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Abstract. There has always been much motivation for sharing code and
solutions among teams in the RoboCup community. Yet the transfer of
code between teams was usually complicated due to a huge variety of
used frameworks and their differences in processing sensory information.
The RoboCup@Home league has tackled this by transitioning to ROS
as a common framework. In contrast, other leagues, such as those using
humanoid robots, are reluctant to use ROS, as in those leagues real-time
processing and low-computational complexity is crucial. However, ROS 2
now offers built-in support for real-time processing and promises to be
suitable for embedded systems and multi-robot systems. It also offers
the possibility to compose a set of nodes needed to run a robot into a
single process. This, as we will show, reduces communication overhead
and allows to have one single binary, which is pertinent to competitions
such as the 3D-Simulation League. Although ROS 2 has not yet been
announced to be production ready, we started the process to develop
ROS 2 packages for using it with humanoid robots (real and simulated).
This paper presents the developed modules, our contributions to ROS 2
core and RoboCup related packages, and most importantly it provides
benchmarks that indicate that ROS 2 is a promising candidate for a
common framework used among leagues.

Keywords: ROS 2 · Robot framework · Robot software · Embedded
system · Real-time system · Minimal hardware · Open source ·
Humanoid robots · Autonomous robots

1 Introduction

Having a common framework among teams (or even among leagues) has many
advantages. Most notably, rather than concentrating on increasing performance
or reliability of the framework, participants can focus on the implementation of
artificial intelligence. Solutions can be easily shared and distributed, with possi-
bilities of benchmarking them against each other. The handover and knowledge
transfer within a team to a new generation can be done smoothly. If there is
a common framework not just within a league but between leagues, then this
may foster the collaboration between teams of different leagues. With an eye on
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the goal of merging forces of different leagues and eventually merge leagues, a
common framework is essential.

In a field such as a RoboCup league, where tasks and constraints are sim-
ilar for each participating team, one might think that a common framework
would naturally emerge. The RoboCup@Home Open Platform League is a good
example that this indeed happens. Starting with two teams in 2010, in 2018 all
teams announced within their team descriptions the use of the same software
framework [9]. The used framework was the open-source Robot Operating Sys-
tem (ROS). In other leagues, such as the Humanoid League (HL) or the Standard
Platform League (SPL), ROS didn’t establish as a common framework despite
some advances [1,2,5,14]. We argue that performance shortcomings on mini-
mal hardware doesn’t make it suitable for soccer playing humanoid robots [11].
In the SPL the self-developed framework from team B-Human was adopted by
many teams instead. The performance strength is gained through a tight cou-
pling between used software tools (e.g. simulator) and between modules [11].
However, this is also a shortcoming, as it restricts the community using the
framework mostly to the football playing domain. NUClear is an example of
a framework originating from RoboCup that is more loosely coupled, modular
and applicable in different robot projects [7]. This framework solves the overhead
of traditional message passing systems through specially optimised paths simi-
lar to those we will benchmark here. Additionally, it offers the ability of using
more blackboard/whiteboard type data access patterns which are not directly
available in the framework discussed in this paper.

The authors themselves developed several frameworks with teams in the Stan-
dard Platform League, Humanoid Kid-Size League and 3D Simulation League.
Their current team, the Bold Hearts, used a self developed software framework,
with almost all modules created from scratch [13]. Although shown to be capa-
ble of performing well, over the years the framework has become more and
more complex. It is completely custom and some of the original developers have
moved on, making it difficult to get new members started and to adapt it to
new developments in the competitions. Code dependencies made it challenging
to integrate well working modules from other teams or projects. For example,
last year’s change of the underlying vision pipeline towards a new semantic seg-
mentation couldn’t be easily achieved as third-party tools didn’t integrate well
together [3].

There are reasons why some leagues couldn’t agree on a common framework
yet. Naturally, without a central committee being in charge, there will always
be some healthy argument or a fork of a different, perhaps slightly more efficient
implementation.

The fact that ROS is a framework from ‘outside’ of RoboCup could provide
a good common base, but has not been able to gain widespread adoption due
to inherent limitations; ROS was never built with support for, e.g., multi-robot
systems involving unreliable networks, for robots needing real-time processing
capabilities or for robots with minimal hardware [4,8,11].

However, exactly these limitations sparked the development of a second, com-
pletely rewritten version of ROS. Although it is not yet deemed fully production
ready, it has a wider support than a RoboCup team, a league or the whole com-
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munity can offer: the support includes large entities from the industry, such as
Intel and Amazon. With an eye on the future and the transferability of skills
learned by our (student) members outside/beyond participation in RoboCup, we
opted to use ROS 2 [13]. Some benchmarking suggests that ROS 2 is currently in
a state that offers the possibility to use it for multi-robot teams, small platforms
and real-time systems [6,8].

In this paper, we discuss why we think ROS 2 is a reasonable framework
choice and also briefly present its advantages (Sect. 2). We further present the
modules we have developed as a basis for participating in the RoboCup (Sect. 3).
Additionally, we present two preliminary studies for benchmarking the system
and showing the feasibility for using it in RoboCup (Sect. 4).

2 ROS 2 Architecture and Features

ROS 2 is based on the Data Distribution Service (DDS) standard for real-time
systems [4,8]. DDS is a connectivity framework aiming to enable scalability
and real-time data exchange using a Data-Centric Publish-Subscribe (DCPS)
architecture [10].

DDS is specified by the Object Management Group (OMG), which is an open
membership, not-for-profit computer industry standards consortium. It is devel-
oped for a wide variety of fields such as transportation systems, autonomous
vehicles, and aerospace. ROS 2 sits on top of that, providing standard messages
and tools to adapt DDS for robotic needs. A range of vendors providing imple-
mentations of DDS, such as eProsima’s Fast RTPS and RTI Connext are fully
supported [8,12]. Compared to ROS 1, ROS 2 has several beneficial features:

– Built-in support for real-time systems.
– Support for defining the ‘Quality of Service’ of topics. This allows one to make

a range of trade-offs between strong reliability and ‘best effort’ policies, to
deal with lossy communication. For instance, an efficient non-blocking ‘best
effort’, ‘UDP-like’ service is acceptable for high frequency sensor data where
missing individual messages is not detrimental. On the other hand, when each
message is crucial, a reliable ‘TCP-like’ policy can be used.

– Nodes can be run in individual executables, or composed, using a variety
of executors. In ROS 1, one has to maintain ‘nodelet’ versions of all nodes
to make this possible. In ROS 2, this can be achieved natively, making it
possible to remove much of the communication overhead between nodes by
having them share memory. We provide a benchmark showing the appeal of
this below.

– No need to run the ROS 1 roscore instance and maintain environment vari-
ables to make it and nodes reachable; with DDS, nodes discover each other
through a network automatically.

– Communication between nodes can be strictly restricted by placing them in
different ‘domains’. This could be very useful in the RoboCup Simulation
league for instance, where the programs of all robots in the same team run
on the same machine but no communication between them should happen.
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Together with the ability to compose all modules for one agent in a single
executable, this makes ROS 2 a much better candidate to use as a platform
in the simulation league than ROS 1.

3 ROS 2 and RoboCup Contributions

There are many modules that are not available yet, as ROS 2 is still relatively
new. To be able to develop a full RoboCup team based on ROS 2, we have
developed several modules, consisting of:

Hardware driver. Our robots are based on the Robotis CM-730 sub-controller.
Robotis has released ROS 1 packages for their products, but at the moment
there is no ROS 2 effort. We have created and published a ROS 2 driver
for interacting with the CM-730, and controlling Robotis Dynamixel motors

Fig. 1. The upper image depicts a scene with a robot looking at a ball. The lower
image is a screenshot of RViz2. It shows the camera image feed retrieved with our USB
camera driver (left). Our CM-730 package publishes joint states, accelerometer and
gyro information for building the robot model and compute its orientation with our
IMU fusion package (both right).
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Fig. 2. Depicted is a scene from RCSSServer3D used in the 3D Simulation League (left,
using RoboViz). Our package translates the servo information into standard ROS
messages and publishes the topic /joint state. Also, the simulated gyroscope and
accelerometer information are published. Our IMU fusion package subscribes to the
messages and computes the robot’s orientation, exactly as for the real robot in Fig. 1.
The interface package allows for using ROS 2 within the context of the 3D Simulation
League.

attached to it1. Figure 1 (right) shows the result of the robot model built
using the output of this driver. We also developed a USB camera driver2,
Fig. 1 (left) shows the output of the camera driver.

Ports of our modules. With all hardware interfaces in place, we now work
on porting our existing modules over to the new platform. The IMU fusion
filter3 is one example. We complemented it with a package for visualizing
the orientation of the robot in RViz2. Figures 1 and 2 (both right) show the
visualization of the orientation.

Humanoid League. The RoboCup humanoid league uses a Game Controller
application to manage a competition: it keeps track of and broadcasts the
game state and events such as kick-off and penalties to the robots. We have
created a package that forms a bridge between the communication protocol
of the Game Controller and ROS 2 topics4.

3D Simulation League. Taking advantage of the benefits described above,
we have developed a ROS 2 interface for the RoboCup 3D Simulation

1 https://gitlab.com/boldhearts/ros2 cm730
2 https://gitlab.com/boldhearts/ros2 v4l2 camera
3 https://gitlab.com/boldhearts/ros2 imu tools
4 https://gitlab.com/boldhearts/ros2 game controller

https://gitlab.com/boldhearts/ros2_cm730
https://gitlab.com/boldhearts/ros2_v4l2_camera
https://gitlab.com/boldhearts/ros2_imu_tools
https://gitlab.com/boldhearts/ros2_game_controller
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Server [15]5. It uses the same platform and standard message interfaces as for
our humanoid robots, making it easier for (new) members to experiment and
improve our modules, and deploy them to real robots directly.

ROS 2 core contributions. We have made several contributions to the core
ROS 2 project for issues discovered in our use cases, including fixes to make it
possible to compile ROS 2 for 32 bit ARM platforms6, support modern Linux
64 bit library paths7 and to set complex node parameters using command line
tools8, along with smaller fixes for geometry29 and demo image tools10.

4 Benchmark Stand-Alone Versus Composed Nodes

We use the humanoid football robot BoldBot for the benchmarks. Its main board
is an Odroid-XU4. This device is based on a Samsung Exynos 5422 Cortex-A15
with 2 GHz and a Cortex-A7 Octa core CPU, which is the same as used in some
2015 model flagship smartphones [13]. The main board runs 32 bit Ubuntu 18.04
with a compiled version of ROS 2 Dashing Diademata, the first long-term sup-
port version of ROS 2. All packages used in these benchmarks and the ROS 2
core install have been compiled with GCC’s highest optimization level.

In ROS 1, nodes are stand-alone executables. Communication between these
nodes is performed through a transport protocol, most often over TCP/IP. This
means that all communication between these nodes involves overhead from serial-
isation and memory copies. So called ‘nodelets’ were introduced to allow compos-
ing node-like building blocks into single executables to alleviate such overhead.
As these concepts are separate from normal nodes, a package developer has to
choose to support either nodes or nodelets, or maintain both.

In ROS 2, nodes were redesigned to make it possible to run them either stand-
alone or composed in a single process, either single or multi-threaded. ROS 2
Dashing Diademata even adds the ability to dynamically load and unload nodes
in a single process at runtime, as so called ‘components’.

When nodes are composed in such a way, messages between them can be
shared directly, without any intermediate conversion overhead. ROS 2 explic-
itly supports this form of Intra-Process Communication (IPC), bypassing the
DDS layer and performing zero-copy communication where possible. To test
the impact of this, we perform several benchmarks of one of the most memory
intensive operations for robots: image processing.

4.1 Case 1: Simple Node Graph

A node is created that subscribes to the /image raw topic provided by the
camera driver described earlier. This node applies a Sobel gradient operation to
5 https://gitlab.com/boldhearts/ros2 rcss3d
6 https://github.com/ros2/rcl/pull/365
7 https://github.com/colcon/colcon-library-path/pull/10
8 https://github.com/ros2/ros2cli/pull/199
9 https://github.com/ros2/geometry2/pull/102

10 https://github.com/ros2/demos/pull/288

https://gitlab.com/boldhearts/ros2_rcss3d
https://github.com/ros2/rcl/pull/365
https://github.com/colcon/colcon-library-path/pull/10
https://github.com/ros2/ros2cli/pull/199
https://github.com/ros2/geometry2/pull/102
https://github.com/ros2/demos/pull/288
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Fig. 3. Distributions of time measured from image capture by camera node until end
of processing of a Sobel gradient operation on the full image done by processing node.
Both nodes either run as stand-alone executables or run composed in a single exe-
cutable, the latter with IPC disabled and enabled. Each plot shows the density (top),
a boxplot (middle), and individual data points (bottom). 10.000 samples are measured
in each case.

incur some actual processing cost to offset overhead costs against, and measures
the time from initial image capture (provided in the Image header) until it
finished processing the image.

Figure 3 shows the effects of composing nodes and intra-process communi-
cation. The end-to-end processing time for 10.000 images was compared when
running the camera and processing nodes separately, or when composed in a
single executable using a multi-threaded executor11, the latter with IPC dis-
abled and enabled. Composing the nodes seems to result in slightly more stable
communication, with less extreme outliers than in the stand-alone case, but the
difference is minimal.

However, a clear benefit can be seen when IPC is enabled, with the median
processing time dropping by 33% compared to the stand-alone results, from
28.7 ms to 20.7 ms. The communication is also much more reliable, with a dis-
tinctly narrower distribution of processing times. The zero-copy transmission
that is responsible for this improvement is achieved in ROS 2 by passing direct
memory pointers to messages from publisher to subscriber, when using the C++
‘unique pointer’ concept to signal that this is safe to do.

4.2 Case 2: Extended Node Graph

We extend the previous benchmark example to further understand the impact
of communication overhead in a more realistic configuration with a larger set
of nodes. To extend the image processing example, we further introduce nodes
to publish and process IMU sensor and joint data, provided by our packages
11 When using a single-threaded executor no processing actually happened, possibly

due to the camera node claiming all execution time
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Fig. 4. Image processing times as in Fig. 3, but with the robot system extended with
other necessary nodes and topics like /joint states and /imu/data, for a total of 7
nodes running at a time. Each plot shows the density (top), a boxplot (middle), and
individual data points (bottom). 10.000 samples are measured in each case.

described in Sect. 3. Our CM-730 package reads the servo information from the
robot and publishes it as a standard topic /joint state. It also publishes raw
IMU readings of the accelerometer and the gyroscope. The IMU fusion package
reads these raw messages and computes the robots’ orientation and publishes
the /imu/data topic. Altogether, 7 nodes are involved that communicate on 7
topics (including the image topic). For the benchmark using composition and
IPC, only the /image raw topic is IPC-enabled.

Figure 4 shows the results. The median computation time for the image pro-
cessing for the stand-alone binary increases by 0.8 ms, only a slight increase when
compared to the simple case from the previous section. However, the tail of the
distribution has become longer, indicating further increase in communication
variability.

This same effect is not seen in the composed, no-IPC results; the distribu-
tion is actually tighter, although the median processing time has increased from
28.4 ms to 33.6 ms. We do not know the reason for this change compared to the
simple system. However, given the results when IPC is enabled, this mode is not
recommended anyway.

This is because also in this extended case, enabling IPC gives significantly
better results; hardly any effect of adding more nodes is visible in the image
processing times, with the median time even 1 ms lower than in the simple case.
These results show that a composed binary can prevent much of possible costs
of creating a modular system without having to maintain any additional code,
in contrast to ROS 1 for instance.

5 Conclusion and Future Work

We believe a common framework will ease the process of sharing and comparing
solutions between teams and help them concentrate on their research interests.
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This is valuable both within and between leagues. For instance, ultimately the
simulation league aims more for strategic play, whereas the humanoid leagues
focus heavily on developing robot hardware and lower level control. Given the
goal of merging these leagues eventually, a common framework is an inevitable
basis.

In this paper, we propose ROS 2 as a suitable choice for a framework for a
RoboCup team with needs for real-time processing relying on minimal hardware.
ROS 2 is supported by a large community, including big industrial partners, that
the RoboCup community can benefit from. This makes it a potential candidate
for a common framework. We presented our ROS 2 and RoboCup contribu-
tions, allowing to start with ROS 2 in the RoboCup. We supported the CM-730
sub-controller manufactured by Robotis, a very popular brand among RoboCup
teams in the Humanoid League. Furthermore, we wrote an interface for using
ROS 2 with the simulator of the 3D-Simulation League.

Our benchmarks indicate that ROS 2’s capability to compose nodes can
reduce the communicational overhead known from ROS 1. Our future work
mostly includes porting over ROS 1 packages and our custom modules to the
ROS 2 ecosystem.
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