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Abstract
CD4+ T helper (TH) cells are key regulators in 
the tumour immune microenvironment (TIME), 
mediating the adaptive immunological response 

towards cancer, mainly through the activation 
of cytotoxic CD8+ T cells. After antigen recog-
nition and proper co-stimulation, naïve TH cells 
are activated, undergo clonal expansion, and 
release cytokines that will define the differenti-
ation of a specific effector TH cell subtype. 
These different subtypes have different func-
tions, which can mediate both anti- and pro-
tumour immunological responses. Here, we 
present the dual role of TH cells restraining or 
promoting the tumour, the factors controlling 
their homing and differentiation in the TIME, 
their influence on immunotherapy, and their 
use as prognostic indicators.
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3.1  Introduction

Although most of our knowledge on the adaptive 
immunological response against cancer relies on 
cytotoxic CD8+ T cells, T helper (TH) cells are 
also key regulators of the tumour immune micro-
environment (TIME) [1]. TH cells each possess 
the cell cluster of differentiation surface marker 
CD4 and thus are also known as CD4+ T cells. TH 
cells assist other lymphocytes through the activa-
tion of other immune cells such as cytotoxic T 
cells and macrophages. Specific subsets of TH are 
also known to contribute to the maturation of B 
cells into plasma cells and memory B cells. To 
perform specialized functions such as these, a 
naïve TH cell must be activated. For activation to 
occur, an antigen-presenting cell (APC) presents 
an antigen on its major histocompatibility com-
plex (MHC) class II molecule and binds with the 
T-cell receptor (TCR) of the TH cell. Upon recog-
nition of the antigen-MHC molecule and proper 
co-stimulation, the naïve TH cell becomes acti-
vated, undergoes clonal expansion, and releases 
cytokines that programme the cells to differenti-
ate into a specific effector cell type, which have 
different roles (Fig. 3.1, Table 3.1). TH1 cells pro-
duce interferon-γ (IFN-γ), interleukin 2 (IL-2), 
and tumour necrosis factor-α (TNF-α) and are 
mostly involved in immune responses against 
bacteria and viruses [2]. TH2 cells are character-
ized by the expression of IL-4, IL-5, and IL-13 
and play a significant role in the immune response 
against extracellular pathogens, such as parasites 
[2]. TH17 cells express IL-17A, IL-17F, and 
IL-22 and are critical for antifungal and antibac-
terial responses [3]. Another subset of cells, T 
follicular helper (TFH) cells, contributes to 
humoral immunity within germinal centres and 

characteristically present with CXCR5-positive 
expression [4]. These cells produce IL-21 and 
IL-4, which are important for B-cell stimulation, 
immunoglobulin class switching, and homing of 
B cells to B cell-rich germinal centre of second-
ary/tertiary lymphoid organs [5]. Another type of 
CD4+ cell, the T regulatory (TReg) cell, expresses 
CD25; they secrete the cytokine IL-10 and have 
been shown to carry an immunosuppressive role 
[6]. The contribution of TRegs in immune evasion 
observed in cancer is an area of active research, 
and these cell subsets are targets for cancer 
immunotherapeutics [7, 8]. Many other T helper 
cell subsets with well-described functions have 
been defined, including TH3, TR1, TH9, and 
TH22. In this chapter, we focus on the major sub-
sets of TH cells and discuss their roles in the 
TIME.

In addition to their traditional roles in the 
immune response against pathogenic microor-
ganisms, accumulating evidence has emerged on 
the importance of CD4+ T cells and their role in 
mediating anti-tumour responses [9, 10]. 
Accumulating evidence suggests that select 
CD4+ TH cell subsets may have a more “direct” 
role in inhibiting tumour growth and progression 
that are independent of their more “indirect” 
helper activities [11]. However, recent studies 
have revealed additional CD4+ TH cell functions 
that can not only influence tumour immunity and 
inhibit growth but, paradoxically, can also pro-
mote tumour growth and progression [12, 13].

It is generally accepted that human tumours 
are immunogenic, meaning that they may pro-
voke an immune response. Tumour immunoge-
nicity varies greatly between types of cancer and 
between different individuals with the same type 
of cancer [14]. These responses are mostly medi-
ated by T cells, and their presence is often associ-
ated with a more favourable outcome [15]. 
Immune checkpoint inhibitors are derived from 
advanced melanoma squamous non-small cell 
lung cancer [16]. These solid tumour cancers, 
which can be hard to treat, have shown favour-
able responses when treated with immunotherapy 
[17, 18]. The immune cell population is a major 
factor that influences prevention or encourages 
initiation, metastasis and invasion, and 
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Fig. 3.1 Canonical lineage and differentiation of CD4+ immune cells

Table 3.1 Factors regulating T helper cell differentiation

Cytokines produced 
by APC programme 
naïve CD4+ TH cell 
differentiation

IL-12
IFNγ

IL-4
IL-2

IL-6
IL-21

IL-1β
TGFβ
IL-6
IL-23

IL-2
TGFβ

CD4+ T helper cells TH1 TH2 TFH TH17 TReg

Cytokines produced INF-γ
IL-2
TNFα

IL-4
IL-5
IL-13

IL-21
IL-4

IL-17A
IL-17F
IL-22

IL-10

Key transcription 
factors

Tbet GATA-3 BCL6 RORyt FOXP3

Role in immune 
defence

Antiviral, 
antibacterial 
immunities

Extracellular 
pathogens

Humoral 
immunity 
within 
germinal 
centres

Antifungal and 
host defence 
against intra- and 
extracellular 
bacterial infection

Immunosuppression

Signal transducer STAT4 STAT5
STAT6

STAT3 STAT3 STAT5

 angiogenesis. The composition and characteris-
tics of the TIME differ between different types of 
cancer or between patients that have the same 
type of cancer. The TIME is composed of resi-
dent stromal cells and non-resident components. 
It can be classified according to the composition 

of the immune infiltrate and the nature of the 
inflammatory response. Currently, three broad 
classes exist (Fig. 3.2): (1) poorly immunogenic, 
or “cold”, where immune cells (mainly cytotoxic 
T lymphocytes) are only present along the tumour 
periphery; (2) infiltrated, inflamed, or immuno-
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logically “hot”, with an abundance of pro-
grammed death ligand 1 (PD-L1) expression and 
highly activated cytotoxic T cells; and (3) those 
with groups of immune cells with constituents 
similar to those in lymph nodes, including B 
cells, dendritic cells, and TReg cells [19]. This 
later categorization undoubtedly misses key sub-
classes that require higher-resolution techniques 
to uncover and characterize heterogeneity in 
immune cell composition.

Here, we review the dual pro- and anti-tumour 
functions of TH cells as well as factors influenc-
ing their homing and differentiation in the 
TIME.  Finally, we provide an overview of the 
interactions between cancer immunotherapy and 
TH cells and the prognostic role of TH cell 
infiltration.

3.2  Dual Role of T Helper Cells 
in Tumour Development 
and Progression

According to the cytokine context of the TIME, 
naïve CD4+ T cells can differentiate into specific 
TH cell subtypes, and other already differentiated 

subsets are recruited to the area [1]. While CD8+ 
cytotoxic and interferon-gamma-producing 
CD4+ TH1 helper cells are the main players 
against tumours, other types of CD4+ cells can 
act in favour of cancer in combination with other 
cell types, such as myeloid-derived suppressive 
cells (MDSC) and tumour-associated macro-
phages (TAM). Pro-tumour functions driven by 
these cells and their secreted factors are able to 
inhibit anti-tumour innate and adaptive immune 
responses [1].

Further, the recruitment of specific T-cell sub-
set to the TIME has been shown to correlate with 
prognosis and immunotherapeutic efficacy, 
underlying the importance of tumour infiltration 
and the role of T-cell homing to and within the 
tumour [20, 21]. In normal conditions, naïve T 
cells are produced in the thymus and cycle 
through complex networks of blood vessels, lym-
phatic vessels, and lymph nodes until they are 
signalled to home into specific tissues [22]. 
Homing of T cells is a very complex and tissue- 
specific process requiring activation of various 
patterns of receptors on the surface of the T cells 
specific to the tissue they will infiltrate [23]. 
Depending on the specific activation of receptors, 

Fig. 3.2 Three phenotypes of the tumour immune micro-
environment. TReg regulatory T cell, TH T helper cell, TFH 
T follicular helper cell, EMT endothelio- mesecnhymal 
transition, NK natural killer cell, IFN interferon, DC 

 dendritic cell, TAM tumour-associated macrophage, CTL 
cytotoxic T lymphocyte, APC antigen- presenting cell, 
TLO tertiary lymphoid organ
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the T cell will express specific chemokines and 
integrins. Integrin activation causes firm adher-
ence to the vessel, so the T cell can begin trans-
migration through the endothelial surface of the 
vessel and into the tissue they are homing toward. 
This process is the same for T cells destined to 
home into tumours, but homing T cells to tumours 
is not always successful because tumours may 
possess a number of deficits to prevent the pro-
cess of proper T-cell homing and infiltration [23].

As each major T-cell subset is regulated by 
different mechanisms of differentiation and 
recruitment, we discuss the dichotomous roles of 
each type of CD4+ T cells and their potential use 
as prognostic markers below.

3.2.1  T Helper Type 1

T helper 1 lymphocytes are important players in 
modulating immune response against cancer, 
linking innate and adaptive immunity, since 
IFN-γ also induces anti-tumour activity from 
tumour-infiltrating macrophages [24]. It was pre-
viously demonstrated that IFN-γ and TNF-α pro-
duced specifically by TH1 cells are necessary for 
inducing senescence in cancer cells and to turn 
macrophages cytotoxic to tumour cells [24, 25]. 
In fact, increased circulating levels of IFN-γ and 
TNF-α were described as a protective factor for 
prostate cancer [26]. In addition, many studies 
reports good patient outcome related to TH1 cell 
and related cytokines in the TIME and in the 
blood of patients in a variety of cancer types [27–
31]. Therefore, TH1 is known to consistently pro-
mote immune responses against tumour cells.

3.2.2  T Helper Type 2

T helper type 2 lymphocytes are known to have 
less effective anti-tumour response than TH1, pre-
senting dual functions depending on the context 
[32, 33]. The shift from TH1 to TH2 in the TIME 
has been reported in a variety of cancer types [29, 
34–38]. A pan-cancer analysis from The Cancer 
Genome Atlas consortium (more than 10,000 
tumours from 33 cancer types) revealed 6 

immune subtypes defined by genetic and immu-
nological features, including the TH1:TH2 ratio 
[39]. Tumours characterized by a TH2 immune 
infiltrate bias, the wound healing subtype TH 
ratio, is enriched in colorectal, lung squamous 
cell, breast cancer (luminal A molecular sub-
type), head and neck (classical molecular sub-
type), and chromosomally unstable 
gastrointestinal cancer. This immunogenomic 
subtype was associated with shortened survival 
[39], agreeing with previous reports of high TH2/
TH1 ratio as a poor prognostic indicator [29, 37, 
40]. The trafficking of TH1 or TH2 cells into the 
TIME is influenced by many factors secreted by 
tumour cells [41]. In addition, the switch from 
TH1 to TH2 immune response was shown to be 
influenced by TReg cells in hepatocellular carci-
noma after transarterial chemoembolization 
treatment [29]. Nonetheless, TH2 have been 
described to modulate anti-tumour activity in 
many cancer types and conditions [32, 42–45], 
relying on the attraction of innate immune cells 
to the tumour [46, 47]. Specific TH2 adoptive cell 
therapy in mice models has been shown to elimi-
nate myeloma and lymphoma cells, in a process 
independently of CD8+, natural killer, B cells, 
and IFN-γ and dependent of M2-type macro-
phages [45].

3.2.3  Regulatory T Cells

Tumour escape strategies comprise primarily the 
recruitment of immunosuppressive cells to the 
TIME [48, 49]. One important inhibitory cell 
subset thought to contribute to the suppressive 
immunity associated with cancers is the regula-
tory T cell (TReg) [50, 51]. While the existence of 
“suppressor” T cells was discussed as early as the 
1970s, discovery and definition of what is now 
referred to as TRegs began in earnest in 1995 when 
autoimmunity was rescued in a mouse model 
with CD25+ T cells, leading to the first descrip-
tion of a highly immune inhibitory T cell [6, 52]. 
Since that time, TReg cell subsets have been fur-
ther defined to include naturally occurring 
CD4+CD25high TReg cells, inducible TReg cell sub-
sets such as Tr1 and TH3 cells, and those derived 
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from the induced expression of CD25  in 
CD4+CD25− subsets in the periphery, all capa-
ble of immunosuppression [53–56]. In addition, 
the transcription factor forkhead box P3 (FoxP3) 
has been further identified as a common marker 
for TReg cells [57].

In general, CD4+CD25highFoxP3+ TReg cells 
are antigen-experienced memory T cells capable 
of inhibiting a variety of immune cell subsets 
including CD4+CD25− T cells, CD8+ T cells 
[58], dendritic cells [59], natural killer cells, nat-
ural killer T cells [60], and B cells [61]. TReg cells 
represent only between 5 and 10% of the T-cell 
populations in healthy human conditions [62]. 
They are present at higher levels in a wide range 
of human neoplasias [7, 63–68] and support 
tumour development and progression [69]. 
Suppression of effector T cells and NK cells by 
TReg was found to be cell-cell contact dependent 
[58], but other demonstrated that the function of 
TReg is dependent on the cytokines IL-10, IL-35, 
and TGFβ [70]. TReg also depletes immune- 
inducing cytokines, such as IL-2 [71, 72].

3.2.4  T Helper Type 17

The dual role of TH17 cells in inflammatory dis-
ease and cancer has been widely reported [73, 
74]. TH17 cells were demonstrated to have anti- 
tumour functions, by inducing the recruitment of 
dendritic cells in the tumour and in the adjacent 
lymph nodes promoting tumour-specific cyto-
toxic T cell responses [75]. In ovarian cancer, it 
was demonstrated that the presence of TH17 cells 
in the TME was correlated with the infiltration of 
effector T cells in the tumour [76].

Nevertheless, TH17 cells can also release 
potent immunosuppressive signals into the 
TIME, supporting their dichotomous nature [77]. 
Moreover, IL-17 can result in pro-tumour 
responses through effects in the tumour cells, 
myeloid-derived suppressor cells, and other com-
ponents of the stroma [78]. It was previously 
demonstrated that IL-17 derived from TH17 cells 
promotes migration and invasion and induces 
stem cell-like features in lung cancer using the 
STAT3-NF-κB-Notch1 signalling [79]. In 

colorectal cancer, infiltrating IL-17-producing 
cells are associated with poor prognosis [30].

3.2.5  T Follicular Helper

Although TFH cells are reported to have pro- 
tumour functions in haematologic types of cancer 
[80], in solid tumours, they are generally associ-
ated with anti-tumour functions [81–83]. In lung 
[81] and breast cancer [82], TFH cells are enriched 
in the germinal centre of tumour-adjacent tertiary 
lymphoid organs. Moreover, the TFH density posi-
tively correlates with the lung cancer mutation 
burden, indicating their role in the immune 
response against cancer neoantigens [81].

Conversely, differentiated TFH cells also 
express high levels of programmed cell death 
protein 1 (PD-1), suggesting that they can also 
decrease the activation of T cells [4]. However, 
PD-1/PD-L1 blockage results in deficient germi-
nal centre formation and cytokine production by 
the TFH cells [84].

3.2.6  T Helper Type 9

TH9 cells are thought to have a strong anti-tumour 
effect in the presence of TGF-β and IL-4 [85, 86]. 
This anti-tumour property is related to their 
effects on mast cells, dendritic cell recruitment, 
and promoting cytotoxic function by CD8+ T 
cells [86, 87]. Additionally, IL-9 was shown to 
directly inhibit the proliferation of melanoma 
cells in mice models, and IL-9 blocking is able to 
enhance both melanoma and lung cancer growth 
[86]. Conversely, pro-tumourigenic roles of TH9/
IL-9 in lymphoma and gastric cancer have been 
described [88–90]. In fact, IL-9 can also induce 
immunosuppressive responses from TReg [91]. 
Thus, the context of activity may dictate the pro- 
or anti-tumour effect of TH9 cells.

3.2.7  T Helper Type 22

TH22 cells and IL-22 have been shown to be 
tumour-promoting in the TIME and have 
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 therefore been suggested as potential immuno-
therapy targets [92–95]. When IL-22 is overex-
pressed in a mouse model of liver cancer, 
increased proliferation of the cancer cells was 
observed [92, 93]. Similarly, reduced prolifera-
tion in IL-22-deficient mice was demonstrated. In 
colon cancer, IL-22 can promote proliferation 
and stem cell-like features through the activation 
of STAT3 signalling and consequent epigenetic 
modification on development-related genes [96]. 
In breast and lung cancer models, it was demon-
strated that IL-22 secretion from CD4+ memory 
T cells to support the tumour cell proliferation 
can be induced through NLRP3 inflammasome 
activation and release of IL-1β from immune 
cells [94]. In patients, TH22 cells and IL-22 have 
been found in the primary tumour, serum, and 
malignant pleural effusion of these patients [97, 
98].

3.3  Regulation of T Helper Cell 
Homing and Differentiation 
in the TIME

The process of T-cell maturation from a naïve TH 
in the thymus involves the destruction of self- 
reactive lymphocytes, but the existence of auto-
immunity demonstrates that while T cells do 
undergo education to promote central tolerance, 
self-reactive T cells can escape this process [99]. 
Indeed, self-reactivity is required for the detec-
tion and destruction of cancer cells, a crucial 
immunological function requiring recognition of 
self-antigen [100]. A delicate balance is therefore 
required to ensure that the immune system 
responds appropriately to altered self-like state 
observed in cancer but also kept under careful 
control to prevent self-destruction and autoim-
munity. This important function is achieved 
through the co-recruitment of suppressor cells 
and inhibitory molecules in addition to effector 
cells during an immune response.

3.3.1  Homing of Regulatory T Cells

An increase of regulatory T cells has been 
observed in both the peripheral blood and the 

tumour microenvironment from a wide variety of 
both solid tumours and haematological cancers 
such as breast, prostate, lung, and pancreatic can-
cers, lymphomas, and leukaemias [65, 68, 101–
106]. TRegs are recruited to the TIME upon signals 
delivered by the tumour, mainly CCL22 [1, 69]. 
Another source of TRegs in the TIME is the con-
version of T effector cells into TRegs, through 
interaction with DCs in the context of high TGFβ 
and IDO, which are secreted by tumour cells 
[107].

3.3.2  Dendritic Cells as Key 
Regulators of TIME 
Composition

Interactions between specific DC subsets and 
immature T cells are crucial for generating and 
maintaining both effector T cells and TRegs [108, 
109]. This duality highlights the versatility and 
variability of DCs and their capacity to shape the 
immune response [110]. Infiltrating DCs should 
activate anti-tumour responses, but tumour cells 
are capable of suppressing DC function and pro-
moting their activity to induce TRegs [111]. 
Detailed descriptions of the numerous types of 
DCs are beyond the scope of this chapter, but the 
capacity to overcome the suppressive tumour 
microenvironment, recruit T cells into the tumour 
bed, and activate effector T cell responses appears 
to be dependent on the chemokines CXCL9 and 
CXCL10 produced by CD103+DCs [108]. On 
the contrary, development of T cells into a regula-
tory phenotype in the tumour microenvironment 
appears to be mediated by plasmacytoid DCs and 
dependent on expression of inducible co- 
stimulatory ligand (ICOS-L) [112]. Naturally 
occurring TRegs are similarly induced by DCs in 
the thymus through interactions with CD80 and 
CD86 controlled by Hassall’s corpuscles [113]. 
Interestingly, CD8+ TRegs also exist in humans 
and can be induced through interaction with 
CD40 ligand on plasmacytoid DCs [114]. While 
targeting TRegs could improve immunotherapy 
outcomes, the function and activity of T cells are 
tightly controlled by DCs making them an attrac-
tive target for immunotherapeutic approaches 
[115, 116].
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3.4  T Helper Cells in the Context 
of Immunotherapy

Immunotherapy using antibodies directed against 
immune checkpoint inhibitors such as PD-1, 
PD-L1, and CTLA-4, has emerged as a major 
treatment modality for metastatic cancer in vari-
ous malignancies, including melanoma and lung 
cancer.

In addition to release of CD8+ T-cell inhibi-
tion, PD-1 blockade also alters TH cell function. 
Since PD-1 signalling induces TH1 cells to 
transdifferentiate in TRegs, it was supposed that 
PD-1 blockade would help in reducing the 
immunosuppressive role of TRegs [117]. 
Nevertheless, depending on TIME context, it 
has been shown to stimulate TReg suppressive 
signals [118, 119], to impair germinal centre 
formation and cytokine production by TFH cells 
[84], and to promote hyperprogression of cancer 
[119], a pattern of progression that exists in 
approximately 10% of patients treated with 
anti-PD-1/PD-L1 [120].

Disrupting CTLA-4 interaction with CD80 
induces TH cell infiltration into tumours [121, 
122], particularly a subset of TH cells with high 
expression of ICOS and secretion of IFN-gamma 
[123].

It has been shown in mice studies that anti- 
CTLA- 4 antibodies induce tumour rejection by 
selective depletion of TRegs in the tumours [124]. 
Nevertheless, results from human studies are 
controversial, and it is not yet clear if the deple-
tion of TRegs plays a major role in the clinical set-
ting [122].

Major predictive factors of treatment outcome 
in anti-CTLA-4 and anti-PD-1/PD-L1 blockade 
are cancer type, tumour mutational burden, CD8+ 
T-cell infiltration, and TCR repertoire diversity 
[125]. Nonetheless, TH cells have also been stud-
ied as biomarkers to predict response to immune 
checkpoint inhibition. In metastatic melanoma, a 
high level of pretreatment infiltrating TRegs and 
tumour infiltration by ICOShigh TH cells during 
treatment was associated with response to anti- 
CTLA- 4 therapy [126, 127].

3.5  Prognostic Role of T Helper 
Cells

The density and cell type characterization of 
tumour-resident T cells have been described in 
the prognostication of cancer patients [128, 129]. 
Improved survival was correlated with the pres-
ence of these cells in the TIME [129–131]. The 
integration of CD4+ and CD8+ quantification 
can improve the prediction of the patient out-
come, and the estimation of CD8+/CD4+ ratios is 
frequently suggested [132, 133]. However, the 
dual role of some CD4+ lymphocyte subtypes 
adds more complexity in the immunology 
response against cancer and should be considered 
[130]. In general, the presence of interferon-γ- 
producing CD4+ TH1 lymphocytes are related to 
a favourable prognosis, while the presence of 
other CD4+ subtypes is cancer type-dependent 
(Table 3.2) [130, 134]. A high TH2:TH1 ratio, rep-
resenting a TH2 prevalence trend in the TIME, 
can predict shortened survival in many cancer 
types [29, 34–38]. In resected colorectal cancer, a 
high level of TH1 infiltration and a low level of 
TH17 infiltration are associated with prolonged 
disease-free survival [30]. Interestingly, the inte-
gration of the density and location of these cells 
(tumour core or invasive margin) resulted in bet-
ter predictions. In oesophageal squamous carci-
noma and non-small cell lung cancer, TH1 
infiltration correlates with a better prognosis 
[135, 136]. Combining TH1 infiltration assess-
ment to numeration of CTL resulted in added 
predictability.

High level of TReg infiltration is a reliable indi-
cator of more aggressive disease in many cancers 
[7, 137], such as breast [138], gastric [139], head 
and neck [63], liver [140], lung [141], pancreas 
[142], and ovary [68]. The prevalence of TRegs in 
the lymph nodes of patients with non-small cell 
lung cancer has prognostic value, with 5-year 
survival rates significantly lower in patients with 
higher proportions of TRegs present [143]. Another 
study found increasing prevalence of TRegs in non- 
small cell lung cancer patients that correlated 
with disease stage and tumour burden [144]. A 
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meta-analysis comprising over 86,000 lung can-
cer patients showed that the presence of tumour- 
infiltrating CD4+ cells is associated with better 
prognosis; however, FOXP3+ cells are a poor 
prognostic marker [145]. In addition, the enrich-
ment of migrated CD4+ T and CD8+ T lympho-
cytes in the pleural effusions from lung 
adenocarcinoma was reported as a good progno-
sis indicator [146].

Although enrichment of TReg cells within 
tumours of various origins can signify poor 
prognosis, the opposite may be true for colon 
cancer. For example, TReg infiltration is fre-
quently described as a good prognostic marker 
in colorectal cancer [147–149]. However, 
colorectal carcinoma can be infiltrated in vari-
able ratios by two different types of TRegs, one 
suppression- competent and other non-suppres-
sive [150]. In fact, the infiltration by predomi-
nantly non- suppressive TRegs is related to 
improved survival in colorectal cancer patients 
[150].

TFH cell infiltration, measured through the 
expression of CXCL13, CXCR5, and IL-21, is 
associated with longer disease-free survival in 
CRC and breast cancer [82, 83]. Moreover, dele-
tion or dysfunction of CXCL13 correlates with 
shorter DFS in CRC.  The presence of tertiary 
lymphoid organs (TLOs), which formation is 

dependent on TFH, is a good outcome predictor in 
various malignancies [151, 152].

Although TH9 has been shown to induce potent 
anti-tumour responses [86, 153, 154], it delivers 
survival and proliferation signals in lymphoma 
cells, where high IL-9 is considered a poor prog-
nostic marker [88, 89]. Increase of TH22 cells was 
also reported as related with advanced tumour 
stages, and higher IL-22 expression in the TIME 
is associated with shorter survival of hepatocel-
lular carcinoma and gastric cancer [155, 156].

Recently, it was shown that tumour-infiltrating 
CD4+ lymphocytes upregulating molecules 
responsible for CD8+ T-cell exhaustion (PD-1, 
LAG-3, and TIM-3) were associated with shorter 
overall survival in malignant pleural mesotheli-
oma [157]. Similarly, the enrichment of ineffec-
tive CD4+ memory T cells in the TIME of 
follicular lymphoma, due to the lack of co- 
stimulatory receptors, was correlated with a 
shorter survival [158].

In addition to the T-cell subtype, the T-cell 
receptor (TCR) repertoire is related to the out-
come of cancer patients [159–162]. Higher intra- 
tumour T-cell receptor (TCR) heterogeneity, 
which is positively correlated with the  neoantigen 
heterogeneity, is associated with an increased 
lung cancer recurrence risk [159]. TCR hetero-
geneity from both CD4+ and CD8+ was associ-

Table 3.2 T helper cells as prognostic factors in tumours

High abundance Association with clinical outcome References
TH1 Favourable prognosis in RCC, CRC, oesophageal squamous 

carcinoma
[30, 135, 136, 163]

Response to neoadjuvant chemotherapy in HER2+ and triple-negative 
breast cancer

[164]

TReg Favourable prognosis in CRC [147–149]
Poor prognosis in NSCLC, HCC, HNSCC, RCC, MPM, melanoma, 
and bladder, gastric, pancreatic, breast, and ovarian cancer

[139, 142, 144, 145, 
157, 165–175]

Response to anti-CTLA-4 in melanoma [127]
TFH Favourable prognosis in CRC, NSCLC, and breast cancer [81–83, 151]
TH17 Poor prognosis in HNSCC and CRC [30, 176]
TH22 Poor prognosis in GI tumours [92, 156, 177]
PD-1+LAG3+TIM3+ Favourable prognosis in MPM [157]
ICOShigh Response to anti-CTLA-4 in melanoma [126]
TLO Favourable prognosis in NSCLC and melanoma [151, 152]

RCC renal cell carcinoma, CRC colorectal carcinoma, NSCLC non-small cell carcinoma, HCC hepatocellular carci-
noma, MPM malignant pleural mesothelioma, HNSCC head and neck squamous cell carcinoma, GI gastrointestinal, 
TLO tertiary lymphoid organ.
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ated with a higher recurrence risk in lung 
adenocarcinoma [160]. Interestingly, TCR diver-
sity was higher in CD4+ compared to CD8+ 
cells [160].

3.6  Conclusions

T helper cells are key players of the immune sys-
tem and modulate the efficiency of anti-tumour 
immune response. Of these, TRegs are an inten-
sively studied subset since their immunosuppres-
sive role has been well documented in other 
clinical settings. In the cancer setting, they have 
been extensively studied in the context of their 
use as therapeutic targets and prognostic bio-
markers in various tumours, including lung can-
cer. In comparison, there is a relative paucity of 
data on other TH cell subsets; however, TFH cells 
have recently attracted interest as regulators of 
tertiary lymphoid organ organization and B-cell 
function. As such they may be leveraged to obtain 
long-term immune response, an elusive goal for 
most patients even when treated with combined 
immunotherapy.
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