
Chapter 50
PERSIANN-CDR for Hydrology
and Hydro-climatic Applications
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Abstract Satellite-retrieved precipitation datasets represent a promising input data
source to be utilized in hydroclimatic and hydrologic applications. Due to their
characteristics of high spatiotemporal resolution, near real-time availability and
quasi global coverage, satellite-retrieved precipitation datasets promise to provide
a remedy for the long-standing issues associated with ground rainfall information. In
this article, we shed light on the Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks – Climate Data Records (PERSIANN-
CDR) dataset and its use in hydroclimatic and hydrologic applications. In particular,
we highlight the use of PERSIANN-CDR for rainfall trend analysis, observation of
extreme rainfall events such as Hurricanes, and evaluation of climate models’
simulations of precipitation based on their historical performance. Regarding the
use of PERSIANN-CDR for hydrologic applications, we show examples of utilizing
the dataset in rainfall-runoff modeling as well as its use in rainfall frequency analysis
and the development of intensity-duration-frequency (IDF) curves.
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50.1 Introduction

Precipitation is a vital component of water and energy cycle and is one of the most, if
not the most, important meteorological input for hydrometeorological and climatic
models (Sorooshian et al. 2011). Reliable long-term precipitation data on a global
scale is essential for a wide range of hydrological, hydrometeorological, and
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climatological applications. Gauge-based data sets generally provide long-term,
direct physical measurement of precipitation, however, their sparse point measure-
ments as well as susceptibility to certain errors have elevated the importance of
satellite-based rainfall estimates (Kidd et al. 2017; Rana et al. 2015; Xie and Arkin
1997).

Satellite observations make up for such deficiencies by providing coverage that is
spatially more homogeneous and temporally complete globally (Kidd and Levizzani
2011; Xie et al. 2003). Over the past recent decades, the availability of satellite-based
observations has motivated researchers to investigate several hydroclimatic pro-
cesses and develop methods for the incorporation of these datasets in hydrologic
applications. Sun et al. (2018) provided a summary of major satellite-related precip-
itation data sets that are currently available and Maggioni et al. (2016) presented a
consolidated and detailed review of the algorithms used in satellite precipitation data
sets. Some of the currently operationally available satellite-derived data sets are the
Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis
(TMPA) (Huffman et al. 2007), the Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks – Climate Data Records (PERSIANN-
CDR) (Ashouri et al. 2015), and the Climate Prediction Center (CPC) morphing
technique (CMORPH) (Joyce et al. 2004) products.

The focus of this chapter is on the applications of PERSIANN algorithms family,
particularly PERSIANN Climate Data Record (PERSIANN-CDR, Ashouri et al.
2015). This algorithm provides long-term, high-resolution, satellite-based precipita-
tion estimates for hydroclimatological applications. PERSIANN-CDR’s daily
(sub-daily; 3-hourly) and 0.25� precipitation data from 1983 to present makes it
suitable to study the behavior of extreme precipitation patterns on a global scale over
the past three decades (Hsu et al. 1997; Sorooshian et al. 2000). This satellite-based
precipitation product provides daily precipitation estimates from the year 1983 to
present at a resolution of 0.25� on the archive of Gridded Satellite (GridSat-B1) IR
satellite data (Ashouri et al. 2015; Lee 2014). PERSIANN-CDR utilizes an artificial
neural network to assign a surface rain rate based on brightness temperature
retrievals of infrared information from geostationary Earth-Orbiting (GEO) satel-
lites, specifically from the archive of Gridded Satellite (GridSat-B1). The artificial
neural network is trained with stage IV hourly precipitation data from the National
Centers for Environmental Prediction (NCEP). The high-resolution PERSIANN
estimates are then adjusted by the GPCP (Global Precipitation Climatology Project)
data at a resolution of 2.5� to downscale and remove the bias from the precipitation
estimates (Ashouri et al. 2015). Toward this aim, the merged analysis (1979-present)
from monthly GPCP global precipitation products is utilized for each month of the
30-year period at each 2.5� grid box of PERSIANN data. The corresponding 0.25�

3-hourly PERSIANN rain-rate estimates are aggregated to monthly scale after
applying a proper threshold value to filter out pixels associated with no rain-rate.
Then a correction factor based on the ratio of 2.5� monthly GPCP precipitation and
PERSIANN rain-rate estimates at each 0.25� pixel is calculated and adjusted to be
applied to 3-hourly PERSIANN estimate. GPCP version 2.2 (http://precip.gsfc.nasa.
gov, last accessed 24 Nov. 2018), and GPCP 1� daily precipitation product
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(Huffman et al. 2001) are used for correction and evaluation purposes respectively.
For more detail regarding the process of adjusting PERSIANN data using monthly
GPCP data refer to Ashouri et al. (2015).

The resulting final PERSIANN-CDR data is available through NOAA NCEI
CDR program at https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-persiann-
cdr (last accessed 24 Nov. 2018). PERSIANN-CDR has been widely used and
validated by the scientific and user communities (Miao et al. 2015; Yang et al.
2016; Tan et al. 2015; Zhu et al. 2016; Duan et al. 2016, among many others). The
availability of historical record (+35 years) at high spatiotemporal resolution of
satellite-based data have enabled the investigation of trends and changes of many
hydroclimatic processes. For example, the PERSIANN-CDR dataset has been used in
investigating the response of precipitation regimes to the Amazonian deforestation
(Khanna et al. 2017). An additional example is examining the increased frequency and
intensity of floods in the Niger River basin during the last decade (Casse and Gosset
2015). The global PERSIANN Cloud Classification System (PERSIANN-CCS) is
another member of the PERSIANN family of rainfall retrieval algorithms. It has a
higher spatio-temporal resolution (0.04� and 30 min) compared to PERSIANN-CDR.
It is derived from IR brightness temperature data from GEO satellites and uses PMW
measurements from LEO satellites to update its parameters. This patch-based cloud
classification and rainfall estimation algorithm uses histogram matching and exponen-
tial regression to fit curves to the plots of pixel brightness temperature versus rainfall
rate (Hong et al. 2007).

The use of satellite-retrieved precipitation is promising mainly due to its charac-
teristics of real-time information, near-global coverage and high spatiotemporal
resolution.

Real-time (or near real-time) information provided by satellite-based precipitation
proved to be invaluable in monitoring and capturing the development of cyclones
since it has the ability of providing rainfall intensity information over the oceans
before cyclones make landfall. In addition, it consistently provides rainfall estimates
over land during such events without being affected by the high-speed wind and
torrential rainfall. An example of real-time monitoring of cyclones using satellite-
based precipitation is the tracking of Typhoon Haiyan (Nguyen et al. 2014) which
struck Southeast Asia in the year 2013. In the study of Nguyen et al. (2014),
PERSIANN-CCS dataset has been used in monitoring the overall propagation and
estimating rainfall intensities during the event.

Overall, PERSIANN datasets have been used in a wide range of studies during
the last decades; these studies can be classified in three categories. Firstly, hydro-
meteorological studies such as investigating diurnal rainfall patterns (Sorooshian
et al. 2002), drought monitoring (Zambrano et al. 2017) and evaluating climate
model simulations of precipitation (Nguyen et al. 2018). Secondly, hydrologic
applications such as examining the use of satellite-based precipitation in runoff
prediction (e.g., Behrangi et al. 2011; Ashouri et al. 2016a; Liu et al. 2017; Hsu
et al. 2013) and use of satellite-based precipitation in rainfall frequency analysis
(e.g., Gado et al. 2017; Ombadi et al. 2018). Finally, these datasets have been
integrated with other precipitation estimates from different sources including

50 PERSIANN-CDR for Hydrology and Hydro-climatic Applications 995

https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-persiann-cdr
https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-persiann-cdr


gauge, radar and satellite to compile comprehensive precipitation datasets (e.g.,
Chiang et al. 2007). In the subsequent sections of this chapter, some of these
applications will be discussed in more detail.

50.2 Hydro-climatic Applications

50.2.1 RainSphere for Global Precipitation Analysis
and Visualization

CHRS RainSphere is one of the applications derived from PERSIANN-CDR
(Ashouri et al. 2015) precipitation estimates records to facilitate trend analysis in
annual global precipitation and future precipitation projections studies. CHRS
RainSphere interface includes search capabilities as well as the ability to automat-
ically generate reports with basic statistics and summaries. It has several options for
visualization of precipitation data along with additional spatial reference so users can
quickly and easily extract meaningful information. (Nguyen et al. 2017a, 2018).

Figure 50.1 shows the map visualization for the accumulated total precipitation
for 1 January to 31 December 2014 along with options to explore spatial patterns of

Fig. 50.1 CHRS RainSphere interface: (1) Navigation Bar, (2) Map Layers, (3) Rain Information,
(4) Rain Layers, (5) Rain Comparison, (6) Rain Statistics, (7) Reference Map, (8) Search Location,
(9) Map Canvas (URL: http://rainsphere.eng.uci.edu/, last accessed 24 Nov. 2018). (Nguyen et al.
2017a, 2018)
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precipitation within a specified area. In this case the “Country” map layer is added
for spatial reference, and additional options for spatial reference include political
divisions (e.g., states and provinces), continental basins, major rivers, tributaries,
and watersheds. Other than rain information and map layers, rain comparison, and
rain statistics are further information that users are able to extract based on their
requirements.

CHRS RainSphere also provides users with the general trends and average
behavior for the selected area during the selected time span using a bar plot with
precipitation amount in mm for each time step (day, month, or year). Corresponding
mean and linear regression along with the Mann-Kendall test (Mann 1945; Kendall
1976) results automatically will be generated and reported as part of the statistics
suite.

The Mann-Kendall test is used to statistically investigate whether to reject the null
hypothesis of no trend in the data, with a p value equal to or greater than 0.05 in this
calculation indicating acceptance of the null hypothesis. Below that value the
alternative hypothesis is accepted with a smaller value of p indicating higher
confidence that a trend exists. This test has been demonstrated as a useful tool for
evaluating global climate trends (Damberg and AghaKouchak 2014). For illustra-
tion, Fig. 50.2 displays the statistical summary for yearly precipitation in the state of
California from 1983 to 2015.

Fig. 50.2 Downloadable Rain Query Report including: Rain Linear Trend, Rain Average, Mann-
Kendall Test. [http://rainsphere.eng.uci.edu/, last accessed 24 Nov. 2018]
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50.2.2 Evaluation of PERSIANN-CDR on Extreme Events

One of the main applications of PERSIANN-CDR’s long-term precipitation climate
data record is studying extreme precipitation events. As an example, we looked at
Hurricane Katrina, one of the five deadliest and the costliest hurricanes ever to strike
the US Katrina hit Southeast US in August 2005 and caused inflicted loss of lives
and economic damages in the region (Graumann and National Climatic Data Center
2006). As shown in Fig. 50.3, PERSIANN-CDR (a) shows similar precipitation
patterns to the radar data (b). Moreover, unlike Stage IV radar data which suffers
from blockages in mountainous regions or outages during a catastrophic event, the
spatial coverage provided by PERSIANN-CDR is very valuable and captures a wide
view of the precipitation and hurricane landfall. In order to investigate the perfor-
mance of PERSIANN-CDR compared to other high-resolution satellite-based pre-
cipitation products, the TMPA V7 research version product is used. PERSIANN-
CDR and TMPA were each compared to Stage IV radar data. As shown in the
scatterplots in Fig. 50.3, PERSIANN-CDR shows a higher correlation coefficient
than TMPA however, the bias in TMPA is lower than that in PERSIANN-CDR. It is
noteworthy that the TMPA research version is also bias corrected with GPCP data at
monthly scale. The differences observed between TMPA and PERSIANN-CDR
performance mainly relate to 1) the difference in the algorithm of these two products,
and 2) the inputs to these algorithms. During validation and performance compar-
ison, it is imperative to note that, gauge-information aside, PERSIANN-CDR only
uses IR data as its input whereas TMPA uses, passive microwave, IR, and radar data.

Expert Team on Climate Change Detection and Indices (ETCCDI) (Klein Tank
et al. 2009), sponsored jointly by the World Meteorological Organization (WMO)

Fig. 50.3 Rainfall (mm day�1) over land during Hurricane Katrina on 29 August 2005 from: (a)
PERSIANN-CDR, (b) Stage IV Radar (Lin and Mitchell 2005), and (c) TMPA v7 (Huffman et al.
2007). Black and gray pixels show radar blockages and zero precipitation, respectively. (Adapted
from Ashouri et al. 2015)
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Commission for Climatology (CCl), the Joint Commission for Oceanography and
Marine Meteorology (JCOMM), and the World Climate Research Program
(WCRP) on Climate Variability and Predictability (CLIVAR), has defined various
precipitation indices for studying extremes. Using two count related indices, the
annual average count of days when rainfall �10 mm (R10mm), and the annual
average count of days when rainfall �20 mm (R20mm), the performance of
PERSIANN-CDR in reproducing the number of rainy days over the US for
1983–2011 is investigated against the 0.25� daily CPC Unified Gauge-Based
Analysis of Precipitation data (Xie et al. 2010). As shown in Fig. 50.4, in general
PERSIANN-CDR reproduces the same patterns as depicted in CPC. PERSIANN-
CDR, however, underestimates R10mm and R20mm on the west cost of the
US. The underestimation over the Sierra Nevada Mountains might be most likely
due to 1) the type of precipitation in this region, being snow dominated rather than
rain and/or 2) being orographic rain which satellite and radar have difficulties to
fully capture.

The scatterplots and the statistics, Correlation Coefficient (Corr. Coef.), Root
Mean Square Error (RMSE), and Bias of PERSIANN-CDR against CPC are shown
in Fig. 50.5. As shown, correlation coefficient is high in both cases (> 0.9).
PERSIANN-CDR tends to show a lower bias in R10mm than R20mm. Over
mountainous regions like Sierra Nevada mountains, the agreement between
PERSIANN-CDR and CPC degrade.

In another extreme precipitation study the performance of PERSIANN-CDR in
capturing extreme rainfall events was validated against gauge observation in China.
East Asia (EA, Xie et al. 2007) ground-based gridded daily precipitation data set is
comprised of more than 1300 ground-based stations across China interpolated into
0.5� � 0.5� grid boxes using the Optimal Interpolation (OI) method.

Fig. 50.4 Annual average count of days where rainfall�10 mm (left column) and rainfall�20 mm
(right column) for CPC (top), and PERSIANN-CDR (bottom) for 1983–2011
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Figure 50.6 illustrates the performances of PERSIANN-CDR in capturing the
99th (RR99p) and 95th (RR95p) percentile indices of the daily precipitation during
the period of 1983–2006. As shown, PERSIANN-CDR captures the spatial distri-
bution of RR99p and RR95p similar to what the EA data set shows, with increasing
RR99p and RR95p from North to South and from East to West. In addition, the
scatterplots show high correlation coefficient between the percentile indices
extracted from PERSIANN-CDR and EA datasets (Miao et al. 2015, for a complete
analysis on all extreme precipitation indices). It is noteworthy the agreement
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Fig. 50.5 Scatter plots of the annual average count of days where rainfall �10 mm (left column)
and rainfall�20 mm (right) for PERSIANN-CDR against CPC. Correlation coefficient, RMSE, and
Bias are shown on the plots

Fig. 50.6 The 99th and 95th percentile indices of extreme daily precipitation from the EA data set
(first column), and PERSIANN-CDR (second column). The spatial correlation distribution and the
scatterplots of the indices from the EA and PERSIANN-CDR data sets are shown in the third and
fourth columns, respectively. The stippled areas in the third column show the significant correlation
coefficient at the 95% level (Miao et al. 2015)
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between PERSIANN-CDR and EA dataset was closer in data rich regions in the west
and south. As shown in Fig. 50.6, correlation coefficients in dry and arid regions in
the western (Tibetan Plateau) and northwestern (Taklamakan Desert) China are
relatively low. The main reason for this discrepancy is lack of enough gauge stations
in these regions. With lesser and much sparse gauge stations in this region, the error
and uncertainty that is introduced in the interpolated EA product could be
significant.

In order to consider the effects of climate change, Ashouri et al. (2016a, b)
developed non-stationary statistical models based on Extreme Value Theory (EVT)
to investigating whether changes in our climate system have altered the probability
distribution of climate extremes. The study – carried out over US – could identify
regions where over the past three decades, the odds of record-setting extreme
precipitation events have increased.

50.2.3 Evaluation of CMIP5 Model Precipitation

General circulation models (GCMs) are important tools for simulating the current
state of the climate and projecting future changes of precipitation under different
greenhouse gas emission scenarios. The predictive skills in precipitation simulations
of the Coupled Model Intercomparison Project Phase 5 (CMIP5) models (Taylor
et al. 2012), especially in capturing extreme precipitation events, are highly model
dependent. PERSIANN-CDR was used as a tool to evaluate the ability of 32 CMIP5
models to capture the behavior of extreme precipitation estimates globally (Nguyen
et al. 2017b). The work uniquely defines study regions by partitioning global land
areas into 26 groups based on continent and climate zone type then uses
PERSIANN-CDR as a baseline to investigate 8 extreme precipitation indices:
(a) Total: R99pTOT – annual total precipitation when daily precipitation amount
on a wet day >99 percentile, R95pTOT – annual total precipitation when daily
precipitation amount on a wet day >95 percentile, R10mmTOT – annual total
precipitation when daily precipitation amount � 10 mm, and PRCPTOT – annual
total precipitation in wet days; (b) Intensity: SDII – simple daily intensity index;
(c) Frequency: R10mm – annual count of days when daily precipitation
amount � 10 mm; and d) Duration: CWD – annual maximum number of consecu-
tive days with daily precipitation amount� 1 mm, CDD – annual maximum number
of consecutive days with daily precipitation amount < 1 mm from each of the
32 CMIP5 models. The extreme indices are recommended by the joint
CCl/CLIVAR/JCOMMExpert Team (ET) on Climate Change Detection and Indices
(ETCCDI).

A comprehensive assessment of each model’s performance in each defined
continent-climate zone group provides insight for users to select suitable models
for their region of interest from a larger pool of models containing those with less
skill. For instance, one can use the correlation and/or RMSE criteria in Fig. 50.7 to
select a number of models among the 32 CMIP5 models for southeast China (CCZ6)
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Fig. 50.7 (a) The 26 continent-climate zone groups, (b) Correlation (left) and relative RMSE
(right) for precipitation indices in Warm Temperate continent-climate zone (CCZ) groups (statis-
tical insignificance at 0.05 in hatched boxes). (Adapted from Nguyen et al. 2017b)
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based on one or some of the 8 precipitation indices. If the selection is based on the
simple daily intensity index (SDII) with the highest correlation, HadGEM2-ES,
EC-EARTH, MIROC5 are the 3 best choices respectively. Such model selection
can be adapted to any region globally depending on the phenomenon of interest, and
can be combined with user-specific criteria.

50.3 Hydrology Applications

50.3.1 Hydrologic Modeling

Of more hydrological related applications of satellite-based precipitation products is
rainfall-runoff modeling. With their continuous coverage both in space and time,
satellite products bring invaluable information in modeling extreme events such as
floods and droughts. In order to investigate the capability and accuracy of
PERSIANN-CDR in modeling streamflow, PERSIANN-CDR’s daily precipitation
data are used in the NOAA’s National Weather Service (NWS) Distributed Hydro-
logic Model Intercomparison Project – Phase 2 (DMIP2) test frame. Three test
basins from Oklahoma are chosen. It is essential that as the very initial steps of
conducting any study with satellite-products, the quality of satellite products be
tested against ground-truth observations. The Taylor diagram in Fig. 50.8 illustrates
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the evaluations of PERSIANN, PERSIANN-CDR, and TMPA precipitation prod-
ucts against Stage IV gauge-adjusted radar data as the reference dataset for SLOA4
basin. As shown PERSIANN-CDR and TMPA show close agreement with a
relatively higher correlation coefficient (values on the arch) for TMPA, lower
standard deviation (values on the y-axis) for PERSIANN-CDR, and almost the
same root mean square deviation (RMSD; values on dashed curved lines) for both
products.

With respect to the hydrological model, the widely used NOAA/NWS/Office
of Hydrologic Development’s HL-RDHM (Koren et al. 2003, 2004, 2014) was
selected as the hydrological model to simulate the streamflow using the precip-
itation data products. Figure 50.9 illustrates the comparison between the
observed and simulated streamflow from Stage IV, TMPA, PERSIANN, and
PERSIANN-CDR over SLOA4 basin from 2003 to 2010. As can be seen, the
performance of PERSIANN-CDR is satisfying when compared to Stage IV
and TMPA products but PERSIANN-CDR has the capability to extend
streamflow simulation back to 1983 where other high-resolution products are
not available.

Fig. 50.9 Simulated and observed streamflow hydrographs and respective scatterplots at the outlet
of SAVOY basin using (from top to bottom) Stage IV, TMPA, PERSIANN, and PERSIANN-CDR
precipitation products. The solid black line shows the USGS observations. (Adapted from Ashouri
et al. 2016a, b)
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50.3.2 Rainfall Frequency Analysis Using Satellite-Retrieved
Precipitation

In recent years, a handful of studies examined utilizing satellite-retrieved precipita-
tion in rainfall frequency analysis to develop Intensity-Duration-Frequency (IDF)
curves (e.g., Endreny and Imbeah 2009; Awadallah et al. 2011; Marra et al. 2017;
Ombadi et al. 2018). This application of satellite-based precipitation datasets is of
utmost importance to the developing countries where in-situ rainfall measurement
has sparse distribution, insufficient record length and poor data quality. Furthermore,
even in regions with dense ground-based rainfall gauge networks, satellite-based
precipitation can provide valuable information about the spatial distribution of
rainfall. This is primarily because precipitation retrieval algorithms from satellites
provide area-averaged rainfall estimates unlike ground gauge observation which
represent point measurements.

Among the satellite-based precipitation products that have been used for rainfall
frequency analysis is PERSIANN-CDR. It represents a unique dataset due to its
long historical record (1983 – present) which provides sufficient sample size for
frequency analysis. Recently, the potential of using PERSIANN-CDR to develop
IDF curves has been investigated (Ombadi et al. 2018; Gado et al. 2017). Ombadi
et al. (2018) developed a general framework for developing IDF curves from
satellite-retrieved precipitation. It is based mainly on two steps, firstly, bias
adjustment using a regression model that utilizes elevation as a predictor variable,
secondly, transformation of areal rainfall to point rainfall. The parameters of the
bias adjustment model for PERSIANN-CDR were estimated over the Contiguous
United States (CONUS) using CPC Unified Gauge-Based Analysis of Daily
Precipitation over CONUS. The transformation of areal-to-point rainfall is neces-
sary to develop point IDF curves since satellite-based precipitation products
estimate an areal average of rainfall over a grid cell. Ombadi et al. (2018) adopted
an approach for rainfall transformation that is used for the reverse transformation
(i.e., point-to-area); the method is based on the stochastic representation of rainfall
fields in space and time (Sivapalan and Blöschl 1998).

The framework was evaluated by developing IDF curves over CONUS and the
results were compared to NOAA Atlas 14 (Bonnin et al. 2006, Perica et al. 2013).
Figure 50.10 shows the distribution of relative errors of IDF curves developed from
PERSIANN-CDR in comparison to NOAA Atlas 14. The results highlight the
potential of using satellite-based precipitation datasets in developing IDF curves,
median relative errors are in the range of (17–22%), (6–12%) and (3–8%) for 1-, 2-
and 3-days IDFs, respectively, and return periods in the 2–100-year range.

Also, in a recent study (Gado et al. 2017), PERSIANN-CDR dataset has been
used as an alternative approach to implement regional frequency analysis. Regional
frequency analysis is commonly implemented in rainfall frequency analysis either to
estimate design rainfalls at ungauged sites or to improve statistical inference by
providing a larger sample size. Traditional regional frequency analysis is
implemented by firstly delineating homogenous groups of sites. This step can be
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performed using different methods such as cluster analysis (Tasker 1982), discrim-
inant analysis (Wiltshire 1986), region of influence (Burn 1990) and the widely used
method of discordancy measure (Hosking and Wallis 1993). The new approach is
geared toward the estimation of design rainfalls at ungauged locations within a
partially-gauged homogenous region and it consists of three steps. Firstly,
satellite-based precipitation is adjusted for bias using the probability matching
method (Calheiros and Zawadzki 1987). The distributions are constructed from
satellite-based and in-situ rainfall measurements. Secondly, a relationship is
constructed between original and corrected satellite-based precipitation. This
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relationship is derived from gauged sites at a homogenous region and it is assumed to
be valid for ungauged sites in the same region. Finally, this relationship is used to
correct satellite-based precipitation at ungauged sites and derive IDF curves.

This method has been implemented to derive IDF curves over two regions in
Colorado and California with 11 and 18 gauged sites respectively. These two regions
have been identified as homogenous from previous studies (Sveinsson et al. 2002;
Bonnin et al. 2011). In order to assess the performance of the methodology, the
leave-one-out cross-validation was used to compare the accuracy of the methodol-
ogy with the traditional index flood method. This is achieved by estimating the
quantiles at a specific gauged site using the two approaches while neglecting data
from that specific site. Then, the results are compared against at-site quantile
estimates. The results in terms of the selected metrics, namely Bias, Relative Bias,
Root Mean Square Error (RMSE) and relative RMSE indicated that the regional
frequency analysis based on satellite-based precipitation provides more accurate
results in most sites. In particular, it can be clearly seen that RMSE values, shown
in Table 50.1, are considerably reduced using the approach based on satellite-
retrieved precipitation.

50.4 Conclusions

There is a great zeal in current decades to investigate hydrologic and hydro-climatic
processes with the availability and high reliability of ever-growing remotely sensed
information. Characteristics such as high spatiotemporal resolution, real-time near-
global coverage, make a wide range of applications viable through the incorporation
of satellite-retrieved precipitation datasets such as PERSIANN-CDR.

Among the most important applications are the investigation of trends and
changes of many hydroclimatic processes such as precipitation regimes response
or the frequency and intensity of floods. Hurricane Katrina has been studied as an

Table 50.1 Evaluation
results of the two regional
frequency approaches: Index
Flood Method (IFM) and
Regional Rainfall Frequency
Analysis using Satellite
Precipitation (RRFA-S)

RMSE (mm)

Colorado California

IFM RRFA-S IFM RRFA-S

4.09 5.95 6.13 5.05

7.05 8.45 7.77 6.09

13.42 13.38 10.33 7.88

20.36 18.73 12.67 9.78

29.49 25.85 15.43 12.29

41.28 35.15 18.68 15.53

82.44 68.33 28.51 26.24

37.86 19.32 15.88 13.63

Adapted from Gado et al. (2017)
Underlined values indicate the best result in each site
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example of extreme precipitation event to compare the rainfall patterns to the radar
data and high-resolution satellite-based precipitation products from TMPA v7. The
results show a higher correlation coefficient for PERSIANN-CDR than TMPA
compared to Stage IV radar data, however, the bias in TMPA is lower than that in
PERSIANN-CDR. In terms of count related indices PERSIANN-CCS in general
produces the same patterns as CPC Unified Gauge-Based Analysis of Precipitation
data. Another extreme precipitation study over China is conducted to assess the
performance of PERSIANN-CDR in capturing extreme rainfall events, and was
validated against gauge observation. PERSIANN-CDR captures the spatial distri-
bution of the 99th (RR99p) and 95th (RR95p) percentile indices of the daily
precipitation during the period of 1983–2006 similar to what the East Asia
ground-based gridded daily precipitation data set shows.

Two case studies have been highlighted as examples of utilizing satellite-based
precipitation datasets for hydrologic applications. Firstly, runoff prediction by forc-
ing hydrologic models with satellite-based precipitation datasets. In the case study of
Ashouri et al. (2016a, b), PERSIANN-CDR dataset has been used to predict runoff
in three sub-basins of the Illinois River basin. The results demonstrated that
PERSIANN-CDR-derived streamflow simulations are comparable to USGS obser-
vations in terms of correlation coefficients, bias, and index of agreement criterion.
Secondly, the use of satellite-based precipitation in rainfall frequency analysis. In the
study of Gado et al. (2017), a new approach to regional frequency analysis was
proposed using PERSIANN-CDR dataset. The methodology was evaluated in two
homogenous regions in Colorado and California; results demonstrated the efficiency
of the methodology.

In the coming years, it is expected that satellite-based precipitation will play a
fundamental role in hydrometeorological research. Given the continuous advance-
ment in satellite sensors technology and retrieval algorithms, satellite-based precip-
itation datasets will be available in an improved spatiotemporal resolution. This is of
utmost importance to the observation of precipitation heterogeneous nature, thus,
enabling comprehensive investigation of key hydrometeorological processes. More-
over, as records of satellite-based precipitation extend to cover more years, trend
analysis studies will be more conceivable. Similarly, extended record length will
facilitate the utilization of satellite-based precipitation in rainfall frequency analysis
for infrastructure design.
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