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Abstract
Monocytes (Mos) are immune cells that criti-
cally regulate cancer, enabling tumor growth 
and modulating metastasis. Mos can give rise 
to tumor-associated macrophages (TAMs) and 
Mo-derived dendritic cells (moDCs), all of 
which shape the tumor microenvironment 
(TME). Thus, understanding their roles in the 
TME is key for improved immunotherapy. 
Concurrently, various biological and mechani-
cal factors including changes in  local cyto-
kines, extracellular matrix production, and 
metabolic changes in the TME affect the roles 
of monocytic cells. As such, relevant TME 
models are critical to achieve meaningful 
insight on the precise functions, mechanisms, 
and effects of monocytic cells. Notably, 
murine models have yielded significant insight 

into human Mo biology. However, many of 
these results have yet to be confirmed in 
humans, reinforcing the need for improved 
in vitro human TME models for the develop-
ment of cancer interventions. Thus, this chap-
ter (1) summarizes current insight on the 
tumor biology of Mos, TAMs, and moDCs, 
(2) highlights key therapeutic applications rel-
evant to these cells, and (3) discusses various 
TME models to study their TME-related activ-
ity. We conclude with a perspective on the 
future research trajectory of this topic.
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7.1	 �Introduction

Monocytes (Mos) traffic through vasculature to 
tissues during steady state and at increased rates 
during inflammation from cancer [1]. Upon 
entering cancer-associated tissue, Mos can give 
rise to tumor-associated macrophages (TAMs) 
and Mo-derived dendritic cells (moDCs) [1]. 
Subpopulations of all these cells shape the tumor 
microenvironment (TME) [1]. Thus, understand-
ing Mo ontogeny and heterogeneity enables 
improved insight into their roles in the TME and 
the proper creation and interpretation of human 
models. Of note, we discuss Mo ontogeny and 
heterogeneity based on findings derived from 
human and murine models while recognizing that 
most murine-derived findings are yet to be vali-
dated in humans.

7.1.1	 �Monocyte Ontogeny

In children and adults, Mos derive from hemato-
poietic stem cells (HSCs) in the bone marrow [2]. 
Monopoiesis, a series of differentiation and com-
mitment steps, drives their development [3, 4] 
and involves intermediary lineage-committed 
cells including common Mo progenitors (cMoPs), 
granulocyte-macrophage progenitors (GMPs), 
and macrophage-dendritic cell progenitors 
(MDPs) [2]. The sequential transcription of PU.1 
and then IRF8 and KLF4 governs monopoiesis 
[5–7]. GMPs comprise multiple progenitors that 
differentiate along a spectrum of macrophage 
(MΦ) or dendritic cell (DC) lineage phenotypes 
[8]. However, GMPs phenotypically overlap with 
cMoPs and MDPs [9], suggesting that current 
definitions oversimplify ontogeny complexities.

Recently, advanced techniques in RNA 
sequencing (RNA-seq), epigenetic profiling,  
and fate mapping strategies have facilitated more 

in-depth understanding of the development hier-
archy of Mo ontogeny in normal [10, 11] and 
cancer [12] settings. Also, the fate of TME-
associated Mos is heavily influenced by TME-
related cues such as cytokines (M-CSF, GM-CSF, 
and IL-13) [13–15] and extracellular matrix 
(ECM) [16], which may differ across cancer 
types [17, 18]. Thus, TME models must account 
for these parameters and complexities while 
remaining adaptable to new discoveries regard-
ing the effect of cancer cells on the differentiation 
and commitment of cells of monocytic origin.

7.1.2	 �Monocyte Heterogeneity

Early studies established classical (Cla) 
(CD14+CD16−), non-classical (NC) 
(CD14loCD16+), and intermediate (Int) 
(CD14+CD16+) [19] Mo subsets within the 
peripheral blood of humans. A developmental 
relationship, triggered by M-CSF [20], has been 
observed from the Cla, through Int, to NC sub-
sets [1, 21, 22]. Although gradual transitions 
across subsets blur their distinctions, the CD14/
CD16 nomenclature has proven useful in many 
studies. Subsets based on differential expression 
of CX3CR1 [23], CCR2 [24, 25], or 6-sulfo 
LacNAc+ and FcεRI+ [26–30] were later identi-
fied, pointing toward a growing appreciation of 
diverse Mo subpopulations in humans.

Subset definitions inevitably shift, particularly 
for Int Mos [31]. Indeed, advanced techniques such 
as high-dimensional mass cytometry (CyTOF) that 
allows multiplexed analysis of >40 protein markers 
in single cells revealed that CCR2, CD11c, CD36, 
and HLADR can improve the gating purity of Int 
Mos [32]. Single-cell transcriptional (scRNA-seq) 
profiling also identified Int Mo sub-clusters, of 
which 70% are Cla (Mono1) and NC (Mono2) 
clusters and 30% are Mono3 and Mono4 that, 
respectively, regulate cell cycle/trafficking and 
expression of NK/T cell activation genes [33]. In 
fact, colorectal cancer patients have increased Int 
Mo percentages, with these being higher in patients 
with localized disease versus (vs.) those with 
advanced metastasis [34]. Future studies must thus 
validate the existence and functions of Mo subpop-
ulations both in healthy and cancer conditions.
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Mos also differ by their tissue localization, 
including their retention within the vasculature 
of multiple organs [23, 35]. In steady-state con-
ditions, Cla Mos are recruited to tissues where 
they can differentiate into MΦs or moDCs [11, 
36]. On the other hand, NC Mos mainly patrol 
vasculature [37] through LFA-1 and CX3CR1 
[38], scavenging cellular debris and flagging 
damaged endothelial cells (ECs) for disposal by 
neutrophils [39]. In inflamed conditions, both 
Mo subsets increase their trafficking to tissues 
[40–42]. Here, NC Mos traffic more slowly than 
Cla Mos [42] and can also give rise to MΦs that 
secrete inflammatory cytokines [38, 43, 44]. 
Specifically in cancer, patrolling/non-patrolling 
Mos can differently modulate primary tumor 
growth, cancer cell extravasation, and metastatic 
seeding, with these subsets commonly associ-
ated with having pro-tumor or anti-tumor effects, 
respectively [45, 46].

For the purposes of this review, we adopt the 
Cla/NC subset nomenclature and further identify 
Mos by patrolling/non-patrolling classes. The 
functional term “proinflammatory”/“inflammat
ory” is avoided as it disregards anti-inflammatory 
properties of an alleged “(pro)inflammatory” cell 
[47] and prematurely ascribes cells with ex vivo 
characterized functions, while they often remain 
to be validated in  vivo. Mos are distinguished 
from MΦs/DCs as far as evidence is clear. 
However, where classifications are unclear, we 
refer to cells of monocytic origin to avoid confu-
sion [42]. Finally, although there is evidence that 
some human Mo subsets are corollary to murine 
subsets, there is growing evidence of the hetero-
geneity between human and murine Mo subpop-
ulations, particularly with regard to cell function 
[48]. Importantly, human-relevant models are 
required to fully clarify if murine-derived find-
ings necessarily translate to humans.

7.2	 �Monocyte Functions 
in Cancer

Mos have an extensive role repertoire where 
environmental cues such as cytokines activate 
distinct transcriptional programs to direct their 
specific activities in the TME [49]. Here, we 

discuss current evidence of these various roles 
(Fig.  7.1) and present outstanding areas that 
remain to be clarified.

7.2.1	 �Recruitment to Tumors

Mos are recruited throughout the tumor lifespan, 
from the early stage of primary tumor growth 
[50, 51] to late-onset metastases [45, 52, 53]. 
CCL2/CCR2 signals chiefly recruit Mo to tumors 
[50, 53], with CCL2 expression correlating with 
the presence or amount of neoplasia [54]. Many 
studies in Mo recruitment also implicate modu-
lation by CXCL8/IL-8, CCL5/RANTES, and 
vascular endothelial growth factor (VEGF) sig-
naling [55, 56], as well as tumor microvascula-
ture upregulation of angiopoietin-2 (Ang-2), 
CX3CL1, ICAM-1, selectins, and VCAM-1 [57, 
58]. Moreover, Cla Mo recruitment could be 
evolutionarily conserved across tumors as adop-
tively transferred human Mos traffic to murine 
tumors [53]. Mos deploy to primary tumors pri-
marily from the bone marrow [59], but the pre-
cise mechanism of their trafficking to tissues 
could differ for different anatomical locations 
and cancer types [42]. Such features and pro-
cesses should be considered when modeling the 
human TME.

7.2.2	 �Tumoricidal Activity

Mos elicit antitumor activity using multiple 
pathways. For example, Mos expressing SIRPα 
can directly phagocytose tumor cells express-
ing low levels of CD47, which normally pro-
vides cells with a protective “don’t eat me” 
signal against phagocytotic cells [60, 61]. 
Notably, Cla Mos are viewed as the most 
phagocytic subclass, whereas NC Mos chiefly 
patrol the vasculature and scavenge cell debris 
[45, 62]. Growing evidence suggests that mono-
cytic cells can also contribute to cancer cell 
death by cell contact-mediated antibody (Ab)-
dependent cellular cytotoxicity (ADCC) and 
apoptosis [63–67]. For example, granzyme B 
expression is induced in human Mos that are 
treated with TLR8 agonists, leading to 
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Mo-mediated ADCC of Ab-coated breast 
cancer cells [66]. CD16+ Mos engage with Abs 
bound to cancer cells, inducing Mo secretion of 
TNF-α and subsequent TNF-α-mediated tumor 

cell lysis [64]. Mos exposed to IFN-γ and IFN-α 
can also produce TNF-related apoptosis-induc-
ing ligand (TRAIL) that results in TRAIL-
induced cancer cell apoptosis in vitro [67].

Fig. 7.1  Role of monocytic cells in the tumor microenvi-
ronment. Monocytes circulate in vasculature or egress 
into tissue and differentiate into macrophages/monocyte-
derived dendritic cells. These cells display phenotypes 
along an anti-tumor-to-pro-tumor spectrum. Their roles 
include the lysis of cancer cells or immunosuppressive 
regulatory T cells (Tregs), T cell stimulation through Ag 

presentation, T cell recruitment and immunosuppression, 
matrix remodeling, and angiogenesis support. (ADCC 
antibody-dependent cellular cytotoxicity, iNOS inducible 
nitric oxide synthase, MMP matrix metallopeptidases, 
PD-(L)1/2 programmed death-ligand 1/2, TRAIL TNF-
related apoptosis-inducing ligand)
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Tumor cells alter multiple pathways to evade 
the tumoricidal activity of Mo-derived cells. To 
combat the phagocytic functions of SIRPα-
expressing Mo-derived cells, solid [60, 61] and 
hematologic cancer cells [68, 69] upregulate 
CD47 expression to increase SIRPα inhibitory 
signaling. Cancers can also be TRAIL-resistant, 
where a study observed that TRAIL stimulation 
induces cancer cell lines to secrete cytokines 
such as IL-8 and CCL2, contributing toward a 
tumor-supportive TME characterized by height-
ened accumulation of Mos and increased polar-
ization of myeloid cells toward pro-tumor 
myeloid-derived suppressor cells (MDSCs) and 
M2-like MΦs [70]. Additionally, Mos phagocy-
tose tumor-derived microparticles and exosomes, 
and this suppresses their inflammatory activities 
[71, 72] and gives rise to immunosuppressive 
MDSCs [73]. Indeed, many studies in established 
tumors concur that Mos display only weak or 
transient tumoricidal activity and, instead, pre-
dominantly display (as below-described) pro-
tumor functions [74, 75].

7.2.3	 �Differentiation into TAMs 
and moDCs

Mos differentiate into TAMs or moDCs depend-
ing on the environmental cues of the TME [1, 11, 
76]. For example, in the primary tumor, this dif-
ferentiation process is driven by the exposure of 
Mos to IL-10 from CD4+ T cells, tumor-synthe-
sized factors including CSF1 and TGFβ, as well 
as hypoxia due to the poor supply of blood by 
leaky tumor vessels [76, 77]. scRNA-seq of 
Mo-derived cells within the TME shows tran-
scriptional profiles or clusters that suggest a tran-
sition from blood to intratumoral Mos and then 
moDCs and TAMs [78]. Notably, although Mos 
differ from TAMs/moDCs transcriptionally, their 
phenotypes significantly overlap, and this has led 
to confusion. For instance, some researchers 
define CD11c+ Mo-derived cells in the intestines 
as DCs [79, 80], while others classify these cells 
to be MΦs [81]. Such findings reinforce that het-
erogenous populations exist and further study is 
required to firmly establish unique phenotypes 
and functions for Mo-derived populations [11].

TAMs are highly abundant within the TME 
[82] and are viewed to arise from recruited Mos 
(mostly from the Cla subset and less from NC 
Mos) [50–53] or from tissue-resident MΦs [11]. 
However, as seen from the large spectrum of 
monocytic populations in breast cancer patients 
[78], there is a need for further studies to better 
understand the origin of TAMs in the TME. Some 
studies suggest that TAMs can proliferate [50] 
and both CCR2+ Mos and resident MΦs contrib-
ute to TAM numbers [83]. More recent evidence 
shows that in some tumor models, CCR2− mice 
do not have fewer TAMs [50], suggesting that 
while CCR2 is fundamental for recruiting Mos to 
TMEs [50, 53], it is not crucial for amassing 
TAMs. Such findings also support the notion that 
TAMs primarily derive from tissue-resident MΦs 
that are believed to be seeded during waves of 
embryonic hematopoiesis and to self-renew inde-
pendently of bone marrow-derived cells during 
adulthood [11]. Additionally, Mo-TAM differen-
tiation is not fully understood. Cla Mos can dif-
ferentiate into two populations in the TME that 
either upregulate DC markers (CD11c and 
MHCII) or upregulate VCAM-1 plus the murine 
MΦ marker F4/80 [50, 84]. The differentiation 
process may further depend on spatiotemporal 
factors as Mos first localize in deeper regions of 
the TME but are later found in perivascular sites 
using sequential CCR2 and CXCR4 signaling 
pathways in Mo-derived TAMs, respectively [85, 
86]. We can speculate that stromal cells secrete 
factors that drive early recruitment and differen-
tiation of Mos, but cues from the vasculature pro-
vide signals that retain monocytic cells within the 
TME.

TAMs are described with some anti-tumor 
roles [50, 53] but are generally believed to 
predominantly play an immunosuppressive role 
within the TME [87–91]. Higher TAM density 
at the tumor front correlates with better patient 
survival [92], suggesting that TAM position in 
the TME shapes their functions [76, 82, 93]. 
TAMs are customarily believed to be M2 polar-
ized based on the simplified M1 (IL-1β, IL-6, 
TNF-α, and CCL3)/M2 (CD163 and CD206) 
anti-/pro-tumor axis [94, 95], but the M1/M2 
dichotomy overlooks how many factors define a 
MΦ’s state [91, 96]. Studies have shown that 
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M1/M2-like MΦs can co-exist [97, 98] and dis-
play mixed M1/M2 functions [99–101], sug-
gesting that the TME supports the emergence of 
both populations and reinforcing that the M1/
M2 concept is likely to be an inaccurate descrip-
tion of Mo-derived cells in the TME. Importantly, 
this simplistic M1/M2 concept, originally pro-
posed by Mills et al. [102], may stem from how 
poorly we currently understand polarization 
cues in the TME because many early studies 
relied on in  vitro protocols that used simple 
cytokine cocktails or tumor-conditioned media 
in 2D culture. Also, multiple unique MΦ tran-
scription profiles suggest that specific Mo/MΦ 
subtypes exist [103] and that TAMs should be 
grouped or clustered based on high-dimen-
sional analysis (such as scRNA-seq and 
CyTOF) to account for the complexity in phe-
notypes, with future studies focused on the 
function of these subtypes within specific can-
cers [104, 105].

moDCs form a small fraction of the TME 
infiltrate [106–108] and often display a pheno-
type intermediary of Mos and the DC family 
[109]. In addition to moDCs, other DC subpopu-
lations in the TME include conventional DCs 
(cDCs) (further categorized by CD103/CD11b 
expression) and plasmacytoid DCs (pDCs), all of 
which are efficient cross-presenters of cell-asso-
ciated antigens (Ags) that can either support or 
inhibit T cell anti-tumor cytotoxicity in the TME 
[110]. Specifically for moDCs, these cells show 
their Mo origins via CD64 and FcγR1 [111, 112] 
and co-express DC markers (MHCII, CD11b/c) 
but are viewed as DCs if they have higher MHCII/
CD11c expression or dendrite morphology [11]. 
One study on human breast cancer found that 
total DCs from the TME ranged from 0% up to 
28% of CD45+ leukocytes and clustered closely 
with Mo/MΦ subsets, supporting the notion that 
TAMs and DCs are distinct but closely related 
myeloid subsets in the TME [113].

Polarization within the TME is thought to 
elicit anti-tumoral effector function through type 
I IFNs which rapidly mature Mos into tumori-
cidal moDCs that either produce increased levels 
of IL-15 to support anti-tumor T helper cell type 
I responses [114] or express TRAIL to mediate 

tumor cell apoptosis [115]. Loss of moDCs in 
tumor-bearing mice can lead to poor chemothera-
peutic response [116], and adoptive transfer of 
Mos [107]/cMoPs [116] can delay tumor growth 
rates through Ag presentation and drive anti-
tumor cytotoxic T cell responses. moDCs are also 
akin to DCs producing M1-like effector proteins 
TNF-α and inducible nitric oxide synthase 
(iNOS) [117] or “inflammatory DCs” [118, 119]. 
Finally, current understanding of human moDCs 
is mostly based on studies of in vitro differenti-
ated bone marrow-derived Mos [118]. However, 
studies in mice show that the specific differentia-
tion cocktail used can result in strikingly differ-
ent DC subtypes; GM-CSF with IL-4, compared 
to Flt3L-only differentiation, gives rise to a sub-
type that more closely resembles in vivo moDCs, 
whereas the latter gives rise to a phenotype that is 
typical of cDCs [120]. Thus, consideration should 
be given to the specific protocols used both in lit-
erature and future studies for an improved under-
standing of moDCs in the TME.

7.2.4	 �Interaction with Tumor 
Microenvironment (TME) 
Matrix

The highly disorganized TME matrix promotes 
metastasis [121]. The composition of the ECM 
provides specific biophysical and biochemical 
cues that influence Mo polarization and activa-
tion state [121, 122]. One study showed that 
THP-1 cells (monocytic cell line) can display 
spontaneous polarization toward a pro-tumor 
M2-like phenotype when they are cultured within 
a 3D in vitro ECM that is rich in hyaluronic acid 
(HA) [123], an ECM component that is abundant 
within the TME [124]. Cla Mos can remodel the 
TME matrix via release of factor XIIIA which 
cross-links fibrin and provides a scaffold for 
tumor cells to migrate [125]. In lung cancer 
patients, densely cross-linked fibrin correlates 
with CD14+ cells and poor prognosis [125]. 
CCR2+ Mos that differentiate into MΦs remodel 
ECM [126] through matrix metallopeptidases 
(MMP) which degrade collagen and create tracks 
for cell migration [127]. Moreover, MΦs migrate 
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concordantly with tumor cells [128, 129], and 
this contributes to metastasis [128–132]. 
Interestingly, matrix remodeling is more exten-
sively explored for MΦs [133], due to the short 
lifespan of Mos in tissue where they promptly 
differentiate into MΦs [104]. Tumors may also 
hijack the wound-healing functions of M2-type 
MΦs that encourage connective tissue cells to 
reform the ECM to thus shape a pro-tumorigenic 
TME [134, 135]. Other studies report that Mos 
give rise to matrix-remodeling programs associ-
ated with synthesizing and assembling collagen 
type I/VI/XIV, which mainly constitute TME 
ECM [136]. Finally, it would be interesting to 
understand if undifferentiated Mos can autono-
mously influence their differentiation into MΦs 
or M1/M2 polarization by MMP-dependent 
digestion of the TME ECM, since activated Mos 
highly produce MMP [49, 137, 138].

7.2.5	 �Pro-angiogenic Effects

Angiogenesis allows tumors to meet their meta-
bolic needs [139], recruit pro-tumorigenic cell 
types such as Mos [140], and, in metastatic dis-
ease, allows tumor cells to intravasate into tumor 
vessels to then disseminate from the primary 
TME [141]. Mos support angiogenesis via VEGF 
family members, such as VEGF-A, coercing tis-
sue-resident ECs and VEGFR2/CD34+ circulat-
ing endothelial progenitor cells to form 
angiogenic sprouts [142–145]. In vitro, Mos 
from renal cell carcinoma (RCC) patients are 
observed to produce more VEGF and better sup-
port angiogenesis compared to normal Mos 
[146]. Studies have also identified a cluster of 
Mos around tumor blood vessels that express 
higher levels of Tie-2 than Mos residing else-
where in the TME or that remain in circulation 
[147]. Tie-2+ Mos are often studied for their pro-
angiogenic role in human cancers as their fre-
quency correlates with tumor vessel density, 
tumor grade, lymph node status, and frequency of 
metastasis (TNM stage) [148–150]. Ang-2, over-
expressed by tumor vasculature [151], is believed 
to recruit Tie-2+ CD16+ Mos and augment their 
production of pro-angiogenic enzymes such as 

cathepsin B [140, 152]. Tie-2+ Mos secrete other 
pro-angiogenic factors (MMP and TNF-α) [140, 
147, 153] and mediate tumor release of VEGF to 
recruit other pro-angiogenic Mo-derived cells 
[154]. MΦs expressing Tie-2 also associate with 
increased vessel maturation [85], where their 
depletion by clodronate is linked to the anti-
angiogenic effects that was observed in mice 
[155]. However, future studies should clarify if 
Tie-2+ MΦs represent polarized tissue-resident 
MΦs or differentiated Tie-2+ Mos, so that anti-
angiogenic therapies can target specific mono-
cytic cell types that mainly drive angiogenesis in 
the TME. One study provides evidence that Tie-
2+CD14+CD45+ MΦ-like cells are specifically 
found in the blood circulation of cancer patients, 
and not healthy individuals, suggesting that Tie-
2+ cells are bone marrow-derived [156].

7.2.6	 �Establishing the Pre-
metastatic Niche

Beyond their roles in the primary TME, mono-
cytic cells have an important role in establishing 
the pre-metastatic niche (Pre-MN), distant sites 
from the primary tumor within the body which 
enhance the homing of circulating tumor cells 
(CTCs) in the process of metastasis [157, 158]. 
Studies of lung metastasis show that CTCs arrest 
in target tissue vessels [159], enabling tumor-
secreted CCL2 to generate a chemoattractive gra-
dient that recruits CCR2+ Mos [53, 160]. These 
Mos enhance CTC extravasation in part by VEGF 
secretion, which elevates vascular permeability 
[161]. This study also found that the genetic or 
chemical inhibition of CCR2+ VEGFR1+ MΦ 
(derived from recruited Mos) inhibits metastatic 
seeding [53, 161]. Other studies have identified a 
population of metastasis-associated MΦs 
(MAMs) which promote the extravasation 
and  survival of metastasizing cancer cells by 
suppressing CD8+ T cell cytotoxicity through 
superoxide production, thus supporting the estab-
lishment of Pre-MNs [52]. Growing evidence 
further suggests that the primary TME influences 
the formation of a unique population of MDSCs 
from particular Mo subsets within the bone 
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marrow through the systemic release of GM-CSF, 
G-CSF, IL-6, or tumor-derived extracellular vesi-
cles [162]. These same factors drive systemic 
monocytosis in cancer and also increase 
Mo-derived MDSCs which have been shown to 
suppress anti-tumor T cell responses by anti-
inflammatory cytokines and reactive oxygen spe-
cies (ROS) production [162]. Furthermore, 
MDSCs can act on distant stromal cells to gener-
ate the Pre-MN via cytokine release, pro-angio-
genic signaling, and metabolic reprogramming 
[163, 164].

7.2.7	 �Interaction with T Cells

Monocytic cells profoundly interact with T cells 
which directly kill malignant cells [51, 97, 165]. 
In melanoma, Cla Mos give rise to immunosup-
pressive Mo-derived cells which produce immu-
nosuppressive iNOS and arginase (Arg), 
inhibiting the infiltration of effector T cells into 
the TME [166]. In mice which lacked CD8+ T 
cells [167], inhibiting CCR2 did not change 
tumor growth, supporting that effector T cells 
are downstream targets of Cla Mos which can 
either suppress or activate T cell functions. Mos 
and TAMs also express immune checkpoints 
(proteins that place a “break” on the immune 
system to keep host immunity in check) such as 
programmed death-ligand 1/2 (PD-L1/2) that 
bind to PD-1 on CD8+ T cells to impair T cell 
proliferation and anti-tumor cytotoxicity [87, 88, 
168, 169].

Monocytic cells also present Ags in the con-
text of surface MHCI/II [37], in conjunction with 
their secretion of T cell-activating cytokines 
(TNF-α, IL-2, IL-15) or metabolites (iNOS, Arg-
1), for homeostasis and response to infection [40, 
170]. However, their individual presentations of 
tumor-associated Ags (TAAs) are less studied. 
One murine study suggests that F4/80hi Mos can 
present TAAs to CD8+ T cells as efficiently as 
MΦ/moDCs [107, 171]. Moreover, TAMs, and 
not pDCs, which are activated to phagocytose 
tumor cells by addition of CD47-blocking Abs, 
can activate CD8+ T cells to induce tumor cell 

lysis [172]. Also, MHCII-restricted interaction of 
MΦs (pulsed with OVA-specific peptides) and 
peptide-specific CD4+ T helper cells can instruct 
M2-M1 polarization of MΦs, thereby facilitating 
anti-tumor immune attack [173].

TAA presentation mainly occurs at the pri-
mary tumor or lymph nodes, but a recent study 
shows that MHCII+ Mos also present TAAs to 
CD4+ T cells within inflamed vasculature of renal 
glomeruli [174], but future studies are needed to 
confirm the implications of these findings in 
other cancer models. Additionally, growing evi-
dence suggests that tissue Mos can retain their 
monocytic profile without becoming MΦs or 
moDCs and can patrol for Ags presented across 
tumor vasculature to transport to draining lymph 
nodes [37, 40]. Such results support the possible 
notion that circulating Mos can patrol the vascu-
lature for TAAs and present these to effector T 
cells to prime them for TAA-specific anti-tumor 
responses. Thus, future studies should better 
understand the TAA-presenting capabilities of 
monocytic cells and where such processes occur 
with respect to the TME.

Mo-derived cells can also regulate recruit-
ment of effector T cells to the TME.  Tumor 
recruitment of Mos correlates inversely with 
CD8+ T cell numbers, suggesting that the pre-
dominant role of Mos in murine tumor models is 
in restricting T cell entry into the TME.  In 
murine tumors, CCR2-/CSF1R-based reductions 
of monocytic cells can increase infiltrating CD8+ 
T cells and reduce tumorigenesis [167, 175]. 
Pancreatic cancer patients with lower CCL2+ and 
higher CD8+ cells display improved survival 
[176]. Monocytic cells can also secrete CCL5 
that recruits regulatory T cells (Tregs) [177] 
which produce cytokines such as IL-10, differ-
entiating Cla Mos into immunosuppressive 
TAMs [77, 178]. Interestingly, melanoma 
patients who responded to immune checkpoint 
therapy (ICT) that blocked cytotoxic T lympho-
cyte-associated protein 4 (CTLA-4) have more 
NC Mos in blood and less intratumoral Tregs 
[179]. Here, NC Mos induced FcRγ-dependent 
Treg lysis in vitro [179], suggesting that NC Mos 
possibly compete against pro-tumor Cla Mos.
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7.3	 �Therapeutic Applications 
Related to Cells of Monocytic 
Origin

7.3.1	 �Biomarkers for Prognosis

Monocytic cells have emerged as biomarkers for 
early cancer diagnosis. Absolute Mo frequency in 
blood is associated with improved survival 
in  locally advanced cervical cancer [180]. 
Improved diagnostic power may be gained from 
discerning between Mo subsets given their dis-
tinct roles as pro- or anti-tumorigenic cells. For 
instance, lower blood frequencies of Cla Mos and 
their increase in bone marrow are correlated with 
improved pancreatic cancer patient survival 
[176]. Higher levels of myeloid marker CCR2 
(primarily recruits Mos to tumors) in metastatic 
tissues compared to primary prostate tumors is 
linked to TNM pathologic stage [181]. Finally, 
PD-L1+ Mo-derived cells are a prognostic factor 
for patient responders to anti-PD-1/PD-L1 ther-
apy in melanoma [182, 183], head and neck squa-
mous cell carcinoma [184], RCC [185], and 
colorectal [185] and non-small cell lung cancer 
[184, 186]. These findings support the capability 
of monocytic cells to determine disease progres-
sion and survival at the clinical level and provide 
the rationale for future studies aimed at better 
defining subtype phenotypes and numbers to 
develop improved therapies and outcomes.

In addition, higher lymphocyte-to-Mo ratio 
(LMoR) positively correlates with improved 
prognosis in colorectal [187], lung [188], and 
ovarian cancer [189]. However, a recent study 
observed that there is a significant variability in 
the ratio of T cell to MΦ infiltration across differ-
ent TMEs and that human tumors are vastly het-
erogenous [190]. The study clearly shows that 
patient prognosis must consider multiple factors, 
such as the extent of neoantigen load and the 
expression of immunomodulatory genes, both 
across and within immune cell subtypes [191]. 
Such findings also emphasize the complexity and 
intricacies of the human TME that must be mod-
eled precisely to represent the tumor immune 
milieu in specific cancer contexts.

7.3.2	 �Combinational Therapeutic 
Strategies

7.3.2.1	 �Monocyte-Associated 
Strategies

Many studies in mice show the potential thera-
peutic advantage of combining strategies to 
exploit Mo functions. For example, the combined 
use of anti-CCL2 Abs and cancer vaccines can 
lead to reduced Mo accumulation in the TME, 
enhanced T cell effector functions, and reduced 
tumor volumes [192]. Vascular density can also 
be effectively reduced by combining anti-VEGF 
anti-angiogenesis therapy with the inhibition of 
Mo activity in the TME via anti-Gr1 Abs, as 
shown in mice [193]. Also, co-administration of 
Mos and immunostimulatory IFN-α2a/IFN-γ 
into xenograft murine models gives rise to 
reduced tumor growth and prolonged survival 
[194]. Linehan et al.’s work is one of few human-
based studies that demonstrates that co-treatment 
with a CCR2 agonist (inhibits Mo recruitment) 
and chemotherapeutic drugs can improve overall 
survival of pancreatic cancer patients [195]. 
Notably, the majority of murine-derived findings 
must be clarified more extensively in humans, 
reinforcing the need for improved in vitro human 
TME models.

7.3.2.2	 �TAM- or moDC-Associated 
Strategies

TAM-based anti-cancer strategies [76, 196] are 
broadly classified by limiting their recruitment 
and localization in the TME [197–201], directly 
depleting TAMs [202, 203], or reprogramming 
TAM activities [204–212]. For example, target-
ing CSF1 can reduce CSF1R+CD163+ MΦs in 
tumor tissues, translating into positive clinical 
objective responses in diffuse-type giant cell 
tumor patients [198]. The chemotherapeutic 
agent trabectedin can deplete TAMs via apopto-
sis to give rise to reduced tumor vessel density in 
patient tumor biopsies [203]. Finally, low-dose 
gamma irradiation can program the differentia-
tion of iNOS+ MΦs, fostering enhanced infiltra-
tion and anti-tumor T cell cytotoxicity [206]. 
TAMs can also be targeted to achieve anti-tumor 
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effects alongside other cancer or immune cells 
such as T cells. For instance, CSF1R blockade 
can enhance MΦ Ag presentation, but potent 
tumor regression is only elicited when CTLA-4/
PD-1 on CD8+ T cells is also blocked [213]. In 
vitro or ex vivo tumor Ag-loaded DCs are widely 
used as cancer vaccines, where they stimulate 
CD8+ T cells and CD4+ T helper cells to elicit 
anti-tumor immunity [214]. Further, in  vivo 
tumoricidal activity can be achieved by combin-
ing DC vaccination with chemotherapy [215, 
216] or phototherapy (therapy using light of spe-
cific wavelengths to kill tumor cells) [217]. Other 
combinational strategies are well reviewed else-
where [218]. These findings suggest that combi-
national therapies may be required to block 
multiple immune evasion strategies that tumors 
utilize to survive within the TME.

7.3.3	 �Autologous Monocytic Cell 
Therapy

Autologous cell therapy (ACT) involves harvest-
ing cells from patients, cell manipulation ex vivo, 
and re-infusion into patients. This approach pro-
vides patients with an adequate supply of highly 
activated Mos [219], tumoricidal effector MΦs 
[220], and efficient Ag-presenting moDCs [221]. 
Overall, clinical studies show that ACT is well 
tolerated in patients without significant toxicity 
and decreases cancer relapse frequencies for 
Mos [222, 223], MΦs [224–226], and moDCs 
[227, 228]. For example, in melanoma patients, 
moDC ACT induces cell-mediated anticancer 
immunity [227, 229] and is also proven safe and 
potentially effective when combined with che-
motherapy [230].

7.3.4	 �Nano-immunotherapy

Nanoparticles (NPs), particles in the size range 
of 1–1000 nm, can be engineered to regulate Mo 
and TAM functions [231, 232]. Lipid and cat-
ionic NPs encapsulating siRNA against CCR2 
have been developed to interrupt the CCL2-
CCR2 axis, disabling Mo recruitment to tumor 

tissues [201, 233]. Glycocalyx-mimicking NPs 
(GNPs) can bind to lectin receptors on TAMs, 
increasing TAM secretion of immunostimula-
tory IL-12 and decreasing secretion of immuno-
suppressive IL-10/Arg-1/CCL22. Also, the 
co-administration of GNPs and anti-PD-L1 Abs 
can synergistically reduce tumor burden in mice 
[234]. Lipidoid NPs (LNPs) containing PD-L1 
siRNA (siLNPs) can silence PD-L1 in liver-resi-
dent MΦs and enhance CD8+ T cell cytotoxicity 
[235], with similar results being observed for 
moDCs [236]. Mo/MΦs can also serve as cellu-
lar “Trojan horses” that deliver therapeutic cargo 
due to their tumor-homing capabilities. One 
study shows that Mos which phagocytized gold 
nanoshells (Au-NS) can accumulate in breast 
tumors to result in tumor cell death through pho-
toablation of Au-NS-loaded Mo/MΦs [237, 
238]. Also, Mos attached with NP “backpacks” 
of therapeutic cargo can accumulate more in 
inflamed organs compared to “free backpacks” 
[239, 240]. Alternatively, Mos can be loaded 
with a NP complex of cytotoxic mertansine con-
jugated to a protease-sensitive peptide [241] and, 
upon entering lung metastases, differentiate into 
MΦs that upregulate protease and initiate the on-
demand release of mertansine into the TME. 
Figure  7.2 summarizes the above therapeutic 
applications.

7.4	 �Experimental Cancer Models 
for Studying Monocytes

TME models that study Mos may consider differ-
ent steps of their activity, from trafficking through 
vasculature, differentiation, and polarization, to 
effector functions (including phagocytosis, cyto-
kine secretion, and Ag presentation) and interac-
tions with ECM or TME-specific cells (including 
cancer-associated fibroblasts (CAFs), tumor, and 
T cells). These models can mimic the primary 
tumor or Pre-MN and help to better study mecha-
nisms of human cancer and identify unique 
human markers. Such models should allow for 
infusion of whole blood or media containing ele-
ments from immune subpopulations while mim-
icking the physiological shear forces experienced 
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Fig. 7.2  Therapeutic applications and combinational 
immunotherapy targeting multiple roles of monocytic 
cells. Monocytes and PD-L1/2+ macrophages may be used 
as prognostic biomarkers for early diagnosis and positive 
clinical objective response, respectively. Anticancer ther-
apy may be achieved by combinational strategies that 
limit monocyte recruitment, deplete or reprogram mono-

cytic cells, or employ nanoparticles (encapsulating thera-
peutic cargo) that exploit the functions of monocytic cells. 
Monocytic cells can also be used to deliver drug-encapsu-
lating nanoparticles to target sites. Autologous monocytic 
cells can be manipulated ex  vivo and re-infused into 
patients for anticancer cell therapy
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by circulating Mos. Importantly, models should 
enable the development of human-relevant inter-
ventions while complementing preclinical ani-
mal models. Here, we describe the progress 
toward developing such models, existing limita-
tions, and potential solutions.

7.4.1	 �Conventional 2D In Vitro 
Cancer Models

Suitable TME models are needed to study the 
roles and therapeutic applications linked with 
monocytic cells. Traditionally, these models uti-
lize two-dimensional (2D) cultures of cells in 
contact with neighboring cells, the culture vessel 
(made of rigid plastic), and chemically defined 
medium. These are advantageous in terms of 
their simple setup and low cost. They also lay 
important foundations of cancer immunology 
and TAA discoveries [242]. However, 2D models 
do not mimic natural tissue structures and fail to 
recapitulate 3D in  vivo cell events [243, 244] 
which are responsible for cell processes such as 
differentiation, gene/protein expressions, and 
others [245–248]. For example, cells in monolay-
ers have relatively free access to signaling mole-
cules and nutrients, which contrasts in  vivo 
environments where barriers to transport, includ-
ing variations in blood supply, vascular permea-
bility, interstitial fluid flow, and complex matrix 
interactions that limit diffusion and dynamic cel-
lular consumption rates, generate chemical gradi-
ents and unique signaling outcomes that are 
better recapitulated using 3D culture systems 
[245, 248]. Alternatively, there are transwell 
models where cells can be cultured in 2D or 3D 
settings and which allow for simple cell migra-
tion measurements across a filter membrane 
between upper and lower chambers [249, 250]. 
However, 2D models often present endpoint 
readouts that can be confounded by in vitro arti-
facts such as the non-physiologic constraints of 
structural materials (such as polycarbonate, poly-
styrene, or polyester), the lack of mechanical 
stimuli such as fluid shear stress or mechanical 
forces, and the absence of cellular, tissue, or 
ECM heterogeneity seen in patient TMEs. Thus, 
3D in  vivo and emerging in  vitro models in 

hydrogels or scaffolds can better represent the 
physical, architectural, and biochemical cues of 
the in vivo TME.

7.4.2	 �Conventional 3D Cancer 
Models

Murine in vivo models are the gold standard of 
3D cancer models and, due to their complex 
nature and feasibility of genetic manipulation, 
are responsible for many of our recent advances 
in understanding the TME, particularly in tumor 
immunology [251]. Such models also facilitate 
in vivo evaluation of drug pharmacokinetics and 
enable studies of drug uptake and biodistribution 
in specific organs [251, 252]. However, murine 
models raise ethical issues and are costly and 
time-consuming, and the relevance of results 
from murine models has been questioned due in 
part to low conservation between murine vs 
human tumors and immune systems [253, 254]. 
Also, despite successful preclinical testing in 
mice, more than 80% of drug trials in patients fail 
in early phases, and only 50% of those that pass 
phase III are approved clinically [255]. Therefore, 
3D in vitro models may be improved representa-
tions of human cancer and include suspension 
cultures in non-adherent plates and cultures in 
scaffold or in gel-like matrix within well plates 
[256]. Multicellular aggregates/spheroids are a 
common feature of these models by virtue of 
their ability to mimic metabolic/chemical gradi-
ents, hypoxic conditions, and cell-cell/cell-matrix 
interactions [247, 257–259]. Aggregates also 
enable functional studies of monocytic cells in 
terms of their infiltration of a 3D tumor mass or 
support of cancer invasion into the 3D TME 
ECM [260–263].

7.4.3	 �Comparative Studies of 2D 
Versus 3D In Vitro Cancer 
Models

Clearly, 2D and 3D models offer distinct experi-
mental advantages, with the former being more 
easily adapted for higher-throughput studies and 
the latter being generally more representative of 
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in vivo TMEs. However, 2D vs. 3D comparisons 
reveal disparities in their evaluation of cell immu-
notherapies [88] and drug sensitivity for both 
single drugs [264–266] and drug combinations 
[267]. Other 2D-3D differences include the 
reduced expression of TAAs and HLA type I by 
cells grown as a 3D spheroid compared to a 2D 
monolayer [268]. Cells also differentially express 
protein(s) when they migrate through a 3D matrix 
or 2D substrate [244, 250, 269, 270]. For instance, 
FAK is crucial in 3D, but in 2D, FAK-null cells 
compensate for migration defects by overex-
pressing other migration machineries [270]. 
Morphological [271] and quantitative [269] dif-
ferences arise between 2D and 3D migration. 
Loss of diverse phenotypes [272] also results 
from 2D culturing, and this is especially relevant 
for monocytic cells which in vivo have a broad 
spectrum of functional responses to environment 
cues of the TME. Thus, a 3D environment will 
more accurately predict in  vivo drug responses 
for different pathways. In the example of the 
aforementioned FAK pathway that is under-rep-
resented in a 2D culture of tumor cells, drugs tar-
geting these pathways may be falsely deemed to 
be negative in 2D studies. Conversely, 2D studies 
might yield drugs that are ineffective in clinical 
studies because compensatory pathways can also 
emerge under more physiologic 3D settings. 
Finally, although more studies are needed to con-
firm that 3D cultures better indicate clinical out-
come [252], a 3D model should be strongly 
considered over simplistic 2D cell monolayers so 
that experimental conclusions have improved 
physiological relevance.

7.4.4	 �Microfluidic Cancer Models

Microfluidic models of the TME could represent 
an advantageous intermediate step that links the 
findings of 2D in  vitro cell assays, preclinical 
animal studies, and clinical patient trials. Unlike 
conventional 3D models, microfluidic technolo-
gies capture immune cell processes through spa-
tial compartmentalization [273] and the capability 
to mimic precise chemokine gradients [274], 
endothelial barrier function [275, 276], and flow 
conditions [277, 278]. These models can be built 

using gels of specific composition (e.g., collagen, 
fibrin, or various proteoglycans) that more closely 
mimic the ECM of cancer-specific TMEs. 
Moreover, because the culture of monocytic cells 
in a 3D matrix supports their de novo production 
of ECM [279], such systems yield more physio-
logical 3D environments from an initial setup 
based on a simple gel. Their small dimensions 
also allow for experiments that require less 
reagents and cells [273, 280], making them ideal 
for testing precious patient specimens. Such sys-
tems can be incorporated with vasculature to 
mimic the transport of circulating immune and 
tumor cells and their intravasation into vascula-
ture or extravasation into the surrounding matrix 
[275, 281, 282]. They also enable high-resolution 
imaging and real-time tracking of cell migration 
[274, 275, 282, 283], a procedure that may be 
feasible (e.g., by intravital two-photon imaging) 
but is technically demanding in animal models 
[273, 280].

7.4.4.1	 �Microfluidic Cancer Models 
to Study Monocytes

Studies have increasingly used microfluidic plat-
forms to gain improved insight on the role of Mos 
[88, 275, 284–286], TAMs [99, 131, 243, 277, 
287, 288], and DCs [289–291] (Table 7.1). Lee 
et  al. revealed the differential capability of 
PD-L1+ Mos to suppress the anti-tumor efficacy 
of retrovirally transduced vs. mRNA-electropor-
ated T cells, results that were not shown through 
2D cytotoxicity assays [88]. Otano et al. showed 
the therapeutic boost of anti-sense oligonucle-
otides against PD-1 to CD8+ T cells that allow 
them to overcome PD-L1+ Mo suppression [284]. 
Finally, a vascularized model revealed that Mos 
reduce cancer cell extravasation independently 
from their contact with cancer cells and Mos 
have little effect on cancer cell extravasation once 
they transmigrate across the microvasculature 
[275]. Importantly, microfluidic models of the 
human TME provide a system of improved phys-
iological relevance to validate the above-dis-
cussed effects of Mos in 3D which to date have 
mostly been specific to murine systems, includ-
ing their effect on the growth of tumor aggre-
gates, ADCC-based tumoricidal activity, and 
their support toward developing the Pre-MN.
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7.4.4.2	 �Microfluidic Cancer Models 
to Study Monocyte-Derived 
Cells

Complex TME models have successfully captured 
the in  vivo profile of Mo-derived cells in the 
TME. In one of the more cellularly complex TAM-
associated models, MΦs upregulate Arg-1 in their 
quadruple cell culture with ECs, fibroblasts, and 
bladder cancer cells, analogous to their activation 
in vivo [287]. The same model capably screens for 
chemotherapy regimens. Other models character-
ize TAM supportive capabilities in cancer cell 
extravasation [99] or intravasation [276] across EC 
barriers. The impact of specific Mo-derived MΦ 
subsets can also be elucidated as shown by Bai 
et al., where a subset of M2-like MΦs (specifically, 
the M2a MΦ subset) show the capability to medi-
ate contact-dependent epithelial-to-mesenchymal 
(EMT) transition of tumor aggregates [131].

Microfluidic models have been developed for 
the general DC population, but no study that spe-
cifically focused on moDCs has been performed. 
One model reveals that CXCR4 mediates the 
migration of IFN-α2b-conditioned DCs toward 
cancer cells that were treated with epigenetic 
drugs [289]. Other models provide insight on DC 
chemotaxis under precise CCL19/21 gradients 
[291], cell volume changes under hyperosmotic 
stress [292], and contact with T cells under dif-
ferent shear stresses [290]. Other areas such as 
the effect of DCs on T cell activation (via TAA 
presentation) or immunosuppression or DC traf-
ficking between the TME and draining lymphat-
ics should also be explored in microfluidic 
models of the human TME.

7.4.4.3	 �Patient-Derived Microfluidic 
Cancer Models

Microfluidic models have the great advantage of 
allowing the culture of patient-derived explants 
such as patient-derived organotypic tumor spher-
oids (PDOTS) that retain the relevant immune 
cell types found in tumor tissues. Jenkins et al. 
developed an ex vivo system that retains key fea-
tures of patient-specific immune TMEs, showing 
the presence of CD14+ monocytic cells and het-
erogenous PD-L1 expression which is reminis-
cent of in  vivo Mo-derived cell profiles [286]. 
Further, Aref et  al. demonstrated the capability 

of such platforms to screen ICT, a form of ther-
apy which includes the use of Abs against com-
plementary checkpoint proteins (e.g., between 
PD-L1 and PD-1) to inhibit checkpoint protein 
signaling. Through the platform, authors could 
observe an expansion of both CD8+ T cells and 
naïve M0 MΦs within in  vitro PDOTS that 
received dual checkpoint blockade against 
CTLA-4 and PD-1 [288]. Because such ex vivo 
models mimic the patient-specific TME, they 
have the potential to predict patient-specific 
responses to immunotherapies.

7.5	 �Future Directions

Despite recent progress, multiple areas remain to 
be clarified of monocytic cells in the TME, rang-
ing from questions of their ontogeny, heterogene-
ity, and functions. At the same time, the versatility 
of these cells presents an opportunity to exploit 
combinational approaches to achieve superior 
cancer immunotherapy. For example, NPs are 
candidate therapies that can simultaneously mod-
ulate multiple roles of Mos, which include inhib-
iting their recruitment to tumors, differentiation 
into pro-tumor MΦs/moDCs, and potential 
tumoricidal activity in the TME. Current under-
standing has mostly derived from studies per-
formed in murine models and remains to be 
validated in human settings. Therefore, improved 
physiologically relevant TME models are needed 
for investigating human-relevant monocytic cell 
biology and developing human-relevant thera-
peutic strategies.

While simplistic 2D and traditional 3D (tran-
swell) in  vitro cell cultures are scalable and 
robust, their relevance in vivo is limited by their 
lack of biological functionality. Conversely, ani-
mal models replicate function at both organ and 
multi-organ levels but are inherently flawed due 
to human-murine species differences. As such, 
we support that microfluidic human TME models 
combine the best features of both models by cul-
turing human cells in tissue-specific conditions 
that are designed to mimic human-relevant bio-
logical and physical cues of the TME. To date, 
microfluidic human TME models have been 
developed to study Mos, TAMs, and moDCs 
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(Table 7.1), all of which are capable of mimick-
ing relevant tumor-immune interactions in a con-
trolled setting that is unique to the specific cancer. 
Future model developments can draw from the 
growing understanding of the biochemical and 
biophysical properties of the TME, such as the 
impact of tumor interstitial flow and the function 
of tumor lymphatics. Incorporating these ele-
ments in TME models would enhance the physi-
ological accuracy of TME models and enable 
deeper characterizations of monocytic cells in the 
TME to design and screen immunotherapies. 
Moreover, by incorporating patient specimens, 
scientific understanding can be specific to the 
patient’s pathology and can be applied for devel-
oping patient-specific treatments.

The emergence of microfluidic human TME 
models highly complements ongoing immuno-
phenotypic studies that utilize advanced tech-
niques such as CyTOF, RNA-seq, and single-cell 
analysis [113, 190, 293]. Gubin et  al. observed 
multiple subpopulations of Mos/MΦs (distin-
guishable by markers such as CD206, CX3CR1, 
and CD1d) that evolve over the course of 
ICT. These findings further suggest that ICT con-
tributes toward broader remodeling of the TME, 
supporting that circulatory Mos/early MΦs are 
more important than pre-polarized intratumoral 
MΦs in tumor progression [113]. Such findings 
also highlight the intricacies and complexity of 
the TME that must thus be meaningfully recapit-
ulated through a precise and controlled mimic of 
environmental cues in human cancer-specific 
TMEs.

Notably, one can envision future organ-on-a-
chip technology, for example, of the human brain 
[294], to be integrated with tumor spheroids to 
model primary or metastatic TMEs. Patient tumor 
samples, as well as patient-derived monocytic 
cells, can be incorporated into such models to 
explore patient-specific tumor progression and 
response to novel immunotherapies [295, 296]. 
Moreover, immunophenotyping of parallel 
devices at different time points can be utilized to 
capture, in detail, human responses to immuno-
therapy over time, an area of study that is cur-
rently not possible due to ethical concerns and 
practical limitations of repeat patient biopsies.

As such, research groups have increasingly 
focused on the development of culture reactors to 
extend the lifetime of in vitro and ex vivo cultures 
and on the design of high-throughput and auto-
mated systems toward the aim of establishing 
standardized platforms for clinical precision 
medicine applications [252]. These microfluidic 
models could complement existing in vivo pre-
clinical studies while reducing the economical 
and ethical burden of preclinical investigations. 
Further, by developing several organ-specific 
TME models and connecting these using appro-
priate perfusion conduits [297], a comprehensive 
model of the human system can be built to study 
the dynamic functions of Mos across different 
cancer stages and cancer-specific TMEs.
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