
Chapter 25
Handling Performance

25.1 Low Speed or Kinematic Steering

25.1.1 Two-Axle Vehicles Without Trailer

Low speed or kinematic steering is, as already stated, defined as the motion of a
wheeled vehicle determined by pure rolling1 of the wheels. The velocities of the
centres of all the wheels lie in their midplane, that is the sideslip angles αi are
vanishingly small. In these conditions, the wheels cannot exert any cornering force
to balance the centrifugal force due to the curvature of the path. Kinematic steering
is possible only if the velocity is vanishingly small.

Kinematic steering of two-axle vehicles without trailer was dealt with in detail in
Chap.4 (Sect. 4.2). Here only the value of the path curvature gain needs be recalled,

1

Rδ
= 1

l
. (25.1)

Remark 25.1 The path curvature gain is a linearized value, holding only if the radius
of curvature of the path R is much larger than the wheelbase. It is independent of the
steering angle and of the curvature of the path.

Another important transfer function of the vehicle is ratio β/δ, usually referred
to as sideslip angle gain. The sideslip angle of the vehicle, referred to the centre of
mass, may be expressed as a function of the radius of the path R as

1The term ‘pure rolling’ is often used to indicate rolling without slip. ‘Free rolling’, as opposed
to ‘tractive rolling’, is used to indicate rolling without exerting tangential (longitudinal or lateral)
forces (K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, 1985). Here
the two terms are considered as equivalent, because a tire must operate in slip (longitudinal or side
slip) conditions to produce a tangential force.
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β = arctan

(
b√

R2 + b2

)
. (25.2)

By linearizing Eq. (25.2) and introducing the expression (25.1) linking R to δ, it
follows:

β

δ
= b

l
. (25.3)

As seen in Chap.6, the optimal condition for kinematic steering of a four-wheel
steering vehicle (4WS) is equal and opposite steering angles of the two axles: the
radius of the path is thus halvedwith respect to the same vehicle with a single steering
axle.

Particularly in the case of long vehicles, the off-tracking distance, i.e., the differ-
ence of the radii of the trajectories of the front and the rear wheels, is an important
parameter. If Ra is the radius of the path of the front wheels, the off-tracking distance
is

Ra − R1 = Ra

{
1 − cos

[
arctan

(
l

R1

)]}
. (25.4)

If the radius of the path is large when compared to the wheelbase, Eq. (25.4)
reduces to

Ra − R1 ≈ R

[
1 − cos

(
l

R

)]
≈ l2

2R
. (25.5)

In the same way, it is possible to define a minimum steering radius between walls,
that is the diameter of the largest circle described by any point of the vehicle at
maximum steering. If the point following the curve with the largest radius is point
A in Fig. 25.1 (note that the figure refers to a vehicle with three axles), the minimum
steering radius is

Dv = 2
√

(R1 + yA)
2 + x2A. (25.6)

25.1.2 Vehicles with More Than Two Axles Without Trailer

True kinematic steering of vehicles with more than two axles is possible only if the
wheels of several axles (all except one) can steer, and if the steering angles comply
with conditions similar to those seen in Chap.6 for the steering axle of a two-axle
vehicle. In order to avoid serious wear to the tires, it is possible to lift one axle
from the ground in certain conditions: In some countries it is legal to design the
suspensions in such a way that not all axles are on the ground when the vehicle is
unloaded, while in others this is not allowed. Some axles can be lifted for low-speed
manoeuvring while being in contact with the ground in normal driving.

Some axles may also be self-steering, i.e. the wheels are allowed to orient them-
selves to minimize sideslip. An axle of this type clearly cannot exert side forces
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Fig. 25.1 Low speed
steering of industrial
vehicles; approximate
kinematic condition for a
truck with three axles

and reduce the overall cornering ability of the vehicle. Different laws hold in differ-
ent countries, sometimes allowing the use of self-steering axles in normal driving
and sometimes specifying that self-steering axles be blocked except in low speed
manoeuvres. In the case of a three-axle vehicle with non-steering axles close to each
other, an approximation such as the one shown in Fig. 25.1 can be used to study low
speed steering.

25.1.3 Vehicles with Trailer

If the vehicle has a trailer with one or two axles, with the front axle on a dolly attached
to the draw bar, kinematic steering is always possible if the tractor allows it.

Generally speaking, if the wheels of the trailer are fixed, the trailer follows a path
which is internal to that of the tractor. In the case of the vehicle of Fig. 25.2a radius
RR is

RR =
√
R2
1 + l2A − l2R . (25.7)

If these equations can be linearized, the value of ratio θ/δ, i.e. the trailer angle
gain, is

θ

δ
= lA + lR

l
, (25.8)

where lA is positive if point A is outside the wheelbase. Distance lA + lR is the
distance between the axle of the trailer and the rear axle of the tractor.

In the case of Fig. 25.2b, the radius of the path of the trailer can be obtained by
considering the latter as two subsequent trailers of the type already considered.
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Fig. 25.2 Low speed steering of vehicles with trailer. a steering of a vehicle with a trailer with one
axle or an articulated vehicle; b steering of a vehicle with a trailer with two axles

The radii of the trajectories of the centers of the axles of the two trailers are

RR1 =
√
R2
1 + l2A − l2R1

,

RR2 =
√
R2
R1

− l2R2
=

√
R2
1 + l2A − l2R1

− l2R2
.

(25.9)

The only way to prevent the trailer from following a path internal to that of the
tractor is to provide its wheels with a steering mechanism (Fig. 25.3). The steering
angle of the last axle must be opposite to the one of the tractor.
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Fig. 25.3 Kinematic
steering of a vehicle with a
trailer with a steering angle

If the average steering angle of the wheels of the trailer is δR , the relationship
linking the radii of the trajectories of points A and R is

RA =
√
R2
R + l2R − 2lR RR sin (δR) . (25.10)

The radius of the path of the trailer is then

RR =
√
R2
1 + l2A − l2R + 2lR RR sin (δR) . (25.11)

The difference between the radii of the trajectories of the trailer and the tractor can
thus be reduced, allowing the space needed by the vehicle in a bend to be reduced.
However, this method is not free from drawbacks, since the driver cannot visually
control the rear part of the trailer that, at the beginning of the bend, seems to move
outwards.

This last problem is sometimes solved by placing a second driver in the rear of
the trailer to control the relevant steering mechanism, or better, by using an actuator
controlled by a suitable control law from the steering control, to steer the trailer. The
dynamic problems linked with the steering of trailers will be dealt with later.

The trailer angle gain is

θ

δ
= lA + lR

l
− δR

δ
. (25.12)
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The value of the steering angle of the trailer allowing its axle to follow the same
path as the rear axle of the tractor is

sin (δR) = 1

RR

l2R − l2A
2lR

. (25.13)

If the radius of the path is much larger than the wheelbase, the radius of the path of
the rear axle R1 and of the center of mass R of the tractor are practically coincident
and the linearized relationship linking the steering angles of the tractor and of the
trailer is

δR = δ
l2R − l2A
2llR

. (25.14)

This relationship is actually between the moduli of the angles, since they must
have opposite signs.

The trailer angle gain is then

θ

δ
= (lA + lR)2

2llR
. (25.15)

The mechanism controlling the steering of the trailer is usually not driven by the
steering wheel but by the drawbar, because of which angle δR does not depend on δ
but on θ. Assuming a linear relationship between the two angles

δR = KRθ , (25.16)

the trajectories of the trailer and of the tractor are the same if

KR = l2R − l2A
(lA + lR)2

. (25.17)

Remark 25.2 The path of the trailer is circular only after a certain time: When the
tractor starts to follow a circular path there is an initial transient in which the path of
the trailer starts to bend, followed by the period of time needed to reach the steady
state conditions.

The path of the trailer, or better of point R in Fig. 25.2a, can be computed as
follows. In Fig. 25.4a the vehicle is sketched in its initial configuration with the
trailer and tractor aligned; the generic configuration at time t is shown in Fig. 25.4b.
In the second figure, the tractor is rotated by an angle α and the trailer is rotated by
an angle β. Note that angle φ is positive if A lies between B and C.

The positions of the centre of rotation of the tractor O and of the trailer O1 at time
t and t + dt are shown in Fig. 25.5. Distances RR′, AA′ and RR′′ are very small if
compared with AR and A′R′. Neglecting vanishingly small quantities, it follows that
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Fig. 25.4 Vehicle with two axles pulling a trailer with one axle. a Situation at time t = 0 with the
vehicle in straight position; b Situation at time t

AA′ = RAdα ,

A′A′′ = lRdβ = AA′ sin(α + φ − β) .
(25.18)

Equations (25.18) yield

dβ

dα
= RA

lR
sin(α + φ − β) . (25.19)

Since α = β = 0 at time t = 0, Eq. (25.19) can be easily integrated numerically.
The radius of the path of the trailer RR is

RR = lR
tan(α + φ − β)

. (25.20)

A long trailer on a narrow bend requires a change of direction of more than 90◦
before steady-state conditions are reached and its path becomes almost circular.

The low-speed steering of a vehicle with a trailer with two axles like the one
shown in Fig. 25.1b can be dealt with using the same equations seen above, applied
to both the simple trailers modelling the actual two-axle trailer. The path of the first
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Fig. 25.5 Position of the
vehicle of Fig. 25.4 at time
t and t + dt

trailer (the dolly) is initially not circular, and this must be taken into account while
integrating numerically Eq. (25.19).

Example 25.1 Study the conditions for kinematic steering of the articulated vehicle
of Appendix E.10. Assume a value of the radius of the centre mass of the tractor of
10m and compute the path of the trailer. Assume that the trailer has a single axle,
coinciding with the third axle of the actual trailer.

The radius of the trajectories of the front and rear axles of the tractor is easily
computed as 9.730 and 10.335 m; the off-tracking of the tractor is thus 605mm.
The approximated expression (25.5) for the off-tracking yields 607mm, very close
to the correct value even if the radius of the path is not actually very large compared
to the wheelbase (10 m vs. 3.485 m).

The steering angles of the front wheels are 17.99◦ and 21.77◦, with an average
value of 19.71◦. This value is also very close to the correct value of 19.88◦, obtained
without any linearization, and to the linearized value of 19.77◦.

The steady state radius of the path of the trailer is 5.446 m, yielding a value of
4.889m for the total off-tracking distance.

The path of the trailer has been computed by numerically integrating Eq. (25.19)
for α included between 0 and 450◦, with a step of 0.5◦. The values of φ and RA are,
respectively, of 2.648◦ and 9.740 m. The path and the locus of points O′ are shown
in Fig. 25.6. Note that after a rotation of 90◦ the radius of the path is still larger than
that in steady-state conditions.

Example 25.2 Repeat the previous example, assuming that the trailer axle is steering
with a mechanism realizing law (25.17).

The value of K is 1.118. The equation allowing the path of the trailer to be
computed is the same as in the previous example, the only difference being that
reference is made to point H in Fig. 25.3 instead of point R in Fig. 25.4.
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Fig. 25.6 Path and locus of the centres of curvature of the path of the trailer for an articulated
vehicle. The positions of the vehicle before starting on the curved path and after a rotation of the
tractor of 90◦ are reported

The radius of the steady-state path of the trailer is 9.942 m, very close to that of
the trailer. The steering angle of the trailer is δR = 20.02◦ and the angle between
the trailer and the tractor is θ = 19.76◦. The path of the trailer was computed by
numerically integrating the relevant equation for values of α from 0 and 450◦, with
increments of 0.5◦, as in the previous example. The path and the locus of points O′
are plotted in Fig. 25.7. Note that steady-state conditions are quickly reached and
that at the beginning the trailer moves outwards.
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Fig. 25.7 Path and locus of
the centers O′ of the path of
the trailer with steering axle.
The positions at the
beginning of the maneouvre
and after a 90◦ rotation are
also reported

25.2 Ideal Steering

If the speed is not vanishingly small, the wheels must move with suitable sideslip
angles to generate cornering forces. A simple evaluation of the steady-state steering
of a vehicle in high-speed or dynamic2 steering conditions may be performed as
follows. Consider a rigid vehicle moving on level road with transversal slope angle
αt and neglect the aerodynamic side force. Define a η-axis parallel to the road surface,
passing through the centre of mass of the vehicle and intersecting the vertical for the
centre of the path, which in steady-state condition is circular (Fig. 25.8). Axis η does
not coincide with the y axis, except at one particular speed.

25.2.1 Level Road

Assume that the road is flat and neglect aerodynamic forces. The equilibriumequation
in η direction can be written by equating the centrifugal force mV 2/R to forces Pη

due to the tires
mV 2

R
=

∑
∀i

Pηi . (25.21)

2The term dynamic steering is used here to denote a condition in which the path is determined by
the balance of forces acting on the vehicle, as opposed to kinematic steering in which the path is
determined by the direction of the midplane of the wheels. Note that dynamic steering applies to
both steady-state and unstationary turning.
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Fig. 25.8 Simplified model for dynamic steering

For a first approximation study, forces Pη may be conflated with the cornering
forces Fy of the tires and all wheels may be assumed to work with the same side
force coefficient μy . As the last assumption is similar to that seen for braking in ideal
conditions, this approach will be referred to as ideal steering. These two assumptions
lead to substituting the expression

∑
∀i Pηi with μy Fz .

Force
Fz =

∑
Fzi

exerted by the vehicle on the road is

Fz = mg . (25.22)

By introducing Eq. (25.22) into Eq. (25.21) the ratio between the lateral acceler-
ation and the gravitational acceleration g is
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V 2

Rg
= μy . (25.23)

By introducing the maximum value of the side force coefficient μyp into Eq.
(25.23), it is possible to obtain the maximum value of the lateral acceleration

(
V 2

R

)
max

= gμyp . (25.24)

The maximum speed at which a bend with radius R can be negotiated is

Vmax = √
Rg

√
μyp . (25.25)

The limitation to the maximum lateral acceleration due to the cornering force the
tires can exert is, however, not the only limitation, at least theoretically. Another can
come from the danger of rollover occurring if the resultant of forces in the yz plane
crosses the road surface outside point A (Fig. 25.8).

The moment of the forces applied to the vehicle in the ηz-plane about point A is

MA = − t

2
mg + hG

mV 2

R
. (25.26)

The limit condition for rollover can then be computed by equating moment MA

to zero, (
V 2

R

)
max

= g
t

2hG
. (25.27)

The rollover condition is identical to the sliding conditions, once ratio

t

2hG

has been substituted for μyp .
The maximum lateral acceleration is then

(
V 2

R

)
max

= gmin

{
μyp ,

t

2hG

}
. (25.28)

Whether the limit condition first reached is that related to sliding, with subsequent
spin out of the vehicle, or related to rolling over depends on the relative magnitude
of μyp and

t
2hG

. If the former is smaller than the latter, as often occurs, the vehicle
spins out. This condition can be written in the form

μyp <
t

2hG
.
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25.2.2 Effect of Aerodynamic Lift

If aerodynamic lift is accounted for, Eq. (25.22) becomes:

Fz = mg − 1

2
ρV 2SCZ . (25.29)

By introducing ratio

M = ρSCz

2mg
,

expressing the ratio between aerodynamic lift at unit speed and weight, it follows
that

Fz = mg
(
1 − MV 2

)
. (25.30)

Note that M is negative if the lift is directed downwards. To take aerodynamic lift
into account it is sufficient to multiply the expressions seen in the previous section
by 1 − MV 2.

The maximum lateral acceleration is now

(
V 2

R

)
max

= g
(
1 − MV 2

)
min

{
μyp ,

t

2hG

}
. (25.31)

Term MV 2 is usually very small and often negligible, with the exception of racing
cars. For instance, let ρ = 1.22 kg/m3 (value at sea level in standard atmosphere), S =
1.7 m2, Cz = −0.5 (an already high value) and m = 1000 kg. It follows that M =
−5.3 × 10−5 s2/m2 and thus, at 100km/h, the value of the additional term is 0.05. To
change things radically high speeds must be reached: at 300km/h the additional term
becomes −MV 2 = 0.37, i.e. the maximum lateral acceleration increases by 37%.

The negative value of Cz is very high in racing cars, and at high speed strong
lateral accelerations are possible.

25.2.3 Transversal Slope of the Road

The equilibrium equation in η direction may be written by equating the components
of weightmg and of the centrifugal forcemV 2/R acting in that direction with forces
Pη due to the tires

mV 2

R
cos(αt ) − mg sin(αt ) =

∑
∀i

Pηi . (25.32)
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By introducing the previously discussed assumptions characterizing ideal steer-
ing, substituting expression

∑
∀i Pηi with μy Fz , force Fz = ∑

Fzi exerted by the
vehicle on the road becomes

Fz = mg cos(αt ) + mV 2

R
sin(αt ) − 1

2
ρV 2SCZ . (25.33)

By introducing Eq. (25.33) into Eq. (25.32), the latter yields the following value
for the ratio between the lateral acceleration and the gravitational acceleration g,

V 2

Rg
= tan(αt ) + μy(1 − MV 2)

1 − μy tan(αt )
. (25.34)

Ratio M can be redefined as

M = ρSCz

2mg cos(αt )

so that MV 2 is the ratio between the aerodynamic lift and the component of weight
in a direction perpendicular to the road.

By introducing the maximum value of the side force coefficient μyp into
Eq. (25.34), the maximum value of the lateral acceleration is obtained,

(
V 2

R

)
max

= g fs , (25.35)

where the so-called sliding factor fs can be defined as3

fs = tan(αt ) + μyp (1 − MV 2)

1 − μyp tan(αt )
(25.36)

and is in general a function of the speed, if the aerodynamic lift is accounted for.
Note that on level road and with no aerodynamic lift the sliding factor reduces to

μyp .
The sliding factor is reported as a function of μyp for different values of the

transversal slope of the road in Fig. 25.9a and for different values of ratio MV 2 in
Fig. 25.9b. Note that if the road is flat and the aerodynamic lift is neglected it reduces
to the maximum value of the side force coefficient μyp .

3The sliding factor is more commonly defined as the square root of the same quantity considered
here. The present definition, which refers directly to the lateral acceleration instead of the speed at
which a given turn may be negotiated, is here preferred as in particular conditions it reduces to the
side force coefficient.
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Fig. 25.9 Sliding and rollover factors as functions of μyp and of t/2hG respectively for roads with
different transversal slope (a) and for vehicles with different values of ratio MV 2 (b)

The maximum speed at which a bend with radius R can be negotiated is

Vmax = √
Rg

√
tan(αt ) + μyp

1 − μyp [tan(αt ) − RgM]
, (25.37)

i.e.,

Vmax = √
Rg

√
fs . (25.38)

The rollover condition can also be modified to take into account the transversal
slope of the road and aerodynamic lift. The moment of all forces applied to the
vehicle in the ηz plane about point A (Fig. 25.8) is

MA = − t

2

[
mg cos(αt ) + mV 2

R
sin(αt ) − 1

2
ρV 2SCZ

]
+

+hG

[
mV 2

R
cos(αt ) − mg sin(αt )

]
. (25.39)

The limit condition for rollover can be obtained by equating moment MA to zero,
obtaining (

V 2

R

)
max

= g fr , (25.40)
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where the rollover factor can be defined as

fr = tan(αt ) + t
2hG

(1 − MV 2)

1 − t
2hG

tan(αt )
. (25.41)

The expression of the rollover factor is identical to that of the sliding factor, once
ratio t/2hG has been substituted for μyp (Fig. 25.9). It depends on speed because of
the effects of aerodynamic lift.

The maximum lateral acceleration is then

(
V 2

R

)
max

= gmin{ fs, fr } . (25.42)

Whether the limit condition first reached is that related to sliding, with subsequent
spin out of the vehicle, or rolling over, depends onwhether fs is larger or smaller than
fr . If fs < fr , as often occurs, the vehicle spins out. This condition can be written
in the form

μyp <
t

2hG
,

and coincides with that seen on level road. Neither aerodynamic lift nor a transversal
road slope have any influence on the possibility of rollover.

25.2.4 Considerations on Ideal Steering

The value of μyp at which rollover may occur is as high as 1.2–1.7 for sports cars,
1.1–1.6 for saloon cars, 0.8–1.1 for pickup and passenger vans and 0.4–0.8 for heavy
and medium trucks. Only in the latter case does rollover seem to be a possibility, at
least if the lateral forces acting on the vehicle are restricted to the cornering forces
of the tires.

The present model is only a rough approximation of the actual situation, as it is
based on the assumption that the side force coefficients μy of all wheels are equal,
implying that all wheels workwith the same sideslip angleα. It also ignores the effect
of the different directions of the cornering forces of the various wheels, which should
be considered as perpendicular to the midplanes of the wheels and not directed along
the η axis. The load transfer between the wheels of the same axle and the presence
of the suspensions have also been neglected, two other assumptions contributing to
the lack of precision of this model.

If the maximum speed at which a circular path can be negotiated is measured in a
steering pad test and the value of the lateral force coefficient is computed through Eq.
(25.25), a value of μyp , well below that obtained from tests on the tires, is obtained.
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Remark 25.3 The cornering force coefficient obtained in this way is that of the
vehicle as a whole, and the difference between its value and that related to the tires
gives ameasure of howwell the vehicle is able to exploit the cornering characteristics
of its wheels.

The side force coefficient measured on the whole vehicle also depends on the
radius of the path, with a notable decrease on narrow bends. The majority of indus-
trial and passenger vehicles are able to use only a fraction, from 50 to 80%, of the
potential cornering force of the tires, with higher values found only in sports cars.
This reduction of the lateral forces makes the danger of rollover more remote.

Actually rolling over in a quasi-static condition is impossible for most vehi-
cles, notwithstanding the fact that rollover actually occurs in many road accidents.
Rollover can usually be ascribed to dynamic phenomena in nonstationary conditions
or to lateral forces caused by side contacts, e.g. of the wheels with the curb of the
road, that rule out the possibility of side slipping while causing far stronger lateral
forces to be exerted on the wheels. The presence of the suspensions also contributes
to this picture, making rollover a likely outcome of many accidents.

From the equations it is also clear that only the use of aerodynamic devices able
to exert a strong negative lift allows high values of lateral acceleration, well above
1g in the case of racers, to be reached (Fig. 25.10).

25.2.5 Vehicles with Two Wheels

The cornering dynamics of a vehicle with two wheels are radically different from
those of four-wheeled vehicles (Fig. 25.11). If the gyroscopic moments of the wheels
are neglected, the equation expressing rolling equilibrium can be used to compute
the roll angle the vehicle must maintain in order not to capsize, since a two-wheeled
vehicle is a system underconstrained in roll.

The limitation on lateral acceleration and speed on a curved path is solely the result
of lateral sliding, with a further geometric limitation on the maximum roll angle that
can be reached before the vehicle or the driver touches the road on one side. Equation
(25.24) yielding the maximum lateral acceleration still holds, the difference being
that the global side force coefficient is usually higher.

The roll angle is easily computed,

φ = arctan

(
V 2

Rg

)
, (25.43)

and the geometrical limitation

φ ≤ π/2 + αt − γ

Figure25.11 usually does not induce further limitations.
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Fig. 25.10 Evolution in
time of the maximum lateral
acceleration for saloon cars,
sports cars and racers. Note
that for the latter the change
of racing rules caused sharp
changes in the maximum
lateral acceleration

Fig. 25.11 High-speed
steering of a two-wheeled
vehicle. Point G is the centre
of mass of the vehicle-driver
system and can be displaced
from the plane of symmetry
of the former if the latter is
displaced to one side, as
usually occurs in bends

Remark 25.4 Since motorcycles roll into the curve, the lateral forces due to camber
add to those due to sideslip, instead of subtracting as in the case of motor vehicles
that roll towards the outside of the curve.
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Further terms must be introduced into the relevant equations if gyroscopic
moments of the wheels are considered .When the vehicle runs on a circular path with
radius R, the gyroscopic moment, due to the i th wheel with radius Ri and moment
of inertia Jpi about its spin axis, is equal to

Jpi V
2 cos(φ)

RRi
.

The equation expressing the equilibrium for rolling motions is then

mghG sin(φ) − V 2

R
cos(φ)

[
mhG +

∑
∀i

(
Jpi
Ri

)]
= 0 . (25.44)

The roll angle is

φ = arctan

{
V 2

Rg

[
1 + 1

mhG

∑
∀i

(
Jpi
Ri

)]}
. (25.45)

The added term in Eq. (25.45) is positive and thus the roll angle needed to manage
a certain bend at a certain speed is increased by gyroscopic moments.

Remark 25.5 Generally speaking, the effect of the gyroscopic moment of the wheels
on the dynamic behavior of the whole vehicle is small even in the case of vehicles
with two wheels. Gyroscopic moments are usually important only in the dynamics
of the steering device.

25.3 High Speed Cornering: Simplified Approach

To go beyond the extremely simplified model of ideal steering, the distribution of
cornering forces between the axles, the sideslip angle of the vehicle on the path and
the sideslip angles of the wheels must be taken into account.

Assume that the vehicle is moving at constant speed on a circular path and that
the road is level. Moreover, assume that the radius of the path R is much larger than
the wheelbase l and, as a consequence, all sideslip angles are small. The small size
of all angles allows the “monotrack” or “bicycle” model to be used.

Neglecting aerodynamic forces and aligning torques, the forces acting in the xy
plane at the tire-road interface in a monotrack vehicle are shown in Fig. 25.12.

The equilibrium equation in the direction of the y axis is similar to Eq. (25.21),
except for the presence of the sideslip and steering angles

mV 2

R
cos (β) =

∑
∀i

Fxi sin(δi ) +
∑
∀i

Fyi cos(δi ) . (25.46)
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Fig. 25.12 Simplified model (monotrack vehicle) for studying the handling of a two-axle vehicle

The equilibrium to rotations about point G can be expressed as

∑
∀i

Fxi sin(δi )xi +
∑
∀i

Fyi cos(δi )xi = 0 . (25.47)

Since anglesβ and δi are assumed tobe small, the terms containing the longitudinal
forces of the tires can be neglected and the equilibrium equations reduce to

⎧⎨
⎩

∑
∀i Fyi = mV 2

R

∑
∀i Fyi xi = 0 .

(25.48)

For a two-axle vehicle, they can be immediately solved, yielding

Fy1 = mV 2

R

b

l
, Fy2 = mV 2

R

a

l
. (25.49)
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Assuming that the cornering forces of the axles are proportional to the sideslip
angles through their cornering stiffness, it follows that

α1 = −mV 2

R

b

lC1
, α2 = −mV 2

R

a

lC2
, (25.50)

where Ci is the cornering stiffness of the i th axle, and is equal to the cornering
stiffness of the wheels multiplied by the number of wheels of the axle.

A relationship between the sideslip and steering angles can be found with simple
geometrical considerations from Fig. 25.12,

δ − α1 + α2 = l

R
. (25.51)

Introducing the expressions of the sideslip angles into Eq. (25.51), it follows that

δ = l

R
+ mV 2

Rl

(
b

C1
− a

C2

)
, (25.52)

or, in terms of path curvature gain,

1

Rδ
= 1

l

1

1 + Kus
V 2

gl

, (25.53)

where

Kus = mg

l2

(
b

C1
− a

C2

)
(25.54)

is the so-called understeer coefficient or understeer gradient of the vehicle. The
understeer coefficient is a non-dimensional quantity, and is often expressed in radians.

As already stated, in kinematic conditions

(
1

Rδ

)
kin

= 1

l
. (25.55)

The expression 1 + KusV 2/gl can be considered as a correction factor giving the
response of the vehicle in dynamic conditions as opposed to kinematic conditions.

From Eq. (25.52) it follows that

δ − δkin = V 2

Rg
Kus , (25.56)

i.e.,

Kus = g

ay
(δ − δkin) . (25.57)
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The understeer factor can thus be interpreted as the difference between the steering
angles in kinematic and dynamic conditions divided by the centrifugal acceleration
expressed as a multiple of the gravitational acceleration.

Sometimes, instead of the understeer coefficient, a stability factor

K = m

l2

(
b

C1
− a

C2

)
(25.58)

is defined.
As a first approximation, K and K ∗ may be considered as constant for a given

vehicle and load condition. As will be seen below, however, in many cases their
dependence on speed cannot be neglected for more precise assessments.

It is possible to define a lateral acceleration gain as the ratio between the lateral
acceleration and the steering input:

V 2

Rδ
= V 2

l

1

1 + Kus
V 2

gl

. (25.59)

The sideslip angle can be obtained through simple geometrical considerations,
yielding

β = b

R
− α2. (25.60)

A sideslip angle gain, expressing the ratio between the sideslip angle and the
steering angle can be defined as well. Its value is

β

δ
= b

l

(
1 − maV 2

blC2

)
1

1 + Kus
V 2

gl

. (25.61)

25.4 Definition of Understeer and Oversteer

If Kus = 0 the value of 1/Rδ is constant and equal to the value characterizing kine-
matic steering; i.e. the response of the vehicle to a steering input is, at any speed,
equal to that in kinematic conditions. This does not mean, however, that the vehicle
is in kinematic conditions, since the value of the sideslip angle β is not equal to its
kinematic value and the values of the sideslip angles of the wheels are not equal to
zero.

A vehicle behaving in this way is said to be neutral-steer (Fig. 25.13a).
If Kus > 0 the value of 1/Rδ decreases with increasing speed. The response of

the vehicle is then smaller than in kinematic conditions and, to maintain a constant
radius of the path, the steering angle must be increased as speed increases.

A vehicle behaving in this way is said to be understeer.
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Fig. 25.13 Steady state response to a steering input. Plot of the path curvature gain as a function
of speed (a) and handling diagram (b) for an oversteer, an understeer and a neutral steer vehicle.
The understeer factor is assumed to be independent of speed

A quantitative measure of the understeering of a vehicle is given by the charac-
teristic speed, defined as the speed at which the steering angle needed to negotiate
a turn is equal to twice the Ackerman angle, i.e. the path curvature gain is equal to
1/2l.

Using the simplified approach outlined above, the characteristic speed is

Vcar =
√

gl

Kus
=

√
1

K
. (25.62)

If Kus < 0 the value of 1/Rδ increases with increasing speed until, for a speed

Vcrit =
√

− gl

Kus
=

√
− 1

K
(25.63)

the response tends to infinity, i.e., the system develops an unstable behavior.
A vehicle behaving in this way is said to be oversteer, and the speed given by Eq.

(25.63) is called the critical speed. The critical speed of any oversteer vehicle must
be well above the maximum speed it can reach, at least in normal road conditions.

Instead of plotting the path curvature gain as a function of the speed, it is possible
to plot the handling diagram, i.e., the plot of the lateral acceleration ay as a function
of δkin − δ (Fig. 25.13b). If the vehicle is neutral steer, the plot is a vertical straight
line, if it is oversteer it is a straight line sloping to the right, while in case of an
understeer vehicle it slopes to the left.
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The value of β, or better, of β/δ, decreases with the speed from the kinematic
value up to the speed

(V )β=0 =
√
blC2

am
(25.64)

at which it vanishes. At higher speed it becomes negative, tending to infinity when
approaching the critical speed for oversteer vehicles and tending to

aC1

aC1 − bC2

when the speed tends to infinity in the case of understeering vehicles.
The sideslip angles of the front and rear wheels are equal in neutral-steer vehicles.

In oversteer vehicles, the rear wheels have a larger sideslip angle (in absolute value,
since the sideslip angles are negative when the radius of the path is positive), while
the opposite holds in understeer vehicles. It follows that oversteer vehicles can be

Fig. 25.14 Geometrical
definition of the behavior of
a vehicle with a single
steering axle
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expected to reach limit conditions at the rear wheels and understeer vehicles at the
front wheels, even if the present model cannot be applied when the sideslip angles
increase, approaching limit conditions.

A graphical interpretation of this result, for a vehicle with a single steering axle,
is shown in Fig. 25.14. The vehicle is modelled as a steering front axle and a fixed
rear axle. Kinematic steering applies if the speed tends to zero: the sideslip angles
vanish and the center of path is point O. It follows immediately that

l

R
= tan(δ) ≈ δ .

With increasing speed the wheels work with increasing sideslip angles α1 and α2.
If α1 = α2 angle BO′A is still equal to δ (its value is |α2| + δ − |α1|) and thus O′
lies on a circle through points A, B and O.

Since l 	 R′, O′ is in a position almost opposite to A and B and then R′ ≈ R.
The radius of the path is still equal to that characterizing kinematic steering, and the
vehicle is neutral steer.

If |α1| > |α2| the center of the path moves to O′′ and radius R′′ is larger than R.
The vehicle is then understeer. If, on the other hand, |α1| < |α2|, the center of the
path is O′′′, radius R′′′ is smaller than R′ and the vehicle is oversteer.

25.5 High Speed Cornering

25.5.1 Equations of Motion

The study of handling seen in the previous sections was based on the assumption of
steady-state operation. Moreover, only the cornering forces acting on the tires were
considered.

A simple mathematical model for the handling behavior of a rigid vehicle that
overcomes the above limitations can, however, be built.

To keep the model as simple as possible, the following assumptions may be made

1. The sideslip angle of the vehicle β and of the wheelsα are small. The yaw angular
velocity ψ̇ can also be considered a small quantity.

2. The vehicle can be assumed to be a rigid body moving on a flat surface, i.e.,
roll and pitch angles are neglected as well as the vertical displacements due to
suspensions.

If a motor vehicle is considered as a rigid body moving on a surface, a model
with three degrees of freedom is needed for the study of its motion. If the road is
considered as a flat surface, the motion is planar. By using the inertial reference
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Fig. 25.15 Reference frame for the study of the motion of a rigid vehicle. The vehicle has three
degrees of freedom, and the coordinates X and Y of the centre of mass G and the yaw angle ψ can
be used as generalized coordinates

frame4 XY shown in Fig. 25.15, it is possible to use the coordinates X and Y of the
centre of mass G of the vehicle and the yaw angle ψ between the x and X axes as
generalized coordinates.

The equations of motion of the vehicle are

⎧⎨
⎩
mẌ = FX

mŸ = FY

Jzψ̈ = Mz ,

(25.65)

where FX , FY and Mz are the total forces acting in the X and Y directions and the
total yawing moment. For the latter, subscript z has been used instead of Z since the
directions of the two axes coincide.

Equations (25.65) are very simple but include the forces acting on the vehicle in
the direction of the axes of the inertial frame. They are clearly linked with the forces
acting in the directions of axes x and y of the vehicle by the obvious relationship

{
FX

FY

}
=

[
cos(ψ) − sin(ψ)

sin(ψ) cos(ψ)

]{
Fx

Fy

}
. (25.66)

4As already stated, such a reference frame is not, strictly speaking, inertial, since it is fixed to
the road surface and hence follows the motion of Earth. It is, however, inertial “enough” for the
problems here studied, and this issue will not be dealt with any further.
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If the model is used to perform a numerical integration in time, they can be used
directly without any difficulty.

However, if themodel has to be used to obtain linearized equations in order to gain
a general insight into the behavior of the vehicle, it is better to write the equations
of motion with reference to the non-inertial xy frame, to avoid dealing with the
trigonometric functions of angle ψ, which in general is not a small angle, and would
make linearizations impossible.

To write the equations of motion with reference to the body-fixed frame xyz, it is
expedient to use the components u and v of the speed in the directions of the x and
y axes and the yaw angular velocity

r = ψ̇ .

There are many ways to obtain the mathematical model, but perhaps the simplest
is to remember that the derivativewith respect to time of a generic vector 
A, expressed
in the body-fixed frame, but performed in the inertial frame

d 
A
dt

∣∣∣∣∣
i

,

can be expressed starting from the derivative performed in the body fixed frame

d 
A
dt

∣∣∣∣∣
m

as
d 
A
dt

∣∣∣∣∣
i

= d 
A
dt

∣∣∣∣∣
m

+ 
� ∧ 
A , (25.67)

where 
� is the absolute angular velocity of the body-fixed frame.
In the present case, the velocity and the angular velocity vectors, in the body-fixed

frame, are


V =
⎧⎨
⎩
u
v

0

⎫⎬
⎭ , 
� =

⎧⎨
⎩
0
0
r

⎫⎬
⎭ . (25.68)

The derivative of the velocity of the vehicle is then

d 
V
dt

∣∣∣∣∣
i

= d 
V
dt

∣∣∣∣∣
m

+ 
� ∧ 
V =
⎧⎨
⎩
u̇ − rv
v̇ + ru

0

⎫⎬
⎭ . (25.69)

The equations of motion of the vehicle, expressed with reference to the xyz frame,
are
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⎧⎨
⎩
m(u̇ − rv) = Fx

m(v̇ + ru) = Fy

Jzṙ = Mz .

(25.70)

As an alternative, a procedure based on Lagrange equations can be followed.
Although apparently more complicated, it will be shown here, since it is consistent
with what will be done later for more complex models. In the present case other
approaches are more straightforward.

The kinetic energy of the vehicle is

T = 1

2
m

(
u2 + v2) + 1

2
Jzr

2 . (25.71)

The rotational kinetic energy of the wheels has been neglected: No gyroscopic
effect of the wheels will be obtained in this way.

Velocities u, v and r are linked to the derivatives of the generalized coordinates
Ẋ , Ẏ and ψ̇ by the relationship:

⎧⎨
⎩
u
v

r

⎫⎬
⎭ =

⎡
⎣ cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0
0 0 1

⎤
⎦

⎧⎨
⎩

Ẋ
Ẏ
ψ̇

⎫⎬
⎭ , (25.72)

i.e.,
w = AT q̇ , (25.73)

where
w = [

u v r
]T

is the vector containing the generalized velocities, and

q̇ = [
Ẋ Ẏ ψ̇

]T

is the vector containing the derivatives of the generalized coordinates.
Since matrix A is a rotation matrix,

AT = A−1 (25.74)

and the inverse transformation is

q̇ = Aw . (25.75)

The equations of motion are

d

dt

(
∂T
∂q̇i

)
− ∂T

∂qi
= Qi , (25.76)
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where coordinates qi are X , Y andψ and forces Qi are the corresponding generalized
forces FX , FY and Mz .

The derivatives needed to write the equations of motion are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂T
∂ Ẋ

= ∂T
∂u

∂u

∂ Ẋ
+ ∂T

∂v

∂v

∂ Ẋ
+ ∂T

∂r

∂r

∂ Ẋ

∂T
∂Ẏ

= ∂T
∂u

∂u

∂Ẏ
+ ∂T

∂v

∂v

∂Ẏ
+ ∂T

∂r

∂r

∂Ẏ

∂T
∂ψ̇

= ∂T
∂u

∂u

∂ψ̇
+ ∂T

∂v

∂v

∂ψ̇
+ ∂T

∂r

∂r

∂ψ̇
,

(25.77)

i.e., {
∂T
∂q̇

}
= A

{
∂T
∂w

}
, (25.78)

where {
∂T
∂q̇

}
=

[
∂T
∂ Ẋ

∂T
∂Ẏ

∂T
∂ψ̇

]T

is the vector containing the derivatives with respect to the derivatives of the general-
ized coordinates, while {

∂T
∂w

}
=

[
∂T
∂u

∂T
∂v

∂T
∂w

]T

is the vector containing the derivatives with respect to the generalized velocities.
By differentiating with respect to time, it follows that

∂

∂t

({
∂T
∂q̇

})
= A

∂

∂t

({
∂T
∂w

})
+ Ȧ

{
∂T
∂w

}
, (25.79)

where

Ȧ = ψ̇

⎡
⎣− sin(ψ) − cos(ψ) 0

cos(ψ) − sin(ψ) 0
0 0 0

⎤
⎦ . (25.80)

The computation of the derivatives with respect to the generalized coordinates{
∂T
∂q

}
5 is more complex. The generic derivative ∂T

∂qk
is

∂T ∗

∂qk
= ∂T

∂qk
+

n∑
i=1

∂T
∂wi

∂wi

∂qk
= ∂T

∂qk
+

n∑
i=1

∂T
∂wi

n∑
j=1

∂Ai j

∂qk
q̇ j , (25.81)

5For details on this part of the analysis, see L. Meirovitch, Methods of Analytical Dynamics,
Mc Graw-Hill, New York, 1970.
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where T ∗ is the kinetic energy expressed as a function of the generalized coordinates
and their derivatives (the expression to be introduced into Lagrange equations in their
original form), while T is expressed as a function of the generalized coordinates and
the velocities in the body-fixed frame. It is possible to show that

∂T ∗

∂qk
= ∂T

∂qk
+ wTAT ∂A

∂qk

{
∂T
∂w

}
. (25.82)

Note that product

wTAT ∂A
∂qk

is a rowmatrix of order n (3 in the present case) that, multiplied by the column
{

∂T
∂w

}
,

yields the required number.
To use a more synthetic notation, those row matrices can be superimposed, yield-

ing a square matrix [
wTAT ∂A

∂qk

]
,

and thus {
∂T ∗

∂qk

}
=

{
∂T
∂qk

}
+

[
wTAT ∂A

∂qk

]{
∂T
∂w

}
. (25.83)

The equation of motion is thus

A
∂

∂t

({
∂T
∂w

})
+ Ȧ

{
∂T
∂w

}
−

{
∂T
∂qk

}
−

[
wTAT ∂A

∂qk

]{
∂T
∂w

}
=

⎧⎨
⎩

FX

FY

Mz

⎫⎬
⎭ .

(25.84)
By premultiplying all terms of matrix AT = A−1, it follows that

∂

∂t

({
∂T
∂w

})
+ AT

(
Ȧ −

[
wTAT ∂A

∂qk

]){
∂T
∂w

}
+ (25.85)

−AT

{
∂T
∂qk

}
= AT

⎧⎨
⎩

FX

FY

Mz

⎫⎬
⎭ .

By performing the derivatives of the kinetic energy and all products, the equation
becomes ⎧⎨

⎩
mu̇
mv̇

Jzr

⎫⎬
⎭ +

⎡
⎣0 −r 0
r 0 0
0 0 0

⎤
⎦

⎧⎨
⎩

mu
mv

Jzψ

⎫⎬
⎭ =

⎧⎨
⎩

Fx

Fy

Mz

⎫⎬
⎭ , (25.86)
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where forces Fx and Fy refer to the body-fixed frame. The final expression of the
equations of motion is then ⎧⎨

⎩
m(u̇ − rv) = Fx

m(v̇ + ru) = Fy

Jzṙ = Mz ,

(25.87)

which obviously coincides with that obtained previously.
Velocities u and v are not derivatives of true coordinates, but nevertheless they

can be used to write the equations of motion. They are actually derivatives of pseudo-
coordinates, and the procedure here followed can also be used in cases where the
kinematic equation (25.72) is more complicated, and where, in particular, the equa-
tion contains a matrix AT that does not satisfy the relationship

AT = A−1 .

Equations (25.87) are nonlinear in the velocities u, v and r but, since the sideslip
angle β is small and its trigonometric functions can be linearized, the linearization
of the equations is possible. The components of velocity V can be written as

{
u = V cos(β) ≈ V
v = V sin(β) ≈ Vβ .

(25.88)

Product ψ̇v can be considered the product of two small quantities and it is thus
of the same order as the first term ignored in the series for the cosine. It is therefore
cancelled.

The speed V can be considered a known function of time, which amounts to
studying the motion with a given law V (t) (in many cases at constant speed) and
assuming as an unknown the driving or the braking force needed to follow such a
law. The unknown for the degree of freedom related to translation along the x-axis
in this case is the force Fxd exerted by the driving wheels. When braking, force Fxd
is the total braking force exerted by all wheels.

Equations (25.87) reduces to the linear form in Fx , v and r :
⎧⎨
⎩
mV̇ = Fx

m (v̇ + rV ) = Fy

Jzṙ = Mz

. (25.89)

If the interaction between longitudinal and transversal forces due to the tires is
neglected or accounted for in an approximate way, the first equation ofmotion, which
has already been studied in the section dealing with the longitudinal performance of
the vehicle, uncouples from the other two.

This amounts to saying that the lateral behavior is uncoupled from the longitudinal
behavior and can be studied using just two variables, either velocities v and r :

{
m (v̇ + rV ) = Fy

Jzṙ = Mz
, (25.90)
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or β and r if the equations are written in the equivalent form
{
mV

(
β̇ + r

) + mβV̇ = Fy

Jzṙ = Mz
. (25.91)

25.5.2 Sideslip Angles of the Wheels

The sideslip angles of the wheels may be expressed easily in terms of the generalized
velocities. With reference to Fig. 25.16, the velocity of the centre Pi of the contact
area of the i th wheel, located in a point whose coordinates are xi and yi in the
reference frame of the vehicle, is


VPi = 
VG + ψ̇�(Pi − G) =
{
u − ψ̇yi
v + ψ̇xi

}
. (25.92)

Angle βi between the direction of the velocity of point Pi and x-axis is

βi = arctan

(
vi

ui

)
= arctan

(
v + ψ̇xi
u − ψ̇yi

)
. (25.93)

Fig. 25.16 Position and
velocity of the centre Pi of
the contact area of the i-th
wheel
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If the i th wheel has a steering angle δi , its sideslip angle is

αi = βi − δi = arctan

(
v + ψ̇xi
u − ψ̇yi

)
− δi . (25.94)

Equation (25.94) can be easily linearized. By noting that yi ψ̇ is far smaller than
the speed V , it follows that

αi = βi − δi ≈ v + r xi
V

− δi = β + xi
V
r − δi . (25.95)

Coordinate yi of the centre of the contact area of the wheel does not appear in the
expression for the sideslip angle αi . If the differences between the steering angles δi
of the wheels of the same axle are neglected, the values of their sideslip angles are
then equal. This allows one to work in terms of axles instead of single wheels and to
substitute a model of the type of Fig. 4.1b to that of Fig. 4.1a. This approach is very
common and is often referred to as the monotrack vehicle or bicycle model.

The explicit expressions of the sideslip angles of the front and rear axles of a
vehicle with two axles are then

⎧⎪⎨
⎪⎩

α1 = β + a

V
r − δ1

α2 = β − b

V
r − δ2

. (25.96)

In the majority of cases only the front axle can steer and δ2 = 0.

Remark 25.6 The assumption of a rigid vehicle prevents one from considering roll
steering.

25.5.3 Forces Acting on the Vehicle

Normal forces acting on the vehicle in symmetrical conditions were obtained in
Chap.23. When lateral accelerations are present, the vehicle is not in symmetrical
conditions and the forces on the ground are not equally subdivided between the two
wheels of each axle. However, the assumption of a small sideslip angle β and the
subsequent linearization and uncoupling between lateral and longitudinal behavior
allow one to use the same values of the forces on the ground previously seen. More-
over, to investigate how forces are subdivided between the wheels of the same axle
has little meaning in a monotrack vehicle.

The forces acting in the xy plane at the tire-road interface in a monotrack vehicle
are shown in Fig. 25.12.
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Since the lateral behavior is uncoupled from the longitudinal one, only the resul-
tants of the side force Fy and of the yaw moment Mz need to be computed:

Fy =
∑
∀i

Fxi sin(δi ) +
∑
∀i

Fyi cos(δi ) + 1

2
ρV 2

r SCy + Fye , (25.97)

where the external force Fye may bemg sin(αt ) in the case of a road with transversal
slope αt , and

Mz =
∑
∀i

Fxi sin(δi )xi +
∑
∀i

Fyi cos(δi )xi +
∑
∀i

Mzi + 1

2
ρV 2

r SCMz + Mze ,

(25.98)
where xi and yi are the coordinates of the center of the contact zone, Mzi represents
the aligning moments of the wheels and Mze is a yawing moment applied to the
vehicle. Subscript i indicates the axle, and thus if the vehicle has two axles i = 1, 2.
If the rear axle does not steer, δ2 = 0.

Cornering Forces

Owing to linearization, equation (25.97) reduces to

Fy =
∑
∀i

Fxi δi +
∑
∀i

Fyi + 1

2
ρV 2

r SCy + Fye , (25.99)

where products Fxit δi can usually be neglected, since they are far smaller than the
other forces included in the equation.

Since the model has been linearized, cornering forces can be expressed as the
product of the cornering stiffness by the sideslip angle

Fyi = −Ciαi = −Ci

(
β + xi

V
r − δi

)
. (25.100)

Equation (25.100) is written in terms of axles. The cornering stiffness is then that
of the axle and not of the single wheel. In this way no allowance is taken for the
camber force as, owing to the assumption of a rigid vehicle, no roll is considered
and the wheels of a given axle have opposite camber. The camber forces then cancel
each other.

Nor is allowance made for toe-in and transversal load transfer. If the dependence
of the cornering stiffness were linear with the load Fz , this would be correct since the
increase of cornering stiffness of the more loaded wheel would exactly compensate
for the decrease of the other wheel. As this is not exactly the case, the load transfer
causes a decrease of the cornering stiffness of each axle, but this effect is usually
considered negligible, at least for lateral accelerations lower than 0.5 g.6 Toe-in

6L. Segel, Theoretical Prediction and Experimental Substantiation of the Response of the Automo-
bile to Steering Control, Cornell Aer. Lab., Buffalo, N.Y.
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causes an increase of the cornering stiffness of the axle if it is positive, a decrease if
it is negative.

By linearizing also the value of the aerodynamic coefficient Cy

Cy = (Cy),ββ

and assuming that the steering angles of the various axles can be expressed as

δi = K ′
iδ, (25.101)

the expression of the total lateral force (25.99) can be reduced to the linear equation

Fy = Yββ + Yrr + Yδδ + Fye , (25.102)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Yβ = −
∑
∀i

Ci + 1

2
ρV 2

r S(Cy),β

Yr = − 1

V

∑
∀i

xiCi

Yδ =
∑
∀i

K ′
i

(
Ci + Fxi

)
. (25.103)

Equation (25.102) can be considered as a Taylor series for the force Fy (β, r , δ)
about the condition β = r = δ = 0, truncated after the linear terms. Coefficients Yβ ,
Yr and Yδ are the derivatives of the force with respect to the three variables β, r and
δ and may be obtained in any way, even experimentally, if possible.

In the case of vehicles with only one steering axle, all K ′
i vanish except K ′

1 = 1,
while in other cases they can be functions of many parameters. If the variables of
motion β or r enter such equations the model is no longer linear.

The first Eq. (25.98) has been obtained conflating the sideslip angle of the vehicle
β with the aerodynamic sideslip angle βa , as occurs when no side wind is present,
and in the third equation the terms in Fxit are usually neglected.

Yawing Moments

Equation (25.98) can be linearized yielding

Mz =
∑
∀i

Fxi δi xi +
∑
∀i

Fyi xi +
∑
∀i

Mzi + 1

2
ρV 2

r SCMz + Mze . (25.104)

The aligning torque can be expressed as a linear function of the sideslip angle,

Mz = (Mz),αα , (25.105)

holding only in a range of α smaller than that for which the side force can be
linearized.
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The same considerations seen for the cornering force hold here; moreover, the
aligning torque is far less important and the errors in its evaluation affect the global
behavior of the vehicle far less than errors in the cornering force. In the following
equations the values of (Mz),α are referred to the whole axle.

Acting similarly to that seen for the cornering forces, the linearized expression
for the yawing moments is

Mz = Nββ + Nrr + Nδδ + Mze , (25.106)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Nβ =
∑
∀i

[−xiCi + (Mzi ),α
] + 1

2
ρV 2

r S(CMz ),β

Nr = 1

V

∑
∀i

[−x2i Ci + (Mzi ),αxi
]

Nδ =
∑
∀i

K ′
i

[
Ci xi − (Mzi ),α + Fxi xi

]
.

(25.107)

In this case the terms in Fxit are usually neglected.

25.5.4 Derivatives of Stability

As already stated, the terms Yβ , Yr , Yδ , Nβ , Nr and Nδ are nothing but the derivatives
∂Fy/∂β, ∂Fy/∂r , etc. They are usually referred to as derivatives of stability. Nr is
sometimes referred to as yaw damping, as it is a factor that, multiplied by an angular
velocity, yields a moment, like a damping coefficient.

In a simplified study of the handling of road vehicles, aerodynamic forces are
usually neglected, as is the interaction between the longitudinal and transversal forces
of the tires. In these conditions, Yβ , Yδ , Nβ and Nδ are constant while Yr and Nr are
proportional to 1/V . Note that they are strongly influenced by the load and road
conditions through the cornering stiffness of the tires.

If aerodynamic forces are considered, the airspeed Vr is often substituted by the
groundspeed V . These forces introduce a strong dependence with V 2 in Yβ and Nβ

and with V in Nr .

Example 25.3 Compute the derivatives of stability at 100km/h of the vehicle of
Appendix E.2, using the simplified and the complete formulations. Plot the deriva-
tives of stability as functions of the speed for the same vehicle. In the whole compu-
tation neglect the longitudinal forces on the tires.

The normal forces on the ground are first computed. At 100km/h, at constant
velocity on level road, they are 4.804 and 3.536 kN for the front and rear axles
respectively.
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From these values the cornering and aligning stiffness can be computed as C1 =
67,369 N/rad, C2 = 63,411 N/rad, (Mz1),α = 2,010 Nm/rad and (Mz2),α = 1,366
Nm/rad.

These values refer to the axles; the normal load on each wheel must be first
computed and introduced into the “magic formula”; the results are then multiplied
by the number of wheels on the axles.

By taking into account only the cornering forces of the tires, the following values
of the derivatives of stability at 100km/h are obtained:

Yβ (N/rad) Yr (Ns/rad) Yδ (N/rad) Nβ (Nm/rad) Yr (Nms/rad) Yδ (Nm/rad)
−130,570 824.62 67,374 22,906 −5,622 58,615

If the complete expressions, including aligning torques, aerodynamic forces and
load shift between the wheels of the same axle are used, the values of the derivatives
of stability at 100km/h are:

Yβ (N/rad) Yr (Ns/rad) Yδ (N/rad) Nβ (Nm/rad) Yr (Nms/rad) Yδ (Nm/rad)
−132,340 824.62 67,374 26,488 −5,630 55,962

The derivatives of stability are plotted as functions of the speed in Fig. 25.17. The
values obtained from the complete expressions are reported as full lines while the
dashed lines are the constant values (proportional to 1/V for Yr and Nr ) obtained
when considering the cornering forces only, computed at 100km/h.

Note that Nβ is the only derivative of stability strongly affected by load shift,
aligning torques and the other effects. Here an apparently strange result is obtained:
From the formula a decrease in Nβ seems to occur with increasing speed, as the
aerodynamic term is negative, while the plot shows an increase.

Fig. 25.17 Derivatives of
stability as functions of the
speed. Full lines: Values
obtained from the complete
expressions; dashed lines:
Constant values
(proportional to 1/V for Yr
and Nr ) obtained considering
the cornering forces only,
computed at 100km/h
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The latter is due to the longitudinal load shift which, while causing an increase of
the load on the rear axle, produces an increase of Nβ that is larger than the decrease
due to the aerodynamic moment Mz .

25.5.5 Final Expression of the Equations of Motion

The final expression of the linearized equations of motion for the handling model is
thus {

mV
(
β̇ + r

) + mV̇β = Yββ + Yrr + Yδδ + Fye
Jzṙ = Nββ + Nrr + Nδδ + Mze .

(25.108)

These are two first order differential equations for the two unknown β and r .
These equations are apparently first order equations: the variables β and r are

actually an angular velocity (r ) or a quantity linked with a velocity (β was introduced
instead of velocity v); their derivatives are thus accelerations. The missing term is
therefore not the second derivative (acceleration), but the displacement.

Alternatively, a set of two first order differential equations in v and r could be
written.

The steering angle δ can be considered as an input to the system, together with
the external force and moment Fye and Mze . This approach is usually referred to as
the “locked controls” behavior.

Alternatively, it is possible to study the “free controls” behavior, in which the
steering angle δ is one of the variables of themotion and a further equation expressing
the dynamics of the steering system is added.

In the first case, β and r can be considered as state variables and Eq. (25.108) can
be written directly as a state equation

ż = Az + Bcuc + Beue , (25.109)

where the state and input vectors z, uc and ue are

z =
{

β
r

}
, uc = δ , ue =

{
Fye
Mze

}
,

the dynamic matrix is

A =

⎡
⎢⎢⎢⎣

Yβ

mV
− V̇

V

Yr
mV

− 1

Nβ

Jz

Nr

Jz

⎤
⎥⎥⎥⎦
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Fig. 25.18 Block diagram
for the rigid vehicle handling
model

and the input gain matrices are

Bc =

⎡
⎢⎢⎢⎣

Yδ

mV

Nδ

Jz

⎤
⎥⎥⎥⎦ , Be =

⎡
⎢⎢⎢⎣

1

mV
0

0
1

Jz

⎤
⎥⎥⎥⎦ .

The block diagram corresponding to the state equation is shown in Fig. 25.18.
The study of the system is straightforward: The eigenvalues of the dynamicmatrix

allow one to see immediately whether the behavior is stable or not, and the study
of the solution to given constant inputs yields the steady state response to a steering
input or to external forces and moments.

There is, however, an interesting analogy. If the speed is kept constant in such
a way that the derivatives of stability are constant in time, there is no difficulty in
obtaining r from the first Eq. (25.108) and substituting it into the second, which
becomes a second order differential equation in β. Similarly, solving the second in
β and substituting it in the first one, an equation in r is obtained. The result is

Pβ̈ + Qβ̇ +Uβ = S′δ + T ′δ̇ − Nr Fye + Jz Ḟye − (mV − Yr )Mze (25.110)

or
Pr̈ + Qṙ +Ur = S′′δ + T ′′δ̇ + NβFye − YβMze + mV Ṁze , (25.111)

where

⎧⎨
⎩

P = JzmV
Q = −JzYb − mV Nr

U = Nβ (mV − Yr ) + NrYβ

⎧⎪⎪⎨
⎪⎪⎩

S′ = −Nδ (mV − Yr ) − NrYδ

S′′ = YδNβ − NδYβ

T ′ = JzYδ

T ′′ = mV Nδ .

If the simplified expressions of the derivatives of stability are used, the expressions
for P , Q, etc., for a vehicle with two axles reduce to
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Fig. 25.19 Formal analogy
of the motor vehicle with a
mass-spring-damper system
(mass P, stiffnessU , damper
Q). Force F includes the
different forcing functions

⎧⎪⎨
⎪⎩

P = JzmV
Q = Jz(C1 + C2) + m(a2C1 + b2C2)

U = mV (−aC1 + bC2) + C1C2
l2

V

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S′ = C1

(
−amV + C2

bl

V

)

S′′ = lC1C2

T ′ = JzC1

T ′′ = mVaC1 .

Each of Eqs. (25.110) and (25.111) is sufficient for the study of the dynamic
behavior of the vehicle.

The equations are formally identical to the equation of motion of a spring-mass-
damper system (Fig. 25.19).

The linearized behavior of a rigid motor vehicle at constant speed is thus identical
to that of a mass P suspended from a spring with stiffness U and a damper with
damping coefficient Q, excited by the different forcing functions stated above (the
command δ and the external disturbances).

Remark 25.7 The analogy here suggested is only a formal one: as already stated,
the state variables β and r are dimensionally an angular velocity (r ) or are related to
velocities (β has been introduced to express the lateral velocity v) and not displace-
ments, and thus P , Q and U are dimensionally far from being a mass, a damping
coefficient and a stiffness.

25.6 Steady-State Lateral Behavior

In steady state driving the radius of the path is constant, i.e. the path is circular. The
relationship linking the angular velocity r to the radius R of the path is thus

r = V

R
. (25.112)
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Computing the steady state response to a steering angle δ is the same as computing
the equilibrium position of the equivalent mass-spring-damper system under the
effect of a constant force S′δ or S′′δ, since in steady-state motion δ̇ = 0

⎧⎪⎪⎨
⎪⎪⎩

β = S′

U
δ = −Nδ (mV − Yr ) − NrYδ

Nβ (mV − Yr ) + NrYβ
δ

r = S′′

U
δ = YδNβ − NδYβ

Nβ (mV − Yr ) + NrYβ
δ .

(25.113)

The transfer functions of the vehicle are thus the

• path curvature gain

1

Rδ
= YδNβ − NδYβ

V
[
Nβ (mV − Yr ) + NrYβ

] , (25.114)

expressing the ratio between the curvature of the path and the steering input; the

• lateral acceleration gain

V 2

Rδ
= V

[
YδNβ − NδYβ

]
Nβ (mV − Yr ) + NrYβ

, (25.115)

expressing the ratio between the lateral acceleration and the steering input: the

• sideslip angle gain
β

δ
= −Nδ (mV − Yr ) − NrYδ

Nβ (mV − Yr ) + NrYβ
, (25.116)

expressing the ratio between the sideslip angle and the steering angle; and the

• yaw velocity gain
r

δ
= YδNβ − NδYβ

Nβ (mV − Yr ) + NrYβ
, (25.117)

expressing the ratio between the yaw velocity and the steering angle.

If a simplified expression of the derivatives of stability, including only the corner-
ing forces of the tires, is introduced in the above expressions, the same values of the
gains reported in equations from (25.53) to (25.61) are obtained.

When the dependence of the derivatives of stability on the speed is accounted for,
the law 1/Rδ as a function of V is no more monotonic as those shown in Fig. 25.13a
and the behavior may change from understeer to oversteer (or viceversa).

The aerodynamic yawing moment produces a strong effect. If ∂CMz/∂β is neg-
ative (the side force Fy acts forward of the centre of mass), the effect is increasing
oversteer or decreasing understeer, at increasing speed. If a critical speed exists, such
an aerodynamic effect lowers it and has an overall destabilizing effect, increasing
with the absolute value of (CMz ),β . The opposite occurs if (CMz ),β is positive.
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Fig. 25.20 Steady-state response to a steering input. Plot of the path curvature gain as a function
of speed (a) and handling diagram (b) for a vehicle that at low speed is oversteer and then becomes
understeer at high speed

The longitudinal load shift produces another important effect. If the load on the
rear axle increases more, or decreases less, than that on the front axle, the understeer
increases with increasing speed.

The case of a vehicle that is oversteer at low speed and understeer at high speed,
as can be caused by a positive value of (CMz ),β , is shown in Fig. 25.20. Following
the definition seen above, the speed at which neutral-steer is obtained is identified
by point B.

If the simplified expressions for the derivatives of stability are not used, a new def-
inition of a neutral-steer, and hence under- and oversteer, vehicle may be introduced.
Instead of referring to the condition

1

Rδ
= 1

l
,

neutral-steering can be defined by the relationship

d

dV

(
1

Rδ

)
= 0 . (25.118)

On the plot of Fig. 25.20 the speed at which neutral-steering is obtained is point
A, where the curve reaches its maximum.

Remark 25.8 In case the derivatives of stability are constant (Yr and Nr are propor-
tional to 1/V ) the first definition, which can be said to be absolute and the second,
which can be said to be incremental, coincide.
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Remark 25.9 The incremental definition corresponds to the sensations of the driver,
who perceives the vehicle as oversteering if an increase of speed is accompanied by a
decrease in radius of the path and vice versa. The driver clearly has no way of sensing
the kinematic value of the radius of the path and hence the absolute definition has
little meaning for him. From the viewpoint of the equations of motion, on the other
hand, the absolute definition is more significant.

The generalized definition (25.57) of the understeer factor

Kus = g

ay
(δ − δkin) ,

and the corresponding definition of the stability factor holds in the present case as
well. They are essentially the difference between the steering angle needed to keep
the vehicle on a given trajectory in dynamic conditions and that corresponding to
kinematic steering, multiplied by a suitable factor proportional to 1/V 2.

Generally speaking, they depend on the speed and on other conditions, such as
acceleration.

Also for the understeer factor it is, however, possible to introduce an incremental
definition

1

Kus
= 1

g

day
d (δ − δkin)

. (25.119)

In this case the point in which the understeer factor vanishes and the vehicle is
neutral steer is point A in Fig. 25.20b instead of being point B.

25.7 Neutral-Steer Point and Static Margin

The neutral-steer point of the vehicle is usually defined as the point on the plane of
symmetry to which is applied the resultant of the cornering forces due to the tires as
a consequence of a sideslip angle β, obviously with δ = 0 and r = 0. The cornering
forces under these conditions, computed through the linearized model, are simply
−C1β and −C2β and the x coordinate of the neutral point is

xN = aC1 − bC2

C1 + C2
. (25.120)

A better definition of neutral-steer point may, however, be introduced. If all forces
and moments due to a sideslip angle β, with δ = 0 and r = 0 are considered, the
resultant force and moment are simply Yββ and Nββ respectively.7 The x coordinate
of the neutral-steer point, defined as the point of application of the resultant of all
lateral forces is thus

7Yβ may be considered as a sort of cornering stiffness of the vehicle.
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Table 25.1 Directional behavior of the vehicle

Behavior K Kus Ms xN |α1| − |α2| Nβ

Understeer >0 >0 < 0 < 0 >0 >0

Neutral steer 0 0 0 0 0 0

Oversteer <0 <0 >0 >0 <0 <0

xN = Nβ

Yβ
. (25.121)

The static margin Ms is the ratio between the x coordinate of the neutral point
and the wheelbase

Ms = xN
l

. (25.122)

An external force applied to the neutral-steer point does not cause any steady-state
yaw velocity, as will be seen when dealing with the response to external forces and
moments. Owing to the mathematical model used in the present chapter, the height
of the neutral-steer point cannot be defined.

Note that to obtain a neutral-steer response, the neutral-steer point must coincide
with the centre of mass, i.e.

xN = 0 , Ms = 0 , Nβ = 0 .

If they are positive the vehicle is oversteer8 (centre of gravity behind the neutral
point); the opposite applies to understeer vehicles.

The signs of parameters K , K ∗, Ms , xN , |α1| − |α2| and Nβ corresponding to
oversteer, understeer or neutral-steer behavior are reported in Table25.1.

Since Nβ = 0 in case of neutral-steer, the second equation of motion (25.108)
uncouples from the first and simplifies as

Jzṙ = Nrr + Nδδ + Mze . (25.123)

The behavior of a neutral-steer motor vehicle is thus that of a first order system
rather than a second order system.

Example 25.4 Study the directional behavior of the vehicle of Appendix E.2, using
the simplified and the complete formulations.

The value of Nβ is positive and hence the vehicle is understeer. Using the values
of the derivatives of stability computed from the cornering stiffness at 100km/h,
the values of the coordinate of the neutral-steer point and of the static margin are

8Sometimes the position of the neutral-steer point and the static margin are defined with different
sign conventions: Instead of referring to the position of the neutral-steer point with respect to the
centre of mass, the position of the latter with respect to the former is given. In this case the signs of
xN and Ms are changed and an understeer vehicle has a positive static margin.
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xN = −175 mm, Ms = −0.081, while the values obtained, always at 100km/h,
using a complete expression of the derivatives of stability are xN = −200mm,Ms =
−0.093.

The path curvature gain, the lateral acceleration gain, the sideslip angle gain and
the yaw velocity gain are plotted as functions of the speed in Fig. 25.21. The values
obtained from the complete expressions of the derivatives of stability are shown as
full lines, while the dashed lines refer to the simplified expressions for the derivatives
of stability (constant or proportional to 1/V for Yr and Nr ) obtained by considering
only the cornering forces computed at 100km/h. The dotted lines refer to a neutral-
steer vehicle.

The vehicle has a strong understeer behavior, evenmore so if the complete expres-
sion of the derivatives of stability is considered. However, the simplified approach
allows one to obtain a fair approximation of the directional behavior of the vehicle.

Fig. 25.21 Example 25.4: path curvature gain, lateral acceleration gain, sideslip angle gain and yaw
velocity gain as functions of the speed. Full lines: Values obtained from the complete expressions
of the derivatives of stability; dashed lines: Simplified approach (constant derivatives of stability, Yr
and Nr proportional to 1/V , obtained considering only the cornering forces computed at 100km/h);
dotted lines: Neutral-steer vehicle
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25.8 Response to External Forces and Moments

From the equivalent mass-spring-damper model the steady state response to an exter-
nal force Fye or an external moment Mze is immediately obtained. The relevant gains
are ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

RFye

= Nβ

VU

V 2

RFye

= V Nβ

U

β

Fye

= −Nr

U

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

RMze

= −Yβ

VU

V 2

RMze

= −VYβ

U

β

Mze

= −mV + Yr
U

.

(25.124)

If the vehicle is neutral-steer, Nβ = 0 and consequently

1

RFye

= 0 .

In neutral steer vehicles, then, the path remains straight under the effect of an
external force (Fig. 25.22Ia). This may be easily understood considering that the
neutral-steer point lies in the centre of mass, i.e. in the point of application of the
external force.

Actually, this condition can be used to define the neutral-steer point as the point
in which the application of an external force does not cause a yaw rotation of the
vehicle. If the presence of the suspension is accounted for, it is possible to define,
instead of a neutral-steer point, a neutral-steer line as the locus of the points in the xz
plane in which an external force applied in the y direction does not cause any yaw
rotation.

The path is, however, changed from the one preceding the application of force
Fye : The deviation is equal to angle β, i.e. to −Fye/Yβ . The lateral velocity of the
vehicle is simply

v = Vβ = −V
Fye

Yβ
.

Remark 25.10 It is very important that Yβ be as large as possible in order to avoid
large lateral velocities, particularly in the case of fast vehicles.

If the vehicle is understeer, the neutral-steer point is behind the centre of mass
and the path bends as in Fig. 25.22Ib. The opposite effect can be found in the case of
oversteer vehicles. Note that the trajectories so computed are steady-state trajectories,
and when the force is applied an unstationary motion occurs (dashed lines in the
figure). This first part of the path cannot be computed with the above mentioned
equations.
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Fig. 25.22 I. Response to a force Fye applied to the centre of mass; (a) neutral-steer, (b) understeer
and (c) oversteer vehicle. II. Response to a lateral wind; point of application of the side force in the
neutral-steer point (a), forward (b) and after the neutral-steer point (c) and (d)

All the gains expressed by Eq. (25.124) tend to infinity when approaching the
critical speed if the vehicle is oversteer, while they decrease with the speed in case
of understeer vehicles.

The effect of a crosswind may be considered as the combined effect of a force
and a moment. If the relative velocity is changed by angle ψw with respect to the
velocity in still air, the force and the moment acting on the vehicle due to crosswind
are

Fyw
= (Fyaer ),βψw , Mzw

= (Mzaer ),βψw . (25.125)

Note that this approach, essentially a linearization of aerodynamic forces, holds
only for small values of ψw, or, better, for values causing angle β + ψw to remain
within the range where the side force and the yawing moment can be linearized. This
occurs either for feeble crosswinds or for head- or tailwinds. If the wind velocity is
not small, the aerodynamic terms of the derivatives of stability must be computed
using Vr instead of V .

The response in terms of curvature of the path, computed as the sumof the response
to a force and to a moment, is

1

R
= Fyw

Nβ − Mzw
Yβ

V
[
Nβ (mV − Yr ) NrYβ

] = Fyw
Yβ

VU

(
Nβ

Yβ
− Mzw

Fyw

)
. (25.126)

Ratio Mzw
/Fyw

is nothing but the distance of the point of application of the aero-
dynamic side force from the centre of mass. If it is equal to Nβ/Yβ , the aerodynamic
force is applied to the neutral steer point and a straight path occurs. The deviation
angle is
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β = Mzw

Yβ
= − Fyw

xN
Nβ

. (25.127)

In general, the value of β is

β = Fyw

U

[
−Mzw

Fyw

(mV − Yr ) − Nr

]
. (25.128)

The trajectories are shown in Fig. 25.22II.
Usually the point of application of the aerodynamic force is in front of both the

centre of mass and the neutral-steer point. In this case the path bends downwind
(curve b).

The path bends upwind (curves c and d) on the other hand, if the point of appli-
cation of aerodynamic forces is behind the neutral-steer point . If this effect is not
too strong (curve d3), it is beneficial since very little correction is needed, but if the
result resembles that of curve d1, a large correction may be required in a direction
opposite to the instinctive reaction of the driver.

Remark 25.11 It must be noted again that the present steady-state model has limited
application in the case of wind gusts, which involve primarily unsteady phenomena.

The application of a side force to the centre of mass is easy: It is sufficient to
use a road with a transversal slope fashioned in a proper way. Wind gusts may be
simulated using jet engines and suitable ducts to distribute the gust with the required
profile.

25.9 Slip Steering

As stated in Chap. 20, the trajectory of a vehicle on pneumatic tires may be controlled
by applying differential longitudinal forces to the tires on the right and left side instead
of steering some of the wheels. This method of driving a vehicle is usually referred
to as slip steering: While it is the usual strategy for controlling tracked vehicles, it
is used as a primary strategy for wheeled vehicles only on some light construction
machines. In the automotive field, however, it is increasingly used as an additional
control in connection with VDC (Vehicle Dynamics Control) systems (see Chap.27).

Consider the mathematical model of the vehicle expressed by Eqs. (25.108), and
add a control yawing torque Mzc to the second equation

{
mV

(
β̇ + r

) + mV̇β = Yββ + Yrr + Yδδ + Fye
Jzṙ = Nββ + Nrr + Nδδ + Mze + Mzc .

(25.129)
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If the two wheels of the i th axle, whose track is ti , produce a longitudinal force

FxiL ,R,
= Fxi

2
± �Fxi , (25.130)

where subscripts L and R designate the left and right wheel, the control torque is

Mzc =
∑
∀i

�Fxi ti . (25.131)

If the longitudinal slip σ of the tires is small enough, the longitudinal force is
proportional to the slip through the slip stiffness Cσ (see Sect. 2.6). Assuming that
the differential longitudinal slip�σ is the same on all axles, the yawing moment can
thus be expressed as

Mzc = Nσ�σ , (25.132)

where
Nσ =

∑
∀i

Cσi ti . (25.133)

The equation of motion is still Eq. (25.109)

ż = Az + Bcuc + Beue ,

but now

uc =
{

δ
�σ

}
, Bc =

⎡
⎢⎢⎢⎣

Yδ

mV
0

Nδ

Jz

Nσ

Jz

⎤
⎥⎥⎥⎦ .

In steady-state conditions, it is possible to define a path curvature gain for slip
steering

1

R�σ
= −NσYβ

V
[
Nβ (mV − Yr ) + NrYβ

] , (25.134)

expressing the ratio between the curvature of the path and the differential longitudinal
slip. If the simplified expressions for the derivatives of stability are accepted, it
follows that

1

R�σ
= C1 + C2

C1C2l2

∑
∀i

Cσi ti

1 + Kus
V 2

gl

. (25.135)

Remark 25.12 This approach to slip steering assumes that the differential longitu-
dinal slip is imposed. Different equations would be obtained for cases in which the
differential velocity of the wheels is imposed.



362 25 Handling Performance

Remark 25.13 The formulae above are based on the assumption that the radius of
the trajectory is much larger than the wheelbase: They do not hold when slip steering
is used for very sharp turns, or even for turning on the spot.

Remark 25.14 Even when the speed tends to zero no kinematic conditions exist: By
definition slip steering implies that the wheels operate with both longitudinal and
side slip.

25.10 Influence of Longitudinal Forces on Handling

Avehicle’s directional behavior is strongly influenced by the presence of longitudinal
forces between tires and road. Any longitudinal force causes a reduction of cornering
stiffness: If applied to the front axle, it reduces the value of C1 and consequently
makes the vehicle more understeer or less oversteer. The opposite effect is caused
by a longitudinal force applied to the rear axle.

In the linearized model this can be easily accounted for by using the ellipti-
cal approximation which, if a complete linearization of the behavior of the tires is
assumed, can be applied directly to each axle

Ci = C0i

√
1 −

(
Fxi

μpFzi

)2

. (25.136)

Note that the forces and the cornering stiffness refer to the whole axle.
The driving force needed tomaintain a constant speed increaseswith the latter and,

as a consequence, the cornering stiffness of the tires of the driving axle decreases.
The effect is felt particularly if road conditions are poor, since in Eq. (25.136) the
ratio between the actual and the maximum value of the driving force is present.

The variation of static margin for a front-wheel and a rear-wheel drive saloon
car with the speed due to the effect of the driving forces is shown in Fig. 25.23. It
is clear that the effect is minor in the whole practical speed range of the car if the
road conditions are good while, if μp is low, the change in handling of the car due
to traction is quite strong.

In the case of rear-wheel drive vehicles, driving forces increase oversteer or
decrease understeer. The critical speed, if it exists, decreases or a critical speed
may appear. In bad road conditions, a rear-wheel drive vehicle may have a very low
critical speed and the driver may be required to limit the speed for stability reasons,
to avoid spinout. Starting and accelerating the vehicle may be difficult and the driver
has to exert great care in operating the accelerator control; antispin or TCS devices
are very useful in these conditions.

Front-wheel drive vehicles, on the other hand, have a tendency toward under-
steering and become more stable with increasing speed or decreasing μp and an
increasingly large steering angle is needed to maintain the vehicle on a given path.
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Fig. 25.23 Variation of the
stability margin due to the
longitudinal forces on the
tires in the cases of front-
and rear-wheel drive saloon
cars. Various values of μp; a
completely linearized model
has been used

The limit condition is that of an infinitely stable vehicle, i.e., a vehicle that can only
move on a straight line.

In vehicles with more than one driving axle, and when braking, handling depends
upon how the longitudinal forces are distributed between the axles. If the front axle
is working with a larger longitudinal force coefficient μx than the rear axle, which
does not necessarily imply that force Fx is larger but that the ratio Fx/Fz of the front
wheels is larger than that of the rear wheels, the vehicle becomes more understeering
and is, in a sense, more stable. When the limit conditions are reached and the front
wheels slip (lock in braking or spin in traction) the vehicle cannot be steered and
follows a straight path.

A larger ratio Fx/Fz at the rear wheels makes the vehicle more oversteer and read-
ily introduces a critical speed.When reaching limit conditions a spinout occurs, unless
the driver promptly reduces the longitudinal forces and countersteers, a manoeuvre
that can be expected only from very proficient drivers. To avoid this situation the
braking systemmust be such that the working point on the Fx1 , Fx2 plane is not found
above the curve for ideal braking. Antispin and antilock devices are very important
from this viewpoint.

When all values of μx are equal, the behavior should theoretically not be affected
by the longitudinal forces; however, when limit conditions occur, the vehicle can
spin out or go straight depending on small changes in many parameters, such as the
conditions of the individual wheels and brakes, the load transfer, etc.

Example 25.5 Study the directional behavior of the vehicle of Appendix E.2, taking
into account the reduction of the cornering stiffness of the driving wheels caused by
the longitudinal forces needed to move at constant speed. Repeat the computation
for two values of μp, namely 1 and 0.2.
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The study is performed by computing, at each speed, the values of the longitudinal
and normal component of the tire forces, using the “magic formula” for the cornering
stiffness and then reducing it through the elliptic expression (25.136).

The results, in terms of path curvature gain, lateral acceleration gain, sideslip
angle gain and yaw velocity gain, are plotted as functions of the speed in Fig. 25.24
for both values of the maximum longitudinal force coefficient. The dashed lines refer
to the simplified expressions for the derivatives of stability (constant or proportional
to 1/V for Yr and Nr ) obtained considering only the cornering forces computed at
100km/h; the dotted lines refer to a neutral-steer vehicle.

By comparing Fig. 25.24 with Fig. 25.21, it is clear that the effect of the driving
force is almost negligible throughout the entire speed range if the road conditions
are good (μp = 1): The lines of the two figures are almost completely superimposed.

Fig. 25.24 Example 25.5: path curvature gain, lateral acceleration gain, sideslip angle gain and
yaw velocity gain as functions of the speed. Values obtained from the complete expressions of
the derivatives of stability, with the effect of the driving forces accounted for; (1) μt = 1; (2)
μt = 0.2; (3) Simplified approach (constant derivatives of stability, Yr and Nr proportional to 1/V ,
obtained considering only the cornering forces computed at 100km/h, assuming no longitudinal
force effects); (4) Neutral-steer vehicle
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However, if μp is lowered to 0.2, the understeer behavior becomes much more
marked, particularly at high speed.

25.11 Transversal Load Shift

No allowance has yet been taken for the transversal load shift. If the dependence on
the load of the cornering stiffness of a single wheel is of the type shown in Fig. 25.25,
this does not introduce errors if the load transfer �Fz is small, lower than (�Fz)lim
in the figure (condition a).

But if the load shift is larger, as in the case of �Fzb, the increase in stiffness of
the more loaded wheel cannot compensate for the decrease in the other wheel and
the cornering stiffness of the axle is reduced. This effect introduces a nonlinearity in
the behavior of the vehicle.

The simultaneous presence of longitudinal forces and load transfer makes things
more complicated. Even if the cornering stiffness is still in the linear part of the plot
of Fig. 25.25, i.e., the load transfer is smaller than (�Fz)lim , the combined effect
yields a nonlinear behavior. Assuming that the longitudinal force splits equally on
its two wheels, the cornering stiffness of the axle, computed using the elliptical
approximation, is

Fig. 25.25 Effect of load
transfer on the cornering
stiffness
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C = 1

2

(
C0 + �Fz

∂C

∂Fz

)√
1 −

[
Fx

μp(Fz + 2�Fz)

]2

+

+1

2

(
C0 − �Fz

∂C

∂Fz

)√
1 −

[
Fx

μp(Fz − 2�Fz)

]2

,

(25.137)

where forces Fx and Fz refer to the whole axle.
Owing to the presence of the square root, the decrease in cornering stiffness of the

less loaded wheel is greater, particularly if μx is low, than the increase at the other
wheel.

Load transfer on the driving axle thus increases the effect of longitudinal forces;
this combined action can be reduced by introducing an anti-roll bar on the other
axle. Operating in this way, the increased load transfer on the non-driving axle also
reduces its cornering stiffness, reducing the overall effect of longitudinal forces on
handling.

Anti-roll bars affect the distribution of transversal load shift between the axles,
increasing the load shift on the relevant one while decreasing that on the other axles.
They can be used to correct the behavior of the vehicle, particularly in conditions
approaching the limit lateral acceleration, as their effect on the cornering stiffness
increases when the latter increases.

Remark 25.15 A large rear-wheel drive saloon car can benefit from the application
of an anti-roll bar at the front axle to correct the strong oversteering tendency when
the rear wheels approach their traction limit, while a small front wheel car can use
an anti-roll bar at the rear axle to reduce its understeering behavior.

It is impossible to state the effect of anti-roll bars on the gains defined in the
previous sections since they introduce a strong nonlinearity into the mathematical
model of the vehicle and the very definition of the gains is based on a complete
linearization. It is only possible to study a number of specific cases where the lateral
acceleration is defined, and to compute the response of the vehicle in such conditions.

25.12 Toe-In

Consider an axle (e.g., the front axle), in which the midplanes of the wheels are not
exactly parallel and assume that the x-axes of the reference frames of the wheels
converge in a point lying forward with respect to the axle.9

Let αc be the angle each wheel makes with the symmetry plane of the vehicle,
positive when the toe-in is positive. With reference to Fig. 4.1, the steering angle of

9Toe-in is usually defined as the difference between the distance of the front part and the rear part of
the wheels of an axle, measured at the height of the hub, when the steering is in its central position.
It is positive when the midplanes converge forward.
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the wheel on the right side of the vehicle is increased by an angle equal to αc, while
the steering angle of the wheel on the left side is decreased by the same quantity.

If the usual linearization assumptions are accepted, the sideslip angles of the two
wheels of the axle are then

⎧⎪⎪⎨
⎪⎪⎩

αir = β + xi
V
r − δi − αc = αi − αc

αil = β + xi
V
r − δi + αc = αi + αc ,

(25.138)

where subscripts r and l refer to the right and left wheels respectively and i refers to
the i th axle.

Consider a vehicle negotiating a bend to the left; the sideslip angle αi is negative
while the side force is positive. The transversal load shift causes an increase of the
load on the wheels on the right, the sideslip angle αi is negative and the side force is
positive.

If C is the total stiffness of the axle, the cornering force the axle exerts is

Fy = −1

2

[
(αi − αc)

(
C + �Fz

∂C

∂Fz

)
+ (αi + αc)

(
C − �Fz

∂C

∂Fz

)]
,

(25.139)
i.e.,

Fy = C |αi | + αc�Fz
∂C

∂Fz
. (25.140)

If transversal load shift is not taken into account, and the twowheels have the same
cornering stiffness, toe-in has no effect within the validity of the linearized model.
The situation is different if load shift is included into the model: then toe-in causes
an increase of the cornering force due to the axle. This has the effect of increasing
the cornering stiffness of the axle, depending on the load shift. Toe-in at the front
wheels or toe-out of the rear ones thus has an oversteer effect.

The effect of toe-in is complicated since αc depends on the steering angle due
to steering error, on suspension geometry and on the relative roll stiffness of the
suspensions that affect the total shift of the various axles.

25.13 Effect of the Elasto-Kinematic Behavior of
Suspensions and of the Compliance of the Chassis

In the present chapter the vehicle is modelled as a rigid body moving on a plane.
Suspensions, apart from causing inertial effects that cannot be studied using the
present model, also change all working angles of the tires and thus affect the forces
acting on the vehicle. The effects introduced by the elasto-kinematic characteristics
of suspensions may be of two different types: some of these effects may be studied
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using linearized models, at least for small motion about a nominal configuration,
while others must be studied by considering their nonlinear effects, even for small
displacements

An example of the first type is roll steer. The characteristics δ(φ) can be linearized,
and a steering angle

(δ),φ φ

can easily be added to the steering angle of the various wheels, or the various axles
in monotrack models.

When, on the contrary, the compliance of the suspensions is accounted for, the
characteristic angles of the wheels depend in a nonlinear way on the variables of
motion and the resulting effects are nonlinear. No general results can thus be obtained
and numerical simulation must be used.

Even if it is possible to remain within linearity limits, the mathematical models
seen in this chapter are too simplified to depict how the elasto-kinematic charac-
teristics of the suspensions affect the behavior of the vehicle. Some more complex
models taking suspensions into account will be seen in Part V.

Similar considerations also hold for the compliance of the chassis or the body.
In this case, the displacements due to compliance are usually considered small and
the models describing their flexibility are linearized. However, although linear, these
models are complex owing to the large number of deformation degrees of freedom
involved, together with the rigid body degrees of freedom typical of the rigid-body
models. Some models of this kind will be studied in Part V.

In general, we can say that the compliance of the chassis in its plane has little
influence on the handling of the vehicle.On the other handy, its torsional deformations
can strongly affect handling and lateral behavior.

25.14 Stability of the Vehicle

It is customary to define a static and a dynamic stability. A system is statically
stable in a given equilibrium condition if, when its state is perturbed, it tends to
return to the previous situation. If the motion following this tendency towards the
previous state of equilibrium succeeds, at least asymptotically, at restoring it, then
the system is dynamically stable. This motion can tend to the equilibrium condition
monotonically or through a damped oscillation. If, on the contrary, the equilibrium
conditions are not reached, usually because a divergent oscillation takes place, the
system is dynamically unstable. If an undamped oscillation occurs, as in the case of
an undamped spring-mass system, the dynamic stability is neutral.

Remark 25.16 If the system is linear, such definitions hold in the entire range in
which the state variables are defined. If, on the contrary, the system is nonlinear, this
definition holds “in the small”, i.e. for small variations of the state variables about
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the values corresponding to an equilibrium point in the state space. The linearized
model here studied is then a linearization suitable for the stability “in the small”.

The definition of stability above refers to the state of the system; in the case of
the handling model with two degrees of freedom the state variables are β and r (or
v and r ). A motor vehicle is thus stable if, when in motion with given values β0 and
r0 of β and r , after a small external perturbation, it follows that

β(t) → β0 , r(t) → r0 .

No reference is made to the path: After a perturbation the vehicle cannot return to
the previous path, and a correction by the driver or by an automatic control system
is required in order to maintain the vehicle on the road.

25.14.1 Locked Controls

If the steering wheel is kept in a position that allows the vehicle to maintain the
required path, the stability can be studied simply by using the homogeneous equation
of motion

ż = Az .

The eigenvalues of the dynamic matrix A are readily found and the stability is
assessed from the sign of their real part, which must be negative. If the imaginary
part is nonzero the behavior is oscillatory, which does not necessarily imply that the
path is oscillatory but only that the time histories β(t) and r(t) are.

The analogy with the spring-mass-damper system allows a simpler approach to
the study of the stability at constant speed.

Assuming a solution of the type

β(t) = β0e
st , r(t) = r0e

st ,

the characteristic equation yielding the poles of the system is

Ps2 + Qs +U = 0 . (25.141)

Since P , Q andU depend in general on the speed V , it is possible to compute the
roots locus at various speed. By using the simplified expression for the derivatives
of stability, the characteristic equation reduces to

JzmV s2 + [
Jz(C1 + C2) + m(a2C1 + b2C2)

]
s+

+ mV (−aC1 + bC2) + C1C2
l2

V
= 0 . (25.142)
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At any rate, the analogy allows us to state that

• to ensure static stability the stiffness U must be positive,
• to ensure dynamic stability the damping coefficient Q must be positive,
• if Q is lower than the critical damping 2

√
PU the system has an oscillatory

behavior.

Using the simplified expression of the derivatives of stability, the following expres-
sion of the “stiffness” U can be readily obtained,

U = C1C2l2

V
(1 + KV 2) , (25.143)

where K is the stability factor defined by Eq. (25.58).
U is thus always positive for understeer and neutral-steer vehicles, and in the

latter case it tends to zero when the speed tends to infinity. In the case of oversteer
vehicles, it is positive up to the critical speed, where it vanishes to become negative
at higher speed. The critical speed is thus the threshold of instability for oversteer
vehicles. Similar results are obtained if the complete expressions for the derivatives
of stability are used.

It is also easy to verify that Q is always positive: If the vehicle is statically stable it
is also dynamically stable. If the simplified expression for the derivatives of stability
is accepted, the value of Q is independent of the speed

Q = Jz(C1 + C2) + m(a2C1 + b2C2) . (25.144)

The critical damping of the equivalent system Qcrit is, under the same simplifying
assumptions,

Qcrit = 2
√
PU = 2

√
C1C2 Jzml2(1 + KV 2) . (25.145)

It is a constant in the case of neutral-steer vehicles, increases with speed for
understeer vehicles, and decreases, vanishing at the critical speed, in case of oversteer
ones.

By comparing the actual with the critical damping, it follows that understeer vehi-
cles tend to develop an oscillatory behaviorwith a frequencywhich increaseswith the
speed (similar to a spring-mass-damper system with constant damping and increas-
ing stiffness). Oversteer vehicles, on the other hand, tend to return to the original
state without oscillations, but in a way that slows with increasing speed, similar to a
spring-mass-damper system with constant damping and decreasing stiffness.

In a neutral-steer vehicle, under the same assumptions seen above, when K = 0
and

C1a = C2b ,



25.14 Stability of the Vehicle 371

the values of Qcrit and Q are

Qcrit = 2
C1l Jz
b

√
mab

Jz
,

Q = C1l Jz
b

(
1 + mab

Jz

)
. (25.146)

In many cases ratio
mab

Jz

is not far from unity. By writing

mab

Jz
= 1 + ε,

and expanding the above expressions in a power series in ε it follows that

Q = C1l Jz
b

(2 + ε) . (25.147)

Qcrit = 2
C1l Jz
b

√
1 + ε = C1l Jz

b

(
2 + ε − ε2

4
+ ...

)
.

Thus it is clear that the damping coefficient Q has its critical value with an error
as small as a term in ε2. A neutral-steer vehicle is then critically damped, at least
in an approximate way, while understeer and oversteer vehicles are, respectively,
underdamped and overdamped: The free behavior of the former can then be expected
to be oscillatory. It must be noted, however, that the issue of whether a given vehicle
has an oscillatory behavior or not cannot be satisfactorily resolved using the present
rigid-bodymodel since the presence of rollingmotions, which are neglected here and
are almost always underdamped and thus oscillatory, can also induce an oscillatory
behavior for β and r . This is particularly true for vehicles whose suspensions exhibit
roll steer.

Example 25.6 Study the stability with locked controls of the vehicle of Appendix
E.2, taking into account the reduction of the cornering stiffness of the driving wheels
caused by the longitudinal forces needed to move at constant speed.

The parameters of the equivalent spring-mass-damper system are evaluated first
and then the poles of the system are computed. The values obtained at 100km/h
(27.78 m/s) are reported in Table25.2.

It is clear that the effect of driving forces on stability at 100km/h is not great,
even if the available traction is quite low, and that the simplified formulae already
yield satisfactory results.
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Table 25.2 Example 25.6. Values of P , Q, U , Qcrit and of the real and imaginary parts of the
roots at 100km/h (27.78 m/s). Column 1: Simplified expression of the derivatives of stability; 2:
Complete expressions, with no allowance for the effect of driving forces; 3: With driving forces
with μp = 1; 4: With driving forces with μp = 0.2

1 2 3 4

P [kg2m3/s] 2.790 × 107 2.790 × 107 2.790 × 107 2.790 × 107

Q [kg2m3/s2] 2.876 × 108 2.899 × 108 2.897 × 108 2.829 × 108

U [kg2m3/s3] 1.243 × 109 1.334 × 109 1.335 × 109 1.369 × 109

Qcrit [kg2m3/s2] 3.725 × 108 3.858 × 108 3.860 × 108 3.908 × 108

(s) [1/s] −5.155 −5.196 −5.192 −5.070

�(s) [1/s] ±4.242 ±4.562 ±4.573 ±4.834

The values of P , Q and U are reported, together with that of Qcrit , as functions
of the speed in Fig. 25.26a. In the same figure, the real and imaginary parts of s
and the roots locus are also shown. The figure has been obtained using the complete
expressions of the derivatives of stability, but neglecting the effect of driving forces.

Note that the stiffnessU reduces with speed without tending to zero as in the case
of neutral vehicles, and that the vehicle is almost always underdamped, except for
very low speed, when Q > Qcrit .

25.14.2 Free Controls

If the steering wheel is not controlled, motion of the vehicle with free controls
occurs. The steering angle δ then becomes not an input to the system but one of its
state variables, and a new equation stating the equilibrium of the steering system has
to be included.

The same approach could be followed in the study of motion with locked controls,
since what is locked is actually not the steering angle δ but the position of the steering
wheel and, if the compliance of the steering system is accounted for, steering angle
and position of the wheel do not coincide.

However, if the compliance of the steering system is considered, oscillatory
motions with high frequency can usually be found, and it is unrealistic to consider
the driver as a device that inputs a position signal δ to the vehicle. It is more correct
to consider the driver as a device supplying a driving torque on the steering wheel.
The motion thus occurs in conditions closer to a free than a locked control situation.

The actual situation is mixed: at low frequencies, such as those typical of the
motion of the vehicle as a whole, the locked control model is adequate, while for
high frequency modes the free control model is more suitable.
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Fig. 25.26 Example 25.6: Study of the stability. a Parameters of the equivalent spring-mass-damper
system as functions of the speed. b Real and imaginary parts of the eigenvalues as functions of the
speed. c Roots locus at varying speed. Complete expressions of the derivatives of stability, with the
effect of driving forces neglected

At any rate, since the motion of the vehicle includes high frequency components,
the dynamic behavior of the tires cannot be neglected. The simplest way to include
it into a linearized model is to use relationships of the type

Fy = −C (α − Bα̇) ,

Mz = (Mz),α
(
α − B ′α̇

)
,

(25.148)

for the cornering force and the aligning torque.
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The time derivatives of the sideslip angles are obviously

α̇i = β̇ + xi
V
ṙ − δ̇i . (25.149)

The equations of motion (25.109) modify as

{
mV

(
β̇ + r

) + mV̇β = Yββ + Yrr + Yδδ + Yβ̇ β̇ + Yṙ ṙ + Yδ̇ δ̇ + Fye

Jzṙ = Nββ + Nrr + Nδδ + Nβ̇ β̇ + Nṙ ṙ + Nδ̇ δ̇ + Mze
,

(25.150)
where the expressions of the derivatives of stability already seen still hold while
those of the others are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yβ̇ =
∑
∀i

Ci Bi

Yṙ = 1

V

∑
∀i

xiCi Bi

Yδ̇ = −
∑
∀i

K ′
iCi Bi

, (25.151)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nβ̇ =
∑
∀i

[
xiCi Bi − (Mzi ),αB

′
i

]

Nṙ = 1

V

∑
∀i

[
x2i Ci Bi − (Mzi ),αxi B

′
i

]

Nδ̇ =
∑
∀i

[
− K ′

iCi xi Bi + K ′
i (Mzi ),αB

′
i

]
.

The equation that must be added to Eqs. (25.150) states the equilibrium to rotation
of the steering system, assumed to be a rigid system. The geometry of the steering
system is sketched in Fig. 25.27. The wheel rotates about an axis, the kingpin axis,
which is neither perpendicular to the ground nor passing through the centre of the
contact area: The caster angle ν, the lateral inclination angle λ and the longitudinal
and lateral offset at the ground dl and dt are reported in the figure. In the figure, the
kingpin axis intersects with the rotation axis of the wheel, a very common situation.
The case in which the two axes are skewed will not be dealt with here.

If the kingpin axis were perpendicular to the ground and no offset were present,
the torque acting on the wheel as a consequence of the road-tire interaction forces
would be the aligning torque alone. The actual situation is different, however, and the
torque about the kingpin axis contains all forces and moments acting on the wheel.
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Fig. 25.27 Simplified
geometry of the steering
system and definition of the
caster angle ν, the lateral
inclination angle λ and the
offset at the ground dl and
dt . The right wheel is
sketched and ν, λ and dt are
positive. The kingpin axis is
assumed to intersect the
rotation axis of the wheel

With geometrical reasoning, assuming that all angles are small, the total moment
Mk about the kingpin axis of both wheels of a steering axle may be approximated
as10

Msr = −(Fzl + Fzr )dt sin(λ) sin(δ) + (Fzl − Fzr )dt sin(ν) cos(δ)+
+ (Fyl + Fyr )rs tan(ν) + (Fxl − Fxr )dt + (Mzl + Mzr ) cos

(√
λ2 + ν2

)
,

(25.152)
where r and l indicate the right and left wheels respectively.

In symmetrical conditions, the forces on the ground at the two wheels are equal.
By assuming that the steering angle is small, Eq. (25.152) reduces to

Msr = −Fzdt sin(λ)δ + Fyrs tan(ν) + Mz cos
(√

λ2 + ν2
)

, (25.153)

where forces and moments refer to the whole axle.
By introducing expressions (25.148) into Eq. (25.153) the following linearized

expression of the moment about the kingpin is obtained

Msr = Mβ̇ β̇ + Mṙṙ + Mδ̇ δ̇ + Mββ + Mrr + Mδδ , (25.154)

where
Mβ̇ = CBrs tan(ν) − (Mz),αB

′ cos
(√

λ2 + ν2
)

,

Mṙ = Mβ̇

a

V
, Mδ̇ = −Mβ̇ ,

Mβ = −Crs tan(ν) + (Mz),α cos
(√

λ2 + ν2
)

,

Mr = Mβ
a

V
, Mδ = −Mβ − Fzdt sin(λ) .

(25.155)

10T. D. Gillespie, Fundamentals of Vehicle Dynamics, SAE, Warrendale, 1992.
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The linearized equation of motion of the steering system is then

Js δ̈ + cs δ̇ = Mβ̇ β̇ + Mṙṙ + Mδ̇ δ̇ + Mββ + Mrr + Mδδ + Msτs, (25.156)

where Ms , τs , cs and Js are, respectively, the torque exerted by the driver on the
steering wheel, the steering ratio (the ratio between the rotation angle of the wheel
and that of the kingpin), the damping coefficient of the steering damper and the
moment of inertia of the whole system, the latter two reduced to the kingpin. Note
that the steering ratio is often not constant and that the compliance of the mechanism,
here neglected, may have a large effect on it.

No gyroscopic effect of the wheels has been accounted for, which is consistent
with the assumption of a rigid vehicle, even if a weak gyroscopic effect should be
present if the kingpin axis is not perpendicular to the road.

Equation (25.156) holds also when more complicated geometries are accounted
for, provided that a linearization about a reference position is performed. In this case,
the expressions of the derivatives of stabilityMβ ,Mr etc. also contain the longitudinal
offset at the ground.

Since the second derivative of the state variable δ enters the equations of motion,
a further state variable

vδ = δ̇

must be introduced and a further equation stating the mentioned identity must be
added. The state equation is still Eq. (25.109)

ż = Az + Bcuc + Beue ,

where the state and input vectors z, uc and ue are

z =

⎧⎪⎪⎨
⎪⎪⎩

β
r
vδ

δ

⎫⎪⎪⎬
⎪⎪⎭

, uc = Ms, ue =
{
Fye
Mze

}
,

the dynamic matrix is

A =

⎡
⎢⎢⎣
mV − Yβ̇ −Yṙ −Yδ̇ 0

−Nβ̇ Jz − Nṙ −Nδ̇ 0
−Mβ̇ −Mṙ Js 0
0 0 0 1

⎤
⎥⎥⎦

−1

×

⎡
⎢⎢⎣

Yβ −mV + Yr 0 Yδ

Nβ Nr 0 Nδ

Mβ Mr (Mδ̇ − cs) Mδ

0 0 1 0

⎤
⎥⎥⎦
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and the input gain matrices are

Bc =

⎡
⎢⎢⎣
mV − Yβ̇ −Yṙ −Yδ̇ 0

−Nβ̇ Jz − Nṙ −Nδ̇ 0
−Mβ̇ −Mṙ Js 0
0 0 0 1

⎤
⎥⎥⎦

−1 ⎡
⎢⎢⎣

0
0
τs
0

⎤
⎥⎥⎦ ,

Be =

⎡
⎢⎢⎣
mV − Yβ̇ −Yṙ −Yδ̇ 0

−Nβ̇ Jz − Nṙ −Nδ̇ 0
−Mβ̇ −Mṙ Js 0
0 0 0 1

⎤
⎥⎥⎦

−1 ⎡
⎢⎢⎣
1 0
0 1
0 0
0 0

⎤
⎥⎥⎦ .

The state equation can be used to study the stability of the vehicle and the response
to any given law Ms(t). In a similar way, it is possible to study the steady-state
performance simply by assuming that all derivatives are vanishingly small (the last
state equation may then be dropped, since it reduces to the identity 0 = 0)

⎡
⎣ −Yβ mV − Yr −Yδ

−Nβ −Nr −Nδ

−Mβ −Mr −Mδ

⎤
⎦

⎧⎨
⎩

β
r
δ

⎫⎬
⎭ =

⎧⎨
⎩

Fye
Mze
Msτs

⎫⎬
⎭ . (25.157)

The steering wheel torque gain Ms/δ with reference to the steering angle and that
referring to the curvature of the path MsR, may be easily computed.

The eigenproblem
det(A − sI) = 0 (25.158)

allows one to study stability. Since the size of the dynamic matrix A is only 4, it
is possible to write the characteristic equation and to solve it using the formula for
4-th degree algebraic equations. However, no closed form solution from which to
draw general conclusions is available. The eigenvalues are either a pair of complex
conjugate solutions—yielding damped oscillations (if both real parts are negative),
one usually at low frequency and the other at high frequency—or two nonoscillatory
solutions and one high frequency oscillation. The high frequency solution is usually
linked with the dynamics of the steering device while the others are linked primarily
to the behavior of the vehicle.

The vibrations of the steering system were of concern in the past, particularly
in the 1930s, when they were referred to as steering shimmy. Such vibrations were
also present in the tailwheel of aircraft undercarriages. The use of tires with lower
pneumatic trail and, above all, the introduction of damping in the steeringmechanism
has completely rectified the problem. Both viscous damping and dry friction have
been usedwith success, but the latter decreases the reversibility of the steering system
and thus decreases its precision and its centering characteristics.

The, nowcommon, use of servosystems in the steering control implies the presence
of non-negligible damping with viscous characteristics in the steering device.
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The present model is, however, too imprecise for a detailed study of this phe-
nomenon, since the compliance of the steering system and the lateral compliance of
the suspension are important causal factors in this type of vibration that may become
self-excited.

If only the low-frequency overall behavior of the vehicle is studied, it is possible to
neglect the dependence of the tire forces on the time derivative of the sideslip angle.
In this case, the expressions of the dynamic matrix and of the input gain matrix
simplify as follows:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Yβ

mV

Yr
mV

− 1 0
Yδ

mV

Nβ

Jz

Nr

Jz
0

Nδ

Jz

Mβ

Js

Mr

Js

−cs
Js

−Mδ

Js

0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Bc =

⎡
⎢⎢⎢⎣

0
0
τs

Js
0

⎤
⎥⎥⎥⎦ , Be =

⎡
⎢⎢⎢⎢⎢⎣

1

mV
0

0
1

Jz
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎦

.

If the inertia and the damping of the steering system are likewise neglected, Eq.
(25.156) can be solved in δ. By introducing this value into the equations of motion,
an approximate model for the behavior of the vehicle with free controls is obtained.

By assuming that the speed V is constant, the homogeneous state equation for a
vehicle with front axle steering only is then

{
β̇
ṙ

}
=

⎡
⎢⎢⎢⎣

Yβ + Yδ

mV

Yr + Yδ
a
V

mV
− 1

Nβ + Nδ

Jz

Nr + Nδ
a
V

Jz

⎤
⎥⎥⎥⎦

{
β
r

}
. (25.159)

The equation is formally identical to the homogeneous Eq. (25.108) and in this
case as well, it is possible to resort to a spring-mass-damper analogy and to study
the constant speed stability in a simple way. It can be shown that both the stiffness
and the damping coefficient are always positive, denoting both static and dynamic
stability.
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By introducing only the cornering forces due to the tires, the vehicle is overdamped
at low speed, up to

V = 1

2

(
b2 + Jz

m

)√
C2

Jzb
.

Above that speed the behavior becomes more and more underdamped, with an
increasingly oscillatory behavior.

Note, however, that the last simplification is usually too rough: In most cases,
the high value of the steering ratio τs makes the inertia of the steering wheel when
reduced to the kingpin axis non-negligible and the use of Eq. (25.159) can lead to
non-negligible errors.Other errorsmay be introduced by neglecting steering damping
since a certain amount of damping is present in the system, the neglect of which may
cause dynamic instability.

Example 25.7 Compute the torque that must be exerted on the steering wheel nec-
essary to maintain the vehicle of Appendix E.2 on a circular path with a radius of
100m and to counteract a transversal slope of 1◦ at constant speed.

The additional data for the steering system are: λ = 11◦, ν = 3◦, d = 5 mm and
τs = 16.

The steering wheel torque gain MsR can be computed from Eq. (25.157). By
stating Fye = 0, Mze = 0 and Ms = 1, it is possible to obtain the yaw velocity r that
follows the application of a unit torque to the steering wheel.

Since R = V/r , the gain MsR may be immediately computed and thus the value
of the torque needed to maintain any given circular path. The results for R = 100 m
are reported in Fig. 25.28a.

Fig. 25.28 Example 25.7: Steering wheel torque needed to maintain the vehicle on a circular path
with a radius of 100 m (a) and to counteract a transversal slope of 1◦ at constant speed (b)
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To obtain the steering torque needed to counteract a transversal road slope, Eq.
(25.156) needs to be rearranged. The slope αt is felt by the vehicle as a side force

Fye = mg sin(αt ); .

If the path is straight, r = 0 and also Mze is equal to zero, as no external moment
acts on the vehicle. The unknowns are β, δ and Ms .

The equation is rearranged as

⎡
⎣ −Yβ −Yδ 0

−Nβ −Nδ 0
−Mβ −Mδ τs

⎤
⎦

⎧⎨
⎩

β
δ
Ms

⎫⎬
⎭ =

⎧⎨
⎩
mg sin(αt )

0
0

⎫⎬
⎭ .

The results obtained for a slope of 1◦ are reported in Fig. 25.28b.

25.15 Unstationary Motion

The response to a steering input in unstationary conditions may be computed using
the constant-speed linearizedmodel expressed by Eqs. (25.110) or (25.111), reported
here without the terms due to external forces and moments,

Pβ̈ + Qβ̇ +Uβ = S′δ + T ′δ̇,
Pr̈ + Qṙ +Ur = S′′δ + T ′′δ̇ .

(25.160)

If the variable for motion in the y direction is the lateral velocity v instead of the
sideslip angle β, the first equation becomes

P v̈ + Qv̇ +Uv = V S′δ + VT ′δ̇ . (25.161)

If an input of the type
δ = δ0e

st

is assumed, the solution takes the form

β = β0e
st , r = r0e

st , v = v0e
st .

The algebraic equations into which the differential equations transform are

(
Ps2 + Qs +U

)
β0 = (

T ′s + S′) δ0,(
Ps2 + Qs +U

)
r0 = (

T ′′s + S′′) δ0,(
Ps2 + Qs +U

)
v0 = V

(
T ′s + S′) δ0.

(25.162)
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The transfer functions are then

β0

δ0
= T ′s + S′

Ps2 + Qs +U
, (25.163)

r0
δ0

= T ′′s + S′′

Ps2 + Qs +U
, (25.164)

v0

δ0
= V

β0

δ0
= V

T ′s + S′

Ps2 + Qs +U
. (25.165)

In non-stationary conditions, the lateral acceleration is

ay = v̇ + rV (25.166)

and thus the relevant transfer function is

ay0
δ0

= V
T ′s2 + (

T ′′ + S′) s + S′′

Ps2 + Qs +U
. (25.167)

By using the simplified expressions of the derivatives of stability, the denominator
of all transfer functions is

� = JzmV s2 + [
Jz(C1 + C2) + m(a2C1 + b2C2)

]
s+

+mV (−aC1 + bC2) + C1C2
l2

V .
(25.168)

The equation � = 0 allows the poles of the system to be computed, as seen in
Sect. 6.13.1.

Assuming only front axle steering, the transfer functions are

r0
δ0

= mVaC1s + lC1C2

�
, (25.169)

ay0
δ0

= JzVC1s2 + C1C2bls + lVC1C2

�
. (25.170)

By equating the numerator of the transfer functions (25.169) and (25.170) to zero
it is possible to find their zeros. For functions (25.169) the result is straightforward,
and the only zero is real and negative

s = − lC2

mVa
. (25.171)



382 25 Handling Performance

The computation for function (25.170) is not as simple. The zeros are

s =
−blC2 ±

√
b2l2C2

2 − 4V 2l JzC2

2JzV
. (25.172)

At low speed, i.e. if

V ≤
√
b2lC2

4Jz
, (25.173)

the two solutions are both real and negative. They are distinct if Eq. (25.173) holds
with (<), coincident if it holds with (=).

At higher speeds, the two solutions are complex conjugate

s = −blC2

2JzV
±

√
4V 2l JzC2 − b2l2C2

2

4J 2
z V

2
, (25.174)

with a negative real part: the zeros lie in the left part of the Argand plane.
The situation may be different for the sideslip angle: S′ may be either positive or

negative depending on the values of the parameters. By using the simplified expres-
sions of the derivatives of stability, the value of the relevant transfer function is

β0

δ0
= JzVC1s + C1C2bl − maV 2C1

V�
. (25.175)

The expression of the zero is obtained by equating to zero the numerator

s = maV 2C1 − C1C2bl

JzVC1
. (25.176)

At low speed the zero is negative and real, but if

V >

√
blC2

am
(25.177)

itmoves to the positive part of theArgandplane and then the system is a non-minimum
phase system.

From Eq. (25.110) and following it is clear that the response to steering is a linear
combination of the laws δ(t) and δ̇(t). If the numerator of the transfer function is
linear in s, and if the zero of the transfer function (which is always real since the
numerator is linear) is negative, the coefficients of the linear combination have the
same sign and the sign of the response does not change in time.
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Example 25.8 Plot the roots locus of the transfer function related to the lateral accel-
eration at varying speed for the vehicle in Appendix E.2, taking into account both
the simplified and the complete expressions of the derivatives of stability used in
Example 25.5. Compute the speed at which the transfer function β0/δ0 becomes a
non-minimum phase function.

Then compute the response to a step steering input at a speed of 100km/h.
The transfer function ay0/δ0 has two real zeros up to a speed of 24.67km/h; it then

has two complex conjugate poles. The locus of the zeros is reported in Fig. 25.29a.
The two formulations yield practically the same results. Function β0/δ0 has a

negative real zero up to a speed of 56.22 km/h; then it has a positive real zero.
If function δ(t) is a unit step function

{
δ = 0 for t < 0
δ = 1 for t ≥ 0 ,

its derivative δ̇ is an impulse function(Dirac’s δ):

⎧⎨
⎩

δ̇ = 0 for t < 0
δ̇ = ∞ for t = 0
δ̇ = 0 for t > 0

∫ ∞

−∞
δ̇dt = 1 .

Since the vehicle is understeer, the step and impulse responses g(t) and h(t) are
both oscillatory and are

h(t) = 1

mωn

√
1−ζ2

e−ζωn t sin
(√

1 − ζ2ωnt
)

,

g(t) = 1
k − e−ζωn t

k

[
cos

(√
1 − ζ2ωnt

)
+ ζ√

1−ζ2
sin

(√
1 − ζ2ωnt

)]
,

where

m = P, ωn =
√
U

P
, ζ = Q

2
√
PU

.

The total response is a linear combination of the step and impulse responses

β(t) = S′g(t) + T ′h(t),
r(t) = S′′g(t) + T ′′h(t) .
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Fig. 25.29 a Locus of the zeros of the transfer function ay0/δ0. Full line: complete expression of
the derivatives of stability; dashed line: simplified expression. b and c response to a step steering
input computed in closed form

At 100km/h the mass-spring-damper system is underdamped, since the damping
ratio has a value ζ = 0.77. The natural frequency of the undamped system is ωn =
6.67 rad/s= 1.06Hz, while the frequency of the free damped oscillations is ωp =
4.24 rad/s= 0.68Hz.

The results are reported in Fig. 25.29b, c.
The step and impulse responses have the same sign for the yaw velocity, and they

simply add in modulus. In the response for the sideslip angle they have opposite sign
and initially the second one prevails. When, after some time, the first one begins to
prevail, the sign of the response changes.

This is typical for non-minimum phase systems: the system initially reacts in a
direction opposite to that of the steady state response, then goes to zero and changes
its sign.

Once law r(t) has been obtained, it is possible to integrate it to yield the yaw
angle

ψ(t) =
∫ t

0
r(u)du . (25.178)

The path can then be obtained directly in the inertial frame X , Y . The velocities
Ẋ and Ẏ can be expressed in terms of angles β and ψ,
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{
Ẋ
Ẏ

}
= V

[
cos(ψ) − sin(ψ)

sin(ψ) cos(ψ)

]{
cos(β)

sin(β)

}
. (25.179)

By integrating Eqs. (25.179) the path is readily obtained,

⎧⎪⎪⎨
⎪⎪⎩

X =
∫ t

0
V [cos(β) cos(ψ) − sin(β) sin(ψ)] du

Y =
∫ t

0
V [cos(β) sin(ψ) + sin(β) cos(ψ)] du

. (25.180)

The integration to obtain the path must actually be performed numerically even in
the simplest cases where laws β(t) and r (t) may be computed in closed form owing
to the fact that angle ψ is usually too large to allow linearizing its trigonometric
functions even when using the linearized model. In general, it is more convenient to
integrate the equations of motion numerically, since there is no difficulty in doing
so for Eq. (25.109) once laws δ(t), Fye(t), Mze(t) and V (t) have been stated. Nowa-
days numerical integration is so straightforward that closed form solutions that are
too complicated to allow a quick qualitative understanding of the phenomena to be
obtained are considered of little use.

Example 25.9 Study the motion with locked controls of the vehicle of Appendix E.2
following a step steering input.

Assume that the value of the steering angle is that needed to obtain a circular path
with a radius of 200m at a speed of 100km/h.

At 100km/h the path curvature gain 1/Rδ is equal to 0.2472 1/m. To perform a
curve with a radius of 200 m, a steering angle δ = 0.0202 rad = 1.159◦ is needed.

In kinematic conditions, the radius of the path corresponding to the same value
of δ is 106.8 m. The fact that it is almost half the above was easily predictable, since
100km/h is only slightly less than the characteristic speed.

The steady state values of r and β are respectively 0.1389 rad/s and −0.0131 rad
= −0.749◦.

The equation of motion of the vehicle was integrated numerically for a duration
of 30 s. The results are plotted in Fig. 25.30. The time histories of the yaw velocity
and sideslip angle are shown along with the path.

The steady-state conditions are reached after a few seconds, with a slightly under-
damped behavior.

Example 25.10 Study the motion with locked controls of the vehicle of Appendix
E.2 following a wind gust. Assume a step lateral gust, like the one encountered when
exiting a tunnel. Assume an ambient wind velocity va = 10 m/s and a vehicle speed
of 100km/h.

The driver does not react to the gust and the steering angle is kept equal to zero.
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Fig. 25.30 Example 25.9: Response to a step steering input. a Time histories of the yaw velocity
and sideslip angle and b path

The presence of a cross-wind is accounted for by adding a side force Fye and a
yawing moment Mze equal to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Fye = 1

2
ρV 2S(Cy),βψw

Mye = 1

2
ρV 2Sl(CMz ),βψw ,

where ψw is the angle between the direction of the relative velocity and the tangent
to the path. This is clearly an approximation since it relies on the linearity of the
aerodynamic forces and moments with the aerodynamic sideslip angle and holds
only if angle β + ψw remains small.

As the path of the vehicle curves after the manoeuvre, the components of the
relative velocity along the path and in a direction perpendicular to it are

{
V‖ = V − va sin(ψ + β)

V⊥ = −va cos(ψ + β) ,

yielding

ψw = arctan

( −va cos(ψ + β)

V − va cos(ψ + β)

)
.

The above relationships may be approximated by neglecting angle β.
Another approximation is neglecting the contribution of the wind velocity to the

airspeed, which is always considered at 100km/h.
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Fig. 25.31 Example 25.10: Response to a cross-wind gust. a Time histories of the yaw velocity
and sideslip angle and b path

The equation of motion of the vehicle has been integrated numerically for a
duration of 10 s. The results are plotted in Fig. 25.31. The time histories of the yaw
velocity and sideslip angle are shown along with the path.

Quasi steady-state conditions are again reached after a few seconds, with a slightly
underdamped behavior. The conditions are not actually steady-state since the direc-
tion of the wind is fixed, while the direction of the vehicle axes change. However,
this effect is minimal for the duration of the manoeuvre, and a good approximation
could have been obtained by assuming a constant value for angle ψw (ψw increases
from 19.8◦ to 20.9◦ for t = 0 to t = 10 s).

At the end of the manoeuvre, the values of r and β are, respectively, 0.0505 rad/s
and −0.0036 rad = −0.2073◦. The errors linked to neglecting β in the above expres-
sion are thus negligible. The response in terms of β in this case is that typical of a
non-minimum phase system.

Example 25.11 The followingmanoeuvre is often performed by test drivers to assess
the handling and stability of a car: A step steering input is supplied and the steering
wheel is kept in position for a short time. The driver then releases the wheel and
the vehicle returns to a straight path. The whole manoeuvre is performed at constant
speed.

Study the motion of the vehicle of Appendix E.2 following a manoeuvre of this
kind with a 45◦ steering wheel input held for 1.5 s at 100km/h.

The data for the steering system are Js = 15kg m2, cs = 150 Nms/rad, λ = 11◦,
ν = 3◦, d = 5 mm and τs = 16.

The first part of the manoeuvre is the same as in Example 25.9, only with a greater
value of δ: 2.81◦.
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The integration in time is performed in two parts: A locked controls model is used
for the first 1.5 s; a free control model is used after the driver releases the wheel.

This second part of the simulation is performed using two alternative models: One
in which the dependence of tire forces on the derivative α̇ is neglected, and a second
in which the inertia and damping of the steering system are also not considered.

The time histories of the yaw velocity, sideslip angle and steering angle are
reported together with the path in Fig. 25.32.

The inertia of the steering system plays an important role in the response, since
it slows the recovery of the vehicle, thus affecting the path. It also increases the
oscillatory behavior of the vehicle, and if no damping is considered, an unstable
behavior emerges.

The effect of neglecting the inertia of the steering system can be verified by
comparing the poles of the system: If neither inertia nor damping is accounted for,
the two eigenvalues are−3.011 ± 7.709i , while themore completemodel yields four
eigenvalues −9.129 ± 8.2921i and −1.065 ± 5.563i . The first is quite damped and
is not important in the motion, but the second is clearly different from that obtained

Fig. 25.32 Example 25.11: Response to a step steering input and a subsequent recovery of the
straight path with free controls. a Time histories of the yaw velocity and sideslip angle and b of the
steering angle; c path. The inertia and damping of the steering system are considered (full lines)
and then neglected (dashed lines)
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from the simpler model. The high value of the steering ratio, whose square enters
the computation of the equivalent inertia of the steering wheel, is responsible for this
effect.

25.16 Vehicles with Two Steering Axles (4WS)

In the majority of vehicles with two axles, only the front wheels are provided with a
steering system. However, beginning in the 1980s, an increasing number of cars with
steering on all four wheels (4WS) appeared on the market, in the beginning most
of them Japanese. The primary goal was to improve manoeuvrability and handling
characteristics both in low- and high-speed steering. 4WS system were dealt with in
Part I, Chap. 6.

Simple four-wheel steering may be implemented by equipping the rear axle with
a compliance purposely designed to provide the required steering action under the
effect of road loadswithout adding an actual steering device. This approach is defined
as passive steering. Active steering occurs when the rear axle is provided with a
second steering device, operated by the driver alongwith that of the front axle through
adequate actuators.

To reduce the radius of the path in low-speed (kinematic) conditions, the rear axle
must steer in a direction opposite to the front; if the absolute values of the steering
angles are equal, the radius is halved and the off-tracking of the rear axle is reduced
to zero. Using the notation introduced in the preceding sections, this situation is
characterized by

K ′
1 = 1 , K ′

2 = −1

(in the following it will always be assumed that K ′
1 = 1).

In practical terms, this value is too high since the rear axle would initially be
displaced too far to the outside of the line connecting the centres of the wheels in the
initial position, particularly when starting the motion with the wheels in a steered
position. It would be difficult, for example, to move a vehicle parked near a curb or,
worse, near a wall.

Assuming that K ′
1 = 1 and K ′

2 is constant, the path curvature gain and the off-
tracking distance are

1

Rδ
≈ 1 + K ′

2

l
, Ra − R1 ≈ l2(1 − K ′

2)

2R(1 + K ′
2)

. (25.181)

In high-speed cornering the situation is different. The equation of motion is still
Eq. (25.108) and, if the speed V is constant, it is possible to use the spring-mass-
damper analogy (either Eq. (25.110) or (25.111)).
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To study the effect of rear steer, consider the simplified expression of the deriva-
tives of stability. The expression of P , Q and U do not change, while

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S′ = mV
(−aC1K

′
1 + bC2K

′
2

) + C1C2
l

V

(
K ′

1b + K ′
2a

)
S′′ = lC1C2

(
K ′

1 − K ′
2

)
T ′ = Jz

(
K ′

1C1 + K ′
2C2

)
T ′′ = mV

(
aK ′

1C1 − bK ′
2C2

)
.

The expressions of the gains in steady state conditions become:

• path curvature gain
1

Rδ
= 1

l

(
K ′

1 − K ′
2

)
1 + KV 2

, (25.182)

• lateral acceleration gain
V 2

Rδ
= V 2

l

(
K ′

1 − K ′
2

)
1 + KV 2

, (25.183)

• sideslip angle gain

β

δ
= b

l

[
K ′

1 + K ′
2
a

b
− mV 2

l

(
aK ′

1

bC2
− K ′

2

C1

)]
1

1 + KV 2
, (25.184)

• yaw velocity gain
r

δ
= V

l

(
K ′

1 − K ′
2

)
1 + KV 2

. (25.185)

From the equations above it is clear that opposite steering (K ′
1 and K

′
2 with opposite

signs) produces an increase of the gains related to the curvature of the path, while
steering with the same sign allows larger cornering forces to be produced for the
same steering angle

However, the most important advantages of 4WS are felt in non-steady-state
conditions, making it important to assess the transfer functions in these conditions.
Equations from (25.162) to (25.167) still hold. If the simplified expressions of the
derivatives of stability are used, it follows that

r0
δ0

= mV
(
aK ′

1C1 − bK ′
2C2

)
s + lC1C2

(
K ′

1 − K ′
2

)
�

, (25.186)

ay0
δ0

= JzV
(
K ′

1C1 + K ′
2C2

)
s2 + C1C2l

(
aK ′

1 + bK ′
2

)
s + lVC1C2

(
K ′

1 − K ′
2

)
�

,

(25.187)
where � is still expressed by Eq. (25.168).
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Opposite steering also makes the vehicle more responsive about the yaw axis
in non-steady-state conditions. The second transfer function shows how steering in
the same direction increases the response at the highest frequencies, in particular for
lateral acceleration due tomotion in the y direction, while opposite steering increases
the contribution due to centrifugal acceleration, especially at low frequency.

Strong rear axle steering may cause some of the zeros of the transfer functions to
lie in the positive half-plane of the complex plane,making the system a non-minimum
phase system. This will be studied in greater detail in Chap.27.

The limiting case of same sign steering is, for a vehicle with the center of mass
at mid-wheelbase, that with equal steering angles

K ′
1 = K ′

2 = 1 .

Remark 25.17 This is, however, too theoretical, since the vehicle would be quick in
a lane change, moving sideways, but would never be able to move on a curved path.
Instead of turning, it would move sideways.

Thus it is clear that the steering mechanism must adapt the value of K ′
2 to the

external conditions and to the requests of the driver. As seen in Part I, the simplest
strategy is to use a device, possibly mechanical, to link the two steering boxes with a
variable gear ratio: When angle δ is small, as typically occurs in high speed driving,
K ′

2 is positive and the steering angles have the same direction while when δ is large,
as occurs when manoeuvring at low speed, K ′

2 is negative. Obviously, K
′
2 must be

much smaller than K ′
1.

However, more complicated control laws for the steering of the rear axle must
be implemented to fully exploit the potential advantages of 4WS. The parameters
entering such laws are numerous, e.g., the speed V , the lateral acceleration, the
sideslip angles αi , etc. Such devices must be based on electronic controllers and
actuators of different types, and their implementation enters into the important field
of autronics (Chap.27).

From the viewpoint of mathematical modelling, the situation is, at least in prin-
ciple, simple. There is no difficulty in introducing a suitable function K ′

2(V, δ, . . . )
into the equations (actually it would appear only in the derivatives of stability Yδ and
Nδ) and in modifying the equations of the rigid-body model seen above accordingly.
The more advanced models of the following sections can be modified along the same
lines. If function K ′

2 includes some of the state variables, the modifications can be
larger but no conceptual difficulty arises.

Except in the latter case, locked control stability is not affected by the introduction
of 4WS, while stability with free controls can be affected by it.

Generally speaking, the advantages of 4WS are linked with an increase in the
quickness of the response of the vehicle to a steering input, but this cannot be true for
all types ofmanoeuvres: Steering all axles in the same directionmaymake the vehicle
quick in lane change manoeuvres but slower in acquiring a given yaw velocity. The
sensations of the driver may be strange and, at least at the beginning, unpleasant. A
solution may be a device that initially steers the rear wheels in the opposite direction
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for a short time, to initiate a yaw rotation, and then steers them in the same direction
as the front wheels, to generate cornering forces. This requires a more complicated
control logic, possibly based on microprocessors.

As a final consideration, most applications are based on vehicles already designed
for conventional steering to which 4WS is then added, normally as an option. In this
case, the steering of the rear wheel is limited to 1◦–2◦ or even less since the rear wheel
wells lack the space required for larger movement. Even if the car is designed from
the beginning for 4WS, a trade-off between its advantages and the loss of available
space in the trunk due to 4WS will take place.

25.17 Model with Four Degrees of Freedom for Articulated
Vehicles

25.17.1 Equations of Motion

An articulated vehicle modelled as two rigid bodies hinged to each other has, in its
motion on the road surface, four degrees of freedom (Fig. 25.33). The assumption of
rigid bodies implies that the hinge is cylindrical and that its axis is perpendicular to
the road: In practice different setups are used, but if rolling is neglected the present
one is the only possible layout.

There is no difficulty in writing the six equations of motion of the two rigid
bodies (each has three degrees of freedom in the planar motion on the road) and then
in introducing the two equations for the constraints due to the hinge to eliminate two
of the six. The forces exchanged between the two bodies are explicitly introduced.

Here a different approach is followed and the equations of motion are obtained
through Lagrange equations. To this end, a set of four generalized coordinated is first
stated: X and Y are the inertial coordinates of the centre of mass of the tractor and
ψ is its yaw angle. They are the same coordinates used in the study of the insulated
vehicle. The added coordinate is angle θ between the longitudinal axes x of the tractor
and xR of the trailer. Positive angles are shown in Fig. 25.33.

Instead of angle θ, it is possible to use the yaw angle of the trailer ψR , i.e. the
angle between the inertial X -axis and the body-fixed axis xR .

The model can be simplified and linearized, as seen for the model of the isolated
vehicle, by assuming that the motion occurs in a condition not much different from
the symmetrical, which implies that the trailer angle θ and the sideslip angles are
small. Moreover, the vehicle will be assumed to be a monotrack vehicle, i.e. the
sideslip angles of the wheels of each axle will be assumed to be equal. The model
will be built in terms of axles rather than wheels.

As a damper with damping coefficient � may be attached to the hinge between
tractor and trailer, a Raleigh dissipation function must be written along with the
kinetic energy. No conservative forces act in the plane of the road, assuming the hinge
has no elastic restoring force, and hence no potential energy need be computed.
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Fig. 25.33 Articulated vehicle. Reference frames and generalized coordinates

The position of the centre of mass of the trailer is

(
GR − O

) =
{
X − c cos(ψ) − aR cos(ψ − θ)
Y − c sin(ψ) − aR sin(ψ − θ)

}
. (25.188)

The velocity of the centre of mass of the tractor is simply

VG =
{
Ẋ
Ẏ

}
, (25.189)

while that of point GR is

VGR =
{
Ẋ + ψ̇c sin(ψ) + (

ψ̇ − θ̇
)
aR sin(ψ − θ)

Ẏ − ψ̇c cos(ψ) − (
ψ̇ − θ̇

)
aR cos(ψ − θ)

}
. (25.190)

The kinetic energy of the system is then:

T = 1

2
mT V

2
G + 1

2
mRV

2
GR

+ 1

2
JT ψ̇2 + 1

2
JR

(
ψ̇ − θ̇

)2
, (25.191)

where mT , mR , JT and JR are, respectively, the masses and the baricentric moments
of inertia about an axis of the tractor and the trailer perpendicular to the road.
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By introducing the expressions for the velocities into Eq. (25.191) and neglecting
the terms containing squares and higher powers of small quantities, also in the series
for trigonometric functions, it follows that

T = 1
2m

(
Ẋ2 + Ẏ 2

) + 1
2 J1ψ̇

2 + 1
2 J3θ̇

2 − J2ψ̇θ̇+
+mR

[
cψ̇ + aR

(
ψ̇ − θ̇

) ][
Ẋ sin(ψ) − Ẏ cos(ψ)

]
+

−mRaRθ
(
ψ̇ − θ̇

) [
Ẋ cos(ψ) − Ẏ sin(ψ)

]
,

(25.192)

where ⎧⎪⎪⎨
⎪⎪⎩

m = mT + mR ,

J1 = JT + JR + mR
[
a2R + c2 + 2aRc

]
,

J2 = JR + mR
[
a2R + aRc

]
,

J3 = JR + mRa2R .

The components of the velocity in the tractor reference frame may be used

⎧⎪⎪⎨
⎪⎪⎩

u
v

r
vθ

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣

cos(ψ) sin(ψ) 0 0
− sin(ψ) cos(ψ) 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

Ẋ
Ẏ
ψ̇

θ̇

⎫⎪⎪⎬
⎪⎪⎭

, (25.193)

where r is the yaw angular velocity of the tractor and vθ is the relative yaw angular
velocity of the trailer with respect to the tractor. The relationship between angular
velocities and derivatives of the generalized coordinates is

w = AT q̇ , (25.194)

where the structure of A is that of a rotation matrix, and then

AT = A−1 . (25.195)

The final expression of the kinetic energy is then

T = 1
2m

(
u2 + v2

) + 1
2 J1r

2 + 1
2 J3vθ

2 − J2rvθ+
−mRv

[
cr + aR (r − vθ)

]
− mRaRθu (r − vθ) .

(25.196)

The rotation kinetic energy of thewheels has been neglected: No gyroscopic effect
of the wheels will be obtained in this way.
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The Raleigh dissipation function due to the above mentioned viscous damper is
simply

F = 1

2
�θ̇2 . (25.197)

The equations of motion obtained in the form of Lagrange equations are

d

dt

(
∂T
∂q̇i

)
− ∂T

∂qi
+ ∂F

∂q̇i
= Qi , (25.198)

where the coordinates qi are X , Y , ψ and θ and Qi are the corresponding generalized
forces FX , FY and the moments related to rotations ψ and θ.

The velocities in the reference frame fixed to the tractor can be considered as
derivatives of pseudo-coordinates. Operating in the same way as for the isolated
vehicle, and remembering that the kinetic energy does not depend on coordinates X
and Y :

(
∂T
∂X

= ∂T
∂Y

= 0

)
,

that the dissipation function does not depend on the linear velocities

(
∂F
∂ Ẋ

= ∂F
∂Ẏ

= 0

)

and that angular velocities r and vθ coincide with ψ̇ and θ̇, the equation of motion
can be written in the form (25.85), with the derivatives of the dissipation function
added11

∂

∂t

({
∂T
∂w

})
+ AT

(
Ȧ −

[
wTAT ∂A

∂qk

]){
∂T
∂w

}
+

−AT
{

∂T
∂qk

}
+ {

∂F
∂w

} = AT

⎧⎪⎪⎨
⎪⎪⎩

FX

FY

Qψ

Qθ

⎫⎪⎪⎬
⎪⎪⎭

.

(25.199)

The terms included in the equation of motion are

11In this case, the equation of motion is not written in its general form, but only for the case with
AT = A−1.
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{
∂T
∂w

}
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mu − mRaRθ (r − vθ)

mv − mR [(c + aR) r − aRvθ]

J1r − J2vθ − mRaRθu − mRv (c + aR)

J3vθ − J2r + mRvaR + mRaRθu

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (25.200)

d

dt

({
∂T
∂w

})
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mu̇ − mRaRvθ (r − vθ) − mRaRθ (ṙ − v̇θ)

mv̇ − mR [(c + aR) ṙ − aR v̇θ]

J1ṙ − J2v̇θ − mRaRθu̇ − mRaRuvθ − mR v̇ (c + aR)

J3v̇θ − J2ṙ + mR v̇aR + mRaRθu̇ + mRaRuvθ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

(25.201)

AT
(
Ȧ −

[
wTAT ∂A

∂qk

]){
∂T
∂w

}
=

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−r {mv − mR [(c + aR) r − aRvθ]}
r [mu − mRaRθ (r − vθ)]

−v [mu − mRaRθ (r − vθ)] + u {mv − mR [(c + aR) r − aRvθ]}
0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

(25.202)

AT

{
∂T
∂qk

}
=

⎧⎪⎪⎨
⎪⎪⎩

0
0
0

−mRaRu (r − vθ)

⎫⎪⎪⎬
⎪⎪⎭

, (25.203)

{
∂F
∂w

}
=

⎧⎪⎪⎨
⎪⎪⎩

0
0
0

�θ̇

⎫⎪⎪⎬
⎪⎪⎭

, AT

⎧⎪⎪⎨
⎪⎪⎩

FX

FY

Qψ

Qθ

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

Qx

Qy

Qψ

Qθ

⎫⎪⎪⎬
⎪⎪⎭

. (25.204)

The first two equations are then

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m (u̇ − vr) − mRaRθ (ṙ − v̇θ) − 2mRaRrvθ + mRaRvθ
2+

+ mR (c + aR) r2 = Qx

m (v̇ + ur) − mR [c + aR] ṙ + mRaRr v̇θ − mRaRθr (r − vθ) = Qy .

(25.205)
Remembering that, owing to the assumption of small angles, V ≈ u and also that

v is small, Eqs. (25.205) may be linearized as

{
mV̇ = Qx

m (v̇ + Vr) − mR (c + aR) ṙ + mRaRr θ̈ = Qy .
(25.206)
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The third and forth equations, those for generalized coordinates ψ and θ, once
linearized, are

⎧⎨
⎩

J1ṙ − J2v̇θ − mR (c + aR) (v̇ + Vr) − mRaRV̇ θ = Qψ

J3v̇θ − J2ṙ + mRaR (v̇ + Vr) + mRaRθV̇ = Qθ

(25.207)

where the damping term �θ̇ is included in term Qθ.

25.17.2 Sideslip Angles of the Wheels

The sideslip angles of the wheels of the tractor are the same as for the insulated
vehicle. In a similar way, it is possible to write the sideslip angles of the wheels of
the trailer.

With reference to Fig. 25.34, the coordinates of point Pi , the centre of the contact
zone of the i th wheel of the trailer, are

{
XPi = X − c cos(ψ) − li cos (ψ − θ) − yRi sin (ψ − θ)
YPi = Y − c sin(ψ) − li sin (ψ − θ) + yRi cos (ψ − θ) .

(25.208)

The velocity of the same point may be obtained by differentiating the expressions
of the coordinates. For the computation of the sideslip angle the velocity of point Pi
must be expressed in the reference frame GRxRyR of the trailer

{
Ẋ Pi

ẎPi

}
R

=
[

cos (ψ − θ) sin (ψ − θ)
− sin (ψ − θ) cos (ψ − θ)

]{
Ẋ Pi

ẎPi

}
. (25.209)

Fig. 25.34 Position of the centre Pi of the contact area of the i-th wheel of the trailer
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The velocity of the centre of the contact area can thus be expressed in the reference
frame of the trailer as

{
V̇xR (Pi ) = u cos(θ) − v sin(θ) + cψ̇ sin(θ) − yRi

(
ψ̇ − θ̇

)
V̇yR (Pi ) = u sin(θ) + v cos(θ) − cψ̇ cos(θ) − li

(
ψ̇ − θ̇

)
,

(25.210)

or, remembering that some of the quantities are small,

{
V̇xR (Pi ) = V − yRi

(
ψ̇ − θ̇

)
V̇yR (Pi ) = V θ + v − cψ̇ − li

(
ψ̇ − θ̇

)
.

(25.211)

Since the sideslip angle of a steering wheel can be obtained as the arctangent of
the ratio of the y and x components of the velocity minus the steering angle δ, it
follows that

αi = arctan

[
V θ + v − cψ̇ − li

(
ψ̇ − θ̇

)
V − yRi

(
ψ̇ − θ̇

)
]

− δi . (25.212)

Using the monotrack vehicle model (yRi = 0) and remembering that the sideslip
angle is small, it follows that

αi = θ + β − r

V
(c + li ) + θ̇

V
li − δi . (25.213)

The term in yRi does not enter the expression of the sideslip angle: The wheels of
the same axle have the same sideslip angle, and it is also possible to work in terms
of axles instead of single wheels for the trailer.

The steering angle δi is either 0 or, if the axle can steer, is usually not directly
controlled by the driver but is linked with the variables of the motion, e.g. with angle
θ. If law δi (θ) is simply

δi = −K ′
iθ ,

the expression for the sideslip angle is

αi = θ(1 + K ′
i ) + β − r

V
(c + li ) + θ̇

V
li . (25.214)

If some of the wheels of the trailer are free to pivot about their kingpin, an equi-
librium equation for the relevant parts of the steering system of those axles must be
written, similar to the procedure for the study of motion with free controls.
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25.17.3 Generalized Forces

The contributions to the generalized forces Qx , Qy and Qψ due to the tractor are the
same as those of the insulated vehicle. The tractor does not give any contribution to
force Qθ. To compute the contributions due to the i th wheel of the trailer and the
aerodynamic forces of the latter, the easiest method is to write their virtual work δL
due to a virtual displacement

{δs} = [δx, δy, δψ, δθ]T .

Using the assumption of small angles, it follows that
{

δxR(Pi ) = δx − θδy + cθδψ − yRi (δψ − δθ)
δyR(Pi ) = θδx + δy − cδψ − li (δψ − δθ) .

(25.215)

If the i th wheel has a steering angle δi , the forces it exerts in the reference frame
GRxR yRzR , the same in which the virtual displacement has been written, are simply

FxiR
= Fxip cos(δi ) − Fyip sin(δi ) ≈ Fxip − Fyip δi ,

FyiR
= Fxip sin(δi ) + Fyip cos(δi ) ≈ Fxip δi + Fyip ,

(25.216)

where Fxip and Fyip are the forces in the reference frame of the tire.
The virtual work can be computed by multiplying the forces and moments (the

aligning torque Mzi ) by the corresponding virtual displacement (for the moment,
rotation δψ − δθ)

δL =
[
Fxip + Fyip (θ − δi )

]
δx +

[
−Fxip (θ − δi ) + Fyip

]
δy+

+
{
Fxip

[
c(θ − δi ) − yRi − liδi

] + Fyip

(−c + yRi δi − li
) + Mzi

}
δψ+

+
{
Fxip

(
yRi + liδi

) + Fyip

(−yRi δi + li
) − Mzi

}
δθ.

(25.217)
The generalized forces due to the i th wheel of the trailer can be obtained by

differentiating the virtual work δL with respect to the virtual displacements δx , δy,
δψ and δθ:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qxi = ∂δL
∂δx

= Fxip + Fyip (θ − δi )

Qyi = ∂δL
∂δy

= −Fxip (θ − δi ) + Fyip

Qψi = ∂δL
∂δψ

= Fxip

[
c(θ − δi ) − yRi − liδi

] + Fyip

(−c + yRi δi − li
) + Mzi

Qθi = ∂δL
∂δθ

= Fxip

(
yRi + liδi

) + Fyip

(−yRi δi + li
) − Mzi .

(25.218)
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In a similar way, the generalized forces resulting from the aerodynamic forces
and moments acting on the trailer can be accounted for. It is usually difficult to
distinguish between the forces acting on the tractor and those acting on the trailer,
as what is measured in the wind tunnel are the forces acting on the whole vehicle. In
the following equations, it will be assumed that the forces acting on the tractor are
measured separately from those acting on the trailer, and that they are applied at the
centre of mass of the relevant rigid body and decomposed along the axes fixed to it.
The forces acting on the trailer are so decomposed along axes xR yRzR .

The generalized forces due to aerodynamic forces acting on the tractor contribute
to Qx , Qy and Qψ just as they do for the insulated vehicle, while the expression
of the generalized aerodynamic forces applied on the trailer can be obtained from
Eqs. (25.218), by substituting FxRaer , FyRaer , MzRaer and aR to Fxip , Fyip , Mzi and li
and by setting both yRi and δi to zero.

The external force FyeR
acting on the centre of mass or the trailer and the com-

ponent of the weight mRg sin(α) due to a longitudinal grade α of the road will be
assumed to act in the directions of axes x and y of the tractor; consequently the
relevant equations must be modified accordingly.

25.17.4 Linearized Expressions of the Forces

The linearized expressions of the generalized forces Qx , Qy , Qψ and Qθ can be
obtained with the methods used for the isolated vehicle. Linearization can be per-
formed by introducing the cornering and aligning stiffnesses Ci and (Mzi ),α of the
axles (subscript i refers now to the i th axle and not to the i th wheel). In the sameway,
the derivatives of the aerodynamic coefficients (Cy),β , etc. can also be introduced.

A simple expression for Qx is thus obtained:

Qx = Xm − (
f0 + KV 2

) [
mg cos(α) − 1

2ρV
2
(
SCz + SRCzR

)]+

− 1
2ρV

2
(
SCx + SRCxR

) − mg sin(α),

(25.219)

where, as usual, Xm is the driving force of the driving axle, but may also be the total
braking force.

By substituting the sideslip angle β of the vehicle for ratio v/V , the expressions
of the forces appearing in the handling equations are

⎧⎪⎪⎨
⎪⎪⎩

Qy = (Qy),ββ + (Qy),r r + (Qy),θ̇ θ̇ + (Qy),θθ + (Qy),δδ + Fye + FyeR
Qψ = (Qψ),ββ + (Qψ),r r + (Qψ),θ̇ θ̇ + (Qψ),θθ + (Qψ),δδ + Mze+

+MzeR
− (c + aR)FyeR

Qθ = (Qθ),ββ + (Qθ),r r + (Qθ),θ̇ θ̇ + (Qθ),θθ − MzeR
+ aRFyeR

.

(25.220)
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The derivatives of stability entering the expression for Qy are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Qy),β = Yβ −
∑
∀iR

Ci + 1

2
ρV 2

r SR(CYR ),β

(Qy),r = Yr + 1

V

[∑
∀iR

(c + li )Ci + 1

2
ρV 2

r SR(c + aR)(CYR ),β

]

(Qy),θ̇ = − 1

V

[∑
∀iR

liCi − 1

2
ρV 2

r SRaR(CYR ),β

]

(Qy),θ = −
∑
∀iR

Ci + 1

2
ρV 2

r SR(CYR ),β

(Qy),δ = Yδ ,

(25.221)

where Yβ , Yr and Yδ are the derivatives of stability of the tractor expressed by
Eqs. (25.103).

The derivatives of stability entering the expression for Qψ and Qθ are respectively

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Qψ),β = Nβ +
∑
∀iR

C1 + (c + li )Ci + (Mzi ),α

(Qψ),r = Nr − 1

V

[∑
∀iR

(c + li )
2Ci + (c + li )(Mzi ),α + (c + aR)Ca1

]

(Qψ),θ̇ = 1

V

[∑
∀iR

li (c + li )Ci + li (Mzi ),α + aRCa1

]

(Qψ),θ =
∑
∀iR

(c + li )Ci + (Mzi ),α + Ca1

(Qψ),δ = Nδ ,
(25.222)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Qθ),β =
∑
∀iR

C2 − liCi − (Mzi ),α

(Qθ),r = 1

V

[∑
∀iR

(c + li )liCi + (c + li )(Mzi ),α + (c + aR)Ca2

]

(Qθ),θ̇ = − 1

V

[∑
∀iR

l2i Ci + li (Mzi ),α + aRCa2

]
− �

(Qθ),θ = (Qθ),β

(Qθ),δ = 0 ,

(25.223)
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where aerodynamic terms Ca1 and Ca2 are:

Ca1 = 1

2
ρV 2

r SR
[
lR(CNR ),β − (c + aR)(CYR ),β

]
,

Ca2 = 1

2
ρV 2

r SR
[
lR(CNR ),β − aR(CYR ),β

]
.

Nβ , Nr and Nδ are the derivatives of stability of the tractor expressed by
Eqs. (25.107). All axles of the trailer have been assumed as non-steering.

If the axles of the trailer can steer and their steering angles δi are linked with angle
θ by the law

δi = −K ′
iθ ,

the expressions of the derivatives of stability reported above still hold, except for
(Qy),θ, (Qψ),θ and (Qθ),θ in which all terms in Ci and (Mzi ),α must be multiplied
by (1 + K ′

i ).

25.17.5 Final Expression of the Equations of Motion

Aswith the equations of the insulated vehicle, the linearization of the equations allows
the longitudinal behavior (first equation of motion) to be uncoupled from the lateral,
or handling behavior, which can be studied using only the three remaining equations.
This occurs if the law u(t), which can be confusedwith V (t), is considered as a stated
law, while the unknowns are the driving or braking forces Fx for the longitudinal
behavior and β, r and θ for handling.

The linearized equation for the longitudinal behavior

mV̇ = Qx (25.224)

can thus be studied separately.
The linearized equations for the lateral behavior of the articulated vehicle can be

expressed in the space of the configurations as

Mẍ + Cẋ + Kx = F , (25.225)

where the vectors of the generalized coordinates and of the forces are

x =
⎧⎨
⎩

y
ψ
θ

⎫⎬
⎭ , F =

⎧⎨
⎩

(Qy),δδ + Fye + FyeR
(Qψ),δδ + Mze + MzeR

− (c + aR)FyeR−MzeR
+ aRFyeR

⎫⎬
⎭ (25.226)
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and the matrices are

M =
⎡
⎢⎣

m −mR(c + aR) mRaR
−mR(c + aR) J1 −J2

mRaR −J2 J3

⎤
⎥⎦ ,

C =

⎡
⎢⎢⎢⎢⎢⎣

− (Qy),β

V
mV − (Qy),r −(Qy),θ̇

− (Qψ),β

V
−mRV (c + aR) − (Qψ),r −(Qψ),θ̇

− (Qθ),β

V
mRVaR − (Qθ),r −(Qθ),θ̇

⎤
⎥⎥⎥⎥⎥⎦

, (25.227)

K =
⎡
⎢⎣
0 0 −(Qy),θ

0 0 −(Qψ),θ

0 0 −(Qθ),θ

⎤
⎥⎦ .

The set of differential equations (25.225) is actually of the fourth order and not
of the sixth, since variables y12 and ψ appear in the equation only as first and second
derivatives (the first two columns of matrix K vanish). The equation can thus be
written in the state space in the form of a set of four first-order differential equations
by introducing a fourth state variable vθ = θ̇,

ż = Az + Bcuc + Beue .

The state vector z is simply

z = [
β r vθ θ

]T
,

the dynamic matrix is

A =

⎡
⎢⎢⎢⎣

−M−1C M−1

⎧⎪⎨
⎪⎩

(Qy),θ

(Qψ),θ

(Qθ),θ

⎫⎪⎬
⎪⎭

[
0 0 1

]
0

⎤
⎥⎥⎥⎦ ,

the input gain matrices are

12Actually, as already stated, v is the derivative of a pseudo-coordinate and thus y has no physical
meaning. It has been introduced into the equations only for completeness and, since it is always
multiplied by 0, its presence can be accepted.
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Bc =

⎡
⎢⎢⎢⎣
M−1

⎡
⎢⎣

(Qy),δ

(Qψ),δ

0

⎤
⎥⎦

0

⎤
⎥⎥⎥⎦ ,

Be =

⎡
⎢⎢⎢⎣
M−1

⎡
⎣ 1 1 0 0
0 −(c + aR) 1 1

0 aR 0 −1

⎤
⎦

[
0 0 0 0

]

⎤
⎥⎥⎥⎦ ,

and the input vector is

uc = δ . ue = [
Fye FyeR

Mze MzeR

]T
.

25.17.6 Steady-State Motion

To study the steady-state behavior of the vehicle, Eq. (25.225) can be used, alongwith
the assumption that v̇ = ṙ = θ̇ = θ̈ = 0. The following equation is thus obtained:

⎡
⎢⎣

−(Qy),β mV − (Qy),r −(Qy),θ

−(Qψ),β −mRV (c + aR) − (Qψ),r −(Qψ),θ

−(Qθ),β mRVaR − (Qθ),r −(Qθ),θ

⎤
⎥⎦

⎧⎪⎨
⎪⎩

β

r

θ

⎫⎪⎬
⎪⎭ =

=

⎧⎪⎨
⎪⎩

(Qy),δδ + Fye + FyeR

(Qψ),δδ + Mze + MzeR
− (c + aR)FyeR

−MzeR
+ aRFyeR

⎫⎪⎬
⎪⎭ .

(25.228)

There is no difficulty in solving such a set of equations. For instance, after stating
that δ = 1 and setting all other inputs to zero, the gains 1/Rδ, β/δ etc. can be
computed.

A particularly simple solution is obtained for a two-axle vehicle with a one-axle
trailer if only the cornering forces of the wheels are accounted for

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

Rδ
= 1

l

1

1 + KV 2

θ

δ
= a + c + K ′V 2

l(1 + KV 2)
,

(25.229)
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where the stability factor K and K ′ are
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K = 1

l2

[(
mT + mR

lR − aR
lR

)(
b

C1
− a

C2

)
+

−mR
c(lR − aR)

lR

(
1

C1
+ 1

C2

)]

K ′ = 1

l

{
m

a

C2
+ mR

lR

[
(a + c)(lR − aR)

C2
− lRaR

C1

]}
.

(25.230)

The same definitions used for the insulated vehicle also hold in this case and, if the
derivatives of stability are constant or proportional to 1/V , the sign of the stability
factor allows one to state immediately whether the vehicle is oversteer, neutral-steer
or understeer.

The simplified expression of the stability factor (25.230) is composed of two
terms: The first usually has the same sign of bC1 − aC2 , i.e. of the factor that
decides the behavior of the tractor alone. The second term is negative, unless the
product c(lR − aR) is negative, i.e. the centre of mass of the trailer is behind its axle.

If
c(lR − aR) > 0 ,

the trailer increases the understeering character of the vehicle, more so if the hinge
is far from the centre of mass of the tractor and the centre of mass of the trailer is
close to the hinge. In the case of trailers with a single axle, like caravans, this effect
can be reduced by reducing the distance between its centre of mass and the axle.

If the centre of mass is exactly on the axle, that is, if

lR − aR = 0 ,

the trailer has no effect on the steady state behavior of the tractor; it does, however,
affect its dynamic behavior and stability.

If the centre of mass of the trailer is behind its axle,

lR − aR < 0 ,

the trailer increases the oversteer behavior of the tractor. If the vehicle is oversteer,
the presence of a critical speed can be expected.

Remark 25.18 This way of comparing the behavior of the tractor alone with that of
the complete vehicle is not correct however: The presence of the trailer can change
the loads on the wheels of the former, thus affecting their cornering stiffness.
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Fig. 25.35 Example 25.12: Path curvature gain, sideslip angle gain and trailer angle gain as func-
tions of the speed. Full lines: Values obtained from the complete expressions of the derivatives of
stability; dashed lines: Simplified approach obtained considering only the cornering forces

Example 25.12 Study the steady state directional behavior of the articulated truck of
Appendix E.10. Compare the results obtained using the complete expressions of the
derivatives of stability with those computed considering only the cornering forces of
the tires.

The computation is straightforward. At each value of the speed the normal forces
on the ground must be computed, although they change little with the speed. The
cornering stiffness and the aligning stiffness of the axles are readily obtained from
the normal forces.

At 100km/h, for instance, the normal forces on the axles are 57.25, 107.28, 79.83,
83.56 and 56.14 kN, yielding the following values for the cornering stiffness and the
aligning stiffness: 422.05, 806.64, 641.34, 665.89, 416.42 kN/rad and22.724, 41.472,
26.102, 28.175, 22.116 kNm/rad.

The path curvature gain, the sideslip angle gain and the trailer angle gain θ/δ are
plotted as functions of the speed in Fig. 25.35. The values obtained from the complete
expressions of the derivatives of stability are shown as full lines while the dashed
lines refer to the simplified expressions for the derivatives of stability obtained by
considering only the cornering forces.

When the speed tends to zero, the path curvature gain does not tend to the kinematic
value 1/ l of the tractor: The trailer has a number of axles greater than 1 and correct
kinematic steering is impossible. The vehicle is understeer, even if weakly.

The simplified approach allows one to obtain a fair approximation of the direc-
tional behavior of the vehicle, the differences between the two results being due
mostly to the aligning torques of the tires and only marginally to aerodynamic forces
and moments.



25.17 Model with Four Degrees of Freedom for Articulated Vehicles 407

25.17.7 Stability and Nonstationary Motion

The study of the stability in the small, i.e., for small changes of the state of the system
around the equilibrium conditions, may be performed by computing the eigenvalues
of the dynamic matrix. The plot of the eigenvalues (their real and imaginary parts)
as functions of the speed and the plot of the roots locus give a picture of the stability
of the system that can be easily interpreted.

The eigenvalues of the system are four; two of these are usually complex conjugate
showing anoscillatory behavior; the corresponding eigenvector shows that themotion
of the trailer is primarily involved. These oscillations are usually lightly damped, and
can become, mainly at high speed, self excited leading to a global instability of the
vehicle.

Remark 25.19 The presence of an eigenvalue with positive real part, and hence of
an instability in the mathematical sense, is felt by the driver as a source of discomfort
rather than an actual instability. If the values of both the imaginary and the real parts
of the eigenvalue are small enough, i.e., if the frequency is low and the amplitude
grows slowly, the driver is forced to introduce continuous steering correctionswithout
actually recognizing the instability of the vehicle.

The introduction of a damper at the trailer-tractor connection can solve this prob-
lem, while the use of steering axles on the trailer makes things worse. A steering
axle, controlled so that the wheels steer in the direction opposite to those of the trac-
tor with a magnitude proportional to angle θ, provides a restoring force to keep the
trailer aligned with the tractor. The effect is similar to that of increasing the stiffness
of a system: If the damping is not increased the underdamped character is magnified,
while the natural frequency is also increased.

For the study of motion in nonstationary conditions, the considerations already
seen for the insulated vehicle still hold. Themore complicated nature of the equations
of motion, however, compels us to resort to numerical integration in a larger number
of cases.

Example 25.13 Study the stability with locked controls of the articulated truck of
Appendix E.10.

The plot of the real and imaginary parts of s and the roots locus are shown in
Fig. 25.36.

The figure has been obtained using the complete expressions of the derivatives of
stability, but neglecting the effect of driving forces. At 100km/h the eigenvalues are

−2.3364 ± 1.5896i , −2.2698 ± 3.4037i;

the corresponding eigenvectors are
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⎧⎪⎪⎨
⎪⎪⎩

−0.8723 ± 0.4849i
0.0305 ± 0.0424i

−0.0037 ∓ 0.0346i
0.0058 ± 0.0109i

⎫⎪⎪⎬
⎪⎪⎭

,

⎧⎪⎪⎨
⎪⎪⎩

−0.6448 ∓ 0.6533i
−0.0521 ± 0.0862i
−0.1322 ± 0.3429i
0.0518 ∓ 0.0734i

⎫⎪⎪⎬
⎪⎪⎭

.

The vehicle has a strong oscillatory behavior, even if both modes are well damped
and no dynamic instability occurs; bothmodes involve the tractor aswell as the trailer.

Example 25.14 Study the directional response and the stability with locked con-
trols of the car of Appendix E.5 with a caravan with a single axle. Assume the
following data for the caravan: Mass mR = 600 kg, moment of inertia JR = 800
kg m2, c = 2.87 m, aR = l3 = 2.5 m, hR = 1 m, SR = 2.5 m2; (CYR ),β = −1.5,
(CNR ),β = −0.6. Assume that the trailer has the same tires as used on the tractor.

The path curvature gain, sideslip angle gain and trailer angle gain are plotted
against the speed in Fig. 25.37. Both the complete and simplified expressions of the
derivatives of stability have been used, while the effect of driving forces has been
neglected.

Note that the curve obtained from the simplified expressions of the derivatives of
stability is completely superimposed on that describing the behavior of the insulated
vehicle, as was predictable since aR = l3. Note also that the path curvature gain tends
to the kinematic value for a speed tending to zero, since the trailer has a single axle
and correct kinematic steering is possible.

The plot of the real and imaginary parts of s and the roots locus are reported in
Fig. 25.38a, b. Here only the complete expressions of the derivatives of stability have
been used. The vehicle is stable, but the absolute value of the real part of the Laplace

Fig. 25.36 Example 25.13: Study of the stability. a Real and imaginary parts of s as functions of
the speed. b Roots locus at varying speed. Complete expressions of the derivatives of stability, with
the effect of driving forces neglected
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Fig. 25.37 Example 25.14: Path curvature gain, sideslip angle gain and trailer angle gain as func-
tions of speed. Full lines: Values obtained from the complete expressions of the derivatives of
stability; dashed lines: Simplified approach obtained considering only the cornering forces

variable s is quite low at high speed, denoting a strong and little damped oscillatory
motion, which occurs at low frequency.

To compare the behavior of the vehicle with and without trailer the computation
has been repeated without the latter and the results are shown in Fig. 25.38c, d.

The comparison shows that the modes affecting primarily the vehicle are fairly
uncoupled from those primarily affecting the trailer, although a correct analysis of
such coupling demands a through analysis of the eigenvectors.

The trailer mode with low frequency and low dynamic stability is superimposed
on the more stable tractor mode, which is not strongly affected by the presence of
the trailer. The motion of the tractor in the trailer mode can also be quite large, as
this mode affects the whole system.

Example 25.15 Study the stability with locked controls of the car of Appendix E.2
with the caravan of Example 25.14. Assume that the tires of the caravan are the same
as those used on the tractor. Then study the motion with locked controls of the same
vehicle following a step steering input at 80 and 140 km/h. Assume that the value
of the steering angle is that needed to obtain a circular path with a radius of 200 m,
computed neglecting the presence of the trailer.

The plot of the real and imaginary parts of s and the roots locus computed using
the complete expressions of the derivatives of stability are shown in Fig. 25.40a, b.
The vehicle is stable only up to a speed of about 120km/h, where the real part of the
Laplace variable s related to one of the two modes vanishes, to become positive at
higher speed.

The absolute value of the real part of s is always quite low, denoting a marginal
dynamic stability at low speed and a marginal instability at higher speed.
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Fig. 25.38 Example 25.14: Study of the stability. a Real and imaginary parts of s as functions of
the speed. b Roots locus at varying speed. c, d Same as (a), (b) but for the vehicle without trailer.
Complete expressions of the derivatives of stability, with the effect of driving forces neglected

This type of behavior is quite evident in the response to a step steering input. The
steering angle needed to obtain a radius of the path of 200m is 0.9659◦ at 80km/h
and 1.7271◦ at 140km/h. The integration of the equation of motion was performed
numerically. At 80km/h the response is stable but the step input excites a strong,
slowly damped, oscillatory behavior (Fig. 25.40a).

The strong oscillatory behavior is primarily due to the trailer, and the time history
showing more pronounced oscillations is that of the trailer angle θ. After 6 s the
values of r/V δ, βδ and θδ are almost stabilized at the values of 0.3018, −0.4056
and 0.3098 that characterize the steady state behavior (the former two are almost the
same as those obtained for the vehicle without trailer, except for a small difference
due to the difference in aerodynamic drag, which influences the loads on the road
and hence the cornering stiffness). The path is, however, not oscillatory.
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At 140km/h the vehicle is unstable and the oscillations of r , β and θ quickly
diverge. The path reported in Fig. 25.39b, however, is not strongly oscillatory.

This example is a limiting case since the trailer is not correctly matched to the
vehicle, nor are the tires correct for the trailer; it has been shown as an example of
unstable behavior occurring in an incorrectly designed vehicle with trailer.

Note that a step input is prone to excite strongly an unstable behavior and is
the worst thing to do with a marginally stable vehicle. The oscillations have a low
frequency, and it is possible that the driver may be able to stabilize the vehicle even

Fig. 25.39 Example 25.15: Response to a step steering input. a Time histories of the yaw velocity,
sideslip angle β and trailer angle θ at 80km/h and b path at 80 and 140km/h

Fig. 25.40 Example 25.15: Study of the stability. a Real and imaginary parts of s as functions of
speed. b Roots locus at varying speed. Note the instability threshold at about 120km/h. Complete
expressions of the derivatives of stability, with the effect of driving forces neglected
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at speeds at which the real part of s is positive: A test driver would probably find the
handling and comfort of the vehicle poor rather than seeing the vehicle as unstable,
owing to the need for continuous steering corrections.

On the other hand, it is possible that a vehicle with a low negative real part of s
becomes unstable because of the action of the driver. Ultimately, the stability of the
vehicle-driver system is what counts, but intrinsic stability of the vehicle is necessary,
so that the driver is not forced to stabilize a system that is itself unstable.

25.18 Multibody Articulated Vehicles

25.18.1 Equations of Motion

Consider a vehicle with a trailer with two axles, one connected to its body, the other
connected to the draw bar (Fig. 25.41a). Its dynamic behavior may be studied using
the same kind of model seen in the previous section, where the trailer is modelled as
two simple trailers connected in sequence.Themodel hasfivedegrees of freedom, and
the five generalized coordinates may be X Y , ψ, θ1 and θ2. The first two coordinates
can be substituted by displacements x and y referred to the frame of the tractor and
the first equation for longitudinal motion may be decoupled from the others, if the
equations of motion are linearized. The transversal behavior can be studied using a
set of four differential equations that can be linearized under the usual conditions,
yielding a set of linear differential equations whose order is 6.

This procedure can be generalized to a genericmultibody vehiclemade of a tractor
and a set of n trailers (Fig. 25.41b). Note that while in Europe no vehiclewithmultiple
trailers is legal for road use, in America and Australia such vehicles are legal but
subject to restrictions. Themodel here described, leading to a set of n + 3 differential
equations (n + 2 for the lateral behavior if the first equation is uncoupled), allows
one to study the behavior of any vehicle of this type.

With reference to Fig. 25.41b, the position of the centre of mass of the i th trailer
is

(
Gi − O

) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X − c cos(ψ) −
i−1∑
k=1

lk cos(ψ − θk) − ai cos(ψ − θi )

Y − c sin(ψ) −
i−1∑
k=1

lk sin(ψ − θk) − ai sin(ψ − θi )

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (25.231)

The velocity of point Gi is
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Fig. 25.41 a Vehicle with a trailer with two axles. b model of a multibody articulated vehicle;
parameters for the i-th trailer

VGi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ẋ + ψ̇c sin(ψ) +
i−1∑
k=1

(
ψ̇ − θ̇k

)
lk sin(ψ − θk) + (

ψ̇ − θ̇i
)
ai sin(ψ − θi )

Ẏ − ψ̇c cos(ψ) −
i−1∑
k=1

(
ψ̇ − θ̇k

)
lk cos(ψ − θk) − (

ψ̇ − θ̇i
)
ai cos(ψ − θi )

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

(25.232)

The contribution to the kinetic energy due to the i th trailer with mass mi and
moment of inertia Ji about a baricentric axis parallel to the z-axis is then

T i = 1

2
miV

2
i + 1

2
Ji

(
ψ̇ − θ̇i

)2
, (25.233)
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i.e.,
T i = 1

2m
[
ẋ ′2 + ẏ′2 − 2

(
Ẋαi + Ẏβi

)
cos(ψ)+

+2
(
Ẋβi − Ẏαi

)
sin(ψ)

] + 1
2 Ji

(
ψ̇ − θ̇i

)2
,

(25.234)

where

αi =
i∑

j=1

li j
(
ψ̇ − θ̇ j

)
sin(θ j ) ,

βi = cψ̇ +
i∑

j=1

li j
(
ψ̇ − θ̇ j

)
cos(θ j ),

and constants li j are the elements of the matrix

l =

⎡
⎢⎢⎢⎢⎣

a1 0 0 0
l1 a2 0 0
l1 l2 a3 0
. . . . . . . . . . . .

l1 l2 l3 an

⎤
⎥⎥⎥⎥⎦ .

Here again the rotation kinetic energy of the wheels has been neglected and no
gyroscopic effect of the wheels can be obtained.

The Raleigh dissipation function due to a generic viscous damper located between
the (i − 1)-th and the i th trailer is simply

F = 1

2
�

(
θ̇i − θ̇i−1

)2
. (25.235)

Operating in the manner used for the insulated vehicle and linearizing the result,
the first equation of motion, related to the displacement in x direction, is

mV̇ = Qx , (25.236)

where

m = mT +
n∑

i=1

mi

is the total mass of the vehicle.
The second equation of motion, related to the displacement in the y direction, is

m
(
v̇ + V ψ̇

) +
n∑

i=1

⎡
⎣−ψ̈

⎛
⎝c +

i∑
j=1

li j

⎞
⎠ +

i∑
j=1

li j θ̈ j

⎤
⎦ = Qy . (25.237)



25.18 Multibody Articulated Vehicles 415

The third equation refers to the degree of freedom ψ

{
JT +

n∑
i=1

[
mi

(
S2i + C2

i

) + Ji
]}

ψ̈ +
n∑

i=1

mi

{ (−u̇ + vψ̇
)
Si+

− (
v̇ + uψ̇

)
Ci − Si

i∑
j=1

li j
[
θ̈ j sin(θ j ) − θ̇ j

(
ψ̇ − θ̇ j

)2
cos(θ j )

]
+

−Ci

i∑
j=1

li j
[
θ̈ j cos(θ j ) + θ̇ j

(
ψ̇ − θ̇ j

)2
sin(θ j )

]
+

+ψ̇Si

i∑
j=1

li j θ̇ j cos(θ j ) − (
ψ̇Ci + v

) i∑
j=1

li j θ̇ j sin(θ j )

}
= Qψ ,

(25.238)

where

Si =
i∑

j=1

li j sin(θ j ) ,

Ci = c +
i∑

j=1

li j cos(θ j ) .

The third equation can also be linearized, yielding

{
JT +

n∑
i=1

[
miC

2
i + Ji

]}
ψ̈+ (25.239)

+
n∑

i=1

mi

⎡
⎣V̇ Si − (

v̇ + V ψ̇
)
Ci − Ci

i∑
j=1

li j θ̈ j

⎤
⎦ = Qψ ,

where

Si =
i∑

j=1

li jθ j , Ci = c +
i∑

j=1

li j .

The following n equations refer to the rotational generalized coordinates θ j (for
j = 1, 2, . . . , n). The generic equation for θk , i.e., the (3 + k)-th equation, is
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n∑
i=k

mi lik

⎧⎨
⎩sin(θk)

⎡
⎣u̇ − vψ̇ + ψ̇2Ci − ψ̈Si −

i∑
j=1

li j θ̈ j sin(θ j )+

−2ψ̇
i∑

j=1

li j θ̇ j cos(θ j ) +
i∑

j=1

li j θ̇
2
j cos(θ j )

⎤
⎦+

+ cos(θk)

⎡
⎣v̇ + uψ̇ − ψ̈Ci + −ψ̇2Si +

i∑
j=1

li j θ̈ j cos(θ j ) + 2ψ̇
i∑

j=1

li j θ̇ j sin(θ j )+

−
i∑

j=1

li j θ̇
2
j sin(θ j )

⎤
⎦
⎫⎬
⎭ + Jk

(
θ̈k − ψ̈

) = Qθk .

(25.240)
By linearizing also these equations, it follows that

Jk
(
θ̈k − ψ̈

) +
n∑

i=k

mi lik

⎛
⎝θk V̇ + v̇ + V ψ̇ − ψ̈Ci +

i∑
j=1

li j θ̈ j

⎞
⎠ = Qθk . (25.241)

The derivatives of the Raleigh dissipation function have not been included in the
equations: The generalized forces due to the dampers, if they exist at all, will be
included in the forces Qθk .

25.18.2 Sideslip Angles of the Wheels and Generalized Forces

The sideslip angles of the wheels of the trailer can be computed as they were for the
articulated vehicle. If the r th wheel of the i th trailer has a steering angle δir , using
the monotrack vehicle model, the sideslip angle is

αir = θi + β − ψ̇

V

⎛
⎝c +

i∑
j=1

l∗i j

⎞
⎠ +

i∑
j=1

l∗i j
θ̇i

V
− δir , (25.242)

where l∗i j are equal to li j , but defined using distance bir of the axle instead of ai .
The contributions to the generalized forces Qx , Qy and Qψ due to the tractor

are the same as for the insulated vehicle. As usual, the tractor does not give any
contribution to the forces Qθk . To compute the contributions due to the r th wheel of
the i th trailer and to the aerodynamic forces of the latter, it is possible to proceed as
for the previous models, by writing their virtual work and then differentiating with
respect to the virtual displacements.
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The results obtained for the wheels are
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qxir = Fxirt + Fyirt (θi − δir )

Qyir = −Fxirt (θi − δir ) + Fyirt

Qψir
= Fxirt

[
c(θi − δri ) + ∑i

j=1 l
∗
i j (θi − θ j − δri ) − yir

]
+

+ Fyirt

[
−c − ∑i

j=1 l
∗
i j + yir (δri )

]
+ Mzri

Qθkir
= Fxirt l

∗
ik(θi − θk − δri ) + Fyirt l

∗
ik if k < i

Qθkir
= Fxirt

[
yir + l∗ikδri

] + Fyirt

[−yir δri + l∗ik
] − Mzri

if k = i

Qθkir
= 0 . if k > i

(25.243)
The generalized forces due to the aerodynamic forces and moments acting on

the trailers can be accounted for in a similar way. Assuming that it is possible to
distinguish between the forces acting on the various rigid bodies, the generalized
forces can be computed immediately from Eqs. (25.243), using li j instead of l∗i j ,
setting δir to zero and using the aerodynamic forces and moments instead of the
forces acting between road and wheels.

The generalized forces due to dampers located between the various bodies are

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Qx = Qy = 0

Qψ = −�1ψ̇ + �1θ̇1

Qθ1 = �1ψ̇ − (�1 + �2) θ̇1 + �2θ̇2

Qθk = �k θ̇k−1 − (�k + �k+1) θ̇k + �k+1θ̇k+1 k = 2, ..., n .

(25.244)

The external forces Fyei
acting in the centres of mass of the trailers and the

components of the weight mig sin(α) are assumed to act in the directions of axes
x and y of the tractor; the expressions of the generalized forces must therefore be
modified accordingly.

The equations of motion are n + 3; together with the equations yielding the
sideslip angles of the wheels, those expressing the forces and moments of the tires
as functions of the sideslip angles, the load, and the other relevant parameters, they
allow one to study the handling of the vehicle.

As was the case for all the previous models, the linearization of the equations
allows one to uncouple the longitudinal behavior (first equation of motion) from the
lateral behavior, which can be studied using the remaining n + 2 equations:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m
(
v̇ + uψ̇

) − ψ̈

n∑
i=1

midi +
n∑

i=1

θ̈i

⎛
⎝ i∑

j=i

m j l j i

⎞
⎠ =

= (Qy)ββ + (Qy)ψψ +
n∑

i=1

[
(Qy)θi θi

] + (Qy)θ̇i
θ̇i + (Qy)δδ + Fye +

n∑
i=1

Fyei

J ′ψ̈ −
n∑

i=1

J ′
i θ̈i +

n∑
i=1

mi

⎧⎨
⎩−V̇

i∑
j=1

li jθ j − (
v̇ + V ψ̇

)
di

⎫⎬
⎭ =

= (Qψ)ββ + (Qψ)ψψ +
n∑

i=1

[
(Qψ)θi θi + (Qψ)θ̇i

θ̇i

]
+ (Qψ)δδ+

+Mze +
n∑

i=1

Mzei
−

n∑
i=1

Fyei d j

n∑
i=k

mi lik

⎛
⎝θk V̇ + v̇ + V ψ̇ − di ψ̈ +

i∑
j=1

li j θ̈ j

⎞
⎠ = (Qθk )ββ + (Qθk )ψψ+

+
n∑

i=1

[
(Qθk )θi θi + (Qθk )θ̇i

θ̇i

]
+ (Qθk )δδ − Mzei

+
k∑

i=1

Fyei lik ,

(25.245)
where

di =
i∑

j=1

li j , J
′ = JT +

n∑
i=1

(Ji + mid
2
i )

and

J ′
i =

i∑
j=1

(Ji + mid j l ji ) .

By linearizing the generalized forces Qx , Qy , Qψ and Qθk as for the previous
models, the derivatives of stability entering Eq. (25.245) are readily computed.

The set of (n + 2) differential equations (25.245) is of the (2n + 2)-th order, since
variables y and ψ appear in the equation only as first and second derivatives. The
equation can thus be written in the state space in the form of a set of 2n + 2 first-order
differential equations by introducing the state variables vθi = θ̇i .

25.19 Limits of Linearized Models

Linearized models have some features that make them particularly useful. These are
namely:

• They allow us to simplify the equations of motion to obtain closed form solutions
which, when simple enough, provide a general insight into the dynamic behavior
of the vehicle, particularly in terms of the effect of changes to its parameters.

• The possibility of studying the stability with the usual methods of linear dynamics.
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The disadvantages are also clear: Linearized models can be applied only within
a limited range of sideslip angles and lateral acceleration, and used for trajectories
whose radius is large with respect to the size of the vehicle. They can thus be applied
with confidence to the conditions corresponding to normal vehicle use, while they
fail for sport driving and above all for the motions involved in road accidents.

Another consideration for the models seen in the present chapter is that they are
based on rigid body dynamics, with the presence of the suspensions neglected. This
assumption is well suited to describe the behavior of a vehicle driven in a relaxed
way: Although dependent on the stiffness of the suspensions, the roll and pitch angles
under these conditions are very small and may be assumed to have little effect on the
dynamic behavior.

It must, however, be stated that a linearization carried too far will lead to results
contradicting experimental evidence.

If the cornering stiffness is assumed to be proportional to the load Fz acting on
the wheel not only for the small load variations acting on each wheel but also for
the differences of load between front and rear axle, in the case of a vehicle with two
axles with equivalent tires it follows that

C1

C2
= Fz1

Fz2

= b

a
. (25.246)

If only the cornering forces of the tires are included in the formula for the neutral-
steer point, it follows that this point always coincides with the centre of mass, leading
to the conclusion, clearly incorrect, that all vehicles with four equivalent wheels are
neutral-steer.
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