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Abstract
Basophils represent approximately 1% of 
human peripheral blood leukocytes. Their effec-
tor functions were initially appreciated in the 
1970s when basophils were shown to express 
the high-affinity receptor (FcεRI) for IgE and to 
release proinflammatory mediators (histamine 
and cysteinyl leukotriene C4) and immunoregu-
latory cytokines (i.e., IL-4 and IL-13). Basophils 
in the mouse were subsequently identified and 
immunologically characterized. There are many 
similarities but also several differences between 
human and mouse basophils. Basophil-deficient 

mice have enabled to examine the in vivo roles 
of basophils in several immune disorders and, 
more recently, in tumor immunity. Activated 
human basophils release several proangiogenic 
molecules such as vascular endothelial growth 
factor-A (VEGF-A), vascular endothelial 
growth factor-B (VEGF-B), CXCL8, angiopoi-
etin 1 (ANGPT1), and hepatocyte growth factor 
(HGF). On the other side, basophils can exert 
anti-tumorigenic effects by releasing granzyme 
B, TNF-α, and histamine. Circulating basophils 
have been associated with certain human hema-
tologic (i.e., chronic myeloid leukemia) and 
solid tumors. Basophils have been found in 
tumor microenvironment (TME) of human lung 
adenocarcinoma and pancreatic cancer. 
Basophils played a role in melanoma rejection 
in basophil-deficient mouse model. By contrast, 
basophils appear to play a pro-tumorigenic role 
in experimental and human pancreatic cancer. 
In conclusion, the roles of basophils in experi-
mental and human cancers have been little 
investigated and remain largely unknown. The 
elucidation of the roles of basophils in tumor 
immunity will demand studies on increasing 
complexity beyond those assessing basophil 
density and their microlocalization in 
TME. There are several fundamental questions 
to be addressed in experimental models and 
clinical studies before we understand whether 
basophils are an ally, adversary, or even inno-
cent bystanders in cancers.
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Abbreviations

ANGPTs	 Angiopoietins
APCs	 Antigen-presenting cells
BAFF	 B-cell-activating factor
BSA	 Bovine serum albumin
CAFs	 Cancer-associated fibroblasts
CML	 Chronic myeloid leukemia
DCs	 Dendritic cells
DMBA	 7,12-Dimethylbenz(a)athracene
DT	 Diphtheria toxin
FcεRI	 High-affinity receptor
LTC4	 Cysteinyl leukotriene C4

PAF	 Platelet-activating factor
PD-1	 Programmed cell death-1
PDAC	 Pancreatic ductal adenocarcinoma
PD-L1	 Programmed death-ligand 1
PGD2	 Prostaglandin D2

TDLNs	 Tumor-draining lymph nodes
Th2	 T helper 2
TME	 Tumor microenvironment
Treg	 T regulatory cell
TSLP	 Thymic stromal lymphopoietin
uPA	 Urokinase plasminogen activator
VEGF-A	 Vascular endothelial growth 

factor-A

2.1	 �General Aspects

Basophils, first described by Paul Ehrlich in 
1879 [1], represent less than 1% of human 
peripheral blood leukocytes. Their effector func-
tions were not appreciated until the 1970s when 
basophils were shown to express the high-affinity 
IgE receptor (FcεRI) for IgE and release of 

histamine [2–4]. The difficulties in purifying 
sufficient numbers of human basophils and the 
absence of basophil-deficient animals hampered 
the advance of basophil research. Basophils 
share some characteristics with mast cells, 
including the presence of similar but distinct 
basophilic granules in the cytoplasm [5], surface 
expression of FcεRI, and release of proinflam-
matory mediators, such as histamine and cyste-
inyl leukotrienes [6, 7]. Basophils circulate in 
the peripheral blood and are rarely present in 
peripheral tissues unless inflammation occurs in 
mice [8] and in humans [9–13]. The life span of 
basophils is relatively short (≅2.5 d in mice) 
[14], and therefore newly generated basophils 
are constantly supplied from the bone marrow to 
the peripheral blood [15]. Mouse basophils were 
clearly characterized by Dvorak et al. as a granu-
lar cell population in murine bone marrow with 
some ultrastructural characteristics similar to 
mammalian basophils [16]. Recent development 
of basophil-deficient mice [17–19] has enabled 
us to examine the in vivo roles of basophils in a 
variety of immune settings.

In the past, basophils were regarded errone-
ously as blood-circulating mast cell precursors 
that could migrate to peripheral tissues and 
mature into tissue-resident mast cells. There is 
compelling evidence that basophils and mast 
cells are distinct cell lineages differentiated from 
hematopoietic stem cells in the bone marrow [7, 
20, 21]. Like other myeloid lineages, basophils 
develop from hematopoietic stem cells in the 
bone marrow [15]. It has been suggested that 
human basophils develop from common baso-
phil-eosinophil progenitors [22, 23]. IL-3 is the 
most important growth and activating cytokine 
for human and mouse basophils [24]. Murine 
basophils can be generated in vitro by culturing 
bone marrow cells in the presence of IL-3 or thy-
mic stromal lymphopoietin (TSLP) [25]. IL-3-
elicited and TSLP-elicited murine basophils 
differ in terms of gene expression, phenotype, 
and functions, suggesting heterogeneity among 
the basophil population [26]. Basophils can be 
detected in mice deficient for both IL-3 and TSLP 
signaling, indicating that neither is essential for 
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basophil development. It has been suggested that 
approximately 10% of human basophils express 
the TSLP receptor [7] and the TSLP increases 
histamine release from basophils [27]. By con-
trast, a collaborative study demonstrated that 
human basophils do not express the IL-7Rα [28] 
and do not respond to TSLP [28, 29]. The above 
findings emphasize some of the differences 
between human and mouse basophils [7, 30, 31].

2.2	 �Basophils as a Source 
of Cytokines, Chemokines, 
Angiogenic Molecules, 
and Granzyme B

Human basophils, differently from mast cells, 
produce a restricted profile of cytokines [7, 21]. 
A variety of immunologic stimuli induce the 
release of substantial amounts of IL-4 [32–36]. 
Activated human basophils also produce IL-13 
[37–39]. IL-4 and IL-13 are potent mediators for 
type 2 immunity with both overlapping and dis-
tinct functions [40]. Schroeder and collaborators 
first demonstrated that human basophils secrete 
IL-3 exerting strong autocrine priming effects on 
these cells [24]. Activation of human basophils 
induces the release of several proangiogenic mol-
ecules. For instance, immunologically activated 
human basophils release VEGF-A, the most 
potent proangiogenic molecule [41, 42]. 
Angiopoietins (ANGPTs) are a family of growth 
factors that play a role in angiogenesis and lym-
phangiogenesis [43]. Human basophils constitu-
tively express ANGPT1 and ANGPT2 mRNAs 
[44]. ANGPTs were detected in cytoplasmic ves-
icles of basophils and their activation induced the 
release of ANGPT1. Human basophils can also 
release hepatocyte growth factor (HGF) [45]. The 
latter findings suggest that human basophils can 
modulate angiogenesis and lymphangiogenesis 
[42, 46, 47]. Basophils also produce CXCL8 [48] 
which can contribute to epithelial-to-mesenchy-
mal transition in tumors [49]. Interestingly, 
human [50] and mouse (Schiavoni and Mattei, 
unpublished observations) basophils release 
granzyme B which possesses cytotoxic effects on 

cancer cells [51, 52]. Mouse, but not human [53], 
basophils represent an important source of TNF-α 
[18]. Mouse [54, 55], but not human, basophils 
produce IL-6 [48]. These findings highlight some 
of the similarities and differences between human 
and mouse basophils as a source of cytokines.

2.3	 �Are Mouse and Human 
Basophils Antigen-
Presenting Cells (APCs)?

Activated human [32, 33] and mouse basophils 
[25, 53] produce large quantities of IL-4. In mice 
it has been shown that, under certain experimen-
tal conditions, basophils migrate to lymph nodes 
and secrete IL-4, promoting the differentiation of 
naive CD4+ T cells toward Th2 cells [56]. Three 
independent groups reported that murine baso-
phils express MHC class II (MHC-II) and co-
stimulatory molecules (i.e., CD80, CD86, and 
CD40), which are necessary for antigen presenta-
tion to naive T cells [57–59]. These studies sug-
gested that mouse basophils can function dually 
as antigen-presenting cells (APCs) and IL-4-
producing cells, driving Th2 cell differentiation, 
even in the absence of classical APCs [i.e., den-
dritic cells (DCs)]. By contrast, subsequent stud-
ies demonstrated the critical role of DCs, but not 
basophils, in Th2 differentiation [60–62]. Thus, 
the functional significance of basophils as APCs 
remained highly controversial [63]. The group of 
Karasuyama recently reported an unexpected 
mechanism of MHC-II acquisition by mouse 
basophils [64]. These cells express little or no 
MHC-II by themselves, but they can capture pep-
tide-MHC-II complexes from DCs through a 
mechanism called trogocytosis, in a cell contact-
dependent manner. Thus, MHC-II-dressed mouse 
basophils can provide peptide-MHC-II com-
plexes and IL-4 to naive CD4+ T cells that in turn 
differentiate to Th2 cells. This finding tends to 
reconcile, at least in part, some of the discrepan-
cies observed in previous studies.

Resting human peripheral blood basophils 
express little or no HLA-DR, but they can be 
induced to express it when activated in vitro with 
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stimuli, such as cytokines [59, 65–67]. 
Nevertheless, human basophils did not induce 
antigen-specific T-cell proliferation [67–69]. 
Human peripheral blood basophils do not express 
HLA-DR and co-stimulatory molecules (CD80 
and CD86) [68, 70, 71]. It would be interesting to 
investigate whether human basophils can acquire 
peptide-HLA-DR complexes from DCs through 
trogocytosis and function as APCs, as observed 
with murine cells.

2.4	 �Basophil-Deficient Mice

For decades the absence of basophil-deficient 
mouse hampered the advance of basophil 
research. During the last years several models of 
basophil-deficient mice have been developed. 
Initial experimental studies employed in vivo 
administration of antibodies that deplete baso-
phils in mice to study the role of these cells. 
These antibodies recognize either the FcεRI 
(clone MAR-1) [72] or the activating receptor 
CD200 receptor 3 (CD200R3) (clone Ba103), 
which are both expressed by basophils and mast 
cells. Although both antibodies can efficiently 
deplete basophils in vivo, they can also activate 
mast cells and can cause anaphylaxis [62, 73]. 
Furthermore, the depletion of basophils by Ba103 
is FcR dependent and might therefore activate 
myeloid cells and natural killer (NK) cells [74]. 
MAR-1 also depletes a subset of FcεRI-
expressing DCs [60]. Several functions have 
been attributed to basophils based on studies 
using these depleting antibodies [59, 75]. For 
example, this experimental approach has led to 
the conclusion that basophils have a role as APCs 
during Th2 cell polarization [58, 59]. Similarly, it 
has been suggested that basophils can cause 
IgG1-mediated anaphylaxis [76] and that they 
contribute to protective immunity against 
Trichuris muris [57]. More recently, several new 
mouse strains with constitutive or diphtheria 
toxin (DT)-inducible depletion of basophils have 
been generated [77]. Genetically engineered 
basophil-deficient mouse models include 
Mcpt8DTR [8], Mcpt8Cre [62], Basoph8 [78], 
BAS-TRECK [79], and Runx1P1N/P1N mice [80]. 

These new genetically engineered basophil-
deficient mice allowed to deepen our knowledge 
on the in vivo role of these cells in different 
pathophysiological conditions.

2.5	 �Peripheral Blood Basophils 
and Human Cancer

Basophilia is frequently observed during the 
accelerated phase of chronic myeloid leukemia 
(CML) [81]. The transcription factor IKAROS is 
absent or reduced in bone marrow blasts from 
most patients with advanced CML [82]. Forced 
expression of the dominant-negative isoform of 
IKAROS in CD34+ cells from patients with 
chronic CML resulted in disrupted IKAROS 
activity and enhanced ability to differentiate into 
basophils [82]. The latter findings suggest that a 
loss of IKAROS contributes to myeloid disease 
progression in CML with basophilia. It has been 
reported that basophils from patients with CML 
specifically express abundant HGF, which pro-
motes CML cell expansion in an autocrine fash-
ion [45]. A study using a mouse model of CML 
demonstrated that basophil-like leukemia cells 
contribute to CML development by providing the 
chemokine CCL3 [83]. In this model CML devel-
opment induced a marked accumulation of baso-
phil-like leukemia cells that produced CCL3  in 
the bone marrow. Basophil-derived CCL3 nega-
tively regulated the proliferation of normal hema-
topoietic stem/progenitor cells and supported the 
predominant expansion of leukemia cells [84]. 
Indeed, basophil depletion prevented the devel-
opment of CML. Basophilia appears to be an 
independent risk factor for evolution of myelo-
dysplastic syndrome to acute myeloid leukemia 
[85, 86].

Circulating basophils have also been associ-
ated with certain solid tumors [87]. For instance, 
basopenia appears to be associated with worse 
prognosis of colorectal cancer [88]. By contrast, 
peripheral blood basophils have no predictive role 
in breast cancer [89] and oral squamous cell carci-
noma [90]. In a mouse model of breast cancer, 
circulating basophils appeared to exert a protec-
tive role in the formation of metastases [91].
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2.6	 �Basophils in Tumor 
Microenvironment of Human 
Lung Adenocarcinoma

There is compelling evidence that basophils can 
migrate into the sites of inflammation in mice 
[8] and in humans [9–12, 92]. Basophils can 
also be recruited into TMEs by several chemo-
tactic molecules produced by tumor and immune 
cells [6, 41, 93–97] (Fig.  2.1). Lavin and col-
laborators compared the immune landscape in 
peripheral blood and in TME of patients with 
early (stage I) lung adenocarcinoma by single-

cell analysis [13]. Basophils were present in 
both TME and noninvolved lung parenchyma as 
early as in stage I adenocarcinoma. They found 
quantitative and qualitative differences in baso-
phils present in peripheral blood when com-
pared to cells in TME and noninvolved lung 
tissue. Interestingly, a small percentage of baso-
phils in TME and in noninvolved lung paren-
chyma expressed PD-L1. This study elegantly 
demonstrated, as early as in stage I disease, that 
lung adenocarcinoma lesions were accompanied 
by marked alteration of immune cells, including 
basophils, in TME.

Fig. 2.1  Proinflammatory and immunoregulatory media-
tors released from human basophils. These cells express a 
variety of receptors that regulate their development, 
homeostasis, and effector functions on the cytoplasmic 
surface. Basophils express the high-affinity receptors for 
IgE (FcεRI) which bind IgE with high affinity. These cells 
also express the α-chain (IL-3Rα/CD123) and a common 
βc (CD131) that bind IL-3, which plays a major role in 
basophil development [137, 138]. Secretory granules of 
basophils contain histamine complexed with chondroitin 
sulfate, basogranulin [139], granzyme B [50], and trypt-
ase at levels of less than 1% of human mast cells. 
Immunologic activation of basophils leads to the release 
of histamine, basogranulin, and granzyme B and the pro-
duction of IL-4 [32, 33, 35, 36, 140], IL-13 [37–39], IL-3 

[24], VEGF-A and VEGF-B [41], ANGPT1 [44], and 
HGF [45]. Basophil activation induces the de novo syn-
thesis of cysteinyl leukotriene C4 (LTC4) [141] and plate-
let-activating factor (PAF) [142]. Human basophils 
produce several chemokines [48] and, under specific con-
ditions, can release IL-25/IL-17E, IL-31, LL-37, amphi-
regulin, and B-cell-activating factor (BAFF) [7, 143–145]. 
Human basophils activated by a variety of IgE- and non-
IgE-mediated stimuli rapidly release membrane-free 
granules to the external microenvironment (anaphylactic 
degranulation). Basophils infiltrating the sites of inflam-
mation can release packets of granule contents (piecemeal 
degranulation) [5]. Human basophils are also able to form 
extracellular DNA traps upon IL-3 priming and subse-
quent immunologic activation [146, 147]
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A recent elegant study found that during lung 
development basophils acquire a unique pheno-
type, due to local exposure of specific signals 
(i.e., IL-33, GM-CSF), which regulates alveolar 
macrophage maturation and function [55]. The 
authors found that basophils represented a sig-
nificant proportion of immune cellular composi-
tion during lung development. These cells 
broadly interacted with immune (e.g., mono-
cytes, macrophages, neutrophils, ILCs) and 
nonimmune cells (e.g., endothelial cells, epithe-
lial cells, fibroblasts) through the production of 
several cytokines (e.g., IL-4, IL-6, IL-13, TNF-
α). Interestingly, the gene expression profile of 
lung basophils differed from that of blood-cir-
culating basophils and was characterized by a 
unique gene signature including IL6, IL13, 
Cxcl2, Tnf, Osm, and Ccl4. The authors attrib-
uted the modulation of phenotype of lung baso-
phils mainly to IL-33 and with minor 
contribution of GM-CSF. Moreover, lung baso-
phils promoted M2 polarization of lung macro-
phages. Finally, the authors reported that 
basophils isolated from both the lung and the 
TME of mice implanted with B16 melanoma 
cells expressed several cytokines (e.g., IL4, IL6, 
Osm, IL13). This important study demonstrates 
that lung basophils acquire the expression of 
several cytokines and growth factors, critical for 
immune and nonimmune cell functions due to 
the exposure to lung-specific signals. 
Collectively, the results of these two important 
studies indicate that tissue-resident basophils 
can acquire distinct features from peripheral 
blood basophils and can play important roles in 
lung development and presumably in human 
lung cancer.

Schroeder and collaborators recently demon-
strated that highly purified human basophils 
release histamine and secrete IL-4/IL-13 when 
co-cultured with the epithelial cell line, A549, 
an adenocarcinoma of lung origin [29]. This 
study further determined that an IgE-binding 
lectin (expressed on the A549 cells) was likely 
responsible for this activation of basophils, with 
all indicators pointing to galectin-3. Indeed, a 
follow-up study from the same group showed 

that A549 clones generated to be deficient in 
galectin-3 protein no longer activated basophils 
for these responses [98]. In addition, basophils 
co-cultured with microspheres coated with 
galectin-3 protein [but not bovine serum albu-
min (BSA) or galectin-9] likewise secreted 
IL-4/IL-13. However, when added exogenously 
as a soluble protein, galectin-3 only marginally 
activated basophils and only at relatively high 
concentrations, suggesting that the lectin may 
better facilitate cellular activation when immo-
bilized on a matrix, whether epithelial cells 
(A549) or microspheres. While more studies are 
needed, the significance of these findings cur-
rently points to the fact that galectin-3 is now 
implicated as a biomarker and/or factor contrib-
uting to the pathogenesis of a wide range of con-
ditions, particularly in cancer and cardiovascular 
disease, but also in autoimmunity (lupus erythe-
matosus), wound healing, and asthma [99]. 
Evidence that galectin-3 modulates the immune 
responsiveness of basophils (and potentially 
other IgE-bearing cells) could offer novel 
insight into how these cells might be activated 
in the absence of specific IgE/allergen interac-
tions. Indeed, this mechanism of activation 
could prove relevant to the recent findings show-
ing IL-4-producing basophils in lupus erythe-
matosus [100] and cancer [101].

2.7	 �Basophils in Experimental 
Melanoma

The role of basophils has been evaluated in a 
mouse model of melanoma [102]. A model of 
Treg depletion was associated with increased 
production of IL-3, which caused basophil 
infiltration in the TME. This model was associ-
ated with complete rejection of tumors, which 
was found to be dependent on chemokines (i.e., 
CCL3 and CCL4) produced by infiltrating 
basophils. These chemokines caused tumor 
infiltration of CD8+ T cells, which presumably 
exerted cytotoxic effect. Administration of 
MAR-1 (i.e., anti-FcεRI) to deplete basophils 
prevented the rejection of tumors. The authors 
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concluded that basophils were required for 
tumor eradication. As previously mentioned, 
MAR-1 can partially deplete also mast cells 
and DCs that express FcεRI. Thus, the role of 
basophils in melanoma rejection will need to be 
confirmed using genetically engineered baso-
phil-deficient mice.

In a series of ongoing experiments, we have 
investigated the direct antitumor activities of 
bone marrow-derived murine basophils follow-
ing activation with IL-33, an alarmin known to 
activate the tumoricidal functions in eosinophils 
[103]. We observed that activation of basophils 
with IL-33 results in upregulation of granzyme B 
transcripts (Fig. 2.2a) and surface expression of 
the degranulation marker CD63 (Fig.  2.2b). In 
addition, when IL-33-activated basophils were 
co-cultured with B16.F10 murine metastatic mel-
anoma cells, we found substantial restriction of 
tumor cell growth, compared to melanoma cells 
cultured with resting basophils (Fig. 2.2c). These 
preliminary observations suggest that under 
proper stimulation basophils can acquire tumori-
cidal properties and indicate that basophils may 
orchestrate antitumor immune responses at mul-
tiple levels. These interesting findings deserve 
further investigations in vitro and in vivo.

2.8	 �Basophils in Experimental 
and Human Pancreatic 
Cancer

Ann Dvorak demonstrated the presence of baso-
phils in the stroma of pancreatic cancer showing 
distinctive ultrastructural morphological features 
of piecemeal degranulation [5]. The role of baso-
phils and their mediators in experimental and 
human pancreatic cancer has been elegantly 
investigated by Protti and collaborators [101]. In 
a large cohort of pancreatic ductal adenocarci-
noma (PDAC), they found basophils expressing 
IL4 in tumor-draining lymph nodes (TDLNs) of 
PDAC patients. Basophils in TDLNs served as an 
independent prognostic biomarker of patient sur-
vival after surgery. The authors confirmed the 
recruitment of basophils in TDLNs in a mouse 
model of pancreatic cancer. In this model acti-
vated cancer-associated fibroblasts (CAFs) 
released TSLP which activated DCs. These cells 
induced IL-3 release from CD4+ T cells. IL-3 
activated basophils to produce IL-4. CCL7, pro-
duced by DCs and CD14+ monocytes, was, at 
least in part, responsible for basophils migration 
from arterial blood into TDLNs. In this setting, 
basophils were the major source of IL-4 presum-
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Fig. 2.2  Activation of basophils with the alarmin IL-33 
promotes tumoricidal functions. Basophils were gener-
ated by culture of murine bone marrow cells in medium 
containing IL-3 (2  ng/mL) for 10  days. Basophils were 
then harvested and cultured in medium alone or with 
added IL-33 (100 ng/mL) for 18 h. (a) qRT-PCR analysis 
of expression of granzyme B. Mean expression values in 

triplicate samples ± SD are shown. ∗∗P < 0.01, Wilcoxon’s 
t test. (b) Flow cytometry analysis of surface CD63 
expression. (c) Growth of B16.F10 melanoma cells after 
24 h co-culture with basophils alone or with added IL-33 
(100 ng/mL). At the end of the co-culture, adherent tumor 
cells were stained with crystal violet to visualize tumor-
covered area. Scale bar, 150 μm
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ably contributing to both Th2 and M2 polariza-
tion in pancreatic cancer. The authors concluded 
that basophils and their mediator (i.e., IL-4) play 
a relevant pro-tumorigenic role in PDAC 
progression.

2.9	 �Conclusions 
and Outstanding Questions

Although peripheral blood basophils represent 
less than 1% of human leukocytes, there is com-
pelling evidence that they can infiltrate the site of 
inflammation [9, 10, 18, 92, 104]. Importantly, 
basophils can be found in TME in human gastric 
cancer [11, 12] in early lung adenocarcinoma 
[13] and in PDAC [101]. Moreover, basophils 
can be identified in experimental melanoma 
[102] and in TDLNs in a model of pancreatic 
cancer [101]. The mechanisms regulating the 
trafficking of basophils into TDLNs, and their 
contributions to the evolving microenvironment 
of the metastatic niche, remain poorly under-
stood. Single-cell RNA-seq will be necessary to 
characterize the basophils in TDLNs.

Human basophils release several angiogenic 
factors such as VEGF-A and VEGF-B [41], 
CXCL8 [49], ANGPT1 [44], and HGF [45]. 
CXCL8 and TNF-α can induce epithelial-to-mes-
enchymal transition [49, 105]. IL-4 and IL-13 
can favor M2 polarization of tumor-associated 
macrophages [106, 107]. On the other side, baso-
phils can exert anti-tumorigenic effects by releas-
ing granzyme B [51, 52] and TNF-α [18] that 
possess cytotoxic effects on cancer cells. 
Moreover, histamine promotes DC maturation 
and can inhibit experimental tumor growth [108–
110]. These findings suggest that basophils have 
the potential to play an anti-tumorigenic or a pro-
tumorigenic role in tumor immunity (Fig. 2.3).

There is increasing evidence that basophils in 
peripheral blood differ from those found in TME 
[13]. This is not surprising because peripheral 
blood basophils circulate at physiological pH and 
normoxia, whereas peritumoral and intratumoral 
basophils are embedded in a hostile microenvi-
ronment characterized by increased levels of lac-
tate, PGE2, adenosine, IFN-α, and a low pH 

[111–114], which can profoundly influence baso-
phil phenotype [115, 116]. Studies on basophil 
biology are usually performed at physiological 
pH and normoxia. It will be important to investi-
gate how the tumor milieu activates/modulates 
the production of mediators and the expression of 
receptors in tumor-infiltrating basophils. 
Analyses of basophils in TDLNs have only 
recently began [101]. High-dimensional analysis, 
particularly single-cell RNA-seq, will be neces-
sary to characterize basophils in TDLNs and in 
TME.

There is increasing evidence that immune 
cells in TME can play different roles in early and 
late stages of tumorigenesis [115, 117–120]. 
Basophils have been identified in the immune 
landscape of tumor and noninvolved lung tissue 
in early lung adenocarcinoma [13]. The hypoth-
esis that basophils and their mediators play 
diverse roles in different phases of tumor initia-
tion and growth deserves investigation.

Several models of basophil-deficient mice 
have been described. Initial studies were con-
ducted using administration of antibodies (i.e., 
MAR-1 and Ba103) that transiently deplete baso-
phils [72, 121]. However, these models can inter-
fere with other immune cells [60, 74]. Recently, 
several mouse strains with constitutive or induc-
ible depletion of basophils have been described. 
Studies using antibody-depleted basophils [102] 
and genetically engineered models [101] yielded 
apparently discordant findings on the role of 
basophils in cancer. Results obtained with baso-
phil-deficient mouse models should be inter-
preted with caution because even new mouse 
mutants showed some hematological abnormali-
ties. Perhaps, future studies attempting to evalu-
ate the basophil role in a complex and 
heterogeneous disorder, such as cancer, should be 
performed using more than one model of baso-
phil deficiency.

IgE is an ancient and highly conserved immu-
noglobulin isotype found in mammals. There is 
evidence that IgE has evolved to provide protec-
tion against infections and environmental toxins 
[6, 18, 122, 123]. Basophils express FcεRI which 
binds IgE [2, 4]. IgE has been suggested to play a 
protective role in tumor growth [124, 125]. In a 
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mouse model of skin tumorigenesis, topical 
exposure to a common xenobiotic and carcinogen 
(i.e., 7,12-dimethylbenzatracene: DMBA) caused 
a potent IgE response that provided protection 
against carcinogenesis [126]. Although the mech-
anism by which IgE inhibited tumor growth in 
this model remains to be determined, the authors 
speculated that it “might involve soluble factors 
and/or cytotoxicity mediated by basophils.” 
Further studies should investigate the role, if any, 
of IgE-mediated activation of basophils in exper-
imental and human tumors.

Tumor cells evade host immune attack by 
expressing several checkpoints, such as pro-
grammed cell death-1 (PD-1) and PD-1 ligands 
(PD-L1 and PD-L2) [127, 128]. Monoclonal 
antibodies targeting the PD-1/PD-L1 pathway 

unleash antitumor immunity and have revolution-
ized the treatment of cancer [129, 130]. PD-L1 is 
also expressed on the surfaces of various immune 
cells such as macrophages and DCs [13, 131–
133], mast cells [13, 134, 135], and basophils in 
TME [13]. Recent evidence indicates that PD-L1 
expressed in immune cells within TME, rather 
than on tumor cells, plays an essential role in 
immune checkpoint blockade therapy [132, 133]. 
Moreover, secreted PD-L1 can interfere with 
immune checkpoint therapy in cancer [136]. An 
interesting task will be to investigate the role of 
PD-L1+ basophils in TME in the context of 
immune checkpoint blockade.

In conclusion, the roles of basophils in 
experimental and human cancer have been little 
investigated and are currently largely unknown. 

Fig. 2.3  Basophils can be recruited into tumor microen-
vironments (TMEs) by several chemotactic molecules 
[e.g., VEGFs, histamine, prostaglandin D2 (PGD2), uroki-
nase plasminogen activator (uPA), formyl peptides, 
CCL5, CCL7, CCL11, CCL13, CCL24, CCL26,CXCL8, 
CXCL12] produced by tumor or immune cells [6, 41, 
93–97]. Basophils in the TMEs can exert anti-tumorigenic 
and/or pro-tumorigenic roles. Basophils can exert direct 
tumor cytotoxic effects via granzyme B [50] and TNF-α 

[18]. Histamine promotes dendritic cell (DC) maturation 
and inhibits tumor growth [108–110]. On the other side, 
basophils represent a potentially major source of several 
angiogenic molecules (VEGF-A, VEGF-B, ANGPT1, 
CXCL8, and HGF) [44, 45, 48]. CXCL8 and TNF-α can 
induce epithelial-to-mesenchymal transition [49, 105]. 
IL-4 and IL-13 can favor M2 polarization of tumor-asso-
ciated macrophages [106]
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The elucidation of basophils in tumor immunity 
will demand studies on increasing complexity 
beyond those assessing basophil density and 
their microlocalization in TME. There are sev-
eral unanswered fundamental questions to be 
addressed in experimental models and clinical 
studies before we understand whether basophils 
are an ally, adversary, or even innocent bystand-
ers in cancers.
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