
Chapter 31
Transmission Models

The take-off manoeuvre of a vehicle was studied in Sect. 23.9 using a simple model
where the inertia of both engine and vehicle were modelled as two flywheels con-
nected to each other by a rigid shaft and a friction clutch. This model can be made
more realistic by adding the torsional compliance of the shaft, of the joints and pos-
sibly the gear wheels, as well as the rotational inertia of the various elements of
the driveline. A model of the whole driveline is thus obtained, with the engine and
vehicle modelled as two flywheels located at its ends.

However, the engine shaft is itself a compliant system. Moreover, its piston-
connecting rod-crank systems should be modelled as systems with variable inertia
in time. At the other end of the driveline, the dynamics of the transmission and the
longitudinal dynamics of the vehicle are coupled by the tires, which are themselves
compliant in torsion. The longitudinal compliance of the suspensions may affect the
dynamics of the driveline and couples with the dynamics of the vehicle, which is in
turn coupled with comfort dynamics.

Because many of the parts that may be included in the model of the driveline have
a strongly nonlinear behavior, the model must include nonlinearities that prevent
frequency domain solutions from being obtained if a high degree of detail is to be
considered. In this case only time domain solutions can be obtained.

Themathematical models of the various parts of the transmission, from the engine
to the vehicle, will be described in this chapter.

31.1 Coupling Between Comfort and Driveline Vibration

As predictable in a system with many degrees of freedom, the driveline has many
vibration modes and natural frequencies. The effects of the various modes are dif-
ferent, and a variety of models may be used for their study.
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The most important mode for comfort is the first mode of the driveline, which
usually has a natural frequency not much different from those typical of the comfort
modes of the sprung mass related to heave and pitch. In this mode the transmission
behaves as a massless torsional spring connecting two large inertias at its ends, those
of the engine and the vehicle.

An extremely simple model may be used to study this mode, similar to those used
earlier for the take-off manoeuvre, the difference being that the clutch may now be
considered as a rigid joint. The natural frequencies of the crankshaft are much higher,
and at these low frequencies the engine may be considered as a single moment of
inertia.

In all reciprocating engines the driving torque changes in time, with a period
depending on the duration of the thermodynamic cycle, lasting two revolutions of the
crankshaft (in four-stroke cycle engines, one revolution in two-stroke cycle engines).
These frequencies are higher, often much higher, than 10Hz. The driving torque
may be considered as constant at its average value computed over one cycle: The
variability of the pressure of the working gases on the piston and the driving torque
cannot excite vibration at such a low frequency.

Slower variations of the driving torque, however, such as those due to manipula-
tion of the accelerator pedal, may have an important role in exciting low frequency
vibration. A typical case is that of a manoeuvre usually called tip-in, tip-out: The
driver pushes suddenly on the accelerator pedal while the vehicle is travelling at a
constant speed, usually low, causing a driving torque step. The step increase of the
driving torquemay be followed by an equally sudden release of the accelerator pedal.

Some experimental results obtained during a tip-in, tip-out manoeuvre are shown
in Fig. 31.1. The vehicle travels on a straight road at a given speed (in the figure,
at a speed corresponding to an engine speed of about 1,500 rpm in top gear) and,
when all parameters are constant, the accelerator pedal is pushed fully down. When
the engine speed has increased by about 500 rpm the accelerator is fully released
until the previous speed has again been attained. This manoeuvre is repeated several
times, at different initial speeds and with different gears engaged. One of the cycles
is shown in the figure; its duration is about 8 s.

The results shown were filtered with a low-pass filter removing all frequencies
higher than 25Hz to make all phenomena occurring in the frequency range from 0 to
10Hz more apparent. As can be seen, the vehicle velocity shows strong oscillations,
causing longitudinal accelerations that were measured at two points important for
comfort: The attachment points of the seat and its back. By analyzing the results it
is possible to show that when the engine is accelerating the forced oscillations have
a frequency of about 4Hz, while when the vehicle slows their frequency is 3Hz.
This difference can be explained by the nonlinearity of some elements, such as the
damper springs of the clutch disk, that perform more stiffly when heavily loaded in
torsion.

As is common for step inputs, all frequencies of the system are in this way excited,
particularly low frequencies, because the response of the engine is not immediate
and smooths out what in theory should be a true step. The vehicle therefore does not
accelerate (or decelerate) smoothly and torsional vibration of the driveline causes
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Fig. 31.1 Experimental results obtained in a tip-in, tip-out manoeuver. a throttle opening; b engine
speed; c longitudinal acceleration measured at the attachment opoints of the seat; d longitudinal
acceleration at the back of the seat

longitudinal oscillations of the whole vehicle, with vertical motions of the sprung
and unsprung masses.

This manoeuvre may be performed at different speeds and in different ways,
but the oscillations produced by it strongly reduce comfort, making it an important
issue in vehicle testing. If problems appear, adequate correction must be introduced,
usually by increasing the torsional natural frequencies of the driveline or its damping.
A provision that was recently found to be quite effective is the use of a flywheel
damper with two masses, as shown in Part II. The engine flywheel is divided into
two parts, connected to each other by a low stiffness spring and adequate damping.
Because the torsional oscillations of the transmission are triggered by manipulation
of the accelerator, an effective solution is to modify the throttle control of the engine
so that sudden increases of the engine torque are avoided. This is simple if a by
wire engine control is used, because it is sufficient to introduce a smoother control
algorithm into the system.

Apart from low frequency vibration, higher frequency vibration caused by the
torsional vibration of the crankshaft of the engine or the gearbox, is possible. Its
effect is to increase the noise produced by the gearbox (in jargon, rattle) and to
cause fatigue problems in the crankshaft, the shafts of the gearbox and gearwheels.
When this occurs, the useful provisions are, besides the use of a twin-mass flywheel,
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those typical of torsional vibration, i.e. inserting in the engine and possibly in the
driveline suitable torsional dampers or compliant joints that uncouple the vibration
of the various parts of the system.

31.2 Dynamic Model of the Engine

Almost all vehicles presently on the road are propelled by a reciprocating internal
combustion engine. Machines containing reciprocating elements have some peculiar
dynamic problems.

Most reciprocating machines, and practically all those used in the automotive
industry, are based on a crank mechanism, often in the form of a crankshaft with
several connecting rods and reciprocating elements. Such devices cannot, in general,
be exactly balanced: The inertial forces they exert on the structure of the vehicle
constitute a system of forces whose resultant is not insignificant and is variable
in time. The geometric configuration of the system created by the crankshaft, the
connecting rods, and the reciprocating elements can be quite complex. Crankshafts
not only do not possess axial symmetry but often lack symmetry planes.

In these conditions, uncoupling among axial, torsional, and flexural behavior is
not possible, in anything other than a rough approximation, and vibration modes
become quite complicated. The external forces acting on the elements of recip-
rocating machines are usually variable in time, often following periodic laws, as
the forces exerted by hot gases on the pistons of reciprocating internal-combustion
engines demonstrate. Their period is equal to the rotation period in two-stroke cycle
engines and is twice the rotation period in four-stroke cycle engines. Their periodic
time histories are not harmonic but, once harmonic analysis has been performed, they
may be considered as the sum of many harmonic components whose frequencies are
usually multiples, by a whole number or a rational fraction, of the rotational speed
of the machine. There may be many possibilities of resonance between these forcing
functions and the natural frequencies of the system.

In general, the most dangerous vibrations are linked to modes that are essentially
torsional. These couplewith themodes of the driveline and the longitudinal dynamics
of the vehicle.

31.2.1 Equivalent System for a Crank Mechanism

The traditional approach to the study of torsional vibrations in reciprocatingmachines
is based on the reduction of the actual system made of crankshafts, connecting rods,
and reciprocating elements to an equivalent system. The latter is usually modeled
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Fig. 31.2 Sketch of the crankshaft: a actual system;b equivalent system, lumped-parametersmodel

as a lumped-parameters system whose torsional behavior can be studied separately1

(Fig. 31.2).
Consider the crank mechanism sketched in Fig. 31.3. It is made of a disc, with

a crankpin in B on which the connecting rod PB, whose center of mass is G, is
articulated. The reciprocating parts of the machine are articulated to the connecting
rod in P. The actual position of the center ofmass of the reciprocating elements, which
may include the piston as well as the crosshead and other parts, is not important in
the analysis; in the following study this point will be assumed to be located directly
in P. The axis of the cylinder, i.e., the line of motion of point P, does not necessarily
pass through the axis of the shaft; the offset d will, however, be assumed to be small.
Let Jd , Jb,mb, andmp be the moment of inertia of the disc that constitutes the crank,
the moment of inertia of the connecting rod (about its center of gravity G) and the
masses of the connecting rod and of the reciprocating parts, respectively.

The coordinates of points B, G, and P can be expressed in the reference frame
Oxy, shown in Fig. 31.3 as functions of the crank angle θ, as

(B-O) =
{
r cos(θ)
r sin(θ)

}
, (G-O) =

{
r cos(θ) + a cos(γ)

r sin(θ) − a sin(γ)

}
, (31.1)

1Torsional dynamics of reciprocating machinery is dealt with in many texts on vibration dynamics,
like G. Genta, Vibration of Structures and Machines, Springer, New York, 1998. For a detailed
study, specific texts on the subject can be found, such as E.J. Nestorides, A handbook on torsional
vibration, Cambridge Univ. Press, 1958; K.E. Wilson, Torsional vibration problems, Chapman &
Hall, 1963.
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Fig. 31.3 Sketch of the crank mechanism

(P-O) =
{
r cos(θ) + l cos(γ)

d

}
.

Angle γ is linked to angle θ by the equation

r sin(θ) = d + l sin(γ), (31.2)

i.e.
sin(γ) = α sin(θ) − β,

where

α = r

l
,β = d

l
.

Ratios α and β are expressed by numbers smaller than 1, and in practice they are
quite small; usually α ≤ 0.3 and β = 0.

Remark 31.1 In the case of an ideal crank mechanism with an infinitely long con-
necting rod (α = 0), with the axis of the cylinder passing through the axis of the
crank (β = 0), the motion of the reciprocating masses is harmonic when the crank
speed is constant.

Because θ̇ is the angular velocity of the crank, its kinetic energy is simply

Td = 1

2
Jd θ̇

2. (31.3)
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The speed of the reciprocating masses can be easily obtained by differentiating
the third equation (31.1) with respect to time and obtaining the expression for γ̇ from
Eq. (31.2):

Vp = −r θ̇ sin(θ) − lγ̇ sin(γ) = −r θ̇

[(
1 + α

cos(θ)

cos(γ)

)
sin(θ) − β

cos(θ)

cos(γ)

]
. (31.4)

The kinetic energy of the reciprocating masses is

Tp = 1

2
mpr

2θ̇2 f1(θ), (31.5)

where

f1(θ) =
[
sin(θ) + α

sin(2θ)

2 cos(γ)
− β

cos(θ)

cos(γ)

]2
.

Instead of computing the kinetic energy of the connecting rod by writing the
velocity of its center of gravityG, it is customary to replace the rodwith a systemmade
of two massesm1 and m2, located at the crankpin B and the wrist pin P, respectively,
and a moment of inertia J0. To simulate the connecting rod correctly, such a system
must have the same total mass, moment of inertia, and center of mass position. These
three conditions produce three equations yielding the following values for m1, m2,
and J0:

m1 = mb
b

l
, m2 = mb

a

l
,

J0 = Jb − (m1a2 + m2b2) = Jb − mbab .

(31.6)

Generally speaking, the moment of inertia of masses m1 and m2 is greater than
the actual moment of inertia of the connecting rod and, consequently, the term J0
is negative. The kinetic energy of mass m1 can be computed simply by adding a
moment of inertia m1r2 to that of the crank.

Remark 31.2 The negative moment of inertia has no physical meaning in itself: The
minus sign indicates that it is simply a term that must be subtracted in the expression
of the kinetic energy.

Similarly, the kinetic energy of massm2 can be accounted for by addingm2 to the
reciprocating masses. The effect of the moment of inertia J0 can be easily computed

TJ0 = 1

2
J0γ̇

2 = 1

2
J0θ̇

2 f2(θ), (31.7)

where

f2(θ) = α2

[
cos(θ)

cos(γ)

]2
.
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The total kinetic energy of the system shown in Fig. 31.3 is, consequently,

T = 1

2
θ̇2
[
Jd + m1r

2 + (m2 + mp)r
2 f1(θ) + J0 f2(θ)

] = 1

2
Jeq(θ)θ̇

2. (31.8)

It is now clear that thewhole system can bemodeled, from the viewpoint of kinetic
energy, by a single moment of inertia variable with the crank angle Jeq(θ), rotating
at the angular velocity θ̇.

The equivalent moment of inertia is a periodic function of θ, with a period of 2π.
In the limiting case of α = β = 0, corresponding to an infinitely long connecting

rod (piston moving with harmonic time history), the expressions for f1(θ) and f2(θ)
are particularly simple

f1(θ) = sin2(θ) = 1 − cos(2θ)

2
, f2(θ) = 0 . (31.9)

In practice, it is impossible to neglect the fact that the length of the connecting
rod is finite, even if α is usually not greater than 0.3. At any rate there is no difficulty
in expressing Jeq through a Fourier series

Jeq = J0 +
n∑

i=1

Jci cos(iθ) +
n∑

i=1

Jsi sin(iθ) , (31.10)

that is here truncated at the nth harmonics. Coefficients J0, Jci and Jsi may be
computed numerically without difficulty, by computing the values of functions f1(θ)
and f2(θ) for a number of values of angle θ and then applying one of the standard
FFT algorithms. The number of values of Jeq(θ) to be computed depends on the
value of n and, if many harmonics are required, 2048 or 4096 values may be needed.

Traditionally, before the numerical computation of the coefficients of the Fourier
series became straightforward, explicit expressions of the coefficients were used;
these are discussed in several handbooks. The coefficients were expressed as power
series in α and β; the number of terms needed depends on how many harmonics
must be accounted for. To compute six harmonics, series with terms up to α4 and β4

were used.
If the axis of the cylinder passes through the center of the crank (β = 0), as is

usually the case, f1(θ) and f2(θ) are even functions of θ for symmetry reasons. Jeq
is then an even function and all coefficients Jsi vanish. If α = 0, the expression of
the average equivalent moment of inertia reduces to

J0 = Jd + r2
2m1 + m2 + mp

2
. (31.11)



31.2 Dynamic Model of the Engine 703

31.2.2 Driving Torque

A moment caused by the pressure of the gases contained in the cylinder p(t) acts
upon each crank, varying in time during the working cycle of the engine. Once the
pressure p(t) is known, the driving torque acting on the crankshaft can be computed
from the virtual work δL performed by that pressure during a virtual displacement δs
of the piston. A virtual displacement δθ of the crank corresponds to a displacement
δs of the piston; the relationship between them is

δs = Vp

θ̇
δθ = r

√
f1(θ)δθ . (31.12)

The corresponding virtual work δL performed by this pressure can be expressed
as

δL = p(t)Aδs = p(t)r A
√

f1(θ)δθ, (31.13)

where function f1(θ) is given by Eq. (31.5) and A is the area of the piston. The
generalized force Mm due to the pressure p(t), i.e. the driving torque, is consequently

Mm = d(δL)

d(δθ)
= p(t)r A

√
f1(θ). (31.14)

In the case of two-stroke cycle engines working at constant speed, function p(t)
is periodic with a period equal to the time needed to perform one revolution of the
crankshaft, i.e. its frequency is equal to the rotational speed � of the engine. In
the case of four-stroke-cycle internal combustion engines, again assuming constant
speed operation, the period of function p(t) is doubled, i.e. its fundamental frequency
is equal to �/2. Because the generalized force (moment) Mm(t) is periodic, with
the same frequency of law p(t), it can be expressed by a trigonometric polynomial,
truncated after m harmonic terms

Mm(t) = M0 +
m∑

k=1

Mck cos(kω
′t) +

m∑
k=1

Msk sin(kω
′t) , (31.15)

where the frequency ω′ of the fundamental harmonic is equal to�, except in the case
of four-stroke-cycle internal-combustion engines, in which

ω′ = �

2
. (31.16)

The coefficients of the polynomial may be computed starting from the theoretical
or experimental law p(t), and empirical expressions can be found in the literature.
In any case, the driving torque depends upon working conditions. It is possible to
assume that coefficients Mck and Msk are proportional to the average driving torque
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M0 or to the product of half the capacity of the cylinder (the area of the piston times
the crank radius) times the mean indicated pressure.

Angle θ may be used instead of time as an independent variable and the driving
torque may be written as

Mm(θ) = M0 +
m∑

k=1

Mck cos(kθ
′) +

m∑
k=1

Msk sin(kθ
′) , (31.17)

where θ′ is equal to θ in two-stroke cycle engines and θ/2 in four-stroke cycle engines.

Remark 31.3 When the engine works at variable speed, it may be assumed that the
speed variations are much slower than the phenomena occurring in the combus-
tion chamber. Conditions at variable speed may be approximated by a sequence of
constant speed operations at the various speeds.

31.2.3 Forcing Functions on the Cranks of Multicylinder
Machines

All motor vehicles other than motorcycles powered by single-cylinder engines are
provided with reciprocating engines with a number of cylinders. The most com-
mon engine arrangement is in-line, but many engines have opposite cylinders or V
arrangements.

Inmachineswith a number of cranks, if the various cranks, reciprocating parts, and
working cycles are all equal, the time histories of the moments acting on the various
nodes of the equivalent system are all equal but are timed differently. Because each
harmonic component of the moment acting on the cranks can be represented as the
projection on the real axis of a vector rotating in the Argand plane with constant
angular velocity, it is possible to draw, for each harmonic, a plot in which the various
vectors acting on the different cranks of the machine are represented. Because, as
already stated, the amplitudes of these vectors are equal, the diagram is useful only
for comparing the phases of the vectors, which are traditionally plotted with unit
amplitude. The phasing of the vectors depends on the geometric characteristics of
the machine and, in the case of four-stroke-cycle engines, on the firing order. Such
diagrams are usually referred to as phase angle diagrams.

Consider, for example, an in-line four-stroke-cycle internal-combustion engine.
If the working cycles of the various cylinders are evenly spaced in time, the cranks
that subsequently fire must be at an angle of 4π/n rad, where n is the number of
cylinders. In a four-in-line engine, this angle is 180◦, and themost common geometric
configuration of the crankshaft is that shown in Fig. 31.4a, chosen because it allows
the best balancing of inertia forces. In the same figure, the configuration of the
crankshaft of a six-in-line engine is also shown.
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Fig. 31.4 a Configuration of the crankshaft and crank angle diagrams for in-line four-stroke-cycle
four-and six-cylinder internal combustion engines. In the latter case the configuration shown is just
one of the possible choices; b phase-angle diagrams for the same engines

In a four-cylinder engine, the possible firing orders are two: 1-2-3-4 and 1-3-4-2.
In both cases, it is impossible to prevent two contiguous cylinders from immediately
firing one after the other. The phase-angle diagrams for the first four harmonics are
plotted in Fig. 31.4b for the second of the two firing orders.

If the order of the harmonic is a whole multiple of the number of cylinders, all
rotating vectors are superimposed, i.e. the forcing functions acting on all cranks are
all in phase. These harmonics are usually themost dangerous and are often referred to
as major harmonics. The phase-angle diagrams for the (n + i)-th harmonic coincide
with that related to the i th harmonic and, consequently, only the first n phase-angle
diagrams are usually plotted.

Remark 31.4 The phase-angle diagrams have been plotted in such a way that they
supply the excitation phasing on the various cranks with respect to that acting on a
crank chosen as reference, usually the first. Each harmonic then has a phasing with
respect to the fundamental harmonic that must be considered when the effects of the
various harmonics are added.

The forcing function actingon the j th crankmaybe approximatedby the following
series, truncated at the mth harmonic

Mm j =
m∑

k=0

Mmke
i(kω′i+�mk +δ jk ) , (31.18)
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where

• Mmk and�mk are the amplitude and phase of the k th harmonic of the driving torque,
respectively.With reference to the series (31.15) approximating the driving torque,
their values are

Mmk =
√
M2

ck + M2
sk and �mk = arctan(Mck/Msk),

respectively.
• δ jk is the phase of the kth harmonic acting on the j th crank, as obtained from
the phase-angle diagram. If the diagram is referred to the first crank, δ jk = 0 for
j = 1.

31.2.4 Stiffness of the Crankshaft

From the viewpoint of inertia forces, the cranks and reciprocating elements are equiv-
alent to a number of concentrated flywheels, even if their moments of inertia vary
periodically with angle θ. The engine can thus be reduced to a lumped-parameters
equivalent system, with the various flywheels connected to each other by straight
shafts having an equivalent stiffness that models the actual stiffness of the relevant
portion of crankshaft (Fig. 31.2). The various flywheels have a length equal to zero:
the lengths of the various parts of the shaft must be contiguous, each starting where
the previous one ends. Traditionally, instead of reasoning in terms of equivalent stiff-
ness, the elastic properties of the shaft were computed in terms of equivalent length,
assuming that the shaft of the straight equivalent shaft has the same diameter as the
relevant part of the actual shaft or, more often, has a conventional value, allowing its
length to be computed so that its torsional stiffness is that of the actual shaft.

It is not possible to compute the stiffness by modeling each part of the crank as
a simple body (beams loaded in torsion for the journals, beams loaded in bending
and torsion for the crankpins, beams loaded in bending for the crank webs, etc.). The
complex geometry, the presence of radii, and the low slenderness of the beams make
it impossible to resort to such approach.

There are three ways to evaluate the equivalent stiffness:

1. experimental evaluation,
2. use of semi-empirical methods, and
3. numerical modeling, mainly using the FEM.

Experimental evaluation clearly gives the most reliable results, but it cannot be
performed at the design stage without additional costs. Moreover, it increases in the
time required for dynamic analysis because of the need to buildmodels or prototypes.
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Empirical and semi-empirical formulas, allowing at least approximate evaluations
to be obtained, have been suggested by many authors and can be found in several
handbooks.2

Nowadays it is possible to build numericalmodels of a single crank and to evaluate
their static stiffness by numerical methods, mainly the FEM. This is much simpler
than the complete numerical simulation of the crankshaft using the same numerical
approach. Only one crank (or half, for symmetry) needs to be modelled, assuming
all cranks are equal, and the computation reduces to a static evaluation.

Nevertheless, the geometric complexity and uncertainties on how to constrain the
mathematical model may make this computation more difficult than it appears.

Remark 31.5 Strictly speaking, the lack of symmetry couples torsional and flexural
deformations, and the stiffness of the crankcase and the presence of oil films in the
bearings may affect the results.

The equivalent stiffness and equivalent length, computed through any of the men-
tioned approaches, are linked through the obvious formula

k = G
Ip
leq

. (31.19)

31.2.5 Damping of the System

If the damping present in the engine were mostly caused by the internal damping
of the material constituting the crankshaft, there would be no difficulty introducing
a proportional damping with modal damping ratio equal for all modes: ζ j = η/2,
where η is the loss factor of the material of the crankshaft.

But damping is actually due to many causes, among which friction between mov-
ing parts (including that between the piston and the cylinder wall), electromagnetic
forces (if an electric motor or generator is driven by the engine), and the pres-
ence of fluid in which some rotating parts move, can be important. Neglecting them
would lead to a large underestimate of damping. It is usually necessary to resort to
experimental results, obtained from machines similar to the one under study, and to
empirical or semi-empirical formulas and numerical values reported in the literature.

The damping due to the crank mechanism is usually evaluated by introducing a
damping force acting on the crankpin that is proportional to the area of the piston
and the velocity of the crankpin. The damping moment acting on the j th crank is

Md(t) = k ′Ar2 , (31.20)

where k ′ is a coefficient whose dimension is a force multiplied by time and divided
by the third power of a length. In S.I. units, it is expressed in Ns/m3. Values of k ′

2See, for example, E.J. Nestorides, A Handbook on Torsional Vibration, Cambridge Univ. Press,
1958, or W. Ker Wilson, Torsional Vibration Problems, Chapman & Hall, 1963.
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included in the range between 3,500 and 10,000 Ns/m3 for in-line aircraft engines
and between 15,000 and 1.5 × 106 Ns/m3 for large internal-combustion engines can
be found in the literature.

Remark 31.6 The lower and upper values of these ranges are very different andmust
be regarded only as indicative values; only experimental results on machines similar
to the one under study can be reliable.

The use of Eq. (31.20) leads to the assumption that in each crank there is a viscous
damper with damping coefficient equal to

c j = k ′Ar2 . (31.21)

In many cases, it is impossible to prevent the amplitude of torsional vibration
from reaching values too large to insure safe operation of the machine or adequate
vibrational and acoustic comfort solely by exploiting the damping properties of the
system elements.

In such cases, torsional vibration dampers are applied at one end of the crankshaft.
They are made of a flywheel (usually referred to as seismic mass) whose geometric
configuration may draw on a wide variety of types, connected to the shaft by suitable
elastic and damping elements.

Almost all torsional vibration dampers can be reduced to the concept of the
damped vibration absorber. Without including all possible types, these can be sub-
divided into three categories: dissipative dampers, damped vibration absorbers, and
rotating pendulum vibration absorbers. The latter are seldom used in automotive
engines and will not be dealt with here.

A typical dissipative torsional damper used primarily in diesel engines for indus-
trial vehicles is the viscous damper shown in Fig. 31.5a. It is applied to one end of
the crankshaft and consists of a flywheel, generally shaped as a ring free to rotate
within a casing filled with a high viscosity fluid, for example a silicon-based oil.
Damping in this case is of the viscous type, i.e., the drag torque is proportional to
the relative angular velocity between the ring and the housing, with the damping
coefficient depending on the clearance between the two and on the characteristics of
the fluid. The latter are greatly influenced by the fluid temperature. The model for
the dynamic study of the system must be modified by adding the moment of inertia
of the casing, in the node in which the damper is applied (node 1, Fig. 31.5c), and
by adding a new node (node 0 in the same figure) in which the inertia of the ring is
located. The two nodes are connected by a viscous damper and a spring with zero
stiffness.

A viscous damper of this kind actually lacks stiffness only in static conditions
and at very low frequency. The characteristics of the fluid are such that an elastic
behavior of increasing strength occurs with increasing frequency, obviously adding
to the damping behavior. This means that the torque the damper applies to the shaft
depends not only on the relative velocity, but also on the angular displacement. A
stiffness, which is a function of the frequency, must be added to the previous model,
but this holds only in harmonic, or at least polyharmonic, vibration.
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Fig. 31.5 Dissipative torsional vibration damper; a viscous damper; b elastomeric damper; c sketch
of the model for the dynamic study

For a first-approximation evaluation of the optimum system damping, it may be
assumed that the presence of the damper does not significantly affect the natural
frequencies of the system. The above mentioned stiffness may be neglected. Under
this assumption, the behavior of the damper may be studied separately, assuming
the time history of the motion φ1(t) of the node where it is applied. The equation of
motion of node 0 is then

Js φ̈0 + cφ̇0 = cφ̇10 . (31.22)

Assume that the time history at node 1, where the damper is applied, is harmonic

φ1(t) = φ10e
iωt .

The time history at node 0 is also harmonic

φ0(t) = φ00e
iωt

although not in phase with the excitation. The response can be computed using the
frequency domain equation

(−Jsω
2 + iωc

)
φ00 = iωcφ10 . (31.23)

By separating the real and imaginary parts of the response, it follows that

⎧⎪⎪⎨
⎪⎪⎩

�(φ00) = φ10
c2

c2 + J 2
s ω2

,

�(φ00) = φ10
−cJsω

c2 + J 2
s ω2

.

(31.24)
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If time t = 0 is chosen as the time when the angular displacement φ1 reaches its
maximum, i.e. if φ10 is real, the relative displacement can be expressed as

|φ0(t) − φ1(t)| =
√[�(φ00) − φ10

]2 + [�(φ00)
]2

(31.25)

and then

|φ0(t) − φ1(t)| = φ10
J 2
s ω2√

c2 + J 2
s ω2

. (31.26)

The energy dissipated in a period by the damper is

Ed =
∫ T

0
c
[
φ̇0(t) − φ̇1(t)

]2
dt = cφ2

10π
J 2
s ω4

c2 + J 2
s ω2

. (31.27)

It is easy to verify that both conditions c = 0 and c → ∞ lead to a vanishingly
small energy dissipation: In the first case because the seismic mass does not interact
with the system, and in the second case because nodes 1 and 0 are rigidly connected.
The value of the damping coefficient leading to a maximum energy dissipation can
be obtained simply by differentiating Eq. (31.27) and equating the derivative to zero

J 2
s ω2 − c2 = 0 . (31.28)

The value of the optimum damping so obtained is

copt = Jsω . (31.29)

Even if the value of the optimum damping depends on the frequency, dampers of
the type described here allow a substantial reduction of the amplitude of vibration in
a large frequency range.

Because all dissipative dampers convert mechanical energy into heat, they are
subject to potentially high temperatures. It is then necessary to verify that they can
dissipate all the thermal energy they produce, which can be computed using formulas
of the type of Eq. (31.27), at least in terms of average power over a given period of
time.

A limit to the ratio between the thermal power and the external surface of the
damper is usually assumed. For the type in Fig. 31.5a, for example, it is suggested
not to exceed 1.9 × 104 kW/m2 in continuous operation and 5 × 104 kW/m2 for short
periods of time.

If the seismic mass is connected to the shaft with a torsional spring with non-
vanishing stiffness, the device is a true dynamic vibration absorber. Such torsional
vibration absorbers introduce a new natural frequency into the system and change the
natural frequency on which they are tuned. The distance between the two resonance
peaks increases with increasing moment of inertia of the seismic mass. Because an
undamped vibration absorber is effective in a very narrow frequency range, outside
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of which it is not only ineffective but can cause new resonances, the seismic mass
is connected to the shaft through a system that has a certain amount of damping. In
such cases it is possible to obtain a response that is fairly flat in an ample range of
frequencies.

From a practical viewpoint, all dampers shown in the previous section can be con-
verted into damped vibration absorbers simply by adding an elastic element between
the shaft and the seismic mass, which allows the damper to be tuned on the required
frequency.

Elastomeric dampers are used on many automotive engines (Fig. 31.5b), particu-
larly on small diesel engines. Theymay be considered as damped vibration absorbers.
The elastomeric elements act as both springs and dampers, and can be designed so
as to achieve the required dynamic characteristics. In this case the damper must be
designed to take into account the heat generated within the damping element, partic-
ularly because the thermal conductivity and mechanical characteristics at high tem-
perature of the rubber are both low. Overheating is particularly dangerous, because
any increase of temperature leads to a decrease of the internal damping and then an
increase of vibration amplitude. This leads to a further temperature increase until
the damper is destroyed, something that could cause severe fatigue problems to the
whole system.

31.2.6 Ancillary Equipment

The crankshaft drives a number of ancillary devices that are increasingly common
in modern cars. To the camshafts, the generator, the water pump and possibly the
fan (which is, however, often driven directly by an electric motor) and other devices
such as the power steering pump and the air conditioner compressor must be added.
These devices are usually driven through a V or a timing belt, while camshafts are
usually driven by a chain or a timing belt. Each shaft has its own speed, so that each
transmission has its own transmission ratio. The transmission ratio of the cam shaft
is always 1/2.

Ancillary devices may be included in the engine model as well as the driveline
by adding other concentrated moments of inertia connected to the main system by
secondary shafts that simulate the stiffness of the belt, chain or gearwheel transmis-
sion. The same procedure that will be shown when dealing with the driveline may be
used to account for the different gear ratios. This approach may, however, be only a
first approximation, because the belt usually moves more than one device and is kept
tight by tensioners that have their own dynamics based on their mass and stiffness.
The belt is then not equivalent to a number of shafts connecting the various devices
to the crankshaft. Moreover, the behavior of the belt is often nonlinear.

Because of the presence of many ancillary devices, usually mounted on brackets
with a limited stiffness, torsional vibration of the crankshaft causes vibration of the
brackets and the masses mounted on them. These vibrations may adversely affect
vibrational and acoustic comfort. Because these devices are usually located close to
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the cooling air intake, noise caused by their vibration propagates outside the vehicle
and contributes to what is usually referred to as acoustic pollution.

Dynamic vibration absorbers or low stiffness joints are often located close to the
pulleys driving the belts, to reduce both noise and dynamic stresses. The functions
of elastic joint and damper are generally performed by a single device, containing
two or more seismic masses, one of which is the outer rim of the pulley driving the
belt.

Because the inertia of the ancillary device is not large and the stiffness of the belt
or other transmission devices is high, their dynamics lies in a frequency range above
that involving the sprung and unsprung mass modes, and primarily affects acoustic
comfort.

31.2.7 Engine Control

Variations of the engine torque in time due to the thermodynamic cycle may excite
vibrations of the driveline at medium-high frequency. The fundamental harmonic has
a frequency�/2 in a four-stroke cycle engine,which at 1000 rpmalready corresponds
to 8 Hz. At the speeds at which the engine usually operates, frequencies are much
higher. The other harmonics have a frequency that is a multiple of the fundamental
frequency and is often quite high, because 20 or even 25 harmonics must usually be
taken into account. At the first natural frequency of the driveline the engine torque
can be considered constant in time, as far as the internal dynamics of the engine is
concerned. The torque varies according to the commands given by the driver.

In traditional layouts, the engine is controlled by the driver through the accelerator
pedal, with commands transmitted to the throttle or injection pump by a mechanical
(cable) or hydraulic transmission. Even when the driver manoeuvres the accelerator
quite quickly, the command is transferred directly to the engine. The engine torque
increases rapidly following a sudden opening or closing of the throttle, with char-
acteristic times typical of those of the thermodynamic cycle: A sort of step input
is then occurring, exciting all frequencies up to values of some tens of Hz, or even
more. The accelerator manoeuvre may then excite the first torsional frequency of the
driveline.

In more modern layouts the transmission of the accelerator control is performed
by a by wire device: The pedal is connected to a sensor supplying a position signal
to the engine control system. In this case it is possible to prevent the transmission
natural frequencies from being excited, avoiding high mechanical stresses to the
involved elements.

The simplest strategy is to introduce a low-pass filter, cutting out frequencies
above a value of about 1 or 2Hz. This has the advantage of preventing the excitation
of the driveline natural frequencies, but the engine becomes less responsive, both
when accelerating and slowing down. More complex strategies based on filters that
cut out specific frequencies, or provide laws of torque as a function of time to avoid
excitation of resonant vibration, require a detailed knowledge of the dynamics of the
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driveline and accurate adjustments. Strategies of this type are called open loop or
feedforward strategies, because they modify the input of the system (in this case the
driving torque) without measuring its effects.

Such an open loop approach may be complemented by measuring the effects of
the accelerator manoeuvre, (i.e. acceleration of the vehicle, torsional deformation of
the driveline, etc.) and then modifying the command of the throttle or injection pump
to limit vibration (closed loop or feedback control).

The model of the driveline must also contain in this case a mathematical model
of the device controlling the engine, to simulate specific step input or tip-in, tip-out
manoeuvres.

31.2.8 Engine Suspension

The engine suspension system has two primary functions:

• supporting the static and dynamic loads due to the mass of the engine, its recipro-
cating and rotating elements and driving torque,

• isolating the structure of the vehicle from vibration and noise produced by the
propulsion unit, which usually includes the engine, the gearbox and often the
differential.

The suspension system should be stiff enough to perform the first task without allow-
ing large displacements and rotations, the limiting case being mounting the engine
stiffly on the vehicle body. On the other end, to effectively insulate the vehicle from
vibration produced by the propulsion unit, its suspension should be as soft as pos-
sible. To strike a compromise between these contrasting requirements, it is of the
utmost importance to locate the enginemounts suitably. These are usually elastomeric
elements performing the tasks of spring and damper simultaneously.

If the mounts had low stiffness and damping, the engine would behave like a rigid
body isolated in space and would transfer no vibration to the structure except that
transmitted by the surrounding air. The motion of the engine could then be studied
as that of an isolated rigid body on which the actions caused by the pressure of
the working gases and the inertia forces caused primarily by imbalance of rotating
elements as well as the linear inertia of reciprocating masses are exerted. In this
analysis the forcing functions acting on the engine, which are periodic with a period
equal to the duration of the thermodynamic cycle (fundamental frequency equal
to half the rotation frequency in four-stroke cycle engines), may be developed in
Fourier series. The static (zero-frequency) component due to weight and the constant
component of the driving torque must be neglected in this computation, because it
would lead to a non-periodic motion of the engine that is not supported in any way.

If the motion of the engine as an insulated rigid body under the action of dynamic
forces were such that we could identify points where the amplitude vanishes, locat-
ing the supports in those points would allow the engine to be supported without
transmitting dynamic loads. In actual conditions this is not possible, but analysis of
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Fig. 31.6 Real (in-phase) and imaginary (in quadrature) parts of the complex stiffness of a support
for engine suspension versus the frequency

the free motion allows us to identify points where the amplitude of that motion is
relatively small. We can then identify configurations from which the optimization
of the engine suspension geometry can begin, taking into account the compliance of
the structure supporting the engine.

Among the possible layouts for engine suspensions, those based on three supports,
and on two supports withstanding the weight of the engine plus a link, itself attached
through elastomeric supports, to withstand the engine torque, must be mentioned.
The latter solution allows a high rotational stiffness to be obtained, accompanied by
a moderate translational stiffness.

The concept of complex stiffness may be used to identify an in-phase and an
in-quadrature stiffness, both functions of frequency, and then to describe the elastic
and damping behavior of the supports under a harmonic forcing function. The char-
acteristics of one of the supports of an engine suspension are shown in Fig. 31.6 as
an example. Supports with controllable characteristics and active supports have been
built and applied on some vehicles.

Remark 31.7 Engine suspension may have a strong influence not only on insulation
from vibration and noise produced by the engine, but also on riding comfort, because
the engine is quite a large mass suspended through an elastic and damping system
that couples it to the heave and pitch dynamics of the vehicle and also, even if to a
lesser extent, to the torsional dynamics of the driveline.

31.3 Driveline

The driveline, including shafts, gear wheels, joints and other elements such as the
clutch with related damper springs, may be modelled as a lumped parameters system
(made bymassless shafts where the elastic properties of the system are concentrated)
with lumped masses modelling its inertial properties.
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Fig. 31.7 Geared system: Sketch of the a actual system and b equivalent system; c planetary gear
train. Sketch of the system and notation

The damping of the systemmay be neglected altogether, or modelled by introduc-
ing suitable viscous dampers in parallel to the springs modelling the various parts of
the shaft and joints.

If the clutch is assumed to be fully engaged and the gearbox is in a given gear, the
configuration of the driveline is fixed. There is then no difficulty in building a simple
mathematical model of the entire system.

Nor does the fact that the various elements of the driveline rotate at different
speeds cause problems. Consider the system sketched in Fig. 31.7a, in which the two
shafts are linked by a pair of gear wheels, with transmission ratio τ . For the study
of the torsional vibrations of the system, it is possible to replace the system with a
suitable equivalent, in which one of the two shafts is replaced by an expansion of the
other (Fig. 31.7b).

Assuming as well that the deformation of gear wheels is negligible, the equivalent
rotationsφ∗

i may be obtained from the actual rotationsφi simply by dividing the latter
by the transmission ratio τ = �2/�1,

φ∗
i = φi

τ
. (31.30)

The kinetic energy of the i th flywheel, whose moment of inertia is Ji , and the
elastic potential energy of the i th span of the shaft are, respectively,

T = 1
2 Ji φ̇

2
i = 1

2 J
∗
i φ̇∗2

i ,

U = 1
2ki
(
φ2
i+1 − φ2

i

) = 1
2k

∗
i

(
φ∗2
i+1 − φ∗2

i

)
,

(31.31)

where the equivalent moment of inertia and stiffness are, respectively,

J ∗
i = τ 2 Ji , k

∗
i = τ 2ki . (31.32)
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The moments of inertia and the torsional stiffness of the various elements of the
geared system can thus be reduced to the main system simply by multiplying them
by the square of the gear ratio

c∗
i = τ 2ci . (31.33)

In the same way, if damping of the shafts is accounted for by introducing dampers
in parallel to the springs, the damping coefficient must be multiplied by the square
of the gear ratio.

If the system includes a planetary gear train, the computation can be performed
without difficulties. The equivalent stiffness can be computed simply from the overall
transmission ratio. The total kinetic energy of the rotating parts must be taken into
account when computing the equivalent inertia. The angular velocities of the central
gear �1, of the ring gear �2, of the revolving carrier �i , and of the intermediate
pinions �p of the planetary gear shown in Fig. 31.7c are linked by the equation

�1 − �i

�2 − �i
= −r2

r1
, �p = (�1 − �i )

r1
rp

− �i . (31.34)

The equivalent moment of inertia of the system made of the internal gear, with
moment of inertia J1, the ring gear, with moment of inertia J2, the revolving carrier,
with moment of inertia Ji , and n intermediate pinions, each with mass mp and
moment of inertia Jp, referred to the shaft of the internal gear is

Jeq = J1 + J2

(
�2

�1

)2

+ (Ji + nmpr
2
i )

(
�i

�1

)2

+ nJp

(
�p

�1

)2

. (31.35)

If the deformation of the meshing teeth must be accounted for, it is possible to
introduce two separate degrees of freedom for the two meshing gear wheels into
the model, modeled as two different inertias, and to introduce a shaft between them
whose compliance simulates the compliance of the transmission. This is particularly
important when a belt or flexible transmission of some kind is used instead of the
stiffer gear wheels. In a driveline there may be several shafts connected to each other,
in series or in parallel, by gear wheels with different transmission ratios.

The equivalent system is referred to one of the shafts and the equivalent inertias
and stiffness of the elements of the others are all computed using the ratios between
the speeds of the relevant element and the reference shaft. The equivalent system
will then be made of a set of elements, in series or in parallel, following the scheme
of the actual system, but with rotations that are all consistent.

If the compliance of the gears is to be accounted for in detail, the nonlinearities
due to the contacts between the meshing teeth and backlash must be considered, as
will be seen later.

The driveline may cause comfort problems not only in terms of its torsional
compliance, but also its bending compliance. The propeller shaft and the wheel
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shafts have their own flexural natural frequencies and critical speeds. They may
cause severe vibration when they operate close to a critical speed.

Without entering into details about the dynamic behavior of rotating elements,3

the following considerations can be advanced.

• The gyroscopic effects of transmission shafts are weak. Critical speeds are close
to the natural frequencies when the system is not rotating.

• The balance conditions of the rotating elements have no effect on the natural
frequency or the critical speed, but do determine the strength of the excitation at
such speeds.

• The damping of the shaft (and the joints) has no effect in limiting the amplitude
of vibration at the critical speeds, while the damping of the supports (non-rotating
damping) is essential to this aim.

The critical speeds of the wheel shafts are generally beyond the working range and
thus do not cause resonant vibration. However, the first critical speed of the propeller
shaft in vehicles with front engine and rear wheel drive is in the working range.
The critical speed of traditional propeller shafts, in two parts with a Hooke joint and
elastic support in the middle, occurs when the vehicle travels at a low speed: The
shaft then works normally in the supercritical regime, when self-centred.

The shaft and above all the joint must be accurately balanced, so as to go through
the critical speed without strong vibration, while the central support must supply
enough damping. The damping of the support is also needed to prevent the crossing
of an instability threshold in high speed operation.

Cars with front engine and rear wheel drive are prone to vibrate strongly when
passing through the critical speed of the propeller shaft if the balancing of the central
joint deteriorates or the elastic and above all damping properties of the support
become worse due to aging or wear.

Misalignment of the propeller shaft or wheel shafts may also cause the driveline
to vibrate.

31.4 Inertia of the Vehicle

The tiresmay be considered as rigid bodies, allowing longitudinal slip to be neglected
when performing a first approximation study. In this case the vehicle inertia and the
resistance to motion may be accounted for as seen in Chap.23 in the study of the
take-off manoeuvre. The vehicle may then be modelled as a flywheel, connected
after the wheel shafts that, in the equivalent system, rotate at the same speed as the
engine.

Taking into account the inertia of all wheels, themoment of inertia of this flywheel
is

3See, for instance, G. Genta, Dynamics of rotating systems, Springer, New York, 2005.
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Fig. 31.8 Model of the tire and the tire-road contact. a Dynamic model of the tire; b Force-
longitudinal slip characteristic for the tire. c Dynamic model of the tire-road contact (the moments
of inertia and the torsional characteristics are drawn as masses and translational characteristics)

Jv =
(
m +

∑
∀i

Jri
R2
ei

)
R2
e τ

2 , (31.36)

where Jri is the moment of inertia of the i th wheel, which may have different equiv-
alent rolling radii, Re is the equivalent rolling radius of the driving wheels and τ is
the overall gear ratio between engine and wheels.

The drag torque Mr applied to the flywheel simulating the vehicle is

Mr = Fr Reτ , (31.37)

where the total resistance to motion (road load) Fr depends on the speed following
Eq. (23.17):

Fr = A + BV 2 + CV 4 ,

and the expressions for constants A, B and C4 are as reported in Chap.23.
For a more detailed study, both the compliance of the tire and its longitudinal

slip at the wheel-road contact must be accounted for. The simplest way to model the
former is by simulating the tire as a rigid ring, with mass mc and moment of inertia
Jc, corresponding to the tread band and the belt beneath it. This is connected to the
wheel hub, whose mass and moment of inertia are mm and Jm through an elastic
system having a radial and torsional stiffness equal to kr and kt respectively.

The rim and hub are also assumed to be rigid bodies. Viscous dampers with
coefficients cr and ct (Fig. 31.8a) may be added in parallel to the springs. The masses
and the radial stiffness and damping are included in the ride comfort models, as seen
in the previous chapter, while the moments of inertia and the torsional stiffness and
damping are included in the driveline and longitudinal models.

The wheel-ground contact may be characterized by the plot of the longitudinal
force coefficient versus the sideslip μx (σ) (Fig. 31.8b). Usually only the first part

4Parameters A, B and C used in the equation giving the road load must not be confused with the
parameters with the same name included in the magic formula.



31.4 Inertia of the Vehicle 719

of the curve, approximated as a straight line, is used in the study of the driveline
dynamics. The slope of the line may be easily obtained from the coefficients of the
magic formula and is given by product BCD.

The longitudinal slip σ is linked to the ratio between the speed �c of the wheel
and the speed of the moment of inertia simulating the vehicle

�v = V

Re

by the relationship

σ = �c

�v

− 1 .

The longitudinal force the tire exerts is then

Fx = Fzμx = bFzσ = bFz

(
�c − �v

�v

)
, (31.38)

where
b = BCD .

The moment exerted on the wheel due to the longitudinal slip is

M = ReFx = bFz Re

�v

(�c − �v) . (31.39)

The wheel-ground contact may then be modelled as a viscous damper with damp-
ing coefficient

cp = bFz R2
e

V
. (31.40)

Coefficient cp depends first upon the vehicle speed and then upon the variable of
motion �v: the equation of motion is then nonlinear. For small velocity variations
it is, however, possible to linearize the equations by using an average value of the
speed in the expression of cp. When the speed tends to zero, the damping coefficient
tends to infinity: This linearized model cannot be used in the first instants of a take-
off manoeuvre, when the vehicle is still stationary, because in these conditions the
longitudinal slip is high, or better tends to infinity.

The tire model is usually complemented by adding a spring in series with the
damper. Its stiffness is

kp = bFz R2
e

a
, (31.41)

where a is a length equal to half the length of the contact zone.
Stiffness kp can be suitably modified to take into account the longitudinal com-

pliance of the suspension of the driving wheels.
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The tire is then modelled with two moments of inertia connected to each other
with a spring and a damper in parallel, and connected to the flywheel simulating the
vehicle with a spring and a damper in series. The model is sketched in Fig. 31.8c,
where the torsional springs and the moments of inertia are drawn as springs and
masses.

31.5 Linearized Driveline Model

A driveline model from the engine to the vehicle can thus be assembled using the
partial models seen above. As already stated, the elements to be taken into account
depend upon the aim for which the model has been built. A relatively simple model is
shown in Fig. 31.9a. If low frequency oscillations, such as those occurring in tip-in,
tip-out manoeuvres, are to be studied, the engine can bemodelled as a single moment
of inertia. The two wheel shafts are modelled separately in this model, because
in many cars with transversal front engine and front-wheel drive their stiffnesses
are different. However, the two branches of the driveline can be joined if a first
approximation study of the low frequency dynamics alone is required (Fig. 31.9b).
This can be done by introducing inertias and stiffnesses equal to the sum of those of
the single branches.

The model shown in Fig. 31.9a has 10 degrees of freedom. Because two of them
have a vanishing associated mass, it has only 18 state variables. The generalized
coordinates are the rotations of the various moments of inertia. It is possible to order

Fig. 31.9 Model of the driveline for the study of low frequency dynamics (a), and model in which
the presence of two separate wheel shafts is neglected (b)
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them by separating the nodes where there is a mass from those that are massless.
Thus

x = [xT1 xT2
]T

, (31.42)

where
x1 = [ θmot θca θd θm1 θm2 θc1 θc2 θv

]T
,

x2 = [ θi1 θi2
]T

.

The mass matrix of the system may be partitioned in four parts as

M =
[
M11 M12

M21 M22

]
(31.43)

where
M11 = diag

[
Jmot J ∗

ca J ∗
d J ∗

m J ∗
m J ∗

c J ∗
c J ∗

v

]
(31.44)

and all other sub-matrices are null.
The stiffness matrix may be partitioned in the same way

K11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k f −k f 0 0 0 0 0 0
k f + k∗

tr −k∗
tr 0 0 0 0 0

k1 −k∗
s1 −k∗

s2 0 0 0
k∗
s1 + k∗

t 0 −k∗
t 0 0

k∗
s2 + k∗

t 0 −k∗
t 0

k∗
t + k∗

p 0 0
k∗
t + k∗

p 0
symm. 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (31.45)

where
k1 = k∗

tr + k∗
s1 + k∗

s2 ,

K21 =
[
02×5

[−k∗
p 0 0

0 −k∗
p 0

]]
, (31.46)

K22 =
[
k∗
p 0
0 k∗

p

]
, K12 = KT

21 . (31.47)

In a similar way the submatrices of the damping matrix are



722 31 Transmission Models

C11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c f −c f 0 0 0 0 0 0
c f + c∗

tr −c∗
tr 0 0 0 0 0

c1 −c∗
s1 −c∗

s2 0 0 0
c∗
s1 + c∗

t 0 −c∗
t 0 0

c∗
s2 + c∗

t 0 −c∗
t 0

c∗
t 0 0

c∗
t 0

symm. 2c∗
p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (31.48)

where
c1 = c∗

tr + c∗
s1 + c∗

s2 ,

C21 =
[
02×7

[−c∗
p

−c∗
p

]]
, C22 =

[
c∗
p 0
0 c∗

p

]
, C12 = CT

21 . (31.49)

The assumption that the damping of the various components of the driveline can
be modelled as viscous is only approximate, but it cannot be modelled as hysteretic
damping (which is not much better for elements like the clutch damper springs)
because that would not allow the numerical simulation of manoeuvres such as the
response to a step input. However, because the phenomenon here studied occurs at
a well determined frequency, it is possible to approximate hysteretic damping with
an equivalent viscous damping

ceq = ηk

ω
, (31.50)

where η and k are the loss factor and the stiffness of the relevant elements and ω
is the frequency of the oscillations of the driveline. It is possible to perform a first
computation with no damping (except that used to simulate tire slip) to compute a
value for the frequency of the free oscillations, and then to proceed with calculations
that include an equivalent damping.

The state vector can be written in the form

z = [vT1 xT1 xT2
]T

, (31.51)

where v1 contains the derivatives of coordinates x1.
The state equation is then

⎡
⎣M11 0 C12

0 0 C22

0 I 0

⎤
⎦ ż = −

⎡
⎣C11 K11 K12

C21 K21 K22

−I 0 0

⎤
⎦ z+

⎧⎨
⎩
F1

0
0

⎫⎬
⎭ , (31.52)

where vector F1 contains the moments applied on the nodes whose coordinates are
included in vector x1. Because only the driving and drag torques are present, it follows
that
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F1 =
⎧⎨
⎩

Mmot

06×1

Mr

⎫⎬
⎭ . (31.53)

The dynamic matrix of the system is then

A = −
⎡
⎣M11 0 C12

0 0 C22

0 I 0

⎤
⎦

−1⎡
⎣C11 K11 K12

C21 K21 K22

−I 0 0

⎤
⎦ . (31.54)

Example 31.1 Simulate a tip-in, tip-out manoeuvre in second gear with engine at
1,500 rpm. With the vehicle running at constant speed (driving torque equal to drag
torque) increase suddenly the driving torque to its maximum value and keep such
a value until 2,000 rpm. are reached. The accelerator is then fully released and the
vehicle slows down.

Data: maximum driving torque: Mmax = 40 Nm; braking torque of the engine:
M f = −4 Nm.

Vehicle: Massm = 950 kg, f0 = 0.013, K = 6.5 × 10−6 s2/m2, Cx = 0.32, S =
1.7 m2, Re = 257 mm, half-length of the contact area a = 50 mm. Neglect the
efficiency of the transmission.

Moments of inertia: Engine (including the flywheel) Jmot = 0.125 kg m2, gear
Jca = 0.0045 kg m2, differential Jd = 0.065 kg m2, wheel hub Jm = 0.3 kg m2,
thread band Jc = 0.32 kg m2.

Stiffnesses: Clutch disk (with damper springs, when driving), k f = 975 Nm/rad,
wheel shafts ks1 =7,500 Nm/rad, ks2 =10,400 Nm/rad, tire kt =59,000 Nm/rad.

Neglect the damping of the driveline elements.
Gear ratios: Final gear τp = 0.2884; gearbox (second gear) τc = 23/63.
By using the tire model previously used to compute the contact parameters, stiff-

ness b is

b = A

(
K

α + d

)1/n

− D ,

whereα = 0 (there is no sideslip angle), A = 1.12, K = 46, n = 0.6, d = 5, D = 1.
The compliance of the gearbox-differential connection is neglected and then a

singlemoment of inertia Jca = 0.0695 kgm2 is assumed for gearbox and differential,
located on the gearbox output shaft.

The values of the inertias and stiffnesses, reduced to the engine shaft (multiplied
by the squares of the transmission ratios) are: J ∗

ca = 0.00926 kg m2, J ∗
m = 0.00333

kg m2, J ∗
c = 0.00355 kg m2, k∗

s1 = 83.14 Nm/rad, k∗
s2 = 115.3 Nm/rad, k∗

t = 654.1
Nm/rad.

The moment of inertia of the vehicle reduced to the engine shaft, including also
the two free wheels as well, is J ∗

v = 0.696 kg m2.
The speed of the vehicle at 1,500 rpm is V = 4.25 m/s = 15.30 km/h.
Neglecting the term of the road load in V 4, the drag moment reduced to the engine

shaft may be written as
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Mr = RReτ
2 = Ar + Br�

2
v ,

where Ar = 3.28 Nm, Br = 8.15 × 10−6 Nms2. The drag torque at 1,500 rpm is
3.48 Nm: Predictably, the quadratic term as a small effect at such a low speed.

Coefficients cp and kp are cp =1,913 Nms/rad and kp =163,000 Nm/rad at a speed
of 1,500 rpm. It then follows that c∗

p = 21.21 Nms/rad and k∗
p =1,803 Nm/rad.

Natural frequencies are immediately obtained from the eigenvalues of the dynamic
matrix. Three eigenvalues are equal to zero, because rigid body modes are possible.
The eigenvalue with the smallest imaginary part, i.e. that corresponding to motion
with the lowest natural frequency, is

s = −1.69 ± 35.58 i 1/s ,

and the corresponding frequency of the damped free oscillations is 5.66Hz. It is the
low frequency mode typical of the phenomenon under study.

The following eigenvalue is

s = −4.32 ± 347 i 1/s ,

corresponding to a damped oscillation with a frequency of 55.23Hz. This is almost
ten times the frequency of the lowest mode. To study oscillations at this frequency it
is advisable to use a more detailed model.

The results of the tip-in, tip-out manoeuvre are shown in Fig. 31.10. In (a) the time
histories of the velocity of engine and vehicle are reported, while the longitudinal
acceleration of the vehicle is plotted in (b). By comparing the results of the simu-
lation with those shown in Fig. 31.1, a qualitative similarity is found, although the
results refer to different vehicles. The longitudinal acceleration computed in the sim-
ulation is that of the wheel hub, while the experimental results were measured in the
passenger compartment and then filtered by the structure of the vehicle. Moreover,
the mathematical model does not take into account the damping of the driveline, but
only that caused by tire slip.

Example 31.2 Repeat the simulation of the previous example, taking into account
n hysteretic damping with a loss factor η = 0.2 for the clutch damper springs and
η = 0.05 for all other elements. To convert hysteretic into viscous damping, the
equivalent damping at a frequency of 35.58 rad/s is computed.

The eigenvalue with the lowest imaginary part, i.e. that corresponding to the
oscillations with the lowest frequency, is now

s = −2.88 ± 35.43 i 1/s ,

corresponding to oscillations at a frequency of 5.64Hz. By comparing this result
with that seen above, it is clear that the decay rate has increased considerably (it
almost doubled), while the frequency is essentially the same.
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Fig. 31.10 Results of a tip-in, tip-out manoeuvre. a Engine andwheel speeds (reduced to the engine
shaft); b longitudinal acceleration of the vehicle

Fig. 31.11 Results of a tip-in, tip-out manoeuvre, computed while taking into account the damping
of the various elements. a Engine and wheel speeds (reduced to the engine shaft); b longitudinal
acceleration of the vehicle

The results of the simulation are reported in Fig. 31.11. The effect of damping is
fairly limited: the oscillations damp out in a shorter time, but the maximum values
of the acceleration are little changed.
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31.6 Non-time-Invariant Models

If the torsional vibration of the driveline must be studied with the reciprocating
masses in the engine in mind, a model with inertial properties that are variable in
time must be used.

Three different approaches are possible. Listing them in order of increasing com-
plexity, they are

1. Traditional approach. The effect of the variable component of the moments of
inertia of the crank systems is modelled as a torque with known time history
applied to the node where the crank is located. Because the model is linearized, it
is possible to write the frequency domain equations and to solve them analytically.

2. Approach in which the torsional deformations are considered small and the corre-
sponding angles can be neglected in the computation of the inertia of the cranks.
The equations of motion, nonlinear and non-time-invariant, have coefficients with
a known time history. No closed form of the equations of motion is possible, and
numerical integration is needed.

3. Approach with no particular simplifying assumption. The equations of motion
must be solved numerically, but the solution is much more difficult than in case
(2).

31.6.1 Equations of Motion

The equation of motion of the engine-driveline system can be obtained in the usual
way, using Lagrange equations. The systemmay be modelled starting from a lumped
parameters approach, obtaining a model of the type shown in Fig. 31.9a, with the
difference that now the engine is not lumped in a single inertia, but is modelled as
another lumped parameter system, with the various moments of inertia modelling
cranks, flywheel, ancillary devices, dampers, etc. connected to each other by torsional
springs and dampers. The system may be in-line, like that in Fig. 31.9b, or multiply
connected, like that in Fig. 31.9a.

There is no difficulty in linearizing the elastic and dissipative part of the system by
writing stiffness and dampingmatricesK andC. The stiffnesses of the part modelling
the engine will be the equivalent stiffnesses and the damping coefficients of the same
elements can be computed as seen above. The potential energy and the dissipation
functions will have the structure typical of linear systems

U = 1

2
xTKx,F = 1

2
ẋTCẋ . (31.55)

The mass matrix can be computed using the methods seen for the equivalent
system

M = diag
[
Jeqi
]

, (31.56)
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but here the equivalent moments of inertia of the cranks are functions of their rotation
angles and then of their generalized coordinates. The mass matrix is still diagonal, so
that the element at the i th row and i th column depends only upon the i th generalized
coordinate. Because the equivalent moment of inertia must be written as a Fourier
series (Eq. 31.12), it follows that

M = M0 + M1 (x) = diag [J0i ] + diag [J1i (θi )] , (31.57)

where:

• M0 is a diagonal matrix containing the average values of the moments of inertia
of the cranks and the moments of inertia at all other nodes. Except for the nodes
with which no inertia is associated, the elements are all non-zero and their values
are J0i .

•
J1i (θi ) =

m∑
k=1

[Jcik cos(kθi + δik) + Jsik sin(kθi + δik)] ; (31.58)

where i is the subscript referring to the node (i = 1, ..., n);
• k is the subscript referring to the relevant harmonics and thus spans from 1 to m,
the number of the harmonics considered in the series (in theory m = ∞);

• θi is the rotation angle of the i th node, and thus is the i th element of vector x;
• Jcik and Jsik are the coefficients of the terms in sine and cosine of the Fourier
series for the equivalent moments of inertia. These vanish for all the nodes where
no crank is located and are equal for all cranks (they do not depend on subscript
i) if the crank systems are all equal;

• δik are the phases of the various harmonics in the various cranks, as given by the
phase angle diagrams.

The kinetic energy is then

T = 1

2
ẋTMẋ . (31.59)

Assuming that the rotation angle θi of the i th node is given by the sum of an
average angle θ0 of the driveline and a torsion angle φi :

xi = θ0 + φi , (31.60)

for the first n − 1 nodes and
xn = θ0v + φn , (31.61)

for the last node where the moment of inertia simulating the vehicle is located.

Remark 31.8 The latter node must be kept separate, because, owing to the longitu-
dinal slip of the tire, the average rotations of the driveline and the vehicle θ0 and θ0v
diverge in time.
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Let S be a vector of order n − 1, whose components are all equal to 1. It is then
possible to write

x =
{

θ0S
θ0v

}
+ φ . (31.62)

Remembering that the last row and the last column of matrix K vanish (Eq.
(31.45), where all nodes are present), the potential energy is

U = 1

2
θ20S

TK∗S+1

2
φ∗TK∗φ∗ + θ0STK∗φ∗ , (31.63)

whereK∗ andφ∗ are the stiffnessmatrix and the vector of the generalized coordinates
without the the last row and column and without the last row respectively.

Rotation expressed by vector θ0S is a rigid rotation. Because the driveline is free
to rotate, product K∗S is null and thus it follows that

U = 1

2
φ∗TK∗φ∗, (31.64)

i.e.

U = 1

2
φTKφ. (31.65)

In a similar way,

ẋ =
{

�tS
�v

}
+ φ̇ , (31.66)

where �t and �v are the average velocities of the driveline and the vehicle.
The damping matrix may be subdivided into three parts

C = C1+C2+C3 (31.67)

where

• C1 is a diagonal matrix, where all dampings toward the ground are listed, that is,
all terms expressed by Eq. (31.21) to simulate the energy losses due to the absolute
rotation of the nodes,

• C2 is a matrix with the structure shown in Eq. (31.48) where all nodes are present
and the damping cp simulating the tire slip is not included,

• C3 is a matrix of type shown in Eq. (31.48) where all nodes are present; it contains
only the damping cp simulating the tire slip.

The dissipation function is then

F = 1

2

({
�tS
�v

}
+ φ̇

)T

(C1 + C2 + C3)

({
�tS
�v

}
+ φ̇

)
, (31.68)
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that is, performing the products and remembering the properties of the involved
matrices

F = 1

2

{
�t

�v

}[∑n−1
i=1 c1i + 2cp −2cp

−2cp 2cp

]{
�t

�v

}
+

+
{

�tS
�v

}T
(C1 + C3) φ̇ + 1

2
φ̇

T
Cφ̇ . (31.69)

In a similar way, remembering that the mass matrix is diagonal, it is possible to
write

T = 1

2

n−1∑
i=1

[J0i + J1i (θi )]
(
�t + φ̇i

)2 + 1

2
J0n
(
�v + φ̇n

)2
. (31.70)

31.6.2 Rigid-Body Motion of the Driveline

The generalized coordinates are the average rotations of the driveline and the fly-
wheel simulating the vehicle (or better, their derivatives�t and�v) and the torsional
rotations φi of the various elements. It is possible to assume that the low frequency
dynamics (actually a non-periodic dynamics) may be studied separately from the
torsional dynamics of the system.

When studying the first, the equations simplify: Not only the terms containing φ
vanish, but if the cranks are all equal and (angularly) uniformly spaced, it follows
that

n−1∑
i=1

J1i (θi ) = 0 , Jtot =
n−1∑
i=1

J0i . (31.71)

Neglecting torsional rotations, it follows that

U = 0, (31.72)

F = 1

2

{
�t

�v

}[∑n−1
i=1 c1i + 2cp −2cp

−2cp 2cp

]{
�t

�v

}
, (31.73)

T = 1

2
�2

t Jtot + 1

2
�2

v Jv (31.74)

and the equation of motion is simply

[
Jtot 0
0 Jv

]{
�̇t

�̇v

}
+
[∑n−1

i=1 c1i + 2cp −2cp
−2cp 2cp

]{
�t

�v

}
=
{
Mm

Mv

}
. (31.75)
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Mm is the total driving torque, or better the constant component of the total driving
torque.

Remark 31.9 This result is trivial, and could be obtained from the previous, simpler,
models.

31.6.3 Torsional Dynamics of the Engine and Driveline

The following assumptions can be made in the study of torsional dynamics:

• The average speed of the engine and the vehicle are known functions of time;
• The changes in the average speeds are slow enough to neglect the derivatives of
the average speeds with respect to time.

The derivative of the kinetic energy with respect to the i th generalized velocity is

∂T
∂φ̇i

= [J0i + J1i (θi )]
(
�t + φ̇i

)
, (31.76)

for i = 1, ..., n − 1 and
∂T
∂φ̇n

= J0n
(
�v + φ̇n

)
. (31.77)

Differentiating with respect to time, it follows that

d

dt

(
∂T
∂φ̇i

)
= [J0i + J1i (θi )] φ̈i + ∂ J1i (θi )

∂t

(
�t + φ̇i

)
, (31.78)

i.e.
d

dt

(
∂T
∂φ̇i

)
= [J0i + J1i (θi )] φ̈i + ∂ J1i (θi )

∂θi

(
�t + φ̇i

)2
, (31.79)

for i = 1, ..., n − 1 and
d

dt

(
∂T
∂φ̇n

)
= J0nφ̈n . (31.80)

Finally, the derivatives of the kinetic energy with respect to the generalized
coordinates are

∂T
∂φi

= 1

2

∂ J1i (θi )

∂θi

(
�t + φ̇i

)2
, (31.81)

for i = 1, ..., n − 1 and
∂T
∂φn

= 0 . (31.82)
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Remembering that J1i (θi ) vanishes in the last equation of motion (it actually
vanishes in all equations regarding nodes where no crank is located), the inertial part
of all equations of motion is

d

dt

(
∂T
∂φ̇i

)
− ∂T

∂φi
= [J0i + J1i (θi )] φ̈i + 1

2

∂ J1i (θi )

∂θi

(
�t + φ̇i

)2
, (31.83)

while in the last equation only the term J0nφ̈n is present.
The other terms of the equations of motion are

{
∂U
∂φi

}
= Kφ, (31.84)

∂F
∂φ̇i

= Cφ̇+ (C1 + C3)

{
�tS
�v

}
. (31.85)

The final form of the equation of motion is then

[M0 + M1 (x)] φ̈ + 1

2

∂M1 (x)
∂x

{(
�t + φ̇i

)2}+

+Cφ̇ + Kφ = F − (C1 + C3)

{
�tS
�v

}
,

(31.86)

where vector F contains the driving torques applied to the various cranks and the
drag torque applied to the flywheel simulating the vehicle.

31.6.4 Traditional Approach

Not only does Eq. (31.86) contain coefficients that are varying in time, (through term
θ0 included in the total rotations x and then in M1 (x)), but it is also nonlinear, both
because φi are present in the total rotations x and then in M1 (x)), and because it
includes the squares of the generalized displacements φi .

The traditional approach is based on the following simplifications:

• M1 (x) is neglected with respect toM0 in the term in φ̈,

• φ̇i is neglected with respect to �t in the term in
(
�t + φ̇i

)2
,

• M1 (x) is considered as a function of θ0 but not of φi : The inertia of the crank
system is considered as a function of the average rotation of the crankshaft, but
not of the torsional rotation of the various cranks,

• usually, even if it is not strictly needed, the angular velocity �t is assumed to be
constant, and then θ0 = �t t.

In these conditions, the term
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∂M1 (x)
∂x

{(
�t + φ̇i

)2}

becomes a known function of time and then is brought to the right-hand side of the
equation, together with the forcing functions.

The equation of motion reduces to

M0φ̈ + Cφ̇+Kφ = F + Fin + (C1 + C3)

{
�tS
�v

}
, (31.87)

where the terms

Fin = −1

2
�2

t

∂M1 (θ0)

∂θ0
S (31.88)

are usually defined as inertia torques of the cranks. By introducing the value of M1

in the equation, the various inertia torques are

Fini = −1

2
�2

t

m∑
k=1

k [−Jcik sin(kθ0 + δik) + Jsik cos(kθ0 + δik)] . (31.89)

Vector F contains the driving torque, which is periodic with period equal to the
time needed to perform two revolutions of the crankshaft in a four-stroke cycle engine
(fundamental frequency �t/2). Fin is also periodic, but its fundamental frequency
is �t . Usually, Fin is written as if its fundamental frequency were �t/2, with the
amplitudes of all odd harmonics, including the fundamental one, set to zero. In this
way the sum F + Fin has a simpler structure.

The homogeneous equation associated with Eq. (31.87) does not take into account
the variability in time of the equivalent moments of inertia of the crank systems. The
natural frequencies are thus those of a system with constant inertia.

31.6.5 Numerical Approach

Equation (31.86)may be solved directly by numerical integration. If nonlinearity, and
above all the dependence of the various parameters upon time, may make it difficult
to proceed with the integration, the number of degrees of freedom of the system is
nonetheless low (usually no more than 20), so the computation is not difficult. The
time histories of the rotations of the various nodes can thus be obtained along with
those of the stresses in the various parts of the crankshaft and driveline. The time
histories can then be developed in Fourier series and the various harmonic contents
extracted. However, if the time histories of the motion of the various elements of
the driveline must be obtained, it now seems more expedient to resort directly to
multibody computer codes instead of writing the equations of motion of the driveline
and building ad hoc programs.
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31.7 Multibody Driveline Models

The linearized models seen in the previous section have the advantage of yielding
closed form, frequency domain solutions and of correctly simulating manoeuvres
like tip-in, tip-out in a simple way. However, the assumption that the stiffness and
damping characteristics of elements such as the clutch damper springs or elastomeric
dampers may be simulated as linear springs and viscous dampers leads to a poor
approximation.

The torsional characteristic of a clutch plate with damper springs is shown in
Fig. 31.12a: Not only is it possible to identify three fields where the stiffness takes
different values, but a well-defined hysteresis that has the characteristics of a dry
friction is also present. The fact that the stiffness is variable in the three ranges does
not prevent the elastic behavior about a particular working condition from being
linearized, while the nature of the damping, which may be dealt with as dry friction,
makes it impossible to linearize the behavior of this element if damping is accounted
for. As an example, the hysteresis cycle for displacements about a condition in which
the driving torque is 50 Nm is shown in Fig. 31.12b.

If a torsional displacement-torque characteristic like that shown in Fig. 31.12 pre-
vents the use of linearized models, or better, introduces large errors if a linearization
is attempted, it may be included without difficulty in a multibody model . Multibody
codes operate by numerically integrating in time the nonlinear equations of motion
and thus are ideal for cases like this. It is then possible to include the detailed math-
ematical models of nonlinear elements and proceed to simulate the behavior of the

Fig. 31.12 Angular displacement-torque characteristics of a clutch with damper springs. a Charac-
teristics with engine braking (left) and driving (right); b zoom on the zone of the plot for a condition
where the torque cycles about a value of the driving torque of 50 Nm
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driveline in detail. The engine may be modelled directly with the pistons, connecting
rods and cranks, while its elastic supports may also be included. On the other end of
the driveline, the suspension connecting the wheel to the vehicle body may also be
included in the model with its compliance in the longitudinal direction, which often
introduces a coupling between longitudinal motion of the vehicle and ride comfort.
Multibody models may also include the engine control to correctly simulate various
manoeuvres.

In the case ofmodels restricted to the engine,multibodymodels that take the actual
geometry of the reciprocating and rotating elements into account are increasingly
replacing the traditional approach based on the modelling of the inertia torques
applied to the cranks as external forcing functions. Obviously, their basic drawback
of not allowing closed form solutions to be reached remains.
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