
Chapter 30
Multibody Modelling

A vehicle on elastic suspensions may be modelled as a system made by a certain
number of rigid bodies connected with each other by mechanisms of various kinds
and by a set of massless springs and dampers simulating the suspensions. A vehicle
with four wheels can be modelled as a system with 10 degrees of freedom, six for the
body and one for each wheel. This holds for any type of suspension, if the motion of
the wheels due to the compliance of the system constraining the motion of the sus-
pensions (longitudinal and transversal compliance of the suspensions) is neglected.
The wheels of each axle may be suspended separately (independent suspensions) or
together (solid axle suspensions), but the total number of degrees of freedom is the
same (Fig. 30.1). Additional degrees of freedom, such as the rotation of the wheels
about their axis or about the kingpin, can be inserted into the model to allow the
longitudinal slip or the compliance of the steering system to be taken into account.

The multibody approach can be pushed much further, by modelling, for instance,
each of the links of the suspensions as a rigid body. To model a short-long arms
(SLA) suspension it is possible to resort to three rigid bodies, simulating the lower
and upper triangles and the strut, plus a further rigid body simulating the steering bar.
While modelling the system in greater detail, the number of rigid bodies included in
the model increases. However, if the compliance of the various elements is neglected
(i.e. if these bodies are rigid bodies), the number of degrees of freedom does not
increase along with the number of bodies: an SLA suspension always has a single
degree of freedom, even if it is made up of a number of rigid bodies simulating its
various elements.

The mathematical model of a multibody system is thus made up of the equations
of motion of the various elements, which in tri-dimensional space are 6n, if n is the
number of the rigid bodies, plus a suitable number of constraint equations.

Consider for instance the articulated truck of Fig. 30.1d. The rigid bodies are 8
(tractor, trailer and 6 rigid axles) and thus the equations of motion are 48 second
order differential equations. The constraint equations are 27: 3 equations for the
constraint between tractor and trailer (these state that the coordinates of the center
of the hitch, assumed to be a spherical hinge, are the same if this point is seen as
belonging to the tractor or to the trailer) and 4 equations for each axle, leaving to each
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Fig. 30.1 Example of models for the dynamic study of road vehicles. a–c Vehicle with two axles,
10 d.o.f.; d Articulated truck with 6 axles, 21 d.o.f.; e Vehicle with 3 wheels; 9 d.o.f

one of them just two, out of its 6 degrees of freedom. The 27 constraint equations are
algebraic equations containing only the generalized coordinates but not the velocities
(holonomic constraints).

Byusing the 27 constraint equations to eliminate 27of the generalized coordinates,
a set of 21 equations in the 21 independent generalized coordinates is obtained.
It must be emphasized that in the 48 equations of motion originally written, the
forces the various bodies exchange at the constraints are included; these forces are
then eliminated when the constraint equations are introduced. The 27 equations so
eliminated can be used to compute the constraint forces.

This approach is the broadest, and is usually implemented in general purpose
multibody computer codes.

It is possible to resort to a simpler approach in the case of the multibody models
used in motor vehicle dynamics, because the internal constraints are holonomic
and the system is branched. One of the bodies may be chosen as main body, to
which a number of secondary, first level bodies are attached. Other secondary bodies,
considered as second level bodies, are then attached, and so on. Secondary bodies
have only the degrees of freedomallowedby the constraints. In thisway, theminimum
number of equations needed for the study are directly obtained. Such equations are
all differential equations, usually of the second order. The forces exchanged at the
constraints between the bodies do not appear explicitly in the equations and need
not be computed in the dynamic study of the system as a whole. The model of the
articulated truck with 6 axles shown in Fig. 30.1d obtained in this way is sketched in
Fig. 30.2: the tractor is considered as the main body, the axles of the tractor and the
trailer are first level secondary bodies, and the axles of the trailer are second level
secondary bodies.
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Fig. 30.2 Model of the articulated truck with 6 axles shown as a branched model: the tractor is the
main body, the axles of the tractor and the trailer are first level secondary bodies and the axles of the
trailer are second level secondary bodies. The constraint between tractor and trailer is a spherical
hinge constraining 3 degrees of freedom, while those constraining the axles to the sprung masses
lock 4 degrees of freedom each

30.1 Isolated Vehicle

Themodel for an isolated vehicle can thus be easily built through the following steps:

• choice of the generalized coordinates;
• computation of the expressions for the kinetic and potential energies, the dissi-
pation function and the virtual work of external forces (road-wheels forces and
aerodynamic forces);

• writing the equations of motion through Lagrange equations.

The basic degrees of freedom of the model are:

• six degrees of freedom for the sprung mass (usually three components of the dis-
placement define the position of the vehicle and three rotations define its orientation
in space);

• two degrees of freedom for each rigid axle;
• one degree of freedom for each independent suspension.

The total number of degrees of freedom is then 6 + 2m, where m is the number
of axles.

To these basic degrees of freedom, it is possible to add the following:

• The rotation χ of each wheel, or better its angular velocity χ̇, if the angle of
rotation of each wheel is considered as an independent variable. It is then possible
to compute longitudinal forces at the road-wheel contact from the longitudinal slip.

As an alternative, it is possible to neglect the longitudinal slip and to compute the
wheel rotations from the space covered by the vehicle or, better, to compute their
velocity from the velocity of the vehicle, but in this case the wheel rotations are
not degrees of freedom of the system.
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• The steering angle δ of the steering wheels. It may be considered as:

– a given quantity, or better, an input, if the motion is studied with locked controls
and the compliance of the steering system is neglected;

– a known function of a single variable, the angle at the steering wheel δv , if the
motion is studied with free controls but the compliance of the steering system
is neglected;

– a variable, linked by a an equation expressing the compliance of the steering
system, to the angle at the steering wheel δv that is a given quantity, or better,
an input, if the motion is studied with locked controls and the compliance of the
steering system is accounted for;

– an independent variable, to which a further independent variable, the angle at
the steering wheel δv is added, if the motion is studied with free controls and
the compliance of the steering system is accounted for.

A motor vehicle with four wheels can then be described by a model with 10
degrees of freedom (Fig. 30.1) in the simplest case (locked controls, neglecting
longitudinal slip and the compliance of the steering system), that become 14 if the
slip of the wheels is considered, 15 if the study is performed with free controls and
rigid steering, or 16, 17 or 19 depending on how the steering system is modelled and,
in the latter case, on how many wheels steer.

Once the kinematics of the suspensions has been defined, it is possible to write
the equations of motion. An approach also used in commercial codes is to introduce
the elasto-kinematic characteristics of the suspensions directly (often the kinematic
characteristics alone, because the suspensions are assumed to bemadeof rigid bodies)
to define the kinematics of the system. The characteristics of the tires, including the
cornering forces, the aligning torques, and the relationships linking the longitudinal
slip with the longitudinal forces (in case the longitudinal slip is not neglected) can
be expressed using the magic formula.

The ten (or more, depending on the model used) equations can thus be written.
They are quite complicated nonlinear equations, difficult to write in explicit form.
They will not be shown here.

The solution of such a set of equations can be undertaken only by numerically
integrating the equations in time starting from a given set of initial conditions and
specifying the time history of the various inputs (steering angle, if the manoeuvre
with locked controls, or the torque acting on the steering wheel for the motion with
free controls). As an alternative, it is possible to use a model of the driver to simulate
the behavior of the vehicle-driver system. Suspensions are modelled by introducing
their elasto-kinematic characteristics directly.

Several commercial computer codes operating in this way exist. One of the most
common is Carsim®, based on a model with 14 degrees of freedom.

A more complex alternative is the use of one of the standard multibody general
purpose codes to simulate the suspensions in detail, taking into account the exact
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kinematics of the system and again simulating the tires using the magic formula. An
example of a commercial code operating along these lines is ADAMS-Car®, based
on the general purpose code ADAMS®.

Codes of the latter type draw upon a much larger number of equations, because
they do not use just the minimum number of generalized coordinates, but are based
on the explicit equations of motion of the various parts and on the relevant constraint
equations.

The two approaches are equivalent to the user, because in both cases it is neces-
sary to resort to the numerical integration of the equations of motion, simulating the
dynamic behavior of the vehicle. The only actual difference for the user is that in the
first case the behavior of the suspensions is introduced in synthetic form, comput-
ing their kinematic characteristics separately or measuring experimentally and then
introducing them into the computations, while in the second case the geometry of
the suspensions is directly introduced in analytic form.

30.2 Linearized Model for the Isolated Vehicle

30.2.1 Basic Assumptions

While in the case of the nonlinear model the exact geometry or the elasto-kinematic
characteristics of the suspensions must be introduced, in the case of linearization it
is possible to write a model that is fairly precise and quite general, while allowing
analytical solutions to be obtained. In this case it is worthwhile to write the equations
of motion in explicit form, so that it is possible to obtain general results and closed
form solutions. In particular, it will be possible to obtain solutions in the frequency
domain and to perform stability studies.

The model is based on the following additional assumptions:

• Reference is made to a certain configuration of the vehicle. It may be the static
equilibrium conditionwith the vehicle at standstill or travelling at a constant speed.
If the shape of the vehicle is such that it produces little aerodynamic lift and pitching
moment, the first choice may be the best, because it allows the motion at constant
speed to be studied. However, if aerodynamic forces are important, as in racing
cars, the configuration of the suspensions may change considerably at varying
speed, so much so that linearization is not possible, and reference must then be
made to the equilibrium configuration at the given speed. The linearization of the
model allows us to resort to the superimposition of effects and then to neglect static
forces (weight, aerodynamic lift in the reference conditions, etc.) in the dynamic
study.
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• The kinematics of suspensions is linearized around the reference position.
• Pitch and roll angles are small enough to linearize their trigonometric functions.
Also, the displacements in Z direction and all linear and angular velocities, with
the exception of the forward speed and the rotation speed of wheels, are considered
as small quantities.

Two other assumptions, needed to further simplify the equations of motion, are
then added:

• The vertical plane xz through the center ofmass is a symmetry plane for the vehicle
and its parts.

• Sideslip angles of the wheels are small enough to linearize the cornering forces
and the aligning torque.

30.2.2 Sprung Mass

Let the reference frame of the sprung mass be xs ys zs , with axis xs parallel to the
roll axis and axis zs lying in the plane of symmetry. Axis x∗ coincides with the
projection of the roll axis on the ground. A plane perpendicular to the road and to
axis x∗ containing the centre of mass G of the vehicle in the reference position is
defined (Sect. B-B in Fig. 30.3). The roll axis intersects such a plane in H; O is
the point on the ground vertically under H (it may be located above H, as the roll
axis may lie below the ground in particular cases). Two further reference frames are
defined. They are:
— xyz, fixed to the sprung mass, with origin in point H, x-axis coinciding with the
roll axis, z axis laying in the symmetry plane of the sprung mass;
— x∗y∗z∗ with origin in point O; x∗-axis coincides with the projection on the ground
of the roll axis and z∗ axis is perpendicular to the road.

Fig. 30.3 Reference frames for the sprung mass and definition of points H and O



30.2 Linearized Model for the Isolated Vehicle 633

Instead of using the coordinates of the centre of mass Gs of the sprung mass
to define the generalized coordinates for the translational degrees of freedom, the
coordinates XH , YH and ZH of point H in the inertial frame OXiYi Zi will be used.
In the following, to simplify the notation it will be X = XH and Y = YH . Operating
in this way, if the roll and pitch motions are locked, the frame x∗y∗z∗ coincides with
frame xyz defined in Fig. 25.15 and the model reduces to that of a rigid vehicle.

Coordinate ZH can be considered as the sum of a constant value Z0 corresponding
to a reference position and a displacement Z :

ZH = Z0 + Z . (30.1)

The generalized coordinates for translations of the sprung mass are then X , Y
and Z , with Z considered as a small displacement with respect to the reference
position.

Thegeneralized coordinates for rotations are threeTait-Bryan angles (AppendixA,
Fig. A.5): the yaw angle ψ, the pitch angle, here considered as the sum of a constant
value θ0 related to the reference position and a pitch generalized coordinate θ, and
the roll angle φ. Angle θ0 is the inclination on the horizontal direction of the roll
axis in the reference position and will be considered as a small angle. All generalized
coordinates and velocities, except vx , are then small quantities.

Velocity vx may be confused with the velocity V along the vehicle path. This is
made possible by the smallness of the pitch angle θ0 + θ and of the sideslip angle β.

The rotation matrix allowing us to pass from the frame Gxyz fixed to the body to
the inertial frame XiYi Zi is:

R = R1R2R3 , (30.2)

where:

R1 =
⎡
⎣
cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

⎤
⎦ , R2 =

⎡
⎣

cos(θ0 + θ) 0 sin(θ0 + θ)
0 1 0

− sin(θ0 + θ) 0 cos(θ0 + θ)

⎤
⎦ ,

R3 =
⎡
⎣
1 0 0
0 cos(φ) − sin(φ)

0 sin(φ) cos(φ)

⎤
⎦ .

Its explicit expression is reported in Appendix A (Equation (A.106)), in which
θ0 + θ is substituted for θ).

If the pitch and roll angles are small, i.e. their cosine is approximately equal to 1
and their sine is equal to the angle, product R2R3 is, approximately:

R2R3 ≈
⎡
⎣

1 0 θ0 + θ
0 1 −φ

−θ0 − θ φ 1

⎤
⎦ . (30.3)
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Because the generalized forces are written in the body-fixed frame, it is expedient
to write the kinetic energy in term of the components vx , vy and vz of the velocity
written in the x∗y∗z∗ frame and the components �x , �y and �z of the angular
velocity in frame Gxyz.

The components of the velocity and angular velocity so obtained are not the
derivatives of true coordinates, but are linked with the derivatives of the coordinates
by the six kinematic equations

V =
⎧⎨
⎩

vx
vy

vz

⎫⎬
⎭ = RT

1

⎧⎨
⎩

Ẋ
Ẏ
Ż

⎫⎬
⎭ , (30.4)

⎧⎨
⎩

�x

�y

�z

⎫⎬
⎭ =

⎡
⎣
1 0 − sin(θ)
0 cos(φ) sin(φ) cos(θ)
0 − sin(φ) cos(θ) cos(φ)

⎤
⎦
⎧⎨
⎩

φ̇

θ̇

ψ̇

⎫⎬
⎭ . (30.5)

The third Eq. (30.4) is justified because Z differs from ZH by a constant.
The vector of the generalized coordinates is then

q = [
X Y Z φ θ ψ

]T
. (30.6)

Let the generalized velocities for translational degrees of freedom be the compo-
nents of the velocity in the x∗y∗z∗ frame. For the rotational degrees of freedom, on
the other hand, the derivatives φ̇, θ̇ and ψ̇ of coordinates φ, θ and ψ, which in the
following will be indicated as vφ, vθ and vψ , will be used instead of the components
�x , �y and �z of the angular velocity, as shown in Appendix A. This choice is due
to the fact that the yawing moments are more easily expressed when considering an
axis perpendicular to the road, and also because the linearization of the model allows
us to proceed in this way without difficulties.

The generalized velocities are then

w = [
vx vy vz vφ vθ vψ

]T
. (30.7)

The relationship linking the generalized velocities to the derivatives of the gener-
alized coordinates may then be written as

w = AT q̇ , (30.8)

where matrix A1 is:

A =
[

R1 03×3

03×3 I3×3

]
. (30.9)

1Matrix A here defined has nothing to do with the dynamic matrix of the system, which is also
indicated as A.
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The inverse transformation is Eq. (A.85):

q̇ = Bw ,

where2 B = A−T is the inverse of the transpose of A. In this case, A is a rotation
matrix, and then

A−1 = AT ; B = A. (30.10)

If r1 is the vector defining the position of the center of mass of the sprung mass
GS with respect to point H, the position of the former in the inertial frame is

(GS−O’) = (H − O’) + Rr1. (30.11)

Assume that the vehicle body has a symmetry plane and that this plane coincides
with plane xz in Fig. 30.3. In the reference position, pointsGandGS then belong to the
symmetry plane and the second component of vector r1 vanishes. The coordinates of
the center of the sprung mass are c, 0 and h in the xyz frame, and thus the expression
of vector r1 is:

r1 = [
c 0 h

]T
. (30.12)

Because r1 is constant, the velocity of point GS is:

VGS = [
Ẋ Ẏ Ż

]T + Ṙr1 . (30.13)

i.e.,
VGS = R1V + Ṙr1 . (30.14)

and then the translational kinetic energy of the sprung mass is

Tt = 1

2
m

(
VTV + rT1 Ṙ

T Ṙr1 + 2VTRT
1 Ṙr1

)
. (30.15)

Because xz is a symmetry plane for the sprung mass, its inertia tensor is

Js=
⎡
⎣

Jxs 0 −Jxzs
0 Jys 0

−Jxzs 0 Jzs

⎤
⎦ . (30.16)

The rotational kinetic energy of the sprung mass is then

Tw = 1

2
�T Js�. (30.17)

2MatrixB here usedmust not be confused with the input gain matrix, which is also usually indicated
as B.



636 30 Multibody Modelling

Performing the relevant computations, expressing the components of the angular
velocity as functions of the derivatives of the coordinates and neglecting the terms
containing powers higher than 2 of small quantities, it follows that

Ts = 1
2ms

(
vx

2 + vy
2 + vz

2
) + 1

2

(
msh2 + Jxs

)2
φ̇2+

+ 1
2

[
ms

(
h2 + c2

) + Jys
]
θ̇2 + 1

2

(
msc2 + Jzs

)
ψ̇2 − (

msch + Jxzs
)
ψ̇ φ̇+

−msvx
[
(cθ0 − h) θ̇ − hψ̇ φ + cθ̇θ

] − msvy
(
hφ̇ − cψ̇

) − mscvz θ̇.

(30.18)

The height of the center of mass of the sprung mass on the road is

ZG = Z0 + Z + eT3 Rr1 , (30.19)

where:
e3 = [

0 0 1
]T

is the unit vector of axis Z .
Thepotential energyof the sprungmass is simply its gravitational potential energy;

its expression is:

Us = msg (Z0 + Z) + msgeT3 Rr1 , (30.20)

or, performing the relevant computations

Us = msg (Z0 + Z) + msg [−c sin ( θ0 + θ) + h cos ( θ0 + θ) cos (φ)] . (30.21)

Because the model is linearized, the trigonometric functions of small angles may
be substituted by their series, truncated after the quadratic term

sin ( θ0 + θ) ≈ θ0 + θ , cos ( φ) ≈ 1 − φ2

2
,

cos ( θ0 + θ) ≈ 1 − ( θ0 + θ)2

2
= 1 − θ20

2
− θ2

2
− θ0θ .

Neglecting the constant term, it follows that

Us = msg

[
Z − (c + hθ0) θ − h

θ2

2
− h

φ2

2

]
. (30.22)
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30.2.3 General Solid Axle Suspension

Geometry of the suspension

A solid axle suspension can be modelled as a secondary rigid body having two
degrees of freedom with respect to the main body.

The geometry of the suspension may be simplified by assuming that it is possible
to identify a roll center CR in the motion about the reference position. This is a
point belonging to the roll axis x and to a plane perpendicular to the ground passing
through the centers of the wheels. In the heave motion, point CR belonging to the
sprung mass, indicated as CRs , will not coincide with the corresponding point CRu

belonging to the axle. Assume that the latter moves along a trajectory belonging to
the xz plane fixed to the vehicle body. For small displacements of the body, substitute
the trajectory with its tangent in CRs . (Fig. 30.4).

Let the position of CRs in the frame fixed to the sprung mass be

(CRs−H) = [
0 0 xu

]T
. (30.23)

If the unit vector tangent to the trajectory of CRu in CRs is

s = [
sx 0 sz

]T
(30.24)

Fig. 30.4 Sketch of an idealized solid axle suspension
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and ζ is the distance between these two points, the position of CRu in the frame fixed
to the sprung mass is

(CRu−H) = [
xu + ζsx 0 ζsz

]T ≈ [
xu + ζsx 0 ζ

]T
. (30.25)

The second of the two expressions is justified by the fact that the angle between
vector s and axis z is small.

If the roll rotation of the unsprung mass occurs about an axis parallel to the roll
axis x , its rotation matrix is

Rk = R1R2R3k , (30.26)

where the rotation matrices for yaw and pitch rotations are the usual ones, while the
roll rotation is

R3k =
⎡
⎣
1 0 0
0 cos(φk) − sin(φk)

0 sin(φk) cos(φk)

⎤
⎦ .

The axis about which the unsprung mass rotates may be different from the roll
axis of the vehicle. It is then possible to define a unit vector sk (Fig. 30.4) that defines
such a rotation axis. If the components of this vector, all functions of ζ, are xus , yus
and zus , it is possible to define a matrix Rus , that is a function of ζ too, allowing
the reference frame of the unsprung mass to be rotated so that its longitudinal axis
coincides with the rotation axis of the sprung mass

Rus(ζ) = − 1√
x2us + y2us

⎡
⎣
xus

√
x2us + y2us −yus −zus xus

yus
√
x2us + y2us xus −zus yus

zus
√
x2us + y2us 0 x2us + y2us

⎤
⎦ . (30.27)

If the deviation of the roll axis of the unsprungmass from the longitudinal direction
is small, vector sk is contained in the symmetry plane, and the rotationmatrix reduces
to

Rus(ζ) ≈
⎡
⎣

1 0 −zus
0 1 0
zus 0 1

⎤
⎦ . (30.28)

Translational kinetic energy

The rotation matrix of the unsprung mass is then

Rk = R1R2RusR3k . (30.29)

Once linearized, the product of matrices R2RusR3k is
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R2RusR3k ≈
⎡
⎣

1 0 θ + θ0 − zus
0 1 −φk

−θ − θ0 + zus φk 1

⎤
⎦ . (30.30)

Let the coordinates of the center of mass Gu of the unsprung mass in the reference
position in the reference frame of the vehicle be xGu , yGu and zGu (yGu = 0 for
symmetry reasons). Its position in the inertial frame is

(Gu−O’) = (H − O’) + R1r , (30.31)

where

r = R2

⎡
⎣R3

⎧⎨
⎩
xu + ζsx

0
ζ

⎫⎬
⎭+RusR3N

⎧⎨
⎩
xGu − xu

0
zGu

⎫⎬
⎭

⎤
⎦ , (30.32)

that is, linearizing,

r =
⎧⎨
⎩

xGu − zus zGu + θ0zGu + θzGu

−φk zGu

ζ + zGu + zus (xGu − xu) − xGu (θ + θ0)

⎫⎬
⎭ . (30.33)

The height of the center of mass of the kth suspension from the ground may be
considered as the sum of a constant value related to the reference position, plus a
displacement of the same order of the other small quantities (like Z ):

ZGu = Z0k + Zk = Z0 + Z + eT3 R1r . (30.34)

Performing the relevant computations and linearizing the trigonometric functions
of small angles, it follows that

Z0k + Zk = Z0 + Z − xGu (θ0 + θ) + ζ + zGu + zus (xGu − xu) . (30.35)

In the reference position, its value is

Z0k = Z0 − xGuθ0 + zGu + zus (xGu − xu) (30.36)

and then the relationship linking ζ to Zk is simply

ζ = Zk − Z + xGuθ . (30.37)

The component variable in time Zk of the Z coordinate of the center of mass of
the kth suspension will be assumed to be the generalized coordinate for the vertical
displacement of the unsprung mass.

Introducing the linearized value of ζ into the expression for r, it follows that
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r =
⎧⎨
⎩

xGu − zus zGu + θ0zGu + θzGu

−φk zGu

zGu + zus (xGu − xu) − xGuθ0 + Zk − Z

⎫⎬
⎭ . (30.38)

Its derivative with respect to time, once linearized, is

ṙ =
⎧⎨
⎩

θ̇zGu

−φ̇k zGu

Żk − Ż

⎫⎬
⎭ . (30.39)

The velocity of the center of mass of the unsprung mass is then

VGu=
[
Ẋ Ẏ Ż

]T + R1ṙ + Ṙ1r . (30.40)

The velocityVGu in the x
∗y∗z∗ frame is obtained by premultiplying this expression

by RT
1 . Remembering that

RT
1 R1 = I , RT

1 Ṙ1 = ψ̇S =ψ̇

⎡
⎣
0 −1 0
1 0 0
0 0 0

⎤
⎦ , (30.41)

it follows that
VGu= V + ṙ + ψ̇Sr . (30.42)

The translational kinetic energy of the unsprung mass is then

Tt = 1

2
mu

(
VTV + ṙT ṙ + ψ̇2rTSTSr+2VT ˙r + 2ψ̇VTSr + 2ψ̇ṙTSr

)
, (30.43)

that is, by indicating as rx , ry , rz the components of vector r,

Tt = 1
2mu

{
v2
x + v2

y + v2
z + ṙ2x + ṙ2y + ṙ2z + ψ̇2

(
r2x + r2y

)+
+2

(
vx ṙx + vyṙy + vzṙz

) + 2ψ̇
(−vxry + vyrx − ṙxry + ṙyrx

)}
.

(30.44)

Only the constant and linear terms of r are present in all terms, except for the term
in vx ṙx . Only the expression of ṙx containing also the quadratic terms

ṙx=β1θ̇ + xGu θ̇θ + β3 (vk − vz) + θ
(
Żk − Ż

) + θ̇ (Zk − Z) , (30.45)

where
β1 = zGu + zus (xGu − xu) + xusx , β3 = θ0 + sx (30.46)

and vk = Żk is the velocity of the kth unsprung mass, needs to be written explicitly.
The following simplified expression is so obtained
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Tt = 1
2mu

{
v2
x + v2

y + v2
k + φ̇2

k z
2
Gu + (

z2Gu + x2Gu

)
θ̇2 + x2Guψ̇

2+
−2Żk θ̇xGu + 2vx

[(
Żk − Ż

)
β3 + θ̇β1 + θ̇ (Zu − Z)

+θ
(
Żk − Ż

) + xGuθθ̇ + ψ̇φk zGu
]+

+2vy
[−φ̇k zGu + ψ̇xGu

] + 2ψ̇φ̇k zGuxGu
}
.

(30.47)

Angular velocity of the wheels

If the axle did not rotate with respect to the body about its longitudinal axis, its
absolute angular velocity about its longitudinal axis, as expressed in its own reference
frame, is

�k = RT
us� =

⎧⎨
⎩

�x + zus�z

�y

�z − zus�x

⎫⎬
⎭ . (30.48)

In reality, the unsprungmass is free to rotate about that axis and its angular velocity
is

�k =
⎧⎨
⎩

φ̇k

�y

�z − zus�x

⎫⎬
⎭ . (30.49)

The rotation and steering motion of each wheel are taken into account indepen-
dently. Let the rotation angles of the wheels be χR and χL and the steering angles
be δR and δL (R and L designate the right and left wheel of the axle).

If the wheel’s rotation axis coincided with axis yu of the unsprung mass, and both
were parallel to the y axis of the axle, the angular velocity of the i th wheel in the
reference frame of the kth unsprung mass would be

�wi = �k + χ̇ie2 (i = L , R). (30.50)

Generally speaking, the direction of the rotation axis of the wheel may be different
(although usually not by much except for steering) from that of the y axis, making
it possible to define the unit vector of the rotation axis ewi in the reference frame
of the unsprung mass. Such a unit vector does not depend upon the position of the
suspension and thus is a function neither of ζ nor of φk . It follows that

�wi = �k + χ̇iewi (i = L , R). (30.51)

The position of the rotation axis may be defined by introducing a rotation matrix
Rwi , allowing us to pass from the reference frame of the unsprung mass to a frame
whose y axis coincides with the rotation axis of the wheel

ewi = Rwie2 . (30.52)
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If xw, yw are zw the components of unit vector ewi ,3 the value of the rotation
matrix Rw is

Rwi = 1√
x2w + y2w

⎡
⎣

yw xw

√
x2w + y2w −xwzw

−xw yw

√
x2w + y2w −ywzw

0 zw

√
x2w + y2w x2w + y2w

⎤
⎦ . (30.53)

The rotation axis of thewheel is usually little inclinedwith respect to the horizontal
direction. The trigonometric functions of the rotation axis included in matrix Rwi

may be linearized. It follows thus

Rwi =
⎡
⎣

1 xw 0
−xw 1 −zw

0 zw 1

⎤
⎦ , (30.54)

where xw coincideswith the steering angle of thewheel (when the axle does not steer)
with its sign changed (this angle is usually due to toe in and is very small), while
zw coincides with the camber angle of the wheel and is also small. For symmetry
reasons, it follows that

xwR = −xwL , zwR = −zwL . (30.55)

The angular velocity of the wheel in its reference frame, instead of the frame of
the unsprung mass, is

�wi = Rwi
T�k+χ̇e2 . (30.56)

If the wheel steers, the reference frame of the i th wheel will no longer be parallel
to the frame xu yuzu of the unsprung mass, but will be rotated by a steering angle δi .
Assume that the kingpin axis of the wheel is parallel to axis zu and define a further
rotation matrix

R4i =
⎡
⎣
cos(δi ) − sin(δi ) 0
sin(δi ) cos(δi ) 0

0 0 1

⎤
⎦ . (30.57)

In this case, the kingpin axis is generally not parallel to the z axis of the axle. If
ek is the unit vector of the kingpin axis (its components will be indicated as xk , yk
and zk4), which in solid axle suspensions may be considered as fixed, the rotation
matrix Rki allowing the reference frame of the unsprung mass to be rotated so that
its zu axis coincides with the kingpin axis of the i th wheel is

Rki = 1√
x2w + z2w

⎡
⎣

zw −xw yw xw

√
x2w + z2w

0
(
x2w + z2w

)
yw

√
x2w + z2w

−xw −zw yw zw

√
x2w + z2w

⎤
⎦ . (30.58)

3Obviously
√
x2w + y2w + z2w = 1.

4Obviously
√
x2k + y2k + z2k = 1.
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Usually the longitudinal inclination angle (the pitch angle of the kingpin axis) and
the transversal inclination angle (the roll angle of the kingpin axis), are quite small,
and the rotation matrix Rk reduces to

Rki ≈
⎡
⎣

1 0 xk
0 1 yk

−xk −yk 1

⎤
⎦ , (30.59)

where xk and yk coincide respectively with the longitudinal inclination angle (not
larger than about 1◦) and the transversal inclination angle changed in sign (usually
not larger than about 10◦). For symmetry reasons, it follows that

xkR = xkL , ykR = −ykL . (30.60)

The angular velocity of the wheel in the reference frame of the sprung mass is
then

�wi = �k+δ̇iRkie3 + χ̇iRkiR4iRT
kiRwie2 . (30.61)

To obtain the angular velocity of the wheel in its own reference frame, Eq. (30.61)
must be premultiplied by (RkiR4iRT

kiRwi )
T . Remembering that

R4ie3 = e3 ,

it follows that

�wi = χ̇e2 + δ̇α1 + α2�k . (30.62)

where
α1 = RT

wiRkie3 , α2 = RT
wiRkiRT

4iR
T
ki . (30.63)

It must be remembered that in a suspension there are two matrices Rwi and Rki

(i = L , R), one for each wheel.

Rotational kinetic energy

Because the wheel is a gyroscopic body (two of the principal moments of inertia are
equal to each other), with a principal axis of inertia coinciding with the rotation axis,
its inertia tensor has a peculiar form

Jw = diag
([

Jtw Jpw Jtw
])

, (30.64)

where Jpw and Jtw are respectively the polar and transversal moment of inertia of
the wheel.



644 30 Multibody Modelling

The rotational kinetic energy of the ith wheel is

Twri = 1
2�

T
k αT

2 Jwα2�k + 1
2 χ̇

2eT2 Jwe2 + 1
2 δ̇

2T
1 Jwα1+

+χ̇δ̇eT2 Jwα1 + χ̇eT2 Jwα2�k + δ̇αT
1 Jwα2�k .

(30.65)

The first term is the rotational kinetic energy due to the angular velocity of the
unsprung mass.

By neglecting the first term, which will later be included in the kinetic energy
of the axle, and by linearizing and introducing the linearized expressions of the
kinematic equations, the rotational kinetic energy of the i th wheel reduces to

Twri = 1

2
χ̇2
i Jpw+1

2
δ̇2i Jtpw + χ̇i δ̇i Jpw (yk + zw) + (30.66)

+χ̇i Jpw
[
θ̇ + φψ̇ + (xw − δi ) φ̇k + zwψ̇

] + δ̇Jtwψ̇ . (30.67)

The first term that was neglected above can be inserted into the rotational kinetic
energy of the unsprung mass Tur :

Tur = 1
2�

T
k Ju�k, (30.68)

if the inertia tensor Ju also includes the inertia of the wheels, assumed to be non-
rotating and non-steering.

Operating in this way, the variation of the inertia of the unsprung mass at the
changing steering angle is neglected, but this approximation is acceptable. The inertia
tensor of the unsprungmass has a structure similar to that of the sprungmass, because
the suspension also has a symmetry plane coinciding with the xuzu plane.

Performing the relevant computations, it follows that

Tur = 1
2 Jxu�

2
xk + 1

2 Jyu�
2
yk + 1

2 Jzu�
2
zk − Jxzu�xk�zk (30.69)

and, by linearizing and including the linearized kinematic equations, the simple
expression is obtained

Tur = 1
2 J

2
xu φ̇k + 1

2 Jyu θ̇
2 + 1

2 Jzu ψ̇
2 + Jxzu φ̇ψ̇ . (30.70)

The total rotation kinetic energy of the axle is then

Turt = Tur + Twr R + Twr L . (30.71)

Total kinetic energy

The kinetic energy of the axle is then

Twri = χ̇i Jpw
[
θ̇ + φψ̇ + zwψ̇

]
, (30.72)
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Tu = 1
2mu

(
v2
x + v2

y + v2
k

) + 1
2β11θ̇

2 + 1
2β12ψ̇

2 + 1
2β13φ̇k+

+β14ψ̇φ̇k + 1
2 χ̇

2
s Jpw+ 1

2 δ̇
2
s Jtw + 1

2 χ̇
2
R Jpw+ 1

2 δ̇
2
R Jtw+

+χ̇s δ̇s Jpw (yk + zw) − χ̇R δ̇R Jpw (yk + zw) − β16vk θ̇

+muvx
(
θ̇β1 + θ̇Zk − θ̇Z + θvk − θvz + β3vk − β3vz+

+xGuθθ̇ + β5ψ̇φk
) + muvy

(−β5φ̇k + xGuψ̇
)+

+β19δ̇L ψ̇ + β19δ̇Rψ̇ + χ̇Lβ20 (xw − δs) φ̇k − χ̇Rβ20 (xw + δR) φ̇k+
+χ̇L Jpr

(
θ̇ + φψ̇ + zwψ̇

) + χ̇R Jpr
(
θ̇ + φψ̇ − zwψ̇

)
,

(30.73)

where
β5 = zGu , β11 = mu

(
z2Gu + x2Gu

) + Jyu , β12 = mux2Gu + Jzu ,
β13 = muz2Gu + Jxu , β14 = muzGuxGu − Jxzu ,

β16 = muxGu , β19 = Jtw , β20 = Jpw.

Potential energy

The height of the center of mass of the axle on the ground is

hu = eT3 (GN−O’) = eT3 (H − O’) + eT3 R1r , (30.74)

i.e.,
hu = Z0 + Z + rz , (30.75)

The expression of rz , obtained by approximating vector r with its Taylor series
truncated after the quadratic term in the small quantities and cancelling the constant
terms that do not influence the equations of motion, is

rz = Zk − Z − θβ22 − 1

2
θ2zGu − 1

2
φ2
k zGu, (30.76)

where
β22 = zGu (θ0 − zus) .

The gravitational potential energy

Ug = mughu (30.77)

is then

Ug = mug

(
Zk − θβ22 − 1

2
θ2zGu − 1

2
φ2
k zGu

)
. (30.78)

On each of the springs of the suspension it is possible to identify two points: one
of these (A) is fixed to the body, while the other (B) is fixed to the axle. Considering
rA and rB as the vectors defining their positions in the frame of the sprung mass (rA
is constant, while rB depends on ζ and φk), it is possible to compute the shortening
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of the spring and then its elastic potential energy. In a similar way, it is possible to
compute the potential energy of possible anti-roll bars applied to the axle.

In a linearized model of the suspension, the spring system linking the two rigid
bodies can be reduced to a spring with stiffness Kζ reacting to linear displacements,
and a torsional spring with stiffness Kφ reacting to the relative rotation between
sprung and unsprung masses φ − φk .

The general expression of the elastic potential energy of the whole suspension is

Um = 1

2
Kζ (ζ + ζ0)

2 + 1

2
Kφ (φ − φk)

2 . (30.79)

Note that for symmetry reasons the stiffness for heave and roll motions are fully
independent from each other.

By introducing the expression for ζ as a function of the generalized coordinates,
it follows that

Um = 1
2K11 (Z + Z0)

2 + 1
2K22 (Zk + Zk0)

2 + 1
2K33 (θ + θ0)

2 +
−K12 (Z + Z0) (Zk + Zk0) − K13 (Z + Z0) (θ + θ0)+

+K23 (Zk + Zk0) (θ + θ0) + 1
2Kφφ

2 + 1
2Kφφ

2
k − Kφφφk,

(30.80)

where constants Ki j depend on both the elastic and geometric characteristics of the
suspension.

This expression of the potential energy, along with the expression of the kinetic
energy seen above, takes implicitly into account the actual trajectory of the suspen-
sion, or better, because the model is linearized, the tangent to the trajectory in the
reference position. On the other hand, using a model of this kind makes it impossible
to account for the deformation in longitudinal and lateral directions, and for the yaw
and pitch compliance of the suspension.

In a similar way, the general expression of the elastic potential energy due to the
deformation of the tires of the suspension is

Up = 1

2
Kpz (Zk + Zk0)

2 + 1

2
Kpφφ

2
k . (30.81)

If Kp is the stiffness of a single tire and t is the track of the axle, for an axle with
two wheels it follows that

Kpz = 2Kp , Kpφ = 1

2
t2Kp . (30.82)

Dissipation function

Operating with the same method used for the elastic potential energy of the suspen-
sion, the dissipation function due to the shock absorbers is
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Fa = 1

2
c11v

2
z + 1

2
c22v

2
k + 1

2
c33θ̇

2 + 1

2
cφφ̇

2 + 1

2
cφφ̇

2
k +

−c12vzvk − c13vz θ̇ + c23vk θ̇ − cφφ̇φ̇k, (30.83)

where constants ci j depend both on the characteristics of the dampers and on the
geometry of the suspension.

The dissipation function due to the damping of tires can be computed in the same
way:

Fp = 1

2
cpzv

2
k + 1

2
cpφ�

2
k . (30.84)

30.2.4 General Independent Suspension

Geometry of the suspension

An axle with independent suspensions will be assumed to be made with two suspen-
sionsthat are the mirror image of each other. Some parameters are identical for the
two suspensions (for instance the mass mi , some geometrical characteristics, some
angles, etc.); others will be identical in modulus but with opposite sign (for instance,
the product of inertia Jxy , some angles, etc.). In the latter case, reference will be
made to the left suspension (subscript i = L), while the characteristics of the right
suspension (subscript i = R) will have opposite sign.

The simplest case, although only an ideal one, is a suspension in which the
unsprung masses can only move along a straight line in the direction of the z axis
of the sprung mass. The sprung mass is the main body, while the single suspension
(wheel, hub and all parts attached to it) is the secondary body (Fig. 30.5). The sus-
pension is constrained to the main body by a prismatic guide whose axis is parallel
to the z axis. The reference point C is on the axis of the guide and the distance ζ

Fig. 30.5 Sketch of an idealized independent suspension
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between the position C1 of C belonging to the sprung mass and C2 belonging to
the unsprung mass is taken as a generalized coordinate. Obviously in the reference
position with ζ = 0, C1 coincides with C2. Moreover, assume that the directions of
the axes of frame xu yuzu coincide with those of the axes of frame xyz.

Consider as reference point for translational coordinates the same point H already
used to compute the kinetic energy of the sprung mass. The position of the center of
mass of the suspension Gu in the inertial frame is

(Gu−O’) = (H − O’) + R (rC1 + rGu + ζe3) = (H − O’) + Rr2 , (30.85)

where R is the rotation matrix defining the position of the xyz frame with respect to
the inertial frame XiYi Zi , e3 is the unit vector of the z axis and

r2 = rC1 + rC2 + ζe3 . (30.86)

If the steering of the wheel is accounted for, a part of the unsprung mass may
rotate about the kingpin axis, which in the simplified model may be assumed to be
parallel to zu , and thus to the z, axis. The wheel also rotates about its own axis, which
may be assumed to be parallel to the y axis when the steering angle is zero.

However, this model of independent suspension is too simple. No modern car has
suspensions made by prismatic guides parallel to the z axis of the unsprung mass,
nor is the kingpin axis parallel to the same axis, while the rotation of the wheels does
not occur about an axis parallel to the y axis.

Each suspension has its own specific kinematics (as an example, an SLA suspen-
sion is shown in Fig. 30.6), or better, its own elasto-kinematics, because the various
elements of the suspensions are rigid bodies only as a first approximation. However,
while the exact elasto-kinematics is important in assessing the position of the wheel
with respect to the ground and thus the forces they exchange, its effects on the inertia
reactions of the various components of the suspension are usually very limited. It is
then possible to neglect the deformation of the various links in the computation of the
inertial part of the equations of motion and to introduce them later in the computation
of the forces due to the tires.

If the deformation of the linkages is neglected, it is possible to define the trajectory
of all points of the suspension in a reference frame fixed to the sprung mass. The
trajectory of the center of mass, for instance, may be expressed by a function

r2 = r2(ζ) , (30.87)

where ζ is a generalized coordinate that defines the position of the unsprung mass,
with reference to a given position. In the extremely simplified case seen above,
coordinate ζ is nothing other than the displacement of the unsprung mass in the z
direction, and function r2(ζ) is the linear function expressed by Eq. (30.86).

The function expressed by Eq.(30.87) can be developed in McLaurin series about
the reference position and the terms of an order higher than the first may be neglected.
The position of the center of mass Gu of the suspension with respect to point H is
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Fig. 30.6 Sketch of an SLA suspension

(Gu−H) = r2 = r20 +
(
dr2
dζ

)

ζ=ζ0

ζ . (30.88)

Equation (30.88) coincides with Eq. (30.86) if vector

s0 =
(
dr2
dζ

)

ζ=ζ0

is substituted for e3, the unit vector of the z axis. The components of vector r20 will
be indicated as xGu , yGu and zGu .

As an example, in the case of a trailing arms suspension hinged about an axis
parallel to the y axis (Fig. 30.7) and with point C on the hinge axis in the oscillation
plane of the center of mass, ζ0 is the angle line CGu makes with the x axis in the
reference position, and coordinate ζ ′ is the angle the suspension rotates with respect
to that position. The position of the center ofmassmay be thus defined by the function

r2 =
⎧⎨
⎩
x0 + d cos

(
ζ ′ + ζ0

)
y0

z0 − d sin
(
ζ ′ + ζ0

)

⎫⎬
⎭ . (30.89)

If ζ ′ is small, the truncated series yielding the position of Gu is
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Fig. 30.7 Sketch of a trailing arm suspension

r2 =
⎧⎨
⎩
x0 + d cos (ζ0)

y0
z0 − d sin (ζ0)

⎫⎬
⎭ +

⎧⎨
⎩

− sin (ζ0)
0

− cos (ζ0)

⎫⎬
⎭ dζ ′ . (30.90)

Or, to give coordinate ζ the meaning of a displacement in the z direction of the
unsprung mass, it is possible to state

ζ = − cos (ζ0) dζ ′ , (30.91)

and then

r2 =
⎧⎨
⎩
x0 + d cos (ζ0)

y0
z0 − d sin (ζ0)

⎫⎬
⎭ + s0ζ , (30.92)

where
s0 = [

tan (ζ0) 0 1
]T

. (30.93)

The generalized coordinate for the i th unsprung mass (right or left) may be the
height on the ground of its center of mass instead of ζ. Such height is simply

c = eT3
[
(H − O’) + Rr2

]
(i = L , R) . (30.94)

Also, ZGui may be considered as the sum of a value taken at the reference position
plus a displacement, one that is of the same order as the other small quantities
(like Z ):

ZGui = ZGu0 + Zui = Z0 + Z + eT3 R

⎧⎨
⎩
xGu + ζsx
yGu + ζsy
zGu + ζsz

⎫⎬
⎭ . (30.95)
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Note that, owing to symmetry, ZGu0 , xGu , zGu , sx , and sz are equal for the two
suspensions of the same axle, while yGu and sy have opposite signs. In the following,
as already stated, the signs of the left suspension (that with positive yGu) will be
taken as a reference.

In the reference position it follows that

Z0u = Z0 − xGuθ0 + zGu . (30.96)

By performing the computations, linearizing the trigonometric functions of the
small angles and assuming that sz = 1 and that sx and sy are small, it follows that

Zui = Z − xGuθ + yGuφ + ζ (30.97)

and thus the relationship linking ζ to Zu is simply

ζ = Zui − Z + xGuθ − yGuφ . (30.98)

Rotation of the wheels

Assume that the rotation axis of the wheels is fixed to the unsprung mass. Let χ be
the angle of rotation of the wheel and χ̇ its angular velocity in a frame fixed to the
suspension. The signs of angular velocities have been defined in such a way that,
when χ̇ is positive, the wheel rotates in a direction that is consistent with a positive
velocity vx of the vehicle.

If the direction of the rotation axis of the wheel coincides with that of axis yu
of the unsprung mass, and then is parallel to the y axis of the vehicle (whose unit
vector is e2), the absolute angular velocity of the wheel is, in the reference frame of
the sprung mass,

�w = � + χ̇e2 =
⎧⎨
⎩

�x

�y + χ̇
�z

⎫⎬
⎭ . (30.99)

However, the rotation axis of thewheel usually has a direction thatmaybe different
(only slightly, when the wheel is not steered) from the y axis, so that it is possible
to define the unit vector of the rotation axis ew in the reference frame of the sprung
mass. Obviously such a vector depends on the position of the suspension and is then
a function of ζ:

ew = ew (ζ) . (30.100)

As an alternative, the position of the rotation axis can be defined by stating a
yaw angle ψw (steering due to the motion of the suspension) and a roll angle φw

of the rotation axis of the wheel. A rotation matrix Rw is then written to pass from
the reference frame of the sprung mass to a frame whose y axis coincides with the
rotation axis of the wheel. Since the two ways of describing the position of the
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rotation axis must yield the same results, it follows that

ew = Rwe2 . (30.101)

With xw, yw and zw being the components5 of unit vector ew, the rotation matrix
Rw is still expressed by Eq. (30.53). Because the rotation axis of the wheel is usually
not far from horizontal, the trigonometric functions of ψw and φw can be linearized.
Eq. (30.54), repeated here, still holds

Rw =
⎡
⎣

1 xw 0
−xw 1 −zw

0 zw 1

⎤
⎦ .

The angular velocity of the wheel in the reference frame of the sprung mass is

�w = � + χ̇ew (ζ) . (30.102)

Actually, it is expedient to write the components of the angular velocity of the
wheel in the frame fixed to the wheel instead of that fixed to the sprung mass.

The angular velocity of the wheel in its own reference frame is

�w = Rw
T� + χ̇e2 . (30.103)

Steering

If the wheel steers, the reference frame of the wheel will no longer be parallel to
frame xu yuzu of the unsprung mass, but will be rotated by a steering angle δ. Here
two different approaches are possible: δ may be one of the variables of motion (free
controls approach), or a constant or a known variable (locked controls approach).

Assume that the kingpin axis of the wheel is parallel to the z axis of the unsprung
mass and define a further rotation matrix

R4 =
⎡
⎣
cos(δ) − sin(δ) 0
sin(δ) cos(δ) 0
0 0 1

⎤
⎦ . (30.104)

Assuming that the direction of the rotation axis does not change with the heave
motion and is parallel to the z axis, the rotation velocity of the wheel, referred to its
own reference frame, is

�w = χ̇e2 + δ̇e3 + RT
4 � . (30.105)

5Obviously, they are functions of ζ and
√
x2w + y2w + z2w = 1.
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Actually, the kingpin axis moves with changing ζ and in general is not parallel
to the z axis of the unsprung mass, but its direction is defined by the unit vector ek ,
which is a function of ζ:

ek = ek (ζ) . (30.106)

The rotation matrix Rk to rotate the reference frame of the unsprung mass so that
its z axis coincides with the kingpin axis

ek = Rke3 , (30.107)

can also be written.
By defining a pitch angle θk of the kingpin axis (coinciding with the longitudinal

inclination angle) and a roll angle φk (coinciding with the transversal inclination
angle), and by indicating with xk , yk and zk the components6 of the unit vector ek ,
the rotation matrixRk is still expressed by Eq. (30.58). If θk and φk are small angles,
matrix Rk reduces to:

Rk ≈
⎡
⎣

1 0 xk
0 1 yk

−xk −yk 1

⎤
⎦ . (30.108)

The velocity of the wheel in the reference frame of the sprung mass is then

�w = � + δ̇ek + χ̇RkR4RT
k ew . (30.109)

To write it in the principal reference frame of the wheel, the expression of the
angular velocity must be multiplied by

(
RkR4RT

k Rw

)T
:

�wi = χ̇e2 + δ̇α1 + α2�, (30.110)

where
α1 = RT

wiRkiRT
4 e3 , α2 = RT

wiRkiRT
4iR

T
ki . (30.111)

The steering angle so defined does not coincide exactly with the steering angle
defined in the preceding chapters, because it also has components along axes x and y.

Translational kinetic energy

The position of the center of mass of the unsprung mass in the inertial reference
frame is

(Gu−O’) = (H − O’) + R1r , (30.112)

where

6Obviously, they are functions of ζ and
√
x2k + y2k + z2k = 1.
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r = R2R3

⎧⎨
⎩
xGu + ζsx
yGu + ζsy
zGu + ζ

⎫⎬
⎭ . (30.113)

By linearizing the expression for r and substituting its value for ζ, it follows that

r =
⎧⎨
⎩

xGu + θ0zGu + θzGu

yGu − φzGu

zGu − θ0xGu + Zu − Z

⎫⎬
⎭ . (30.114)

Its derivative, again approximated to the first-order term in the small quantities,
is

ṙ =
⎧⎨
⎩

θ̇zGu

−φ̇zGu

Żu − Ż

⎫⎬
⎭ . (30.115)

The speed of the center of mass of the unsprungmass, written in the inertial frame,
is still expressed by Eq. (30.40) while the expression of the translational kinetic
energy of the unsprung mass is identical to that seen for the rigid axle suspension
(Eq. (30.44), where rx , ry , rz are the components of vector r). The equation is repeated
here:

Tt = 1
2mui

{
v2
x + v2

y + v2
z + ṙ2x + ṙ2y + ṙ2z + ψ̇2

(
r2x + r2y

)+
+2

(
vx ṙx + vyṙy + vzṙz

) + 2ψ̇
(−vxry + vyrx − ṙxry + ṙyrx

)}
.

To obtain an expression containing all terms up to the quadratic in small quantities,
the linearized expression of the components of r and their derivatives may be used,
except for the term in vx ṙx , where the quadratic terms must also be used

ṙx = β1θ̇ + xGu θ̇θ + β3 (vu − vz) + θ (vu − vz) + θ̇ (Zu − Z) − yGusx φ̇
(30.116)

where
β1 = xGusx + zGu , β3 = θ0 + sx . (30.117)

By linearizing the kinematic equations (30.5) and indicating with vui the deriva-
tive of Zui , the following expression of the translational kinetic energy of a single
independent suspension is obtained:

Tt i = 1
2mui

(
v2
x + v2

y + v2
ui + φ̇2z2Gu + θ̇2z2Gu

)+
+muivx

[
β1θ̇ + xGu θ̇θ + β3 (vui − vz) +

+θ (vui − vz) + θ̇ (Zui − Z) − yGusx φ̇ − ψ̇yGu + zGuφψ̇
]+

+muivy
(
ψ̇xGu − φ̇zGu

) − mui ψ̇θ̇zGu yGu + mui ψ̇φ̇zGuxGu .

(30.118)

Note that operating in this way the translational kinetic energy linked with steer-
ing has been neglected. This would be correct if the center of mass of the steering
part of the suspension lies on the kingpin axis; however, the small error so introduced
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may be at least partially compensated for by introducing the moment of inertia of
the steering parts about the kingpin axis instead of about a baricentric axis.

Rotational kinetic energy

The rotational kinetic energy of the wheel is

Twr = 1
2�

TαT
2 Jwα2�+ 1

2 δ̇
2αT

1 Jwα1+δ̇αT
1 Jwα2�+

+χ̇δ̇eT2 Jwα1 + 1
2 χ̇

2eT2 Jwe2 + χ̇eT2 Jwα2� .
(30.119)

Because the wheel is a gyroscopic body (two of its principal moments of inertia
are equal to each other), with one of its principal axes of inertia coinciding with the
rotation axis, its inertia matrix is diagonal and has a particular form

Jw = diag
([

Jtw Jpw Jtw
])

, (30.120)

where Jpw and Jtw are the polar and transversal moments of inertia, respectively.
The rotational kinetic energy of the non-rotating parts of the suspensions is

Tnr = 1

2
δ̇2αT

1 Jmα1 + 1

2
�TαT

2 Jmα2� + δ̇αT
1 Jmα2� .

where Jm is the inertia tensor of the non-rotating parts of the unsprung mass.
The first three terms of Eq. (30.119) may be directly included in the expression

of Tnr if the inertia of the wheels is included in tensor Jm .

Remembering that all angular velocities except for χ̇ are small quantities, the
expression of the kinetic energy truncated to the second-order terms is fairly simpli-
fied.

Stating that Jm is the inertia tensor of the unsprung mass, which in general has no
symmetry property, and remembering the peculiar structure of the inertia tensor of
the wheel, the rotational kinetic energy of the unsprung mass (i.e., of one of the two
unsprung masses of the axle) is

Tur = 1
2 Jpwχ̇2 + 1

2 δ̇
2 Jmz + 1

2 φ̇
2 Jmx + 1

2 θ̇
2 Jmy+

+ 1
2 ψ̇

2 Jmz − φ̇θ̇Jmxy − φ̇ψ̇Jmxz − θ̇ψ̇Jmyz+
−δ̇φ̇Jmxz − δ̇θ̇Jmyz + δ̇ψ̇Jmz + χ̇δ̇Jpw (yk + zw)+

+χ̇φ̇Jpw (xw − δ) + χ̇Jpw
[
θ̇ + ψ̇ (zw + φ)

]
.

(30.121)

As already stated, this expression is approximated for various reasons, and also
because the parts of the suspension that do not steer have been neglected.

Total kinetic energy of the axle

Because different types of suspensions may be used on the same vehicle for front and
rear axles, the equations of motion are best written with reference to coordinates that
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may be used for both rigid axle and independent suspensions. Consider the general
kth axle made of two independent suspensions and assume

⎧⎪⎨
⎪⎩

Zk = ZuL + ZuR

2
,

φk = ZuL − ZuR

d0
,

(30.122)

where as usual subscripts L and R designate the left and right suspension and d0 is
an arbitrary length, for instance the distance between the centers of mass of the two
suspensions. Coordinate Zk coincides with the vertical displacement of the center
of mass of the system made by the two suspensions of the axle, and φk is the roll
rotation of a line passing through the two centers of mass (if d0 is their distance).
The coordinates are then the same used for rigid axles.

Taking into account the symmetryof the two suspensions, some terms in thekinetic
energy are equal in modulus but have opposite signs (for instance β2yGuφ̇) and then
cancel each other. Remembering that mu = 2mui , substituting the coordinates Zk

and φk to Zui , the total kinetic energy of the system made by the two suspensions is

Tu = 1
2mu

(
v2
x + v2

y + v2
k

) + 1
2β10φ̇

2 + 1
2β11θ̇

2 + 1
2β12ψ̇

2+
1
2β13φ̇

2
k + β15φ̇ψ̇ + 1

2 Jpwχ̇2
L + 1

2 Jpwχ̇2
R + 1

2 δ̇
2
L Jmz + 1

2 δ̇
2
R Jmz+

+χ̇L δ̇L Jpw (yk + zw) − χ̇R δ̇R Jpw (yk + zw)+
+muvx

(
β1θ̇ + θ̇Zk − θ̇Z + θvk − θvz + β3vk − β3vz+

+β4ψ̇φ + xGu θ̇θ
) + muvy

(
xGuψ̇ − β4φ̇

) − β17δ̇L φ̇ − β17δ̇Rφ̇+
−β18δ̇L θ̇ + β18δ̇R θ̇ + β19δ̇L ψ̇ + β19δ̇Rψ̇ + χ̇L φ̇β21 (xw − δL)+

−χ̇Rφ̇β21 (xw + δR) + χ̇L Jpw
[
θ̇ + ψ̇ (zw + φ)

] + χ̇R Jpw
[
θ̇ + ψ̇ (−zw + φ)

]
,

(30.123)
where

β4 = zGu , β10 = muz2Gu + 2Jmx , β11 = muz2Gu + 2Jmy ,
β12 = 2Jmz , β13 = 1

2mud2
0 , β15 = muzuGxGu − 2Jmxz ,

β17 = Jmxz , β18 = Jmyz , β19 = Jmz , β21 = Jpw .

Potential energy

The height on the ground of the center of mass of one of the two suspensions is still
expressed by Eq. (30.75):

hu = Z0 + Z + rz .

The expression of rz , obtained by approximating vector r with its series truncated
after quadratic terms in the small quantities and eliminating the constant terms that
do not affect the equations of motion, is

rz = zGu − 1

2
θ0zGu + Zui − Z − θθ0zGu − 1

2
θ2zGu − 1

2
φ2zGu . (30.124)



30.2 Linearized Model for the Isolated Vehicle 657

Neglecting constant terms, the gravitational potential energy of one of the two
independent suspensions is

Ugi = muig

(
−θθ0zGu + Zui − 1

2
θ2zGu − 1

2
φ2zGu

)
. (30.125)

The potential energy of the system made by the two suspensions is then

Ug = mug

(
Zk − θβ22 − 1

2
θ2zGu − 1

2
φ2zGu

)
(30.126)

where
β22 = θ0zGu .

The expressions for the linearized elastic potential energy of the axle and the tires,
as well as those of the dissipation functions, are those already seen for rigid axles.
Obviously, the expressions of the coefficients describing the various stiffnesses and
damping coefficients are different and must be computed in each case from the
mechanical and geometrical characteristics of the suspensions, but in the linearized
approach they are at any rate constant.

30.2.5 Comparison Between Independent and Rigid Axle
Suspensions

As already stated, the generalized coordinates here chosen may be used for both
types of suspensions. The general expression of the kinetic energy of the axle is

Tu = 1
2mu

(
v2
x + v2

y + v2
k

) + 1
2β10φ̇

2 + 1
2β11θ̇

2 + 1
2β12ψ̇

2 + 1
2β13φ̇

2
k+

+β14ψ̇φ̇k + β15ψ̇φ̇ + 1
2 χ̇

2
L Jpw+ 1

2 δ̇
2
L Jtw + 1

2 χ̇
2
R Jpw+ 1

2 δ̇
2
R Jtw+

+χ̇L δ̇L Jpw (yk + zw) − χ̇R δ̇R Jpw (yk + zw) − β16 Żk θ̇

+muvx
(
θ̇β1 + θ̇Zk − θ̇Z + θvk − θvz + β3vk − β3vz+

+β4φψ̇ + xGu θ̇θ + β5φkψ̇
) + muvy

(−β5φ̇k + xGuψ̇ − β4φ̇
)+

−β17δ̇L φ̇ − β17δ̇Rφ̇ − β18δ̇L θ̇ + β18δ̇R θ̇ + β19δ̇L ψ̇ + β19δ̇Rψ̇+
+χ̇Lβ20 (xw − δL) φ̇k − χ̇Rβ20 (xw + δR) φ̇k + χ̇L φ̇β21 (xw − δL) +

−χ̇Rφ̇β21 (xw + δR) + χ̇L Jpw
(
θ̇ + φψ̇ + zwψ̇

) + χ̇R Jpw
(
θ̇ + φψ̇ − zwψ̇

)
.

(30.127)

Some coefficients βi vanish in the case of rigid axles (for instance β10 or β15),
while others vanish in independent suspensions (for instance β14 or β16).

In a similar way, the gravitational potential energy can be written in the form
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Ug = mug

(
Zu − θβ22 − 1

2
θ2zGu − 1

2
φ2β24 − 1

2
φ2
uβ23

)
(30.128)

where
β23 = zGu , β24 = 0 (30.129)

in the case of rigid axles, and

β23 = 0 , β24 = zGu (30.130)

for independent suspensions.

30.2.6 Lagrangian Function of the Whole Vehicle

The Lagrangian function L = T − U of the whole vehicle can thus be computed
without any difficulty:

L = 1
2m

(
v2
x + v2

y

) + 1
2msv

2
z + 1

2 Jx φ̇
2 + 1

2 Jy θ̇
2 + 1

2 Jzψ̇
2+

−Jxzψ̇φ̇ − mscvz θ̇ + vx θ̇Js1 − Js3vyφ̇ + Js3vxφψ̇+
+∑

∀k
[
1
2muv

2
k + 1

2β13φ̇
2
k + β14ψ̇φ̇k + 1

2 χ̇
2
L Jpw+ 1

2 δ̇
2
L Jtw + 1

2 χ̇
2
R Jpw+

+ 1
2 δ̇

2
R Jtw + χ̇L δ̇L Jpw (yk + zw) − χ̇R δ̇R Jpw (yk + zw) − β16vk θ̇

+muvx
(
θ̇Zk − θ̇Z + θvk − θvz + β3vk − β3vz + β5φkψ̇

)+
−muvyβ5φ̇k − β17δ̇L φ̇ − β17δ̇Rφ̇ − β18δ̇L θ̇ + β18δ̇R θ̇+

+β19δ̇L ψ̇ + β19δ̇Rψ̇ + χ̇Lβ20 (xw − δL) φ̇k − χ̇Rβ20 (xw + δR) φ̇k+
+χ̇L φ̇β21 (xw − δL) − χ̇Rφ̇β21 (xw + δR) + χ̇L Jpw

(
θ̇ + φψ̇ + zwψ̇

)+
+χ̇R Jpw

(
θ̇ + φψ̇ − zwψ̇

)] − msgZ + Mg1θ + 1
2Mg2θ

2 + 1
2Mg3φ

2+
−g

∑
∀k mu

(
Zu − 1

2β23φ
2
k

) − ∑
∀k

(
1
2K11 (Z + Z0)

2 +
+ 1

2

(
K22 + Kpz

)
(Zk + Zk0)

2 + 1
2K33 (θ + θ0)

2 +
−K12 (Z + Z0) (Zk + Zk0) − K13 (Z + Z0) (θ + θ0) +

+K23 (Zk + Zk0) (θ + θ0) + 1
2Kφφ

2 + 1
2

(
Kφ + Kpφ

)
φ2
k − Kφφφk

)
,

(30.131)

where

m = ms + ∑
∀k mk , Jx = JxL + msh2 + ∑

∀k β10

Jy = JyL + ms
(
h2 + c2

) + ∑
∀k β11 , Jz = JzL + msc2 + ∑

∀k β12

Jxz = JxzL − msch − ∑
∀k β15 , Js1 = −ms (cθ0 − h) + ∑

∀k mkβ1

Js3 = msh + ∑
∀k mkβ4 , Mg1 = msg (c + hθ0) + g

∑
∀k mkβ22 ,

Mg2 = msgh + g
∑

∀k mkzGu , Mg3 = msgh + g
∑

∀k mkβ24 .

(30.132)
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30.3 Model with 10 Degrees of Freedom with Locked
Controls

Consider a vehicle moving at a stated speed with a stated steering angle and neglect
the longitudinal slip of the wheels. The forward speed V , which in the linearized
approach (small value of the sideslip angle β) coincides with vx , and its derivative V̇
are imposed, and so are the steering angles of the wheelsand their derivatives. The
angular velocity of the wheels is simply

χ̇i = V

Rei

(30.133)

where Rei is the effective rolling radius. This expression is approximated even if the
rolling radius corresponding with the actual longitudinal slip was used, because the
speed of the centers of the wheels does not coincide with the velocity V of the center
of mass of the vehicle. Nonetheless, if motion takes place in conditions allowing the
equations to be linearized, such assumptions can be accepted.

Moreover, assume that the derivatives δ̇i of the steering angles are vanishingly
small, either because the steering angles are actually locked at a constant value or
because the dynamic effects of their variation are negligible

30.3.1 Expression of the Lagrangian Function
and its Derivatives

The expression of the Lagrangian function is much simplified and may be written as

L = 1
2mev

2
x + 1

2mv2
y + 1

2msv
2
z + 1

2 Jx φ̇
2 + 1

2 Jy θ̇
2 + 1

2 Jzψ̇
2+

−Jxzψ̇φ̇ − mscvz θ̇ + vx θ̇Js2 − Js3vyφ̇ + Js3vxφψ̇+
+∑

∀k
{
1
2mkv

2
k + 1

2β13φ̇
2
k + β14ψ̇φ̇k − β16vk θ̇ − mkvyβ5φ̇k+

+mkvx
(
θ̇Zk − θ̇Z + θvk − θvz + β3vk − β3vz + β5φkψ̇

)+
+2 vx

Re

[−β20δφ̇k − β21δφ̇ + Jprφψ̇
]} − msgZ + Mg1θ + 1

2Mg2θ
2+

+ 1
2Mg3φ

2 − g
∑

∀k mk
(
Zk − 1

2β23φ
2
k

) − ∑
∀k

(
1
2K11 (Z + Z0)

2 +
+ 1

2

(
K22 + Kpz

)
(Zk + Zk0)

2 + 1
2K33 (θ + θ0)

2 +
−K12 (Z + Z0) (Zk + Zk0) − K13 (Z + Z0) (θ + θ0) +

+K23 (Zk + Zk0) (θ + θ0) + 1
2Kφφ

2 + 1
2

(
Kφ + Kpφ

)
φ2
k − Kφφφk

)
,

(30.134)

where the equivalent mass and Js2 are

me = m + 2
∑
∀k

Jpw
1

R2
e

, Js2 = Js1 + 2
∑
∀k

Jpw
Re

(30.135)
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(coefficients 2 come from the assumption that each axle has two wheels) and δ is the
average steering angle of the axle

δ = δL + δR

2
. (30.136)

The derivatives of the Lagrangian function with respect to the generalized veloc-
ities and coordinates are

∂L
∂vx

= mevx + θ̇Js2 . (30.137)

Note that the expression of this derivative has been further linearized by cancelling
the terms of the same order of the squares of small quantities. For instance, the term in
β3vk was cancelled because both β3 and vk are small quantities. Moreover, the use of
the equivalent mass, which includes only the contribution to inertia due to thewheels,
may be criticized because the transmission has not been modelled. Physically, this
corresponds to considering the vehicle as pushed forward by an external force in the
x direction, as in jet propelled record vehicles, instead of propelled by the driving
torque applied to the wheels (or slowed by the braking torque).

∂L
∂vy

= mvy − Js3φ̇ −
∑
∀k

mkβ5φ̇k, (30.138)

∂L
∂vz

= ms Ż − mscθ̇ − vx
∑
∀k

mk (θ + β3) , (30.139)

∂L
∂φ̇

= Jx φ̇ − Jxzψ̇ − Js3vy − 2
∑
∀k

vx

Re
β21δ, (30.140)

∂L
∂θ̇

= Jy θ̇ − mscŻ + vx Js2 +
∑
∀k

[−β16 Żk + mkvx (Zk − Z)
]
, (30.141)

∂L
∂ψ̇

= Jzψ̇ − Jxzφ̇ + Js3vxφ +
∑
∀k

(
β14φ̇k + mkvxβ5φk + 2

vx

Re
Jpwφ

)
,

(30.142)
∂L
∂ Żk

= mk Żk − β16k θ̇ + mkvx (θ + β3k) for k = 1, 2, (30.143)

∂L
∂φ̇k

= β13k φ̇k + β14kψ̇ − mkvyβ5k − 2
vx

Rek
β20kδk for k = 1, 2, (30.144)

∂L
∂X

= ∂L
∂Y

= ∂L
∂ψ

= 0, (30.145)
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∂L
∂Z

= −msg −
∑
∀k

[
mkvx θ̇ + K11 (Z + Z0)+

−K12 (Zk + Z0k) − K13 (θ + θ0)] ,

(30.146)

∂L
∂θ

= Mg1 + Mg2θ +
∑
∀k

[
muvx

(
Żk − Ż

)+

−K33 (θ + θ0) + K13 (Z + Z0) − K23 (Zk + Zk0)] ,

(30.147)

∂L
∂φ

= Js3vx ψ̇ + Mg3φ +
∑
∀k

(
2

vx

Re
Jpwψ̇ − Kφφ + Kφφk

)
, (30.148)

∂L
∂Zk

= −gmk + mkvx θ̇ − (
K22k + Kpzk

)
(Zk + Zk0)

+K12k (Z + Z0) − K23k (θ + θ0) ,

(30.149)

∂L
∂φk

= +mkvxβ5kψ̇ + gmkβ23kφk − (
Kφk + Kpφk

)
φk + Kφkφ . (30.150)

The last two derivatives must be computed for the various axles (k = 1, 2 for a
two-axles vehicle).

30.3.2 Kinematic Equations

Even if velocity V is stated, all 10 equations of motion must be written, because the
generalized coordinates are 10. When all equations of motion have been obtained, it
will be possible to state that the forward velocity is known and one of the equations
can be eliminated.

The generalized coordinates for a two-axles vehicle are then

q = [
X Y Z φ θ ψ z1 φ1 z2 φ2

]T
. (30.151)

The vector containing the generalized velocities w is

w = [
vx vy vz vφ vθ vψ v1 vφ1 v2 vφ2

]T
. (30.152)

Remark 30.1 Velocitiesw are referred neither to a body-fixed frame nor to an inertial
frame. Linear velocities are referred to the intermediate frame x∗y∗z, while the
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generalized velocities related to angular coordinates are the derivatives of Tait-Bryan
angles. This may make the analysis more complicated, but only to a point.

The relationship linking the velocities to the derivatives of the coordinates is, as
usual

w = AT q̇ ,

where

A =
⎡
⎣

cos(ψ) − sin(ψ)

sin(ψ) cos(ψ)
0

0 I

⎤
⎦ (30.153)

and I is an identity matrix of size 8 × 8.
The kinematic equations are the inverse transformation

q̇ = A−Tw = Bw . (30.154)

A is in this case a rotation matrix, so that

A−1 = AT , B = A . (30.155)

The equation of motion in the state space is made by the 10 equations of motion,
plus the 10 kinematic equations and is then Eq. (A.101):

⎧⎪⎪⎨
⎪⎪⎩

∂

∂t

({
∂L
∂w

})
+ BT�

{
∂L
∂w

}
− BT

{
∂L
∂q

}
+

{
∂F
∂w

}
= BTQ ,

{q̇i } = B {wi } .

(30.156)

The column matrix BTQ containing the 10 components of the vector of the gen-
eralized forces will be computed later by writing the virtual work of the forces acting
on the system. In the following equations its elements will be indicated with Qx , Qy ,
Qz , Qφ, Qθ, Qψ, Qzk , Qφk .

Themost complicated part of the computation is writingmatrixBT�. By perform-
ing fairly intricate computations, following the procedure described in Appendix A,
it follows that

BT� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −ψ̇

ψ̇ 0
0 0
0 0
0 0

−vy vx

⎤
⎥⎥⎥⎥⎥⎥⎦

06×8

04×2 04×8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By using the expressions of the derivatives with respect to the generalized veloc-
ities seen above, and differentiating again with respect to time, it follows that



30.3 Model with 10 Degrees of Freedom with Locked Controls 663

∂

∂t

({
∂L
∂w

})
=

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mev̇x + θ̈Js2
mv̇y − Js3φ̈ − ∑

∀k mβ5k φ̈k

ms Z̈ − mscθ̈ − v̇x
∑

∀k mk (θ + β3k) − vx θ̇
∑

∀k mk

Jx φ̈ − Jxzψ̈ − Js3v̇y − 2v̇x
∑

∀k
1
Rek

β21kδk
Jy θ̈ − mscZ̈ + v̇x Js2+∑

∀k
[−β16k Z̈k + mk v̇x (Zk − Z) +

+mkvx
(
Żk − Ż

)]
Jzψ̈ − Jxzφ̈ + Js3v̇xφ + Js3vx φ̇ + ∑

∀k
[
β14k φ̈k + mk v̇xβ5kφk+

+mkvxβ5k φ̇k + 2v̇x 1
Rek

Jpwkφ + 2vx 1
Rek

Jpwk φ̇
]

mk Z̈k − β16k θ̈ + mk v̇x (θ + β3k) + mkvx θ̇

β13k φ̈k + β14kψ̈ − mk v̇yβ5k − 2v̇x 1
Rek

β20kδk

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(30.157)
The last two equations refer to the coordinates of the axles, and then must be

repeated for k = 1, 2.

BT�

{
∂L
∂w

}
=

[
−ψ̇ ∂L

∂vy
ψ̇ ∂L

∂vx
0 0 0 −vy

∂L
∂vx

+ vx
∂L
∂vy

0 0 0 0
]T

. (30.158)

By introducing the values of the derivatives and linearizing, it follows that

BT�

{
∂L
∂w

}
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{
0
mevx ψ̇

}

03×1

vx

[
−Js3φ̇ − ∑

∀k
(
2vy Jpwk

1
R2
e

+ mkβ5φ̇k

)]

04×1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (30.159)

Finally:

BT

{
∂L
∂q

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
−msg − ∑

∀k
[
mkvx θ̇ + K11 (Z + Z0)+

−K12 (Zk + Zk0) − K13 (θ + θ0)]

Js3vx ψ̇ + Mg3φ + ∑
∀k

(
2vx 1

Re
Jpwkψ̇ − Kφφ + Kφφk

)

Mg1 + Mg2θ + ∑
∀k

[
muvx

(
Żk − Ż

) − K33 (θ + θ0)
+K13 (Z + Z0) − K23 (Zk + Zk0)]

0
−gmk + mkvx θ̇ − (

K22k + Kpzk
)
(Zk + Zk0) +

+ K12k (Z + Z0) − K23k (Z + Z0)

−mkvxβ5kψ̇ − gmukβ23kφk − Kφkφk + Kφkφ − Kpφkφk

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(30.160)
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The last two equations refer to the axles and must be repeated for k = 1, 2.
The derivatives of the dissipation function are

{
∂F
∂w

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0∑

∀k
(
c11k Ż − c12k Żk − c13k θ̇

)
∑

∀k
(
cφk φ̇ − cφk φ̇k

)
∑

∀k
(
c33k θ̇ − c13k Ż + c23k Żk

)
0(
c22k + cpzk

)
Żk − c12k Ż + c23k θ̇(

cφk + cpφk
)
φ̇k − cφk φ̇

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (30.161)

30.3.3 Equations of Motion

First equation: longitudinal translation

By introducing the forward velocity of the vehicle V instead of vx , the first equation
becomes

meV̇ + θ̈Js2 = Qx . (30.162)

Second equation: lateral translation

mv̇y + meV ψ̇ − Js3φ̈ −
∑
∀k

muβ5φ̈k = Qy . (30.163)

Third equation: vertical translation

ms Z̈ − mscθ̈ + ∑
∀k [K11 (Z + Z0) − K12 (Zk + Zk0) +

−K13 (θ + θ0) + c11k Ż − c12k Żk+
−c13k θ̇ − V̇mk (θ + β3k)

] = −msg + Qz .
(30.164)

Fourth equation: roll rotation

Jx φ̈ − Jxzψ̈ − Js3v̇y − Js3V ψ̇ − Mg3φ + ∑
∀k

(
−2V̇ 1

Rek
β21kδk+

−2vx 1
Re
Jpwkψ̇ + Kφφ − Kφφk + cφk φ̇ − cφk φ̇k

)
= Qφ .

(30.165)

Fifth equation: pitch rotation

Jy θ̈ − mscZ̈ + V̇ Js2 − Mg2θ+∑
∀k

[−β16 Z̈k+
+mkV̇ (Zk − Z) + K33 (θ + θ0) − K13 (Z + Z0) +

+K23 (Zk + Zk0) + c33k θ̇ − c13k Ż + c23k Żk
] = Mg1 + Qθ .

(30.166)
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Sixth equation: yaw rotation

Jzψ̈ − Jxzφ̈ + Js3V̇φ + ∑
∀k

[
β14k φ̈k + mkV̇β5kφk+

+2V̇ 1
Re
Jpwkφ + 2V 1

Rek
Jpwk φ̇ − 2V vy Jpwk

1
R2
ek

]
= Qψ .

(30.167)

Seventh and ninth equations: translation of axles

mk Z̈k − β16k θ̈ + mkV̇ (θ + β3k) +
+ (

K22k + Kpzk
)
(Zk + Zk0) − K12k (Z + Z0) +

+K23k (θ + θ0) + (
c22k + cpzk

)
Żk − c12k Ż + c23k θ̇ = −gmk + Qzk .

(30.168)

Eighth and tenth equations: rotation of axles

β13k φ̈k + β14kψ̈ − mk v̇yβ5k − 2V̇ 1
Rek

β20kδk − mkvxβ5kψ̇ − gmkβ23kφk+
+ (

Kφk + Kpφk
)
φk − Kφkφ + (

cφk + cpφk
)
φ̇k − cφk φ̇ = Qφk .

(30.169)

30.3.4 Sideslip Angles of the Wheels

The sideslip angles of the wheelscan be computed directly from the components of
the speed of the centers of the wheel-ground contact zone in the x∗y∗z frame. In the
case of a solid axle suspension, the position of the center of the contact zone may be
computed with the methods used for the center of mass of the axle, by substituting
the coordinates of the center of the contact area xCn , yCn , zCn for those of the center
of mass xGu , 0, zGu in Eq. (30.32):

(Cu−O’) = (H − O’) + R1r , (30.170)

where

r = R2

⎡
⎣R3

⎧⎨
⎩
xu + ζsx

0
ζ

⎫⎬
⎭+RusR3k

⎧⎨
⎩
xCu

yCu

zCu

⎫⎬
⎭

⎤
⎦ . (30.171)

Obviously, vector xCu , yCu , zCu must be expressed in the same reference frame
in which the coordinates of the center of mass xGu , 0, zGu were expressed. This
procedure is approximate, because the deformations of the tire are neglected, but the
approximation is not greater than those already introduced in the linearized model.

By introducing the linearized expression for ζ, it follows that

r =
⎧⎨
⎩

xCt + θzCu

yCu − φk zCu

zCt + Zk − Z − xCuθ

⎫⎬
⎭ , (30.172)
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where

xCt = xu + xCu − zus xCu + θ0zCu ,

zCt = zCu + zus xCu − θ0xCu . (30.173)

In the case of independent suspensions, it follows (Eq. 30.113) that:

r = R2R3

⎧⎨
⎩
xCu + ζsx
yCu + ζsy
zCu + ζ

⎫⎬
⎭ . (30.174)

By linearizing the expression for r and introducing the value of ζ, it follows that

r =
⎧⎨
⎩

xCt + θzCu

yCu − φzCu

zCt + Zk − Z

⎫⎬
⎭ , (30.175)

where
xCt = xCu + θ0zCu , zCt = zCu − θ0xCu . (30.176)

Note that the meaning of symbols xCu , yCu , zCu is different for the two suspension
types.

To express r with a single equation, that holds in all cases, it is possible to write

r =
⎧⎨
⎩

xCt + θzCu

yCu − φz1 − φk z2
zCt + Zk − Z

⎫⎬
⎭ , (30.177)

where
z1 = 0 , z2 = zCu, (30.178)

in the case of solid axles, and

z1 = zCn , z2 = 0, (30.179)

in the case of independent suspensions
The velocity of the center of the contact area, expressed in the inertial frame, is

VCN=
[
Ẋ Ẏ Ż

]T + R1ṙ + Ṙ1r . (30.180)

By premultiplying the velocity byRT
1 it is possible to obtain its value in the x∗y∗z∗

frame. Remembering Eq. (30.41), it follows that

VCu= V + ṙ + ψ̇Sr , (30.181)
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where the linearized expression for the derivative of r with respect to time is

ṙ =
⎧⎨
⎩

θ̇zCu

−φ̇z1 − φ̇k z2
Żk − Ż − xCu θ̇

⎫⎬
⎭ . (30.182)

As a first approximation, it is possible to assume that the position of the center of
the contact area of the i th tire Pi coincides with the projection on the ground of the
center of the wheel. The velocity of the center of the contact area is then

VPi=VCu

⎡
⎣
1 0 0
0 1 0
0 0 0

⎤
⎦ =

⎧⎨
⎩

vx + ṙx − ψ̇ry
vy + ṙy + ψ̇rx

0

⎫⎬
⎭ . (30.183)

By performing the relevant computations and linearizing, it follows that

VPi=
⎧⎨
⎩

vx + θ̇zCu − ψ̇yCu

vy − φ̇z1 − φ̇k z2 + ψ̇xt
0

⎫⎬
⎭ . (30.184)

Because the mid-plane of the wheel is rotated by the steering angle δk (possibly
increased by (δk),φ (φ − φk) to account for roll steer) with respect to the x∗z plane,
the usual linearizations allow writing

αk = vy

V
+ ψ̇

xtk
V

− φ̇
z1k
V

− φ̇k
z2k
V

− δk − (δk),φ (φ − φk) , (30.185)

where subscript k refers to the axle.
The twowheels of the same axle are then at the same sideslip angle, aswas the case

for the rigid vehicle. Linearization again allows us to work in terms of axles instead
of single wheels. The terms in φ̇ and φ̇k are usually small and will be neglected in
the following equations.

The sideslip angles are then

αk = vy

V
+ ψ̇

xtk
V

− δk − (δk),φ (φ − φk) . (30.186)

This expression coincides with that obtained for the rigid vehicle, to which roll
steer has been added.



668 30 Multibody Modelling

30.3.5 Generalized Forces

The generalized forces Qk to be introduced into the equations of motion include only
the forces due to tires, aerodynamic forces and possible forces that may be applied
to the vehicle.

The virtual displacement of the left (right) wheel of the kth axle has an expression
similar to Eq. (30.184):

{δsPkL(R)
}x∗ y∗z =

⎧⎨
⎩

δx∗ + δθzCu − δψyCu

δy∗ − δφz1 − δφk z2 + δψxt
0

⎫⎬
⎭ . (30.187)

If coupling between vertical and horizontal displacements of the suspension must
be accounted for, a term

(
∂x

∂z

)

k

(δZ − xtδθ) = (xk),z(δZ − xtδθ)

must be added to the x∗ component of the virtual displacement.
If the forces exerted by the tire in the direction of the x∗ and y∗ axes are

Fx
∗ = Fx p cos

[
δi − (δi ),φφ

] − Fy p sin
[
δi − (δi ),φφ

]
,

Fy
∗ = Fx p sin

[
δi − (δi ),φφ

] + Fy p cos
[
δi − (δi ),φφ

]
,

and assuming that the longitudinal forces acting on thewheels of any axle are equal (if
they are not, it is not difficult to add a yawing torque about the z axis), the expression
of the virtual work is

δLk = δx∗Fx
∗ + δZ(xk),z Fx

∗ + δθFx
∗ (zCu − (xk),z xt

)+

+δy∗Fy
∗ − δφFy

∗z1k − δφk Fy
∗z2k + δψ

{
Fy

∗xtk + Mz
}

.

(30.188)

The generalized forces may be obtained by differentiating the virtual work with
respect to the virtual displacements δx∗, δy∗, δθ, etc. The first two generalized forces
are true forces directed along axes x∗ and y∗ and a suitable rotation matrix can be
used to obtain the forces along the axes of the inertial frame.

Force Fy pi
on the i th tire may be expressed as a linear function of the sideslip and

camber angles αk and

γ0k + (γk),φφ + (γk),φkφk + (γk),z(Z − Zk) .

Terms γ0k and (γk),z(Z − Zk) for the two wheels of any axle cancel each other
in the linearized model, because they produce equal and opposite forces. The side
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forces applied on each axle are then

Fy pk = −Ckαk + Cγk
[
(γk),φφ + (γk),φkφk

]
, (30.189)

where both Ck and Cγk are referred to the whole axle.
Assume that aerodynamic forces are applied to the center of mass of the sprung

mass. The virtual displacement of such a point in the x∗y∗z frame is

{δsGs }x∗ y∗z =
⎧⎨
⎩

δx∗ + hδθ + hφδψ
δy∗ − hδφ + (c + hθ0 + hθ) δψ

δZ − cδθ

⎫⎬
⎭ . (30.190)

The virtual work of aerodynamic forces and moments is

δLa = Fxaδx
∗ + Fyaδy

∗ + FzaδZ+
+ (

M ′
x a − Fyah

)
δφ + (

Fxah − Fzac + M ′
ya + M ′

zaφ
)
δθ+

+ [
Fxahφ + Fya (c + hθ0 + hθ) − M ′

ya(θ0 + θ − φ) + M ′
za

]
δψ .

(30.191)

It is also possible to directly obtain the generalized forces by differentiating the
virtual work with respect to the virtual displacements.

Because the aerodynamic forces are applied in the center of mass of the sprung
mass instead of the center of mass of the vehicle, the aerodynamic moments referred
to the former must be substituted for those defined in the usual way, that is, with
reference to the center of mass of the vehicle:

⎧⎨
⎩

Mxa = M ′
x a − Fyah ,

Mya = M ′
ya + Fxah ,

Mza = M ′
za − Fya (c + hθ0) .

(30.192)

Due to the linearization of the vehicle, force Fxa may be considered as a constant,
while Fya , Mxa and Mza may be considered as linear with angle βa (if there is no
side wind, with angle β), while Fza and Mya may be considered as linear with angle
θ. Neglecting small terms, it follows that

δLaer = Fxaδx
∗ + ∂Fya

∂β
βδy∗ + ∂Fza

∂θ
θδZ+ (30.193)

+
(

∂Mxa
∂β

− ∂Fya
∂β

βh
)

δφ + ∂Mya
∂θ

δθ +
(
Fxahφ + ∂Mza

∂β
β
)

δψ .

The vector of the generalized forces may be obtained by differentiating the virtual
work with respect to the virtual displacements, and eliminating the terms containing
generalized forces multiplied by variables of motion, which would lead to nonlinear
terms once the generalized forces are expressed as functions of the same variables
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Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx1 + Fx2 + Fxa

∑
∀k

{−Ckαk + Cγk
[
(γk),φφ + (γk),φkφk

]} + ∂Fya
∂β

β

−(xi1),z Fx1 − (xi2),z Fx2 + ∂Fza
∂θ

θ + (
Fza

)
θ=0

∑
∀k z1,k

{−Ckαk + Cγk
[
(γk),φφ + (γk),φkφk

]} − ∂Mxa
∂β

− ∂Fya
∂β

βh

Fx1
(
zCn1 − (xi1),z xt1

) + Fx2
(
zCn2 − (xi2),z xt2

) + ∂Mya
∂θ

θ+
+ (

Mya

)
θ=0

∑
∀k

(
∂Mz1

∂α
α1 + xwi A

{−Ckαk + Cγk
[
(γk),φφ + (γk),φkφk

]})+
+ Fxahφ + ∂Mza

∂β
β

0

z2,1
{−C1α1 + Cγ1

[
(γ1),φφ + (γ1),φ1φ1

]}

0

z2,2
{−C2α2 + Cγ2

[
(γ2),φφ + (γk),φ2φ2

]}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(30.194)
The term

Fx 1

[
δ1 − (δ1),φ (φ − φ1)

] + Fx2
[
δ2 − (δ2),φφ (φ − φ2)

]

should be included in the generalized force Qy . It results from the component of the
longitudinal force of the tire in the direction of the y axis of the vehicle due to the
steering angle. It is a small term, owing to the small size of the longitudinal force Fx

when compared to the cornering stiffness, and is usually neglected. A similar term
should also be included in Qψ, but is usually neglected as well.

The vector of the generalized forces so obtained may be used directly in the
equation of motion, because it is referred to the pseudo-coordinates x∗, y∗ and to
coordinates Z , φ, θ, ψ, etc.

30.3.6 Final Form of the Equations of Motion

Remembering that the steering angles are small, it is easy to pass from the forces
expressed in a frame fixed to the vehicle to one fixed to the tires. The equations of
motion then take their form.
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First equation: longitudinal translation

meV̇ + θ̈Js2 = Fx1 + Fx2 − 1

2
ρV 2SCx . (30.195)

Second equation: lateral translation

The sideslip angles, and then the cornering forces, may be easily expressed as func-
tions of the variables of motion. Assuming that the steering angles of the axles are
proportional to a reference value δ through constants K ′

k :

δk = K ′
kδ (30.196)

and adding a side force Fye applied to the vehicle, it follows that

Qy = Yvvy + Ywψ̇ + Yφφ + Yφ1φ1 + Yφ2φ2 + Yδδ + Fye , (30.197)

where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Yv = − 1
V

∑
∀k Ck + 1

2ρVaS(Cy),β ,
Yw = − 1

V

∑
∀k xwkCk ,

Yφ = ∑
∀k Ci (δk),φ + ∑

∀k Cγk(γk),φ ,
Yφk = Cγk(γk),φ ,
Yδ = ∑

∀k K
′
kCk .

(30.198)

The second equation then becomes

mv̇y − Js3φ̈ − ∑
∀k mkβ5k φ̈k = Yvvy + Yψ̇ψ̇+

+Yφφ + ∑
∀k Yφkφk + Yδδ + Fye ,

(30.199)

where
Yψ̇ = Yw − meV . (30.200)

Third equation: vertical translation

By introducing the generalized forces into the third equation, it follows that

ms Z̈ − mscθ̈ + Zż Ż + Z θ̇ θ̇ + Zż1 Ż1 + Zż2 Ż2 + Zz Z + Zθθ+

+Zz1Z1 + Zz2Z2 + ∑
∀k (K11k Z0 − K12k Z0k − K13θ0) = −msg+

+V̇
∑

∀k mkβ3k + 1
2ρV

2S(CZ )θ=0 − (xi1),z Fx1 − (xi2),z Fx2 ,

(30.201)
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where
⎧⎪⎪⎨
⎪⎪⎩

Zż = ∑
∀k c11k , Z θ̇ = −∑

∀k c13k ,
Zżk = −c12k , Zz = ∑

∀k K11k ,
Zθ = −∑

∀k K13k − 1
2ρV

2S(Cz),θ − V̇
∑

∀k mk ,
Zzk = −K12k .

(30.202)

Fourth equation: roll rotation

Operating with the same methods used for the second equation, and linearizing
the kinematic equations, the generalized forces may be written as functions of the
variables of motion. The final form of the fourth equation can thus be obtained,

Jx φ̈ − Jxzψ̈ − Js3v̇y = Lvvy + L ψ̇ψ̇ + L φ̇φ̇ + Lφφ+

+∑
∀k L /φk φ̇k + ∑

∀k Lφkφk + Lδδ ,
(30.203)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lv = − 1
2ρVaS

[
h(Cy),β + t (CMx ),β

] − 1
V

∑
∀k Ckz1k ,

L ψ̇ = − 1
V

∑
∀k xwk z1kCk + ∑

∀k 2V
1
Rek

Jpwk + Js3V ,
L φ̇ = −∑

∀k cφk ,
Lφ = Mg3 − ∑

∀k
[
Kφk + Ck(δk),φz1k + Cγk(γk),φz1k

]
,

L φ̇k = cφk ,
Lφk = Kφk − Cγk(γk),φk z1k + Ck(δk),φz1k ,

Lδ = ∑
∀k

(
K ′

kCkz1k + 2 V̇
Re

β21

)
.

(30.204)

Fifth equation: pitch rotation

Jy θ̈ − mscZ̈ + V̇ Js2 − ∑
∀k β16k Z̈k + Mż Ż + Mθ̇ θ̇ + ∑

∀k Mżk Żk+

+MzZ + Mθθ + ∑
∀k Mzk Zu + K33kθ0 − K13k Z0 + K23k Zk0 = Mg1+

+ (
Myaer

)
θ=0 − ∑

∀k Fx1
(
zCu1 − (xi1),z xt1

) + Fx2
(
zCu2 − (xi2),z xt2

)
,

(30.205)
where ⎧⎪⎪⎨

⎪⎪⎩

Mż = Z θ̇ = −∑
∀k c13k , Mθ̇ = ∑

∀k c33k ,
Mżk = c23k , Mz = −∑

∀k K13k − mkV̇ ,
Mθ = − 1

2ρV
2
a S(C ′

My
),θ − Mg2 + ∑

∀k K33k ,
Mzk = K23k + mkV̇ .

(30.206)
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Sixth equation: yaw rotation

Jzψ̈ − Jxzφ̈ + ∑
∀k β14k φ̈k = Nvvy + Nψ̇ψ̇ + Nφ̇φ̇+

+Nφφ + ∑
∀k Nφkφk + Nδδ + Mze ,

(30.207)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nv = + 1
2ρVaSl(C ′

Mz
),β + 1

V

∑
∀k

[
−xwkCk + (Mzk),α + 2Jpwk

(
V
Re

)2]
,

Nψ̇ = 1
V

∑
∀k

[
x2wkCk + xwk(Mzk ),α

]
,

Nφ̇ = −2V
∑

∀k
1
Re
Jpwk ,

Nφ = −Js3V̇ − 1
2ρV

2ShCx + ∑
∀k

[
xwkCk(δk),φ + xwkCγk(γk),φ

−(Mzk),α(δk),φ − 2V̇ 1
Re
Jpwk

]
,

Nφk = xwkCγk(γk),φ − mkV̇β5k − xwkCk(δk),φ + (Mzk ),α(δk),φ ,

Nδ = ∑
∀k

[
xwk K ′

kCk − (Mzk),α
]

.

(30.208)
Seventh and ninth equations: translations of axles

mk Z̈k − β16k θ̈ + Zkzk Zk + Zzk Z + Mzkθ+

+Zkżk Żk + Zżk Ż + Mżk θ̇ + (
K22k + Kpzk

)
Zk0+

−K12k Z0 + K23kθ0 = −mkV̇β3k − gmk ,

(30.209)

where
Zkżk = c22k + cpzk , Zkzk = K22k + Kpzk (30.210)

and the other coefficients have already been defined.

Eighth and tenth equation: rotation of axles

β13k φ̈k + β14kψ̈ − muk v̇yβ5k =

= Lkββ + Lkψ̇ψ̇ + Lkφφ + Lkφ̇φ̇ + Lkφkφi + Lkφ̇k φ̇i + Lkδδ ,

where
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lkv = − 1
V z2kCk ,

Lkψ̇ = +mkVβ5k − 1
V xwk z2kCk ,

Lkφ̇ = L φ̇k ,
Lkφ̇k = − (

cφk + cpφk
)
,

Lkφ = +Kφk − z2k
[
Ck(δk),φ + Cγk(γk),φ

]
,

Lkφk = +gmkβ23k − (
Kφk + Kpφk

) − z2k
[
Cγk(γk),φ − Ck(δk),φ

]
,

Lkδ = 2K ′
k V̇

1
Rek

β20k .

(30.211)

30.3.7 Handling-Comfort Uncoupling

The 10 equations of motion (6 + 2n equations in the generic case of a vehicle with
n axles) obtained in the previous section constitute a set of linear second-order
differential equations, even if the order of such a set is only 17 (9 + 4n) because
three of the unknowns, namely x∗, y∗ and ψ, are present only with their derivatives
V , vy and ψ̇.

However, a detailed examination of such equations shows clearly that, if the speed
V of the vehicle (which in the linearized model may be confused with its component
vx along the x∗ axis) is a known function of time, the equations form two completely
uncoupled sets of 5 (3 + n) equations each.

The first set contains only the generalized coordinates y∗, ψ, φ and φk (y∗ is not
a true but a pseudo-coordinate): as a consequence, it deals with the lateral behavior
of the vehicle, or, as is usually said, its handling.

The second set contains the generalized coordinates x∗, Z , θ and Zk , dealing with
the “suspension motion” of the vehicle—its ride behavior. This set can be further
uncoupled by separating the first equation, that regarding x∗ coordinate (i.e. dealing
with the longitudinal dynamics of the vehicle), and the following (2 + n) equations
containing coordinates Z , θ and Zk which allow ride comfort in a proper sense to be
studied.

This uncoupling is an interesting result, even if it is strictly linked with a num-
ber of assumptions and, as a consequence, becomes inapplicable if one of them is
dropped. The first assumption is the existence of a plane of symmetry, the xz plane.
Usually the lack of inertial symmetry of the structure and the differences between
the characteristics of the individual springs and shock absorbers located at opposite
sides of the vehicle are small enough to be neglected. However, it can happen that the
payload of the vehicle is placed asymmetrically, leading to a position of the centre
of mass outside the symmetry plane and to non-vanishing moments of inertia Jxy
and Jyz .

A second assumption is that of a perfect linearity of the behavior of the springs
and shock absorbers. The linearity of the elastic behavior of springs and tires is
an acceptable assumption in the motion about any equilibrium position, provided
that its amplitude is small. The nonlinearity of the shock absorbers, on the other
hand, cannot in principle be neglected even in the motion “in the small” if their
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force-velocity characteristic is unsymmetrical, because in the jounce and rebound
movements they act with different damping coefficients even if the amplitude of the
motion tends to zero. This issue has already been dealt with in detail in Part IV.

A third assumption regards angles β, αk , θ0, θ, φ and φk , which must be small
enough to allow the linearization of their trigonometric functions. This assumption
holds only for small displacements from the equilibrium position and also depends
on the characteristics of the vehicle: The harder the suspensions, the more extended
the range in which this assumption holds. In general, the mentioned angles are small
enough in all normal driving conditions, except for vehicles with two wheels that
may operate with large roll angles.

The linearization of the tire behavior in terms of the generation of longitudinal
and cornering forces and aligning torques is not strictly required for uncoupling:
Even if nonlinear laws Fy(α), Fy(γ), Mz(α), etc. are introduced into the equations
of motion, the two sets of equations for handling and ride would remain uncoupled,
although nonlinear. This last statement is important, because the linear model for the
behavior of the tires holds only for values of angles α and γ far smaller than those
allowing the trigonometric functions to be linearized.

The kinetic energy linkedwithwheel rotationwas taken into account in themodel,
with gyroscopic torques due to the wheels included in the equations. If their plane
of rotation is close to the xz plane, this effect does not prevent uncoupling.

Some assumptions have been made on the modelling of the suspensions that are
better suited for solid axles than for independent suspensions. While unavoidable
kinematic errors cannot be accounted for in this way, it will be shown that this does
not affect uncoupling.

The interaction between cornering forces and loads in the x and z direction on the
tires should actually couple all equations. If the same approximated approach used
for rigid vehicles is also adopted in the present case, however, it is possible to resort
to uncoupled equations.

The uncoupledmodel, even if it represents only a first approximation, is important
for two reasons. First, it sheds light on the actual behavior of road vehicles and gives
a theoretical foundation to the practice of using separate approximate models for
the study of handling and ride characteristics. Second, simple linearized models,
allowing closed form solutions to be obtained, are well suited for optimization and
parametric studies.

Clearly, there is no need to uncouple the equations. Comprehensive, detailed
nonlinear models can be used if numerical simulations are performed. The limit in
this case may well be the unavailability of good estimates of the numerical values of
many parameters that must be entered into the equations.
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30.3.8 Handling of a Vehicle on Elastic Suspensions

The explicit formulation of the mathematical model for the handling of a vehicle
with two axles is then

M1q̈1 + C1q̇1 + K1q1 = F1 , (30.212)

where
q1 = [

y∗ ψ φ φ1 φ2
]T

,

M1 =

⎡
⎢⎢⎢⎢⎣

m 0 −Js3 −m1β5,1 −m2β5,2

Jz −Jxz β14,1 β14,2

Jx 0 0
β13,1 0

symm. β13,2

⎤
⎥⎥⎥⎥⎦

,

C1 =

⎡
⎢⎢⎢⎢⎣

−Yv −Yψ̇ 0 0 0
−Nv −Nψ̇ −Nφ̇ 0 0
−Lv −L ψ̇ −L φ̇ −L φ̇1

−L φ̇2−L1v −L1ψ̇ −L φ̇1
−L1φ̇1 0

−L2v −L2ψ̇ −L φ̇2
0 −L2φ̇2

⎤
⎥⎥⎥⎥⎦

,

K1 =

⎡
⎢⎢⎢⎢⎣

0 0 −Yφ −Yφ1 −Yφ2

0 0 −Nφ −Nφ1 −Nφ2

0 0 −Lφ −Lφ1 −Lφ2

0 0 −L1φ −L1φ1 0
0 0 −L2φ 0 −L1φ2

⎤
⎥⎥⎥⎥⎦

,

F1 = δ
[
Yδ Nδ Lδ L1δ L2δ

]T + [
Fye Mze 0 0 0

]T
.

As already stated, coordinates y∗ and ψ are present only with their derivatives7:
The order of the set of differential equations is then 8 instead of 10.

The mass matrix is symmetrical, as can be readily predicted. The other two matri-
ces are not symmetrical; for instance, the damping matrix C1 contains symmetrical
terms, like L φ̇1

and L φ̇2
that are linked with the roll damping of the axles, and skew

symmetric terms, like

2V
1

Rek
Jpwk ,

due to the gyroscopic moment of the wheels of each axle, contained in L ψ̇ and, with
opposite sign, in Nφ̇. The other terms in Jpwk are not due to gyroscopic effects but
wheel acceleration (terms in Lδ and Lkδ) or the equivalent mass (term in Nv), and
thus have no particular symmetry properties. Other terms due to generalized forces,

7They have no physical meaning.
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such as the terms present in the stiffness matrix, are neither symmetrical nor skew
symmetrical.

Even if it is possible to separate the symmetrical and the skew-symmetrical parts
of the variousmatrices (so defining a gyroscopic and a circulatorymatrix), the advan-
tages so obtained do not justify the work.

If a state-space approach is used (Eq. (A.5)), by introducing the state variables
p = φ̇, p1 = φ̇1, p2 = φ̇2 and r = ψ̇, the relevant vectors and matrices are:
– State vector

z = [
v r p p1 p2 φ φ1 φ2

]T
, (30.213)

– Dynamic matrix

A =

⎡
⎢⎢⎣

−M−1
1 C1 −M−1

1 K∗
1⎡

⎣
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎦

⎡
⎣
0 0 0
0 0 0
0 0 0

⎤
⎦

⎤
⎥⎥⎦ , (30.214)

where K∗
1 is matrix K1 with the first two columns cancelled.

– input gain matrix

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

−M−1
1

⎡
⎢⎢⎢⎢⎣

Yδ 1 0
Nδ 0 1
Lδ 0 0
L1δ

0 0
L2δ

0 0

⎤
⎥⎥⎥⎥⎦

[0]3×3

⎤
⎥⎥⎥⎥⎥⎥⎦

, (30.215)

– input vector
u = [

δ Fye Mze

]T
. (30.216)

This approach may be used for the study of the stability of the vehicle or for
computing its response to the various inputs, as previously seen for rigid vehicle
models. This model is only marginally more complex if numerical solutions are
searched.

Even if the complexity of the model is not a factor, it is interesting to perform a
simplification allowing one to reduce its size without sacrificing its applicability to
actual problems.Because the stiffness of the tires in the z direction ismuchhigher than
that of the suspensions, their compliance becomes important only in high frequency
motions, much higher than the frequencies involved in the handling of the vehicle. As
a consequence, if the compliance of the tires is neglected, which amounts to stating
that φ1 and φ2 and their derivatives are vanishingly small, the model reduces to a set
of three equations (four first-order equations in the state-space approach) that retains
most of the features of the complete, five equation set.

Because yawingmoments due to load shift were not included in the presentmodel,
the three equations of motion may be obtained directly from those of the previous
model by stating
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φ1 = φ2 = 0 .

The sideslip angle β is often used in handlingmodels instead of the lateral velocity
vy as a variable of motion, and the yaw velocity is indicated as r . Remembering that

vy = Vβ , ψ̇ = r ,

it follows that

⎧⎨
⎩
mV β̇ − Js3φ̈ = (

VYv − mV̇
)
β + Yψ̇r + Yφφ + Yδδ + Fye ,

Jzṙ − Jxzφ̈ = NvVβ + Nψ̇r + Nφ̇φ̇ + Nφφ + Nδδ + Mze ,
Jx φ̈ − Jxzṙ − Js3V β̇ = (

LvV + Js3V̇
)
β + L ψ̇r + L φ̇φ̇ + Lφφ + Lδδ ,

(30.217)
where terms YvV , NvV and LvV are often written as Yβ , Nβ and Lβ .

If the terms in V̇ are dropped, the same set of equations frequently described in
the literature8 is obtained. There is, however, a difference: The model described here
is obtained from the complete model of the vehicle with elastic suspensions through
uncoupling and controlled simplifications, while that model is obtained through a
number of more or less arbitrary assumptions. Moreover, this model accounts for the
rotation of the wheels.

The study of either the stability or the response to a steering input or external
force or moment is straightforward and follows the same lines seen for the rigid
vehicle. Here the presence of an equation containing the first and second derivative
of a generalized coordinate φ together with the coordinate itself may induce an
oscillatory behavior. If roll oscillations are strongly coupled with those of the other
variables of the motion (namely β and r ), as may be caused by roll steer, the overall
behavior may become strongly oscillatory and dynamic stability may be decreased.

The steady-state response of the vehicle is easily obtained from the following set
of algebraic equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

m
V 2

R
= Yββ + Yψ̇

V

R
+ Yφφ + Yδδ + Fye ,

0 = Nββ + Nψ̇
V
R + Nφφ + Nδδ + Mze ,

−Js3
V 2

R
= Lββ + L ψ̇

V

R
+ Lφφ + Lδδ ,

(30.218)

where the steady-state curvature of the trajectory

1

R
= r

V

has been explicitly introduced.

8See for example W. Steeds,Mechanics of Road Vehicles, ILIFFE & Sons, London, 1960.
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By solving equations (30.218) in 1/R and neglecting external forces, the path
curvature gain 1/Rδ is readily obtained,

1

Rδ
= DC − AE

V (BC − AF)
, (30.219)

where
A = NβLφ − NφLβ, B = Js3V Nφ − Nψ̇Lφ + NφL ψ̇,

C = YβNφ − YφNβ, D = NδLφ − NφLδ,

E = YδNφ − YφNδ, F = mV Nφ − Yψ̇Nφ + YφNψ̇ .

30.3.9 Ride Comfort

The explicit formulation of the mathematical model for ride comfort of a vehicle
with two axles is

M2q̈2 + C2q̇2 + K2q2 + K2stq2st = F2 + F2st , (30.220)

where
q2 = [

x∗ Z θ Z1 Z2
]T

,

q2st = [
0 Z0 θ0 Z10 Z20

]T
,

M2 =

⎡
⎢⎢⎢⎢⎣

mat 0 Js2 0 0
ms −msc 0 0

Jy −β16,1 −β16,2

m1 0
symm. m2

⎤
⎥⎥⎥⎥⎦

,

C2 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 Zż Z θ̇ Zż1 Zż2

0 Mθ̇ Mż1 Mż2

0 Z1ż1 0
0 symm. Z2ż2

⎤
⎥⎥⎥⎥⎦

,

K2 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 Zz Zθ Zz1 Zz2

0 Mz Mθ Mz1 Mz2

0 Zz1 Mz1 Z1z1 0
0 Zz2 Mz3 0 Z2z2

⎤
⎥⎥⎥⎥⎦
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Kst =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 K11 K13 −K12,1 −K12,2

0 K33 K23,1 K23,2

0 K22,1 0
0 symm. K22,2

⎤
⎥⎥⎥⎥⎦

,

F2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Fx1 + Fx2 − 1
2ρV

2SCx

1
2ρV

2S(CZ )θ=0 + V̇
∑

∀k
[
mkβ3k − (xik),z Fxk

]
(
Myaer

)
θ=0 − ∑

∀k Fxk
(
zCuk − (xik),z xtk

)

−m1V̇β3,1

−m2V̇β3,2

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,

F2st = [
0 −msg Mg1 −gm1 −gm2

]T
.

In the reference condition, all variables of motion included in vector q2 vanish. It
then follows that

K2stq2st = F2st . (30.221)

Equation (30.221) allows the values of Z0, θ0, etc.,—the static equilibrium
condition—to be computed. Although it is arbitrary to use the linearized equation for
computing the static equilibrium condition, because Z0 and Zk0 are not, generally,
small quantities, this approximation influences the reference condition so obtained
but is immaterial for the study of the small oscillations about that condition and thus
does not detract from the dynamic study in the small here shown.

By introducing Eq. (30.221) into Eq. (30.220), it follows that

M2q̈2 + C2q̇2 + K2q2 = F2 . (30.222)

The mass and damping matrices are symmetrical. The stiffness matrix is symmet-
rical except for the terms in position 23 and 32: in Zθ a term of aerodynamic origin
is present, due to changes to aerodynamic lift caused by the pitch angle that is absent
from Mz . A similar term in Mz would denote a change in the pitching moment due
to vertical displacements that does not exist.

The first equation of the second set of five differential equations, that related to
the longitudinal dynamics, is weakly coupled with the others and may be written in
the form

V̇ = Js θ̈ + ∑
∀i Fx i + 1

2ρV
2
a SCx

m
. (30.223)

By introducing Eq. (30.223) into the other equations, the following set of four
equations describing the suspension motions of a vehicle with two axles is obtained,

M3q̈3 + C3q̇3 + K3q3 = F3 , (30.224)
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where
q3 = [

Z θ Z1 Z2
]T

,

M3 =

⎡
⎢⎢⎢⎢⎣

ms −msc 0 0

Jy − J 2
s2

mat
0 0

m1 0
symm. m2

⎤
⎥⎥⎥⎥⎦

,

matrices C3 and K3 coincide with matrices C2 and K2 without the first row and
column, and

F3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2ρV

2S(CZ )θ=0 + V̇
∑

∀k
[
mkβ3k − (xik),z Fxk

]
1
2ρV

2
a S

[
− Js2

mat
Cx + l(CMy )θ0

]
− ∑

∀k Fxk

(
zCuk − (xik),z xtk + Js2

mat

)

−m1V̇β3,1

−m2V̇β3,2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

The expression for the generalized forces F3 was obtained assuming that the
reference configuration corresponds to the static equilibriumpositionwith the vehicle
at standstill andwith no force Fx i . In such a condition, all generalized coordinates are
equal to zero, because they were defined as displacements from the same condition.

The equations were written with reference to coordinate Z , i.e., to the changes of
the vertical displacement of point H in Fig. 30.3, which results in an inertial coupling.
To study ride comfort it is better to refer to the vertical displacements of point H′,
so that the equations of motion have no inertial coupling, i.e. the mass matrix is
diagonal. By introducing the coordinate

zs = Z − c(θ + θ0)

of point H′, the mass matrix becomes

M3 =

⎡
⎢⎢⎣
ms 0 0 0

J ∗
y 0 0

m1 0
symm. m2

⎤
⎥⎥⎦ , (30.225)

where

J ∗
y = Jy − c2ms − J 2

s2

me
.

The damping and stiffness matrices are unchanged, provided that the distances xi
of wheels, springs and dampers are substituted by xi − c. All matrices, except the
stiffness matrix, remain symmetrical.
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Fig. 30.8 a Model with four degrees of freedom for the study of ride comfort; b model in which
the sprung mass is simulated by two separate masses. Lengths a and b are the same as for the
rigid vehicle, a = x1 and b = −x2. Note that the longitudinal positions of the springs and shock
absorbers are assumed to be coincident (xi = xmi = xai )

If the aerodynamic term causing the lack of symmetry of the stiffness matrix is
neglected, which introduces only a small error because of the small size of the term,
the system may be sketched as in Fig. 30.8a. The vehicle is modelled as a beam with
elastic and damped supports, connected to the ground through the unsprung masses.

The quasi-static equilibrium attitude of the vehicle, which is different from the
reference position because it takes into account both longitudinal forces on the tires
and aerodynamic forces, can be immediately obtained from the steady-state solution
of Eq. (30.224). Even if the acceleration of the vehicle does not appear explicitly in
the equations, it is accounted for through forces Fx i .

The dynamic response of the vehicle to motion on uneven road is easily computed
by assuming that points A and B move in a vertical direction with laws

hA(t) = h(V t) and hB(t) = h(V t + l) ,

where h(x) is a function expressing the road profile. This amounts to exciting the
two masses m1 and m2 with two forces equal to

Kpz1hA(t) + cpz1 ḣ A(t) and Kpz2hB(t + τ ) + cpz2ḣ B(t + τ )

respectively, where τ = V/ l is the delay due to the wheelbase.
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30.3.10 Conclusions

The linearized model with 10 degrees of freedom for a vehicle with two axles, or
more generally the model with 6 + 2n degrees of freedom for a vehicle with n axles,
splits into three separate models, namely

• Model for longitudinal behavior, or performance model. The model includes a
single degree of freedom, coordinate x∗ (or better the forward speed V , because
on a curved trajectory x∗ is not a true coordinate), and allows the relationship
between the longitudinal forces at the wheel-road contact and the vehicle speed to
be computed, along with acceleration and braking performance. A detailed model
of the tires may be introduced if their longitudinal slip is accounted for, as well
as a model of the transmission and possibly of the engine. A model of the driver,
intended as controller of the longitudinal motion through the accelerator and brake
pedals, may also be introduced. Note that, owing to linearization, the longitudinal
behavior on a curved trajectory coincides with that on straight road and thus with
that studied in Chap. 23.

• Model for lateral behavior, or handling model. This model includes the degrees
of freedom of lateral displacement (or better, lateral velocity, for the reasons cited
above) and the yaw angle, which are the same degrees of freedom seen for the study
of the handling of a rigid vehicle, plus the degrees of freedom related to the rolling
of the vehicle body and of the axles. In such a model the input is the steering angle,
but this can be easily modified to study the motion with free controls, possibly
introducing a driver model as a steering controller as well. It has been assumed
that the variations of the steering angle are slow enough to neglect its derivative
δ̇. The presence of gyroscopic torques has no effect on the uncoupling between
handling and comfort models, because a mass rotating about the y axis couples
yaw and roll motions, both belonging to this model.

• Model for suspension motions, or ride comfort model. This model includes the
degrees of freedom for vertical motion of the body (heave motion) and the axles,
plus the pitch angle. Uncoupling between the longitudinal and comfort model is
not complete, as shown by the pitching motions due to braking (dive) or driving
(lift or squat). In the present chapter, the changes of longitudinal acceleration
have been assumed to occur slowly. The changes of pitch angle may therefore
be considered as a quasi static phenomenon, introduced into the equations by the
longitudinal tire-road contact forces. In cases where longitudinal forces change
quickly, ride comfort and longitudinal behavior (as well as transmission behavior)
must be studied jointly.
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30.4 Models of Deformable Vehicles

The assumption that the vehicle body can be considered as a rigid body is clearly an
approximation that may be, in some cases, quite rough. This is particularly true of
industrial vehicles and some passenger vehicles, such as open cars, whose stiffness
is lower than usual.

If the body of the vehicle is not stiff, the position of any point P in the same inertial
reference frame OXiYi Zi shown in Fig. 30.3 and already used to study the model
based on rigid bodies, may be written in the form

(P−O’) = (Pu−O’) + sP , (30.226)

where (Pu−O’) is the position of point P obtained by neglecting the deformation of
the body and

sP = [ux , uy, uz]TP , (30.227)

is the displacement function of time, due to compliance.
The position of P in undeflected conditions may be expressed by an equation

similar to Eq. (30.11), and then

(P−O’) = (H−O’) + R (rP + sP) , (30.228)

where vector
rP = [x, y, z]TP , (30.229)

is the vector, independent from time, leading from point H to point P, expressed in
the reference frame of the sprung mass.

The velocity of point P is then

VP = [
Ẋ Ẏ Ż

]T + Ṙ (rP + sP) + RṡP (30.230)

or, by introducing the velocity V in the reference frame x∗y∗z:

VP = R1V + Ṙ (rP + sP) + RṡP . (30.231)

By remembering that pitch and roll angles are small, and introducing matrix

R23 = R2R3 ≈
⎡
⎣

1 0 θ0 + θ
0 1 −φ

−θ0 − θ φ 1

⎤
⎦ ,

it is possible to write

VP = R1
[
V + (

Ṙ23 + ψ̇SR23
)
(rP + sP) + R23ṡP

]
, (30.232)
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where

S ≈
⎡
⎣
0 −1 0
1 0 0
0 0 0

⎤
⎦ .

The kinetic energy of the infinitesimal element of massat coordinates x, y, z is

dT = 1
2dm

[
VTV + rTP

(
Ṙ23 + ψ̇SR23

)T (
Ṙ23 + ψ̇SR23

)
rP+

+2VT
(
Ṙ23 + ψ̇SR23

)
rP + sTP

(
Ṙ23 + ψ̇SR23

)T (
Ṙ23 + ψ̇SR23

)
sP+

+2VT
(
Ṙ23 + ψ̇SR23

)
sP + ṡTPR

T
23R23ṡP + 2VTR23ṡP+

+2ṡTPR
T
23

(
Ṙ23 + ψ̇SR23

)
(rP + sP)

]
.

(30.233)

The sum of the first three terms (those not containing the deformation sP or its
derivatives) is the kinetic energy dTR of the same mass element in a rigid motion.
The other terms may be greatly simplified if the products of more than two small
quantities are neglected. Because the deformations sP and their derivatives are small
quantities, it follows that

dT = dTR + 1
2dm

(
u̇2x + u̇2y + u̇2z

) + dm vx
[
θ̇uz − ψ̇uy+

+u̇x + (θ + θo) u̇z
] + dm u̇x

(
θ̇z−ψ̇y

)+
+dm u̇y

(
vy − φ̇z + ψ̇x

) + dm u̇z
(
vz − θ̇x + φ̇y

)
.

(30.234)

The deformation of the sprung mass can be expressed in terms of its modal
coordinates, i.e., as a linear combination of the eigenfunctions of the undamped
system. Note that this remains true even if the sprung mass is damped and even
for nonlinear systems. Because the sprung mass has a plane of symmetry (in the
present case the xz plane), its modes may be subdivided into symmetrical and skew-
symmetrical modes, designated by subscripts s and a in the following equations.

The displacements sP = [ux , uy, uz]T of point P(x, y, z) can thus be expressed as

⎧⎨
⎩
ux

uy

uz

⎫⎬
⎭ = Qs(x, y, z)ηs(t) + Qa(x, y, z)ηa(t) , (30.235)

whereQi (x, y, z) are matrices containing the eigenfunctions while ηi (t) are vectors
containing the modal coordinates. Equation (30.235) is exact only if an infinity of
eigenfunctions and modal coordinates are considered; however, a very good approx-
imation is usually obtained by taking into account a small number of modes, particu-
larly if the system is linear and lightly damped. Themodes considered in the equation
are those of the free structure; the rigid-body modes need not be considered because
they have already been included in the rigid-body analysis already performed.

Instead of using the eigenfunctions, a set of arbitrary functions of the space coor-
dinates may be used, as is common in the assumed modes methods for structural
analysis; in this case, however, the number of coordinates needed to obtain a good
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approximation is higher and depends on the choice of the arbitrary functions: More-
over, the mass and stiffness matrices are not diagonal, as they are when using the
eigenfunctions.

Let A and B be two points located in symmetrical positions with respect to the
xz plane. It follows that

uxA = uxB , uyA = −uyB , uzA = uzB

for symmetrical modes and

uxA = −uxB , uyA = uyB , uzA = −uzB

for skew-symmetrical ones. As a consequence of symmetry, some relevant integrals
extended to the whole unsprung mass may be written in a much simplified form

∫
m

⎧⎨
⎩
ux

uy

uz

⎫⎬
⎭ dm =

⎧⎨
⎩
A
0
C

⎫⎬
⎭ηs +

⎧⎨
⎩

0
B
0

⎫⎬
⎭ηa ,

∫
m

x

⎧⎨
⎩
ux

uy

uz

⎫⎬
⎭ dm =

⎧⎨
⎩
N
0
F

⎫⎬
⎭ηs +

⎧⎨
⎩

0
D
0

⎫⎬
⎭ηa ,

∫
m
y

⎧⎨
⎩
ux

uy

uz

⎫⎬
⎭ dm =

⎧⎨
⎩

0
H
0

⎫⎬
⎭ηs +

⎧⎨
⎩
E
0
G

⎫⎬
⎭ηa ,

∫
m
z

⎧⎨
⎩
ux

uy

uz

⎫⎬
⎭ dm =

⎧⎨
⎩
I
0
L

⎫⎬
⎭ηs +

⎧⎨
⎩

0
M
0

⎫⎬
⎭ηa ,

∫
m

(
u2x + u2y + u2z

)
dm = ηT

s Msηs + T
a Maηa ,

(30.236)

where the diagonal matricesMs andMa are themodalmassmatrices for symmetrical
and skew-symmetrical modes, and where matrices from A to N are row matrices
whose size is 1 × n, where n is the number of modal coordinates (either symmetrical
or skew-symmetrical) that are considered.

By integrating Eq. (30.234), the kinetic energy of the sprung mass reduces to

T = TR + 1
2 η̇

T
s Ms η̇s + 1

2˙Ta Maη̇a + ψ̇ (D − E) η̇a + θ̇ (I − F) η̇s+

+φ̇ (G − M) η̇a + V
[
Aη̇s + θ̇Cηs + (θ + θ0) Cη̇s − ψ̇Bηa

]+vyBPa+vzCη̇s .
(30.237)

The gravitational potential energy of the sprung mass may be expressed in the
form
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UgS = g

∫
m
Z pdm = g

∫
m
eT3

[
(H−O’) + R (rP + sP)

]
dm . (30.238)

It then follows that

UgS = g (Z + Z0)ms + g

∫
m
eT3 R23rPdm + g

∫
m
eT3 R23sPdm . (30.239)

The first two terms are the potential energyUgR of the rigid body computed above.
By introducing the linearized expression of matrix R23 it follows that

UgS = UgR + g

∫
m

[− (θ + θ0) ux + φuy + uz
]
dm , (30.240)

or, by introducing the modal coordinates to express the deformation of the vehicle
body,

UgS = UgR + g [− (θ + θ0)As + φBa + Cs] .

Thedeformation potential energyof the springs of the kth suspension is still expressed
by Eq. (30.79), to which the terms linked with the deformation modes are added.
Assuming that the points of attachment of the springs of the left (right) kth suspension
are xi , ±yi and zi , it follows that

Umk = 1

2
Kζ

(
ζ + ζ0 − Qzskηs

)2 + 1

2
Kφ

(
φ − φk − Qzakηa

)2
, (30.241)

where Qzsk and Qzak are the parts of the matrices of the eigenfunctions for symmet-
rical and skew-symmetrical modes linked to uz computed at the point of coordinates
xi , yi , zi .

The potential energy of the kth suspension is then

Umk = UmR + 1
2η

T
s K44ηs + K14 (Z + Z0) ηs + K24 (Zk + Zk0) ηs+

+K34 (θ + θ0) ηs + 1
2Kφη

T
a Q

T
zakQzakηa − KφφQzakηa + KφφkQzakηa ,

(30.242)
whereK44 is a square matrix of size ns × ns (where ns is the number of symmetrical
modes considered), while K14, K24 and K34 are row matrices of size 1 × ns .

The deformation potential energy of the tires of the kth suspension is expressed
by Eq. (30.81) without any change. The potential energy due to the deformation of
the sprung mass is obviously

UR = 1

2
ηT
s Ksηs + 1

2
ηT
a Kaηa , (30.243)

where Ks and Ka are the modal stiffness matrices.
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In a similar way, the Raleigh dissipation functionof the shock absorbers of the kth
suspension is

Fak = FakR + 1
2 η̇

T
s c44η̇s + c14 Ż η̇s + c24 Żk η̇s + c34θ̇η̇s+

+ 1
2cφη̇

T
a Q

T
zakaQzak η̇a − cφφ̇QzakaPa + cφφ̇kQzakaη̇a ,

(30.244)

where FakR is the function seen before for the rigid vehicle, matrices ci j are similar
to matrices Ki j seen above and Qzaka is similar to Qzak , but referred to the points
where the shock absorbers are attached.

The Raleigh dissipation function for the tires (Eq. 30.84) is unchanged, while that
linked with deformation modes of the sprung mass is

FR = 1

2
η̇T
s Cs η̇s + 1

2
η̇T
a Caη̇a , (30.245)

where Cs and Ca are the modal damping matrices. Note that the last expression is
just an approximation, because modal damping matrices are not diagonal and may
couple the various modes. Other approximations are linked to the way the presence
of suspensions has been accounted for, but such approximations are similar to those
already seen for the other linearized models.

If the virtual work of the external forces is computed neglecting displacements
due to deformation modes, the expressions of the generalized forces are the same
as those used for models based on rigid bodies. Such an assumption is well suited
to the present linearized model, where the exact kinematics of suspensions has not
been taken into account.

A detailed inspection of the expressions of the kinetic and potential energies and
of the dissipation function shows that, if the forward velocity V is assumed to be
a known function, the equations of motion divide into two separate sets, exactly as
they do when the compliance of the sprung mass is neglected.

30.4.1 Handling Model

A first set of equations contains generalized coordinates y∗, ψ, φ, φi and ηa . If the
vehicle has n axles and na skew-symmetrical modes are considered, their number is
3 + n + na . The differential equations modelling the lateral behavior are

[
M1 MT

a1

Ma1 Ma

]{
q̈1
η̈a

}
+

[
C1 CT

a1
Ca1 Caa

]{
q̇1
η̇a

}
+

+
[
K1 K1a

Ka1 Kaa

]{
q1
ηa

}
=

{
F1

0

}
,

(30.246)
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where q1,M1,C1,K1 and F1 are the same vectors and matrices seen in Eq. (30.212),
and

Ma1 = [
BT DT − ET GT − MT 0 0

]
,

Ca1 = [
0 −VBT −∑

∀k cφkQT
zaka cφ1QT

za1a cφ2QT
za2a

]
,

Caa = Ca +
∑
∀k

ckQT
zakaQzaka ,

K1a = [
0 −V̇B gB − ∑

∀k kφkQzak kφ1Qza1 kφ2Qza2
]T

,

Ka1 = [
0 0 gBT − ∑

∀k kφkQT
zak kφ1QT

za1 kφ2QT
za2

]
,

Kaa = Ka +
∑
∀k

kφkQT
zakQzak .

The expressions of the various matrices refer to a two-axle vehicle, but they may
be easily generalized.

As in the previous models, coordinates y∗ and ψ are present only with their
derivatives: the order of the differential set of equations is then 4 + 2n + 2na .

30.4.2 Ride Comfort Model

The second set of equations contains generalized coordinates x∗, Z , θ, Zi and ηs . If
ns symmetrical modes are included in the model, they are 3 + n + ns .

In this case the first equation, that describing longitudinal dynamics, is weakly
coupled with the others, and may be studied separately. Its expression is still Eq.
(30.223), with the term Aη̈s added to the left side.

Neglecting the deformation corresponding to the static equilibrium condition
(which may be computed using an equation of the type of Eq. (30.221), in which
the modal coordinates corresponding to the static deformation and terms like gC
are included), the set of 2 + n + ns equations, remaining after separating the first
equation, describes the suspension motions of the vehicle:

[
M3 MT

s3

Ms3 Ms

]{
q̈3
η̈s

}
+

[
C3 CT

s3
Cs3 Css

]{
q̇3
η̇s

}
+

+
[
K3 KT

s3
Ks3 Kss

]{
q3
ηs

}
=

{
F3

Fs

}
,

(30.247)

where q3,M3,C3,K3 and F3 are the same matrices and vectors seen in Eq. (30.224),
and
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Ms3 = [
CT IT − FT 0 0

]
,

Cs3 = [∑
∀k c

T
14k

∑
∀k c

T
34k c

T
24,1 c

T
24,2

]T
,

Css = Cs +
∑
∀i

c44k ,

Ks3 = [∑
∀k K

T
14k V̇CT − gAT + ∑

∀i K
T
34k K

T
24,1 K

T
24,2

]T
,

Kss = Ks +
∑
∀i

K44k ,

Fs = −V̇Cθ0 .

All matrices are symmetrical, except for the stiffness matrix resulting from the
usual aerodynamic term included inK3. All aerodynamic forces have been assumed
to be independent from the deformation modes: if this assumption were abandoned,
the equations would change, but uncoupling would still hold.

30.4.3 Uncoupling of the Equations of Motion

Symmetrical and skew-symmetrical deformation modes thus play a very different
role in the dynamic behavior of the vehicle. The first, like bending modes in the xz
plane, affect riding comfort but have no importance in the study of handling. The
most important skew-symmetrical modes are those related to torsional deformations.
The significance of their influence on handling, particularly in sport cars and above
all in Formula 1 racers, is well known. Transversal bending can have a similar effect.

Modal matrices Ms , Ma , Ks and Ka are diagonal, and describe the dynamic
behavior of the vehicle body as a free compliant body. Usually the damping linked
to the deformation modes of the body is not large, and it may be considered as an
undamped, or at most a lightly damped, system. Neglecting damping, the natural
frequencies of the symmetrical and skew-symmetrical modes are

�s j =
√

Ks j

Ms j

, �aj =
√

Kaj

Maj

. (30.248)

If the coupling matrices Ms3, Ma1, Cs3, Ca1, etc. were negligible, the dynamic
behavior of the vehicle could be studied by separating the dynamic behavior of the
rigid vehicle on elastic suspensions (studied in the proceeding sections) from the
dynamic behavior of the vehicle body, considered as a compliant body free in space.

In the case of passenger cars, the natural frequencies of deformation modes are
much higher than those typical of a vehicle on elastic suspensions (as already stated,
the typical frequencies of the sprung mass are slightly above 1 Hz while those linked
to the unsprungmasses are atmost 8–10Hz).Coupling between the dynamic behavior
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of the vehicle as made of rigid bodies and of the compliant vehicle body is weak,
and the vibration of the latter influences acoustic comfort more than handling or ride
comfort.

Open cars and vans are often an exception: the stiffness of their bodies is lower,
particularly in torsion and bending in the symmetry plane, and the related natural
frequencies are little different than those linked with the behavior of the vehicle as
a whole. The torsional deformation of the chassis and the body may have a strong
effect on handling, usually making it worse. Bending of the body in its plane may
have some effect on comfort, even if it is impossible to determine in general whether
it improves or worsens it.

In the case of industrial vehicles, particularly trucks, some natural frequencies
of deformation modes are usually low and the related modes may strongly interfere
with handling modes (if skew-symmetrical) or with comfort modes (if symmetrical).

30.5 Articulated Vehicles

Consider an articulated vehicle, such as a tractor and a trailer or a semi-trailer. As
already stated, it is possible to study its behavior using a multibody model, if its
parts may be considered rigid. The number of degrees of freedom is six for each
part constituting the body of the vehicle, plus a further degree of freedom for each
independent suspension and two degrees of freedom for each solid axle suspension,
minus the number of degrees of freedom constrained by the links connecting the
various parts constituting the body.

As an example, the articulated truck in Fig. 30.1d has 21 degrees of freedom if
the hitch connecting tractor and trailer may be modelled as a spherical hinge (24
degrees of freedom for the two rigid bodies and the 6 solid axles, minus 3 degrees
of freedom constrained by the hinge). If the hitch were modelled as a cylindrical
hinge with its axis in the vertical direction, the number of degrees of freedom would
reduce to 19 (the hinge would constrain 5 of them instead of 3), but to constrain pitch
and roll rotations of the trailer with respect to the tractor, the moments about the x
and y axes the hinge would experience (and with negligible deformations, otherwise
some deformation degrees of freedom would be needed) would be extremely high,
creating a non-viable solution.

In normal operation the pitch, roll and yaw angles of the trailer with respect to
the tractor are small and, as in the case of articulated vehicles it is possible to use
linearized models. An articulated vehicle made by two rigid bodies plus compliant
suspensions may be thought of as a single compliant system, whose deformation
consists in the relative motion of the two bodies about the hinge. The rigid body
modes of this compliant body may be considered similar to the deformation modes
seen above, the only difference being that the relevant natural frequencies are zero,
because the modal stiffness vanishes. This is obvious because there are no elastic
systems applying restoring moments at the hitch.
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The rigid body modes may also be subdivided into symmetrical and skew-
symmetrical modes. In the case of an articulated truck the yaw rotation of the trailer
(like angle θ in the model seen in Sect. 25.15 and the rolling motion of the trailer are
skew-symmetric modes and thus couple with handling, while pitching rotations of
the trailer couple with ride comfort. In the case of the truck and trailer system in Fig.
25.41a, it is possible to assume that the connection of the draw bar to the trailer and
that between the dolly and the trailer are spherical hinges, even if the roll rotation
between the trailer and the dolly may in some cases be considered locked. The pitch
rotation of the dolly and the trailer thus enter the comfort model, while all yaw and
roll rotations enter the handling model.

30.6 Gyroscopic Moments and Other Second Order Effects

Gyroscopic moments due to wheel rotation were examined in the 10 degrees of
freedom model for isolated vehicles with two axles. Within the frame of a linearized
model, they have no effect on handling-comfort uncoupling and they enter only
into the handling model. Gyroscopic moments are automatically present when the
equations of motion are obtained through Lagrange equations, provided that the
angular velocity of all rotating parts of the model is considered.

To evaluate the impact of gyroscopic moments caused by the wheels on handling,
it is possible to assume, at least in the case of solid axle suspensions, that the angular
velocity of the i th wheel χ̇i lies on axis yk of the kth unsprung mass. Any angular
velocity of the vehicle about the xk and zk axes will produce a gyroscopic moment
due to the i th wheel that may be expressed in the xk, yk, zk frame as

Mg = χ̇i Jpi

⎧⎨
⎩

ψ̇
0

−φ̇k

⎫⎬
⎭ = Jpi

V

Rei

⎧⎨
⎩

ψ̇
0

−φ̇i

⎫⎬
⎭ , (30.249)

where the angular velocity of the wheel has been assumed to be linked with the
forward velocity by the usual relationship

χ̇i = V

Rei
. (30.250)

As previously stated, the terms due to the gyroscopic moment are present in
L ψ̇ and, with opposite sign, in L φ̇k . In steady state motion, gyroscopic moments are

usually quite small. Neglecting the camber angle, ψ̇ = V/R (where R is the radius of
the trajectory) and φ̇i = 0. The component Mgz of the gyroscopic moment vanishes,
while

Mgx = V 2

R

∑
∀i

Jpi
Rei

, (30.251)
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where the sum extends to all wheels. Gyroscopic moment is thus proportional to the
centrifugal acceleration V 2/R, which is limited. If the sum of the polar moments of
inertia of the wheels of an axle and Re are equal, for instance, to 6 kg m2 and 0.5 m
respectively, values related to an industrial vehicle, and the centrifugal acceleration
is 5 m/s2, a gyroscopic moment of 60 Nm is obtained. If the track of the axle is 1.4 m,
the load transfer due to the gyroscopic moment of the two wheels is roughly 43 N.

Gyroscopic wheel moments may, however, be more important in non-stationary
conditions and, above all, can affect to a large extent the dynamics of the steering
system: Their effect on free-control dynamics may thus be important. In solid axle
suspensions of steering axles, strong reactions on the steeringwheel due to gyroscopic
wheel moments may be caused by travelling on uneven road. They can cause severe
discomfort and make driving difficult.

Gyroscopic moments due to the engine or other rotating elements of the vehicle
are usually less important, except in particular cases (usually not related with road
vehicles), such as that of electric railway engines, in which they can cause an increase
of wear of the wheel rims. As a last consideration, a mass rotating about an axis
parallel to the z axis couples roll and pitch motions, making uncoupling between
handling and comfort impossible even if the assumptions of small displacements,
linearity and symmetry hold. This effect may even be exploited, as in the case of
flywheel stabilizers in ships, where coupling allows the larger pitchmoment of inertia
to be used to limit roll oscillations. Also, a mass rotating about the x-axis has a
coupling effect between pitch and yaw,while amass rotating about the y-axis couples
roll and yaw, already coupled in the handling behavior.

Other second-order dynamic effectsmay be of some importance. In non-stationary
motion, for example, the angular acceleration of rotating masses may produce inertia
torques of non-negligible size. Some of these effects have been included in the model
seen above and are included in the terms containing V̇ (because of the relationship
assumed between the forward velocity V and the wheel velocity χ̇, the acceleration
χ̈ is proportional to V̇ ).

In the previous models some second order effects have been neglected. For
instance, the transmission of the driving torque to the wheels may cause a reac-
tion torque that, being exerted between the parts constituting the vehicle, has no
effect on its global dynamics, at least as a first approximation. This torque may,
however, modify the configuration of the vehicle and affect the forces the vehicle
exchanges with the ground or, although to a much lesser extent, with the air. In a
vehicle with longitudinal engine and rear wheel drive with the differential on a solid
axle, the driving torque causes a small roll angular displacement between the vehicle
body and the solid axle. The small roll angle may induce roll steer that may affect
handling. These effects are usually neglected, because they are small, but there is no
difficulty in introducing them into the model.

A larger effect may be caused by the reaction torque exerted on suspensions when
not directly transferred to the body by the suspension linkages. Instead it loads the
suspension springs, causing lifting or sinking of the attachment points, as seen in
antidive, antilift or antisquat configurations. For this effect to be present, the torque
must be applied to the unsprung mass. For driving torques this occurs only in the
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case of live axles, while in braking torques the brakes are almost always located on
the unsprung masses, the only exceptions being the little used layout in which they
are placed close to the differential gear in De Dion axles, or when driving wheel
suspension is independent. In such cases the suspension layout must allow a vertical
movement when a torque is applied to it, i.e. the derivative ∂z/∂My must be other
than zero, an example being that of trailing arm suspensions.

Similarly it is possible to take into account the deformation of unsprung masses
without changing the general conclusion: This is important because configurations
based on the compliance of the unsprung masses are increasingly common. With
solid axles it is easy to evaluate which deformation modes of the unsprung masses
are symmetrical, and thus are to be included in comfort dynamics, and which are
skew-symmetrical and affect handling. In a suspension in which leaf springs are used
as guiding elements, for instance, the lateral compliance of the springs gives way to
skew symmetrical modes and influences handling, while their S deformation about
the y axis is a symmetrical deformation and thus couples with comfort dynamics,
or better longitudinal dynamics. The longitudinal compliance of the suspension may
strongly affect comfort.

In the case of independent suspensions, the suspension of the whole axle, with
its two rigid-body degrees of freedom, must be considered. The whole axle must be
studied as well for deformation modes, as was done in Eq. (30.122). In this way it is
again possible to distinguish between symmetrical and skew-symmetrical modes.

But uncoupling is a more general feature still. The above considerations may be
applied to vehicles with two wheels, the only exceptions being that the roll angle can
easily take values beyond the range in which linearization of trigonometric functions
applies, while the lateral movements of the driver, aimed at displacing the centre of
mass and producing unsymmetrical aerodynamic forces, can destroy the symmetry
on which uncoupling is based.

No particular assumption about the nature of the forces supporting the vehicle has
been made. The same uncoupling also holds for vehicles supported by hydrostatic,
aerostatic or aerodynamic forces. In the first case, the assumption of the existence of
a roll axis of the suspension is replaced by the assumption of a roll axis fixed to the
hull in its undeflected configuration. The small roll oscillations are thus demonstrated
to be uncoupled with pitch and bounce motions, which are coupled with each other.
In the case of aircraft, roll and yaw oscillations are known to be coupled (dutch
roll) while bounce and pitch oscillations are also coupled with each other. Even the
presence of aerodynamic forces due to the deformations of the structure does not
change the overall picture, provided that they can be assumed to depend linearly on
the modal coordinates ηs and ηa .
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