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Myeloid-Derived Suppressor Cells 
in the Tumor Microenvironment

Matthew Dysthe and Robin Parihar

Abstract

Myeloid-derived suppressor cells (MDSCs) 
represent a heterogenous population of imma-
ture myeloid cells capable of modulating 
immune responses. In the context of cancer, 
MDSCs are abnormally produced and 
recruited to the tumor microenvironment 
(TME) to aid in the establishment of an immu-
nosuppressive TME that facilitates tumor 
escape. Additionally, MDSCs contribute to 
non-immunologic aspects of tumor biology, 
including tumor angiogenesis and metastasis. 
The clinical significance of MDSCs has 
recently been appreciated as numerous studies 
have suggested a correlation between circulat-
ing and intratumoral MDSC frequencies and 

tumor stage, progression, and treatment resis-
tance. In this chapter, we review MDSC char-
acterization, development, expansion, and 
mechanisms that facilitate immunosuppres-
sion and tumor progression. Furthermore, we 
highlight studies demonstrating the clinical 
significance of MDSCs in various disease 
states in addition to strategies that modulate 
various aspects of MDSC biology for thera-
peutic gain.

Keywords

Myeloid-derived suppressor cells (MDSC) · 
Cancer · Tumor microenvironment (TME) · 
Immunosuppression · Solid tumor · 
Myelopoiesis · Angiogenesis · Metastasis · 
Autoimmunity · Therapy resistance · 
Therapeutic strategies · STAT3 · S100A9 · 
Transforming growth factor (TGF)-β · 
Arginase-1 · Regulatory T cells (Treg)

8.1	 �Introduction

Myeloid-derived suppressor cells (MDSCs) are 
immature myeloid cells normally produced and 
secreted by the bone marrow in response to local-
ized inflammatory states such as infection or 
trauma to try to restrain hyper-inflammation and 
protect the host from generation of autoimmunity 
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[1, 2]. In the setting of cancer, however, MDSCs 
are abnormally produced and recruited by tumor-
derived factors to tumor sites in order to establish 
a microenvironment around the tumor that can 
suppress host immunity (via MDSC expression 
of suppressive cytokines like TGF-β and surface 
molecules like PDL1 and PDL2), establish new 
vasculature (via MDSC expression of VEGF and 
βFGF isoforms), and remodel tissue with tumor-
supportive stromal elements (via MDSC argi-
nase-1, iNOS, and MMP-7/MMP-9/MMP-12 
activity) [3]. In fact, MDSCs play a central role in 
controlling and maintaining the suppressive TME 
in solid tumors [3]. In models where MDSCs are 
absent or eliminated, the TME breaks down, 
allowing access and activation of immune effec-
tor cells [4, 5]. Recently, these unique suppres-
sive cells of the tumor microenvironment have 
gained direct clinical significance as increasing 
evidence has mounted suggesting a correlation 
between the frequency of circulating and intratu-
moral MDSCs and cancer stage, disease progres-
sion, and resistance to standard chemo- and 
radiotherapy [6, 7]. Hence, understanding MDSC 
biology represents an important step in the quest 
to enhance anticancer immunity. In this chapter, 
we will review important aspects of MDSC biol-
ogy, including their characterization, develop-
ment and expansion, activation, and the 
suppressive mechanisms that support cancer 
growth and progression (highlighted in Fig. 8.1). 
In addition, we will highlight important studies 
that have attempted to target or manipulate 
MDSC biology for therapeutic gain. Finally, we 
will discuss recent trends and potential future 
directions concerning targeting and use of 
MDSCs in both oncologic and non-oncologic 
diseases.

8.2	 �Defining Human and Murine 
MDSCs

8.2.1	 �Defining MDSCs 
in the Periphery

In general, murine MDSCs are defined by a com-
bination of markers utilized for murine myeloid 

lineages (Gr-1, Ly6, CD11b, CD49d) in combi-
nation with suppressive effector function (e.g., 
suppression of T-cell proliferation). Early studies 
in mice led to the identification of a suppressive 
cell population defined as Gr-1+CD11b+. Further 
characterization of these Gr-1+CD11b+ cells 
revealed two subsets based on their expression of 
both Gr-1 [8] and the Ly6 superfamily molecules 
Ly6G and Ly6C [9, 10], which are preferentially 
expressed on the surface of granulocytes and 
monocytes, respectively. However, because Gr-1 
mAbs bind both Ly6G and Ly6C, double staining 
of Ly6G and Ly6C is highly recommended to 
identify the two distinct populations, specifically 
the polymorphonuclear (PMN-MDSCs), or 
sometimes referred to as granulocytic 
(G-MDSCs), and monocytic (M-MDSCs) sub-
sets. PMN-MDSCs are characterized as 
CD11b+Ly6G+Ly6Clow/int, whereas M-MDSCs are 
CD11b+Ly6G−Ly6Chigh. In addition, PMN-
MDSCs, with their high degree of granularity, are 
high on the side scatter axis in flow cytometric 
applications, whereas M-MDSCs present as 
lower on the side scatter axis. Haile et al. identi-
fied CD49d as a novel marker to further aid 
MDSC subset identification, demonstrating that 
CD11b+CD49d+ phenotypically and functionally 
resembled M-MDSCs [11]. CD11b+CD49d− 
cells were more granulocytic compared to their 
CD11b+CD49d+ counterparts, thus representing 
the PMN-MDSC subset.

In 2016, Bronte et  al. proposed the minimal 
phenotypic characteristics of human peripheral 
blood MDSCs [12]. The mouse equivalent of 
PMN-MDSC is defined as CD11b+CD14−CD15+ 
or CD11b+CD14−CD66+, whereas M-MDSC is 
CD11b+CD14+CD15−HLA-DR−/low. The myeloid 
marker CD33 can also be used for differentiation, 
where PMN-MDSCs stain CD33dim and 
M-MDSCs present CD33+/hi. It is also important 
to include some form of Lineage (Lin) cocktail 
(CD3, CD19, and CD56) that can differentiate 
immature MDSC progenitors from PMN-MDSC 
and M-MDSC, with cells representing Lin−HLA-
DR−CD33+ defined as early-stage MDSC.

Unfortunately, phenotypic staining analysis of 
the abovementioned markers alone for both 
mouse and human MDSC subsets cannot dis-
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criminate MDSC subsets from their respective 
mature cell population. PMN-MDSCs share a 
common origin with neutrophils and thus present 
many of the same morphological and phenotypic 
characteristics. Similarly, M-MDSCs share a 
common origin with monocytes. In a study that 
compared CD11b+Ly6G+Ly6Clow PMN-MDSCs 
in tumor-bearing mice to CD11b+Ly6G+Ly6Clow 
neutrophils in tumor-free mice, Youn et al. dem-
onstrated that PMN-MDSCs had significantly 
higher expression of CD115 and CD244 [13]. In 
humans, M-MDSC can be differentiated from 
monocytes by the absence of HLA-DR expres-
sion. Recently, the ability to separate PMN-
MDSC from neutrophils via a  Ficoll gradient 
separation was described [14]. Despite these pro-
posed differentiating markers, it still is absolutely 
essential to characterize these MDSC subsets for 
their immunosuppressive state, both molecularly 
and in functional suppression assays. MDSCs 
differ molecularly from mature myelocytes 
through transcription factors and biochemical 
signatures associated with immunosuppression 
[12].

The benchmark suppressive function of 
MDSCs is their ability to inhibit T-cell prolifera-
tion, cytokine production, and cytotoxic func-
tions. MDSCs have demonstrated suppressive 
effects in vitro on both activated, antigen-specific 
T cells and naïve, non-specific T cells. Typically, 
suppression assays examine the ability of puri-
fied MDSC populations to suppress either 
antigen-specific or antigen-non-specific T cells. 
To induce antigen-independent stimulation, T 
cells can be stimulated with anti-CD3/CD28 anti-
bodies in the presence of cytokines such as inter-
leukin (IL)-2, IL-7, or IL-15 and assessed for 
proliferation using 3H-thymidine incorporation, 
CFSE dilution, or cell trace violet dilution in the 
presence of MDSCs. Similarly, antigen-specific 
T cells can be stimulated with cognate antigens 
or allogeneic leukocytes. MDSC suppressive 
capacity is also assayed by their ability to inhibit 
T-cell IFN-γ and IL-2 production. In vivo studies 
are more technically challenging and include 
more critical parameters. Marigo et al. described 
an in  vivo mouse protocol where MDSCs are 
expanded in tumor-bearing mice and tumor con-

trol is subsequently assessed to determine MDSC 
suppressive capacity [15]. In this protocol, the 
antigen is expressed by the tumor and cross-
presented to lymphocytes via dendritic cell vac-
cination to generate an antigen-specific T-cell 
population. MDSC suppression was assessed for 
their ability to inhibit antigen-specific T-cell 
IFN-γ production and overall tumor control.

8.2.2	 �Defining MDSCs 
Within Tumors

Based on the ease of isolation and characteriza-
tion, most of the early studies defining MDSC 
subsets focused on circulating MDSCs isolated 
from blood or spleen. Intratumoral MDSC char-
acterization has been challenging due to the small 
proportion of MDSCs within a tumor sample as 
well as the technical challenges of isolating cells 
from a complex tumor microenvironment (TME) 
[16]. Comprised of immune infiltrates, stromal 
cells, connective tissue, and vasculature, the TME 
facilitates complex, heterotypic interactions that 
have both acute and chronic impacts on the local 
components. Further complicating intratumoral 
MDSC characterization is the presence of both 
tumor-associated macrophages (TAMs) and neu-
trophils (TANs) that phenotypically and morpho-
logically resemble M-MDSCs and PMN-MDSCs, 
respectively. Tissue-resident macrophages are 
present in all tissues of the body and display high 
heterotypic and functional diversity [16, 17].

In the mouse, Movahedi et  al. demonstrated 
that CD11b+Ly6C+ cells were the exclusive mono-
cytic precursors of TAMs. Further, they demon-
strated that tumor-infiltrated myeloid populations 
could be grouped into at least seven subsets based 
on their differential expression of MHCII and 
Ly6C, thus reflecting the high heterogeneity and 
complexity when characterizing intratumoral sup-
pressive myeloid populations [18]. Similarly, 
Franklin et al. demonstrated the presence of three 
intratumoral myeloid populations: tissue-resident 
macrophages as CD11b+MHCII+ and two subsets 
of TAMs as CD11blowMHCII−Ly6C+  
or CD11blowMHCII−Ly6G+ [19]. Furthermore, 
TAMs were derived from CD11b+Ly6C+CCR2+ 
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circulating monocytes that underwent phenotypic 
changes characterized by the downregulation of 
CD11b and Ly6C and upregulation of CD11c, 
F4/80, and MHCII [19]. MDSCs exhibit plasticity 
and cross-phenotype skewing with tumor-
associated macrophages (TAMs) in the TME in 
response to tumor-associated hypoxia [20]. Thus, 
these studies reflect the plasticity of intratumoral 
myeloid populations and highlight the difficulty 
in exactly defining and differentiating myeloid 
subsets within the TME. In the mouse, however, 
the F4/80 marker has allowed differentiation of 
murine intratumoral MDSCs, separating PMN-
MDSC (F4/80−) from M-MDSC (F4/80low/dim) and 
M-MDSC from TAM (F4/80+) [1].

In human intratumoral MDSCs, M-MDSC are 
defined as CD11b+CD33+CD14+HLA-DRlo/− and 
PMN-MDSC as 
CD11b+CD33+CD15+CD66+HLA-DRlo/− [21]. 
However, analyzing tumor myeloid infiltrates 
presents the same complexities and challenges as 
eluded for murine studies: low frequencies of 
MDSCs within tumor tissue samples and a com-
plex, heterogenous myeloid landscape. Within 
the TME, human myeloid cells have been classi-
fied into four general categories: (1) TAMs, (2) 
Tie2-expressing monocytes, (3) neutrophils, and 
(4) MDSCs [21]. PMN-MDSCs share a similar 
ontogeny with neutrophils and thus complicate 
clearly characterizing MDSCs within the 
TME.  Indeed, PMN-MDSCs within the TME 
have been referred to in the literature as pro-
tumor, anti-inflammatory neutrophils, and some 
investigators have proposed that PMN-MDSCs 
should instead be referred to as “neutrophils with 
suppressive activity” until further approaches to 
differentiate these two populations are offered 
[22]. However, studies have suggested that 
tumor-associated neutrophils possess both anti-
tumor and pro-tumor properties [23]. Thus, dif-
ferentiating between neutrophils and 
PMN-MDSCs based simply on suppressive 
capacity may be misleading. Several differentiat-
ing features that can aid in distinguishing intratu-
moral PMN-MDSCs from neutrophils have been 
employed. Neutrophils are high density that pres-
ent with high side scatter axis (SSC) on flow 
cytometric applications, whereas PMN-MDSCs 

are lower SSC-density cells [24]. In combination 
with SSC profiles, CD11b, and CD15, the inclu-
sion of CD16 and CD66b, classic neutrophil 
markers, has been used to help identify neutro-
phils [21]. Recently, LOX-1 has also emerged as 
a marker unique to PMN-MDSC.  Condamine 
et al. demonstrated that LOX-1+ PMN cells iso-
lated from peripheral blood had a gene expres-
sion profile similar to PMN-MDSCs and 
suppressed T-cell proliferation in  vitro [25]. In 
addition, 15–50% of CD15+ cells isolated from 
various solid tumors were LOX-1+.

8.3	 �MDSC Development 
and Expansion

In healthy individuals, hematopoietic stem cells 
(HSCs) in the bone marrow give rise to common 
myeloid progenitor cells (MPCs) and immature 
myeloid cells (IMCs) that then differentiate into 
mature macrophages, dendritic cells, and granulo-
cytes in peripheral organs. During acute inflamma-
tory stimuli, normal activation of these mature cell 
populations results in marked phagocytosis and 
release of pro-inflammatory signals, in addition to 
remodeling of tissues after the inflammatory state 
is resolved [26]. Thus, normal myelopoiesis and 
myeloid differentiation is a tightly regulated pro-
cess that controls and limits inflammatory 
responses. However, in pathological conditions 
such as cancer, chronic inflammatory signals 
secreted by the tumor microenvironment repro-
gram myelopoiesis and serve to exacerbate tumor 
progression [27]. Tumor-derived factors in the 
form of growth factors, cytokines, chemokines, and 
other inflammatory mediators facilitate the expan-
sion of an immature myeloid population character-
ized by defective antigen presentation and secretion 
of several factors that suppress the resultant antitu-
mor response [27]. Thus, myeloid-derived suppres-
sor cells (MDSCs) were so named to encompass 
both their characteristic immature state and ability 
to suppress antitumor responses [28].

The conversion of HSCs into MDSCs remains 
a process that is incompletely understood but is 
proposed to be mediated by two general signals. 
The first signal facilitates the expansion and 
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impaired differentiation of myeloid cells and 
includes factors that are produced primarily by 
tumor and bone marrow stromal cells. The sec-
ond signal activates MDSCs and results in their 
suppressive capabilities [29, 30].

8.3.1	 �Signal 1

The same factors that govern normal myelopoi-
esis are also proposed to induce the mobilization 
and expansion of MDSCs. These include granu-
locyte/macrophage colony-stimulating factor 
(GM-CSF), macrophage CSF (M-CSF), granu-
locyte CSF (G-CSF), IL-6, IL-1β, beta-fibroblast 
growth factor (β-FGF), and vascular endothelial 
growth factor (VEGF) [31–33]. Tumor and stro-
mal cells produce and secrete these factors 
resulting in autocrine and paracrine loops that 
further drive tumor progression [33]. The 
colony-stimulating factors represent a group of 
cytokines essential in modulating myelopoiesis. 
GM-CSF functions on a more global level, dis-
playing pleiotropic and widespread effects on 
hematopoietic cells, whereas G-CSF and M-CSF 
are relatively more lineage specific [34]. In par-
ticular, GM-CSF has repeatedly demonstrated to 
be a key mediator of MDSC expansion both 
in vitro and in vivo [35–40]. Interestingly, pre-
clinical and clinical evidence suggests that the 
effect of GM-CSF is dose-dependent. In vitro, 
murine bone marrow cells cultured in high 
GM-CSF concentrations generated MDSCs 
along with neutrophils in 3–4  days, whereas 
lower concentrations of GM-CSF required 
8–10 days to generate MDSCs [37]. Results of 
clinical trials studying GM-CSF as an adjuvant 
in cancer vaccination were reviewed by Parmiani 
et  al. [41]. At low concentrations, GM-CSF 
potentiated a vaccine-induced antitumor 
response, whereas at higher doses, an immuno-
suppressive effect was observed [41]. In addition 
to dose-specific effects, GM-CSF preferentially 
expanded highly suppressive M-MDSCs in a 
mammary tumor mouse model [8]. In the same 
study, G-CSF preferentially expanded PMN-
MDSCs that resulted in a less immunosuppres-
sive environment [8].

Vascular endothelial growth factor (VEGF), a 
key mediator of angiogenesis in tumors, is also a 
potent inducer of MDSC expansion. Gabrilovich 
et  al. were the first to demonstrate that VEGF 
produced by breast and colon cancer cells signifi-
cantly affected the functional maturation of pro-
genitor stem cells [42]. Subsequent studies 
revealed that activation of VEGF receptor 
(VEGFR) in the bone marrow of mice leads to 
myeloid expansion [43]. In this same study, neu-
tralizing GM-CSF activity via antibodies, or by 
use of GM-CSF-null hematopoietic cells, inhib-
ited VEGFR-mediated myeloid progenitor activ-
ity. More recently, Horikawa et al. demonstrated 
that patient high-grade serious ovarian cancer 
IHC samples that presented high levels of VEGF 
upregulated genes associated with myeloid cell 
chemoattractants and matrix metalloproteases 
(MMPs) [44]. Furthermore, a mouse ovarian 
tumor cell line (ID8) modified to overexpress 
Vegf induced an increase in intratumoral MDSCs 
and decrease in effector T cells [44].

In addition to key myeloid-specific growth 
factors, IL-1β and IL-6 are potent inducers of 
MDSC expansion. Mammary carcinoma cells 
transfected to overexpress IL-1β in mice exhib-
ited decreased survival times in addition to ele-
vated levels of splenic MDSCs [45]. Similarly, 
stomach-specific overexpression of human 
IL-1β in transgenic mice subsequently leads to 
spontaneous gastric inflammation and cancer 
that correlated with recruitment of MDSCs [46]. 
It is proposed that IL-1β skews MDSC expan-
sion to that of PMN-MDSCs [47]. Due to the 
pleiotropic nature of IL-1β, it is believed that 
IL-1β acts to stimulate MDSCs both directly 
[46, 47] and indirectly via stimulation of growth 
factors and cytokines [48], including IL-6. Mice 
deficient in IL-1R exhibited reduced MDSC 
numbers that were rescued by re-expression of 
IL-6 [49]. In a hormone-resistant prostate can-
cer mouse model, IL-6 correlated with both 
aggressive tumor growth and MDSC recruit-
ment that could be diminished via an IL-6-
silencing shRNA [50]. Moreover, IL-6 blocking 
mAbs resulted in significantly less accumula-
tion of MDSCs in a mouse model of squamous 
cell carcinoma [51].
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In response to these growth factors and cyto-
kines, myeloid progenitor cells initiate a complex 
transcriptional network that enables their expan-
sion and prevents their differentiation. Many of 
the abovementioned factors converge on the acti-
vation of signal transducer and activator of tran-
scription (STAT) 3 [52]. For this reason, STAT3 
is generally considered to be a master transcrip-
tion factor regulating both the expansion and acti-
vation of MDSCs [1]. In general, STAT proteins 
are intracellular transcription factors that mediate 
a wide variety of cell functions, including prolif-
eration, apoptosis, and differentiation. In 
response to appropriate stimuli, transmembrane 
receptors dimerize and induce trans-
phosphorylation of their associated Janus kinases 
(JAKs). The phosphorylated JAKs can subse-
quently activate downstream targets, including 
STATs. Upon activation by phosphorylation, 
STAT proteins form homo- or hetero-dimers with 
other STAT family members and translocate to 
the nucleus, where they bind DNA and induce the 
transcription of multiple gene targets. STAT3 
upregulates genes essential for myeloid progeni-
tor cell survival and proliferation, including 
Bcl-XL, MYC, survivin, and cyclin D1 [1, 53]. 
Furthermore, STAT3 activation drives cell sur-
face expression of the S100A8/S100A9 dimer, a 
calcium- and zinc-binding complex that regulates 
a variety of inflammatory immune responses and 
serves as a phenotypic and functional marker for 
MDSCs. Cheng et al. demonstrated mice lacking 
S100A9 elicited potent antitumor immune 
responses, which could be reversed by adoptive 
transfer of wild-type MDSCs from tumor-bearing 
mice into S100A9-deficient mice [54]. In con-
trast, overexpression of S100A9 in cultured 
embryonic stem cells and transgenic mice inhib-
ited the differentiation of DCs and macrophages 
and resulted in accumulation of MDSCs [54]. As 
a clinical correlate, an interaction between 
S100A9 and the common myeloid marker CD33 
facilitated the expansion of MDSC in myelodys-
plastic syndrome patients. STAT3 activation was 
also shown to modulate interferon regulatory 
factor-8 (IRF-8), an integral transcriptional factor 
regulating myeloid terminal differentiation [55]. 
Irf8-deficient mice generated phenotypically and 

functionally similar immature myeloid popula-
tions compared to tumor-induced MDSCs. In 
contrast, IRF-8 overexpression in mice facilitated 
a reduction in MDSC levels in the spleen, bone 
marrow, and tumor site, suggesting an important 
negative regulatory role for IRF-8  in MDSC 
accumulation and differentiation [55]. CCAAT-
enhancer-binding proteins (C/EBPs) are a family 
of transcription factors implicated downstream of 
STAT3 in blocking terminal differentiation as 
well as expansion of MDSCs. C/EBPs comprise 
a family of six basic-region leucine zipper tran-
scription factors that homo- or hetero-dimerize 
with other C/EBPs and transcription factors that 
enable binding to target DNA.  Specifically, C/
EBPα and C/EBPε mediate differentiation and 
maturation of myeloid progenitors, whereas C/
EBPβ is only important in regulating emergency 
myelopoiesis [56, 57]. Mackert et  al. demon-
strated that C/EBPα was significantly reduced in 
MDSCs from tumor-bearing mice compared to 
non-tumor-bearing hosts [58]. Similarly, myeloid 
lineage-specific deletion of C/EBPα resulted in 
significantly enhanced MDSC proliferation and 
expansion as well as increased myeloid progeni-
tors and decreased mature cells [58]. Conversely, 
Marigo et  al. demonstrated that in a myeloid 
lineage-specific mouse model of C/EBPβ dele-
tion, there was a significant loss of an MDSC-like 
population and reversal of a tolerogenic state 
exhibited by tumor-specific T cells [15]. These 
data suggest that chronic signals secreted via the 
tumor skew the normal balance of C/EBPs to a 
profile that sustains myeloid proliferation while 
blocking terminal differentiation.

Lastly, microRNAs (miRNAs) have also been 
implicated in facilitating the induction and 
expansion of MDSCs. miRNAs are endogenous, 
small non-coding RNAs that modulate gene 
expression. miRNAs have been proposed to func-
tion as either oncogenes or tumor suppressors 
[59]. More specific to MDSCs, miRNAs can 
affect the development and differentiation of 
HSCs to lineage-specific cells [60]. Recently, 
miR-155 and miR-21 were identified as the two 
miRNAs highly upregulated during the induction 
of MDSC from the bone marrow cells via 
GM-CSF and IL-6 [61]. miR-155 and miR-21 
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miRNAs down-modulated the expression of the 
negative regulator of myeloid cell proliferation, 
SHIP-1, and the tumor suppressor gene 
PTEN.  Down-modulation of either SHIP-1 or 
PTEN leads to an increase in STAT3 activation. 
Thus, miR-155 and miR-21 may synergistically 
enhance the induction of MDSCs via down-
modulation of negative regulators, in addition to 
increasing STAT3 activation [61].

8.3.2	 �Signal 2

After immature myeloid cell expansion and accu-
mulation, it is thought that these cells then receive 
an “activation signal” that endows them with sup-
pressive functionality. This activation is mediated 
by tumoral stroma factors that include IL-1β, 
PGE2, TNF-α, toll-like receptor (TLR) ligands, 
and IFN-γ [29]. Similar to the importance of 
STAT3 in MDSC induction and expansion, the 
NF-κB pathway is an essential factor mediating 
MDSC activation [30]. NF-κB proteins encom-
pass a family of dimeric transcription factors that 
regulate the expression of genes governing a 
broad range of immunological processes. In gen-
eral, stimuli activate an IKK complex, which sub-
sequently phosphorylates IκB proteins that exist 
in complex with NF-κB proteins. Upon phos-
phorylation, IκB is ubiquitinated and degraded, 
freeing the NF-κB proteins to enable transloca-
tion to the nucleus, where they bind target DNA 
sequences and facilitate gene transcription. IL-1β 
activates MDSCs recruited to tumor sites via an 
NF-κB-dependent pathway, evidenced by an 
increase in tumor microenvironment TNF-α and 
IL-6 [46]. Similarly, it was demonstrated in a 
mammary tumor mouse model that IL-1β-
induced inflammation increased MDSC produc-
tion of IL-6 and TNF-α via the TLR4/CD14 
pathway, which signals through the NF-κB path-
way [62]. The timing of myeloid cell expansion 
in relation to these “activation signals” is not 
understood and is an area of active investigation.

Liu et  al. demonstrated that tumor-derived 
exosomes (TDEs) were also potent inducers of 
IL-6 and TNF-α in MDSCs [63]. In this study, 
TDE-mediated activation was dependent on 

MyD88, an important adapter protein in the TLR 
signaling pathway. Analogously, another study 
demonstrated that TDE membrane-associated 
heat shock protein 72 (Hsp72) activated MDSC 
suppressive functions through TLR2/MyD88-
dependent mechanisms [64]. Both studies con-
firmed dependence on the MyD88 pathway with 
an associated increase in phosphorylated STAT3, 
suggesting synergy between NF-κB and STAT3 
signaling. More recently, Achyut et  al. demon-
strated the importance of NF-κB signaling in 
MDSC function within a mouse model of glio-
blastoma [64]. Conditional deletion of p65  in 
myeloid cells in this model resulted in decreased 
intratumoral MDSCs with increased dendritic 
cells and T cells, further suggesting a role for 
NF-κB in MDSC expansion.

PGE2 has also been implicated in the activa-
tion of MDSCs. Activation of MDSC functions 
by PGE2 exposure requires contact or close prox-
imity between monocytes and melanoma cells 
and was dependent on COX2 [65]. Cancer 
patient-derived M-MDSCs treated with PGE2 
resulted in the activation of the p38 MAPK/ERK 
pathway and an increase in TGF-β secretion, 
leading to potent suppression of T and NK cell 
function in vitro [66]. Furthermore, silencing of 
COX2 via shRNA resulted in reduced MDSC 
numbers in the spleen and an increase in the 
number of NK cells in an in vivo model. PGE2 
has also been implicated in MDSC expansion. 
Sinha et al. demonstrated that bone marrow stem 
cells stimulated with agonists of the prostaglan-
din EP2 receptor (EP2R) induced differentia
tion into murine Gr-1+CD11b+ MDSCs [67]. 
Additionally, EP2R knockout mice exhibited 
reduced MDSC numbers to wild type, suggesting 
that EP2 partially mediates MDSC induction and 
expansion. Blocking PGE2 production by COX2 
inhibitors also reduced MDSC numbers in these 
models.

In order for MDSCs to exert their tumor-
promoting suppressive functions at sites of tumor, 
they must be able to function within tumor micro-
environments that present hostile conditions, 
including hypoxia, low pH, and oxidative stress. 
In most cells of the body, these conditions disrupt 
the protein-folding capacity of the endoplasmic 
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reticulum (ER) and result in activation of the ER 
stress response pathway, which when over-
whelmed leads to cell dysfunction or death [68]. 
However, persistent ER stress within tumors par-
adoxically facilitates tumor progression through 
effects on both malignant cells and infiltrating 
cells, such as MDSCs [68]. In tumor-bearing 
mice, Lee et al. demonstrated that repeat admin-
istration of the ER stress inducer thapsigargin 
resulted in increased mRNA levels of the immu-
nosuppressive factors ARG1, iNOS, and NOX2 in 
tumor-infiltrating MDSCs [69]. Thus, the TME 
reinforces MDSC-mediated immunosuppression, 
though it still may eventually influence MDSC in 
vivo life span [70].

8.4	 �Mechanisms of MDSC 
Suppression

Peripheral MDSCs, such as those in circulation 
or localized to secondary lymphoid organs, differ 
in their mechanisms of suppression compared to 
MDSCs localized to the tumor. In the periphery, 
MDSC immunosuppression is governed by mul-
tiple mechanisms, including production of immu-
nosuppressive metabolites. For example, MDSC 
suppression has been affiliated with the metabo-
lism of L-arginine. Local L-arginine depletion 
results in the proliferation arrest of activated T 
lymphocytes, as well as downregulation of the 
CD3ζ chain [71, 72]. Indeed, using arginase-1 
inhibitors, either in  vitro or in tumor-bearing 
mice, restored T-cell function and resulted in 
immune-mediated antitumor responses [73]. 
Similar to arginine, cysteine also serves as an 
essential amino acid for T lymphocytes, which 
rely on antigen-presenting cells (APCs) to export 
soluble cysteine into the milieu. MDSCs harbor a 
cystine transporter but lack a cysteine transporter. 
Thus, MDSCs can sequester extracellular cystine 
from APCs without returning cysteine back to the 
milieu [74], starving T and NK lymphocytes of 
this essential amino acid. Oxidative stress via the 
production of reactive oxygen and nitrogen spe-
cies by NO synthases also contributes to periph-
eral T-cell inhibition. Raber et  al. demonstrated 
that PMN-MDSCs and M-MDSCs utilize differ-

ent NO synthases for the suppression of T lym-
phocytes [75]. PMN-MDSC inhibited T 
lymphocyte proliferation via peroxynitrites 
dependent on endothelial nitric oxide synthase 
(eNOS), whereas M-MDSCs elicited their effects 
via the release of NO by iNOS. Molecular mech-
anisms of reactive oxygen and nitrite species-
mediated T lymphocyte suppression include loss 
of TCR ζ-chain expression [76] and inhibiting 
T-cell activation [77]. In addition, peroxynitrites 
impede extravasation of lymphocytes from circu-
lation, thus decreasing the pool of antitumor lym-
phocytes available at tumor sites [78, 79].

Another major mechanism mediating periph-
eral immunosuppression is the recruitment and 
induction of other suppressive or regulatory cells, 
such as thymus-derived natural T regulatory 
(nTreg) cells and local tumor-induced Treg 
(iTreg) cells. In healthy individuals, Tregs are a 
subset of T cells that play critical roles in immune 
modulation, specifically maintaining peripheral 
tolerance and preventing autoimmunity. However, 
in the context of cancer, Tregs contribute to an 
immunosuppressive periphery and TME that 
facilitates tumor escape [80]. Because the TME 
allows close proximity between MDSCs and 
Tregs, considerable cross-talk exists that serves 
to modulate both populations. Indeed, 
Ghiringhelli et  al. demonstrated that immature 
myeloid cells induced by tumor progression 
selectively promoted the proliferation of Tregs in 
a TGF-β-dependent manner in vivo [81]. Huang 
et al. also demonstrated that MDSCs induce the 
development of Treg cells in vitro and in tumor-
bearing mice and that Treg induction was depen-
dent on MDSC-secreted IL-10 and IFN-γ [82]. 
Further, MDSCs upregulate ligands for several 
costimulatory molecules (specifically, CD86 and 
PD-L1) that additionally provided signals for 
Treg development. In a mouse model of B-cell 
lymphoma, MDSCs demonstrated the ability to 
uptake tumor-associated antigens and present 
them to facilitate the expansion of tumor-specific 
Tregs [83]. In addition to inducing the develop-
ment of Tregs, Hoechst et  al. also showed that 
MDSCs were capable of inducing the 
transdifferentiation of Th17 T cells into Tregs 
[84]. Conversely, Tregs can also modulate MDSC 
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expansion and function. In a mouse model of 
colitis, Tregs potentiated both the expansion of 
MDSCs and suppressive functions through a 
TGF-β-dependent mechanism [85]. Thus, factors 
secreted by both MDSCs and Tregs exist in posi-
tive feedback loops to facilitate the expansion of 
each  population  and reinforce the suppressive 
environment.

In addition to the cross-talk between MDSCs 
and Tregs, MDSCs have also demonstrated effects 
on macrophages. In a mammary carcinoma 
mouse model, MDSCs decreased IL-12 produc-
tion by macrophages and facilitated the polariza-
tion of macrophages to a tumor-promoting M2 
phenotype [86]. Beury et  al. sought to further 
define the cross-talk that occurs between macro-
phages and MDSCs in the context of murine 
tumor cell lines [87]. They found that IL-6, IL-10, 
IL-12, TNF-α, and NO are modulated within the 
cross-talk between macrophages, MDSCs, and 
tumor that create an immunosuppressive 
environment.

In contrast to the mechanisms employed by 
MDSCs in the periphery, MDSCs localized to 
tumor tissues exhibit several key differences. 
Studies directly comparing MDSCs from 
spleens (peripheral tissue) and tumors of the 
same mouse demonstrated that tumor MDSCs 
acquire a more suppressive phenotype in the 
TME characterized by high amounts of NO, 
arginase-1, and immunosuppressive cytokines. 
In a mouse model of prostate cancer, Haverkamp 
et  al. demonstrated that MDSCs derived from 
tumor tissue possessed immediate ability to 
inhibit T-cell function, whereas MDSCs isolated 
from the spleens and liver were not suppressive 
without additional in vitro exposure to suppres-
sive cytokines [88]. Maenhout et al. showed that 
both PMN-MDSC and M-MDSC isolated from 
the tumor had much stronger suppressive capac-
ity compared to MDSCs isolated from the 
spleen, associated with higher nitrogen dioxide 
production and arginase-1 [89]. Another study 
examining the metabolic characteristics of 
tumor-infiltrating MDSCs (TI-MDSCs) reported 
that TI-MDSCs increased fatty acid uptake and 
activated fatty acid oxidation (FAO) [90]. In this 
study, MDSCs isolated from the site of the 

tumor were able to inhibit antigen non-specific 
T-cell proliferation, whereas splenic MDSCs 
did not.

The suppressive mechanisms employed by 
different MDSC subsets likely depend on multi-
tude of factors that includes the preferential 
expansion of the MDSC subset and local inflam-
matory milieu. The relative suppressive capacity 
of the major MDSC subsets, M-MDSCs and 
PMN-MDSCs, is a matter of debate, with the lit-
erature suggesting mixed results. Traditionally, it 
has been proposed that M-MDSCs are more sup-
pressive due to the increased levels and higher 
half-life of suppressive mediators [91]. However, 
in certain tumor subtypes, PMN-MDSCs repre-
sented the more suppressive subset. For exam-
ple, in a mouse model of pancreatic 
adenocarcinoma, PMN-MDSCs were preferen-
tially expanded and represented the majority of 
MDSCs in the bone marrow, blood, spleen, and 
pancreas [92]. Targeted depletion of PMN-
MDSCs in this model resulted in restored antitu-
mor immunity and a reduction in tumor size. In a 
study analyzing the peripheral blood of patients 
with head and neck and urological cancers, a 
higher frequency of PMN-MDSCs was associ-
ated with a significant decrease in survival [93]. 
Additionally, PMN-MDSCs were more suppres-
sive in in  vitro T-cell suppression assays com-
pared to the M-MDSCs isolated from the same 
patients [93]. Similarly, in advanced-stage mela-
noma patients, PMN-MDSCs isolated from 
peripheral blood suppressed stimulated T cells 
more strongly than M-MDSCs and negatively 
correlated with survival rate [94]. When com-
pared to healthy controls, lung cancer patients 
had elevated levels of circulating M-MDSCs but 
not PMN-MDSCs [95]. However, a significant 
increase in both intratumoral M-MDSCs and 
PMN-MDSCs was evident compared to periph-
eral levels in tumor patients. In a breast cancer 
patient cohort, both PMN-MDSC and M-MDSC 
peripheral levels were elevated to similar levels 
when compared to each other and healthy con-
trols [96]. Thus, a tumor-specific understanding 
of the relevant MDSC subsets in the periphery 
and TME can inform of potential mechanisms of 
suppression.
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8.5	 �Non-immunologic Functions 
of MDSCs

In addition to their immunosuppressive effects, 
MDSCs also support non-immunologic aspects 
of tumor biology including tumor angiogenesis 
and metastasis [33]. During tumor growth, espe-
cially solid tumors, the tumor microenvironment 
requires angiogenesis to provide adequate oxy-
gen and nutrients, as well as the removal of waste 
products, both of which facilitate optimal growth 
[97]. Yang et  al. demonstrated in murine tumor 
models that Gr-1+CD11b+ cells co-injected with 
tumor cells increased tumor angiogenesis and 
vasculature maturation compared to tumor cells 
alone [98]. Additionally, Gr-1+CD11b+ cells were 
found directly incorporated into the new vessel 
endothelium and that they drastically upregulated 
endothelial markers. In a mouse model of glio-
blastoma, intratumoral accumulation of CD11b+ 
myeloid cells promoted angiogenesis [99]. 
Interestingly, in both studies, MMP-9 activity 
was necessary to facilitate angiogenesis. In a 
murine model of multiple myeloma, PMN-
MDSCs, but not M-MDSCs, induced a pro-
angiogenic effect using the chick chorioallantoic 
membrane assay [100]. Furthermore, PMN-
MDSCs demonstrated an upregulation of pro-
angiogenic factors, including VEGF.  Parihar 
et al. also demonstrated that in several xenograft 
mouse models including neuroblastoma and 
rhabdomyosarcoma, co-inoculation of M-MDSC 
with tumor cells facilitated an increase in TME 
microvasculature and vascular leakiness com-
pared to tumor alone [101]. Bv8 (also known as 
prokineticin-2), a VEGF homologue [102], is 
upregulated in MDSCs and promoted tumor 
angiogenesis in murine xenograft [103] and 
transgenic models [104].

Clinical correlative data support the notion of 
MDSC-mediated tumor metastasis in breast can-
cer [105], non-small cell lung cancer (NSCLC) 
[106], melanoma [107], and prostate cancer 
[108]. Indeed, MDSCs have been readily impli-
cated in tumor invasion. Clark et al. demonstrated 
in a mouse model of pancreatic ductal adenocar-
cinoma that MDSCs suppressed early antitumor 
immune responses that facilitated invasive tumor 

lesions [109]. The establishment of a pre-
metastatic niche that accepts and protects circu-
lating tumor cells in secondary organs is widely 
accepted to be a key determinant of tumor metas-
tasis [110]. MDSCs have been shown to remodel 
the secondary organ local microenvironment 
through secretion of pro-angiogenic and growth 
factors in addition to inflammatory cytokines 
[111, 112]. Recruitment of tumor metastases to 
secondary sites is largely facilitated through che-
mokines and integrins. In an orthotopic murine 
model of colorectal carcinoma, VEGF secreted 
by primary tumor cells stimulated TAMs to pro-
duce CXCL1 that subsequently is released into 
circulation [113]. In response to CXCL1, circu-
lating CXCR2+ MDSCs were then recruited to 
the liver to establish a pre-metastatic niche that 
expedited liver metastasis. Similarly, in a mouse 
model of breast cancer, primary breast tumor-
derived chemokine CCL2 resulted in the accu-
mulation of PMN-MDSCs in the lungs [114], 
resulting in establishment of a pre-metastatic 
niche. Once at the site of the secondary organ, 
MDSCs contribute to the remodeling of the 
extracellular matrix (ECM) to make the local 
microenvironment more permissive for the seed-
ing of circulating tumor cells. MDSC-mediated 
factors include chemokines, cytokines, growth 
factors, and extracellular vesicles, including 
TGF-β [115], VEGFA [116], S100A8/A9 [117], 
and MMP-9 that aid in pre-metastatic niche for-
mation [110].

8.6	 �Clinical Significance 
of MDSCs

With the recent success of immunotherapies (check-
point blockage, CAR-T cells) in treating a limited 
number of cancer types, efforts to translate this suc-
cess to other tumors have intensified. Because the 
TME helps evade and inhibit antitumor responses, 
investigators have begun to assess peripheral and 
intratumoral MDSCs within the context of clinical 
trials (reviewed in Table 8.1). Elevated levels of cir-
culating and intratumoral MDSC correlate with 
poor prognosis in various types of cancer and thus 
are postulated to correlate to immune escape. In 
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patients with advanced hepatocellular carcinoma 
(HCC), frequencies of circulating M-MDSCs were 
significantly higher compared to early-stage HCC 
patients [118]. Additionally, patients who under-
went curative radiotherapy and had higher frequen-
cies of M-MDSCs posttreatment had significantly 
shortened relapse-free and overall survival [118]. 
Similarly, frequencies of peripheral MDSCs 
increased with advanced cancer stage in patients 
with breast cancer [96]. In a meta-analysis of 16 dif-
ferent studies involving 1864 cancer patients with 
GI, HCC, NKT lymphoma, and melanoma tumors, 
Ai et  al. found that increased MDSC frequencies 
were associated with poor prognoses and decreased 
overall survival [119]. MDSCs have also been pro-
posed to serve as a prognostic marker in informing 
the best option for treatment. One such example is 
the immune checkpoint inhibitor ipilimumab 
approved for the treatment of metastatic melanoma. 
Ipilimumab has demonstrated efficacy in some 
cases, but overall clinical response rates remain low, 
with 3-year survival rates of about 20% [120]. 
Hence, efforts to understand factors that govern 
whether a patient responded or not are needed to 
enhance ipilimumab efficacy. Meyer et al. reported 
that metastatic melanoma patients who responded 
to ipilimumab treatment had significantly lower cir-
culating frequencies of MDSCs compared to non-
responders [121]. In a similar study that aimed to 
identify baseline peripheral prognostic markers in 
metastatic melanoma that correlated with clinical 
outcome following ipilimumab treatment, MDSC 
frequencies were the strongest stand-alone predic-
tor of clinical response to treatment [122]. This find-
ing was also demonstrated in several other 
melanoma studies [123, 124] in addition to prostate 
cancer [125]. Thus, the clinical significance of 
MDSCs has inspired efforts to therapeutically target 
this population that could enhance the efficacy of 
antitumor immunity.

8.7	 �Therapeutic Targeting 
of MDSCs

Efforts to therapeutically target MDSCs have 
attempted to do so by (1) inhibiting MDSC expan-
sion and trafficking, (2) differentiating MDSCs 

into mature and less suppressive myeloid cells, (3) 
inhibiting MDSC immunosuppressive function, 
and (4) depleting MDSCs from the TME [126].

8.7.1	 �Inhibiting MDSC Expansion 
and Trafficking

As discussed, MDSC generation occurs by way 
of abnormal myelopoiesis stimulated via tumor-
derived factors. Thus, efforts to modulate or cor-
rect this abnormal myelopoiesis could prove 
beneficial in preventing MDSC accumulation. As 
discussed previously, STAT3 activation has been 
demonstrated to play a crucial role in the mobili-
zation and expansion of MDSCs. Hence, agents 
that can block STAT3 activation in MDSCs could 
prove a viable option in preventing the expansion 
of MDSCs. Sunitinib, a small-molecule multi-
targeted receptor tyrosine kinase inhibitor with 
antitumor and anti-angiogenic effects [127], has 
proven a useful agent in targeting STAT3 signal-
ing in MDSCs. In patients with renal cell carci-
noma (RCC), treatment with sunitinib resulted in 
reduced numbers of circulating MDSCs [128]. 
Xin et al. later demonstrated in mouse models of 
RCC that sunitinib inhibited STAT3 activity and 
concomitantly resulted in a significant reduction 
of MDSCs and Tregs at the site of the tumor 
[129]. Pretreatment with sunitinib in RCC 
patients resulted in improved tumor-infiltrating 
lymphocytes that inversely correlated with intra-
tumoral MDSC numbers [130]. Bevacizumab, an 
anti-VEGF mAb, has also shown to have effects 
on MDSC expansion. Rather than having a direct 
effect on MDSCs, bevacizumab inhibits VEGF at 
the site of the tumor, thus preventing VEGF as an 
inducer of MDSC expansion. In a mouse model 
of RCC, bevacizumab resulted in a decrease of 
peripheral CD11b+ myeloid cells [131]. Similarly, 
in patients with metastatic colorectal carcinoma, 
bevacizumab administered with the chemother-
apy drugs 5-fluorouracil and oxaliplatin resulted 
in a decrease in PMN-MDSC in 15 out of 25 
evaluable patients [132]. Given that broad inhibi-
tion of STAT signaling may have off-target impli-
cations that restrain overall antitumor responses, 
other methods to more specifically target STAT3 
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have included the use of STAT3 siRNA or anti-
sense oligonucleotides synthetically attached to a 
toll-like receptor 9 (TLR9) agonist that selec-
tively targets TLR9+ myeloid cells [133]. STAT3 
siRNA directed at TLR9+ cells elicited a potent 
antitumor response in vivo [133].

In addition to STAT3, targeting PGE2 and 
COX2 has reduced MDSC numbers in mouse 
models. Sinha et  al. first demonstrated that the 
COX2 inhibitor SC58236 reduced MDSC accu-
mulation and delayed primary tumor growth in a 
mouse model of breast cancer [67]. Subsequently, 
the COX2 inhibitor celecoxib was effective in 
reducing MDSC numbers in mouse models of 
mesothelioma [134] and glioma [135]. Currently, 
a clinical trial (NCT02432378) is recruiting 
patients with recurrent ovarian cancer to examine 
the effects of celecoxib in addition with cisplatin. 
A secondary outcome measure in this study will 
be the change in the number of MDSCs in the 
peritoneal fluid of the patients.

Preventing MDSC trafficking and localization 
to the tumor may prevent accumulation and sub-
sequent pro-tumor effects within the 
TME.  Studies have implicated the chemokine 
receptor CXCR2 as a key mediator of MDSC 
trafficking that facilitates both tumorigenesis and 
metastasis [113, 136–138]. Highfill et al. demon-
strated in a murine model of rhabdomyosarcoma 
that tumor cells expressing CXCL1 and CXCL2 
facilitated trafficking of CXCR2+ MDSCs to the 
tumor [139]. In mice with a CXCR2-deficient 
bone marrow compartment, the percentage and 
absolute numbers of MDSC recruited to the 
tumor were significantly decreased [139]. 
Similarly, in mouse models of lung carcinoma, 
the small-molecule CXCR1/2 inhibitor SX-682 
abrogated PMN-MDSC recruitment to the tumor 
that resulted in potentiated T-cell activation and 
antitumor immunity [140]. A clinical trial 
(NCT03161431) is currently evaluating the effi-
cacy of SX-682 to block MDSC recruitment in 
metastatic melanoma. In addition to CXCR2, 
CXCR5 can also recruit MDSCs to intratumoral 
sites [141, 142]. Fusion proteins (CCR5-Ig) 
directed at all three CCR5 ligands demonstrated 
reduced MDSC infiltrates in mouse models of 
melanoma [141] and prostate cancer [142].

8.7.2	 �Differentiating MDSCs 
into Mature Cells

As MDSCs represent an immature myeloid pop-
ulation, efforts have been directed at understand-
ing the requirements for their differentiation that 
may then attenuate their suppressive functions. 
To this end, all-trans retinoic acid (ATRA) has 
demonstrated a potent differentiator of MDSCs. 
ATRA is a natural metabolite of vitamin A oxida-
tion and is a well-known regulator of cell differ-
entiation, including the terminal differentiation 
of promyelocytes into mature neutrophils in 
patients with acute promyelocytic leukemia 
[143], and thus is a commonly used antineoplas-
tic in chemotherapy regimens for this disease. 
Almand et  al. demonstrated the utilization of 
ATRA to differentiate MDSCs into dendritic 
cells [144] and that differentiation eliminated the 
inhibitory function of MDSCs in vitro [145]. The 
mechanism of ATRA-dependent differentiation 
appears to be neutralization of ROS production in 
MDSCs via the accumulation of glutathione, 
both in patients and mice [146]. Subsequent clin-
ical trials have demonstrated the potential of 
ATRA alone [146] or in combination with other 
therapies to reduce the number of circulating 
MDSCs [147, 148]. Although the clinical effi-
cacy of ATRA has been demonstrated in a multi-
tude of other trials given its use in common 
chemotherapy regimens, because MDSCs were 
not evaluated in these trials, the effect of ATRA 
could not be attributed to MDSC reduction [149]. 
Vitamin D3 has also demonstrated the ability to 
induce the differentiation of immature myelo-
cytes. In patients with head and neck squamous 
cell carcinoma (HNSCC), CD34+ progenitor 
cells believed to be responsible for intratumoral 
immunosuppression were isolated and cultured 
in the presence of vitamin D3 and various cyto-
kines [150]. CD34+ cells cultured with the com-
bination of vitamin D3 and cytokines resulted in 
increased numbers of cells phenotypically simi-
lar to mature dendritic cells. In addition, these 
cells present antigen more efficiently to autolo-
gous T cells. In a study examining the clinical 
efficacy of vitamin D3  in reducing immature 
CD34+ at tumor sites, Kulbersh et al. found that 
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patients treated with vitamin D3 displayed 
reduced immature CD34+ numbers, whereas lev-
els of intratumoral dendritic cells increased 
[151]. HNSCC patients treated with vitamin D3 
had increased numbers of intratumoral T cells 
and had a longer relapse-free survival compared 
with the controls [152]. In patients with chronic 
lymphocytic leukemia (CLL), significantly 
higher levels of circulating M-MDSCs were pres-
ent in patients with low vitamin D levels com-
pared to those of CLL patients with high vitamin 
D levels [153]. Tumor-conditioned CLL exo-
somes facilitated the induction of healthy donor-
derived monocytes to MDSCs that was reversed 
with pretreatment of the CLL exosomes with 
vitamin D3 [153].

8.7.3	 �Inhibiting MDSC Suppressive 
Function

Phosphodiesterase (PDE) inhibitors, such as 
sildenafil and tadalafil, are pharmacologic agents 
that increase the intracellular concentrations of 
secondary messenger molecules cAMP and 
cGMP. PDE inhibitors have been used clinically 
with widespread use in non-malignant conditions 
such as erectile dysfunction. Their utilization for 
inhibition of MDSC suppressive functions was 
demonstrated by Serafini et  al. [154], where in 
multiple tumor models, the administration of 
sildenafil downregulated arginase-1 and NOS 
expression. This resulted in enhanced intratu-
moral T-cell infiltration and activation with resul-
tant reduced tumor growth [154]. Subsequent 
studies demonstrated modulation of the suppres-
sive function of MDSCs with improved antitu-
mor immunity after treatment with PDE inhibitors 
in mouse models of colonic inflammation-
induced tumorigenesis [155] and melanoma 
[156]. In the clinic, tadalafil has demonstrated 
safety and efficacy in reducing peripheral and 
intratumoral MDSC numbers. In patients with 
HNSCC, tadalafil significantly reduced arginase-
1 and iNOS activity compared to controls, in 
addition to enhancing antitumor immunity [157]. 
A significant reduction in MDSC numbers was 
observed in patients treated with tadalafil, sug-

gesting that arginase-1 and iNOS inhibition could 
interfere with autocrine and paracrine feedback 
loops that facilitate MDSC myelopoiesis [157]. 
Similarly, in a phase II clinical trial, tadalafil sig-
nificantly reduced both MDSC and Treg numbers 
in HNSCC patients with an increase in CD8+ T 
cells [158]. A study in patients with metastatic 
melanoma demonstrated that tadalafil achieved 
stable disease as best response in 25% (3/12) 
evaluable patients. Moreover, in the responders, 
M-MDSC peripheral numbers decreased, and 
NO production was reduced in MDSC-infiltrated 
metastatic lesions [159].

8.7.4	 �Depleting MDSCs 
from the TME

Efforts have also focused on directly eliminating 
MDSCs at the tumor site to overcome their sup-
pressive effects. Observations in mouse models 
of various tumors found that cytotoxic agents 
such as cisplatin [160], 5-fluorouracil [161], 
gemcitabine [161, 162], and oxaliplatin [163] 
were effective at selectively reducing MDSC 
numbers. However, due to their non-specific 
cytotoxicity and adverse side effects, other 
groups have developed novel approaches to 
selectively target intratumoral MDSCs. One such 
approach is the use of liver X receptor (LXR) 
agonists. LXR agonism significantly suppressed 
tumor growth and metastasis in vitro and in vivo 
[164]. Thus, Tavazoie et al. sought to define the 
antitumor mechanisms of LXR agonism in vari-
ous cancer models [165]. LXR agonist RGX-104 
resulted in significant tumor growth suppression 
in an array of cancer animal models, including 
lung, breast, ovarian, and colon cancer [165]. Tumor 
suppression was due to RGX-104-mediated 
reduction of MDSCs. In a phase I dose-escalation 
trial (NCT02922764) evaluating the safety of 
RGX-104, peripheral PMN-MDSC and 
M-MDSC numbers were decreased by an aver-
age of 85% in the first cohort of evaluable patients 
[165]. Another novel approach developed by 
Parihar et al. is the use of natural killer (NK) cells 
modified to express a chimeric version of the NK 
cell-activating receptor NKG2D, herein referred 
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to as NKG2D.ζ, that targets MDSCs specifically 
within the TME, as intratumoral MDSCs upregu-
lated activating ligands for NKG2D [101]. 
Tumors escape wild-type NKG2D-mediated NK 
cell cytotoxicity by down-modulating the wild-
type NKG2D cytotoxic adapter molecule DAP10 
[166]. Thus, a synthetic NKG2D construct 
expressed on the surface of NK cells that bypasses 
the need for DAP10 could overcome the suppres-
sive effects of the TME and rescue NKG2D-
mediated cytotoxicity. Indeed, NKG2D.ζ 
expressing NK cells exhibited cytotoxicity 
against autologous and allogeneic MDSCs 
in vitro and in vivo. In a mouse model of neuro-
blastoma that recapitulated the suppressive TME, 
co-injection of NKG2D.ζ NK cells and 
neuroblastoma-directed chimeric antigen recep-
tor (CAR)-T cells increased the antitumor activ-
ity of CAR-T cells when compared to CAR-T 
cells alone. Thus, NKG2D.ζ NK cells as a combi-
nation treatment could enhance current immuno-
therapeutic treatment modalities by altering the 
TME to one more permissive of antitumor immu-
nity [101].

8.8	 �MDSCs in Non-oncologic 
Conditions

Though studies regarding MDSCs have largely 
focused on their implications in cancer, it is now 
being appreciated the role MDSCs might play in 
non-oncologic settings, such as autoimmunity. 
Because studies investigating the involvement of 
MDSCs in autoimmunity are relatively new, 
much is yet to be understood about the potential 
role that MDSCs have in either promoting or 
inhibiting autoimmune disease [167]. Similar to 
cancer studies, MDSCs in autoimmunity demon-
strate the same plasticity and heterogeneity that 
make definitive characterization difficult. Thus, 
efforts to compare and contrast studies character-
izing MDSCs in autoimmunity have been 
extremely challenging [167]. In a mouse model 
of experimental autoimmune encephalitis (EAE) 
that closely resembles the pathology of multiple 
sclerosis, adoptive transfer of PMN-MDSCs 
reversed EAE by suppressing the expansion of 

autoreactive T cells through PD-L1 [168]. In 
addition, circulating PMN-MDSC frequency was 
increased in the periphery of human subjects 
with MS [168], indicating MDSCs might also 
play a role in facilitating MS. Conversely, Cantoni 
et  al. found that overall MDSC numbers were 
decreased in the periphery of MS patients com-
pared to healthy controls. In a study examining 
MDSCs over the course of MS disease progres-
sion, M-MDSCs isolated from patients diagnosed 
with secondary progressive MS were impaired in 
their ability to suppress autologous CD3+ T-cell 
proliferation [169]. Thus, rather than working to 
eliminate MDSCs or inhibit their suppressive 
function, potentiating the suppressive capacity of 
MDSCs in autoimmune settings could prove an 
efficacious option. A single injection of IFN-β at 
the clinical onset of EAE enhanced the presence 
of and promoted the immunosuppressive activity 
of MDSCs, limiting the severity of EAE [170].

This approach can also be applied in organ 
transplantation, where host immune rejection of 
the donor graft limits the effectiveness of trans-
plant. Patients with circulating MDSC frequen-
cies >10% who received a kidney transplant 
demonstrated 1- and 5-year graft survival rates of 
93% and 79%, respectively, whereas patients 
with MDSC frequencies <10% had 1- and 5-year 
survival rates of 68% and 36% [171]. Of note, the 
levels of circulating MDSC in these patients also 
positively correlated with the levels of Tregs, 
indicating a generalized state of immune toler-
ance. Similarly, in models of hematopoietic stem 
cell transplantation (HSCT), MDSCs have 
proven useful in limiting graft-versus-host dis-
ease (GVHD) and inducing host immune toler-
ance. Highfill et al. demonstrated that in a fully 
MHC-mismatched model of HSCT, MDSCs 
transferred into mice suppressed donor T-cell 
activation, resulting in reduced GVHD lethality 
[172]. In 62 patients who received a haplo-
identical HSCT, donor grafts that displayed 
higher absolute counts of M-MDSCs and PMN-
MDSCs resulted in lower incidences of acute and 
chronic GVHD [173]. However, because adop-
tive transfer of MDSCs failed to induce allograft 
tolerance in recipients [174], research has focused 
on inducing MDSC expansion within the host as 
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a means of promoting immune tolerance [175]. 
Yang et  al. demonstrated that murine isolated 
bone marrow cells could be induced in vitro into 
M-MDSCs via M-CSF and IFN-γ and that the 
adoptive transfer of either recipient- or donor-
induced MDSCs significantly prolonged allo-
skin graft survival in mice [176]. Taken together, 
these studies highlight the potential to exploit the 
suppressive capacity of MDSCs for therapeutic 
benefit in non-oncologic conditions.

8.9	 �Trends and Future Directions

Data presented in this chapter have highlighted 
that the expansion and activation of MDSCs in 
tumor-bearing hosts contribute to multiple 
aspects of tumor progression, through the inhibi-
tion of endogenous and adoptive antitumor 
responses as well as by promoting tumor vascu-
larization and metastasis. Because MDSCs are 
highly plastic with variations depending on tumor 
type, stage, and disease phase, research efforts 
over the last decade have been directed at defin-
ing their phenotype and characterizing their 
tumor-promoting functions in these varying dis-
ease states. Studies highlighted in this chapter 
emphasize the difficulty in defining MDSCs 
through cell surface markers alone. Conventional 
fluorophore-based flow cytometric applications 
have been limited by the low number of pheno-
typic markers able to be detected. The relatively 
recent advent of high-throughput methods, e.g., 
“-omics” approaches, heavy metal- or synthetic 
fluorophore-based cytometry, and mass spec-
trometry (CyTOF), should help further define 
cell surface markers as well as signaling and gene 
networks that are characteristic of MDSCs. High-
throughput methods are already being utilized to 
investigate MDSCs in various cancers [177, 178]. 
In addition, consortiums dedicated to defining 
and characterizing suppressive myeloid cells 
within tumor microenvironments have been 
established. A current example is the Mye-
EUNITER consortium (http://www.mye-euniter.
eu/), made up of researchers with the primary 
goal of establishing gold standard protocols and 
guidelines for defining and characterizing 

myeloid regulatory cells in cancer, infection, and 
inflammation. Insights gained from these more 
global approaches and types of studies will hope-
fully facilitate a clear consensus on MDSC defi-
nition and functional characterization that can be 
applied across disease and tumor types.

Only recently have the therapeutic implica-
tions of MDSCs been expanded, as technology 
to allow MDSC genetic modification and repro-
gramming is being developed. As discussed 
above, efforts to therapeutically target MDSCs 
have been directed to modulate both the expan-
sion and inhibit the suppressive capacities of 
MDSCs in the context of cancer. MDSCs have 
also demonstrated to be prognostic markers that 
correlate with disease stage and progression, in 
addition to providing clinicians predictive 
insight on potential microenvironment-directed 
treatment options such as checkpoint blockade. 
Oncologists have also utilized metronomic dos-
ing of chemotherapy that is based on frequent, 
lower doses of traditional chemotherapeutic 
agents (as opposed to toxic high-dose chemo-
therapy) that facilitate a reduction in suppres-
sive immune subsets, including MDSCs. 
Conversely, potentiating the suppressive capac-
ity of MDSCs for therapeutic gain in conditions 
such as autoimmunity and stem cell transplant 
has also been explored, and studies highlighted 
here have demonstrated the potential MDSCs 
have to alleviate these disease pathologies [179]. 
Current efforts are being directed at further 
understanding and exploiting the suppressive 
potential of MDSCs in diseases such as multiple 
sclerosis, GVHD, and other autoimmune disor-
ders. Finally, utilizing MDSCs as a cell platform 
for genetic manipulation and therapy is also 
now being explored, given the advent of tech-
nology that allows successful genetic repro-
gramming of primary cells of the myeloid 
lineage [180].

Ultimately, future efforts directed to further 
understand MDSC biology should focus on a 
deeper understanding of the mechanisms behind 
their pathological expansion, activation, pro-
angiogenic capabilities, and immune regulatory 
mechanisms. Insights gained from these studies 
will likely provide prognostic markers and novel 
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therapeutic targets to either inhibit or potentiate 
their suppressive capacity.
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