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This book’s initial title was Tumor Microenvironment. However, due to the 
current great interest in this topic, we were able to assemble more chapters 
than would fit in one book, covering tumor microenvironment biology from 
different perspectives. Therefore, the book was subdivided into several 
volumes.

This book Tumor Microenvironment: Recent Advances presents contribu-
tions by expert researchers and clinicians in the multidisciplinary areas of 
medical and biological research. The chapters provide timely detailed over-
views of recent advances in the field. This book describes the major contribu-
tions of different components of the tumor microenvironment during cancer 
development. Further insights into these mechanisms will have important 
implications for our understanding of cancer initiation, development, and 
progression. The authors focus on the modern methodologies and the leading-
edge concepts in the field of cancer biology. In recent years, remarkable 
progress has been made in the identification and characterization of different 
components of the tumor microenvironment in several organs using state-of-
the-art techniques. These advantages facilitated the identification of key 
targets and definition of the molecular basis of cancer progression within 
different tissues. Thus, this book is an attempt to describe the most recent 
developments in the area of tumor biology, which is one of the emergent hot 
topics in the field of molecular and cellular biology today. Here, we present a 
selected collection of detailed chapters on what we know so far about differ-
ent aspects of the tumor microenvironment in various tissues. Ten chapters 
written by experts in the field summarize the present knowledge about distinct 
characteristics of the tumor microenvironment during cancer development.

Karen M. Bussard and colleagues from Thomas Jefferson University dis-
cuss novel techniques to study the bone-tumor microenvironment. Ryuji 
Yamaguchi and Guy Perkins from the University of California San Diego 
compare tumor microenvironments in mice and humans. Linda A. Buss and 
Gabi U. Dachs from the University of Otago describe the effects of exercise 
on the tumor microenvironment. Georgia A.  Giotopoulou and Georgios 
T. Stathopoulos from the University of Patras update us with what we know 
about the effects of inhaled tobacco smoke on the pulmonary tumor microen-
vironment. Bastian Zinnhardt and colleagues from the University of Münster 
address the importance of multimodal molecular imaging of the tumor micro-
environment. Adi Karsch-Bluman and Ofra Benny from the Hebrew 
University of Jerusalem compile our understanding of necrosis in the tumor 
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microenvironment and its role in cancer recurrence. Daolin Tang and 
colleagues from UT Southwestern Medical Center summarize current 
knowledge on the multifaceted effects of autophagy on the tumor microenvi-
ronment. David H. Gutmann from Washington University School of Medicine 
talks about the sociobiology of brain tumors. Christian Münz from the 
University of Zürich focuses on the effect of γ-herpesviruses on the tumor 
microenvironment. Finally, Péter Bai and colleagues from the University of 
Debrecen give an overview of the microbiome as a component of the tumor 
microenvironment.

It is hoped that the articles published in this book will become a source of 
reference and inspiration for future research ideas. I would like to express my 
deep gratitude to my wife Veranika Ushakova and Mr. Murugesan Tamilselvan 
from Springer, who helped at every step of the execution of this project.

Belo Horizonte, Minas Gerais, Brazil� Alexander Birbrair 
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Novel Techniques to Study 
the Bone-Tumor 
Microenvironment

Alison B. Shupp, Alexus D. Kolb, 
and Karen M. Bussard

Abstract
Many cancers commonly metastasize to bone. 
After entering the bone, cancer cells can inter-
act with surrounding stromal cells, which ulti-
mately influences metastasis progression. 
Extracellular vesicles, direct cell contact and 
gap junctions, and cytokines are all mecha-
nisms of intercellular communication that 
have been observed to occur in the bone 
microenvironment. These methods of cellular 
crosstalk can occur between cancer cells and a 
variety of stromal cells, with each interaction 
having a different impact on cancer progres-
sion. Communication between cancer cells 
and bone-resident cells has previously been 
implicated in processes such as cancer cell 
trafficking and arrest in bone, cancer cell dor-
mancy, cancer cell reactivation, and prolifera-
tion. In this chapter we review innovative 
techniques and model systems that can be 
used to study bidirectional crosstalk between 
cancer cells and stromal cells in the bone, with 
an emphasis specifically on bone-metastatic 
breast cancer. Investigating how metastatic 
cancer cells interact with, and are influenced 
by, the bone microenvironment is crucial to 

better understanding of the progression of 
bone metastasis.

Keywords
Breast cancer · Bone · Metastasis · Tumor 
microenvironment · Extracellular vesicle · 
Exosome · Gap junction · Cytokine · 
Osteoblast · Osteoclast · Crosstalk · Stroma · 
CD63 · Fluorescence microscopy · IL-6 · IL-8 
· Vicious cycle · Bone-like scaffolds · 
Bioreactor

1.1	 �Introduction

Many cancers, including breast and prostate can-
cer, commonly spread to bone. Once cancer has 
spread to the bone, the 5-year survival rate plum-
mets dramatically [1]. As a secondary site, bone 
provides a unique structural and molecular 
microenvironment for metastatic cancer cells. 
Additionally, there are many distinct characteris-
tics of bone that may influence cancer cells in a 
manner not observed in metastases to other 
organs. However, the study of cancer metastasis 
to bone is complicated by physiological and 
structural complexity of the bone, and many 
models only account for certain aspects of the 
bone microenvironment. It is likely that a combi-
nation of techniques must be employed in order 
to wholly understand the events that occur in the 
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bone-tumor microenvironment. In this chapter 
we discuss novel techniques that are being 
employed to study interactions between cancer 
cells and the bone microenvironment to better 
understand cancer metastasis progression in the 
bone.

1.2	 �Composition of the Bone 
Microenvironment

Bone is comprised of three main cell types that 
are responsible for maintaining structure and 
homeostasis. These cells are osteoblasts, osteo-
clasts, and osteocytes. Osteoblasts are responsi-
ble for the production of the mineralized bone 
matrix, or osteoid, which is composed of type I 
collagen, non-collagenous proteins, water, and 
hydroxyapatite [2]. Osteoblasts are derived from 
mesenchymal stem cells (MSCs) which reside in 
the bone marrow stroma and migrate towards the 
ends of bones where mature osteoblasts are found 
[3]. While mature osteoblasts synthesize new 
bone, it is the osteoclasts that degrade existing 
bone. Mature osteoclasts are derived from mono-
cytes that differentiate and fuse to form large 
multinucleated osteoclasts [2, 4]. Osteoclasts 
express many enzymes that aid in the breakdown 
and resorption of bone [5]. To ensure that there is 
no net gain or loss of bone, the processes of oste-
oid synthesis and bone matrix resorption are 
tightly synchronized. The activities of osteoblasts 
and osteoclasts are regulated by osteocytes, 
which account for the vast majority of the cells in 
the bone. Osteocytes are derived from osteoblasts 
that become embedded in the osteoid as new 
bone matrix is synthesized. Osteocytes are capa-
ble of detecting mechanical forces and then com-
municating to the osteoblasts and osteoclasts to 
either build new bone or resorb existing bone as a 
result [3, 6].

1.3	 �Cancer Cell Metastasis 
to Bone

When cancer cells travel to bone, they enter via 
the circulation and blood vessels called venous 
sinusoids. These sinusoids are small blood ves-

sels, and blood flow through them is slow, which 
allows for normal movement of hematopoietic 
and lymphoid cells in and out of the bone. 
However, this sluggish blood flow also enables 
cancer cells to easily enter and lodge in the bone 
[7, 8]. In the long bones, the sinusoids are located 
near the bone ends, which is also called the 
epiphysis. It has been observed that disseminated 
breast cancer cells preferentially travel to and 
colonize the epiphysis of long bones [9, 10]. The 
epiphysis is composed of trabecular bone, or 
spongy bone, which has a remarkably high rate 
of bone turnover [11]. Additionally, the epiphysis 
is the region where osteoblasts and osteoclasts 
can be found. Therefore, when cancer cells enter 
the bone via the venous sinusoids, some of the 
first stromal cells that the cancer cells will come 
into contact with are osteoblasts and osteoclasts.

There have also been reports of breast cancer 
cells residing in the bone marrow. The bone mar-
row is where hematopoietic stem cells (HSCs) 
can be found and is frequently referred to as the 
HSC niche [12]. This niche is unique in that it is 
capable of supporting HSC self-renewal, as well 
as HSC dormancy [13]. In addition to HSCs, this 
region also includes stromal cells such as MSCs, 
macrophages, and fibroblasts amongst several 
others. Several different cells in this niche, 
including MSCs, have been shown to regulate 
breast cancer progression and in some instances 
induce cancer cell dormancy, which is when cells 
exit the cell cycle to G0 phase and temporarily 
halt proliferation [14–16].

Following cancer cell dissemination to bone, 
there is a probability that either the cancer cell 
will rapidly proliferate to form a metastatic lesion 
or the cancer cell may enter a dormant state. A 
state of cellular dormancy may be defined as pro-
liferative arrest and in some contexts is consid-
ered an adaptive response to microenvironmental 
stress [17]. Over time, cancer cells that have 
entered a dormant state can become reawakened, 
through mechanisms not entirely understood, 
which leads to cancer proliferation and disease 
progression. As bone-metastatic breast cancer 
progresses to late stages of disease, patients com-
monly experience bone pain, hypercalcemia, and 
fractures due to osteolytic lesion formation. This 
is due to the phenomenon called the “vicious 
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cycle” of breast cancer metastasis to bone [18]. In 
this cycle, metastatic cancer cells produce para-
thyroid hormone-related protein (PTHrP), which 
induces osteoblasts to produce RANK-L. In turn, 
elevated levels of RANK-L then stimulate osteo-
clast formation and maturation, leading to 
increased bone resorption. This cycle has been 
well described, but it should be noted that not all 
metastatic lesions are osteolytic in nature. In 
many instances metastatic lesions are osteoblas-
tic, and in some cases there are mixed lytic and 
blastic lesions [19]. Currently, there is no cure for 
bone-metastatic cancer. Standard of care treat-
ments are mainly palliative in nature and aim to 
reduce bone degradation and pain.

1.4	 �Crosstalk Between Cancer 
Cells and Their 
Microenvironment 
as a Means to Study Cancer 
Progression

Stromal cells of the bone, including osteoblasts, 
osteoclasts, and MSCs, have been shown to inter-
act with cancer cells. It has been shown that these 
cell types can communicate via direct cell con-
tact and gap junctions, cytokines, and extracellu-
lar vesicles [15, 16, 20, 21]. While these 
interactions are diverse, it is highly likely that 
there is overlap and crosstalk amongst the differ-
ent forms of cellular communication.

1.4.1	 �Extracellular Vesicle 
Communication

Extracellular vesicles (EVs) are membrane-
bound structures that are released by a variety of 
cell types in culture and in vivo. There are several 
subtypes of EVs, including exosomes and 
microvesicles. These vesicles differ from each 
other based on their biogenesis, as well as size 
[22, 23]. Exosomes are vesicles that are derived 
from multivesicular bodies and contain several 
endosome-derived molecules. Exosomes are 
released into the extracellular space when a mul-
tivesicular body fuses with the plasma membrane 

of a cell [24]. Exosomes have been reported to be 
within a specific size range from approximately 
30 to 150  nm [22]. In contrast to exosomes, 
microvesicles are produced by direct budding 
from a cell’s plasma membrane [24]. Additionally, 
microvesicles have been reported to have sizes 
that range from 100 to 800 nm [22]. Along with 
exosomes and microvesicles, there are several 
other vesicle subtypes including apoptotic bodies 
and large oncosomes, as well as several vesicle 
subtypes that have irregular morphology such as 
double vesicles and membrane tubules [22, 25].

Regardless of the specific type of EV, the 
vesicular contents can include molecules such as 
proteins, RNA, and DNA from the cell of origin 
[23, 26, 27]. When EVs are taken up by a recipi-
ent cell, they have the potential to alter that cell’s 
activity and function. Transfer of EVs can occur 
between neighboring cells, or in the body EVs 
can enter the circulation and thus influence the 
activities of cells in distant tissues. Research on 
EVs has grown rapidly in recent years, and a role 
for EVs has been implicated in nearly every area 
of biology. A major area of interest is the role that 
EVs play in cancer progression, as well as the 
potential of EVs to be biomarkers of disease 
[28–31].

1.4.2	 �EVs and Cancer Progression

Cancer cell-derived EVs have been reported to 
have a wide range of functions relating to cancer 
progression. The ability of EVs to circulate 
throughout the body has led to an accumulation 
of evidence demonstrating that EVs can influ-
ence cancer metastasis and prime metastatic 
sites. It has been reported that EVs, specifically 
exosomes, have a role in establishing a pre-
metastatic niche. This has been shown in models 
of cancer metastasis to lung as well as bone [31–
33]. Cancer cell-derived exosomes induce vascu-
lar leakiness at the pre-metastatic sites and can 
promote subsequent cancer cell colonization of 
the metastatic site [30–32]. In the bone specifi-
cally, breast cancer cell-derived exosomes have 
been shown to alter osteoclast activity, which in 
turn creates an osteolytic microenvironment that 
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is favorable to breast cancer growth (Fig.  1.1) 
[34]. In another study, it was found that breast 
cancer-derived EVs can regulate osteoblast activ-
ity as well and lead to decreased osteoblast type I 
collagen production (Fig. 1.1). This, in turn, led 
to the formation of a pro-tumorigenic bone 
microenvironment [35]. Similar findings were 
discovered in a model of multiple myeloma, 
whereby cancer cell-derived small EVs enhanced 
osteoclast activity while inhibiting osteoblast 
function [36]. In neuroblastoma it was demon-
strated that cancer-derived EVs are taken up by 
MSCs, which results in production of pro-
tumorigenic cytokines and chemokines (Fig. 1.1). 
Neuroblastoma commonly metastasizes to bone, 
and this evidence suggests that cancer cell-
derived EVs are one mechanism by which neuro-
blastoma is able to hijack the bone 
microenvironment to promote cancer growth 
[37]. In addition to forming and modifying the 
metastatic site, cancer cell-derived EVs and exo-
somes have a broad range of functions including 
activation of cancer-associated fibroblasts and 
immune modulation (Fig.  1.1) [38–43]. Cancer 

cell-derived EVs undoubtedly have a large role in 
disease progression, but equally important seems 
to be the role of stromal-derived EVs in regulat-
ing cancer growth and advancement of disease.

The role of the stroma surrounding a tumor 
has a large impact on cancer progression. In 
recent years, it has been discovered that stromal 
cells produce EVs that influence the activity of 
cancer cells. Through EV transfer, stromal fibro-
blasts have been shown to increase growth, 
metastasis, and therapy resistance of breast can-
cer cells. These same fibroblasts were also shown 
to fuel an inflammatory response when stromal-
derived EVs were taken up by immune cells [44]. 
While stromal-derived EVs have been shown to 
enhance cancer progression in some instances, in 
models of bone-metastatic cancer, EVs produced 
by the stromal cells in the bone have an antipro-
liferative effect on cancer cells. Two separate 
studies found that MSCs, which are found in 
bone marrow stroma, produce EVs that suppress 
proliferation of metastatic cancer cells [16, 45]. 
Interestingly, EVs produced by M1 macrophages, 
which are another cell type found in the bone 

Fig. 1.1  Cancer cell-derived EVs have multiple, distinct, 
effects on cells in the bone microenvironment. EVs from 
breast cancer cells are taken up by osteoclasts, which 
stimulate osteolytic activity. Breast cancer-derived EVs 
also regulate osteoblast activity, by decreasing osteoblast 
production of collagen. In neuroblastoma, cancer cell-

derived EVs induce MSCs to produce pro-tumorigenic 
cytokines such as IL6, IL8, VEGF, and MCP1. In various 
other cancer types, cancer cell-derived EVs have been 
shown to induce activation of fibroblasts into cancer-
associated fibroblasts

A. B. Shupp et al.
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marrow stroma, played a role in reactivation of 
dormant cancer cells in the bone [14]. Altogether, 
these studies demonstrate the complexity of EV 
biology as it pertains to cancer progression and 
that EVs from different cell types exhibit differ-
ent effects.

1.4.3	 �Techniques to Isolate 
Extracellular Vesicles

There are several methods that have been 
employed to study EV-mediated communication 
between cells. However, the extensive heteroge-
neity of vesicle subtypes complicates the study of 
EV functions. EVs can be isolated from many 
sources including cell culture media, serum, 
blood, and urine. Many methods to isolate EVs 
actually isolate a mixed population of vesicles. 
Techniques that are often used to isolate EVs 
include ultracentrifugation, filtration, size exclu-
sion chromatography, and precipitation [46, 47]. 
Each of these techniques has their own benefits, 
but ultracentrifugation is one of the most com-
mon techniques currently being employed [46]. 
Because these isolation techniques capture a 
mixed, heterogeneous EV population, there is a 
need to characterize the nature of the EV sam-
ples. There are several ways to do this, and it is 
recommended that several methods are used in 
combination [48]. One way to characterize EVs 
is based on protein marker expression. There are 
a multitude of protein markers that are character-
istic of small EVs, exosomes, microvesicles, etc., 
which can be verified via Western blotting [49]. 
Another means to characterize EVs is based on 
size or morphology. EVs less than 200 nm in size 
can be analyzed using nanoparticle tracking anal-
ysis, while electron microscopy can be used on 
EVs of any size and will give information on both 
EV size and morphology [50]. A final method 
that can be used to characterize EVs is flotation 
on a density gradient. The most common types of 
density gradients are those made with sucrose or 
iodixanol (also known as Optiprep). Different 
subsets of vesicles have been reported in the lit-
erature to migrate to specific densities, and there-
fore separation of vesicles in a density gradient 

can reveal more information about the types of 
vesicles present in a crude EV sample.

1.4.4	 �Visualization of EV Transfer

A major challenge in EV research is understand-
ing the natural biology of EV transfer and uptake 
between cells. One such way to visualize EV 
uptake is to fluorescently label EVs. This can be 
done by isolating EVs and using a fluorescent 
cell membrane dye, such as PKH67, to label 
EVs. Then, cells can be cultured with the labeled 
EVs followed by confocal microscopy and 
z-stack imaging to determine if EVs were inter-
nalized by cells [51]. Another method to visual-
ize EV transfer is to genetically engineer cells to 
produce fluorescent EVs. Once such way this can 
be accomplished is by generating stable cell lines 
that express a fluorescently tagged CD63 protein. 
CD63 is a tetraspanin protein that has been 
reported to be a characteristic marker for exo-
somes and other small EVs [49, 52]. Cells 
expressing fluorescently labeled CD63 can be 
cocultured with other cells to observe EV trans-
fer. This has been done utilizing MDA-MB-231 
human breast cancer cells that express CD63-
GFP and mouse MC3T3-E1 osteoblasts that 
express tdTomato. Following 48  h of coculture 
with these two cell types, z-stack imaging was 
able to detect GFP-positive vesicles within 
tdTomato-positive osteoblasts (Shupp and 
Bussard, unpublished data). Additionally, CD63 
fluorescently labeled EVs can be isolated from 
cells and utilized in various other EV-uptake 
experiments. It should be noted that because 
CD63 is a protein marker of small EVs, depend-
ing on the EV population of interest, a different 
EV protein marker may be better suited for cer-
tain studies.

1.4.5	 �Methods to Study EVs In Vivo

Studying EV transfer in between cells in culture 
is a challenging undertaking, but even more com-
plex is the study of EV transfer in vivo. Several 
groups have attempted to study EV function 
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in vivo by first isolating EVs from cells in culture 
and then administering these EVs to mice [30, 
31]. However, these experiments present several 
complications. For example, when injecting 
exogenous EVs into an animal, there is not a sin-
gle established route of injection that is univer-
sally used. Some groups have utilized intravenous 
routes, such as retro-orbital and tail vein injec-
tions [31], while others have injected EVs directly 
into tumors or tissues of interest [53, 54].

When considering the bone microenviron-
ment specifically, the route of EV administration 
becomes a large complication. Injecting EVs 
directly into the bone is a harsh procedure which 
can damage the bone or lead to unnecessary 
inflammation, especially if EVs need to be 
injected repeatedly. On the other hand, if EVs are 
injected intravenously, there is not a guarantee 
that the EVs will traffic to the bone. Instead, the 
EVs may travel to other tissues, either purpose-
fully or as an artifact due to the injection route. 
Another caveat is that there are no guidelines on 
the concentration or number of EVs to administer 
and the frequency of EV administration. The 
rates of EV production and uptake by cells in the 
body are not well characterized; thus, it is cur-
rently unknown if the amount of EVs adminis-
tered in vivo truly recapitulates normal biology.

Others have developed systems that use 
reporter cells to assess EV uptake. These systems 
involve genetically engineered cells that produce 
modified EVs. These modified EVs are then 
taken up by reporter cells which exhibit fluores-
cence signal following EV uptake [55, 56]. These 
techniques can be modified to visualize EV trans-
fer in living mice. One such study utilized a 
reporter system in which MDA-MB-231 breast 
cancer cells expressed Cre recombinase. The 
Cre+ breast cancer cells released EVs that con-
tained Cre mRNA.  When designated reporter 
cells take up these Cre+ EVs and exhibit Cre 
activity, they undergo a red (tdTomato) to green 
(GFP) color switch. This system was used to 
study the ability of EV transfer to occur between 
cells distantly located in mice. By using the color 
switch reporter system, along with confocal 
imaging, the authors were able to observe trans-
fer of Cre activity to reporter cells that were 

located in the contralateral mammary gland com-
pared to the Cre+ donor cells. Furthermore, by 
analyzing the reporter cells, it can be determined 
which cells and how many cells have taken up 
Cre+ EVs. Additionally, functional changes, such 
as migratory ability and metastatic potential, in 
cells that have taken up EVs can be determined 
[55]. This EV transfer reporter system allows for 
the identification of cells that have taken up EVs, 
which is especially useful for investigating 
EV-mediated crosstalk between cell types, such 
as with cancer cells and their surrounding micro-
environment. These visualization systems are 
extremely valuable, but as with any in vivo exper-
iment, the systems are not perfect. For example, 
other mechanisms of cellular communication 
could also lead to Cre mRNA transfer, such as 
gap junction intercellular communication, which 
cannot be overlooked if an experiment is designed 
to investigate local EV transfer. These reporter 
systems also do not necessarily control for the 
specific subset of EV that is produced, and thus 
characterization of the Cre+ EVs that are pro-
duced by the donor cells needs to be done before 
a functional effect can be attributed to an EV 
population.

1.4.6	 �Cell Contact and Gap Junction 
Communication

Direct cell contact is yet another way by which 
cells within a tissue can communicate with one 
another. Cell-to-cell contact is commonly dis-
rupted in neoplastic cells, and many cell adhesion 
molecules have been implicated in cancer metas-
tasis and progression. Specifically, within the 
bone microenvironment it has been shown that 
direct cell contact with osteoblasts can increase 
the survival and proliferation of metastatic breast 
cancer cells (Fig.  1.2). One such interaction 
between osteoblasts and breast cancer cells was 
via Jagged1 and Notch (Fig. 1.2). It was found 
that Jagged1 on breast cancer cells interacts with 
the Notch ligand on osteoblasts to promote 
metastasis progression [57]. Additionally, in 
response to chemotherapy, osteoblasts can upreg-
ulate their expression of Jagged1, which feeds 
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back to the cancer cells to activate Notch signal-
ing and promote chemoresistance of bone-
metastatic breast cancer [58]. Another 
documented interaction between breast cancer 
cells and osteoblasts occurs via heterotypic adhe-
rens junctions (Fig.  1.2). One study found that 
when E-cadherin on breast cancer cells interacted 
with N-cadherin on osteoblasts, cancer cell pro-
liferation increased [20]. Both of these studies 
found that osteoblasts were able to enhance can-
cer cell proliferation through two distinct mecha-
nisms. However, there is a large body of evidence 
that actually implicate the osteoclast as being 
responsible for increasing cancer progression and 
even “reawakening” dormant cancer cells in the 
bone. One example by which direct contact with 
osteoclasts induces breast cancer proliferation is 
through vascular cell adhesion molecule 1 
(VCAM-1) on the cancer cell surface. In the bone 
microenvironment, breast cancer cells can recruit 
and engage with osteoclasts via VCAM-1, which 
promotes progression of cancer to overt metasta-
ses [59]. Furthermore, in multiple myeloma, 

osteoclasts were also found to promote cancer 
progression by reawakening dormant multiple 
myeloma cells. This effect was a result of osteo-
clast activity and active bone resorption [60].

Another means of cellular communication 
through direct cell contact is via gap junctions. 
Gap junctions are channels that connect the cyto-
plasm of two cells and are made of connexin pro-
teins that span the cell membrane. Six connexins 
(Cx) oligomerize to form a unit called a con-
nexon. Each gap junction is composed of two 
connexons, one connexon from each cell. Gap 
junctions allow for the transfer of small mole-
cules, typically less than 1 kilodalton (kDa), 
between cells. These molecules can include ions, 
inositol phosphates, and nucleotides such as 
small RNAs [61]. Within the bone, Cx43 is the 
most prevalent connexin, but Cx45 and Cx46 
have also been reported to be present [61–63]. In 
normal breast tissue, Cx43 is also the most preva-
lent connexin; however, there are others that are 
also expressed [64]. Interestingly, loss of Cx43 is 
associated with primary breast cancer compared 

Fig. 1.2  Intercellular communication via cytokines and 
direct cell contact between breast cancer cells and osteo-
blasts. Osteoblasts produce chemokines (SDF1 and 
CX3CL1) that promote arrest of breast cancer cells in the 
bone. In early stages of disease when osteoblasts first 
encounter breast cancer cells, the osteoblasts also produce 
cytokines (IL-6, IL-8, KC, MCP-1) that act as mainte-
nance factors to disseminated cancer cells and promote 
cancer cell survival in the bone microenvironment. Direct 

cell contact between osteoblasts and breast cancer cells is 
another method of intercellular communication that 
occurs in the bone-tumor microenvironment. Jagged1 on 
breast cancer cells interacts with the Notch ligand on 
osteoblasts to promote progression of bone-metastatic 
breast cancer. Adherens junctions involving E-cadherin on 
cancer cells and N-cadherin on osteoblasts led to increased 
tumor proliferation
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to normal breast tissue, and higher Cx43 expres-
sion levels in breast tumors are predictive of bet-
ter patient survival [65, 66]. Additionally, loss of 
Cx43  in breast cancer cells has been shown to 
increase cancer cell metastasis [67, 68]. Once 
breast cancer cells travel to the bone, the role of 
gap junction-mediated communication becomes 
more complicated. In one study, it was observed 
that gap junctions between breast cancer cells 
and bone marrow stromal cells resulted in 
decreased cancer cell proliferation [15]. In a sep-
arate study, it was determined that gap junctions 
formed between metastatic breast cancer cells 
and osteoblasts, which ultimately promoted 
metastasis progression [69]. It is evident that the 
metastatic niche has a considerable influence on 
the fate of cancer cells, and gap junctions are just 
one way in which the stroma can influence cancer 
progression.

1.4.7	 �Methods to Study Gap 
Junction-Mediated 
Communication

Traditionally, studies of cell-to-cell communica-
tion via gap junctions are carried out by measur-
ing transfer of dyes or small fluorescent molecules 
between cells. These methods allow for the study 
of gap junction normal physiology as well as the 
function of gap junctions in different disease 
states or in response to chemical or drug expo-
sure. Additionally, these techniques can be used 
to study how the permeability of gap junctions is 
altered by different connexin isoforms or genetic 
mutations.

Dyes and molecules that can be used in gap 
junction coupling experiments need to be small 
enough (<1 kDa) to traverse gap junction chan-
nels, and they must also be membrane imperme-
able so that they do not leak out by crossing the 
cell membrane. One technique to investigate dye 
transfer across gap junctions is through microin-
jection of tracer dyes. This technique involves a 
micropipette injection of membrane-impermeable 
dye into a single cell. If neighboring cells are 
coupled via gap junctions, the dye will diffuse to 
adjacent cells, which can be visualized with stan-

dard fluorescent microscopy [70]. There are sev-
eral other techniques that can be used to introduce 
dyes into donor cells, such as electroporation, or 
scrape loading, in which adherent cells are 
scratched, in a method similar to a wound healing 
assay, in order to introduce the tracer dye to the 
cell cytoplasm [71–73]. A similar but distinct 
technique, called the parachute assay, also uti-
lizes diffusion of gap junction-permeable dyes. 
In a parachute assay, one population of cells is 
labeled with calcein, or other dyes that can pass 
through gap junctions, but do not otherwise leak 
through a cell membrane. A separate population 
of cells is then labeled with a dye that is gap junc-
tion impermeable, such as Di-I.  Then the two 
populations of cells are plated in a culture dish, 
and transfer of dye from donor cells to recipient 
Di-I labeled cells can be visualized. In this 
method, gap junctions must first form between 
adjacent cells in order to assess subsequent gap 
junction-mediated communication [74].

A different technique that still exploits diffu-
sion of fluorescent molecules to visualize gap 
junction communication is called gap-FRAP 
(fluorescence recovery after photobleaching). In 
this method, a fluorescent tracer dye, such as cal-
cein acetoxymethyl ester, is taken up by live cells 
in culture. After the dye is internalized, the cells 
are washed and the media is replaced to prevent 
further dye loading. Then the fluorescence of one 
cell is photobleached by a high-powered laser, 
such as on a confocal microscope. If neighboring 
cells are coupled via gap junctions, the fluores-
cent dye will diffuse into the photobleached cell 
from adjacent non-photobleached cells. 
Compared to other dye transfer methods, gap-
FRAP has the advantage of generating better-
quality quantitative data on gap junction coupling 
and kinetics, whereas these types of quantitative 
data are not traditionally obtained in other dye 
loading experiments [73, 75].

Several efforts have been made to identify 
inhibitors of gap junction communication to 
either prevent gap junction formation or inhibit 
channel permeability. One well-studied gap junc-
tion inhibitor is carbenoxolone, which is a deriva-
tive of glycyrrhetinic acid [76]. In addition to 
antagonizing gap junction communication, car-
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benoxolone was also found to increase cellular 
expression of Cx43, which may be part of a feed-
back mechanism in response to gap junction inhi-
bition [77]. Another compound that was found to 
antagonize gap junction intercellular communi-
cation is meclofenamic acid [76, 78, 79]. 
Meclofenamic acid was found to be a more effec-
tive gap junction antagonist than carbenoxolone. 
Additionally, the effects of meclofenamic acid on 
gap junction coupling was easily reversed by 
removal of the compound [79]. Long-chain 
alkanols, such as the compound octanol, have 
also been used to inhibit gap junction-mediated 
communication, specifically through interfering 
with gating of gap junction channels [15, 80]. A 
major caveat of using such compounds to inhibit 
cell communication via gap junctions is that the 
compounds do not necessarily have a specificity 
or selectivity for any particular connexin isoform. 
Instead, these compounds were previously used 
to broadly inhibit gap junction intercellular com-
munication [76, 81].

1.4.8	 �Cytokines and Secreted 
Factors

The bone is a metabolically active tissue that has 
a plethora of cytokines and other secreted pro-
teins. During bone resorption, various growth 
factors and cytokines are released from the bone 
matrix. Additionally, the cells within bone pro-
duce a variety of soluble factors themselves. 
These secreted factors have been reported to have 
a multitude of effects on cancer progression in 
the bone, depending on the specific metastatic 
niche as well as the stage of disease. A well-
characterized cytokine interaction is the SDF-1/
CXCR4 chemoattractant axis. It was demon-
strated that osteoblasts produce SDF-1 which 
may promote cancer cell dissemination to bone 
(Fig.  1.2). Additionally, inhibiting CXCR4 on 
cancer cells with a neutralizing antibody was 
found to suppress bone metastasis [82]. Another 
chemokine that plays a significant role in the 
arrest of circulating cancer cells in the bone is 
fractalkine (CX3CL1). Mature osteoblasts and 
bone marrow endothelial cells produce fractal-

kine (Fig. 1.2), and both breast cancer and pros-
tate cancer cells express the corresponding 
receptor, CX3CR1 [83–85]. Furthermore, in 
fractalkine-null mice, breast cancer dissemina-
tion to bone is significantly impaired, suggesting 
that fractalkine is crucial for initial cancer cell 
trafficking and arrest in the bone.

While there are several soluble factors that 
play a role in the attraction of cancer cells to the 
bone, there are many additional factors that are 
important for cancer cell maintenance and prolif-
eration in the bone microenvironment. There are 
several cytokines that are produced by osteo-
blasts following interaction with cancer cells. It 
was observed that osteoblast production of IL-6, 
IL-8, KC, and MCP-1 greatly increases after 
short-term interaction with metastatic breast can-
cer cells. It is believed that these cytokines are 
involved with cancer cell survival and angiogen-
esis [7, 10, 86].

Interestingly, however, after prolonged expo-
sure to metastatic breast cancer cells, osteoblasts 
are altered, or “educated,” to produce different 
soluble factors compared to naïve osteoblasts 
[21, 87]. This unique subpopulation of osteo-
blasts that have been “educated” by the presence 
of cancer cells produce factors that modulate can-
cer cell growth and proliferation. Two of these 
factors are NOV (CCN3) and decorin. It was 
observed that conditioned media from “edu-
cated” osteoblasts led to decreases in breast can-
cer cell proliferation, and this effect was mediated 
through alterations in levels of NOV and decorin. 
Furthermore, when “educated” osteoblasts were 
present in the bone microenvironment in  vivo, 
there was a decrease in inflammatory cytokines, 
such as IL-6. Other mechanisms have been 
reported by which osteoblast-derived factors 
exhibit an anticancer effect. One such mecha-
nism that has been reported to inhibit prolifera-
tion in prostate cancer was an interaction between 
AXL on the cancer cell surface and GAS6 
(growth arrest-specific 6) produced by osteo-
blasts. This interaction suppresses cancer growth 
and leads to cell cycle arrest of prostate cancer 
cells [88, 89]. Together, these studies suggest that 
osteoblasts may play differing roles during early 
cancer cell dissemination to bone and late-stage 
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metastatic disease. It is not yet known what 
causes a switch between these two stages and 
allows for metastatic outgrowth.

1.4.9	 �Methods to Study Secreted 
Factors

Current innovative techniques to study cytokines 
and soluble proteins involve multiplex arrays and 
proteomic approaches. One particular technique, 
the reverse phase protein array (RPPA), is a high-
throughput proteomic technology that identifies 
and quantifies proteins. RPPA is an antibody-
based technique that can be used to identify pro-
tein targets or protein changes in response to a 
given treatment. Moreover, RPPA can analyze 
the expression of approximately 400 different 
proteins while also providing information on 
phosphorylated proteins in addition to total pro-
tein levels. Samples for RPPA analysis can be 
derived from total cell or tissue lysates [90, 91].

Another array that can quantify cytokine lev-
els is a multiplex ELISA (enzyme-linked immu-
nosorbent assay)-based array. This technology 
comes in different formats of targeted pathway or 
custom designed arrays and oftentimes can iden-
tify up to 1000 protein targets. Moreover, these 
arrays can be done on various starting materials 
such as cell culture media, serum, plasma, and 
other body fluids. Both of these technologies are 
extremely valuable for identifying protein bio-
markers in human samples.

1.5	 �In Vivo Models to Study 
Bone-Metastatic Breast 
Cancer

There are multiple experimental models that are 
used to look at specific aspects of metastatic dis-
ease; however, each of these models has limita-
tions. Some models are designed to investigate a 
certain stage of metastasis, while others are 
designed to look at specific changes in the bone 
microenvironment. The choice of murine model 
and/or cell lines to use is entirely dependent on 

the experimental question, and often a combina-
tion of models is the best choice.

1.5.1	 �Mouse Models of Metastasis 
to Bone

Many mouse models of cancer involve cancer 
cell lines which are inoculated into mice. These 
types of models can be categorized into two 
groups: syngeneic models and xenograft models. 
Syngeneic models traditionally refer to cell lines 
that are derived from the same genetic back-
ground as the animal being used. An example of 
this would be murine cancer cell lines that are 
injected into a mouse [92]. Syngeneic models are 
useful because immunocompetent animals can be 
used, which allows for the study of how the 
immune system impacts disease. Additionally, 
because the host animal and the cell lines are 
from the same species, these models may be 
valuable for studying interactions between 
injected cells and endogenous host cells, such as 
within a tumor microenvironment [92]. On the 
other hand, human xenograft models involve 
implantation of human cancer cell lines or tissues 
into a host animal, such as a mouse [92]. In xeno-
graft models, the host animal must be immuno-
compromised to allow for the human cells to 
grow [92, 93]. While human xenograft models do 
not account for immune-mediated effects, they 
do have their own benefits. Human cancer cells 
and tumors have genetic diversity and mutations 
that may not be observed in certain mouse cell 
lines [94]. The use of human cancer cells in a 
xenograft model also allows for the discrimination 
of human cancer cells from mouse host cells, 
which is crucial for determining spatial interac-
tions in the tumor microenvironment.

One specific mouse model to study cancer 
metastasis is an orthotopic model. This model 
involves transplanting cancer cells or a fragment 
of a tumor into the same anatomic location from 
which the cancer was derived [92]. For example, 
this would include breast cancer cells being 
injected into the mammary fat pad of a mouse. 
Often, growth of the primary tumor may be more 
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rapid than the formation of metastases. To pre-
vent animal morbidity due to primary tumor 
growth, surgery is often done to remove the pri-
mary tumor and metastasis formation is subse-
quently monitored [92]. Additionally, metastases 
to other organs may also impact animal morbid-
ity [95]. For example, metastases to lung may 
shorten the life span of a mouse thereby limiting 
the time frame that bone metastases may occur. 
Therefore, depending on the metastatic site of 
interest, cancer cells with organ tropism may be 
useful [95, 96]. With regard to bone metastases, 
several bone-tropic breast cancer cell lines have 
been developed that preferentially home to the 
femurs and tibiae of mice [97, 98]. Orthotopic 
metastasis models are beneficial for looking at 
multiple aspects of the metastatic cascade and 
can potentially be used to study cancer dormancy 
by periodically monitoring for disseminated cells 
or micrometastatic lesions at secondary sites.

One experimental metastasis model that is 
often used to specifically study bone metastasis is 
intracardiac injection of cancer cells. The intra-
cardiac injection route results in cancer cells that 
travel to the bone and bypasses the lung circula-
tion, which decreases the development of high 
tumor burden in the lungs. Another model of 
bone metastasis utilizes intratibial injections of 
cancer cells. This model is useful for studying 
interactions between the tumor cells and the bone 
microenvironment, specifically if there is interest 
in using genetic modifications of the host or can-
cer cells. This model also allows for modulation 
of the bone microenvironment by co-injecting 
cancer cells along with MSCs, osteoblasts, osteo-
clasts, or bone cells. Both intracardiac and intrat-
ibial injections bypass the early stages in the 
metastatic cascade and are useful for studying the 
later stages of metastasis [95, 96].

1.5.2	 �Analysis of Disseminated 
Cancer Cells in Bone

After cancer cells disseminate to bone, there are 
several experimental assays that can be done to 
identify cancer cells in the bone microenviron-
ment and characterize interactions between can-

cer cells and the surrounding stroma. A 
straightforward approach to visualize cancer 
cells in the bone is to harvest the bones and use 
immunofluorescence microscopy on the bone 
sections. This technique works well if the cancer 
cells are already fluorescently labeled. 
Alternatively, antibodies against cytokeratins or 
EpCAM (epithelial cell adhesion molecule) have 
previously been used to identify cancer cells of 
epithelial origin within the bone marrow [99, 
100].

There is also a large interest in analyzing 
genetic alterations and gene expression profiles 
of single disseminated cancer cells that may 
reveal differences between disseminated cells 
and the primary tumor as well as insights into 
cancer cell evolution. To perform such genetic 
analyses on single disseminated cancer cells, 
these cells must first be isolated from the micro-
environment. Traditionally, this is done by flush-
ing the bone cavities to collect cells located inside 
the bone. Alternatively, this can also be done 
using laser capture microdissection, which cuts 
away and excises unwanted cells to isolate histo-
logically pure populations of cells [101, 102]. 
Further sorting of cells can be done to purify the 
cancer cells from stromal cells. Sorting of cancer 
cells, such as with fluorescence-activated cell 
sorting (FACS), is typically done by using anti-
bodies against cytokeratins or EpCAM and sort-
ing for positively marked cells. Once 
disseminated  cancer cells are sorted,  transcrip-
tomic and genomic analyses may be carried out 
[103, 104].

Using PCR-based genomic analyses, Schardt 
et al. were able to determine a sequence of genetic 
alterations that occur during breast cancer 
metastasis to bone  [104]. Additionally, using a 
similar approach, it was found that disseminated 
cancer cells in the bone marrow harbor less 
genomic aberrations than cancer cells present in 
the primary tumor. This ultimately brought forth 
the idea that dissemination of cancer cells is an 
early event in cancer progression [105]. Another 
technique, single-cell sequencing, has also been 
done on cancer cells isolated from the bone mar-
row. Single-cell RNA-seq was recently been 
done on multiple myeloma cells that were iso-
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lated from bone marrow aspirates [106]. Single-
cell RNA-seq is expected to become more 
prevalent in studies of metastasis and the tumor 
microenvironment in order to assess tumor het-
erogeneity and cancer-related gene signatures.

1.6	 �In Vitro Models of the Bone 
Microenvironment

There is a lack of model systems to study cancer 
metastasis to bone; however, the use of three-
dimensional (3D) models, such as scaffolds, 
hydrogels, and bioreactors, is becoming a popu-
lar tool to study interactions between cancer cells 
and their microenvironment [107–109]. The 
unique biophysical properties and functions of 
these systems better replicate biological tissue 
microenvironments in vitro compared to standard 
2D cell culture. Seminal work by Bissell and col-
leagues demonstrated that normal human breast 
epithelial cells behaved like tumor cells when in 
2D culture compared to 3D tissue culture [110]. 
It was also found that normal breast epithelial 
cells need interactions with the basement mem-
brane present in 3D cultures in order to maintain 
and display normal breast differentiation [110]. 
Therefore, in many instances 2D model systems 
are insufficient to model specific characteristics 
of disease because they lack the key structural 
features of 3D model systems [107, 111].

1.6.1	 �Hydrogels and 3D Models

One important area to consider when designing 
3D models is the structure, including pore size, 
and the type of material used to develop the 3D 
mimetic system [108, 111, 112]. For example, 
pore size can affect cell attachment, invasion, 
migration, and angiogenesis [108]. In the context 
of bone metastasis, angiogenesis, invasion, and 
migration are all important components of tumor 
dissemination and growth [108]. One also has to 
consider the composition of trabecular bone and 
cortical bone and how these two bone types are 
different, for example, trabecular bone is very 
porous and well vascularized compared to corti-

cal bone, which is a hard-packed, dense structure 
[108, 113]. Therefore, pore size is an important 
biophysical property and needs to be controlled 
when developing 3D mimics of a bone-tumor 
microenvironment. In addition, the material of 
the 3D system is important [111, 112]. To develop 
the most realistic 3D model, it is first necessary to 
understand how the cells respond to the environ-
ment. For example, hydrogels are a special type 
of scaffold made of water-swollen networks of 
polymers [111]. Hydrogels come in two forms: 
natural or synthetic [111]. Natural hydrogels are 
those made from natural materials, such as rat tail 
collagen, whereas synthetic hydrogels are those 
made from man-made materials, such as poly-
acrylamide [112]. To develop a hydrogel to study 
tumor growth in the trabecular bone, it would be 
best to use a natural hydrogel consisting of col-
lagen because this structure would accurately 
portray the composition and biophysical proper-
ties of trabecular bone [109]. It is hard to repli-
cate the rigid, mineralized extracellular matrix of 
bone [108]; therefore, it is important to select the 
material that will most closely replicate the bone 
matrix.

1.6.2	 �Bone-Like Scaffolds

In some instances, materials such as hydrogels 
cannot recapitulate the high mechanical proper-
ties needed to model the rigid extracellular matrix 
of bone. Therefore, other biocompatible materi-
als have been used to model a stiff bone microen-
vironment. These materials can be 3D printed 
into various scaffold structures onto which cells 
of interest are subsequently seeded. These 
biomimetic scaffolds can be made of a synthetic 
polymer, such as poly-(ϵ-caprolactone) (PCL), 
that is printed into a desired structure using a 3D 
bioprinter for subsequent in  vitro experiments 
(Fig. 1.3a). PCL is an FDA-approved biocompat-
ible polymer that has gained attraction as a 3D 
bone model to use in the laboratory [114, 115]. 
We have successfully cultured GFP-labeled 
MDA-MB-231 breast cancer cells on PCL scaf-
folds and were able to implant these scaffolds 
into mice (Fig. 1.3). Following scaffold implanta-
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tion, we were able to subsequently measure 
tumor growth using IVIS in vivo bioluminescent 
and fluorescent imaging (Fig.  1.3c, d). 
Additionally, after removal of scaffolds from 
mice, we observed blood vessels that had infil-
trated the scaffold, indicating that the breast can-
cer cells on the scaffolds are able to establish a 
vascular network (Fig. 1.3f). Patricio et al. have 
shown that blending polylactic acid (PLA) poly-
mer with PCL (PCL/PLA) enhances the biome-
chanical properties of biomimetic bone-like 
scaffolds [116]. Furthermore, osteosarcoma cells 
were seeded and were able to grow properly on 
the scaffolds while mimicking normal architec-
ture. This indicates that PCL and PCL/PLA scaf-
folds are a suitable model to represent a 3D 
bone-like microenvironment [116]. Because the 
scaffolds are made of biocompatible materials, 
they are able to be implanted into mice and used 
to study the bone microenvironment in vivo [107, 
117]. Bone-like scaffolds are useful for in  vivo 

studies because they allow for manipulation of 
the microenvironment and the cell types that are 
present on the scaffold.

1.6.3	 �Bioreactors

Another tool that can be used to study the bone-
tumor microenvironment in vitro is a bioreactor 
[118–120]. There are currently limited models to 
study the bone-tumor microenvironment in vitro, 
specifically with regards to bone remodeling 
[119]. Dhurjati et al. developed a 3D, in vitro cul-
ture system, termed a bioreactor, which can repli-
cate the mineralized, collagenous tissue of bone 
[118]. Both murine and human osteoblast cell 
lines (MC3T3-E1 or hFOB, respectively) suc-
cessfully grew in the long-term culture system 
for up to 120 days. After only 15 days in culture, 
cells displayed characteristics comparable to nor-
mal osteoblasts in vivo [118]. This bioreactor can 

Fig. 1.3  Bone-like biomimetic scaffolds to model the 
tumor microenvironment. Human MDA-MB-231luc-GFP 
breast cancer cells were mixed with Matrigel and seeded 
into a 3D bioprinted scaffold. (a) Unseeded bioprinted 
scaffold. (b) luc-GFP breast cancer cells on seeded scaf-
fold 2 days post seeding, but pre-mouse implantation. (c) 
Bioluminescent image of seeded scaffold implanted into 

mouse flank 7 days postimplantation; red arrow indicates 
seeded scaffold. (d) Fluorescent image of seeded scaffold 
implanted into mouse flank 7 days postimplantation; red 
arrow indicates seeded scaffold. (e) luc-GFP breast cancer 
cells (white arrows) in retrieved scaffold 7 days postim-
plantation. (f) Blood vessel formation (black arrows) in 
retrieved scaffold 7 days postimplantation
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be seeded with osteoblasts as well as other bone 
cells or even cancer cells. Krishnan et al. utilized 
a bioreactor to mimic early colonization of breast 
cancer cells in the bone [119]. They were inter-
ested in whether bone remodeling by osteoclasts 
could be replicated in  vitro in a bioreactor and 
how breast cancer cells are involved in bone 
remodeling during early stages of cancer cell 
colonization. They were able to show that murine 
osteoblasts and osteoclasts grew together and 
mimicked normal bone development over time in 
culture. Secondly, when human breast cancer 
cells were added to the co-culture bioreactor sys-
tems, this recapitulated the “vicious cycle” of 
bone degradation in  vitro. They observed a 
decrease in matrix thickness, an increase in 
osteoclast bone resorption, and cancer cell prolif-
eration, suggesting that this model can mimic the 
events that occur during breast cancer cell coloni-
zation of bone [119].

1.7	 �Conclusions and Future 
Directions of the Field

In the bone-tumor microenvironment, there are 
several ways in which the cells of the bone can 
influence metastasis progression, as well as ways 
in which the cancer cells can influence the sur-
rounding stroma and bone homeostasis. It has 
been shown that osteoblasts, osteoclasts, MSCs, 
and other stromal cells can all influence cancer 
progression through various mechanisms of 
intercellular communication. Examples of such 
communication include EV transfer, direct cell 
contact and gap junctions, and cytokines and sol-
uble factors. A large area of research that is likely 
to continue to rapidly expand is the study of EVs. 
EVs are a major area of interest in the field of 
cancer biology, due to their ability to mediate 
communication both locally and systemically, as 
well as their potential to serve as disease bio-
markers. As knowledge of EVs continues to 
grow, there will likely be increased investigation 
of the role of EVs in vivo pertaining to both nor-
mal biological function and disease states.

The study of bone-metastatic cancer presents 
several challenges that are associated with a 

structurally complex tissue such as the bone. 
Important considerations to make when studying 
the bone-tumor microenvironment can range 
from the medium on which cells are cultured 
in vitro to the choice in vivo mouse model. While 
there are many model systems and techniques 
available, each model has its own specific limita-
tions. Therefore, models of bone-metastatic can-
cer should be carefully selected to answer a 
specific experimental question, and often a com-
bination of models will be the best option.
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Abstract
In the past, cancer development was studied 
in terms of genetic mutations acquired in 
cancer cells at each stage of the development. 
We present an emerging model for cancer 
development in which the tumor microenvi-
ronment (TME) plays an integral part. In this 
model, the tumor development is initiated by 
a slowly growing nearly homogeneous col-
ony of cancer cells that can evade detection 
by the cell’s innate mechanism of immunity 
such as natural killer (NK) cells (first stage; 
colonization). Subsequently, the colony 
develops into a tumor filled with lympho-
cytes and stromal cells, releasing pro-inflam-
matory cytokines, growth factors, and 
chemokines (second stage; lymphocyte infil-
tration). Cancer progression proceeds to a 
well-vesiculated silent tumor releasing no 
inflammatory signal, being nearly devoid of 
lymphocytes (third stage; silenced). 
Eventually some cancer cells within a tumor 
undertake epithelial-to-mesenchymal transi-

tion (EMT), which leads to cancer metastasis 
(fourth stage; EMT). If a circulating metasta-
sized cancer cell finds a niche in a new tissue 
and evades detection by NK cells, it can 
establish a new colony in which very few 
stromal cells are present (fifth stage; metasta-
sis), which is much like a colony at the first 
stage of development. At every stage, cancer 
cells influence their own TME, and in turn, 
the TME influences the cancer cells con-
tained within, either by direct interaction 
between cancer cells and stromal cells or 
through exchange of cytokines. In this arti-
cle, we examine clinical findings and animal 
experiments pertaining to this paradigm-
shifting model and consider if, indeed, some 
aspects of cancer development are governed 
solely by the TME.
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2.1	 �Introduction

In this chapter, we discuss an emerging model for 
cancer development from the perspective of the 
role the tumor microenvironment (TME) plays. 
In the first section, we examine how the model 
fits the relevant clinical data. Inevitably though, 
these data are like snapshots of cancer at discrete 
points and thus represent partial views of a 
dynamic process. In the second section, we 
examine mouse cancer models in which cancer 
development takes place reliably and reproduc-
ibly and therefore allow predictions for the 
TME’s influence. In the third section, we discuss 
the implications of the cancer developmental 
model and testable hypotheses. In the last sec-
tion, we examine malignant pleural mesotheli-
oma in detail, comparing genetic, transcriptional, 
and TME perspectives, and assemble a compre-
hensive model of its development.

2.2	 �TME Categories and Cancer 
Developmental Stages

Cancer inevitably starts with DNA mutation. The 
mutation could be an error during DNA replica-
tion in a cycling cell, or it could be massive DNA 
damage caused by a catastrophic event such as 
exposure to radiation or inhalation of asbestos. 
By the time most biopsies are performed to test 
for cancer, a cancerous tumor usually contains 
more than 30 mutations in the known cancer-
causing oncogenes [1]. But the fact that a cell 
may have 30 mutations in cancer-related genes 
alone does not mean that this cell will cause can-
cer growth when it is grafted onto a syngeneic 
individual. In fact, when a murine cell with mul-
tiple genetic mutations that had also acquired 
immortality is grafted onto a syngeneic host, it is 
often eliminated by either the innate or the adap-
tive mechanism of the immune system [2], sug-
gesting that to initiate carcinogenesis, a cancer 
cell must acquire a way to manipulate the immune 
system and start building its own microenviron-
ment. Thus, in order to predict how a cancer 
responds to a particular immunotherapy, know-
ing its tumor microenvironment is paramount. 

We present a schema to categorize tumors by 
their TMEs. The four TME categories are: (a) 
small cluster of homogeneous cancer cells, (b) 
tumor with lymphocyte infiltration, (c) tumor 
with complex stromal and cancer cell architec-
ture but without lymphocytic infiltration or 
release of cancer cells to blood circulation, and 
(d) tumor in which some cancer cells are under-
taking epithelial-to-mesenchymal transition 
(EMT) and some cancer cells are being released 
into the blood circulation. (b)–(d) are well-
characterized tumors found in many cancer types, 
including breast, lung, stomach, and liver.

	(a)	 A small cluster of homogeneous cancer cells. 
Examples of a small cluster of homogeneous 
cancer cells have been found in breast duct 
cancer (ductal carcinoma in situ, DCIS) [3] 
and some melanoma biopsies [4]. These 
tumors evaded immune surveillance. 
Possibilities are that either the cancer is at a 
very early stage of development, such as 
DCIS, or the cancer is a newly metastasized 
colony. This type of tumor is difficult to find 
partly because of its small size and has not 
appeared often in the literature.

	(b)	 A tumor with lymphocyte infiltration. This 
class of tumor releases cytokines, such as 
TNF-α, TGF-β, chemokines, and pro-
inflammatory cytokines such as IL-10 and 
IL-4, from lymphocytes and directly engages 
with cancer cells, recruiting lymphocytes, 
monocytes, neutrophils, and other blood 
cells into the tumor. During the process, 
nearby macrophages and fibroblasts are con-
verted into tumor-associated macrophages 
(TAMs) and cancer-associated fibroblasts 
(CAFs). If PD-1 and CTLA-4 are in the 
tumor, cancer cells can be targeted by 
immune checkpoint therapies. In many 
tumors, granulocyte-macrophage colony-
stimulating factor (GM-CSF) is released, 
recruiting Gr1+CD11b+myeloid cells and 
turning them into a species of myeloid-
derived suppressor cell (MDSC). In other 
tumors, IL-10 and IL-4 may recruit 
Gr1+Mac1+myeloid cells into a tumor, turn-
ing them into another species of MDSC.
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	(c)	 A tumor without infiltrating lymphocytes. In 
this class, CAFs encapsulate the tumor with 
extracellular matrices (ECMs). Even so, the 
tumor remains well vesiculated. It is filled 
with many stromal cells including TAMs, 
CAFs, and MDSCs and does not release can-
cer cells into the blood circulation. There are 
a number of ways that lymphocyte infiltra-
tion can be blocked. For example, chemo-
kines that attract lymphocytes may be 
nitrated within the tumor and inactivated, or 
infiltrating lymphocytes are made to undergo 
apoptosis by expression of FasL in endothe-
lial cells and many other ways reviewed in 
the article by Joyce and Fearon [5]. Unless 
combined with other types of therapies, this 
class of tumor is expected to be resistant to 
all immune therapies.

	(d)	 A subgroup of cancer cells in the tumor 
undertaking epithelial-mesenchymal transi-
tion [6, 7]. This transition downregulates 
genes such as E-cadherin, β-catenin, and 
cytokeratins 5/6 and upregulates genes such 
as E-cadherin, vimentin, α-smooth muscle 
actin, Snail, Slug, Twist, ZEB1 and 2, 
S100A4, and MMP2 and 3. Subsequently, 
some cancer cells become metastasized, acti-
vating mobility-enhancing genes, such as 
S100 calcium-binding protein P (S100 CBP 
P), and are then released into the blood circu-
lation. Released cancer cells are often chap-
eroned with platelets and other stromal cells 
[8].

All four classes of tumors are found in clinical 
samples of metastatic melanoma biopsies, and 
the phylogenic tree based on their transcriptomes 
suggests a natural progression of cancer from (b) 
to (c) to (d) and finally to (a) [4] (Fig. 2.1). This 
progression is not an unreasonable assumption. 
For example, when tumors in (c) are considered, 
in order to attain the very complex cytoarchitec-
ture of tumors having MDSCs, signals from can-
cer cells as well as stromal cells are required to 
recruit and convert neutrophils and monocytes 
into MDSCs [10]. Only then can lymphocyte 
infiltration be blocked. Thus, tumor (c) must have 
come through (b). Further, a cancer cell is stimu-

lated to undertake EMT by cytokines and growth 
factors present in a hypoxic environment, the 
environment proposed for (c). Thus, tumor (c) 
precedes tumor (d).

What does a newly translocated metastatic 
tumor in the body look like? Joan Massague’s 
group isolated cells from human cancer cell lines 
that when grafted onto a new host form a small, 
slow-growing colony that can evade NK surveil-
lance [11]. Therefore, it seems likely that the 
TME of a newly metastasized cancer would fall 
into category (a).

By associating (a) with Stage 1 and 5 and (b)–
(d) with Stages 2–4, we modeled cancer develop-
ment as described in Fig. 2.2.

2.3	 �TME and Cancer 
Developmental in Mice

We presented above a model that fits the clinical 
observations. However, it is a model based on an 
inductive argument. To make the argument more 
deductive, we explore whether the model fits 
observations of murine cancer progression. 
Furthermore, will the model shed light on the 
questions, “Could some facet of cancer develop-
ment be stopped or reversed by chemical manip-
ulation of the TME, or will a particular 
immunotherapy alter the TME?”

Inducing Stage 2 to Stage 3 cancer progres-
sion is straightforward in murine models. 
Grafting B16F10 melanoma onto wild-type mice 
[12] or grafting mouse fibrosarcoma (CSA1M) 
cells into wild-type mice [13] causes the develop-
ment of melanoma and fibrosarcoma, respec-
tively, and the tumors in these mice progressed 
sequentially through Stage 5/Stage 1, Stage 2, 
and Stage 3. It was observed that in B16F10, 
CSA1M, and RMS grafts, secreted IL-10 and 
IL-4 recruited myeloid cells into the tumor, turn-
ing the cells into MDSCs and converted Stage 2 
cancer to Stage 3 cancer. In all cases, it took only 
a few weeks to progress from Stage 2 cancer to 
Stage 3 cancer.

In a mouse model for pancreatic cancer 
expressing KrasG12D and Trp53R172H in the pan-
creas [14–16], pancreatic ductal adenocarcinoma 
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(PDAC) tumors developed that released GM-CSF, 
thus recruiting myeloid cells and turning them 
into MDSCs. The same progression to MDSCs 
occurred in a mouse mammary tumor virus-
driven polyomavirus middle T antigen (MMTV-
PyMT) transgenic mouse, a model mouse for 
breast cancer [17], and in a prostate-specific 
PTEN deletion [18] prostate cancer model 
mouse. In all three cases, Stage 2 cancer was con-
verted to Stage 3 cancer.

Mesotheliomas are described by three histol-
ogy types. Cell lines generated from asbestos-
induced murine mesotheliomas fall into three 
groups having distinct histological characteris-
tics, much like biopsy samples from human 
mesotheliomas [19]. The three histology types 
are: epithelioid, sarcomatoid, and biphasic (mix-
ture of epithelioid and sarcomatoid). Analysis of 

their cDNA expression profiles showed that epi-
thelioids expressed E-cadherin, β-catenin, and 
cytokeratins 5/6, whereas sarcomatoids expressed 
N-cadherin, vimentin, a-smooth muscle actin, 
and metalloproteases MMP2 and 9, and biphasic 
expressed intermediate protein levels of epitheli-
oid and sarcomatoid expression profiles, suggest-
ing that EMT transition took place from 
epithelioid to sarcomatoid and biphasic in 
between [20]. In humans, the sarcomatoid meso-
thelioma associates with poor survival, whereas 
the epithelioid mesothelioma fairs better and 
biphasic in between [20, 21]. Asbestos inhalation 
can induce mesotheliomas. Mice with asbestos-
driven mesotheliomas developed Stage 4 cancer 
that is dependent on their TME [22].

The brain microenvironment can support early 
metastatic growth in mouse. When Schwartz and 

Fig. 2.1  Unsupervised hierarchical analysis of mela-
noma biopsies. Harlin and colleagues at the University of 
Chicago took 44 metastatic melanoma biopsies and bulk 
analyzed their RNA contents using Affymetrix GeneChips. 
The data were put through unsupervised cluster analysis 
[9]. Their data were reanalyzed to create a heatmap (upper 
panel, red square for high expression and green for low 
expression). The 44 samples on the horizontal axis were 
grouped into b, c, d, and a classes [4]. Transcription levels 
of 201 transcripts are displayed on the vertical axis. The 
horizontal ellipse represents lymphocyte-specific tran-

scripts, such as TCRα, β, and γ. The vertical ellipse repre-
sents transcripts of genes important for survival of dermal 
layers, such as keratins, desmoplakin, gap junctions, and 
aquaporines [4], illustrating differences in the contents of 
TMEs. Note that transcripts of class (a) tumors are almost 
exclusively those of melanoma cancer cells. The tran-
scription level of S100 calcium-binding protein P, known 
to enhance cell motility and invasion, is bar-graphed on 
the lower panel, suggesting the presence of metastatic 
cells. For a more detailed description of tumor groups, see 
the main text
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colleagues subcutaneously injected Ret-
melanoma sorted (RMS) cells into wild-type 
mice, they found that not only did the tumors 
form at the site of injection, but also metastasized 
to the brain [23]. Interestingly, astrocytes facili-
tated initial growth of melanoma cells. Further, 
astrogliosis that was naturally instigated as a 
brain tissue damage response was hijacked by 
tumor cells to support brain metastatic growth. 
Unfortunately, they did not determine at what 
stage of the tumor development these melanoma 
cells metastasized to the brain.

2.4	 �Implications and Testable 
Hypotheses

The obvious implication of the TME-based 
model of cancer development is that when cancer 
reaches a certain stage of development, it passes 
beyond the reach of certain immunotherapies. 
For example, immune checkpoint therapies such 
as PD-1 antibody and CTLA-4 antibody thera-
pies are effective only when the targeted proteins 
are found in a tumor (Stage 2). Furthermore, if 

lymphocytes cannot infiltrate the tumor, then 
almost any immunotherapy would be ineffective 
(Stages 3 and Stage 4 tumors). This includes chi-
meric receptor antigen therapies (CAR-T thera-
pies) and vaccine therapies.

An important testable question is whether the 
onset of Stage 3 could be delayed or even a Stage 
3 to Stage 2 reversal, thus prolonging the period 
during which immunotherapies are effective. In 
certain mouse cancer models, the answer is yes. 
Inhibition of colony-stimulating factor 1 receptor 
(CSF1R) [24, 25] or granulocyte-macrophage 
colony-stimulating factor (GM CSF) [14, 15] 
enhanced CD8 T cell tumor infiltration, prolong-
ing Stage 2 cancer, and improved the response to 
checkpoint immunotherapies in breast, cervical, 
and pancreatic cancer model mice.

An effective therapy to alter almost all catego-
ries of TME in many types of cancer is localized 
radiation treatment. This treatment destroys cells 
in the focused area indiscriminately, makes the 
immediate vicinity inflammatory and immuno-
genic, and produces antigen-presenting dead can-
cer cells. Thus, there is a great deal of interest in 
combining localized radiation with immunother-

Fig. 2.2  Cancer developmental stages and TME.  Four 
cancer developmental stages and their respective TME 
contents are drawn. In Stage 4, expression levels of N- and 

E-cadherins change as some cancer cells undergo 
epithelial-mesenchymal transition

2  An Emerging Model for Cancer Development from a Tumor Microenvironment Perspective in Mice…



24

apies [26, 27]. However, one of the most obvious 
drawbacks is the formation of scars (fibrosis) 
after the radiation that limits vascular permeabil-
ity of tumors and thus limits tumor-infiltrating 
lymphocytes [26]. CAFs are also known to be 
activated by radiation that secrete integrins that 
help tumors to anchor to the ECM; this anchoring 
caused breast cancer cell proliferation in one 
study [28].

Perhaps a better approach is to test the hypoth-
esis that judiciously combining immunotherapies 
with chemotherapies will induce apoptosis only 
in targeted cancer cells. In this hypothesis, a che-
motherapy would create apoptotic cells inside the 
tumor that would trigger activation of macro-
phages for phagocytosis and attract lymphocytes. 
Indeed, when BRAF inhibitor alone or with MEK 
inhibitor was applied to patients with metastatic 
melanoma, an increase in infiltrating lympho-
cytes and melanoma antigens and a decrease in 
immunosuppressive cytokines (IL-6 and IL-8) 
were observed. An increase in PD-1 expression 
was also observed in melanoma cells grafted onto 
syngeneic mice [29] and in melanoma patients 
[30]. However, a large number of patients experi-
enced high-grade toxicities in clinical trials [31].

In perspective, there seems to be aspects of 
cancer development that are independent of cell 
types and DNA mutations. The hypothesis is that 
the aspects that are governed solely by the TME 
can be discovered. Therefore, a productive 
approach would be to study a particular solid 
cancer and learn when and how a tumor recruits 
lymphocytes, fibroblasts, and macrophages to 
build a Stage 2 environment and when and how 
the environment is changed into Stage 3 and 
Stage 4 and then test how chemotherapeutics and 
immunotherapies would affect these environ-
ments. It is anticipated that most of the knowl-
edge gained would be applicable to essentially 
any other solid cancer.

In the next section, we look at one cancer, 
malignant pleural mesothelioma (MPM), in 
detail, comparing genetic, transcriptional, and 
TME perspectives and assemble a comprehen-
sive model of its development.

2.5	 �Malignant Pleural 
Mesothelioma (MPM)

Asbestos inhalation is the major cause of MPM. 
Asbestos may be one of six naturally occurring 
silicate minerals (crocidolite, amosite, antho-
phyllite, tremolite, actinolite and chrysotile), all 
forming long and thin crystals. Most industrial 
asbestos fibers are 0.1–40 μm in length and, when 
inhaled, lodge in a narrow pleural space between 
mesothelial cell linings (visceral pleura facing 
the lung and parietal pleura facing the chest wall 
or the diaphragm) surrounding the lung. In mice 
and humans, the upper part of the pleural space 
may be as narrow as 10–20  μm in width. The 
lower part of the pleural space may be much 
wider, partly due to the weight of the fluid, called 
“pleural effusion,” that accumulates in the pleural 
space. In the diseased lung, the pleural effusion 
accumulates above the diaphragm, voluminous 
enough to show in a chest X-ray, a process called 
“water in the lung.” Asbestos fibers less than 
5 μm in length are cleared from the lung more 
efficiently than longer asbestos fibers [32]. Long 
asbestos fibers can be found in patients’ lungs 
and pleural space decades after the exposure 
[33]. This is partly because macrophages do not 
phagocytize long asbestos fibers and also because 
long fibers are physically lodged in the narrow 
pleural space. However, a mesothelial cell may 
partially phagocytize asbestos fibers much longer 
than itself. For example, in one in vitro experi-
ment, mesothelial cells expressing a fluorescent 
protein were exposed to 20-μm-long vitronectin-
coated asbestos fibers, and when the cells were 
lysed, the fibers were still intact with about half 
the length coated with the fluorescent protein, 
suggesting that about half the fiber had been 
inside the cell [34]. Since mesothelial cells 
secrete vitronectin, it is reasonable to assume that 
asbestos fibers in the pleural space are coated 
with vitronectin, which enhances internalization 
by mesothelial cells. When mesothelial cells 
phagocytize these asbestos fibers, it causes mas-
sive DNA damage to the cells, inducing apopto-
sis in most of the cells [35]. It is a reasonable 
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assumption that some mesothelial cells that 
phagocytize asbestos fibers in the pleural space 
survive with massive DNA damage and become 
cancer cells (Fig. 2.3). Of course, to form a can-
cer colony, cells still need to evade surveillance 
by immune cells. It is possible that evasion is 
easier when cancer cells are confined to a very 
narrow space that would impede access for 
immune cells. In support of this possibility, in 
very rare cases, asbestos-induced mesotheliomas 
were found in tunica vaginalis [36], a very nar-
row confined space.

How may tumor suppressor genes affect 
mesotheliomas? To survive in the face of massive 
DNA damage, disabling p53 would be an advan-
tage [37], but the loss of p53 function is not a 
prerequisite for survival. Disabling other tumor 
suppressor genes such as BAP1, CDKN2B, 
CDKN2A, and NF2 provides pro-survival advan-
tage as demonstrated for many mesotheliomas 
[38]. The most frequently mutated genes, BAP1 
and CDKN2A, in mesothelioma cells were 
shown to be reasonably specific to MPM, but 
they cannot be markers for all mesotheliomas 
[38–40]. In other words, there is no single sup-
pressor gene preventing variously mutated meso-
thelial cells from becoming cancerous. 
Furthermore, massive parallel sequencing of 
MPM genes showed that there were four path-
ways found mutated: p53/DNA repair, cell cycle, 
mitogen-activated protein kinase, and phos-
phoinositide 3-kinase (PI3K)/AKT pathways 
[41]. Compromising any of the four pathways 

could drive carcinogenesis, but there has not been 
found a single oncogenic mutation common to all 
mesotheliomas. This was a complicating issue 
when we tried to diagnose mesotheliomas, or 
tried to identify a target gene to treat mesothelio-
mas. In fact, it is rare for cancer to have one onco-
gene responsible for generation of a cancer type 
(called oncogenic addiction); exceptions are 
BRAF for melanoma and Ras for pancreatic can-
cer. And even then, every melanoma inevitably 
develops resistance to a specific inhibitor of 
BRAF in less than a year [42]. Further, most can-
cers have heterogenetic cancer cells in a single 
tumor and would not be addicted to just one 
oncogene [42]. Mesothelioma may be even more 
difficult to treat because asbestos-induced meso-
thelioma may originate from multiple locations, 
and at each location, a different set of DNA muta-
tions may be driving carcinogenesis.

What is new with mesothelioma diagnosis? 
With advances in nanoString technology, there is 
less need to identify cancer cells by genetic muta-
tion. For example, MPM can be distinguished 
from mesothelial cell hyperplasia by gene expres-
sion pattern (transcriptome analysis). By analyz-
ing the transcriptome of cells in the pleural 
effusion, AI programs distinguished mesothelio-
mas from mesothelial cell hyperplasia with 
remarkable accuracy [43, 44]. Mesothelioma 
diagnosis can also be done by examining the 
gross chromosome structure in the nucleus of 
cells released into the pleural effusion [45], using 
a recently developed technology called transport-

Fig. 2.3  Malignant pleural mesothelioma. (a) Asbestos 
fibers are found in mouse pleural space within hours of 
exposure (G.M.  Davis, Br J Exp Path (1974) 55, 
64–70). (b) Early diffuse malignant pleural 

mesothelioma may be seen as nodules on visceral 
pleura surface (Pathology for the Surgeon, Ed. by 
Banks & Kraybill, W.B. Saunders Company, 1996)
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based morphometry [46]. Apparently, damage to 
chromosome structures in mesotheliomas is so 
extensive that a computer-aided imaging analysis 
can distinguish a mesothelioma nucleus from a 
mesothelial cell hyperplasia nucleus with very 
high accuracy. In perspective, trying to character-
ize a mesothelioma based on its cancer genome 
by identifying a target gene(s) and devising a 
strategy for treatment is a formidable task.

What are the possibilities for combining 
immunotherapy with chemotherapy to treat 
MPM? Systemic chemotherapy is a standard 
component in the treatment for MPM [47]. Even 
with treatment, 1-year and 5-year survival rates 
are 33% and 5%, respectively [48]. The median 
survival times after initial diagnosis for MPM 
are between 7 and 15 months depending on the 
statistics taken [49]. In recent years, immuno-
therapies with or without chemotherapeutics 
have been tried with limited success [47]. One 
reason for the limited success is the heterogene-
ity in immune cell contents in MPM [50]. For 
example, the immune checkpoint PD-1 is not 
expressed in all tumors. Also, if MPM is already 
in Stage 3, then checkpoint blockade, adoptive 
cell therapy, or chimeric antigen receptor T 
(CAR-T) therapy (using anti-MSLN antibody) 
will all be ineffective. Therefore, there is an 
urgent need to develop an effective way to 
reverse a Stage 3 tumor to a Stage 2 tumor. Thus, 
the problems facing MPM therapies are a reflec-
tion of the troubles facing cancer therapies gen-
erally. MPM, however, has one advantage for 
therapy development; mouse models for MPM 
are already available. With trial and error on 
mouse MPM, it seems possible to devise an 
effective therapy scheme readily translatable to 
clinical settings.

Lastly, we describe an effort to develop a dual 
inhibitor to induce apoptosis in all MPM.

Varin and colleagues’ treated mesothelioma 
cells that are highly refractory to conventional 
chemotherapy, by knocking down two genes, 
Mcl-1 and Bcl-xL, inducing apoptosis in all 
the treated cells [51]. Knocking down just one 
of the genes did not induce apoptosis because 

most human cells are protected from spontane-
ously induced apoptosis by having two anti-
apoptotic proteins—Mcl-1 and Bcl-2 
(including Bcl-2’s homologues). Most cells 
express Mcl-1 and either Bcl-xL or Bcl-2. For 
example, megakaryocytes express Mcl-1 and 
Bcl-xL [52]. When both proteins are inacti-
vated, apoptosis is induced in any cell, cancer-
ous or otherwise [53]. The dual inhibition of 
Mcl-1 and Bcl-xL would be very toxic to most 
MPM because 34 out of 35 known MPM 
expressed the Mcl-1 and Bcl-xL combination 
[54]. This dual inhibition also induces apopto-
sis in those cells that do not express Bcl-2 such 
as liver and megakaryocytes. However, there is 
a way to limit Mcl-1 inhibition. Mcl-1 is inhib-
ited by the treatment of 2-deoxyglucose and 
beta-cyclodextrin [55]. 2-Deoxyglucose is 
taken up by cells with elevated glucose uptake. 
A pan-Bcl-2 inhibitor such as ABT-263 can 
inhibit all Bcl-2 family proteins. However, it 
cannot cross the blood-brain barrier (BBB). 
Thus, a triple combination of 2-deoxyglucose, 
beta cyclodextrin, and ABT-263 may effec-
tively kill cancer cells outside the brain, but 
with the drawback of also killing megakaryo-
cytes [53]. It is known that MPM is highly gly-
colytic, overexpressing the glucose transporter 
Glut-1. Thus, the triple combination therapy 
would also induce apoptosis in most MPM 
(those that do not express p-glycoprotein, 
which excludes ABT-263) while leaving hepa-
tocytes unaffected because hepatocytes are not 
highly glycolytic. If the challenge of not expos-
ing megakaryocytes to all three agents during 
the treatment can be met, the triple combina-
tion therapy could eliminate MPM with few 
side effects.

In summary, even though the incidence of 
MPM is expected to decline, MPM may still be 
an excellent model cancer to study because in 
many ways, difficulties in treating MPM share 
many of the same problems facing the wider 
spectrum of cancer therapies. Progress in treating 
MPM is thus expected to translate to progress in 
treating cancers generally.

R. Yamaguchi and G. Perkins



27

Acknowledgement  We would like to thank Prof. 
Courtney Broaddus at the Dept. of Medicine, University 
of California, San Francisco, for informative discussion 
on MPM.  The project was initiated when R.Y. was at 
Kansai Medical University, Hirakata, Japan.

References

	 1.	Stratton MR (2011) Exploring the genomes 
of cancer cells: progress and promise. Science 
331(March):1553–1558. https://doi.org/10.1126/
science.1204040

	 2.	Marcus A, Gowen BG, Thompson TW et al (2014) 
Recognition of tumors by innate immune system and 
natural killer cells. Adv Immunol 122:91–128 https://
doi.org/10.1016/B978-0-12-800267-4.00003-1

	 3.	Burstein HJ, Polyak K et al (2004) Ductal carcinoma 
in situ of the breast. N Engl J Med 350:1430–1441

	 4.	Yamaguchi R, Perkins G (2018) Animal models for 
studying tumor microenvironment (TME) and resis-
tance to lymphocytic infiltration. Cancer Biol Ther 
18:1–10. https://doi.org/10.1080/15384047.2018.147
0722

	 5.	 Joyce JA, Fearon DT (2015) T cell exclusion, immune 
privilege, and the tumor microenvironment. Science 
348(6230):74–80

	 6.	Yeung KT, Yang J  (2017) Epithelial–mesenchymal 
transition in tumor metastasis. Mol Oncol 11:28–39. 
https://doi.org/10.1002/1878-0261.12017

	 7.	Labelle M, Begum S, Hynes RO (2011) Direct sig-
naling between platelets and cancer cells induces an 
epithelial-mesenchymal-like transition and promotes 
metastasis. Cancer Cell 20:576–590. https://doi.
org/10.1016/j.ccr.2011.09.009

	 8.	Hong Y, Fang F, Zhang Q (2016) Circulating tumor 
cell clusters: what we know and what we expect 
(review). Int J  Oncol 49:2206–2216. https://doi.
org/10.3892/ijo.2016.3747

	 9.	Harlin H, Meng Y, Peterson AC et  al (2009) 
Chemokine expression in melanoma metastases asso-
ciated with CD8+ T-cell recruitment. Cancer Res 
69(7):3077–3086. https://doi.org/10.1158/0008-5472.
CAN-08-2281

	10.	Gabrilovich DI (2017) Myeloid-derived suppres-
sor cells. Cancer Immunol Res 5(1):3–9. https://doi.
org/10.1158/2326-6066.CIR-16-0297

	11.	Malladi S, Macalinao D, Jin X et al (2016) Metastatic 
latency and immune evasion through autocrine inhibi-
tion of WNT article metastatic latency and immune 
evasion through autocrine inhibition of WNT.  Cell 
165:45–60. https://doi.org/10.1016/j.cell.2016.02.025

	12.	Tabbekh M, Franciszkiewicz K (2018) Rescue of 
tumor-infiltrating lymphocytes from activation-
induced cell death enhances the antitumor CTL 
response in CD5-deficient mice. J Immunol 187:102–
109. https://doi.org/10.4049/jimmunol.1004145

	13.	Zhou R, He P, Ren Y et  al (2007) Myeloid sup-
pressor cell-associated immune dysfunc-

tion in CSA1M fibrosarcoma tumor-bearing 
mice. Cancer Sci 98(6):882–889. https://doi.
org/10.1111/j.1349-7006.2007.00465.x

	14.	Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, 
Stanger BZ (2012) Tumor-derived granulocytes-
macrophage colony-stimulating factor regulates 
myeloid inflammation and T cell immunity in pancre-
atic cancer. Cancer Cell 21(6):822–835. https://doi.
org/10.1016/j.ccr.2012.04.025

	15.	Pylayeva-gupta Y, Lee KE, Hajdu CH, Miller G, Bar-
sagi D (2012) Oncogenic Kras-induced GM-CSF 
production promotes the development of pancreatic 
neoplasia. Cancer Cell 21(6):836–847. https://doi.
org/10.1016/j.ccr.2012.04.024

	16.	Zhu Y, Knolhoff BL, Meyer MA et al (2014) CSF1/
CSF1R blockade reprograms tumor-infiltrating mac-
rophages and improves response to T-cell checkpoint 
immunotherapy in pancreatic cancer models. Cancer 
Res 74:5057–5070. https://doi.org/10.1158/0008-
5472.CAN-13-3723

	17.	Strachan DC, Ruffell B, Oei Y et  al (2013) CSF1R 
inhibition delays cervical and mammary tumor 
growth in murine models by attenuating the turnover 
of tumor-associated macrophages and enhancing 
infiltration by CD8 T cells CSF1R inhibition delays 
cervical and mammary tumor growth in murine mod-
els by. Oncoimmunology 2(12):e26968. https://doi.
org/10.4161/onci.26968

	18.	Garcia AJ, Ruscetti M, Arenzana TL, Tran LM, 
Bianci-frias D, Sybert E (2017) Pten null prostate epi-
thelium promotes localized myeloid-derived suppres-
sor cell expansion and immune suppression during 
tumor. Mol Cell Biol 34(11):2017–2028. https://doi.
org/10.1128/MCB.00090-14

	19.	Pasello G, Zago G, Lunardi F et al (2018) Malignant 
pleural mesothelioma immune microenvironment and 
checkpoint expression: correlation with clinical–path-
ological features and intratumor heterogeneity over 
time original article. Ann Oncol 29(March):1258–
1265. https://doi.org/10.1093/annonc/mdy086

	20.	Fassina A, Cappellesso R, Guzzardo V et  al (2011) 
Epithelial–mesenchymal transition in malignant 
mesothelioma. Mod Pathol 25(1):86–99. https://doi.
org/10.1038/modpathol.2011.144

	21.	Hmeljak J, Sanchez-vega F, Hoadley KA et  al 
(2018) Integrative molecular characterization of 
malignant pleural mesothelioma. Cancer Discov 
81(12):1548–1565. https://doi.org/10.1158/2159-
8290.CD-18-0804

	22.	Mezzapelle R, Rrapaj E, Gatti E et al (2016) Human 
malignant mesothelioma is recapitulated in immu-
nocompetent BALB/c mice injected with murine 
AB cells. Sci Rep 6(February):22850. https://doi.
org/10.1038/srep22850

	23.	Schwartz H, Blacher E, Amer M et al (2016) Incipient 
melanoma brain metastases instigate astrogliosis and 
neuroinflammation. Cancer Res 76(15):4359–4372. 
https://doi.org/10.1158/0008-5472.CAN-16-0485

	24.	Strachan DC, Ruffell B, Oei Y et  al (2013) CSF1R 
inhibition delays cervical and mammary tumor 

2  An Emerging Model for Cancer Development from a Tumor Microenvironment Perspective in Mice…

https://doi.org/10.1126/science.1204040
https://doi.org/10.1126/science.1204040
https://doi.org/10.1016/B978-0-12-800267-4.00003-1
https://doi.org/10.1016/B978-0-12-800267-4.00003-1
https://doi.org/10.1080/15384047.2018.1470722
https://doi.org/10.1080/15384047.2018.1470722
https://doi.org/10.1002/1878-0261.12017
https://doi.org/10.1016/j.ccr.2011.09.009
https://doi.org/10.1016/j.ccr.2011.09.009
https://doi.org/10.3892/ijo.2016.3747
https://doi.org/10.3892/ijo.2016.3747
https://doi.org/10.1158/0008-5472.CAN-08-2281
https://doi.org/10.1158/0008-5472.CAN-08-2281
https://doi.org/10.1158/2326-6066.CIR-16-0297
https://doi.org/10.1158/2326-6066.CIR-16-0297
https://doi.org/10.1016/j.cell.2016.02.025
https://doi.org/10.4049/jimmunol.1004145
https://doi.org/10.1111/j.1349-7006.2007.00465.x
https://doi.org/10.1111/j.1349-7006.2007.00465.x
https://doi.org/10.1016/j.ccr.2012.04.025
https://doi.org/10.1016/j.ccr.2012.04.025
https://doi.org/10.1016/j.ccr.2012.04.024
https://doi.org/10.1016/j.ccr.2012.04.024
https://doi.org/10.1158/0008-5472.CAN-13-3723
https://doi.org/10.1158/0008-5472.CAN-13-3723
https://doi.org/10.4161/onci.26968
https://doi.org/10.4161/onci.26968
https://doi.org/10.1128/MCB.00090-14
https://doi.org/10.1128/MCB.00090-14
https://doi.org/10.1093/annonc/mdy086
https://doi.org/10.1038/modpathol.2011.144
https://doi.org/10.1038/modpathol.2011.144
https://doi.org/10.1158/2159-8290.CD-18-0804
https://doi.org/10.1158/2159-8290.CD-18-0804
https://doi.org/10.1038/srep22850
https://doi.org/10.1038/srep22850
https://doi.org/10.1158/0008-5472.CAN-16-0485


28

growth in murine models by attenuating the turn-
over of tumor-associated macrophages and enhanc-
ing infiltration by CD8 T cells. Oncoimmunology 
2(12):e26968. https://doi.org/10.4161/onci.26968

	25.	Zhu Y, Knolhoff BL, Meyer MA et al (2014) CSF1/
CSF1R blockade reprograms tumor-in filtrat-
ing macrophages and improves response to T-cell 
checkpoint immunotherapy in pancreatic cancer 
models. Cancer Res 74:5057–5070. https://doi.
org/10.1158/0008-5472.CAN-13-3723

	26.	Menon H, Ramapriyan R, Cushman TR et  al 
(1933) Role of radiation therapy in modulation of 
the tumor stroma and microenvironment. Front 
Immunol 10(February):2019. https://doi.org/10.3389/
fimmu.2019.00193

	27.	Bernstein MB, Krishnan S, Hodge JW, Chang JY 
(2016) Immunotherapy and stereotactic ablative 
radiotherapy (ISABR): a curative approach? Nat Rev 
Clin Oncol 13(8):516–524. https://doi.org/10.1038/
nrclinonc.2016.30

	28.	Yao ES, Zhang H, Chen Y et al (2007) Increased B1 
integrin is associated with decreased survival in inva-
sive breast cancer. Cancer Res 67(2):659–665. https://
doi.org/10.1158/0008-5472.CAN-06-2768

	29.	Hu-lieskovan S, Mok S, Moreno BH et  al (2015) 
Improved antitumor activity of immunotherapy with 
BRAF and MEK inhibitors in BRAF V600E mela-
noma. Sci Transl Med 7(279):279ra41

	30.	Frederick DT, Piris A, Cogdill AP et al (2013) BRAF 
inhibition is associated with enhanced melanoma 
antigen expression and a more favorable tumor 
microenvironment in patients with metastatic mela-
noma. Clin Cancer Res 19(5):1225–1232. https://doi.
org/10.1158/1078-0432.CCR-12-1630

	31.	Pelster MS, Amaria RN (2019) Combined targeted 
therapy and immunotherapy in melanoma: a review 
of the impact on the tumor microenvironment and out-
comes of early clinical trials. Ther Adv Med Oncol 
11:1–11. https://doi.org/10.1177/1758835919830826

	32.	Morgan A, Holmes A (1980) Concentrations and 
dimensions of coated and uncoated asbestos fibres in 
the human lung. Br J Ind Med 37:25–32

	33.	Feder IS, Tischoff I, Theile A, Schmitz I, Merget 
R, Tannapfel A (2017) The asbestos fibre bur-
den in human lungs: new insights into the chryso-
tile debate. Eur Respir J  49:1602534. https://doi.
org/10.1183/13993003.02534-2016

	34.	Boylan AM, Sanan DA, Sheppard D, Broaddus VC 
(1995) Vitronectin enhances internalization of crocid-
olite asbestos by rabbit pleural mesothelial cells via 
the integrin avfi5. J Cli Invest 96:1987–2001

	35.	Liu W, Ernst JD, Broaddus VC (2000) Phagocytosis 
of crocidolite asbestos induces oxidative stress, DNA 
damage, and apoptosis in mesothelial cells. Am 
J Respir Cell Mol Biol 23:371–378

	36.	Serio G, Pagliarulo V, Marzullo A, Punzi A, Pezzuto 
F (2016) Case report molecular changes of malignant 
mesothelioma in the testis and their impact on prog-
nosis: analyses of two cases. Int J  Clin Exp Pathol 
9(7):7658–7667

	37.	Marsella JM, Liu BL, Vaslet CA, Kane AB (1997) 
Susceptibility of p53-deficient mice to induction of 
mesothelioma by crocidolite asbestos fibers. Environ 
Health Perspect 105(September):1069–1072

	38.	de Reynies A, Jaurand M-C, Renier A et  al (2014) 
Molecular classification of malignant pleural meso-
thelioma: identification of a poor prognosis subgroup 
linked to the epithelial-to-mesenchymal transi-
tion. Clin Cancer Res 20(5):1323–1335. https://doi.
org/10.1158/1078-0432.CCR-13-2429

	39.	Chung CT, Da G, Santos C et al (2010) FISH assay 
development for the detection of p16/CDKN2A dele-
tion in malignant pleural mesothelioma. J Clin Pathol 
63:630–634. https://doi.org/10.1136/jcp.2010.076794

	40.	Sarun KH, Lee K, Williams M et al (2018) Genomic 
deletion of BAP1 and CDKN2A are useful markers 
for quality control of malignant pleural mesothelioma 
(MPM) primary cultures. Int J  Mol Sci 19:3056. 
https://doi.org/10.3390/ijms19103056

	41.	Hylebos M, Van Camp G, Van Meerbeeck JP (2016) 
The genetic landscape of malignant pleural meso-
thelioma: results from massively parallel sequenc-
ing. J  Thorac Oncol 11(10):1615–1626. https://doi.
org/10.1016/j.jtho.2016.05.020

	42.	Yamaguchi R, Perkins G (2012) Finding a panacea 
among combination cancer therapies. Cancer Res 
72(1):18–23. https://doi.org/10.1158/0008-5472.
CAN-11-3091

	43.	Bruno R, Alì G, Giannini R et  al (2017) Malignant 
pleural mesothelioma and mesothelial hyperplasia: 
a new molecular tool for the differential diagnosis. 
Oncotarget 8(2):2758–2770

	44.	Parodi S, Filiberti R, Marroni P et al (2015) Differential 
diagnosis of pleural mesothelioma using logic learn-
ing machine. BMC Bioinformatics 16(Suppl 9):S3

	45.	Tosun AB, Yergiyev O, Kolouri S, Silverman JF, 
Rohde GK (2015) Detection of malignant mesothe-
lioma using nuclear structure of mesothelial cells in 
effusion cytology specimens. Cytometry A 87A:326–
333. https://doi.org/10.1002/cyto.a.22602

	46.	Kundu S, Kolouri S, Erickson KI, Kramer AF, Rohde 
GK, May CV (2018) Discovery and visualization 
of structural biomarkers from MRI using transport-
based morphometry. Neuroimage 167:256–275. 
arXiv:170504919v1

	47.	Dozier J, Zheng H, Adusumilli PS (2017) 
Immunotherapy for malignant pleural mesothe-
lioma: current status and future directions. Trans 
Lung Cancer 6(4):315–324. https://doi.org/10.21037/
tlcr.2017.05.02

	48.	Milano MT, Zhang H (2010) Malignant pleural meso-
thelioma: a population-based study of survival. JTO 
Acquis 5(11):1841–1848. https://doi.org/10.1097/
JTO.0b013e3181f1cf2b

	49.	Boutin C, Xey F, Gouvemet J  et  al (1993) 
Thoracoscopy in pleural malignant mesothelioma: a 
prospective study of 188 consecutive patients part 2: 
prognosis and staging. Cancer 72:394–404

	50.	Minnema-Luiting J, Vroman H, Aerts J, Cornelissen 
R (2018) Heterogeneity in immune cell content 

R. Yamaguchi and G. Perkins

https://doi.org/10.4161/onci.26968
https://doi.org/10.1158/0008-5472.CAN-13-3723
https://doi.org/10.1158/0008-5472.CAN-13-3723
https://doi.org/10.3389/fimmu.2019.00193
https://doi.org/10.3389/fimmu.2019.00193
https://doi.org/10.1038/nrclinonc.2016.30
https://doi.org/10.1038/nrclinonc.2016.30
https://doi.org/10.1158/0008-5472.CAN-06-2768
https://doi.org/10.1158/0008-5472.CAN-06-2768
https://doi.org/10.1158/1078-0432.CCR-12-1630
https://doi.org/10.1158/1078-0432.CCR-12-1630
https://doi.org/10.1177/1758835919830826
https://doi.org/10.1183/13993003.02534-2016
https://doi.org/10.1183/13993003.02534-2016
https://doi.org/10.1158/1078-0432.CCR-13-2429
https://doi.org/10.1158/1078-0432.CCR-13-2429
https://doi.org/10.1136/jcp.2010.076794
https://doi.org/10.3390/ijms19103056
https://doi.org/10.1016/j.jtho.2016.05.020
https://doi.org/10.1016/j.jtho.2016.05.020
https://doi.org/10.1158/0008-5472.CAN-11-3091
https://doi.org/10.1158/0008-5472.CAN-11-3091
https://doi.org/10.1002/cyto.a.22602
https://doi.org/10.21037/tlcr.2017.05.02
https://doi.org/10.21037/tlcr.2017.05.02
https://doi.org/10.1097/JTO.0b013e3181f1cf2b
https://doi.org/10.1097/JTO.0b013e3181f1cf2b


29

in malignant pleural mesothelioma. Int J  Mol Sci 
19:1041. https://doi.org/10.3390/ijms19041041

	51.	Varin E, Denoyelle C, Brotin E et  al (2010) 
Downregulation of Bcl-x L and Mcl-1 is sufficient to 
induce cell death in mesothelioma cells highly refrac-
tory to conventional chemotherapy. Carcinogenesis 
31(6):984–993. https://doi.org/10.1093/carcin/bgq026

	52.	Debrincat MA, Josefsson EC, James C et  al (2012) 
Mcl-1 and Bcl-xL coordinately regulate megakaryo-
cyte survival. Blood 119(24):5850–5858. https://doi.
org/10.1182/blood-2011-12-398834

	53.	Yamaguchi R, Lartigue L, Perkins G (2019) Targeting 
Mcl-1 and other Bcl-2 family member proteins in can-
cer therapy. Pharmacol Ther 195:13–20

	54.	Soini Y, Kinnula V, Kaarteenaho-wiik R, Apoptosis 
KE (1999) Expression of apoptosis regulating pro-
teins bcl-2. Clin Cancer Res 5(November):3508–3515

	55.	Yamaguchi R, Perkins G, Hirota K (2015) Targeting 
cholesterol with beta-cyclodextrin sensitizes cancer 
cells for apoptosis. FEBS Lett 589:4097. https://doi.
org/10.1016/j.febslet.2015.11.009

2  An Emerging Model for Cancer Development from a Tumor Microenvironment Perspective in Mice…

https://doi.org/10.3390/ijms19041041
https://doi.org/10.1093/carcin/bgq026
https://doi.org/10.1182/blood-2011-12-398834
https://doi.org/10.1182/blood-2011-12-398834
https://doi.org/10.1016/j.febslet.2015.11.009
https://doi.org/10.1016/j.febslet.2015.11.009


31© Springer Nature Switzerland AG 2020 
A. Birbrair (ed.), Tumor Microenvironment, Advances in Experimental Medicine  
and Biology 1225, https://doi.org/10.1007/978-3-030-35727-6_3

Effects of Exercise on the Tumour 
Microenvironment

 Linda A. Buss and Gabi U. Dachs  

 
Abstract 
Epidemiological evidence suggests that exer-
cise improves survival in cancer patients. 
However, much is still unknown regarding the 
mechanisms of this positive survival effect 
and there are indications that exercise may not 
be universally beneficial for cancer patients. 
The key to understanding in which situations 
exercise is beneficial may lie in understanding 
its influence on the tumour microenvironment 
(TME)—and conversely, the influence of the 
tumour on physical functioning. The TME 
consists of a vast multitude of different cell 
types, mechanical and chemical stressors and 
humoral factors. The interplay of these differ-
ent components greatly influences tumour cell 
characteristics and, subsequently, tumour 
growth rate and aggression. Exercise exerts 
whole-body physiological effects and can 
directly and indirectly affect the TME. In this 
chapter, we first discuss the possible role of 
exercise capacity (‘fitness’) and exercise 
adaptability on tumour responsiveness to 
exercise. We summarise how exercise affects 
aspects of the TME such as tumour perfusion, 
vascularity, hypoxia (reduced oxygenation) 
and immunity. Additionally, we discuss the 
role of myokines and other circulating factors 

in eliciting these changes in the TME. Finally, 
we highlight unanswered questions and key 
areas for future research in exercise oncology 
and the TME.  
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3.1	 �Introduction 

Gone are the days in which cancer patients are 
treated to the adage ‘rest is best’. A wealth of epi-
demiological studies over the past two decades 
have provided evidence that physical activity or 
exercise reduces the risk of developing a range of 
different cancers (such as breast, colorectal and 
lung) and is even associated with improved sur-
vival outcomes in breast and colorectal cancer 
patients [1, 2]. Furthermore, exercise exhibits a 
remarkable safety profile compared with cancer 
therapeutics—it is not associated with any toxici-
ties of its own and may even reduce the rate or 
severity of treatment-associated adverse events 
[3]. In addition to survival benefits, exercise has 
been shown to improve cognitive and physical 
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functioning, reduce anxious and depressive 
symptoms and improve health-related quality of 
life in cancer patients (reviewed in [3]). 

However, there are indications that exercise is 
not universally beneficial for all cancer patients. 
Occasional preclinical studies have suggested 
that, in some situations, exercise may not affect 
tumour growth rate at all—or even increase 
tumour growth rate [4, 5]. It is unclear what the 
determinants of an exercise-responsive versus 
non-responsive tumour are, or how to identify 
which patients will benefit from exercise. The 
key to this may lie in how exercise affects the 
tumour microenvironment (TME). 

The TME is the local cellular, physical, chem-
ical and humoral environment that tumour cells 
inhabit. More specifically, it includes a range of 
cell types other than cancer cells, such as endo-
thelial cells, immune cells, fibroblasts and adipo-
cytes. Physical, chemical and humoral factors 
include the stiffness of the extracellular matrix, 
pH, oxygen tension, cytokines and growth fac-
tors. It is now well-known that tumour growth 
characteristics and metastatic capacity are in 
large part defined by the make-up of the 
TME.  Therefore, understanding the effects of 
exercise on the TME is integral to understanding 
how exercise exerts its beneficial effects (or lack 
thereof). 

This chapter will summarise and synthesise 
available preclinical (and clinical, where avail-
able) data on the effects of exercise on the 
TME.  We will describe the factors affecting 
individual exercise capacity and exercise 
adaptability and briefly summarise preclinical 
and epidemiological evidence on how exercise 
affects tumour growth/patient survival. The 
main focus of this chapter will be to discuss the 
finer details of how exercise affects the TME, 
including the role of myokines, tumour vascu-
lature/perfusion and hypoxia and immunity. 
Finally, we will suggest future avenues of 
investigation for the field of exercise 
oncology. 

3.2	  �Exercise Capacity 
and Exercise Adaptability

3.2.1	   �Exercise Capacity 

Exercise capacity is defined as the maximum 
amount of physical exertion that an individual 
can sustain and is colloquially referred to as ‘fit-
ness’ [6]. The major variable affecting exercise 
capacity is, of course, the intensity and duration 
of exercise performed by an individual on a regu-
lar basis. However, other factors can play an 
important role, including nutrition, age, gender 
and genetics. 

There is a clear heritable component to exer-
cise capacity. Rodents can be selectively bred for 
high inherent exercise capacity; these animals 
can run for longer and at a higher speed (in an 
untrained state) than their low inherent exercise 
capacity counterparts [7]. In addition, different 
inbred mouse strains have significantly different 
exercise capacities in the untrained state [8]. In 
humans, studies have suggested that there is a 
large heritable component to exercise capacity 
(reviewed in [9]). 

To our knowledge, there is just one study that 
has investigated the effect of inherent exercise 
capacity on cancer risk. Rats were selectively 
bred for high or low inherent exercise capacity 
and exposed to the carcinogen 1-methyl-1-
nitrosurea (MNU) [10]. Rats with high inherent 
exercise capacity had lower tumour incidence 
(fewer rats with any breast malignancy), and 
those that did develop tumours had fewer tumours 
than rats with low inherent exercise capacity 
[10]. This suggests that there may be a large heri-
table component to the protective effect of exer-
cise on cancer risk.  

3.2.2	  �Exercise Adaptability 

There also appears to be a heritable component to 
exercise adaptability, that is, the ability of an 
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individual to effect the physiological changes 
required to improve exercise capacity in response 
to exercise. These include muscular adaptations 
(increased capillary density and mitochondrial 
expansion) and improved pulmonary and cardio-
vascular capacity [11]. In mice, different inbred 
strains exhibit significantly different changes in 
exercise capacity following the same training 
protocol [8]. Similarly, in humans, training-
induced increases in maximal oxygen uptake 
(VO2 max) vary significantly more between fami-
lies than within families [12]. It has been sug-
gested that the heritability of exercise adaptability 
may be as much as 50% (reviewed in [9]). 

To our knowledge, there are no published 
studies specifically investigating the role of exer-
cise adaptability on risk of cancer. However, 
higher VO2 max was associated with improved 
survival in metastatic breast cancer patients and 
non-small cell lung cancer patients [13, 14]. We 
found a single clinical study in which exercise 
adaptations in the skeletal muscle of cancer 
patients were compared with healthy controls 
[15]. In that study, the authors found that a greater 
number of healthy individuals had an increase in 
muscle fibre cross-sectional area with exercise 
training compared with cancer patients [15]. In 
addition, healthy individuals had an increase in 
muscle capillarisation and quadriceps strength 
while cancer patients did not [15]. Although this 
study is limited by small numbers (n = 12–16 per 
group), it provides preliminary evidence that can-
cer patients may not adapt to exercise to the same 
degree as healthy individuals. Furthermore, com-
parison of a systematic review on improvements 
of VO2 max in cancer patients with data in healthy 
subjects suggests that the magnitude of improve-
ment in VO2 max is lower in cancer patients 
despite following similar exercise programs to 
the healthy subjects [16]. 

It is largely unknown what role exercise adapt-
ability and exercise capacity play in cancer 
patients’ response to exercise and, specifically, in 
exercise-induced changes in the TME. There are 
two possibilities: (1) the exercise adaptation 
response of the tumour is just as or more variable 
than the muscular/cardiopulmonary response or 
(2) the tumour response is less variable as tumour 

tissue is not directly involved in determining 
exercise capacity. In addition, the anatomical 
location of the tumour may be important. We 
speculate that tumours located in exercise-
involved tissues (such as lung) may respond more 
strongly to exercise. 

The potential role of (inherited) exercise 
capacity and exercise adaptability has thus far 
been largely unacknowledged in exercise oncol-
ogy research. Given that higher exercise capacity 
is associated with lower tumour incidence in 
rodents [10] and improved survival in cancer 
patients [13], inherited exercise adaptability and 
exercise capacity may play a significant role in 
whether or not a particular cancer patient will 
benefit from exercise. In addition, impairments in 
exercise adaptability due to tumour or treatment 
burden may limit the effectiveness of exercise.   

3.3	  �Effect of Exercise on Tumour 
Growth/Patient Survival 

In this section we will give only a brief overview 
regarding the effect of exercise on tumour growth/
progression and patient survival in order to retain 
the main focus on the effects of exercise on the 
TME. We refer the interested reader to the many 
comprehensive reviews on the effect of exercise 
on cancer patient survival [2, 3, 17, 18] and the 
effect of exercise as a sole intervention in pre-
clinical studies [3, 19–22]. 

3.3.1	  �Clinical Studies 

The majority of clinical studies investigating the 
effect of exercise or physical activity on cancer 
patient survival have been observational studies. 
There is evidence that meeting the World Health 
Organization (WHO) guidelines of 150  min of 
moderate-intensity or 75  min of vigorous-
intensity exercise per week confers a significant 
survival benefit for cancer patients and for some 
cancer types, such as colorectal cancer, a dose-
response relationship between exercise volume 
and survival has been reported [2]. Current evi-
dence supports a 40–50% reduction in all-cause 
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mortality for breast, colorectal and prostate can-
cer survivors engaging in high levels of physical 
activity; other cancers have not yet been suffi-
ciently studied in this context [18]. However, 
there is a large possibility of reverse causation for 
the relationship between cancer survival and 
physical activity level (patients who are less well 
may exercise less, rather than high activity levels 
causing an improved outcome) [18], which 
emphasises the importance of conducting ran-
domised controlled intervention trials to fully 
investigate the role of exercise in improving 
patient survival. Two large intervention studies 
(the CHALLENGE trial and the INTERVAL 
trial) are ongoing to address this and will shed 
more light on whether a targeted exercise inter-
vention can improve survival [23, 24].  

3.3.2	  �Preclinical Studies

 
The effect of exercise on tumour growth in pre-
clinical studies is less clear than in epidemiologi-
cal studies. This is likely to be largely due to 
heterogeneity in study design. Key factors that 
influence outcomes of preclinical studies are the 
rodent strain used (as discussed above, different 
strains have different inherent exercise capacity 
and adaptability), immunocompetency of the 
rodent strain, timing of exercise initiation (pre- 
vs post-‘diagnosis’), tumour type and anatomical 
location, exercise modality (forced, swimming or 
treadmill; voluntary, wheel running), tumour bur-
den and study endpoint (predetermined time after 
tumour initiation or ethically determined by 
tumour size). Very few studies have more than a 
few of these factors in common, making com-
parisons difficult. Comprehensive discussion of 
these parameters is beyond the scope of this 
chapter (refer to [20] for comparison of the 
effects of some of these parameters on tumour 
growth), but we will briefly discuss the role of 
pre- versus post-implantation (mimicking pre- vs 
post-diagnosis) exercise on tumour growth. 

In many preclinical studies, post-implantation 
exercise either only marginally affects tumour 

growth rate [25–28] or does not affect tumour 
growth rate at all [29–33]. In agreement with this, 
only a ‘small to moderate’ effect size of exercise 
on final tumour size was reported in a recent sys-
tematic review [20]. Of those studies included in 
the analysis that did find a statistically significant 
difference in final tumour size, 4/8 had a ‘proba-
bly high’ risk of bias and one even showed an 
increased tumour size with exercise. Together 
with the observation that many studies find a sta-
tistically but not clinically significant result, this 
suggests that exercise as a sole intervention 
(monotherapy) is minimally effective at slowing 
primary tumour growth rate. 

The documented effect of pre-implantation 
exercise is more consistent than that of post-
implantation exercise. In the above-mentioned 
systematic review [20], studies in which exercise 
was performed both pre- and post-implant had a 
larger effect size for exercise to reduce tumour 
growth than studies in which exercise was per-
formed only after tumour implant [20]. In addi-
tion, Pedersen et  al. found that growth rate of 
B16-F10 melanoma was slowed with pre-
implantation or pre-and post-implantation exer-
cise, but not post-implantation exercise only [30]. 
Similarly, a number of studies using carcinogen-
induced models (which typically start exercise 
after carcinogen administration but before 
tumours become detectable) have found a reduc-
tion in malignant tumour incidence and/or overall 
tumour burden (by number of tumours per  ani-
mal or combined weight of tumours) [30, 34]. 
This suggests that while exercise monotherapy 
may not be very effective (as discussed above), 
exercise preconditioning may be important both 
for prevention and slower growth of cancer once 
it has arisen. In a clinical setting, this may also 
translate to reduced rates of recurrence after 
tumour control following treatment, although this 
remains speculative. 

It seems clear that exercise can reduce tumour 
growth rate, but likely only to a significant extent 
in a pre-implantation setting or possibly in com-
bination with cancer therapies (discussed in Sect. 
3.7). However, some studies have found differ-
ences in the exercise responsiveness of different 
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tumours, using the same exercise protocol, with 
some tumours (of the same subtype) exhibiting 
either no change in growth rate or even an 
increased growth rate with exercise [4, 5]. This is 
important, as it indicates that exercise treatment 
is far from a one-size-fits-all approach and some 
patients may not benefit from exercise.  

3.3.3	  �The Effect of Exercise 
on Metastasis 

Metastasis is the process whereby tumour cells 
migrate from the site of the primary tumour to 
establish secondary tumours in different tissues. 
For many cancer types, it is the emergence of sec-
ondary tumours in vital tissues which ultimately 
causes death. 

Before cancer cells can seed in secondary 
sites, they must survive transport through the cir-
culation. Regmi et al. have shown that high shear 
stresses (such as those present in the vasculature 
during intense exercise) can kill circulating 
tumour cells using an in vitro microfluidic sys-
tem [35]. However, most of the time points used 
were not clinically relevant. Cells were circulated 
under high shear stress for up to 18 h—this mim-
ics the scenario of vigorous exercise for 18  h, 
which is highly unrealistic for the vast majority 
of the healthy population, let alone cancer 
patients. In one experiment, increased lactate 
dehydrogenase (LDH) release (a proxy for 
necrotic cell death) was seen after 1 h of circulat-
ing under high shear stress, which represents a 
more achievable length of exercise time. Much 
longer than this is not realistically achievable in a 
clinical setting. It would be prudent to repeat 
these experiments with shorter time points that 
more accurately mimic the exercise behaviour of 
the average population (and specifically, cancer 
patients). 

As with preclinical data examining the effect 
of exercise on primary tumour growth, it is 
unclear how exercise affects metastasis due to 
varying results. However, there are several stud-
ies describing a reduced number or mass of 
metastases with both spontaneous [32, 36, 37] 

and experimental metastasis [25, 30, 38–40], 
with fewer studies reporting no change [39, 41] 
or an increase in the number/mass of metastases 
[25, 42], suggesting that in many situations, exer-
cise can inhibit metastatic tumour formation. 
Stress may play a role in how exercise affects 
metastasis. Zhang et al. found that swimming for 
8 min/day (which mice performed without added 
encouragement) reduced the relative size of 
experimental lung metastases, whereas when 
mice were forced to swim for 16 or 32 min/day, 
the relative size of metastases was increased [25]. 
More mechanistic studies are required to help 
delineate how exercise affects different aspects of 
the metastatic cascade.   

3.4	  �Myokines and Other 
Circulating Factors 

During exercise, muscle tissue releases a vast 
array of factors into the circulation, collectively 
termed ‘myokines’ (from ‘muscle-derived cyto-
kines’). These myokines have known effects on 
peripheral tissues, such as skeletal muscle remod-
elling in response to exercise and improvements 
in cognitive function (reviewed in [43]). It is 
thought that the action of myokines (and other 
factors) is directly (affecting cancer cells) and/or 
indirectly (affecting other cells of the TME) 
responsible for many of the changes seen in the 
TME with exercise. 

A number of in vitro studies have found that 
post-exercise serum (serum harvested from 
humans or animals following an acute exercise 
bout) can directly inhibit cancer cell prolifera-
tion, viability or survival when supplemented 
into the cell culture media [44–48]. This has been 
attributed to a few different myokines, including 
secreted protein acidic and rich in cysteine 
(SPARC) [49], irisin [50] and oncostatin M [47]. 

Direct in  vivo data indicating the effect of 
select myokines on tumour growth is still 
largely lacking. However, Aoi et al. found that 
the protective effect of exercise against 
azoxymethane-induced colon tumourigenesis 
was nullified in SPARC knockout mice, and 
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SPARC was able to induce colon cancer cell 
apoptosis in  vitro [49]. This suggests that the 
myokine SPARC plays an important role in the 
protective effect of exercise on cancer develop-
ment and highlights the value of further investi-
gating the effects of exercise-induced myokines 
on tumour growth. 

Research by Hojman and colleagues indicates 
that exercise-induced catecholamines (epineph-
rine and norepinephrine) have both an indirect 
and a direct effect resulting in the reduction of 
tumour growth rate [30, 45]. Human breast 
tumour cells preconditioned with exercise serum 
were less able to form xenograft tumours in mice, 
and this effect was completely abolished when 
the beta-blocker propranolol was also added to 
the pretreatment [45]. In addition, daily injec-
tions of epinephrine or norepinephrine were able 
to significantly slow MCF-7 and MDA-MB-231 
xenograft growth rate [45]. Indirectly, catechol-
amines (and IL-6) are essential for the exercise-
induced mobilisation of natural killer (NK) cells 
to the tumour site, which are themselves essential 
for the exercise-induced delay in tumour growth 
seen in this study [30]. 

A third factor that has been linked to an 
exercise-associated delay in tumour progres-
sion is dopamine. Zhang et al. found that mod-
erate swimming exercise reduced the tumour 
weight of subcutaneous and pulmonary hepa-
tomas in mice, and this was mirrored by an 
increase in dopamine levels in the prefrontal 
cortex, serum and tumour tissue [25]. 
Moreover, dopamine treatment was able to 
reduce tumour weight to the same extent as 
swimming, and a dopamine receptor 2 antago-
nist (domperidone) abolished the tumour 
growth inhibitory effect of both dopamine and 
swimming exercise [25]. 

Although there is still a scarcity of data inves-
tigating the effects of exercise factors on tumour 
growth and the tumour microenvironment, those 
studies that have been done indicate that 
exercise-induced systemic factors may mediate 
the effects of exercise on the tumour 
microenvironment.  

3.5	  �Effect of Exercise on Tumour 
Vascularity, Hypoxia 
and Perfusion

3.5.1	   �Effect of Exercise on Normal 
Vasculature 

Acute exercise modulates blood flow to different 
organ systems, with some receiving increased 
(such as skeletal muscle) and some receiving 
decreased (such as skin) blood flow during exer-
cise [51]. This enables the body to cope with the 
stress of acute exercise by providing those tissues 
directly involved in exercise with more oxygen 
and nutrients. Meanwhile, chronic exercise can 
induce vascular remodelling [52]. Skeletal mus-
cle is the tissue most affected by these changes, 
but many tissue types are affected to some degree, 
including the brain, heart and bone [53–55]. 

It has been shown in vitro and in vivo that exer-
cise can directly affect endothelial cell behaviour. 
Schadler et al. transplanted Matrigel plugs (an arti-
ficial matrix containing gelatine and basement 
proteins) containing primary mouse endothelial 
cells into mice and found that those implanted into 
exercising mice were better perfused and showed 
elongated vessels compared with those implanted 
into non-exercising mice [31]. In addition, endo-
thelial cells exposed to exercise-conditioned serum 
in a microfluidic system showed reduced sprout-
ing (i.e. less angiogenesis), as did those exposed to 
high shear stress (mimicking that present during 
exercise) [31]. This seems counterintuitive, but the 
authors argue that this reflects increased vascular 
maturity which is ultimately conducive to more 
stable vascular networks. Interestingly, exercise 
may also reduce age-associated venous endothe-
lial cell senescence in humans [56]. 

Given that exercise can affect endothelial cell 
behaviour and induce vascular remodelling in a 
variety of normal tissues, it is possible that 
tumour vasculature may also be affected by 
exercise. A number of preclinical studies have 
investigated how exercise affects tumour hypoxia, 
perfusion and vascularity in various tumour types 
and locations (Fig. 3.1).  
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3.5.2	  �Effect of Exercise on Tumour 
Hypoxia 

Just like any other tissue, tumours require blood 
flow delivering oxygen and nutrients in order to 
survive. However, tumours are not evenly per-
fused and are characterised by disorganised, dys-
functional vasculature and regions of hypoxia 
[57]. This leads to the activation of hypoxia fac-
tors such as the hypoxia-inducible factors (HIFs), 
which stimulate the transcription of a large array 
of genes designed to help the cell adapt to low 
oxygen conditions. These include genes central 
to angiogenesis, cell metabolism and metastasis 
[58]. In normal tissue, this results in improved 
vascular coverage and subsequent improved per-
fusion and alleviation of hypoxia. However, in 
tumours, the hypoxic response does not improve 
perfusion as the new blood vessels formed are 
often immature and may be leaky or lack proper 

haemodynamic control [59, 60]. This perpetuates 
tumour hypoxia rather than alleviating it. 

In hyperlipidaemic ApoE−/− mice bearing 
orthotopic breast tumours, we found that mice 
with high levels of cytochrome c oxidase subunit 
4 (COX-IV, a marker of mitochondrial content 
and proxy for training status) in the quadriceps 
femoris muscle exhibited greatly reduced tumour 
hypoxia, although there was no change in tumour 
perfusion or CD31+ vessel density [37]. A second 
study found that hypoxia in orthotopic prostate 
tumours was reduced during exercise [61], and 
this was also evident in tumours from trained rats 
[33]. Furthermore, Betof et  al. observed that 
tumour hypoxia was decreased in orthotopic 4T1 
breast tumours from exercising mice [28]. 

Levels of the hypoxic response protein HIF-1α 
were decreased with exercise in an orthotopic 
breast cancer model [4]. In contrast, HIF-1α lev-
els were increased with exercise in human-
derived breast xenografts in athymic mice [62] 

Fig. 3.1  Effects of acute and chronic exercise on tumour 
vascular characteristics and hypoxia. Acute exercise 
increases blood flow to tumours located in tissues that 
receive constant or increased blood flow during exercise 
while decreasing blood flow to tumours located in tissues 
that are poorly perfused during exercise. This may alter 
levels of hypoxia and affect drug delivery in the indicated 
directions. Vascular contractility and dilatory responsive-

ness are impaired in tumour vessels  and this impairment 
is  unchanged by acute exercise. On the other hand, long-
term training (chronic exercise) may improve vascular 
maturation by improving responsiveness and pericyte 
coverage, which may improve perfusion, oxygen extrac-
tion and drug delivery and reduce hypoxia. Areas in need 
of further research are indicated with?
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and in orthotopic breast and prostate cancer in 
immunocompetent mice [4, 32]. In subcutaneous 
Ewing sarcoma xenografts, HIF-1α and carbonic 
anhydrase IX (CA-IX, a HIF-1 target gene) 
mRNA were decreased with exercise in one of 
two tumour cell lines used [63]. It is unclear why 
this disparity exists between measured hypoxia 
and levels of HIF-1α, given that HIF-1α protein 
stability is strongly dependent on oxygen levels. 
However, it can partially be regulated indepen-
dently of hypoxia, which may explain the above-
described results [58]. 

To our knowledge, hypoxia in tumours from 
mice starting exercise prior to tumour cell inocu-
lation has not yet been investigated nor has 
tumour hypoxia in exercising cancer patients. It 
is also unknown whether the reduction in tumour 
hypoxia occurs in tumour types other than breast 
and prostate cancer.  

3.5.3	  �Tumour Perfusion and Vessel 
Density 

Initial anticancer strategies targeting tumour 
blood vessels focussed on inhibiting angiogene-
sis, as tumour cells will die if completely deprived 
of oxygen and nutrients. However, as with all 
cancer therapies, many tumours develop resis-
tance to anti-angiogenic agents. A more recent 
strategy is vascular normalisation [59], which 
aims to promote the normal development of 
tumour vessels to form a functional, evenly per-
fused network which more closely resembles that 
of normal tissue. This would reduce hypoxia, 
thereby reducing metastatic potential and enhanc-
ing radiosensitivity. In addition, drug delivery 
throughout the tumour would be improved. 

The effect of exercise on tumour vascularity 
and perfusion remains unclear. Studies by vari-
ous groups have demonstrated an increase in per-
fusion homogeneity, the level of perfusion and/or 
vessel density or Cd31 mRNA levels (breast, 
prostate and pancreatic cancer) [28, 31, 32, 64, 
65], but others have found no change in the mean 
level of perfusion [15, 19] or vessel density in 
breast and/or prostate cancer [66]. Further studies 
even found reduced numbers of blood vessels in 

breast tumours or lymphomas from exercising 
mice [67, 68]. 

McCullough et  al. observed increased blood 
flow to orthotopic prostate tumours during acute 
exercise (but not with exercise training) which 
was associated with a reduction in tumour 
hypoxia, which suggests that levels of tumour 
perfusion may change with acute exercise but 
this is not necessarily maintained after exercise 
cessation [61]. 

A potential reason for the differing results 
observed in different studies may be the method 
used to detect tumour perfusion. We and 
McCullough et al. used IV injection of Hoechst 
33342 prior to euthanasia to label perfused blood 
vessels [33, 37], while other studies used MRI to 
generate a perfusion map of the entire tumour 
while the animal was still alive [28, 32]. MRI is 
likely a more representative method of whole-
tumour perfusion, as Hoechst injection and sub-
sequent imaging of thin tissue sections presents 
only a snapshot of tumour perfusion in time and 
space, which fails to take into account the 
dynamic nature of tumour blood flow. 
Nevertheless, this method has been able to detect 
differences in perfusion in the past [62] and has 
been validated for this purpose [69]. 

A further important consideration is the 
impact of anatomical location of the tumour on 
blood flow responses to exercise. Garcia et  al. 
elegantly demonstrated that blood flow during 
exercise is increased to orthotopic prostate 
tumours in rats, but decreased to subcutaneous 
tumours of the same type [51]. They further mea-
sured blood flow to different organs during exer-
cise, including the bladder, prostate (location of 
the orthotopic tumour), soleus muscle, kidneys, 
skin, subcutaneous adipose (location of the ecto-
pic tumour) and visceral adipose tissue. Blood 
flow to the bladder and prostate was unchanged, 
but increased to the soleus muscle and decreased 
to the kidneys, skin, subcutaneous and visceral 
adipose tissue [51]. This suggests that host tissue 
haemodynamics in response to exercise also play 
a role in regulating blood flow to the tumour. As 
such, tumours located in tissues that become less 
well perfused during exercise may not benefit 
from the increased perfusion seen in prostate 
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tumours and may even become more poorly per-
fused during exercise, which could exacerbate 
tumour hypoxia. This has yet to be further inves-
tigated in different tumour models. 

Tissue blood flow is largely regulated by vas-
cular contractility and myogenic tone. Due to 
their poor maturation (lack of smooth muscle 
cells and innervation), tumour vessels have poor 
contractile and dilatory responsiveness, which 
limits their ability to regulate blood flow [51, 61, 
70]. Contractile responsiveness to norepineph-
rine does not change with exercise training, indi-
cating that tumour vessel response to both acute 
and chronic exercise is impaired compared with 
normal tissue [51, 61]. Due to this, tumour blood 
flow cannot be regulated to provide optimal con-
ditions for oxygen extraction. Optimal oxygen 
extraction relies on complex haemodynamics—
parameters such as capillary transit time, micro-
vascular pressure and apparent blood viscosity 
all affect how much oxygen can be extracted 
from the bloodstream [57, 71]. Thus, optimal tis-
sue oxygenation relies on more than just the pres-
ence of perfused vessels. As mentioned above, 
acute exercise does not alter tumour vessel con-
tractility, but it is unknown whether long-term 
exercise could improve vascular maturation to a 
point where vessel contractile and dilatory 
responses are restored, thus improving tissue per-
fusion and oxygen extraction. 

Part of the therapeutic appeal of vascular nor-
malisation is the enhanced delivery of anticancer 
agents to the tumour. Two preclinical studies 
have investigated how exercise affects chemo-
therapy delivery to the tumour [31, 63]. Schadler 
et al. found that although exercise alone did not 
reduce tumour growth rate of subcutaneous, pan-
creatic PDAC or B16-F10 melanoma, chemo-
therapy in combination with exercise significantly 
slowed tumour growth rate over and above the 
effect of chemotherapy alone [31]. 
Immunofluorescence analysis revealed that there 
was increased expression of the DNA damage 
marker γH2AX in PDAC tumours from mice 
receiving both chemotherapy and exercise com-
pared with those only receiving chemotherapy 
and higher levels of doxorubicin fluorescence in 
B16-F10 tumours from exercised mice receiving 

chemotherapy compared with those receiving 
chemotherapy only. This was only the case in 
tumours from trained mice; one acute exercise 
session was insufficient to enhance doxorubicin 
delivery to the tumour [31]. Furthermore, the 
authors demonstrated that pharmacologically 
increasing tumour blood velocity by the use of an 
antihypertensive agent (prazosin) also enhanced 
the growth inhibitory effect of gemcitabine on 
PDAC tumours [31]. Similarly, Morrel et  al. 
found that exercise improved doxorubicin deliv-
ery to subcutaneous Ewing sarcomas, and this 
was associated with a further reduced tumour 
growth rate compared with exercise or doxorubi-
cin alone (although exercise alone also had a 
strong growth inhibitory effect) [63]. These data 
suggest that exercise can induce vascular changes 
leading to improved tumour blood flow even in 
tumours that are located in tissue that does not 
receive enhanced blood flow during acute exer-
cise (i.e. subcutaneous adipose tissue), although 
this is yet to be corroborated by other groups.  

3.5.4	  �Markers of Angiogenesis 
and Vascular Maturation 

Further to the above-described effects of exercise 
on tumour hypoxia, vascularity and perfusion, a 
few studies have investigated markers of angio-
genesis and vascular maturation in tumours fol-
lowing exercise. 

Betof et  al. found that voluntary wheel run-
ning not only increased CD31+ vessel density, but 
also enhanced pericyte coverage (a marker of 
vascular maturation) in orthotopic 4T1 breast 
tumours [28]. In addition, pericyte coverage was 
increased by exercise in two Ewing sarcoma 
models [63]. Conversely, Schadler et  al. found 
that the α-smooth muscle actin (α-SMA, a peri-
cyte marker) to CD31 ratio did not change with 
exercise in subcutaneous B16-F10 tumours [31]. 
This discrepancy may simply be due to differing 
tumour models, but future studies should aim to 
clarify this. 

A few studies have investigated tumour levels 
of the angiogenic factor vascular endothelial 
growth factor (VEGF, a HIF-1 target) in mam-
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mary tumours. One study observed increased 
mRNA levels of Vegfa [28]. In agreement with 
this, another group found increased VEGFA pro-
tein expression in mammary tumours from exer-
cised rats [64]. In contrast, two other studies 
found that VEGF protein expression was reduced 
in tumours from mice exercising after tumour 
implant [27, 67].  

3.5.5	  �Conclusions on Tumour 
Vascularity, Hypoxia 
and Perfusion 

It seems clear that acute exercise can regulate 
tumour blood flow, either increasing or decreas-
ing blood flow depending on tumour location 
[51]. However, it remains unclear whether or how 
long this persists after exercise cessation and 
whether chronic exercise can remodel the TME 
in such a way as to normalise the vasculature to 
improve perfusion and oxygen extraction even at 
rest. These questions are central to future work in 
this area, as a thorough understanding of tumour 
blood flow and perfusion dynamics (with respect 
to acute and chronic exercise) is required to 
inform relevant intervention trials and subse-
quent clinical practice to achieve the greatest 
benefit from exercise together with standard can-
cer therapies.   

3.6	  �Effect of Exercise 
on the Immune 
Microenvironment

3.6.1	   �Effect of Exercise 
on Immunity in Healthy 
Individuals 

Acute exercise causes a rapid rise in the number 
of circulating immune cells; this includes an 
increase in numbers of all major subclasses (lym-
phocytes, monocytes and granulocytes) [72]. 
Lymphocytes, in particular NK cells, are among 
those that respond most strongly to acute exercise 
[73]. Following exercise cessation, lymphocyte 
counts in the blood rapidly decrease, falling 

below pre-exercise levels by 1 h post-exercise 
[72]. This was previously thought to be due to 
lymphocyte apoptosis and attributed to an immu-
nosuppressive effect of exercise, but based on 
evidence that lymphocyte apoptosis post-exercise 
only accounts for a small fraction of the observed 
lymphocytopenia, it seems more likely that the 
bulk of this is due to egress into peripheral tissues 
and may present a mechanism for heightened 
immune surveillance of tissues post-exercise 
[74]. Direct evidence for this is still lacking, but 
is supported by evidence that leukocyte subtypes 
that are preferentially mobilised by exercise tend 
to be cytotoxic subtypes and express markers 
associated with extravasation and tissue migra-
tion (such as integrins and chemokine receptors) 
[75–77]. 

Regular moderate-intensity exercise has 
been linked with enhanced overall immunity, 
such as improved NK cell cytotoxic activity, 
increased lymphocyte proliferation, reduced T 
cell senescence and enhanced vaccine responses 
[78–80]. There is some controversy regarding 
the effect of intensive exercise on immunity, 
with the open window hypothesis stating that 
intense exercise is followed by a transient state 
of immune depression, which becomes chronic 
if regular intense exercise is performed [81]. 
This has recently been challenged by Campbell 
and Turner, who argue that the evidence sup-
posedly supporting the open window hypothe-
sis (increased frequency of upper respiratory 
tract infections, a fall in salivary IgA and lym-
phocytopenia following intense, acute exercise 
such as a marathon) has been largely misinter-
preted [82]. They argue that the supposed 
increase in incidence of upper respiratory tract 
infections is either due to symptoms of an 
infection but no actual infection (rather caused 
by airway irritation due to increased ventilation 
or non-specific inflammation) or an actual 
infection caused by factors not directly related 
to intense exercise such as increased exposure 
to pathogens due to a large accumulation of 
people. As discussed above, acute lymphocyto-
penia following exercise is now thought to be 
due to lymphocyte egress into peripheral 
tissues.  
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3.6.2	  �Effect of Exercise 
on Immunity in the TME

3.6.2.1	   �Peripheral Immunity in Cancer 
Survivors 

Changes in circulating levels of immune cells 
with exercise may provide an indication of 
whole-body immunity, including effects on the 
tumour, in cancer patients. In some patients, the 
acute exercise-induced increase in circulating 
immune cells is attenuated or even abolished [83, 
84]. Lymphocytes seem to be most strongly 
affected by this, with two studies showing a nul-
lified or attenuated lymphocytosis but intact neu-
trophil [84], granulocyte and monocyte response 
with acute exercise [83]. Another study has found 
an increase in both lymphocytes and granulo-
cytes immediately following acute exercise in 
chronic myeloid leukaemia patients [85]. 
However, other studies were in patients with 
solid tumours [83, 84], which may impact sys-
temic immune responses differently. These 
results suggest that either tumour burden or treat-
ment may negatively affect immune cell mobili-
sation in response to exercise, which may reduce 
immune surveillance of peripheral tissues. 

Chronic exercise does not alter numbers of 
circulating immune cells in most studies [84, 
86–90]. However, occasionally some studies 
have found an increase in various immune cell 
types with chronic exercise, including granulo-
cytes, leukocytes, lymphocytes and neutrophils 
(systematically reviewed in [89]). Others have 
reported a decrease in lymphocytes or monocytes 
[89]. In addition, exercise training was unable to 
prevent the chemotherapy-associated decline in 
immune cell numbers [90]. Taken together, this 
suggests that exercise training does not alter 
numbers of circulating immune cells in cancer 
patients and other factors may be responsible for 
the observed increases or decreases in certain 
components in some studies.  

3.6.2.2	  �Ex Vivo Immunity 
Preclinical exercise studies reporting on ex vivo 
or intratumoural immunity are summarised in 
Fig. 3.2. 

The effect of exercise on immune cell function 
is difficult to measure in vivo. However, a num-
ber of studies have isolated immune cells from 
either the spleen, tumour or peritoneum of exer-
cising and non-exercising animals and compared 
their cytotoxic capacity, phagocytic capacity or 
cytokine production in vitro. 

The first studies investigating ex vivo immune 
function against tumour targets were conducted 
by MacNeil and Hoffman-Goetz in the early 
1990s. Splenic NK cells isolated from healthy 
mice immediately following an acute exercise 
session had higher activity when stimulated with 
IL-2 than those from non-exercised mice [91]. In 
addition, splenic NK cells isolated from tumour-
bearing mice performing chronic exercise begin-
ning prior to tumour implant exhibited increased 
activity against tumour targets [92–95]. In con-
trast, Pedersen et al. found no change in the cyto-
toxic activity of splenic NK cells isolated from 
trained compared with non-exercised mice bear-
ing B16-F10 melanoma [30]. This discrepancy 
may be due to the activation status of the NK 
cells. In a few of the above-mentioned early stud-
ies, the authors showed that only IL-2 activated 
but not unactivated NK cells from exercised mice 
had increased cytotoxicity against tumour targets 
[91, 93]. In addition, unactivated NK cells are 
poorly effective against lysis-resistant tumour 
cell lines, but are able to achieve up to ~60% lysis 
when pre-stimulated with IL-2 and IL-12 [96]. 
This suggests that the in vivo antitumour activity 
of NK cells may be dependent on the intratu-
moural milieu. In support of this, exercise prior 
to tumour implant causes significantly slower 
growth of B16-F10 tumours, and these tumours 
show higher mRNA expression of IL-2 and other 
NK-cell activating factors [30]. 

Macrophage phagocytosis and phenotype has 
also been reported to change with exercise in 
tumour-bearing rodents. Peritoneal macrophages 
from exercised mice produce more IFN-γ, IL-12, 
TNF-α and IL-4 than those from non-exercised 
mice and less of the immunosuppressive cyto-
kines TGF-β and IL-10, suggesting a polarisation 
towards an antitumour M1 phenotype [97]. 
Furthermore, peritoneal macrophages from exer-
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cised, tumour-bearing rats are more phagocytic 
than those from non-exercising rats [98] and 
macrophages isolated from healthy, trained mice 
are able to induce higher cytolysis of tumour tar-
gets compared with those from non-exercised 
mice [99]. Finally, phagocytes isolated from sub-
cutaneous breast tumours in moderately exer-
cised mice have higher phagocytic activity 
against Staphylococcus aureus than those from 
non-exercised (or exhaustively exercised) mice 
[100]. 

In humans, it has been found that both acute 
[101, 102] and chronic [80, 103] exercise can 
improve cytotoxic activity of peripheral blood 
NK cells from healthy individuals against tumour 
targets, although one study found no change in 
NK cell cytotoxicity following exercise training 

[104] and another found decreased activity [105]. 
In cancer patients, chronic exercise has also been 
shown to increase NK cell cytotoxicity ex vivo 
[89, 106, 107]. In addition, ex vivo lymphocyte 
proliferation and phagocytic activity of mono-
cytes is increased in post-exercise training, while 
neutrophil oxidative burst is unchanged [89]. 

Taken together, ex vivo immune functionality 
data from both human and animal studies suggest 
that exercise can improve antitumour cytotoxic-
ity. In future, studies should aim to corroborate 
this in  vivo if possible. In addition, only one 
study has utilised immune cells isolated from the 
tumour itself rather than from the spleen or 
peripheral blood [100]. As the phenotype of 
immune cells in the TME may differ from periph-
eral immune cells due to crosstalk with tumour 

Fig. 3.2  Effects of exercise on peripheral immunity and 
the immune TME.  Exercise increases cytotoxicity of 
peripheral, IL-2 activated NK cells and macrophages 
against tumour targets and enhances phagocytic activity 
of macrophages ex  vivo. In addition, exercise may 
increase recruitment of cytotoxic lymphocytes (NK cells 

and CTLs) to the tumour site while decreasing number 
and/or changing phenotype of myeloid cells such as neu-
trophils and macrophages to an anti- (M1/N1) rather than 
pro-tumour (M2/N2) state. CTL cytotoxic T lymphocyte, 
NK cell natural killer cell, IL-2 interleukin 2
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cells, future studies should investigate the func-
tionality of phagocytes and lymphocytes isolated 
directly from the tumour.  

3.6.2.3	  �Intratumoural Immunity 
Given the hypothesis that the transient lympho-
cytopenia following exercise is due to cytotoxic 
lymphocyte egress and surveillance of periph-
eral tissues, it follows that exercise may also 
redistribute these cells to the tumour. This is 
indirectly supported by work showing that NK 
cell and T cell numbers are increased in subcuta-
neous B16-F10 tumours following 6  weeks of 
exercise training [30] and that Cd8 gene expres-
sion is increased in mucosal scrapings from 
exercised compared with non-exercised ApcMin/+ 
mice [108]. In addition, Zielinski et  al. found 
increased intratumoural lymphocyte density in 
subcutaneous EL-4 tumours following exhaus-
tive exercise training compared with non-exer-
cise mice [68]. Conversely, we observed no 
difference in T cell numbers in EO771 tumours 
between exercising and non-exercising ApoE−/− 
mice [37], and Bianco et al. found no change in 
numbers of tumour-infiltrating T cells into 4T1 
tumours with post-implant exercise [109]. This 
may be due to the length of exercise, timing of 
exercise initiation or tumour model used. 
Pedersen et al. began exercise 4 weeks prior to 
tumour implant, whereas we and Bianco et  al. 
started exercise at tumour implant [30, 37, 109]. 
Although Zielinski et al. also had a short exer-
cise period of approximately 2 weeks, they used 
a tumour model which spontaneously regresses, 
indicating that this tumour cell line induces a 
strong antitumour immune response in  vivo, 
which is enhanced by exercise [68]. Just one 
study has investigated B cell numbers and found 
that they were unchanged in the tumour with 
chronic exercise [30]. 

Whether or not absolute numbers of lympho-
cytes within the tumour change may be less 
important than the phenotype and cytotoxic func-
tionality of those that are present. As described in 
the previous section, ex  vivo data indicate that 
exercise may improve NK cell cytotoxicity. Data 
on T cells is much scarcer. Some studies suggest 

that exercise reduces Treg cell recruitment to the 
tumour (inferred from lower levels of the Treg cell 
recruiting cytokine CCL22 or lower mRNA 
expression of Foxp3 [108, 110]), but others have 
found no change in the proportion of intratu-
moural Treg cells [37, 109] or even an increase in 
intratumoural Foxp3 mRNA (alongside increased 
expression of inflammatory/cytotoxic cell mark-
ers) following exercise training [30]. Ex vivo 
functionality assays investigating the effect of 
exercise on intratumoural T cells have not yet 
been conducted. 

The tumour microenvironment promotes an 
immunosuppressive phenotype of infiltrating 
immune cells, causing them to aid rather than 
inhibit tumour growth both by the inhibition of 
cytotoxic immune cells and by secreting factors 
that aid tumour growth such as VEGF [111]. 
Myeloid cells seem to be particularly susceptible 
to this reprogramming and often take on an 
immunosuppressive phenotype within the TME 
(e.g. M2 macrophages) [112]. Two studies have 
found reduced neutrophil infiltration into tumours 
with exercise [68, 113], and two have found 
reduced macrophage density [68, 114]. 
Additionally, gene expression of general macro-
phage markers (F4/80) and M2-specific markers 
(CD206, arginase) was reduced in mucosal scrap-
ings from exercised compared with non-exercised 
mice [108]. Together with the above-described 
ex  vivo data, this suggests that exercise 
reconditions the TME to reduce recruitment of 
and/or repolarise myeloid cells such as neutro-
phils and macrophages toward a more antitumour 
phenotype. 

Comprehensive analysis of the types and sub-
types of immune cells within the tumour micro-
environment following exercise is still lacking. 
Current preliminary evidence suggests that exer-
cise may repolarise immune cells to an antitu-
mour phenotype and/or increase numbers of 
antitumour immune cells such as NK cells and 
CD8+ T cells, but this requires confirmation via 
flow cytometry, multiplex immunohistochemis-
try and functional assays, as well as investigation 
of possible differences between tumour type and 
exercise protocol.  
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3.6.2.4	  �Interplay of Immunity 
with Hypoxia 
and Angiogenesis 

Hypoxia inhibits antitumour immunity by inhib-
iting lytic functions of cytotoxic T cells (CTL) 
and NK cells and promoting an immunosuppres-
sive phenotype in both lymphoid and myeloid 
cells (reviewed in [115]). In addition, tumour 
vasculature is prohibitive to T cell entry in that it 
downregulates adhesion molecules required for 
extravasation and upregulates inhibitory and 
apoptotic ligands [116]. Conversely, Treg cells and 
M2 macrophages can promote angiogenesis, 
while Type 1  T helper (TH1) cells can promote 
intratumoural vessel normalisation [117–119]. 
Thus, the influence of hypoxia on immune cells 
and their influence on tumour vasculature (and 
vice versa) are integral to the overall tumour 
phenotype. 

To our knowledge, just one study has directly 
investigated T cell subsets, hypoxia and perfu-
sion in the same tumours, although this was in 
hyperlipidaemic ApoE−/− and not wild-type mice 
[37]. In this study, we found no change in the 
fraction of intratumoural CD8+ or Foxp3+ T cells, 
or perfusion, with post-implant exercise, but 
found a decrease in hypoxia in EO771 tumours 
from trained mice (using muscular COX-IV 
expression as a proxy for ‘fitness’). In order to 
better investigate how these aspects of the tumour 
microenvironment interact and change with exer-
cise, an exercise protocol known to elicit tumour 
microenvironmental changes (such as a few 
weeks of pre-implant exercise continuing post-
implant) could be used and the tumours analysed 
for hypoxia, perfusion, vascularity and immune 
cell composition.   

3.6.3	  �Conclusions on the Immune 
Microenvironment 

In cancer patients, acute exercise-induced lym-
phocytosis may be partially suppressed [83, 84] 
and chronic exercise may not be able to protect 
against chemotherapy-induced lymphopenia 

[90]. However, preclinical and clinical functional 
data indicate that exercise improves peripheral 
NK cell cytotoxicity (from both healthy individu-
als and cancer patients) [89, 91, 93] and possible 
repolarisation of macrophages towards an antitu-
mour M1 phenotype [120]. It remains unclear 
whether these improvements in functionality of 
peripheral immune cells are translated to 
improved antitumour immunity within the TME, 
but they are a promising indication that exercise 
could improve immune responses in cancer 
patients.   

3.7	 Future Directions 

As mentioned at the beginning of the chapter, the 
role of an individual’s ability to perform the 
physiological adaptations required for improve-
ments in exercise capacity (exercise adaptabil-
ity), and indeed inherent exercise capacity itself, 
has thus far been largely neglected in exercise 
oncology. Importantly, there is large inter-
individual variation in these factors in both 
rodents and humans, determined by both inher-
ited factors and activity levels [7–9]. In simple 
terms, this means that two individuals undergo-
ing exactly the same exercise program will (a) 
not adapt to exercise to the same degree (chronic 
response) or (b) feel the same level of exertion 
(acute response). It is unclear what effect (if any) 
this might have on how exercise affects tumour 
characteristics, but is an important avenue of 
investigation if we are to fully understand how 
exercise effects physiological change in the 
TME—the key question being whether improve-
ments in exercise capacity/muscular adaptations 
are required for beneficial effects of exercise on 
the TME. Parameters such as VO2 max, muscle 
protein synthesis/degradation and skeletal mus-
cle mitochondrial content/function can be used to 
ascertain exercise capacity and exercise 
adaptability. 

The vast majority of preclinical studies in 
exercise oncology to date have utilised exercise 
as a sole intervention (monotherapy). While these 

L. A. Buss and G. U. Dachs



45

provide valuable insight into exercise-induced 
systemic and local changes affecting overall 
tumour growth characteristics, they do not accu-
rately reflect the clinical situation in which a per-
son diagnosed with cancer will almost always 
receive some form of treatment. A small number 
of studies have investigated the effect of exercise 
in combination with other cancer therapies (che-
motherapy and hormone therapy) and found a 
reduction in tumour growth above and beyond 
that of the cancer treatment alone and sometimes 
in the complete absence of an exercise-only effect 
[28, 31, 67, 121, 122]. In addition to growth 
inhibitory effects, it is likely that the combination 
of exercise with other therapies will alter the 
TME distinct from the alterations caused by 
either therapy or exercise alone. Therefore, it is 
essential that future work combines exercise with 
cancer therapies such as chemotherapy, immuno-
therapy and surgical resection and measures not 
only the effect on tumour growth rate or survival 
but also the components of the TME outlined in 
this chapter. 

It is well established that exercise can improve 
ex vivo antitumour toxicity of select immune cell 
types (particularly NK cells) isolated from both 
healthy and tumour-bearing mice [91–95, 98–
100] or humans [80, 89, 101, 103, 106, 107]. 
However, with one exception, these studies have 
been conducted using immune cells isolated from 
either peripheral blood or the spleen. While these 
may give an indication of the individual’s general 
immune functioning, they do not account for 
effects that the TME might be having on immune 
cell phenotype. Future studies should aim to 
determine whether immune cells isolated from 
the tumour itself display the same enhanced cyto-
toxic capabilities as those isolated from the 

spleen or peripheral blood. Ideally, this would 
even be conducted in vivo, but this is limited by 
current technology. 

With a few exceptions [31, 51, 63], investi-
gation of the effects of exercise on the vascu-
lar TME have largely been limited to basic 
assessment of vessel number (overall, per-
fused or associated with pericytes) and 
hypoxic area. This gives a basic idea of func-
tionality, but more comprehensive research 
into the effect of chronic exercise on tumour 
vessel haemodynamics would provide a more 
complete picture of whether exercise can 
induce similar vascular adaptations in tumour 
tissue as in skeletal muscle. In addition, how 
exercise affects the interaction between 
immune cells and tumour vessels has not yet 
been fully investigated.  

3.8	 Concluding Remarks 

Exercise oncology is a hugely complex field 
and requires the collaboration of clinical oncol-
ogists, preclinical cancer researchers, immu-
nologists and exercise physiologists (to name a 
few) for a thorough understanding of exercise 
and tumour physiology. The current state of 
knowledge supports a beneficial role of exer-
cise in cancer prevention and survival in some 
cancer types, but comprehensive mechanistic 
data remain elusive and robust predictors of 
tumour response to exercise are non-existent. 
Delineating the effects of exercise on the TME 
(and of the tumour on the body, Fig. 3.3) may 
be the key to unravelling how and in which situ-
ations exercise exerts a tumour growth inhibi-
tory effect.     
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Abstract
Tobacco smoke is a multicomponent mixture of 
chemical, organic, and inorganic compounds, 
as well as additive substances and radioactive 
materials. Many studies have proved the carci-
nogenicity of various of these compounds 
through the induction of DNA adducts, muta-
tional potential, epigenetic changes, gene 
fusions, and chromosomal events. The tumor 
microenvironment plays an important role in 
malignant tumor formation and progression 
through the regulation of expression of key 
molecules which mediate the recruitment of 
immune cells to the tumor site and subse-
quently regulate tumor growth and metastasis. 
In this chapter, we discuss the effects of inhaled 
tobacco smoke in the tumor microenvironment 
of the respiratory tract. The mechanisms under-
lying these effects as well as their link with 
tumor progression are analyzed.

Keywords
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4.1	 �Tobacco Smoke

4.1.1	 �Composition of Tobacco 
Smoke

4.1.1.1	 �Nicotine
Nicotine, composing 0.2–0.6% of the particulate 
phase of tobacco smoke, is the main addictive 
compound of tobacco smoke and, while it is a 
weak carcinogen, is responsible for tobacco 
addiction and continued smoking. Nicotine exerts 
its addictive functions by its interaction with neu-
ronal nicotinergic acetylcholine receptors in the 
brain [1]. As soon as it is inhaled, smoke reaches 
the airways and alveoli, and nicotine is absorbed 
by the lungs. Pulmonary absorption of nicotine is 
mediated by the alkaline pH of cigarettes, which 
converts nicotine to its nonionized form. 
Following absorption, nicotine enters the blood-
stream and is distributed to the various bodily 
organs. Nicotine is metabolized in the liver by the 
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enzymes cytochrome P450 2A6 (CYP2A6), uri-
dine diphosphate glucuronosyltransferase 
(UGT), and flavin-containing monooxygenase 
(FMO) to a number of metabolites, the most 
important of which is cotinine. Cotinine is the 
most well-known biomarker for detecting nico-
tine levels, measured in blood, saliva, urine, hair, 
and nails [2].

4.1.1.2	 �Chemical Carcinogens

Polycyclic Aromatic Hydrocarbons (PAH)
PAH have been linked with the induction of 
tumors in the skin and lungs [3, 4]. The mem-
bers of this compound family that are proven to 
be carcinogenic are benzo[b]fluoranthene, 
benzo[j]fluoranthene, benzo[k]fluoranthene, 
dibenzo[a,i]pyrene, indeno[1,2,3-cd]pyrene, 
dibenz[a,h]anthracene, and 5-methylchrysene 
[5]. Smokers present higher metabolic activa-
tion of dibenzo[a,i]pyrene (BαP), mediated by 
aryl hydrocarbon hydroxylase (AHH) activity 
[6, 7], which is connected with higher cancer 
risk [8]. Furthermore, PAH are responsible for 
the induction of DNA adduct formation in the 
TP53 gene [9].

Nitrosamines
N-Nitrosodimethylamine was found in 1956 to 
induce liver tumors in rats [10]. Since then, 
increasing interest on the carcinogenic potential 
of nitrosamines aroused. Metabolism of nico-
tine  produces nitrosamines, with N′-
nitrosonornicotine (NNN), 4-(methylnitrosamino) 
-1-(3-pyridyl)-1-butanone (NNK), and 
4-(methylnitrosamino)-1-(3-pyridyl)butanal 
(NNAL) being the most carcinogenic [11, 12], 
mainly causing adenomas and adenocarcinomas 
[13].

Butadiene
Exposure of mice to inhalation of 1,3-butadiene 
induced alveolar and bronchiolar carcinomas, as 
well as lymphoma and forestomach papilloma 
[14]. Butadiene is metabolized to carcinogenic 
epoxybutene, diepoxides, and diol epoxide.

Ethyl Carbamate (Urethane)
Urethane, also known as ethyl carbamate, or car-
bamic acid ethyl ester, is an ester of carbamic 
acid. Many studies in experimental animals sup-
port the carcinogenic role of urethane in various 
tissues and through different routes of adminis-
tration. Urethane-induced tumors of the lung 
(adenocarcinomas and squamous cell carcino-
mas), as well as of the liver (hepatocellular carci-
nomas), and blood vessels (hemangiomas or 
hemangiosarcomas of the liver, spleen, uterus, or 
unspecified site) have been observed in many 
studies [15–18]. Since then, urethane has been 
used for induction of tumors in mice models 
[19–21].

4.1.1.3	 �Radioactive Materials
Except for chemicals, tobacco smoke also con-
tains radioactive elements, including uranium 
and thorium isotopes (234U, 238U, 228Th, 230Th, 
232Th), as well as products of their decay (e.g. 
226Ra, 210Pb, 210Po) [22, 23]. Radioactive materials 
enter the tobacco plant through the soil and phos-
phate fertilizers, or through direct deposition of 
airborne 222Rn products. Smoking results in their 
absorption by the respiratory system and the sub-
sequent increased risk for lung cancer [24, 25].

4.1.1.4	 �Reactive Oxygen Species (ROS)
ROS are a family of oxygen-derived small mole-
cules that contain oxygen radicals such as super-
oxide (O2), hydroxyl (OH), peroxyl (RO2), and 
alkoxyl (RO), as well as non-radicals such as 
hypochlorous acid (HOCl), ozone (O3), and 
hydrogen peroxide (H2O2). ROS play key roles in 
homeostasis and intracellular signaling. However, 
the disruption of the balance between antioxidant 
defense mechanisms and ROS production leads 
to DNA damage, mediates oxidative stress, and is 
implicated in cancer progression. ROS are 
directly synthesized by the enzymes nicotin-
amide adenine dinucleotide phosphate (NADPH) 
oxidase and myeloperoxidase (MPO). ROS are 
produced endogenously as a product of cellular 
respiration, although there are also exogenous 
factors driving their production, such as ionizing 
radiation and tobacco smoking [26]. ROS dam-
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age airway epithelial cells through lipid peroxi-
dation of the cell membrane, activation of 
oxidative-sensitive cellular pathways, and DNA 
damage [27].

4.1.1.5	 �Tobacco Additives
The word additive is used for compounds “...the 
intended use of which results or may reasonably 
be expected to result, directly or indirectly, in its 
becoming a component or otherwise affecting the 
characteristic of any tobacco product …” [28]. 
Tobacco additives are used in order to reduce its 
alkaloid bitterness resulting in easier nicotine 
delivery to the user. Levulinic acid decreases the 
sensitivity of the upper respiratory tract, resulting 
in deeper inhalation in the respiratory system, 
while at the same time it mediates the binding of 
nicotine to neurons [29]. Pyrazines enhance 
product appeal, mediate easier initiation of smok-
ing, and promote relapse [30]. Menthol increases 
the smoothness of the smoke and subsequently 
enhances deeper inhaling due to its cooling 
effect. Therefore, tobacco additives increase the 
attractiveness and addictiveness of tobacco 
increasing smokers’ exposure to toxic com-
pounds contained in smoke and resulting to 
health risks. However, there are no sufficient 
studies regarding the toxicity of the additives 
alone, since tobacco smoke is a multicomponent 
mixture, with the different compounds interact-
ing with each other [31].

4.1.1.6	 �Other
Tobacco smoke contains inorganic compounds—
metals, such as arsenic, cadmium, chromium, 
and nickel, all of them related to high risk of dif-
ferent types of cancer [32]. Other agents con-
tained in tobacco smoke and also related to 
increased risk for lung cancer are isoprene, ben-
zene, acetaldehyde, and formaldehyde [5].

4.1.2	 �Carcinogenicity of Tobacco 
Smoke

4.1.2.1	 �Epidemiologic Evidence
Tobacco smoke constitutes the largest exposure 
of humans to chemical carcinogens. It causes one 

out of five cancer-related deaths in the world and 
1.4 million deaths per year. The largest effect of 
tobacco smoke is on lung cancer, constituting the 
cause for 80% and 50% of global lung cancer 
deaths for men and women, respectively [33]. 
However, tobacco smoke has also been linked 
with a variety of cancers other than lung cancer 
types, such as cancers of the oral cavity, pharynx, 
larynx, esophagus, pancreas, bladder, stomach, 
liver, kidney, ureter, cervix, and nasal cavity, as 
well as myeloid leukemia [32, 34].

4.1.2.2	 �Molecular Evidence
The Cancer Genome Atlas (TCGA) project aims 
to collect and analyze human tissues in order to 
generate comprehensive multidimensional maps 
of the key genomic changes in 33 types of cancer 
[35]. Lung cancer is a dominant malignancy, 
resulting in the largest number of cancer-related 
deaths worldwide [36] and lung adenocarcinoma 
(LADC) is its most frequent histologic subtype 
[37, 38]. LADC is mainly caused by environmen-
tal exposures such as tobacco smoke (TS) and 
high-energy transfer irradiation (IR) [39–42]. TS 
is the predominant cause of lung cancer [43]; 
however, there is a worldwide increase in the 
number of lung cancers in nonsmokers [44, 45]. 
Molecular profiling of lung cancers has revealed 
a heterogeneous disease that harbors thousands 
of mutations per cancer genome, including single 
nucleotide variants (SNV), copy number altera-
tions (CNA), dysregulation of alternative splicing 
(exon skipping, EXS), balanced inversions result-
ing in gene fusions, and major chromosomal 
events like kataegis and chromothripsis [35, 46, 
47]. LADC mutations lead to activation of proto-
oncogenes such as KRAS, EGFR, and PIK3CA 
and inactivation of tumor suppressors such as 
TP53, STK11, and PTEN [48]. Interestingly, the 
genomic profiles of LADC differs between smok-
ers and nonsmokers, with smokers displaying 
higher mutation burdens [35].

4.1.2.3	 �Experimental Evidence
The carcinogenicity of some compounds of 
tobacco smoke has been proven in  vivo. Using 
single-hit models, LADC development was 
achieved in carcinogen-sensitive FVB mice 
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6–9  months posttreatment with intraperitoneal 
injection of urethane and diethylnitrosamine [21, 
49]. Moreover, metabolically activated 
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone 
(NNK) and N′-nitrosonornicotine (NNN) are 
implicated in carcinogenesis by inducing muta-
tions which result in the formation of DNA 
adducts, promoting tumor growth, cancer cell 
survival, and migration [50]. In vivo studies have 
shown that NNN causes esophageal and nasal 
tumors in rats and respiratory tract tumors in 
mice and hamsters [51–53]. Furthermore, 
Westcott et al. showed that the mutational signa-
tures of LADC differ according to the causative 
chemical: genome, exome, and transcriptome 
sequencing of genetic- and chemical-induced 
KRAS-driven murine LADC revealed that the 
chemical carcinogens urethane and N-nitroso-N-
methylurea (MNU) caused humanlike SNV and 
distinct KRAS mutations (Q61R for urethane and 
G12C for MNU) [54].

4.1.2.4	 �Signatures of Tobacco Smoke
Alexandrov et al. defined mutational signatures 
in the trinucleotide context (i.e., the bases 
immediately 5′ and 3′ to each mutated base) and 
correlated these with clinical exposure data 
across more than 20 cancer types and 10,000 
patients, identifying the smoking signature 4 
(C>A transversion) [34, 55]. Lung tumors of 
smokers and nonsmokers do not only display 
distinct mutational signatures and gene expres-
sion profiles [34, 55], but also different inflam-
matory signatures [56]. In comparison with 
never-smokers, the tumor microenvironment of 
smokers includes fewer resting mast cells and 
CD4+ memory T cells, both linked with favor-
able survival [56]. Furthermore, tobacco smok-
ing induces pro-inflammatory changes in the 
tumor microenvironment of squamous cell lung 
carcinomas, as determined by interferon-c sig-
naling, cytosolic activity, and immune infiltra-
tion [57]. These data are in line with clinical 
studies that show that smokers with LADC have 
a higher response to immune checkpoint inhibi-
tors [58]. Moreover, lung tumors of smokers and 
nonsmokers exhibit distinct DNA methylation 
profiles [59, 60].

4.2	 �The Tumor 
Microenvironment

4.2.1	 �The Role 
of the Microenvironment 
in Tumor Formation 
and Progression

In addition to the molecular heterogeneity of 
tumor cells, there is also cellular heterogeneity of 
the tumor microenvironment with which tumor 
cells interact [61, 62]. While tumor initiation is 
mediated by mutations in oncogenic driver genes, 
tumor progression is rather affected by interac-
tions between cancer cells and their microenvi-
ronment. Oncogenic changes of tumor cells 
establish complex inflammatory signaling net-
works through suppression of homeostatic che-
mokines and de novo production of cytokines, 
chemokines, and their receptors by both cancer 
and stromal cells [63–66]. This complex network 
results in the migration and infiltration of various 
cellular populations, including tumor-associated 
macrophages (TAMs), mast cells, lymphocytes, 
and other cells to the stoma in response to che-
mokine gradients created by stromal and malig-
nant cells of a tumor, which results in the 
establishment of an inflammatory microenviron-
ment [67].

4.2.1.1	 �Tumor-Associated 
Macrophages (TAMs)

TAMs are the most abundant inflammatory cell 
type in tumors, represent a crucial component of 
the tumor microenvironment, and have a key role 
in cancer progression as indicated by several 
studies which describe a slower tumor growth 
after the depletion of macrophages, as well as by 
the association of TAM with poor disease out-
come [68, 69]. The expression of growth factors 
such as colony stimulating factor (CSF)-1 and 
chemokines in cancers results in the recruitment 
of circulating monocytes which differentiate to 
macrophages. In addition to their physiological 
roles in immune response, phagocytosis, antigen-
presentation, and pathogen killing, macrophages 
are implicated in tumor promotion via immu-
noediting [64, 70], although there is also evi-
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dence of their antitumor functions, dependent on 
the cytokine microenvironment of the tumor [70]. 
Macrophages enable angiogenesis through secre-
tion of proangiogenic mediators like vascular 
endothelial growth factor (VEGF) and angiopoi-
etins (ANG)-1 and ANG-2 and mediate invasion 
and metastasis by producing growth factors and 
matrix metalloproteases (MMP). In order for 
TAM to acquire protumorigenic functions, they 
polarize from a pro-inflammatory (M1) to an 
“alternatively activated” anti-inflammatory (M2) 
phenotype.

4.2.1.2	 �T Lymphocytes
T cell populations infiltrate tumors and play key 
roles in the establishment of an inflammatory 
microenvironment which favors cancer progres-
sion. CD8 memory T cells are antigen-presenting 
cells with tumor suppressor activity and are 
related with good prognosis in human tumors 
[71]. The interplay between CD8 and CD4 T 
cells is important for tumor immunity. CD4 T 
helper 1 (Th1) cells enable recruitment and pro-
liferation of CD8 T cells through an interferon 
(IFN)-γ- and IL-2-dependent mechanism [72]. 
CD4 cells’ presence in the tumor microenviron-
ment has also been linked with good prognosis 
[71]. Th2 CD4 cells have ambiguous roles in 
tumor progression, as Fridman et al. reported that 
they promote tumor growth [71], although other 
studies link them with favorable outcome in 
breast cancer patients  [160, 161]. T regulatory 
cells (Treg) function as immune suppressors, 
which, through the secretion of IL-10 and trans-
forming growth factor (TGF)-β, prevent the 
clearance of cancer cells by the immune system 
[73, 74].

4.2.1.3	 �B Lymphocytes
B lymphocytes are recruited to tumor sites in 
response to T helper cell-secreted C-X-C-motif 
chemokine ligand (CXCL) 13 [75]. Tumor-
infiltrating B cells activate nuclear factor (NF)-κB 
canonical and noncanonical pathways through the 
secretion of lymphotoxin, mediating tumor growth 
and cell proliferation, as well as angiogenesis [76–
78]. Furthermore, B cells promote metastasis by 
inducing increased expression of IL-8 [79].

4.2.1.4	 �Cancer-Associated Fibroblasts 
(CAFs)

CAFs are an important cell population within the 
tumor microenvironment that promotes cancer 
progression and invasion [80, 81]. As a compo-
nent of the stroma, fibroblasts are responsible for 
the production of collagens and fibronectin and 
the subsequent synthesis of the extracellular 
matrix (ECM) [82] and the basement membrane 
[83]. During carcinogenesis, normal stromal 
fibroblasts undergo several changes including 
their morphological characteristics, their expres-
sion of cell surface markers [81], and their 
metabolism via the reverse Warburg effect [84]. 
The causes for transformation of fibroblasts to 
CAF are unknown, but mutations appear to occur 
in these cells, too, such as inactivation of TP53 
and PTEN [85] and loss of heterozygosity (LOH) 
[86]. Furthermore, CAF production can be 
induced by epithelial-to-mesenchymal transition 
(EMT) and endothelial-to-mesenchymal transi-
tion (EndMT) [81]. CAFs have been associated 
with enhanced tumor growth [87, 88], cell migra-
tion and invasion [89], and a pro-inflammatory 
microenvironment that facilitates metastasis 
[90–92].

4.2.1.5	 �The ECM of the Tumor 
Microenvironment

The ECM is a complex network of macromole-
cules with different physical and biochemical 
properties, and its deregulation is one of the hall-
marks of cancer [93]. The deposition of different 
collagens is increased during tumor formation 
and progression [94]. Furthermore, breast cancer 
ECM appears to be stiffer than normal breast 
ECM, mediating tumor cell invasion and progres-
sion via a lysyl oxidase (LOX)-dependent mech-
anism [95]. ECM changes potentiate the 
deregulation of cellular behavior and enable 
malignant transformation [96]. Moreover, tumor 
ECM has a key role in angiogenesis, as many 
ECM compounds interact with VEGF regulating 
the formation of new vascular branchings [97]. 
Tumor cells, TAM, and CAF secrete MMP that 
remodel the ECM of tumors [61] and mediate 
angiogenesis [96]. ECM can also mediate the dif-
ferentiation and maturation of immune cells and 
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the promotion of an inflammatory tumor micro-
environment [96].

4.3	 �Impact of Tobacco Smoke 
on the Tumor 
Microenvironment

4.3.1	 �Acute Effects of Continued 
Smoking

4.3.1.1	 �Angiogenesis
Exposure to tobacco smoke has been linked to 
the formation of new vessels (neoangiogenesis) 
[98], with nicotine being the most well-studied 
compound responsible for this [99]. Angiogenic 
dysplasia lesions were more frequent in the bron-
chi of smokers compared with nonsmokers and 
were related to higher risk for lung cancer [100]. 
Furthermore, exposure to environmental tobacco 
smoke induced tumor growth and enhanced ves-
sel density in a murine model of lung cancer and 
stimulated circulating endothelial cell precursors 
[101], in accord with data that demonstrate that 
tobacco smoke exposure of murine lung tissues 
increases angiogenesis and circulating leuko-
cytes [102]. When Lewis lung cancer cells were 
injected in mice, systemic nicotine administra-
tion enhanced tumor growth by increasing capil-
lary density [103]. The mechanism of tobacco 
smoke-mediated angiogenesis includes stimula-
tion of endothelial nicotinergic acetylcholine 
receptors (nAchR) of the α7 homodimeric type 
by nicotine with subsequent interactions between 
nAchR and angiogenic growth factor receptors 
[104].

4.3.1.2	 �Tobacco-Triggered EMT
During carcinogenesis, polarized epithelial cells 
undergo EMT and acquire a mesenchymal phe-
notype. EMT has been linked with molecular, 
biochemical, and morphological cellular changes 
that lead to detachment from the basolateral 
membrane, loss of cell adhesion, cytoskeletal 
reorganization, changes in the interaction with 
the ECM, and angiogenesis. Cells that undergo 
EMT acquire higher migration capacity and inva-
sion potential, both required for conversion of 

benign cells to invasive cancer cells [105]. 
Furthermore, EMT can give birth to CAF in the 
tumor microenvironment that, in turn, contribute 
to cancer progression [81]. Tobacco smoke has 
been linked with EMT: MCF7 breast cancer cells 
acquired mesenchymal phenotypes upon long-
term aqueous tobacco smoke exposure in vitro, 
which enhanced their potential for growth, migra-
tion, and invasion, as well as their metastatic 
potential in  vivo [106]. Endobronchial biopsies 
of COPD patients revealed that smokers had a 
hyperfragmented basement membrane with 
increased expression of MMP9, the fibroblast 
protein S100A4, and the mesenchymal marker 
vimentin compared to nonsmokers [107]. 
Tobacco smoke induces the expression of mesen-
chymal markers α-smooth muscle actin (α-SMA), 
vimentin, and type I collagen in human bronchial 
epithelial cells (HBEC) derived from nonsmok-
ers [108]. These data together indicate that 
tobacco smoke contains a variety of active com-
pounds that trigger EMT via different signaling 
pathways.

ROS and EMT
Milara et  al. reported that tobacco smoke-
induced EMT is mediated by ROS [108]. 
Increased ROS production results in NF-κB acti-
vation [109], as well as Rac1-mediated MMP3 
expression [110]. The subsequent Rac1/MMP3-
mediated binding of NF-κB subunits p65 and 
cRel to the Snail promoter, a key transcription 
factor for EMT [111], which inhibits the expres-
sion of epithelial junction proteins while induc-
ing the expression of cytoskeleton proteins 
[112]. Another mechanism which underlies the 
potential of ROS to induce EMT includes activa-
tion of tumor necrosis factor (TNF) converting 
enzyme (TACE) [113] which subsequently acti-
vates epidermal growth factor receptor (EGFR) 
signaling via the Ras/Raf/MAPK, PI3K/Akt, and 
Src pathways, thereby enhancing cell prolifera-
tion and migration [114]. Src signaling, a key for 
EMT, is directly activated by ROS family mem-
bers peroxynitrite and H2O2 resulting in increased 
expression of mesenchymal proteins, cytoskele-
tal reorganization, and disruption of cell matrix 
adhesion [115]. Along other lines, tobacco 
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smoke-induced ROS decreased Na,K-ATPase 
activity and NaK-α1 levels, resulting in disrup-
tion of tight junctions, alterations in cell polarity, 
and early EMT [116]. In conclusion, ROS medi-
ate EMT by increasing cellular invasion poten-
tial into the ECM, by mediating ECM 
remodeling, by decreasing cellular adhesion, 
and by increasing cell motility (Fig. 4.1) [117].

Nicotine in EMT
The role of nicotine in inducing tumor growth 
and metastasis has been described in mouse mod-
els of LADC in  vivo [118]. Nicotine mediates 
EMT through nAchR-dependent and nAchR-
independent mechanisms [119]. nAchR-
independent nicotine-induced EMT primarily 

rests on activation of TGFβ signaling [108, 120–
123], which results in disassembly of epithelial 
tight junctions, cytoskeletal changes, downregu-
lation of E-cadherin, and nuclear translocation of 
β-Catenin. Wnt signaling is also activated by 
nicotine and promotes EMT [124]. Moreover, 
Wnt enhances expression of Snail, a key to EMT 
[125]. nAchR-independent nicotine-induced 
EMT is also mediated by periostin, which is 
upregulated by nicotine, subsequently increasing 
Snail expression, cell proliferation, and invasion 
[119, 126]. Nicotine also mediates EMT via 
nAchR binding with subsequent recruitment of 
β-arrestin and Src and activation of MAPK [119, 
127, 128]. In addition, nicotine increases mucin 
MUC4 production in pancreatic cancer through 

Fig. 4.1  ROS mediate tobacco smoke-induced EMT. The 
molecular mechanisms implicated in the induction of 
EMT driven by ROS include the activation of NF-κB sig-
naling pathway, which in combination with the Rac1-
mediated MMP3 expression regulates the transcriptional 
activation of Snail, resulting in the inhibition of the expres-

sion of epithelial junction proteins and the induction of the 
expression of cytoskeleton proteins. The cascade of TACE 
activation, EGFR signaling, Ras/Raf/MAPK, PI3K/Akt, 
and Src pathways regulate cell-matrix adhesion and 
enhance cell motility. ROS- mediated inhibition of Na,K-
ATPase activity further contributes in EMT
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Fig. 4.2  Nicotine mediates tobacco smoke-induced 
EMT. The nA-chR-independent molecular mechanisms 
of nicotine-mediated EMT include TGFβ signaling, Wnt 
signaling and periostin-mediated Snail activation. The 
nAchR-dependent mechanisms include the recruit-ment 

of β-arrestin and Src to nicotinic receptors, the activation 
of MAPK cascade as well as the activation of activation of 
α7nAchR/JAK2/STAT3 signaling. The subsequent altera-
tions in epithelial tight junctions, cytoskeletal changes, 
enhancement of cell motility and invasion enhance EMT
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activation of α7nAchR/JAK2/STAT3 signaling, 
thereby inducing metastasis (Fig. 4.2) [129]. 

PAH in EMT
PAH are organic compounds which consist of 
two or more fused aromatic rings. BαP, a com-
pound of tobacco smoke that belongs to the PAH 
family, is connected with increased expression of 
EMT-related genes such as fibronectin, TWIST, 
and TGF-β2 [130]. Furthermore, PAH mediate 
activation of arylhydrocarbon receptors (AhR), 
which subsequently activate the transcription fac-
tor Slug, thereby enhancing EMT [131]. 
AhR-induced c-Jun N-terminal kinase (JNK) 
activation results in cytoskeletal remodeling and 
increased cellular migration [132].

4.3.1.3	 �Tobacco-Induced Metabolic 
Alterations

Tobacco smoke metabolically mediates cancer 
progression via autophagy and premature aging 
in the tumor microenvironment [133]. Tobacco 
smoke induces autophagy, mitophagy, DNA 
damage, and premature aging of immortalized 
human stromal fibroblasts, resulting in the pro-
duction of CAF that mediate tumor growth [80, 
133, 134]. CAFs undergo myofibroblast differen-
tiation and mitochondrial dysfunction, resulting 
in secretion of high-energy mitochondrial fuels, 
such as l-lactate, pyruvate, and ketone bodies. 
These metabolites are subsequently used by epi-
thelial cancer cells, thereby enhancing ATP gen-
eration via oxidative phosphorylation and 
promotion of tumor growth. This energy shut-
tling has been coined two-compartment tumor 

metabolism [134]. Tobacco smoke can also 
induce the reverse Warburg effect [84], by accel-
erating aging in the host microenvironment, 
which through a paracrine mechanism leads to 
cancer promotion (Fig. 4.3).

4.3.1.4	 �Tobacco Smoke-Induced Acute 
Inflammation of the Tumor 
Microenvironment

Acute effects of tobacco smoke have been stud-
ied in both in vitro and in vivo systems. In all 
models, neutrophils were found to be recruited 
immediately after acute smoke exposure, fol-
lowed by alveolar macrophages. Eosinophils 
also increase in response to acute smoke expo-
sure. Fibroblasts are implicated in the respira-
tory inflammatory signature induced by acute 
smoke exposure, through their inhibition and 
subsequent abnormalities in the repair mecha-
nisms of the lung [135]. Except for the regula-
tion of the recruitment of immune cells, tobacco 
smoke acute effects on inflammatory processes 
are also mediated via regulation of expression 
of various inflammatory mediators, such as 
neutrophil elastase, leukotrienes, and IL-6 
[135].

4.3.2	 �Perpetual Impact of Past 
Smoke Exposure

4.3.2.1	 �Tobacco Smoke-Induced 
Chronic Inflammation

Chronic inflammation is the result of the failure 
of inflammatory cells to eliminate pathogens and 

Fig. 4.3  Tobacco smoke-induces metabolic alterations 
through two-compartment tumor metabolism. Αutophagy, 
mitophagy, DNA damage and premature aging convert 
immortalized human stromal fibroblasts in CAFs which 

undergo myofibroblast differentiation and mitochondrial 
dysfunction, resulting in secretion of high-energy mito-
chondrial fuels. The epithelial cancer cells use these 
metabolites enhancing tumor growth
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it involves both the adaptive and innate immune 
systems. The lungs are continuously exposed to 
environmental agents that can cause injury and 
have been strongly linked to chronic obstructive 
pulmonary disease (COPD) and lung cancer 
[136–138]. Tobacco smoke contains many com-
ponents with immunomodulatory function, such 
as nicotine, ROS, nitrogen oxide, acrolein, car-
bon monoxide, and toxins [139, 140]. These 
components induce inflammatory mediator 
release (IL-8 and TNF-α) and chemokine secre-
tion by airway epithelial cells [141, 142], through 
induction of epithelial intracellular cascades, 
such as Ras [143], MAPK, NF-κB, STAT, AP/1, 
and ERK [144–146]. These result in regulation of 
the inflammatory cell cycle, but also altered regu-
lation of cell death [146], culminating tobacco 
smoke-induced airway inflammation. Another 
mechanism that has been suggested to mediate 
tobacco smoke-induced inflammation of the air-
ways involves thymic stromal lymphopoietin 
(TSLP) secreted by both epithelial [147] and air-
way smooth muscle cells [148], which induces 
dendritic cell activation resulting in Th2 polariza-
tion [149] and subsequent allergic airway inflam-
mation. Except for the induction of 
pro-inflammatory responses, tobacco smoke also 
diminishes the responsiveness to infections, with 
both mechanisms synergistically leading to 
chronic inflammation. Tobacco smoke downreg-
ulates the expression of the endogenous secreted 
antimicrobial peptide human beta defensin-2 
compromising immune responses [150]. 
Furthermore, tobacco smoke suppresses the 
phagocytic function of alveolar macrophages 
[151], as well as the functions of circulating NK 
cells by downregulating IFN-γ and TNF-α in 
smokers [152]. Moreover, tobacco smoke induces 
mucus hypersecretion, resulting in diminished 
clearance of infections [153]. In conclusion, 
tobacco smoke triggers airway inflammation and 
impairs defense against infections and patho-
gens, all together leading to chronic inflamma-
tion (Fig. 4.4).

4.3.2.2	 �Epigenetic Changes
Smokers and nonsmokers show distinct profiles 
of DNA methylation [59, 60]. In vitro studies 

demonstrated that exposure of respiratory epi-
thelial cells to tobacco smoke induces epigene-
tic changes [154]. Vaz et  al. exposed HBEC 
cells to tobacco smoke for 10–15  months and 
observed changes in colony formation potential, 
EMT properties, MEK, RAS, EGFR, and WNT 
signaling and malignant phenotype after induc-
tion of KRASV12 mutations. However, whole 
exome sequencing did not reveal any driver 
mutations underlying the effects of tobacco 
smoke exposure. Changes in the DNA methyla-
tion pattern of the cells exposed to tobacco 
smoke were observed in genes which are fre-
quently methylated in lung adenocarcinoma and 
squamous cell carcinoma, such as SFRP2, 
SFRP5 and WIF1, implicated in WNT signal-
ing; MSX1, mediating the p53 function; and 
BMP3, WIF1 and GATA4, important for the 
RAS/MAPK signaling cascade.  [155]. The 
mechanism underlying the effects of tobacco 
smoke on DNA methylation pattern might 
include AhR, which is a transcription factor 
mediating downstream histone modification 
related to risk of cancer [156, 157]. Thus tobacco 
smoke causes epigenetic changes, driven by 
mutations such as single KRASV12 mutation, 
which synergistically lead to oncogenic trans-
formation of respiratory epithelial cells [158]. 

4.4	 �Future Trends and Directions

The pattern of accumulation of mutations 
inflicted by tobacco smoke during oncogenesis, 
the cell types of origin of lung adenocarcinoma, 
and the molecular mechanisms implicated during 
the progress of the disease have not been com-
pletely determined [35, 54, 159]. Understanding 
the cellular and molecular base of different caus-
ative factor-induced LADC through physiologi-
cally relevant mouse models of environmentally 
induced LADC, high-throughput sequencing, 
and carefully phenotyped and molecularly char-
acterized human cohorts could lead to the 
discovery of new therapeutic targets, contribute 
to personalized medicine, and help for integra-
tion of exposure/molecular data into mechanistic 
risk prediction models.
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Abstract
The tumour microenvironment (TME) sur-
rounding tumour cells is a highly dynamic and 
heterogeneous composition of immune cells, 
fibroblasts, precursor cells, endothelial cells, 
signalling molecules and extracellular matrix 
(ECM) components. Due to the heterogeneity 

and the constant crosstalk between the TME 
and the tumour cells, the components of the 
TME are important prognostic parameters in 
cancer and determine the response to novel 
immunotherapies. To improve the character-
ization of the TME, novel non-invasive imag-
ing paradigms targeting the complexity of the 
TME are urgently needed.

The characterization of the TME by molec-
ular imaging will (1) support early diagnosis 
and disease follow-up, (2) guide (stereotactic) 
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biopsy sampling, (3) highlight the dynamic 
changes during disease pathogenesis in a non-
invasive manner, (4) help monitor existing 
therapies, (5) support the development of 
novel TME-targeting therapies and (6) aid 
stratification of patients, according to the cel-
lular composition of their tumours in correla-
tion to their therapy response.

This chapter will summarize the most 
recent developments and applications of 
molecular imaging paradigms beyond FDG 
for the characterization of the dynamic molec-
ular and cellular changes in the TME.

Keywords
Tumour microenvironment · PET · MRI · 
Molecular imaging · Cancer · TAM · GAMM 
· Myeloid derived suppressor cells · Tumour 
infiltrating lymphocytes · Immunotherapy · 
Glioma · Cancer-Associated Fibroblasts · 
TSPO · Vasculature · TME

5.1	 �Composition of the Tumour 
Microenvironment 
and Possible Imaging 
Targets

As detailed by Hanahan and Weinberg in 
“Hallmarks of cancer: next generation”, tumours 
are considered as complex dynamic tissues with 
an important interplay of distinct cell types, alto-
gether forming the tumour microenvironment 
(TME) [1]. The TME hosts multiple cell types, 
some with stem cell-like capacity, some originat-
ing from the peripheral immune system and oth-
ers known to be tumour-associated parenchymal 
cells, such as vascular cells and tumour-associated 
fibroblasts as well as various immune cells and 
their precursor [2] (Fig. 5.1).

The non-invasive characterization of the tumour 
microenvironment by molecular imaging is of 
importance, as it (1) supports early diagnosis and 
disease follow-up, (2) guides (stereotactic) biopsy 
sampling, (3) follows the dynamic changes during 

disease pathogenesis in a non-invasive manner, (4) 
monitors existing therapies, (5) supports the devel-
opment of novel tumour-microenvironment-
targeting therapies and (6) stratifies patients, 
according to the cellular composition of tumours 
in correlation to their therapy response [3]. The 
term molecular imaging refers to several imaging 
technologies, namely, positron emission tomogra-
phy (PET), single photon emission computed 
tomography (SPECT), magnetic resonance imag-
ing (MRI), computed tomography (CT), ultra-
sound, optoacoustic, bioluminescence and 
fluorescence imaging. Preclinical and clinical 
multimodal imaging studies have dramatically 
increased our understanding of the tumour biology 
and disease pathogenesis. Consequently, molecu-
lar imaging became clinical standard, especially in 
oncology [4]. In particular, the high sensitivity of 
PET in the pico- to the nanomolar range is suitable 
for the development of tumour-microenvironment-
specific tracers and allows to study in  vivo the 
dynamic cellular and molecular changes in the 
TME.  Based on the advantages of this imaging 
technique, this chapter will mostly focus on the 
application of PET.

Commonly used positron-emitting isotopes 
include 18F, 11C, 68Ga and 64Cu, but in the context 
of antibody (Ab)-based tracers, long-lived iso-
types like 89Zr are emerging.

2-[18F]fluoro-2-deoxy-d-glucose (FDG) was 
the first tracer used to image tumours in the 
1980s, based on the high glucose metabolism of 
cancer cells correlating with high FDG accumu-
lation [5]. FDG is therefore routinely used in 
many types of cancer and inflammatory diseases 
[6]. However, non-malignant cells, like inflam-
matory cells also metabolizing glucose, can influ-
ence imaging findings. Thus, FDG lacks the 
necessary specificity that allows the precise 
imaging of cellular and/or metabolic parameters 
of the tumour microenvironment.

Cell proliferation is another parameter that 
can be monitored with PET using the thymidine 
analogue 3′-deoxy-3′-[18F]fluorothymidine ([18F]
FLT) [7]. Its uptake correlates with tumour pro-
liferation and can therefore be used for monitor-
ing therapy-induced changes of cancer treatments, 
as described in the systematic review of preclini-
cal [18F]FLT studies by Schelhaas et al. [8].
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To specifically image the underlying cellular 
components of the TME and to unravel the 
dynamic changes in the tumour microenvironment, 
several different tracers and techniques have 
been developed and will be discussed in the fol-
lowing paragraphs [9]. This chapter will address 
general tumour principles, including tumours 
within the brain. For the latter, one has to con-
sider that the radiotracer has to cross the blood-
brain barrier, either by activated transport or by 
passive diffusion through a disrupted barrier. 
This is particularly limiting for all antibody-

based radiotracers, usually not crossing the 
intact BBB.

5.2	 �Imaging Tumour-Associated 
Inflammation: Tumour-
Associated Macrophages 
(TAMs) and Microglia

The main target for imaging tumour-associated 
inflammation are tumour-associated macrophages 
(TAMs). Many imaging studies have been per-

Fig. 5.1  The tumour 
microenvironment. 
Typical representation of 
a brain tumour and its 
tumour 
microenvironment 
(TME), consisting of a 
heterogeneous pool of 
cells. Besides tumour 
cells, cancer-associated 
fibroblasts (CAFs) and 
immune cells arrive 
from the central nervous 
system reservoir 
(microglia cells and 
astrocytes) or are 
infiltrating from the 
periphery (macrophages, 
neutrophils, T-cells, 
Tregs, MDSCs). Most of 
the cellular and 
molecular components 
of the TME can be 
efficiently visualized 
with molecular imaging 
techniques. This book 
chapter will review the 
recent advances in the 
imaging of the TME
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formed in brain tumours, where TAMs can repre-
sent up to 30% of the total tumour mass [10]. In 
the brain, resident specialized macrophages are 
called microglia. These cells continuously moni-
tor the brain microenvironment, regulating neuro-
nal metabolism and maintaining CNS homeostasis. 
Under pathological conditions, for example, in 
the presence of brain tumours, bone marrow-
derived peripheral monocytes or macrophages are 
attracted to the tumour [11]. During tumour 
growth, a bidirectional crosstalk between tumour 
cells and TAMs is established depending on the 
cytokine exposure: cancer cells modulate TAM 
phenotypes and, in return, recruited TAMs pro-
mote tumour progression by releasing pro-
tumourigenic and pro-survival factors [12, 13]. 
This process results in the activation or suppres-
sion of different pathways that modulate the 
escape from the tumour immune response by pro-
moting (1) glioma angiogenesis, (2) growth and 
invasion, (3) suppression of T cell functions and 
(4) induction of immunosuppressive regulatory T 
cells (Tregs) [14].

Several TAM-targeting tracers have been 
developed. Among the plethora of available trac-
ers, those targeting the translocator protein 
18 kDa (TSPO) have gained attention for TAM 
imaging. TSPO is a protein of the outer mito-
chondrial membrane and is specifically upregu-
lated in activated microglia cells in response to 
inflammation and other pathological conditions. 
The first clinically available TSPO tracer was 
[11C]PK11195 successfully allowing TSPO 
imaging in gliomas [15, 16]. However, the appli-
cation of [11C]PK11195 was limited by the short 
half-life of 11C and unfavourable tracer kinetics. 
Consequently, over the last years, several new 
TSPO-PET tracers with improved characteristics 
have been developed, such as [18F]PBR28 [17], 
[18F]PBR111 [18], [18F]DPA-714 [19] and [18F]
GE-180 [20]. [18F]DPA-714 has demonstrated 
high affinity for the target protein, good permea-
bility of the blood-brain barrier and potential to 
monitor brain tumour growth and inflammation 
in vivo [21]. Recently, the combination of [18F]
DPA-714 with other PET tracers or imaging 
modalities such as MRI supported the character-
ization of the TME in preclinical glioma models. 

In conjunction with immunohistochemistry, [18F]
DPA-714 further identified areas of immune cell 
infiltration, as well as tumour infiltration into the 
surrounding brain parenchyma [22, 23] (Fig. 5.2).

Despite promising initial results with different 
TSPO ligands in oncology, the interpretation of 
PET signals is hindered by the lack of specificity 
of TSPO to differentiate immune cell (sub-) pop-
ulations and tumour cells [22, 24] and the exis-
tence of mutations in the tspo gene in the human 
population affecting TSPO binding properties of 
several TSPO tracers [25].

For this reason, novel PET tracers were devel-
oped to specifically target activated microglia 
using radiolabelled molecules binding CX3CR1 
or the purinergic receptors P2x7 or P2y12 [3]. 
The results of preclinical in  vitro and in  vivo 
studies show that P2x7 tracers are good candi-
dates for imaging the pro-inflammatory state in 
neurodegenerative diseases. Unfortunately, the 
currently available radiolabelled compounds tar-
geting P2Y12R and CX3CR1 are not crossing 
the BBB [26, 27].

Other tracers were developed to specifically 
target macrophage phenotypes. Depending on 
their functional state, macrophages may be cate-
gorized in the so-called “classically” activated 
macrophage (M1) or “antitumour” phenotype 
and the “alternatively” activated macrophages 
(M2) or “pro-tumour” phenotype [28], respec-
tively. One example for M2-type macrophage tar-
geting is the use of single-domain antibody 
fragments (sdAbs) binding the macrophage man-
nose receptor (MMR or CD206), such as [99mTc]
Tc(CO)3-anti-MMR-sdAb, [18F]FB-anti-MMR-
sdAbs and [68Ga]Ga-NOTA-anti-MMR-sdAb 
[29]. The latter showed high specificity for pro-
tumourigenic macrophages and preclinical stud-
ies concluded its safety for clinical use [30]. 
Recently, Horti et al. have developed a new PET 
tracer targeting the colony-stimulating factor-1 
receptor (CSF-1R) expressed on different 
immune cells of the tumour microenvironment, 
including TAMs and monocytes [31]. The new 
tracer [11C]CPPC was investigated in a mouse 
and baboon model of LPS-induced neuro-
inflammation, murine models of AD, multiple 
sclerosis, and post-mortem AD human tissues, 
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Fig. 5.2  (a) Multitracer study of the glioma microenvi-
ronment using [18F]FET (amino acid transport), [18F]
DPA-714 (TSPO) and [18F]BR-351 (MMPs) in a preclini-
cal mouse model injected with human Gli36ΔEGFR 
tumour cells. The combination of different tracers target-
ing distinct parameters of the TME facilitates the non-
invasive characterization of the TME. (b) 
Immunofluorescence staining for murine and human 

TSPO. Human TSPO is highly expressed within the 
tumour tissue by cancer cells (red—upper left quadrant). 
The murine TSPO signal (green—upper right quadrant) 
comes from infiltrating cells. DAPI is the nuclear staining 
(blue—lower right quadrant). Source: Modified from 
Zinnhardt et  al. (Cancer Res April 15, 2017 (77) (8) 
1831–1841; doi: 10.1158/0008-5472.CAN-16-2628) 
with permission for use
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showing in all cases high selectivity and binding 
specificity [32]. The value of CSF-1R PET in 
imaging the TME remains to be investigated.

5.3	 �Myeloid-Derived Suppressor 
Cells

Myeloid-derived suppressor cells (MDSCs) are a 
heterogeneous group of cells originating in the 
bone marrow from common hematopoietic pro-
genitors and differentiate in granulocytes, mono-
cytes and dendritic cells.

Based on phenotypic and morphological fea-
tures, MDSCs can be further classified into two 
major cell populations: polymorphonuclear 
(PMN) and monocytic (M-) MDSCs [33, 34]. 
Both MDSC populations have an important role 
in the immune regulation in cancer that consists 
mainly in the suppression of T cell and natural 
killer cell (NK) responses [35]. By upregulating 
hypoxia-associated tumour factors such as 
HIF-1α, Arg-1 and iNOS, MDSCs attract Tregs 
and increase the expression of inhibitory mole-
cules like PD-L1 [36, 37].

To target MDSC by molecular imaging, some 
preclinical studies show the feasibility of anti-
body conjugation with PET tracers to monitor 
myeloid cell distribution in different tumour 
models. Cheng and colleagues engineered a 
single-photon emission computed tomography 
(SPECT) probe (99mTc-labelled anti-CD11b anti-
body) to monitor the inflammatory microenvi-
ronment in a model of colorectal cancer, 
successfully visualizing the origin and migration 
of CD11b+ MDSCs. It may be a promising tool 
for early-stage diagnosis [38]. Cao et  al. devel-
oped the radiotracer 64Cu-labelled anti-CD11b 
(64Cu-αCD11b) to monitor acute and chronic 
inflammation locally and systemically. They 
visualized the immune response of CD11b+ 
myeloid cells [39].

Recently, another group conjugated an anti-
CD11b antibody with a deferoxamine (DFO) 
chelator and radiolabelled it with 89Zr for PET 
imaging of glioblastoma. They showed the sig-
nificantly increased uptake in the tumour area of 
the brain with high specificity, demonstrating the 
possibility of non-invasively assessing the neuro-

inflammation promoted by MDSCs, as well as 
disease progression [40]. Up to date, no specific 
tracer is available targeting and distinguishing 
MDSC subpopulations and more research is 
needed.

5.4	 �Tumour-Infiltrating 
Lymphocytes

Lymphoid cells, represented by T cells, B cells 
and natural killer (NK) cells, play an important 
role in tumourigenesis. Different types of T cells 
have been identified, including CD4+ and CD8+ T 
cells. CD4+ T cells can be further subdivided into 
CD4+ T helper 1 (Th1) and CD4+ T helper 2 
(Th2), based on their cytokine profiles and the 
type of cells supported, i.e. Th2 cells support B 
cell responses [41]. Regulatory T cells (Tregs), a 
subset of CD4+ cells, have tumour-promoting and 
immunosuppressive activities. These cells form a 
highly heterogeneous population; they are indis-
pensable to suppress self-reactive T cells in the 
periphery and to inhibit the immune response at 
the resolution phase of inflammation. In cancer, 
this leads to the suppression of T cells in favour 
of tumour growth [42].

T cell functions are further controlled by 
immune checkpoints. In particular, the immune 
checkpoint receptors programmed death cell pro-
tein-1 (PD-1), together with its ligand PD-L1 as 
well as the cytotoxic T lymphocyte antigen-4 
(CTLA-4), have been employed for targeted 
imaging and therapy [43, 44].

In the era of these targeted immunotherapies, 
specific visualization of T cell responses is 
becoming increasingly relevant and new radio-
tracers were developed to assess the efficacy of 
antibodies as therapeutic and diagnostic tracers. 
Many of them are targeting the PD-1/PD-L1 axis 
[45]. Imaging studies were conducted using 
111In-labelled PD-L1 mAbs in breast cancer and 
melanoma models [46–48]. Atezolizumab, a 
humanized mAb with high affinity for both 
human and mouse PD-L1, was evaluated radiola-
belled with 64Cu and 111In. The tumour uptake 
correlated with the levels of PD-L1 expression 
[49, 50]. 89Zr-labelled Abs against PD-L1 were 
also tested in head-and-neck squamous cell carci-
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noma and melanoma models, also after PD-1 
therapy. PET imaging showed a correlation with 
the upregulation of PD-1 only in the untreated 
tumours [51]. Natarajan et  al. tested a mouse 
anti-PD-1 antibody labelled with 64Cu demon-
strating the possibility to trace tumour-infiltrating 
lymphocytes at the tumour site [52]. In addition, 
other groups evaluated 64Cu and 89Zr pembroli-
zumab and nivolumab for PD-1+ T cell imaging, 
analysing the biodistribution and clearance of the 
tracers in rodents and in non-human primates. T 
cell accumulation in the salivary and lacrimal 
glands of humanized mice engrafted with 
h-PBMCs developing allogeneic graft versus 
host disease could be visualized [53, 54]. England 
and colleagues developed another anti-PD1 PET 

tracer (89Zc-Df-nivolumab) and characterized it 
in a model of lung cancer [55]. At the same time, 
Du et al. described a new PD-1 targeting strategy 
using IRDye800CW- and 64Cu-labelled lipo-
somes loaded with doxorubicin, conjugated to 
PD-1 mAbs. They were able to image the inhibi-
tion of tumour progression in a breast cancer 
model, confirming the possibility of using this 
approach for cancer imaging, image-guided 
tumour resection and therapy [56, 57]. Finally, 
the first in-human whole body study for PD-1 and 
PD-L1 expression has been recently performed 
in patients with non-small cell lung cancer. Here, 
89Zr nivolumab and 18F-BMS-986192 were found 
to be valuable imaging tracers to evaluate non-

Fig. 5.3  (a) First whole body PET study for PD-1 and 
PD-L1 expression in patients with lung cancer (NSCLCs), 
prior to treatment with nivolumab. 18F-FDG PET reveals 
high glucose metabolism of lung tumours; anti-PD-L1 18F-
BMS-986192 PET and 89Zr-labeled nivolumab PET depict 
heterogeneous tracer uptake in the tumour in line with the 
expression levels of PD-L1, as shown by the lower uptake 
in the second patient (lower lane) where PD-L1 expression 
level is <1%. (b) Immunohistochemical staining of PD-1 

and PD-L1 in the first patient (a—upper lane) in a biopsy 
of the tumour in the left lower lobe. PD-L1 expression (left 
picture) is expressed in 95% of the tumour cells, while 
PD-1 expression in aggregates (right picture) was scored 
as IC1. Scale bar, 100 μm. Source: Modified from 
Niemeijer et al. (“Whole body PD-1 and PD-L1 positron 
emission tomography in patients with non-small-cell lung 
cancer.” Nature communications vol. 9, 1, 4664. 7 Nov. 
2018, doi: 10.1038/s41467-018-07131-y) 
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invasive therapy responses and to stratify patients 
based on imaging parameters [58] (Fig. 5.3).

Immunotherapy targeting CTLA4 receptors 
shows antitumour efficacy in various cancer 
patients, but can also lead to serious autoimmune-
related side effects. Tracers targeting CTLA4 
receptor might be useful to monitor treatment 
efficacy and to identify the nature of adverse 
events. This was already demonstrated in preclin-
ical studies in colon carcinoma [59], NSCLC 
[60] and melanoma [61]. 64Cu-labelled CTLA-4 
mAbs, 64Cu-labelled ipilimumab and 89Zr-labelled 
PEGylated single-domain antibody fragments 
displayed high tumour uptake and high specific-
ity and were suited for monitoring checkpoint 
therapy response, respectively.

Besides labelled antibodies, alternative 
approaches are under investigation. These com-
prise small PD1-binding moieties such as engi-
neered PD-1 ectodomains [62], peptides and 
nanobodies [45, 63]. Immuno-PET imaging of 
CD4+ and CD8+ T cells circulating and infiltrat-
ing the tumour area emerged lately and takes 
advantage of antibodies engineered into biva-
lent antibody fragments called cys-diabodies 
(cDb) or minibodies (Mb). These moieties are 
characterized by (1) rapid clearance for high 
target-to-background images shortly after 
injection, (2) high avidity, (3) engineered sites 
for site-specific conjugation and (4) lack of Fc 
effector functions. Different studies show posi-
tive results in the imaging of T cells in  vivo 
using 64Cu-labelled Mb or 89Zr-labelled cDb, 
including a high affinity for the target as shown 
by specific uptake in the spleen and lymph 
nodes [64]. In addition, these tracers were 
shown to be a powerful resource to monitor 
tumour-infiltrating T cells [65], hematopoietic 
stem cell (HSC) transplantation and therapy 
response [66].

5.5	 �The Challenge of Imaging 
Neutrophils

Neutrophils have an important role in the first 
line of host immune defence; they help eliminate 
pathogens by generating reactive oxygen species 

and releasing antimicrobial and cytotoxic com-
pounds. They also have the ability to create extra-
cellular traps called NETs [67, 68].

Similar to macrophages, neutrophils populat-
ing the TME are called tumour-associated neu-
trophils (TANs). They have been suggested to 
have a N1 and N2 phenotype, reflecting an anti- 
or pro-tumourigenic effect [69]. Several studies 
have reported that neutrophils contribute to can-
cer proliferation and metastases and that the 
amount of neutrophils negatively correlates with 
patients’ prognosis and survival [70].

Neutrophils are an abundant part of circulat-
ing leucocytes, and therefore, it is challenging to 
target them with therapeutic agents since this 
could lead to an unwanted and severe immune 
suppression exacerbating the disease.

Despite the promising role of neutrophils as 
drug transporters, there is a lack of specific 
tracers for this cell type. Clinically different 
radiotracers are available and used in the diag-
nosis of infectious or inflammatory events. 
However, tracers are radiolabelled drugs 
directly acting on the pathogens, but not spe-
cifically on neutrophils [71].

Several radiolabelled peptides have been 
studied with the purpose of imaging inflamma-
tion in vivo, but they had either a low binding 
affinity or they caused the deregulation of leu-
cocytes and neutropenia [72, 73]. A promising 
novel 64Cu-labelled peptide was synthesized 
(cFLFLFK-PEG-64Cu) by Locke and colleagues 
targeting the formyl peptide receptor (FPR) on 
leucocytes. The peptide acts as an antagonist of 
the FPR and is designed to avoid a chemotactic 
response and unwanted side effects. In vitro 
and in vivo studies confirmed the specificity of 
the binding to neutrophils [73]. Recently, the 
combination of nuclear medicine and nanotech-
nology led to the development of another inter-
esting PET tracer, the 68Ga-NRT-cFLFLF. First 
in vitro and in vivo studies were performed in a 
model of lung LPS-induced inflammation. The 
results indicated high selectivity for neutrophils 
and the feasibility of monitoring chronic 
inflammation [74].

Up to now, however, no neutrophil-targeted 
tracer was applied in oncology.
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5.6	 �Imaging of Cancer-
Associated Fibroblasts

Cancer-associated fibroblasts (CAFs) orchestrate 
the cellular and molecular organization of the 
TME including the reorganization of the collag-
enous extracellular matrix secreting matrix 
metalloproteinases (MMP), mediating angiogen-
esis and regulating tumour and immune cell pro-
liferation and migration. Because of their central 
functional role, CAFs are a promising target for 
clinical characterization of the molecular and cel-
lular profile of the TME. Although the molecular 
and metabolic information derived by, e.g. PET 
imaging are increasingly included in clinical 
decision-making, the majority of clinical indica-
tions are based on the superiority of PET to detect 
metastases. Considering the high contribution of 
tumour stroma to the total tumour volume and the 
abundancy of CAFs, they also compromise an 
attractive target for sole lesion detection. 
Depending on whether imaging primarily aims at 
detection or molecular characterization of 
lesions, expression of an ideal target structure 
should be either abundant or restricted to specific 
CAF subpopulations with a close relationship to 
functional properties (e.g. tumour-promoting, 
tumour-restraining, angiogenesis-promoting). 
However, classification of CAF subpopulations 
by markers is complex and a matter of intense 
ongoing research in proteomics [75].

One target structure that has just recently 
received increasing attention is the fibroblast-
activating protein (FAP). FAP expression is, sim-
ilar to α-smooth muscle actin (αSMA), closely 
linked to the transition of the active state and it is 
in this respect a well-characterized histochemical 
marker for identifying activated fibroblasts/CAFs 
[76, 77]. Moreover, expression of the transmem-
brane protein FAP owes a high specificity to acti-
vated fibroblasts and low basal expression under 
physiological conditions [76]. FAP expression 
has been demonstrated in over 90% of epithelial 
carcinomas [78], suggesting a high potential sen-
sitivity for FAP imaging in malignant disease. 
Expression was also found in other pathological 
conditions including wound healing, fibrotic pro-
cesses (e.g. liver fibrosis [79], lung fibrosis [80]), 

atherosclerosis [81] (here in smooth muscle cells) 
and arthritis [82] (here in myofibroblast-like syn-
oviocytes). On the one hand, these data might 
reduce the specificity for tumour imaging but, on 
the other hand, extend the potential indications of 
FAP imaging to non-malignant pathologies. 
Different studies demonstrated a correlation 
between FAP expression and prognostic features 
in cancer patients with partially conflicting roles 
in different cancers. For instance, a positive cor-
relation between FAP expression and survival has 
been demonstrated in a study with breast cancer 
[83], but FAP expression correlated positively 
with higher disease stages in another study with 
colorectal cancer [84]. Despite its non-binary 
functional role in cancer, different FAP-targeting 
strategies in anticancer treatment have been pro-
posed and employed in preclinical and few clini-
cal studies using monoclonal antibodies [85] or 
small molecular inhibitors [86] directed to 
FAP. These pharmacological developments were 
picked up by radiochemists to generate radiola-
belled FAP-targeting antibodies [87]. Only 
recently, FAP-targeting small molecule PET trac-
ers [88–91] have been developed. These 
68Ga-labelled compounds for PET imaging were 
introduced by Haberkorn and colleagues and rep-
resent the first clinically feasible specific CAF 
imaging agents. First in vivo results in 28 differ-
ent kinds of cancer demonstrated excellent 
tumour uptake at comparable levels or even 
exceeding that of FDG. These include epidemio-
logically very important cancers such as breast 
and pancreatic cancer where FDG or more 
specific radiotracers could yet not establish a 
definite clinical role. The novel [68Ga]FAPI 
ligands display very good molecular specificity 
and favourable pharmacokinetics as depicted by 
low levels of tracer retention in normal tissue, 
resulting in excellent tumour-to-background 
delineation. Moreover, first clinical data prove 
the feasibility of using these ligands as theranos-
tic agents, i.e. usage of the same precursor for 
imaging and radioligand therapy (e.g. 90Y-FAPI) 
[90]. Although these first clinical studies indicate 
promising abilities to detect malignant lesions, it 
is unclear whether FAP imaging provides useful 
molecular information that can be integrated into 
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clinical decision-making. Most current preclini-
cal studies worked with cultured cells and patient-
derived tumour probes and focused on 
implications of FAP for therapy rather than for 
imaging. More specific studies are necessary, to 
validate FAP on a cellular and histopathological 
level. This would clarify its clinical potential for 
(1) diagnosis, (2) monitoring and predicting ther-
apy response and (3) differentiating benign, pre-
malignant and malignant lesions.

5.7	 �Vascular Parameters/
Endothelium

Tumour angiogenesis results from the lack of 
oxygen and nutrients within the expanding 
tumour, leading to the formation of new blood 
vessels and supporting tumour growth [92]. 
Neovascularization not only allows tumour cell 
growth by supplying essential nutrients but also 
enables waste disposal and metastatic spreading. 
This fast and uncontrolled process results in a 
leaky, immature vascular network, characterized 
by fenestrated vessel walls with poor pericyte 
coverage and abnormal basement membranes 
[93, 94]. This specific vascular signature is of rel-
evance for in  vivo imaging and targeted cancer 
therapy.

Non-invasive molecular PET and/or SPECT 
imaging targeting angiogenesis-related molecu-
lar markers were developed. The most investi-
gated as imaging targets are (1) vascular 
endothelial growth factor (VEGF), (2) cell adhe-
sion molecule integrins (including αvβ3) and (3) 
hypoxia-inducible factor-1 (HIF-1).

Vascular endothelial growth factor receptors 
(VEGF1/Flt-1, VEGF2/Flk-1) are tyrosine kinase 
receptors involved in endothelial cell prolifera-
tion and survival. They are expressed by normal 
vascular endothelial cells and overexpressed in 
tumour endothelium [95, 96]. To image VEGF 
and VEGFR expression by PET/SPECT, Rainer 
et  al. reported the first [123I]-VEGF scans in 
patients with either primary or recurrent brain 
tumours. They evaluated the differential diagno-
sis and prognostic value of this radiotracer. 
Positive [123I]-VEGF scans were associated with 

grade IV gliomas, while less malignant tumours 
were [123I]-VEGF negative [97]. However, like 
other VEGF-based radiotracers, radiolabelling of 
the small ligand and the competitive binding with 
endogenous VEGF to the receptor may bias 
image assessment.

Bevacizumab, an anti-VEGF antibody, has 
been used as a scaffold for VEGF radiotracer 
design. It is the most used anti-angiogenetic drug 
in oncology [98], showing high affinity binding 
to VEGF. Recently, a 89Zr-labelled bevacizumab 
immuno-PET tracer has been investigated as a 
predictive tool of therapy efficiency in children. 
The results highlighted the benefit of 
89Zr-bevacizumab for patient selection in this dis-
ease context [99].

Integrins are part of the cell adhesion mole-
cule family involved in cell-cell and cell-ECM 
interactions, controlling cell migration and sur-
vival. Among them, expression of αvβ3 integrin 
is significantly upregulated in the tumour vascu-
lature, while low expressed on healthy endothe-
lial cells [100]. High expression of αvβ3  in 
tumour facilitates cell infiltration and metastasis. 
The Arg-Gly-Asp (RGD) and Arg-Arg-Leu 
(RRL) sequences are considered as two of the 
minimal amino acid sequences present in most of 
the αvβ3 ligand-binding domain. They are of 
main interest for early detection and treatment of 
fast-growing tumours [101]. Therefore, they rep-
resent an attractive site for in vivo tumour angio-
genesis imaging, drug design and drug delivery 
[102]. For example, [18F]alfatide II allows better 
detection of brain metastases than [18F]
FDG. However, most of those radiolabelled RGD 
peptides need partially disrupted BBB to be able 
to reach their target [95, 103, 104].

Another hallmark of tumours is the hypoxic 
tumour microenvironment. The rapidly growing 
neovasculature and heterogeneous microcircula-
tion lead to an imbalance between oxygen con-
sumption and supply resulting in poor tissue 
oxygenation. Hypoxia can be detected by upreg-
ulation of hypoxia-inducible factors (HIFs), in 
particular hypoxia-inducible factor-1. [18F]
FMISO (fluoromisonidazole) has been validated 
for hypoxia imaging, allowing differentiation 
between low- and high-grade gliomas [105, 106]. 
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Moreover, [18F]FMISO imaging showed 
increased uptake correlating with primary brain 
tumour malignancy [107], supporting the use of 
the tracer as a diagnostic tool in early disease 
stages. Although [18F]FMISO is the most fre-
quently used hypoxia radiotracer, other radiotrac-
ers with improved characteristics are under 
investigation [108].

Another target for imaging tumour progres-
sion, related to the vasculaturization in the TME, 
is the system-L amino acid transporter and in par-
ticular the subunit LAT-1, which is expressed by 
a large variety of human cancers [109]. Different 
PET tracers have been synthesized, especially for 
brain tumour imaging, and the first among them 
used for this purpose was l-(methyl-[11C])-
methionine ([11C]MET) [110]. Due to the very 
short half-life of 11C (ca. 20 min), other tracers 
have been developed. Currently, O-(2-[18F]
fluoroethyl)-l-tyrosine ([18F]FET) is routinely 
used for diagnosis of brain tumours, monitoring 
tumour progression and guiding tumour resec-
tion. Coupled with MRI and/or CT, PET imaging 
can also be useful to identify areas of residual 
tumour or recurrence and to monitor the efficacy 
of cancer therapies [111, 112]. Recently, a 
zirconium-labelled antibody ([89Zr]DFO-Ab2) 
targeting the extracellular domain of LAT-1 has 
been tested in a model of colorectal cancer; the 
results show high uptake in the tumour area and 
high in vivo specificity for the target [113].

Together with nuclear medicine approaches, 
different MR sequences have been developed, 
with and/or without the use of exogenous con-
trast agents (CA), to extract structural informa-
tion of the vasculature in tumours. MR techniques 
allow in vivo characterization of tumour neovas-
culature, including vessel structure, oxygen level 
and hemodynamics [94, 114]. Among the non-
contrast-enhanced MR imaging techniques, arte-
rial spin labelling (ASL) has gained attention for 
perfusion imaging. On the other hand, perfusion 
CT, dynamic contrast-enhanced MRI (DCE-
MRI) and dynamic susceptibility-enhanced MRI 
(DSC-MRI) are exogenous paramagnetic con-
trast agent-based imaging techniques [93].

Dynamic contrast-enhanced MR imaging 
principles rely on the analysis of tissue response 

to the inflow of CA, visualized by an enhanced 
signal [115]. Since this imaging method depends 
on tissue behaviour in contact with the contrast 
agent, physiological properties such as vessel 
permeability, vessel surface area and volume 
fraction can be derived, depending on the origin 
of the measured signal and its registration.

MR imaging depends on tissue status, charac-
terized by two physicochemical properties 
labelled T1 and T2/T2∗ relaxation times. The 
inflow of contrast agent through tissue modifies 
those parameters, inducing the so-called relax-
ation and susceptibility effects.

Dynamic contrast-enhanced (DCE)-MRI (or 
T1w-DCE MRI) measures the relaxation effect of 
CA diffusion into tissues expressed by changes in 
T1 values and may thus provide information on 
the integrity of the blood-brain barrier. DCE-MRI-
derived parameters (including k-trans and the ini-
tial area under the curve (iAUC)) are often used to 
detect decreased permeability after anti-angiogenic 
therapy or radiation therapy, reflecting a presumed 
decrease in tumour neovasculature [116, 117].

Similarly, dynamic susceptibility contrast 
(DSC)-MRI (or T2∗w DCE) exploits the change 
in the inhomogeneity of magnetic strength during 
the first pass of the CA, leading to decreased T2/
T2∗ tissue values. The latter is used to calculate 
estimates of the cerebral blood volume (CBV) 
and blood flow in tumours.

Of major interest in neuro-oncology, contrast-
enhanced MR techniques allow tumour classifi-
cation into low- and high-grade gliomas using the 
relative cerebral blood volume as an index 
(rCBV) [118]. Moreover, these techniques allow 
to track anti-angiogenic therapy responses by 
detecting changes in blood-brain barrier permea-
bility and vascular density [119]. In a review, 
Patel et al. indicated DSC-MR imaging for dif-
ferentiation between recurrent tumour and post-
treatment changes with high sensitivity and 
specificity [120]. Besides, Barajas et al. reported 
the use of DSC-MRI-derived rCBV to differenti-
ate between necrotic and viable tumour tissue 
after radiation therapy [121, 122].

Other than the CA-based MR imaging tech-
niques, arterial spin labelling (ASL) is a non-
invasive perfusion-based imaging technique used 
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to estimate the cerebral blood flow (CBF), like 
conventional DSC-MR imaging. However, ASL 
relies on using magnetic labelled arterial blood 
water as an endogenous tracer [123]. ASL can be 
used for the classification and grading of differ-
ent tumour types [124–126]. In particular, ASL is 
of special interest in paediatric brain tumour 
imaging [127], since it does not require invasive 
CA administration.

In summary, tumours are characterized by a 
specific perfusion phenotype, strongly contrast-
ing from the surrounding healthy tissue. The 
tumour vasculature exhibits high cellular prolif-
eration, low degree of differentiation, high per-
meability and low oxygen levels. Those specific 
parameters are of great interest in in vivo molecu-
lar imaging and are actively investigated as prog-
nostic, diagnostic and treatment response feature 
in oncology.

5.8	 �Future Trends or Directions

The detailed characterization of the TME 
remains challenging due to the cellular and 
molecular heterogeneity. The non-invasive visu-
alization of the ongoing complex processes in 
the TME by molecular imaging is extremely 
important for precise diagnosis in oncology, as 
well as therapy monitoring. Consequently, a 
variety of targets have been identified for the 
non-invasive characterization of the TME with 
and without therapy yielding promising initial 
results in preclinical and clinical settings. Yet 
the molecular imaging community needs to 
overcome several additional challenges for effi-
cient targeting of the TME, including (1) the 
lack of specificity to distinguish heterogeneous 
immune cell populations within the TME, and 
(2) the depiction of the complex spatio-temporal 
dynamics of the TME.

In the era of targeted immunotherapies, novel 
molecular (immune) targets and structures need 
to be identified and utilized to support diagnosis 
and therapy monitoring of innovative immune 
therapies. Combinations of tracers and imaging 
modalities targeting different aspects of impor-
tance for specific immunotherapies should be 
considered and integrated into the clinical work-
flow. Ideally, the obtained immune-imaging data 
will be further integrated with detailed immuno-
phenotyping by, e.g. flow cytometry and -omics 
data to gain a holistic understanding of the 
patients’ individual tumour immune profile.

The emerging application of radioisotopes 
with a longer half-life, like 89Zr, will support lon-
gitudinal imaging to identify spatial and temporal 
changes in the TME before, during and after ther-
apy with a single injection of a radiotracer. The 
application of longer half-life isotopes is also of 
interest in the labelling of novel immune thera-
peutic antibodies, usually requiring longer circu-
lation times. Radiolabelling of immunotherapies 
and molecular immuno-imaging will be a power-
ful tool to select and stratify patients according to 
the target engagement of a new therapy and the 
composition of their personalized TME. Further, 
the combination of diagnostics and radiotherapy 
(theranostics) with beta and alpha nuclides is rap-
idly emerging and holds promise to improve per-
sonalized cancer therapy. In summary, molecular 
imaging represents an important parameter in 
personalized medicine and should be integrated 
into the clinical workflow for TME-targeted 
therapies.
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�Appendix

Imaging target Molecular target Radiotracer Citation
Tumour-associated 
macrophages and 
microglia (TAMMs)

TSPO [11C]PK11195, [18F]PBR28, [18F]PBR111, [18F]DPA-714, 
[18F]GE-180

[15–20]

CXCR1R – [27]
P2X7 and P2Y12 [11C]A-740003, [11C]SMW139, [11C]JNJ-54173717, [11C]

GSK1482160, [11C]2
[3, 26, 
27]

M2 macrophages [99mTc]Tc(CO)3-anti-MMR-sdAb, [18F]FB-anti-MMR-
sdAbs and [68Ga]Ga-NOTA-anti-MMR-sdAb

[28–30]

CSF-1R [11C]CPPC [32]
Myeloid-derived 
suppressor cells

MDSCs (CD11b+ 
cells)

[99mTc]-labelled anti CD11b antibody, 64Cu-antiCD11b, 
89Zr anti-CD11b

[38–40]

Tumour-infiltrating 
lymphocytes

Cancer cell 111In-labelled PD-L1 mAbs, atezolizumab 64Cu and 111In, 
89Zr-labelled abs against PD-L1, 89Zr nivolumab and 
18F-BMS-986192

[45–51, 
58]

T cells PD-1 antibody labelled with 64Cu, 64Cu and 89Zr 
pembrolizumab and nivolumab, 89Zc-Df-nivolumab, 
IRDye800CW- and 64Cu-labelled liposomes conjugated to 
PD-1 mAbs, 64Cu-labelled Mb or 89Zr-labelled cDb

[45, 
52–57, 
62–66]

CTLA4 receptor 64Cu-labelled CTLA-4 mAbs, 64Cu-labelled ipilimumab 
and 89Zr-labelled PEGylated single-domain antibody 
fragments

[59–61]

Neutrophils Formyl peptide 
receptor (FPR)

cFLFLFK-PEG-64Cu, 68Ga-NRT-cFLFLF [73, 74]

Carcinoma-associated 
fibroblast

Fibroblast-
activating protein 
(FAP)

68Ga-FAPI, 90Y-FAPI [88–91]

Vasculature and 
hypoxia

VEGF receptors [123I]-VEGF, 89Zr-labelled bevacizumab [97–99]
αvβ3 ligand-
binding domain

[18F]Alfatide II, radiolabelled RGD peptides [95, 
103, 
104]

Tumour hypoxia [18F]FMISO [105–
108]

LAT-1 [11C]MET, [18F]FET, [89Zr]DFO-Ab2 [110–
113]
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Necrosis in the Tumor 
Microenvironment and Its Role 
in Cancer Recurrence

Adi Karsch-Bluman and Ofra Benny

Abstract
Cancer recurrence is one of the most imminent 
problems in the current world of medicine, and 
it is responsible for most of the cancer-related 
death rates worldwide. Long-term administra-
tion of anticancer cytotoxic drugs may act as a 
double-edged sword, as necrosis may lead to 
renewed cancer progression and treatment 
resistance. The lack of nutrients, coupled with 
the induced hypoxia, triggers cell death and 
secretion of signals that affect the tumor niche. 
Many efforts have been made to better under-
stand the contribution of hypoxia and metabolic 
stress to cancer progression and resistance, but 
mostly with respect to inflammation. Here we 
provide an overview of the direct anticancer 
effects of necrotic signals, which are not neces-
sarily mediated by inflammation and the role of 
DAMPs (damage-associated molecular pat-
terns) on the formation of a pro-cancerous 
environment.

Keywords
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Metronomic therapy · Hypoxia · DAMPs · 
Chemotherapy · Angiogenesis · Anti-

angiogenic therapy · Tumor microenviron-
ment · Metabolic stress

6.1	 �Introduction

Cancer recurrence is one of the most imminent 
problems in the current world of medicine and is 
responsible for high rates of cancer-related deaths 
worldwide. Cancer cells affect their surrounding 
environment to promote changes that support their 
growth. As the tumor grows, the need for nutrients 
and oxygen increases, while the ability of blood 
vessels to penetrate to the core of the tumor 
decreases significantly. The lack of blood supply 
initiates cell death through apoptosis and necrosis 
which is a result of the hypoxic and metabolic 
stress [1, 2]. Since many tumors are resistant to 
apoptosis, for example, through p53 mutations, 
necrosis is commonly a dominant cell death mech-
anism [3]. In that regards, antiangiogenic as well 
as chemotherapies induce tumor death through a 
significant enhancement of necrosis. Angiogenesis 
in cancer is an expedited process of blood vessel 
formation, induced by the increased tissue growth 
and the high oxygen and nutrient demand. When 
blocking blood vessels using antiangiogenic treat-
ments, the tumor eventually is “starved to death.” 
Currently, there are dozens of drugs in the clinic, 
both antiangiogenic and cytotoxic therapeutics, 
which result in the shrinkage of tumors via induc-
tion of necrosis [4–6].
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When considering tissue feedbacks, long-term 
administration of anticancer cytotoxic drugs may 
act as a double-edged sword, since necrosis, the 
desired result of the treatment, may also lead to 
renewed cancer progression and treatment resis-
tance [7–9]. The lack of nutrients and oxygen 
causes cell death and consequently secretion of 
different signals that affect the tumor niche and 
the tumor microenvironment. In addition to 
inflammatory effects, which are beyond the scope 
of this review, necrosis also triggers direct and 
inflammatory-independent angiogenic effects 
that play a key role in the “evasion” of anticancer 
and antiangiogenic drugs. Several intracellular 
signals, known as damage-associated molecular 
patterns (DAMPs), are secreted from the necrotic 
cells, either by a programmable process [10] or 
due to the disrupted membranes [11], and act as 
endogenous danger signals that exacerbate 
inflammatory response and angiogenesis [7]. 
Although many efforts have been made to better 
understand the contribution of hypoxia and meta-
bolic stress to cancer progression and resistance, 
most of them have focused on the effect of each 
in regards to their role in inflammation [12]: 
inflammatory-mediated pathways [13], effect of 
recruited inflammatory cells [14], resolution of 
inflammation [15], or inflammation caused by 
dying cell debris [16]. In recent studies, the direct 
cancer-supporting effects of factors that are 
released by the dying cancer cells on disease pro-
gression are revealed. Identifying these secreted 
signals and antagonizing them could prolong 
therapeutic efficacy, reduce tissue-level resis-
tance to anticancer drugs, and prevent the forma-
tion of metastases.

6.2	 �Cancer and the Tumor 
Microenvironment

The role of the tumor microenvironment in dis-
ease progression has been excessively studied 
throughout the past four decades. The hallmarks 
of cancer progression as described by Hanahan 
and Weinberg in 2000 [4] discuss the preserva-
tion of proliferation, lack of susceptibility to sup-
pression factors, escaping programmed cell 
death, the immortality of replication abilities, 

vasculature formation for oxygen and nutrient 
supply, and metastasis in distant organs such as 
the liver, brain, bone, and lungs [17–19]. The 
metastatic formation is known to be driving the 
grim statistics of cancer-related deaths; therefore, 
there is an urgent unmet need for prophylactic 
treatment that would prevent the development of 
cancer lesions. This being said, there are cur-
rently no efficient preventative therapies avail-
able for patients, despite adjuvant therapy that is 
being used as the standard in many cases [20, 21]. 
Metarrestin was recently published as a possible 
drug for metastatic prevention, showing initial 
effect in mouse models, but it was yet to be tested 
clinically [22].

Recurrence is one of the biggest challenges in 
the struggle for eradicating cancer [23]. The 
effect of cancer recurrence on patients’ life 
extends far beyond the disease itself and is known 
to increase the severity of physical symptoms as 
well as cause psychological distress [24]. Many 
factors are responsible for triggering the rise of 
subsequent cancer starting with tumor margins 
that were not fully resected [25], through cancer 
cells that survive chemotherapy by either DNA 
modifications [26] or cell dormancy [27] and up 
to formation of metastatic lesions as a result of 
disseminated tumor cells that reside in distance 
organs [28]. Today, there is a clear understanding 
that tumor progression is not merely the result of 
intrinsic factors but is also heavily affected by 
their surrounding environment, known as the 
tumor microenvironment (TME) [29]. The TME 
is rich with both cellular and noncellular compo-
nents—immune and inflammatory cells, stromal 
cells like fibroblasts or smooth muscle cells, neu-
roendocrine cells, and blood and lymphatic net-
work—altogether providing the needed support 
for the tumors to grow and form secondary meta-
static lesions [30–33].

6.3	 �Angiogenesis and Cancer 
Therapy

The constant supply of oxygen and nutrients to 
an organism through the blood vessels is funda-
mental for maintaining the homeostasis of the 
living tissue. Due to the diffusion limit of oxy-
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gen, which is 100–200 μm, most living cells can 
be found in the vicinity of blood capillary [34]. 
Thus, for an organ to keep developing, it must 
recruit new blood vessels which would support 
the growing demand for both nutrients and oxy-
gen [34, 35]. Angiogenesis is the process referred 
to as the formation of new blood vessels out of 
preexisting ones [36]. Angiogenesis plays an 
important role in physiologic processes such as 
wound healing [37] and embryonic development 
[38] and also in many pathologies like macular 
degeneration [39], diseases which are associated 
with the vascular system [40], or inflammatory 
diseases [41]. Tumors, which are masses of can-
cer cells that keep dividing uncontrollably, 
require an increasing influx of nutrients and oxy-
gen, which they acquire through the blood flow.  
The rapid growth of these tumors causes large 
gaps between the endothelial cells, which alto-
gether lead to a more porous structure of the 
blood vessesl [42].

The special structure of the newly grown 
blood vessels can be exploited for enhancing 
drug delivery due to the enhanced permeability 
and retention effect [43]. Yet the rapid growth of 
the tumor can also apply stress on the tissue and 
cause compression of the blood vessels in the 
vicinity of the tumor. Such stress can compress 
the blood vessels and cause lower blood perfu-
sion and, as a result, reduce the levels of oxygen 
and nutrients. This affects the surrounding envi-
ronment of the tumor, causing it to be more acidic 
and compromise the therapeutic treatment [44]. 
The hypoxic environment, often the resulting 
from such treatments, is a fertile surface for har-
boring cancer-promoting processes. It was 
known, for example, that oxygen diffusion may 
play a role in the prediction of patients’ survival 
post-anticancer therapy. Rakesh Jain presented 
data in which patients with increased tumor per-
fusion or oxygenation presented a better reaction 
to anticancer treatment (radiology, immunology, 
chemotherapy, etc.). Therefore, increased perfu-
sion leads to increased tumor oxygen levels and 
as a result promotes normalization of tumor vas-

culature which manifests in an immune-
supportive microenvironment [36].

In the 1970s, Prof. Judah Folkman, also 
known as “the father of angiogenesis,” proposed 
the notion that suppression of angiogenesis may 
be used as a possible target for cancer therapy 
[45, 46]. This hypothesis later became one of the 
standard approaches in cancer therapy as well as 
in therapies of other vascular diseases [4, 5]. The 
idea is that preventing the tumor mass of normal 
blood perfusion would lower oxygen and nutrient 
influx, causing cancer cells to undergo necrotic 
cell death [47, 48].

One of the first antiangiogenic drugs to be 
approved by the US Food and Drug Administration 
(FDA) and prescribed broadly was bevacizumab 
(Avastin) in 2008. At first, it was approved for 
treating colorectal cancer, but later it was 
expanded as first-line treatment for many other 
types of cancer such as lung, breast, renal, brain 
(glioblastoma), and just recently ovarian cancer 
as well. Many other antiangiogenic drugs were 
approved by the FDA in the past 15 years, and 
there are currently over a dozen FDA-approved 
antiangiogenic compounds for cancer therapy, 
like sorafenib and sunitinib [36, 49], with many 
more under different stages of clinical develop-
ment [50, 51]. The main cellular targets of these 
drugs are endothelial cells, with the most com-
mon therapeutic strategy being the blockade of 
the vascular endothelial growth factor (VEGF) 
pathway [52–55]. Interestingly, bevacizumab 
recently showed to be effective in treating radia-
tion necrosis in brain cancer patients. One of the 
downsides of radiation to the brain is necrosis of 
the surrounding tissue, considered to be the result 
of cytokine release, which causes severe head-
aches and nausea. Radiation causes increased 
hypoxia which drives an upregulation in VEGF, a 
known mediator of cerebral edema in radiation 
necrosis. Bevacizumab was shown to be effective 
in reducing necrosis of the normal tissue sur-
rounding that of the tumor and presented an 
improvement in neurological symptoms of the 
patients [48, 56].
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6.4	 �Tissue-Level Evasion 
Mechanism and Resistance

Though acquired resistance as a result of antican-
cer therapy manifests at the cellular level, cancer-
promoting factors may also give rise to 
modulations of the TME, causing tissue-level 
resistance [57, 58]. While resistance to anticancer 
therapy can be at the cell level, as cancer cells 
acquired resistance when treated with chemo-
therapy drugs which results in high genetic versa-
tility and instability of cancer cells [59], there is 
also the tissue-level resistance, mainly as a result 
of cancer-promoting factors in the tumor micro-
environment and the contribution of stromal cells 
[58, 60].

Long-term administration of antiangiogenic 
drugs often results with acquired therapeutic 
resistance, a phenomenon which poses a great 
problem and causes immense concern for physi-
cians and researchers as one [61]. Antiangiogenic 
therapy, as well as different chemotherapies, 
leads to metabolic deficiency alongside acceler-
ated low levels of oxygen supply, which evidently 
promotes tumor death by necrosis [1]. Despite 
the initial positive response to treatment, in the 
form of successful inhibition of tumor cell pro-
gression, the resistance mechanisms cause nor-
malization of the vasculature and even improves 
vascular function [59, 62–64].

TME is tremendously affected by the course 
of antiangiogenic treatment, and the resulting 
changes are responsible for the rise of tumor 
resistance. One of these mechanisms is the 
“tumor evasion” or “tumor escape” which is 
caused by the direct selection of clonal cell popu-
lations [65, 66]. These populations have the 
capacity to rapidly upregulate alternative proan-
giogenic pathways, causing an intrinsic resis-
tance that eventually results in nonresponsive 
endothelial cells [67]. Mechanisms of endothelial 
resistance arise depending on the tumor type and 
microenvironment: different stromal components 
and functions that contribute to the full resistance 
phenotype [62–64]; upregulation of alternative 
proangiogenic signals leading to revasculariza-
tion [62]; cancer-associated fibroblasts and mac-
rophages that mimic cell growth [68, 69]; 

co-option of existing vasculature [67]; renewal of 
pericyte-covered tumor vessels encouraging 
recruitment of inflammatory and angiogenic 
cells, which shield them from anti-VEGF treat-
ments [70–72]; and epigenetic regulations caus-
ing tumor cells to be more invasive and hypoxic 
[69]. The clinical outcomes were unexpected 
since endothelial cells, the target of those drugs, 
are considered genetically stable and therefore 
were not foreseen to develop such resistance [73, 
74], as opposed to cancer cells which are highly 
versatile and are known to obtain resistance when 
treated with different chemotherapies [75, 76].

6.5	 �Hypoxia and Metabolic 
Stress

Hypoxia, the accelerated diminished supply of 
oxygen to the cells, is a mechanism which was 
widely studied in the past years and shown to 
promote metastases and upregulate tumor-
promoting factors and inflammation [77–84]. In 
addition to cell proliferation and differentiation, 
hypoxia is also associated with apoptotic and 
necrotic cell death [2, 81, 85–87]. Though there 
is great knowledge of hypoxia and metabolic 
stress in cancer progression, mapping of the com-
ponents that are affected by these processes and 
influence cancer recurrence was yet to be per-
formed, and the knowledge in this arena is lack-
ing and insufficient.

6.6	 �Cell Necrosis

Several cellular death mechanisms are described 
in the literature, like apoptosis, necrosis, and oth-
ers [88–91]. Many kinds of cancer cells are 
known to be resistant to apoptosis as a result of a 
mutation in p53 [3, 92]. Therefore, necrosis is the 
main cell death pathway in cancer therapy. 
Necrosis plays an important role in the mecha-
nism of cancer cell death [8]. Anticancer therapy 
often induces tissue hypoxia and metabolic 
depletion, two processes which drive necrosis 
(Fig. 6.1a) [8, 93]. Cytotoxicity leads to acceler-
ated necrosis, where the content of the cells 
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triggers the immune system which, in turn, 
ignites an inflammatory response and eventually 
promotes cancer progression. Most publications 
regarding the secretion of cytokines from the 
necrotic core center their attention on their effect 
on cancer progression via an inflammatory-
dependent mechanism [94–96]; however, some 
researchers also inspect the inflammatory-inde-
pendent pathways [8].

6.7	 �Inflammatory 
and Noninflammatory 
Effects

When cell death occurs in response to hypoxia 
and metabolic stress, often the result of antican-
cer treatments, the cell content is known to pro-
voke an immune response [97, 98]. The disrupted 
membrane, a product of the necrotic process, 
consequently allows for the secretion of several 
intracellular signals, known as the damage-
associated molecular patterns (DAMPs) or 
alarmins, which are released from the necrotic 
cells [99, 100]. DAMPs act as endogenous dan-
ger signals which exacerbate the inflammatory 
response in sterile inflammation [7, 101–103]. 
Unfortunately, DAMPs may act as a double-
edged sword; on the one hand, they contribute to 

tissue repair and wound healing, and on the other 
hand, under chronic inflammation conditions, 
they encourage the progression of tumor growth 
[7, 104].

Though necrosis is the desired endpoint in 
many studies, increased metabolic deprivation 
and tumor hypoxia cause secretion of cancer-
promoting factors from the necrotic core of the 
tissue, which evidently increases tumor aggres-
siveness and modifies the tumor microenviron-
ment (Fig. 6.1b).

A meta-analysis of 21 studies (1663 patients) 
shows that giving soft tissue sarcoma patients 
neoadjuvant therapy can be associated with an 
elevated risk of cancer recurrence and lower rates 
of overall survival [105]. This could be explained 
by the increase in vascular formation, as well as 
cancer progression signals that are secreted by 
the necrotic tissue, to further support the growth 
of cancer cells which still reside in the tissue 
(Fig. 6.2).

6.8	 �Metronomic Therapy 
and Combined Treatment

One of the methods that were shown to withhold 
the formation of new blood vessels in the vicinity 
of the tumor is the low-dose chemotherapy, or 

Fig. 6.1  Tumor necrosis induced by antiangiogenic ther-
apy: (a) subcutaneous Lewis lung carcinoma in the backs 
of C57/BL mice. Mice treated with an anticancer drug 
(fumagillin) developed a smaller tumor with a deep, open, 
necrotic center (Right) as opposed to the larger tissue 

damage of the untreated subject (Left). (b) Tissue-level 
resistance: long-term anticancer treatment leads to necro-
sis, causing the secretion of tumor progression-generating 
factors that facilitate the tumor evasion and support 
recurrence
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“metronomic therapy” as was coined by Hanahan 
[106]. This approach is revolutionary in that it 
suggests that not only the drug itself but also the 
dosage and scheme of administration have a role 
in cancer resistance, though the full effect of this 
administration methods is yet to be clear [107].

Another approach to avoid the onset of angio-
genesis and thereby tumor progression is com-
bined therapy. Different combinations were 
studied, such as conventional therapies with 
immunotherapy [108], or targeted anticancer 
therapies with other drugs [109], showing vary-
ing efficacies of such treatment.

While the role of inflammation in cancer pro-
gression is widely studied, only little is known on 
inflammatory-independent pathways. Similarly, 
even though much work has been done in investi-
gating the effect of hypoxia and metabolic stress 
on cancer progression and its resistance to treat-
ments, the direct, noninflammatory effects of con-
sequent cell necrosis on these processes remain to 
be properly determined [78]. Moreover, in most 
of these studies, researchers focused their atten-
tion on the contribution of either nutrient deple-
tion or hypoxia, separately, on cancer progression 
and angiogenesis [110–116], rather than on the 
combined effect which drives cell necrosis.

In a recent publication by Karsch-Bluman 
et al. [8], the researchers studied the inflammatory-
independent net total effect of necrosis on cancer 

progression and recurrence potential. The 
necrotic cell lysate was analyzed and the various 
proteins, which are upregulated under these con-
ditions of hypoxia and metabolic deficiency, 
were mapped. Based on the acquired data, the 
study offers a combined treatment in which both 
the anticancer drug, which triggers necrosis, and 
an antagonist of a known signal that is secreted 
from the necrotic cell, known to support cancer 
progression, will be administered as prophylactic 
therapy.

This is a novel and exciting approach as by 
analyzing the tumor microenvironment post 
necrosis, scientists and physicians would be 
able to provide a prophylactic treatment that 
would antagonize cancer-promoting signals 
that are secreted from the dying cell and thereby 
increase the efficacy of the anticancer treatment 
and give patients hope for overcoming their 
sickness.
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Abstract
The tumor microenvironment is composed of 
cancer cells, noncancer cells (e.g., immune 
cells, stromal cells, endothelial cells, and adi-
pocytes), and various mediators (e.g., cyto-
kines, chemokines, growth factors, and 
humoral factors) that work together to support 
cancer growth, progression, and resistance to 
therapies. Autophagy is an evolutionarily con-
served degradation mechanism by which vari-
ous cytosolic cargos (e.g., damaged organelles, 
unused molecules, or invaded pathogens) are 
engulfed by double-membrane autophago-
somes, and then delivered into the lysosome 
for degradation and recycling. The level of 
autophagy is a crucial threshold to either pro-
mote cell survival or induce cell death in 
response to environmental stresses. Autophagy 
plays a context-dependent role in tumorigen-
esis and anticancer therapy via shaping the 
inflammatory, hypoxic, immunosuppressive, 
and metabolic tumor microenvironment. In 
particular, impaired autophagy flux is associ-
ated with chronic inflammation, immunosup-

pression, stromal formation, cancer stemness, 
angiogenesis, metastasis, and metabolic 
reprogramming in the tumor microenviron-
ment. Understanding the molecular machin-
ery of autophagy and its communication with 
hallmarks of cancer could lead to potential 
new anticancer strategies or drugs.
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7.1	 �Introduction

As the second-leading cause of death globally 
over the past decades, cancer remains one of the 
major challenges of modern medical research [1]. 
Paget’s “seed and soil” theory stands among the 
most famous theories of tumor biology, and has 
been widely recognized and extended since its 
first introduction in 1889 [2]. The theory pro-
poses that the occurrence and development of 
tumors is not only a change in tumor cytogenetics 
and epigenetics but also depends on a special 
environment as a “fertile soil” for the growth and 
breeding of malignant seeds. The interaction 
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between fertile environment and malignant seeds 
facilitates tumor initiation, progression, and 
metastasis. The tumor microenvironment con-
sists of numerous immune cells, mesenchymal 
cells, extracellular matrix, and active mediators 
(e.g., cytokines, chemokines, growth factors, and 
humoral factors) other than tumor cells [3]. It can 
be divided into an immunocyte-based immune 
microenvironment and fibroblast-based nonim-
mune microenvironment [3]. An abnormal tumor 
microenvironment is closely linked to resisting 
cell death, promoting proliferation, evading 
immune destruction, maintaining inflammation, 
or inducing angiogenesis, which are major hall-
marks of cancer [4]. Understanding the interplay 
between cancer cells and other components 
within the tumor microenvironment may result in 
effective anticancer strategies to suppress tumor 
growth and metastasis [5].

Autophagy is a homeostatic maintenance 
mechanism via the degradation of damaged 
organelles, unused molecules, or invasion patho-
gens through lysosomes [6, 7]. The word 
“autophagy” was termed in 1963 by Christian de 
Duve, who received the Nobel Prize in 1974 for 
the discovery of lysosomes. Although autophagy 
has phenotypic plasticity, it has been generally 
divided into three subtypes, namely macroau-
tophagy, microautophagy, and chaperone-medi-
ated autophagy. Microautophagy is the direct 
uptake of various substracts into lysosomes for 
degradation [8]. Chaperone-mediated autophagy 
is the recognition of proteins with the amino acid 
motif KFERQ by heat shock proteins (e.g., heat 
shock protein family A member 8, also known as 
HSC70) for subsequent lysosomal degradation 
[9]. Macroautophagy (hereafter known as 
autophagy) is the best-studied form of autophagy 
with dynamic changes in the formation of unique 
membrane structures (e.g., phagophore, autopha-
gosome, and autolysosome) to sequester and 
engulf substrates for degradation. Dysfunction of 
autophagy signaling and the autophagy pathway 
is implicated in various human diseases, includ-
ing cancer [10–12]. As a mechanism for recy-
cling and balance, autophagy plays a dual role in 
either promoting or suppressing tumor growth, 
depending on tumor types, pathologic stages, and 

the types of substrates [13, 14]. In this chapter, 
we first introduce the molecular machinery of 
autophagy and its role in cell survival and death. 
Then we discuss the multifaceted effects of 
autophagy on the tumor microenvironment, 
which are linked to the formation of the hall-
marks of cancer (Fig. 7.1). Understanding what 
cell types in the tumor microenvironment can be 
modulated by autophagy, and when, may enable 
significant treatment breakthroughs in tumor 
therapy.

7.2	 �Molecular Machinery 
of Autophagy

Autophagy involves multiple processes, includ-
ing the formation of phagophores from various 
membrane resources (e.g., the endoplasmic retic-
ulum, mitochondria, and plasma membrane), the 
sequestration of cargoes by autophagosomes 
from phagophores, and the degradation of car-
goes by autolysosomes from the fusion of 
autophagosomes into lysosomes. These dynamic 
processes in the membrane are fine-tuned by a 
series of protein complex-mediated molecular 
mechanisms and signaling transduction. Among 
the molecular mechanisms, autophagy-related 
(ATG) proteins play an evolutionarily conserved 
role in the regulation of the process of autophagy. 
ATG genes were first identified and cloned from the 
yeast Saccharomyces cerevisiae through genetic 
screening technology 30  years ago [15–17]. 
Currently, there are 40 ATG genes involved in the 
regulation of autophagy in yeast and half of them 
are conserved in higher eukaryotes [18, 19]. Due 
to the growing importance of autophagy in bio-
medicine and human diseases, Yoshinori Ohsumi 
received the Nobel Prize in 2016 for the discov-
ery of ATG as the key regulator of autophagy in 
yeast. Below, we introduce the core autophagy 
machinery in mammalian cells.

The unc-51-like autophagy-activating kinase 
(ULK) complex and the class III phosphati-
dylinositol 3-kinase (PtdIns3K) complex play a 
central role in the induction of the formation of 
phagophores, namely, isolated membranes. The 
ULK complex consists of ULK1, ATG13, and 
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RB1 inducible coiled-coil 1 (RB1CC1, also 
known as FIP200). ULK1 and RB1CC1 are also 
known as Atg1 and Atg17, respectively, in yeast. 
ULK1 is required for amino acid withdrawal-
induced phagophore formation at the early stage 
of autophagy [20]. ULK2 may compensate for 
the loss of ULK1. Thus, the double knockout of 
ULK1 and ULK2 can completely block autoph-
agy initiation in some cases. Unlike yeast Atg13, 
the HORMA domain of ATG13 at the N terminal 
may play a different role in the regulation of 
ULK1 complex activity via ATG101. The ULK 
complex is negatively regulated by the mamma-
lian target of rapamycin (mTOR) and positively 
regulated by AMP-activated protein kinase 
(AMPK) [21, 22]. The class III PtdIns3K com-
plex contains phosphatidylinositol 3-kinase cata-
lytic subunit type 3 (PIK3C3), BECN1, and 
phosphoinositide 3-kinase regulatory subunit 4 
(PIK3R4) [23]. PIK3C3, BECN1, and PIK3R4 
also are referred to as Vps34, Atg6, and Vps15, 

respectively, in yeast. The class III PtdIns3K 
complex phosphorylates phosphatidylinositol to 
generate phosphatidylinositol 3-phosphate 
(PtdIns3P) in the isolation membranes and the 
subsequent formation of autophagosome.

Two ubiquitin-like conjugation systems, the 
ATG12 and microtubule-associated protein 1 
light chain 3 (MAP1LC3) system, are essential 
for the formation of autophagosomes [24]. 
Autophagosomes are double-membrane vesicles 
that generate from the extending isolation mem-
branes to surround cargoes. Half of ATGs are 
required for the formation and maturation of 
autophagosomes. AT12 is catalyzed by the E1-like 
enzyme ATG7 and transferred to the E2-like 
enzyme ATG10. ATG12 is finally conjugated to 
ATG5 and can recruit ATG16L1 to form the 
ATG12-ATG5-ATG16L1 complex. In contrast, 
the MAP1LC3 (an ortholog of yeast Atg8) is syn-
thesized with additional arginine at its C terminal 
end, which is cleaved by ATG4 to produce 

Fig. 7.1  Dual role of autophagy in hallmarks of cancer. Autophagy dysfunction is associated with each of the hall-
marks of cancer and plays a dual role in cancer biology
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MAP1LC3Gly-116. This MAP1LC3 is activated 
by ATG7 and transferred to ATG3. Both these two 
ubiquitin-like conjugation systems can cause a 
phosphatidylethanolamine (PE) conjugate with 
MAP1LC3 (namely MAP1LC3-II) for targeting to 
autophagosomal membranes. MAP1LC3-II levels 
therefore correlate with autophagosome numbers.

Autophagosome-lysosome fusion, namely 
autolysosome formation, depends on the acidic 
pH as well as on the lysosomal membrane pro-
tein, such as lysosomal-associated membrane 
protein 2 (LAMP2) [25]. Lastly, a number of 
lysosomal hydrolases and other proteins are 
essential for the catabolism of autophagic car-
goes and the release of macromolecules back into 
the cytosol. Of note, MAP1LC3-II is finally 
degraded along with the autophagosome contents 
by autolysosome. Thus, bafilomycin A1 and 
chloroquine, which are commonly used autoph-
agy inhibitors that target autolysosome forma-
tion, can increase the MAP1LC3-II expression. 
Although measuring autophagic flux (namely the 
extent of autophagic degradation activity) 
remains challenging, the combined use of early- 
and late-phase autophagy inhibitors are required 
for autophagic flux assay.

7.3	 �Autophagy-Dependent Cell 
Survival and Cell Death

Historically, autophagy was defined as a form of 
cell death based on the morphological classifica-
tion system of 1973 [26]. According to morpho-
logical criteria in ultrastructural study, cell death 
is generally divided into three forms, namely 
types I, II, and III [27]. Type I is often referred to 
apoptotic cell death with the significant changes 
of cell shrinkage and membrane blebbing, 
whereas type III is best known as necrotic cell 
death with the large occurrence of cell swell and 
rupture. In contrast, type II corresponds to autoph-
agic cell death with the accumulation of mem-
brane vesicles, such as autophagosome and 
autolysosome. However, the term autophagic cell 
death is controversial, and it does not distinguish 
between cell death induced by autophagy and cell 
death accompanied by autophagy [28].

Currently, the Nomenclature Committee on 
Cell Death suggests that autophagy plays a dual 
role in cell survival and cell death, which is 
highly contextual [29]. In many cases, increased 
autophagy is associated with cell death and pro-
motes cell survival. In some cases, excessive 
autophagy triggers cell death, which is termed as 
autophagy-dependent cell death [29]. Of note, 
not all core ATGs are required for autophagy-
dependent cell survival and cell death, indicating 
that ATGs may play an autophagy-dependent or 
independent role in these processes [30].

As a self-clearance mechanism, autophagy 
can serve pro-survival functions to remove harm-
ful cytosolic components, such as damaged mito-
chondria [31, 32]. This increased autophagic flux 
results in increased recycling from degraded car-
gos to feed back into the synthesis of amino acids 
and adenosine triphosphate (ATP), which finally 
enables rapid protein synthesis and energy pro-
duction in response to various cellular stresses, 
including cell death stimuli [31, 32]. In addition 
to bulk autophagy function as a defense mecha-
nism to promote survival during nutritional 
stress, selective autophagy can remove cell death 
effectors such as caspases in response to certain 
anticancer agents [33]. Thus, the combination of 
autophagy inhibitors, such as 3-methyladenine 
and chloroquine, or knockdown of ATG by 
RNAi can enhance the anticancer activity of 
chemotherapy agent-induced apoptosis. In con-
trast, the overexpression of ATG may promote 
chemotherapy resistance. Autophagy also influ-
ences organismal health and aging [34]. Most 
global ATG-deficient mice are embryonic-lethal 
and associated with increased cell death and tis-
sue injury, whereas some autophagy inducers 
(e.g., ramamycin) can prolong animal survival, 
supporting a pro-survival role of autophagy 
in vivo [34].

The mechanism of action of autophagy-
dependent cell death is complex, involving 
effects at multiple levels. Excessive bulk autoph-
agy can cause the release and activation of lyso-
somal hydrolases to trigger death [35]. The 
excessive removal of normal organelles such as 
mitochondria could lead to metabolism collapse 
and oxidative injury [36]. The induction of Na+-
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K+-ATPase-mediated autosis is required for Tat-
Beclin peptide-induced autophagy-dependent 
cell death in cancer cells [37]. Certain ATGs, 
such as ATG5 and ATG7, can induce necroptosis 
through binding to necrosome, whereas ATG3 
and ATG12 can form a complex to induce apop-
tosis through the inhibition of BCL2-like 1 
(BCL2L1, also known as BCLXL) [38, 39]. 
Selective autophagy promotes cell death through 
the degradation of antideath regulators of apopto-
sis [40], necroptosis [41], or ferroptosis [42]. 
Notably, lipid peroxidation-dependent ferropto-
sis is considered as a type of autophagy-depen-
dent cell death through multiple mechanisms 
[43], such as the activation of ferritinophagy 
[42], lipophagy [44], or clockophagy [45], 
BECN1-mediated system xc− inhibition [46], or 
signal transducer and activator of transcription 3 
(STAT3)-induced lysosomal cell death [47]. In 
addition to mediating various neurogenetic disor-
ders, autophagy-dependent cell death can affect 
tissue development under physiologically rele-
vant conditions [48–50]. These findings indicate 
a wider role of autophagy-dependent cell death in 
physiological and pathological conditions.

7.4	 �Autophagy and the Tumor 
Microenvironment

7.4.1	 �Inflammation and Autophagy

Inflammation is the innate immune response to 
infection and injury, which is usually associated 
with symptoms of redness, heat, swelling, and 
pain. Leukocyte-mediated acute inflammation 
response generally contributes to microbial clear-
ance, wound healing, and tissue regeneration. In 
contrast, chronic inflammation has been linked to 
certain human diseases, such as autoimmune dis-
orders and cancer. In particular, leukocyte (e.g., 
neutrophil, monocyte, and macrophage) infiltra-
tion can release various pro-inflammatory cyto-
kines to promote tumor formation through 
multiple mechanisms, such as causing DNA 
damage or inducing immune suppression. 
Chronic inflammation is a well-known risk factor 
for various types of cancer [51]. For example, 

people with chronic pancreatitis and inflamma-
tory bowel disease have increased risks of pan-
creatic cancer and colorectal cancer, respectively. 
Indeed, an inflammed tumor microenvironment 
is one of the enabling hallmarks of cancer devel-
opment [52]. The targeting of cancer-related 
chronic inflammation by nonsteroidal anti-
inflammatory drugs is an important approach to 
the prevention of malignant disease [52].

In normal cells, autophagy is generally con-
sidered as an anti-inflammatory mechanism 
through the degradation of pro-inflammatory 
regulators such as inflammasome components 
[53, 54]. In contrast, autophagy plays a dual role 
in the regulation of inflammation response in the 
tumor microenvironment [55]. Autophagy can 
sustain the inflammatory tumor microenviron-
ment through the production and release of pro-
inflammatory cytokines such as high-mobility 
group box 1 (HMGB1) and interleukin (IL)-6 
and recruitment of inflammatory cells [56–58]. 
HMGB1 is not only a DNA binding protein in the 
nucleus but also an immunomodulatory cytokine 
actively secreted from immune cells or passively 
released by dead or dying cells [59]. HMGB1 
also plays a location-dependent role in promoting 
autophagy in cancer cells [60, 61]. In contrast, 
autophagy-mediated nonclassical release in 
immune cells as well as autophagy-dependent 
cancer cell death can promote HMGB1 release, 
which further leads to the activation of pro-
inflammatory transcription factor nuclear 
factor-κB (NF-κB) to sustain tumor growth [59, 
62]. Oncogenic RAS-induced tumor transforma-
tion is associated with increased autophagy, 
which induces pro-inflammatory IL6 release. IL6 
is one of the major cytokines in the tumor micro-
environment that drives tumor formation and 
development through the activation of STAT3. 
Autophagy-mediated toll-like receptor (TLR) 
and advanced glycosylation end-product specific 
receptor (AGER, also known as RAGE) activa-
tion can promote inflammation and tumor cell 
growth in response to bacterial infection or tissue 
injury [63, 64]. In addition to pro-inflammatory 
function by autophagy, the conditional knockout 
of ATG (such as ATG5 and ATG7) in mice pro-
motes tumorigenesis, which is associated with 
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the upregulation of inflammatory genes [65, 66]. 
Thus, the interplay between autophagy and 
inflammatory pathways in the tumor microenvi-
ronment is context-dependent, and a better under-
standing of such a relationship may provide a 
more precise therapy for cancer patients.

7.4.2	 �Immunity and Autophagy

Cancer immunoediting is an immune system-
mediated dynamic process that consists of three 
stages: elimination, equilibrium, and escape [67]. 
In the first elimination phase, tumor cells can be 
removed from the immune system. In the second 
equilibrium phase, the immune system can con-
trol (but not completely eliminate) tumor growth. 
In the last escape phase, tumors may escape elim-
ination by recruiting or expressing immunosup-
pressive cells (e.g., regulatory T cells [Treg] and 
myeloid-derived suppressor cells [MDSCs]) or 
molecules (e.g., immune checkpoint) within the 
tumor microenvironment. Cytotoxic CD8 T lym-
phocytes (CTLs) and natural killer cells (NKs) 
play a major role in the elimination of tumor cells 
[68, 69]. Dendritic cell (DC)-mediated cross-pre-
sentation of tumor antigens is generally required 
for the production and activation of antitumor 
CD8 T-cell immunity. Immune suppression of the 
microenvironment is associated with cancer 
growth and progression. In contrast, a major 
breakthrough in cancer immunotherapy is the use 
of immune checkpoint inhibitors, which remove 
inhibitory signals of CTLs or NKs [70].

Autophagy regulates T-cell activity and func-
tion by various mechanisms. The activation of 
T-cell receptor by cytokines can induce autoph-
agy in naive T cells. In contrast, the knockout of 
Atg5, Atg7, or Atg3 impairs the cell survival and 
function of various types of T cells, including 
CD4+ and CD8+ T cells [71]. In addition to mod-
ulating normal T-cell functions, autophagy is 
implicated in T-cell-mediated antitumor immune 
response. The induction of autophagy by an 
mTOR inhibitor such as rapamycin increases the 
production of CTLs [72]. In breast tumor models, 
the ablation of Rb1cc1/Fip200 impairs autophagy 
and increases antitumor immune responses [73]. 

In lung cancer models, the ablation of Atg5 
impairs autophagy and increases the immune 
suppression microenvironment via the upregula-
tion of forkhead box P3 (FOXP3)+ Tregs [74]. In 
contrast, ATG5, AT14, or ATG16L1-mediated 
autophagy limits antitumor CD8 T-cell immunity 
via reprogramming glucose metabolism in cer-
tain types of cancer, such as syngeneic mammary, 
prostate, and colorectal tumors [75].

In addition to T cells, autophagy can promote 
or inhibit tumor growth by control of the activa-
tion and function of other immune cells, such as 
NKs, natural killer T cells (NKTs), B cells, DCs, 
macrophages, and MDSCs in the tumor microen-
vironment [76, 77]. For example, autophagy-
mediated NKT, DC, and B-cell activation are 
required for antitumor immunity through the 
upregulation of antigen presentation or induction 
of specific IgM and IgG production [78, 79]. 
Autophagy also affects macrophage polarization 
and reprogramming to promote or inhibit tumor 
development via the release of immune-modula-
tory cytokines, such as IL1, IL2, IL6, IL10, IL12, 
IL23, transforming growth factor beta (TGFB), 
nitric oxide synthase 2 (NOS2, also known as 
iNOS), tumor necrosis factor (TNF), and inter-
feron gamma (IFNG, also known as IFN-γ) [80, 
81]. MDSCs exhibit increased autophagy to 
diminish antitumor immunity [82, 83]. Mitophagy 
deficiency promotes pancreatic cancer develop-
ment through the upregulation of inflammation-
mediated immunosuppression in the tumor 
microenvironment [84]. This process relies on 
HMGB1 release and subsequent immune check-
point expression [84]. The expression of domi-
nant negative Atg4B alleles (Atg4BCA) inhibits 
autophagy and pancreatic ductal adenocarcinoma 
(PDAC) tumor growth partly through the accu-
mulation of antitumor macrophages in the tumor 
microenvironment [85].

The dysfunction of the autophagy pathway is 
also implicated in tumor immunotherapy [86–
89]. Immunogenic cell death is a form of regu-
lated cell death caused by chemotherapy or 
radiation therapy [90]. Autophagy-mediated ATP 
and HMGB1 release contributes to immunogenic 
cell death to enhance the effects of immunother-
apy [91, 92]. The inhibition of autophagy by the 
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knockdown of Becn1 and Atg5 or by using chlo-
roquine promotes the infiltration of CTLs and 
NKs as well as degradation of phospho-STAT3 
within the tumor microenvironment to suppress 
tumor growth [89, 93]. Autophagy can inhibit NK 
activity through the degradation of granzyme B 
under hypoxia. In addition, the c-Jun N-terminal 
kinase (JNK)-dependent production of C-C motif 
chemokine ligand 5 (CCL5) plays a major role in 
the induction of NK cell infiltration in Becn1-
defective melanoma cells [94]. Chloroquine also 
enhances the anticancer activity of IL2 and dopa-
chrome tautomerase (DCT, also known as TRP2) 
peptide-based immunovaccine [86–89]. In con-
trast, autophagy-mediated IL10 and TGFB produc-
tion may limit antitumor immunity through the 
activation of Treg and MDSC [74]. These findings 
could perhaps explain the context-dependent con-
sequences of autophagy on tumor immunity, and 
the inhibition of autophagy may overcome or pro-
mote antitumor immune resistance.

7.4.3	 �Stromal Cells and Autophagy

Stromal cells, the connective tissue cells of 
organs, are important components in the tumor 
microenvironment. Fibroblasts are the most com-
mon stromal cells in the tumor microenvironment 
throughout all stages of the cancer [95]. The 
interplay between cancer cells and cancer-associ-
ated fibroblasts (CAFs) can affect the production 
and infiltration of immune cells via the secretion 
of a wide variety of factors in the tumor microen-
vironment [96]. The loss of specific tumor sup-
pressors in CAFs influences the type and 
character of immune cells in the tumor microen-
vironment. Consequently, blocking CAF func-
tion enhances tumor immunotherapy activity 
[97]. The anticancer activity of immune check-
point inhibitors is enhanced by the inhibition of 
CAFs [98–100]. CAFs also facilitate tumor inva-
sion and metastasis through the production of 
matrix metalloproteinases as well as extracellular 
matrix (ECM) components, including collagen, 
fibronectin, and proteoglycans [96]. These CAF-
dependent factors also play a pathologic role in 
the regulation of the tumor microenvironment.

Autophagy is not only upregulated in CAFs 
through hypoxia and oxidative stress but also 
promotes the communications between the tumor 
and CAFs [101]. Autophagic CAFs can provide 
nutrition to surrounding cancer cells via the 
reverse Warburg effect to support tumor prolifer-
ation and growth [102–104]. CAFs also use 
mitophagy, a selective autophagy to remove dam-
aged mitochondria, to produce glutamine to fuel 
neighboring cancer cells [102, 103, 105]. In addi-
tion, autophagic CAFs have the ability to inhibit 
apoptosis, promote angiogenesis, induce gene 
instability, and sustain cancer stemness and 
immunosuppression in the tumor microenviron-
ment. The expression of caveolin-1  in CAFs 
seems to play a major role in the regulation of 
autophagy and metabolism within the tumor 
microenvironment [106–108]. Stromal caveo-
lin-1 is a biomarker for cancer prognosis in breast 
cancers. In addition, autophagic CAFs can sup-
port tumor growth through the upregulation of 
TP53-induced glycolysis regulatory phosphatase 
(TIGAR), a TP53-targeted gene that can inhibit 
glycolysis [105, 109]. These findings indicate an 
autophagy-dependent metabolic pattern between 
cancer cells and CAFs in the tumor 
microenvironment.

7.4.4	 �Angiogenesis and Autophagy

Tumor growth and metastasis depend on angio-
genesis, the process of new blood vessel forma-
tion [110, 111]. The new blood vessels can 
provide oxygen and nutrients and remove 
unwanted metabolites and CO2 for tumor growth, 
invasion, and metastasis. An imbalance between 
oxygen supply and demand can cause hypoxia, 
one of the important hallmarks of the tumor 
microenvironment contributing to therapy resis-
tance to chemotherapy, radiotherapy, and immu-
notherapy. During tumorigenesis, hypoxia is a 
critical signal to initiate angiogenesis, which is 
controlled by the hypoxia-inducible factor (HIF) 
transcription factor family, especially HIF1A 
(also known as HIF1α) [112]. Under normoxic 
conditions, the von Hippel-Lindau syndrome 
(VHL, also known as pVHL)-mediated ubiquitin 
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protease pathway promotes HIF1A degradation 
with a short half-life (<5 min) in an O2-dependent 
mechanism. In contrast, hypoxia can block HIF1 
degradation through the inhibition of the activity 
of the Egl-9 family hypoxia-inducible factor 1 
(EGLN1, also known as PHD2) and the binding 
between VHL and HIF1a, which leads to 
increased HIF1A protein stability and subse-
quently its translocation from the cytosol to the 
nucleus [113, 114]. Nuclear HIF1A increases 
gene expression through binding to HIF-
responsive elements (HREs) in the promoter of 
target genes. HIF2A shares a similar structure 
and function with H1F1A, whereas HIF3A acts 
as the inhibitor of HIF1A and HIF2A.  HIF1A-
mediated gene upregulation plays multiple roles 
in the regulation of energy metabolism, angio-
genesis, metastasis, and other phenotypes in the 
tumor microenvironment. Notably, HIF1A-
induced vascular endothelial growth factor 
(VEGF) expression is essential for angiogenesis 
[115]. In addition to HIF1A, mTOR inhibition 
and unfolded protein response is involved in the 
induction of autophagy under hypoxia [116–
119]. The cooperation between HIF1A and 
HIF2A and the stem cell self-renewal transcrip-
tion factor nanog homeobox (NANOG) can 
induce BNIP3 and BNIP3L expression to trigger 
mitophagy and autophagy in response to hypoxia 
[120, 121].

Recent studies indicate that autophagy regu-
lates angiogenesis in tumor development [122–
124]. Blood flow restriction increases metabolic 
stress and subsequent autophagy in endothelial 
cells, the major components of blood vessels. 
HIF1A-mediated autophagy promotes angiogen-
esis and regulates lipid metabolism and the redox 
homeostasis in endothelial cells in response to 
hypoxia and other stresses. Lipophagy is selec-
tive autophagy involving the degradation of lipid 
droplets that contribute to vascular lipid homeo-
stasis. The inhibition of autophagy by chloro-
quine can suppress VEGF expression and 
promote vessel normalization, which is indepen-
dent of ATG [125, 126]. Consistently, anti-angio-
genic treatment blocks autophagy in endothelial 
cells. Additionally, autophagy-mediated cell sur-
face molecular cadherin 5 (CDH5) degradation 

may affect endothelial junction formation and 
vessel permeability [127]. The manipulation of 
vascular autophagy might therefore be an attrac-
tive anticancer approach to inhibit tumor invasion 
and metastasis.

7.4.5	 �Stem Cells and Autophagy

Normal stem cells include embryonic and adult 
stem cells that can differentiate into other types 
of cells. Similarly, cancer stem cells are a small 
subtype of cancer cells within the tumor microen-
vironment and have the ability to immortalize, 
continue to divide, and differentiate [128]. These 
cells can produce a source of new cancers. The 
notion of cancer stem cells was first proposed in 
leukemia and CD34+CD38− cells were the first 
cancer stem cells to be isolated, which came from 
patients with acute myeloid leukemia. Cancer 
stem cells are increasingly thought to be one of 
the important causes of cancer metastasis, recur-
rence, or tumor resistance to chemotherapy and 
radiation therapy [129, 130]. Targeting cancer 
stem cells as well as tumor heterogeneity pro-
vides a promising opportunity to treat tumors.

During the last decade, autophagy and mitoph-
agy have been demonstrated to play a potential 
role in the maintenance of activity and function 
of cancer stem cells and in preventing their aging 
in response to various stresses [131, 132]. The 
level of autophagy is increased in cancer stem 
cells in many types of tumors, including those of 
the breast, pancreas, liver, ovaries, and brain. 
Increased autophagy is important to sustain pluri-
potency, a key feature of cancer stem cells that 
allows them to differentiate into new tumor cells 
[131, 132]. Autophagy and mitophagy also pro-
vide metabolic substrates to maintain energy pro-
duction to support survival, migration, and 
invasion of cancer stem cells in response to anti-
cancer agents. In contrast, the knockdown of 
ATG or using chloroquine or bafilomycin A1 
suppresses cell proliferation, limits cell migra-
tion, and induces cell death in cancer stem cells 
[133–140]. In addition, the activation of autoph-
agy can protect cancer stem cells against immune 
elimination through the production of TGFB and 
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IL4 or the infiltration of immune suppressor cells 
[133, 141]. Autophagy also plays a dual role in 
the regulation of ploncolytic virotherapy-medi-
ated clearance of cancer stem cells [134].

7.4.6	 �Metabolism and Autophagy

A common feature of the metabolism of cancer 
cells is the ability to obtain energy to support the 
cells’ rapid growth and division. ATP is a sub-
stance used in cells to store and transfer chemical 
energy. It is a high-energy phosphate compound 
that interacts with adenosine diphosphate (ADP) 
to achieve energy storage and discharge. ATP is 
mainly produced by glycolysis in the cytosol and 
oxidative phosphorylation (the tricarboxylic acid 
cycle) in the mitochondria. In normal tissues, 90% 
of ATP is derived from oxidative phosphorylation, 
only 10% is derived from glycolysis, and glycoly-
sis is inhibited under aerobic conditions, called the 
Pasteur effect. In 1924, Otto Warburg, a Nobel 
Prize winner in physiology and medicine, discov-
ered that tumor cells produce more energy and 
absorb more glucose than normal mature cells 
through the aerobic glycolysis pathway, but not 
through the oxidative phosphorylation pathway 
(named the Warburg effect) [142]. In addition to 
aerobic glycolysis, cancer cells can rewire many 
metabolic pathways such as fatty acid metabolism, 
glutamine metabolism, choline metabolism, serine 
metabolism, and one-carbon metabolism to shape 
the tumor microenvironment [143–147].

Autophagy sustains tumor metabolism 
through recycling cytosolic materials to provide 
substrates for nucleotide synthesis and energy 
production. In addition to cancer cells, tumor-
associated stromal cells and certain immune cells 
can generate energy (ATP) via an autophagy-
mediated Warburg effect [148–151]. Cancer cells 
require fatty acid for the synthesis of biological 
molecules (e.g., phospholipids and second mes-
sengers) and fatty acid oxidation for the produc-
tion of energy [152–154]. Adipocytes in the 
tumor microenvironment can induce autophagy 
and mitochondrial fatty acid oxidation to support 
tumor growth [155]. Moreover, autophagy-defi-
cient genetic tumor models, including RAS-

driven lung and pancreatic cancer, exhibited 
decreased fatty acid oxidation [152, 156–159]. 
Glutamine, an important amino acid for tumor 
growth, can be uptaken by membrane transport-
ers (i.e., solute carrier family 1 member 5 
[SLC1A5] and solute carrier family 7 member 5 
[SLC7A5]) to enter the glutaminolysis pathway 
for the production of ATP and lactate. 
Glutaminolysis can promote or inhibit autophagy 
via the production of the intermediates ammonia 
or α-ketoglutarate, respectively. Choline is an 
essential nutrient and aberrant choline metabo-
lism contributes to oncogenesis and tumor pro-
gression. Choline kinase alpha, an enzyme 
catalyzing the first step in the choline pathway 
for phosphatidylcholine biosynthesis, inhibits 
autophagy in breast cancer cells [160, 161]. 
Serine can be cleaved into glycine and 5,10-meth-
ylenetetrahydrofolate (a one-carbon unit) by ser-
ine hydroxymethyltransferase to support cancer 
cell growth. Mitophagy has been observed after 
mitochondrial dysfunction and injury. Serine 
deficiency may cause mitochondrial injury and 
induce mitophagy in cancer cells [162]. 
Additional metabolic pathways, such as the 
autophagy-mediated production and uptake of 
alanine from CAFs by tumor cells, promotes 
PDAC tumor growth [163]. Further investigation 
is required to define the role of autophagy-based 
metabolic networks in anticancer therapy.

7.4.7	 �Metastasis and Autophagy

Cancer metastasis is the process by which cancer 
cells spread into distant tissues (e.g., liver, lung, 
and bone) and then form new tumors [164]. 
Metastatic cancer is a key issue in the clinic, and 
most cancer patients die from tumor metastasis 
but not the primary cancer. Although the process 
of tumor metastasis remains largely unknown, it 
occurs in a complex tumor microenvironment 
and can be described as defined steps, including 
local invasion, intravasation, extravasation, and 
colonization at the distal sites [165]. Multiple 
mechanisms of cell migration are beginning to be 
uncovered and may be beneficial for understand-
ing the phenotype of metastatic cancer.
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Changes in autophagy enable tumor cell 
migration, invasion, and metastasis [166, 167]. 
Focal adhesions are large macromolecular assem-
blies that provide the main sites of cell adhesion 
to the surrounding extracellular matrix. Many 
kinases, such as Src, FAK, integrin-linked kinase, 
and phosphatase, are involved in the regulation of 
focal adhesions during cell migration. Autophagy 
promotes cell migration through the control of 
activity of focal adhesion complexes via the 
selective degradation and turnover of focal adhe-
sion regulators such as paxillin, Src, and Rho 
[168–174]. These focal adhesion regulators also 
have the ability to promote or inhibit autophagy 
as a feedback mechanism. In addition, hypoxia 
and TGFB-induced autophagy can promote can-
cer stem cell self-renewal and angiogenesis, 
which finally result in epithelial-to-mesenchymal 
transition and tumor metastasis [175–180]. These 
findings highlight an important role of autophagy 
in cancer metastasis.

7.5	 �Conclusions 
and Perspectives

The complexity and adaptability of the tumor 
microenvironment have been increasingly recog-
nized as key drivers involved in all stages of can-
cer development, thereby representing a major 
direction for the discovery and development of 
new anticancer targets. Autophagy is an intracel-
lular clearance system that requires the forma-
tion of various vacuoles to engulf and deliver 
cytoplasmic components to lysosomes for degra-
dation. Autophagy and its regulator ATGs play 
complex and context-dependent roles in tumori-
genesis and anticancer therapy. The dysfunction 
of autophagy has been implicated in all aspects 
of cancer biology, such as cell survival, death, 
differentiation, angiogenesis, metastasis, inflam-
mation, immunity, and metabolism. Extensive 
clinical evidence exists to support the idea of 
inhibiting autophagy by chloroquine to improve 
clinical outcomes in certain types of cancer 
patients (e.g., those with PDAC and glioblas-
toma). Notably, like ATG, the autophagy inhibi-
tor (e.g., chloroquine) may also play an 

autophagy-independent role in the tumor micro-
environment as well as anticancer therapy. It will 
be important to distinguish the direct and indi-
rect effects of autophagy-mediated organelle or 
molecule degradation in the control of tumor 
initiation and development. Further understand-
ing of the molecular machinery of autophagy 
and its interplay with other hallmarks of cancer 
could lead to potential new anticancer strategies 
or drugs.
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Biological diversity is the key to the maintenance of the world as we know it. Life in a 
local site struck down by a passing storm springs back quickly: opportunistic species rush 
in to fill the spaces. They entrain the succession that circles back to something resembling 
the original state of the environment.

Edward O. Wilson

The Sociobiology of Brain Tumors

David H. Gutmann

Abstract
Brain tumors are complex cellular ecosys-
tems, composed of populations of both neo-
plastic and non-neoplastic cell types. While 
the contributions of the cancer cells in low-
grade and high-grade gliomas have been 
extensively studied, there is comparatively 
less known about the contributions of the 
non-neoplastic cells in these tumors. As such, 
a large proportion of the non-neoplastic cells 
in gliomas are resident brain microglia, infil-
trating circulating macrophages, and T lym-
phocytes. These immune system-like stromal 
cells are recruited into the evolving tumor 
through the elaboration of chemokines, and 
are reprogrammed to adopt new cellular iden-
tities critical for glioma formation, mainte-
nance, and progression. In this manner, these 
populations of tumor-associated microglia 
and macrophages produce growth factors that 
support gliomagenesis and continued tumor 
growth. As we begin to characterize these 
immune cell contributions, future therapies 
might emerge as adjuvant approaches to gli-
oma treatment.

Keywords
Astrocytoma · Cancer · Chemokine · 
Glioblastoma · Glioma · Ecosystem · 
Macrophage · Microglia · 
Neurofibromatosis type 1 · RAS · T lympho-
cyte · Tumorigenesis · Tumor 
microenvironment

Decades of research in the field of cancer have 
focused on the genetic and genomic alterations 
that occur within the neoplastic cells, largely 
ignoring the fact that all solid tumors are multicel-
lular organisms composed of numerous distinct 
cell types that change over time. In this regard, 
both benign and malignant tumors grow in a 
highly adaptive milieu containing immune sys-
tem-like cells, vascular elements, reactive stromal 
cells, and stem-like (progenitor) cells, each con-
tributing in unique ways to cancer homeostasis 
and fitness. As such, cancers operate like cellular 
societies in which independencies are established 
between distinct cell types through plasma mem-
brane-bound and soluble (paracrine) mediators. 
This concept of a tumor ecosystem has gained 
traction over the past several years, as researchers 
and clinicians have begun to appreciate the com-
plex interactions between the neoplastic and non-
neoplastic cells and their importance for tumor 
formation, maintenance, and progression.
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The idea of a tumor ecosystem is highly remi-
niscent of the societies established by some spe-
cies of insects (ants, bees, and termites). The 
colonies of these social insects exhibit a repro-
ductive division of labor with cooperative brood 
care, homeostasis, and emergent behaviors and, 
in this manner, collectively function as “superor-
ganisms.” Each of the different castes of insects 
has specific functions that synergistically support 
colony perpetuation and overall fitness: a single 
queen lays the eggs, which are fertilized by 
drones (or a single king), while nonreproductive 
(sterile) worker insects are responsible for nest 
construction, maintenance, and defense against 
intruders (soldiers). This caste system is tightly 
regulated by chemical signals (pheromones) that 
serve to optimize the number of soldier, worker, 
or reproductive insects.

Similar to social insects, tumors are composed 
of distinct cell types that work in unison to facili-
tate tumor survival, growth, and homeostasis. 
Within these tumors are neoplastic cellular ele-
ments, such as differentiated cancer cells and 
their stem cell progenitors, the latter of which 
largely lie dormant unless required to replenish 
the tumor mass in the setting of chemotherapy or 
radiation. In addition, there is a panoply of non- 
neoplastic (stromal) cell types that are either 

intrinsic to the tissue or are recruited into the 
evolving tumor. In the setting of brain tumors, 
these intrinsic cellular elements include neurons, 
glial cells (astrocytes, oligodendroglial precursor 
cells [OPCs], and oligodendrocytes) and resident 
brain macrophages (microglia), as well as T cells 
and circulating macrophages recruited from the 
blood (Fig. 8.1). Herein, we propose to use brain 
tumors, and specifically low-grade and high-
grade (malignant) gliomas, to illustrate how the 
cancer ecosystem is constructed, regulated, and 
maintained in a collective manner to facilitate the 
perpetuation and overall fitness of the tumor.

8.1	 �The Genetics of Pediatric 
Low-Grade Glioma

Brain tumors are largely categorized by their his-
tological appearance, where pediatric low-grade 
gliomas express proteins normally found in glial 
cell populations (e.g., glial fibrillary acidic pro-
tein, GFAP) and harbor low proliferative indices 
(typically <5% of the cells being Ki67+). Unlike 
their more clinically aggressive and fatal adult 
counterparts (glioblastoma; see below), these 
tumors have comparatively few genetic muta-
tions. Among the mutations encountered, the 

cancer cells

neurons

astrocytes

microglia

T cells

macrophages

blood vessel

cancer 
stem cells

OPCs

Fig. 8.1  Numerous cell types exist in gliomas. Low-
grade and high-grade gliomas are composed of neoplastic 
(cancer cells and cancer stem cells) and non-neoplastic 
(astrocytes, oligodendrocyte precursor cells [OPCs], oli-

godendrocytes [not shown], neurons, T cells, microglia, 
and macrophages). Whereas T cells and macrophages 
infiltrate the brain, the other cell types are intrinsic to the 
central nervous system
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majority lead to increased growth factor signal-
ing, all converging on the RAS mitogenic path-
way. In this respect, the spectrum of causative 
mutations include chromosomal rearrangements 
involving the BRAF gene (e.g., KIAA1549:BRAF), 
leading to elevated BRAF kinase activity, activat-
ing receptor kinase receptor mutations (NTRK2 
and FGFR1 genes) that increase RAS activity, 
and biallelic loss of the neurofibromatosis type 1 
(NF1) tumor suppressor gene causing greater 
RAS activation (Fig. 8.2). Importantly, while all 
of these genomic alterations lead to increased 
RAS/MEK/ERK activity and cell growth; by 
themselves, they are not oncogenic (transform-
ing) mutations. As such, they provide a mitogenic 
or anti-apoptotic advantage, which operates in a 
context-dependent manner, in concert with other 

signals from the tumor microenvironment, to 
increase precursor cell growth and culminate in 
low-grade glioma formation.

8.2	 �The Genetics of Malignant 
Glioma

In contrast to their benign pediatric counterparts, 
high-grade gliomas (glioblastoma) likely arise 
from a benign precursor lesion (low-grade gli-
oma) through the successive accumulation of 
additional genetic alterations. Glioblastomas are 
divided into those with wild-type isocitrate dehy-
drogenase 1 or 2 (IDH1/IDH2) gene expression 
and those that harbor a mutant IDH1 gene. IDH 
mutation leads to the production of alpha-

-GDP
inactive

RAS

BRAF

MEK

ERK

RAS -GTP
active

neurofibromin

nucleus
G1

S

G2
M

FGFR1
NTRK2

Fig. 8.2  Mutational landscape of low-grade glioma. Few 
genetic alterations have been reported in pediatric low-
grade gliomas. These include activating mutations in 
receptor tyrosine kinases (FGFR1, NTRK2), loss of the 
NF1 protein (neurofibromin), and alterations in the BRAF 

kinase gene  (e.g., activating mutations, BRAF genomic 
rearrangements). Importantly, all of these changes lead to 
MEK activation and ERK-mediated accelerated progres-
sion through the cell cycle and increased cell growth
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ketoglutarate, which reshapes the metabolism 
and epigenetic (aberrant histone methylation) 
status of the cancer cells [1]. The importance of 
IDH1 mutation to tumor biology is further under-
scored by the improved survival of patients har-
boring these mutations relative to their wild-type 
IDH1 counterparts [2]. In the IDH1 wild-type 
class of tumors, most glioblastomas share ampli-
fication of the platelet-derived growth factor A 
(PDGFA) gene and loss of portions of 
chromosome 10 containing the PTEN tumor sup-
pressor gene, followed next by mutations in the 
NF1 and TP53 (p53) tumor suppressor genes, 
mutational activation of the epidermal growth 
factor receptor (EGFR) and c-MET receptor, and 
loss of the cell cycle regulator CDKN2A [3] 

(Fig. 8.3). These molecular alterations are critical 
for neoplastic transformation by coupling dereg-
ulated mitogenic signaling and increased cell 
growth with mutations that remove the compen-
satory mechanisms, which, separately or together, 
prevent unlimited cell proliferation or survival.

8.3	 �Tumor Cell Genomic 
Changes Are Necessary, 
But Not Sufficient, for Low-
Grade Gliomagenesis

Since high-grade gliomas acquire a multiple of 
genetic and genomic changes, the primary role of 
the tumor microenvironment in malignant glioma 
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Fig. 8.3  Mutational landscape in high-grade glioma. A 
number of different genetic alterations have been reported 
in adult high-grade gliomas. These include activating 
mutations in or amplifications of receptor tyrosine kinases 
(EGFR, PDGRF, MET), loss of the NF1 protein (neurofi-
bromin), and mutations in the PTEN negative regulator of 

AKT activation, and loss of expression/function of cell 
cycle regulators, like the TP53 (p53 protein) and CDKN2A 
genes. In addition, some malignant gliomas harbor muta-
tions in the IDH1 and IDH2 genes, leading to changes in 
metabolism and epigenetic changes (chromatin 
remodeling)
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formation and progression is more difficult to 
discern. In contrast, the smaller number of 
molecular alterations in low-grade gliomas 
has facilitated a detailed exploration of the con-
tributions of stromal cells and signals to glioma-
genesis. For this reason, we will initially focus on 
low-grade gliomas.

As observed in social insect colonies, there is 
similarly a division of labor, which aims to max-
imize the reproductive fitness of the tumor, as 
supplied by non-neoplastic cells that establish 
and maintain a supportive cancer ecosystem. For 
example, biallelic NF1 inactivation and 
KIAA1549:BRAF rearrangement both increase 
MEK activation, which serves as a major driver 
of cell cycle progression. However, the cells and 
tumors harboring these changes have a limited 
growth potential, and will frequently undergo 
senescence (growth arrest) in  vitro [4–7], sug-
gesting that the signals required for full transfor-
mation (tumorigenesis) are lacking. This notion 
is supported by several experimental findings. 
First, biallelic Nf1 loss in neuroglial progenitors 
in mice is not sufficient by itself for murine Nf1 
optic glioma development in vivo [8, 9]. Second, 
impaired monocyte function abrogates 
KIAA1549-BRAF-induced tumorigenesis in 
mice [10]. Third, Nf1 inactivation or KIAA1549-
BRAF expression does not lead to increased 
growth in all neuroglial cell types [11–14], sug-
gesting that not all cells are susceptible to the 
effects of low-grade glioma-associated molecu-
lar alterations. Fourth, Nf1 loss or 
KIAA1549:BRAF expression activates MEK and 
increases cell growth in a brain region-specific 
manner [11–14]. Taken together, these observa-
tions raise the intriguing possibility that low-
grade glioma-associated molecular changes 
merely prime the pre-neoplastic cells for tumori-
genesis, but that transformation requires addi-
tional signals from the tumor microenvironment 
in order to bypass the natural physiologic induc-
tion of growth arrest. This two-step requirement 
provides a natural protective barrier, which 
allows the brain to contain the growth advantage 
conferred by stromal signaling molecules, and 
likely mirrors what occurs during brain develop-
ment, where growth signals must be tightly regu-

lated in order to ensure proper and orderly 
organogenesis [15].

8.4	 �Microglia and Macrophages 
Are Abundant in Glioma

Gliomas are composed of various populations of 
neoplastic (differentiated cancer cells and cancer 
stem cells) and non-neoplastic cells (monocytes, 
lymphocytes, astrocytes, neurons, and blood ves-
sels). Numerous studies have highlighted the 
importance of blood vessels to the maintenance 
of brain tumors, culminating in the use of anti-
angiogenic therapies as adjuvant treatments for 
central nervous system (CNS) malignancies (e.g., 
bevacizumab) [16]. In addition to these vascular 
elements, as much as 50% of the cellular content 
of gliomas is accounted for by immune system-
like cells [17]. These immune system-like cells 
include T lymphocytes (T cells) and macro-
phages that enter the tumor from the blood 
through either passive efflux or active chemoat-
traction, as well as resident macrophages 
(microglia) that colonize the brain during embry-
onic (fetal) development, and serve as integral 
cellular homeostatic sensors in the healthy brain 
[18, 19]. In this manner, microglia are important 
for maintaining neuronal integrity, clearing cel-
lular debris, and providing instructive signals to 
astroglial lineage cells (astrocytes, neural stem 
cells, oligodendrocyte precursors). However, in 
the setting of CNS pathology, especially brain 
tumors, they adopt specialized roles that actively 
dictate disease progression [20, 21].

8.5	 �Microglia and Macrophages 
Are Recruited by Glioma-
Produced Chemokines

The recruitment of microglia and macrophages 
into gliomas operates through the elaboration of 
chemokines, such as CSF1, CCL2, CXCL12, and 
CX3CL1, frequently produced by the tumor cells 
[22–25] (Fig. 8.4). For example, in mouse mod-
els of NF1-associated low-grade glioma, Nf1 
optic glioma stem cells produce the chemokine 
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CX3CL1, which attracts microglia through its 
cognate receptor (CX3CR1) expressed on 
microglia [26]. Genetically eliminating this che-
motactic receptor on microglia in mice is suffi-
cient to inhibit murine Nf1 low-grade glioma 
formation following optic glioma stem cell trans-
plantation [24, 27]. Similarly, in a murine model 
of sporadic low-grade glioma, KIAA1549:BRAF-
expressing cerebellar neural stem cells elaborate 
CCL2, which attracts monocytes. Genetic abla-
tion of the CCL2 receptor (CCR2) expressed on 
these infiltrating monocytes blocks low-grade 
glioma formation [10]. In this manner, glioma 
tumor cells are capable of establishing a microen-
vironment supportive of their own growth, thus 
facilitating tumor expansion and maintenance.

Analogously, in high-grade glioma, mono-
cytes can be recruited by cancer cells in a 
mutation-specific manner, typically mediated by 
chemokines, including CCL2 and CX3CL1, 
which act as directional migratory signals for 
macrophages and microglia expressing the CCR2 
and CX3CR1 receptors, respectively [22, 28, 29]. 
In this regard, IDH-mutant tumors have reduced 
monocyte (microglia and macrophage) and T cell 
content relative to their IDH wild-type counter-

parts, likely as a result of reduced expression of 
key immune system chemokines, like CCL2, 
CXCL1, GM-CSF, and CXCL4 [22, 28, 30]. In 
addition, NF1 deficiency in high-grade glial neo-
plasms is associated with greater monocyte infil-
tration [31], perhaps through the secretion of 
unique chemokine and cytokine modules [32].

8.6	 �Microglia and Macrophages 
Are Required 
for Gliomagenesis 
and Progression

In the setting of glioma, microglia and macro-
phages have emerged as essential conductors that 
orchestrate tumor development and progression 
(Fig.  8.5). Each of these monocyte populations 
adopts new functions in their role as modulators 
of glioma progression, including cytokine and 
growth factor production [33–36]. In the setting 
of experimental murine glioblastoma, microglia 
and infiltrating macrophages often occupy dis-
tinct intra-tumoral locations and exhibit different 
gene expression patterns. As such, macrophages 
in human glioblastoma are localized to perivas-

cancer cells

microglia

T cells

macrophages

blood vessel
chemokines

Fig. 8.4  Microglia, T cells, and macrophages are recruited by neoplastic glioma cells. Glioma cells can attract resident 
microglia in the brain, as well as T cells and macrophages from blood, through the elaboration of chemokines
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cular and necrotic regions of the tumor, where 
they have increased expression of immunosup-
pressive cytokines [37]. Moreover, glioma-
associated monocytes can induce a paracrine 
circuit involving monocyte production of factors 
that negatively and positively regulate glioblas-
toma cell growth through the activation of numer-
ous signaling pathways, acting on receptors 
expressed on glioma cells [34, 36, 38, 39].

In experimental Nf1 low-grade glioma models, 
silencing of microglia function, using either genetic 
or pharmacologic strategies, reduces tumor growth 
and delays glioma formation in vivo [24, 40, 41]. In 
Nf1 optic gliomas, tumor-associated microglia 
secrete CCL5, which serves as a potent mitogen for 
the neoplastic glioma cells. As such, treatment of 
tumor-bearing mice with Ccl5-neutralizing anti-
bodies reduces optic glioma growth in vivo [42]. 
Moreover, Nf1 optic glioma stem cells do not form 
tumor-like lesions following injection into the 
brains of mice lacking Ccl5 [27], firmly establish-
ing Ccl5 as a key microglia mitogen for Nf1 low-
grade glioma formation and growth.

In addition to monocytes, converging evi-
dence from numerous laboratories has under-
scored the notion that the brain is not an immune 
privileged organ [43]. Trafficking of T cells 
through the neuroaxis in both health and in the 
setting of CNS diseases is facilitated by the 
presence of a unique brain lymphatic system 
and transmeningeal entry [44–46]. Leveraging 
an optic glioma stem cell (o-GSC) transplanta-
tion model, tumors readily form in wild-type 
mice, but not in athymic (nude) mice lacking 
mature T cells [27]. The absence of T cells 
results in impaired microglia function, notably 
reduced phagocytosis, and dramatically 
decreased levels of CCL5 production. 
Importantly, wild-type mouse T cells induce 
athymic mouse microglia to produce CCL5 
through paracrine mechanisms, suggesting that 
T cells “educate” microglia to create a microen-
vironment supportive of tumor cell engraftment 
and growth. These T cells are also recruited 
through chemokines produced by the tumor 
cells [26], thus establishing an oncoimmune 
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cancer 
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growth 
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activation
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Fig. 8.5  T cells, microglia, and macrophages are key 
regulators of glioma growth. Recruited microglia and 
macrophages are reprogrammed in the setting of glioma 
to produce growth factors that increase the growth of the 
neoplastic cells (cancer cells and cancer stem cells). In 

addition, microglia can activate brain astrocytes to further 
support glioma growth through the generation of mito-
genic and survival factors. Similarly, T cells can prime 
resident microglia to produce growth/survival factors that 
promote glioma homeostasis and expansion
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axis that drives tumor growth and maintains the 
low-grade glioma ecosystem. Consistent with 
the idea that T lymphocytes are important for 
glioma biology, human NF1-mutant gliomas 
exhibit T cell infiltration, where the majority of 
these recruited T cells are CD8+ lymphocytes 
[47]. Importantly, since these T cells originate 
outside the brain, they are theoretically capable 
of transducing signals from the rest of the body, 
especially in the context of conditions that 
reprogram and activate T cells (e.g., asthma, 
atopic skin conditions).

8.7	 �Future Directions

As we begin to unravel the complexity that is 
inherent in the cancer ecosystem, new opportuni-
ties to improve the management of people 
afflicted with these neoplasms will likely emerge. 
In this regard, one of the major considerations is 
the cellular and molecular adaptations that occur 
in the tumor ecosystem during cancer homeosta-
sis and in response to treatment (Fig. 8.6).

In this regard, as tumors evolve, their cellular 
composition and the molecular signals that gov-
ern tumor growth change. As such, macrophages 
initially populate malignant gliomas, residing in 
the perivascular niches, whereas microglia appear 
later and predominate at the peri-tumoral edges 
[23]. In addition, as tumors progress from low-
grade to high-grade malignancies, the cancer 
cells themselves often express the very growth 
factors originally provided by the tumor microen-
vironment. One example of this phenomenon is 
observed in NF1-mutant tumors, where the low-
grade tumors require CCL5 from microglia in 
their microenvironment, but their high-grade 
counterparts produce their own CCL5 to drive 
tumor growth in an autocrine fashion [48].

Additionally, in the setting of treatment (either 
chemotherapy or radiation therapy), the compos-
ite cell populations respond by changing their 
cellular interactions and transcriptional profiles. 
Microglia, in particular, are sensitive to the 
effects of ionizing radiation and chemotherapy. 
As such, some studies have shown that cranial 
irradiation induces a transient accumulation of 
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Fig. 8.6  Adaptive responses to glioma treatment. 
Radiation and chemotherapy can lead to vascular damage, 
causing increased entry of immune system cells (T cells 
and macrophages) into the glioma. Furthermore, these 
treatments can act directly on microglia to establish new 

functional states that lead to astrocyte activation. Similarly, 
changes in neuronal activity, through tumor-associated sei-
zures, can additionally influence glioma biology through 
the elaboration of chemokines to attract immune system 
cells or paracrine factors that increase glioma growth
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microglia followed by microglia loss [49, 50], as 
well as microglia transcriptional changes similar 
to those found in the aging rodent brain [51]. 
Similarly, microglia can be persistently activated 
by chemotherapy (e.g., methotrexate) in both the 
rodent and human brain [52]. These alterations in 
microglia could have profound consequences on 
the activation of astrocytes, neuronal function, 
and the elaboration of growth and survival factors 
essential for overall glioma fitness. In addition, 
brain tumor therapy changes the milieu in which 
the cancer stem cells reside, leading to expansion 
of normally quiescent glioma stem cells, which 
repopulate the tumor following therapy [53]. 
Moreover, treatment has the capacity to enrich 
for relatively treatment-resistant clones, which 
then could later emerge as the predominant can-
cer species.

Taken together, attacking tumors at their most 
vulnerable nodes offers the greatest opportunity 
to disrupt this adaptive architecture. Future stud-
ies aimed at defining the critical cellular and 
molecular interdependencies within these can-
cers and determining how they adapt in the face 
of chemotherapy and/or radiation may usher in a 
new era of cancer therapeutics in which emergent 
behaviors and new homeostatic states that main-
tain the tumor are abrogated.FundingThe author 
was funded by a Research Program Award grant 
from the National Institutes of Health 
(1-R35-NS07211-01).
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Tumor Microenvironment 
Conditioning by Abortive Lytic 
Replication of Oncogenic  
γ-Herpesviruses

Christian Münz

Abstract
Epstein Barr virus (EBV) and Kaposi sarcoma-
associated herpesvirus (KSHV) constitute the 
human γ-herpesviruses and two of the seven 
human tumor viruses. In addition to their viral 
oncogenes that primarily belong to the latent 
infection programs of these viruses, they 
encode proteins that condition the microenvi-
ronment. Many of these are early lytic gene 
products and are only expressed in a subset of 
infected cells of the tumor mass. In this chap-
ter I will describe their function and the evi-
dence that targeting them in addition to the 
latent oncogenes could be beneficial for the 
treatment of EBV- and KSHV-associated 
malignancies.
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9.1	 �Introduction to Human 
γ-Herpesviruses

Among human herpesviruses, oncogenesis is 
confined to the γ-herpesviridae [1]. These con-
tain the lymphocryptovirus Epstein Barr virus 
(EBV) or human herpesvirus 4 (HHV4) and the 
rhadinovirus Kaposi sarcoma-associated herpes-
virus (KSHV) or human herpesvirus 8 (HHV8). 
Both viruses share a tropism for human B cells 
and stimulate these into lymphoproliferations in 
some of which even both viruses are present at 
the same time [2]. In addition they are, however, 
also associated with tumors that originate from 
other cell types, including epithelial, NK/T, and 
smooth muscle cells for EBV and endothelial cell 
for KSHV [3, 4]. The oncogenic potential of 
these two viruses is thought to originate from 
their need to differentiate B cells into long-lived 
memory compartments for persistence, memory 
B cells for EBV and plasma cells for KSHV [4, 
5]. These B cells get infected by the two viruses 
in submucosal secondary lymphoid tissues after 
transmission via saliva exchange and possibly 
transcytosis across the mucosal epithelium [6]. 
Latent infection by the two viruses is then thought 
to lead to B cell activation and proliferation. For 
EBV mainly 8 latent gene products, more than 40 
miRNAs, and 2 EBV-encoded small RNAs 
(EBERs) are involved in this task [5]. 
Differentiation from this activated B cell stage to 
memory B cells by follicular and extrafollicular 
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routes allows for EBV persistence without any 
viral protein expression [7, 8]. KSHV contains 
also three latent gene products which together 
with the viral miRNAs induce B cell proliferation 
after overexpression in mice [9]. In addition, 
however, expression of some lytic KSHV gene 
products without overt infectious particle pro-
duction augments B cell activation and differen-
tiation, like the plasmablast or plasma cell 
differentiation that is induced by viral IL-6 
(vIL-6) expression from the K2 locus [2]. B cell 
proliferations that are driven by these viral pro-
grams can be found in human immunodeficiency 
virus (HIV)-infected patients with acquired 
immunodeficiency syndrome (AIDS) as immu-
noblastic lymphoma that is associated with all 
EBV latent gene expression and multicentric 
Castleman’s disease (MCD) that is associated 
with latent KSHV gene expression but also some 
lytic KSHV virus production [10, 11]. These pro-
grams extensively shape the phenotype of the 
infected B cells to activated lymphoblasts by 
EBV and plasmablasts by KSHV, as well as mod-
ify their B cell receptor, introducing addition 
somatic hypermutation in the case of EBV, and 
switch to λ-light chain expression in the case of 
KSHV [12, 13]. From these stages both extrafol-
licular and germinal center-dependent routes most 
likely lead to persistence with no viral protein and 
only viral non-translated RNA expression. At least 
EBV expresses a restricted set of latent proteins in 
centroblast and centrocytes to rescue infected B 
cells from cell death in germinal centers [14]. 
From this reservoir both viruses reactivate into 
lytic infectious particle replication upon plasma 
cell differentiation for EBV and most likely also in 
plasma cells for KSHV [11, 15]. If this occurs at 
submucosal secondary lymphoid tissues, infec-
tious virus can find its way into the saliva for fur-
ther transmission, possibly after an additional 
amplification in mucosal epithelial cells at least for 
EBV [16]. These life cycles of EBV and KSHV 
utilize B cell immunobiology to both disseminate 
in their host, establish persistence in long-lived 
cells, and allow reactivation in submucosal tissues 
for further transmission.

However, this lifestyle also forces them to 
induce B cell lymphoproliferations and channel 

infected cells through differentiation stages with 
increased somatic mutations. The oncogenic 
capacity of EBV and KSHV gene products and 
host gene mutations that emerge in the process of 
B cell differentiation leads to tumors associated 
with the two γ-herpesviruses. In this chapter I will 
discuss the different EBV- and KSHV-associated 
malignancies and how their microenvironments 
are conditioned for both pro-proliferative and 
immune evasive functions.

9.2	 �Classical Oncogenes of EBV 
and KSHV

EBV is associated with tumors of B, epithelial, 
NK/T, and smooth muscle cell origin [3]. In these 
malignancies, EBV expresses a variable amount 
of latent viral proteins, and the respective gene 
expression patterns are called latencies I, II, and 
III.  B cell-derived immunoblastic lymphomas 
and posttransplant lymphoproliferative diseases 
(PTLDs) express all 8 latent EBV genes and are 
primarily observed during severe immune sup-
pression, for example, during advanced HIV 
infection and iatrogenic immune system inhibi-
tion [17]. EBV-associated smooth muscle tumors 
harbor also latency III [18]. Latency II tumors 
like Hodgkin’s lymphoma of B cell origin and 
nasopharyngeal carcinoma of epithelial cell ori-
gin express only one of the six nuclear antigens 
of EBV (EBNAs), namely, EBNA1, and the two 
latent membrane proteins LMP1 and 2 [1, 19]. 
This latency II or even less latent viral protein 
expression can also be found in NK/T cell lym-
phomas that are associated with EBV [20]. 
Finally, only EBNA1 is expressed in latency I 
which is found in Burkitt’s lymphoma and pri-
mary effusion lymphoma (PEL), the latter being 
in the majority of cases also co-infected with 
KSHV [1]. In contrast to these distinct latent 
EBV gene expression patterns, KSHV rarely 
expresses only its three latent viral proteins, 
latency-associated nuclear antigen (LANA), viral 
FLICE-like inhibitory protein (vFLIP) and viral 
cyclin (vCYC), and viral miRNAs [4]. The adja-
cent kaposin locus K12 is also often expressed, as 
well as in decreasing frequency the K15, the K2, 
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and the non-translated polyadenylated nuclear 
RNA (PAN) encoding KSHV genome region [21, 
22]. This variable gene expression is seen in both 
endothelial and B cell-derived tumors that are 
associated with KSHV, namely, Kaposi sarcoma 
or multicentric Castleman’s disease (MCD) and 
PEL [23–25]. It might represent a variable fre-
quency of cells undergoing abortive and produc-
tive lytic KSHV replication in the respective 
tumors [26]. Thus, variable viral gene expression 
patterns can be observed in γ-herpesvirus-
associated malignancies. These segregate with 
tumor entities for EBV and subdivide tumor enti-
ties for KSHV.

Both viruses contain bona fide oncogenes, 
which upon expression in mice cause tumors. 
This has been shown for the viral latency locus 
and vFLIP of KSHV [9, 27, 28] and for EBNA1 
and LMP1 of EBV [29, 30]. Interestingly, both 
viruses activate c-myc and NF-κB to induce B 
cell activation and proliferation. EBV achieves 
this via EBNA2-assisted c-myc transcription [31] 
and LMP1-mediated constitutive NF-κB activa-
tion [32]. In some EBV-associated lymphomas 
that express only EBNA1, the c-myc expression 
is achieved by cellular mutations that are thought 
to compensate for EBNA2 absence, like c-myc 
translocation into the immunoglobulin loci for 
Burkitt’s lymphoma [33] and c-myc gene ampli-
fication in lymphomas that emerge in mice upon 
EBNA1 expression in B cells [34]. For KSHV, 
LANA amplifies c-myc activity [35, 36] and 
vFLIP activates NF-κB [37, 38]. These pro-
proliferative functions are paired with anti-
apoptotic mechanisms, such as for EBV the 
EBNA3C-mediated inhibition of pro-apoptotic 
p16INK4a and BIM expression [39, 40] and the 
pro-survival B cell receptor-like signaling of 
LMP2 [41]. In PEL the p16INK4a locus is some-
times mutated to presumably compensate for the 
absence of an active mechanism to suppress this 
pro-apoptotic protein, which is induced by the 
cell cycle driving activity of vCYC [42]. One can 
also speculate that the B cell receptor modifying 
activities, somatic hypermutation by EBNA3C-
mediated activation-induced deaminase (AID) 
induction [12] and λ-chain usage driven by vFLIP 
[28], might improve tonic signaling for infected 

B cell survival, similar to LMP2 function. In 
addition to these immunoblastic features of latent 
EBV and KSHV infection, the leaky lytic KSHV 
gene product expression, mainly from the K2 
locus encoding vIL-6 (Fig. 9.1), induces plasma 
cell features in MCD and PEL [43, 44]. However, 
the functions of latent γ-herpesvirus proteins and 
leaky presumably abortive lytic gene expression 
go much further than just transforming EBV and 
KSHV-infected cells. They also heavily condition 
the microenvironment of the associated tumors 
and this regulation will be discussed next.

9.3	 �Conditioning of the Tumor 
Microenvironment by Lytic 
and Latent EBV and KSHV 
Gene Expression

During their co-evolution with the human host, 
both EBV and KSHV have reached a stalemate 
with the immune system that in the vast majority 
of the more than 90% of adults that are persis-
tently infected with EBV and of the more than 
75% of adults that have encountered KSHV in 
some sub-Saharan countries leads to persistence 
of both viruses, but also does not cause pathology 
[45, 46]. On the contrary KSHV and EBV seem 
to even promote this equilibrium. For example, 
EBV encodes with EBNA3B a tumor suppressor 
[47]. This latent viral nuclear antigen induces 
transcription of CXCL9 and 10, two inflamma-
tory chemokines that recruit lymphocytes via 
their CXCR3 receptor. EBV deficient in EBNA3B 
causes lymphomas at increased frequencies with 
diminished inflammatory infiltrates, and restora-
tion of CXCL10 secretion by transfection also 
reinstalls T cell-mediated immune control of 
lymphoma cells with EBNA3B-deficient 
EBV. Not only latent gene products but also early 
lytic EBV proteins foster leucocyte recruitment 
to the vicinity of infected cells (Fig. 9.1). Along 
these lines CCL5 production has been reported in 
lymphomas with higher lytic EBV replication 
[48]. This chemokine facilitates macrophage 
recruitment via CCR5 binding into the tumor 
microenvironment [49]. Similarly, KSHV 
encodes three macrophage inflammatory protein 
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(MIP) homologues (vCCL1–3) as early lytic 
gene products. These are thought to recruit 
myeloid cells into the microenvironment of 
KSHV-infected cells via CCR8 (vCCL1 and 2) 
and XCR1 (vCCL3) [50]. These inflammatory 
infiltrates protect persistently EBV- and KSHV-
infected hosts probably most of the time from 
γ-herpesvirus-associated pathologies.

However, in virus-associated tumors these 
infiltrates are turned into tumor cell nurturing and 
immunosuppressive leucocytes. Along these 
lines EBV encodes viral IL-10 [51, 52] and 
KSHV-associated lymphomas are also domi-
nated by IL-10 production [53]. IL-10 suppresses 
T cell-mediated restriction of EBV-transformed 
B cells [54, 55] (Fig. 9.1). In addition, tumor cells 

as well as inflammatory infiltrates produce TGF-β 
in Hodgkin’s lymphoma [56], which is presum-
ably involved in the induction of regulatory T 
cells rosetting around the malignant Reed-
Sternberg cells in this tumor entity [57]. 
Furthermore, EBV-encoded viral miRNAs also 
compromise MHC class I-restricted antigen pre-
sentation to CD8+ T cells and their CXCL11-
mediated attraction into the tumor 
microenvironment [58–61], further dampening T 
cell-mediated immune control (Fig. 9.1). While 
EBV miRNAs compromise MHC-restricted anti-
gen presentation both during latency and lytic 
replication, early lytic gene products of both 
viruses further compromise MHC class 
I-restricted CD8+ T cell stimulation. These are 
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Fig. 9.1  Conditioning of the tumor microenvironment 
of EBV- and KSHV-associated malignancies. The micro-
environment of both EBV (left)- and KSHV (right)-asso-
ciated malignancies is composed of a mixture of latently 
and early lytically (BZLF1 or Rta) infected cells. Early 
lytic replication conditions the microenvironment of 
both EBV- and KSHV-associated malignancies by 
attracting monocytes to differentiate into immune sup-
pressive tumor-associated macrophages (TAM) via 
CCL5 or viral macrophage inflammatory proteins 
(vMIP). Furthermore, viral IL-10 (vIL-10) suppresses 
immune activation in the microenvironment of EBV-
associated malignancies, and viral IL-6 (vIL-6) induces 

plasma cell differentiation in KSHV-associated malig-
nancies. EBV further suppresses CD8+ T cell-mediated 
immune control by blocking CXCL11-mediated attrac-
tion of CD8+ T cells and downregulation of MHC class 
I-restricted antigen presentation with its miRNAs that 
are expressed during latency and lytic infection. Early 
lytic KSHV infection is pro-angiogenic, triggering vas-
cular endothelial growth factor (VEGF), platelet-derived 
growth factor (PDGF), and angiopoietin 2 (ANGPT2) 
production. This figure was created in part with modified 
Servier Medical Art templates, which are licensed under 
a Creative Commons Attribution 3.0 unported license: 
https://smart.servier.com.
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the KSHV K3 and K5 gene products that down-
regulate MHC class I molecules [62] and the 
EBV BGLF5, BNLF2a, and BILF1 gene prod-
ucts that inhibit MHC class I transcription, pep-
tide loading, and surface expression, respectively 
[63]. Both viruses contain with KSHV vIRF1–4 
and EBV BZLF1, BRLF1, and BGLF4 also lytic 
gene products that block interferon signaling 
[46, 63], but at least for EBV there is little evi-
dence that type I IFN influences its infection 
in  vivo [64]. Thus, lytic gene expression of 
γ-herpesviruses in a subset of cells in the associ-
ated tumors and often not resulting in productive 
replication of infectious particles, conditions the 
respective tumor microenvironment to be immune 
suppressive and amplifies this immune suppres-
sion by infiltrating leucocyte polarization.

In addition to immune modulation in the 
tumor microenvironment, lytic KSHV gene prod-
uct also contributes to angiogenesis and thereby 
further supports tumor growth. KSHV G protein-
coupled receptor (vGPCR), K1 and K15 stimu-
late angiogenic factors, such as vascular 
endothelial growth factor (VEGF), platelet-
derived growth factor (PDGF), and angiopoietin 
2 (ANGPT2) [26, 46] (Fig.  9.1). This pro-
angiogenic functions of KSHV might be an adap-
tation to the viral life cycle in endothelial cells, 
giving rise to Kaposi sarcoma, even so it remains 
unclear why KSHV requires endothelial cell 
infection for persistence.

9.4	 �Targeting Lytic Replication 
for the Treatment of EBV- 
and KSHV-Associated 
Malignancies

Even so lytic viral replication induction should 
intuitively destroy tumor cells; the above-
discussed contributions of early lytic gene prod-
ucts to paracrine microenvironment conditioning 
for optimal tumor growth might make it attractive 
to inhibit lytic γ-herpesvirus infection as a treat-
ment for EBV- and KSHV-associated malignan-
cies. Along these lines EBV deficient in lytic 
infection induction causes less tumors in mice 
with from CD34+ hematopoietic progenitor cells 
reconstituted human immune system compart-

ments (humanized mice) [65, 66]. Furthermore, 
EBV strains with increased lytic replication are 
enriched in malignancies that are associated with 
this virus [67–69]. Similarly in KSHV-associated 
MCD, inhibition of the lytic cycle-associated 
viral DNA polymerase with a combination of 
zidovudine and valganciclovir was clinically effi-
cacious in the majority of cases [70]. Furthermore, 
in HIV-infected individuals that were treated 
with the herpesviral DNA polymerase inhibitor 
ganciclovir for human cytomegalovirus (HCMV) 
reactivation, Kaposi sarcoma incidence was sig-
nificantly reduced [71, 72]. Finally, herpesviral 
DNA polymerase inhibition has also been suc-
cessful in individual cases of PELs [73]. These 
studies indicate that lytic EBV and KSHV repli-
cation might enhance virus-associated tumori-
genesis and should be targeted for treatment.

However, instead of inhibition of overall lytic 
γ-herpesviral infection, individual effects of lytic 
EBV and KSHV gene expression can also be tar-
geted. Along these lines CCR5 that has been sug-
gested to mediate recruitment of myeloid cell 
into the tumor microenvironment of Hodgkin’s 
lymphoma has been inhibited with maraviroc in 
combination with blocking antibodies against its 
ligand CCL5 [74]. CCL5 is thought to be elicited 
by early lytic EBV infection [48]. Blocking 
CCL5 binding to CCR5 inhibited Hodgkin’s 
lymphoma growth in a xenograft model. 
Similarly, VEGF that is induced by KHSV 
vGPCR, K1, and K15 has been blocked with the 
recombinant antibody bevacizumab in Kaposi 
sarcoma patients [75]. This led to a clinical 
response in around 30% of treated individuals. 
Furthermore, the early lytic KSHV gene product 
vIL-6 is thought to drive plasma cell differentia-
tion in MCD and PEL [2]. Plasma cell differen-
tiation renders tumors susceptible to proteasome 
inhibition, as seen for multiple myeloma [76]. 
Indeed, combining the proteasome inhibitor 
bortezomib with chemotherapy successfully 
treated PEL in one patient [77]. IL-6 receptor was 
also directly targeted for treatment of MCD 
with clinical efficacy in a few patients [78, 79]. 
These initial encouraging results suggest that also 
individual lytic γ-herpesvirus gene products and 
their effects can be inhibited for therapeutic 
benefit.

9  Tumor Microenvironment Conditioning by Abortive Lytic Replication of Oncogenic γ-Herpesviruses



132

These individual lytic EBV and KSHV proteins 
can also be used as active or passive vaccine anti-
gens to target the above-discussed paracrine 
functions. Along these lines the protective value 
of late lytic EBV antigen-specific CD4+ T cell 
responses has been explored in a humanized 
mouse model [80]. The respective viral antigens 
also sensitized neighboring latently infected cells 
for CD4+ T cell recognition after transfer from 
the subset of lytically EBV replicating cells. 
However, in active vaccination with EBV-derived 
viral particles, addition of the latent EBNA1 anti-
gen improved protective vaccine efficacy [81]. 
Nevertheless, lytic EBV antigens should be con-
sidered in combination with latent antigens for an 
optimal vaccine formulation to elicit protective 
T cell responses.

9.5	 �Conclusions and Future 
Outlook

Human γ-herpesviruses contain some of the most 
oncogenic pathogens. Apart from their onco-
genes, some of the EBV- and KSHV-associated 
malignancies, however, heavily rely also on their 
inflammatory infiltrates to sustain tumor growth. 
This is probably most dramatic in Hodgkin’s 
lymphoma in which only around 1% of the tumor 
mass represents the malignant Reed–Sternberg 
cells [57]. It has become apparent in the recent 
years that paracrine conditioning of this tumor 
microenvironment by a small subset of cells 
undergoing lytic γ-herpesvirus infection serves 
functions in the recruitment of immune cells, 
immune suppression, and angiogenesis. We now 
need to capitalize on these findings for new treat-
ments of EBV- and KSHV-associated malignan-
cies that are more specific for these viruses than 
B cell depletion and overall inhibition of herpes-
viral DNA polymerases.
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Abstract
Microbes, which live in the human body, 
affect a large set of pathophysiological pro-
cesses. Changes in the composition and pro-
portion of the microbiome are associated with 
metabolic diseases (Fulbright et  al., PLoS 
Pathog 13:e1006480, 2017; Maruvada et  al., 
Cell Host Microbe 22:589–599, 2017), psy-
chiatric disorders (Macfabe, Glob Adv Health 
Med 2:52–66, 2013; Kundu et  al., Cell 
171:1481–1493, 2017), and neoplastic dis-
eases (Plottel and Blaser, Cell Host Microbe 
10:324–335, 2011; Schwabe and Jobin, Nat 
Rev Cancer 13:800–812, 2013; Zitvogel et al., 
Cell 165:276–287, 2016). However, the num-
ber of directly tumorigenic bacteria is 

extremely low. Microbial dysbiosis is con-
nected to cancers of the urinary tract (Yu, Arch 
Med Sci 11:385–394, 2015), cervix (Chase, 
Gynecol Oncol 138:190–200, 2015), skin (Yu 
et  al., J Drugs Dermatol 14:461–465, 2015), 
airways (Gui et al., Genet Mol Res 14:5642–
5651, 2015), colon (Garrett, Science 348:80–
86, 2015), lymphomas (Yamamoto and 
Schiestl, Int J Environ Res Public Health 
11:9038–9049, 2014; Yamamoto and Schiestl, 
Cancer J 20:190–194, 2014), prostate (Yu, 
Arch Med Sci 11:385–394, 2015), and breast 
(Flores et  al., J Transl Med 10:253, 2012; 
Fuhrman et  al., J Clin Endocrinol Metab 
99:4632–4640, 2014; Xuan et al., PLoS One 
9:e83744, 2014; Goedert et al., J Natl Cancer 
Inst 107:djv147, 2015; Chan et  al., Sci Rep 
6:28061, 2016; Hieken et al., Sci Rep 6:30751, 
2016; Urbaniak et al., Appl Environ Microbiol 
82:5039–5048, 2016; Goedert et  al., Br J 
Cancer 118:471–479, 2018). Microbial dys-
biosis can influence organs in direct contact 
with the microbiome and organs that are 
located at distant sites of the body. The altered 
microbiota can lead to a disruption of the 
mucosal barrier (Plottel and Blaser, Cell Host 
Microbe 10:324–335, 2011),  promote or 
inhibit tumorigenesis through the modifica-
tion of immune responses (Kawai and Akira, 
Int Immunol 21:317–337, 2009; Dapito et al., 
Cancer Cell 21:504–516, 2012) and 
microbiome-derived metabolites, such as 
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estrogens (Flores et al., J Transl Med 10:253, 
2012; Fuhrman et al., J Clin Endocrinol Metab 
99:4632–4640, 2014), secondary bile acids 
(Rowland, Role of the gut flora in toxicity and 
cancer, Academic Press, London, p x, 517 p., 
1988; Yoshimoto et  al., Nature 499:97–101, 
2013; Xie et al., Int J Cancer 139:1764–1775, 
2016; Shellman et  al., Clin Otolaryngol 
42:969–973, 2017; Luu et  al., Cell Oncol 
(Dordr) 41:13–24, 2018; Miko et al., Biochim 
Biophys Acta Bioenerg 1859:958–974, 2018), 
short-chain fatty acids (Bindels et  al., Br J 
Cancer 107:1337–1344, 2012), lipopolysac-
charides (Dapito et  al., Cancer Cell 21:504–
516, 2012), and genotoxins (Fulbright et  al., 
PLoS Pathog 13:e1006480, 2017). Thus, 
altered gut microbiota may change the effi-
cacy of chemotherapy and radiation therapy 
(McCarron et al., Br J Biomed Sci 69:14–17, 
2012; Viaud et  al., Science 342:971–976, 
2013; Montassier et  al., Aliment Pharmacol 
Ther 42:515–528, 2015; Buchta Rosean et al., 
Adv Cancer Res 143:255–294, 2019). Taken 
together, microbial dysbiosis has intricate 
connections with neoplastic diseases; hereby, 
we aim to highlight the major contact routes.

Keywords
Microbiome · Breast cancer · Tumor microen-
vironment · Bacterial metabolite · Bacterial 
metabolism · Antitumor immunity · Tumor 
metabolism · Epithelial-mesenchymal 
transition · Tumorigenesis · Metastasis · 
Chemotherapy

10.1	 �The Human Microbiome

The human body harbors different kinds of sym-
biotic, commensal, and pathogenic bacteria that 
live on the surface and the cavities of the body. 
Microbiota is a collective term that refers to the 
group of microbes colonizing the human body, 
and the collection of genes they encode is known 
as our microbiome [36]. The number of coloniz-
ing microbial cells (>1014) is 10 times more than 
the total sum of human somatic and germ cells. 

Therefore, their collective genome—called the 
metagenome—contains a large number of genes 
that exceed the human genome by 150 times. 
This metagenome performs key functions rele-
vant to human health [37].

Each anatomical niche possesses a unique 
mixture of microbial populations (gut, skin, 
vagina, mouth, nose, and conjunctiva) that 
have important and functionally relevant indi-
vidual variability (at the levels of genus, spe-
cies, and strain) [5]. The great majority of 
microorganisms live in the gastrointestinal 
(GI) lumen. These microbes compete and col-
laborate with other organisms in this niche, 
resulting in a functionally and genetically plas-
tic metagenome [5]. The GI microbiota plays a 
crucial role in digestion, maturation, immune 
response, protection against pathogen over-
growth, maintenance of intestinal barrier func-
tion, regulation of intestinal endocrine 
functions, neurologic signaling, bone density, 
biosynthesis of vitamins, neurotransmission, 
metabolism of bile salts, reaction or modifica-
tion of drugs, elimination of exogenous toxins, 
and maintenance of the energy homeostasis of 
the host [38].

10.2	 �Bidirectional Microbiome-
Host Connection

There is increasing evidence for complex and 
dynamic microbial interactions with hosts. The 
microbe-human symbiotic connection is a 
result of millions of years of coevolution, coad-
aptation, and codependence. Bacterial coloni-
zation begins at birth and progresses through 
childhood to adulthood. The adaptation process 
is nonrandom [39] and depends on the body 
habitat, lifestyle, physiological conditions, gen-
otype of the host, and presence of other 
microbes in the niche [40]. The function and 
composition of the microbiome are determined 
by the diet of the host, probiotic or antibiotic 
consumption, stress, and short- or long-term 
travel. Besides these external factors, the host 
can affect the dynamics of the microbiome 
through its genetics, immune system, and per-
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sonal hygiene [38]. Given the diverse func-
tional repertoire of the microbiome, it is not 
surprising that dysbiosis is associated with a 
broad range of diseases from neurological dis-
orders to metabolic diseases and cancer [12]. 
Numerous studies highlight the relationship 
between changes in the function, composition, 
and proportion of microbes—also called micro-
bial dysbiosis—and the progression of certain 
diseases. Koch’s concept that one microbe is 
responsible for the formation of one disease 
(“one microbe-one disease hypothesis”) was 
shown to be an oversimplification. Recent 
advances have shown that the loss of balance in 
microbial communities and the global change 
in our microbiome are directly or indirectly 
connected to carcinogenesis, rather than the 
presence of a single causative microbe [41]. 
Nevertheless, there are directly tumorigenic 
bacteria, although their number is extremely 
low, including about 10 species (e.g., 
Helicobacter pylori promote the development 
of gastric cancer). Dysbiosis is associated with 
cancers of the urinary tract, cervix, skin, air-
ways, colon, lymphomas, prostate, and breast 
[42]. However, it is still unclear whether cancer 
is the product of alterations of the microbiota or 
modifications in the “normal” microbiome are 
the consequences of cancer progression.

10.3	 �The Tumor 
Microenvironment

Cancers are not just masses of homogenous 
malignant cells. Tumors have been recognized as 
complex organs, whose complexity may exceed 
that of normal healthy tissues. Interactions 
between malignant and recruited non-transformed 
cells create the tumor microenvironment (TME). 
Nonmalignant cells include immune cells, cells 
of the vasculature and lymphatic system, cancer-
associated fibroblasts, pericytes, and adipocytes 
[43]. The role of nonmalignant cells in the TME 
is to support cancer growth. Nonmalignant cells 
have a dynamic tumor-promoting function at all 
stages of carcinogenesis. The communication 
between cell types is driven by an extremely 
complex network of cytokines, chemokines, 
growth factors, other inflammatory mediators, 
and matrix remodeling enzymes [44]. Cancer cell 
metabolism is strictly regulated by the tumor 
microenvironment. The microbiome is a new 
component of the tumor microenvironment that 
impairs tumor cell metabolism by maintaining a 
healthy barrier, inducing inflammation, and pro-
ducing genotoxins and bacterial metabolites with 
different features. Below, we review the modali-
ties of how dysbiosis interferes with carcinogen-
esis (Fig. 10.1).

Fig. 10.1  Schematic picture of the classification of 
microbiota-associated human malignancies. Class A is 
defined by the involvement of the immune response, Class 
B requires direct microbial interactions with parenchymal 

cells, Class C covers distant effects from local interac-
tions, and Class D shows the consequences of altered 
microbiome composition. (Modified figure from [5])
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10.4	 �Bacteria-Driven 
Carcinogenesis 
Through Physical Interaction

The most relevant pathomechanism for 
microbiome-derived carcinogenesis is barrier 
failure. In healthy humans, numerous commensal 
bacteria are found in the intestinal lumen, where 
some bacteria are in direct association with the 
epithelium. The microbiota is vital in preserving 
the functional luminal barrier, by maintaining 
epithelial cell turnover, facilitating mucin pro-
duction, and competing for resources and, 
thereby, suppressing the growth of pathogens 
[45]. The physical and chemical barrier of gut 
epithelial cells prevents microbial translocation 
to the underlying connective tissue. Defects in 
protein-coding genes (e.g., laminin) that are 
essential for the maintenance of a normal barrier, 
infections, inflammation, carcinogenesis, or 
microbial dysbiosis may induce barrier failure. 
Inflammation and carcinogenesis may trigger 
barrier failure, but barrier failure also promotes 
inflammation and carcinogenesis, suggesting a 
forward-amplifying loop [6]. Breakdown of the 
intestinal barrier leads to translocation of bacteria 
and the development of a systemic inflammatory 
response [46].

10.5	 �Microbiome-Immune System 
Interactions 
in Tumorigenesis

Microbiome-immune system interactions play 
multifaceted roles in tumorigenesis. The microbi-
ome may promote tumorigenesis by inducing 
chronic inflammation, disrupting the balance 
between cell proliferation and cell death, and 
triggering immune responses. The physical loss 
of the natural gut epithelial barrier—barrier fail-
ure—or the loss of the antibacterial defense sys-
tem enables the movement of cellular components 
and microbes across the barrier, where they cause 
an innate inflammatory response. The mamma-
lian immune system detects the presence of 
microbial infection through pattern recognition 
receptors (PRRs). Toll-like receptors (TLRs) and 

NOD-like receptors (NLR) belong to the PRR 
family and recognize different but overlapping 
microbial components. They are expressed in dif-
ferent cellular compartments (cell surface, cyto-
plasm, lysosome, and endosome) and activate 
specific signaling pathways that promote inflam-
mation, tumor proliferation, or resistance to cell 
death [23].

TLRs are one of the most powerful pro-
inflammatory stimuli. These structures recognize 
microbe-associated molecular patterns, such as 
lipopolysaccharides (LPS), peptidoglycan, fla-
gella, or microbial DNA/RNA. TLR2 recognizes 
peptidoglycan and lipoteichoic acid (bacterial 
cell wall components) and promotes gastric can-
cer, while TLR4 detects LPS (Gram-negative cell 
wall component) and contributes to skin, pan-
creas, liver, and colon cancer development [6]. 
Carcinogenesis is promoted through TLRs of 
epithelial cells, macrophages, and fibroblasts. 
TLR induction leads to the production of pro-
inflammatory cytokines, such as interleukins and 
TNFα. Downstream effectors of TLR signaling 
induce cell survival and suppress apoptosis 
through NF-κB (nuclear factor-κB) and STAT3 
signaling, which is in line with the role of MYD88 
mutations that induce NF-κB and STAT3 in many 
human lymphomas [24]. Tumor formation is 
reduced by pharmacologic inhibition of interleu-
kins (IL-17 and IL-23), antibiotic treatment, or 
MYD88 inactivation [6].

Although a direct link between endogenous 
bacteria and tumor-associated angiogenesis has 
not been shown, the microbiome is required for 
normal development of the vasculature. LPS, 
produced by the microbiome, may promote 
angiogenesis through TLRs. IL-17 is produced 
by T-helper-17 (Th17), suggesting that bacteria 
also impact the tumor microenvironment by stim-
ulating Th17 lymphocytes. A connection between 
breast cancer and immunoglobulins has been 
established. Secretory immunoglobulin A (IgA) 
helps to maintain the integrity of the mucosal 
barrier, attenuates the host immune response, and 
regulates the composition of the gut microbial 
community.

Several bacterial species induce immunity in 
tumor development. Lactococcus species help 
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maintain the cytotoxic activity of natural killer 
(NK) cells, while Sphingomonas yanoikuyae 
have an important role in maintaining breast tis-
sue health. Cytotoxic immune cells (cytotoxic T 
lymphocytes) are essential for identifying and 
destroying precancerous and cancerous cells; 
Fusobacterium nucleatum destroy this protective 
mechanism and enable tumor progression, while 
others stimulate anticancer immunity. 
Bifidobacterium, Bacteroides thetaiotaomicron, 
and Bacteroides fragilis enhance dendritic cell 
function and antitumor cytotoxic T cell immunity 
[1]. TLRs may also promote cancer cell prolifer-
ation through different growth factor receptor 
ligands (amphiregulin, epiregulin, and hepato-
cyte growth factors), which exert both local and 
long-distance effects.

In carcinogenesis, the microbiota induce acti-
vation of NOD-like receptors (NLRs) as well. 
Many studies focus on NOD2, because loss of 
NOD2 activity is connected with Crohn’s dis-
ease. NOD2 has a key role in the activation of 
NF-κB signaling and the formation of a bacterial 
community. Thus, NOD2 loss-of -function muta-
tions may lead to intestinal dysbiosis and an 
enhanced risk of developing colorectal carci-
noma (CRC). Genetically induced CRC is also 
evoked by NOD1 deficiency, which plays an 
important role in intestinal defense against bacte-
ria. NLRP6, another NLR, is important in 
microbiota-tumorigenesis interactions. NRRP6 
is a component and key activator of inflamma-
somes (multiprotein oligomers responsible for 
the activation of inflammatory responses), which 
are downregulated in dysbiosis-driven carcino-
genesis, together with decreased IL-18 produc-
tion [6].

Immunotherapy is used to eliminate residual 
cancer cells after chemotherapy or radiation ther-
apy. In therapy, monoclonal antibodies target 
molecules, such as anti-T-lymphocyte-associated 
antigen 4 (CTLA-4) and anti-programmed death 
1 (PD-1) or its ligand anti-PD-L1. The advantage 
of immunotherapy is that it stimulates and sup-
ports the immune system of the host to fight can-
cer cells. The gut microbiome can stimulate the T 
cell response and improve inflammatory signal-
ing through PRRs that potentiate the immune 

system to directly eliminate cancer cells. 
Antibodies against immune checkpoints improve 
T cell function and proliferation and, thereby, 
improve the anticancer immune response, pro-
viding an effective therapeutic approach in 
patients with various types of cancers, such as in 
advanced melanoma [47], renal cell carcinoma 
[48], or non-small cell lung cancer [49]. 
Alterations in commensal gut bacteria influence 
therapeutic responses to inhibition of CTLA-4 
and PD-1. Following CTLA-4 therapy, the micro-
bial composition shifts; Bacteroidales and 
Burkholderiales abundance decreases and 
Bacteroides and Clostridiales are enriched [50]. 
Bacteroides fragilis is capable of promoting 
T-helper 1 (Th1) responses and activating 
antigen-presenting cells (dendritic cells) through 
the induction of IL-12. Thus, an improvement in 
anti-CTLA-4 effectiveness may be partially due 
to the enrichment of Bacteroides fragilis. 
Improved effectiveness of anti-CTLA-4 therapy 
was observed in melanoma patients with 
increased abundance of Bacteroides, Bacteroides 
thetaiotaomicron, and Bacteroides fragilis [50]. 
The main bacterial component driving these pro-
cesses was found to be the LPS of Bacteroides 
species. Thus, inhibition of CTLA-4 can alter the 
composition of the gut microbiome that in turn 
influences responsiveness to immunotherapy. 
Studies on anti-PD-1 or anti-PD-L1 therapy 
showed similar bacteria-driven differences in 
tumor outgrowth. In a mouse model of mela-
noma, increased effectiveness of anti-PD-L1 
therapy was associated with enhanced 
Bifidobacterium (Bifidobacterium longum and B. 
breve) abundance in the gut and a consequent 
activation of dendritic cells [51]. In metastatic 
melanoma patients receiving anti-PD-1 and anti-
PD-L1 treatment, patients with greater alpha 
diversity with an enrichment of Clostridiales, 
Faecalibacterium, and Ruminococcaceae species 
and decrement in Bacteroidales had longer sur-
vival. These beneficial effects were partly due to 
an enhanced T cell response (connected mainly 
to CD8+ T lymphocytes) and the upregulation of 
antigen-presenting pathways [52]. Increased 
CD8+ T cell activation was shown in another 
study in advanced melanoma patients. Patients 
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that responded to anti-PD-L1 therapy had 
elevated levels of Bifidobacterium longum, 
Collinsella aerofaciens, and Enterococcus fae-
cium. Moreover, all patients that responded to 
treatment carried Akkermansia muciniphila [53]. 
Better survival was shown in urothelial carci-
noma, renal cell carcinoma, or non-small cell 
lung carcinoma patients undergoing anti-PD-1 
treatment who did not receive antibiotics during 
or after treatment and carried elevated levels of 
Akkermansia and Alistipes species. These find-
ings were mainly connected to CD4+ T cell acti-
vation [54] and demonstrated that 
antibiotic-induced dysbiosis could negatively 
influence responses to immunotherapy.

However, the mechanisms that contribute to 
dysbiosis and changes in the microbial commu-
nity are not well understood. Host-driven immune 
and inflammatory responses are important driv-
ing factors that shape the bacterial community 
composition. The composition of the microbi-
ome, innate immunity, and inflammation deter-
mine the outgrowth of different types of specific 
bacteria by changing the production of metabo-
lites, such as nitrate. Nitrate may provide a unique 
energy source for facultative anaerobic bacteria 
(e.g., Enterobacteriaceae). Inflammation may 
promote bacterial fitness and adaptation by 
inducing the expression of stress-response genes 
in bacteria (e.g., Escherichia coli) [6].

10.6	 �Genotoxins and Microbiota-
Driven Genomic Instability

Inflammation enhances tumorigenesis by induc-
ing DNA damage and altering the mechanism of 
DNA repair. Macrophage release of reactive oxy-
gen species (ROS) in response to inflammatory 
cytokines directly induces DNA breakage and 
mutations, and their downstream pathways stim-
ulate transcription factors (NRF2, NF-κB) that 
impair cellular growth to produce cancer [36]. 
Enterococcus faecalis can generate large amounts 
of superoxide, while Fusobacteria species and 
Deltaproteobacteria produce hydrogen sulfide; 
both Fusobacteria species and 
Deltaproteobacteria are associated with CRC.

Hydrogen sulfide is a product of sulfate reduc-
tion from dietary taurine and sulfur-containing 
amino acids and has a wide effect on the host. 
Hydrogen sulfide is highly inflammatory and 
toxic to colonocytes. Furthermore, hydrogen sul-
fide can enhance colonocyte proliferation through 
the ERK1/2 pathway [55], inhibit mucus synthe-
sis and butyrate oxidation while impairing the 
activity of cytochrome oxidase, and generate free 
radicals that lead to genotoxicity.

Although the ability of microorganisms to 
produce ROS [56] contributes to tumorigenesis, 
bacteria can also release specific toxins that 
induce DNA damage responses, which also con-
tribute to tumorigenesis (Fig.  10.2). Damaged 
barrier function may also allow the bacteria to 
transfer or deliver toxins, including cytolethal 
distending toxin (CDT), colibactin, cytotoxic 
necrotizing factor 1 (CNF1), and Bacteroides fra-
gilis toxin. CDT and colibactin are true genotox-
ins, which directly damage the DNA and activate 
the ataxia signaling pathway and histone phos-
phorylation, which lead to G2/M cell cycle arrest 
[6]. CDT is created by Gram-negative bacteria 
(E. coli, Helicobacter species, and Salmonella 
typhi) and is relevant to colorectal, gastric, and 
gallbladder cancer. Colibactin is produced by E. 
coli, Enterobacteriaceae, Proteus mirabilis, and 
Klebsiella pneumoniae and is important in the 
development of CRC. Colibactin produced by E. 
coli induces DNA double-strand brakes, cell 
cycle arrest, and improper cell division [1]. 
Bacteroides fragilis toxin activates the Wnt/β--
catenin signaling pathway, which promotes epi-
thelial proliferation, by promoting the cleavage 
of the adhesion molecule, E-cadherin. The cleav-
age of E-cadherin leads to β-catenin translocation 
to the nucleus and enables the transcription of 
proto-oncogene c-myc, leading to colonic epithe-
lial hyperplasia [1].

10.7	 �Bacterial Metabolites 
in Carcinogenesis

A major pathway in microbiome-host signaling 
is the production of bacterial metabolites. These 
metabolites, which are synthesized by the 
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microbiome, enter the circulation at the site of 
production and travel to distant organs, where 
they exert their biological effects [57]. Bacterial 
metabolites behave like human hormones in the 
sense that they are synthesized by an “organ” (the 
microbiome) and are then transferred to the site 
of action by the circulation [57].

Microbiota have the potential to metabolize 
hormones, such as estrogen. The gut microbi-
ome is a key determinant of estrogen levels in 
the body. β-Glucuronidases are the enzymes 
responsible for estrogen deconjugation. 
Deconjugation of excreted estrogen is impor-
tant in estrogen reuptake and, thus, modulation 
of systemic estrogen availability and the regu-
lation of estrogen-associated pathways. 
Numerous bacterial species can express 

β-glucuronidases, including Firmicutes and 
Bacteroidetes: Alistipes, Bacteroides, 
Bifidobacterium, Citrobacter, Clostridium, 
Collinsella, Dermabacter, Edwardsiella, 
Escherichia, Faecalibacterium, Lactobacillus, 
Marvinbryantia, Propionibacterium, 
Roseburia, and Tannerella. Thus, these bacte-
rial species affect circulating and excreted 
estrogen levels. Reactivated estrogen increases 
the serum estrogen levels and act through 
estrogen receptors (ERα and ERβ) to modulate 
the expression of several genes, including 
mitochondrial genes. Elevated oxidative phos-
phorylation was shown to support metastasis 
[58], contribute to therapy failure [59], and, 
thereby, render the tumors more aggressive. 
Taken together, bacterial estrogen deconjuga-

Fig. 10.2  The intestinal microbiota can modulate several hallmarks of cancer through different mechanisms
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tion promotes breast cancer progression and 
changes the risk for development and progres-
sion of estrogen-dependent cancers [6, 57].

The fermentation of nondigestible carbohy-
drates is beneficial for the host due to the genera-
tion of short-chain fatty acids (SCFAs), such as 
acetate, butyrate, formate, lactate, and propio-
nate. SCFAs are novel potential targets for the 
management of obesity, metabolic disorders, and 
lipomas, due to their ability to influence adipo-
cyte differentiation [60]. SCFAs have known 
anti-inflammatory, antiproliferative, and antineo-
plastic effects. In addition, SCFAs can regulate 
autophagy. Thus, SCFAs have a protective effect 
on the colonic mucosa and play a significant role 
in the protection against colon and liver cancer 
[6]. In the gut, acetate, butyrate, and propionate 
production are associated with a large group of 
bacteria. Acetate production is widespread, while 
the production of butyrate is connected to 
Faecalibacterium prausnitzii, Eubacterium hal-
lii, Eubacterium rectale, Roseburia faecalis, 
Odoribacter, and Anaerotruncus species. The 
majority of propionate production is associated 
with Bacteroidetes, Lachnospiraceae, and 
Negativicutes species, as well as to Roseburia 
inulinivorans and Ruminococcus obeum. In line 
with this, the abundance of Akkermansia 
muciniphila, a propionate-producing bacterium, 
is associated with the richness of the gut microbi-
ome [61]. SCFAs have both positive and negative 
effects on breast cancer. Stroma and cancer cells 
have free fatty acid receptors, through which 
SCFAs modulate several hallmarks of cancer: 
cell proliferation, invasion, apoptosis, metabo-
lism, and the expression level of certain genes. 
Lactate can be used as a direct energy substrate; 
thus, the inhibition of lactate metabolism reduces 
cancer cell viability. Butyrate enhances mito-
chondrial ROS level, induces apoptosis, and 
inhibits histone deacetylases, which lead to ele-
vated anticancer activity [57].

The intestinal microbiota regulate bile acid 
metabolism and are involved in producing the 
secondary bile acids, deoxycholic acid (DCA) 
and lithocholic acid (LCA), through the decon-
jugation, oxidation, and dehydroxylation of pri-
mary bile acids. The enzyme responsible for the 

conversion of primary bile acids to secondary 
bile acids is 7α/β hydroxysteroid dehydrogenase 
(HSDH). Conversion to secondary bile acids 
increases the hydrophobicity of bile salts allow-
ing recovery through the colonic epithelium. 
Secondary bile acids have both pro- and anti-
cancer activity. The consumption of a high-fat 
diet changes the gut microbiome and enhances 
the level of DCA via 7/α-dehydroxylase, which 
is produced by bacteria, mainly clostridia. DCA 
is a promoter of carcinogenesis in certain can-
cers. DCA-elicited cell signaling is connected to 
protein kinase C and ERK1/2 signaling through 
epidermal growth receptors, resulting in 
enhanced cell proliferation. DCA is known to 
increase CRC development and promote colon 
and esophageal cancers [6]. Moreover, bile 
acids disrupt cell membranes through their 
amphipathic properties and the generation of 
ROS and reactive nitrogen species. Bile acids 
also exert antimicrobial activity that changes the 
composition of the intestinal community. LCA 
is synthesized through 7α-dehydroxylation of 
chenodeoxycholic acid (CDCA) or 
7β-dehydroxylation of ursodeoxycholic acid 
(UDCA). The enzyme responsible for LCA syn-
thesis is encoded by the bile acid-inducible 
(baiH) operon and expressed by aerobic and 
anaerobic bacteria, including Bacteroides fragi-
lis, Bacteroides intestinalis, Clostridium scind-
ens, Clostridium sordellii, Clostridium 
hylemonae, and E. coli. These bacteria belong to 
the phyla Bacteroides, Firmicutes, and 
Proteobacteria. LCA inhibits the epithelial-to-
mesenchymal transition, vascular endothelial 
growth factor (VEGF) production, and metasta-
sis formation of breast cancer cells, changes the 
metabolic features of the cells, and enhances 
antitumor immunity of the host [30]. In line 
with these observations, human serum levels of 
LCA and the ability of the microbiome to pro-
duce LCA are largely reduced in breast cancer; 
this is most pronounced in in situ and early stage 
carcinoma (stages 0 and 1) [30]. LCA can poten-
tially exert its effects through the farnesoid X 
receptor (FXR), liver X receptor (LXR), preg-
nane X receptor (PXR), constitutive androstane 
receptor (CAR), vitamin D receptor (VDR), and 
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G-protein-coupled bile acid receptor 1 (TGR5). 
In breast cancer, the main receptor is TGR5. 
Activation of TGR5 signaling was shown to 
induce OXPHOS, mitochondrial biogenesis 
through NRF1, AMPK, and PGC-1β signaling. 
The expression of mitochondrial proteins (cyto-
chrome c, atp5g1, and ndufb5) consequently 
increases mitochondrial activity and exerts anti-
Warburg effects in breast cancer models [30]. In 
supraphysiological concentrations (>1  μM), 
LCA was shown to inhibit fatty acid production 
and induce cell death and the expression of 
multidrug-resistant proteins [62].

When undigested dietary compounds reach 
the large intestine, they are fermented through 
anaerobic respiration. High protein consump-
tion is associated with elevated colonic fermen-
tation. Bioactive products, similar to bile salts, 
can produce or inhibit carcinogenesis. 
Cadaverine, a biogenic amine, is synthesized 
from L-lysine by bacterial lysine decarboxylase 
enzymes (LdcC and CadA). Cadaverine also 
has a human origin, but it seems that bacterial 
production is more important as it highly 
exceeds human biosynthesis. The main cadav-
erine-producing bacteria include Aeromonas 
veronii, Clostridium perfringens, E. coli, 

Enterobacteriaceae bacteria, Edwardsiella 
tarda, Hafnia alvei, Raoultella ornithinolytica, 
Staphylococcus, and Streptomyces species. 
These species belong to the Acinetobacteria, 
Bacteroides, Firmicutes, Fusobacteria, and 
Proteobacteria phyla. Trace amine-associated 
receptors (TAARs) were shown to be responsi-
ble for mediating cadaverine-elicited effects. 
Through TAARs, cadaverine inhibits epithelial-
to-mesenchymal transition, proliferation, 
movement, and invasion of breast cancer cells. 
Moreover, cadaverine treatment inhibits pri-
mary tumor infiltration to the surrounding tis-
sue and reduces the proportion of cancer stem 
cells [42].

Many bacteria in the GI tract have alcohol 
dehydrogenase activity, which enables the bacte-
ria to metabolize ethanol and produce reactive 
and toxic acetaldehyde. The most important gas-
tric pathogen, H. pylori, and some skin bacteria 
have high alcohol dehydrogenase activity. The 
colonic mucosa has a low aldehyde dehydroge-
nase activity, resulting in acetaldehyde accumu-
lation in the colon. High acetaldehyde levels 
contribute to the pathogenesis of alcohol-induced 
diarrhea and the increased risk of colon polyps 
and colon cancer [63] (Fig. 10.3).

Fig. 10.3  Mechanisms by which microbial dysbiosis modulates carcinogenesis
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10.8	 �The Interference 
of the Microbiome 
with Chemotherapy

Bacteria of the intestinal microbiome can inter-
fere with therapeutic agents during cancer treat-
ment and management. The microbiome can 
modulate the efficacy of both chemotherapy and 
radiotherapy. Bacteria can inactivate or activate 
chemotherapeutic drugs, alter immune responses, 
or interfere with the side effects of the therapy. 
The relationship is reciprocal, as tumor therapy 
can influence the composition and function of the 
microbiome [57].

Chemotherapeutic compounds, such as cispla-
tin or oxaliplatin, exert their cytotoxic effects 
through DNA damage, the upregulation of apop-
totic pathways, or the promotion of antitumor 
immune responses (through a TLR4-dependent 
mechanism). The antitumor effects of platinum 
compounds significantly decrease upon broad-
spectrum antibiotic treatment or in microbiota-
deficient mice. In addition, tumor-infiltrating 
cells show reduced production of ROS after anti-
biotic treatment [35]. In this scenario, commen-
sal microbes prime tumor-infiltrating cells for 
ROS production through the connection to PRRs, 
with the involvement of MYD88 signaling 
(described previously) [6, 56]. Lactobacillus aci-
dophilus supplementation can restore the antitu-
mor effects of cisplatin in mice [11]. 
Cyclophosphamides have been used for antican-
cer therapy for almost 60  years. In high doses, 
cyclophosphamides are immunosuppressive, 
while in low doses, cyclophosphamides promote 
the antitumor immune response through activa-
tion of cytotoxic T cells and induction of immu-
nogenic cell death [33]. Cyclophosphamides are 
used in the therapy of breast cancer; however, 
cyclophosphamides cause damage to the gut 
mucosa, making the gut leaky and allowing gut 
bacteria to enter the circulation. A rich microbi-
ome and elevated levels of Lactobacillus planta-
rum are protective against 
cyclophosphamide-induced mucosal injury [57]. 
Cyclophosphamide treatment causes the overrep-
resentation of Gram-negative species, such as 
Barnesiella intestinihominis that enhance effec-

tor T cells (cytotoxic CD8+ T cell), and 
Enterococcus hirae, a  Gram-positive bacteria 
that enhance MYD88-dependent CD8+ T cell 
activation in a tumor-specific manner. Both bac-
teria are regulated by intestinal NOD2 receptors 
that promote a pro-inflammatory tumor environ-
ment and drive antitumor immune responses 
[35]. T cell-mediated immune responses against 
B. intestinihominis and E. hirae have clinical rel-
evance in chemotherapy-treated patients with 
lung and ovarian cancers.

In addition to cyclophosphamides, anthracy-
clines, selective estrogen receptor modulators 
(SERMs), taxanes, and antimetabolites have key 
roles in breast cancer therapy. Anthracyclines are 
produced by Streptomyces species. Anthracyclines 
act mainly by intercalating into DNA and inter-
fering with DNA metabolism and RNA produc-
tion, or by generating excessive 
ROS. Anthracyclines can be bacteriostatic; they 
decrease the abundance of Acinetobacter species 
[32]. No bacterial drug metabolism was associ-
ated with SERMs (tamoxifen, raloxifene). 
Tamoxifen can modulate the composition of the 
microbiome, while tamoxifen resistance can also 
be modulated by the microbiome. SERMs are 
toxic to different species in the GI tract, including 
Acinetobacter baumannii, Bacillus stearother-
mophilus, Enterococcus faecium, Klebsiella 
pneumoniae, Porphyromonas gingivalis, 
Pseudomonas aeruginosa, and Streptococcus 
mutans [57]. Taxanes (paclitaxel, docetaxel) are 
widely used as chemotherapy agents. Taxanes 
disrupt microtubule formation and, hence, block 
cell division and proliferation. Taxanes may 
change the composition of the microbial commu-
nity or interfere with bacterial LPS, while activat-
ing the immune system. PARP inhibitors are 
drugs used in the treatment of ovarian cancer 
with a potential to be used for other neoplasias 
(e.g., breast cancer, prostate cancer). PARP 
inhibitors were shown to induce the diversity of 
the gut microbiome [64].

Drugs are often used in combinations to 
enhance treatment efficacy. Irinotecan is used to 
treat colon cancer and small cell lung carcinoma. 
For treating colon cancer, irinotecan is generally 
used in combination with 5-fluorouracil (5FU), 
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whereas for the treatment of small cell lung can-
cer, irinotecan is combined with cisplatin. 
Bacterial reactivation of irinotecan by bacterial 
β-glucuronidase leads to severe side effects, such 
as diarrhea, vomiting, bone marrow suppression, 
hair loss, shortness of breath, and fever. Antibiotic 
treatment or β-glucuronidase inhibition prevents 
most of these side effects [6]. When 5FU is used 
in combination with irinotecan, dysbiosis-
induced mucositis leads to bacterial translocation 
from the GI tract. Both 5FU and gemcitabine 
undergo bacterial activation and bacterial deacti-
vation. In human pancreatic ductal adenocarci-
noma, Gammaproteobacteria was found to be the 
most important player in deactivating gem-
citabine. In tumors, levels of 
Gammaproteobacteria were elevated in tumor 
patients as compared to healthy individuals, 
underlining its role in the regulation of gem-
citabine availability. Both 5FU and gemcitabine 
have bactericidal properties; therefore, they can 
alter the composition of the GI microbial com-
munity [57].

Chemotherapy is often not specific for one or 
two bacterial species, but change the proportion 
and diversity of the microbiome. After chemo-
therapy, both the alpha diversity, which repre-
sents species richness (the number of different 
species in a sample), and beta diversity, which 
refers to the diversity in the microbial community 
between different environments, are altered as 
compared to samples without chemotherapy. 
These changes are independent of covariates 
(age, sex, previous antibiotic consumption, and 
previous chemotherapeutic treatment) and show 
increases in Citrobacter, Enterococcus, 
Klebsiella, Megasphaera, and Parabacteroides 
species, while showing decrements in the abun-
dance of Adlercreutzia, Anaerostipes, 
Bifidobacterium, Blautia, Clostridium, 
Collinsella, Coprococcus, Dorea, Lachnospira, 
Roseburia, and Ruminococcus species. Some 
bacteria showed resistance to chemotherapy; thus 
their abundance did not change upon treatment, 
including Actinomyces, Erysipelotrichaceae, 
Mobiluncus, Mitsuokella, Oxalobacter, 
Prevotella, Scardovia, and Slackia [34].

Besides inducing taxonomic dysbiosis, che-
motherapy can disrupt microbial function. 
Several metabolic pathways can be suppressed 
by chemotherapy, including amino acid, carbo-
hydrate, and nucleotide metabolism, as well as 
the metabolism of vitamins and cofactors. Other 
pathways are enhanced by chemotherapy, includ-
ing signal transduction, xenobiotic degradation, 
and glycan metabolism. Glycan metabolism, 
together with disrupted carbohydrate and amino 
acid metabolism, contributes to enhanced intesti-
nal inflammation [65] and upregulation of nitro-
gen, sulfate, and riboflavin pathways, which is 
associated with inflammatory diseases, increased 
ROS production, and bacterial translocation [66]. 
Moreover, chemotherapy increases bacterial 
motility proteins and flagella assembly (essential 
for bacterial pathogenesis, motility, adhesion, 
and invasion).

Dysregulated microbiota plays a significant 
role in the development of GI mucositis. 
Mucositis is a painful inflammation of the 
mucous membranes of the digestive system, usu-
ally as an unpleasant side effect of chemotherapy 
and radiotherapy for cancer. In the first step of 
this process, the microbiome enhances the activa-
tion of NF-κB and TNFα signaling, leading to 
long-lasting inflammation. Several bacteria are 
reduced after chemotherapy, including 
Bifidobacterium, Coprococcus, Clostridium, 
Dorea, Faecalibacterium, Lachnospira, 
Roseburia, and Ruminococcus, which inhibit 
inflammation through blocking NF-κB and pro-
duce mucosa-protecting metabolites (SCFAs), 
whereas Citrobacter and other species, which 
participate in LPS biosynthesis and enhance 
intestinal inflammation, are increased during 
chemotherapy [34]. Subsequently, GI mucositis 
barrier dysfunction develops, leading to increased 
intestinal permeability, which coincides with a 
decrease in the amount of the previously men-
tioned protective bacteria. The microbiome may 
modulate the composition of the mucus layer, as 
the terminal step of mucositis induction. 
Citrobacter, which increases after chemotherapy, 
may participate in the degradation of the mucosal 
barrier through the expression of mucus-
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degrading enzymes (mucinase, glycosidase), and 
Enterobacteriaceae can disrupt the mucus layer. 
Butyrate-producing bacteria protect the mucin 
layer, as butyrate increase mucin synthesis. A 
decrement in cysteine, proline, and methionine 
metabolism, which occurs during chemotherapy, 
can also be responsible for altered mucin compo-
sition and the development of GI mucositis after 
chemotherapy [34].

Radiation therapy is used as a primary treat-
ment in cancers that are localized to one area of 
the body to prevent tumor recurrence after sur-
gery or applied together with chemotherapeutic 
agents. Radiation itself is genotoxic, resulting in 
cancer cell death. However, radiation can also 
abolish nontarget cells due to the activation of the 
immune system by radiation-induced inflamma-
tion. The microbiota is known to be involved in 
these off-target effects due to intestinal mucosa 
damage and toxicity. Radiotherapy decreases 
both the diversity and the total amount of gut bac-
teria, particularly Bacteroidetes, 
Enterobacteriaceae, Firmicutes, and 
Lactobacillus species, while enriching 
Fusobacterium and Proteobacteria, which are 
connected with increased production of pro-
inflammatory cytokines [35].

10.9	 �Modulation 
of the Microbiome 
to Enhance the Efficacy 
of Chemotherapy

Probiotics and prebiotics are widely used to shift 
the composition of the microbiome, and these 
interventions are potentially useful in restoring 
the microbiome after chemotherapy. Probiotics 
contain live bacteria that can be administered 
orally, while prebiotics (dietary prebiotics) are 
compounds in food, which provide substrates 
that stimulate the growth or activity of advanta-
geous bacteria colonizing the gut. Prebiotics and 
probiotics prevent infection and moderate the 
side effects of cancer treatment. Administration 
of various strains of Lactobacillus, such as 
Lactobacillus acidophilus, is associated with 

enhanced cisplatin sensitivity and longer survival 
in lung cancer [35]. Bifidobacterium bifidum, 
Lactobacillus acidophilus, Lactobacillus casei, 
and Lactobacillus rhamnosus decrease the toxic-
ity associated with 5FU chemotherapy and, con-
sequently, reduce abdominal discomfort and 
diarrhea. In addition, Bifidobacterium and 
Lactobacillus species in combination were able 
to moderate the side effects after radiation treat-
ment. Current clinical trials are focused on the 
efficacy of probiotic treatment for colorectal, kid-
ney, breast, gynecologic, and lung cancer [35].

Fecal microbiota transplantation (FMT), also 
known as stool transplantation, is the process of 
transplanting fecal bacteria from a healthy indi-
vidual into a diseased subject. FMT is an effec-
tive therapy to shift the composition of the 
microbiome. FMT is effective in the treatment of 
Clostridium difficile, where FMT is curative 
through enhancement of the diversity of the 
microbiome [67]. FMT could be potentially 
effective after chemotherapy or radiotherapy in 
cancer patients by avoiding gut toxicity or pre-
venting infections. However, FMT has numerous 
side effects (fever, diarrhea, vomiting), including 
serious side effects, such as GI bleeding or perfo-
ration, that limit its applicability in cancer 
patients [35].

As a developing future therapy, bacterial engi-
neering offers the opportunity to treat cancer 
without reconfiguring the gut microbiome. 
Biologically engineered bacteria could be applied 
effectively to target cancer cells or to deliver ther-
apeutic agents, thereby avoiding serious side 
effect-eliciting anticancer therapies. Bacterial 
cells can be easily and rapidly transfected with 
vectors encoding interfering RNAs, cytokines, 
toxins, antiangiogenic factors, or antibodies. 
Listeria and Shigella species could invade 
hypoxic tumor tissues, and, given their quick rep-
lication rate, these bacteria could amplify their 
transgene(s) within the tumor microenvironment. 
Upon the application of bacteria, finding a good 
balance is necessary; one must seed a sufficient 
number of bacteria to elicit therapeutic effect but 
should avoid suppressing the immune system at 
the same time [35] (Fig. 10.4).
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10.10	 �Type of Cancers Related 
to Microbial Dysbiosis

Besides the GI tract, other organs are colonized 
by a unique microbial community, such as the 
skin, oral cavity, and germinal tracts. Growing 
evidence confirms a significant relevance of bac-
terial microbiota in the carcinogenesis of the 
colon, liver, breast, lung, oral cavity, and 
pancreas.

The liver receives 70% of its blood supply 
from the intestinal vein. This close functional 
relationship between the liver and GI tract results 
in constant exposure to nutrients, toxins, micro-
bial metabolites, and microbes. Various types of 
immune cells (NK cells, macrophages, lympho-
cytes) defend this organ against harmful agents 
derived from the intestine. An altered microbi-
ome may contribute to the development of hepa-
tocellular carcinoma (HCC), which is preceded 
by chronic liver disease, fibrosis, and cirrhosis 
[68]. The disrupted microbiome may drive this 
process through the loss of intestinal barrier func-
tion, the activation of the NF-κB pathway, the 
production of pro-inflammatory cytokines, and 
increased anti-apoptotic signals.

Pancreatic cancer is an aggressive cancer type 
with low therapeutic success and survival rate. 
Periodontal disease, low oral hygiene, obesity, 
smoking, and alcohol consumption are well-
known risk factors for pancreatic cancer, because 

they facilitate the translocation of bacteria 
through disrupted barrier layers. Bacteria can 
reach the pancreas through the circulation. 
Furthermore, although the pancreas does not 
have a microbiome, carcinogenesis of this organ 
is enhanced by distant dysbiotic microbiota [6], 
through the involvement of inflammatory 
responses, LPS expression, and TLR4 activation 
[69].

About 90% of all lung cancer cases are attrib-
uted to smoking, while only 15% of smokers 
develop lung cancer, suggesting other mecha-
nisms and influences. The interface of the lung is 
continuously connected to the outside environ-
ment, and the microbiota of the lung reflect the 
microaspiration of oral microbiota. The lung has 
a unique microbiome with different species of 
Proteobacteria. The connection between lung 
cancer and chronic pulmonary disease is assigned 
to toxic pro-inflammatory and neoplasia-causing 
compounds. Different bacteria species, such as 
Moraxella catarrhalis, Haemophilus influenza, 
and Streptococcus pneumoniae, are associated 
with 50% of chronic pulmonary disease, and 
their presence can elicit chronic inflammatory 
responses [70].

The oral cavity harbors diverse individual 
microbiota. Moreover, the composition of the 
microbiota differs between microenvironments 
within the oral cavity; the lateral and dorsal 
tongue and tooth surface all have unique micro-
bial communities. The normal oral microbiome 

Fig. 10.4  Targeting the microbiome for modulation of carcinogenesis
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includes Actinobacteria, Bacteroidetes, 
Firmicutes, Fusobacteria, Haemophilus, 
Neisseria, Prevotella, Proteobacteria, 
Streptococcus, and Veillonella species. 
Capnocytophaga gingivalis, Prevotella melanin-
ogenica, and Streptococcus mitis are found in 
oral squamous cell carcinoma (OSCC) and are 
considered biomarkers of this disease. Risk fac-
tors for OSCC, which are connected to anaero-
bic, Gram-negative bacteria that liberate 
inflammatory markers, include smoking, heavy 
alcohol consumption, poor oral hygiene, and 
periodontal disease [71].

Genetic factors, infection, inflammation, and 
diet are well-known risk factors for colorectal 
carcinoma (CRC). CRC is associated with other 
diseases, such as inflammatory bowel disease, 
autoimmune, allergic reactions, obesity, and dia-
betes. Despite the great diversity of bacterial spe-
cies of the GI tract, CRC is closely related to 
changes in the diversity and activity of microbes. 
Microbes produce metabolically active mole-
cules that alter homeostasis or carcinogenesis 
[72]. The microbiota may contribute to CRC 
through different mechanisms that result in an 
imbalance between cellular proliferation and 
apoptosis pathways, such as PRR signaling and 
inflammation, metabolites that induce DNA dam-
age and chromosome instability, or the loss of 
protective metabolites (due to microbial dysbio-
sis), such as SCFAs, secondary bile acids, or bio-
active amines [73].

Recent research showed a strong correlation 
between gut microbiome dysbiosis and breast 
cancer. In addition to the gut microbiome, the 
breast has a unique microbiome that shows dras-
tic changes in breast cancer. The microenviron-
ment of breast cancer cells is modulated by 
bacterial metabolites (SCFAs, secondary bile 
acids, amino acid degradation products, and 
estrogen derivatives) that are produced in the 
intestine and reach cancer cells of the breast via 
the circulatory system. In breast cancer, various 
pathways are disrupted or altered in addition to 
the general changes in glycolysis and mitochon-
drial function, including glutamine, fatty acid, 
cholesterol metabolism, protein translation, and 
glutamine-serine pathways in cancer cells. These 

changes are the consequence of the rearrange-
ment of a complex homeostatic system and 
energy sensors and lead to changes in cell prolif-
eration and angiogenesis. Microbial dysbiosis 
occurs in both the fecal flora and the breast 
microbiome in breast cancer [20]. Fecal samples 
of breast cancer patients contain increased levels 
of Clostridiaceae, Faecalibacterium, and 
Ruminococcaceae and decreased levels of Dorea 
and Lachnospiraceae species [18]. Moreover, the 
microbiota composition differs not only between 
cancerous persons and healthy volunteers but 
also between breast cancer stages and grades and 
according to different tumor subtypes (triple-
negative breast cancer associated with unique 
microbiome) [74]. For example, patients with 
grade III cancer have an increased number of 
Blautia species, compared with grade I patients, 
and samples from stage II/III showed elevated 
absolute numbers of Bacteroidetes, Clostridium, 
and Blautia species [75].

10.11	 �Future Prospects

The recent emergence of studies on the microbi-
ome in various diseases highlights the impor-
tance of bacterial dysbiosis in different cancers. 
Despite the increasing literature on colorectal 
cancer, the data and observations on those can-
cers that are not in direct contact with the (gut) 
microbiome are limited and the available studies 
are often restricted to observational studies. 
Hence, mechanistic studies are largely missing. 
Minor microbiome compartments are understud-
ied, in terms of the number of bacteria (e.g., 
lower airways). These caveats will need to be 
filled in the future.

The currently available data suggest that pre-
biotics and probiotics may have beneficial effects 
in restoring/preventing the microbiome dysbio-
sis, but these findings will have to be assessed in 
well-controlled clinical studies. Along those 
same lines, the use of antibiotics in cancer 
patients will need to be assessed in detail. Finally, 
the microbiome-drug interactions, a key element 
in cancer-related personalized medicine, will 
need to be precisely mapped.
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