi.org/10.1145/195058.195439
https://doi.org/10.1145/195058.195439
https://doi.org/10.1109/TSE.1981.234519
https://doi.org/10.1007/978-3-642-00219-9_24
https://doi.org/10.1007/978-3-642-00219-9_24
https://doi.org/10.1007/978-3-662-45803-7_2
https://doi.org/10.1007/978-3-319-50106-2_44
http://www.jstor.org/stable/2371086


Level-Planar Drawings with Few Slopes

Guido Brückner(B), Nadine Davina Krisam, and Tamara Mchedlidze

Karlsruhe Institute of Technology, Karlsruhe, Germany
brueckner@kit.edu, nadine.krisam@student.kit.edu, mched@iti.uka.de

Abstract. We introduce and study level-planar straight-line drawings
with a fixed number λ of slopes. For proper level graphs, we give an
O(n log2 n/ log log n)-time algorithm that either finds such a drawing or
determines that no such drawing exists. Moreover, we consider the par-
tial drawing extension problem, where we seek to extend an immutable
drawing of a subgraph to a drawing of the whole graph, and the simul-
taneous drawing problem, which asks about the existence of drawings
of two graphs whose restrictions to their shared subgraph coincide. We
present O(n4/3 log n)-time and O(λn10/3 log n)-time algorithms for these
respective problems on proper level-planar graphs.

We complement these positive results by showing that testing whether
non-proper level graphs admit level-planar drawings with λ slopes is NP-
hard even in restricted cases.

1 Introduction

Directed graphs explaining hierarchy naturally appear in multiple industrial and
academic applications. Some examples include PERT diagrams, UML compo-
nent diagrams, text edition networks [1], text variant graphs [19], philogenetic
and neural networks. In these, and many other applications, it is essential to
visualize the implied directed graph so that the viewer can perceive the hierar-
chical structure it contains. By far the most popular way to achieve this is to
apply the Sugyiama framework – a generic network visualization algorithm that
results in a drawing where each vertex lies on a horizontal line, called layer, and
each edge is directed from a lower layer to a higher layer [14].

The Sugyiama framework consists of several steps: elimination of directed
cycles in the initial graph, assignement of vertices to layers, vertex ordering and
coordinate assignement. During each of these steps several criteria are optimized,
by leading to more readable visualizations, see e.g. [14]. In this paper we con-
centrate on the last step of the framework, namely coordinate assignment. Thus,
the subject of our study are level graphs defined as follows. Let G = (V,E) be
a directed graph. A k-level assignment of G is a function � : V → {1, 2, . . . , k}
that assigns each vertex of G to one of k levels. We refer to G together with � as
to a (k-)level graph. The length of an edge (u, v) is defined as �(v)− �(u). We say
that G is proper if all edges have length one. The level graph shown in Fig. 1(a)
is proper, whereas the one shown in (b) is not. For a non-proper level graph G

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 559–572, 2019.
https://doi.org/10.1007/978-3-030-35802-0_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_42&domain=pdf
https://doi.org/10.1007/978-3-030-35802-0_42


560 G. Brückner et al.

there exists a proper subdivision obtained by subdividing all edges with length
greater than one which result in a proper graph.

A level drawing Γ of a level graph G maps each vertex v ∈ V to a point
on the horizontal line with y-coordinate �(v) and a real x-coordinate Γ (v), and
each edge to a y-monotone curve between its endpoints. A level drawing is called
level-planar if no two edges intersect except in common endpoints. It is straight-
line if the edges are straight lines. A level drawing of a proper (subdivision of a)
level graph G induces a total left-to-right order on the vertices of a level. We say
that two drawings are equivalent if they induce the same order on every level.
An equivalence class of this equivalence relation is an embedding of G. We refer
to G together with an embedding to as embedded level graph G. The third step
of Sugyiama framework, vertex ordering, results in an embedded level graph.

The general goal of the coordinate assignment step is to produce a final
visualization while further improving its readability. The criteria of readability
that have been considered in the literature for this step include straightness and
verticality of the edges [14]. Here we study the problem of coordinate assignment
step with bounded number of slopes. The slope of an edge (u, v) in Γ is defined
as (Γ (v) − Γ (u))/(�(v) − �(u)). For proper level graphs this simplifies to Γ (v) −
Γ (u). We restrict our study to drawings in which all slopes are non-negative; such
drawings can be transformed into drawings with negative slopes by shearing; see
Fig. 1. A level drawing Γ is a λ-slope drawing if all slopes in Γ appear in the
set {0, 1, . . . , λ−1}. We study embedding-preserving straight-line level-planar λ-
slope drawings, or λ-drawings for short and refer to the problem of finding these
drawings as λ-Drawability. Since the possible edge slopes in a λ-drawing are
integers all vertices lie on the integer grid.

Fig. 1. Shearing drawings to change the slopes. In (a), the left drawing with slopes 0
and 1 is transformed into the right orthogonal drawing, i.e., one with slopes −1 and 1.
In (b), the left drawing with slopes 0, 1 and 2 is transformed into a drawing with
slopes −1, 0 and 1.

Related Work. The number of slopes used for the edges in a graph drawing
can be seen as an indication of the simplicity of the drawing. For instance, the
measure edge orthogonality, which specifies how close a drawing is to an orthog-
onal drawing, where edges are polylines consisting of horizontal and vertical
segments only, has been proposed as a measure of aesthetic quality of a graph



Level-Planar Drawings with Few Slopes 561

drawing [31]. In a similar spirit, Kindermann et al. studied the effect reducing the
segment complexity on the aesthetics preference of graph drawings and observed
that in some cases people prefer drawings using lower segment complexity [22].
More generally, the use of few slopes for a graph drawing may contribute to the
formation of “Prägnanz” (“good figure” in German) of the visualization, that
accordingly to the Gestalt law of Prägnanz, or law of simplicity, contributes to
the perceived quality of the visualizations. This is design principle often guides
the visualization of metro maps. See [28] for a survey of the existing approaches,
most of which generate octilinear layouts of metro maps, and [27] for a recent
model for drawing more general k-linear metro maps.

Level-planar drawing with few slopes have not been considered in the liter-
ature but drawings of undirected graphs with few slopes have been extensively
studied. The (planar) slope number of a (planar) graph G is the smallest num-
ber s so that G has a (planar) straight-line drawing with edges of at most s dis-
tinct slopes. Special attention has been given to proving bounds on the (planar)
slope number of undirected graph classes [4,9–12,20,21,23,24,29]. Determining
the planar slope number is hard in the existential theory of reals [16].

Several graph visualization problems have been considered in the partial and
simultaneous settings. In the partial drawing extension problem, one is presented
with a graph and an immutable drawing of some subgraph thereof. The task is
to determine whether the given drawing of the subgraph can be completed to
a drawing of the entire graph. The problem has been studied for the planar
setting [25,30] and also the level-planar setting [8]. In the simultaneous drawing
problem, one is presented with two graphs that may share some subgraph. The
task is to draw both graphs so that the restrictions of both drawings to the shared
subgraph are identical. We refer the reader to [5] for an older literature overview.
The problem has been considered for orthogonal drawings [2] and level-planar
drawings [3]. Up to our knowledge, neither partial nor simultaneous drawings
have been considered in the restricted slope setting.

Contribution. We introduce and study the λ-Drawability problem. To solve
this problem for proper level graphs, we introduce two models. In Sect. 3 we
describe the first model, which uses a classic integer-circulation-based approach.
This model allows us to solve the λ-Drawability in O(n log3 n) time and
obtain a λ-drawing within the same running time if one exists. In Sect. 4, we
describe the second distance-based model. It uses the duality between flows
in the primal graph and distances in the dual graph and allows us to solve
the λ-Drawability in O(n log2 n/ log log n) time. We also address the partial
and simultaneous settings. The classic integer-circulation-based approach can
be used to extend connected partial λ-drawings in O(n log3 n) time. In Sect. 5,
we build on the distance-based model to extend not-necessarily-connected par-
tial λ-drawings in O(n4/3 log n) time, and to obtain simultaneous λ-drawings
in O(λn10/3 log n) time if they exist. We finish with some concluding remarks
in Sect. 6 and refer to the full version [7] for a proof that 2-Drawability is
NP-hard even for biconnected graphs where all edges have length one or two.



562 G. Brückner et al.

2 Preliminaries

Let Γ be a level-planar drawing of an embedded level-planar graph G. The width
of Γ is defined as maxv∈V Γ (v) − minv∈V Γ (v). An integer x̄ is a gap in Γ if
it is Γ (v) �= x̄ for all v ∈ V , Γ (v1) < x̄ and Γ (v2) > x̄ for some v1, v2 ∈ V ,
and Γ (u) < x̄ < Γ (v) for no edge (u, v) ∈ E. A drawing Γ is compact if it has
no gap. Note that a λ-drawing of a connected level-planar graph is inherently
compact. While in a λ-drawing of a non-connected level-planar graph every gap
can be eliminated by a shift. The fact that we only need to consider compact λ-
drawings helps us to limit their width. Thus, any compact λ-drawing has a width
of at most (λ − 1)(n − 1).

Let u and v be two vertices on the same level i. With [u, v]G (or [u, v] when G
is clear from the context) we denote the set of vertices that contains u, v and all
vertices in between u and v on level i in G. We say that two vertices u and v
are consecutive in G when [u, v] = {u, v}. Two edges e = (u,w), e′ = (v, x) are
consecutive in G when the only edges with one endpoint in [u, v]G and the other
endpoint in [w, x]G are e and e′.

A flow network F = (N,A) consists of a set of nodes N connected by a set of
directed arcs A. Each arc has a demand specified by a function d : A → N0 and
a capacity specified by a function c : A → N ∪ {∞} where ∞ encodes unlimited
capacity. A circulation in F is a function ϕ : A → N0 that assigns an integral flow
to each arc of F and satisifies the two following conditions. First, the circulation
has to respect the demands and capacities of the arcs, i.e., for each arc a ∈ A it
is d(a) ≤ ϕ(a) ≤ c(a). Second, the circulation has to respect flow conservation,
i.e., for each node v ∈ N it is

∑
(u,v)∈A ϕ(u, v) =

∑
(v,u)∈A ϕ(v, u). Depending

on the flow network no circulation may exist.

3 Flow Model

In this section, we model the λ-Drawability as a problem of finding a circu-
lation in a flow network. Let G be an embedded proper k-level graph together
with a level-planar drawing Γ . As a first step, we add two directed paths pleft
and pright that consist of one vertex on each level from 1 to k to G. Insert pleft
and pright into Γ to the left and right of all other vertices as the left and right
boundary, respectively. See Fig. 2(a) and (c). From now on, we assume that G
and Γ contain the left and right boundary.

The flow network Fλ
G consists of nodes and arcs and is similar to a directed

dual of G with the difference that it takes the levels of G into account. In par-
ticular, for every edge e of G, Fλ

G contains two nodes eleft and eright, in the left
and the right faces incident to e, and a dual slope arc e� = (eright, eleft) with
demand 0 and capacity λ − 1; see the blue arcs in Fig. 2(b) and (c). The flow
across e� determines the slope of e. Additionally, for every pair of consecutive
vertices u, v we add two nodes [u, v]low and [u, v]high to Fλ

G and connect them by
a space arc [u, v]�; see the red arcs in Fig. 2(b) and (c). The flow across [u, v]�

determines the space between u and v. The space between u and v needs to be



Level-Planar Drawings with Few Slopes 563

Fig. 2. (a) An embedded level graph G. (b) The definition of the arcs of the flow
network. (c) The graph G together with the paths pleft and pright in black. The resulting
flow network F λ

G (c) consists of the blue slope arcs and the red space arcs, its nodes
are formed by merging the nodes in the gray areas. The red space arcs have a demand
of 1 and a capacity of (λ − 1)(n − 1) and the blue slope arcs have a demand of zero
and a capacity of λ − 1.

at least one to prevent u and v from colliding and can be at most (λ − 1)(n − 1)
due to the restriction to compact drawings. So, assign to [u, v]� a demand of
one and a capacity of (λ − 1)(n − 1). To obtain the final flow network we merge
certain nodes. Let e = (u,w) and e′ = (v, x) be consecutive edges. Merge the
nodes eright, e

′
left, the nodes {{u′, v′}high : ∀u′, v′ consecutive in [u, v]} and the

nodes {{w′, x′}low : ∀w′, x′ consecutive in [w, x]} into a single node. Next, merge
all remaining source and sink nodes into one source node s and one sink node t,
respectively. See Fig. 2(c), where the gray areas touch nodes that are merged
into a single node. Finally, insert an arc from t to s with unlimited capacity.

The network Fλ
G is designed in such a way that the circulations in Fλ

G corre-
spond bijectively to the λ-drawings of G. Let Γ be a drawing of G and let x be
the function that assigns to each vertex of G its x-coordinate in Γ . We define a
dual circulation x� as follows. Recall that every arc a of Fλ

G is either dual to an
edge of G or to two consecutive vertices in G. Hence, the left and right incident
faces fleft and fright of a in Fλ

G contain vertices of G. Define the circulation x� by
setting x�(a) := x(fright) − x(fleft). We remark the following, although we defer
the proof to the next section.

Lemma 1. Let G be an embedded proper level-planar graph together with a λ-
drawing Γ . The dual x� of the function x that assigns to each vertex of G its x-
coordinate in Γ is a circulation in Fλ

G .

In the reverse direction, given a circulation ϕ in Fλ
G we define a dual func-

tion ϕ� that, when interpeted as assigning an x-coordinate to the vertices of G,
defines a λ-drawing of G. Refer to the level-1-vertex pright as vright. Start by
setting ϕ�(vright) = 0, i.e., the x-coordinate of vright is 0. Process the remaining
vertices of the right boundary in ascending order with respect to their levels.
Let (u, v) be an edge of the right boundary so that u has already been pro-
cessed and v has not been processed yet. Then set ϕ�(v) = ϕ�(u) + ϕ((u, v)�),
where (u, v)� is the slope arc dual to (u, v). Let w, x be a pair of consecutive



564 G. Brückner et al.

vertices so that x has already been processed and w has not yet been processed
yet. Then set ϕ�(w) = ϕ�(x) + ϕ([w, x]�), where [w, x]� is a space arc. It turns
out that ϕ� defines a λ-drawing of G.

Lemma 2. Let G be an embedded proper level-planar graph, let λ ∈ N and let ϕ
be a circulation in Fλ

G . Then the dual ϕ�, when interpeted as assigning an x-
coordinate to the vertices of G, defines a λ-drawing of G.

While both Lemmas 1 and 2 can be proven directly, we defer their proofs to
Sect. 4 where we introduce the distance model and prove Lemmas 3 and 4, the
stronger versions of Lemmas 1 and 2, respectively. Combining Lemmas 1 and 2
we obtain the following.

Theorem 1. Let G be an embedded proper level-planar graph and let λ ∈ N.
The circulations in Fλ

G correspond bijectively to the λ-drawings of G.

Theorem 1 implies that a λ-drawing can be found by applying existing flow
algorithms to Fλ

G . For that, we transform our flow network with arc demands to
the standard maximum flow setting without demands by introducing new sources
and sinks. We can then use the O(n log3 n)-time multiple-source multiple-sink
maximum flow algorithm due to Borradaile et al. [6] to find a circulation in Fλ

G
or to determine that no circulation exists.

Corollary 1. Let G be an embedded proper level-planar graph and let λ ∈ N.
It can be tested in O(n log3 n) time whether a λ-drawing of G exists, and if so,
such a drawing can be found within the same running time.

3.1 Connected Partial Drawings

Recall that a partial λ-drawing is a tuple (G,H,Π), where G is an embedded
level-planar graph, H is an embedded subgraph of G and Π is a λ-drawing
of H. We say that (G,H,Π) is λ-extendable if G admits a λ-drawing Γ whose
restriction to H is Π. Here Γ is referred to as a λ-extension of (G,H,Π).

In this section we show that in case H is connected, we can use the flow
model to decide whether (G,H,Π) is λ-extendable. Observe that when H is
connected Π is completely defined by the slopes of the edges in H up to horizontal
translation. Let Fλ

G be the flow network corresponding to G. In order to fix the
slopes of an edge e of H to a value �, we fix the flow across the dual slope arc e�

in H to �. Checking whether a circulation in the resulting flow network exists
can be reduced to a multiple-source multiple-sink maximum flow problem, which
once again can be solved by the algorithm due to Borradaile et al. [6].

Corollary 2. Let (G,H,Π) be a partial λ-drawing where H is connected. It can
be tested in O(n log3 n) time whether (G,H,Π) is λ-extendable, and if so, a
corresponding λ-extension can be constructed within the same running time.



Level-Planar Drawings with Few Slopes 565

4 Dual Distance Model

A minimum cut (and, equivalently, the value of the maximum flow) of an st-
planar graph G can be determined by computing a shortest (s�, t�)-path in a
dual of G [17,18]. Hassin showed that to construct a flow, it is sufficient to
compute the distances from s� to all other vertices in the dual graph [13]. To
the best of our knowledge, this duality has been exploited only for flow networks
with arc capacities, but not with arc demands. In this section, we extend this
duality to arcs with demands. The resulting dual distance model improves the
running time for the λ-Drawability, lets us test the existence of λ-extensions
of partial λ-drawings for non-connected subgraphs, and allows us to develop an
efficient algorithm for testing the existence of simultaneous λ-drawings.

We define Dλ
G to be the directed dual of Fλ

G as follows. Let a = (u, v) be an
arc of Fλ

G with demand d(a) and capacity c(a). Further, let fleft and fright denote
the left and the right faces of a in Fλ

G , respectively. The dual Dλ
G contains fleft

and fright as vertices connected by one edge (fleft, fright) with length c(a) and
another edge (fright, fleft) with length −d(a); see Fig. 3.

Observe that to obtain Fλ
G from G (with left and right paths pleft and pright)

we added dual arcs to edges of G and dual arcs to the space between two consec-
utive vertices on one level. Consider for a moment the graph G′ obtained from G
by adding edges (u, v) for all consecutive vertices u v, where u is to the right
of v. Graph G′ and Dλ

G are identical and therefore Dλ
G has the vertex set V of G

and contains a subset of its edges. Recall that the dual slope arcs in Fλ
G have

demand 0 and capacity λ − 1, therefore the edges of Dλ
G that connect vertices

on different layers have non-negative length. While the edges of Dλ
G between

consecutive vertices on the same level have length −1.

Fig. 3. Definition of the dual edges for a flow network arc a = (u, v) with demand d(a)
and capacity c(a). Let fleft and fright denote the vertices corresponding to the faces to
the left and right of a in F λ

G . Then add the edge (fleft, fright) with length c(a) and the
reverse edge (fright, fleft) with length −d(a). Edges with infinite length are not created
because they do not add constraints.

A distance labeling is a function x : V → Z that for every edge (u, v) of Dλ
G

with length l satisfies x(v) ≤ x(u)+l. We also say that (u, v) imposes the distance
constraint x(v) ≤ x(u)+ l. A distance labeling for Dλ

G is the x-coordinate assign-
ment for a λ-drawing: For an edge (u, v) of Dλ

G where u, v are consecutive vertices
in G, the distance labeling guarantees x(v) ≤ x(u) − 1, i.e., the consecutive ver-
tices are in the correct order and do not overlap. If an edge (u, v) between layers
has length λ−1, then the distance labeling ensures x(v) ≤ x(u)+λ−1, i.e., (u, v)



566 G. Brückner et al.

Fig. 4. The distance network D2
G obtained from the flow network F 2

G shown in Fig. 2(c).
The x-coordinate of every vertex is its distance from vright in D2

G . All red arcs have
length −1, all blue arcs pointing up have length 1 and all blue arcs pointing down have
length 0. For every red arc there exists an arc in the reverse direction with length ∞.
We omit these arcs because they do not impose any constraints on the shortest distance
labeling.

has a slope in {0, . . . , λ−1}. Computing the shortest distances from vright in Dλ
G

to every vertex (if they are well-defined) gives a distance labeling that we refer to
as the shortest distance labeling. A distance labeling of Dλ

G does not necessarily
exist. This is the case when Dλ

G contains a negative cycle, e.g., when the in- or
out-degree of a vertex in G is strictly larger than λ. For a distance labeling x
of Dλ

G we define a dual circulation x� by setting x�(a) := x(fright) − x(fleft) for
each arc a of Fλ

G with left and right incident faces fleft and fright (Fig. 4).

Lemma 3. Let G be an embedded level-planar graph and Γ be a λ-drawing of G.
The function x that assigns to each vertex of G its x-coordinate in Γ is a distance
labeling of Dλ

G and its dual x� is a circulation in Fλ
G .

Proof. Since Γ preserves the embedding of G, for each consecutive vertices v, u,
with v preceeding u in G it holds that Γ (v) < Γ (u). Since Γ is a grid drawing
Γ (v) ≤ Γ (u) − 1, which implies x(v) ≤ x(u) + �, where � = −1 is the length
of (u, v). Since Γ is a λ-drawing, i.e. every edge (u, v) between the two levels
has a slope in {0, . . . λ − 1}, it holds that Γ (u) ≤ Γ (v) ≤ Γ (u) + λ − 1, which
implies x(u) ≤ x(v) + 0, for the edge (v, u) of Dλ

G with length zero and x(v) <
x(u) + λ − 1 for the edge (u, v) of Dλ

G with length λ − 1. Hence, x is a distance
labeling of Dλ

G .
We now show that x� is a circulation in Fλ

G . Let f1, f2, . . . , ft, ft+1 = f1 be
the faces incident to some node v of Fλ

G in counter-clockwise order. Let a be the
arc incident to v and dual to the edge between fi and fi+1 with 1 ≤ i ≤ t. If a
is an incoming arc, it adds a flow of x(fi+1) − x(fi) to v. If a is an outgoing
arc, it removes a flow of x(fi) − x(fi+1) from v, or, equivalently, it adds a flow
of x(fi+1) − x(fi) to v. Therefore, the flow through v is

∑
i (x(fi+1) − x(fi)).

This sum cancels to zero, i.e., the flow is preserved at v. Recall that the
edge (fleft, fright) with length c(a) in Dλ

G ensures x(fright) ≤ x(fleft) + c(a),
which gives x�(a) ≤ c(a). So, no capacities are exceeded. Analogously, the
edge (fright, fleft) with length −d(a) in Dλ

G ensures x(fleft) ≤ x(fright) − d(a),



Level-Planar Drawings with Few Slopes 567

which gives x�(a) ≥ d(a). Hence, all demands are fulfilled and x� is indeed a
circulation in Fλ

G . 
�
Recall from Sect. 3 that for a circulation ϕ in Fλ

G we define a dual drawing ϕ�

by setting the x-coordinates of the vertices of G as follows. For the lowest vertex
of the right boundary set ϕ�(vright) = 0. Process the remaining vertices of the
right boundary in ascending order with respect to their levels. Let (u, v) be an
edge of the right boundary so that u has already been processed and v has
not been processed yet. Then set ϕ�(v) = ϕ�(u) + ϕ((u, v)�), where (u, v)�

is the slope arc dual to (u, v). Let w, x be a pair of consecutive vertices so
that x has already been processed and w has not yet been processed yet. Then
set ϕ�(w) = ϕ�(x)+ϕ([w, x]�), where [w, x]� is a space arc. It turns out that ϕ�

is a distance labeling of Dλ
G and a λ-drawing of G.

Lemma 4. Let G be an embedded level-planar graph, let λ ∈ N, and let ϕ be
a circulation in Fλ

G . The dual ϕ� is a distance labeling of Dλ
G and the drawing

induced by interpreting the distance label of a vertex as its x-coordinate is a λ-
drawing of G.

Proof. We show that ϕ� is a distance labeling in Dλ
G . The algorithm described

above assings a value to every vertex of Dλ
G . We now show that ϕ� is indeed a

distance labeling by showing that every edge satisfies a distance constraint.
Observe that the distance constraints imposed by edges dual to the space arcs

are satisfied by construction. To show that the distance constraints imposed by
edges dual to the slope arcs are also satisfied, we prove that for every edge (u, v),
it holds that ϕ�(v) = ϕ�(u)+ϕ((u, v)�). We refer to this as condition C for short.
Since ϕ((u, v)�) ≤ λ − 1 and the length � of (u, v) is λ − 1 we obtain ϕ�(v) =
ϕ�(u) + �, which implied that φ� is a distance labeling of Dλ

G .
The proof is by induction based on the bottom to top and right to left

order among the edges of Dλ
G . We say that (a, b) precedes (c, d) if either �(a) <

�(c), or �(a) = �(c) and a is to the right of c, or �(a) = �(c) and b is to the
right of d (in case a = c). For the base case observe that the edges with both
end-vertices on the first level and the edges of pright satisfy condition C by the
definition of ϕ�. Now let (u, v) be an edge not addressed in the base case and
assume that for every edge (u′, v′) preceding edge (u, v) condition C holds. For
the inductive step we show that condition C also holds for (u, v). Let (u′, v′)
denote the edge to the right of (u, v) so that (u, v) and (u′, v′) are consecutive;
see Fig. 5. Because v is not the rightmost vertex on its level this edge exists. Let A
denote the set of space arcs v1v

�
2 in Fλ

G with v1, v2 ∈ [v′, v]. Analogously, let B
denote the set of space arcs u1u

�
2 in Fλ

G with u1, u2 ∈ [u′, u]. It is ϕ�(v) = ϕ�(v′)+∑
a∈A ϕ(a) by definition of ϕ�. Further, by induction hypothesis and since (u′, v′)

precedes (u, v) it holds that ϕ�(v′) = ϕ�(u′) + ϕ((u′, v′)�). Inserting the latter
into the former equation, we obtain ϕ�(v) = ϕ�(u′) + ϕ((u′, v′)�) +

∑
a∈A ϕ(a).

Again, by definition of ϕ�, it is ϕ�(u) = ϕ�(u′)+
∑

b∈B ϕ(b). By subtracting ϕ�(u)
from ϕ�(v) we obtain

ϕ�(v) = ϕ�(u) −
∑

b∈B

ϕ(b) + ϕ((u′, v′)�) +
∑

a∈A

ϕ(a) (1)



568 G. Brückner et al.

Flow conservation on the vertex of Fλ
G to which edges of A and B are incident

gives ϕ((u, v)�)−∑
a∈A ϕ(a)−ϕ((u′, v′)�)+

∑
b∈B ϕ(b) = 0. Solving this equation

for ϕ(u, v) and inserting it into (1) yields ϕ�(v) = ϕ�(u) + ϕ((u, v)�), i.e. the
condition C holds for (u, v). Therefore ϕ� is a distance labeling, which we have
shown to define a λ-drawing of G. 
�

Fig. 5. Proof of Lemma 4. Sets A and B contain the outgoing and incoming red flow
network arcs incident to the gray oval, respectively.

Because Dλ
G is planar we can use the O(n log2 n/ log log n)-time shortest path

algorithm due to Mozes and Wulff-Nilsen [26] to compute the shortest distance
labeling. This improves our O(n log3 n)-time algorithm from Sect. 3.

Theorem 2. Let G be an embedded proper level-planar graph. The distance label-
ings of Dk

G correspond bijectively to the λ-drawings of G. If such a drawing exists,
it can be found in O(n log2 n/ log log n) time.

5 Partial and Simultaneous Drawings

In this section we use the distance model from Sect. 4 to construct partial and
simultaneous λ-drawings. We start with introducing a useful kind of drawing.
Let Γ be a λ-drawing of G. We call Γ a λ-rightmost drawing when there exists
no λ-drawing Γ ′ with Γ (v) < Γ ′(v) for some v ∈ V . In this definition, we
assume x(Γ (vright)) = x(Γ ′(vright)) = 0 to exclude trivial horizontal translations.
Hence, a drawing is rightmost when every vertex is at its rightmost position
across all level-planar λ-slope grid drawings of G. It is not trivial that a λ-
rightmost drawing exists, but it follows directly from the definition that if such
a drawing exists, it is unique. The following lemma establishes the relationship
between λ-rightmost drawings and shortest distance labelings of Dλ

G .

Lemma 5. Let G be an embedded proper level-planar graph. If Dλ
G has a shortest

distance labeling it describes the λ-rightmost drawing of G.

Proof. The shortest distance labeling of Dλ
G is maximal in the sense that for any

vertex v there exists a vertex u and an edge (u, v) with length l so that it is x(v) =
x(u) + l. Recall that the definition of distance labelings only requires x(v) ≤
x(u) + l. The claim then follows by induction over V in ascending order with
respect to the shortest distance labeling. 
�



Level-Planar Drawings with Few Slopes 569

5.1 Partial Drawings

Let (G,H,Π) be a partial λ-drawing. In Sect. 3.1 we have shown that the flow
model can be adapted to check whether (G,H,Π) has a λ-extension, in case H is
connected. In this section, we show how to adapt the distance model to extend
partial λ-drawings, including the case H is disconnected. Recall that the distance
label of a vertex v is its x-coordinate. A partial λ-drawing fixes the x-coordinates
of the vertices of H. The idea is to express this with additional constraints
in Dλ

G . Let vref be a vertex of H. In a λ-extension of (G,H,Π), the relative
distance along the x-axis between a vertex v of H and vertex vref should be dv =
Π(vref) − Π(v). This can be achieved by adding an edge (v, vref) with length dv

and an edge (vref , v) with length −dv. The first edge ensures that it is x(vref) ≤
x(v)+dv, i.e., x(v) ≥ x(vref)−dv and the second edge ensures x(v) ≤ x(vref)−d.
Together, this gives x(v) = x(vref) − dv. Let Dλ

G,Π be Dλ
G augmented by the

edges {(v, vref), (vref,v) : ∀v ∈ H} with lengths as described above.
To decide existence of λ-extension and in affirmative construct the corre-

sponding drawing we compute the shortest distance labeling in Dλ
G,Π . Observe

that this network can contain negative cycles and therefore no shortest dis-
tance labeling. Unfortunately, Dλ

G,Π is not planar, and thus we cannot use the
embedding-based algorithm of Mozes and Wulff-Nilsen. However, since all newly
introduced edges have vref as one endpoint, vref is an apex of Dλ

G , i.e., remov-
ing vref from Dλ

G,Π makes it planar. Therefore Dλ
G,Π can be recursively sepa-

rated by separators of size O(
√

n). We can therefore use the shortest-path algo-
rithm due to Henzinger et al. to compute the shortest distance labeling of Dλ

G,Π

in O(n4/3 log n) time [15].

Theorem 3. Let (G,H,Π) be a partial λ-drawing. In O(n4/3 log n) time it can
be determined whether (G,H,Π) has a λ-extension and in the affirmative the
corresponding drawing can be computed within the same running time.

5.2 Simultaneous Drawings

In the simultaneous λ-drawing problem, we are given a tuple (G1,G2) of two
embedded level-planar graphs that share a common subgraph G1∩2 = G1 ∩ G2.
We assume w.l.o.g. that G1 and G2 share the same right boundary and that the
embeddings of G1 and G2 coincide on G1∩2. The task is to determine whether
there exist λ-drawings Γ1, Γ2 of G1,G2, respectively, so that Γ1 and Γ2 coincide
on the shared graph G1∩2. The approach is the following. Start by computing the
rightmost drawings of G1 and G2. Then, as long as these drawings do not coincide
on G1∩2 add necessary constraints to Dλ

G1
and Dλ

G2
. This process terminates after

a polynomial number of iterations, either by finding a simultaneous λ-drawing,
or by determining that no such drawing exist.

Finding the necessary constraints works as follows. Suppose that Γ1, Γ2 are
the rightmost drawings of G1,G2, respectively. Because both G1 and G2 have the
same right boundary they both contain vertex vright. We define the coordinates
in the distance labelings of Dλ

G1
and Dλ

G2
in terms of this reference vertex.



570 G. Brückner et al.

Now suppose that for some vertex v of G1∩2 the x-coordinates in Γ1 and Γ2

differ, i.e., it is Γ1(v) �= Γ2(v). Assume Γ1(v) < Γ2(v) without loss of generality.
Because Γ1 is a rightmost drawing, there exists no drawing of G1 where v has
an x-coordinate greater than Γ1(v). In particular, there exist no simultaneous
drawings where v has an x-coordinate greater than Γ1(v). Therefore, we must
search for a simultaneous drawing where Γ2(v) ≤ Γ1(v). We can enforce this con-
straint by adding an edge (vright, v) with length Γ1(v) into Dλ

G2
. We then attempt

to compute the drawing Γ2 of G2 defined by the shortest distance labeling in Dλ
G2

.
This attempt produces one of two possible outcomes. The first possibility is that
there now exists a negative cycle in Dλ

G2
. This means that there exists no draw-

ing Γ2 of G2 with Γ2(v) ≤ Γ (v). Because Γ1 is a rightmost drawing, this means
that no simultaneous drawings of G1 and G2 exist. The algorithm then termi-
nates and rejects this instance. The second possiblity is that we obtain a new
drawing Γ2. This drawing is rightmost among all drawings that satisfy the added
constraint Γ2(v) ≤ Γ1(v). In this case there are again two possibilities. Either
we have Γ1(v) = Γ2(v) for each vertex v in G1∩2. In this case Γ1 and Γ2 are
simultaneous drawings and the algorithm terminates. Otherwise there exists at
least one vertex w in G1∩2 with Γ1(w) �= Γ2(w). We then repeat the procedure
just described for adding a new constraint.

We repeat this procedure of adding other constraints. To bound the number
of iterations, recall that we only consider compact drawings, i.e., drawings whose
width is at most (λ − 1)(n − 1). In each iteration the x-coordinate of at least
one vertex is decreased by at least one. Therefore, each vertex is responsible for
at most (λ − 1)(n − 1) iterations. The total number of iterations is therefore
bounded by n(λ − 1)(n − 1) ∈ O(λn2).

Note that due to the added constraints Dλ
G1

and Dλ
G2

are generally not pla-
nar. We therefore apply the O(n4/3 log n)-time shortest-path algorithm due to
Henzinger et al. that relies not on planarity but on O(

√
n)-sized separators to

compute the shortest distance labellings. This gives the following.

Theorem 4. Let G1,G2 be embedded level-planar graphs that share a common
subgraph G1∩2. In O(λn10/3 log n) time it can be determined whether G1,G2 admit
simultaneous λ-drawings and if so, such drawings can be computed within the
same running time.

6 Conclusion

In this paper we studied λ-drawings, i.e., level-planar drawings with λ slopes. We
model λ-drawings of proper level-planar graphs as integer flow networks. This
lets us find λ-drawings and extend connected partial λ-drawings in O(n log3 n)
time. We extend the duality between integer flows in a primal graph and shortest
distances in its dual to obtain a more powerful distance model. This distance
model allows us to find λ-drawings in O(n log2 n/ log log n) time, extend not-
necessarily-connected partial λ-drawings in O(n4/3 log n) time and find simulta-
neous λ-drawings in O(λn10/3 log n) time.



Level-Planar Drawings with Few Slopes 571

In the non proper case, testing the existence of a 2-drawing becomes NP-hard,
even for biconnected graphs with maximum edge length two [7].

References

1. FAUSTEDITION. http://www.faustedition.net/macrogenesis/dag
2. Angelini, P., Chaplick, S., Cornelsen, S., Da Lozzo, G., Di Battista, G., Eades,

P., Kindermann, P., Kratochv́ıl, J., Lipp, F., Rutter, I.: Simultaneous orthogonal
planarity. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 532–545.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50106-2 41

3. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Rutter,
I.: Beyond level planarity. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS,
vol. 9801, pp. 482–495. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
50106-2 37

4. Barát, J., Matouvsek, J., Wood, D.R.: Bounded-degree graphs have arbitrarily
large geometric thickness. Electr. J. Comb. 13(1), 3 (2006)

5. Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs.
In: Tamassia [32], pp. 349–381

6. Borradaile, G., Klein, P.N., Mozes, S., Nussbaum, Y., Wulff-Nilsen, C.: Multiple-
source multiple-sink maximum flow in directed planar graphs in near-linear time.
In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer
Science, pp. 170–179. IEEE Press, New York (2011)

7. Brückner, G., Krisam, N.D., Mchedlidze, T.: Level-planar drawings with few slopes.
CoRR, abs/1907.13558v1 (2019)

8. Brückner, G., Rutter, I.: Partial and constrained level planarity. In: Klein, P.N.
(ed.) Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 2000–2011. SIAM (2017)

9. Di Giacomo, E., Liotta, G., Montecchiani, F.: Drawing outer 1-planar graphs with
few slopes. J. Graph Algorithms Appl. 19(2), 707–741 (2015)

10. Dujmović, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs
with few slopes and segments. Comput. Geom. 38(3), 194–212 (2007)

11. Dujmović, V., Suderman, M., Wood, D.R.: Graph drawings with few slopes. Com-
put. Geom. 38(3), 181–193 (2007)

12. Di Giacomo, E., Liotta, G., Montecchiani, F.: Drawing subcubic planar graphs
with four slopes and optimal angular resolution. Theor. Comput. Sci. 714, 51–73
(2018)

13. Hassin, R.: Maximum flow in (s, t) planar networks. Inform. Process. Lett. 13(3),
107 (1981)

14. Healy, P., Nikolov, N.S.: Hierarchical drawing algorithms. In: Tamassia [32], pp.
409–453

15. Henzinger, M.R., Klein, P.N., Rao, S., Subramanian, S.: Faster shortest-path algo-
rithms for planar graphs. J. Comput. Syst. Sci. 55(1), 3–23 (1997)

16. Hoffmann, U.: On the complexity of the planar slope number problem. J. Graph
Algorithms Appl. 21(2), 183–193 (2017)

17. Te Chiang, H.: Integer Programming and Network Flows. Addison-Wesley, Reading
(1969)

18. Itai, A., Shiloach, Y.: Maximum flow in planar networks. SIAM J. Comput. 8(2),
135–150 (1979)

http://www.faustedition.net/macrogenesis/dag
https://doi.org/10.1007/978-3-319-50106-2_41
https://doi.org/10.1007/978-3-319-50106-2_37
https://doi.org/10.1007/978-3-319-50106-2_37


572 G. Brückner et al.

19. Jänicke, S., Geßner, A., Franzini, G., Terras, M., Mahony, S., Scheuermann, G.:
Traviz: a visualization for variant graphs. DSH 30(Suppl–1), i83–i99 (2015)

20. Keszegh, B., Pach, J., Pálvölgyi, D.: Drawing planar graphs of bounded degree
with few slopes. SIAM J. Discrete Math. 27(2), 1171–1183 (2013)

21. Keszegh, B., Pach, J., Pálvölgyi, D., Tóth, G.: Drawing cubic graphs with at most
five slopes. Comput. Geom. 40(2), 138–147 (2008)

22. Kindermann, P., Meulemans, W., Schulz, A.: Experimental analysis of the acces-
sibility of drawings with few segments. J. Graph Algorithms Appl. 22(3), 501–518
(2018)

23. Knauer, K.B., Micek, P., Walczak, B.: Outerplanar graph drawings with few slopes.
Comput. Geom. 47(5), 614–624 (2014)

24. Lenhart, W., Liotta, G., Mondal, D., Nishat, R.I.: Planar and plane slope number
of partial 2-trees. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp.
412–423. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03841-4 36

25. Mchedlidze, T., Nöllenburg, M., Rutter, I.: Extending convex partial drawings of
graphs. Algorithmica 76(1), 47–67 (2016)

26. Mozes, S., Wulff-Nilsen, C.: Shortest paths in planar graphs with real lengths
in O(nlog2n/loglogn) time. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS,
vol. 6347, pp. 206–217. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15781-3 18

27. Nickel, S., Nöllenburg, M.: Drawing k-linear metro maps. CoRR, abs/1904.03039
(2019)

28. Nöllenburg, M.: A survey on automated metro map layout methods. In: Schematic
Mapping Workshop. Essex, UK, April 2014

29. Pach, J., Pálvölgyi, D.: Bounded-degree graphs can have arbitrarily large slope
numbers. Electr. J. Comb. 13(1), N1 (2006)

30. Patrignani, M.: On extending a partial straight-line drawing. Int. J. Found. Com-
put. Sci. 17(5), 1061–1070 (2006)

31. Purchase, H.C.: Metrics for graph drawing aesthetics. J. Vis. Lang. Comput. 13(5),
501–516 (2002)

32. Tamassia, R. (ed.): Handbook on Graph Drawing and Visualization. Chapman and
Hall/CRC, London/Boca Raton (2013)

https://doi.org/10.1007/978-3-319-03841-4_36
https://doi.org/10.1007/978-3-642-15781-3_18
https://doi.org/10.1007/978-3-642-15781-3_18


Graph Drawing Contest Report



Graph Drawing Contest Report

Philipp Kindermann1(B), Tamara Mchedlidze2, and Ignaz Rutter3

1 Universität Würzburg, Würzburg, Germany
philipp.kindermann@uni-wuerzburg.de

2 Karlsruhe Institute of Technology, Karlsruhe, Germany
mched@iti.uka.de

3 Universität Passau, Passau, Germany
rutter@fim.uni-passau.de

Abstract. This report describes the 26th Annual Graph Draw-
ing Contest, held in conjunction with the 27th International Sym-
posium on Graph Drawing and Network Visualization (GD’19) in
Pr̊uhonice/Prague, Czech Republic. The mission of the Graph Draw-
ing Contest is to monitor and challenge the current state of the art in
graph-drawing technology.

1 Introduction

Following the tradition of the past years, the Graph Drawing Contest was divided
into two parts: the creative topics and the live challenge.

Creative topics were comprised by two data sets. The first data set described
appearances of superheroes in the Marvel Cinematic Universe movie. The sec-
ond data set was comprised by occurrences of ingredients in popular meals. The
data sets were published a year in advance, and contestants submitted their visu-
alizations before the conference started. Submissions were evaluated according
to aesthetic appeal, domain-specific requirements, readability and clarity of the
visualization and novelty of the visualization concept.

The live challenge took place during the conference in a format similar to a
typical programming contest. Teams were presented with a collection of challenge
graphs and had one hour to submit their highest scoring drawings. This year’s
topic was to minimize the number of crossings an upward straight-line drawing
of a graph with vertex locations restricted to a grid.

Overall, we received 29 submissions: 10 submissions for the creative topics
and 19 submissions for the live challenge.

2 Creative Topics

The general goal of the creative topics was to model each data set as a graph and
visualize it with complete artistic freedom, and with the aim of communicating
as information much as possible from the provided data in the most readable
and clear way.
c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 575–583, 2019.
https://doi.org/10.1007/978-3-030-35802-0_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_43&domain=pdf
https://doi.org/10.1007/978-3-030-35802-0_43


576 P. Kindermann et al.

We received 6 submissions for the first topic, and 4 for the second. For each
topic, we selected the top three submissions before the conference, which were
printed on large poster boards and presented at the Graph Drawing Symposium.
During the conference dinner, we presented these submissions and announced
the winners. We will now review the top three submissions for each topic (for a
complete list of submissions, refer to http://www.graphdrawing.org/gdcontest/
contest2019/results.html).

2.1 Marvel Cinematic Universe

The Marvel Cinematic Universe is a media franchise and shared universe that is
centered on a series of superhero films, based on characters that appear in comic
books published by Marvel. The data set describes a selection of 28 characters
(heroes) and in which of the 24 movies released so far they appeared. The data
was compiled from the Marvel Cinematic Universe Wiki1.

Third Place: Velitchko Filipov, Alessio Arleo, Davice Ceneda,
and Silvia Miksch (TU Vienna). The committee appreciated the extensive
use of glyphs, the use of the non-provided information on when the movies were
filmed, the clarity, the minimalistic style, and the aesthetics of the visualization.

Second Place: Markus Wallinger (TU Vienna). The committee valued the
choice of the metro-map visualization metaphor, the well-constructed layout, the
use of glyphs. On the other hand the committee observed that the visualization
1 https://marvelcinematicuniverse.fandom.com/wiki/Marvel Cinematic Universe Wiki.

http://www.graphdrawing.org/gdcontest/contest2019/results.html
http://www.graphdrawing.org/gdcontest/contest2019/results.html
https://marvelcinematicuniverse.fandom.com/wiki/Marvel_Cinematic_Universe_Wiki


Graph Drawing Contest Report 577

would gain in readability from a better choice of color palette and from the
selective use of text labels on the lines.

Wasp Ant-Man

Winter
Soldier

Falcon

Black Panther

Vision Scarlet Witch

Nebula

Gamora

Rocket
Raccoon

Star Lord

Drax the Destroyer

Groot

Mantis

Spider-Man

Black Widow

War Machine

Hulk

Doctor Strange

Loki

Thor

Nick Fury Captain Marvel

Quicksilver

Odin

AM AE

W

G1 AE

G3

G2AI
SH

SHA

AEM
TDTR

T

TD

AU

T

TR

AE A

AI

AE AM

CW

AIAE

AE AM

AE

CF

B

D

AI

H

AE

I3

AE AU

A

TR

AU

A

AE

I2

AE

AI

I2 SFI CW

I2 SF CW

AE

A AU

CW

Key to
lines

AM

W

A

AU

M

AE I

AI I2

B I3

CF T

CW TD

CC TR

Ant-Man and the Wasp

Ant-Man

The Avengers

Avengers: Age of Ultron

Avengers: Endgame

Avengers: Infinity War

Black Panther

Captain America: The First Avenger

Captain America: Winter Soldier

Captain America: Civil War

G1

G2

G3

Guardians of the Galaxy

Guardians of the Galaxy Vol. 2

Guardians of the Galaxy Vol. 2

Captain Marvel

Iron Man

Iron Man 2

Iron Man 3

Thor

Thor: The Dark World

Thor: Ragnarok

D SF

H SH

Doctor Strange

The Incredible Hulk

Spider Man: Far from Home

Spider Man: Homecoming

SH

SH

AIAE

CF

AE

AIAE

AU

AE AU A

AI

I

AE

I3

AE AU

Metro Network of the Marvel Cinematic Universe

Iron Man

Hawkeye

Markus Wallinger

Winner: Evmorfia Argyriou, Christian Brunnermeier, Anne Eberle,
and Johannes Rössel (yWorks). The committee especially valued the mini-
malism and the clarity of the presentation, the choice of the hierarchical layout
resembling Sankey diagrams, the use of the non-provided information such as
the timeline and the screen time, the choice of the color pallete and the glyphs.
The committee was also impressed by the design choices of the overall poster.
The visualization and an explanation of the drawing process is available online:
http://yworks.com/marvel.

http://yworks.com/marvel


578 P. Kindermann et al.

In this visualization of the Marvel Cinematic Universe and its charac-
ters, we’ve arranged all movies in their in-universe timeline. Characters
are shown as edges that pass through the movies they appear in. The
thickness of edges models the relative screen time of characters within
a movie. The overall layout is automatically computed and uses yFiles’
support for Sugiyama-style graph drawing with several adjustments and
enhancements for parts of the graph. The accompanying interactive ap-
plication (yworks.com/marvel) also allows to filter the graph by charac-
ter or film series.
Evmorfia Argyriou

2.2 Meal Ingredients

The data set describes 151 food recipes extracted from the TheMealDB
database2. TheMealDB was built in 2016 to provide a free data source API
for recipes online. It originated on the Kodi forums as a way to browse recipes
on a TV.

The provided data set consisted of three types. There were 297 food ingre-
dients, e.g. “Beef”, “Flour”, “Red Wine”. There were 11 areas (countries) that
are popular for their dishes around the globe: “American”, “British”, “Chi-
nese”, “French”, “Greek”, “Indian”, “Italian”, “Japanese”, “Mexican”, “Span-
ish”, “Thai”. Finally, there were 151 recipes that contain a list of ingredients
and belong to one area.

The task was to visualize the data either in a form of a graph or any other
form the authors prefer. The authors could decide whether they omit relatively
uninformative parts of the data.

Third Place: James Wood, Marni Torkel, Ereina Gomez, Amyra Mei-
diana, Peter Eades, and Seok-Hee Hong (University of Sydney). The
committee noticed that the constructed graph of meals, where the edges repre-
sent shared ingredients, and the graph of ingredients, where the edges represent
the number of meals using both ingredients, provide a interesting overview on
the data, by revealing the clusters of similar meals and relative ingredients.

2 https://www.themealdb.com.

https://www.themealdb.com


Graph Drawing Contest Report 579

Second Place: Elektra Kypridemou (University of Liverpool) and
Christos Rodosthenous (Open University of Cyprus). The committee
appreciated the interactive design of the system which allowed to investigate the
data set in details. The interactive tool is available online: http://cognition-srv1.
ouc.ac.cy/food db.

Winner: Guangping Li, Soeren Nickel, Martin Nöllenburg, Ivan Viola,
and Hsiang-Yun Wu (TU Vienna). The committee valued the attempt
to visualize both the details of the data set but also an overview, which was
presented by showing the clusters of the meals by the country of origin. The
committee also valued the idea of splitting the ingredient vertices to untangle
the visualization.

http://cognition-srv1.ouc.ac.cy/food_db
http://cognition-srv1.ouc.ac.cy/food_db


580 P. Kindermann et al.

Common ingredient

Globally unique ingredient

Onion

Feta

Ingredient highlighting (Soy Sauce)

Recipe connection (Worcestershire sauce) Recipe connection (Puff pastry)

Recipe connection (Egg white)
Pumpkin Pie Recipe

Wontons Selected recipe

Country-unique ingredientPrawns

Ingredient used in recipeEgg Dough

Created by Guanping Li, Soeren Nickel, Martin Nöllenburg, Ivan Viola, Hsiang-Yun Wu

Example highlighting

In our World Map of Recipes, we used a multi-level force-based algo-
rithm to partition screen space among the countries and to harmonize
the label territory. The visibility management is achieved by duplicating
high-frequency ingredient nodes coupled with a spanning-tree-based vi-
sual integration. The technique automatically grouped countries sharing
common ingredients in their recipes close to each other, which happened
to produce continental clusters, and it visually discriminates ingredient
nodes with different levels of importance. It also allows us to highlight
ingredients and recipes of interest using an occlusion-free curve routing
scheme.
Martin Nöllenburg

3 Live Challenge

The live challenge took place during the conference and lasted exactly one hour.
During this hour, local participants of the conference could take part in the man-
ual category (in which they could attempt to draw the graphs using a supplied
tool3), or in the automatic category (in which they could use their own software
to draw the graphs). At the same time, remote participants could also take part
in the automatic category.
3 http://graphdrawing.org/gdcontest/tool/.

http://graphdrawing.org/gdcontest/tool/


Graph Drawing Contest Report 581

The challenge focused on minimizing the number of crossings in an upward
straight-line embedding of a given directed graph, with vertex locations restricted
to a grid. The results were judged solely with respect to the number of crossings;
other aesthetic criteria were not taken into account. This allows an objective way
to evaluate each drawing.

3.1 The Graphs

In the manual category, participants were presented with six graphs. These were
arranged from small to large and chosen to contain different types of graphs and
graph structures. In the automatic category, participants had to draw the same
six graphs as in the manual category, and in addition another six larger graphs.
Again, the graphs were constructed to have different structure.

For illustration, we include the fifth graph in its initial state, the best manual
solution we received (by team Dinosaurs), and the best automatic solution we
received (by team Tübingen-Bus).

For the complete set of graphs and submissions, refer to the contest website at
http://www.graphdrawing.org/gdcontest/contest2019/results.html. The graphs
are still available for exploration and solving Graph Drawing Contest Submission
System4.

Similarly to the past years, the committee observed that manual (human)
drawings of graphs often display a deeper understanding of the underlying graph
structure than automatic and therefore gain in readability. The committee was
also impressed by the fact that for all the small graphs the manual drawing were
almost as good as the automatic drawings.

3.2 Results: Manual Category

We are happy to present the full list of scores for all teams. The numbers listed
are the numbers of crossings in the drawings; the horizontal bars visualize the
corresponding scores.

4 https://graphdrawingcontest.appspot.com.

http://www.graphdrawing.org/gdcontest/contest2019/results.html
https://graphdrawingcontest.appspot.com


582 P. Kindermann et al.

balloon

UpperCut

1 device per team

UPGD19

Vertigo

1graph 2 3 4 5 6

Discrete geometers

36% Battery Remaining

PAF

scho+

Dinosaurs

#OnlyGoodDrawings

IV

Complicated Graphs

Now Austrians

Aaaaaah

2

2

0

4

0

6

2

0

4

2

2

2

0

2

0

14

21

13

47

20

18

4

9

16

17

8

24

22

14

8

7

9

21

70

5

5

7

6

7

7

8

147

49

5

6

27

5

8

25

9

5

7

10

12

12

6

26

10

8

6

-

32

32

77

32

32

32

38

32

35

32

35

34

32

215

424

323

242

380

394

251

278

396

270

196

271

371

283

308

267

Third place: Discrete geometers, consisting of Jan Kyncl and Birgit Vogten-
huber.
Second place: #OnlyGoodCrossings, consisting of Fabrizio Montecchiani,
Luca Castelli Aleardi, and Giacomo Ortali.
Winner: 36% Battery Remaining League, consisting of Evmorvia Argyriou,
Henry Förster, and Martin Gronemann.

For the manual contest, we followed first of all the basic rules that are
independent of the problem to be solved. So at the beginning we sub-
mitted all instances right away with their initial layout to ensure that
at the end we have a feasible entry for every instance. We started with
the smaller instances in which we invested more time compared to the
larger instances. For this particular problem, it was quite beneficial to
try to figure out how these instances have been created. For example,
while trying to untangle Instance 5, it became quickly evident that the
underlying undirected graph is a 1-planar graph with a planar skeleton
that resembles some kind of grid graph. This then led to a pattern that
we used for the layout and we were quickly done with the second largest
instance. The last and largest instance, however, was very difficult. After
a “good” start trying to figure out the structure, we managed to increase
the number of crossings from 448 to over 600 which forced us to start
over. On the second try we simply followed a greedy approach as there
were only 5 minutes and 40% of battery left.
Martin Gronemann



Graph Drawing Contest Report 583

3.3 Results: Automatic Category

We are happy to present the full list of scores for all teams that participated in
the automatic category. The numbers listed are the numbers of crossings in the
drawings; the horizontal bars visualize the corresponding scores.

JáMa

InfitIntersect? Uni Kassel

UoA

T suB-negnibü

1graph 2 3 4 5 6 7 8 9 10 11 12

14

2

2

0

108

17

19

4

176

6

10

5

39

7

13

4

32

40

48

32

437

354

297

81

267

0

2730

307

495

38

6405

1568

14697

1721

706388

147628

Third place: JáMa, consisting of Tomáš Masař́ık and Jana Novotná.
Second place: InfitIntersect? Uni Kassel, consisting of Dominik
Dürrschnabel, Jannik Raabe, Christoph Sandrock, and Joschka Wittich.
Winner: Tübingen-Bus, consisting of Solveig Klepper, Axel Kuckuk, Paul
Palomero Bernardo, Maximilian Pfister, Patrizio Angelini, Michalis Bekos, and
Michael Kaufmann.

We adopted a variant of the probabilistic hill-climbing method that gave
us the first place last year, which we adjusted and optimized to the
given task. The performed optimization made it even faster than the

drawrofgnikoolwoneraeW.eugarPotsuthguorbtahtsuB-negnibüT
to participate next year and defend our title.
Maximilian Pfister

Acknowledgments. The contest committee would like to thank the organizing com-
mittee of the conference for providing a room with hardware for the live challenge
and medals for the winners; the generous sponsors of the symposium; and all the con-
testants for their participation. Further details including all submitted drawings and
challenge graphs can be found at the contest website:

http://www.graphdrawing.org/gdcontest/contest2019/results.html

http://www.graphdrawing.org/gdcontest/contest2019/results.html


Correction to: A Natural Quadratic Approach
to the Generalized Graph Layering Problem

Sven Mallach

Correction to:
Chapter “A Natural Quadratic Approach to the Generalized
Graph Layering Problem” in: D. Archambault
and C. D. Tóth (Eds.): Graph Drawing and Network
Visualization, LNCS 11904,
https://doi.org/10.1007/978-3-030-35802-0_40

The original version of this chapter was revised. The final formula in section 4.1 was
corrected.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-3-030-35802-0_40

© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, p. C1, 2019.
https://doi.org/10.1007/978-3-030-35802-0_44

http://dx.doi.org/10.1007/978-3-030-35802-0_40
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_44&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_44&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35802-0_44&amp;domain=pdf
http://dx.doi.org/10.1007/978-3-030-35802-0_40
https://doi.org/10.1007/978-3-030-35802-0_44


Poster Abstracts



A 1-planarity Testing and Embedding Algorithm

Carla Binucci(B) , Walter Didimo , and Fabrizio Montecchiani

Università degli Studi di Perugia, Perugia, Italy
{carla.binucci, walter.didimo, fabrizio.montecchiani}@unipg.it

Abstract. Recognizing whether a graph is 1-planar is NP-complete,
even for restricted graph classes. We present a testing and embedding
algorithm for general 1-planar graphs, based on backtracking. We imple-
mented our approach and experimented it on two popular graph suites.

Introduction. A graph is 1-planar if it can be drawn in the plane such that each
edge is crossed at most once. The family of 1-planar graphs naturally extends
that of planar graphs and it has received increasing attention in the last years
[11, 15]. Recognizing whether a graph is 1-planar is an NP-complete problem
[12, 16], in contrast with well-known efficient algorithms for testing planarity.
The problem is NP-complete even for restricted graph classes, for instance
graphs of bounded treewidth [5] (see also [4, 8]). The problem becomes
fixed-parameter tractable when parameterized by vertex-cover number, cyclo-
matic number, or tree-depth [5]. Polynomial-time testing algorithms have been
designed for some subfamilies of 1-planar graphs (see, e.g., [3, 6, 7, 14]). How-
ever, no practical algorithms for general graphs exist that can be effectively
implemented and adopted in applications. This scenario naturally motivates our
research, which goes in the direction of filling the gap between theory and prac-
tice, and which poses some interesting foundations for further advances. Our
contribution is as follows: (1) We describe a testing and embedding algorithm
for 1-planar graphs, based on a backtracking strategy and relatively easy to
implement. Our algorithm can be also used as a preliminary step for those algo-
rithms taking a 1-planar embedding as input. (2) We experiment our algorithm
on two well-established graph suites, the Rome and North graphs [1, 10]. We
measure its running time and compare its number of crossings with respect
to a state-of-the-art planarizer. The classified solved instances are publicly
available [2].

Algorithm. Our 1-planarity testing and embedding algorithm, 1PlanarTester,
works as follows. It processes each biconnected component C of the input
graph G independently. First, it preliminary checks whether C can be imme-
diately labeled as 1-planar or as not 1-planar based on simple criteria. Else,
1PlanarTester runs a backtracking procedure whose output is either a 1-planar
embedding of C or a negative answer. At the end, 1PlanarTester will either out-
put an embedding for each biconnected component of G, or return a component
that is not 1-planar. The backtracking procedure takes as input a biconnected
graph G with n vertices and m edges. Let E be the set of all pairs of independent
c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 587–589, 2019.
https://doi.org/10.1007/978-3-030-35802-0

http://orcid.org/0000-0002-5320-9110
http://orcid.org/0000-0002-4379-6059
http://orcid.org/0000-0002-0543-8912
https://doi.org/10.1007/978-3-030-35802-0


588 C. Binucci et al.

Table 1. Summary of the experiments.

Runtime (minutes) Solved by Crossing

Graphs # Instances Solved (%) 1-planar (%) AVG SD max Backtracking Ratio

Rome 10–20 91 91.2% 100.0% 0.07 0.60 5.50 14.5% 1.07

Rome 21–30 164 69.5% 100.0% 0.38 3.61 38.40 24.6% 1.12

Rome 31–40 388 43.8% 100.0% 1.34 12.06 115.38 21.2% 1.30

Rome 41–50 119 37.8% 100.0% 0.01 0.01 0.02 20.0% 1.09

North 10–20 121 73.6% 88.8% 1.86 10.10 92.69 39.3% 1.78

North 21–30 69 39.1% 77.8% 3.85 10.14 39.58 25.9% 1.64

North 31–40 55 38.2% 57.1% 3.78 11.65 39.80 9.5% 1.00

North 41–50 32 18.8% 83.3% 0.01 0.01 0.01 0.0% 1.00

edges of G, and let k = |E|. We choose an ordering of E, and we encode a candi-
date solution as a binary array y of length k where y[i] = 0 (resp. y[i] = 1) means
that the i-th pair of edges of E do not cross (resp. cross) in a 1-planar embedding
of G (if it exists). We say that y is TRUE if: (i) Each edge is crossed at most once,
and (ii) by replacing each crossing with a dummy vertex, the resulting graph
is planar; otherwise y is FALSE. We can prove that G is 1-planar if and only if
the set of candidate solutions C contains a TRUE solution. The set C is generated
incrementally, by computing a binary search tree T . Each node ν of T has an
array yν of length iν < k that represents a partial candidate solution. When
visiting a node ν of T (in a top-down order), we run a routine that outputs one
of three values: SOL, if yν is (or can be extended to) a TRUE solution; CUT, if yν is
a FALSE solution and hence the subtree at ν can be pruned; CNT, otherwise. The
main idea behind such routine is to verify whether conditions (i) and (ii) apply
to the graph induced by those edges that either cross in yν or will not cross in
any extension of yν . If the conditions apply, the routine tries to complete the
solution and returns either SOL or CNT, else it returns CUT.

Experiments. We implemented 1PlanarTester in the C# language, integrat-
ing the OGDF library [9]. We executed experiments to evaluate the running
time and the size of the instances that our algorithm can handle in a reason-
able time. For those instances classified as 1-planar, we compare the number of
crossings produced by 1PlanarTester with respect to a planarizer [13] available
in OGDF (which is not restricted to produce 1-planar drawings). We used the
non-planar instances of two well-established suites: the Rome and the North
graphs [1, 10]; see [2] for the resulting classification. Table 1 groups the instances
by size and summarizes the experimental results. For each group it reports the
number of instances, the % of solved instances (i.e., whose computations took
less than 3 h), the % of 1-planar instances among the solved ones, the running
time (average, std dev and max) took for the solved instances, the % of solved
instances settled by using the backtracking procedure, the ratio of the number of
crossings produced by 1PlanarTester over the OGDF planarizer. The majority
of the solved instances are 1-planar, which corroborates the interest on 1-planar
graphs from an application perspective. Overall, 1PlanarTester solved most of



A 1-planarity Testing and Embedding Algorithm 589

the Rome (resp. North) graphs with up to 40 (resp. 20) vertices. Also, the aver-
age crossing ratio is always below 1.78, hence restricting the number of crossings
per edge did not affect too much the total number of crossings.

References

1. http://www.graphdrawing.org/data.html. Accessed July 2019
2. http://mozart.diei.unipg.it/montecchiani/1planarity/labels.xlsx. Accessed July

2019
3. Auer, C., Bachmaier, C., Brandenburg, F.J., Gleiner, A., Hanauer, K., Neuwirth,

D., Reislhuber, J.: Outer 1-planar graphs. Algorithmica 74(4), 1293–1320 (2016)
4. Auer, C., Brandenburg, F.J., Gleißner, A., Reislhuber, J.: 1-planarity of graphs

with a rotation system. J. Graph Algorithms Appl. 19(1), 67–86 (2015)
5. Bannister, M.J., Cabello, S., Eppstein, D.: Parameterized complexity of 1-planarity.

J. Graph Algorithms Appl. 22(1), 23–49 (2018). https://doi.org/10.7155/jgaa.
00457

6. Brandenburg, F.J.: Recognizing optimal 1-planar graphs in linear time. Algorith-
mica 80(1), 1–28 (2018)

7. Brandenburg, F.J.: Characterizing and recognizing 4-map graphs. Algorithmica
81(5), 1818–1843 (2019)

8. Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number
and 1-planarity hard. SIAM J. Comput. 42(5), 1803–1829 (2013)

9. Chimani, M., Gutwenger, C., Jünger, M., Klau, G.W., Klein, K., Mutzel, P.: The
open graph drawing framework (OGDF). In: Handbook of Graph Drawing and
Visualization, pp. 543–569. Chapman and Hall/CRC (2013)

10. Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An
experimental comparison of four graph drawing algorithms. Comput. Geom. 7,
303–325 (1997)

11. Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond
planarity. ACM Comput. Surv. 52(1), 4:1–4:37 (2019)

12. Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few cross-
ings per edge. Algorithmica 49(1), 1–11 (2007). https://doi.org/10.1007/s00453-
007-0010-x

13. Gutwenger, C., Mutzel, P.: An experimental study of crossing minimization heuris-
tics. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 13–24. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24595-7 2

14. Hong, S., Eades, P., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-time
algorithm for testing outer-1-planarity. Algorithmica 72(4), 1033–1054 (2015)

15. Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-
planarity. Comput. Sci. Rev. 25, 49–67 (2017). https://doi.org/10.1016/j.cosrev.
2017.06.002

16. Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of
1-planarity testing. J. Graph Theory 72(1), 30–71 (2013)

http://www.graphdrawing.org/data.html
http://mozart.diei.unipg.it/montecchiani/1planarity/labels.xlsx
https://doi.org/10.7155/jgaa.00457
https://doi.org/10.7155/jgaa.00457
https://doi.org/10.1007/s00453-007-0010-x
https://doi.org/10.1007/s00453-007-0010-x
https://doi.org/10.1007/978-3-540-24595-7_2
https://doi.org/10.1016/j.cosrev.2017.06.002
https://doi.org/10.1016/j.cosrev.2017.06.002


Stretching Two Pseudolines in Planar
Straight-Line Drawings

Tamara Mchedlidze1, Marcel Radermacher1(B), Ignaz Rutter2,
and Peter Stumpf2

1 Department of Informatics, Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany

mched@iti.uka.de, radermacher@kit.edu
2 Faculty of Computer Science and Mathematics, University of Passau,

Passau, Germany
{rutter, stumpf}@fim.uni-passau.de

Every planar graph G = (V,E) has a straight-line drawing [4, 6]. In a restricted
setting one seeks a drawing of G that obeys given constraints, e.g., Biedl et al.
[1, 2] studied whether a bipartite planar graph has a drawing where the two sets
of the partition can be separated by a straight line. Da Lozzo et al. [3] gener-
alized the previous result and characterized the planar graphs with a partition
L ∪ R ∪ S = V of the vertex set that have a planar straight-line drawing such
that the vertices in L and R lie left and right of a common line l, respectively,
and the vertices in S lie on l. In this case S is called collinear. In particular,
they showed that S is collinear if and only if there is a drawing of G such that
there is an open simple curve P that starts and ends in the outer face of G,
separates L from R, collects all vertices in S, and that, for each edge e, either
entirely contains e or intersects e at most once. We refer to P as a pseudoline
with respect to G.

Fig. 1. Throughout the paper, blue curve indicate pseudolines. (a) Allowed types of
edges in aligned graphs of alignment complexity (1, 0, 0). The green edge is aligned. The
purple edge is free. (b) Aligned graph of alignment complexity (2, 1,⊥). (c) Aligned
graph of alignment complexity (⊥, 3,⊥) that does not have an aligned drawing [5].
(Color figure online)

Mchedlidze et al. [5] generalized this concept to arrangements of pseudolines
and introduced the notion of aligned graphs, i.e, a pair (G,A) where G is a planar
embedded graph and A is a set of pseudolines with respect to G that intersect

Work was partially supported by grants RU 1903/3-1 and WA 654/21-1 of the German
Research Foundation(DFG).
c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 590–592, 2019.
https://doi.org/10.1007/978-3-030-35802-0

https://doi.org/10.1007/978-3-030-35802-0


Stretching Two Pseudolines in Planar Straight-Line Drawings 591

Fig. 2. 2-aligned graph that does not have an aligned drawing. (Color figure online)

pairwise at most once. Informally, a pair (Γ, A) of a straight-line drawing Γ of G
and a line arrangement A, is an aligned drawing of (G,A) if (Γ, A) and (G,A)
have the same combinatorial structure.

For i = 0, 1, 2, let Ei be the set of edges with i endpoints on distinct pseu-
dolines. For an edge e, let le be the number of pseudolines in A such that their
intersection with e lies in the interior of e. Then we define li as ⊥ if Ei is empty
and, otherwise, as the maximum value le over all edges e ∈ Ei. The complexity
of an aligned graph can be described with the triple (l0, l1, l2). Mchedlidze et al.
showed that every aligned graph of alignment complexity (1, 0,⊥), i.e., for each
edge e there is at most one pseudoline L ∈ A that has a non-empty intersection
with e, has an aligned drawing. They asked which combinations of number of
pseudolines and alignment complexities always admit an aligned drawing. For
example, The 8-aligned graph in Fig. 1c of alignment complexity (⊥, 3,⊥) does
not have an aligned drawing [5]. We provide an example of an aligned graph
that does not have an aligned drawing with a smaller alignment complexity and
that uses fewer pseudolines.

Theorem 1. The 2-aligned graph in Fig. 2 has alignment complexity (⊥, 1,⊥)
and does not have an aligned drawing.

The crux of the example in Fig. 2 is that the source vertices of the red (green)
edges are free (aligned). We refer to aligned graphs without the red edges as
counterclockwise aligned graphs or as ccw aligned graphs.

Theorem 2. Every ccw-aligned graph (G, {X ,Y}) has an aligned drawing.

Open Questions. To fully answer the open question of Mchedlidze et al., the
following questions are of particular interest.

– Does every aligned graph (G, {X ,Y}) have an aligned drawing, if X and Y
do not intersect?

– Does every counterclockwise-aligned graph (G,A) have an aligned drawing,
if the pseudolines in A intersect in a single point?

– For general stretchable pseudoline arrangements A, does every aligned graph
(G,A) of alignment complexity (1, 0, 0) have an aligned drawing?



592 T. Mchedlidze et al.

References

1. Biedl, T., Kaufmann, M., Mutzel, P.: Drawing planar partitions II: HH-drawings. In:
Hromkovič, J., Sýkora, O. (eds.) WG 1998. LNCS, vol. 1517, pp. 124–136. Springer,
Heidelberg (1998). https://doi.org/10.1007/10692760 11

2. Biedl, T.C.: Drawing planar partitions I: LL-drawings and LH-drawings. In: Pro-
ceedings of the 14th Annual Symposium on Computational Geometry (SoCG 1998),
pp. 287–296. ACM (1998). https://doi.org/10.1145/276884.276917

3. Da Lozzo, G., Dujmovic, V., Frati, F., Mchedlidze, T., Roselli, V.: Drawing planar
graphs with many collinear vertices. J. Comput. Geom. 9(1), 94–130 (2018). https://
doi.org/10.20382/jocg.v9i1a4

4. Fáry, I.: On straight line representation of planar graphs. Acta Universitatis Szege-
diensis. Sectio Scientiarum Mathematicarum 11, 229–233 (1948)

5. Mchedlidze, T., Radermacher, M., Rutter, I.: Aligned drawings of planar graphs.
J. Graph Algorithms Appl. 22(3), 401–429 (2018). https://doi.org/10.7155/jgaa.
00475

6. Tutte, W.T.: How to draw a graph. Proc. London Math. Soc. s3–13(1), 743–767
(1963)

https://doi.org/10.1007/10692760_11
https://doi.org/10.1145/276884.276917
https://doi.org/10.20382/jocg.v9i1a4
https://doi.org/10.20382/jocg.v9i1a4
https://doi.org/10.7155/jgaa.00475
https://doi.org/10.7155/jgaa.00475


Adventures in Abstraction: Reachability
in Hierarchical Drawings

Panagiotis Lionakis1,2, Giacomo Ortali3(B), and Ioannis G. Tollis1,2

1 Computer Science Department, University of Crete, Heraklion, Greece
{lionakis, tollis}@csd.uoc.gr

2 Tom Sawyer Software, Inc., Berkeley, CA 94707, USA
3 University of Perugia, Perugia, Italy

giacomo.ortali@gmail.com

We present algorithms and experiments for the visualization of directed graphs
that focus on displaying their reachability information. Our algorithms are based
on the concepts of the path and channel decomposition as proposed in the frame-
work presented in [5]. They reduce the visual complexity of the resulting draw-
ings by (a) drawing the vertices of the graph in some vertical lines, and (b) by
progressively abstracting some transitive edges thus showing only a subset of
the edge set in the output drawing. The process of progressively abstracting the
edges gives different visualization results, but they all have the same transitive
closure as the input graph. Notice that this type of abstraction has additional
applications in storing the transitive closure of huge graphs, which is a signif-
icant problem in the area of graph databases and big data [2, 3, 6, 8, 9]. We
also present experimental results that show a very interesting interplay between
bends, crossings, clarity of the drawings, and the abstraction of edges. Our algo-
rithms require at most O(km) time, where k is the number of paths/channels
and m is the number of edges. They produce progressively more abstract draw-
ings of the input graph. No dummy vertices are introduced and the vertices of
each path/channel are vertically aligned.

A path and a channel are both ordered sets of vertices. In a path every vertex
is connected by a direct edge to its successor, while in a channel any vertex
is connected to it by a directed path (which may be a single edge). Figure 1
shows an example of three different hierarchical drawings: Part (a) shows the
drawing of a directed graph G computed by Tom Sawyer Perspectives [1] that
(as almost all implementations) follows the Sugiyama framework [7]; Part (b)
shows a hierarchical drawing computed by our first variant algorithm taking G
as input; Part (c) shows an abstracted hierarchical drawing computed by our
final variant that removes all path edges and selected transitive cross edges. The
advantages of the last drawing are (i) clarity of the drawing due to the sparse
representation, (ii) all path edges and transitive edges (within a path) are implied
by the x and y coordinates, (iii) the drawn graph has the same transitive closure
as G, (iv) it gives a compact data structure to store the transitive closure of G,
and (v) a path between vertices that are on different (decomposition) paths can
be obtained by traversing exactly one cross edge.

The algorithms presented here are variants of the path based algorithm pre-
sented in [5]. Namely, we present seven variants (v0−v6, including the original
c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 593–595, 2019.
https://doi.org/10.1007/978-3-030-35802-0

https://doi.org/10.1007/978-3-030-35802-0


594 P. Lionakis et al.

one) that progressively remove edges, crossings and bends. The full set of vari-
ants and results can be found in [4]. Each variant has its own advantages and
disadvantages that can be exploited in various applications. Furthermore, due to
its flexibility, new variants can be created based on the needs of specific appli-
cations. We present experimental results that demonstrate the power of edge
abstraction and its impact on the number of bends, crossings, bundling, etc.

Fig. 1. (a) A drawing of a Graph G as computed by Tom Sawyer Perspectives following
the Sugiyama framework; (b) a drawing based on G computed by our first variant; (c)
an abstracted hierarchical drawing computed by our final variant.

All variants run very fast (<<0.2 s). Table 1 summarizes the results regarding
the number of bends and crossings for each variant. An interesting observation
is that our variants produce hierarchical drawings that can be suitable for large
datasets since the reachability information is clearly visible while the running
time is rather small. Observe that variants v4 and v6 give the most promising
results since they outperform in the number of crossings, bends and drawn edges.

As expected, the number of crossings is influenced heavily by the number
of edges drawn and the extent of edge bundling. Variant v1 is slightly better
than v0. This can be explained by the fact that in v1 there are more bundles
of edges and this naturally decreases the number of crossings, at the expense of
the number of bends. All other variants have much better performance than v0
and v1 because the corresponding drawings contain significantly fewer edges, as
indicated by column m3. Similar variants can be used using the channel based
framework.



Adventures in Abstraction: Reachability in Hierarchical Drawin 595

Table 1. Results on number of crossings (m1), number of bends (m2) and (c) % number
of edges drawn (m3) for each variant over all DAGs.

Variant DAG1 DAG2 DAG3 DAG4 DAG5

m1 m2 m3 m1 m2 m3 m1 m2 m3 m1 m2 m3 m1 m2 m3

v0 60 1 78% 20 2 93% 357 7 89% 1785 16 86% 11506 46 80%

v1 52 7 78% 22 6 93% 326 22 89% 1514 40 86% 8640 88 80%

v2 46 1 72% 20 2 93% 189 7 77% 1102 13 77% 3160 32 56%

v3 24 1 71% 20 2 93% 180 7 79% 989 14 75% 2733 38 54%

v4 17 1 65% 20 2 93% 92 7 67% 618 12 66% 866 25 30%

v5 53 1 37% 15 2 18% 331 7 47% 1722 16 47% 11353 46 60%

v6 12 1 24% 15 2 18% 73 7 26% 574 12 27% 801 25 10%

References

1. Tom Sawyer Software. www.tomsawyer.com
2. Jagadish, H.V.: A compression technique to materialize transitive closure. ACM

Trans. Database Syst. 15(4), 558–598 (1990). https://doi.org/10.1145/99935.99944
3. Jin, R., Ruan, N., Dey, S., Yu, J.X.: SCARAB: scaling reachability computation

on large graphs. In: Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, 20–24 May 2012,
pp. 169–180 (2012). https://doi.org/10.1145/2213836.2213856

4. Lionakis, P., Ortali, G., Tollis, I.G.: Adventures in abstraction: Reachability in hier-
archical drawings. arXiv:1907.11662. https://arxiv.org/abs/1907.11662

5. Ortali, G., Tollis, I.G.: Algorithms and bounds for drawing directed graphs. In:
Biedl, T., Kerren, A. (eds.) GD 2018. LNCS, vol. 11282, pp. 579–592. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-04414-5 41

6. van Schaik, S.J., de Moor, O.: A memory efficient reachability data structure
through bit vector compression. In: Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD 2011, Athens, Greece, 12–16
June 2011, pp. 913–924 (2011). https://doi.org/10.1145/1989323.1989419

7. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-
chical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981)

8. Veloso, R.R., Cerf, L., Jr., W.M., Zaki, M.J.: Reachability queries in very large
graphs: a fast refined online search approach. In: Proceedings of the 17th Interna-
tional Conference on Extending Database Technology, EDBT 2014, Athens, Greece,
24–28 March 2014, pp. 511–522 (2014). https://doi.org/10.5441/002/edbt.2014.46

9. Yildirim, H., Chaoji, V., Zaki, M.J.: GRAIL: a scalable index for reachability queries
in very large graphs. VLDB J. 21(4), 509–534 (2012). https://doi.org/10.1007/
s00778-011-0256-4

www.tomsawyer.com
https://doi.org/10.1145/99935.99944
https://doi.org/10.1145/2213836.2213856
http://arxiv.org/abs/1907.11662
https://arxiv.org/abs/1907.11662
https://doi.org/10.1007/978-3-030-04414-5_41
https://doi.org/10.1145/1989323.1989419
https://doi.org/10.5441/002/edbt.2014.46
https://doi.org/10.1007/s00778-011-0256-4
https://doi.org/10.1007/s00778-011-0256-4


On Topological Book Embedding
for k-plane Graphs

Michael Kaufmann and Axel Kuckuk(B)

Wilhelm-Schickhard-Institut für Informatik, Universität Tübingen,
Tübingen, Germany

mk@informatik.uni-tuebingen.de, axel.kuckuk@student.uni-tuebingen.de

Introduction. In topological book embedding (TBE) [6], the vertices of a given
planar graph G are placed along a horizontal line (the spine) and the edges are
realized as simple non-crossing arcs above or below the spine (top/bottom arcs)
or as sequences of arcs on both sides of the spine. For planar graphs at most one
spine crossing per edge is sufficient [5]. In [7], each edge is represented either by
a top or bottom arc, or a monotone bottom-top biarc (bt-biarc), consisting of a
bottom arc followed by a top arc, resp.

TBE has been heavily used for planar graphs [1, 5, 9], in particular in con-
nection with point set embedding problems [3, 8, 11–13]. In [7], Everett et al.
showed that every planar graph can be embedded on a so-called necklace point
set with at most one bend per edge using an appropriate TBE.

We will generalize this result for k-plane graphs under some restrictions. k-
plane graphs play an outstanding role in the area of graphs beyond planarity,
which is an important recent research direction. The extension of the techniques
for TBE and point set embedding to graphs beyond planarity is a challenging
task [10]. The graphs we consider are embedded in the plane s.t. their crossing-
free edges form a biconnected spanning subgraph and their crossing edges are
being crossed ≤ k times, i.e. they are k-plane. Further we assume that adjacent
edges do not cross while two non-adjacent edges might cross at most once.

We recall the concept of an open ear decomposition, a well-known char-
acteristic of biconnected graphs. An open ear of graph G is a simple path p
with distinct endpoints. An open ear decomposition is an edge partition into a
sequence of ears s.t. only the two endpoints of each ear belong to earlier ears.
Biconnected graphs have an open ear decomposition [14, 15]. For planar graphs
it can be assumed that every subsequent path might close a face. We assume
this property as well so that the faces are added one by one when adding the
ear-defining paths [4].

The Algorithm. Let G be the k-plane graph with a biconnected spanning sub-
graph Gp of crossing-free edges. Let p1, p2, . . . , pf be an open ear decomposition
of Gp s.t. p1 consists of an edge (v1, v2) on the outer face. We start placing v1
and v2 on the spine and connect them by the top arc (v1, v2).

Iteratively we add the paths from the open ear decomposition. We keep the
invariant that the sequence of edges along the outer face from v1 to v2 consist of
simple top arcs. Let v1 = u1, u2, ..., uk = v2 be the sequence of vertices along the

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 596–598, 2019.
https://doi.org/10.1007/978-3-030-35802-0

https://doi.org/10.1007/978-3-030-35802-0


On Topological Book Embedding for k-Plane Graphs 597

ui ui+1 uj ui ui+1 ujw2 wp−1 ui ui+1 ujwp−1w2

Fig. 1. Inserting a new path and filling the new face

outer face at step � (Fig. 1 left) and p� = w1, ..., wp be the next path connecting
the vertices ui = w1 and uj = wp where j > i w.l.o.g. in the ear decomposition.

We place the path p′
� = w2, ..., wp−1 between ui and ui+1, s.t. the path edges

form top arcs maintaining the invariant. Note that the last edge (wp−1, wp) will
separate all the vertices ui+1, ..., uk−1 from the outer face. If there are no vertices
between ui and ui+1 on the spine then the old edge (ui, ui+1) becomes a bottom
arc, else it becomes a bt-biarc bridging all the vertices that are between ui and
ui+1. In the latter case any other existing top arc with ui as its left adjacent
vertex will also become a bt-biarc in the same way (Fig. 1 middle).

Crossing edges inside the new face are either bottom arcs (if both endpoints
are in w1, . . . , wp−1), top arcs (if both endpoints are in ui+1, . . . , uk) or bt-biarcs
(otherwise). We route the bt-biarcs s.t. they cross the spine in the reverse order
of their left adjacent vertices, avoiding unnecessary crossings (Fig. 1 right).

This concludes the embedding algorithm and we summarize by

Theorem 1. For any k-plane graph with a biconnected spanning subgraph of
crossing-free edges we can construct a TBE using only simple arcs and bt-biarcs.

Corollary 1. Any k-plane graph G with a biconnected spanning subgraph of
crossing-free edges can be embedded appropriately on a necklace point set (integer
points along a parabola, see [7]) using at most one bend on each edge.

Proof. Idea: Apply the edge-routing algorithm of Everett et al. [7] using the
TBE for G as described above. ��
Corollary 2. Any 1-plane graph can be embedded appropriately on a necklace
point set using at most one bend on each edge.

Proof. Idea: Extend a given 1-plane graph by planar edges (kites) s.t. it has a
biconnected spanning planar subgraph. We apply Corollary 1. ��
Corollary 3. Optimal 2-plane and 3-plane graphs can be embedded appropri-
ately on a necklace point set using at most one bend on each edge.

Proof. Idea: Those graphs have spanning planar subgraphs [2]. We apply
Corollary 1. ��
Remark 1. We were able to generalize the above technique for TBE to k-plane
graphs with spanning subgraph of crossing-free edges, s.t. each edge consists of
at most 5 arc-segments. Open questions are how to improve this bound and how
to generalize the TBE to k-plane graphs without spanning planar subgraphs.



598 M. Kaufmann and A. Kuckuk

References

1. Badent, M., Di Giacomo, E., Liotta, G.: Drawing colored graphs on colored points.
Theor. Comput. Sci. 408(2–3), 129–142 (2008). https://doi.org/10.1016/j.tcs.2008.
08.004

2. Bekos, M.A., Kaufmann, M., Raftopoulou, C.N.: On optimal 2- and 3-planar
graphs. In: Aronov, B., Katz, M.J. (eds.) Symposium on Computational Geometry,
LIPIcs, vol. 77, pp. 16:1–16:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2017). https://doi.org/10.4230/LIPIcs.SoCG.2017.16

3. Cabello, S.: Planar embeddability of the vertices of a graph using a fixed
point set is np-hard. J. Graph Algorithms Appl. 10(2), 353–363 (2006).
http://jgaa.info/accepted/2006/Cabello2006.10.2.pdf

4. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall (1999)

5. Di Giacomo, E., Didimo, W., Liotta, G., Wismath, S.K.: Curve-constrained draw-
ings of planar graphs. Comput. Geom. 30(1), 1–23 (2005). https://doi.org/10.
1016/j.comgeo.2004.04.002

6. Enomoto, H., Miyauchi, M.S., Ota, K.: Lower bounds for the number of edge-
crossings over the spine in a topological book embedding of a graph. Discrete Appl.
Math. 92(2–3), 149–155 (1999). https://doi.org/10.1016/S0166-218X(99)00044-X

7. Everett, H., Lazard, S., Liotta, G., Wismath, S.K.: Universal sets of n points
for one-bend drawings of planar graphs with n vertices. Discrete Comput. Geom.
43(2), 272–288 (2010). https://doi.org/10.1007/s00454-009-9149-3

8. Fulek, R., Tóth, C.D.: Universal point sets for planar three-trees. J. Discrete Algo-
rithms 30, 101–112 (2015). https://doi.org/10.1016/j.jda.2014.12.005

9. Giordano, F., Liotta, G., Mchedlidze, T., Symvonis, A.: Computing upward topo-
logical book embeddings of upward planar digraphs. In: Tokuyama, T. (ed.) ISAAC
2007. LNCS, vol. 4835, pp. 172–183. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-77120-3 17

10. Kaufmann, M.: On point set embeddings for k-planar graphs with few bends per
edge. In: Catania, B., Královič, R., Nawrocki, J., Pighizzini, G. (eds.) SOFSEM
2019. LNCS, vol. 11376, pp. 260–271. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-10801-4 21

11. Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for
planar graphs. J. Graph Algorithms Appl. 6(1), 115–129 (2002). http://www.cs.
brown.edu/publications/jgaa/accepted/2002/KaufmannWiese2002.6.1.pdf

12. Kurowski, M.: A 1.235 lower bound on the number of points needed to draw all
n-vertex planar graphs. Inf. Process. Lett. 92(2), 95–98 (2004). https://doi.org/
10.1016/j.ipl.2004.06.009

13. Pach, J., Gritzmann, P., Mohar, B., Pollack, R.: Embedding a planar triangulation
with vertices at specified points. Am. Math. Monthly 98, 165–166 (1991). Professor
Pach’s number: [065]

14. Schmidt, J.M.: A simple test on 2-vertex- and 2-edge-connectivity. Inf. Process.
Lett. 113(7), 241–244 (2013). https://doi.org/10.1016/j.ipl.2013.01.016

15. Whitney, H.: Non-separable and planar graphs. Trans. Am. Math. Soc. 34, 339–362
(1932). https://doi.org/10.1090/S0002-9947-1932-1501641-2

https://doi.org/10.1016/j.tcs.2008.08.004
https://doi.org/10.1016/j.tcs.2008.08.004
https://doi.org/10.4230/LIPIcs.SoCG.2017.16
http://jgaa.info/accepted/2006/Cabello2006.10.2.pdf
https://doi.org/10.1016/j.comgeo.2004.04.002
https://doi.org/10.1016/j.comgeo.2004.04.002
https://doi.org/10.1016/S0166-218X(99)00044-X
https://doi.org/10.1007/s00454-009-9149-3
https://doi.org/10.1016/j.jda.2014.12.005
https://doi.org/10.1007/978-3-540-77120-3_17
https://doi.org/10.1007/978-3-540-77120-3_17
https://doi.org/10.1007/978-3-030-10801-4_21
https://doi.org/10.1007/978-3-030-10801-4_21
http://www.cs.brown.edu/publications/jgaa/accepted/2002/KaufmannWiese2002.6.1.pdf
http://www.cs.brown.edu/publications/jgaa/accepted/2002/KaufmannWiese2002.6.1.pdf
https://doi.org/10.1016/j.ipl.2004.06.009
https://doi.org/10.1016/j.ipl.2004.06.009
https://doi.org/10.1016/j.ipl.2013.01.016
https://doi.org/10.1090/S0002-9947-1932-1501641-2


On Compact RAC Drawings

Henry Förster(B) and Michael Kaufmann

Wilhelm-Schickard-Institut für Informatik,
University of Tübingen, Tübingen, Germany

{foersth, mk}@informatik.uni-tuebingen.de

Since real-world graphs are often nonplanar, beyond planar graphs have been
studied [10]. Two important parameters are the angles formed by edges at their
intersections [12, 13] and the number of bends per edge [14, 15]. Unsurprisingly,
one of the first papers on beyond planar graphs [9] introduced RAC (or right-
angle-crossing) drawings, where angles formed by edges at their intersections are
always 90◦. Previously, the main questions for RAC drawings have been recogni-
tion [2, 3, 6], characterization [11] and relations to other graph classes [2, 5, 7].

We study the area for RAC drawings of dense graphs depending on the number
of bends per edge. With two bends only O(n) edges can be drawn [1, 4, 9]. For
denser graphs, the following bounds are known: (i) three bends per edge in O(n4)
area [9], and, (ii) four bends per edge in O(n3) area [8]. Here, vertices and bends
must be placed on a grid. We achieve the following new results:

Theorem 1 (Fig. 1). Every simple graph on n vertices admits a RAC drawing
with three bends per edge in O(n3) area.

Theorem 2. There exists no RAC drawing of Kn with three bends per edge in
O(n2) area for sufficiently large n.

Proof (Sketch). We prove by contradiction. We observe that Ω(n2) segments
require Ω(n) length. Further, Θ(n4) intersections occur on segments of Ω(n)
length with O(1) different slopes while there are many long start segments (i.e.,
incident to vertices) with few crossings forming obstacles. Hence, groups of start
segments are almost parallel and vertices are close to other vertices. Vertices that
are too close are not connected with segments with many intersections. ��
Theorem 3 (Fig. 2). Every simple graph on n vertices admits a RAC drawing
with eight bends per edge in O(n2) area.

v1 v2 v3 v4 v5

to lower index to
higher

index

v

segments with
slope −1/(n− 1)

segments with
slope (n− 1)/1

segments with
slope −1/(n− 1)

segments with
slope (n− 1)/1

Fig. 1. In contrast to the previously known construction by Didimo et al. [9] for O(n4)
area, each vertex is incident to two different types of bends (green and red squares) which
lead to vertices with larger and smaller (resp.) indices. For the segments between bends,
we use slopes that are almost horizontal or vertical. (Color figure online)

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 599–601, 2019.
https://doi.org/10.1007/978-3-030-35802-0

https://doi.org/10.1007/978-3-030-35802-0


600 H. Förster and M. Kaufmann

n
3 + 2

3

segments with
slope (2n− 1)/2n

segments with
slope −2n/(2n− 1)

n
3 + 2

3

v2v3v4v5
Vertex Area

Matching
Bends

4×
span 4 (≡ span -1)

3×
span 3 (≡ span -2)

2×
span 2

1×
span 1

v1

Fig. 2. Drawing of K5 computed by our algorithm in the proof of Theorem 3.

Proof (Sketch). Edges are composed of two half edges routed from vertex area
to matching bends. An appropriate matching realizes each edge: We connect the
first bottom right matching bend with the second top right matching bend. We
connect the next two bottom right matching bends with the following two top
left matching bends. This pattern continues by increasing the number of matched
pairs and the span. As spans i and n − i are cyclically equivalent, all connections
are realized once. As spans are at most n − 1, segments are straight-line. ��
Theorem 4 (Fig. 3). Every simple k-partite graph on n vertices admits a RAC
drawing with three bends per edge in O(k2n2) area.

u1
u2
u3

v1
v2
v3

w1
w2
w3

segments with
slope −n/(n− 1)

segments with
slope (n− 1)/n

v3

v1
v2

Fig. 3. Example of K3,3,3. Vertices of the same partition are in connected regions. As
in Theorem 1, we have two types of bends at vertices (green and red squares). (Color
figure online)



On Compact RAC Drawings 601

References

1. Angelini, P., Bekos, M.A., Förster, H., Kaufmann, M.: On RAC drawings of graphs
with one bend per edge. In: Biedl, T., Kerren, A. (eds.) GD 2018. LNCS, vol. 11282,
pp. 123–136. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04414-5 9

2. Angelini, P., Cittadini, L., Didimo, W., Frati, F., Di Battista, G., Kaufmann, M.,
Symvonis, A.: On the perspectives opened by right angle crossing drawings. J.
Graph Algorithms Appl. 15(1), 53–78 (2011). https://doi.org/10.7155/jgaa.00217

3. Argyriou, E.N., Bekos, M.A., Symvonis, A.: The straight-line RAC drawing problem
is NP-hard. J. Graph Algorithms Appl. 16(2), 569–597 (2012). https://doi.org/10.
7155/jgaa.00274

4. Arikushi, K., Fulek, R., Keszegh, B., Moric, F., Tóth, C.D.: Graphs that admit right
angle crossing drawings. Comput. Geom. 45(4), 169–177 (2012). https://doi.org/
10.1016/j.comgeo.2011.11.008

5. Bachmaier, C., Brandenburg, F.J., Hanauer, K., Neuwirth, D., Reislhuber, J.: NIC-
planar graphs. Discrete Appl. Math. 232, 23–40 (2017). https://doi.org/10.1016/j.
dam.2017.08.015

6. Bekos, M.A., Didimo, W., Liotta, G., Mehrabi, S., Montecchiani, F.: On RAC draw-
ings of 1-planar graphs. Theor. Comput. Sci. 689, 48–57 (2017). https://doi.org/
10.1016/j.tcs.2017.05.039

7. Brandenburg, F.J., Didimo, W., Evans, W.S., Kindermann, P., Liotta, G., Mon-
tecchiani, F.: Recognizing and drawing ic-planar graphs. Theor. Comput. Sci. 636,
1–16 (2016). https://doi.org/10.1016/j.tcs.2016.04.026

8. Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H.: Area, curve complexity, and
crossing resolution of non-planar graph drawings. Theory Comput. Syst. 49(3), 565–
575 (2011). https://doi.org/10.1007/s00224-010-9275-6

9. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theor.
Comput. Sci. 412(39), 5156–5166 (2011). https://doi.org/10.1016/j.tcs.2011.05.025

10. Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond
planarity. ACM Comput. Surv. 52(1), 4:1–4:37 (2019). https://doi.org/10.1145/
3301281

11. Eades, P., Liotta, G.: Right angle crossing graphs and 1-planarity. Discrete Appl.
Math. 161(7–8), 961–969 (2013). https://doi.org/10.1016/j.dam.2012.11.019

12. Huang, W.: Using eye tracking to investigate graph layout effects. In: Hong, S., Ma,
K. (eds.) 6th International Asia-Pacific Symposium on Visualization 2007, APVIS
2007, pp. 97–100. IEEE Computer Society (2007). https://doi.org/10.1109/APVIS.
2007.329282

13. Huang, W., Eades, P., Hong, S.: Larger crossing angles make graphs easier to read.
J. Vis. Lang. Comput. 25(4), 452–465 (2014). https://doi.org/10.1016/j.jvlc.2014.
03.001

14. Purchase, H.C.: Effective information visualisation: a study of graph drawing aes-
thetics and algorithms. Interact. Comput. 13(2), 147–162 (2000). https://doi.org/
10.1016/S0953-5438(00)00032-1

15. Purchase, H.C., Carrington, D.A., Allder, J.: Empirical evaluation of aesthetics-
based graph layout. Empir. Softw. Eng. 7(3), 233–255 (2002)

https://doi.org/10.1007/978-3-030-04414-5_9
https://doi.org/10.7155/jgaa.00217
https://doi.org/10.7155/jgaa.00274
https://doi.org/10.7155/jgaa.00274
https://doi.org/10.1016/j.comgeo.2011.11.008
https://doi.org/10.1016/j.comgeo.2011.11.008
https://doi.org/10.1016/j.dam.2017.08.015
https://doi.org/10.1016/j.dam.2017.08.015
https://doi.org/10.1016/j.tcs.2017.05.039
https://doi.org/10.1016/j.tcs.2017.05.039
https://doi.org/10.1016/j.tcs.2016.04.026
https://doi.org/10.1007/s00224-010-9275-6
https://doi.org/10.1016/j.tcs.2011.05.025
https://doi.org/10.1145/3301281
https://doi.org/10.1145/3301281
https://doi.org/10.1016/j.dam.2012.11.019
https://doi.org/10.1109/APVIS.2007.329282
https://doi.org/10.1109/APVIS.2007.329282
https://doi.org/10.1016/j.jvlc.2014.03.001
https://doi.org/10.1016/j.jvlc.2014.03.001
https://doi.org/10.1016/S0953-5438(00)00032-1
https://doi.org/10.1016/S0953-5438(00)00032-1


FPQ-Choosable Planarity Testing

Giuseppe Liotta1 , Ignaz Rutter2 , and Alessandra Tappini1(B)

1 Dipartimento di Ingegneria, Università degli Studi di Perugia, Perugia, Italy
giuseppe.liotta@unipg.it, alessandra.tappini@studenti.unipg.it

2 Department of Computer Science and Mathematics, University of Passau,
Passau, Germany

rutter@fim.uni-passau.de

Abstract. Hierarchical embedding constraints define a set of allowed
cyclic orders for the edges incident to the vertices of a graph. These
constraints are expressed in terms of FPQ-trees. Let G be a graph such
that every vertex of G is equipped with a set of FPQ-trees encoding
hierarchical embedding constraints for its incident edges. We study the
problem of testing whether G admits a planar embedding such that, for
each vertex v of G, the cyclic order of the edges incident to v is described
by at least one of the FPQ-trees associated with v. We prove that the
problem is fixed-parameter tractable for biconnected graphs, where the
parameters are the treewidth of G and the number of FPQ-trees per
vertex, and we show that if one of these two parameters is dropped,
then the problem is not fixed-parameter tractable. We also apply our
techniques to the study of NodeTrix planarity testing of clustered graphs.

Introduction. Graph planarity with hierarchical embedding constraints
addresses the problem of testing whether a graph G admits a planar embedding
where the cyclic order of the edges incident to (some of) its vertices is totally or
partially fixed. The term “hierarchical” reflects the fact that these constraints
describe ordering relationships both between sets of edges incident to a same
vertex and, recursively, between edges within a same set. Hierarchical embed-
ding constraints can be conveniently encoded by using FPQ-trees, a variant of
PQ-trees that includes F-nodes in addition to P- and to Q-nodes. An F-node
encodes a permutation that cannot be reversed. See Fig. 1 for an example.

In a seminal work, Gutwenger et al. [4] study the planarity testing problem
with hierarchical embedding constraints by allowing at most one FPQ-tree per
vertex, and they present a linear-time algorithm to solve the problem. In [5], we
generalize their study by allowing more than one FPQ-tree per vertex. To this
aim, we introduce and study a problem called FPQ-Choosable Planarity
Testing. An FPQ-choosable graph consists of a pair (G,D), where G is a
(multi-)graph and D is a mapping that associates each vertex v of G with a

Work partially supported by: MIUR, grant 20174LF3T8 AHeAD: efficient Algo-
rithms for HArnessing networked Data; Dip. Ingegneria Univ. Perugia, grants
RICBASE2017WD-RICBA18WD: “Algoritmi e sistemi di analisi visuale di reti comp-
lesse e di grandi dimensioni”; German Science Found. (DFG), grant Ru 1903/3-1.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 602–604, 2019.
https://doi.org/10.1007/978-3-030-35802-0

http://orcid.org/0000-0002-2886-9694
http://orcid.org/0000-0002-3794-4406
http://orcid.org/0000-0001-9192-2067
https://doi.org/10.1007/978-3-030-35802-0


FPQ-Choosable Planarity Testing 603

E4 E ′′
4

E ′
4

E1

E2

E3

E ′′′
4

E ′
4

E3

E1

E2

E ′′′
4

E ′′
4

F-node

Q-node

P-node

Legend:

Fig. 1. A vertex v with hierarchical embedding constraints and the corresponding FPQ-
tree. The sets of edges must appear in one of the following clockwise orders around
v: E1, E2, E3, E

′
4, E

′′
4 , E

′′′
4 ; E1, E2, E3, E

′′′
4 , E′′

4 , E
′
4. The edges of E1, E2, E3, and E′

4 can
be arbitrarily permuted, while the edges of E′′

4 and E′′′
4 have only two possible cyclic

orders that are the reverse of one another.

set D(v) of FPQ-trees whose leaves represent the edges incident to v. An FPQ-
choosable graph is FPQ-choosable planar if there exists a planar embedding of
G such that, for each vertex v of G, the cyclic order of the edges incident to v is
encoded by an FPQ-tree in D(v). FPQ-Choosable Planarity Testing asks
whether a given FPQ-choosable graph (G,D) is FPQ-choosable planar.

Besides being interesting on its own right, this generalization can be used
to model and study other graph planarity testing problems. As a proof of con-
cept, we apply our results to the study of NodeTrix planarity with fixed sides of
clustered graphs; see [1–3] for some references about NodeTrix planarity testing.

Main Results. In this section, we give a list of our main results. We first study
the computational complexity of FPQ-Choosable Planarity Testing, and
we prove the following.

Theorem 1. FPQ-Choosable Planarity Testing with a bounded number
of FPQ-trees per vertex is NP-complete. It remains NP-complete even when the
FPQ-trees have only P-nodes.

Theorem 2. FPQ-Choosable Planarity Testing parameterized by
treewidth is W[1]-hard. It remains W[1]-hard even when the FPQ-trees have
only P-nodes.

The above results imply that FPQ-Choosable Planarity Testing is not
fixed-parameter tractable if parameterized by the treewidth only or by the num-
ber of FPQ-trees per vertex only. For a contrast, we show the following.

Theorem 3. Let (G,D) be a biconnected FPQ-choosable (multi-)graph such
that G = (V,E) and |V | = n. Let D(v) be the set of FPQ-trees associated
with vertex v ∈ V . There exists an O(δ

9
4 t · n2 + n3)-time algorithm to test

whether (G,D) is FPQ-choosable planar, where t is the treewidth of G and
δ = maxv∈V |D(v)|.



604 G. Liotta et al.

We finally analyze the interplay between FPQ-Choosable Planarity Test-
ing and NodeTrix planarity testing with fixed sides, which is known to be NP-
complete even when the size of the matrices is bounded by a constant [2, 3].

Theorem 4. Let G be an n-vertex clustered graph whose clusters have size at
most k. Let t be the treewidth of G. If the multi-graph obtained by collapsing each
cluster of G into a vertex is biconnected, then there exists an O(k!

9
4 t·n2+n3)-time

algorithm to test whether G is NodeTrix planar with fixed sides.

References

1. Besa Vial, J.J., Da Lozzo, G., Goodrich, M.T.: Computing k-modal embeddings of
planar digraphs. CoRR abs/1907.01630 (2019). http://arxiv.org/abs/1907.01630

2. Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M.: Computing NodeTrix rep-
resentations of clustered graphs. J. Graph Algorithms Appl. 22(2), 139–176 (2018).
https://doi.org/10.7155/jgaa.00461

3. Di Giacomo, E., Liotta, G., Patrignani, M., Rutter, I., Tappini, A.: Node-Trix
planarity testing with small clusters. Algorithmica 81(9), 3464–3493 (2019). https://
doi.org/10.1007/s00453-019-00585-6

4. Gutwenger, C., Klein, K., Mutzel, P.: Planarity testing and optimal edge inser-
tion with embedding constraints. J. Graph Algorithms Appl. 12(1), 73–95 (2008).
https://doi.org/10.7155/jgaa.00160

5. Liotta, G., Rutter, I., Tappini, A.: Graph planarity testing with hierarchical embed-
ding constraints. CoRR abs/1904.12596 (2019). http://arxiv.org/abs/1904.12596

http://arxiv.org/abs/1907.01630
https://doi.org/10.7155/jgaa.00461
https://doi.org/10.1007/s00453-019-00585-6
https://doi.org/10.1007/s00453-019-00585-6
https://doi.org/10.7155/jgaa.00160
http://arxiv.org/abs/1904.12596


Packing Trees into 1-Planar Graphs

Felice De Luca1 , Emilio Di Giacomo2 , Seok-Hee Hong3 ,
Stephen Kobourov1 , William Lenhart4 , Giuseppe Liotta2 , Henk Meijer5,

Alessandra Tappini2(B) , and Stephen Wismath6

1 Department of Computer Science, University of Arizona, Tucson, USA
felicedeluca@email.arizona.edu, kobourov@cs.arizona.edu

2 Dipartimento di Ingegneria, Università degli Studi di Perugia, Perugia, Italy
{emilio.digiacomo, giuseppe.liotta}@unipg.it,

alessandra.tappini@studenti.unipg.it
3 School of Computer Science, University of Sydney, Sydney, Australia

seokhee.hong@sydney.edu.au
4 Department of Computer Science, Williams College, Williamstown, USA

wlenhart@williams.edu
5 Department of Computer Science, University College Roosevelt, Middelburg,

The Netherlands
h.meijer@ucr.nl

6 Department of Computer Science, University of Lethbridge, Lethbridge, Canada
wismath@uleth.ca

Introduction. In the graph packing problem we are given a collection of n-vertex
graphs G1, G2, . . . , Gk and we are requested to find an n-vertex graph G that
contains the given graphs as edge-disjoint spanning subgraphs. Various settings
of the problem can be defined depending on the type of graphs that have to be
packed and on the restrictions put on the packing graph G (see, e.g., [1, 7, 8,
11–13]). Garćıa et al. [4] consider the planar packing problem, that is the case
when the graph G is required to be planar. They conjecture that every pair of
non-star trees can be packed into a planar graph. Notice that, when G is required
to be planar, two is the maximum number of trees that can be packed (because
three trees have more than 3n−6 edges). Garćıa et al. prove their conjecture for
some restricted cases. After a sequence of other partial results [2, 3, 5, 9], the
conjecture was finally proved true by Geyer et al. [6].

We initiate the study of the 1-planar packing problem, i.e., the problem of
packing a set of graphs into a 1-planar graph (a graph is 1-planar if it can be
drawn with at most one crossing per edge). Since any two non-star trees admit
a planar packing, a natural question is whether we can pack more than two
trees into a 1-planar graph. On the other hand, since each 1-planar graph has
at most 4n − 8 edges [10], it is not possible to pack more than three trees into a
1-planar graph. Thus, our main question is whether any three trees with maximum
vertex degree n − 3 admit a 1-planar packing. The restriction about the degree is

This work started at the Bertinoro Workshop on Graph Drawing 2019 and it is partially
supported by: (i) MIUR, under grant 20174LF3T8 “AHeAD: efficient Algorithms for
HArnessing networked Data”, (ii) Dipartimento di Ingegneria - Università degli Studi
di Perugia, under grants RICBASE2017WD and RICBA18WD.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 605–607, 2019.
https://doi.org/10.1007/978-3-030-35802-0

http://orcid.org/0000-0001-5937-7636
http://orcid.org/0000-0002-9794-1928
http://orcid.org/0000-0003-1698-3868
http://orcid.org/0000-0002-0477-2724
http://orcid.org/0000-0002-8618-2444
http://orcid.org/0000-0002-2886-9694
http://orcid.org/0000-0001-9192-2067
http://orcid.org/0000-0002-9632-3247
https://doi.org/10.1007/978-3-030-35802-0


606 F. De Luca et al.

necessary because a vertex of degree larger than n − 3 in one tree cannot have
degree at least one in the other two trees.

Results. We first prove that there exist triples of trees that do not admit a
1-planar packing, even for structurally simple trees.

Theorem 1. For every n ≥ 10, there exists a triple of caterpillars that does not
admit a 1-planar packing.

Theorem 2. There exists a triple consisting of a path and two caterpillars with
n = 7 vertices that does not admit a 1-planar packing.

Motivated by the two theorems above we consider triples consisting of two
paths P1 and P2 and a caterpillar T and we prove that every such triple in which
T is 5-legged admits a 1-planar packing if and only if it has at least six vertices.
A caterpillar is h-legged if all its non-leaf vertices have degree either 2 or at
least h + 2. Our proof is constructive and at a very high-level can be described
as follows. Let P be the backbone of T (the backbone of a caterpillar is a path
obtained by removing all leaves except two) and let P ′

1 and P ′
2 be two paths with

the same length as P . We first construct a 1-planar packing of P , P ′
1 and P ′

2. We
then modify the computed packing to include the leaves of the caterpillar; this
requires transforming some edges of P ′

1 and P ′
2 to sub-paths that pass through

the added leaves. The resulting packing is a 1-planar packing of P1, P2 and T .
See Fig. 1 for an example.

(a) (b) (c)

Fig. 1. (a) A 5-legged caterpillar T and two paths P1 and P2; (b) a 1-planar packing
of the three paths P , P ′

1, and P ′
2; (c) a 1-planar packing of T , P1 and P2.

Theorem 3. Two paths and a 5-legged caterpillar T with n vertices admit a
1-planar packing if and only if n ≥ 6 and each vertex has degree at most
n − 3 in T .

The technique behind the previous theorem constructs 1-planar drawings
with O(n) crossings. A natural question is whether it is possible to compute
a 1-planar packing with O(1) crossings. We can prove that seven (resp. four-
teen) crossings suffice for three paths (resp. cycles). It is worth remarking that a
1-planar packing of three paths (resp. cycles) has at least three (resp. six) cross-
ings because it has 3n − 3 edges (resp. 3n edges).



Packing Trees into 1-Planar Graphs 607

Theorem 4. Three paths with n ≥ 6 vertices can be packed into a 1-plane graph
with at most 7 edge crossings. Three cycles with n ≥ 20 vertices can be packed
into a 1-plane graph with at most 14 edge crossings.

We finally extend the study of 1-planar packings from triples of graphs to
quadruples of graphs. A 1-planar packing of four graphs does not exist if all
graphs are connected, because the number of edges of the four graphs is higher
than the number of edges allowed in a 1-planar graph. We consider therefore a
quadruple consisting of three paths and a perfect matching. Notice that, in this
case the number of vertices n has to be even.

Theorem 5. Three paths and a perfect matching with n ≥ 12 vertices admit a
1-planar packing. If n ≤ 10, the quadruple does not admit a 1-planar packing.

References

1. Aichholzer, O., Hackl, T., Korman, M., van Kreveld, M., Löffler, M., Pilz, A.,
Speckmann, B., Welzl, E.: Packing plane spanning trees and paths in complete
geometric graphs. Inf. Process. Lett. 124, 35–41 (2017). https://doi.org/10.1016/
j.ipl.2017.04.006

2. Frati, F.: Planar packing of diameter-four trees. In: Proceedings of the 21st Annual
Canadian Conference on Computational Geometry, pp. 95–98 (2009). http://cccg.
ca/proceedings/2009/cccg09 25.pdf

3. Frati, F., Geyer, M., Kaufmann, M.: Planar packing of trees and spider trees. Inf.
Process. Lett. 109(6), 301–307 (2009). https://doi.org/10.1016/j.ipl.2008.11.002

4. Garćıa Olaverri, A., Hernando, M.C., Hurtado, F., Noy, M., Tejel, J.: Packing trees
into planar graphs. J. Graph Theory 40(3), 172–181 (2002). https://doi.org/10.
1002/jgt.10042

5. Geyer, M., Hoffmann, M., Kaufmann, M., Kusters, V., Tóth, C.D.: Planar packing
of binary trees. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS,
vol. 8037, pp. 353–364. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40104-6 31

6. Geyer, M., Hoffmann, M., Kaufmann, M., Kusters, V., Tóth, C.D.: The planar
tree packing theorem. JoCG 8(2), 109–177 (2017). https://doi.org/10.20382/jocg.
v8i2a6

7. Hedetniemi, S., Hedetniemi, S., Slater, P.: A note on packing two trees into Kn.
Ars Combinatoria 11, January 1981

8. Mahéo, M., Saclé, J., Wozniak, M.: Edge-disjoint placement of three trees. Eur. J.
Comb. 17(6), 543–563 (1996). https://doi.org/10.1006/eujc.1996.0047

9. Oda, Y., Ota, K.: Tight planar packings of two trees. In: 22nd European Workshop
on Computational Geometry (2006)

10. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica
17(3), 427–439 (1997). https://doi.org/10.1007/BF01215922

11. Sauer, N., Spencer, J.: Edge disjoint placement of graphs. J. Comb. Theory, Ser.
B 25(3), 295–302 (1978). https://doi.org/10.1016/0095-8956(78)90005-9

12. Wang, H., Sauer, N.: Packing three copies of a tree into a complete graph. Eur. J.
Comb. 14(2), 137–142 (1993). https://doi.org/10.1006/eujc.1993.1018

13. Wozniak, M., Wojda, A.P.: Triple placement of graphs. Graphs Comb. 9(1), 85–91
(1993). https://doi.org/10.1007/BF01195330

https://doi.org/10.1016/j.ipl.2017.04.006
https://doi.org/10.1016/j.ipl.2017.04.006
http://cccg.ca/proceedings/2009/cccg09_25.pdf
http://cccg.ca/proceedings/2009/cccg09_25.pdf
https://doi.org/10.1016/j.ipl.2008.11.002
https://doi.org/10.1002/jgt.10042
https://doi.org/10.1002/jgt.10042
https://doi.org/10.1007/978-3-642-40104-6_31
https://doi.org/10.1007/978-3-642-40104-6_31
https://doi.org/10.20382/jocg.v8i2a6
https://doi.org/10.20382/jocg.v8i2a6
https://doi.org/10.1006/eujc.1996.0047
https://doi.org/10.1007/BF01215922
https://doi.org/10.1016/0095-8956(78)90005-9
https://doi.org/10.1006/eujc.1993.1018
https://doi.org/10.1007/BF01195330


Geographic Network Visualization Techniques:
A Work-In-Progress Taxonomy

Sarah Schöttler(B), Tobias Kauer, and Benjamin Bach

University of Edinburgh, Edinburgh, UK
sarah@schoettler.email, bbach@inf.ed.ac.uk

Abstract. This poster presents a survey of visualization techniques for
geographic networks. Based on 60 techniques, we provide an initial tax-
onomy based on categorizing each technique across four facets: how the
geographic aspect is represented, how the network aspect is represented,
how these two visual representations are integrated, and whether the
technique relies on user interaction. The current collection can be found
online: https://geographic-networks.github.io.

Keywords: Geographic networks · Survey · Taxonomy

1 Scope and Methodology

Geographic network data describes the relationships between geolocated entities.
Examples include airports connected by commercial flights, trading networks,
migration, geographic social networks or public transport networks in cities. Yet,
visualizing these networks remains challenging: overlap and clutter frequently
make visualizations difficult to read or even misleading. Often, there is a trade-
off between computational complexity, visual quality, and the specific task at
hand (analyzing geographic locations, analyzing network topology, correlating
both, etc). No taxonomy specific to these techniques exists.

To qualify for inclusion into our survey, a paper has to either be focused
entirely on geographic networks, or, at a minimum, demonstrate its applicability
to geographic networks with a case study. Techniques that can theoretically be
applied to geographic networks, but do not visualize the geographic aspect of
the network, were not considered. Papers come from different venues: IEEE VIS,
ACM CHI, EuroVis, PacificVis, and Graph Drawing. Our search resulted in 191
papers which we manually narrowed down to 40. Through additional manual
search, the number increased back to 60 papers/techniques.

2 Taxonomy

A—Geographic Representation. This facet describes how the geographic
aspect of the network is represented visually. We found visualizations to differ
in the way they distort and abstract that geographic representation: Map is the
c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 608–611, 2019.
https://doi.org/10.1007/978-3-030-35802-0

https://geographic-networks.github.io
https://doi.org/10.1007/978-3-030-35802-0


Geographic Network Visualization Techniques 609

least distorted technique [4, 12, 14, 15, 23]. Distorted map includes any visu-
alization that is still recognizable as a map, but distorted beyond the distortion
introduced by the map projection [1, 5, 15, 19]. Abstract techniques represent
geography in some non-geographic (abstract) form such as grouping nodes in a
circular layout [11].

B—Network Representation. Initially, we thought to categorize accord-
ing to the type of visualization. However, we quickly found that approx. 90% of
all techniques use node-link diagrams, some matrices. Thus, we decided to again
look for ‘abstraction’ in the network representation. Since a network consists
of nodes and edges, we classify techniques along both axes: node abstraction
and edge abstraction. The node representation is explicit when nodes are shown
as points in a node-link diagram and abstract if not; the edge representation
is abstract when edges are shown different than links in a node-link diagram.
Another way of looking at this is whether it is theoretically possible to extract
the precise network data from the visualization—independent from clutter due
to potential overlap and occlusion. Explicit nodes & explicit edges: Includes
all techniques that explicitly visualize nodes and edges: edge bundling, edge rout-
ing, 3D globes etc. [12, 14] Explicit nodes & abstract edges: Techniques in
this category explicitly show the nodes of the network, but use abstract means
of showing the connections between them. Examples include omitting edges [1]
or using alternative representations [4]. Abstract nodes & explicit edges:
Abstracting the nodes but not the edges, e.g. aggregating nodes [7, 8]. Abstract
nodes & abstract edges: Both nodes and edges are abstracted, e.g. OD maps
or aggregating both nodes and edges [3, 21].

C—Integration describes how geography and topology are integrated in
the visualization, simplifying the approach in [10]. Geography-as-basis: The
majority (44) of the surveyed visualization techniques use the geography rep-
resentation as their basis and overlay a network visualization [1–3, 8, 9, 21]. A
balanced integration is one where neither geography nor network are clearly
dominant [13, 23]. Network-as-basis: Only one technique uses the network
representation as its basis [11].

D—Interaction: classifies techniques into none [13, 18, 21], optional
[4, 22], required [1, 6, 23], and technique-is-interaction; meaning that a tech-
nique is a pure interaction technique such as a fisheye lens [5], EdgeLens [19],
link bundling [17], link plucking [20] or Bring & Go and Link Sliding [16].

3 Open Challenges

We are currently working to extend our collection and refine our taxonomy. How-
ever, many techniques remain to be explored; e.g., not taking interaction into
account, there are 36 possible combinations of the different categories across
facets of the taxonomy. Besides the groups discussed in the paper, we could
identify the following open challenges for which we could find few or no tech-
niques: uncertainty visualization of geographic positions and areas, dynamic
geographic networks, network-focused techniques that preserve geography



610 S. Schöttler et al.

well, and precise task and data taxonomies that can inform future tech-
niques, design spaces and interaction techniques.

References

1. Alper, B., Sümengen, S., Balcisoy, S.: Dynamic visualization of geographic net-
works using surface deformations with constraints. In: Proceedings of the Computer
Graphics International Conference (CGI). Computer Graphics Society, Petrópolis,
Brazil (2007)

2. Andrienko, G., Andrienko, N., Fuchs, G., Wood, J.: Revealing patterns and trends
of mass mobility through spatial and temporal abstraction of origin-destination
movement data. IEEE Trans. Vis. Comput. Graph. 23(9), 2120–2136 (2017).
https://doi.org/10.1109/TVCG.2016.2616404

3. Andrienko, N., Andrienko, G.: Spatial Generalization and aggregation of massive
movement data. IEEE Trans. Vis. Comput. Graph. 17(2), 205–219 (2011). https://
doi.org/10.1109/TVCG.2010.44

4. Boyandin, I., Bertini, E., Bak, P., Lalanne, D.: Flowstrates: an approach for visual
exploration of temporal origin-destination data. Comput. Graph. Forum 30(3),
971–980 (2011). https://doi.org/10.1111/j.1467-8659.2011.01946.x

5. Brown, M.H., Meehan, J.R., Sarkar, M.: Browsing graphs using a fisheye view
(Abstract). In: Proceedings of the INTERACT 1993 and CHI 1993 Conference
on Human Factors in Computing Systems, CHI 1993, Amsterdam, The Nether-
lands, pp. 516. ACM, New York, NY, USA (1993). https://doi.org/10.1145/169059.
169474

6. Cox, K.C., Eick, S.G., He, T.: 3D geographic network displays. SIGMOD Rec.
25(4), 50–54 (1996). https://doi.org/10.1145/245882.245901

7. Elzen, S.V.D., Wijk, J.J.V.: Multivariate network exploration and presentation:
from detail to overview via selections and aggregations. IEEE Trans. Vis. Comput.
Graph. 20(12), 2310–2319 (2014). https://doi.org/10.1109/TVCG.2014.2346441

8. Guo, D.: Flow mapping and multivariate visualization of large spatial interaction
data. IEEE Trans. Vis. Comput. Graph. 15(6), 1041–1048 (2009). https://doi.org/
10.1109/TVCG.2009.143

9. Guo, D., Zhu, X.: Origin-destination flow data smoothing and mapping. IEEE
Trans. Vis. Comput. Graph. 20(12), 2043–2052 (2014). https://doi.org/10.1109/
TVCG.2014.2346271

10. Hadlak, S., Schumann, H., Schulz, H.J.: A survey of multi-faceted graph visualiza-
tion. In: Eurographics Conference on Visualization (EuroVis), vol. 33, pp. 1–20.
The Eurographics Association Cagliary, Italy (2015)

11. Hennemann, S.: Information-rich visualisation of dense geographical networks. J.
Maps 9(1), 68–75 (2013). https://doi.org/10.1080/17445647.2012.753850

12. Holten, D., Wijk, J.J.V.: Force-directed edge bundling for graph visualization.
Comput. Graph. Forum 28(3), 983–990 (2009). https://doi.org/10.1111/j.1467-
8659.2009.01450.x

13. Hong, S.H., Merrick, D., do Nascimento, H.A.D.: Automatic visualisation of metro
maps. J. Vis. Lang. Comput. 17(3), 203–224 (2006). https://doi.org/10.1016/j.
jvlc.2005.09.001

14. Lambert, A., Bourqui, R., Auber, D.: 3D edge bundling for geographical data
visualization. In: 2010 14th International Conference Information Visualisation,
pp. 329–335, July 2010. https://doi.org/10.1109/IV.2010.53

https://doi.org/10.1109/TVCG.2016.2616404
https://doi.org/10.1109/TVCG.2010.44
https://doi.org/10.1109/TVCG.2010.44
https://doi.org/10.1111/j.1467-8659.2011.01946.x
https://doi.org/10.1145/169059.169474
https://doi.org/10.1145/169059.169474
https://doi.org/10.1145/245882.245901
https://doi.org/10.1109/TVCG.2014.2346441
https://doi.org/10.1109/TVCG.2009.143
https://doi.org/10.1109/TVCG.2009.143
https://doi.org/10.1109/TVCG.2014.2346271
https://doi.org/10.1109/TVCG.2014.2346271
https://doi.org/10.1080/17445647.2012.753850
https://doi.org/10.1111/j.1467-8659.2009.01450.x
https://doi.org/10.1111/j.1467-8659.2009.01450.x
https://doi.org/10.1016/j.jvlc.2005.09.001
https://doi.org/10.1016/j.jvlc.2005.09.001
https://doi.org/10.1109/IV.2010.53


Geographic Network Visualization Techniques 611

15. Merrick, D., Gudmundsson, J.: Increasing the readability of graph drawings with
centrality-based scaling. In: Proceedings of the 2006 Asia-Pacific Symposium
on Information Visualisation, APVis 2006, Tokyo, Japan, vol. 60, pp. 67–76.
Australian Computer Society Inc., Darlinghurst, Australia (2006). https://dl.acm.
org/citation.cfm?id=1151914

16. Moscovich, T., Chevalier, F., Henry, N., Pietriga, E., Fekete, J.D.: Topology-aware
navigation in large networks. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI 2009, Boston, MA, USA, pp. 2319–2328. ACM,
New York, NY, USA (2009). https://doi.org/10.1145/1518701.1519056

17. Riche, N.H., Dwyer, T., Lee, B., Carpendale, S.: Exploring the design space of
interactive link curvature in network diagrams. In: Proceedings of the International
Working Conference on Advanced Visual Interfaces, AVI 2012, Capri Island, Italy,
pp. 506–513. ACM, New York, NY, USA (2012). https://doi.org/10.1145/2254556.
2254652

18. Romat, H., Appert, C., Bach, B., Henry-Riche, N., Pietriga, E.: Animated edge
textures in node-link diagrams: a design space and initial evaluation. In: Proceed-
ings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI
2018, Montreal QC, Canada, pp. 187:1–187:13. ACM, New York, NY, USA (2018).
https://doi.org/10.1145/3173574.3173761

19. Wong, N., Carpendale, S., Greenberg, S.: Edgelens: an interactive method for man-
aging edge congestion in graphs. In: IEEE Symposium on Information Visualiza-
tion 2003 (IEEE Cat. No. 03TH8714), pp. 51–58, October 2003. https://doi.org/
10.1109/INFVIS.2003.1249008

20. Wong, N., Carpendale, S.: Supporting interactive graph explorationusing edge
plucking. In: Proceedings of IS&T/SPIE 19th Annual Symposium on Electronic
Imaging: Visualization and Data Analysis (2007). https://doi.org/10.1.1.230.7985

21. Wood, J., Dykes, J., Slingsby, A.: Visualisation of origins, destinations and
flows with OD maps. Cartogr. J. 47(2), 117–129 (2010). https://doi.org/10.1179/
000870410X12658023467367

22. Yang, Y., Dwyer, T., Goodwin, S., Marriott, K.: Many-to-many geographically-
embedded flow visualisation: an evaluation. IEEE Trans. Vis. Comput. Graph.
23(1), 411–420 (2017). https://doi.org/10.1109/TVCG.2016.2598885

23. Yang, Y., Dwyer, T., Jenny, B., Marriott, K., Cordeil, M., Chen, H.: Origin-
destination flow maps in immersive environments. IEEE Trans. Vis. Comput.
Graph. 25(1), 693–703 (2019). https://doi.org/10.1109/TVCG.2018.2865192

https://dl.acm.org/citation.cfm?id=1151914
https://dl.acm.org/citation.cfm?id=1151914
https://doi.org/10.1145/1518701.1519056
https://doi.org/10.1145/2254556.2254652
https://doi.org/10.1145/2254556.2254652
https://doi.org/10.1145/3173574.3173761
https://doi.org/10.1109/INFVIS.2003.1249008
https://doi.org/10.1109/INFVIS.2003.1249008
https://doi.org/10.1.1.230.7985
https://doi.org/10.1179/000870410X12658023467367
https://doi.org/10.1179/000870410X12658023467367
https://doi.org/10.1109/TVCG.2016.2598885
https://doi.org/10.1109/TVCG.2018.2865192


On the Simple Quasi Crossing Number of K11

Arjun Pitchanathan1(B) and Saswata Shannigrahi2

1 International Institute of Information Technology, Hyderabad 500032, India
arjun.p@research.iiit.ac.in

2 Saint Petersburg State University, St Petersburg 199034, Russia
saswata.shannigrahi@gmail.com

Abstract. We show that the simple quasi crossing number of K11 is 4.

A quasi-planar graph [2] is one that can be drawn in the plane without any
triples of pairwise crossing edges. A drawing of a graph in the plane is simple if
every pair of edges meets at most once, either at an intersection point or at a
common endpoint. Accordingly, a graph is simple quasi-planar if it has a simple
drawing in the plane without any triples of pairwise crossing edges. We define
the simple quasi crossing number of a graph G, denoted by cr3(G), to be the
minimum number of such triples in a simple drawing of G in the plane.

It has been shown [1] that a simple quasi-planar graph with n ≥ 4 vertices
has at most 6.5n − 20 edges and this bound is tight up to an additive con-
stant. We use this bound and follow the proof of the crossing number inequality
[4, 6] to obtain a lower bound on the simple quasi crossing number of a graph
as follows.

Let G be a graph with n ≥ 4 vertices and e edges. Consider a simple drawing
of G with cr3(G) triples of pairwise crossing edges. We can remove each such
triple by removing an edge. In this way, we can obtain a simple quasi-planar
graph with at least e − cr3(G) edges and n vertices. By the above-mentioned
bound, we have

cr3(G) ≥ e − 6.5n + 20. (1)

We improve this bound by the probabilistic method, as in the proof of the
crossing number inequality. Let p be a parameter between 0 and 1, to be chosen
later. Consider a random subgraph of H obtained by including each vertex of
G independently with a probability p, and including the edges for which both
vertices are included. Let nH , eH and cr3(H) be the random variables denoting
the number of vertices, number of edges and the simple quasi crossing number
of H, respectively. By applying the inequality (1) and taking expectations, we
obtain E[cr3(H)] ≥ E[eH ]− 6.5 E[nH ] + 20. By the independence of the choices,
we have E[eH ] = p2e and E[nH ] = pn. In any triple of pairwise crossing edges,
there are exactly six distinct vertices involved. Therefore, we have E[cr3(H)] ≤
p6cr3(G). Setting p = αn/e and simplifying, we obtain

cr3(G) ≥
(

α − 6.5
α5

)
e5

n4
+

20e6

α6n6
(2)

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 612–614, 2019.
https://doi.org/10.1007/978-3-030-35802-0

https://doi.org/10.1007/978-3-030-35802-0


On the Simple Quasi Crossing Number of K11 613

for graphs satisfying e ≥ αn since the probability p must be at most 1. The
value of α maximizing (α − 6.5)/α5 is 8.125, which implies that cr3(G) ≥
(1.625/8.1255)e5/n4 + (20/8.1256)e6/n6 for graphs satisfying e ≥ 8.125n.

In this paper, we are particularly interested in the values of cr3(Kn) where
Kn denotes the complete graph on n vertices. For n ≤ 10, Kn is known to be
simple quasi-planar [3, 5] and therefore we have cr3(Kn) = 0. For n = 11, we
obtain cr3(K11) ≥ 3.5 from (1). Therefore, there must be at least four triples of
pairwise crossing edges in any simple drawing of K11. In the following, we present
a drawing (Fig. 1d) which shows that cr3(K11) = 4. In each of the Figures a-d,
the triples of pairwise crossing edges introduced in the figure are marked with
red circles.

(a) With the initial edges (b) After adding pink edges

(c) After adding dark blue edges (d) The complete drawing of K11

Fig. 1. A drawing of K11 with four pairwise crossing triples

For n ≥ 12, we are not aware of the exact values of cr3(Kn). For each such
n, the best known lower bound can be obtained from one of the inequalities (1)
and (2). It is an open problem to obtain non-trivial upper bounds on cr3(Kn)
for n ≥ 12. Another open problem is to find a general drawing that provides a
good upper bound on cr3(Kn) for large n.



614 A. Pitchanathan and S. Shannigrahi

References

1. Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar graphs.
J. Comb. Theory Ser. A. 114(3), 563–571 (2007)

2. Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs
have a linear number of edges. Combinatorica 17(1), 1–9 (1997)

3. Aichholzer, O., Krasser, H.: The point set order type data base: a collection of
applications and results. In: Proceedings of 13th CCCG, Waterloo, Ontario, Canada,
pp. 17–20 (2001)

4. Ajtai, M., Chvátal, V., Newborn, M.M., Szemerédi, E.: Crossing-free subgraphs.
Theory and practice of combinatorics, North-Holland Mathematics Studies, 60,
North-Holland, Amsterdam, MR 0806962, pp. 9–12 (1982)

5. Brandenburg, F.J.: A simple quasi-planar drawing of K10. In: Proceedings of 24th
GD, Athens, Greece, pp. 603–604 (2016)

6. Leighton, T.: Complexity Issues in VLSI. Foundations of Computing Series.
Cambridge, MIT Press (1983)



Minimising Crossings in a Tree-Based Network

Jonathan Klawitter1(B) and Peter Stumpf2

1 School of Computer Science, University of Auckland, Auckland, New Zealand
jo.klawitter@gmail.com

2 Faculty of Computer Science and Mathematics,
University of Passau, Passau, Germany

Peter.Stumpf@uni-passau.de

Abstract. A tree-based network N is a rooted graph that has a span-
ning tree T which is the subdivision of a rooted binary tree. We show that
crossing minimisation for drawings of N is either NP-hard or polynomial
time solvable depending on the drawing style used for non-T edges.

1 Introduction

Phylogenetic trees and networks are rooted, leaf-labelled graphs used to model
and visualise the evolutionary history of a set of taxa, e.g. species or languages [3].
A tree-based network N is a phylogenetic network with a spanning tree T that
is the subdivision of a binary phylogenetic tree [1]. For fixed T , we refer to edges
not covered by T in N as cross edges. We assume that vertices of N are assigned
a height such that leaves have height zero and otherwise only two endpoints of a
cross edge may have the same height. We only consider drawings of N where T is
planar. Motivated by examples in the literature [4, 5] we identified the following
drawing styles for cross edges. First, cross edges may be drawn x-monotone such
that they are horizontal, snakes (i.e. have to bends), curves, or straight lines.
Second, we consider the ear and ear∗ drawing styles where a cross edge (u, v)
is drawn with two bends such that the vertical segment is to the right of the
subtree containing u and v or of T , respectively. See Fig. 1(a)–(d) for examples.

vli

vmj

(a) (b) (c) (d) (e) (f)

. . .v1i v2i vki

Fig. 1. (a)–(d): The horizontal, snake, ear, and ear* drawing styles, respectively;
(e), (f): edge and vertex gadgets.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 615–617, 2019.
https://doi.org/10.1007/978-3-030-35802-0

http://orcid.org/0000-0001-8917-5269
http://orcid.org/0000-0003-0531-9769
https://doi.org/10.1007/978-3-030-35802-0


616 J. Klawitter and P. Stumpf

2 Horizontal Drawing Style

Theorem 1. Crossing minimisation for a tree-based network with the horizontal
drawing style is NP-complete.

We sketch a polynomial-time reduction of an instance G of MAX-CUT to an
instance of crossing minimisation of a tree-based network N . Assume without
loss of generality that G contains no vertex of degree 1. Sort V (G) in an arbitrary
order, say v1, v2, . . . , vn.

We build the base tree T of N as follows. A gadget for each edge {vi, vj},
i < j, as shown in Fig. 1(e), where vl

i (vm
j ) is a representative of vi (resp. vj),

induces zero crossings if vi, vj are rotated differently and one crossing otherwise.
Thus it represents whether the edge is in the cut or not. We connect the edge
gadgets with a binary tree. For i ∈ {1, . . . , n}, let v1

i , . . . , v
k
i be all vertices

corresponding to vi ∈ V (G). We give vl
i the height i + lε for sufficiently small ε.

Furthermore, to force them to all have the “same” rotation we add two vertices
above the so far build tree and bundles of horizontal edges as shown in Fig. 1(f).
Further bundles of horizontal edges fix the part of T that connects the edge
gadgets and the upper part of vertex gadgets.

Note that several of the drawing styles can be reduced to the horizontal
drawing style, which gives us the following corollary.

Corollary 1. Crossing minimisation for a tree-based network with the snake,
monotone curve, or straight line drawing style is NP-complete.

3 Ears Drawing Style

Theorem 2. Crossing minimisation for a tree-based network N on n vertices
and k cross edges drawn with the ears drawing style can be solved in O(nk) time.

Let v be a vertex of T . The key observation is that the rotation of v only
determines crossings of edges from its left subtree through its right subtree or
vice versa. Thus the best rotation can be determined independently for each
vertex of T . The following algorithm runs in O(nk) time. First we determine the
lowest common ancestor (lca) for each pair of endpoints of a cross edge in O(n)
time [2]. Then we sweep from the leaves of T towards the root. At every endpoint
v of a cross edge we determine for every vertex u of T the width of its left and
right subtree at the height of v in O(n) time. Then from v up to its cross edge
lca, we add up for each vertex of T the width of the subtree not containing v to
a counter. When reaching a vertex u of T , we can decide its best rotation based
on this counter. Lastly, we extend a partial order of groups of nested vertical
segments to a total order to minimise crossings between cross edges.

Adjusting this algorithm to propagate the height up to the root instead of
only to the lca, we get the following corollary.

Corollary 2. Crossing minimisation for a tree-based network N on n vertices
and k cross edges drawn with the ears∗ drawing style can be solved in O(nk)
time.



Minimising Crossings in a Tree-Based Network 617

Acknowledgements. The first author thanks the New Zealand Marsden Fund for
their financial support. We thank the anonymous referees.

References

1. Francis, A.R., Steel, M.: Which phylogenetic networks are merely trees with addi-
tional arcs? Syst. Biol. 64(5), 768–777 (2015). https://doi.org/10.1093/sysbio/
syv037

2. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set
union. J. Comput. Syst. Sci. 30(2), 209–221 (1985). https://doi.org/10.1016/0022-
0000(85)90014-5

3. Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts, Algo-
rithms and Applications. Cambridge University Press (2010). https://doi.org/10.
1093/sysbio/syr055

4. Kumar, V., Lammers, F., Bidon, T., Pfenninger, M., Kolter, L., Nilsson, M.A.,
Janke, A.: The evolutionary history of bears is characterized by gene flow across
species. Sci. Rep. 7(1) (2017). https://doi.org/10.1038/srep46487

5. Vaughan, T.G., Welch, D., Drummond, A.J., Biggs, P.J., George, T., French, N.P.:
Inferring ancestral recombination graphs from bacterial genomic data. Genetics
205(2), 857–870 (2017). https://doi.org/10.1534/genetics.116.193425

https://doi.org/10.1093/sysbio/syv037
https://doi.org/10.1093/sysbio/syv037
https://doi.org/10.1016/0022-0000(85)90014-5
https://doi.org/10.1016/0022-0000(85)90014-5
https://doi.org/10.1093/sysbio/syr055
https://doi.org/10.1093/sysbio/syr055
https://doi.org/10.1038/srep46487
https://doi.org/10.1534/genetics.116.193425


Crossing Families and Their Generalizations

William Evans and Noushin Saeedi(B)

University of British Columbia, Vancouver, Canada
{will, noushins}@cs.ubc.ca

Introduction. Let P be a set of n points in general position in the plane. A
collection of line segments, each joining two of the points, is called a crossing
family if every two segments intersect internally. Let crf(P ) denote the size of
the maximum crossing family in P , and let crf(n) = min|P |=n crf(P ), where the
minimum is taken over all n-point sets P in general position in the plane. Aronov
et al. [1] studied the size of crf(n). They noted that a set of n points chosen at
random in a unit disc “almost surely” has a linear-sized crossing family and that
there are point sets whose maximum crossing family uses at most n

2 of the points.
They proved that any set of n points contains a crossing family of size at least
Ω(

√
n). Very recently, Pach et al. [4] improved the bound to Ω(n/2O(

√
logn)). It

is conjectured that crf(P ) = Θ(n).

Our Results. We improve the upper bound on crf(n). We also study combina-
torial and geometric generalizations of crossing families, and give several lower
and upper bounds on their sizes.

A point set A separates point set B from C if A and B ∪ C are separable by
a line and every line through two points in A has all of B on one side and all of
C on the other side. We show that all segments of any crossing family in a point
set A∪B∪C, where A separates B from C, emanate from one set (A or B or C).
We exploit this property among subsets of points to design a template for con-
structing n-point sets with maximum crossing family of size1 at most 5� n

24�.
We study a relaxation of crossing families with bi-coloured segments in two-

coloured point sets. Two bi-coloured segments are side compatible if each pair of
same-coloured endpoints are on the same side of the line joining the other two
endpoints—the segments with same-coloured endpoints are “parallel” (cannot be
crossing or “stabbing”). A side compatible family is a set of bi-coloured segments
that are pairwise side compatible. Any pair of crossing bi-coloured segments are
side compatible but a side compatible pair may be crossing or parallel (but not
stabbing). We consider sets of red and blue points such that all red points are
on the same side of any line through two blue points, and call them 1-avoiding
point sets. We study the characteristics of side compatible families in 1-avoiding

An extended version of this work appears in arXiv:1906.00191 [3]. This work was funded
by an NSERC Discovery grant and in part by the Institute for Computing, Information
and Cognitive Systems (ICICS) at UBC.
1 Pach et al. [4] cite an n/5 upper bound by Aichholzer by personal communication
in their recent work.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 618–620, 2019.
https://doi.org/10.1007/978-3-030-35802-0

https://doi.org/10.1007/978-3-030-35802-0


Crossing Families and Their Generalizations 619

point sets in combinatorial terms and in the dual plane. Note that in the dual
plane, all intersections of blue lines are on the same side of all red lines.

We abstract the combinatorial information of the dual line arrangement using
a “bar stack”, which represents intersections between red lines, and “wires”,
which are horizontal lines that represent blue lines. A bar stack Bl,n is a set
of l bars (horizontal segments) B1 . . . Bl such that Bi = [(ai, i), (bi, i)], where
1 ≤ ai < bi ≤ n, and no two bars have the same horizontal interval. Bar Bi

can be used to represent the intersection of red lines numbered ai and bi and
represents the i-th intersection from below among red lines. The pair of a bar
stack and wires encode where the intersections of red lines are with respect to the
blue lines. While a bar stack can represent the intersections of a line arrangement,
it is more general. We refer to the vertical lines through the endpoints of bars
as pillars (which represent red lines). A marble (point) at the intersection of a
wire and a pillar represents a bi-coloured segment. A side compatible family is
visualized, roughly speaking, as a set of marbles such that for every bar both of
whose pillars contain a marble, both marbles are above or both below the bar.
Using counting arguments, we show that any bar stack Bn,n together with a set
of n+1 wires such that there is a bar between every two consecutive wires has a
side compatible family of size n. In particular, we show that there exists a “side
compatible marbling” such that the marble associated with an endpoint of a bar
is below the bar if and only if the bar is above some fixed wire. Our proof can
be generalized to get a linear-sized side compatible family for any set of n wires.

We also study geometric generalizations of crossing families. A spoke set
[2, 5] for a point set P is a set L of pairwise non-parallel lines such that each open
unbounded region defined by L has at least one point of P . If crf(P ) = k, the size
of the largest spoke set for P is at least k (infinitesimal clockwise rotation of the
supporting lines of segments in a crossing family yields a spoke set). Schnider [5]
studied spoke sets in the dual plane. We introduce a generalized notion for
the dual of a spoke set. A pseudoline � is monotonically semialternating or
M-semialternating in a bi-coloured line arrangement if the level of every other
cell it visits is a non-decreasing sequence, and between these cells it crosses a dis-
tinct line of each color. If a subarrangement A ⊆ L admits an M-semialternating
pseudoline, L has an M-semialternating path of size |A|. The dual of a spoke set
defines a special M-semialternating path for which the level sequence is constant.

A bi-coloured line arrangement L is color-separable if the vertical line to
the left of all intersection points of L intersects all of one then all of the other
color. We show (by rotation) that the minimum sizes—over all color-separable
arrangements of n lines—of the largest M-semialternating paths with constant
and strictly increasing level sequences are the same (for a fixed arrangement they
may be different). M-semialternating paths with different level sequences in a line
arrangement correspond to sets of lines with different properties with respect to
the dual point set. We exploit this correspondence and the connection between
the sizes of different M-semialternating paths to improve the upper bound on the
size of spoke sets from 9n

20 to n
4 + 1. The upper bound is constant if we consider

M-semialternating lines rather than pseudolines. Our proof technique (duality



620 W. Evans and N. Saeedi

and rotation) together with recursive use of hamsandwich cuts, implies that the
largest set of pairwise stabbing or crossing segments in any set of n points is n

2 .

References

1. Aronov, B., Erdős, P., Goddard, W., Kleitman, D.J., Klugerman, M., Pach, J.,
Schulman, L.J.: Crossing families. Combinatorica 14(2), 127–134 (1994)

2. Bose, P., Hurtado, F., Rivera-Campo, E., Wood, D.R.: Partitions of complete geo-
metric graphs into plane trees. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp.
71–81. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31843-9 9

3. Evans, W., Saeedi, N.: On problems related to crossing families. arXiv:1906.00191,
June 2019

4. Pach, J., Rubin, N., Tardos, G.: Planar point sets determine many pairwise crossing
segments. arXiv:1904.08845v1, April 2019

5. Schnider, P.: A generalization of crossing families. arXiv:1702.07555, February 2017

https://doi.org/10.1007/978-3-540-31843-9_9
http://arxiv.org/abs/1906.00191
http://arxiv.org/abs/1904.08845v1
http://arxiv.org/abs/1702.07555


Which Sets of Strings Are Pseudospherical?

R. Bruce Richter and Xinyu L. Wang(B)

Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, Canada

{brichter, x654wang}@uwaterloo.ca

The idea of pseudospherical drawings comes from a natural generalization of
pseudolinear drawings, where each edge extends to a pseudoline and every pair
of pseudolines crosses exactly once. The geometry of these drawings can be
applied to techniques for crossing numbers, for example, to prove special cases
for the Harary–Hill conjecture about the crossing number of Kn. Pseudospherical
arrangements can be thought of as drawings where each edge extends to a simple
closed curve, every pair of which intersect exactly twice, and no edge crosses any
of the simple closed curves more than once.

A string is a simple bounded arc. We consider collections of strings embed-
ded in S

2. Such a collection is denoted by Σ, which will be extended at each
string from their endpoints to pseudocircles, simple closed curves. A pseu-
dospherical arrangement is an extension of Σ to pseudocircles where every
string e is extended to a pseudocircle γe so that:

PS1: For each string e, no vertex except an endpoint of e is contained in γe.
PS2: For distinct e, f , |γe ∩ γf | = 2, and all intersections are crossings.
PS3: For any edge e, if its endpoints u and v are contained in the closure Δ
of one of the components of S2 \ γe, then e ⊂ Δ.

For any cycle, vertices (where strings intersect) on the cycle are categorized
as either rainbow or reflecting: v is reflecting in C if two edges incident to v
from inside C or on C belong to the same string, and v is rainbow in C if all
edges incident to v from inside or on C belong to distinct strings [1].

When drawing Kn as a pseudospherical arrangement, each side of a great
circle induces a pseudolinear drawing of a smaller complete graph [2]. There is
a known classification of obstruction cycles where a set of strings fails to be
pseudolinear by Arroyo et al. if and only if the obstruction cycle has at most
two rainbow vertices [1]. These cycles turn out to be related to pseudocircular
obstructions except for one type of cycle, which we will detail below.

Every collection of strings with a pseudolinear extension also has a pseudo-
spherical extension which can be obtained from the former by contracting the
ends of the pseudolines into a point and perturbing the edges.

There exist four types of pseudolinear obstruction cycles. We will refer to
cycles with no rainbow vertices as clouds, to those with one rainbow vertex as
fish, to those with two adjacent rainbow vertices as shrubs, and to those with
two non-adjacent rainbow vertices as croissants. The last type turns out to be
different than the previous ones in the context of pseudocircles.

c© Springer Nature Switzerland AG 2019
D. Archambault and C. D. Tóth (Eds.): GD 2019, LNCS 11904, pp. 621–623, 2019.
https://doi.org/10.1007/978-3-030-35802-0

https://doi.org/10.1007/978-3-030-35802-0


622 R. B. Richter and X. L. Wang

Theorem 1. Every cloud, fish, and shrub type cycle has some pseudocircle
extended from one of its strings contained entirely in the cycle’s closure in
any pseudospherical extension. However, croissant type cycles can have all their
strings extended into a pseudospherical arrangement so that each pseudocircle
has some portion outside the cycle.

We will label cloud, fish, and shrub type cycles as (pseudospherical)
obstruction cycles. From the above result we deduce that if we have two dis-
joint obstruction cycles in some set of strings Σ, then Σ has no pseudospherical
extension.

This condition is not necessary for collections of strings without pseudo-
spherical extensions. If every string on an obstruction cycle is intersected by
some string with both ends outside the cycle, then we cannot find a pseudo-
spherical extension for the set of strings, since some pseudocircle is in the cycle
and contains some part a the string with both ends outside the cycle, which
violates PS3 (Fig. 1).

Theorem 2. Every cloud type cycle has at least 4 pseudocircles contained
entirely in its interior in any pseudospherical extension (Fig. 1(left)).

Theorem 3. Every fish or shrub type cycle has at least 2 pseudocircles contained
entirely in its interior in any pseudospherical extension (Fig. 1(right)).

Fig. 1. Examples of extending cloud (left) and fish (right) cycles pseudospherically
containing a minimum number of pseudocircles inside the cycle.

Question: Is there an excluded minor characterization of pseudospherical
drawings along the lines of the pseudolinear characterization?



Which Sets of Strings Are Pseudospherical? 623

References

1. Arroyo, A., Richter, R.B., Sunohara, M.: Extending drawings of complete graphs
into arrangements of pseudocircles (Submitted)

2. Arroyo, A., Bensmail, J., Richter, R.B.: Extending Drawings of Graphs to Arrange-
ments of Pseudolines (Submitted)



Author Index

Ahmed, Reyan 291
Aichholzer, Oswin 87, 101, 193, 482
Akasaka, Katsuya 337
Angelini, Patrizio 253, 268
Angori, Lorenzo 276
Arroyo, Alan 230

Bach, Benjamin 608
Balko, Martin 101
Bekos, Michael A. 253
Bhore, Sujoy 365
Biedl, Therese 409, 468
Binucci, Carla 587
Borrazzo, Manuel 165, 545
Brückner, Guido 517, 559

Castelli Aleardi, Luca 114
Chae, David 139
Chafi, Hassan 139
Chambers, Erin Wolf 468
Chaplick, Steven 3, 63, 216
Chen, Fati 179
Chimani, Markus 46, 78

Da Lozzo, Giordano 545
de Col, Philipp 460
De Luca, Felice 291, 499, 605
De Mesmay, Arnaud 468
Derka, Martin 230
Devkota, Sabin 291
Di Giacomo, Emilio 379, 605
Didimo, Walter 276, 587

Eades, Peter 125, 139
Eppstein, David 468
Evans, William 18, 618

Fabila-Monroy, Ruy 87
Felsner, Stefan 395, 409
Firman, Oksana 203
Förster, Henry 147, 216, 268, 599

Frati, Fabrizio 165, 545
Fuchs, Adrian 87

Ganian, Robert 147, 365

Hidalgo-Toscano, Carlos 87
Himmel, Markus 517
Hliněný, Petr 307
Hoffmann, Michael 101, 268
Hong, Seok-Hee 125, 139, 605
Hong, Sungpack 139
Hossain, Md. Iqbal 499
Hummel, Matthias 323

Isaacs, Katherine E. 291

Kauer, Tobias 608
Kaufmann, Michael 253, 268, 596, 599
Keim, Daniel 125
Kindermann, Philipp 3, 78, 203, 416, 575
Klawitter, Jonathan 615
Kleist, Linda 482
Klemz, Boris 482
Klute, Fabian 147, 323, 460
Kobourov, Stephen 46, 268, 291, 499, 605
Korman, Matias 193
Krisam, Nadine Davina 559
Kryven, Myroslav 63, 216
Kuckuk, Axel 596
Kynčl, Jan 101

Langerenken, Daniel 139
Lenhart, William 605
Lionakis, Panagiotis 593
Liotta, Giuseppe 268, 379, 602, 605
Löffler, Andre 3

Mallach, Sven 532
Mchedlidze, Tamara 416, 559, 575, 590
Meidiana, Amyra 125
Meijer, Henk 409, 605



Merker, Laura 447
Meulemans, Wouter 46
Misue, Kazuo 337
Montecchiani, Fabrizio 78, 276, 365, 379,

587
Mulzer, Wolfgang 101

Nickel, Soeren 46, 323
Nöllenburg, Martin 46, 147, 323, 365, 460

Okamoto, Yoshio 193, 430
Ophelders, Tim 468
Ortali, Giacomo 593

Pach, János 244
Pagliuca, Daniele 276
Parada, Irene 87, 101, 193, 230
Park, Ji-won 63
Patrignani, Maurizio 268, 545
Peltonen, Jaakko 46
Perz, Daniel 193
Piccinini, Laurent 179
Pilz, Alexander 101
Pitchanathan, Arjun 612
Poncelet, Pascal 179

Radermacher, Marcel 590
Ravsky, Alexander 63, 203, 430
Richter, R. Bruce 621
Rutter, Ignaz 517, 575, 590, 602
Rzążewski, Paweł 18

Saeedi, Noushin 18, 618
Sallaberry, Arnaud 179
Sankaran, Abhisekh 307
Scheucher, Manfred 101, 350
Schneck, Thomas 253, 416

Schöttler, Sarah 608
Schrezenmaier, Hendrik 350
Schröder, Felix 482
Shannigrahi, Saswata 612
Shin, Chan-Su 18
Sondag, Max 46
Speckmann, Bettina 33
Steiner, Raphael 350
Stumpf, Peter 590, 615
Symvonis, Antonios 416

Tappini, Alessandra 276, 602, 605
Thiele, Florian 3
Tollis, Ioannis G. 593
Tomon, István 244
Torkel, Marnijati 139

Ueckerdt, Torsten 447

Valtr, Pavel 78, 101
van Dijk, Thomas C. 63
van Goethem, Arthur 33
van Renssen, André 193
Verbeek, Kevin 33
Vogtenhuber, Birgit 87, 101, 193, 482

Wang, Xinyu L. 621
Wang, Ziyang 139
Welzl, Emo 101
Wismath, Stephen 605
Wolff, Alexander 3, 18, 63, 203, 216, 409,

430

Zaft, Alexander 3
Zaragoza, Francisco 87
Zink, Johannes 3, 203

626 Author Index


	Preface
	Organization
	Invited Lectures
	Pushing the Boundaries of Interaction in Data Visualization
	Old and New Challenges in Coloring Graphs with Geometric Representations
	This Is Time in/for Graph Drawing
	Contents
	Cartograms and Intersection Graphs
	Stick Graphs with Length Constraints
	1 Introduction
	2 Sticks of Variable Lengths
	3 Sticks of Fixed Lengths
	3.1 STICKfix
	3.2 STICKfixA and STICKfixAB
	3.3 STICKfixAB Without Isolated Vertices

	4 Open Problems
	References

	Representing Graphs and Hypergraphs by Touching Polygons in 3D
	1 Introduction
	2 Graphs
	2.1 General Graphs
	2.2 Bipartite Graphs
	2.3 1-Planar Cubic Graphs
	2.4 Cubic Graphs

	3 Hypergraphs
	4 Conclusion and Open Problems
	References

	Optimal Morphs of Planar Orthogonal Drawings II
	1 Introduction
	2 Preliminaries
	3 Linear Morphs for Disconnected Graphs
	4 Combining Intermediate Linear Morphs
	4.1 Staircases
	4.2 Inversions
	4.3 Single Linear Morph

	5 Linear Complexity of Intermediate Drawings
	5.1 Rerouting
	5.2 Simplification

	References

	Computing Stable Demers Cartograms
	1 Introduction
	2 Computing a Single DC
	3 Computing Stable DCs for Multiple Weights
	4 Experimental Setup
	5 Experimental Results
	6 Discussion and Future Work
	References

	Geometric Graph Theory
	Bundled Crossings Revisited
	1 Introduction
	2 Computing `3́9`42`"̇613A``45`47`"603Abc(G) Is NP-Hard
	3 FPT Algorithms for Computing `3́9`42`"̇613A``45`47`"603Abc'(G) and `3́9`42`"̇613A``45`47`"603Abc(G)
	3.1 Constructing the Surface Determined by a Bundled Drawing
	3.2 Recognizing a Graph with One Bundled Crossing
	3.3 Recognizing a Graph with k Bundled Crossings

	4 Open Problems
	References

	Crossing Numbers of Beyond-Planar Graphs
	1 Introduction
	2 The 1-planar Crossing Ratio
	3 The Quasi-planar Crossing Ratio
	4 The Fan-Planar Crossing Ratio
	5 Open Problems
	References

	On the 2-Colored Crossing Number
	1 Introduction
	2 Upper Bounds on cr2(Kn)
	3 Lower Bounds on cr2(Kn)
	3.1 Straight-Line Versus General Drawings

	4 Upper Bounds on the Ratio cr2(D)/cr(D)
	5 Conclusion and Open Problems
	References

	Minimal Representations of Order Types by Geometric Graphs
	1 Introduction
	2 Exit Edges
	3 Exit Edges and Empty Triangular Cells
	4 On the Number of Exit Edges
	5 Properties of Exit Graphs
	6 Concluding Remarks
	References

	Balanced Schnyder Woods for Planar Triangulations: An Experimental Study with Applications to Graph Drawing and Graph Separators
	1 Introduction
	2 Contribution
	2.1 Balanced Schnyder Woods
	2.2 From Schnyder Drawings to Small Simple Cycle Separators
	2.3 Experimental Results

	References

	Clustering
	A Quality Metric for Visualization of Clusters in Graphs
	1 Introduction
	2 Related Work
	2.1 Graph Drawing Quality Metrics
	2.2 Clustering Comparison Metrics
	2.3 Graph Drawing Algorithms

	3 Clustering Metric for Graph Visualization
	4 Validation Experiments
	4.1 Experiment Design
	4.2 Results
	4.3 Discussion and Summary

	5 Layout Comparison Experiments
	5.1 Experiment Design
	5.2 Results
	5.3 Discussion and Summary

	6 Conclusion and Future Work
	References

	Multi-level Graph Drawing Using Infomap Clustering
	1 Introduction
	2 Related Work
	3 Infomap Based Multi-level Algorithm
	3.1 Coarsening: Infomap Clustering
	3.2 Initialization: Placement
	3.3 Refinement: Force-Directed Layout

	4 Experiments
	References

	On Strict (Outer-)Confluent Graphs
	1 Introduction
	2 Preliminaries
	3 Strict (Outer-)Confluent  (Outer-)String
	4 Unit Interval Graphs and SC
	5 Strict Bipartite-Outerconfluent Drawings
	6 Strict Outerconfluent Graphs Have Cop Number Two
	7 Clique-Width of Tree-Like Strict Outerconfluent Graphs
	8 Conclusion
	References

	Quality Metrics
	On the Edge-Length Ratio of Planar Graphs
	1 Introduction
	2 Definitions and Preliminaries
	3 A Lower Bound for Planar Graphs
	4 Upper Bounds for Planar Graph Classes
	4.1 Plane 3-Trees
	4.2 2-Trees
	4.3 Bipartite Planar Graphs

	5 Conclusions and Open Problems
	References

	Node Overlap Removal Algorithms: A Comparative Study
	1 Introduction
	2 Preliminaries
	3 Quality Criteria
	3.1 Orthogonal Ordering Preservation
	3.2 Spread Minimisation
	3.3 Global Shape Preservation
	3.4 Node Movement Minimisation
	3.5 Edge Length Preservation

	4 Algorithms Comparison
	4.1 Quality
	4.2 Computation Time

	5 Conclusion
	References

	Graphs with Large Total Angular Resolution
	1 Introduction
	2 Upper Bound on the Number of Edges
	3 NP-hardness
	4 Conclusion
	References

	Arrangements
	Computing Height-Optimal Tangles Faster
	1 Introduction
	2 Complexity
	3 Exact Algorithms
	4 Theoretical and Experimental Comparison
	5 Deciding Feasibility
	6 Conclusions and Open Problems
	References

	On Arrangements of Orthogonal Circles
	1 Introduction
	2 Preliminaries
	3 Arrangements of Orthogonal Circles
	3.1 Bounding the Number of Faces
	3.2 Bounding the Number of Small Faces

	4 Intersection Graphs of Orthogonal Circles
	5 Discussions and Open Problems
	References

	Extending Simple Drawings
	1 Introduction
	2 Inserting a Given Set of Edges Is NP-complete
	3 Maximizing the Number of Edges Inserted Is APX-hard
	3.1 Constructing a Drawing from a Given Graph
	3.2 Reduction from Maximum Independent Set

	4 Inserting One Edge in a Simple Drawing
	5 Conclusions
	References

	Coloring Hasse Diagrams and Disjointness Graphs of Curves
	1 Introduction
	2 Cover Graphs with Large Chromatic Number
	References

	A Low Number of Crossings
	Efficient Generation of Different Topological Representations of Graphs Beyond-Planarity
	1 Introduction
	2 Preliminaries
	3 Generation Procedure
	4 Proof of Concept - Applications
	5 Conclusions and Open Problems
	References

	The QuaSEFE Problem
	1 Introduction
	2 Sufficient Conditions for QuaSEFEs
	3 Counterexamples for QuaSEFE
	4 Conclusions and Open Problems
	References

	ChordLink: A New Hybrid Visualization Model
	1 Introduction
	2 Related Work
	3 The ChordLink Model
	3.1 General Strategy
	3.2 Algorithms

	4 A Prototype System
	5 Final Remarks and Future Work
	References

	Stress-Plus-X (SPX) Graph Layout
	1 Introduction
	2 Background and Related Work
	3 SPX Algorithm
	3.1 Stress Plus Crossing Minimization
	3.2 Stress Plus Crossing Angle Maximization
	3.3 Stress Plus Upward Crossing Minimization
	3.4 Implementation
	3.5 Convergence Analysis

	4 Results
	4.1 Datasets and Experimental Settings
	4.2 Comparison to Shabbeer et al.
	4.3 Comparison Across Several Criteria
	4.4 Comparison of Upward Drawings

	5 Conclusions and Future Work
	References

	Best Paper in Track 1
	Exact Crossing Number Parameterized by Vertex Cover
	1 Introduction
	2 Basic Definitions
	3 Clustered Optimal Drawings
	4 Counting the Crossings in Clusters and Between
	4.1 IQP Formulation for Crossings

	5 Conclusions
	References

	Morphing and Planarity
	Maximizing Ink in Partial Edge Drawings of k-plane Graphs
	1 Introduction
	2 Preliminaries
	3 Complexity
	3.1 Hardness of MaxSPED for k3
	3.2 Hardness of MaxPED for k4

	4 Algorithms
	4.1 Trees
	4.2 Bounded Treewidth
	4.3 Algorithms for MaxPED

	5 Experiments
	6 Conclusion
	References

	Graph Drawing with Morphing Partial Edges
	1 Introduction
	2 Partial Edge Drawing
	3 Related Work
	4 Morphing Edge Drawing
	4.1 Symmetric MED

	5 Scheduling of Morphing
	5.1 Morphing Group
	5.2 Sequential Morphing
	5.3 Packing Morphing Intervals
	5.4 Parallel Morphing
	5.5 Algorithm for Finding Morphing Start Time

	6 Evaluation Experiment
	6.1 Hypothesis
	6.2 Tasks
	6.3 Graphs Used for the Experiment
	6.4 Morphing Speed
	6.5 Experimental Settings
	6.6 Experimental Procedure
	6.7 Response Time
	6.8 Answer Accuracy
	6.9 Qualitative Feedback

	7 Concluding Remarks
	References

	A Note on Universal Point Sets for Planar Graphs
	1 Introduction
	2 Outline
	3 Proof of Theorem 1
	4 Proof of Theorem 2 and Corollary 1
	4.1 Enumeration of Order Types
	4.2 Enumeration of Planar Graphs
	4.3 Deciding Universality Using a SAT Solver
	4.4 Finding Conflict Collections – A Quantitive Approach
	4.5 How to Verify Our Results?

	5 Universal Sets for 4-Connected Graphs
	6 Discussion
	References

	Parameterized Complexity
	Parameterized Algorithms for Book Embedding Problems
	1 Introduction
	2 Preliminaries
	3 Algorithms for Fixed-Order Book Thickness
	3.1 Parameterization by the Vertex Cover Number
	3.2 Parameterization by the Pathwidth of the Vertex Ordering

	4 Algorithms for Book Thickness
	5 Conclusions and Open Problems
	References

	Sketched Representations and Orthogonal Planarity of Bounded Treewidth Graphs
	1 Introduction
	2 Preliminaries
	3 Orthogonal Sketches
	4 The Parameterized Algorithm
	5 Applications
	6 Open Problems
	References

	Collinearities
	4-Connected Triangulations on Few Lines
	1 Introduction
	2 Preliminaries
	2.1 Transversal Structures
	2.2 Posets
	2.3 Dimension of Planar Posets
	2.4 Orthogonal Partitions of Posets

	3 Drawing Planar Lattices on Few Lines
	4 Transversal Structures on Few Lines
	References

	Line and Plane Cover Numbers Revisited
	1 Introduction
	2 Complexity of Computing Weak Line Covers in 2D
	3 Weak Line Covers of Planar 3-Trees in 2D
	4 Maximal Graphs on Two Planes in 3D
	References

	Drawing Planar Graphs with Few Segments on a Polynomial Grid
	1 Introduction
	2 Trees
	3 3-Connected Planar Graphs
	4 Other Planar Graph Classes
	References

	Variants of the Segment Number of a Graph
	1 Introduction
	2 Relationships Between Segment Number Variants
	3 Computational Complexity
	4 Algorithms and Lower Bounds for Cubic Graphs
	4.1 Singly-Connected Cubic Graphs
	4.2 Biconnected Cubic Graphs
	4.3 Triconnected Cubic Graphs

	5 Open Problems
	References

	Topological Graph Theory
	Local and Union Page Numbers
	1 Introduction
	1.1 Our Contribution

	2 Bounds in Terms of Density
	3 Planar Graphs
	4 Graphs with Bounded Tree-Width
	5 Conclusions and Open Problems
	References

	Mixed Linear Layouts: Complexity, Heuristics, and Experiments
	1 Introduction
	2 Complexity
	3 Heuristic Algorithm
	4 Experiments
	5 Conclusion
	References

	Homotopy Height, Grid-Major Height and Graph-Drawing Height
	1 Introduction
	2 Definitions
	3 Homotopy-Height and Grid-Major Height
	3.1 Simple Grid-Major Height and Simple Homotopy Height
	3.2 Homotopy Height and Grid-Major Height

	4 Strictness Examples
	5 Outlook
	References

	On the Edge-Vertex Ratio of Maximal Thrackles
	1 Introduction
	2 Geometric Thrackles
	3 Topological Thrackles of Arbitrarily Small Edge-Vertex Ratio
	4 Topological Thrackles Without Isolated Vertices
	5 Ongoing Work and Open Problems
	References

	Best Paper in Track 2
	Symmetry Detection and Classification in Drawings of Graphs
	1 Introduction
	2 Related Work
	3 Background and Preliminaries
	4 Datasets
	4.1 Reflectional Layout Generation
	4.2 Dataset Definition
	4.3 Other Symmetric Layouts

	5 Experimental Setup
	6 Detecting Reflectional Symmetry
	7 Detecting Different Types of Symmetries
	8 Conclusions
	References

	Level Planarity
	An SPQR-Tree-Like Embedding Representation for Upward Planarity
	1 Introduction
	2 Preliminaries
	3 Decomposition Trees and Upward Planar Embeddings
	3.1 Decompositions and Upward Planar Embeddings
	3.2 Decomposition Trees and Upward Planar Embeddings

	4 UP-Trees
	4.1 P-Node Splits
	4.2 Arc Contractions
	4.3 Computation in Linear Time

	5 Partial Upward Embedding
	6 Conclusion
	References

	A Natural Quadratic Approach to the Generalized Graph Layering Problem
	1 Introduction
	2 A Landscape of Graph Layering Problems
	3 Evolution of Exact Approaches to Graph Layering
	4 A Natural Quadratic Graph Layering Framework
	4.1 A Basic Quadratic Layer Assignment Model (QLA)
	4.2 Quadratic Layer Assignment for GLP-W (QLA-W)
	4.3 Quadratic Layer Assignment for GLP-MS* (QLA-MS*)

	5 Experimental Evaluation
	5.1 GLP and GLP-W
	5.2 GLP-MS*

	6 Conclusion
	A  Ordering-Based Reference Models
	References

	Graph Stories in Small Area
	1 Introduction
	2 Preliminaries
	3 Planar Graph Stories
	4 Path Stories
	5 Tree Stories
	6 Conclusions and Open Problems
	References

	Level-Planar Drawings with Few Slopes
	1 Introduction
	2 Preliminaries
	3 Flow Model
	3.1 Connected Partial Drawings

	4 Dual Distance Model
	5 Partial and Simultaneous Drawings
	5.1 Partial Drawings
	5.2 Simultaneous Drawings

	6 Conclusion
	References

	Graph Drawing Contest Report
	Graph Drawing Contest Report
	1 Introduction
	2 Creative Topics
	2.1 Marvel Cinematic Universe
	2.2 Meal Ingredients

	3 Live Challenge
	3.1 The Graphs
	3.2 Results: Manual Category
	3.3 Results: Automatic Category


	Correction to: A Natural Quadratic Approach to the Generalized Graph Layering Problem
	Correction to: Chapter “A Natural Quadratic Approach to the Generalized Graph Layering Problem” in: D. Archambault and C. D. Tóth (Eds.): Graph Drawing and Network Visualization, LNCS 11904, https://doi.org/10.1007/978-3-030-35802-0_40 

	Poster Abstracts
	A 1-planarity Testing and Embedding Algorithm
	References

	Stretching Two Pseudolines in Planar Straight-Line Drawings
	References

	Adventures in Abstraction: Reachability in Hierarchical Drawings
	References

	On Topological Book Embedding for k-plane Graphs
	References

	On Compact RAC Drawings
	References

	FPQ-Choosable Planarity Testing
	References

	Packing Trees into 1-Planar Graphs
	References

	Geographic Network Visualization Techniques: A Work-In-Progress Taxonomy
	1 Scope and Methodology
	2 Taxonomy
	3 Open Challenges
	References

	On the Simple Quasi Crossing Number of K11
	References

	Minimising Crossings in a Tree-Based Network
	1 Introduction
	2 Horizontal Drawing Style
	3 Ears Drawing Style
	References

	Crossing Families and Their Generalizations
	References

	Which Sets of Strings Are Pseudospherical?
	References


	Author Index



