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Foreword

Environmental pollution is currently a problem of major global concern. The 
 pollutants in general are accepted as unwanted additions for our living world. The 
large-scale industrial activities have ended up with serious contaminations of our 
soils and waters by adding  several hazardous and toxic compounds together with 
undesirable xenobiotics, recalcitrants as well as other chemical compounds which 
differ much in their chemical structure from natural organic compounds. The highly 
toxic pollutants in our surroundings are mutagenic as well as carcinogenic for all 
living beings. They are diverse, versatile, and adapt to adverse conditions. Intensive 
work is being done to remediate the environmental contaminants in the biogeo-
chemical cycles; however, we need to find out new pathways that might lead towards 
complete removal of pollutants.

One of the latest trends has been use of biotechnology in the bioremediation. It 
is currently becoming the most wanted field for restoration of our environment. 
Several bioremediation strategies are followed for treating polluted locations and 
wastes. For this purpose, investigators are undertaking studies on the biochemistry, 
bioavailability, and bioactivity. Several workers have started studies on the use of 
molecular genetics for biodegradation together with enzyme-tailoring and DNA- 
shuffling. Bioremediation in itself is meant to remove the pollutants and prevent 
pollution at global, regional, and local levels. Bioremediation as a biological  process 
is regarded as a sustainable approach to clean the environmental pollutants. Huge 
numbers of researchers are exploiting application of bioremediation. Several taxa 
from algae, fungi, and bacteria can solubilize, transport, and deposit the pollutants 
and detoxify dyes and complex chemicals. However, technology varies according to 
the fact whether wastes under question are in their natural setting or removed and 
transported into bioreactor. In situ bioremediation is regarded as a complex 
 phenomenon involving several contaminants affected by different microorganisms 
with different metabolic pathways.

The book includes 15 chapters from different parts of the world. First chapter 
by a group of authors from India is titled as “Concerns and Threats of Contamination 
on Aquatic Ecosystems.” It presents information on the aquatic ecosystems as 
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ultimate sinks for contaminants originating from urbanization, industrialization, 
agricultural activities, overuse of pesticides/fertilizers, and sewage from residen-
tial/industrial areas. All these are degrading our water quality, spreading many 
infectious diseases. Authors stress the need for regular monitoring and controlling 
of pollutant discharge into aquatic environs. The researchers from Saudi Arabia 
and India discuss the “Effect of Pesticides on Fish Fauna: Threats, Challenges, 
and Possible Remedies” in the second chapter. This chapter has tried to analyze 
the facts related to the use of pesticides, their historical background, classifica-
tion, toxicity in fish and routes of exposure, together with the effects and threats 
posed to fish life as well as challenges in their monitoring. The remedial tech-
niques that may replace the pesticides have been discussed. Third chapter by 
Indian group of scientists presents the information on the “Impact of invasive 
plants in aquatic ecosystems.” Authors mainly deal with lakes which provide tre-
mendous benefits to the living beings on global basis through their cultural, 
esthetic, socioeconomic, and ecological values. Their dispersal strategies, time 
period of perpetuation, and mode of invasion have been discussed as prerequisite 
for management of invasive alien species. In Chap. 4, a group of researchers from 
Mexico discuss the “Role of Modern Innovative Techniques for Assessing and 
Monitoring Environmental Pollution.” They have included information on the 
detection of microsystems, control as well as automation of chemical processes, 
and an analysis of the data presented. Again another group of workers from India 
present data on the “Global Scenario of Remediation Techniques to Combat 
Environmental Pollution” in Chap. 5. Various remediation techniques devised 
across the world to tackle environmental pollution are discussed in this chapter, 
under ex situ and in situ remediation techniques besides those for remediation of 
air pollution together with emerging technologies like nano, microbial fuel cell, 
and ultrasonic. Chapter 6 prepared by the scientists from Romania is titled as 
“Biopesticides: Clean and Viable Technology for Healthy Environment.” It refers 
to the use of living biological organisms or their metabolites for control in the 
agricultural production, mainly microbial pesticides. Another group of workers 
from Pakistan have pooled up information on the “Inoculum Addition in the 
Presence of Plant Rhizosphere for Petroleum Polluted Soil Remediation” in Chap. 
7. It explores the ambiguity by providing a complete description on bioremedia-
tion as well as facts regarding the selection of plant rhizosphere microbial 
 community, more suitable for degradation of pollutants than addition of microbial 
culture in soil. The rhizodegradation has been discussed at length. Researchers 
from India have pooled up information on the “Vermicomposting: An Eco-friendly 
Approach for Recycling/Management of Organic Wastes” in Chap. 8. 
Vermicomposting technology has been presented as a promising tool for recy-
cling/management of organic waste for being socially acceptable, economically 
viable, and environmentally  sustainable at global level. The information presented 
 discusses the fact that organic wastes are broken down by different species of 
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earthworms and a fine humus-like material known as vermicompost is produced. 
Authors’ findings stress that vermicompost can be used as a replacement for 
harmful inorganic  fertilizers. Chapter 9 is titled as “Bio-Fertilizers: Eco-Friendly 
Approach for Plant and Soil Environment,” and written jointly by the scientists 
from Pakistan and Saudi Arabia. They mention that application of bio-fertilizers 
may serve as low cost and environment-friendly fertilization strategy for a sus-
tainable crop production. Another group of workers from India have prepared 
Chap. 10 titled “Phytoremediation of Heavy Metals: an Eco-Friendly and 
Sustainable Approach.” It presents information on the phytoremediation as the 
only alternative solution for remediation of toxic contaminants from the environ-
ment in an efficient way. As per the authors, phytoremediation has gained impor-
tance due to its green approach of remediating heavy metals. The investigators 
from Mexico have pooled up data on the “Credibility of In Situ Phytoremediation 
for Restoration of Disturbed Environments” in Chap. 11. The chapter summarizes 
data on in situ phytoremediation studies carried out in Mexico, mostly the sites 
polluted by trace metals following mining activities. They stress that information 
presented here will be useful for planning as well as remediation of contaminated 
sites. Authors have given data related to the trace metal hyperaccumulator plants 
like Hydrocotyle ranunculoides, Parietaria pensylvanica, and Commelina diffusa 
for zinc and Rorippa nasturtium-aquaticum for copper. They point out that native 
species must be studied to establish mechanisms of  phytoextraction of metals and 
interaction with water/soil and microorganisms to improve the efficiency of in situ 
phytoremediation. Chapter 12 titled as “Role of White Willow (Salix alba L.) for 
Cleaning up the Toxic Metal Pollution” has been prepared by scientists from 
India. The section portrays the decision of eco-accommodating Salix alba species 
and their correct situation within urban locations to overcome the contamination 
issues. It discusses the potential for the phytoremediation of substantial metal-
defiled land by the Salix alba. “Mycoremediation: A Sustainable Tool for Abating 
Environmental Pollution” has been reviewed by the workers from India in Chap. 
13. They emphasize mycoremediation tool can be applied for different types of 
contaminated environs eco-friendly. The system is based on enzymes produced by 
the fungi like Pleurotus ostreatus, Aspergillus niger, Tramates hirsute, and some 
others. As per the authors, these are having tremendous potential for degradation 
and remediation of toxic pollutants. In Chap. 14, authors from Pakistan and 
Malaysia present information on the “Microbial Biofilm Cell Systems for 
Remediation of Wastewaters.” The aim of authors has been to present the role of 
immobilized microbial cell systems in bioremediation of different  pollutants and 
future research outlooks in this area. Chapter 15, as the closing chapter, has been 
written by the scientists from Brazil. It is titled as “Pollution Remediation By Way 
Of Using Genetically Modified Plants (GMP).” Authors  mention that transgenic 
plants deserve to be highlighted once their capacity to  contribute can surpass the 
one offered by microorganisms in the uptake, transforming and limiting the toxic-
ity of different contaminants as cost- effective strategy. The chapter briefly reviews 
phytoremediation using GMP.
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Preface

The world is advancing towards modernization, and there is a price to pay for that 
in the form of environmental contaminants. The survival of terrestrial, aerial, and 
aquatic organisms including human beings has been endangered by pollutants 
 produced as a result of development. While all the components of the environment 
are hugely impacted by the outcome of modernization, aquatic ecosystems are the 
ultimate sinks for the contaminants. Environmental contamination is the outcome of 
human activities like urbanization, industrialization, and agricultural activities. The 
overuse of pesticide, fertilizers, and the sewage discharges from residential as well 
as industrial areas ultimately finds its way to aquatic and terrestrial environments. 
As a result of pollution, aquatic invasions are a serious threat to lake ecosystems. By 
spreading and growing rapidly, invasive species displace the native species decreas-
ing the efficacy of ecosystem services.

Considering the impact of pollutants on various ecosystems, this book is an 
attempt to address certain issues in a scientific and sustainable manner. The book 
aims at ecological stability which aims at replacing pollutants with the application 
of substitute techniques. So far as pesticides are concerned, the content of the book 
reflects that research is required to produce eco-friendly species-specific pesticides 
so that the damage to non-target organisms is avoided. Bio-pesticides have also 
been discussed in a detailed manner. Ample space has been provided to the knowl-
edge of the dispersal strategies of invasive plants, time period of perpetuation, and 
mode of invasion which is a prerequisite for management of invasive alien species.

An attempt has been made to provide an overview of modern technologies, i.e., 
the microsystems of detection, control, and automation that have adapted to the 
needs of modern times and allow environmental analysis to provide real-time, 
 on- site analysis information with high reliability as well as minimum costs there-
fore, providing the opportunity to make decisions to respond to social, scientific, or 
technological problems.

The book discusses the various remediation techniques devised across the world 
to tackle environmental pollution like remediation of contaminated soil and ground-
water; ex situ remediation techniques (dig and dump, pump-and-treat, incineration, 
oxidation, adsorption, ion-exchange, pyrolysis remediation, physical separation, 
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dehalogenation technique, bioremediation, solidification remediation, constructed 
wetlands, etc.); and in situ remediation techniques (biological treatments, physical 
or chemical treatments, thermal treatments).

In order to enhance the degradation potential of heterotrophic microorganisms in 
bioremediation, different bio-augmentation techniques have been deliberated upon 
vermicomposting technology which is a promising tool for recycling/management 
of organic waste and is socially acceptable, economically viable, and environmen-
tally sustainable technology throughout the world has been detailed at length.

Bio-fertilizers and phytoremediation have been elaborated to gain a detailed 
insight into the current research and technology status in these areas. The use of 
mycoremediation as an eco-friendly and sustainable technique has also received its 
due place in the book.

Overall, the book is a complete amalgam of the problems associated with 
 environmental contamination and the control as well as management strategies that 
can be and should be opted to tackle them. The book is a useful reference and 
resource for students, researchers, and scientists working in this field.

We are highly grateful to all our contributors for readily accepting our invitation 
for not only sharing their knowledge and research, but also for venerably integrating 
their expertise in dispersed information from diverse fields in composing the 
 chapters and enduring editorial suggestions to finally produce this venture. We 
greatly appreciate their commitment. We are also thankful to Prof. Munir Ozturk for 
his suggestions and writing the foreword for this volume.

We thank Springer-International team for their generous cooperation at every 
stage of the book production.

Jeddah, Saudi Arabia  Khalid Rehman Hakeem 
Srinagar, India   Rouf Ahmad Bhat 
Srinagar, India   Humaira Qadri  
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About the Book

Being a serious concern, toxic substances threaten aquatic and terrestrial ecosystems 
and ultimately human health. The book is a thoughtful effort in bringing forth the 
role of biotechnology for bioremediation and restoration of the ecosystems degraded 
by toxic and heavy metal pollution. The introductory chapters of the book deal with 
the understanding of the issues concerned with the pollution caused by toxic  elements 
and heavy metals and their impacts on the different ecosystems followed by the 
techniques involved in monitoring of the pollution. These techniques include use of 
bio-indicators as well as modern techniques for the assessment and monitoring of 
toxicants in the environment. Detailed chapters discussing the role of microbial 
biota, aquatic plants, and terrestrial plants to enhance the accumulation efficiency of 
these toxic and heavy metals are followed by remediation techniques involving 
mycoremediation, bio-pesticides, bio-fertilizers, phytoremediation, and rhizo-filtra-
tion. A sizeable portion of the book has been dedicated to the advanced bioremedia-
tion techniques which are finding their way from the laboratory to the field for 
revival of the degraded ecosystems. These involve biofilms, micro-algae, genetically 
modified plants, and filter feeders. Furthermore, the book is a detailed comprehen-
sive account for the treatment technologies from unsustainable to sustainable. 
Academicians, researchers, and students shall find it as a complete wrap up regard-
ing biotechnological intervention for sustainable treatment of pollution and shall 
suffice for the diverse needs of teaching and research.
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Chapter 1
Concerns and Threats of Contamination 
on Aquatic Ecosystems

Ishrat Bashir, F. A. Lone, Rouf Ahmad Bhat, Shafat A. Mir, Zubair A. Dar, 
and Shakeel Ahmad Dar

1.1  Introduction

Anthropogenic activities bring almost contamination and subsequent pollution to 
our varied ecosystems. “Pollution is defined as the production and or introduction 
by man, directly or indirectly of substances or energy into the environment, result-
ing in deleterious effects to living resources, including human beings or interfere 
with amenities and other uses of the environment (Don-Pedro 1990).” Pollution is 
one of the prime problems that humans face in the whole world particularly in the 
developing countries. However, produced by humans and their activities, it has 
harmful effects on man’s environment and resources (Mendil and Uluözlu 2007). 
The discharge of various pollutants into the aquatic environments is the outcome of 
countless anthropogenic activities, threatening the health of the living beings and 
damaging the quality of the environment by rendering water bodies unsuitable 
(Abowel and Sikoki 2005; Ekubo and Abowel 2011). Aquatic environments are 
pickers for anthropogenic contamination and industrial wastes and leaks, whether 
chemicals or solid pollutants (Hampel et al. 2015; Bhat et al. 2017). These wastes 
can be “heavy metals, detergents, microfibers, plastic or non-plastic origin,” etc., 
and contribute to “aquatic pollution problems” (Hampel et al. 2015). Aquatic envi-
rons are addressee for plenty of pollutants and their outrageous toxic actions 
(Hampel et al. 2015). “Chemicals reaching aquatic ecosystems include radioactive 
elements” (“strontium, cesium, radon”), metals (“cadmium, mercury, lead”), indus-
trial solvents and “volatile organic compounds” (“tri- and tetrachloroethylene, chlo-
rofluorocarbons, benzene, xylenes, formaldehyde”), “agrochemicals” (“fertilizers 
and pesticides”), household products (“detergents, cleaners, paints”), “fuel combus-
tion” (“N and sulfur oxides,” “polycyclic aromatic hydrocarbons,” “carbon monox-
ide,” and “carbon dioxide”), “nanoparticles,” personal care products, “microplastics, 

I. Bashir (*) · F. A. Lone · R. A. Bhat · S. A. Mir · Z. A. Dar · S. A. Dar 
Sher-e-Kashmir University of Agricultural Sciences and Technology,  
Jammu, Jammu and Kashmir, India
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antibiotics,” as well as a huge variety of prescription (Hampel et  al. 2015)” and 
“nonprescription drugs and pharmaceuticals of human and veterinary medicine” 
(Hughes et al. 2013; Larsson 2014; Malaj et al. 2014; Hampel et al. 2015).

“Aquatic ecosystems, particularly the freshwater ecosystems, are exposed to 
supplementary contamination than other environs, as water is used in various indus-
trial practices as well as release of discharges commencing from industry” and 
urban growths (Demirak et al. 2006; Fernandesa et al. 2007). “Water pollution is a 
worldwide task that has augmented in both advanced and emerging nations” (Mateo- 
Sagasta et al. 2017). “Universally, 80% of municipal wastewater is discharged into 
water bodies untreated, and industry is responsible for dumping millions of tons of 
heavy metals” (Mateo-Sagasta et al. 2017), “solvents, toxic sludge and other wastes 
into water bodies each year” (WWAP 2017; Mateo-Sagasta et al. 2017). Agriculture, 
exploits “70% of water globally and plays a key part in water contamination” 
(Mateo- Sagasta et al. 2017). Huge amounts of “agrochemicals,” “organic matter,” 
“drug residues,” “sediments,” and “saline drainage” from agricultural lands are 
released into water bodies (Mateo-Sagasta et al. 2017) and hence poses significant 
threats to “aquatic environments,” “human health,” and “productive activities” 
(UNEP 2016; Mateo-Sagasta et al. 2017). Most aquatic ecosystems have a natural 
tendency to dilute pollution to some extent, but severe contamination of aquatic 
ecosystems results in alteration in the fauna and flora of the community (Mateo-
Sagasta et al. 2017). The onset of human civilization in itself discloses the history 
of aquatic pollution (Mateo-Sagasta et al. 2017). Moreover, aquatic pollution did 
not receive significant consideration until a threshold level was reached with hostile 
outcomes on the “ecosystems” and “living organisms” including “humans” (Halpern 
et  al. 2008; Mateo-Sagasta et  al. 2017). Therefore, “pollution and its effects are 
considered as one of man’s greatest crimes against himself. Pollutants may cause 
primary damage, with direct identifiable impact on the environment, or secondary 
damage in the form of minor perturbations in the delicate balance of the biological 
food web that are detectable only over long time periods” (Sharma 2012; Al Naggar 
et al. 2014; Ghani 2015). Thus, “maintaining the quality of aquatic ecosystems rep-
resents one of the most formidable challenges facing global society in the twenty-
first century” (Hampel et al. 2015).

1.2  Aquatic Ecosystems

Aquatic ecosystems are water-based environments in which biotic components 
interact with abiotic components of the aquatic ecosystem. “Aquatic ecosystems” 
are usually divided into two types: the “marine ecosystem” and the “freshwater 
ecosystem” (Barange et al. 2010). Marine ecosystem is the largest water ecosystem 
which covers over 70% of the Earth’s surface. The marine ecosystem is subdivided 
into “oceans,” “estuaries,” “coral reefs,” and “coastal ecosystems.” Freshwater eco-
systems cover less than 1% of the Earth’s surface. The various kinds of freshwater 
ecosystems are lotic ecosystem, lentic ecosystem, and wetland ecosystem.
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1.3  Human Activities Resulting in Contamination of Aquatic 
Ecosystems and Their Adverse Impacts

Anthropogenic activities such as “deforestation,” “filling and construction of 
canals,” “dams,” “roads and bridges,” “agricultural,” and “industrial and domestic 
activities” result in contamination of aquatic environments. Human settlements, 
industries, and agriculture are the main sources of water pollution (Table  1.1). 

Table 1.1 Sources and route of pollutant discharge into aquatic environs (NEST 1991; Mateo- 
Sagasta et al. 2017)

Contamination Source Route

“Oxygen- 
demanding wastes 
(organic 
pollutants)”

“Domestic sewage, human and animal 
wastes (such as wastes from canneries and 
wood pulp mills)”

“Thrown, dumped or 
released into streams and 
rivers or into gutters, drains 
from where they may get 
washed by run-off into 
water bodies”

“Infectious disease 
agents”

“Domestic sewage, human and animal 
wastes”

“Washing, swimming or 
working in paddy rice 
fields and on irrigated 
land”

“Plant nutrients 
such as nitrate, 
phosphate and 
others”

“Fertilized farm lands, ashes and detergent” “Run-off from fertilized 
farmlands”

“Pesticides 
(insecticides and 
herbicides)”

“Organic and inorganic chemicals” “Run-off from pesticides 
associated with farmlands”

“Industrial effluents 
which include DDT, 
dyes, mercury, 
cadmium”

“Textile factories, distilleries pulp and paper 
mills, fertilized plants, chemical and allied 
industry, food, beverages and tobacco 
industries, soap, detergents and 
confectionery industries”

“Human discharges”

“Eroded sediments” “Deforestation and accelerated soil erosion” “Soil erosion, urban storm 
water runoffs and dredging 
activities”

“Other solid 
wastes”

“Metals, plastics, artificial fibers etc.” “Dumping by human 
beings due to poor 
management of waste 
disposal”

“Petroleum 
products”

“Drill cuttings,” “drilling mud (fluids used to 
stimulate the production processes),” 
accidental discharges of “crude petroleum,” 
“refinery effluents” which include “oil” and 
“grease,” “phenol,” “cyanide,” “sulphide,” 
“suspended solids,” “chromium,” and 
“biologically oxygen demanding organic 
matter”

“Petroleum, exploration, 
exploitation, refining, 
transportation, storage, 
marketing, use and 
ruptured oil pipelines”
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In  most developed nations, agriculture is the major factor in the degradation of 
water ecosystems. In the “European Union, 38% of water ecosystems are signifi-
cantly under agricultural pressure” (WWAP 2015; Mateo-Sagasta et al. 2017). In 
the USA, “agriculture is the leading source of pollution in rivers and streams” 
(Mateo-Sagasta et al. 2017), the second main source in wetlands, and the third main 
source in lakes (USEPA 2016; Mateo-Sagasta et al. 2017). In China, “agriculture is 
accountable for a huge portion of surface-water pollution and is responsible almost 
entirely for groundwater pollution” (Mateo-Sagasta et al. 2017) by nitrogen (FAO 
2013; Mateo- Sagasta et al. 2017). In emerging nations, the unlimited amounts of 
raw municipal and industrial wastewater are major threats (Mateo-Sagasta 
et al. 2017).

1.3.1  Agrochemicals

The ever-increasing “demand for food has led to the land clearance and the expan-
sion of agriculture” which have “contributed to the higher pollution loads in the 
water” (Mateo-Sagasta et al. 2017). Increase in the population growth has increased 
the food demand, which has resulted in the increase in the quantity of agrochemi-
cals used to increase the production (Schwarzenbach et al. 2010). The “unsustain-
able use of agrochemicals” (“fertilizers, pesticides, herbicides and plant hormones”) 
to rise the production has resulted in “greater pollution masses” in the environment, 
including “rivers,” “lakes,” “aquifers,” and “coastal waters” (Mateo-Sagasta et al. 
2017; Bhat et al. 2018; Mushtaq et al. 2018). More importantly, “agricultural areas 
gather an extensive variety of agrochemicals from nearby fields” due to “run off,” 
“direct drift,” and “leaching,” and these areas are “the principal receivers of agro-
chemicals” (Rathore and Nollet 2016).

1.3.1.1  Nutrients

When “fertilizers are applied at a higher rate than they are fixed by the soil, or taken 
up by the crops or when they are taken off through surface runoff from the soil sur-
face leads to water pollution.” “Excess nitrogenous fertilizers and phosphate fertil-
izers can leach into groundwater or reach into surface water bodies through surface 
runoff” (Mateo-Sagasta et al. 2017). If “organic manure” is applied “in excess in the 
agricultural fields,” it will lead to “diffuse water pollution.” Mostly, “manure is not 
stored in confined areas and during heavy rainfall events it can be washed into 
waterways via surface runoff.” The “high-nutrient concentration together with other 
substances results in the nutrient enrichment eutrophication” of “lakes,” “reser-
voirs,” “ponds,” and “coastal waters,” which leads to excessive growth of aquatic 
plants—“algae blooms” that destroy other aquatic plants and animals. “About 415 
coastal areas have been identified worldwide which experience eutrophication” 
(Mateo-Sagasta et al. 2017), of which 169 are hypoxic (WRI 2008; Mateo-Sagasta 
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et  al. 2017). The “excessive buildup of nutrients may also increase the adverse 
health effects” (Mateo-Sagasta et al. 2017), such as “blue-baby syndrome- due to 
high levels of nitrate in drinking water” (Mateo-Sagasta et al. 2017). “Nitrate from 
agriculture leaches into the groundwater is the most common chemical contaminant 
in the world’s groundwater aquifers” (Mateo-Sagasta et al. 2017).

1.3.1.2  Pesticides

Pesticides such as “insecticides,” “herbicides, and fungicides” are applied exten-
sively in agriculture fields in several nations (Schreinemachers and Tipraqsa 2012; 
Mateo-Sagasta et al. 2017; Bhat et al. 2018) and get washed into aquatic ecosystems 
and pollute the water resources (Mateo-Sagasta et al. 2017). They contain “carcino-
gens and other poisonous substances that may kill aquatic life” or may be absorbed 
by them (Mateo-Sagasta et al. 2017) and pass through the “food chain until they 
become toxic to humans” (Mateo-Sagasta et al. 2017). “Millions of tons of pesti-
cides are used in agriculture fields” (FAO 2016a; Mateo-Sagasta et al. 2017). “Acute 
pesticide poisoning causes significant human morbidity” (Mateo-Sagasta et  al. 
2017) and “mortality worldwide, especially in low income countries, where poor 
farmers often use highly hazardous pesticides” (Mateo-Sagasta et al. 2017).

1.3.1.3  Salts

Through irrigation, accumulated salts in soils are transported into receiving water 
bodies by drainage water and cause salinization (Mateo-Sagasta et al. 2017). The 
“intrusion of saline seawater into groundwater aquifers as a result of excessive 
groundwater extractions for agriculture is another important cause of salinization in 
coastal areas” (Mateo-Sagasta and Burke 2010; Mateo-Sagasta et al. 2017). “Major 
water-salinity problems have been reported in Argentina, Australia, China, India, 
the Sudan, the United States of America, and many countries in Central Asia” (FAO 
2011). “Highly saline waters alter the geochemical cycles of major elements such as 
carbon, iron, nitrogen, phosphorus, silicon and sulphur” (Herbert et al. 2015; Mateo- 
Sagasta et al. 2017) with overall impacts on ecosystems (Mateo-Sagasta et al. 2017). 
Salinization can affect freshwater biota (Mateo-Sagasta et  al. 2017) by “causing 
changes within species and community composition” (Mateo-Sagasta et al. 2017) 
and results “in decline of the biodiversity of microorganisms, algae, plants and ani-
mals” (Lorenz 2014; Mateo-Sagasta et al. 2017).

1.3.1.4  Emerging Pollutants

New “agricultural pollutants such as antibiotics, vaccines, growth promoters and 
hormones have emerged in the last two decades” (Mateo-Sagasta et al. 2017). These 
pollutants can reach water via “leaching and runoff from livestock” (Mateo-Sagasta 
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et al. 2017) and “aquaculture farms, as well as through the application of manure 
and slurries to agricultural land” (OECD 2012; Mateo-Sagasta et al. 2017). Today, 
“more than 700 emerging pollutants and their metabolites and transformation prod-
ucts are listed as present in European aquatic environments” (Norman 2016; Mateo- 
Sagasta et al. 2017). “Agriculture is not only a source of emerging pollutants, it also 
contributes to the spread and reintroduction of such pollutants into aquatic environ-
ments through wastewater reuse for irrigation and the application of municipal bio-
solids to land as fertilizers” (Mateo-Sagasta et al. 2017). “An estimated 35.9 Mha of 
agricultural lands are subjected to the indirect use of wastewater” (Thebo et  al. 
2017; Mateo-Sagasta et al. 2017). The “potential risks to human health posed by 
exposure to emerging pollutants via contaminated agricultural products needs atten-
tion” (Mateo-Sagasta et al. 2017).

1.3.2  Sewage

The greatest volume of “waste discharged into the aquatic ecosystems is sewage.” 
Sewage contains “industrial wastes, municipal wastes and domestic wastes which 
include wastes from baths, washing machines, kitchens and faecal matter.” Fresh 
water sources “serve as best sinks for the discharge of these wastes” (Das and 
Acharya 2003; Tukura et al. 2009). It is estimated that “58% of the wastewater from 
urban areas and 81% of industrial wastes are discharged directly into water bodies 
with no or inadequate treatment results in contamination of ~73% of the water bod-
ies” (Vargas-Gonzalez et al. 2014). The release of “sewage has led to the increase in 
water pollution and depletion of clean water resources” (Avalon Global Research 
2012). “Huge loads of such wastes are generated daily from highly populated cities 
and are finally washed out by the drainage systems which generally open into 
nearby rivers or aquatic systems” (Tukura et al. 2009). It has resulted in “extensive 
ecological degradation such as a decline in water quality and availability, intense 
flooding, loss of species, and changes in the distribution and structure of the aquatic 
biota” (Oberdorff et al. 2002). The “negative impact of sewage is based on the com-
position and concentration of the contaminants as well as the volume and frequency 
of wastewater effluents entering water bodies” (Akpor and Muchie 2011; Bhat et al. 
2017). “Sewage is comprised of several microorganisms, heavy metals, nutrients, 
radionuclides, pharmaceutical, and personal care products.” Sewage is primarily 
organic in nature; owing to the organic load of sewage, the “oxygen concentration 
in the receiving waters is reduced, thus sewage is said to have a high BOD.” The 
“effect of maltreated sewage on surface water is largely determined by the oxygen 
balance of the aquatic ecosystem, and its presence is essential in maintaining bio-
logical life within the system” (DFID 1999; Morrison et al. 2001; Momba et al. 
2006). “DO concentrations below 5 mg/L can have a negative effect on the living 
organisms in the aquatic ecosystem” (Momba et al. 2006). Low dissolved oxygen 
concentration can affect “functioning of some fish species and can eventually lead 
to the death of fish population” (Igbinosa and Okoh 2009; Mehmood et al. 2019). 
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Decaying “organic matter” and “nutrients such as nitrites, nitrates, and phosphorus” 
in sewage can induce “eutrophication of water courses.” “Eutrophication can lead to 
growth of plants and algae blooms” in the “aquatic ecosystem” (Bhat et al. 2017). 
“Algal blooms result in toxin production.” Fish species “feeding in water contami-
nated” by “algal toxins will absorb these toxins and are subject to mass mortality” 
(Hernandez et al. 1998). Due to “eutrophication turbidity of the water increases, 
plant and animals’ biomass increases, sedimentation rate increases, species diver-
sity decreases, and anoxic conditions may develop, and this could give rise to 
change in dominant species of the aquatic biota” (Edokpayi 2016).

“Sewage effluent entering into surface waters contains a variety of pathogenic 
organisms that could result in the transmission of waterborne diseases when such 
contaminated water is used for domestic and other purposes” (WHO 2006; Chigor 
et al. 2013) thus is “detrimental to human health and the society at large” (DWA 
1999). Some pathogens contaminate water resources (Mateo-Sagasta et al. 2017), 
via runoff (FAO 2006a; WHO 2012; Mateo-Sagasta et al. 2017). About “25% of all 
deaths worldwide are the result of infectious diseases caused by pathogenic micro-
organisms” (UNEP 2006). Scientists have identified about “1400 species of micro-
organisms that can cause ill health, including bacteria, protozoa, protozoan parasites, 
parasitic worms, fungi, and viruses” (CSIR 2010). Some common “pathogens found 
in sewage” are presented in Table 1.2 (WHO 2006; Christou 2011).

1.3.3  Heavy Metals

“Heavy metals enter the aquatic ecosystem from both natural and anthropogenic 
sources.” Entry may be as a result of “direct discharges into both fresh and marine 
ecosystems or through indirect routes such as atmospheric deposition and surface 
run-off” (Biney et al. 1994). Important “natural sources are volcanic activity and 
weathering of rocks.” “Heavy metals are natural constituents of rocks and soils and 
enter the environment as a consequence of weathering and erosion” (Förstner 1987). 
Heavy metals in “aquatic system can be naturally produced by the slow leaching 
from soil/rock to water, which are usually at low levels, causing no serious lethal 
effects on human health” (Chang et al. 2000; Rashid et al. 2019). The “development 
of industry and agriculture promotes the rapid increase of heavy metal pollution. 
Aquatic heavy metal pollution usually represents high levels of Mercury, Chromium, 
Lead, Cadmium, Copper, Zinc, Nickel etc. in the water system”. “Arsenic, Cadmium, 
Copper, Mercury and Zinc are the five metals with most potential impact that enter 
the environment in elevated concentrations through storm water and wastewater 
discharges as a consequence of agricultural and industrial activity” (Alloway 2013). 
They are important “group of toxic contaminants because of their high toxicity and 
persistence in all aquatic ecosystems.” Zinc and copper are present in “fertilizers as 
impurities, while Arsenic, Cadmium and Mercury are constituents of some fungi-
cides and algaecides” (Fifield and Haines 2000) (Table 1.3).
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Heavy metals have “high ecological significance because they are not removed 
from water, but accumulate in the water reservoirs and thus enter the food chain” 
(Loska and Wiechuła 2003). Under “certain environmental conditions,” heavy met-
als may “accumulate to a highly toxic concentration and cause ecological damage” 
(Harguinteguy et al. 2014). Once released in aquatic environments, they are gener-
ally “bound to particulate matter, which eventually settle down and become incor-
porated into sediments and are released into the water under the suitable conditions 

Table 1.2 Microbial diseases associated with polluted aquatic environs

Agent Species Disease

Bacteria “Campylobacter jejune”
“Escherichia coli”
“E. coli O157:H7”
“Helicobacter pylori”
“Salmonella sp.”
“Salmonella typhi”
“Shigella sp.”
“Vibrio cholera”

“Gastroenteritis”
“Gastroenteritis”
“Bloody diarrhea, hemolytic uremic syndrome”
“Abdominal pain, peptic ulcers, gastric cancer”
“Salmonellosis, gastroenteritis, diarrhea”
“Typhoid fever”
“Dysentery”
“Cholera”

Helminths “Ascaris lumbricoides 
(round worm)”
“Clonorchis sinensis (liver 
fluke)”
“Fasciola (liver fluke)”
“Fasciolopsis buski 
(intestinal fluke)”
“Opisthorchis viverrini”
“Schistosoma (blood 
fluke)”
“Trichuris (whim worm)”
“Taenia (tape worm)”

“Ascariasis”
“Clonorchiasis”
“Fascioliasis”
“Fascioloidiasis”
“Opisthorchiasis”
“Schistosomiasis (bilharzia)”
“Trichuriasis”
“Taeniasis”

Protozoa “Balantidium coli”
“Cryptosporidium 
parvum”
“Cyclospora cayetanensis”
“Entamoeba histolytica”
“Giardia lamblia”

“Balantidiasis (dysentery)”
“Cryptosporidiosis”
“Persistent diarrhea”
“Amoebiasis (amoebic dysentery)”
“Giardiasis”

Viruses “Adenovirus”
“Astrovirus”
“Calicivirus”
“Coronavirus”
“Eneroviruses”
“Echovirus”
“Poliovirus”
“Hepatitis A and E”
“Parvovirus”
“Norovirus”
“Rotavirus”
“Coxsackieviruses”

“Respiratory disease and eye infections”
“Gastroenteritis”
“Gastroenteritis”
“Gastroenteritis”
“Gastroenteritis”
“Fever, rash, respiratory and heart disease, aseptic 
meningitis”
“Paralysis, aseptic meningitis”
“Infectious hepatitis”
“Gastroenteritis”
“Gastroenteritis”
“Gastroenteritis”
“Herpangina, aseptic meningitis, respiratory illness, 
fever, paralysis, respiratory, heart and kidney disease”
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such as pH values and Eh, leading to further contamination of aquatic environment” 
(Xu and Yang 1996). Accordingly, sediments represent one of the “ultimate sinks 
for heavy metals discharged into aquatic environment” (Gibbs 1973; Bryan and 
Langston 1992; Harguinteguy et  al. 2014). “More and more attention has been 
drawn due to the wide spread occurrence of metal pollution in aquatic system” 
(Zhou et al. 2008). Some “heavy metals” may transform into the “persistent metallic 
compounds with high toxicity” (Zhou et al. 2008), which can be “bioaccumulated 
in the organisms” (Zhou et al. 2008), “magnified in the food chain, thus threatening 
human health” (Jin 1992; Zhou et  al. 2008). “Various harmful effects including 
abnormal development of fetus, procreation failure, and immune deficiency has 
exhibited due to aquatic metal exposure” (Chang et  al. 2000; Zhou et  al. 2008). 
Some heavy metals, including mercury, chromium, cadmium, nickel, copper, and 
lead, introduced into water systems may pose high toxicities on the aquatic organ-
isms (Wu and Zhao 2006). As an example, “cadmium is a priority environmental 
contaminant with consequences for human health and the maintenance of bio- 
diversity in affected ecosystems” (Zhou et al. 2008) and “the timeliness of a broader, 
ecosystem-based approach to cadmium research is highlighted based on the over-
view of recent developments in the field” (Campbell 2006; Zhou et al. 2008).

1.3.4  Eutrophication

Eutrophication is a leading cause of destruction of many freshwater and marine 
ecosystems in the world. It is characterized by “excessive plant and algal growth 
due to the increased availability of one or more limiting growth factors needed for 
photosynthesis” (Schindler 2006), such as sunlight, carbon dioxide, and nutrients. 
“Eutrophication occurs naturally over centuries as lakes age and are filled in with 
sediments” (Carpenter 1981). However, “human activities have accelerated the rate 

Table 1.3 Different kinds of heavy metal discharge sources in aquatic environs (Fifield and 
Haines 2000)

Metal Sources

Iron “Pigments and paints, fuel, refineries, textile”
Manganese and 
zinc

“Batteries and electrical, pigments and paints, alloys and solders, pesticides, 
glass, fertilizers, refineries, fuel”

Lead “Batteries and electrical, pigments and paints, alloys and solders, pesticides, 
glass, fertilizers, refineries, fuel, plastic”

Cadmium “Batteries and electrical, pigments and paints, alloys and solders, plastic, 
fertilizers, fuel”

Nickel “Batteries and electrical, pigments and paints, alloys and solders, fertilizers, 
fuel, catalysts”

Copper “Batteries and electrical, pigments and paints, alloys and solders, fertilizers, 
pesticides, fuel, catalysts”

Chromium “Pigments, fertilizers, textile”
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and extent of eutrophication through both point-source discharges and non-point 
loadings of limiting nutrients, such as nitrogen and phosphorus, into aquatic 
 ecosystems (i.e. cultural eutrophication), with dramatic consequences for drinking 
water sources, fisheries, and recreational water bodies” (Carpenter et al. 1998; Bhat 
et al. 2017). However, “during 1960s and 1970s, scientists linked algal blooms to 
nutrient enrichment resulting from anthropogenic activities such as agriculture, 
industry and sewage disposal” (Schindler 1974). The known “consequences of cul-
tural eutrophication include blooms of blue-green algae (cyanobacteria), tainted 
drinking water supplies, degradation of recreational opportunities and hypoxia” 
(Bhat et al. 2017). The most obvious effect of cultural eutrophication is the creation 
of dense blooms of noxious, foul “smelling phytoplankton” that reduce water clarity 
and “harm water quality.” “Algal blooms limit light penetration, reduce growth and 
cause death of plants in littoral zones and also lower the success of predators that 
need light to catch prey” (Lehtiniemi et al. 2005). Furthermore, high rates of photo-
synthesis associated with eutrophication can deplete dissolved inorganic carbon and 
raise pH to extreme levels during the day. “Elevated pH can in turn ‘blind’ organ-
isms that rely on perception of dissolved chemical cues for their survival by impair-
ing their chemosensory abilities” (Turner and Chislock 2010). When these “dense 
algal blooms eventually die, microbial decomposition severely depletes DO, creat-
ing a hypoxic dead zone, lacking sufficient oxygen to support most organisms.” 
Dead zones are found in many “freshwater lakes including the Laurentian Great 
Lakes” (e.g., central basin of Lake Erie; Arend et  al. 2011) during the summer. 
Furthermore, such “hypoxic events are particularly common in marine coastal envi-
ronments surrounding large, nutrient-rich rivers” (e.g., Mississippi River and the 
Gulf of Mexico; Susquehanna River and the Chesapeake Bay) and have been shown 
to affect more than 245,000 square kilometers in over 400 near-shore systems (Diaz 
and Rosenberg 2008). “Hypoxia and anoxia as a result of eutrophication continue to 
threaten profitable commercial and recreational fisheries worldwide. Some algal 
blooms pose an additional threat because they produce noxious toxins” (e.g., micro-
cystin and anatoxin- a) (Chorus and Bartram 1999). Over the past century, “harmful 
algal blooms (HABs) have been linked with (1) degradation of water quality” 
(Francis 1878), (2) “destruction of economically important fisheries” (Burkholder 
et al. 1992), and (3) “public health risks” (Morris 1999). Within freshwater ecosys-
tems, “cyanobacteria are the most important phytoplankton associated with HABs” 
(Paerl 1988). “Toxigenic cyanobacteria, including Anabaena, Cylindrospermopsis, 
Microcystis, and Oscillatoria (Planktothrix), tend to dominate nutrient-rich, fresh-
water systems due to their superior competitive abilities under high nutrient concen-
trations, low nitrogen-to-phosphorus ratios, low light levels, reduced mixing, and 
high temperatures” (Downing et al. 2001; Paerl and Huisman 2009; Paerl and Paul 
2012). Poisonings of “domestic animals, wildlife and even humans by blooms of 
toxic cyanobacteria” have been recognized throughout the world. Francis (1878) 
has first observed dead livestock due to “algal bloom of cyanobacteria” (Bhat et al. 
2017). Also, cyanobacteria is responsible for several off-flavor compounds (e.g., 
methylisoborneal and geosmin) found in municipal drinking water systems as well 
as in aquaculture-raised fishes, resulting in large financial losses for state and 
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regional economies (Crews and Chappell 2007). In addition to posing “significant 
public health risks, cyanobacteria have been shown to be poor quality food for most 
zooplankton grazers in laboratory studies” (Tillmanns et  al. 2008; Wilson et  al. 
2006), thus reducing the efficiency of energy transfer in aquatic food webs and 
potentially preventing zooplankton from controlling algal blooms. Eutrophication is 
also associated with major changes in aquatic community structure. During “cyano-
bacterial blooms, small-bodied zooplankton tend to dominate plankton communi-
ties, and past observational studies have attributed this pattern to anti-herbivore 
traits of cyanobacteria” (e.g., toxicity, morphology, and poor food quality) (Porter 
1977). However, the biomass of planktivorous fish is often positively related to 
nutrient levels and ecosystem productivity. Piscivorous fishes (e.g., bass, pike) tend 
to dominate the fish community of nutrient-poor, oligotrophic lakes, while plank-
tivorous fishes (e.g., shad, bream) become increasingly “dominant with nutrient 
enrichment” (Jeppesen et al. 1997). Thus, an alternative explanation for the lack of 
zooplankton control of cyanobacterial blooms could include consumption of zoo-
plankton by planktivores.

1.3.5  Plastics and Microplastics

Among the several human pressures on aquatic ecosystems, the accumulation of 
plastic debris is one of the most apparent but least studied. “Plastics generate signifi-
cant benefits to the human society” (Andrady and Neal 2009), but due to its “dura-
bility, unsustainable use and inappropriate waste management plastics accumulate 
extensively in the natural habitats” (Barnes et al. 2009). Because of “high mobility, 
plastic debris has practically permeated the global marine environment” (Cole et al. 
2011; Ivar do sul and Costa 2014), including the “polar region” (Barnes et al. 2009), 
“mid-ocean islands” (Ivar do sul et al. 2013), and “the deep sea” (Van Cauwenberghe 
et al. 2013). The sources of marine plastics are not very well characterized. A rough 
estimation predicts that “70 to 80% of marine litter, most of it is plastics, originate 
from inland sources and are emitted by rivers to the oceans” (GESAMP 2010). 
Rivers transport considerable amounts of plastics and “thus contribute significantly 
to the marine plastics pollution” (Moore et al. 2005; Lechner et al. 2014). “Plastics 
are dumped in huge volumes in beaches, lakes, navigation channels and other forms 
of water masses” (Lechner et al. 2014). The volume of plastic is even bigger in low- 
income countries with poor waste disposal regulations. In the marine environment, 
“plastics of various size classes and origins are omnipresent and affect numerous 
species that become entangled in or ingest plastics as well as an aesthetic problem” 
(Gregory 1999, 2009). “Plastics have been reported as a problem in the marine 
environment since the 1970s, but only recently the issue of plastic pollution in 
marine and freshwater environments been identified as a global problem” (Carpenter 
and Smith 1972). It has been reported that “single-use plastics (plastic bags and 
micro beads) are a major source of this pollution” (Desforges et  al. 2014; 
Perkins 2015).
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Under environmental conditions, larger plastic items degrade to so-called micro-
plastics (MPs), typically smaller than 5 mm in diameter. “MPs are considered an 
emerging global issue by various experts” (Sutherland et al. 2010; Depledge et al. 
2013) and international institutions (GESAMP 2010; UNEP 2011). Recent studies 
suggest that “risks of microplastics in the marine environment may pose more threat 
than macroplastics” (Thompson 2015; Diamond et al. 2018).

Potential sources of “MPs include wastewater treatment plants, runoff from 
urban, agricultural, touristic, and industrial areas, as well as shipping activities, 
beach litter, fishery and harbors” (Zubris and Richards 2005; Norén 2007; GESAMP 
2010; Claessens et al. 2011; Dubaish and Liebezeit 2013). Another “potential source 
is sewage sludge that typically contains more MPs than effluents” (Leslie et  al. 
2012). A “broad spectrum of aquatic organisms are prone to MP ingestion ranging 
from plankton and fish to birds and even mammals, and accumulate throughout the 
aquatic food web” (Wright et al. 2013). Due to their large “surface-to-volume ratio 
and chemical composition, MPs accumulate environmental chemicals from the sur-
rounding environment including metals” (Ashton et al. 2010) and “persistent, bio-
accumulative, and toxic compounds” (Koelmans et  al. 2013) transferring these 
contaminants from water to biota. “Plastic particles are also dominated by certain 
human pathogens like specific members of the genus Vibrio”. Therefore, MPs can 
act as a vector for waterborne “human pathogens” influencing the water quality. In 
addition, “plastics contain and release a multitude of chemical additives” (Rochman 
2013; Dekiff et al. 2014) and adsorb organic contaminants from the surrounding 
media (Bakir et al. 2012). Compounds such as MPs can transfered to organisms 
upon ingestion (Zarfl and Matthies 2010), this may increase “the chemical exposure 
of the ingesting organism and thus, toxicity” (Oehlmann et  al. 2009; Teuten 
et al. 2009).

1.3.6  Oil Spills

An “oil spill” is defined as the discharge of “liquid petroleum hydrocarbons” into 
the environment, mainly in the “marine ecosystem” caused by human activity. 
“Environmental pollution caused by an oil spill is detrimental” (Broekema 2016). 
This is because “petroleum hydrocarbons are toxic to all forms of life and harm both 
aquatic and terrestrial organisms.” The pollution of marine environments has caught 
the attention of researchers and environmentalists. This is due to the severe impact 
of oil spills on marine life. “A 1% increase in spill size has been estimated to increase 
the damage by some US$0.718 million” (Alló and Loureiro 2013). “Oil spills, 
which result from damage, transportation accidents and various other industrial and 
mining activities, are classified as hazardous waste” (Bartha and Bossert 1984). 
They are considered to be the most “frequent organic pollutants of aquatic ecosys-
tems” (Bossert et al. 1984; Margesin and Schinnur 1997). Oil spills can occur from 
multiple sources including “oil tankers” (35.7%), facilities (27.6%), “non-tank ves-
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sels” (19.9%), “pipelines” (9.3%), and other sources (7.4%) (Benko and Drewes 
2008). “Marine ship-source oil spill can occur as a result of ship accidents or 
 operations, or the intentional discharge of oily wastes into oceans” (Knapp and Van 
de Velden 2011).

1.3.6.1  Major Oil Spills in the History

It is estimated that “3.2 million tons of oil is released per year from all sources into 
the environment. The majority of this oil is due to general shipping and industrial 
activities” (ITOPF 1990). During the Iran–Iraq war (1980–1988), approximately 2 
million barrels of oil were discharged into the Arabian Gulf sea water. These 
included “1.5 million barrels from the Nawruz blow-out in 1983” (Watt 1994). 
Following the “Gulf War in 1991, 4 to 8 million barrels of oil were released into the 
Gulf and the Kuwaiti Desert and, making this the largest oil spill in the history at 
that time” (Purvis 1999). Previous observations indicated that the number of large 
“oil spills (>700 tons) has decreased significantly over the last 30 years” (ITOPF 
1990). During the 1990s, the average number of large oil spills per year was about 
a third of the amount that was witnessed during the 1970s. It should be noted that 
“1,133,000 tons of oil was lost in the 1990s and 2000s, during 2010–2013, about 
22,000 tons of oil was lost” (Levy and Gopalakrishnan 2010; Carriger and Barron 
2011). The BP Deepwater Horizon oil spill on April 20, 2010, caused the discharge 
of more than 2.6 million gallons of oil into the Gulf of Mexico over just about 3 
months. This “oil spill was the second largest in human history” (Levy and 
Gopalakrishnan 2010; Carriger and Barron 2011). During the 1991 Gulf War, the 
deliberate release of “over 6 million barrels of oil” (Randolph et al. 1998) into the 
marine environment was considered as the largest in history.

1.3.6.2  Impact on Human Health

Oil spills pose a great danger to humans. Direct “contact with crude oil or indirect 
contact through inhalation of vapors or consumption of contaminated seafood can 
cause deleterious health effects ranging from dizziness and nausea to certain types 
of cancers and issues with the central nervous system” (Aguilera et al. 2010; Major 
and Wang 2012). Toxic chemicals contained in the oil such as benzenes, toluene, 
poly-aromatic hydrocarbon, and oxygenated polycyclic aromatic hydrocarbons can 
harm the air quality (Tidwell et al. 2015). As witnessed in the “Kuwait Oil Fires, 
between January 16, 1991 and November 6, 1991, produced air pollution which 
caused respiratory distress” (Petruccelli et  al. 1999). Oil-related disasters cause 
water contamination when the oil spillage comes in contact with any drinking water 
supply, for example, the 2013 incident in Miri, Malaysia, contaminated the water 
supply for 300,000 natives.
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1.3.6.3  Impact on Coral Reefs

Coral reefs are considered to be important components of marine ecosystems. This 
is because “coral polyps are important nurseries for shrimp, fish and other animals” 
(Perkol-Finkel and Benayahu 2007). The aquatic organisms that live within and 
around the coral reefs are at risk of exposure to the toxic substances within oil. They 
are rapidly degrading because of a variety of environmental and anthropogenic 
pressures. Thus, they are suffering significant changes in “species diversity,” “spe-
cies abundance,” “species evenness,” and “habitat structure” worldwide (Hughes 
et al. 2007). “Oil dispersants are potentially harmful to marine life including coral 
reefs” (Shafir et al. 2007). A study using coral nubbins in coral reef eco-toxicology 
testing (Shafir et al. 2003) found that dispersed oil and oil dispersants are harmful 
to soft and hard coral species at early life stages.

1.3.6.4  Impact on Marine Mammals

Marine mammals include “bottlenose dolphins, fins, humpbacks, rights, sei whales, 
sperm whales, manatees, cetaceans, seals, sea otters and pinnipeds.” The physical 
contact of oil with furred mammals affects these animals because they rely on their 
outer coats for buoyancy and warmth. Consequently, “these animals often succumb 
to hypothermia, drowning and smothering when oil flattens and adheres to the outer 
layer” (Lin and Tjeerdema 2008).

1.3.6.5  Impact on Seabirds

Physical contact is one of the major routes of exposure, and it usually affects sea-
birds (Table 1.4). For example, thousands of African penguins (Spheniscus demerus) 
were oiled following the 2000 treasure oil spill in South Africa.

1.3.7  Aquaculture Activities

Aquaculture is the farming of aquatic organisms. The “rapidly growing human pop-
ulation is creating an increase in the demand for fish worldwide” (Tidwell and Allan 
2001). The amount of “fish captured in fisheries is no longer meeting this demand 
because the annual production of captured fish has not changed significantly since 
2011” (FAO 2016b). “Aquaculture is becoming a more popular fish production 
method as it has an annual increase of 6% and is projected to produce over half of 
the fish consumed by 2025” (FAO 2016b). “Aquaculture has tremendous benefits 
for the humans like seafood production by fisheries and contributes with 15 to 20% 
of average animal protein consumption to 2.9 billion people worldwide” (Smith 
et  al. 2010). The nutritional quality of aquatic products has “high standard and 
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 represents an important source of macro and micronutrients for the people from 
developing countries” (Roos et al. 2007). Despite the undeniable benefits of aqua-
culture such as the provision of good quality and accessible food for population and 
the generation of millions of jobs and billion dollars in budget for the developing 
countries, the activity is one of the most criticized worldwide, mainly because of the 
environmental impacts (FAO 2016c). The most common “negative environmental 
impacts that are associated with aquaculture is water eutrophication, water quality, 
alteration or destruction of natural habitats, introduction and transmission of dis-
eases” (FAO 2006b).

1.3.8  Harmful Impacts Related to the Aquaculture Activities 
Are as Follows

1.3.8.1  Eutrophication of Receiving Waters

Aquaculture can be “a major contributor to eutrophication or organic loads in the 
receiving waters” (Mateo-Sagasta et al. 2017). It is mainly produced by “uneaten 
feed (especially due to overfeeding), lixiviation of aquaculture feedstuffs” (Focardi 
et al. 2005; Crab et al. 2007), “decomposition of died organisms and over fertiliza-
tion” (Feng et al. 2004; Gyllenhammer and Hakanson 2005). In Scotland, for exam-
ple, “the discharge of untreated organic waste from salmon production is equivalent 
to 75% of the pollution discharged by the human population” (Mateo-Sagasta et al. 
2017). “Shrimp aquaculture in Bangladesh generates 600 tons of waste per day” 

Table 1.4 Mass motility of 
seabirds collected at “Exxon 
Valdez and Braer oil spills” 
(Dauvin 1998)

“Species group” “Alaskan spill” “Shetland spill”

“Sea ducks (eiders, etc.)” 1435–1445 168
“Mergansers” 120–125 1–2
“Loons” 390–400 12–15
“Grebes” 460–462 0
“Heron” 1 2–4
“Geese/swans” 8–10 0
“Gulls” 694–698 72–76
“Kittiwakes” 1220–1230 130–135
“Cormorants/shags” 835–837 862–865
“Shearwaters” 3400 0
“Fulmars” 868–872 30–32
“Guillemots/murres” 20,560–20,562 218–222
“Other auks” 2172–2176 228–230
“Bald eagles” 124–126 NA
“Other birds” 3150–3153 0
Total 35,466–35,468 1535–1538
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(SACEP 2014; Mateo-Sagasta et al. 2017). It is well documented that from “the 
total nitrogen supplemented to the cultured organisms, only 20–50% is retained as 
biomass by the farmed organisms, while the rest is included into the water column 
or sediment” (Jackson et al. 2003; Schneider et al. 2005) and “eventually discharged 
into the receiving ecosystems, increases the risk of eutrophication and algal blooms 
(like toxic microalgae-red tides) in lakes” (Mateo-Sagasta et al. 2017), reservoirs, 
and coastal areas (Alonso-Rodriguez and Paez-Osuna 2003; Mirto et  al. 2009; 
Mateo-Sagasta et al. 2017). “Organic pollutants consume dissolved oxygen (DO) in 
the water as it degrades quality characteristics of fresh water, with the result DO 
drops, fish and other aquatic life are exposed to extreme conditions or killed due to 
hypoxia in water bodies” (Mateo-Sagasta et al. 2017).

1.3.8.2  Introduction of Exotic Species

Aquaculture comes in multiple versions, two of which are open systems and closed 
systems. “Open systems are found offshore in coastal areas, exposed to natural envi-
ronments” (Lawson 1995). These systems are high-risk because they allow 
unchecked interactions between the farmed fish and surrounding environment, 
which leads to “free exchange of diseases, parasites and fecal matter” (Ali 2006). 
The recent study has revealed “a parasite transmission of sea lice from captive to 
wild salmon” (Krkosek et al. 2007). The only barrier between the harvested fish and 
the wild population is a rigid cage or netting system. When these netting systems are 
damaged during inclement weather such as snowstorms or hurricanes, it allows 
“fish to escape from the open systems” (Centre for Food Safety 2012). There were 
“25 million reported fish escapes worldwide and the majority occurred when netting 
was damaged during severe weather conditions” (Centre for Food Safety 2012). The 
escaping of “exotic aquaculture species into the natural ecosystem causes the dis-
placement of native populations, competition for food, space, mates and prey” 
(Naylor et al. 2005).

1.3.8.3  Destruction of Mangrove Forests

“Aquaculture farms” are constructed in “mangrove forests” (Dewalt et  al. 2002; 
Stickney and McVey 2002; Rajitha et al. 2007). “Mangrove forests” are important 
ecosystems as they act as nurseries for many “aquatic species” as well as nesting 
areas for “birds, reptiles, crustaceans and other taxonomic groups” (Paez-Osuna 
2005). The cover of mangrove forest has decreased worldwide from “19.8 million 
hectares in 1980 to less than 15 millions hectares in 2000.” The annual “deforesta-
tion rate was 1.7% from 1980 to 1990 and 1% from 1990 to 2000” (FAO 2007), and 
the “problem of deforestation still continue today.” “Aquaculture has been respon-
sible for the deforestation of millions of hectares of mangrove forest in Thailand, 
Indonesia, Ecuador, Madagascar and other countries” (Harper et al. 2007).
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1.3.8.4  Contamination of Water for Human Consumption

“Inland aquaculture” has been responsible for the “degradation of water bodies used 
for human consumption” (Paez-Osuna 2001). Aquaculture activities cause death of 
benthic organisms as well as undesirable odors and the presence of pathogens in the 
discharge sites (Martinez-Cordova and Enriquez-Ocana 2007). The spread and the 
“outbreaks of diseases are negative consequences of the expansion and diversifica-
tion of the aquaculture sector” (Crisafi et  al. 2011; Mancuso 2013; Mancuso 
et al. 2013).

1.3.9  Preventive Measures and some Humanistic Solutions

“Water contamination” can be reduced from a “personal level” to “national and 
international level.” Every individual has a duty to prevent pollution of water 
resources. “Water is a basic need for our survival,” and hence it should be our first 
priority to keep all “water resources” free from contamination. There are various 
“sources of water contamination.” Thus, the control of water contamination needs a 
range of preventive measures. “Measures of prevention and control are essential in 
improving the quality of water” and reducing the “costly treatment measures that 
are taken to treat water.” Preventive measures and possible solutions to “control 
water contamination” are  given as follows (Xiong et  al. 2015; Lan et  al. 2015; 
Xanthos and Walker 2017; Barmentlo et al. 2018):

• “Do not throw rubbish away in places like the beach, riverside and water bodies 
rather put it in trash can.”

• “Use water wisely. Do not keep the tap running when not in use.”
• “Do not throw chemicals, oils, plastics, paints and medicines down the sink 

drain, or the toilet.”
• “Buy more environmentally safe cleaning liquids for use at home and other pub-

lic places.”
• “Not to overuse pesticides and fertilizers in farms. This will reduce runoffs of the 

chemical into nearby water sources.”
• “Natural fertilizers such as peat, compost, manure should be preferred while 

gardening and farming.”
• “Implementing water quality laws they can help in protecting aquatic ecosystems 

by imposing acceptable concentrations of pollutants and prevents the release of 
pollutants into water resources.”

• “Proper use and disposeal of chemicals prevent the contamination of aquatic 
environments.”

• “Use detergents with low or no phosphate because high phosphate content causes 
eutrophication of lakes.”

• “Control storm water runoff. As the storm water runoff flows over impervious 
surfaces, it collects debris, sediments, chemicals and other pollutants which can 
have negative effects on the quality of water if the runoff is left untreated.”
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• “Decrease water resistant surfaces such as cement around homes to reduce sur-
face runoff. Vegetation, porous materials, gravel, wood decking etc. can be used 
instead of cement.”

• “Avoid throwing garbage into lakes, rivers and streams and help in cleaning litter 
around water resources.”

• “Wash your automobiles at carwashes instead of washing it yourself. The waste-
water from these carwashes is drained into the sewer and treated which reduce 
the amount of pollutants in the water.”

• “Speak up against industries that dump waste into local streams, rivers, and 
beach fronts to reduce water pollution in your community.”

• “Implement existing environmental laws. There are very strict laws that help 
minimize water pollution. These laws are usually directed at industries, hospi-
tals, schools and market areas on how to dispose, treat and manage sewage.”

• “Do not dispose non-degradable products such as plastic bags or plastic wrap-
pers down the drain.”

1.4  Conclusion

The degradation of aquatic ecosystems is largely due to human activities. Increased 
urbanization and industrialization are greatly responsible for water pollution. 
Human contribution to water pollution is enormous, such as dumping of solid 
wastes, industrial wastes, and domestic wastes. Water pollution is a major concern 
to the world. Environmental education is very important to reduce the pollution of 
aquatic ecosystems.
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Chapter 2
Effect of Pesticides on Fish Fauna: Threats, 
Challenges, and Possible Remedies

Shafat Ali, Adil Farooq Wali, Ali Mohd Yatoo, Sabhiya Majid, Saiema Rasool, 
Rehan Khan, Md Niamat Ali, Javaid Ahmad Wani, Sanah Farooq, 
Shabhat Rasool, Hilal Ahmad Wani, and Muneeb U. Rehman

2.1  Introduction

Pesticides are the chemical compounds with toxic nature purposefully employed to 
destroy a range of harmful organisms. Pesticides not only encompass insecticides 
but also fungicides, herbicides, and those substances that are toxic to pests (Matthews 
2006). The major proportion of pesticides synthesized all over the world is utilized 
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in the agriculture sector with a purpose of keeping check over the diverse popula-
tions of pests. Furthermore, they are applicable in thwarting diseases such as malaria 
and dengue and growth of redundant plants in lawns, parks, etc., as well as that of 
pests and microorganism in various items and gadgets (Gilden et al. 2010). However, 
there is enormous threat to all living beings including man even on accidental con-
tact with these pesticides of toxic nature (Sarwar 2015). The exposure to pesticides 
during their application, consumption of pesticide-contaminated foodstuffs or flu-
ids, or breathing in of air infested with pesticides is injurious to public health 
(Pimentel et al. 2013). Even the contact with minute quantities of pesticides during 
the period of early growth and development has detrimental consequence on health 
(Damalas and Eleftherohorinos 2011). Pesticides have been reported as a pollutant 
of various water sources, for instance, groundwaters (Gilliom 2007), oceans (Day 
1990), rivers (Gilliom 2007; Malaj et al. 2014), and lakes (Hull et al. 2015). The 
water bodies are exposed to the pesticides via diverse pathways (Schulz 2004; 
Hageman et al. 2006). The basic pathways that carry the pesticides to little nonirri-
gating surface water bodies during heavy rains include the water that runs off the 
ground surface and tile drainage system (Rabiet et al. 2010; Taghavi et al. 2010; 
Bereswill et al. 2012; Stehle and Schulz 2015). Several geological and climatic fac-
tors including the inclination of cultivated land, hydrology, rainfall amount and 
intensity, and the dampness of soil determine the penetration of pesticides into 
water bodies (Schulz 2004). The improvement in the production of crop seems as an 
indispensable element of the contemporary agricultural sector in view of the grow-
ing demand of the rising population (Omer et al. 2010; Sabir et al. 2013; Hakeem 
2015; Pierart et al. 2015). There is a tremendous increase in the utilization of pesti-
cides during the last few decades. It has been estimated that the amount of pesticides 
utilized annually all over the globe figures round to 5.2 billion pounds. The practice 
of pesticide application in order to lessen the pests has been globally widespread. 
They are applied not only to protect the crops but also to put a check on the growth 
of household organisms such as ticks, cockroaches, fleas, mosquitoes, and rats. As 
a result, the foodstuffs we eat and the air we breathe are often infested with the 
pesticides (Pesticides n.d.). The widespread and indiscriminate application of toxic 
substances has contaminated the water bodies by leaching, runoff, drift, and drain-
age (Cerejeira et al. 2003). The aquatic pollution has become a global problem. The 
main insecticides that are generally used include organophosphate, chlorinated 
hydrocarbons, pyrethroids, carbamate, and nicotinoids. The exploitation of insecti-
cides intimidates the long-lasting survival of key bionetworks, disarrays the eco-
logical relationships among living beings, and causes the loss of biological diversity 
(Banaee 2013). Among a range of noxious pesticides, organophosphates have been 
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extensively used throughout the world, replacing the importunate and problematical 
organochloride pesticides as a result of their low-persistence in the atmosphere 
(Oruc et  al. 2006) and quick biodegradability (Ye et  al. 2010). Dichlorvos 
(dimethyl- 2,2-dichlorovinyl phosphate) is one among the organophosphate insecti-
cide category that is extensively used to combat a variety of pests infecting domes-
ticated animals and stored grains. This pesticide is also used to thwart ectoparasitic 
infection in tropical aquaculture and control mosquito vectors of various tropical 
diseases (Assis et  al. 2007). Fish species are mostly sensitive to water pollution 
(Banaee 2013). Organophosphate pesticides such as dichlorvos are extremely nox-
ious to fish and other nontarget aquatic life forms. These pesticides are potent nerve 
toxins as they slow down the acetyl cholinesterase (AChE) activity in the nervous 
system via blocking nerve transmission at synapses in cholinergic neurons. This 
interruption of the role of nerves leads to disorders in parasympathetic nerve system 
and ultimately the death of organism (Nguyen et  al. 2008). Fishes are the main 
aquatic dwellers that are often exposed to and distressed by these lethal pesticides 
(Scott and Sloman 2004) since it is assumed that despite the place of pollution, it 
will finally finish up in the aquatic ecosystem (Firat et al. 2011). Pesticides may 
accumulate in the fish body and influence the health of human beings as well 
through ecological cycling and biomagnifications (Chebbi and David 2011). The 
pesticide toxicity of fish induces biochemical transformations that result in distur-
bances in metabolism, enzyme activity inhibition, growth retardation, decrease in 
the fertility, and prolonged existence of the living being. The organs of fish that are 
mostly at risk include the liver, brain, gills, and kidneys when it becomes exposed 
to the medium polluted by toxins (Malik and Maurya 2015). Eco-toxicological 
studies are wanted in order to find out the toxic nature and possible threat posed by 
these noxious chemical substances via several biomarkers in fish so that the quality 
of aquatic ecosystems and health of life forms living in them may be monitored. 
Therefore, the presence of different types of chemicals with pesticidal properties in 
the aquatic ecological system drastically affects a range of biochemical and physi-
ological processes and causes grave harm to the fish health (Banaee 2013).

2.2  Historical Background of Pesticide Use

The use of pesticides began with the onset of agriculture and became prominent 
gradually as a result of rise in the pest population along with declining fertility of 
soil (Muir 2002). Human beings have been using pesticides since 2000 BC to pro-
tect the crops from the attack of pests, insects, and diseases. The chemicals used in 
the beginning were simple elements and phyto-derivatives (Tierney et al. 2014). The 
people of ancient Roman used to destroy pests by burning sulfur and bitter sub-
stances, ashes, and salts in weed management (History of pesticide use 1998). 
Pesticides containing sulfur were used by Sumerians more than 4500 years back. 
Sulfur was used in china as antifungal and antibacterial chemical almost 3000 years 
ago. Arsenic was employed in the Central East countries more than 2000  years 
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before for various management purposes (Bentley and Chasteen 2002). A range of 
elements including lead, arsenic, and mercury were usually applied for the protec-
tion of crops close to the fifteenth century. In the distant past, human beings explored 
that the chemical derivatives of plants have the ability to control pest including 
insects (Niazi et al. 2012). Ants were controlled by using an amalgam of arsenic and 
honey during the 1600s (Delaplane 2000). Early on during the seventeenth century, 
nicotine sulfate extracted from tobacco was employed for the insect control. 
Subsequently, rotenone was brought in for the protection of crops. During the late 
1800s, in the USA, the crop growers began the application of several chemical sub-
stances including sulfur, calcium arsenate, and nicotine sulfate for agricultural pur-
poses, but the utilization of obsolete application techniques rendered the use of 
these chemicals unproductive (Delaplane 2000). In the USA, during the year 1867, 
unrefined copper and arsenic elements were employed for controlling the outburst 
of Colorado potato beetle (History of pesticide use 1998). Until the 1950s, pesti-
cides that contain arsenic were leading; for instance, arsenical pesticides were 
employed for the management of ticks in livestock, and pesticides containing chro-
mium–copper–arsenate were used for the preservation of wood timber in several 
countries that include China, New Zealand, Australia, and the USA (Niazi 
et al. 2012).

A revolution took place in the development of pesticides around World War II 
during which a number of potent and cheap pesticides were manufactured. During 
this period, a range of chemicals were explored to have pesticide properties that 
include aldrin, dieldrin, 2,4-dichlorophenoxyacetic acid, endrin, dichlorodiphenyl-
trichloroethane (DDT), β-benzene hexachloride (BHC), and endrin (Delaplane 
2000). Fungicides such as glyodin and captan and organophosphate insecticides 
such as Malathion were launched during the period 1950–1955, and subsequently 
the triazine herbicides were discovered between 1955 and 1960 (Jabbar and Mallick 
1994). Monsanto developed Agent Orange herbicide for war purposes between 
1961 and 1971 and was experimented in Vietnam War (History of pesticide use 
1998). The application of pesticides attained climax during the year 1961 followed 
by a decline in the production of further pesticides due to the ecological hazards 
caused by their unsystematic use. Rachel Carson in 1962 reported the sudden loss 
of nontargeted life forms from the crop fields as a result of toxicity caused by DDT 
spraying (Delaplane 2000). The integrated pest management (IPM) that involves the 
utilization of bio-predators or parasites for pest control was started toward the end 
of 1960s as a replacement technique for chemical pesticides. IPM was effective in 
regulating the pests but could not serve as an alternative for the pesticides of chemi-
cal nature (Delaplane 2000).

During the late years of the 1970s, several chemical pesticides were used com-
monly that include organochlorides, carbamates, and organophosphates. DDT and 
pyrethrin were the predominant pesticides all over the globe during the period of 
1970–1980 (Shahid et al. 2016). At present, bio-rational pesticides are preferred for 
pest regulation as they do not affect nontarget life forms (Delaplane 2000).
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2.3  Pesticide Classification

Pesticides have been classified on the basis of several criteria that include chemistry, 
toxicity, way of action, and functional groups (Garcia et al. 2012). The description 
of pesticide classification based on toxicity, target pest, chemistry, and mode of 
action is presented in Tables 2.1, 2.2, 2.3, and 2.4, respectively. Most pesticides 
contain organic, i.e., carbon containing, or inorganic active components. The inor-
ganic components include copper sulfate, copper, sulfur, ferrous sulphate, lime, and 
so on (Gunnell et al. 2007). Chemical substances present in pesticides of organic 
nature have greater complexity and poor solubility compared to those present in 
inorganic group of pesticides (Debost-Legrand et al. 2016). Organic pesticides may 
also be subcategorized into natural and synthetic pesticides. Natural pesticides 
include those anti-pest chemicals that are obtained from natural sources, while syn-
thetic ones are produced by humans via chemical synthesis. Pesticides regulate tar-
get pests in diverse ways. Additionally, some pesticides may trigger the task of 
growth regulators in plants while as certain others can efficiently regulate the pro-
cess of plant photosynthesis. Similarly, a fungicide might influence cell cleavage 
while some others may inhibit the synthesis of some chemical substances in fungi. 
Occasionally, pesticides are categorized on the basis of their application against the 

Table 2.1 Pesticide classification based on toxicity (WHO 2009)

Type of pesticide Ia Ib II U

Level of toxicity Very 
dangerous

Highly 
unsafe

Moderately 
harmful

Unlikely to present 
acute risk

aLD50 for rat (mg/kg 
body weight)

Oral <5 5–50 50–2000 5000 or higher
Dermal <50 50–200 200–2000

aLD50 indicates the quantity of the chemicals needed to destroy half of the population of test 
organism

Pesticide category Target organism

Bactericides Bacteria
Insecticides Insects
Fungicides Fungi
Herbicides Weeds
Miticides/acaricides Mites
Nematicides Nematodes
Rodenticides Rodents
Algaecides Algae
Piscicides Fish
Avicides Birds
Molluscicides Snails, slugs
Virucides Virus

Table 2.2 Pesticide classification 
based on the criterion of target pest 
(Aktar et al. 2009; Zacharia 2011)
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Table 2.3 Classification of pesticides on the basis of chemistry (Kim et al. 2016)

Type of pesticide Example Structure Activity
Organochlorines 
(insecticides)

DDT Paralysis, convulsions, and 
finally death of the insect 
occurs as these damage 
nervous systemLindane

Endosulfan

S

O

O
O

Cl Cl

Cl

Cl

Cl

Cl

Aldrin

Organophosphorus 
(insecticides)

Parathion Failure of neurotransmission at 
synapses leading to rapid 
convulsion of voluntary 
muscles that paralyzes the 
organism and causes death

Malathion

Diazinon

N

N O

S

(CH3)2CH

P(OCH2CH3)2

CH3

Inorganic (fungicides) Benomyl These chemicals are 
predominant gastric toxins

Oxine 
copper

Table 2.4 Classification of pesticides on the basis of mode of action (Buchel 1983; Zacharia 
2011)

Class of pesticide Examples Activity

Systemic pesticides 2,4-D and 
glyphosate

Produce the desired effect via entering the tissues of 
plant and moving through the vascular system

Nonsystemic/contact 
pesticides

Diquat dibromide, 
Paraquat

Produce the desired effects through contact of the 
pest organism with pesticides without penetrating 
into the body

Stomach poisons Fungicides, 
rodenticides

Produce effects after ingestion



33

kind of target pest; for instance, the pesticides used to check the growth of mites, 
fungi, weeds, and insects are categorized as miticides, fungicides, herbicides, and 
insecticides, respectively. Insecticides enter the body of insect through dermis, oral, 
or respiratory routes and kill them. Herbicides kill weeds either by way of direct 
exposure or after their absorption into the plant body through root, leaf, and shoot 
system. Many pesticides toxic to pest neuroendocrine system have been manufac-
tured for the management of pests (Mnif et al. 2011).

2.4  Pesticide Toxicity in Fish

Pesticides are the chemical compounds applied for controlling insects, weeds, and 
diseases in plants. The application of pesticides on crops to destroy pests tremen-
dously poisons the nontarget life forms especially fish and deteriorates the health of 
fish by impairing their metabolic process that occasionally causes death of fish 
(Shankar et al. 2013). Increase in human population along with rapid industrializa-
tion lead to problems in disposing waste water. The household wastes and untreated 
or partly treated waste matter of industries additionally contaminated with various 
organic substance, heavy metals, and pesticides have killed fish in huge numbers in 
water ecosystems (Dhasarathan et al. 2000; Pazhanisamy and Indra 2007) (Fig. 2.1). 
Pesticides toxicity can be divided into two categories such as acute and chronic 
toxicity. The potential of a pesticide to cause detrimental consequences due to sin-
gle exposure is termed acute toxicity. A little quantity of pesticides that have higher 
acute toxicity may be lethal. It can be estimated as acute oral, dermal, and inhala-
tion. Conversely, chronic toxicity means the capability of a pesticide to produce 
damaging consequence because of long time exposure and may produce a range of 
harmful effects including carcinogenesis, teratogenesis, mutagenesis, disorders in 
blood, endocrinological disorders, and reproductive toxicity (Maurya and Malik 
2016). The chronic pesticide toxicity of fish leads to damages due to oxidation, 
mutagenesis, acetyl cholinesterase activity inhibition, carcinogenicity, and histo-
pathological and developmental modifications (Wasim et al. 2009). The existence of 
various pesticides including organophosphates in the atmosphere may well induce 

Fig. 2.1 Mass killing of fish species due to contamination of water bodies with toxic pesticides
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Table 2.5 The acute toxicity (LC50) of several pesticides against various species of fish

S.No. Pesticide Target fish species
Exposure 
duration LC50 value References

1 Alachlor Rainbow trout 96 h 2.4 μg/L Johnson and Finley (1980)
2 Acephate Feathed M. 96 h > 1000 μg/L Johnson and Finley (1980)
3 Malathion Labeo rohita 97 h 15 μg/L
4 Akton Channel catfish 96 h 400 μg/L Johnson and Finley (1980)
5 DDT Rainbow trout 96 h 8.7 μg/L Johnson and Finley (1980)
6 Endosulfan Channel catfish 96 h 1.5 μg/L Johnson and Finley (1980)
7 Cypermethrin Labeo rohita 96 h 4.0 μ/L Marigoudar et al. (2009)
8 Permethrin Cyprinus carpio 24 h 35 μg/L Sial et al. (2009)
9 Methyl 

parathion
Catla catla 96 h 4.8 ppm Ilavazhahan et al. (2010)

10 Rogar Puntius stigma 96 h 7.1 and 
7.8 ppm

Bhandare et al. (2011)

11 Endosulfan Channa striatus 96 h 0.0035 ppm Ganeshwad et al. (2012)
12 Malathion Heteropneustes 

fossilis
96 h 0.98 ppm Sanjoy and Rita (2012)

13 Endosulfan Cirrhinus mrigala 96 h 1.06 μg/L Ilyas and Jave (2013)
14 Termifos Clarias gariepinus 96 h 0.86 mg/L Nwani et al. (2013)
15 λ cyhalothrin Labeo rohita 96 h 0.7 μg/L Dey and Saha (2014)
16 Karate Cyprinus carpio 96 h 0.160 μg/L Bibi et al. (2014)
17 Dimethoate Labeo rohita 96 h 24.55 μg/L Dey and Saha (2014)

Table 2.6 Risk rates of pesticides

Risk rate Toxicity Minimum Minor Moderate Higher Extreme Super
LC50 (mg/L) >100 10–100 1–10 0.1–1.0 0.01–0.1 >0.01

fatal or sub fatal consequences in fish (Mathur 1999). The capability of pesticide to 
produce harmful effect on fish and other aquatic dwellers greatly depends on its 
toxicity, dosage rate, duration of contact, and persistence power in surroundings. 
Lethal dosage describes the pesticide concentration required for bringing about 
mortality since all individuals of a species does not die at similar dosage; thus, the 
estimation of a standard toxicity dosage known as lethal concentration 50 (LC50) 
has been employed which refers to the pesticide concentration that kills half number 
of individuals of a test fish population in a fixed time duration generally verified 
after 24–96 h. Table 2.5 shows the toxicity acuteness of diverse classes of chemical 
pesticides based on the criteria of species of fish and time span of exposure.

The risk rate ranges associated with commonly employed herbicides, fungicides, 
and insecticides along with their LC50 are shown in Table 2.6.

The exposure of aquatic organisms including fish fauna to pesticides is deter-
mined by the bioavailability, biological concentration, biological magnification, 
and persistence of the pesticides in the aquatic surroundings. Bioavailability is the 
magnitude of pesticide available in the surroundings for fish and wildlife forms 
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(Wikipedia 2013). Several pesticides quickly degrade subsequent to their use. 
However, the bioavailability of various pesticides is reduced as they become firmly 
attached to stream floor or the suspended particles of soil in water column. Some 
pesticides are rapidly watered down in aquatic medium or quickly mixed with the 
air by undergoing volatilization and as result are available to aquatic life forms in 
minute amounts. Some pesticides present in the aquatic ecosystems enter the food 
chain and get accumulated at each consecutive trophic level. This refers to biologi-
cal magnification. As a result, greater pesticide quantities become accumulated in 
fishes such as trout due to recurring consumption of the contaminated animals that 
feed on plants that have absorbed the pesticides present in water. These toxic sub-
stances are passed on to human beings who consume fish. The time span during 
which a pesticide exists in the surroundings is known as pesticide persistence and 
is generally represented as “half-life” of a pesticide. The pesticide persistence is 
determined by the rate of its degradation that mainly depends on its chemical con-
stituents and conditions of the milieu. Pesticides may breakdown via photo decom-
position, thermal decay, and microbial decay, and their degradation also depends 
on the moisture and soil conditions such as pH. The pesticides that decay slowly 
exist in the environment for long time and become accessible to aquatic animals 
(Seyler et al. 1994).

2.5  Routes of Fish Exposure to Pesticides

Pesticides enter the body of fish and other aquatic organisms via three routes: der-
mal, respiratory, and oral (Helfrich et al. 2009) (Fig. 2.2). Dermal route involves the 
direct absorption of pesticides via skin from water polluted with pesticides. 
Respiratory route involves the direct pesticides uptake via gills during breathing. 
Orally, the pesticides enter into the body of fish via intake of pesticide-polluted 
water or eating of prey that has pesticides accumulated in the body. A number of 
secondary factors also bring fish and aquatic fauna in contact with pesticides and 

Fig. 2.2 Exposure routes of fish to pesticides
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finally cause toxicity (Kingsbury and Kreutzweiser 1980; Schnick et  al. 1980; 
Spradley 1985). The exposure of aquatic life forms including fish could be a more 
common problem than realized. Majority of fish killed due to pesticide poisoning 
remain unreported; as a result, the death toll of fish is over and over again miscalcu-
lated. Several factors such as water clarity, depth, camo coloring, and diminutive 
size make it difficult to enumerate the exact numbers of fish causalities. Besides, the 
dead bodies of fish are removed by scavengers from the death spot, and the fish that 
are stressed and dying may hide themselves inside a dense shelter or go away 
entirely from the spot. The factors that determine the possible effects as a result of 
pesticides on fish fauna and other water dwellers include the kind of pesticide prod-
ucts, usage rate, conditions of weather, species involved, magnitude of fish causali-
ties (problem extent), site, and size of affected water body (Shankar et al. 2013).

2.6  Pesticide Effects and Threats to Fish

Pesticides penetrate into water bodies by means of drifting, running off, leaching 
via ground or directly by spraying these chemicals on water surface to inhibit the 
growth of mosquitoes. The water polluted with pesticides causes an immense 
threat to water dwellers. These pesticides distress aquatic vegetation, lessen the 
amount of dissolved oxygen in water, and alter the physiology and behavior of fish 
species. Different studies have reported the presence of those pesticides in streams, 
ponds, and lakes that are used in lawns (How Pesticides Affect the Environment 
n.d.). When pesticides are used on soil, they drift into water bodies and result in 
toxic consequences in fish species and other nontarget life forms. Additionally, 
these toxic pesticides interact with stressors including detrimental algal blooms. 
The excessive use of these pesticides has reduced the populations of various spe-
cies of fish (Scholz et  al. 2012). Pesticides significantly reduce the number of 
organisms on which fish feed in aquatic ecosystem (Helfrich et al. 2009) that indi-
rectly leads to interruption in the food availability to fish and also alter the habita-
tion of aquatic bodies (Maskaoui et al. 2005). Additionally, the pesticides reduce 
the suitability of fish habitat and produce changes in their behavior, and as a result 
of which, the fish remain at high risk of predation (Gill and Raine 2014). The indi-
rect effects may be vital to a large extent as compared to those of direct effects 
(Murthy et al. 2013). Diverse pesticides affect the fish directly (Rao and Pillala 
2001). Pesticides induce various forms of toxicity in fish that leads to modifica-
tions in the behavior of fish (Satyavardhan 2013; Ullah et  al. 2014c; Rani and 
Kumaraguru 2014), histology (Saeedi et al. 2012; Ullah et al. 2014d), disorders in 
histopathology (Rani and Venkataramana 2012); Deka and Mahanta 2012; David 
and Kartheek 2014), genotoxicity, changes in enzymes (Gartiser et  al. 2001; 
Vargas et  al. 2001; Çavas and Könen 2007), biochemical alterations, trouble in 
hormone system (Murthy et al. 2013; Dey and Saha 2014), disturbance in nutrient 
profiles (Muthukumaravel et  al. 2013; Bibi et  al. 2014), deviation in nutrition 
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(Bhandare et al. 2011; Ravindran et al. 2012), alterations in antioxidant defense 
system (Nwani et al. 2010; Muthukumaravel et al. 2013), and changes in acetyl-
cholinesterase action (Joseph and Raj 2011; Bibi et al. 2014).

Pesticides induce toxicity in different species of fish at varied concentrations. 
The changes produced in different body parts show difference among each other 
and in reaction to diverse pesticides. The effects produced by pesticide contamina-
tion have been reported almost in each part and of the system of fish body.

Several alterations and threats induced in fish due to pesticide pollution are dis-
cussed below under various subheadings.

2.7  Lethal Effects of Pesticides

The exposure of Catla catla to small concentrations of methyl parathion such as 
4.8 ppm, 8 ppm, and 10 ppm brings about death in 50%, 80%, and 100% individu-
als, respectively (Ilavazhahan et al. 2010). λ cyhalothrin and dimethoate are reported 
fatal for Labeo rohita (Dey and Saha 2014). These pesticides in sublethal amounts 
subtly change the life of different species of fish and as a result threaten their con-
tinued existence (Scott and Sloman 2004; Rani and Kumaraguru 2014). The pesti-
cide pollution of fish at sublethal levels disturbs the normal life of fish via changing 
their behavior, histopathology, hematology, protein content, immunity, biochemis-
try, and reproductive biology and inducing neurotoxicity and genotoxicity (Fig. 2.3).

Fig. 2.3 Pesticide pollution threats to fish life
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2.7.1  Behavioral Changes

The exposure of different fish to various pesticides makes them lethargic and brings 
changes in their capability of swimming due to which they are at high risk of preda-
tion. Their feeding, position maintaining, and territory defending abilities are also 
reduced (Prashanth et al. 2011). Pesticides interrupt the behavior of schooling (Gill 
and Raine 2014) in fish species as they show trouble in swimming and aberrant 
motions such as dangling, irregular, and erratic (Nagaraju et al. 2011) which make 
them more easily available to prey. The exposure of diverse fish species such as 
Labeo rohita, Catla catla, Cyprinus carpio, Oreochromis mossambicus, and 
Cirrhinus mrigala to sodium cyanide alters their behavior by inducing hyper- 
excitability, irregular, and darting motions in addition to disproportion to their 
swimming ability (David et al. 2010). The pesticide contamination of migratory fish 
causes changes in their migratory behavior (Nagaraju et al. 2011) and hence upset 
their life cycle.

2.7.2  Histopathological Alterations

Pesticides such as insecticides have been found to induce histopathological injury 
(Fanta et al. 2003). The contact of Cirrhinus mrigala and Cyprinus carpio with pes-
ticides results in the development of liver lesions (Velmurugan et  al. 2009). The 
changes in histopathology have also been observed in fish treated with dichlorvos 
and diazinon at sublethal doses (Banaee et al. 2013). Heteropneustes fossilis show 
modifications in tissues of different organs including the kidneys, liver, and ovaries 
on exposure to malathion (Deka and Mahanta 2012). The exposure of Cyprinus 
carpio to sublethal amounts of sodium cyanide leads to a range of histopathological 
alterations in the kidneys that include glomerular disintegration, necrosis, infiltra-
tion of lymphocytes, vacuolation of cytoplasm, blood clogging, size variation in 
tubular lumen, and injury in collecting duct (David and Kartheek 2014). The expo-
sure of various fish species such as Labeo rohita, Tor putitora, and Channa gachua 
to atrazine, cypermethrin, and hostathion, respectively, has been reported to cause 
damages in different tissues and organs of these species (Jayachandran and 
Pugazhendy 2009; Ullah et al. 2014d; Jha et al. 2014).

2.7.3  Hematological Alterations

Fatal effects on fish hematology such as blood features, histological modifications 
in leucocytes and erythrocytes, content of hemoglobin, and packed volume of cells 
have been reported in Puntius ticto and Cyprinus carpio (Satyanarayan et al. 2004) 
and Tor putitora (Ullah et al. 2014d) because of their exposure to various pesticides 
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such as DDT, sulfone, deltamethrin, aldrin, BHC, and cypermethrin. These hemato-
logical changes have also been observed in Cyprinus carpio when it comes in con-
tact with diazinon (Svoboda et al. 2001), Labeo rohita on exposure to cypermethrin 
(Adhikari et al. 2004), and Oreochromis mossambicus caused by potassium dichro-
mate and potassium chlorate (Sivanatarajan and Sivaramakishnan 2013).

2.7.4  Neurotoxicity

Acetylcholinesterase (AChE) is extremely responsive to carbamate and organo- 
phosphate pesticides than other classes of pesticides and pollutants (Murthy et al. 
2013). Cypermethrin has been observed to drastically affect the brain and inhibit the 
activity of AChE in Labeo rohita as well as subsequently alter gills, muscle, and 
liver tissues (Marigoudar et al. 2010). The inhibition of AChE results in acetylcho-
line accumulation in cholinergic synapses that causes hyperactivation in Labeo 
rohita (Marigoudar et al. 2009, 2010). The neurotoxication of Colisa fasciatus due 
to cypermethrin brings about changes in the activities of AChE, lactic dehydroge-
nase, and succinic dehydrogenase (Singh et al. 2010). The changes in AChE activity 
has also been reported in Leporinus obtusidens (Glusczak et al. 2006) and Rhamdia 
quelen (Glusczak et al. 2007) in response to Glyphosate. However, decline in the 
activity of AChE has been observed in Cyprinus carpio due to Karate (Bibi et al. 
2014). The interruption in the activity of AChE in fish eventually reduces and dis-
turbs the ability of swimming and performance in fish that may lead to additional 
detrimental effects (Rao 2006; Rao et al. 2007).

2.7.5  Biochemical Modifications

Pesticides have been shown to exert destructive effects in different biochemical 
events (Ullah et al. 2014c). The application of sublethal levels of organophosphates 
interrupts the activities of different metabolic enzymes especially glutaminases 
present in the tissue of brain of Labeo rohita (Mastan and Shaffi 2010). Cypermethrin 
toxication affects the tissues of different organs of Tor putitora such as the brain, 
gills, muscle, and liver and alters the enzymatic activities of catalase, peroxidase, 
lipid peroxidase, and glutathione reductase of these organs (Ullah et  al. 2014c). 
Cypermethrin also produces change in the liver enzymes of Labeo rohita (Marigoudar 
et al. 2012). Due to sodium cyanide contamination, the gill, muscle, and liver tissue 
enzymes such as phosphorylase, glucose-6-phosphate dehydrogenase, succinate 
dehydrogenase, alkaline phosphatase, lactate dehydrogenase, and acid phosphates 
show gradual and steady decline in Labeo rohita (Dube et al. 2013) and that of cata-
lase activity in Cyprinus carpio (David et  al. 2008). Pesticide-induced abnormal 
biochemical changes in different fish species have been reported in several other 
studies (Nwani et al. 2010; Muthukumaravel et al. 2013).
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2.7.6  Genotoxicity

Different toxic chemicals on contact with fish induce chromosomal abnormality. 
Fenvalerate induces chromatid separation, gaps, deletions, breaks, and fragments as 
well as ringlike chromosomes (Saxena and Chaudhari 2010). Alteration in DNA 
replication and DNA abnormality that results in mutation has been shown to be 
associated with the toxicity of various pesticides (Gilot-Delhalle et al. 1983). The 
nucleic acids in the tissues of sex organs of Colisa fasciatus are altered due to expo-
sure to cypermethrin (Singh et al. 2010). Scientific reports have shown that pollut-
ants induce carcinogenesis (El Adlouni et al. 1995; Erickson and Larsson 2000), 
teratogenesis, mutation, and clastogenesis in different fish species (Obiakor et al. 
2012) that eventually result in anomalous development, reduction of fish growth 
and survival during early and adult stages of life, and development of malignancies 
and various imperfections in organs of the body (Akpoilih 2012).

2.7.7  Alterations in Protein Contents

Different fish species have been showing changes in their protein contents of vari-
ous tissues including the intestines, liver, muscles, blood, and gills due to high pes-
ticide effects. Heteropneustes fossilis shows declined protein quantity as a result of 
nickel contamination (Nanda et al. 2000). The exposure of Tor putitora to cyperme-
thrin reduces protein content, causing considerable damage in its body (Ullah et al. 
2014c). Colisa fasciatus also shows significant decline in the protein level when it 
becomes exposed to Cypermethrin (Singh et al. 2010). Malathion lessens the pro-
tein amount in Labeo rohita (Thenmozhi et al. 2011) as well as in Clarias batrachus 
(Khare and Singh 2002). The total liver protein in Oreochromis niloticus is influ-
enced by thiamethoxan (Bose et  al. 2011). Similarly, thiodon leads to a drastic 
change in the total liver protein of Clarias gariepinus (Aguigwo 2002). Dichlorvos 
considerably affects the total protein, glycogen content of tissues, muscle albumen 
content, liver albumen content, and albumen content of kidney in Oreochromis mos-
sambicus (Lakshmanan et  al. 2013). Karate lessens the content of protein in 
Cyprinus carpio (Bibi et al. 2014), whereas monocrotrophos causes decline in the 
content of proteins, carbohydrates, and lipids in different tissues of Labeo rohita 
(Muthukumaravel et al. 2013).

2.7.8  Alteration in Oxygen Utilization

Different species of fish when become exposed to various pesticides show increase 
or decrease in the consumption of oxygen such as dimethoate (Shereena et al. 2009), 
and lead (James et  al. 1993) induces lethal alteration in oxygen utilization in 
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Oreochromis mossambicus. Similarly, Labeo rohita shows variation in the oxygen 
use due to toxic effects of dimethyl parathion (Bengeri et al. 1984). DDT contami-
nation alters the consumption of oxygen in Lepidocephalichthys thermalis 
(Gurusamy and Ramadoss 2000), and various pesticides induce toxic changes in the 
use of oxygen in Puntius ticto (Magare and Patil 2000). The oxygen concentration 
is drastically declined in water as a result of death of aquatic plant species caused by 
herbicides that results in the choking of fish and ultimately declined production of 
fish (Helfrich et al. 2009).

2.7.9  Alterations in Larvivorous Ability

Some pesticides such as organo-phosphorus are commonly used due to their proper-
ties such as higher insecticidal capability, lower persistence, quick biodegradability, 
and minor toxic effects on mammals (Bhandare et al. 2011); however, they directly 
and indirectly pose threat to nontarget organisms including the fish species with 
larvivorous ability (Roger and Bhuiyan 1990). Oryzias carnaticus shows decreased 
larvivorous potential on exposure to hostathion and kitazin pesticides (Ravindran 
et al. 2012).

2.7.10  Alteration in Immune System and Endocrine Disruptors

Fish immune system has been shown to be interrupted once it gets exposed to pes-
ticides (Bols et al. 2001; Maskaoui et al. 2005). Pesticides at small amounts serve as 
imitators or sex hormone blockers resulting into anomalous sexual development, 
male feminization, aberrant sex ratios, and atypical mating behavior (Satyavardhan 
2013). Furthermore, it may change other fish hormonal processes including bone 
development and appropriate thyroid activity (Murthy et al. 2013). λ-cyhalothrin 
and dimethoate have been observed to induce toxic effects on thyroid hormone in 
Labeo rohita (Dey and Saha 2014).

2.8  Challenges in Monitoring Pesticides in Small Freshwater 
Bodies

Pesticide pollution monitoring of small water bodies is an exigent task since different 
time- and space-related factors have an effect on the utmost climax concentrations of a 
pesticide in these aquatic systems (Lorenz et al. 2017). These water bodies are the 
essential part of freshwater systems since they comparatively support a huge percent-
age of biological diversity than bigger freshwater ecosystems (Biggs et al. 2014) and 
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represent a significant inland water–carbon flux (Holgerson and Raymond 2016). The 
programs that intend to estimate the concentrations of different pesticides in freshwater 
systems require to properly take into consideration various temporal and spatial factors. 
Several monitoring approaches have been put forth in order to assess the pesticide 
exposure of freshwater bodies. One of the simplest techniques is manual grab sampling 
that can be carried out intermittently or at preset occasions (Day 1990; Laabs et al. 
2002). However, the inadequacy of this method is that it likely fails to notice the upper 
limit of exposure to pesticides (Richards and Baker 1993; Leu et al. 2004) or in other 
words identify minor pesticide concentration (Xing et al. 2013). A substitute technique 
in the form of continuous water sampling method that uses passive or automatic water 
samplers was developed with the aim to overcome the abovementioned limitations. 
The automatic samplers quantify time-integrated concentrations of different pesticides 
neglecting the pertinent events of entry (Kreuger 1998). The water samples can be 
incorporated for more than a week (Kreuger 1998; Bischoff et al. 2003) to two-week 
period (Stenrød 2015). The episodes of storm flow (Liess and von der Ohe 2005; Xing 
et al. 2013) as well as the events of running off of rainwater (Bereswill et al. 2012) may 
also be mechanically or manually sampled subsequent to the spray or run-off episodes 
(Bischoff et al. 2003). Additionally, many passive samplers with the purpose of moni-
toring freshwater bodies for various polar and nonpolar contaminants have been 
designed (Vrana et al. 2005; Stuer-Lauridsen 2005; Mills et al. 2014). Different studies 
have comparatively analyzed the practical performance of various sampling approaches 
(Schafer et al. 2008; Xing et al. 2013) and found that majority of the pollutant concen-
tration pertinent to eco-toxicology could not be traced by fixed interval sampling 
approach (Stehle et al. 2013; Xing et al. 2013). Therefore, the monitoring programs that 
depend on fixed interval approach constantly miscalculate the eco-toxicological thresh-
old exceedances such as field-derived effect thresholds and regulatory acceptable con-
centrations (RACs); as a result of which, the utility of this method becomes restricted 
for monitoring highly short-lived and very noxious chemical substances (Stehle et al. 
2013). It has been documented in some latest studies that grab sampling strategy 
(Rasmussen et al. 2015) as well as time integrated sampling approach with 1 week 
pooling frequency (Bundschuh et al. 2014) undervalued the upper limit of pesticide 
levels and the toxicity estimation by a factor of as a minimum 10 in contrast with water 
samplers triggered by runoff.

The records obtained from manual event driven monitoring of pesticides in lotic 
small water bodies (Bischoff et al. 2003; Su et al. 2006) have shown that manual 
sampling performs better than weekly integrated sampling done by automatic water 
samplers. Some studies reported that passive and event driven sampling approaches 
may be equally effectual for depicting rapport between exposure to pesticides and 
effects on ecology (Schafer et al. 2008; Fernandez et al. 2014). Nevertheless, the 
protection of small water bodies necessitates the application of those monitoring 
approaches that are capable of detecting the threshold exceedances stimulated 
through each pertinent entry pathways, mainly when the spray drifting is a key 
concern.
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2.9  Remedies/Alternatives

Alternative measures for pesticide application may be effective for pest manage-
ment and avoiding toxic effects on nontarget life forms particularly fish and the 
whole biosphere. Some of the remedies in the form of alternative measures include 
the following (Fig. 2.4).

2.9.1  Integrated Pest Management

Integrated pest management (IPM) is a strategy that recognizes and decreases the 
hazards due to pests. It integrates the environmental biology of pest and various 
existing technology via the most inexpensive ways in order to thwart undesirable 
intensity of damage caused by pests as well as reduce the hazard to humans, 
resources, and the surroundings. It offers an efficient approach for the management 
of pests in urbanized farming fields, inhabited and public areas, to natural areas and 
wilds. IPM presents an efficient low-risk strategy to save humans and resources 
from pests (USDA 2013). IPM coordinates many management approaches in such 
a manner that permits the systems of production to retreat from the usual  management 
which is based on chemicals to ecologically healthy tactics (MacHardy 2000; 
Prokopy 2003). The application of chemicals is directed by financial and remedial 
thresholds depending on monitoring pests, useful life forms, and conditions of the 
environment (Cooley and Coli 2009). IPM has the capability to deal with every pest 
complex such as insects, weeds, diseases, vertebrates, and others and may be 
adapted to any production goals such as conventional, organic, and sustainable 
(Bidddinger and Rajotte 2015). IPM concentrates on long-lasting pest deterrence or 
the harm they cause, via combining many techniques including biocontrol, manipu-
lating habitation, modifying cultural practices, and utilizing resistant varieties. 
Substances for the control of pests are chosen and used in such a way that lessen 
hazards to the health of human beings, useful and nontarget life forms, as well as the 

Fig. 2.4 Remedial techniques that may be used as alternative approaches for pest management
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surroundings. Additionally, it has been emphasized that there should be comple-
mentation between the alternative procedures and the existing chemical control 
practices (Gurusubramanian et al. 2005; Rahman et al. 2005a, b; Gurusubramanian 
and Borthakur 2005).

2.9.2  Biological Control

The utilization of natural enemies to regulate the population of a species is known 
as biological control, e.g., the augmentation of local herbivores for weed control, 
introduction of predators or parasites for insect control (Atalah et al. 2013), or appli-
cation of biopesticides (Jackson 2007). All over the globe, weeds have been con-
trolled very successfully by means of biological control. The use of biocontrol 
agents including insects and pathogens has effectively regulated nearly 41 weed 
species. Additionally, local fungi have been used as myco-herbicides for the man-
agement of three weed species (Mcfadyen 2000). During the last decade, in Australia 
43 arthropod and pathogen species were utilized in 19 separate projects with the aim 
to successfully various exotic weeds. Efficient biocontrol was obtained in various 
projects; however, exceptional achievement was attained in regulating Cryptostegia 
grandiflora (rubber vine) and Asparagus asparagoides (Bridal creeper) (Palmer et al. 
2010). In certain cases, the use of biological control against target weeds has been 
able to decrease the trouble by 50–83% (Fowler et al. 2010; Paynter et al. 2010).

2.9.3  Sterile Insect Technique

Globally, sterile insect technique (SIT) plays an important part in the programs 
meant for the suppression and eradication of some pests particularly fruit flies 
(Klassen and Curtis 2005). The application of SIT as an approach for controlling 
pests is advantageous as it is species specific, compatible with the application of 
other regulatory approaches, and effective in the less dense populations of pests. 
SIT was parameterized on light-brown apple moth for employing it in California 
(Kean et al. 2011), and its success in field was verified in New Zealand (Stringer 
et al. 2013).

2.9.4  Physical Methods

In several situations for controlling the pests belonging to vertebrates, different 
physical interferences are available which include mass trapping (Warburton et al. 
2008), shooting (Choquenot et al. 1999), or the elimination of pests manually in 
order to lessen the populations of pests (Yamanaka 2007).
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2.9.5  Plant Breeding

Plant breeding is an important nonpesticide technique to control pests. The use of 
obligate endophyte, Epichloe, in the pastures of New Zealand has been extremely 
successful in controlling ryegrass (Lolium spp.) and tall fescue (Schedonorus arun-
dinaceus) pests (Johnson et  al. 2013). Lucerne (M. sativa) has been successfully 
bred to develop resistance against aphids, and cereals resistant to striped rust 
Puccinia striiformis Westend have been developed (Cromey 1992).

2.10  Conclusion

Pesticides are the chemical compounds applied for controlling insects, weeds, and 
diseases in plants. The pesticides have been used by human beings since 
2000 BC. The major proportion of pesticides synthesized throughout the globe is 
utilized for the management of pests in the agriculture sector. There is a tremendous 
increase in the utilization of pesticides during the last few decades. The widespread 
and unsystematic pesticide application has contaminated the water bodies via drift-
ing, running off, leaching, or directly by spraying these chemicals on water surface 
to inhibit the growth of mosquitoes. The water polluted with pesticides cause an 
immense threat to water dwellers. The main pesticides that are generally used 
include organophosphate, chlorinated hydrocarbons, pyrethroids, carbamate, and 
nicotinoids. The pesticides threaten the long-lasting survival of key bionetworks, 
disarray the ecological relationships among living beings, and cause the loss of 
biological diversity. Among a range of noxious pesticides, organophosphates have 
been extensively used throughout the world, replacing the importunate and prob-
lematical organochloride pesticides as a result of their low persistence in the atmo-
sphere and quick biodegradability. Fish species are mostly sensitive to water 
pollution. Organophosphate pesticides such as dichlorvos are extremely noxious to 
fish and other nontarget aquatic life forms. These pesticides are potent nerve toxins 
as they slow down AChE activity in the nervous system via blocking the transmis-
sion at synapses in cholinergic neurons. This interruption of the role of nerves leads 
to disorders in parasympathetic nerve system and ultimately the death of organism. 
Fishes are the main aquatic dwellers that are often exposed to and distressed by 
these lethal pesticides. The pesticide toxicity of fish induces biochemical transfor-
mations that result in disturbances in metabolism, enzyme activity inhibition, 
growth retardation, decrease in the fertility, and prolonged existence of the living 
being. Eco-toxicological studies are wanted in order to find out the toxic nature and 
possible threat posed by these noxious chemical substances via several biomarkers 
in fish so that quality of aquatic ecosystems and health of life forms living in them 
may be monitored. Additionally, many techniques such integrated pest manage-
ment, biological control, genetic control, physical interventions, and sterile insect 
technique may be used as substitutes for pesticides. The use of selected pesticides 
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may also reduce the pollution of water ecosystems. Further research is required to 
produce eco-friendly species-specific pesticides so that the damage to nontarget 
organisms is avoided.
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Chapter 3
Impact of Invasive Plants in Aquatic 
Ecosystems

Afrozah Hassan and Irshad A. Nawchoo

3.1  Introduction

Water, an important natural resource, is a universal component of life, and without 
water, life would cease to exist (Duran-Sánchez et al. 2018). More than 90% of the 
earth’s freshwater resources are held in lakes (Rast 2014). As per the Millennium 
Ecosystem Assessment, lakes provide regulating, provisioning, cultural, and sup-
porting services developed within the ecosystem services framework (MEA 2005). 
Indeed, lake ecosystems characterize valuable environmental resource consequently 
with high preservation, conservation, and utilization value (Marothia 2004). The 
ecosystem services provided by lakes are significantly important. Annually, the 
global value of ecosystem services provided by lakes is several trillion dollars 
(Postel and Carpenter 1997). Lakes constitute important bioresources and have the 
potential for fishery and high conservation values (Ganai and Parveen 2014). As 
sensitive ecosystems, lakes can undergo rapid environmental changes, often leading 
to variations in function and structure. Since the recent few years, freshwater eco-
systems are considered as the ecosystems mostly impacted by species invasions 
(Burks et al. 2006).

As a predominant global change (NCR 2000; MEA 2005), the conservation of 
natural resources and conservation of biodiversity is challenged by biological inva-
sions (TEEB 2010). Principally invasive species have earned the peculiarity as the 
second extreme cause of species extinction (Drake et al. 1989). In the current period 
of global environmental change, modern research has clearly identified the role of 
invasive species in loss of biodiversity. Besides habitat degradation, certain studies 
have categorized species invasions as the second major cause of biodiversity loss 
(Wilcove et al. 1998). As a considerable economic issue, biological invasions cause 
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major losses to tourism, fisheries, and forestry sectors all over the world (Pimentel 
2002). The estimated costs of the annual damage caused by biological invasions for 
Australia, the USA, and Brazil are US$13 billion, US$143 billion, and US$30 bil-
lion, respectively (Shine 2006).

Due to their evolutionary isolation, lakes are ingenuous to the effects caused by 
a broad range of invaders (Cox and Lima 2006). Lakes that represent model systems 
for studying the effects of invasions (Sharma et al. 2009) are gradually threatened 
by invasions, pollution, hydrological changes, and habitat degradation (Dudgeon 
et  al. 2006; Shah and Reshi 2014). Considered as a rich resource, the lakes and 
wetlands are mostly vulnerable to invasions (Zelder and Kercher 2004). Invasive 
aquatic plants alter the habitat structure of freshwater ecosystems (Valley and 
Bremigan 2002), impact the quality of water (Rommens et  al. 2003), and hence 
transform them completely. In comparison to marine ecosystems, impacts of inva-
sions were found to be more frequent in freshwater ecosystems (Ricciardi and 
Kipp 2008).

Biological invasion in freshwater ecosystems emerges as the most detrimental 
change, causing significant damage and hence cascading effects on functional integ-
rity and structural organization of the ecosystem. Apparently in freshwaters, gener-
ally there are more losses of the species as compared to terrestrial and marine 
environments (Olden et al. 2006). Usually, the freshwater ecosystems are character-
istically invasive owed to the great potential of increasing their spatial distribution 
(Richardson et al. 2000). The plant species present in waterbodies called macro-
phytes are of great ecological significance and hence increase the complexity of the 
freshwater ecosystems (Esteves 1988). Macrophytes play an important role for the 
functioning of freshwater ecosystems (Jeppesen et al. 1998). Along with the native 
macrophytes, nonnative plant species called invasive alien plants are also available. 
In freshwater ecosystems, invasive species are of different growth forms (Tables 3.1 
and 3.2). Once established, the species displace the native species completely. 
Invasive macrophytes may threaten freshwater ecosystems and change them exclu-
sively (Getsinger et al. 2014; Brundu 2015).

Table 3.1 Emergent invasive plants (Ricciardi & Mac Isaac 2005)

S. no. Scientific name Common name Family

1 Typha latifolia Cattail common Typhaceae
2 Typha angustata Cattail narrow leaved Typhaceae
3 Typha orientalis Cat tail Typhaceae
4 Phragmites communis Common reed Poaceae
5 Commelina benghalensis Watergrass Commelinaceae
6 Alisma plantago Water cat tail Alismataceae
7 Cyperus difformis Umbrella plant Cyperaceae
8 Ipomea aquatica Floating morning glory Convolvulaceae
9 Trapa bispinosa Water chestnut Trapaceae
10 Hydrocotyle umbrella Water pennywort Hydrocolylaceae
11 Jussiaea repens Water primrose Onagraceae
12 Ludwigia parviflora Water purslane Onagraceae
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Table 3.2 Free-floating invasive plants (Subhendu et al. 2009)

S. no. Scientific name Common name Family

1 Eichhornia crassipes Water hyacinth Pontederiaceae
2 Salvinia auriculata Water fern Salviniaceae
3 Salvinia molesta Water fern Salviniaceae
4 Salvinia natans Water fern Salviniaceae
5 Pistia stratiotes Water lettuce Araceae
6 Lemna minor Duck weed Lemnaceae
7 Spirodela polyrhiza Giant duckweed Lemnaceae
8 Azolla imbricate Water velvet Salviniaceae
9 Polygonum amphibium Water smart weed Polygonaceae

Table 3.3 Extremely 
invasive macrophytes  
(Scheffer et al. 2001)

S. no. Scientific name Family

1 Egeria densa Hydrocharitaceae
2 Eichhornia crassipes Pontederiaceae
3 Hygrophila polysperma Acanthaceae
4 Lagarosiphon major Hydrocharitaceae
5 Limnophila sessiliflora Plantaginaceae
6 Lythrum salicaria Lythraceae
7 Myriophyllum aquaticum Haloragaceae
8 Phragmites australis Poaceae
9 Salvinia molesta Salviniaceae
10 Sparganium erectum Typhaceae
11 Trapa natans Lythraceae

Aquatic invasions change macrophyte composition (Santos et al. 2011; Hussner 
2014), alter species richness and abundance (Stiers et al. 2011), change the food 
web structure (Villamagna and Murphy 2010), and deplete oxygen levels 
(Shillinglaw 1981). Vigorously, all invasive plants have the potential for clonal 
propagation (Kolar 2001; Liu et al. 2006; Xu et al. 2010) and spread quickly. Some 
invasive aquatic plants such as Myriophyllum aquaticum, Alternanthera philoxeroi-
des, and Eichhornia crassipes exclude other species by forming large stands in 
water (Timmons and Klingman 1958; Julien and Bourne 1988). The species exhibit 
vigorous growth and become highly invasive in character (Table 3.3). Clonal inte-
gration is directly correlated with the invasiveness of alien plants; hence, the clonal 
plants propagate quickly and spread into new locations (Maurer and Zedler 2002). 
Due to the damaging effects, biological invasions developed as main environmental 
policy issue displacing native species of both terrestrial and aquatic ecosystems at 
an unprecedented rate (Mack et al. 2000; Simberloff et al. 2005). Some invasive 
species, such as Gunnera manicata, Gunnera tinctoria, Gymnocoronis spilanthoi-
des, Egeria densa, and Lagarosiphon in freshwaters of New Zealand, displace cul-
turally important species including Phormium tenax and edible watercress Lepidium 
sativum (Waikato 2006). Most of the European countries were invaded by the non-
indigenous aquatic plants which became a major threat to the native biota (Table 3.4).
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Table 3.4 List of aquatic nonindigenous species reported from European countries (Hussner 
2012)

S. no. Name of the plant species Name of the country

1 Alternanthera philoxeroides South America
2 Ammannia senegalensis Africa
3 Aponogeton distachyos South Africa
4 Azolla filiculoides North, Central, South America
5 Azolla caroliniana North, Central, South America
6 Bacopa monnieri Asia, North America
7 Baldellia ranunculoides Europe, North Africa
8 Blyxa japonica Asia
9 Cabomba caroliniana South America
10 Callitriche brutia Europe
11 Callitriche deflexa Central, South America
12 Crassula helmsii Australia
13 Ceratophyllum demersum Asia, Africa, Europe, North, Central, South America
14 Ceratophyllum submersum Europe, Asia
15 Ceratopteris thalictroides Asia
16 Cryptocoryne crispatula Asia
17 Egeria densa South America
18 Eichhornia crassipes South America
19 Eleocharis parvula Europe, Asia, North, Central America
20 Elodea callitrichoides South America
21 Elodea canadensis North America
22 Elodea nuttallii North America
23 Gymnocoronis spilanthoides South America
25 Groenlandia densa Europe
26 Heteranthera limosa North, South America
27 Heteranthera reniformis North, Central, South America
28 Heteranthera rotundifolia North America
29 Heteranthera zosterifolia South America
30 Hydrilla verticillata Asia
31 Hydrocharis morsus-ranae Europe, Asia
32 Hydrocotyle bonariensis North, Central, South America
33 Hydrocotyle moschata New Zealand
34 Hydrocotyle novae New Zealand
35 Hydrocotyle ranunculoides North, Central, South America
36 Hydrocotyle sibthorpioides Asia
37 Hydrocotyle verticillata North, Central, South America
38 Hygrophila polysperma Asia
39 Lagarosiphon major South Africa
40 Landoltia punctata Australia, Asia
41 Lemna aequinoctialis South America
42 Lemna gibba North America, Europe, Asia
43 Lemna minor North America, Asia, Africa

(continued)
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Table 3.4 (continued)

S. no. Name of the plant species Name of the country

44 Lemna minuta South America, Central, and North America
45 Lemna perpusilla Asia, Africa, North, Central, South America
46 Lemna turionifera Asia, North America
47 Lilaeopsis carolinensis North America
48 Ludwigia grandiflora South America
49 Ludwigia peploides South America
50 Murdannia keisak Asia
51 Myriophyllum aquaticum South America
52 Myriophyllum heterophyllum North America
53 Myriophyllum verrucosum Australia
54 Najas graminea

55 Najas guadalupensis Asia, North, Central, South America
56 Najas gracillima North America
57 Najas orientalis Asia
58 Nelumbo nucifera Asia, Africa
59 Nuphar advena North America
60 Nuphar pumila Asia, Europe
61 Nuphar japonica Asia
62 Nymphaea alba Europe, Asia
63 Nymphaea lotus Asia, Africa, South America
64 Nymphaea mexicana North, Central America
66 Nymphoides peltata Europe, Asia
67 Orontium aquaticum North America
68 Ottelia alismoides Asia, Australia
69 Pistia stratiotes South America
70 Pontederia cordata North, South America
71 Potamogeton epihydrus North America
72 Potamogeton nodosus North America, Europe, Asia
73 Potamogeton trichoides Europe, Asia
74 Rotala indica Asia
75 Rotala macrandra Asia
76 Rotala ramosior North America
77 Rotala rotundifolia Asia
78 Sagittaria graminea North America
79 Sagittaria latifolia North America
80 Sagittaria platyphylla North America
81 Sagittaria rigida North America
82 Sagittaria subulata North South America
83 Sagittaria sagittifolia Europe, Asia
84 Salvinia auriculata Central, South America
85 Salvinia adnata South America
86 Salvinia natans Europe, Asia
87 Saururus cernuus North America

(continued)
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3.2  Spread of Invasive Plants

Invasive species are key concern in freshwater ecosystems. They spread into new 
sites through numerous pathways such as through commercial boating, recreational 
boats and intentional introductions (Darke and Mandrak Drake and Mandrak 2010; 
Keller and Lodge 2007; Strecker et al. 2011). Most of the recent invasions occur due 
to human activities linked with international trade which is accelerating the spread 
of organisms into new locations (Gherardi & Holdich 1999; Levine and Antonio 
2003). Invasive species have been introduced through various vectors (Gido and 
Brown 1999) and caused a devastating effect to the freshwater ecosystems (Sala 
et al. 2000; Leprieur et al. 2008) even though invasive plants spread through trade 
in ornamentals, species for ponds and aquarium (Keller and Lodge 2007), and aqua-
culture (Holdich et al. 1999).

In Great Lakes Basin, the worlds most invaded Lake Basin, invasions have been 
occurred through several vectors that operate on multiple spatial scales and are 
facilitated by environmental and socioeconomic factors (Ricciardi 2006). The 
spread of invasives cause many changes to the habitat of the species. Habitat altera-
tion is one of the most important threat to global biodiversity and hence to the eco-
system structure and function (Mack et al. 2000). For instance, in North America 
and Middle Atlantic, the invasion of Phragmites has been clearly understood both in 
freshwater and saline wetlands where it spread at the expense of displacing other 
plant species (Chambers et al. 1999). During the 1950s, the introduction of an exotic 
genotype has moderately hastened the growth and spread of Phragmites throughout 
its natural range (Saltonstall 2002) and alter habitat structure.

In New Zealand and Australia where eradication programs have become well 
established, public surveys were carried out to understand the perceptions of the 
people regarding the spread of invasive species and their attitude toward manage-
ment (Johnston and Marks 1997; Fraser 2001, 2006). Most of the studies carried on 
biological invasions reported that hydrological changes are associated with the 
spread of the invasive species (Baldina et al. 1999) such as hydrological changes and 
anthropogenic factors in riparian wetlands of river Murray in Australia have resulted 
in exotic plant invasions (Catford et al. 2011). Emergent plants in river Mukwonago 

Table 3.4 (continued)

S. no. Name of the plant species Name of the country

88 Shinnersia rivularis Central America
89 Spirodela polyrhiza Europe, Asia, North, Central America
90 Stratiotes aloides Europe
91 Trapa natans Asia, Europe
92 Utricularia gibba Asia, North, Central America
93 Vallisneria nana Australia
94 Vallisneria spiralis Asia, Europe, North America
95 Wolffia arrhiza Europe, Asia, Africa
96 Zannichellia repens Europe, North America
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produce higher biomass and form stabilized water levels. Any change in the water 
levels resulted in the increased chances of alien invasions (Boers and Zedler 2008). 
The shift from clear water to turbid conditions resulted in the incidence of the inva-
sive species Egeria densa. Probably the invasion of the species was related to the 
change in the water quality of the lake (Schallenberg and Sorell 2009). In the entire 
process of invasion, humans also play an important role, by changing ecosystem 
structure and functioning (McNeely 2001; Hulme 2009; Kueffer and Kull 2017).

The role of humans has been found in the process of invasions by serving as vec-
tors for spread of invasions, both intentionally and accidently. Certain disease 
occurs in humans due to invasive species; hence, the management of the species is 
of prime importance, and the problem of the invasion is a social ecological problem 
(Perrings et al. 2000, 2002). Humans are the prime cause for the spread of thousands 
of freshwater, estuarine, and marine species (Cohen and Carlton 1998). Worldwide 
human-aided spread of nonnative species such as plants, fishes, aquatic inverte-
brates, and microbes has a strong ecological impact especially in lakes and rivers 
(Nesler and Bergersen 1991; Witte et al. 1992; Flecker and Townsend 1994; Hall 
and Mills 2000; Latini and Petrere 2004).

The rate of invasion is rising rapidly. It has been well studied that in the coming 
years, the alterations in water temperature result in the establishment of many inva-
sive species at the expense of the native species (Stachowicz 2002). Currently, in 
San Francisco, new species become established in 14 weeks, whereas in the 1960s, 
new species have been found to invade the ecosystem after 55 weeks (Cohen and 
Carlton 1998). For some species, warmer temperatures in specific habitats cause 
longer growing seasons, earlier reproduction, migration, and increase growth and 
dispersal rates, hence increasing the rate of invasions (Garcia-Ramos and Rodriguez 
2002). Biological invasions have extremely transformed freshwater ecosystems 
(Vitousek et al. 1997) by fast dispersal and growth rates (Fig. 3.1).

Fig. 3.1 Invasion of Alternanthera philoxeroides in Dal Lake. (a) Selected site with clear water in 
(2016). (b) Same area occupied by invasive plant species Alternanthera philoxeroides in (2018)
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3.3  Impacts of Invasive Plants

Nonnative species have well-recognized impacts all across the globe (Pejchar and 
Mooney 2009; Le Maitre et al. 2011; Schackleton et al. 2014). The impacts of inva-
sions in freshwater ecosystems are enhanced by increased nutrient levels, loss of top 
predators, and altered flow regimes which occur due to increased overharvesting 
(Kay & Hoyle 2001). Aquatic invasions are occurring at faster pace over 
 unprecedented spatial and temporal scales (Cohen and Carlton 1998; Leppakoski 
and Olenin 2000; Ruiz et al. 2000). In the USA, 5000 alien invasive plants have 
been established and have completely displaced native plant species (Morse et al. 
1995). Around the world, there is a strong indication that invasive nonnative species 
have damaged the ecological systems and are threat to the economy (Pejchar and 
Mooney 2009) (Fig. 3.2).

Invasive species have a direct impact on economic systems. For example, the 
invasion of Cabomba furcata in Malaysian lakes that form dense monospecific 
stands disrupted the navigation and hence affected the ecotourism (Chew and 
Munirah 2009; Sharip and Jusoh 2010). In freshwaters, effects of invasions include 
high sedimentation rates, loss of biodiversity, alterations in water chemistry, and 
fluctuations in temperature (Schmitz et al. 1993). In Lake Victoria, the invasion of 
water hyacinth Eichhornia crassipes hampers boat navigation by forming thick 
mats on the surface of water. It provides breeding grounds for mosquitoes which 
resulted in the increase in transmission of vector born disease (Lodge 1993). The 
plant species invaded to Nigeria from Benin, clog the water channels, and hence 
prevents the fishing and transportation of boats. The growth of the plant species 
impedes light penetration required for photosynthesis (Ogunye 1988).

Fig. 3.2 Effects of invasive macrophytes on the ecosystem Adapted from Schultz and Dibble 
(2012)
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Invasive species cause many socioecological problems and various diseases such 
as mouth foot and mouth disease in humans. The impact of invasives cause long- 
term effects such as changes in the composition, structure, and function of ecosys-
tems (Lloret et  al. 2004). The invasives have tremendous effects due to their 
excessive growth. Aquatic invasives threaten ecosystems and have both ecological 
and economic impacts due to their excessive growth (Brundu 2015). The average 
growth of macrophytes is beneficial for the lake ecosystem. Besides other benefits, 
plants provide shelter for fish and other organisms. Though, in some lakes, the 
growth of aquatic weeds can become excessive and create a serious nuisance inter-
fering with boating, swimming, and other recreational activities. The rapid growth 
and spread of macrophytes is because of their adaptations (Santamaria 2002) which 
increase their invasive potential (Engelhardt 2011).

Usually, the impacts caused by macrophytes can spread from plant communities 
(Madsen et al. 1991) to various trophic levels (Theel et al. 2008) and to the entire 
ecosystems (Yarrow et al. 2009). The profuse macrophyte stands obstruct river flow 
and hence can increase the flood risks (Thouvenot et  al. 2013). This results in 
reduced sports activities in water, decreases the economic values of lakes (Halstead 
et al. 2003), and hence hinders the shipping activities (Holm et al. 1969). The flora 
and fauna, including important medicinal and ceremonial plants, are affected by 
biological invasions (Williamson 1996). As soon as the invasive alien species are 
introduced by humans, they are established within no time, spread and hence 
become invasive (Latini and Petrere 2004), and add physical as well as chemical 
impacts to the concerned environments (Bunn and Arthington 2002; Koehn 2004). 
In North America and Australia, the impacts of exotic Tamarix spp. alter the water 
regime of the riparian soil and hence affect stream flows (Tickner et al. 2001).

3.4  Prevention of Invasion

“Water for life” is the main purpose of the United Nations International Decade 
(UNID, 2005–2015), and it is reported that the quick assessment of invasive species, 
well-timed prediction, effective management, and concern for conservation of 
 biodiversity should be a priority of several research studies. In freshwaters, the man-
agement of the invasive species has been directed more toward distribution and 
control rather than the predictions about invasion (Wade 1997). The risk assessment 
of riparian plants (Pollock et al. 1998) and aquatic plants (Willby et al. 2000) has 
focused on biological traits such as dispersal strategies, physiological, demographic, 
and genetic features (Kean and Barlow 2000). Millions of dollars are spent annually 
by private and governmental organizations for preventing, controlling, and eradicat-
ing invasions (Lovell et al. 2006; Vilà et al. 2010).

In the USA, control and management of aquatic invasions costs millions of dol-
lars (Pimental et al. 2005; Rockwell 2003). For mitigating the impacts of invasive 
species on biodiversity, eradication of the species is the best management strategy. 
Many invasives damage the waterbodies in the USA and affect the quality of water 
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(Table 3.5). The large areas which have touched an invasion threshold are challeng-
ing to control because of high management costs and much affected habitats (Byers 
et al. 2002). Rapid assessment tools such as remote sensing help to find and assess 
invasions across different regions. Remote sensing and rapid assessment tools help 
to find and assess invasions across different areas (Clewell and Rieger 1997).

A better understanding of remote sensing can be helpful to determine the inva-
sion in particular sites and find effective management strategies. Identification of 
lakes which are susceptible to invasions helps in directing various management 
strategies (Vander zanden et al. 2010). Identifying the vulnerable lakes decreases 
the uncertainty about future invasions. This increases the probability that manage-
ment strategies will be useful for eradication of both local and regional invasive 
species (Finnoff et al. 2007). Documentation of economic and ecological impacts of 
invasive species provides meaningful recommendations for preventing the spread of 
invasion and prioritizes management strategies (Papes et  al. 2011). A complete 
inventory of invasive species is essential for the management of the species world-
wide (Table 3.6).

Colonization, establishment, and effective control of the species is attained by 
early detection, quick response activities (Simberloff 2009) as well as analysis of 
the conditions that will allow invasive species to dominate native community (De 
gasperis and Motzkin 2007). Worldwide freshwater and estuarine biota are chang-
ing rapidly (Moyle and Leidy 1992). There is an urgent need to compute lost eco-
system services. Biological and economic researchers use traditional methods for 
quantifying the impacts of invasions (Lodge 1993; NRC 2008). Understanding the 
role of humans in biological invasions is one of the best researched area regarding 

Table 3.5 Invasive aquatic 
plants in USA waterbodies

S. no. Name of the species Family

1 Alternanthera philoxeroides Amaranthaceae
2 Azolla pinnata Salviniaceae
3 Egeria densa Hydrocharitaceae
4 Eichhornia crassipes Pontederiaceae
5 Eichhornia azurea Pontederiaceae
6 Hydrilla verticillata Hydrocharitaceae
7 Hygrophila polysperma Acanthaceae
8 Lagarosiphon major Hydrocharitaceae
9 Limnophila sessiliflora Plantaginaceae
10 Ludwigia hexapetala Onagraceae
11 Lythrum salicaria Lythraceae
12 Myriophyllum aquaticum Haloragaceae
13 Myriophyllum spicatum Haloragaceae
14 Pistia stratiotes Araceae
15 Salvinia minima Salviniaceae
16 Salvinia molesta Salviniaceae
17 Sparganium erectum Typhaceae
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Table 3.6 Some of the 
invasive aquatic plants from 
Jammu (Rupinder et al. 2014)

S. no. Name of species Family

1 Eichhornia crassipes Pontederiaceae
2 Camboba caroliniana Cabombaceae
3 Hydrilla verticillata Hydrocharitaceae
4 Vallisneria americana Hydrocharitaceae
5 Vallisneria spiralis Hydrocharitaceae
6 Elodea canadensis Hydrocharitaceae
7 Egeria densa Hydrocharitaceae
8 Alternanthera philoxeroides Amaranthaceae
9 Salvinia molesta Salviniaceae
10 Polygonum glabrum Polygonaceae
11 Polygonum barbatum Polygonaceae
12 Isoetes lacustris Isoetaceae
13 Marsilia quardiflora Marsileaceae
14 Ipomea carnea Convolvulaceae
15 Ipomea aquatic Convolvulaceae
16 Potamogeton natans Potamogetonaceae
17 Potamogeton crispus Potamogetonaceae
18 Potamogeton lucens Potamogetonaceae
19 Potamogeton pusillus Potamogetonaceae
20 Scirpus acutus Cyperaceae
21 Scirpus articulates Cyperaceae
22 Scirpus subterminalis Cyperaceae
23 Cyperus difformis Cyperaceae
24 Cyperus tenuispica Cyperaceae
25 Nymphoid indica Menyanthaceae
26 Nymphoid aquatic Menyanthaceae
27 Nasturtium officinale Brassicaceae
28 Najas graminea Najadaceae
29 Arundo donax Poaceae
30 Typha aria Typhaceae
31 Ranunculus arvensis Ranunculaceae
32 Veronica anagallis-aquatica Plantaginaceae
33 Ranunculus sclerata Ranunculaceae
34 Azolla pinnata Azollaceae
35 Caldesia parnassifolia Alismataceae
36 Sagittaria subulata Alismataceae
37 Nymphoid Cristata Menyanthaceae
38 Hymenachne amplexicaulis Poaceae
39 Paspalidium germinatum Poaceae
40 Chara brauni Characeae
41 Chara fragilis Characeae
42 Oenanthe crocata Apiaceae
43 Juncus articulates Juncaceae
44 Cardamine hirsuta Brassicaceae
45 Najas minor Najadaceae
46 Eleocharis plantagineum Cyperaceae
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human and social dimensions of invasion (McNeely 2001; McGeoch et al. 2010). 
However, much research is needed on the perceptions of people for introduction and 
spread of invasive species (KowarikI 2003; Kueffer and Kull 2017).

3.5  Management of Aquatic Weeds

The management of aquatic weeds is of prime importance in India, and out of the 
total 160 weed species, following are of important concern (Table 3.7). The losses 
caused by aquatic weeds are very disastrous; hence, their maintenance is very 
important. In India, the management of aquatic weeds can be done by various ways 
as follows (Narayan et al. 2017):

 1. Manual and mechanical management
 2. Preventive management
 3. Ecological management
 4. Chemical management
 5. Biological management
 6. Management through utilization.

3.6  Uses of Aquatic Invasive Plants

Aquatic weeds such as water hyacinth and duckweed contain 25–35% of proteins as 
dry matter (Taylor et al. 1971). Myriophyllum spp. contain rich sources of carotenes 
and xanthophylls (Pirie 1971). Some aquatic weeds are used for fish feed (Hazra 
and Tripathy 1985). Foliage of aquatic weeds is used for vegetables; roots are used 
as a source of carbohydrate and seeds as proteins (Gupta 1987). The Phragmites are 
used in Romania for printing, cardboards, and synthetic fibers. Some aquatic plants 
such as Cyperus and Typha are the source of pulp for fiber and paper (Frank 1976).

Table 3.7 Weed species 
which are primary concern in 
India (Twongo 1993; Twongo 
& Howard 1998)

S. no. Name of the plant species

1 Salvinia molesta

2 Eichhornia crassipes

3 Nelumbo nucifera

4 Hydrilla verticillata

5 Vallisneria spiralis

6 Nymphaea stellate

7 Typha angustata

8 Chara spp.
9 Nitella spp.
10 Ipomoea spp.
11 Ipomoea spp.
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3.7  Future Prospects

Preemptive strategies for weed management should be developed, because once 
established the species become difficult as well as expensive to control. Thinning of 
plants is done which reduces the chances of water blockage. Local tools should be 
used for the deweeding which uproots plant species completely, and hence there are 
less possibilities of perpetuation as compared to deweeding done by machines. 
Pollution of the waterbodies should be checked proactively to decrease the proba-
bilities of weed formation. There is paucity of research in the invasion biology; 
hence, research in the field should be facilitated for developing effective protocols 
for the management of weed species. Furthermore, awareness among the locals is 
necessary for the timely management of the species. Harvesting of the weed plants 
should be done by the locals for generating economic benefits. Locals should be 
engaged in the weed management strategies so that good practices should be devel-
oped for complete eradication of the invasive weeds.

3.8  Conclusions

Biological invasions can devastate the ecology of the freshwater ecosystems. The 
perspective of locals and stakeholders should be taken for effective policy manage-
ment and conservation of the ecosystems. The numerous economic benefits that the 
locals obtain from lakes should be incorporated in management planning. The live-
lihood of the locals is solely dependent on the lake resources which otherwise would 
not have been used, maintained, and protected through ages. For the control of inva-
sive species, several methods should be developed which help in preventing the 
invasion of the species.
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4.1  Introduction

In the last century, various changes were generated in the society, and industrial and 
technological advancement began that allowed an expansion in the chemical indus-
try, which led to a demographic expansion, which in turn increased agricultural 
exploitation; all of the above generated an emission of a large number of com-
pounds in the environment, affecting the air, water, and fertile soils (Alarcón- 
Herrera et al. 2012; Alloway 2013).

At the same time, there have been scientific and technological needs and demands 
that exist nowadays where it is necessary to design and build new equipment that 
allows analysis, monitoring, and field work that facilitates studies and provides reli-
able results and above all enable and obtain results at the moment in which the study 
is conducted to make decisions and measures of action (Calvo et al. 2017).

In the control of environmental contamination, it is essential to carry out an ade-
quate sampling, with the subsequent sample treatment, to continue with the analysis 
of possible contaminants. To achieve a satisfactory analysis, it is essential to use the 
most convenient analytical technique for each type of sample, type of analysis, etc. 
(Da Rocha 2012).

The industries mainly and the need to optimize and control their processes in 
order to be more competitive have increased and evolved the use of methods of 
analysis of high sensitivity and accuracy, as well as those that provide information 
in real time (Ibañez García 2017). The tools and techniques used in analytical chem-
istry have reached a level of integration that they allow most analytical systems to 
be designed following in part or in full a sequence of unit operations that are part of 
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an analytical process, such as sampling, sample transport, separation, reaction, mea-
surement, transduction, signal acquisition, and processing. During this integration 
process, there must be connectivity in the stages of the analytical process in such a 
way that human intervention is minimized (Jerry 2004; Torres 2004).

4.2  Technological Advances in Analysis Systems

The process of monitoring and analysis of trace elements at the industrial level, as 
in other areas, follows a traditional line, which involves taking samples, transport-
ing and analyzing them to a central laboratory, and, consequently, increasing time 
consumption (off-line), causing the control action to be delayed. By contrast, there 
are autonomous measurement systems, where it is possible to consider an online 
measurement, in real time, that optimizes the control of the variable to be analyzed, 
as well as the possibility of making measurements in situ, that is to say in the same 
place where the phenomenon of interest occurs (De Prada 2004; Wen 2011).

Earlier last century, polarography was discovered, marking a major step forward 
for the analysis of trace elements; later, construction began on the first glass elec-
trodes, sensitive to H+ ions, which was a breakthrough by allowing a more rapid and 
continuous determination of pH, with multiple applications to this day. With the 
need to analyze trace components and perform analyzes of industrial products in 
increasingly smaller times, the range of requirements in the analysis methods was 
broadened, including the analysis of contaminants, because the methods and tech-
niques traditionally used did not cover these needs (gravimetric and volumetric 
methods) (Ortiz 2001; Lobnik 2011).

For the United States, Germany, England, among others at the beginning of the 
1940s, it was common to use ultraviolet and infrared spectrophotometers, emission 
spectrophotometers, fluorometers, polarologists, etc. The project known as 
Manhattan, directly linked to the construction of the first atomic bomb, boosted 
considerably the analysis of trace compounds, microanalysis, and separations by 
ionic exchange (Kolb 1999; Rubio and Hernández 2016).

The gas chromatography and thin layer chromatography achieved a development 
since the middle of the last century, which, together with the achievements in infra-
red spectrophotometry, mass spectrometry, and nuclear magnetic resonance, gave a 
great advance to the diverse studies of the organic chemistry In the analysis of inor-
ganic chemistry, atomic absorption spectroscopy was used, which helped the flame 
photometry technique, being of great relevance in the trace metal analysis (Faraldos 
2011; Alva Díaz and Angeles 2018).

In the 1980s with the rise of computing, the instrumental analytical techniques 
were modified at the time of including computers and microcomputers to control 
the instruments and protect the information generated in the experiments. The 
 multiple functions such as controlling sampling times, data processing, evaluating, 
and storing the results in a computer undoubtedly marked a great advance in the 
different types of analysis (Murray 2003).

O. N. Bustos López



77

The chemical analysis has played a very important role, and techniques, such as 
chromatography, spectrophotometry, X-ray reflection or the use of radioactive trac-
ers, among others, for detection and quantification of pollutants have made a great 
guideline in environmental control. Furthermore, the monitoring methods have 
been used in countless analyzes. Some examples of application speaking chrono-
logically can be mentioned (Carvalho 1998)Carvalho carried out with his collabora-
tors a monitoring of pesticides in 18 tropical countries through the use of radioactive 
tracers. On the other hand, in Spain, Rosell examined the blood of agricultural 
workers through chromatography, detecting the presence of pesticides. At the same 
time in Venezuela (Bruguera 1996), using chromatography, he analyzed samples in 
maternal blood, finding DDT. Later (López 1993) with the use of spectrometry, he 
determined the cadmium content.

Some studies indicate a severe damage in the environmental area mainly in the 
contamination by agrochemicals; since the 1940s, the last century, the use of pesti-
cides has increased continuously, and only in the developed countries is there a 
tendency to reduce their use. It has been determined that practically 0.1% of the 
pesticide used reaches directly to the pest, and the rest remains in the environment, 
theoretically contaminating the water, soil, and biota, which requires the character-
ization of the final destination of the pesticides, toxicity, and assessment of the 
associated hazards (Carvalho 1998).

Analysis carried out in New Zealand (1973–1994) showed that the levels of con-
tamination found were linked to constant releases of organochlorine pesticides 
(Hendy 1996); other studies in India by Dua et al. (1996) indicated DDT levels of 
2.26 ppm in soil and 0.18 ppm in water. In Thailand, it was studied that 75% of preg-
nant women were contaminated with organochlorine pesticides in values between 
10.15 and 1.03  ppb; neonates were also affected with levels between 0.62 and 
5.05 ppb, with pesticides detected and identified DDE, DDT, Lindane, HCH, and 
Heptachlor ; another study in Veracruz, Mexico, showed data of high levels of con-
tamination with DDT between 9 and 20 ppm, in young people under 20 years, and 
also the impact and contamination in water and soil was detected (Torres et al. 2004).

Most measurement processes based on a physical principle can usually be auto-
mated much better in continuous processes, because the chemical methods are suit-
able for applications with discontinuous measurements. The excitation of molecules 
by energy is one of the main factors that must be considered in the continuous 
measurement of gaseous pollutants. This condition can be caused by the exposure 
of radiation at different wavelengths, generating high temperatures through com-
bustion or chemical reactions. There are other methods, for example, excitation by 
electrical, magnetic, or nuclear forces. This type of methods can be used for labora-
tory analysis of contaminated air samples. Passive sampling methods, so called 
because the device does not involve any pumping, provide a truthful and cost- 
effective analysis of air quality, which indicates a good reading at average 
 concentrations of pollution, over a considerable period of time ranging from weeks 
or even months (Hernandez Lucas 2002; Hernandez-Hernandez 2002; Cazes 2011).

Active sampling methods use physicochemical methods to collect contaminated 
air, and the analysis is done later in the laboratory. In general, a known volume of 

4 Role of Modern Innovative Techniques for Assessing and Monitoring Environmental…



78

air is pumped through a collector (filter or chemical solution) for a set period of 
time. Then the collector is removed for further analysis. Some of the methods used 
to measure environmental pollution are photometry, fluorescence, chemilumines-
cence, flame photometry, and ionization (Hernandez Lucas 2002).

Many of the techniques mentioned above are costly due to the use of standards, 
which are often imported, in addition to the use of solvents such as acetone, hexane, 
methanol, among others, which generally involve higher costs. For this reason, 
some researches make proposals to optimize the techniques used in order to mini-
mize costs and obtain optimal results (Torres 2004).

At present, it has been necessary to develop autonomous and miniaturized detec-
tion systems (mostly electrochemical and optical systems). The advantages of min-
iaturization in the field of analytical systems describe the evolution of μ-Tas, the 
materials used, trends, and applications (microfluidics integration pretreatment 
steps, and detection systems, among others) (Ibañez García 2007).

4.3  Methods for Monitoring Environmental Pollutants

The different analytical techniques used focus on the subject and its characteristics; 
for this it is necessary to know and use the properties of the subject, and hence the 
qualitative or quantitative studies are possible. The above can be observed or pro-
voked physically or chemically for further analysis.

Measurement instruments are therefore devices that can convert signals that can-
not be detected directly by the human being, in a way that is. An analysis instrument 
consists of a signal generator, a signal detector, a signal processor, and a reading 
device, which are usually found in practically all chemical, organic, and inorganic 
analysis equipment (Faraldos 2011).

One of the most general classifications that are considered for chemical analyzes 
and that include the use of different methods and techniques of environmental anal-
ysis and monitoring are as follows:

Optical methods: Spectrophotometry—UV-visible, atomic absorption spectro-
photometry with flame, turbidimetry.

Electrochemical methods: Detections potentiometric, voltammetry, coulometric, 
polarography, etc.

Chromatographic methods: High efficiency liquid chromatography (HPLC), 
nuclear magnetic resonance, etc.

According to the aforementioned analytical techniques, analytical methods can 
be classified according to the analytes in the following:

 1. Selective electrodes (H+, NH4
+, Cd2+, Cu2+, Pb2+, K+, Ag+, Na+, total monovalent 

ions, total ions divalent, Br−, Cl−, CN−, F−, I−, NO3
−, ClO4

−, S2
−).

 2. Visible spectrophotometry (anions, silica, Kjeldahl nitrogen, hydrogen sulfide, 
phosphorus, fluorine, iron, manganese, copper, zinc, aluminum, chromium, 
ammonium, residual chlorine, phenols, surfactants, COD.
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 3. Flame photometry: sodium, potassium, lithium, strontium.
 4. Atomic absorption: metals.
 5. Ionic chromatography: Br−, Cl−, NO3

−, NO2
−, SO4

2−, PO4
3−.

 6. Gas chromatography: pesticides, aromatic hydrocarbons (Lucas 2002; Wang 
2011)

4.4  Optical Methods in the Analysis of Environmental 
Pollutants

At present, the need to obtain data from natural or industrial systems continuously, 
in situ and in real time, remains latent. Hence, the methodology of continuous flow 
has arisen that has been widely used for the automation of analysis processes. 
Nowadays, this methodology is integrated into microanalytical systems through the 
development of microanalyzers where all the stages of the analytical procedure 
intervene, facilitating the manufacture of laboratories in microcircuits, known as 
Lab-on-a-chip, or microsystems of total analysis, μ-TAS (Ibañez García 2007; 
López 2017).

Glass and silicon are the materials commonly used in this type of systems. 
However, LTCC technology (Low Temperature Co-fired Ceramics), also called 
green ceramics, presents an alternative for the construction of microanalyzers that 
allow on-site testing and reliable results in real time; provides rapid analysis pro-
cesses, simplicity in their manufacture, cost reduction, and portability; and likewise 
presents great versatility in the design of structures. One of the alternatives that has 
been used in this type of systems is the combination of flow techniques and flow 
detectors based on light-emitting diodes (LED) and photodetectors for the optical 
microsystems of analysis (Ibañez García 2007).

The optical methods of analysis are applied to a wide range of studies, and cur-
rently the use of these methods has expanded due to the speed, available instrumen-
tation, and its possibilities of automation. In the analysis of polluted air, photometry 
is one of the methods that allow the detection and quantification of pollutants, and 
because it uses the absorption of infrared (IR), visible (VIS), or ultraviolet (UV) 
radiation, the lengths of wave with ranges of application are IR (1000–10,000 nm), 
VIS (400–800 nm), and UV (200–400 nm) depending on the nature of the analytes 
(Lucas 2002).

4.5  Optical Sensors

They represent a group of chemical sensors where the electromagnetic radiation 
(EM) is manipulated to generate an analytical signal in a transduction element. The 
interaction of radiation with the sample is evaluated from the change of parameters 
or opticals that is directly related to the concentration of the analyte (Hernandez 2016).

4 Role of Modern Innovative Techniques for Assessing and Monitoring Environmental…



80

An optical chemical sensor consists of a receptor element that allows to identify 
a measurable parameter as the concentration of a compound, pH, etc., providing a 
signal proportional to the magnitude of that parameter. The receptor can in many 
cases fulfill an important function that allows the generation of the signal, such as 
interacting in a thin layer with the molecules of the analyte, catalyzing a reaction, or 
participating in a chemical equilibrium at the same time as the analyte. The trans-
ducer generates the signal produced in a measurable signal that is amplified, fil-
tered, visualized, among others.

Sensors that have a receptor part based on a biochemical principle are called 
biosensors. Its use with biological compounds has great relevance in chemical anal-
ysis. The optical sensors can be based on absorbance, luminescence, reflectance, 
fluorescence, etc., covering different regions of the spectrum from UV–Visible–IR 
and allowing the measurement of various characteristics and properties of the mate-
rial (Gründler 2007).

Optical chemical sensors have multiple applications, are safe to work with 
diverse samples, sensitive, economic, nondestructive and can continue to provide 
more advantages in their application, can be miniaturized, and allow multiple ana-
lyzes with a single control tool from a reference site (Wang 2011).

There is a variety of techniques that focus on optical phenomena, such is the case of 
colorimetry and the detections that are obtained using an indicator that allows the color 
to change when joining a certain analyte, has great application in heavy metal detec-
tion. These changes are also determined spectroscopically and are observed visually. 
For this case, there is a great diversity of organic chromophores, such as nitrophenols, 
azo dyes, sulfophthalein phthaleins, anilines, etc. The redox indicators are examples of 
chromophores, that is, all the organic colorants generate reversible redox reactions.

By means of metallic indicators it is possible to make ion detections, which form 
complexes colored with the metallic ones (Kaur et al. 2011), the ionophoresChro-
mogenic can freely bind to ions, and are created to cause a color change when 
interacting with metal cations (Wen 2011).

There are new materials based on nanoparticles, and the colorimetric compounds 
are not as common unlike the luminescent nanoparticles. However, in recent years, 
examples of gold nanoparticles have been reported to detect Cd2+, Fe3+, Pb2+, and 
nitrites, and nitrate ions were also used, and in 2007 carbon nanotubes were reported 
for nucleic acid detection (Lee et al. 2007; Ying 2011).

Next, a study of a microsystem using a device that allows detection of cobalt in 
aqueous solutions by a reaction using an organic chromophore is presented. The 
continuous flow system takes a flow rate of 0.3 mL/min and is added at a rate of 
1.5 mL/min solution composed of ammonium acetate 0.5 M, 2 M ammonium citrate, 
and 60 µl nitrous–R–salt (NRS) at 1% by means of a syringe or pump. Detection is 
performed at a wavelength of 520 nm, once the general outline and arrangement for 
detecting where favorable results were obtained in the implementation and analysis 
of the analyte (as shown in Figs. 4.1 and 4.2) is presented (Bustos 2016).

The microsystem was designed according to the needs of the reaction itself, 
which implies that it is flexible and applicable to various analytes in aqueous solu-
tions; in Fig. 4.3, the internal design of the devices is presented that allows them to 
be machined according to the system’s need.
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Fig. 4.1 General scheme of the continuous flow process for the detection of cobalt in a continuous 
flow system

Fig. 4.2 (a) Peristaltic pump and injection valve. (b) Optoelectronic device adapted to the LTCC 
device

Fig. 4.3 Design of the LTCC platform. The dimensions are 6 × 4.8 × 3.5 cm with an optical path 
of 3.25  mm, (a) sensor (integrated TCS3414), (b) wireless communication module (Zigbee 
Protocol)
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The percentage of error in the developed method is 5.2%. When evaluating the 
response of the system, it is obtained that the relative standard deviation (RSD%) 
for a series of data at a concentration of 3 mg/L is 4.28% (n = 13, 98% confidence) 
(Bustos 2014, 2016). Table  4.1 shows the advantages obtained from the pro-
posed method.

4.6  Electrochemical Methods in the Analysis 
of Environmental Pollutants

In the electrochemical methods, anodic oxidation is found to generate the OH• 
radicals produced by the oxidation of the water at the anode, using as anodes Pt, 
PbO2, TiO2, and SnO2, through the application of an electric current. Electrochemical 
procedures are methods used to remove organic pollutants and inorganic wastewa-
ter of different origin; during the process, the contaminants are destroyed by direct 
anodic oxidation (OAD) or indirect (OAI) that is carried out in the method used. 
However, electrocoagulation is one of the techniques that has been developed in 
wastewater treatment plants in almost all of Europe. Also some cities in the UK 
have adopted this technology with custom name of “Harness Targeted Electric 
WaterfusionTechnology” or electrocoagulation (Fóti and Comninellis 2007; 
Linares-Hernández et al. 2011).

following is an example of an electrochemical system; this is carried out by elec-
trocoagulation methods, using iron electrodes and direct anodic oxidation (ADO), 
handling diamond electrodes doped with boron (DDB), to treat wastewater derived 
from a treatment plant whose downloads correspond to 144 companies from differ-
ent areas and areas in Mexico City. The results of implementing the treatment 
showed a 99% elimination of the chemical oxygen demand (COD), 99% color, and 
97% turbidity, in a time duration of 2  h. In the system, the electrocoagulation 
removed the colloidal and suspended particles, and degradation of organic matter 
was carried out though OAD. The amount of sludge generated was established in 
the system and characterized by scanning electron microscopy and elemental analy-
sis (Linares-Hernández et al. 2011). This application and many others make electro-
chemical methods easy to apply and efficient in the degradation of compounds that 
are not easily biodegradable.

Table 4.1 Comparison of the proposed method with respect to the reference (Bustos 2016)

Comparison of the method of analysis

Method of reference
Method 
implemented

Wavelength (nm) 520 540
Flow rate (μL/min) 1500–2000 500
Temperature (°C) 80 25
Minimum concentration in the system 
(mg/L)

0.12 0.25
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Another innovative application in recent years has been the development of elec-
tronic conductive materials with polymer matrix, where a heterogeneous process is 
carried out on the anode of an electrochemical cell containing a solvent and a salt, 
which initiates the flow of current and favors the oxidation of the polymer. The 
electrogeneration of conducting polymers is considered an effective and rapid 
method to obtain mixed materials through complex mechanisms. A mixed poly-
meric material is the result of an electrochemical polymerization. The physical and 
chemical properties of the polymer produced depend on the material composition, 
and in turn the composition is a function of the speeds of the electrochemical and 
chemical degradation processes (Fernández 2003).

Showing up next (Fig. 4.4), a study performed in recent years is presented, a 
microanalyzer for determination of ammonia in wastewater of different processes, 
with the intention of reducing the consumption of reagents and samples, the data 
acquisition and data processing miniaturized, as well as the fluid management sys-
tem, enhancing the automation, autonomy, and reduction of energy consumption of 
the entire system. A solar-powered system, divided into three main parts, was imple-
mented: microanalyzer, the fluid management system, and the system of acquisition 
and data processing. The flow system consists of three solenoid micropumps: a 
micropumpperistaltic, a revolutions controller, and four three-way solenoid micro- 
valves. The controller used with its respective software, used for fluidic devices, 
was utilized to program the autocalibration process by means of multiconmutation 

Fig. 4.4 Experimental microsystem assembly for the detection of ammonium: (a) micromixer, (b) 
diffusion membrane, (c) ammonium ion selective electrode, (d) Ag/AgCl integrated reference elec-
trode, (e) reference electrode connector, (f) indicator electrode connector, (Vx) three-way solenoid 
valve, (BP) peristaltic micropump, (BSx) solenoid micro pump, (P) designed potentiometer. 
Liquid inputs to the system (1, 2, 3, 6). Outputs to waste (4 and 5) (Calvo 2017)
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and to automate the process carried out without the requirement of human interven-
tion. The acquisition of data and its processing were carried out by means of a cus-
tomized potentiometer (TMI, Barcelona, Spain). All the components (controller, 
potentiometer) and the fluidic devices were controlled by a computer, obtaining 
favorable results in real samples (Calvo 2017) (Fig. 4.5).

4.7  Chromatographic Methods in Analysis of Environmental 
Pollutants

The determination of organic compounds in an environmental sample is not 
restricted to a compound or, to that the analyte, is in almost pure state, but is gener-
ally a mixture of compounds, or compounds and their metabolites generated, by 
different reactions, from the main compound. For this reason, almost always, we 
must resort to the use of a technique of separation of compounds prior to the deter-
mination; thus, we think about the handling of a chromatography coupled with the 
appropriate detection technique, considering the properties and characteristics of 
the compounds and their level of concentration (Alva Díaz and Angeles 2018).

Also, in general, environmental samples require a previous stage of purification 
and preconcentration, using techniques used as extraction systems, ion exchange, or 
new solid phase extraction techniques, both in macro- and microscale. The chro-
matographic techniques have the advantage of allowing the coupling of a very effi-
cient separation technique in continuous flow, with sensitive detection techniques 
and universal or selective, according to the needs of the analysis to be performed 
(Spiegel and Maystre 2001).

Fig. 4.5 Response of the microanalyzer signal corresponding to 26 injections every 15 min of 
residual water sample (Calvo 2017)
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Many of the chromatographic analyzes focus on ionic determinations, which can 
be differentiated into two types: (a) Anion-based chromatography with ion suppres-
sion consists in the separation of an anion mixture by ion exchange and its detection 
by electrical conductivity, where the elimination of the electrolyte that does not 
interest is carried out before measuring the conductivity. (b) The chromatography 
known as cationic with ion suppression is carried out in a manner analogous to the 
anion-based technique; however, here the suppressor replaces the Cl ion, which 
exits from a column with OH, through an anion exchange membrane (Girard 2010).

Now faster and more efficient ion chromatography is widely used from the ana-
lytical point of view since it has had improvements in its chromatographic compo-
nents, more efficiency in columns and exchange resins, a sample volume is used 
smaller, and the detections are automatic. Using ion chromatography, studies have 
been conducted to quantify fluoride ions (F−), bromide (Br−), chloride (Cl−), nitrate 
(NO3−), nitrite (NO2−), sulfate (SO4

2−), and phosphate (PO4
3−), present in drinking 

water (Alva Díaz 2018).

4.8  Evolution of Analytical Techniques in Environmental 
Analysis

The need to know both the composition and the possible contaminants of a given 
sample, the possibility of making a physical sample, or its impossibility, together 
with the need to know the precise variation over time of the contents in the most 
varied species and compounds, has led to that the conclusion that, at this time, ana-
lytical chemistry provides various methodologies appropriate to environmental 
needs (Rubio et al. 2016).

Within the analytical measures, it can be considered that most of the available 
analytical techniques can be used in continuous analysis, and automation is undoubt-
edly an example that is used in a water analysis in many laboratories for the control 
of drinking water. The need for continued analysis also applies for the regulation of 
compounds in the atmosphere and for the monitoring of the distribution of atmo-
spheric pollutants such as CO2 and CO, NO2 and NO, SO2, CH4, and O3 levels 
 present in the troposphere or known as urban and O3 level in the stratosphere, to 
mention the most important ones (Ionel and Popescu 2011).

In analytical techniques, one way to allow connectivity, partial or total, to unit 
operations is through the use of continuous flow systems. Of the various existing 
continuous flow techniques, the most commonly used is the so-called flow injection 
analysis (FIA), which is based on inserting a small volume of sample into a channel 
through which a solution that drives it to a detector circulates. In the trajectory, the 
sample can be subjected to pretreatment stages if required. This type of system 
allows the facility to integrate stages such as injection, mixing, gaseous diffusion, 
preconcentration, and electrophoretic separations and includes a wide range of 
detection techniques such as potentiometric, amperometric, optical, among others.
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New concepts have arisen from the need to solve problems present in analytical 
systems, and in the 1990s, the concept of so-called μ-TAS (total analytical micro-
systems) was presented for the first time, which have greatly evolved in the last 
years. The small size systems are designed to perform all stages of the analytical 
procedure in an integrated way in a microfluidic platform to obtain chemical infor-
mation automatically, which involves stages of sampling, sample transport, sample 
pretreatment, separation, detection, and data analysis (Ibañez García 2007; Ionel 
et al. 2008).

Miniaturization in analytical systems offers the possibility of being portable, 
autonomous, reducing costs, and the possibility of in situ measurements. Some of 
the primary objectives of these devices are to have a more effective environmental 
analysis and monitoring, protecting natural water resources.

The nanosensors of ions have been developed recently. One of the most impor-
tant analytes is lead (Pb2+), because it is one of the most toxic and dangerous 
heavy metals, mainly for children, and the determination of low concentrations is 
of great importance. In 2007, a fluorescent nanosensor for lead was developed. 
High concentrations of copper can be toxic. The detection of traces of copper ions 
is very important due to its environmental implications. Contributions have been 
reported with nanoparticles that have allowed readings that trace copper ions 
(Wang 2011).

Nowadays, there are increasing harmful volatile organic compounds (VOC) 
available, which evaporate and cause great damage and air pollution; currently, 
there remains a great interest in the development of VOC sensors. With applications 
that involve environmental monitoring, until now gas chromatography systems have 
had applications for this purpose; however, it has a higher operating cost, and the 
response is not appropriate in real-time environmental monitoring applications 
(Alvarez et al. 2009).

4.9  Perspectives on the Methods of Analysis 
of Environmental Pollutants

onitoring has been defined as the systematic observation of parameters related to a 
specific problem, designed in such a way that they provide information on the char-
acteristics of the problem to be treated and its changes over time. On the other hand, 
Roni (2005) defines it as “the systematic evaluation of something, with the purpose 
of collecting data to respond to specific objectives.” Characterize the conditions 
(spatial variability) of the different pollutants (Gregorio and Irazustabarrena 2001).

It can be said that at present there are three ways to work with the problem of 
pollution prevention, control, and repair; you can find a hierarchy in the sense that 
the top priority is prevention, followed by action controls, leaving the separation 
considered in the last place. Pollution, monitoring, detection, and minimization 
encompass all the media that are related to it and usually, fall into a control. For a 
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better control of the contamination, it is necessary to consider several strategies to 
avoid the generation of pollutants from the source that generates them, and this 
consists of prohibiting, eliminating, or gradually removing certain chemical prod-
ucts or groups of them. This strategy is reflected by laws or regulations adopted by 
different governments and nations. However, increasing awareness of the health and 
ecosystem risks of the different pollutants in the environment leads to a need to 
develop increasingly sophisticated control and analysis equipment that can reach 
detection limits lower, as well as obtaining fast and reliable results; it is also consid-
ered increasingly small, portable, automated, and multiparameter equipment, where 
the development of specific sensors is relevant. Moreover, the use of instrumenta-
tion for contaminant and selective species is of importance (OPTI 2001).

It has continued in the generation and construction of equipment that includes 
techniques of on-site analysis, which can characterize the waste in the places of 
origin and destination, through the miniaturization of equipment to assess environ-
mental contaminants, knowing toxicity, content of organic matter and in solid state, 
among other characteristics (Cazes 2011).

On the one hand, the development of biosensors undoubtedly continues to boom 
for the coming years, allowing rapid and reliable analysis, through the use of physi-
cal, chemical, biological, and toxicological methods, which implies the develop-
ment of technological tools according to the different types of pollution (Coopeer 
and Cass 2004).

On the other hand, the analysis techniques will tend toward automation, which is 
the use of robotics in multiparameter equipment that allows a simplification of the 
analytical process, minimizing the costs of execution and analysis; these techniques 
involve the development of the ideal instrumentation for the control and monitoring 
of existing systems, with the intention of having real information on environmental 
pollution systems (Harvey 2000).

Regarding the technologies of soil characterization, the problems associated 
with soil contamination are considered, and it involves the development of tech-
nologies for the characterization of these, associated with the normative  development 
with regard to the typification of the contaminants present in soils and underground 
waters; these technologies are focused on determining the availability, speciation, 
mobility, and other characteristics of pollutants for the development of innovative 
and alternative methods for the characterization of contaminated soils (Smith 2008).

The monitoring and remote control equipments tend to have more information 
on environmental parameters that favor the development of equipment to obtain 
reliable information in real time, for decision making in different scenarios. These 
teams tend to be in continuous flow, and integrated monitoring and control networks 
are created, as well as reliable and safe wireless communication and data transmis-
sion protocols. Satellite detection and tracking equipment has also been generated 
using tools of simulation (Rubio et al. 2016).

Work has been done on the development of equipment for recycling and waste 
assessment; these teams consider obtaining fuels derived from waste (biofuels) and 
devices that can have equipment for the treatment of air pollution that generates 
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valuable by-products, some with technology for gasification and energy use 
(Murray 2003).

New analysis technologies currently tend to the energy recovery which accord-
ing to application can mention some innovations applied in incineration (fluid bed 
combined cycle, etc.), gasification, pyrolysis processes energy assessment through 
the efficient use biomass and energy use, advanced thermal processes, obtaining 
liquid fuels from industrial solid minimizing environmental pollution with the 
application of biotechnology, biological degradations aerobic, anaerobic co- 
digestion of waste fermentation, esterification, etc.

The recovery of materials is a tendency of the technologies associated to revalue 
the waste of contaminants and its minimization, through materials from waste with 
the intention of obtaining secondary raw materials, through a previous treatment 
that can serve as a basic element to another process, obtaining of materials, and the 
recovery of metals with added value through the application of advanced separation 
and extraction technologies, which can be intimately linked to hydrometallurgical, 
pyrometallurgical extraction processes, etc. (Ortiz 2001).

The new technologies will have a direct impact on industrial development, the 
use of catalysts with novel designs, the inclusion of bioprocesses, the use of mem-
branes for the separation of products, microreactors, etc., which will change the way 
of elaborating many of the compounds that we know, allowing an optimization and 
minimization of contamination.

On the one hand, the design for the integration of processes will undoubtedly be 
one of the aspects that will be consolidated in the coming years, due to the wide 
range of applications, which allow the control of environmental emissions, process 
safety, etc. (Jorn and Laurindsen 2001).

On the other hand, the advances in the field of materials, analytics, and electron-
ics available today allow to generate new sensors and measuring devices that permit 
to improve the information in the coming years and that is undoubtedly a large field 
of application. The analysis and decision making associated with the analysis pro-
cesses are based on the use of models at different levels of simulation techniques. 
The use of simulation allows to reduce the development and start-up times, in 
 addition to synthesizing the knowledge of a process and making decisions in a ratio-
nal way; modeling is considered an important technology for future analysis tech-
niques (Ionel and Francisc 2010).

The implementation of control systems and its optimization are based on the 
availability and clear and precise information of the processes, whether analytical, 
industrial, or monitoring. The instrumentation systems are based on spectroscopy, 
infrared, temperature, etc., and they will provide much better measurements than 
the actual systems. In order to interpret the information that they collect, and it be 
useful, a more sophisticated signal processing will be required and also the progress 
in topics such as estimation of variables not yet measured, using sensors and soft-
wares developed for specific purposes (Rouessac 2004; Schwarzenbach 2007; 
Berna 2010).
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4.10  Conclusion

Many developments and technological advances have been created without directly 
considering a real problem. However, it is necessary to see the real problems and the 
processes that generate high levels of contamination, minimizing waste, emissions, 
and therefore pollution, which implies a good control in the different anthropogenic 
processes of the current society. Additionally, another great challenge that should 
not be set aside is to build equipment and technologies that allow monitoring with 
solid, real, and practical foundations, capable of solving current and future environ-
mental problems; however, going a step forward, with the right techniques, the cor-
rect instrumentation, and control in emissions, the society can augur a good future 
and monitor environmental pollution.
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Chapter 5
Global Scenario of Remediation 
Techniques to Combat Environmental 
Pollution

Henna Hamadani, Shahzada Mudasir Rashid, Muneeb U. Rehman, 
Rameez Ali, Masrat Rashid, Manzoor ur Rahman, Ishraq Hussain, 
Gowhar Gul, and Zulfiqar ul Haq

5.1  Introduction

Advances in science and technology as well as rapid industrialization is leading to 
the development of the world at a very fast pace. Although development is a wel-
come step everywhere, it has also contributed significantly to environmental pollu-
tion. Pollution has serious impacts on ecosystem as well as human and animal health 
which need to be tackled as soon as possible. Polluted drinking water has been stated 
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to be the cause of around 250 million water-based diseases (Kuppusamy et al. 2016). 
WHO (2013) has reported that in the USA alone, diesel  emission- generated air 
 toxicants contribute to around 70% cancer risk. It has been estimated that exposure 
of fine particles in polluted air causes death of around seven million people every 
year (WHO 2018). Exposure to toxic pollutants can have negative effects on health 
effects which include compromised immunity, physical, mental and neurological 
disorder, carcinoma, organ dysfunction, reduced life expectancy, and in some cases 
death (Yu et al. 2011; Huang et al. 2012; Kuppusamy et al. 2016). Various toxic 
organic and inorganic pollutants present in polluted environment include pesticides, 
polychlorinated naphthalenes, chlorinated solvents, perfluorochemicals, quaternary 
ammonium compounds, triclosan, polychlorinated alkanes, benzothiazoles, 
polydimethylsiloxanes, industrial byproducts, heavy metals, polycyclic aromatic 
hydrocarbons, engineered nanoparticles, and many others (Kuppusamy et al. 2016).

Remediation of pollution is a global concern, and many techniques each having 
their merits and demerits are available for combating pollution. Various techniques 
employed for remediation of environmental pollution have been described in this 
chapter.

5.2  Techniques for Remediation of Contaminated Soil 
and Groundwater

Various techniques are being used across the globe for remediation of environmen-
tal pollution. In general, these remediation techniques have been classified either as 
ex situ or in situ depending upon the site action. In ex situ technique, media is 
extracted physically from a contaminated site and then treated at a different loca-
tion. For example, if the contaminant is present in the soil, then the soil is dug out, 
but if it has reached the groundwater, then both the water and the soil are excavated. 
As far as in situ remediation techniques are concerned, contaminants are treated on 
site only. Both the techniques have their advantages as well as disadvantages which 
are summarized in Table 5.1.

Table 5.1 Comparison between ex situ and in situ remediation techniques

S. No Feature
Ex situ 
remediation

In situ 
remediation

1 Contaminant removal and transportation from 
the site

Required Not required

2 Efficiency of contaminant removal More Less
3 Cost High Less
4 Exposure of excavators to health risks More Less
5 Time required for achieving effectiveness Less More
6 Monitoring Easy Difficult
7 Achievement of uniformity More Less

Kuppusamy et al. (2016)
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5.2.1  Ex Situ Remediation Techniques

5.2.1.1  Dig and Dump Technique

Dig and dump, also known as excavation and disposal, is one of the most popular ex 
situ techniques for remediation of contaminated soil and water. The sites in which 
pollutants exceed the preset levels of risks are referred to as hot spots. These hot 
spots are targeted in this technique. The contaminated soils are dug and transported 
to specific locations (landfills) for dumping the wastes. A secure landfill generally 
has four elements consisting of natural hydrogeological setting, cap, leachate col-
lection system, and bottom liner. Plastic material, clay, or a combination of both is 
used in the bottom liners, which are used for layering the pit dug in the ground and 
thereby prevents escape of waste into the environment. Leachates are prevented by 
covering the landfill with the cap. Another type of landfill is the bioreactor landfill, 
which is used to treat toxins with the help of microbial processes. It can be aerobic, 
anaerobic, or both. This system has many advantages (Kuppusamy et  al. 2016) 
which include reduction in emission of greenhouse gases, non-requirement of land 
filling for the end products, reduced land filling and leachate treatment cost, and 
decreased concentrations of contaminant during the landfill operation. However, 
some drawbacks have also been listed by Campbell (2009) which includes human 
risk as well as the transportation cost from the site to treatment location.

5.2.1.2  Pump-and-Treat Technique

The contaminated groundwater is pumped out in this technique, and then granular 
activated charcoal is used for its treatment. This technique has two variants which 
include pulsed pumping and continuous pumping. Pulsed pumping has been reported 
to be more beneficial than the continuous one (Mackay et al. 2000). It has been sug-
gested that cost-effectiveness and pollutant removal efficiency of this technique can 
be enhanced by the use of surfactant foam technology (Wang and Mulligan 2004). 
Various alternatives to this system have emerged which include the metallic iron tech-
nology, surfactant-enhanced remediation, reactive barriers, and nano-techniques.

5.2.1.3  Incineration Technique

Incineration remediation technique, used to treat contaminated soils, has grown 
importance over the last two decades. Incinerators are similar to closed burning 
rotary kilns having proper pollution control, quench, and afterburner units (Pavel 
and Gavrilescu 2008). Wastes are destroyed by subjecting them to a high tempera-
ture ranging from 750 °C to about 1200 °C. The technique treats large amount of 
waste and is effective against chlorinated hydrocarbons, dioxins, and explosives. 
Volume and weight of the waste materials are reduced to just 5 and 25% of their 

5 Global Scenario of Remediation Techniques to Combat Environmental Pollution



96

original volume and weight, respectively. Combustible carcinogens and toxic 
organic compounds are also detoxified by this method. In comparison to landfill 
technique, the greenhouse gas generation is less (Hutton 2009). The energy  produced 
by the incineration process can be recycled and used as fuel for various other activi-
ties. However, Abbasi (2018) has debated over its negative impacts on the environ-
ment and practical infeasibility of energy recycling. Other disadvantages include 
high capital and operating costs.

5.2.1.4  Oxidation Technique

Oxidation technique destroys the target contaminant and reduces the pollutant tox-
icity to a significant level by chemical, biological, or other advanced process. 
Chlorine, hypochlorites, chlorine-di-oxide, ozone, permanganate, and peroxides are 
the common oxidizing agents used (Anonymous 2012). Advanced type of oxidation 
referred to as advanced oxidation processes (AOP) based on the formation of highly 
reactive radicals mainly hydroxyl radicals has the potential to many contaminants 
both inorganic and organic in nature. The free radical-based processes occur at 
higher rates than those based on other types of chemical oxidation (Rosenfeldt et al. 
2007). Among the various types of materials capable of catalyzing these processes, 
perovskites have been reported to be very promising, because of their high stability 
and ability to stabilize unusual oxidation states of metals (Cervantes and Castillejos 
2019). AOPs can be classified either as homogeneous or heterogeneous (Poyatos 
et al. 2010). Homogeneous AOPs can be subdivided into those using energy and 
those not involving energy. The heterogeneous AOPs processes are subgrouped into 
four types: (1) catalytic ozonation, (2) photocatalytic ozonation, (3) Fenton-like, 
and (4) photo catalytic oxidation (Cervantes and Castillejos 2019). Incapability to 
manage large quantities of materials and high costs includes some of the disadvan-
tages of this technique.

5.2.1.5  Adsorption

Adsorption is the most commonly used technique for the remediation of pollution 
of air emissions, wastewater from industries, chemical spills, and groundwater. It is 
known to be the fast and inexpensive technology for removing various harmful 
chemicals such as xylene, dichloroethane, trichloroethene, tetrachloroethene, 
 ethylbenzene, pesticides, herbicides, explosives, perchlorate, and heavy metals 
(Kuppusamy et al. 2016). Various types of adsorption are physical, chemical (che-
misorption), and electrostatic. Activated carbon is the most commonly used adsor-
bent for water and air treatments. Other adsorbents include activated alumina, 
ion-exchange resins, forage sponge, and sorption clays.
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5.2.1.6  Ion Exchange

Ion-exchange remediation technique is characterized by exchange of cations or 
anions between contaminants and media. Resins are mostly used as ion- exchangeable 
materials (Anonymous 2012). Ions present in the resins get exchanged with con-
taminated constituents of the polluted fluids after being passed over the resin bed. 
The exhausted resins can also be reused after regeneration but are often used only 
once. Both types of resins (i.e., cationic as well as anionic) are being used in this 
technique (Alexandratos 2008). These resins are insoluble, adaptable, and compat-
ible with the environment and can be used for many years in most cases. This tech-
nique is effective against radionuclides, ammonia, dissolved metals, silicates, and 
nitrates from liquid media (Rengaraj et al. 2003).

5.2.1.7  Pyrolysis Remediation Technique

Pyrolysis remediation technique, also referred to as molten solid processing or 
plasma arc technology, is highly efficient and requires less time for action. It is 
effective in the remediation of organic as well as inorganic pollutants from soil and 
oily-sludges such as dioxins, mercury, cyanides, creosotes, and hydrocarbons. In 
addition to this, wastes from wood treating, coal tar, rubber processing, paint, and 
refinery are removed by pyrolysis (Arvanitoyannis et al. 2007). It acts by chemically 
decomposing hazardous substances by the use of thermal energy in absence of oxy-
gen, under pressure at a temperature of more than 430 °C (Venderbosch et al. 2010). 
Targeted compounds are transformed into an insignificant quantity of liquid or solid 
residues or simply into gas. Nonproduction of carbon dioxide during the treatment 
is one of the important advantages of this technique (Inguanzo et al. 2002).

5.2.1.8  Physical Separation Technique

Soil washing is a cheap remediation technique requiring fewer investments on treat-
ments, since it reduces the volume of contaminant materials requiring treatment to 
a significantly low level. The technique is also referred to as soil washing, soil 
scrubbing, or mechanical scrubbing or attrition scrubbing. It can be made applicable 
for heavy metals, semi-volatile organic compounds, polycyclic aromatic hydrocar-
bons, polychlorinated biphenyls, pesticides, petroleum, and fuel residues (Isoyama 
and Wada 2007). The polluted material is mechanically concentrated into smaller 
volumes by this technique for further treatments (Dermont et al. 2008). Although 
the technique is effective alone, it can also be combined with other techniques for 
increased pollutant cleaning efficiency.
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5.2.1.9  Dehalogenation Technique

This remediation technique involves the removal of halogens from the halogenated 
compounds. It is classified into two types, i.e., chemical dehalogenation and bio-
logical dehalogenation. Chemical dehalogenation consists of halogen removal from 
the contaminant by heat, mixing the same with the chemical reagents such as sodium 
bicarbonate or polyethylene glycol. Biological dehalogenation comprises of 
 dehalogenating the pollutants with the help of microorganisms such as anaerobic 
bacteria (Dehalococcoides, Dehalobacter, Anaeromyxobacter). Biological deha-
logenation has been classified into following types depending upon the mode 
of action:

• Reductive dehalogenation.
• Oxidative dehalogenation.
• Dehalogenation by methyl transfer.
• Dehalogenation by hydration.
• Dehydro dehalogenation.
• Intramolecularsubstitution.
• Thiolytic dehalogenation.
• Hydrolytic dehalogenation.

5.2.1.10  Bioremediation Technique

Bioremediation is an environment-friendly and cost-effective remediation tech-
nique for treatment of environmental pollution by the use of microorganisms (Luka 
et al. 2018; Shafi et al. 2018). Bioremediation can be either solid phase bioremedia-
tion or slurry phase bioremediation (bioreactors).

Solid phase bioremediation: Solid-phase biological remediation techniques 
include biopiles, land farming, and composting. Biopiles, also referred to as bio-
cells, static pile composts, bioheaps, and biomounds, are used to treat the polluted 
soils contaminated with petroleum products. It is a type of biodegradation, in which 
pile of contaminated is made first and then the same is aerated by artificially forcing 
air into it. Water is added to the pile after aeration and temperature, and pH is also 
controlled. This leads to activation of the microbiological processes which eventu-
ally degrades the petroleum compounds. Efficacy of the system is enhanced by 
using various structural materials such as woodchips, dry manure, straw, sawdust, 
and sand (Mohee and Mudhoo 2012). The efficacy of this technique is affected by 
the characteristics of soil, contaminant, and climate (Giasi and Morelli 2003). Land 
farming technique is used for the treatment of hydrocarbons, certain pesticides, die-
sel, wood preserving, and coke wastes. Contaminated material is spread into lined 
beds after excavation is done. Water and nutrients are added to trigger microbiologi-
cal activity. Aeration, temperature, and moisture control are important aspects to be 
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taken care of in this method. Hydrocarbon degrading bacteria are added to speed up 
the process of degradation. Composting is a technique which transformation of 
organic contaminants such as polycyclic aromatic hydrocarbons into stable innocu-
ous products by microorganisms is done. The level of various parameters to be 
considered during compositing is given in Table 5.2.

In addition to this, a temperature of 50  °C to 65  °C needs to be maintained. 
Contaminated soil is extracted and then mixed with organic substances such as 
manure, vegetable wastes, and hay. This is one way to accelerate the thermophilic 
microbial activity as well as the porosity of the contaminated soil (Coker 2006).

Slurry phase bioremediation technique: Slurry phase bioremediation technique, 
also known as slurry bioreactor, is known to be one of the best biological remedia-
tion techniques, in which microbes are used to treat polluted wastewater. In this 
technique, in order to achieve bioremediation, polluted material is processed through 
a bioreactor. A bioreactor is a structure that is engineered to support a biologically 
active environment.

5.2.1.11  Solidification Remediation Technique

Solidification also referred to as stabilization, is a remediation technique that uti-
lizes physical as well as chemical means to treat polluted materials contaminated 
with inorganic substances. The technique is effective against radionuclides as well, 
but it is less effective against pesticides and organic substances. Solidification of 
contaminants is carried out by binding them inside a stabilized mass. Stabilization 
of pollutants by reduction of their mobility is done through chemical reactions 
between them and the stabilizing agent.

5.2.1.12  Constructed Wetlands

Constructed wetland treatment is another remediation technique for wastewater 
which is known to a long-term technology and involves the use of microbial, natu-
ral, geo-chemical, and biological processes.

Table 5.2 Level of various 
parameters during compositing 
(Semple et al. 2001)

S. No. Parameters Level

1 Oxygen (%) 10 to 15
2 Moisture (%) 50 to 55
3 C:N ratio 30:1
4 pH 6 to 9
5 Porosity (cm) 1 to 5
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5.2.2  In Situ Remediation Techniques

In situ treatment techniques are those types of remediations in which contaminants 
within soil or groundwater is treated without removing them from the ground. They 
can be classified as chemical, physical, biological, thermal, or electrical techniques 
and are described below.

5.2.2.1  Biological Treatments

Biological treatment is a low-cost remediation technique in which microbes are 
used to degrade pollutants into innocuous substances such as fatty acids, water, 
biomass, and carbon dioxide. It is also employed for the remediation of co- 
contaminated soil with heavy metals and organic pollutants (Ye et al. 2017). The 
limitation to this technique is that it is a time-consuming and difficult process. 
Various types of biological treatments (Lodolo 2019) are enlisted in the Table 5.3.

Table 5.3 Types of biological treatments

S. No Technique Details Target pollutant

1 Land farming Reduction of contaminant 
concentrations through 
biodegradation

Petroleum hydrocarbons, 
polycyclic aromatic 
hydrocarbons, creosote, 
halogenated volatile, semi- 
volatile, non-halogenated-semi- 
volatile organic compounds, 
pesticides

2 Natural 
attenuation

Contaminants are degraded and 
mineralized by using natural 
subsurface processes such as 
dispersion, dilution, volatilization, 
biodegradation, and sorption

Nonhalogenated volatile organic 
compounds, semi-volatile 
organic compounds, fuel 
hydrocarbons, explosives

3 Bioventing Soil microorganisms are 
stimulated to destroy contaminants 
in the polluted soil by making 
oxygen available

Wood preservatives, gasoline, 
non-chlorinated solvents, 
pesticides, fuel

4 Enhanced 
bioremediation

The process comprises of adding 
microorganisms to the subsurface 
environment so as to quicken the 
natural biodegradation

Petroleum hydrocarbons, 
semi-volatile organic 
compounds, volatile organic 
compounds, pesticides

5 Phytoremediation Plants are used to treat 
contaminants in soil. 
Phytoremediation is classified into 
the following types depending the 
mechanism:
  (a) Rhizofiltration
  (b) Phytoextraction
  (c) Phytotransformation
  (d) Phyto-stimulation
  (e) Phytostabilization

Pesticides, insecticides, 
explosives, surfactants, various 
metals, radionuclides, 
chlorinated solvents, polycyclic 
aromatic hydrocarbons
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5.2.2.2  Physical or Chemical Treatments

This technique involves the use of physical and chemical properties of contaminants 
to treat the contamination. The process is cost effective and less time consuming. 
The induction of phase transfer is carried out in the physical process, while as in 
chemical process, chemical reactions are carried out to change the chemical struc-
ture of the contaminant in order to make them less toxic. Various techniques (Lodolo 
2019) involved in these types of treatment are enlisted in Table 5.4.

Table 5.4 Types of physical or chemical treatments

S. No Technique Details Target pollutant

1 Solidification and 
stabilization

Binders and additives are used for 
treating the contaminated sites by 
reducing the mobility of harmful 
materials

Various inorganics, 
radionuclides, heavy 
metals, nonvolatile 
organics, semi-volatile 
organics

2 Soil flushing Contaminants are extracted from the 
polluted soil by the use of water and 
water solutions which dissolves these 
contaminants

Metals, radioactive 
contaminants, fuels, 
pesticides, volatile organic 
compounds, semi-volatile 
organic compounds

3 LasagnaTM process Electrokinetics is used to transfer 
contaminants in soil pore water into 
treatment zones where 
decomposition of contaminants 
occurs

Organic compounds, fuel 
trichloroethylene

4 Fracturing Improves the efficiency of removal in 
situ treatment techniques by 
enlarging the existing fissures and 
introduction of new fractures, mainly 
in the horizontal direction. 
Commonly used soil fracturing 
techniques include the following:
  (a) Pneumatic fracturing
  (b) Blast-enhanced fracturing
  (c) Hydrofracturing

Variety of contaminants

5 Electroreclamation Removal of pollutants from the soil 
by the use of electric or 
electrochemical processes

Heavy metals, polar 
organics, anions

6 Soil vapor extraction 
(enhanced 
volatilization)

Vacuum which is applied through 
extraction wells to create a 
concentration gradient and a zone of 
low vapor pressure induces gas phase 
volatiles, which are then removed 
through the extraction wells

Volatile metals, fuel 
contaminants, volatile 
organic compounds

7 Polymer adsorption The use of water-soluble polymers, 
functionalized with those groups 
which have a strong affinity for a 
particular pollutant to treat 
contaminated soils

Heavy metals, 
radionuclides, inorganics, 
nonhalogenated volatile 
organic compounds
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5.2.2.3  Thermal Treatments

Thermal treatment techniques are based on the principle of increasing the volatility, 
burning, decomposing, destroying, or melting the pollutants. It is the most costly 
treatment technique, and the time taken to accomplish the technique depends on 
various factors such as pollutant size and depth, type of soil, and the characteristics 
of the contaminant. Various types of thermal treatments (Lodolo 2019) used for pol-
lution remediation is described in Table 5.5.

5.3  Techniques for Remediation of Air Pollution

Various ex situ remediation techniques used for the control of air polluted have been 
summarized (Kuppusamy et al. 2016) in Table 5.6.

Table 5.5 Types of thermal treatments

S. No Technique Details Target pollutant

1 Soil vapor 
extraction

Volatilization rate of semi-volatile contaminants is 
increased to facilitate their extraction by the use of 
various processes such as electrical resistance, 
electromagnetic, fiber optic, radiofrequency 
heating, or steam injection

Volatile organic 
compounds, 
semi-volatile organic 
compounds

2 Vitrification Based on the principle of subjecting polluted soil 
to temperatures high enough to allow melting of 
the same to form a glass after cooling

Organics, inorganics, 
radionuclides

Table 5.6 Remediation techniques for air pollution

S. No. Technique Procedure

1 Adsorption Air pollutants are adsorbed onto activated carbon or zeolites
2 Filtration Polluted air is passed through viscous substance-coated fibrous 

material
3 Ozonation Pollutants are oxidized by the generation of ozone
4 Photolysis Pollutants are oxidized by the application of UV alone or in 

combination with a photocatalyst
5 Biofiltration Pollutants are degraded by passing the contaminated air 

through microbe-colonized packed bed of solid support
6 Membrane separation Membranes are used in this technique to separate pollutants
7 Enzyme oxidation Degradation of pollutants is done by catalysts or enzymes 

through the transfer of air emissions into aqueous phase
8 Botanical purification Degradation of pollutants using enzymes or plants passing the 

air through the contaminated soil or on vegetation
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5.4  Emerging Technologies

Many promising techniques for the remediation of environmental pollution are 
emerging, some of which are discussed below:

5.4.1  Nanotechnology

The use of nanotechnology in the remediation of environmental pollution is gaining 
importance nowadays (Kim et  al. 2017; Gong et  al. 2017; Guerra et  al. 2018; 
Ratwani et al. 2018; Cai et al. 2018; Corsia et al. 2018). The property of having high 
surface-area-to-volume ratio of nanotechnology-based materials makes them suit-
able for such processes. Various types of nano-materials such as inorganic, carbon- 
based, and polymeric-based materials are used for the remediation of environmental 
pollution. The technique is effective against the contaminants such as heavy metals, 
dyes, halogenated herbicides, chlorinated organic compounds, volatile organic 
compounds, and organophosphorus compounds (Guerra et al. 2018).

5.4.2  Microbial Fuel Cell Technology

Microbial fuel cells, a sustainable and low-cost technology, have been promising for 
harvesting energy and treating wastewater (Chouler et al. 2016). They consist of two 
compartments, namely a cathodic and an anodic compartment, which are usually 
separated by a proton exchange membrane (PEM) so that the migration of electro-
lytes from one chamber to the other can be avoided (Ho et al. 2018). Organic matter 
is broken down to generate electrons and protons in the anode compartment by 
using bacteria as catalysts (Ezziat et al. 2019). Transfer of electrons to cathode com-
partment occurs via an external circuit, and the diffusion of protons takes place 
through the proton exchange membrane (Nimje et al. 2012; Mathuriya and Yakhmi 
2014; Miskan et al. 2016). By serving as terminal electron acceptors in the cathode 
compartment, metals which serve as terminal electron acceptors in cathode com-
partment can be reduced electrochemically and recovered from the cathode surface 
(Ucar et al. 2017).

5.4.3  Ultrasonic Technology

Ultrasound remediation technology induces chemical reactions to cause degrada-
tion of the pollutants by using frequency of over 18 kHz which forms the source in 
developing cavitation bubbles leading to high localized pressures of more than 
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50 MPa and temperature of more than 4726 °C (Adewuyi 2001). This technique 
requires less space, less energy expenses, lower installation and maintenance cost, 
and is fast (Thangavadivel 2010).

5.5  Conclusion

Clean environment is vital for a healthy life, and no compromise in this regard can 
be afforded. Globally concerns have been shown toward the environmental pollu-
tion, and various remediation techniques to combat the same have been devised too. 
The techniques are diverse in nature depending upon the site of action, mechanism 
of action, cost-effectiveness, time consumption, effectiveness, target specificity, etc. 
However, all techniques have a common goal of combating pollution in their own 
specific manner.
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Chapter 6
Biopesticides: Clean and Viable 
Technology for Healthy Environment

Marian Butu, Ramona Stef, Ioana Grozea, Mihaela Corneanu, 
and Monica Butnariu

6.1  Background Biopesticides

In the last few decades, agriculture has been almost entirely dependent on synthetic 
organic insecticides or pesticides obtained through chemical synthesis. Agriculture 
has seen a major change by the use of crop protection chemicals that began in the 
late 1800s with the introduction of arsenic insecticides and Bordeaux mixtures as a 
grape fungicide (copper hydroxysulfate (II), basic copper sulfate, is a particulate 
suspension colloidal active substance-metallic copper containing up to 25% basic 
copper sulfate) and progressing to the very sophisticated compounds currently 
available. The effect of pesticides obtained through chemical synthesis on agricul-
ture has been dramatic because today’s agriculture means the use of chemicals. 
Despite the immense benefits, they are used in large quantities and are designed to 
kill organisms (Dawson and Buckley 2011).

However, the very useful properties of these pesticides obtained through chemi-
cal synthesis alongside the residual action, although giving high toxicity to a wide 
range of organisms, have given rise to serious environmental problems. In addition, 
the emergence and spread of resistance increase in many vector species refer to the 
concern of environmental pollution and the higher costs for new chemical insecti-
cides. It is therefore obvious that pest control is not safe anymore, as long as it is 
based on the use of chemicals alone. Therefore, natural enemies such as predators, 
parasites, and pathogens attracted attention for extensive research actions. 
Unfortunately, none of the predators or parasites can be mass produced and stored 
for long periods of time, since all of them must be raised in vivo. It has become 
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apparent that there is an urgent need for a biological agent that possesses the proper-
ties of a highly synthesized, highly toxic chemical pesticide for the target organism 
that can be mass produced on an industrial scale with a long shelf life and can be 
transported safely.

During the 1970s, WHO (World Health Organization) and other international 
organizations have initiated studies to identify new biological control agents and 
optimize the existing ones. Biological control is generally considered as a technique 
for controlling insects due to minimal impact on the environment and avoidance of 
resistance problems of vectors and agricultural pests (Gay 2012).

Biopesticides refer to the use of living biological organisms (fungi, bacteria, 
insect viruses, genetically modified organisms, natural enemies, etc.) or their bio-
metabolites which are able to kill or inhibit pests. Examples of biometabolites can 
be considered as follows: 2,4-D (dimethylamine) and 2,4,5-trichlorophenoxyacetic 
acid (2,4,5-T), auxins (chemicals from the phytohormones category such as auxin 
A: C18H32O5; auxin B: C18H30O4; heteroauxin: C10H9O2N2, 2-(1H-indol-3-yl) acetic 
acid, 2-(1H-indol-3-yl) ethanoic acid, indole-3-acetic acid, indolylacetic acid, 
1H-indole-3-acetic acid, or indoleacetic acid), pheromones ((R)-hydroxydanaidal) 
and sodium 2-naphtholate (C10H7NaO) (Degenkolb and Vilcinskas 2016).

Also known as natural pesticides, they refer to nonchemical synthesis, natural 
chemicals, or living organisms and have the role of replacing pesticides and herbi-
cides. Biopesticides include bacteria, insect-borne pathogenic nematodes, viruses 
and other microorganisms, plant-derived insects, and pheromones. Biopesticides 
play an important role in the integrated pest management system used in organic 
farming. The research results are supporting the development of biopesticides for 
the following reasons: chemical synthesis pesticides generate environmental pollu-
tion, pesticides chemically synthesized for groups, do not reach the target, and even-
tually exert a negative impact as the target population gradually develops resistance 
to chemicals (Pretali et al. 2016).

In the last decades, biochemists, chemists, experts in integrated pest manage-
ment, and toxicologists have worked together to develop a new generation of natural 
herbal substances with a role in pest management and with relatively little impact 
on the environment.

The first generation of biopesticides contained alkaloids, nicotine (C10H16N2O4S) 
or 3-(1-methyl-2-pyrrolidinyl) pyridine, pyrethrins, rotenone (C23H228O6), ryania, 
sabadilla (cevadine: C32H49NO9, veratridine: C36H51NO11), and some vegetable oils 
(d-limonene, linalool) used as herbal repellents and insecticides (cedar, lavender, 
eucalyptus, pennyroyal, and citronella), etc. In 1690, water-soluble components of 
tobacco were used against grain pests. Pyrethrum and pyrethrins from 
Chrysanthemum cinerariaefolium, cinerin I (C20H28O3), cinerin II (C21H28O5), cin-
erin III (C21H30O3), jamolin I (C21H30O3), jamolin II (C22H30O5), pyrethrin I 
(C21H28O3), and pyrethrin II (C22H28O5), are the main ingredients of bioproducts 
against mosquitoes (Chen et al. 2016).

The market share of biopesticides remains quite low. In 2015, biopesticides 
accounted for 1.7% of total pesticide sales worldwide. There are a number of factors 
limiting the growth of biological pesticides: biopesticides are not widely available 
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and, compared to the effect of chemically synthesized pesticides that are relatively 
lethal, have a shorter duration and a higher cost of action. However, biopesticides 
have a higher developmental perspective in relation to the demand for pesticides 
obtained through chemical synthesis, which in many countries is stagnating or 
diminishing. In the following years, the estimated demand growth for pesticides 
obtained through chemical synthesis is about 2% and for biopesticides is 10–15%. 
By promoting organic farming, the demand for biopesticides is gradually increas-
ing. For biopesticides, as with pesticides obtained through chemical synthesis, a 
prudent assessment of health, nutrition, ecosystem and environmental safety should 
be involved. Biopesticides are natural or genetically modified agents that differ 
from chemical synthesis pesticides (conventional pesticides) obtained by chemical 
synthesis through their unique mode of action, low dose and specificity of target 
species. In parallel with the development of science and technology, the field of 
biopesticides continues to expand, involving animals, plants, microbial species and 
a variety of biological substances associated with pesticides such as plant-derived 
substances, genetically modified pests, bionic synthesis or modification of synthetic 
compounds, artificial reproduction of the harmful organisms of the antagonist 
organisms, pheromones, etc. The use of biopesticides is growing worldwide and is 
increasingly present in integrated pest management and weed management, with 
the role of not only increasing the yields and quality of control programs but also of 
reducing the impact on the environment (Kraehmer et al. 2014).

6.2  Effective Use of Plant Protection Methods

Plant protection is the science that deals with the study of pests (phytopathogens, 
including arthropods, weeds, rodents, viruses, etc.) in order to establish effective 
measures to combat the damage/economic losses they produce. It is believed that 
about one third of the potential crop is destroyed by harmful organisms; hence, plant 
protection, as the applied biological discipline, contributes to the increase of the 
crop yields and the improvement of the harvest quality. For the above reasons, pest 
control is imperative for plant cultivation, plant protection procedures (including 
stored crops) against harmful organisms being a major component of all good agri-
cultural practice guidelines.

Combating pests of agricultural crops is achieved through several methods: 
chemical (using pesticides), biological (through the use of antagonist and natural 
products), genetic (by improving the resistance of plants to harmful organisms), 
agro-technical (through soil works, including weed grass), and physico-mechanical 
(seed thermal disinfection, plant surgery, seed mowing, etc.) (Bianchi et al. 2013).

In agriculture, we are currently seeking to increase the quality by increasing the 
share of biological protection in order to eliminate chemical, toxic and polluting 
pesticides. In the attempt to reduce the use of chemicals in the control of major plant 
pathogens, safer alternatives have been developed that do not have negative conse-
quences for the environment, humans and animals and are part of the concept of 
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sustainable agriculture, with the assumption of deepening studies on integrated and 
rational pest control of plant diseases.

Due to the fact that the cereal seed is chemically treated and because there are no 
biological products to control the diseases on the seed, by designing and realizing a 
biological product, the research activities should respond to the urgent need for a 
commercial product to be used at large scale by farmers who want to set up or con-
vert to the organic farming system.

Due to the fact that the bioproducts are applied only preventively, their efficacy 
increases by combining with a conventional fungicide. To improve the efficiency of 
a plant-based bioproduct, without the addition of classical fungicides, some 
researchers tried to introduce Glomus genus fungi in the technological process for 
obtaining the bioproduct.

These mycorrhizal fungi are recognized for their role in inducing increased resis-
tance to pathogens, overcoming more than light stress conditions (drought, solar 
radiation) as well as obtaining high yield crops. The aim was to obtain unconven-
tional biofungicides for the treatment of cereal grains (Togni et al. 2019).

The bioproduct would be used in the control of the major toxigenic fungi. It was 
also described the protocol for the production of this unconventional biofungicides 
as well as the appropriate method of applying this type of treatment, with impact on 
quality of wheat crops.

Due to the fact that most biofungicides tests were performed in vitro or in pro-
tected areas, the effect of seed treatment on crops throughout the vegetation period 
is not known. Therefore, it is recommended that the field efficacy of the treatments 
should be evaluated, and this can be quantified by the presence or absence of foliar 
and spice diseases and also by the quality of the obtained production (Liu et al. 2018).

6.2.1  Biological Control

Of the approximately one million known insect species, about 15,000 species are 
considered pests, and about 300 require control management. Most pest insects 
come together with associated pathogenic microorganisms. Insect pathology prob-
ably began in the nineteenth century with the stimuli of Basii and Pasteur. An 
important contribution to the microbiological control of insects was brought by 
Mechanikoff in 1879 and Krassilinikow in 1888, who were the first to document 
that an entomopathogen, Metarhizium anisopliae, can be produced and applied as a 
microbial insecticide to control some pests specific to cereals and sugar beet. 
d’Herelle investigated insect control with bacteria after Pasteur’s description of silk-
worm diseases (Hopper et al. 2019).

All of these studies were not very consistent, and interest in the use of bacteria 
remained without the expected effects. Later in 1940, White and Dutky succeeded 
in demonstrating the control of the Japanese beetle by using Bacillus popilliae for a 
period of almost 30 years. This finding has led to increased research on antimicro-
bial properties of bacteria, and literature begun to provide more and more  information 
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about the efficacy of the strain of Bacillus thuringiensis. From 1960 to 1963, eight 
patents for the benefic action of B. thuringiensis were obtained. The use of viruses 
for the control of insect–pests was stimulated by the research of Balch and Bird in 
1944 and Steinhaus and Thompson in 1949. This interest is currently of interest, 
information supported by recent registration of viral pesticide products in the United 
States by the Environmental Protection Agency (EPA). Thus, some bacteria, viruses 
and fungi were reproduced as commercial products due to their efficiency and lack 
of toxicity or pathogenicity to nontarget animals and plants. Biological control is 
generally the use of a particular living organism in the control of pests. The chosen 
organism could be a predator, a parasite or an infectious disease that attacks insect 
pests. Biological control methods can be used as part of an integrated pest manage-
ment program to reduce the legal, environmental and public safety risks of chemi-
cals. In addition, this may be an economic alternative to some pesticides obtained 
through chemical synthesis (Sui et al. 2019).

Unlike most insecticides, biological controls are often very specific for a particu-
lar parasite. The impact on the environment and water is small, and it offers a much 
more environmentally friendly alternative than pesticides obtained through chemi-
cal synthesis.

Biopesticides could be used if pests developed resistance to pesticides obtained 
through chemical synthesis. Research and development of biopesticides attract little 
financial support compared to financial support for pesticides obtained through 
chemical synthesis. Thus, increased attention should be paid to broad-spectrum 
biopesticides and improvements in the production, training and application of tech-
nologies. Efforts should be made to optimize the impact of these agents by integrat-
ing them with other new crop production strategies.

The use of biological control requires an understanding of the biology of the 
pests and the damage they produce. Thus, biological control can be more costly than 
using pesticides obtained through chemical synthesis. In general, the results of the 
use of biological control are more efficient and faster than the use of pesticides 
obtained through chemical synthesis.

Most biopesticides attack only certain types of insects, as opposed to pesticides 
obtained by chemical synthesis, with a broad spectrum, which can kill a wide range 
of insects (Yamada et al. 2019).

6.2.2  Temperature, Timely Spraying, Improved Control Effect

The active ingredients of biopesticides are mainly crystals of proteins, and for best 
results, the temperature should be above 20 °C. If the temperature drops, the harm-
ful organism have low reproductive speed, and the biopesticide crystals are difficult 
to apply. Research indicates that at 20  °C–30  °C the biological control effect of 
biopesticides is greater 1–2 times than at 10–15 °C (Bellefeuille et al. 2019).
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6.2.3  Advantages of Biopesticides

Biopesticides are biological or biological agents typically derived in a similar way 
to chemical pesticides, with the exception that they achieve pest management while 
being environmentally friendly (Bhat et  al. 2018). For microbial biopesticides, 
effective control requires appropriate formulation and application. Biopesticides 
used against crop diseases have already been established for a variety of crops. The 
major research interest area for biopesticides is for seed treatment and soil steriliza-
tion. Advantages of biopesticides as follows:

 – Are usually less toxic than pesticides obtained by chemical synthesis.
 – Generally, affect only target pests and closely related organisms, as opposed to 

the broad spectrum of chemical synthesis pesticides that may affect different 
organisms (birds, insects and mammals, etc.).

 – Are effective in small quantities and decompose rapidly, resulting in lower expo-
sures and avoiding pollution problems caused by pesticides obtained by chemi-
cal synthesis.

 – When used as a component of integrated pest management programs, biopesti-
cides can reduce the use of conventional pesticides, while yields of crops remain 
high (Reil et al. 2018).

6.2.4  Types of Biopesticides

According to composition and sources of production, biopesticides can be:

6.2.4.1  Botanical Biopesticides

They are obtained from plants and are used to combat losses due to pests of agricul-
tural importance, with particular attention being paid to the use of higher plants. The 
studies reported, so far, a large number of useful plant species such as bael (Aegle 
marmelos L.), begonia family Begoniaceae, karanj (Millettia pinnata L.), mahua 
(Madhuca longifolia L.), neem (Azadirachta indica L.), pyrethrum (Chrysanthemum 
cinerariifolium L. and other 424 plant names of Pyrethrum species) and tobacco 
(Nicotiana tabacum L.). Botanical biopesticides can minimize undesirable side 
effects of pesticides obtained through chemical synthesis, helping to conserve the 
environment. Plant extracts have long been used to control insects. L-(−)-nicotine, 
(S)-3-(1-methyl-2-pyrrolidinyl) pyridine (C10H14) is an alkaloid (naturally synthe-
sized by several plant species) used as an insecticide since 1763. Nicotine is a toxic 
compound, symptoms of acute nicotine poisoning occur rapidly, and death can 
occur within minutes (death occurs due to respiratory arrest and due to respiratory 
paralysis) (Medina-Romero et al. 2017).
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Phytopathogenic biopesticides are one of the first options for organic biopesti-
cides, due to their advantages in the natural environment. These are mainly plant 
insecticides, plant fungicides, plant herbicides and photoactivated plant molds. The 
plants contain a series of pesticide-active compounds, nicotine (C10H14), pyrethrin II 
(C22H28O5), rotenone (C23H22O6), etc. Pyrethrin (C22H28O5) is an extract of several 
types of chrysanthemums and is one of the oldest insecticides used (there are six 
esters and acids associated with this bioinsecticide). Pyrethrin is applied at low 
doses and is considered impervious.

The toxicity of pyrethrins for mammals is quite small, apparently because they 
are rapidly degraded by enzymes in the liver. The acute LD50 dose for rats is approx. 
1500 mg/kg. The most common reactions to pyrethrin are contact dermatitis and 
respiratory allergic reactions, possibly as a result of other constituents of the com-
position. They have low toxicity for mammals (Zhang et al. 2019).

6.2.4.2  Microbial Biopesticides

Microbial biopesticides are based on the discovery of new microbial genes with 
insecticidal properties that will reduce the use of chemical pesticides. The selected 
genes have been validated in experiments that prove their effectiveness against pests.

The first set of tested genes with insecticidal properties were validated against 
insects in the family Coleoptera and Lepidoptera. These insect families include 
some of the most devastating pests for corn crops. When introduced into the genome 
of the plant of interest, the genes discovered by their bioinsecticide properties pro-
vide protection against a number of pests. Most of these bioinsecticides are based 
on microbial genes derived from B. thuringiensis, to which insects have become 
resistant over the years. The next generation of bioinsecticide products will most 
likely be based on the discovery of microbial genes that are not derived from 
B. thuringiensis. With such a large microbial genetic background, there are hun-
dreds of millions of potential genes that can form the basis for future insect control 
products, everything will depend on quantifying the immense amount of relevant 
data and analyzing them. Suyun sp. and Bacillus sp. are the most used bacterial spe-
cies for their practical application as successful biopesticides (Calvo-Garrido 
et al. 2019).

6.2.4.3  Mycotoxins

The alkaloids produced by the ergot affect the nervous system and are vasoconstric-
tors. There are known outbreaks caused by the ergot (but which are no longer due to 
the knowledge of causes and a more varied diet), Fusarium species and their analo-
gous mycotoxins (deoxynivalenol, fusarenon-X and nivalenol).

Aflatoxins are produced by species of the genus Aspergillus, common fungi that 
appear as contaminants of cereals, corn, peanuts, etc. These are carcinogenic for 
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animals and humans. Aflatoxin B1 (C17H12O6), the most toxic in this class, must be 
enzymatically activated to exert its carcinogenic effect (Matumba et al. 2015).

6.2.4.4  Toxins Generated by Algae

Toxins produced by freshwater or saltwater algae (cylindrospermopsin-alkaloid 
cyanotoxin, microcystin, lipopolysaccharides, saxitoxin, group toxins: azaspiracid, 
okadaic acid, pectenotoxin, yessotoxin) often accumulate in fish and shellfish pres-
ent in water, causing poisoning to humans and animals as well as deadly poisoning 
of fish. Unlike microbial toxins, algae toxins are generally thermally stable and are 
not removed by cooking, which increases the likelihood of toxic exposure in 
humans. Thus, this type of toxin could be researched to get biopesticides (Gerssen 
et al. 2011).

6.2.4.5  Toxins Produced by Plants

Phytotoxins are believed to have evolved as defense mechanisms against herbivores, 
especially insects and mammals. These compounds may be repellent (can reject) 
without being very toxic or can be acutely toxic for a wide range of organisms. 
Phytotoxins include sulphur compounds, lipids, phenols, alkaloids, glycosides and 
many other types of chemical compounds.

Many alkaloids, such as caffeine (C8H10N), cannabinoids (C42H60O4), cocaine 
(C17H21NO4), morphine (C17H19NO3) and nicotine (C10H14N2), are phytotoxins. 
Many chemical compounds that have proven to be toxic are constituents of plants 
that are part of the human diet as the carcinogenic compound safrole (C10H10O2) and 
related substances found in black pepper. Solanine (C45H73NO15) and chaconine 
(C45H73NO14), which are cholinesterase inhibitors and possibly teratogens, are found 
in potatoes, and quinines and phenols have a wide spread in food. Plant poisoning 
of livestock in livestock remains an important veterinary issue in some parts of the 
world (Youssef and Saenger 1998).

6.2.4.6  Animal Biopesticides

Some animal species produce toxins for offensive or defensive purposes. Some tox-
ins are poisonous (they are toxic when swallowed accidentally), and others are ven-
omous (the species actively injects the toxin through parts specifically adapted to 
the body: pins, tongues, etc.). Animal toxin chemistry extends from enzymes, pep-
tides and cardiotoxic and neurotoxic proteins to small molecules such as amines, 
alkaloids, glycosides, terpenes, among others (bee venom contains a biogenic 
amine, histamine, three peptides and two enzymes). The effects of snake venoms 
are generally due to 60–70 amino acid peptide toxins.
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These toxins are cardiotoxic or neurotoxic, and their effects are exacerbated by 
the enzymes present in the venom, which can affect the blood clotting mechanisms 
and can damage the blood vessels. Fish species, over 700 in the world, are either 
directly toxic or become poisonous to humans by ingestion. A classic example is the 
toxin produced by Sphaeroides, called tetrodotoxin (C11H17N3O8), who lives in the 
Asia–Japan area.

Death occurs within 5–30 min of ingestion, at a rate of approx. 60% (Yotsu- 
Yamashita et al. 2017).

Natural enemies can provide adequate biological control of aphids if broad- 
spectrum insecticides are not used, especially after mid-July. Common natural pests 
are lady beetle adults, lady beetle larvae, lacewing larvae, hover fly larvae, damsel 
bugs, minute pirate bugs, and parasitic wasps. Several natural enemies of the 
Colorado beetle can diminish the population. Unfortunately, it was not yet discov-
ered a natural enemy to properly control the population of this pest. A species of 
lady beetle feeds beetle eggs, and some flying parasites and a fungus can attack the 
population. These natural enemies can be preserved using New Leaf variety of pota-
toes or by microbial insecticides such as B. thuringiensis that are toxic to Colorado 
beetle but not for beneficial insects. Research continues on using exotic parasites 
that can be raised in the laboratory and then released into experimental potato fields, 
but none has yet been found to be effective enough to be produced for commercial 
use. Pesticides of animal sources include mainly animal toxins, such as spider tox-
ins, toxins from the hornet (Vespa velutina), Naproxen (aka Aleve or Midol), among 
others. Beneficial insects are widely used in the United States, Britain, France, 
Russia, Japan and India, and there are over 40 types of products for insect control 
(Tan et al. 2012).

6.3  Pheromones

The pheromones are substances that are used in plant protection. The pheromones 
(Greek φέρειν—to wear, to inform) are also referred to as “external hormones,” are 
chemical substances, molecules that, even in very large dilutions, are meant to 
transmit signals and messages of different species to their living environment. These 
substances play a role in the process of communication between species, in marking 
of territories, in finding partners in the breeding process or finding food.

The term “pheromone” was defined by Peter Karlson, Martin Lüscher, and Adolf 
Butenandt. It was not identified any pheromone of Homo sapiens. Olfactory foot-
print is not synonymous with “pheromone.” Pheromones produce “traps” to destroy 
harmful insects or disrupt the communication system, preventing males from find-
ing females for reproduction. In the integrated insect control, various pheromone 
devices can be used. Pheromones of more than 1000 species of insects are known. 
Pheromones serve to locate and attract the sexual partner, stimulate and regulate the 
copulation process, mark the territory, regulate social behavior, trigger defense, and 
alarm behavior as a stimulator of egg deposition. With these properties, researchers 
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have discovered that they can handle and combat insect pests by using them in the 
field of plant protection (Brezolin et al. 2018).

Mode of action of pheromones is as follows:

 – Messages are transmitted with great efficacy, using a small amount of 
substance.

 – The response of the receiving organism is completely preprogrammed. By 
receiving sexually attractive pheromone, the males are unable to distinguish 
whether it is transmitted from a female or an artificial source; this feature is the 
basis for using pheromone baits to capture males of the harmful species, in their 
own habitat.

 – Each pheromone transmits the message strictly intraspecific, the information 
contained therein being received and decoded only by individuals of the same 
species.

However, there are also cases when the substances in the pheromone composi-
tion are also received by individuals belonging to other species, but the information 
transmitted is only partially deciphered or has other meanings. Natural pheromones 
are chemicals that facilitate intraspecific relationships. They are produced by exo-
crine glands (mostly located on the surface of the body) and detected with the help 
of olfactory organs located on the antennas. Pheromones represent a group of insect- 
borne (or animal species) substances through which a message exchange takes place 
between individuals of the same species. Pheromones encode a large amount of 
information related to various biological activities and determine adequate behavior 
in the receptor individuals. In the social insects, the pheromone range is wider than 
the solitary insects. As the range of messages transmitted by pheromones is 
expanded, a complete and especially definitive classification remains difficult to 
achieve. The most accessible and operative is the classification based on the nature 
of the pheromone-triggered response in the receiving organism (Niogret and 
Epsky 2018).

There are two large categories of pheromones:

• Development pheromones, which cause changes in development or metabolism 
in recipient organisms. This category includes pheromones that regulate the rela-
tionships within the colonies of social insects. Emissions by the queen insect 
determine the atrophy of the genital organs of working bees or the differentiation 
of the termites in casts.

• Action pheromones, triggering some actions or behavioral changes in receiving 
bodies. Among them, several important categories are:

 – Marking pheromones by which social insects trace the route of the colony to 
a new source of food.

 – Aggregation pheromones, characteristics for social insects, but also for locusts 
and other insect species. For example, grasshopper emit aggregate phero-
mones when they find suitable places for depositing eggs.
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 – Alarm pheromones, emissions at the onset of an enemy. For example, it may 
determine the immediate dispersion of the aphid colony or may trigger mobi-
lization to fight enemies attacking colonies of bees or wasps.

 – Pheromones of oviposition. Aedes atropalpus mosquito larvae secrete a sub-
stance that stimulates the approach and deposition of eggs by females belong-
ing to the same species, the emitted substance actually indicating the presence 
of a suitable egg place, where future larvae have all the conditions to reach 
their full development.

 – Necrophorous pheromones. During the process of decomposing, the ant’s 
body produces mixtures of fatty acids with the function of mortal phero-
mones, indicating to the living members of the colony the presence of the 
dead individuals and thus determining their removal from the area.

 – Pheromones for recognition of the nest and of the members of the colony: 
they were identified in ants (Solenopsis invicta), and it appears that such sub-
stances are generally present in all species of social insects.

 – Pheromones for thermoregulation of the atmosphere in the nests were identi-
fied in wasp species.

 – Sexual pheromones, mediating sexual relationships between physiologically 
capable individuals for reproduction; they are the most numerous and well- 
studied group of pheromones. They are especially known for insects, but they 
were also reported in crustaceans, fish, batrachians, reptiles, mammals and 
even plants. Of the sex pheromones, three subgroups are delimited:

Sex attractants: they are pheromones emitted by individuals of a gender 
and have the role of attracting the opposite sex for mating.

Aphrodisiacs: they are pheromones that have the role of excitement of the 
sexual partner and of inducing him to accept copulation.

Sexual repellents: it was found that in some mosquitoes, males do not 
attempt to mate with females who have made earlier copulations 
because the sperm fluid transferred on the first copulation contains sub-
stances that are warnings or repellents for other males looking for mat-
ing partners (Akotsen-Mensah et al. 2018).

Pheromones are provided in the form of pheromone traps, which then associate 
with other types of traps. This feature gives ecological value to pheromone “treat-
ments” that will only affect the species against which they are applied, the ecosys-
tem as a whole being unaffected. (R)-hydroxydanaidal component of males 
Utetheisa ornatrix (Lepidoptera: Arctiidae) produces from dietary pyrrolizidine 
alkaloids obtained by larvae from the host plant Crotalaria spectabilis (e.g., mono-
crotaline) (Köblös et al. 2018).

Most of the pheromones are long-chain, C-C, long-chain carbon atoms, acids, 
alcohols or ketones, making it easier to isolate them. Molecular conformation of 
pheromones plays an important role in their biological activity. In any insect, the 
conformational structure of the main pheromone has a high specificity. Sometimes, 
minor changes in the molecular structure of pheromones annihilate their activity. 
Sometimes the cis and trans isomers of the same compounds behave differently in 
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terms of pheromone activity. One of the best-known pheromones is, undoubtedly, 
9-keto-2-decenoic acid or 9-keto-2-decenoic acid (C10H16O3), the bee queen’s sub-
stance, which attracts the males to mating with the queen. This acid represents only 
one compound of the 32 compounds of similar structure existing at the head of the 
bee queen. Sexual pheromones produced by females have a double role: both to 
attract distant males and to excite them when mated. The main insect sex phero-
mones are shown in the Table 6.1.

The pheromones produced by males are intended to excite females. These com-
pounds are sometimes referred to as aphrodisiacs. In chemical terms, natural phero-
mones of insects are usually formed from a single chemical compound, very rarely 
from mixtures of several compounds. In the latter case, the specificity of the phero-
mones depends on the proportion of the various compounds. The simplest sex pher-
omone in insects is valeric acid produced by females of the beet wormhole, Limonius 
californicus (Binyameen et al. 2018).

Some of the pheromones, such as frontaline and exobrevicomine, have a cyclic 
structure. They facilitate copulation to cockroaches of genres Brevicomis and Ips. 
Some cyclohexane derivatives are Boll weevil pheromones, Anthonomus grandis. 
Until now, few pheromones with aromatic structure (cyclic organic structure with 
system of conjugated π-bonds), with functional group (acetate, alcohol or alde-
hyde), and with double-bond position and configuration (E or Z), stabilized by, 
through, or from the conjugation, were identified. It appears that the phenol acts as 
a pheromone for larvae of grass beetles. Phenol can form in the body of larvae from 
tyrosine present in their food. For Leucania impuris, the role of pheromone is met 
by benzoic aldehyde and to butterflies of the genre Danaus, by some alkaloids.

Sex pheromones are found low quantity in insects, which requires the sacrifice of 
a large number of individuals when determining their molecular structure. Each 
larva of the female Orygia pseudotsugata (the hairy caterpillar of the fir tree) con-
tains approximately 40 ng of pheromones in the abdominal cavity. A total of 6000 
larvae were needed to isolate and identify their sex hormone. Some insect sex hor-
mones are found in various plant species. Thus, D-acetatul de borneol is found in 
Gymnospermae. This pheromone is active at concentrations below 0.07  mg/cm. 
Borneol L-acetate has 100% hormonal activity in the activity of the D-isomer. 
Numerous species of Angiospermae produce volatile compounds with pheromone 
effects on American Swift (beetle) Periplaneta americana. Of the synthetic 

Table 6.1 Sexual pheromones of insects

Name Structure Species producing

Valeric acid C5H10O2 Limonius californicus

Trans-9-keto-2-decenoic acid C10H16O3 Apis mellifera

Cis-7-dodecenyl acetate C14H26O2 Cabbage looper

Cis-8-dodecenyl acetate C14H26O2 Grapholita molesta

Cis-11-tetradecenyl acetate C16H30O2 Archips semiferanus

Hexadecanyl acetate C18H36O2 Lycorea ceres

Cis-11-octadecenyl acetate C20H38O2
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 pheromones commercially used, “alarm substances” are the most used. They attract 
male flies that populate fruit and melons in the Mediterranean region (Li et al. 2016).

An interesting case of specificity is the polyphenic moths, such as Antheraea 
polyphemus, which can be mated exclusively in the presence of Quercus rubra 
leaves (red oak). The analyzes performed showed that the oak leaves emanate a 
volatile compound (trans-2-hexenal and trans-2-hexenol), which stimulates the sen-
sory receptors in the female antennae, thus triggering the release of their sexual 
pheromone, which then excites and causes the male to mating. Another interesting 
case is the sugar cane laurel, Rhabdoscelum obscurus, who eliminate his own sexual 
pheromone only after feeding on sugar cane. In this case, the pheromone elimina-
tion trigger must be an unidentified chemical compound present in the sugar cane. 
Pheromones of the oak moth, Archips semiferanus, are found as such in the oak 
leaves, which hurries the destruction of natural oaks by this moth. The larvae of the 
females Archips semiferanus take their pheromones, already synthesized from the 
oak leaves, which directly contribute to attracting males. After the arrival of the 
males on the leaves, the females remove a larger amount of pheromone to cause the 
male to move toward the copulation organ. Insect sexual pheromones are increas-
ingly used in agriculture as biologically active substances effective for biological 
control of insect pests, especially as chemical insect pest control has been shown to 
have undesirable side effects: environmental pollution and biocenosis imbalance 
due to lack of specificity of some phytopharmaceutical compounds, including 
numerous insecticides (Hassemer et al. 2019).

In Table 6.2 are presented some examples of herbal compounds and sex phero-
mones with synergic activity.

Pheromones are preferable to insecticides in pest control because they have high 
specificity and are produced in small quantities. Insect sexual pheromones are used 
in agriculture for both the assessment and surveillance of the pest population in 
order to improve the prognosis in the application of chemical treatments and to 
combat them directly by preventing gender mating, which will result in a gradual 
reduction of the total population and, finally, the disappearance of pests (Oliveira- 
Hofman et al. 2019).

In Table 6.3, there are some examples of plant volatile compounds and sex pher-
omones with synergistic activity.

Preventing insect mating can be accomplished by either mass capture of males 
by means of traps containing natural or artificial pheromones from the natural popu-
lation, before mating, or by atmosphere impregnation with a high concentration of 
pheromone in order to disorient males, who thus fail to spot the females for mating. 
In theory, some insect pests may be removed from any area by catching male with 
natural or artificial pheromones. In practice, there are factors that reduce the effec-
tiveness of sexual baits. Pheromones transmit information related to certain biologi-
cal insect activities, according to which they are classified as:

 – Sexual pheromones, emitted by individuals of a sex (typically females), having 
the role of attracting individuals of the opposite sex, for mating.
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Table 6.2 Examples of intensifying the action of two associated substances (volatile plant 
compounds and sex pheromones)

The host plant
Volatile compounds from 
host plants Insects Sexual pheromone

Beta vulgaris Linalool (C10H18O), 
myrcene (C10H16), 
benzaldehyde (C7H6O)

Spodoptera 
exigua

(Z)-9-tetradecenol 
(C14H28O), (Z, E)-9,12- 
tetradecadienyl acetate 
(C16H28O2)

Brassica oleracea 
subsp. capitata

(Z)-3-hexenyl acetate 
(C8H14O2)

Plutella 
xylostella

(E)-2-hexenal (C6H10O), 
(Z)-11-hexadecenol 
(C16H32O), (Z)-11- 
hexadecenyl acetate 
(C18H34O2), (Z)-3-hexenol 
(C24H42O)

Cotton, tobacco, 
tomato

(Z)-3-Hexenyl acetate 
(C8H14O2)

Heliothis 
virescens

(Z)-11-Hexadecenal 
(C16H30O), (Z)-9- 
tetradecenal (C14H26O), 
hexadecanal (C16H32O), 
tetradecanal (C14H28O)

Japanese cedar 
(Cryptomeria 
japonica), Japanese 
cypress 
(Chamaecyparis 
obtuse)

Methyl phenyl acetate 
(C9H10O2)

Anaglyptus 
subfasciatus

(R)-3-hydroxy-2- 
octanone (C8H16O2), 
(R)-3-hydroxy-2- 
hexanone (C6H12O2)

Papaya Host fruit odors: Methyl 
butanoate (C5H10O2), 
ethyl butanoate 
(C6H12O2), 3-methyl-1- 
butanol (C11H16O2), 
1-butanol (C4H10O)

Toxotrypana 
curvicauda

2-Methyl-6-vinylpyrazine 
(C7H8N2)

Pine Pine bolt odors: 
α-terpineol (C10H18O), 
cyclic terpene alcohols 
terpene hydrocarbons, 
ethers, and esters

Pissodes 
nemorensis

Grandisal (C6H6O2), 
Grandisol (C10H18O)

Prunus padus Benzaldehyde (C7H6O) Rhopalosiphum 
padi

Nepetalactol (C10H16O2)

Zea mays (Z)-3-hexenyl acetate 
(C8H14O2)

Helicoverpa zea (Z)-11-hexadecenol 
(C16H32O), (Z)-7- 
hexadecenal (C16H30O), 
(Z)-9-hexadecenal 
(C16H30O), hexadecanal 
(C16H32O)

Zea mays (Z)-3-hexenyl acetate 
(C8H14O2)

Cydia 
pomonella

(E, E)-8,10-dodecadienol 
(codlemone) (C12H22O)
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Table 6.3 Examples of intensifying the action of two associated substances (plant volatile 
compounds and aggregation pheromones)

The host plant
Volatile compounds from host 
plants Insects Aggregation pheromone

Apple, orange, 
stored grains, 
spices, seeds

2-Propanol (C3H8O), butanoic 
acid (C4H8O2), methanol 
(CH4O), methyl butanoate 
(C5H10O2), n-heptanol 
(C7H16O), propanoic acid 
(C3H6O2), propanol (C3H8O)

Carpophilus 
hemipterus

(2E,4E,6E,8E)-3,5,7- 
trimethyl- 2,4,6,8- 
decatetraene (C13H20)

Cereal grain, 
flour

Maltol (C6H6O3), valeraldehyde 
(C5H10O), vanillin (C8H8O3)

Sitophilus oryzae Sitophinone: 
4,8-dimethyldecanal 
(C12H24O)

Coconut, palm, 
banana

Ethyl acetate (C4H8O2) Rhynchophorus 
palmarum

(2E)-2-Methyl-5-hepten-
4- ol (C15H22O2)

Coconut, palm, 
banana

Ethanol (C2H6O), ethyl acetate 
(C4H8O2)

Rhynchophorus 
palmarum, 
Dynamis borassi

Rhynchophorol (C8H16O)

Cotton Trans-2-hexenol (C6H12O), 
cis-3-hexenol (C6H12O), 
n-hexanol (C6H14O)

Anthonomus 
grandis

Grandisol (C10H18O), 
grandisal (C10H18), 
papayanol (C10H18O2)

Fermenting 
aspen (Populus 
tremula) bark

Host odors: Acid resin of a 
hop-like odor, populin 
(C20H22O8), salicin (C13H18O7), 
chrysin (C15H10O4) acetyl- 
benzoyl- phloroglucin 
(C15H20O8), tectochrysin 
(C16H12O4), saligenin (C6H4OH.
CH2OH), salicylic aldehyde 
(C6H4.OH.CHO)

Drosophila 
borealis, 
Drosophila 
littoralis

Ethyl tiglate (C7H12O2)

Oil palm 
(Elaeis oleifera)

Fruit bunches: 9-Octadecenoic 
acid (C18H34O2), L-(+)-ascorbic 
acid-2,6-dihexadecanoate 
(C38H68O8), 14-methyl-8- 
hexadecenal (C17H32O), 
4-hydroxyl-4-methyl 
2-pentanone (C6H12O2), 
3-ethyl-2, 4-dimethylpentane 
(C9H20O3)

Oryctes 
rhinoceros oil 
palm

Ethyl-4-methyloctanoate 
(C11H22O2)

Palm (Elaeis 
guineensis)

Alcohols and esters: Methyl 
ester-hexadecanoic acid 
(C17H34O2)

Rhynchophorus 
phoenicis, 
Rhynchophorus 
vulneratus

3-Methyl-4-octanol 
(C9H20O), 4-methyl-5- 
nonanol (rynchophorol) 
(C10H22O)

Palm 
(Acrocomia 
aculeata)

Ethyl acetate (C4H8O2) Rhynchophorus 
cruentatus

5-Methyl-4-octanol 
(cruentol) (C9H20O)

Palm 
(Astrocaryum 
vulgare)

Host plant volatiles: 
9-octadecenamide (C18H35NO)

Rhynchophorus 
ferrugineus

Ferrugineol (4-methyl-5- 
nonanol) (C10H22O)

(continued)
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 – Aggregation pheromones, which give the gathering signal, find feed sources or 
places favorable for the deposition of eggs (grasshoppers).

 – Alarm pheromones, emitted at the appearance of an enemy (lice and wasps).
 – Path marker pheromones (to ants).
 – Necrophorus pheromones for recognizing dead individuals and removing them 

from a colony.

Irrespective of the information they encode and the behavior they induce, phero-
mones have the following common characters: they are produced and are active in 
very small quantities, very volatile and can cause a behavioral response with a sin-
gle compound or mixture of compounds. Some compounds have synergistic, inhibi-
tory or multifunctional effect.

Multifunctional role compounds have synergistic effect in very small amounts 
and inhibitor in larger amounts (this is the case of some compounds of aggregation 
pheromone in bark beetles). The transfer rate and the amount of information trans-
mitted via pheromones can be maximized in different ways: through the existence 
of complex pheromones, chemical complexity or substance mix, concentration 
changes, behavioral changes caused by photoperiodism and annual periodicity. 
Pheromone communication is influenced to a large extent by endogenous factors 

Table 6.3 (continued)

The host plant
Volatile compounds from host 
plants Insects Aggregation pheromone

Palm (Elaeis 
oleifera)

Palm tissue volatiles: Oleic acid 
(C18H34O2), L-(+)-ascorbic acid 
(C9H15NO8S), 
2,6-dihexadecanoate 
(C18H36O4), 9-octadecenoic acid 
(C18H34O2), methyl 
esterhexadecanoic acid 
(C18H36O2), 9-octadecenamide 
(C18H35NO)

Rhynchophorus 
phoenicis

Rhynchophorol (C8H16O)

Palm, sugarcane 
(Saccharum 
officinarum), 
banana, 
pineapple

Ethyl esters (C46H70O4) Metamasius 
hemipterus 
sericeus

2-Methyl-4-heptanol 
(C8H18O), 5-methyl-4- 
nonanol (C10H22O)

Palm, sugarcane Ethyl acetate (C4H8O2) Rhabdoscelus 
obscurus

(2E)-6-methyl-2-hepten-
4- ol (C8H16O), 2-methyl- 
4-heptanol (C8H18O), 
2-methyl-4-octanol 
(C9H20O)

Wheat 
(Triticum 
vulgare)

Fermenting whole wheat bread 
dough: Gluten (C32H52O2), 
fibrine (C5H11N3O2)

Carpophilus 
mutilatus

(3E,5E,7E)-5-Ethyl-7- 
methyl-3,5,7- 
undecatriene (C14H24),

Wheat 
(Triticum 
aestivum)

Propyl acetate (C5H10O2) Carpophilus 
obsoletus

(2E,4E,6E,8E)-3,5,7- 
trimethyl- 2,4,6,8- 
undecatetraene (C14H22)
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and external factors. Based on the results obtained so far, it is estimated that the 
importance of pheromones will increase and are already considered “pesticides” of 
the future. Pheromones are real compounds that cannot be sensitively detected just 
like fragrances and essences, but when they come into contact with the brain and 
with the subconscious, a chemical reaction occurs that results in action (Bell et al. 
2018; Yang et al. 2014).

6.4  Plant Protection Products

Plant protection products are classified as chemicals (pesticides) and biological 
products (bioproducts). Current research aims at the realization and use of biologi-
cal products to ensure effective control of both toxigenic microorganisms and 
microorganisms that affect the qualitative parameters of crops. Bioproducts are bio-
logical means based on microorganisms useful for crop plants or on natural com-
pounds (originating from plant extracts, suggestively called “botanicals”). Due to 
their biological nature, bioproducts have a complex action on crop plants. The most 
appropriate term would be biopreparations for agricultural use. An already classic 
example, illustrative of this complex action, is that of antagonist fungal bioproducts 
of the genus Trichoderma. Approved as biofungicides, a number of bioproducts 
were shown to be stimulants of plant growth, and this stimulation of plant growth 
has been shown to be due to this biofungicides intervention in plant nutrition (Bernat 
et al. 2018).

“Formulation” is the form under which a pesticide is marketed and represents a 
combination of various compounds (solvents, surfactants (surface-active agent), 
cosurfactants, adhesive, suspending agent, penetration enhancers of the plant cuti-
cles, etc.) whose ultimate goal is to make the product usable in an effective way. The 
compounds used for pesticide conditioning are also important chemical pollutants 
(organic solvents, surfactants that are similar to water pollutants detergents, etc.); 
hence, it is of great importance to develop a code of practice for the use of pesti-
cides. Several examples of bioproducts are as follows:

 – Trichodermin-BL is based on the Trichoderma lignorum and used for combating 
white, gray and root rot of vegetable, ornamental, leguminous crops, as well as 
tobacco seedlings and vegetable crops, reducing the pathogens attack by 2–3 
times and stimulating plant growth by 25–30%.

 – Trihodermin-F7 is based on Trichoderma harzianum in granular and liquid form. 
It is used to combat root crop rotations, reducing root rotations by 1.5–2 times.

 – Nematofagin-BL is based on Arthrobotrys oligosporum and used to combat gal-
lium nematodes in vegetable and technical crops.

 – Verticilin is based on Verticillium lecanii in the form of a wet table powder. It is 
used to control the greenhouse mussel, with the effectiveness of 95%.

 – Rizoplan is based on Pseudomonas fluorescens AP-33 and is used to combat root 
rot in agricultural crops.
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 – Pentafag-M is intended to combat bacteriosis in stubble and chick peas. The 
preparation is based on five bacteriophage strains that are effective in controlling 
plant diseases caused by Pseudomonas sp. A number of environmentally friendly 
viral preparations have been developed to combat pests that cannot be combated 
by other biological means.

 – Virin-ABB-3 is for combating hairy caterpillar of mulberry tree in orchards, 
parks, and forestry. The preparation is based on cumulative and synergistic 
nuclear polyhedrosis viruses, showing epizootic and post-action effects.

 – Virin-MB is intended for the control of the green bollworm and is based on the 
nuclear polyhedrosis virus of Mamestra brassicae.

 – Virin-OS is for combating sowing bollworm and moths of the genus Agrotis. It is 
based on synergetic nuclear granulosis and nuclear polyhedrosis viruses.

 – Virin-HS-2 combating cotton caterpillar and bollworm from genus Heliothis is 
based on the nuclear polyhedrosis virus of a non-specific host.

 – Virin-CP is intended for combating apricot worm and based on granulosis virus 
Carpocapsa pomonella (Taghdisi et al. 2019).

Ensuring the effectiveness of nonchemical plant protection systems becomes a 
reality in the implementation of integrated plant protection systems with the pre-
dominant application of biological protection methods. Biological plant protection 
as an effective method of avoiding conflicts between plant protection and environ-
mental quality is based on the continued use of information on the monitoring of 
populations of harmful and useful organisms and on the use of offsetting and control 
measures for the application of entomophagous, bioproducts and biologically active 
substances (Marczewska et al. 2019).

6.5  Agricultural and Secondary Products Can Be Used 
for Production and Processing

At present, costs are relatively low for the production and processing of biopesti-
cides, as the main raw materials are renewable natural resources (such as agricul-
tural products and by-products of maize, soybean flour, fish flour, wheat bran, etc.). 
Biopesticide production generally does not involve nonrenewable raw materials as 
it is the case when producing chemical synthesis products, that involve the use of 
nonrenewable resources (such as oil, coal, natural gas, etc.). Biopesticides offer 
additional benefits, such as complex and new action modes for managing resistance 
(Mushtaq et al. 2018), therefore helping to extend the life span of conventional pes-
ticide products. They also add flexibility to a classic combat program with reduced 
intervals from the last treatment to harvest, a very good pesticide residue manage-
ment for exported products and an excellent ecotoxicological profile for humans, 
animals and useful entomofauna (Heimbach et al. 2016).
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6.6  Transgenic Products

Wuhan virus experts have extracted from the African scorpion body toxic com-
pounds to produce biopesticides—the recombinant cotton bollworm virus—that 
can reduce the death of cotton worms in 2  days. In 2004, Sun Xiuling isolated 
unique insect-selective scorpion toxins from African scorpion by extraction of scor-
pion venom genes. He developed a biological pesticide to control the cotton boll-
worm, Helicoverpa armigera. Cotton bollworm is one of the more common cotton 
pests, but too much use of chemical pesticides can cause environmental pollution. 
Field test performed during a period of 4 years confirmed that “recombinant cotton 
bollworm virus” is safe for natural enemies of Helicoverpa armigera, being an envi-
ronmentally friendly biopesticide. The abovementioned study has won the environ-
mental protection award in the field of environmental protection and the first 
technology award of the Chinese state (Jin et al. 2018).

Although the last decades have been marked by success in improving various 
plant species of economic interest, there remain heavy losses to cultivated plants 
due to biotic and abiotic stress. Despite the popularity of potatoes as food, they are 
very difficult to cultivate. Farmers make significant losses each year due to the 
Colorado beetle (Leptinotarsa decemlineata), as repetition of insect spraying opera-
tions is absolutely necessary for pest control. In a similar situation is corn, whose 
major pest in North America and Europe is corn borer (Ostrinia nubilalis). Modern 
corn hybrids show some resistance to Ostrinia nubilalis attack, but in the case of 
medium or strong infestation, losses are estimated at approx. Five percent of the 
total production or even more, depending on year and location. Reduction of these 
losses would be possible by increasing the cultivated area, but, in the presence of a 
strong impact on the environment and on natural resources, this is a limited option. 
Due to the fact that we relied too much on only a few plant species, monocultures 
have been created, where most of the cultivated plants are often severely affected by 
harmful insects. In order to counteract the negative action of the insect pests and to 
reduce dependence on chemical insecticides, a range of insecticidal natural proteins 
have been identified in bacteria and plants, and the genes encoding them have been 
isolated and transferred to a group of crop plants. As already mentioned, it is well 
known that certain strains of B. thuringiensis produce proteins that cause dysfunc-
tions of the digestive system of insects with alkaline digestive tract, resulting in 
slowing growth and ultimately death (Gnepe et al. 2014).

The different B. thuringiensis strains are highly selective, being effective only 
against certain insect species such as Ostrinia nubilalis and Helicoverpa zea 
(Lepidoptera), Leptinotarsa decemlineata (Coleoptera) and certain flies and mos-
quitoes (Diptera). B. thuringiensis was identified in 1911 when it was found to kill 
the larvae of Anagasta kuehniela and was registered as a biopesticide in 1961 in the 
United States. At present, the different strains of B. thuringiensis are used to control 
lepidoptera pests such as those in the families Tortricidae, Pieridae, Noctuidae, 
Plutellidae, among others. At least 1% of all pesticides used in the United States 
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contain B. thuringiensis. However, as an ingredient for insecticides, B. thuringiensis 
is relatively expensive and has some drawbacks (Wang et al. 2018).

Although some insecticides have a lethal effect through simple contact with 
pests, B. thuringiensis must be ingested to be effective and should therefore be 
applied exactly when insects feed. In addition, the rainwater cleans the plant, and 
the sun’s rays can destroy it.

Thanks to genetic engineering, it is possible to identify genes encoding 
B. thuringiensis protein synthesis, and transferring them to culture plants that will 
synthesize the same B. thuringiensis protein with a lethal effect on harmful insects. 
To this end, the B. thuringiensis genes encoding the cry1Ac and cry1Ab proteins in 
cotton, the cry3Bb1 gene for the control of the populations of Diabrotica spp. and 
the cry1Fa2 gene for the control of a wide spectrum of maize lepidopteran pests (the 
latter two were introduced in 2003). Attention is focused specifically on the possible 
transfer by pollination of genes for insect resistance from transgenic plants to related 
wildlife species. However, the emergence of wild plants with a superior genotype 
could alter the composition and abundance of plant and animal species in natural or 
agricultural ecosystems. Also worrying is the possibility of installing genetically 
modified, annual or perennial plants, such as weeds, in natural or controlled habi-
tats. In this context, the introduction of transgenic plants into environments where 
there are wild correspondents must be properly assessed before cultivating them on 
an industrial scale. Genetically modified plants that produce B. thuringiensis toxin 
as its own constituent throughout the growing season exert a high pressure on the 
selection of insect pests due to the spread of varieties of transgenic plants in areas 
with numerous pests and due to the fact that at least a generation of pests will be 
dependent on plants for survival from 1 year to another (Baum et al. 2004; Anil and 
Podile 2012).

The first transgenic cotton plants to which the gene coding for B. thuringiensis 
toxin synthesis was transferred were obtained in 1996. Since cotton has a wide 
range of pests, insecticides cannot be discarded, especially due to Lepidoptera 
which are not susceptible to endotoxin expressed in plants, either in the field or in 
the laboratory, probably due to the continuous expression of the toxin in the plants, 
which led to a strong selection pressure.

Scientists have also noticed a “good behavior” of insect resistance, because the 
expression of the toxin in the tissues of plants is unequal, and they will attack those 
tissues or portions of tissue where the toxin concentration is low. Moreover, because 
the concentration of the toxin often decreases in leaf and stem as the plant reaches 
maturity, the low doses can kill or weaken the susceptible larvae (homozygotes), 
and therefore adaptation to the B. thuringiensis toxin occurs more rapidly when the 
concentration always remains high (Hyakumachi et al. 2013).

Over time, over 500 cases have been reported when insects have developed resis-
tance to the conventional insecticide spectrum or insecticide products containing 
B. thuringiensis. In fact, recent research in England has shown that Plutella xylo-
stella larvae show resistance to the cry1Ac toxin, while at the same time there is a 
faster development and a higher weight of the pupae in the presence of the toxin. 
This may be a genetic effect, indirectly linked to the presence of an allele gene that 
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confers resistance to the cry1Ac toxin, or can be determined by their increased abil-
ity to survive and digest this toxin. Therefore, the presence of the toxin can have 
favorable, but undesirable, nutritional effects. However, it cannot be concluded that 
all insect pests of crop plants will exhibit the resistance to insecticides, including the 
current transgenic plants. More questions, but also many answers, are also available 
for the effects of transgenic plants on insect pests and more. By keeping pest popu-
lations at extremely low levels with insecticides, B. thuringiensis plants can com-
pletely destroy their enemies, while they only need small amounts of food to survive 
in agroecosystems. The possibility that B. thuringiensis toxins move into the 
Arthropod’s food chain has serious implications for the agroecosystem equilibrium 
(Cao et al. 2014).

Studies in Scotland suggest that aphids are capable of retaining the B. thuringi-
ensis toxin and transferring it to the coccinelides that consume them, further affect-
ing the reproduction and longevity of the quails (Melolontha vulgaris).

Recent research has shown that the pollen of the B. thuringiensis-bearing maize 
corn can be worn a few meters to the leaves of Euphorbia, Asclepiadaceae, with a 
potentially damaging effect on Monarch butterfly populations, this being a new 
dimension to the unexpected impact of transgenic plants on organisms on target. 
Moreover, no scientific analysis of the possible adverse effects following the release 
of transgenic plants into the environment could guarantee the absence of “ecologi-
cal surprises” in the future. Recently, it has been discovered that the B. thuringiensis 
toxin, which normally degrades rapidly, under certain circumstances can bind to the 
clay soil particles, remaining biologically active for at least 230 days. It accumu-
lates over time and reaches much higher concentrations than expected, thus endan-
gering the life of organisms in the soil. For centuries, people have tried to obtain 
plants that survive and develop despite the insect pest attack. Consciously or uncon-
sciously, old farmers selected genes for pest resistance by simply collecting seeds, 
only from high-yielding crops in their crops.

Nowadays, due to genetic engineering that complements the mastery of breeders, 
genes for pest insect resistance can be transferred from one organism to another 
more rapidly and deliberately, and certainly the resistance of transgenic plants to 
specific pests would be a privilege for agriculture. However, obtaining and cultivat-
ing such genetically modified organisms is only part of an equation with many 
unknown parts (Mahmoud et al. 2017; Armada et al. 2014).

6.7  Natural Biopesticide

Pesticides used for pest control are very toxic chemicals that ultimately affect plants 
and pollute the environment. That’s why, in organic farming, specialists are trying 
to find biological substitutes for chemicals.
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6.7.1  Garlic: A Biopesticide

German biologists believe that garlic can become an important means of plant pro-
tection in organic farming. They found that allicin contained in garlic is an extremely 
effective antibiotic against a wide range of phytopathogens—bacteria and fungi. A 
diluted garlic extract was effective against a typical potato and tomato disease 
caused by Phytophthora infestans. Some researchers believe that the new biopesti-
cide can be used to treat seeds in order to be protected from pests.

Representatives of the seed industry have already shown interest in this treatment.
However, in order to use the natural product in field crops, it is to be determined 

how resistant garlic-based biopesticide is to rain and temperature oscillations. It is 
also not known whether such a biological product in high doses will or will not 
influence the taste of the vegetables. It can be assumed that a slight taste of garlic 
will be maintained. The issue of authorization of the active substance allicin as a 
means of plant protection has not yet been finalized (Bharadwaj et al. 2015).

6.7.2  Lemon Eucalyptus Oil

It is a powerful repellent, effective against mosquitoes, deer ticks and other pests. 
There is also a synthetic form of lemon eucalyptus oil, known as PMD, which is 
also effective. Both compounds are found in several brands of repellents that are 
marketed as natural. Although chemically sounding, IR3535 is an herbal compound 
that has been used in Europe for decades as an insecticide.

There are dozens of recipes available for insect repellents, which contains an 
alcohol base or ‘carrier oil’ and one or more of the following ingredients: cedar oil, 
tea tree oil, geranium oil, rosemary oil, lemonade oil, lemon oil, eucalyptus, cinna-
mon oil. They may not have the same effects as commercial preparations (Ghosh 
et al. 2012).

6.8  Technology for the Production of Entomopathogenic 
Bacterial Biopesticides

As mentioned before, of all entomopathogenic bacteria, the most widely is 
B. thuringiensis, which, in addition to spore formation, is causing insect septicemia. 
It produces a number of toxic compounds that increase the effectiveness of the vari-
ous preparations. These toxic products are is divided into four components:

 – Phospholipase C, an exotoxin. It causes the breakdown of essential phospholip-
ids into the tissues of insects leading to their death.
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 – β-exotoxin is a thermostable toxin. It accumulates during the vegetative growth 
of the cells. Its action is due to the inhibition of DNA-dependent RNA poly-
merase, resulting in termination of RNA synthesis in insect cells and their death. 
The action of this toxin is quite slow.

 – δ-endotoxin is a crystal protein (in the form of ordinary crystals). Crystal pro-
teins are formed as parasporal crystalline inclusions during the stationary phase 
of growth. It exerts its toxic effects in the gastrointestinal tract of the insect, 
destroying the enzyme system (Scheckhuber 2019).

6.8.1  General Mode of Action

A pest control product acts through different molecular interactions with a certain 
type of protein. The body of insects, according to heredity, forms many types of 
proteins, which make up tissues, organs, insect exoskeleton, etc. Other proteins act 
as catalysts in the storage or transport of nutritional products, in the movement of 
molecules through cell membranes. Most insecticides, acaricides or some metabo-
lites (biopesticides) act on target proteins contained in the signaling nervous system 
(by disrupting neurotransmitter receptors), participating in cellular respiration (as 
breathing disturbers) or on those having a role in the development of insects (by 
disrupting the activity of growth regulators). Insecticides can bind to proteins at one 
or more target sites, with activating or inhibiting functions, with disruptive effects 
whose symptoms are called action mechanisms.

Depending on the mode of binding to the target protein, the following character-
istics are determined: the mode of action of the control product, the selectivity in 
use, the rate of action and the resistance of the host. Since animal organisms contain 
many similar proteins with identical function, there is a risk that the products will 
act on the target protein, on the harmful insects but also on beneficial insects or 
human beings. The mode of action of biological preparations includes the modes of 
action of bacteria, baculoviruses, fungi and their metabolites (Dos Santos et al. 2019).

6.8.2  The Bacteria

Generally, diseases produced by bacteria are characterized by penetration into 
hemocel and multiplication of the pathogen, resulting in septicemia of insects. 
B. thuringiensis strains, which are most used in biological control, produce insecti-
cidal endotoxins. They bind to the proteins in the insect’s middle intestine.

Arrived in the membrane, they form channels that allow leakage of ions and 
destruction of cells. The production of these toxins is also accomplished by genetic 
engineering, by introducing genes producing endotoxins into the genome of some 
plants, resulting in genetically modified organisms (Guo et al. 2019).
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6.8.3  Baculoviruses

There are vibrions assembled in protein formations called supraovaryocapsides that 
enter the body of the insects by ingestion, reaching the middle intestine and under 
the action of enzymes it protects and releases the vibrions that develop into the epi-
thelial cells destroying them (Cuartas et al. 2019).

6.8.4  Fungi

Fungi produce losses in vegetal crops. Toxins and other compounds released by 
fungi are deemed to cause adverse health effects. Compounds produced to combat 
these negative effects are called fungicides. For the production of a mycosis, the 
fungal pathogen must penetrate the host through mechanical and enzymatic action. 
After piercing the tegument, the fungal strain penetrates into the hemocel, where it 
multiplies.

Insect colonization is reached by blastoporal proliferation and mycelial growth, 
which blocks blood circulation and completely disintegrates tissues. A good exam-
ple regarding the mode of action on the nervous system, spinosad, a natural metabo-
lite obtained from the actinomycetes Saccharopolyspora spinosa, opens up a new 
class of natural products derived from microorganisms. Spinosad binds to one or 
more nervous system proteins.

Compared to other products, it acts on a different nicotinic receptor site and, by 
activating nicotinic–acetylcholine receptors, produces an influx of sodium ions that 
depolarize the hyperactive neurons excitement of the body muscles (manifested by 
leg extension, tremors, beatings from the wings, swallowing air). Neuromuscular 
fatigue results in insect paralysis. By discovering such biopesticides with a different 
mode of action, some more toxic insecticides can be replaced for ecosystems and 
cross-resistance (Xiao et al. 2016).

6.9  What Alternatives Exist if the EU Says NOT to Pesticides

What are the alternatives? Will it be possible to practice intensive farming and plant 
protection, given that it is possible to have a smaller number of active substances to 
combat pests? Over time were reported numerous researches for biological control. 
In the following lines will be presented some study directions on the use of entomo-
pathogenic fungi, as well as the advantages and disadvantages of such method 
(Latré et al. 2015).
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6.10  How Viable Are Biological Control Methods?

 – Inoculation of phytopathogenic fungi. In recent years, a new method has been 
developed, namely, ‘self-inoculation’ of insect pests with a phytopathogenic fun-
gus. The method implies that in the open field are placed devices that attract 
harmful insects without capturing them. The insects come in contact with the 
entomopathogenic fungus, and soon they do not feed and die in a few days. The 
results are satisfactory compared to the classical method (chemical treatments), 
but in the case of strong attack (or high pest density), it is ineffective.

 – Immunization of plants. Another new method of biological control is the inocu-
lation of plants with endophytes, microorganisms that activate in the plant cer-
tain defense reactions against the attack of bacteria or phytopathogenic fungi. 
Practical results on plant immunization are promising (a case study on vegeta-
bles in protected areas), but the method does not provide protection against insect 
pest attack.

 – A new innovative method to combat soil pests consists of incorporating into the 
soil microcapsules containing an entomopathogenic fungus that kills the insect 
pests. In order for the larvae of these insects to be attracted, the microcapsules, 
once introduced into the soil, eliminate carbon dioxide. In this way, the activity 
of the root system of the plant is simulated, to attract the larvae and to bring them 
into contact with the entomopathogenic fungus.

 – Another method of control involves an association of biological and chemical 
control by using a combination of low-dose insecticide with a biological insect 
control agent. The low-dose stresses the insect, weakening the immune system 
and making it more sensitive to the biological agent (entomopathogenic fungus, 
virus, etc.). The preliminary results on this method are promising.

 – Biotreatments in vegetation phase. Research on the formulation of bioprepara-
tions based on Beauveria bassiana and Metarhizium brunneum applied as a 
treatment in vegetation to combat the insect pests of the main crops and horticul-
tural crops is being conducted in Germany. In order to develop this new formula-
tion, it is necessary to isolate entomopathogenic fungi, cultivate them in an 
artificial environment to ensure good sporulation and research into the use of 
different adjuvants to protect the biopreparation from the action of environmen-
tal factors (ultraviolet radiation). Laboratory experiments have been conducted 
on the degree of penetration of the formulated bioproducts into plant leaves. 
Experimental results have highlighted that the use of titanium dioxide as an adju-
vant was beneficial, protecting Beauveria bassiana spores from ultraviolet radia-
tion, their viability increasing by 77% ± 11%. In this way, the biopreparations are 
more effective in combating pests and can solve one of the problems encountered 
by bio-insecticides, namely, the very short time that these products have efficacy 
(3–7 days). Further, research is geared towards finding innovative materials to be 
used in new formulations of bioproducts to improve the penetration of entomo-
pathogenic fungi into plants, to better protect them (Thomas 2003).
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6.11  Biopesticides Are Far from the Efficiency of Chemical 
Treatments

All these research methods in Germany and other European countries are looking to 
be a viable alternative to chemical control, given the limitation of the range of insec-
ticides as a result of increasingly restrictive EU regulations. Briefly reviewing the 
current state of the art of pest control with entomopathogenic fungi and the chal-
lenges faced by the sector, such as the sensitivity of bioproducts to climatic condi-
tions, the short life span of bioproducts, increasing problems on the effectiveness of 
bioproducts (currently at most 7 days) and problems raised by the formulation of 
biopreparations, it can be concluded simply that if the characteristics of bioproducts 
used in the biological control of harmful insects are not improved in the future, they 
will not be adopted by farmers (Kathage et al. 2018).

6.11.1  Biological Control of Pests with Entomopathogenic 
Fungi Metarhizium anisopliae and Metarhizium 
brunneum

Research on the biological control of pests has been extended with entomopatho-
genic fungi Metarhizium anisopliae and Metarhizium brunneum. There is a research 
project that approached this topic with the objective of finding innovative alterna-
tives to chemical control of soil pests. In the medium and long term, it is desirable 
to formulate a long-acting bioproduct in the soil and at the same time reduce the 
dose (low amount of M. brunneum spores), as the costs are small, and the bioprepa-
rations have high efficacy. These simultaneous goals, listed above, are a great chal-
lenge for researchers in the field. Bioproducts formulation took the form of capsules 
that are incorporated into the soil. These capsules have two roles, one to attract 
insects, by releasing CO2 (similar to the root system of plants attacked by these 
insects), and another to combat (the strategy “draws and fight”). After incorporation 
of the capsules into the soil, the spores of the fungus germinate and the fungus 
develops inside the capsules, thus resulting the carbon dioxide. Various drying pro-
cesses of the spores of the M. brunneum have been tested, so that they have a long- 
lasting viability. Emphasis has also been put on the materials from which the 
capsules are made which will include the spores of M. brunneum so that they have 
a substrate for the germination and development of entomopathogenic fungi after 
the capsules are introduced into the soil and at the same time the capsules release a 
high amount of CO2 to attract pests of harmful insects (Clifton et al. 2019).

Disadvantages of this bioproduct: Spores of M. brunneum do not withstand tem-
peratures above 25 °C. In the future, it is desirable to produce a very stable, long- 
lasting product for the biological control of soil pests in order to control their 
populations and, at the same time, reduce the amount of chemicals used to combat 
insects. The experimental studies resulted in biological control agents for potato 
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crops (Colorado beetle—Leptinotarsa decemlineata) and maize (worms—Agrotis 
ssp.) The results are satisfactory, but its costs are far higher than classical control 
(seed treatment) (Huang et al. 2017).

6.11.2  Use of Entomopathogenic Microorganisms

Entomopathogenic microorganisms are used in the form of biological insecticides 
that have as active principles viruses, bacteria, fungi, protozoa. Advantages: they are 
harmless, nontoxic to the environment and leave no residue; some have a high spec-
ificity of host insects, ensuring the protection of useful fauna; and are compatible 
with chemical insecticides because infections sensitize insects to their action. 
Disadvantages: the need to apply the product as prevention method, respecting the 
incubation period of the diseases, and the specificity of a microorganism for a par-
ticular species (Gross et  al. 2010). In caterpillars, symptoms of viral infections 
occur 48 h after infection and are manifested by reduced feeding. The insect’s body 
becomes lighter by the accumulation of protein in the adipose tissue, and the larvae 
from the early ages climb to the top of the plants, where they die. The body is lique-
fied, and, by touching the skin, the liquid spreads and disperses the infection. If viral 
infections occur in larvae ages 5 and 6, before dying, they move on tree trunks to a 
height of 2.5–3 m and head down. The hostages of infected Hyphantriacon leave the 
nests and move in the crown and then die dangling on silk threads. Hosts infected 
with cytoplasmic granulosis virus reduce their growth rate by loss of appetite. On 
the ventral side of the abdomen appears a whitish or whitish-yellow color. In the 
latter stages, it eliminates oral fluid with polyhedrons developed in the intestinal 
area. From a pathological point of view, in the case of polyhedroses, the most obvi-
ous changes occur in the nuclei of the initially attacked cells, in those of the hemo-
lymphs or fat body cells. The infected nuclei increase, being filled with polyhedrons, 
occupying the entire cell, which it destroys and pass into the hemolymph. In cyto-
plasmic polyhedrosis, infections develop in the middle intestine and then spread 
throughout the digestive tract. Lymantria presents nuclear polyhedrosis induced by 
the Borrelinavirus reprimans virus, which produces epizootics during the collapse 
of the pest. After 10–12 days of viral infection, death occurred. The infection can 
also be transmitted by laying eggs, with the food ingested and the polyhedra dis-
solved by the alkaline gastric juice, observed on the sixth day in the hemolymph 
(Shi and Bode 2018). The virus is specific to caterpillar and can also be transmitted 
through entomophagous insects. Characteristic is the concentration of diseased cat-
erpillars, ages 5 and 6 (80–90%) at the base of the stems, fixed to the bark, 2–3 m 
from the ground. The diseased hosts cease feeding and die within 1–2 days. At the 
Lymantria monacha caterpillars, the nuclear polyhedrosis produced by the 
Borrelinavirus efficiens virus appears. The disease is manifested by the presence in 
the nucleus of cells of tetrahedral and cubic polyhedrons, measuring 2.5–10 microns, 
visible on a microscope. Within the polyhedrons, virus particles are grouped 2–4 in 
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bundles, in a common development membrane. The characteristic feature of these 
epizooties is the migration of viral pests to the top of the trees (‘spine disease’).

The identification of epizootic diseases is done during the eruption phase by 
observing the dead caterpillars at the top of the crown. Especially Operophtera 
brumata and less Erannis defoliaria are susceptible to nuclear polyhedrosis, which, 
after a 6–7-day incubation, produces a 97% mortality. The virus is located in the 
nuclei of fat cells, hypoderm and tracheal tissue. Diseased caterpillars are concen-
trated in the trees crown (90–95%), where they die fixed to the lower part of the 
leaves. Viral infection is visible from the third age of the caterpillars when they stop 
feeding and their body gets a yellowish color. In the crisis phase, the mortality rate 
of the caterpillars may reach 40–50%. Malacosoma neustria, present in the cervina-
ceae, and, in particular, those of the cerebro-spiny type, by the fourth and fifth larva 
infection with the nuclear polyhedrosis virus, exhibit high mortality epizooties.

The pathogen produces hypertrophy of the hypodermis, adipose and tracheal cell 
nuclei (Lester et al. 2015). Disease is manifested by reduced feeding, the caterpil-
lars get a dark brown color, a phenotype of negative phototropism at the caterpillars 
in the last ages, migrating from the crown to the base of the trees and die soon. The 
caterpillars Choristoneura murina are attacked by Borrelinavirus which produces a 
nuclear polyhedrosis. Granulosis of the caterpillars is produced by Bergoldiavirus 
calypta. The infected caterpillars have a whitish color, and after death they become 
gray and wrinkle. Death occurs 15–20 days after infection. For Neodiprion sertifer 
appears nuclear polyhedrosis produced by Borrelina diprionis virus, and larvae die 
after 7–9 days of infection. The virus is located only in the intestine and is elimi-
nated with excretions that become infectious. Symptoms of the disease include 
reducing larval feeding and browning of dead larvae, which remain attached to the 
substrate with the last or first pair of legs. The disease is spread by insects and birds 
before the mortality. In the strong epizooties, in short time, almost 80–85% of the 
larvae are destroyed. This viral disease extinguishes mass multiplications and is 
passed on to subsequent generations. It is spread across Europe and occurs in the 
downgrade period (Kollberg et al. 2014).

6.11.3  Spreading Viral Infections

Spread of viruses can be done primarily by physical factors, such as winds, rains, 
and entomophagous species and birds. It applies against many defoliators: Lymantria 
dispar, Malacosoma neustria, Euproctis chrysorrhoea, Leucoma salicis, 
Thaumetopoea processionea, Drymonia ruficornis, Yponomeuta sp., Tortrix viri-
dana, Operophtera brumata, Erannis sp., etc. Morphologically, it is a gram-positive 
bacterium, bacillary form. After 20–24 h, they form an oval spore and a parasporal 
crystal of a protein nature. After lysis of cell walls, growth and crystal pass into the 
environment.

There are 40 varieties/serotypes of B. thuringiensis strains known. Since 1950, it 
has been used as a biological insecticide to combat defoliation caterpillars. In 
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 addition to the successes of using the bacteria, there are inconveniences that limit its 
use: the product’s inability to control most pests in a crop; lack of action on insects 
feeding in the galleries because it is a stomach poison; and short residual activity, as 
protein crystals are unprotected against climatic factors, bacterial enzymes (Mäkinen 
and De 2019), and secondary plant compounds.

Applying treatments to bacterial preparations requires a device that ensures opti-
mal protection of the protected plant and a concentration that ensures maximum 
efficacy (Maruthi et al. 2019).

6.12  Bacterial Preparations Used in Biological Control

Dipel-8  L is based on B. thuringiensis var. kurstaki, with pathogenicity against 
defoliant caterpillars, with no toxic action on entomofage insects. It is an emulsifi-
able, tan liquid that forms a homogeneous solution in water that can be applied at 
doses of 2–3 l/ha. It works by ingestion, endotoxin being activated by alkaline stom-
ach secretions. It is not pathogenic to humans, vertebrate animals, bees, etc. The 
retention time is 12–14  days, and the maximum mortality of the caterpillars is 
recorded after 7–8 days after application; at low temperatures and rain, mortality 
occurs after 18 to 20 days.

6.12.1  Application of Bacterial Bioproducts

Bioproducts act on caterpillars by ingestion, mortality occurs after 1–2 days of feed-
ing with treated leaves. At the age of four, the caterpillars become resistant to the 
action of bacteria, except those of Tortrix viridana, Archips xylosteana, and 
Geometridae. Because it acts by ingestion, it applies when most of the caterpillars 
are elderly and the buds are open, with individualized leaves (Ghirardo et al. 2012).

6.12.2  Fungi

They were the first organisms identified as producing diseases to insects. The first 
signals of entomopathogenic a fungus was made in 1835 by A. Bassi, mentioning a 
disease of silkworm caused by fungus Beauveria bassiana. More than 500 entomo-
pathogenic species are known to produce natural epizooties and maintain balance in 
forest biocenoses. Fungi primarily infect the tegument or various body orifices 
(stigmas) by feeding, being favored by heat and humidity. The death of the hosts 
occurs 5–14  days after infection. After the death of the hosts, the mycelium 
develops strongly, fills the general cavity, then goes out through the cuticle, and 
covers the whole body and fructifies, with different colorings depending on the 
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species; at first, the insect’s body is soft, and then becomes rough and mummified. 
Fungi- induced diseases are called “mycosis” and were first observed because they 
are generally macroscopic (Serna-Domínguez et al. 2019).

6.12.3  Symptomatology and Mode of Action

After infection, insects become agitated, feed less, and tend to migrate to high 
ground or to the surface of the soil. Disintegration of infected tissue occurs before 
or after insect death. Lepidopteran larvae infected with Entomophthora species 
become flaky, have an aqueous, and brittle skin content.

After the insect’s death, the fungus continues to develop saprophytes, forming 
micelle-shaped masses, which turn into a dense sclerot. Micelium comes to the 
surface of the insects through intersegmental regions, develops, and covers the body 
and spores (Entomophthora beauveria) (Wraight et al. 2018).

6.12.4  The Role of Climatic Factors

Humidity is the parameter that influences the most the evolution of mycosis epizo-
otics, because entomopathogenic fungi are hydrophilic. For spore germination and 
mycelial growth at the insect’s surface, a moisture content of 60–100% is required; 
thus, Beauveria bassiana conidiospores germinate at 92–94% humidity, 
Paecilomyces farinosus at 81%, etc. Generally, optimal development temperatures 
range from 20 °C to 30 °C. An important role in the occurrence of insect pests in the 
soil is the composition and structure of the soil. Soils rich in organic and well- 
structured substances have a high capacity of water retention and favor the appear-
ance of mycoses (González-Mas et al. 2019).

6.12.5  The Protozoa

They are unicellular animal organisms that parasite insects; an important role is 
played by microsporidies, which are endocellular parasites. The infection is caused 
by parasitoid entomophagous insects or by ingestion of spores by host larvae; to 
some lepidopteran species, it is transmitted from one generation to the next through 
the eggs deposited by the infected females. Protozoa have a broad spectrum of 
action. In some cases, it can cause infections in vertebrates. They have a slow action 
on the host (from a few days to a few months) and have great prospects for being 
used in the regulation of harmful populations. So far, no biopreparations could be 
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produced from them because they have a short biological cycle, ranging from 3 to 
9 days. There are over 200 species of protozoa that affect lepidopteran larvae. There 
are few external signs of protozoa infections, with a decrease in feeding and mobil-
ity, sometimes seizures and diarrhea. Microsporids are varied and active, causing 
the death of insects at different stages, within a few days (Suaste-Dzul et al. 2019).

6.12.6  Symptomatology and Mode of Action

In most insects, infection occurs orally, causing infections of the digestive tract, 
Malpighi tubes, etc. Those that grow in the fat body are transmitted through preda-
tory insects. Spores eliminated by excrement are sources of infection. Microsporides 
are transmitted by females by infecting deposited eggs, which is manifested in defo-
liators Hyphantria cunea, Euproctis chrysorrhoea, and Choristoneura murinana. 
They may have a narrow spectrum of action, attacking species of one genus (Nosema 
lymantriae), by development only in the digestive system, in adipose tissue, hemo-
lymph, or muscles. Parasitic protozoan infections cause hypertrophy of the cells and 
nuclei. Microsporids develop intracellularly, without affecting the nucleus, spores, 
and breaks cell walls, spores being scattered in the hemolymph. Attacked organs are 
completely destroyed because the digestive tract breaks gently, white spots appear 
in the muscles, and Malpighi’s tubes become brittle (Wang-Peng et al. 2018).

6.13  The Entomophages

They are animal organisms that live on insect species. Entomophages are part of 
different systematic groups, such as arthropods (mites, insects), reptiles, birds, 
mammals. For the first time, pheromones were used to study Lymantria monacha 
species by Dyk in 1932.

The young, non-fetus females were enclosed in metal sieve cages and fitted with 
glue-plated panels, and the panels captured males attracted by pheromones emitted 
by females, the method being known as the Dyk method. Females had to be raised 
in the lab and replaced at intervals of several days as they ceased to be attractive to 
males in 3 to 8 days. This shortcoming was later removed when, with the discovery 
of modern methods of chemical analysis (chromatography), it was possible to iden-
tify the composition of pheromones of hundreds of insect species and synthesize 
them artificially. The use of pheromone substances in the field requires the existence 
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of devices to intercept and retain the insects, called pheromone traps. There are dif-
ferent types of pheromone traps, varying by insect intercept and capture (Suaste- 
Dzul et al. 2019). Traps commonly used to capture butterfly species:

6.13.1  Adhesive Panels

Adhesive panels retain individuals attracted to the habitat by fixing on a nonstick 
glue layer so positioned as to capture as many insects as possible. In practice, a 
30/40 cm (30/40 cm) panel is used with one-sided adhesive, the rubber stopper with 
the bait fastened to the middle of the panel with a pin on the stem of the shaft.

6.13.2  The Tetratap Trap

The Tetratap trap with an adhesive bottom panel and a roof plate has the advantage 
of providing access holes with different shapes and sizes, and periodically, the adhe-
sive panel, if cluttered with insects caught, can be changed.

6.13.3  Traps Commonly Used to Capture Coleopterans 
(Especially Bark Beetles) They Are Barrier (for Flying 
Insects) and Tubular (for Insects that Rest)

6.13.4  The Glass Trap

It is made up of a glass panel or transparent foil under which a wooden or sheet 
metal gutter with a length of 60 cm, a width of 20–30 cm, and a depth of 15–20 cm 
is mounted. Permanent gutter will contain half water.

6.13.5  Trap with Wings

Two rectangular panels, assembled in cross, above protected by a pyramid-shaped 
lid, are made to protect against the wind and sun. In the middle, at the joining of the 
two panels, there is a niche in which the pheromone substance is attached. At the 
bottom, the panels are continued with a pyramidal funnel for collecting insects and 
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guiding them into a plastic jar for insect retention, provided with a wire mesh cap to 
drain the water.

6.13.6  The Tubular Traps

The tubular traps attract insects that land on the outer grooves of the tube and pen-
etrate through holes in the grooves on the tube. Insects slip on the inner walls of the 
tube, which are smooth and reach a collecting jar located at the bottom of the tube. 
The pheromone envelope is inserted with a wire up to the half of the tube (Pappas 
et al. 2017).

6.14  Territorial Planning Methods to Increase the Role 
of Biological Predators in Combating Crop Pests

Many of the agroecosystems are an unfavorable environment for the natural ene-
mies of pests (and especially for predators/parasites of harmful insects) because of 
the high degree of imbalance resulting from disruptions and anthropogenic inter-
ventions. Territorial management is a way of fostering the biological protection of 
crops, being an ecological approach to stimulate the activity of insect natural ene-
mies. The best way to meet ecological and economic requirements is organic farm-
ing systems. The development of organic farming (“organic,” “biodynamic”) is one 
of the fundamental orientations in developed countries and especially in the 
European Union:

 – Increasing concerns for enhancing the quality and safety of the food chain.
 – Developing an ethic of sustainable use of resources in agriculture.

As an illustration of this interest, a programmatic document was created entitled 
“European Action Plan for Organic Food and Farming” (Annex COM415/2004). 
The number of organic farmers is on the rise, according to a recent study by the 
National Federation of Organic Farming (FNAE). According to FNAE, organic 
farming attracts more and more investors as a result of a profit of up to 400% that 
can be obtained from organic crops. Organic farming develops in complementary 
directions to agriculture in the European Union. One of these directions aims to 
increase the role of predators/parasitoids in combating crop pests. The main purpose 
is to create an environmentally friendly infrastructure that provides additional 
resources for entomophagic adults, namely, food and shelters, against unfavorable 
conditions.

These resources must be integrated into a territory so that they are favorable in 
space and time for natural and practical enemies, at the same time to be imple-
mented by agricultural producers. Increasing heterogeneity of vegetation around 
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cultivated areas favors an overall increase in the abundance and diversity of preda-
tory and parasitic organisms. Techniques available to increase the role of parasitic 
and predatory arthropods through this increase in biodiversity/vegetation heteroge-
neity are presented below (Murrell 2017).

6.14.1  Intercropping/Strip Cropping

Two or more plant species are grown together on the same site in parallel strips or 
adjacent plots. Data from the literature is relevant. Of 209 studies on intercalated 
crop systems reviewed, it was found that 65% of the 130 species of natural enemies 
studied increased in density in mixed crops. In another study, it was found that para-
sitoids were more abundant in 72% of the intercalated crop cases studied. In 64% of 
other studies, the parasitism rate was found to be higher in intercalated crops. 
Intercalated crops are a way of reducing pests in that the mixture of species physi-
ologically interferes with the ability of the pests to find or react on the host plant, 
and in that the plant, mixture is a refuge for natural enemies that of the pests. The 
intercalated culture system practiced on cabbage with white clover bands has been 
shown to be an effective means of managing the root fly (Delia radicum), due to the 
increased activity of the predatory carabiders. Another study on the impact of terri-
torial settlement on Carabid activity was carried out in maize crops (Pioneer 3573), 
intercalated with clover strips, and a mixture of perennial plants with flowers to 
supplement the predators and parasites. The use of these habitats for refuge has led 
to an increase in the number of predatory carabiders in maize crops during the sum-
mer. Other predators such as staphilinides and arachnids have benefited from these 
cropping systems (Ferry et al. 2007). Also, grass strips have reduced the negative 
effects of insecticides on carabiders, by providing refuge during application of 
insecticide treatments.

6.14.2  Undersowing

A second crop is sown in the first crop, at the same time or later, resulting in two 
crops at the same time. Usually the bands in which the second crop is grown are 
transformed into a plant mulch (by mowing, herbicide with total herbicides, mulch-
ing with suffocating plastics, etc.). The natural fertility of the soil is also improved.

6.14.3  Conservation Headlands

A strip of 6 m outside the plots receives only selective spraying with short-acting 
pesticides, which reduces drift and deposition in the boundaries of parcels.
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6.14.4  Weed Strips Within the Crops

Sowing a few strips close to weeds with flowers or herbs at certain intervals across 
the cultivated area increases the abundance of aphids predatory insects.

6.14.5  Field Margins and Beetle Banks

This system gains importance on large crop areas. Such a system increases the num-
ber of habitats available for predators and parasitoids for wintering, reproduction 
during spring, and foraging in summer, thus enhancing the potential of biological 
crop protection. The invasion of weeds from such systems is very low, and some-
times pest breeding situations are created. The edges of the raygras are important 
nesting places for birds, solitary wasps, bees, and bumble bees. Those containing 
wildflowers provide pollen and nectar for a number of invertebrates, including bum-
blebee species. The botanical interest of this system is that they act as important 
buffer strips between cultural practices and sensitive habitats such as hedges and 
watercourses. The margins of wild plants attract small mammals that consume owls. 
Carabide areas are created in the middle of the culture and are areas similar to those 
on the edges. They are grassy areas (usually transversally in the center of the crop) 
where predators can win, thus acting as nests of predatory insects that spring easily 
migrate into culture. Carabide areas are effective in fields of over 20 hectares with a 
good network of grass edges. Moreover, they are about 0.4 m high and 2 m wide, 
created in one opposite direction. They do not communicate, creating the effect of 
the island, which means they will be preferred by predators. Carabide areas are 
sown with perennial grass species mixed sometimes with perennial legumes. It is 
mentioned that such perennial grass cultures mixed with perennial legumes are 
encouraged by the common agricultural policy (Kim et al. 2008).

6.14.6  Insectarium Plants

Insectarium plants can be added to the crop as interstitial strips or as individual 
plants in the nursery. Insectarium plants may also involve introducing a cover crop 
between plant rows. A wider spectrum of vegetal resources (nectar, pollen) for natu-
ral enemies can be provided by cultivating the territory in insectarium bands of the 
species of fam. Apiaceae (parsley), Cruciferae (mustard), Lamiaceae (mint), and 
Compositae. Attracting and preserving natural enemies involves understanding 
their basic needs for food, behavior, and hosting. To support and increase popula-
tions, many of the biological protection agents need extra nectar, pollen, and food. 
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By providing land with diverse vegetative resources, farmers can increase the 
 number and diversity of predators and parasites, while improving their fertility and 
reducing the cost of pesticide treatments (Razavi et al. 2011).

6.14.7  Use of Pheromones in Forest Protection Actions

In the ecosystem is circulating a vast flow of chemically encoded information, 
which mediates most inter- and intraspecific relationships. These substances are 
called ecomones or telergones. Ecomones are divided into allomones, which inter-
fere with interspecific communication and pheromones which are responsible for 
intraspecific communication. Pheromones are produced by exocrine glands, local-
ized on the surface of the body, among the epidermal cells. At bark beetles, the 
pheromones are found in the intestine epithelium and Malpighi tubules (phero-
mones are eliminated with excrement). The reception, decoding of these signals is 
done by the olfactory organs located on the antennas. Pheromone communication 
has three fundamental features:

 – Messages are transmitted by small amounts of chemicals but with a large amount 
of information (0.33 mg of the marker pheromone of Atta texana is likely to 
leave a pheromone trail surrounding the earth).

 – Insects receive unconditionally the information transmitted by the stimuli; males 
do not detect the source that conveys the information, which may be a female or 
pheromone bait.

 – The information has an intraspecific character and can only be decoded by indi-
viduals of the same species (except for some predators on which the pheromone 
precursors have kairomonal effect).

The sex pheromones mediate relationships between sexual partners before, dur-
ing, and after mating. Three groups are known: sex attractants, produced by a sex to 
attract the opposite sex (usually issued by females); aphrodisiacs, male products in 
order to excite females and accept their copulation; and sexual repellents produced 
by the male genital apparatus and transferred with the sperm, thus marking fecun-
dated females. Tracing pheromones is used by which social insects (ants, bees) pave 
the way for a new source of food; alarm pheromones cause different behaviors when 
enemies appear (for aphids the colonies disperse immediately; for bees and wasps, 
it triggers mobilization to fight); pheromones of aggregation are characteristics of 
social insects, but also locusts, used to indicate suitable places for the laying of 
eggs; in bark beetles, males emit pheromones indicating finding favorable places for 
feeding and reproduction; necrophorous pheromones to remove dead individuals 
from ants colonies. In forest protection activities, the most used are pheromones in 
the categories of sex and aggregation (Serrano et al. 2018).
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6.15  Plant Protection Products Management

Effective use of plant protection methods involves selecting the optimal method and 
minimizing the use of plant protection products and pesticides.

Figure 6.1 illustrates the main basic requirements for selecting optimal biopesti-
cides to be applied in accordance with the principles of good agricultural practice 
and maintaining the land in good condition for agriculture and the environment. 
Prognosis of the occurrence of the attack of a particular harmful organism or groups 
of harmful organisms and the subsequent issuance of warnings for a plant protection 
intervention is of great importance for the proper conduct of the combat activities in 
time and space. It is good to know how harmful organisms exist in an area for agri-
cultural crops in vegetation and potential levels of attack to know which spectrum 
of control means to use, which machine system should be used to apply them, and 
optimum moments intervention to make the damage as small as possible. This way 
the economic effects will be maximum and the ecological effects will be minimal 
(Shrestha and Reddy 2019).

Effectiveness: 

high and safe biological action;

action with fast effect;

good compatibility with the plant;

further distribution in the plant;

optimal duration of action;

minimal effects of induction of resistance;

high selectivity.

Non-Dangerous for the user:

safe packaging;

small amount used;

good preparation properties;

high storage stability;

acute low toxicity;

low toxicity at long-term exposure 
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Fig. 6.1 Main requirements for selecting optimal biopesticides
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6.16  Modern Methods in the QSAR/QSPR Study 
of Biopesticides

In the last period of time, structural indexes using QSPR/QSAR (quantitative 
structure- property/activity relationship) studies are increasingly being calculated 
for steric (geometric) and/or electrostatic (partial load) considerations as compared 
to past topological considerations. Semiempirical and quantum structural calcula-
tions are performed by programs such as Hondo95, Gaussian94, Gamess, Icon08, 
Tx90, Polyrates, Unichem/Dgauss, Allinger’s MM3, Mopac93, Mozyme, 
HyperChem. Regular class regression, linear regression, multiple linear regression, 
nonlinear regression, or, for large databases, expert systems or neural networks are 
used in the property/structural index regression analysis. As a preliminary method 
of analysis, some authors align the set of molecules (Wang et al. 2017).

Furthermore, CoMFA38 introduces a six-step algorithm for QSAR analysis:

 – Builds the set of molecules with known activity and generates the 3D structure 
of the molecules (possibly with one of the programs: Mopac, Sybyl, HyperChem, 
Alchemy2000, MolConn).

 – Chooses a method of overlapping (overlapping of fragments chosen from mole-
cules or overlapping pharmaco-scopes) and overlay virtual spatial coordinates.

 – Builds a network of points surrounding the overlapping molecules at (B) in stan-
dard (grid38) or altered (curvilinear) form and chooses a sample atom for inter-
action with network points.

 – Employs an empirical method (Hint51), a specific model (pharmacophore over-
laps), classical potential energy (Lennard–Jones, Coulomb), the potential of 
hydrogen bonds, molecules generated by molecular orbitals or any other field 
defined by model 49 user, and calculates values interaction of the field induced 
in the network (C) by the interaction field chosen with a sample atom (C) placed 
at the points of the network.

 – Uses the calculated interaction values (D) between network points and the sam-
ple atom and performs the QSAR prediction of known activity.

 – Uses the obtained QSAR parameters (E) and performs activity prediction for 
molecules that lend themselves to the same type of overlay with those of the 
school set (A) (Nendza et al. 1991).

The CoMFA method is a good tool in predicting a variety of biological activities 
such as cytotoxicity, inhibition, and formation properties. The method is also used 
in modeling compounds with a pharmaceutical effect and analyzing HIV60 inhibi-
tors. An important problem in QSAR modeling is the search in the biologically 
active molecules of the active substructures that give most of the measured  biological 
response. The search for molecular invariants is particularly useful in the case study. 
The WHIM (weighted holistic invariant molecular) method calculates a set of sta-
tistical indices derived from steric and electrostatic properties of molecules. The 
original method was modified and assigned the MS-WIHM name (molecular sur-
face—weighted holistic invariant molecular) and was successfully applied in 
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molecular surface analysis65. MS-WHIM is a collection of 36 statistical indices 
derived from steric and electrostatic properties and oriented toward molecular sur-
face parameterization. A new model structure proposed property based on the 
molecular topology obtained from the structural formula and the molecular topog-
raphy obtained from the quantum calculations. For molecular modeling, a new class 
of indices is used: fragmental property index family (FPIF) containing 61,440 index 
members calculated on the basis of:

 – Eight topological fragmentation methods called MI, MA, SzDi, SzDe, CfDi, 
CfDe, CjDi, and CjDe.

 – Four physical interaction models called RG, DG, RT, and DT.
 – Eight property descriptors p depending on the distance d: p, d, 1/p, 1/d, p; d, p/d, 

p/d2, and p2/d2.
 – Five patterns of overlapping fragmentary interactions: S, P, A, G, and H.
 – Four types of summation indices on matrices with resulting fragmentary proper-

ties: P_, P2, E_, and E2.
 – Index scaling operators: id, 1/ln.
 – Four default properties C, M, E, and Q and generate the entire set of 61,440 indi-

ces for a given molecule based on the topological (atoms and links) and topo-
graphic structure (spatial coordinates and partial loads) (Liu et al. 2011).

Not all of the indices obtained are generally distinguished. Degenerations arise 
from the degeneration of the values of the atomic properties and the descriptors 
chosen. Following the elimination of identities across the set, there are approxi-
mately 15,000 distinct indices. Outstanding results are obtained when recognizing 
ownership patterns. The construction of the indices allows, following the selection 
made in correlation, to identify the structural cause of the measured or calculated 
macroscopic property. An example is QSAR and QSPR analysis of a set of 17 
3-(phthalimidoalkyl)-pyrazolin-5-one substitution compounds with inhibitory 
activity on Lepidium sativum L. (Creson) (Xie et al. 2018).

6.17  Conclusions and Recommendations

Biopesticide soil damage is negligible compared to chemical ones because biopes-
ticides do not contain heavy metals and are entirely composed of biodegradable 
substances. The use of biological pesticides allows to preserve the soil’s good state 
and to reduce its pollution indices, with good consequences not only for human 
health but also for land utilization and the economic efficiency.

It can be seen that preparations, whether chemical or biological, act by binding 
to certain target proteins, which disrupt the transmission of signals through the ner-
vous system, mitochondrial respiration, digestion in the middle intestine, and insect 
growth and development. To prevent the occurrence of resistance phenomena, it is 
of great importance to rationally use products acting on the same target protein. For 
example, it is appreciated that most biopesticides act on the acetylcholinesterase 
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target. Thus, with all their diversity, using preparations with the same target protein 
will increase the risk of cross-resistance. To avoid the phenomenon of resistance or 
cross-resistance, the use of products of the same chemical class over long periods of 
time should be avoided because they act on the same target protein.

The rotation of preparations of different chemical groups, with different modes 
of action, ensures effective control. By discovering new classes of natural products 
with insecticidal action, with different mechanisms of binding to the target protein 
and their modes of action (see spinosad), the cross-resistance phenomenon is elimi-
nated, and their use is maintained over long periods of time. Regarding insect resis-
tance to different insecticides, it develops through four mechanisms:

 – Changing the behavior of insects by avoiding the consumption of treated feed or 
contact with insecticides by the phenomenon of repellency.

 – Changing metabolism, by quantitative increase and by the effectiveness of 
enzymes that break down insecticides. This mechanism of metabolic resistance 
can give rise to cross-resistance.

 – Lowering the penetration rate of insecticides, during which they break down 
metabolic enzymes.

 – Through a major resistance mechanism, where the target protein changes its 
shape and reduces the action of the insecticide. This type of reaction produces 
cross-resistance to all products in the same chemical class and to products acting 
on the same target sites.

From the modes of action of insecticides or biological preparations, the follow-
ing conclusions can be drawn:

 – Integrated pest management must be managed by plant protection specialists 
with appropriate training.

 – In control schemes, repeated use of products of the same chemical class or even 
other chemical classes, but acting on the same target protein, will be avoided in 
order to avoid cross-resistance.

 – Observance of the prescribed use doses removes the pressure of product resis-
tance phenomena.

 – Research provides new natural products, which eliminates cross-resistance and 
low toxicity to the environment.

 – To achieve the desirability of managing sustainable ecosystems, research efforts 
must be directed toward the use and discovery of new metabolites, insecticidal, 
and with a special way of action by binding to the target protein.

The biological alternative is relatively difficult and consists of biological conver-
sion to the production of organic chemicals and enzymes. These microbial 
 transformations can be accomplished via growth cells, spores, or dried cells. For 
medical applications, a range of synthetic drugs can be replaced with herbal and 
algae pharmaceuticals. As we highlighted above, the 1940s were the beginning of 
the antibiotic pharmaceutical industry that immediately reached the maximum due 
to the high demand caused by war and poor living conditions. Antibiotic applica-
tions have not been limited to treating infectious diseases. Thus, half of the quantity 
produced was used in agriculture and zootechnics.
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Chapter 7
Inoculum Addition in the Presence of Plant 
Rhizosphere for Petroleum-Polluted Soil 
Remediation

Farhana Maqbool, Zulfiqar A. Bhatti, Muhammad Faisal Siddiqui, 
Ibrar Khan, Yang Guo Zhao, Muhammad Sajid, Umm-e-Kalsoom, 
Qaiser Mehmood, and Faiza Nawaz

7.1  Introduction

Composting of contaminated soil is one of the feasible methods to clean up petro-
leum hydrocarbon in the biopiles by the addition of nutrients and amendments, 
which enhances the hydrocarbon degradation and improve soil quality (Van Gestel 
et al. 2003). However, the contents of the petroleum hydrocarbons and their decom-
posed matter present in the soil after composting are often above environmental 
standards (Zhang et al. 2008). Bioremediation is the conversion of complex organic 
contaminant into simpler inorganic compounds including carbon dioxide, water, 
and cell biomass by biological agents like microorganisms (Das and Chandran 
2011). Due to the presence of pollutant in the soil, microorganism including bacte-
ria, fungi, and yeast that prefer the chemicals as a source of food and energy can be 
flourished. In the soil, mineralization rate contaminant depends on the microbial 
activity and abundance in the soils. Pollutant degradation is extremely dependent on 
the presence of electron provider or acceptors, presence of co-metabolites, absence 
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of inorganic nutrients, plant vitamins and hormones, as well as microbial competi-
tion (ITRC 2009).

Bioremediation methods, which enhance the biodegradation rates, include natu-
ral attenuation without any interference, use of seed culture of hydrocarbon degrad-
ers, biostimulation with nutrient addition for improved microbial growth, and 
rhizospheric biodegradation (Odokuma and Dickson 2003; Bhatti et  al. 2017). 
Microbes spread in the rhizosphere, and their number increases due to the availabil-
ity of nutrients which are released by plants including C, N, S, and P. Few studies 
used bioaugmentation in the presence of plant to remediate the petroleum-polluted 
soil (Kirk et al. 2005; Baek et al. 2004).

Through bioaugmentation desired microbes and their enzymes increase, but this 
process does not work always due to the inability of culture to adjust in new envi-
ronment and to compete with native microbes (Gerardi 2016; Ramos et al. 2010). 
Microbial entrapment in solid media is used for the protection and survival of inocu-
lated culture, and the most effective microbial immobilization was cell entrapment 
into a porous matter (Partovinia and Rasekh 2018). The immobilized cells have 
proved stability under different environmental conditions for petroleum- 
contaminated soil (Dongmei et al. 2011). The present chapter reveals different strat-
egies of complete biodegradation of highly petroleum-polluted soil, limitation, and 
outcomes of these techniques.

7.2  Different Strategies of Bioremediation

7.2.1  Composting of Highly Petroleum-Polluted Soil

Composting is the addition of biomaterial and biogenic bulking agents used for 
aeration and to adjust water, nutrient, and pH of the contaminated soil (Kästner and 
Miltner 2016). Composting of highly petroleum-contaminated soil is a very encour-
aging technique, and it can be performed at the first step before phytoremediation to 
lower down the concentration to acceptable level for plant growth. Maize straw, 
pine wood chips, and soybean cake were used as bulking agent in composting to 
lower down the total petroleum hydrocarbon (TPH) concentration from 17,900 to 
3700 mg kg−1 (Wang et al. 2011). This composted soil was further used to lower 
down the concentration up to 673  mg  kg−1 using Sesbania cannabina, a coastal 
halophyte (Table 7.1 shows all results of the project) (Farhana et al. 2012). Jørgensen 
et al. (2000) used bark chips as the bulking agent with inoculum to compost the 
lubricating oil-contaminated soil; 70% removal rate was observed with organic mat-
ter addition and no effect of inoculum addition. Another study used cow bed and 
potato peelings for high asphaltenic fuel oil composting, and the result showed that 
with autochthonous bacteria, fragmentation into easily degradable smaller structure 
took place (Martin-Gil et al. 2008).
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7.2.2  Enhanced Degradation of Pollutants 
with Bioaugmentation

Biodegradation can be less effective due to insufficient indigenous oil degrader 
population or their incapability of degrading the broad range of toxic fractions pres-
ent in the environment (Hussein 2006). In this situation, bioaugmentation was found 
to be a promising low-cost technique in which effective bacterial culture or micro-
bial community capable of degrading hydrocarbons is added to the contaminated 
soil (Zawierucha and Malina 2011). Bioaugmentation can be achieved in three 
ways, first, autochthonous bioaugmentation in which seed cultures are obtained 
from the original contaminated site, re-cultured in the lab, and reused in the same 
soil which needs treatment (Ueno et al. 2007). Secondly seed culture is taken from 
one site and used in different contaminated site, and the third method is the use of 
genetically modified organism with degradative potential (Vogel and Walter 2001). 
Among these methods; autochthonous bioaugmentation is of great interest because 
it is found to be best adopted with the contaminated environment.

Many researchers used bioaugmentation alone for crude oil degradation (Bento 
et al. 2005; Yu et al. 2005), but few researches are found in the field of rhizosphere 
bioaugmentation (Peng et al. 2009; Ma et al. 2010; Cai et al. 2010; Tang et al. 2010; 
Thangarajan et al. 2011) (Table 7.2). The use of higher plants to enhance removal of 
contaminants from soil although low cost than other remediation techniques often 
does not result in complete removal of contaminants (Banks et al. 2003); therefore 
some researchers tried to use inoculum addition in the presence of plant. 
Bioaugmentation required successful and safe introduction of microbial cells into 
uncontained environments (Trevors et al. 1993).

Table 7.1 Different bioremediation approaches for the Shengli Oil Field petroleum-polluted soil 
and their maximum removal percentages

S. 
no. Technique

Maximum 
bioremediation duration 
(days)

Removal percentage of 
petroleum hydrocarbon 
(%)

1 Bioaugmentation with free culture 
inoculation

70 39

2 Bioaugmentation with 
immobilized culture inoculation

70 47

3 Addition of compost in 
contaminated soil

90 45

4 Phytoremediation with seepweed 90 42
5 Phytoremediation with 

S. cannabina
90 73

6 S. cannabina in the presence of 
free culture inoculation

120 73

7 S. cannabina in the presence of 
immobilized culture inoculation

120 68

1, 2Wang et al. (2012), 3, 4Wang et al. (2011), 5,6,7Farhana et al. (2012)
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Ramos et al. (2010) explained that inoculated cultures sometimes fail to resist 
and survive in contaminated soil or in their native living place soil. Seed culture 
should be highly stable and resistant to different environmental conditions (Burken 
2004). These obstacles can be overcome using some suitable inoculation techniques.

7.2.2.1  Liquid Microbial Culture Inoculation

In previous studies for bioaugmentation in soil, broth culture inoculation such as 
free culture spraying procedures or culture in semisolid media, i.e., immobilization 
techniques, was used (Trevors et  al. 1994). The use of inoculated culture is not 
always acceptable, since inoculation experiments have shown ambiguous results in 
comparison to degradation by native microbial population (Leahy and Colwell 
1990). Kastner et  al. (1998) used several strains of PAH-degrading bacteria, but 
after introduction into artificially PAH-contaminated soil, no degradation was 
observed; further experiment suggested that inoculation with mineral salt medium 

Table 7.2 Researches on bioaugmentation in bioremediation of petroleum-contaminated soil

S. 
no. Strategies Pollutants Outcome References

1 Natural attenuation TPH Effective than 
biostimulation

(Mishra et al. 
(2001)

2 Phytoremediation (grasses) Diesel and 
heavy oil

Noneffective in old 
contaminated soil

Banks et al. 
(2003)

3 Bioaugmentation TPH Effective than NA∗/Ba Bento et al. 
(2005)

4 Bioaugmentation PAH Noneffective than NA∗ Yu et al. (2005)
5 Bioaugmentation PAH Noneffective Herwijnen et al. 

(2006)
6 Phytoremediation TPH Effective than NA∗ Peng et al. 

(2009)
7 Phytoremediation PAH Effective in freshly 

contaminated soil than 
old

Ma et al. (2010)

8 Phytoremediation 
(Impatiens balsamina L)

TPH Effective than natural 
degradation

Cai et al. (2010)

9 Phytoremediation and 
bioaugmentation

Petroleum Combine treatment 
effective than single

Tang et al. 
(2010)

10 Bioaugmentation TPH Noneffective than NA∗/Ba Thangarajan 
et al. (2011)

11 Bioaugmentation Aromatic and 
asphaltic

Effective than indigenous Gonzalez et al. 
(2005)

12 Bioaugmentation Crude oil Mix culture effective than 
single spp.

Rahman et al. 
(2002)

∗NA natural attenuation, Ba bioaugmentation
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inhibited bacterial survival and growth as well as their degradation activity; while 
using water without increasing salinity, no inhibition of autochthonous bacterial 
strain took place (Hosokawa et al. 2009).

7.2.2.2  Inoculation with Immobilized Microbial Culture

Captivity of enzyme or whole bacterial cell inside or outside the carrier matrix is 
known as immobilization (Partovinia and Rasekh 2018). For petroleum hydrocar-
bon biodegradation, microbial attachment on solid surface, entrapment in a gel or 
membrane, or encapsulation into carrier was used (Hussein 2006). Microbial cul-
ture for bioaugmentation in an immobilized form may offer more complete and 
more rapid degradation, which is easy to handle, can be reutilized, and has high 
tolerance to pH and temperature changes (Partovinia and Rasekh 2018). 
Immobilized matrices provide sustained microbial population by continuous 
release of bacteria in the soil, water, and sediments. Although in many studies cul-
ture used in immobilized beads form, still most of the studies have not addressed 
the growth dynamics of different bacterial strains inside the beads (Bazot and 
Lebeau 2009).

There are two types of hydrogel material for cell immobilization, natural and 
synthetic. Natural material includes agar, agarose, polyacrylamides, carrageenan, 
and alginate (Leenen et al. 1996) (Table 7.3). Alginate is used widespread due to 
its nontoxic and nutritional behavior for bacterial cell immobilization. The incor-
poration of some adsorbents into alginate beads is used to transport pollutants 
inside and outside of the beads (Zhang et al. 2008). Sodium alginate matrix has 
hindrance to mass and air transfer inside the dense gel layer (Mikkelsen and 
Elgsaeter 1995). Diatomite was incorporated to overcome this problem (Farhana 
et al. 2012). Diatomite (SiO2 nH2O) is off-white to white color, soft, light in weight 
sedimentary rock composed mainly of silica microfossils of aquatic algae. 
Diatomite is highly porous with good sorption ability, is nonreactive with other 
chemicals, and has low density and large surface area; due to these unique proper-
ties, this material is used in cell immobilization for hydrocarbon degradation 
(Nenadovic et al. 2009). Wang et al. (2012) in their study found that after 20 days 
of oil degrader inoculation in the soil, the maximum degradation rate in the sodium 
alginate diatomite (SAD)-immobilized systems reached up to 29.8%, significantly 
higher (P < 0.05) than free cells (21.1%). Moreover, both microbial number and 
total microbial activity reached to highly significant level (P < 0.05) in the immo-
bilized culture than free culture inoculation systems at a same initial inoculation 
amount. In the presence of plant rhizosphere, this immobilized inoculum was inef-
fective (Table 7.1) (Farhana et al. 2012) because sodium alginate diatomite carrier 
has short life and degraded within 20 days and plant growth takes more time 
(Mikkelsen and Elgsaeter 1995).
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7.2.3  Rhizoremediation of Pollutants

Pollutant breakdown in the rhizosphere is improved due to the increase in the micro-
bial activity than non-rhizosphere; this process is generally known as phytostimula-
tion or plant assisted microbial degradation (Donnelly et al. 1994). Rhizodegradation 
involves the immobilization and removal of the pollutants which is strongly depen-
dent on the rhizospheric processes including enhancement of microbial degrada-
tion. The number of PAH degraders and total microbial count were found higher in 
the rhizospheric region of ryegrass and clover than in the un-vegetated soil (Ma 
et al. 2010).

Symbiotic association is observed around the plant rhizosphere and their associ-
ated microbes due to the release of root exudates which provide necessary nutrients 
for the survival of microbes and in turn microbes responsible for improved soil 
conditions for plant growth. Especially, plants help in softening of soil due to aera-

Table 7.3 Summary of the researches on different immobilization strategies for bioaugmentation

Material for 
immobilization Target pollutant

Microorganisms 
type Effect Reference

Biofix and Drizit Petrol Pseudomonas 
fluorescens

Best results 
than free system

Wilson and 
Bradley (1996)

Sodium alginate Phenol, ortho- and 
Para-cresol

Methanogenic 
consortium

Twofold higher 
than free culture

Guiot et al. 
(2000)

Polyvinyl 
alcohol and 
Drizit

Diesel Mix hydrocarbon 
degraders

Best results than 
commercial 
liquid containing 
surfactants

Cunningham 
et al. (2004)

Vermiculite PAH Bacillus and 
Mucor

Best results than 
free culture

Dan et al. 
(2006)

Ca alginate Cd Streptomyces and 
Bacillus

Less effective 
than culture type

Jeˇızeˇıquel and 
Lebeau (2008)

Alginate-lignin Phenanthrene Phanerochaete 
chrysosporium

Best results than 
free culture

Zhang et al. 
(2008)

Phosphorylated 
polyvinyl alcohol

Atrazine Agrobacterium 
radiobacter and 
mix culture

Best results than 
free culture

Siripattanakul 
et al. (2008)

Alginate and 
biofilm on 
tezontle

Organophosphate 
pesticides (OP)

Bacterial 
consortium OP 
adopted

Best than 
suspension 
culture

Yañez-Ocampo 
et al. (2009)

Ca alginate Diuron herbicide Delftia 
acidovorans and 
Arthrobacter

One immobilized 
strain has better 
result than free 
culture

Bazot and 
Lebeau (2009)

Sodium alginate 
and diatomite

TPH Hydrocarbon 
degrader mix 
consortium

Less effective 
than free 
inoculum and 
control plant

Farhana et al. 
(2012)
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tion and water transport into the rhizosphere (Fig. 7.1). Plants also release allelo-
pathic agents which suppress the growth of other plants in the same soil and protect 
them from competition, soil pathogens, toxins, and chemicals released from the 
unwanted plants.

In specific plant-microbe interaction, plant detects toxicants and secretes specific 
compounds in response to that stimuli and subsequently promotes the growth and 
activity of specific bacterial community (Fang et al. 2001). Due to this reason some-
times inhibition of inoculated bacterial culture was observed which interferes with 
the natural plant-microbe interaction and leads to the failure in enhanced degrada-
tion by bioaugmentation (Farhana et al. 2012) (Fig. 7.1). Nonspecific interaction 
occurs when the contaminants themselves may have similarities to the phytochemi-
cal which are released by the plant naturally (Phillips et  al. 2012). These 
 phytochemicals are used by the rhizospheric microbes as a primary carbon source, 
and co-metabolic process starts which slows down the pollutant degradation. 
Sometimes pollutants’ degradative enzymes produced by microbes can also be pro-
duced by the plant itself. These secondary plant metabolites (SPMEs) are very 
diverse in nature, having structural similarities with organic pollutant which play an 
important role in the production of many degradative enzymes (Jha et al. 2015). 
Examples of pollutants analogy included PAH, their structures are similar to the 
root exudates morin (Donnelly et al. 1994), and pyrene resembles SPME confusa-
rine released by plants (Singer et al. 2003). The degradation capacity increased in 

Fig. 7.1 Bacterial community attaches with rhizosphere due to mucilage, and negative interaction 
of rhizospheric and inoculated bacteria takes place due to competition for nutrients and niche
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the presence of exudates acetate and alanine while decreased when malonate was 
produced by plant roots. It inferred that the degradation potential is associated with 
functional changes in microbial community.

Rhizospheric biodegradation is the smart technique which utilizes sunlight 
through plant to degrade pollutants with indigenous microbes. Due to limited meth-
odological capabilities, there are many challenges which are difficult to explore; 
these includes which mechanisms influence microbial community composition in 
the rhizosphere, its type, degradative genes involved, and the effect of bioaugmenta-
tion in the rhizosphere. In order to assess the influence of plants on pollutant degra-
dation, appropriate experimental design is an essential part of research study so that 
the conclusive results of pot experiments can be applied in the field plots or in sci-
entific field studies (Mackova et al. 2006).

7.2.4  Plant Species Selection Criteria for Rhizodegradation

Plant root growth parameters are particularly important in the petroleum degrada-
tion. The large 0 roots penetrate deeply in the impermeable soil layers, and its root- 
associated microbial flora is exposed to more contaminants; similarly higher number 
of root tips provides more binding site for contaminants (Fig. 7.2). The monocot 
plant species have great potential of contaminant degradation due to its dense root 
systems which provide a high surface area to soil-microorganism interaction for 
biodegradation (Hussein 2006). In order to improve the efficiency of rhizospheric 
pollutant degradation, bacterial inoculation on plant’s seed could be an important 
strategy (Kuiper et al. 2004).

The successful study of rhizodegradation of petroleum hydrocarbon was achieved 
with Sesbania cannabina plant; this plant tolerates anoxia in the root zone which is 
a prevailing condition of petroleum-polluted soil.

Observation of natural revegetation at the site can provide additional information 
on potential plant species. The use of native versus non-native plants for the rhizore-
mediation of contaminated sites is an important point of concern. In most situations, 
plants that are native to the region of contamination have shown to be most appro-
priate for rhizoremediation (Merkl et al. 2004). Species chosen for rhizoremediation 
should have good adaptability to new environment and climatic conditions of the 
region. This means that average temperature, annual rainfall, and length of growing 
season are important considerations in rhizoremediation planning (Frick et al. 1999) 
and each country have to recognize indigenous plants that can be utilized for phy-
toremediation (Robson et al. 2003). The introduction of non-native plants into any 
agricultural ecosystem is not always possible, and practical considerations such as 
cost and availability of seed are also very important.
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7.3  Conclusion

In the bioremediation breakdown of the crude oil contaminant due to microbial 
activity enhanced in the presence of plant rhizosphere, the selection of native domi-
nant plant species is required which can tolerate the exposed crude oil concentra-
tion. Bioaugmentation by using autochthonous microbes is of great interest because 
it is found to be best adopted with the contaminated environment. Inoculum addi-
tion or biostimulation techniques appeared to be effective in enhancing biodegrada-
tion of oil hydrocarbons in soil when used alone. However, in the presence of plant, 
bioaugmentation with free and sodium alginate-immobilized cultures was ineffec-
tive as sodium alginate degrades very quickly and plant growth required long time. 
One other reason was presence of root exudates which select bacterial species and 
their subsequent activity. Natural plant-microbe interaction seems to be responsible 
for higher hydrocarbon degradation directly and indirectly by promoting plant 
growth. The reason for ineffectiveness of bioaugmentation was that the inoculated 

Fig. 7.2 Effect of root growth in petroleum rhizodegradation, morphology of roots plays an 
important role in binding of pollutants with roots which ultimately increases the pollutant degrada-
tion potential either by co-metabolic process or by pollutant uptake
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culture was isolated from the freshly contaminated site while the soil sample was 
composted and weathered having more recalcitrant fraction, so the stage of degra-
dation was different which required different microbial community with relevant 
substrate-utilizing pathway which can degrade petroleum hydrocarbon in a 
better way.
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8.1  Introduction

One of the burning problems faced by both developed and developing countries is 
the increasing quantity of organic waste. Because of speedy industrialization, 
urbanization, population explosion and modern agricultural practices, millions of 
tonnes of organic waste are produced per day globally. The most common practice 
used for the processing of this waste is either uncontrolled burning or dumping in 
landfills both of which leads to many environmental problems like release of green-
house gases (CH4, CO2, N2O) (Lee et al. 2009), leachate, ground- and surface water 
pollution (Mor et al. 2006), damage to natural beauty of that area, odour problems, 
become breeding grounds for mosquitoes and rats, destruction of fertility of soil, 
etc. Also an important organic resource is wasted.

Each human being generates some type of organic wastes which is having no 
value in the eyes of the owner and has to be thrown out. In order to maintain 
healthy and safe environment, management of this organic waste is important. The 
common organic wastes produced by modern societies are kitchen waste, agricul-
tural waste, horticultural waste, vegetable waste, animal waste, sewage sludge, etc. 
(Gopalakrishnan 2005). Large amount of agricultural waste which is mainly 
destroyed by burning or disposed in landfills can be used as a soil amendment by 
following the simple recipe “What comes from soil must be returned to the soil” 
(Sequi 1990). Dumping of tonnes of organic wastes in landfills everyday creates 
both environmental and economic problems for the government to monitor and 
handle it for the safety of the environment. Although there are a number of physi-
cal and chemical methods which can be used for management of organic waste, 
they are either time-consuming or expensive (Zirbes et al. 2011). The problem to 
manage it has become more complicated because of mixing of biodegradable and 
non- biodegradable wastes at the source of generation. The main objective of 
organic waste management is to reduce environmental impacts caused by 
unplanned disposal of organic wastes (Pevey et al. 1985). One of the most promis-
ing techniques used for the sustainable management of organic wastes is vermi-
composting (Singh et  al. 2011). It is a process involving joint action of 
microorganisms and earthworms. Microorganisms help in biochemical degrada-
tion of organic waste, and earthworms help in fragmenting and making the sub-
strate suitable for microorganisms. Earthworms make organic waste much more 
favourable for microbes by acting as mechanical grinders, thereby increasing its 
surface area, modifying its physicochemical status, decreasing its C:N ratio, etc. 
(Dominguez et al. 1997). They also act as an agent of aeration and turning (Ndegwa 
and Thompson 2001). Vermicomposting is like getting “gold from garbage” 
(Fig. 8.1). It is one such technique which can be used for sustainable management 
of organic waste, and at the same time, organic fertilizer can be produced which 
can be used for sustainable agriculture without having any negative effect on 
human health and soil ecosystem.
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8.2  Vermicomposting

Vermicomposting is a process involving joint action of microbes by which organic 
wastes are recycled and humus-like material known as vermicast is produced con-
taining both macro- and micronutrients, beneficial microbes, enzymes and hor-
mones required for proper growth of plants (Lee 1985; Bansal and Kapoor 2000; 
Jambhekar 1992). Vermicast is also known as black gold (Lim and Wu 2015; 
Patangray 2014) as it contains both macro- and micronutrients. Vermicomposting 
was started in Canada (1970), and the first experiment for organic waste manage-
ment was done in Ontario (Canada) and is now processing more than 70 tonnes of 
refuse per week. Later on it was followed by the USA, Japan, Italy, the Philippines, 
Thailand, Brazil, India and other countries. Vermicomposting is a cost-effective, 
socially acceptable and eco-friendly technique for management of organic waste 
(Lim et al. 2016) using proper species of earthworm (Fig. 8.2). It is a very promising 
technique as it can give employment to millions of youth, can reduce the reliance on 
chemicals, can convert wastes into fertilizers and can make a motherland green and 
prosperous.

8.3  Species Used in Vermicomposting

There are around 8000 known earthworm species, but species which are appropriate 
for vermicomposting are only 7, and all belong to epigeic species such as Eisenia 
foetida, Perionyx excavatus, Eudrilus eugeniae, etc. Eisenia foetida (Fig. 8.3) is a 
well-known species and is used throughout the world for vermicomposting because 
of its tolerance to temperature (10–35 °C), disease resistance, fast multiplication, 
high speed of cocoon production, short life cycle and fast consumption of organic 
matter (Watanabe and Tsukamoto 1976; Hartenstein et al. 1979; Reinecke and Kriel 
1981). Also it has the ability to double its population within 60 days and consume 
food equal to its body weight per day under appropriate conditions. It is commonly 

Fig. 8.1 Organic fertilizer from organic waste
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known as compost worm and is native to Europe. Perionyx excavatus and Eudrilus 
eugeniae are the best species to be used for organic solid waste management in 
tropical and subtropical regions (Kale 1998a, b). It has been confirmed that earth-
worm can process every type of organic waste like paper waste, kitchen waste, sew-
age sludge, animal waste, city refuse, industrial waste, etc. (Kale et  al. 1982; 
Senapati and Dash 1982; Muyima et al. 1994; Edwards and Bohlen 1996; Ismail 
2005, Saranraj and Stella 2012; Wu et al. 2014; Lim et al.2016).

Fig. 8.3 Eisenia foetida species commonly used for vermicomposting

Fig. 8.2 Vermicomposting of organic wastes
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8.4  Materials Used for Vermicomposting

In general every type of organic waste (Fig. 8.4) such as animal waste, agricultural 
waste, kitchen waste, etc. can be used as a material for vermicomposting. Most 
commonly cow dung, leaf litter and dried agricultural residues are key materials. 
Earthworms consume almost every type of organic waste and decrease the quantity 
by 50–60%. Each earthworm weighs about 0.4–0.6 g, eats squander proportions to 
its body weight and delivers cast equal to around 50% of the waste it devours a day. 
Most earthworms eat about half of their body weight of organic matter per day. But 
tiger worm can eat organic waste at a rate equal to its body weight per day. Under 
perfect conditions of temperature (20–25 °C) and moisture (50–60%), 1 tonne of 
organic waste can be transformed into vermicompost in just 30 days by about 5 kg 
of earthworms The main idea behind vermicomposting is to reduce organic waste 
pollution caused by inappropriate dumping of different types of organic wastes 
(Fig. 8.5). Fresh waste cannot be processed by worms; hence a partial decomposi-
tion of waste is required so that it becomes palatable for earthworms. To speed up 
the vermicomposting process, cow dung is usually used which acts as a basic food 
substrate for earthworms. Different types of wastes have been converted success-
fully by earthworms such as paper, coffee and tea waste, banana waste, sugarcane 
waste, agricultural waste, municipal waste, etc. Vermicomposting has also proven to 
be successful in recycling sewage sludge and solids from wastewater (Dominguez 
et al. 2000; Xing et al. 2012; Fu et al. 2015; Fernández-Gómez et al. 2015; Villar 
et  al. 2016), brewery waste (Butt 1993), urban wastes, kitchen and cattle wastes 
(Allevi et al. 1987; Edwards and Burrows 1988; Elvira et al. 1995; Dominguez and 
Edwards 1996; Kaushik and Garg 2003) as well as other wastes like dead plants and 
mushroom waste (Edwards 1988), horse waste (Dharani et al. 2010; Brintha and 
Manimegala 2015), elephant dung (Elamparithi et al. 2017), etc. These wastes can 

Fig. 8.4 Different types of organic wastes
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lead to air, soil and water pollution if not managed properly. Mixing of these 
 substrates with cow dung and other suitable organic waste can make them suitable 
for earthworms to feed upon and thereby decreasing the pollution level by using 
suitable species of earthworms. About 50–60% of waste found in municipalities and 
cities is organic in nature which has led to loss of organic resource because of lack 
of awareness and commitment to segregate materials and composting it. Some suc-
cessful attempts have been made in some municipal areas to segregate the waste 
into organic and inorganic material and use it for vermicomposting e.g. Karnataka 
state (India) where a vermicomposting unit has been set up by Karnataka Compost 
Development Corporation for managing organic waste of the state. 100–200 tonnes 
of waste is processed, and the same is then sold to customers as organic fertilizer. 
Vermicomposting of human excreta (faeces) was studied by Bajsa et al. (2004), and 
he found that within 6 months human excreta can be converted into vermicompost 
by earthworms with safe pathogen quality, good physical texture and no bad odour. 
During vermicomposting of faeces (biosolids), the population of total coliform 
greatly decreased, and it was found that the population densities of coliform bacte-
ria reduced by 98% as compared to those in fresh pig slurry when passed through 
the gut of earthworm species Eisenia foetida, Eudrilus eugeniae and Eisenia andrei 
(Monroy et al. 2008). It has also been reported that after 60 days of vermicompost-
ing of faeces the number of coliform bacteria reduced from 39,000 to 0 MPN/g 
(Dominguez and Edwards 2004). Degradation and composting of “wastewater 
sludge” released from different industries such as sugarcane industry, potato and 
corn chip industry, paper pulp and cardboard industry, brewery and distillery indus-
try, etc. by earthworms were studied by Kale (1998a, b), Kale et al. (1992), Seenappa 
et  al. (1995), Gunthilingaraj and Ravignanam (1996), Lakshmi and 
Vizaylakshmi (2000).

Fig. 8.5 Dumping of organic wastes
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8.5  Methods of Vermicomposting

There are different methods of vermicomposting but the most commonly used 
methods are pit method (Fig. 8.6) and windrows method (Fig. 8.7). Pit method is 
used for small-scale production of vermicompost, and for large-scale production, 
windrows method is used. Pit method is usually used to produce 5–10 tonnes of 
vermicompost per year and to meet personal requirements of a farmer, while wind-
rows method is used for large-scale recycling of organic waste and production of 
50–100 tonnes of vermicompost which can be used for commercial purposes. Both 
worms and vermicompost can be sold, worms at the rate of 150–200 rupees per kg 
and vermicompost at the rate of 10–15 rupees per kg.

Fig. 8.6 Small-scale production of vermicompost by pit method

Fig. 8.7 Large-scale 
production of 
vermicompost by 
windrows method

8 Vermicomposting: An Eco-Friendly Approach for Recycling/Management…



174

8.5.1  Pit Method

The steps used in pit method are:

 1. Suitable-size pit is constructed over the surface of the ground. The pit size may 
vary depending upon the availability of raw materials. Generally the pit size is 
3 × 2 × 1 m (L × W × D).

 2. The first layer of pit is filled with paddy straw or rice husk for bedding.
 3. The second layer is filled with cow dung (15–20 days old) to initiate microbial 

activity and serve as food substrate for earthworms.
 4. In the third layer, earthworms are added up at the rate of 1 kg per 50 kg organic 

matter.
 5. After adding earthworms every type of organic waste like vegetable peelings, 

rice husk, fruit waste, leaf litter, etc. is added to fill the pit up to the top.
 6. The pit is finally covered with gunny bags to protect earthworms from being 

preyed upon by birds, rats, moles, etc. and to maintain adequate moisture 
(50–60%).

 7. Water is to be sprayed twice or thrice in a week. After the end of 60 days, vermi-
compost will be ready and can be harvested for agricultural purposes. 
Vermicompost will be free floating having earthy smell and dark brown colour.

8.5.2  Windrows Method

As already stated it is used for large-scale production of vermicompost. Here organic 
wastes such as cow dung and agricultural waste is piled up in long rows (windrows). 
In order to improve oxygen content and porosity, these rows are turned. Usually wind-
row of appropriate size is made over the concrete surface, and the ideal height of the 
pile is 3–6 ft. and width 10–12 ft. The size of the pile may vary as per the availability 
of raw materials. To start a windrow, first organic waste and cow dung are spread on 
a concrete surface, and earthworms are added. After them manure is added every 
week to increase windrow depth. After the first windrow is made 3–4 ft. thick, the new 
windrow next to the first windrow is made. The earthworms will migrate from first to 
fresher feed. Then waste is added up to fill this pile, and this process continues till a 
number of windrows are made. Water will be sprayed as per the requirement, and after 
the end of 2–3 months, vermicompost will be ready from the first and subsequent 
windrows. After then it will be harvested and used for commercial purposes.

8.6  Factors Influencing Vermicomposting of Organic Wastes

There are a number of factors which effect processing of organic wastes during 
vermicomposting. Some of the important factors are mentioned below.

A. M. Yatoo et al.
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8.6.1  pH

Number, distribution and species of earthworm can be limited by pH of the substrate 
as worms are very responsive to pH (Edwards and Bohlen 1996; Chalasani et al. 
1998). So for proper growth, development and action of earthworms, optimum pH 
is required. Earthworms can tolerate a pH range of 5–9, but the optimum pH for 
most of the composting worms is about 7.0 (Singh 1997; Narayan 2000; Pagaria and 
Totwat 2007; Suthar 2008). pH generally depends on the type of waste used for 
vermicomposting but can also decrease because of a number of chemical reactions 
occurring during decomposition of organic wastes.

8.6.2  Moisture

Adequate moisture is required for vermicomposting which is around 60–70%. As 
earthworms breathe through their skins, water should be sprayed twice or thrice a 
week so that proper moisture is maintained in the vermicomposting unit. It should 
not be more or less than the optimum range; otherwise it can be dangerous for 
growth and development of earthworms. When the moisture level is maintained, the 
time required for vermicomposting of organic waste is less and growth and develop-
ment of worms are fast. The number and biomass of earthworms are also influenced 
by moisture (Olson 1928; El-Duweini and Ghabbour 1965; Wood 1974).

8.6.3  Temperature

Growth, metabolism, activity and reproduction of earthworms are significantly 
affected by temperature as reported by Evans et al. (1948). When temperature is 
ideal, vermicomposting is fast as worms feed faster on the substrate and reproduce 
faster. Compost worms can tolerate to a temperature range of 5–35 °C, but tempera-
ture beyond this level can be lethal, and worms will try to escape and if not possible 
will die quickly. The optimum temperature for most of the worms is 20–25  °C 
(Neuhauser et al. 1988), so maintenance of optimum temperature is essential for 
vermicomposting.

8.6.4  Food Substrate/Organic Waste

Earthworms can use almost every type of organic waste as their food substrate. 
Joshi (1997) reported that dairy waste, animal manure, biogas sludge, poultry waste 
and food industry waste can be recycled by vermicomposting. Under perfect condi-
tions compost worms eat about half of their body weight per day. It is better to 
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underfeed worms than to overfeed worms because if worms cannot eat organic 
waste quickly it will rot and produce bad odour and also oxygen level will decrease 
and worms may die.

8.6.5  Light

Earthworms hate light and are very susceptible to it. When exposed to sunlight, they 
go deep in to the soil or bin and if escape is not possible may get injured or killed. 
So vermicomposting should be done always in shady areas or provide any type of 
shelter.

8.6.6  Carbon and Nitrogen Ratio (C:N Ratio) “Greens 
and Browns”

For high-speed vermicomposting, carbon/nitrogen ratio should be maintained. If 
C:N ratio is high, the process of decomposition will be slow. To maintain C:N ratio 
to its desired level, nitrogenous substrate such as cow manure may have to be added. 
At the start of vermicomposting, the ideal C:N ratio should be below 30:1 and at the 
end should be decreased to 20:1 (Kavitha and Subramanian 2007). The microorgan-
isms use carbon as a source of energy and nitrogen for protein synthesis. Thus add-
ing a mixture of greens such as grass clippings and browns such as tree leaves will 
help to maintain ideal C:N ratio. The C:N ratio of different organic materials is 
shown in Table 8.1.

Table 8.1 Average carbon/
nitrogen ratios of some 
organic substrates

S. no. Organic material C:N ratio

1. Grass clippings 15–20:1
2. Cow dung 20:1
3. Sheep manure 10:1
4. Food wastes 15–20:1
5. Horse manure 25:1
6. Vegetables 20–25:1
7. Sewage sludge 16:1
8. Fruit waste 30:1
9. Paper 100:1
10. Dry leaves 40–60:1
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8.7  Advantages of Vermicompost

8.7.1  Organic Fertilizer

The most important advantage of vermicompost is that it is 100% organic. No harm-
ful chemical is present in it and is not required to be mixed with anything. It is a 
complete fertilizer. Its addition can lead to organic enrichment to soil and can 
improve its physicochemical and biological properties (Ansari and Jaikishun 2011; 
Chauhan and Singh 2013).

8.7.2  More Nutritious

Vermicompost contains all essential nutrients in soluble forms of nitrogen, phos-
phorus, potassium, calcium, magnesium, etc. which are easily available to plants 
(Pathma and Sakthivel 2012; Orozco et al. 1996; Lim et al. 2015; Gupta et al. 2014b; 
Amanullah 2016). As compared to chemical fertilizers, vermicompost is not flushed 
from the soil easily as it contains worm mucus and remains attached to soil for lon-
ger period of time. Also vermicompost contains enzymes such as cellulase, amy-
lase, lipase, etc. which help in releasing nutrients by breaking down of organic 
matter already present in soil and making them available to plants (Chaoui et al. 
2003; Lunt and Jacobson 1994; Tiwari et al. 1989)

8.7.3  Beneficial Microorganisms

As the compost passes through the body of earthworms, it becomes enriched with 
microorganisms and contains bacteria, fungi and actinomycetes (Edwards 1983; 
Tomati et al. 1987). These microorganisms help to make plants more disease and 
pest resistant. As per reports some microorganisms such as the pseudomonads can 
induce resistance to plant diseases because they are antagonistic to plant pathogens 
and such effects were verified by experiments on suppression of diseases like verti-
cillium wilt on strawberries and pythium and rhizoctonia on cucumbers and rad-
ishes under laboratory conditions (Chaoui et al. 2003).

8.7.4  Healthier Plants

Application of vermicompost makes the plants healthier and stronger. The chemical 
fertilizers on the other hand may increase yield of plants but do nothing for the 
health of plants as fertilizers feed the plant while vermicompost feeds the soil. 
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Continuous application of chemical fertilizers makes the plant susceptible to dis-
eases. As per Singh et al. (2009), health and yield of wheat were better when grown 
on vermicompost as compared with chemical fertilizers, and it increases with con-
tinuous application of same amount of vermicompost.

8.7.5  Plant Growth

Vermicompost contains hormones which are very important for the growth of 
plants. These hormones encourage seed germination, growth and yield of plants. 
Microorganisms such as bacteria, actinomycetes, yeasts and fungi present in vermi-
compost produce plant growth hormones and plant growth regulators such as gib-
berellins, cytokinins, auxins, ascorbic acid, etc. (Frankenberger and Arshad 1995); 
vermicompost also adds beneficial microorganisms to the soil and supplies food for 
the existing microorganisms which enhances their biological properties and self- 
renewal capacity of soil fertility (Ouédraogo et al. 2001; Shiralipour et al. 1992).

8.7.6  Water Retention

Vermicompost has high porosity, aeration and water holding capacity (Edwards and 
Burrows 1988). It can hold up to nine times its own weight in water as it is a colloid. 
Thus during dry periods of time, it can make a big difference.

8.7.7  Slow Nutrition Release

Vermicompost releases nutrients very slowly, thus remaining available to plants for 
long period of time, whereas nutrients from inorganic fertilizers get released faster 
and plants are not able to absorb them with the speed they are released. The nutri-
ents present in vermicompost also become available to plants in shorter period of 
time, while the conventional compost fails to release the required amount of impor-
tant nutrients including NPK to plants in shorter time (Bonkowski and Schaefer 
1997; Hammermeister et al. 2004; Subler et al. 1998).

8.7.8  Rich in Humic Acids

Vermicompost being rich in humic acids helps in the promotion of nutrient uptake 
and root growth of plants. This was confirmed by Canellas et al. (2002) that elonga-
tion of roots and lateral root formation in maize plants were enhanced by humic 
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acids when isolated from vermicompost. This was also reported by Pramanik et al. 
(2007) that nutrient uptake by plants was increased by humic acids by stimulating 
root growth and by increasing proliferation of root hairs.

8.8  Nutrient Status of Vermicompost

The nutrient status of vermicompost usually depends upon the kind of organic waste 
and species of earthworm used in vermicomposting. In case of heterogenous waste, 
a wide range of nutrients will be available, while as in case of homogenous waste, 
only certain nutrients will be available. Besides containing other micronutrients, 
vermicompost is enriched with macronutrients which are present in soluble form 
and become available to plants within a month of application. Not only nutrients but 
also beneficial microorganisms such as bacteria, fungi, actinomycetes, plant growth 
promoters and other materials produced by microorganisms are also present in ver-
micompost (Joshi et al. 2015). The nutrient content present in vermicompost is five 
times more than what is present in potting soil mixtures. Ruz-Jerez et al. (1992) and 
Parkin and Berry (1994) conducted chemical analysis of vermicompost and found 
that as compared to good top soil vermicompost contains 5 times more nitrogen, 7 
times more potassium and 1.5 times more calcium. As per Reinecke et al. (1992), 
phosphorus gets converted into plant-available form when it passes through the gut 
of earthworms. Therefore vermicomposting process is very important for agricul-
ture as it makes phosphorus and other nutrients available to plants. The presence of 
essential nutrients and microorganisms in vermicompost is very important for the 
growth of productive and healthy plants. The vermicompost not only provides these 
but also has long-lasting effects as it increases water holding capacity of soil, modi-
fies soil structure and improves soil stability and porosity (Ferreras et al. 2006). The 
presence of enzymes like chitinase, amylase, lipase, etc. in vermicompost can break 
down organic matter already present in soil and release nutrients, thereby making 
them accessible to plant (Chaoui et al. 2003; Tiwari et al. 1989).

Vermicompost on an average contains 1–2.5% nitrogen, 1.8–2.0% phosphorus 
and 1–1.5% potassium. It also contains other nutrients such as sodium, iron, zinc, 
calcium, magnesium, etc. as mentioned in Table 8.2.

8.9  Vermicompost as Plant Growth Promoter and Protector

8.9.1  Growth Promoter

Vermicompost is an exceptional plant growth promoter and protector as it contains 
both macro- and micronutrients and beneficial microorganisms and thereby can be 
used as a sustainable alternative to inorganic fertilizers (Sinha et al. 2009; Chauhan 
and Singh 2015). Continuous use of inorganic fertilizers over a long period of time 
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restricts the overall growth and development of plants as it makes the soil acidic, 
decreases its water holding capacity, makes the plants susceptible to diseases 
(Ansari and Ismail 2001), etc. Vermicompost on the other hand is a perfect organic 
fertilizer for proper growth and yield of many plants (Lalitha et al. 2000; Amador 
et al. 2013; Gezahegn and Girum 2017) as it contains higher nutrient content as 
compared to other organic amendments (Joshi et al. 2015). Vermicompost not only 
improves physical and biochemical properties of soil, but also increases health- 
related secondary metabolites in plants (Goswami et  al. 2017; Das et  al. 2018). 
Besides containing plant growth protectors and growth-promoting materials pro-
duced by microbes, vermicompost also contains a significant quantity of micronu-
trients (Amanullah 2016); growth stimulators such as auxins, cytokinins, gibberellins 
and enzymes (Tejada and González 2009); and humic acids (Maji et al. 2017). All 
these compounds can lead to increase in the tiller number, leaf area and overall 
growth and yield (Joshi et al. 2015). Vermicompost also acts as a “slow release fer-
tilizer,” so nutrients remain accessible to plants for longer period of time, whereas 
nutrients from chemical fertilizers are released faster and depleted faster. When 
chemical fertilizers are applied to soil, a large portion of nitrogen is lost because of 
oxidation in the presence of sunlight. Suhane (2007) estimated that if 100 kg urea is 
applied in agricultural soil only 20–25 kg is accessible to plants while 40–50% is 
lost in air as ammonia and around 20–25  kg leaches and pollutes groundwater. 
Impact of vermicompost and inorganic fertilizers on strawberries was studied by 
Arancon et  al. (2004) by applying them combined and separately. In dry shoot 
weight of strawberries, there was little difference when vermicompost at the rate of 
10 tonnes per hectare and inorganic fertilizer at the rate of 85, 155 and 125 NPK kg 
per hectare, respectively, was applied. But yield and weight of commercial straw-
berries were highest in those treated with vermicompost after 220 days of trans-
planting. Similar types of results were also reported by other researchers like Ansari 
(2008) who observed higher yield of spinach, onion and potato. Dhanalakshmi et al. 
(2014) also observed higher number of leaves, branches, root and shoot length in the 

Table 8.2 Nutrient status of 
vermicompost

S. no. Parameter Nutrient content

1. pH 6.8–7.5
2. O.C (%) 15–20
3. E.C (mS·cm–1) 0.18
4. N (%) 1–2.5
5. P (%) 1.8–2.0
6. K (%) 1–1.5
7. Ca (%) 0.17
8. Mg (%) 0.06–0.3
9. Zn (%) 0.005–0.11
10. Na (%) 0.04–0.15
11. Mn (%) 0.03–0.20
12 S (%) 0.3–0.5
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seeds of okra, chilli and brinjal grown in soil amended with vermicompost. 
Vermicompost is also known to have positive effects on other horticultural crops 
such as groundnut (Kumar et al. 2014), garlic (Suthar 2009), sweet corn and tomato 
(Lazcano et al. 2011; Abduli et al. 2013), banana, papaya (Reddy et al. 2014), etc.

8.9.2  Plant Protector

A great diversity of microorganisms such as fungi, bacteria, actinomycetes, etc. is 
present in vermicompost which makes it a perfect supplement for disease suppres-
sion in plants. As per Parle (1963), bacterial count in fresh vermicompost is around 
32 million per gram, while it is around 6–9 million per gram in good soil. As vermi-
compost contains plant growth-promoting bacteria (PGPB), they promote growth 
directly by fixing nitrogen, by producing growth-related hormones such as 1- amino
cyclopropane- 1-carboxylate (ACC) deaminase (Glick 2014), and indirectly by pro-
ducing siderophores, chitinase, cyanide, antibiotics and ß-1,3-glucanase which act 
as antagonists against pathogenic fungi (Han et al. 2005). It has been evidenced in 
the recent past that vermicompost has the ability to protect plants from diseases and 
pests either by inducing biological resistance or by suppressing or killing them 
(Anonymous 2001; Al-Dahmani et al. 2003; Gupta et al. 2014a; Mosa et al. 2015), 
as it contains some actinomycetes and antibodies, thereby increasing biological 
resistance of plants against pests and diseases. Edwards and Arancon (2004) 
reported that population of arthropods (buds, spider mite, aphids) and their damages 
to plants like tomato, cabbage and pepper decrease significantly when vermicom-
post was applied. Mean root disease in tomato was decreased from 82 to 18% and 
89 to 26% in Capsicum when compost was applied to soil (Ayres et al. 2007).

8.10  Conclusion

It can be concluded that vermicomposting is the best way to recycle organic waste 
as it is an eco-friendly technique. As compared to other methods of waste manage-
ment like incineration or waste disposal into landfills, vermicomposting causes no 
or less pollution and more benefits to environment and economy of the country. The 
end product of this process can be used as an organic fertilizer, thereby reducing the 
need for chemical fertilizers which are dangerous to the environment and human 
health. The quality of vermicompost and speed of recycling can be enhanced by 
adding different substrates like bone meal, egg shell, banana peel and certain micro-
bial inoculants such as Azotobacter, Azospirillum, etc. besides maintaining proper 
temperature, pH, moisture, etc. As already mentioned it is like getting “gold from 
garbage”. If vermicompost can be used as a substitute to inorganic fertilizer for 
organic food production, it will be a major move towards achieving economic, 
social and environmental sustainability throughout the globe. The popularity of 
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organic food is growing throughout the world, so the demand for vermicompost will 
also be great in the future. Besides all these vermicomposting is actually a “one- 
time investment technology” because earthworms reproduce at a faster rate under 
optimum conditions and require no labour or energy input device. Therefore, vermi-
composting of organic waste at the source of generation should be given first prior-
ity in dealing with this waste as it reduces transportation costs, chances of disease 
transmission and land space for dumping, decreases greenhouse gas emissions 
(CO2, CH4, N2O), reduces surface and groundwater pollution and besides produces 
an organic fertilizer which can be used as a soil amendment.
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Chapter 9
Bio-fertilizers: Eco-Friendly Approach 
for Plant and Soil Environment

Umair Riaz, Shahzada Munawar Mehdi, Shazia Iqbal, Hafiza Iqra Khalid, 
Ayesha Abdul Qadir, Wajiha Anum, Munir Ahmad, and Ghulam Murtaza

9.1  Introduction

The soil is a living entity because of the presence of a multitude microflora includ-
ing actinomycetes (Bhatti et al. 2017), algae, bacteria, and fungi (Khanday et al. 
2016; Bhat et al. 2017; Sofi et al. 2017). According to an estimate, about 1 × 108 
microorganisms exist in 1 g of soil. Majority of these microorganisms are beneficial 
for agriculture. Some of the organisms are harmful; however, they are very low in 
number. It has been reported that only 5–7% of soil microorganisms are harmful 
(Chowdhury and Mukherjee 2006). Soil degradation is the major limitation in 
achieving higher crop yields in the developing world, especially among farmers 
with poor resources (Khosro and Yousef 2012). The extensive and imbalanced utili-
zation of pesticides and chemical fertilizers to enhance the crop production has 
resulted in various social, environmental, and economic concerns (Santos et  al. 
2012). Chemical fertilizers are technically based materials which consist of known 
amounts of macro- and micronutrients. The injudicious application of these fertil-
izers no doubt has improved the crop yield especially in developing countries but 
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also has induced adverse effects on the ecosystem including the contamination of 
atmosphere and soil and groundwater and increased disease attack by weakening 
the plant’s roots (Chun-Li et  al. 2014). Hence, new fertilization strategies with 
lower cost, more efficiency, and eco-friendly properties are required.

Bio-fertilizers can potentially participate for sustainable agriculture and environ-
ment. Recently, the efforts have been made to develop nutrient-rich fertilizer with 
high quality, called bio-fertilizer, to certify bio-safety. Bio-fertilizer has been known 
as a substitute for commercial inorganic fertilizer in order to upsurge crop yield by 
increasing soil fertility in sustainable agriculture. These potential biological fertil-
izers are eco-friendly as they keep the environment safe and also act as cost- effective 
agricultural inputs (Khosro and Yousef 2012; Adesemoye and Kloepper 2009).

Bio-fertilizers have arisen as a promising strategy for better nutrient supply in 
agriculture in recent years. Our whole agriculture is dependent on microbial activi-
ties in many ways. A great potential appears for making the use of microbes in 
enhancing crop yield (Bloemberg et al. 2000).

The term “bio-fertilizer” is defined as “materials consisting of live or cells of 
effective strains of phosphate-solubilizing, nitrogen-fixing, or cellulolytic microor-
ganism used for seed, soil, or composting area application, for increasing microbial 
number and to hasten the microbial process which supplements the nutrients that 
can be simply acquired by plants”. The application of bio-fertilizers as soil or seed 
inoculation multiplies and participates in nutrient cycling and then increases crop 
productivity (Adesemoye and Kloepper 2009).

9.2  Difference Between Bio-fertilizers, PGPR, and Organic 
Fertilizers

Though a big difference exists among bio-fertilizer and organic fertilizer, bio- 
fertilizers have been termed as the organic fertilizer earlier. Bio-fertilizers are 
microbial inoculants comprising of live cells of microbes like algae, bacteria, and 
fungi, separately or in combination, which may benefit the crop by increasing pro-
ductivity, while the organic fertilizers are obtained from or consist of plant sources 
(green manure) or animal sources (animal manure). Plant growth-promoting rhizo-
bacteria (PGPRs) are microorganisms which make the association with a host plant 
and enhance the growth of their host (Vessey 2003). However, all the PGPRs cannot 
be termed as bio-fertilizers. For instance, the bacteria that improve plant growth 
through the control of harmful organism are termed as biopesticides, but they are 
not bio-fertilizers. However, some PGPR can improve the growth of plants by work-
ing as both biopesticides and bio-fertilizer. For example, Burkholderia cepacia 
strains can stimulate the growth of maize via siderophore production under the low 
iron condition and also possess biocontrol ability to Fusarium sp. (Bevivino et al. 
1998). Bio-fertilizers duty comprise of a living cell which enhances the plant growth 
through enhanced nutrient availability.
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9.3  History of Bio-fertilizer

The application of bio-fertilizers in agriculture has begun a long time ago. The 
acquaintance about microbial inoculum application and its benefits passes from 
generation to generation in the long history of farmers. The concept of bio-fertilizer 
emerges from the production of compost on a small scale (Khosro and Yousef 2012; 
Halim 2009). In this process, microbial culture hastens the decomposition process 
of agricultural by-products and organic residues and gives healthy crops to harvest 
(Halim 2009). Beneficial bacterial inoculation with plants can be happening for 
centuries. Though bacteria were not discovered until 1683, when Von Leeuwenhoek 
noticed microscopic “animals,” the utilization of these bacteria for plant growth 
stimulation in agriculture has been done since ancient times. Theophrastus 
(372–287 BC) proposed different soil mixing for the remediation of soil defects 
(Vessey 2003). From this practice, farmers noticed that application of soil collected 
from legumes boosted the crop yield, while the application of soil taken from non- 
legume crops did not affect the crop yield. In the last decades of the nineteenth 
century, the practice of seed mixing with “naturally inoculated” soil became an 
endorsed technique of legume inoculation in the USA (Nobbe and Hiltner 1986). In 
the 1930s, Bacillus megaterium was used on a large scale for phosphate solubiliza-
tion in Eastern Europe. In the 1930s and 1940s, inoculation of legumes with asso-
ciative, nonsymbiotic, rhizospheric bacteria, like Azotobacter, was done on a large 
scale in Russia (Amutha 2011). Bio-fertilizer’s commercial history started with the 
launch of “Nitragin,” a laboratory rhizobia culture, by Nobbe and Hiltner in 1895 
(Kribacho 2010). In the USA, Rhizobium inoculant was first prepared and marketed 
by the private sector in the 1930s (Smith 1992).

After rhizobia, Azotobacter was discovered followed by blue-green algae 
(Kribacho 2010). Vesicular-arbuscular mycorrhizae (VAM) and Azospirillum are 
discovered recently (Rana and Ramesh 2013). In the late 1960s in India, the produc-
tion of rhizobial inoculum was firstly commenced at IARI, New Delhi, in 1956 
(Amutha 2011). In Malaysia, production of microbial inoculants on an industrial 
scale began at the end of the 1940s. Picking up was started in the 1970s by taking 
legumes-Bradyrhizobium inoculation as a guide. The Malaysian Rubber Board 
(MRB), a government research institute, has conducted research on young rubber 
trees in the large plantation by the application of Rhizobium inoculums. Bio- 
fertilizers are generally made as inoculants (carrier based), having active microor-
ganisms (Vessey 2003).

9.4  Mechanisms of Action of Bio-fertilizers

Bio-fertilizers have attracted a significant attention of the researchers in last few 
years due to their role in improving crop yields, reducing the chemical fertilizers 
cost, and being less detrimental to the environment (Khan et al. 2010). Bio-fertilizers 
can stimulate the plant growth either through direct or indirect mechanisms.
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Direct mechanism affects the activity of plant growth directly; however these 
direct ways differ between strains and species. These mechanisms include nitrogen 
fixation, phosphate solubilization, phytohormones production (auxin, cytokinins, 
ethylene, gibberellic acid, and abscisic acid), and increasing iron availability 
through siderophore production. Direct improvement of nutrient uptake has been 
testified due to increasing influxes of specific ions at the root surface when bio- 
fertilizers were applied (Bertrand et al. 2000). Several rhizobacterial genera, e.g., 
Agrobacterium, Azospirillum, Paenibacillus polymyxa, Pseudomonas, and Erwinia, 
are known to produce auxins. Bacillus and Rhizobium were also found to produce 
auxin at a different temperature and pH (Ju et  al. 2018; Ansari et  al. 2013). For 
instance, many bacteria have established iron uptake systems through siderophore 
production (DalCorso et al. 2013; Saha et al. 2013; Kundan et al. 2015). Iron is not 
easily accessible for the plant uptake as it exists as very low-soluble ferric ions 
(Ganz 2013; Saha et al. 2013; Kundan et al. 2015). Therefore, the microbial sidero-
phores scavenge the iron from minerals by Fe3+complex formation, which is soluble 
and is taken up by active transport mechanisms. This mechanism is active only 
under low iron solubility (Saha et al. 2013; Kundan et al. 2015).

Indirect mechanisms refer to the inhibition of the functioning of pathogenic 
organisms of plants. Indirect mechanisms comprise the production of degrading 
enzymes, ACC deaminase, induced systemic resistance, antibiotics, competition, 
hydrogen cyanide, quorum quenching, and siderophore production (Balogh et al. 
2010; Frampton et al. 2012).

9.4.1  Nitrogen Fixation

Fixation of atmospheric nitrogen into useable nitrogen that is then converted to 
ammonia is called nitrogen fixation. Biological nitrogen fixation usually occurs at 
slight temperatures by nitrogen-fixing microorganisms (Bakulin et  al. 2007). 
Rhizobial bacteria lead to root nodule formation by initiating a series of reactions 
(Gage 2004). In the root nodule, the bacteria do not contain a cell wall (bacteroid). 
They fix atmospheric nitrogen by the action of an enzyme called nitrogenase enzyme 
and then produce ammonia (Olanrewaju et al. 2017). Figure 9.1 shows the nitrogen 
fixation mechanism.

This biological fixation occurs in a nitrogenase complex, which is a complex 
enzyme. The Nitrogenase complex is explained as a metalloenzyme consisting of 
two components: (1) dinitrogenase, which consists of a metal cofactor, and (2) 
 dinitrogenase reductase, which is an iron protein. Dinitrogenase reductase supplies 
high reducing power electrons, while dinitrogenase uses these electrons to reduce 
N2 to NH3. This process utilizes a large amount of energy, necessitating 16 ATP 
moles for 1 mole nitrogen reduction. For more ATP production, microbial carbon is 
allocated to oxidative phosphorylation, rather than storing energy in the form of 
glycogen through the synthesis of glycogen synthesis. An oxygen-sensitive gene, 
nitrogenase gene (nif), is required for this process. The nif genes also activate 
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molybdenum, iron, protein, and many other regulatory genes. This gene prevents 
oxygen from inhibiting the nitrogen fixation and simultaneously supplying enough 
oxygen for bacteroide respiration inside the nodule. To bind free oxygen, bacterial 
hemoglobin is introduced (Kundan et al. 2015).

9.4.2  Phosphate Solubilization

Figure 9.2 shows the mechanism of phosphate solubilization.
The main mechanism of phosphate solubilization involves the use of chemicals 

such as organic acids, siderophores, hydroxyl ion, carbon dioxide, and protons 
(Rodríguez and Fraga 1999). Organic acids with hydroxyl and carboxyl ions either 
reduce the pH or make chelates with cations and release the phosphates in a plant- 
available form (Khosro 2012; Sharma et al. 2017). Organic acid converts tricalcium 
phosphate to dibasic and monobasic phosphates, and this process boosts phospho-
rus bioavailability. The type and amounts of organic acid vary with different organ-
isms. Aliphatic acids are more efficient in P solubilization comparative to fumaric 
acid, citric acids, and phenolics. Tri- and dicarboxylic acids are more efficient com-
pared to aromatic acids and monocarboxylates (Mahdi et al. 2010a). Gaseous “O2/
CO2” exchange, the release of proton and bicarbonate, lowered pH of the medium 
(Sharma et al. 2017). Thus, phosphorus availability and rhizosphere pH are inversely 
related (Olanrewaju et al. 2017).

Fig. 9.1 Mechanism of biological nitrogen fixation (Source: www.Googleimages.com)
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9.4.3  Zinc Solubilization

The zinc-solubilizing bio-fertilizers acts by secreting organic acids. These organic 
acids replace the zinc on insoluble chelated compounds and make it accessible for 
plant uptake (Mahdi et al. 2010b).

9.4.4  Potassium Solubilization

The potassium-solubilizing bio-fertilizers containing potassium-solubilizing micro-
organisms solubilize silicates through organic acid production and release in the 
rhizosphere. These organic acids provide H+ ions and activate hydrolysis. Organic 
acids such as hydroxyl, carboxylic acids, oxalic acid, citric acid, and keto acids 
promote the removal of silicates from the cationic complexes into a free or dis-
solved state. This breakdown of potassium silicate complex also released potassium 
in the plant-available form (Ju et  al. 2018). Figure  9.3 shows the mechanism of 
potassium and silicate solubilization.

9.4.5  Silicate Solubilization

Some microbial metabolisms produce several organic acids. These organic acids 
have a double role in weathering of silicate minerals. Organic acids provide H+ ions 
and activate hydrolysis. Organic acids such as hydroxyl, carboxylic acids, oxalic 

Fig. 9.2 Mechanism of 
phosphate solubilization by 
microbes
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acid, citric acid, and keto acids promote the removal of silicates from the cationic 
complexes into free or dissolved state and then help in silicate retention in the dis-
solved state in a medium (Rana and Ramesh 2013).

9.4.6  Sulfur Oxidation

Plants uptake the sulfur in the form of sulfates. Sulfur-oxidizing microbes oxidize 
the sulfur to sulfates (Ju et al. 2018).

9.5  Production of Bio-fertilizer

Several factors are needed to be considered in the production of bio-fertilizers 
including growth profile of microbes, formulation of inoculum, types, and optimum 
conditions of the organism. The inoculum formulation, application method, and 
product storage are all critical for the accomplishment of a biological product. 
Generally, six stages are involved in the production of a bio-fertilizer, i.e., (1) selec-
tion of active microbes, (2) isolation of target microbes, (3) carrier material  selection, 
(4) selection of propagation method, (5) phenotype testing, and (6) large scale tests. 
In the first step, the selection of either nitrogen fixer or organic acid bacteria is 
made, and the isolation of target microbes is done. Next, the isolated organism is 
streaked on petri dishes. Selection of right carrier material is of critical importance. 
For powder bio-fertilizer production, peat or tapioca flour is the best carrier 
material. Microbial culture from petri dishes is transferred into small flasks. In case 
of large-scale bio-fertilizer production, it is transferred into the fermenter. At the last 
stage, large-scale testing in a different environment is performed, and its limitations 
and effectiveness are analyzed (Khosro and Yousef 2012).

Fig. 9.3 Schematic diagram of silicate and potassium solubilization
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9.6  Biochemistry of Bio-fertilizer Production

Anaerobic bio-digestion is the microbial breakdown of biodegradable materials in 
anaerobic conditions (Ezigbo 2005; Kim et al. 2010). Figure 9.4 shows the process 
of bio-fertilizer production.

Anaerobic bio-digestion systems can be classified on different categories.
According to the temperature of operation:

 1. Mesophilic systems (i.e., 20–40 °C).
 2. Thermophilic systems (i.e., 45–70 °C) (Lettinga 1995).

According to the total suspended solid concentration:

 1. Dry systems (between 20 and 40% of total solids).
 2. Wet systems (dry matter content of approximately 10%) (Braber 1995).

According to the number of stages considered:

 1. Single stage.
 2. Multistage processes (Vandevivere et al. 2003).

Fig. 9.4 Schematic diagram of bio-fertilizer production
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Three biochemical steps are involved in bio-fertilizer preparation that consist of 
breaking down of complex substances into simpler ones in anaerobic digestion pro-
cess. Four main stages and three major bacterial groups can be considered in order 
to simplify the AD process.

9.6.1  Hydrolysis

Hydrolysis is the first step in anaerobic digestion process, in which complex com-
pounds are passed through the cell membrane and then hydrolyzed to monomer 
compounds (long-chain fatty acids, amino acids, and sugars) through the controlled 
extracellular enzymes actions, emitted by fermentative bacteria (Ponsá et al. 2008). 
It is a rate-limiting step for this process. Many groups of anaerobic bacteria take part 
in this step such as clostridia and bactericides. Some facultative bacteria also take 
part in this process, e.g., streptococci, etc. (Christy et al. 2014). This is an important 
step because microorganisms release enzymes to break down large molecules into 
smaller ones as they cannot use large molecules directly as their food. Extracellular 
enzymes “cut” the larger compounds into smaller molecules that the microorganism 
then engulfs and use as nutrition and energy source. Different types of extracellular 
enzymes are secreted by microorganisms to complete biodegradation and break 
down a variety of organic materials. Some microorganisms are specific, and they 
secrete specific enzymes for a specific function. For example, saccharolytic micro-
organisms secrete enzymes that biodegrade only different sugars; proteolytic micro-
organism biodegrades only proteins. For biodegradation of proteins, sugars, and 
fats, different enzymes are secreted (Schnurer and Jarvis 2009). Table 9.1 shows 
some extracellular enzymes. The rate of hydrolysis reaction varies with the nature 
of the substrate. Protein decomposition rate is usually faster than cellulose and 
hemicellulose transformation (Schnurer and Jarvis 2009).

Table 9.1 Some important enzymes, their substrates, and breakdown products (Schnurer and 
Jarvis 2009)

Enzymes Substrate Breakdown products

Cellulase Cellulose Cellobiose and glucose
Proteinase Proteins Amino acids
Amylase Starch Glucose
Lipase Fats Glycerol and fatty acids
Hemicellulase Hemicellulose Sugars, such as mannose, glucose, xylose, and arabinose
Pectinase Pectin Sugars, such as galactose, polygalacturonic, and arabinose acid
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9.6.2  A Fermentative Step (Acidogenesis)

In this step, the organic compounds formed in the hydrolytic phase are converted 
into short-chain volatile fatty acids (VFAs) such as acetic acids, butyric acids, alco-
hols, carbon dioxide, and hydrogen. Hydrogen is formed as an intermediate prod-
uct, and it affects the composition of the final product. If hydrogen partial pressure 
is too low, it would increase the concentration of reduced compounds. Usually, fatty 
acids, simple sugars, and amino acids are changed into alcohols and organic acids 
during this phase (Chandra et al. 2012; Gerardi 2003).

9.6.3  Acetogenesis

In this step, acetic acid, hydrogen, and carbon dioxide are produced by the degrada-
tion of fatty acids, aromatic compounds, and alcohols (Al Seadi et al. 2008). These 
acetic acid, hydrogen, and carbon dioxide are used as substrates by the microorgan-
isms active in this phase and carried out anaerobic oxidation (Aslanzadeh 2014). 
The collaboration of anaerobic oxidation microorganisms is with the methane- 
forming microorganisms and with the next group. This type of collaboration is 
dependent on hydrogen partial pressure present in the system (Schnurer and Jarvis 
2009; Chandra et al. 2012). When products are transformed into methane, some are 
converted into volatile fatty acids, alcohols, and methanogenic substrates. Volatile 
fatty acids with more than 1 unit carbon chain are oxidized to hydrogen and acetate 
(Al Seadi et al.2008). During the production of hydrogen, protons act as the final 
electron acceptors, and symbiotic relationship interspecies hydrogen transference 
happens. Partial pressure plays an important role in this process. Oxidation reac-
tions occur only at low hydrogen partial pressure, explaining the importance of 
collaboration with the methanogens since they will incessantly utilize hydrogen, to 
produce methane (Chandra et al. 2012).

9.6.4  Methanogenesis

It is the final, critical (Al Seadi et al. 2008), and rate-limiting biochemical step of the 
whole anaerobic digestion process. In this step, carbon dioxide and methane are 
produced by the use of intermediate products through the action of methanogenic 
bacteria under stern anaerobic conditions (Aslanzadeh 2014).

9.7  Bio-fertilizer Classification

Bio-fertilizers are categorized on the basis of microorganisms’ type. Table 9.2 dis-
plays the organization of bio-fertilizers.
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9.7.1  Nitrogen Fixing Bio-fertilizers

Nitrogen is an important macronutrient for crop growth purpose. It is present in the 
atmosphere in a free state. The part of this nitrogen bargains its entry into the soil by 
fixation that is performed by a special group of microorganisms. This process is 
called biological nitrogen fixation, and microorganisms that perform this function 
are called nitrogen fixer or nitrogen-fixing microorganisms. In this process, the 
nitrogen is converted into a form that is plant usable (Gothwal et al. 2007). Nitrogen 
fixer microorganisms are used as bio-fertilizer which is able to fix atmospheric 
nitrogen to meet plants’ need of nitrogen. They are grouped into symbionts such as 
Azolla, Frankia, and Rhizobium; free-living, Azospirillum and Azotobacter; and the 

Table 9.2 Classification of bio-fertilizers

Bio-fertilizer groups Examples

Nitrogen-fixing 
bio-fertilizers

Free-living Azotobacter, Anabaena, Acetobacter, 
Beijerinckia, Clostridium, Klebsiella, Nostoc

Symbiotic Rhizobium (legume), Frankia (non- legume), 
Anabaena azollae

Associative 
symbiotic

Azospirillum sp.

Fungi Penicillium sp., Aspergillus awamori

Phosphate- solubilizing 
bio-fertilizers

Bacteria Bacillus sp., Pseudomonas sp., Phosphaticum, 
Burkholderia, Micrococcus, Rhizobium, 
Agrobacterium, Achromobacter, Aerobacter, 
Flavobacterium, Erwinia

Fungi Aspergillus awamori, Penicillium

Phosphate- mobilizing 
bio-fertilizers

Arbuscular 
mycorrhizal fungi

Glomus, Gigaspora, Scutellospora sp., 
Acaulospora sp.

Ectomycorrhiza Laccaria sp., Pisolithus sp., Boletus sp., 
Amanita sp.,

Ericoid 
mycorrhiza

Pezizella ericae

Potassium- solubilizing 
bio-fertilizers

Bacillus sp., Aspergillus niger

Silicate-solubilizing 
bio-fertilizers

Bacillus sp., Bacillus circulans, Bacillus 
mucilaginous

Zinc-solubilizing 
bio-fertilizers

Bacillus sp., Pseudomonas sp., Acinetobacter, 
Enterobacter, Flavobacterium, Serratia, 
Gluconacetobacter, Burkholderia, 
Saccharomyces sp.

Sulfur-oxidizing 
bio-fertilizers

Thiobacillus sp.

Organic matter 
decomposer 
bio-fertilizers

Cellulolytic Cellulomonas, Trichoderma

Lignolytic Arthrobacter, Agaricus

Plant growth- promoting 
rhizobacteria ((PGPR)

Pseudomonas sp.
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blue-green algae (Gupta 2004). Some species of nitrogen-fixing microorganisms 
are shown in Fig. 9.5. Though many genera of nitrogen-fixing microorganisms are 
reported, only Azospirillum and Azotobacter have been verified to improve the yield 
of legumes and cereals under field condition. Rhizobium spp., which can fix the 
atmospheric nitrogen and are mainly associated with legumes, were the first recog-
nized bio-fertilizer and have been commercially used for legumes for more than 
100 years (Kannaiyan 2002).

El-Komy (2005) confirmed the advantageous effect of Bacillus megaterium and 
Azospirillum lipoferum co-inoculation for improving wheat plant nutrition of nitro-
gen and phosphorus. The bacterial mixture inoculation gave more balanced nutri-
tion to plants. Improvement in nitrogen and phosphorus uptake by root was the chief 
mechanism of plants-bacterial interaction.

9.7.2  Phosphate-Solubilizing Bio-fertilizer

Phosphorus is classified as organic P and inorganic P in soil. However, only a little 
of total P (0.1% or 1 ppm) is available for plants due to low solubility and high soil 
P-adsorbing capacities. Plants absorb P as anions of phosphate (HPO4

−2 or H2PO4
−) 

from the soil solution, but these phosphate anions are reactive and become inacces-
sible for plants. When P fertilizers are applied in soil, they often become intricate 
due to the complex formation with aluminum and iron in low pH soils (Dorahy et al. 

Fig. 9.5 Nitrogen-fixing microorganisms
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2005), fixation with calcium and magnesium in high pH soil, and precipitation 
(Mittal et al. 2008). The overall P utilization efficiency is lower than optimum P 
utilization efficiency in Pakistani soils (Vance 2001).

Phosphate-solubilizing bio-fertilizers (PSB) contain microorganisms that solubi-
lize the fixed phosphate and make it bioavailable. Many soil fungi and bacteria have 
the competency to transform insoluble phosphates into soluble forms. This process 
is accomplished by the excretion of organic acids in the rhizosphere by these organ-
isms. These organic acids decline the soil pH and cause the dissolution of phosphate 
complexes and make them available to plants (Gupta 2004). Several bacterial spe-
cies have been found with phosphate-solubilizing ability. These solubilize inorganic 
phosphate compounds, such as rock phosphate, hydroxyapatite, dicalcium phos-
phate, and tricalcium phosphate. The more common genera of soil bacteria are 
Bacillus and Pseudomonas and fungi. Among other bacterial genera, Burkholderia, 
Micrococcus, Rhizobium, Agrobacterium, Achromobacter, Aerobacter, 
Flavobacterium, and Erwinia are P solubilizer (Subbarao 1988). Arthrobotrys oli-
gospora, a nematode fungus, also can solubilize the rock phosphate (Duponnois 
et al. 2006). The fungus is less effective compared to bacteria in phosphorus solubi-
lization (Alam et al. 2002). Phosphate-solubilizing bacteria exist in large numbers 
in plant and in the rhizosphere. These bacteria are both aerobic and anaerobic, but 
aerobic strains are usually found in submerged soils (Raghu and Macrae 2000). 
Examples include Bacillus spp., Pseudomonas sp., and Aspergillus sp. (Ju et  al. 
2018) (Fig. 9.6).

Fig. 9.6 Phosphorus-solubilizing microorganisms
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9.7.3  Phosphate-Mobilizing Bio-fertilizers

Phosphate-mobilizing bio-fertilizers work by foraging the soil phosphates and 
mobilizing the insoluble phosphorus compounds in the soil. Phosphate-solubilizing 
bio-fertilizer is broad spectrum and also mobilizes the phosphate sometimes (Chang 
and Yang 2009). Examples are mycorrhiza (Ju et al. 2018).

Mycorrhizae form a symbiotic association with plants. In this association, the 
fungal partner is penetrated in the root cell and fulfills its carbon necessities from 
the plant, and in return, the plant is helped by surplus nutrient supply especially 
phosphorus, copper, calcium, zinc, etc. (Sadhana 2014).

9.7.4  Zinc-Solubilizing Bio-fertilizer

Many nitrogen fixers and phosphorus solubilizer are well accepted as bio-fertilizers 
nowadays (Subba 2001), but these provide only macronutrients. Soils are also defi-
cient in many micronutrients. The most important of which is zinc because of its 
low availability. Out of the total, about 75% of applied zinc gets fixed (residual and 
crystalline iron oxide-bound zinc), and only 1–4%, of totally applied zinc, is used 
by the plants. Zinc gets fixed by either forming complex by organic ligand or by 
means of chemisorptions (Alloway 2008). This fixed zinc can be made available by 
the action of microorganisms such as Saccharomyces sp., B. subtilis, and Thiobacillus 
thiooxidans. These zinc-solubilizing microorganisms can be used as bio-fertilizers 
(Raj 2007). In a study, it was recommended that Bacillus sp. can be used for increas-
ing zinc availability either alone or in combination with zinc compounds such as 
zinc carbonate, zinc sulfide, and zinc oxide that are insoluble and cheaper than zinc 
sulfate (Mahdi et al. 2010b).

9.7.5  Potassium-Solubilizing Bio-fertilizer

These are broad-spectrum bio-fertilizers. Potassium is mostly found in insoluble 
silicate mineral compounds in the soil. These mineral compounds are unavailable to 
plants. Only through weathering or solubilization process, these minerals are made 
accessible for plant uptake (Ju et al. 2018).

9.7.6  Potassium-Mobilizing Bio-fertilizer

These bio-fertilizers mobilize the potassium-unavailable form (bound to silicate 
minerals). Many phosphate-solubilizing bio-fertilizers such as Aspergillus sp. and 
Bacillus sp. carried out phosphate solubilization as well as potassium mobilization 
(Ju et al. 2018).
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9.7.7  Silicate-Solubilizing Bio-fertilizers

Silicate is found in soils as silicate minerals that are unavailable. Many microbes 
produce several organic acids for converting silicon into an available form (Rana 
and Ramesh 2013).

9.7.8  Sulfur-Oxidizing Bio-fertilizer

The Thiobacillus sp. is a good example of the sulfur-oxidizing microorganism (Ju 
et al. 2018); commercial bio-fertilizer: Sulfogreen, Sulphomex.

9.7.9  Plant Growth-Promoting Bio-fertilizer (PGPB)

Plant growth-promoting bio-fertilizers are crop specific bio-fertilizers. They pro-
duce anti-metabolites and hormones and improve root growth and hasten the pro-
cess of organic matter decomposition. This decomposition process helps in 
mineralization and increases the bioavailability of nutrients (Bhattacharyya and Jha 
2012). Examples are Pseudomonas spp.

9.7.10  Liquid Bio-fertilizers

Liquid bio-fertilizers are usually defined as a “suspensions having agriculturally 
useful microorganisms.” It is more advantageous than the carrier inoculants. Liquid 
bio-fertilizers consisting of microorganisms, such as phosphobacteria Rhizobium 
and Azospirillum, are now been used effectively for horticulture crops, vegetables, 
pulses, sugarcane, rice, millets, and cotton. The reasons behind the increasing use of 
liquid bio-fertilizers over conventional carrier-based bio-fertilizers are higher com-
petition potentials with native population, quick and easy quality control protocols, 
longer shelf life (12–24 months), higher populations can be sustained, properties 
remained unchanged during storage up to 45 °C, more tolerant to temperature, typi-
cal fermented smell helps in its easy identification, easy to produce and use for 
farmers, no contamination, very high enzymatic activity in the meantime contami-
nation is zero, high potential for export, can compete in the global market because 
of organic crop production, improved soil and seeds survival, their dosages are ten 
times less than carrier-based powder bio-fertilizers, and cuts the chemical fertilizer 
use by 15–40% (Rana and Ramesh 2013).

Commercial bio-fertilizer, chitosan concentrate, bass liquid potash, Azospirillum 
bio-fertilizer, liquid consortia bio-fertilizer, potash-mobilizing bio-fertilizer, 
phosphate- solubilizing bio-fertilizer, etc.
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9.7.11  Composting

Compost is used in agriculture as well as in landscaping, as a fertilizer and soil 
conditioner. Compost is a decomposed remnant of organic matter in the presence of 
oxygen. This compost making process is called composting. Composting is a bio-
logical decomposition of organic waste material in the presence of oxygen at an 
elevated temperature, carried out by active microorganisms which break down the 
cellulolytic material. Factors that affect this process include pH, temperature, par-
ticle size, oxygen levels, nutrient levels, number, and species of microorgan-
isms (Riaz et al. 2018). Compost is advantageous over chemical fertilizers because 
of its many useful functions that include means of land reclamation, controls of soil 
erosion, provides nutrients and support to crops by serving as an absorbent, porous, 
growing medium and retains soluble mineral and moisture, protects against chemi-
cal fertilizers by acting as a buffer, and causes easier till of heavy soils (Somani n.d. 
www.agriinfo.in).

9.8  Characteristics of Some Microbes Used as Bio-fertilizers

9.8.1  Rhizobium

It has its place in the family Rhizobiaceae and forms symbiotic relations (Mahdi 
et al. 2010a). Rhizobium is known to fix atmospheric nitrogen in legumes (Gupta 
2004). Rhizobia are special bacteria that live either in the soil or in nodules, formed 
on the roots especially legumes. The Rhizobium colony is whitish, slightly transpar-
ent, fast growing, water-soaked, and shiny in nature (Somani n.d. www.agriinfo.in). 
They can fix nitrogen at the rate of 50–100 kg ha−1 with only legumes. It is associ-
ated with pulse legumes, red-gram, chickpea, pea, black gram, and lentil; oilseed 
legumes, groundnut and soybean; and forage legumes, lucerne and berseem. It 
inhabits on the roots of the legumes and forms root nodules (tumor-like growths), 
which act as ammonia production factories (Mahdi et al. 2010a).

9.8.2  Azotobacter

Azotobacter belongs to family Azotobacteriaceae, is Gram-negative, and is a free- 
living, aerobic soil-dwelling, heterotrophic nitrogen-fixing bacterium, used as a bio- 
fertilizer in most crops (Mahdi et al. 2010a). They range from 2 to 10 μm long and 
1 to 2 μm wide in size (Somani n.d. www.agriinfo.in). Azotobacter are present in 
neutral and alkaline soils. Most commonly occurring species of Azotobacter is 
A. chroococcum in arable soils (Rana and Ramesh 2013). Other reported species are 
A. beijerinckii, A. insignis, A. macrocytogenes, and A. vinelandii (Subba 2001). 
A. chroococcum is capable of fixing N2 (2–15 mg N2 fixed/g of carbon) in culture 
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media. The proliferation of Azotobacter is limited by a lack of organic matter (Rana 
and Ramesh 2013). The Azotobacter number hardly exceeds 105 g−1 of soil because 
of the presence of antagonistic microorganisms and lack of organic matter in the soil 
(Subba 2001). A plant requires nitrogen for its growth, and Azotobacter performs 
nonsymbiotic nitrogen fixation (Somani n.d. www.agriinfo.in). Azotobacter is 
reported in many crops such as sugarcane, rice, bajra, maize, and vegetables 
(Arun 2007).

9.8.3  Azospirillum

Azospirillum belongs to family Spirilaceae (Mahdi et  al. 2010a) and is a Gram- 
negative, heterotrophic, motile bacterium and is associated with roots of monocots 
(Somani n.d. www.agriinfo.in). It lives inside plant roots and does not form root 
nodules (Rana and Ramesh 2013). A. brasilense and A. lipoferum are most widely 
distributed and most beneficial species of this genus. Other species are A. amazo-
nense, A. halopraeferens, and A. brasilense (Mahdi et  al. 2010a). The organism 
multiplies under both aerobic and anaerobic environment. It stimulates the phyto-
hormone production, drought tolerance, and disease resistance. It can fix the sub-
stantial amount of nitrogen (20–40 kg N/ha) in non-leguminous plants’ rhizosphere 
such as oilseeds, cereals, cotton, millets, etc. (Rana and Ramesh 2013). The 
Azospirillum forms symbiotic association with C4 plants because they grow and fix 
nitrogen on salts of organic acids such as aspartic and malic acid (Arun 2007). Thus, 
it is recommended mainly for maize, sugarcane, sorghum, pearl millet, etc. (Mahdi 
et al. 2010a).

9.8.4  Acetobacter

It is an endotrophic, symbiotic bacteria with the ability of atmospheric nitrogen 
fixation. It is capable of living inside the sugar plant tissues. It needs high sugar 
levels that are available in sugarcane tissues. Usage of Acetobacter on a large scale 
increases crop production (Somani n.d. www.agriinfo.in).

9.8.5  Beijerinckia

Beijerinckia is an aerobic, nonsymbiotic free-living, and slow-growing bacteria. 
The Beijerinckia colonies are wrinkled, round, flat, and raised in shape. These 
microorganisms reside in the rhizosphere of crops and fix the atmospheric nitrogen 
in acid soil (pH 3.0–4.0). It is commonly used for monocots and applied at 250 g per 
10 kg of seeds (Somani n.d. www.agriinfo.in).
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9.8.6  Azolla

Azolla (Azolla pinnata) is an aquatic weed found in shallow ditches, tank, idle pond, 
and channels. It is found floating on the water surface through small and closely 
overlapped scale-like leaves and through hanging roots deep in the water. Azolla is 
usually associated with rice cultivation in many countries, for example, the 
Philippines, Vietnam, Thailand, and China. Azolla bio-fertilizers increased the yield 
of rice in many experiments. It is known to contribute to 40–60 kg N/ha per rice 
crop (Rana and Ramesh 2013). Azolla also forms a symbiotic association with blue- 
green algae (Anabaena azollae). They both are applied as co-inoculation. This sym-
biotic association of Azolla pinnata and Anabaena azollae is termed as 
AZOLLA-ANABAENA COMPLEX. In this association, blue-green algae fix atmo-
spheric nitrogen for Azolla, and Azolla provides food and shelter to the algae in 
return. This ability gives this association a great potential as bio-fertilizer for the 
agricultural field. It can serve as an alternative fertilizer to chemical nitrogenous 
fertilizers. It is reported that Azolla application increased rice yields by 0.5–2 t/ha 
in a field trial (Gupta 2004).

9.8.7  Cyanobacteria

Cyanobacteria are symbiotic, free-living, aquatic, and one-celled to many-celled 
and are red, brown, or purple in color. They cannot live in acidic conditions (Rana 
and Ramesh 2013). They form a symbiotic association with ferns, fungi, liverworts, 
and plants, but the most common symbiotic association is formed by Anabaena 
azollae with the ability of nitrogen fixation (Mahdi et al. 2010a). This is only used 
in paddy fields. BGA bio-fertilizers are applied by a broadcast method in standing 
water as an algal mass in a paddy field after 1 week of transplantation (Somani n.d. 
www.agriinfo.in).

9.8.8  Mycorrhizae

Mycorrhiza signifies “fungus roots.” Among fungi, arbuscular mycorrhizal (AM) 
fungi are more abundant and account for 5–50% of soil microbe’s biomass. Out of 
150 species of fungi in class Zygomycetes, order Glomales, an insignificant magni-
tude is assumed to be mycorrhizal. Only six genera of fungi produce arbuscular 
mycorrhizal fungi (AMF). Four genera, Acaulospora, Gigaspora, Entrophospora, 
and Scutellospora, form spores, similar to zygospores. Two genera (Glomus and 
Sclerocytis) yield only chlamydospores. Arbuscular mycorrhizal fungi (AMF) form 
a symbiotic relationship with host plants at the root system, first evolved 400 mil-
lion years ago (Sawers et al. 2008) (Table 9.3).
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9.9  Application Methods

Mainly three types of bio-fertilizer application:

 (a) Seed treatment or seed inoculation.
 (b) Seedling root dip.
 (c) Soil application.

9.10  Advantages of Bio-fertilizer over Chemical Fertilizer

Industrially formulated materials, which comprise known quantities of macro- 
(nitrogen, phosphorus, potassium) and micronutrients or combination of two or 
more of these nutrients, are called chemical fertilizers. The practice of chemical 
fertilizers may lead to air and groundwater pollution as a result of eutrophication of 
water bodies (Youssef and Eissa 2014). According to Chun-Li et al. (2014), soil 
acidification as well as atmospheric and groundwater contamination increases due 
to heavy use of chemical fertilizers and pesticides. These heavy doses reduce immu-
nity of plant roots and make them prone to unwanted diseases. In this scenario, use 
of nutrient-rich high-quality fertilizers such as bio-fertilizer is a safe and healthy 
approach to pledge bio-safety.

Bio-fertilizer has been recognized as a competitive option to chemical fertilizer 
to increase soil fertility and crop production in sustainable farming. These eco- 
friendly and cost-effective inputs help the farmer to increase productivity of soil in 
a sustainable way Bio-fertilizers are able to fix nitrogen, solubilize and mobilize 
phosphate, and promote rhizobacteria (Bhat et al. 2010). The effectiveness of bio- 
fertilizer depends on selective microorganism that may be useful for the soil suitable 
packaging for a longer shelf life and adaptable to environment and user (Brar et al. 
2012). Microorganisms are not applied directly to the field; instead these are settled 

Table 9.3 Different crops recommended bio-fertilizer and their application method

Crops Bio-fertilizer Method of application

Chickpea, pea, groundnut, soybean, beans, 
lentil

Rhizobium Seed treatment

Rice Azospirillum -do-
Oilseeds Azotobacter -do-
Maize and sorghum Azospirillum -do-
Tobacco Azotobacter -do-
Rubber, coconuts Azotobacter -do-
Fruit plants Azotobacter -do-
Leguminous plants/trees Rhizobium -do-

Singh et al. (2015)
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on some material. This material not only makes the application easier but also 
increases shelf life and facilitates rapid growth (Mahdi et al. 2010a).

Chemical fertilizers alters the metabolic activities that may be due to drop in 
osmotic potential. The  chemical fertilizers releases  more salt ions to the growth 
media, thus the osmotic pressure outside the embryo organs increases, and, conse-
quently, water is osmotically bound, and thus salt concentration enhances, and 
water accessibility decreases for the embryo germination (Rafiq et al. 2010).

The  bio-fertilizers act as a soil conditioner, and the conditioning prop-
erty increased organic matter contents to the soil which in turn improves soil struc-
ture, prevents oil erosion as well as  desertification and increases oil and water 
retention capacity (Swathi 2010). A functional relationship developed within rhizo-
spheric microorganisms, and due to this, holistic system plant flourishes and grows 
fruitfully (Ju et al. 2018).

The high cost of chemical fertilizer and unavailability at the time of application 
further aggravate the economic conditions of farmers. Bio-fertilizer practice consid-
ers not only economical but also environment-friendly. Similar to chemical fertil-
izers, bio-fertilizers increase the soil fertility, crop production, and productivity 
without causing environment problems (Yadav and Sarkar 2019). Human, plants, 
and the environment are protected to pollution as well as save wages through bio- 
fertilization. Additionally, it upgrades soil biota and reduces the use of synthesis 
fertilizers (Jalilian et al. 2012) (Table 9.4).

Preventive Measures in the Use of Bio-Fertilizer:

 1. Bio-fertilizers should not be blended with nitrogen fertilizers.
 2. Bio-fertilizers should not be applied with fungicides.
 3. Bio-fertilizers should not be exposed to sunlight directly.
 4. Bio-fertilizers should always be stockpiled at room temperature, not below 0 and 

above 35 °C.
 5. Used solution should not be kept overnight (Hari and Perumal 2010) (Table 9.5).

Table 9.4 Replacement of 
chemical fertilizer by 
bio-fertilizer

Sr. no. Bio-fertilizer Substitutes/ha per year

1 Rhizobium 108.6–217.3 kg of urea
2 Azolla 20–40 kg urea/10 mg
3 Azospirillum 60 kg urea in maize
4 BGA 54–65 kg urea
5 Frankia 195 kg urea

Bhowmik and Das (2018)
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Chapter 10
Phytoremediation of Heavy Metals: 
An Eco-Friendly and Sustainable 
Approach

Shamsul Haq, Asma Absar Bhatti, Zubair Ahmad Dar, 
and Suhail Ahmad Bhat

10.1  Introduction

“Environmental pollution has become a severe public health concern because it a 
major source of health risk and causes several serious diseases throughout the 
world” (Briggs 2003). The most serious concern of environmental pollution is the 
presence of toxic metals. The severity of toxic metals on humans has been known 
since ages, and its exposure continues and is increasing in many areas. Heavy 
metals severely affect human beings and even cause death (Jarup 2003). The 
effect of some of the toxic metals on human beings is shown in Table  10.1. 
Industrialization has increased the heavy metal pollution, and concentration of 
these heavy metals is higher in industrial areas (Suvaryan et al. 2011; Adesuyi 
et al. 2015; Jiao et al. 2015).

Naturally “heavy metals are found in the earth’s crust” (Jadia and Fulekar 2008; 
Ismail et al. 2013), with density more than 5 g cm−3 (Alloway and Ayres 1997) and 
an atomic number greater than 20 (Jadia and Fulekar 2008). As, Ni, Hg, Cd, Cr, Pb 
and Zn are the most common toxic metals in soil and water bodies. “Trace elements 
are metals whose percentage in rock composition does do not exceed 0.1%” (Ovko 
and Romic 2011). “Heavy metals in the soil occur naturally from the weathering of 
parent materials as traces (<1000 mg kg−1) and are not toxic” (Wuana and Okieimen 
2011; Parizanganeh et al. 2012). “Anthropogenic sources such as mining, smelting, 
electroplating, energy and fuel production, power transmission, intensive agriculture, 
sludge dumping, and melting operations, are the main contributor to heavy metal 
pollution” (Ismail et al. 2013; Dembitsky 2003; Igwe and Abia 2006; Ali et al. 2013). 
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“Heavy metals in the soil from anthropogenic sources tend to be more mobile, hence 
bioavailable than pedogenic, or lithogenic ones” (Wuana and Okieimen 2011; 
Kaasalainen and Yli-Halla 2003).

10.2  Phytoremediation and Mechanisms

The practice of utilizing green plants to release, transfer, stabilize and degrade the 
toxic pollutants from the soil is known as phytoremediation (Elekes 2014; Paz- 
Ferreiro et al. 2014). “Phytoremediation is a natural technology with great poten-
tial” (Banarjee 2018; Bhat et al. 2018). Several plant roots can absorb and immobilize 
metal pollutants, whereas other plant species have the ability to break down or accu-
mulate organic pollutants. The term phytoremediation consists of two words: phyto 
derived from the Greek means plant, and remedium derived from Latin means able 
to cure or restore (Vamerali et al. 2010). Chaney (1983) was the first to introduce 
such thought, and later various plant species were developed which have the capa-
bility to remove toxic metals from the polluted environments. Phytoremediation is 
used to remediate a variety of organic (Cluis 2004) and inorganic contaminants 
(Vamerali et al. 2010) (Fig. 10.1).

Table 10.1 Toxic effect of some heavy metals on human beings (Dixit et al. 2015)

Toxic metal Effect

Silver The tissues become grey or bluish grey and cause problems in breathing, 
irritation in throat and pain in stomach

Arsenic Oxidative phosphorylation and ATP synthesis are affected
Barium “Cause cardiac arrhythmias, respiratory failure, gastrointestinaldysfunction, 

muscle twitching and elevated blood pressure”
Cadmium “Carcinogenic, mutagenic, endocrine disruptor, lung damage and fragile 

bones, affects calcium regulation in biological systems”
Chromium “Hair loss”
Copper “Brain and kidney damage, elevated levels result in liver cirrhosis 

andchronic anaemia and stomach and intestine irritation”
Mercury “Autoimmune diseases, depression, drowsiness, fatigue, hair loss,insomnia, 

loss of memory, restlessness, disturbance of vision, tremors, temper 
outbursts, brain damage, lung and kidney failure”

Nickel “Allergic skin diseases such as itching, cancer of the lungs, nose, sinuses, 
throat through continuous inhalation, immunotoxic, neurotoxic, genotoxic, 
affects fertility, hair loss”

Lead “Excess exposure in children causes impaired development, reduced 
intelligence, short-term memory loss, disabilities in learning and 
coordination problems, risk of cardiovascular disease”

Selenium “Affects endocrine function, impairment of natural killer cell activity, 
hepatotoxicity and gastrointestinal disturbances”

Zinc “Dizziness, fatigue”, etc.
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The technique of phytoremediation is effective whereever contaminants are low 
to medium in concentration; at higher concentration there is a reduction in plant and 
microbial growth. “Mechanisms involved in the uptake, translocation, and storage 
of micronutrients are the same involved to translocate and storage heavy metals” 
(Subhashini and Swamy 2013). The various methods of phytoremediation are as 
follows.

10.2.1  Phytoextraction

The absorption of metals from soil by metal accumulators in their harvestable parts 
is called phytoextraction. Phytoremediation of metals has gained tremendous inter-
est against the microbial remediation from the last few decades (Kramer 2005; 
Pilon-Smits 2005; Doty 2008). Various strategies of phytoremediation can simulta-
neously be adapted at a given time for the remediation of a particular contaminant. 
“Heavy metals exist in colloidal, ionic, particulate and dissolved phases, with higher 
affinity for humic acids, organic clays and oxides coated with organic matter” 
(Connell and Miller 1984). Metal’s bioavailability in the rhizosphere is greatly 
affected by plants as well as microbial activities (Ma et al. 2011; Miransari 2011; 
Aafi et al. 2012). Lipophilic compounds in plant exudates or lysates increase water 

Fig. 10.1 Process of phytoremediation
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solubility, and the microbial growth which produces biosurfactants is enhanced. 
Moreover, “contributing to plant growth, microbial processes and/or activities in the 
rhizosphere soils increase the effectiveness of phytoremediation either by: (1) 
enhancing metal translocation (facilitate phytoextraction) or by reducing metal bio-
availability in the rhizosphere (phytostabilization) and (2) by indirect promotion of 
phytoremediation achieved either by conferring resistance to plants and/or enhanc-
ing their biomass production so as to achieve remediation of pollutants up to a 
greater extent” (Glick 2010; Kuffner et al. 2010; Rajkumar et al. 2010; Babu and 
Reddy 2011). Phytoextraction of toxic pollutants is more challenging than other 
methods of phytoremediation because pollutants are present in higher concentra-
tions. The removal of toxic metals by using plants is called as phytoextraction. 
“Metals are absorbed by plants from the soil, transported and concentrated in the 
above ground parts and can be harvested, processed for dumping or recycling of 
metals” (Ali et al. 2013; Garbisu and Alkorta 2001). “The plants used for phytoex-
traction should not only be metal tolerant, but must be fast growing with the poten-
tial to produce high biomass. Though, most of the metal-accumulating plants are 
slow growing with low biomass production” (Evangelou et al. 2007). It is because 
of the above characteristics of plants that made the phytoextraction process very 
slow. Hyperaccumulator plants are the metal-accumulating plants which have an 
ability to accumulate 100 mg kg−1 of Cd; 1000 mg kg−1of As, Co, Cu, Pb and Ni; or 
>10,000 mg kg−1 of Mn and Zn. “The hyper accumulation of heavy metals by plants 
depends upon numerous steps, including assimilation and transportation of metals 
across the membranes of root cells, loading of metals into xylem and translocation 
to the shoots and sequestration and detoxification of metals within plant tissues” 
(Yang et al. 2005). The ideal site for metal detoxification is the epidermis, trichomes 
and cuticle (Rascio and Navari-Izzo 2011). “Cation Diffusion Facilitator (CDF) 
family members like metal transporter proteins there in the tonoplast are over 
expressed in Zn and Ni hyper accumulators and these transporters are also reported 
to be concerned in Ni accumulation by Ni hyperaccumulators” (Gustin et al. 2009; 
Hammond et al. 2006; Persans et al. 2001; Rascio and Navari-Izzo 2011). “About 
400 plants have been known as hyper accumulators which comprises only <0.2% of 
higher plants” (McGrath and Zhao 2003). However, “these species have an essen-
tially low ability to absorb metals but can accumulate higher concentrations of met-
als if grown in the soils treated with chemical amendments to increase metal 
phytoavailability and plant uptake” (Meers et  al. 2005). It is reported that plant 
families like Asteraceae, Brassicaceae, Euphorbiaceae, Fabaceae, Flacourtiaceae 
and Violaceae accumulate heavy metals in high concentrations (Kumar et al. 1995). 
Some species of family Brassicaceae are considered as a potential contender for 
phytoextraction because of its property to scavenge the heavy metals. Pb, Cd, Zn 
and Ni are the most common metals that the family Brassicaceae scavenges. It is 
found that “one-third of the concentration of zinc in the tissues of B. juncea is pres-
ent, thus more capable to remediate Zn than Thlaspi caerulescens which is com-
monly known zinc hyperaccumulator and the reason behind this fact is that the 
production of biomass 10-times greater in B. juncea than T. caerulescens” (Ebbs 
and Kochian 1997). The ability of various Brassica species to resist and accumulate 
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toxic metals has been verified by experimental study (Kumar et al. 1995). Indian 
mustard (B. juncea) is found to be the chief plant for the remediation of heavy met-
als, viz. Cd, Cr-IV, 137Cs, Cu, Ni, Pb, U and Zn, from the soil (Jiang et al. 2000). 
Sunflower (H. annuus) and several other plant species remediate radionuclides from 
the polluted soil. Some limited plant species perform the function of phytoextrac-
tion though they have only few desired traits, but genetic modified plants possess 
important characters for phytoextraction. Phytoextraction is mostly categorized into 
“(1) chelate-assisted phytoextraction or induced phytoextraction—this approach 
involves the use of artificial chelates in order to improve the mobility of heavy metal 
ions so that they become amenable to plants; (2) continuous phytoextraction—this 
approach involves the natural capability of plants to uptake and scavenge the toxi-
cants” (Salt et al. 1997; Ayyappan et al. 2016).

10.2.2  Rhizofiltration

Rhizofiltration is “a type of phytoremediation that uses plant roots to absorb, con-
centrate and precipitate contaminants present in the soil through the plant root sys-
tem into the harvestable parts of the roots and above-ground shoots” (Verma et al. 
2006). In this process, the plants after raising them hydroponically are transplanted 
into metal-contaminated water. The roots and shoots of these plants absorb and 
concentrate toxic metals in them which are then harvested for safe disposal 
(Padmavathiamma and Li 2007). Rhizofiltration is mostly used for those metals 
which are retained within the roots like Pb, Cd, Cu, Ni, Zn and Cr (US Environmental 
Protection Agency 2000). Sunflower has the maximum capability to remediate Pb 
from water amongst other species like Indian mustard, tobacco, rye, spinach and 
corn. The bioaccumulation coefficient of Indian mustard is 563 for lead and also has 
the ability to effectively remove Pb from water with concentration between 4 mg/L 
and 500  mg/L (Raskin and Ensley 2000; US Environmental Protection Agency 
2000). In the rhizosphere the pH changes because several chemical ooze out from 
the roots which precipitate metals on the root surfaces. “Once roots get saturated 
with these toxicants, either only the roots or the entire plants are harvested for more 
processing” (Zhu et  al. 1999a). The greatest advantages of rhizofiltration are its 
ability to utilize terrestrial as well as aquatic plants for in situ or ex situ remediation 
strategies, and also the contaminants are not transported to shoots. Therefore, plant 
species that are not hyperaccumulators can also be used in the process of phytore-
mediation. Terrestrial plants are an ideal selection for rhizofiltration as they have 
strong and deep root system, which increases the root area (Raskin and Ensley 
2000). If the contamination is high in water, then this method is not possible because 
for the absorption of contaminants by plant roots the contaminants must be in the 
solution form. For efficient remediation of pollutants, plants should have the prop-
erty to neutralize their effect of toxic metals and scavenge the same. This can be 
achieved only when the plants have able and rapidly growing roots. The other essen-
tial criteria for effective remediation of toxic metals from an area are the low 
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 maintenance cost, easy to handle and plant resistance towards to toxic metals. 
Aquatic plants like water hyacinth (Zhu et al. 1999b), pennywort (Dierberg et al. 
1987) and duckweed (Mo et al. 1989) have the enhanced ability to remediate metals 
from water, but because of their lesser and young root systems, their potential for 
rhizofiltration becomes very limited (Dushenkov et  al. 1995). Zhu et al. (1999c) 
Reported that “water hyacinth is a potential macrophyte for the deletion of trace 
elements from waste streams”. Various evidences demonstrate that “terrestrial 
plants with dense and fibrous root systems are suitable for this technique as they 
have greater metal- absorbing powers, and the chief examples include Sunflower 
(Helianthus annuus L.) and Indian mustard (Brassica juncea Czern.). Indian mus-
tard is known to eradicate a wide concentration of Pb (4–500 mg l−1)” (Raskin and 
Ensley 2000). Metals like Cd, Zn, Cu, Ni and Cr are also removed by these terres-
trial plants (Dushenkov et  al. 1995) from hydroponic solutions. Blastofiltration 
(blasto means “seedling” in Greek) is the method in which heavy metals are removed 
from water with the help of young seedlings water and is considered as advanced 
technique for treating polluted water. In this technique, “there is a remarkable 
improvement in surface to volume ratio that typically occurs after germination and 
some germinating seedlings also adsorb huge quantities of toxic metal ions; this is 
why young seedlings are suitable for restoring water quality” (Salt et al. 1997). It 
has been found that blastofiltration is more active and inexpensive than rhizofiltra-
tion, but the only benefit of rhizofiltration over blastofiltration is that the rhizofiltra-
tion can be used both in situ and ex situ as well.

10.2.3  Phytostabilization

Phytostabilization is the process by which plants reduce the environmental contami-
nants reduced by stabilizing them. Phytostabilization is the way of achievement of 
decontamination of toxic metals from the soil. Several plant species accumulate 
various metals, absorb, adsorb them on the root surfaces and subsequently precipi-
tate them in the root zone. Soil contaminants are immobilized by certain plant spe-
cies by absorbing and accumulating them in roots, adsorbing them on the surface of 
roots or precipitating them in the root zone. The phytostabilization uses “abilities of 
exudates of several plant roots for decrease in the bio-availability of toxic sub-
stances as the main reason of phytoremediation to prevent the migration of metals 
in the environment” (Cheraghi et al. 2011). The extensive root system and a low 
translocation of metals from roots to shoots are the prerequisite conditions for the 
plant species to be used for phytostabilization. Phytostabilization is a “plant-based 
remediation technique that is aimed at reducing the risk of metal pollutants by sta-
bilizing them through formation of a vegetative cap at the plant rhizosphere, where 
sequestration (binding and sorption) processes immobilize metals so as to make 
them unavailable for livestock, wildlife and human exposure” (Munshower 1994; 
Cunningham et al. 1995; Wong et al. 2003). In contrast to other phytoremediation 
techniques, the major aim of phytostabilization is to stabilize the toxic contaminants 
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and not to remove them from a site, thus decreasing the threat to the environment 
and human health. Furthermore, phytostabilization is considered to be more advan-
tageous than other techniques because it is cost-effective and very easy to execute 
(Berti and Cunningham 2000). Generally, “this technique is used to remediate soils 
contaminated with Zn, As, Cr, Cd, Pb and Cu”. In this technology, the hazardous 
waste dumping is not necessary (US Environmental Protection Agency 2000), and 
surface and groundwater resources are preserved due to immobilization of toxic 
metals. This technique inhibits the formation of toxic leachate and prevents soil ero-
sion by decreasing the percolation of water in the soil. There are certain criteria for 
plants to be followed in order to be used for this technology, which are as follows: 
(1) low translocation of toxic metals from root to shoot system, (2) should possess 
rapid growth rate and must be resistant to heavy metals and (3) should be economi-
cal. Basically, “this technique is not only applicable at sites with high organic load 
and porosity but is also efficient for a wide range of surface contamination sites” 
(Berti and Cunningham 2000). The drawbacks of this technique is that “it is not 
applicable to those areas which are heavily contaminated because such conditions 
become an obstacle in plant growth and development” (Berti and Cunningham 2000).

10.2.4  Mechanisms of Phytostabilization

Toxic metals are “adsorbed and precipitated into less soluble forms like carbonates 
and sulphides, metal complexes with organic compounds and accumulation in root 
tissues in the rhizosphere” (Mendez and Maier 2008; Wong et al. 2003). Plants in 
contaminated soil promote microbial populations mostly heterotrophic, which 
enhance growth rate of plants and cause stabilization of toxic metals. The plant spe-
cies which keep the metals away from their shoot system are best suited for phyto-
stabilization. However, monitoring of metals in shoots is important although they 
restrict the metals in their roots only (Mendez and Maier 2008). “Arsenic is best 
accumulated by Cynodon dactylon and thus a promising candidate for phytostabili-
zation” (Leung et al. 2007). A very important role is played by mycorrhizae in sta-
bilizing the metals, and a few mycorrhizae like ericoid and ectomycorrhizal fungi 
stabilize metals in the rhizosphere (Meharg 2003). “Hyphae of Mycorrhizal fungi 
have polyphosphate which can bind heavy metals up to saturation and greater than 
60% metals are reported to be retained in apoplast cell walls” (Bucking and Heyser 
1999; Yang et al. 2005; Khanday et al. 2016; Bhat et al. 2017; Sofi et al. 2017). 
There are certain plant species which make metals less available by detoxifying 
them in the roots by the release of organic acids (Brunner et al. 2008; Qin et al. 
2007). “Another process for the detoxification of metals is immobilization of metals 
within fine roots through binding with pectins in the cell walls and to the negatively 
charged cytoplasm-membrane surfaces owing to their strong electrochemical poten-
tial” (Rengel and Zhang 2003). Valence of metals can be reduced by several plant 
species by the release of redox enzymes and thereby transforming the toxic metals 
into other forms which are very less toxic (Ali et al. 2013). The best studied  example 
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of this strategy adapted by plants is the conversion of more toxic Cr+4 to less toxic 
Cr+3 (Bluskov et al. 2005). Using phytostabilization as a technique, extremely prom-
ising results have been obtained from chromium and lead stabilization in soils. Cr6+ 
which is highly toxic is converted into Cr 3+ which is not that toxic by plants which 
are deep rooted (James 1996). The plants which “can live in metal contaminated 
soils without affecting growth and retain low concentrations of metals in aerial 
parts, although concentration of metals is very high in the roots, is known as metal 
excluder plants” (Kramer 2010; Wei et al. 2005). It has been found that there are 
certain plants which exclude metals from aerial parts. These include “Ni-excluders 
such as Silene vulgaris, Zea mays, Cu excluder Hyparrhenia hirta and Co excluder 
Armeria maritima” (Brewin et al. 2003; Seregin et al. 2003). However, “excluder 
plants can grow in metal-contaminated soils without affecting their growth and 
keeping metal concentration in aerial parts at minimum levels” (Wei et al. 2005). 
There are different approaches which plants utilize to exclude metals, which include 
mycorrhizae, cell walls and plasma membranes (Hall 2002). “Mycorrhizae in gen-
eral adopt the same mechanisms as those are adopted by higher plants like binding 
to extracellular materials or sequestration in the vacuolar compartment” (Hall 2002; 
Tam 1995). The various hypotheses, which explain the mechanism of metal exclu-
sion, are (1) cell wall metal binding, (2) exudation of metal-chelating ligands and 
(3) formation of redox and pH barriers at the plasma membrane (Taylor 1987). 
“There are conflicting reports about the role of the cell wall in metal tolerance of 
plants” (Hall 2002). There are some researchers which are of the opinion that a very 
small role is played by the cell wall cell, while others are of the opinion that the 
accumulated heavy metals in the cell wall remain protein or silicate bound (Bringezu 
et al. 1999). “Metal tolerant plants select for homeostasis to maintain the high con-
centration of metals due to their inability to tolerate reactive oxygen species or free 
radicals” (Dietz et al. 1999; Sharma and Dietz 2009; Panda et al. 2003). The extra-
cellular chelation of Al with citrate and malate activates the tolerance of metals in 
wheat (Delhaize and Ryan 1995) and Al-resistant Arabidopsis discharge of organic 
acids from roots (Larsen et al. 1998). The soils which cannot be remediated by phy-
toextraction rapidly, for those soils phytostabilization is very good choice for degra-
dation of contaminants. 

10.2.5  Phytovolatilization

In phytovolatilization, the toxic metals like Hg, Se and As are transformed into less 
toxic and volatile forms into the atmosphere (Malik and Biswas 2012; Marques 
et al. 2009). Groundwater, soil, sediments and sludges are usually remediated by 
this technology. Previously “only microorganisms were known to play this role” 
(Karlson and Frankenberger 1989), but it has been revealed recently that plants 
(B. juncea, B. napus) also hold an excellent property to carry out the process of 
phytostabilization (Terry et al. 1992). There are some aquatic plants, viz. Azolla, 
rabbit foot grass, rice and pickle weed, are the best volatilizer (Zayed et al. 2000). 
“Even though this remediation approach has added benefits of minimal site distur-
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bance, less erosion and no need to arrange of contaminated plant material, it is 
still considered as the most controversial of all phytoremediation technologies as 
discharge of mercury into the environment is likely to be recycled by precipitation 
and then redeposit back into the ecosystem” (Henry 2000). It has been revealed that 
“Brassica juncea volatilizes Se into the atmosphere through assimilation of Se from 
the soil into organic seleno-amino acids, selenocysteine and seleno-methionine” 
(Banuelos et al. 1993; Banuelos and Meek 1990; Terry et al. 2000). “A gene respon-
sible for reducing mercuric ion into elemental mercury through enzyme mercury 
reductase has been introduced into Arabidopsis thaliana which finally volatilizes 
large amounts of Hg into the atmosphere” (Rugh et al. 1996). To make a transgenic 
plant which shows excellent mercury volatilization, a bacterial Hg ion reductase 
gene was recently incorporated. Further, “it has also been reported that bacterial 
organomecurial lyase (merB) and mercuric reductase (merA) genes were incorpo-
rated into model plants such as A. thaliana and N. tabacum; the resulting transgenic 
plants have the potential to absorb elemental mercury (II) as well as methyl mercury 
from the soil and convert it into a volatile form (Hg0)” (Heaton et al. 1998). “The 
plantlets of transgenic yellow poplar (Liriodendron tulipifera) plantlets were pro-
duced which exhibited resistance to and grew well in normally toxic levels of ionic 
mercury, and the transgenic plantlets volatilized about 10-times more elemental 
mercury than non-transgenic plantlets” (Rugh et al. 1998). Presently by means of 
this technology, “tritium (3H), a radioactive isotope of hydrogen, is decayed to sta-
ble helium with a half-life of about 12 years as reported Dushenkov et al. (1995)”.

10.2.6  Advantages and Limitations of Phytoremediation

The various advantages using this technique for remediating metal contaminants are 
as follows:

 1. Low cost.
 2. Environment-friendly.
 3. A good range of obnoxious metals are remediated.
 4. A very attractive technique.

On the other hand, phytoremediation has certain limitations. It takes years to clean 
the site as it is a very lengthy process. Furthermore, it is only used to clean the sub-
surface layer of the soil. The various advantages and disadvantages of phytoreme-
diation and various mechanisms are shown in Table 10.2.

10.2.7  Plant Selection Criteria for Phytoremediation

Root depth, soil contaminants, soil and regional climate are the basis on which plant 
species are selected to carry out the process of phytoremediation. The depth of soil 
is directly impacted by the root (US Environmental Protection Agency 2001), and 
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“it varies among different types of plants, and vary significantly for one species 
depending on local conditions such soil structure, depth of a hard pan, soil fertility, 
cropping pressure, or other conditions” (Pivetz 2001). “The cleaning depths are 
approximately <3  ft. for grasses, <10  ft. for shrubs and <20  ft. for deep rooting 
trees” (Sharma and Reddy 2004). It has been reported that grasses have fast growth, 
huge biomass, strong resistance and ability to decontaminate various soil types as 
compared to trees and shrubs (Shu et al. 2002; Elekes 2014). “They are pioneers and 
usually are adapted to adverse conditions such as low soil nutrient content, stress 
environment and shallow soils” (Malik et al. 2010; Xia et al. 1999; Ye et al. 2000; 
Sinha et al. 2013). Leaching, runoff and erosion are reduced by the large surface 
area of their fibrous roots and thus offer advantages for phytoremediation (Garba 
et al. 2012). The erosion is prevented by extensive canopy of shrubs and trees. 
In addition, high nutrient is provided by shrubs and trees to the grass, while they 

Table 10.2 Advantages and limitations of phytoremediation (Elekes 2014; Kumar et  al. 1995; 
Ashraf et al. 2013; Newman et al. 1997)

Mechanisms Advantages Limitation

Phytoextraction • Less expensive
• Permanent removal of toxic metals 

from the environment
• Substantial decrease in disposal of 

waste material
• Recycling of contaminates

• “Metal hyperaccumulators are 
generally slow growing with a 
small biomass and shallow 
root systems”

• Plant biomass must be 
harvested and removed

• Show phytotoxic effect
Phytostabilization • No requirement of hazardous and 

biomass disposal
• “Very effective when rapid 

immobilization is needed to preserve 
ground- and surface waters”

• Soil erosion is reduced and soil water 
is decreased

• It is cost-efficient
• Revegetation enhances the stability of 

ecosystem

• Formation of leachate is 
prevented

• Higher doze of fertilizers is 
used

• Phytostabilization is an 
interim measure

• “Phytostabilization causes 
stabilization by decreasing the 
amount of water moving 
through the soil”

Phytovolatilization • Mercuric ion is converted into less 
toxic one

• “Contaminants or metabolites 
released to the atmosphere might be 
subject to more effective or rapid 
natural degradation processes such as 
photodegradation”

• “Hazardous metabolite may 
be released into the 
atmosphere which may 
accumulate in vegetation”

• In plant tissues metabolites 
are found in low levels

Rhizofiltration • “Both terrestrial and aquatic plants 
are used for either in situ or ex situ”

• Hyperaccumulators may be used 
other than accumulators

• An ex situ system can be used 
anywhere

• Adjusting the pH constantly
• Plants are first grown in a 

greenhouse
• Harvesting and plant disposal 

are done periodically
• “The chemical speciation and 

interaction of all species in the 
influent have to be understood 
and accounted for”
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lower the water stress and improve soil physical properties (Hamzah and 
Priyadarshini 2014; Tiedemann and Klemmedson 2004). Developed root system of 
grasses stabilizes the soils and reduces erosion, while nitrogen is added by legumes 
(Kidd et al. 2009; Sanchez et al. 2001; Carvalho et al. 2013).

In a relatively short time, grasses develop a large biomass and are metal-tolerant 
biosystems, which accumulate high concentration of toxic metals (Elekes 2014). 
However, “the shorter growing period of the seasonal flowering plants is a better 
option in phytoremediation over perennial plants, as it can be harvested yearly or 
seasonally, and the area can be replanted with subsequent seasonal flowering plants” 
(Sinha et al. 2013). “It is better to use plant species adapted to the climatic and soil 
conditions of the area to be de-polluted” (Elekes 2014; Pivetz 2001; Tordoff et al. 
2000). The native plant species are favoured because they are tolerant to stress con-
ditions, have low maintenance cost and are environmental and human friendly than 
non-native or genetically engineered species (Compton et al. 2003). However, “par-
ticular non-native plant may work best remediation of specific contaminant and can 
be safely used under circumstances where the possibility of invasive behaviour has 
been eliminated” (USEPA 2000) (Table 10.3).

Table 10.3 Main characteristics of phytoremediation processes (Subhashini and Swamy 2013; 
Ali et al. 2013; Vamerali et al. 2010; Elekes 2014; Alkorta et al. 2004; Pulford and Watson 2003; 
Mendez and Maier 2008; Tangahu et al. 2011; Bhat et al. 2018)

Process Pollutants Media Criteria for selection

Phytoextraction Organic and 
inorganic

• Soils
• Sediments
• Water
• Sludges

• “Metal tolerance to high 
concentrations”

• “Capability of higher accumulation 
of metals”

• “fast growth”
• “Easy harvesting and disposal”
• “Translocation factor should be 

high”
• “Should be easily managed”
• “Pathogen and pest resistance”

Phytostabilization Heavy metals 
and 
chlorinated 
solvents

• Soil
• Sediments
• Sludges

• Extended root system should 
develop

• Translocation of metals to shoots 
should be very low

• Should have a capability to retain 
pollutants in their roots or 
rhizosphere

Phytovolatilization Chlorinated 
solvents and 
inorganic 
compounds

• Groundwater
• Soil
• Sediments
• Sludge

Rhizofiltration Toxic metals 
and organic 
compounds

• Surface
• Waters
• Wastewaters

• Should be metal resistant
• Should have very high surfaces for 

adsorption
• Hypoxia tolerant
• Preference to terrestrial plants 

because they have long and fibrous 
roots
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10.3  Conclusion

Heavy metal pollution of soil and water poses a severe threat to the environment as 
well as human health. The increase in human health risk has led researchers to focus 
on eco-friendly and risk-free technology. Phytoremediation is a conventional and 
environment-friendly technique to depollute the toxic substances present in the 
natural environment. Exploring deep into the understanding of the mechanism of it 
would certainly increase our knowledge level, thus allowing us to choose the suit-
able process of phytoremediation and the appropriate species for the remediation of 
polluted environment. Phytoremediation has shown promising results in cleaning 
up the various pollutants in the various environment, be it soil or water. The new 
phytoremediation technology should be encouraged to safeguard our environment, 
and much work should be carried in this cheap method of pollution control.
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Chapter 11
Credibility of In Situ Phytoremediation 
for Restoration of Disturbed Environments

Cynthia Wong-Arguelles, Angel Josabad Alonso-Castro, 
Cesar Arturo Ilizaliturri-Hernandez, and Candy Carranza-Alvarez

11.1  Introduction

Soil and water pollution are a major environmental issue in the world.
Urbanization and industrialization contribute to the increase of contaminants 

(hydrocarbons, potentially toxic metals, pesticides, etc.) into the environment (Bhat 
et al. 2018a). These pollutants cannot be degraded, and therefore they are accumu-
lated in living organisms, as well as in water, air, and soil. Sometimes, these pollut-
ants can be degraded by some microorganisms. Industrial wastes, without previous 
treatment, are often disposed into water bodies. These contaminants might be 
 incorporated into the food chain and cause a risk for human health (Hazrat and 
Ezzat 2013).

Mining and smelting are important economic activities in Mexico (INEGI 2010). 
The spreading of mining by-products contaminates surrounding soils, water streams, 
and air. Specifically, mining activity releases metals and metalloids to the environ-
ment (Machado et al. 2013). Approximately 100 million tons of mine wastes are 
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generated in Mexico, each year, which cause pollution of soil, water, and air 
(SEMARNAT 2010). Mining industries that extract Ag, Pb, and Zn, among other 
trace metals, pour their residues into lakes and rivers, and part of this water is used 
for crop farming (Armienta and Rodríguez 1996; Ramos and Siebe 2006). In addi-
tion, the presence of these potentially toxic metals could reduce land productivity 
(Prieto et al. 2005). Mine tailings in Mexico represent also an important ecological 
problem due the dispersion of pollutants (Cortés et al. 2013). The most hazardous 
metals in Mexico are Hg, As, Pb, and Cr. The central states of Mexico, such as 
Zacatecas, Querétaro, Hidalgo, and San Luis Potosi, have been affected by the pol-
lution of soils and water with potentially toxic metals (Razo et al. 2004; González 
et al. 2012; Hernández et al. 2012; Levresse et al. 2012; Martínez et al. 2013; Rivera 
et al. 2013; Covarrubias and Peña 2017). In addition, chronic diseases in humans 
caused by Hg contamination have been reported (Hernández et al. 2012; Martínez 
et al. 2013). Nevertheless, investigation into the health implications of contamina-
tion by potentially toxic metals remains to be carried out in many areas of Mexico.

This chapter summarizes the information obtained, by scientific sources, about 
in situ phytoremediation studies carried out in Mexico. The information here 
described will be useful for planning the remediation of contaminated sites by 
potentially toxic metals in Mexico.

11.2  In Situ Phytoremediation

Some plants have developed mechanisms to adapt and grow in contaminated sites. 
In situ phytoremediation involves the use of plants for the removal of organic and 
inorganic contaminants from soil and water and is a long-term process, nondisrup-
tive, environmentally friendly and cost-effective (Baker et al. 1994). This process 
considers the level of contamination in the study site and the output of contaminants 
obtained after the study and includes the immobilization of toxic agents and its 
subsequent accumulation in roots (Pilon 2005).

Phytoremediation reduces the spread of pollutants in air and water since plants 
may be harvested and removed from the contaminated site for disposal and recovery 
of contaminants. A plant used for phytoremediation must have the following char-
acteristics: high accumulation of contaminants, high biomass, good adaptation to 
prevailing environmental and climatic conditions, fast growth, and high transloca-
tion from roots to shoots (Bonanno 2013; Hazrat and Ezzat 2013).

In situ phytoremediation is based on the extraction of pollutants from the envi-
ronment under natural conditions. Therefore, this complex process is influenced by 
physicochemical and biological parameters. The physicochemical parameters 
include metal availability, pH, dissolved oxygen, sediment type, pollutant loading, 
temperature, salinity, organic matter, weather, redox status, cation exchange capac-
ity, and mobilization of these contaminants in soil/water, among others (Karami 
et al. 2011; Leblebici et al. 2011; Salt et al. 1995). The biological parameters include 
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high growth rate, plant biomass efficiency of xylem loading, microbial biota, and 
deep root system, among others (Giordani et al. 2005).

The efficiency of phytoremediation systems, both for water and soil, mostly 
depends on the type of plants to be used. Plants must have a great capacity to toler-
ate and/or accumulate contaminants or transform pollutants to a lesser toxic form 
(Flores et al. 2003).

11.3  Native Plants Used in In Situ Phytoremediation

The use of native plants with high tolerance and capacity to accumulate or stabilize 
the metal to be removed is a very convenient approach, which reduces the physical 
dispersion of contaminants (Cortés et  al. 2013; González and González-Chávez 
2006; Salas et  al. 2009; Sánchez et  al. 2015). Native plant species have demon-
strated their higher capacity for survival under environmental stresses (Antosiewicz 
1992; Haque et al. 2009; Jamil et al. 2009). Thus, indigenous plants could be used 
as biosensors and/or bioremediators of potentially toxic metal-polluted zones 
(Aldrich et al. 2003; Clemens 2006; Gardea-Torresdey et al. 2005; Ma et al. 2001; 
Wang et al. 2002; Zhang et al. 2007; Peralta-Videa et al. 2009). Metal distribution 
in plant tissues is influenced by different translocation processes among plant spe-
cies (Barman et al. 2000; Cai and Ma 2003; Gulz et al. 2005; Tian et al. 2009; Xiong 
1998; Bhat et al. 2018b). The identification of native plant species adapted to grow 
on polluted areas could help to remediate sites contaminated by potentially toxic 
metals (Cortés et al. 2013).

11.4  Accumulation of Trace Metals by Plants Under Field 
Conditions in Mexico

In Mexico there are many sites contaminated with potentially toxic metals. In many 
studies, the levels of trace metals in water/soil surpass the levels considered as toxic 
for humans and plants (González et al. 2012; Mireles et al. 2004; Puga et al. 2006). 
Most of the reports correspond to sites polluted with trace metals by mining activities. 
Huge mine spoils can be found throughout the country, but the most important mining 
regions are in North and Central Mexico. The studies analyzed in this review corre-
spond to plants growing in arid and semiarid regions. Most of these plants correspond 
to crop plants, small shrubs, or small trees. We did not find studies carried out in 
Southern Mexico, where the geographical conditions correspond to areas of rainforest.

The content of trace metals found in plants is correlated with the concentration 
of trace metals in soil/water (Carranza et al. 2008; Levresse et al. 2012; Mireles 
et  al. 2004; Santos et  al. 2012). The bioavailability of trace elements is another 
 factor that influences their incorporation in plant tissues. Only some reports of in 
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situ phytoremediation in Mexico included the physicochemical characteristics and 
the content of trace elements in water and/or soil. It is important to point out that 
further studies should consider carrying out chemical analysis in soil and water to 
provide complementary information about the accumulation of trace elements in 
plants and the mobilization process of these elements in soil-plant or water-plant 
systems.

The metal availability and accumulation of trace metals in plants from soil/water 
is highly dependent on the metal speciation in soil/water, pH, age of the plants, its 
capacity to be transported in water, and more particularly the plant metabolism effi-
ciency or ecotypes. The trace metal accumulation depends on the predominant dis-
solved chemical species and the trace metal mechanisms of mobilization at the 
sediment-water interface (Carranza et  al. 2008; González and González-Chávez 
2006; Levresse et al. 2012).

In most of the reports of in situ phytoremediation in Mexico, the accumulation of 
trace metals is informed in the roots (Carranza et  al. 2008; Carrión et  al. 2012; 
Hernández et al. 2012; Martínez et al. 2013; Mauricio et al. 2010; Mireles et al. 
2004; Santos et al. 2012; Zarazúa et al. 2013). This might be explained because this 
is the tissue most exposed to the existing trace metals in water/sediment (Carranza 
et al. 2008; Franco et al. 2010; González and González-Chávez 2006). In addition, 
the translocation process to aerial parts could last during months. On the contrary, 
Puga et al. (2006) obtained that most of the trace metals studied (As and Zn) were 
found in aerial parts.

Differences in accumulation were observed in different plant species collected 
from the same sites (Carmona et al. 2016; Cortés et al. 2013; Franco et al. 2010; 
González and González-Chávez 2006; Levresse et al. 2012; Salas et al. 2009). This 
might be explained to the tolerance mechanisms developed for each plant species to 
accumulate/exclude potentially toxic metals.

11.5  Hyperaccumulator Plants

Plants capable to hyperaccumulate trace metals are defined as those that meet the 
following criteria: bioaccumulation factor (BF) higher than 1000 μg metal g dry 
weight−1 and translocation factor (TF) higher than 1 (Baker 1981; Mireles et  al. 
2004). Some of the plant species cited in this review, including Hydrocotyle ranun-
culoides, Parietaria pensylvanica, and Commelina diffusa, could be considered as 
hyperaccumulators for Zn (Carmona et al. 2016; Zarazúa et al. 2013) and Rorippa 
nasturtium-aquaticum (synonym Nasturtium officinale W.T. Aiton) for Cu. From 
these plant species, two of them are worldwide distributed (Hydrocotyle ranuncu-
loides and Rorippa nasturtium-aquaticum), whereas two of them are native from 
the American continent (Parietaria pensylvanica and Commelina diffusa). In our 
knowledge, no studies about the mechanism of metal accumulation have been car-
ried out with these plant species. Therefore, it will be interesting to provide 
 information that helps to understand, in a molecular level, how the hyperaccumula-
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tion of trace element by these plant species is performed. In addition, we could not 
find reports about the mechanism(s) of trace metal accumulation in other plant spe-
cies cited in this work. This clearly indicates the need to perform studies for under-
standing how the accumulation of trace elements in plants is carried out.

11.6  Methods, Perspectives, and Future Needs

Most of phytoremediation studies are carried out under laboratory conditions, and 
only few studies evaluate the ability of phytoextraction under field conditions. This 
review provides information of extraction of trace metals and potentially toxic met-
als by plants from polluted sites under field conditions in Table 11.1. The informa-
tion was searched by consulting the following electronic sources: ScienceDirect, 
Scopus, Web of Science, SpringerLink, SciELO, PubMed, and Google scholar. 
Scientific reports were searched from the databases using the following keywords: 
plant, phytoremediation, phytoextraction, and Mexico. Articles written in Spanish 
were also considered in this work. The publications considered in this review dated 
from 1981 to 2018.

The study of organic pollutants, including chlorinated solvents, linear haloge-
nated hydrocarbons, and volatile organic carbons, among others, remains to be car-
ried out in Mexico. In situ phytoremediation studies that analyze the accumulation 
and/or transformation of organic toxic substances should be considered. It is well- 
known that contamination by pesticides in Mexico is a great threat for human health. 
Plants might be considered as a possible solution for the removal of these persistent 
contaminants. The information on the mechanisms by which plants cited in this 
review transform such compounds is scarce (López et al. 2005).

In addition, the probable mechanism for metal extraction in plants is also lack-
ing. Some plants exposed to high levels of contaminants have developed physiologi-
cal mechanisms for their adaption and growth under stressful conditions. Some of 
these mechanisms include the exudation of low molecular weight organic acids 
(LMWOAs), which contribute in the detoxification of some trace metals (Li et al. 
2013; Tu et al. 2004). Nevertheless, the mechanism(s) of trace metal accumulation 
of plants cited in this study should be studied.

The plant-microbe interaction is also a topic to be evaluated. Some microorgan-
isms such as Rhizophagus irregularis and Funneliformis mosseae (Hassan et  al. 
2013) can enhance phytoremediation in different manners: (1) expediting growth of 
plant biomass, (2) increasing or (3) decreasing metal availability in soil, (4) facili-
tating metal translocation from soil to root, and (5) inducing the translocation from 
root to shoots (Ma et al. 2011; Rajkumar et al. 2012).

The chelating agents, such as ethylene bis[oxyethylenetrinitrilo] tetraacetic acid 
(EGTA), ethylenediamine-N,N′bis(o-hydroxyphenyl)acetic acid (EDDHA), 
 ethylenediaminetriacetic acid (EDTA), N-(2-hydroxyethyl)-ethylenediaminetriacetic 
acid (HEDTA), diethylenetetraminepentaacetatic acid (DTPA), and 
 diethylenetetraminepentaacetatic acid-calcium chloride dihydrate-triethanolamine 
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(DTPA-CaCl2- TEA), among others, have been used to increase the phytoextraction 
process (Cortés et al. 2013; Nowack et al. 2006). Ruiz Olivares et al. (2013) sug-
gested that the use of DTPA could increase the metal stabilization shown by Ricinus 
communis, and Cortés et al. (2013) found that Gnaphalium chartaceum, Senecio 
salignus, and Wigandia urens had Pb-BFs (in relation to DTPA-extraction) in the 
range between 6.4 and 18.5. However, the use of these agents on in situ studies 
might cause groundwater pollution due to metal mobilization (Wenzel et al. 2003). 
The use of these chelator agents could improve trace metal accumulation in mine 
tailings.

The taxonomical identification of plants species should be encouraged. In many 
cases, the botanical species is not reported. Misidentification of plant species could 
cause misinterpretation of results. Botanical personal should be incorporated in 
phytoremediation studies carried out under controlled and field conditions.

Finally, the speciation of metals determines the bioavailability of contaminants 
in soil and water, before carrying out the phytoremediation study. Chemical forms 
of trace metals are needed to be investigated for evaluating their possible mobility, 
bioavailability, toxicity in the environment, and the possible interactions with soil 
particles. The ability of metals and metalloids to form complexes with compounds 
present in water and soil plays an important role in increasing their bioavailability 
and uptake (Babula et al. 2009).

11.7  Conclusion

In situ phytoremediation studies are scarce. Special attention should be paid on 
native plants to propose strategies for the remediation of soil and water contami-
nated with potentially toxic metals. In addition, complementary studies should 
include the evaluation of the accumulation of pesticides and other organic toxic 
substances in plants. In addition, the molecular mechanisms of accumulation have 
not been described.
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Chapter 12
Role of White Willow (Salix alba L.) 
for Cleaning Up the Toxic Metal Pollution

Junaid Ahmad Malik, Aadil Abdullah Wani, Khursheed Ahmad Wani, 
and Muzaffer Ahmad Bhat

12.1  Introduction

Plants and plant communities are very important to humans and their environment. 
The quality of the air can be greatly influenced by plants. Plants can stop the move-
ment of dust and pollutants. Trees have been proposed as a minimal effort, manage-
able, and environmentally stable answer for phytoremediation of trace metal 
debased land. The utilization of willow and poplar species in phytoremediation is 
promising (Dickinson 2000). Also, willows are easy to propagate and proliferate as 
well as quickly developing. They are likewise metal tolerant, perpetual, and with a 
broad root framework with high rate of evapotranspiration that can soothe pollutants 
(Hammer et al. 2003; Wilkinson 1999).

There are about 450 species of Salix genus, and all the species are easily propa-
gated, fast-growing, and tolerant to varied soil conditions. The ability of Salix to 
resprout after harvesting of aboveground biomass, along with significant transpira-
tion rates and potential production of energy biomass, makes it an effective group 
of plants for phytoremediation purposes. Salix species are apropos as a heavy 
metal phytoextractors due to their high element accumulation, high heavy metal 
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transport to the shoots, and high biomass production. A number of Salix spp. have 
varied genetic variability within the genus. Some species are known to colonize 
contaminated soil (Greger and Landberg 1999). Salix is a diverse genus and has 
the capacity to absorb and resist heavy metal ions. Compared to other plants, Salix 
are quite effective in phytoextraction of heavy metal pollutants (Laureysens et al. 
2004; Kocik et al. 2007). Environmental studies reveal that phytoremediation by 
some Salix clones can be a useful tool in technical replenishment approaches in 
soil remediation (Vande et al. 2007). Salix not being a hyperaccumulator plant, a 
proportion of clones can develop quick in intensely contaminated regions (Schaff 
et al. 2003; Vervaeke et al. 2003). Salix growth in contaminated soil can be sup-
ported or restrained by the soil conditions and the presence of other plants or 
weather conditions. Efficiency of phytoextraction with Salix use in sullied and 
uncontaminated areas among the additional gears depends on species or even 
diversity, soil situations, and plant oldness (Newman and Reynolds 2004; Schaff 
et al. 2003; Berndes et al. 2004).

Modern procedure, rural preparations, mining, and other human exercises have 
brought about extensive defilement of soils with substantial metals (Goyal et al. 
2008; Atafar et al. 2010). The primary anthropogenic wellsprings of overwhelm-
ing metals happen because of human exercises, for example, mining, broad utili-
zation of composts, and sewage creation. In the most recent years, the capability 
of some tree species in expelling metal particles from soil has gotten increasingly 
more consideration. Soils contaminated with metals may compromise biological 
systems and human well-being. In common habitats, overwhelming and heavy 
metals are available at low fixations without making huge harmful impacts to liv-
ing beings. Notwithstanding, their expanded gathering in soil and water may have 
genuine ramifications for plants, creatures, and human well-being. Some substan-
tial metal- tainted soils might be tidied up by developing plants which gather the 
toxicity, at that point reaping the plants and discarding them in a “sheltered zone.” 
This sort of innovation, known as “phytoremediation,” speaks to an innocuous 
and minimal effort method, lacking of particular reactions (Cunningham and 
Owen 1996; Ledin 1998). Salicaceae are well-thought-out as good contenders for 
a phytoremediation approach (Marmiroli et al. 2011) due to their easy propaga-
tion, great lenience against metal pollutants, and high annual biomass production. 
Salix alba plant species, which have high biomass production, can be proposed 
for usage in phytoremediation technology. The ecophysiological reaction of com-
mon and viable willow replicas evaluates the effects of the Zn treatment on the 
photosynthetic process by the analysis of CO2 integration and chlorophyll (Chl.a) 
fluorescence. Among the overwhelming metals, cadmium (Cd) is of specific 
worry because of its generally high portability in soils and potential danger to 
biota at low fixations. In spite of the fact that Cd is normally present in soil at very 
low sums, elevated amounts of cadmium have been accounted in some conditions 
(Das et al. 1997).
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12.2  Reaction of Salix alba L. to Heavy and Toxic Metals

Of the absolute vegetation accessible, trees offer ease, reasonable, and naturally 
stable answer for phytoremediation of trace metal tainted land. In addition the utili-
zation of yields, for example, willow species, has likewise been observed to 
 guarantee in phytoremediation as they gather Cd and Zn in their over-the-ground 
biomass. So willows could be utilized for collecting the supplements as well as the 
overwhelming metals as they are easy to propagate and spread with a broad root 
framework with high evapotranspiration rates that can settle toxins. Willows can 
develop on tainted soils and have high biomass generation by which they can amass 
great amounts of PTE in the roots and so on. Understanding their significance in 
overwhelming metal gathering, Belarus planted willow trees for the adjustment and 
phytoremediation of polluted soils, in post-mining scenes and on sterile landfills. 
Yet, In India ponders on phytoremediation potential under field conditions stay 
restricted (Hazrat et al. 2013).

Oxidative stress is seen in plants when exposed to heavy metals that subsequently 
lead to their cell harm and unsettling influence in cell ionic homeostasis. Applied 
pollutants impact negatively to the plant and cause confined chlorotic as well as 
necrotic variations of shoot leaves. These progressions are obvious generally on 
more youthful greeneries in little fixes, on plants treated with higher concentrations 
of contamination blend, and on higher connected diesel fuel treatment. There is 
significant reduction of plant growth in response to all the applied pollutants 
(Table 12.1). Pollutant level concentration is an important aspect that determines the 
mark of growth discount. The blend of heavy metals connected at lower fixations 
(m) determines the smallest negative impact on the growth. The most grounded 
decrease of photosynthetic rate (PR) and transpiration rate (TR) is brought about by 
the treatment of heavy metals in higher concentrations. Correlation between photo-
synthetic rate and growth parameters has proven to be positive, but without statisti-
cal significance (Table 12.2).

Treatment Leaf mass (g) No. of leaves per plant

Control 5.5 ± 0.4 43.3
Cd 2.0 ± 0.2 29.2
Ni 1.9 ± 0.2 33.2
Pb 1.6 ± 0.1 29.2
M 1.6 ± 0.2 27.5

Table 12.1 Leaf developmental 
parameters of S. alba in connection 
with toxin treatments

Table 12.2 Correlations (r) 
between photosynthetic rate 
and growth restrictions

Growth parameter Photosynthetic rate

Plant height 0.69
Mass of the shoot 0.46
Mass of the leaf 0.46
Number of leaves 0.50
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Cadmium, nickel, and lead (Pb) highly accumulate in the roots of the plant. Higher 
accumulation and more uptakes of cadmium (Cd) and nickel (Ni) have been seen in 
the plant when the pollutant is treated in higher concentrations. Cadmium (Cd) and 
nickel (Ni) are progressively aggregated when blended substantial metal treatment is 
applied in comparison with individual overwhelming metal treatments. The singular 
treatment of Lead (Pb-EDTA) has categorically the most significant accumulation 
level of the pollutant in all the parts of the plant while as the presence of Cd and Ni 
in treated soil reduces the Pb accumulation which indicates the antagonistic relation 
between the heavy metals. Gerhardt et al. (2009) propose that individual lethal impact 
of overwhelming metals has shown strong additive effect. Toxicity is showed through 
leaf chlorosis, putrefaction, decreased biomass of all plant organs, and unsettling 
influences in photosynthetic CO2 absorption. This was also verified later by Atagana 
(2011) on Salix alba and other plant species. The success of plant adjustment to toxin 
stress depends both on stable photosynthetic action and water use productivity. 
According to a previous study result, S. Alba genotype could have adequate practical-
ity and practicability at the locales with lower connected groupings of poisons (pol-
lutants) like cadmium <2.15 mg/kg, nickel <70.8 mg/kg, and Pb-EDTA <116.1 mg/kg.

Mühlbachová (2009) established that the use of EDTA in substantial metal 
debased soil, at beginning times, can produce poisonous consequences for the soil 
microorganisms which lessens their general biomass. In any case, further research 
is required to clarify the job of EDTA in co-polluted condition.

12.3  Heavy Metal Accumulation

Accumulation of heavy metals in the environment is a potential risk to living system 
due to their uptake by plants and subsequent introduction into the food chain. The 
accumulation of heavy metals in soils and subsequently to the plants proves an 
increasing concern because of the potential human health risks. The accumulation 
of heavy metals in plants depends upon plant species, soil properties, and the effi-
ciency of different plants in absorbing metals. It can be evaluated by either plant 
uptake or soil-to-plant transfer factors of the metals (Rattan et al. 2005). The extent 
of accumulation of heavy metals is a direct proportionate of the concentration of the 
same in the soil. While taking the medium, cadmium, concentration in the soil under 
consideration, Salix alba is characterized by high extent of metal concentration. 
Accumulation of cadmium is very intensive and proves to be toxic. Copper (Cu) is 
also accumulated in the medium level by the Salix alba, while mercury (Hg) is 
highly accumulated by the plant. Salix alba has an intensive accumulation capabil-
ity toward lead and zinc as well. The factors which influence the metalloid mobility 
in the soil are pH, concentration, and composition of organic compounds. Metals 
can be easily absorbed by the Salix alba when they are easily bioavailable and can 
be disseminated along the subsequent food chain which in turn causes mutagenic 
effects (Hazrat et al. 2013).

The higher zinc and cadmium concentration is found in leaves than in the stem. 
Pertinently, the zinc and cadmium fixations in the over-the-ground portions of the 
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plant are highly variable which indicates that these two elements are not transferred 
to the aboveground parts of willows in a reasonable concentration (Vangronsveld 
et  al. 2009). However the dynamics of the gathering, transport, and resilience is 
explicit for each metal. Another study by Aktaruzzaman et al. (2013) reveals the 
soil-to-plant transfer factor (TF), and it can be concluded that Pb and Cd are high 
accumulators. The study puts the tendency of TF for heavy metals in the order of 
Pb > Cd > Zn > Cu > Cr. The inoculation of microorganisms such as Streptomyces 
sp., Agromyces sp., and C. finlandica is known to increase the accumulation of cad-
mium and zinc to shoots by increasing the bioavailability of Cd, Zn, and potassium 
(K) in polluted soil (Maria et  al. 2011). The treatments of mycorrhizae are also 
known to increase the accumulation of Cu and the shoot biomass (Cloutier et al. 
2014). The Salix alba L. in coordination with microorganisms and fungus prove to 
be the sources of enhancement for the process of phytoremediation. Purdy and 
Smart (2008) envisaged that the hydroponic experiments along with the phosphates 
have decreased the toxicity and increased the accumulation of metals in the shoot 
tissues of Salix alba.

12.4  Phytoextraction

The translocation and transport of metals to the aboveground parts of a plant is an 
effective biochemical process to remediate the polluted sites. The damaging effect 
caused by the metal accumulations on root physiology is reduced more by the effi-
cient utilization from the root to the aboveground parts. This in turn increases the 
efficiency of the plant toward metal uptake allowing the metal removal from the site 
very efficiently.

Since the 1980s, the techniques for the process of bioremediation have been 
used. Initially microorganisms were used for the purpose of metal remediation via 
biosorption and by reducing metals to their lower redoxes (Lovley and Coates 
1997). Salix phytoremediation capabilities have been researched from the past two 
decades along with their associated fungus and bacteria. The coordination of micro-
organisms with the woody hyperaccumulators enhances the phytoremediation and 
can also be considered booming. Metals are often made bioavailable by the micro-
organisms by acidifying the soil near roots. The enhanced extraction of Cd and Zn 
by Salix alba L. (and other species) through inoculation of rhizobacteria is an exam-
ple for the improved metal accumulation using microorganisms (Maria et al. 2011). 
The contaminated soil is acidified by the bacteria in the rhizosphere which increases 
the bioavailability of the metals. The metals are then easily removed through the 
bacterial sulfate reduction (White and Gadd 1997).

Phytoextraction is the process of plants by which they expel perilous compo-
nents or mixes from the soil or water, most generally substantial metals, metals that 
have a high compactness and might be harmful. These extracted metals prove to be 
toxic for the plants and the animals as well. Heavy metals react with a number of 
chemicals which are essential for the plant and may cause the adverse effects on the 
cellular metabolism. They can likewise break different molecules into much 

12 Role of White Willow (Salix alba L.) for Cleaning Up the Toxic Metal…



262

 increasingly responsive species which in turn disrupt biological processes. There 
are some fundamentals through which the plant (and the metal) undergoes to extract 
the heavy metals in the soil or water:

 1. The metal must dissolve.
 2. The plant roots must retain the substantial metal.
 3. The plant must chelate (e.g., metal-EDTA chelate) the metal to secure itself and 

make the metal progressively transportable.
 4. Movement of the chelated metal to a site where it is safely stored.
 5. The plant must acclimatize to any costs by the carriage or storage of the metal.

There is much interest on the plant species which are capable of accumulating the 
high concentrations of toxic elements from the soil. Hyperaccumulators are the 
plants which have capabilities of accumulating metal concentrations in excess of 
multiple times greater than the normal species (Shen et al. 1997). The cropping on 
the metal contaminated land with hyperaccumulators results in a potentially hazard-
ous biomass. Meanwhile, one of the major drawbacks of hyperaccumulators is slow 
growth rate of the plant. Application of chelating agents is known to cause disadvan-
tageous effects on treated plants. A study by Cooper et al. (1999) envisages that the 
copper and zinc concentrations of several herbaceous plants increase with the appli-
cation of chelates (nitrilotriacetate, NTA, and EDTA), but at the same time the report 
points that the increases were perplexed by the decrease in the dry weight of the plant.

Ion concentrations strongly affect the metal uptake by Salix alba. For instance, 
phosphorus restricts the commitment and translocation of zinc and lead ions. Hence 
the nutritious aspect of the soil has a substantial consequence on the bioavailability 
of the noxious metals to Salix alba. Salix alba is known to solubilize metals by 
radiating protons from the roots to acidify the rhizosphere.

The withholding and drive of heavy metals in the soils are administered by vari-
ous processes, e.g., cation exchange and specific adsorption are the major machiner-
ies regulating Ni, Cd, and Zn movements. However the organic complexation of Cr 
(chromium), Cu, and Pb is extensive. The processes which may affect heavy metal 
retention, uptake, translocation, and mobility are seen to control the bioavailability 
of the metals. The heavy metals while on uptake may have damaging effects as they 
block the functional groups of the polynucleotides and displace the essential metal 
ions from biomolecules. The absorbed heavy metals also denature the enzymes and 
disrupt the cell organelles along with the rupture of their membrane (Ross and 
Kaye 1994).

12.5  How Salix alba L. Is Eligible for Phytoremediation

Willows are the peculiar phytoextractors as they accumulate and tolerate metals. 
Moreover they are known to form the dominant vegetation in the upper watersheds 
and crunches at higher reaches. Many characteristics of the Salix alba make it the 
paramount phytoremediation agent. A successful phytoremediator requires a high 
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translocation rate from the root to the shoot (Greger and Landberg 1999). High 
biomass, metal translocation ability, and rapid growth and development of the Salix 
alba L. make it the useful phytoextractor for the polluted soils (Pulford and Watson 
2003). The Salix spp. have broad genetic variability and quick growth promptness. 
The metals which are accumulated in the upper biomass are ideal for harvesting and 
the metals can be removed permanently. Salix alba has an additional cash benefit of 
producing woody biomass that can be used as fuel and hence the plant is a preferred 
one for the cultivation.

Phytoextraction is a machinery of the plants by which the contaminants taken 
up by the plant are used into a harvestable portion. It has been viewed as a less 
expensive and helpful choice for low defiled destinations in comparison with other 
methods such as excavation and soil washing (Jadia and Fulekar 2009; Pilon-Smits 
2005). Metal uptake and phytoextraction by the plants is dependent upon rates of 
the uptake and the bioavailability of the metal to the plant (Pilon-Smits 2005). The 
elimination of the metals from the soil accomplished through the harvest usually 
consists of aboveground parts. The use of hyperaccumulators has been suggested in 
the process of phytoextraction (Baker et  al. 1994) as they are known to take up 
maximum quantities of an explicit metal. Hyperaccumulators amass >0.01% of cad-
mium, >0.1% of copper, or >1.0% of zinc in dry mass of leaves (Baker et al. 1994). 
Willows accumulate elevated amounts of Cadmium and Zinc that is why the ash 
from willow contains 10 times higher cadmium concentrations than from the other 
forest trees (Brieger et al. 1992).

Phytoextraction of heavy metals by Salix has been investigated in hydroponic 
studies (Watson et al. 2003), in pot trials (Meers et al. 2007), in contaminated soils 
(Bissonnette et  al. 2010), and in biosolid-amended soils (Maxted et  al. 2007). 
Table 12.3 is a research data analysis done by Landberg and Greger in 1994 and 
1996, which shows the uptake and transport of Cd, Zn, and Cu by Salix alba.

According to the data reported by Greger and Landberg (1999), Salix alba is 
reasonable as a phytoextractor on low to tolerably metal sullied soil because of the 
way that the plant has high accumulation, high transport to the shoot of heavy or 
substantial metals, and high take-up, at least for Cd, Zn, and Cu. Salix alba likewise 
has high biomass generation and is as of now in economic use (for bioenergy). In 
addition there is also a method for removing cadmium from the ash of the plant. The 
plant can also be bred to the clones which are not attractive to the animals.

Harvesting near the end of the season is known to expel the greatest amount of 
the metals. The concentration of the metals in the wood and the bark seems to 
remain steady over the season or is increasing at the end of a season. The biomass 

Table 12.3 Differences in concentration in shoot, root, and transport of cadmium, copper, and 
zinc in different replicas of Salix alba L.

Metal
Metal μg (g dry weight)−1

Transport %Shoot Root

Cadmium 0.1–7.9 4.3–302 1–68
Copper 0.4–8.6 16–353 1–22
Zinc 14–1776 65–1950 11–70
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is also increasing at the termination of the period. The annual uptake ratio by the 
Salix alba subsequently increases by the co-harvesting of leaves as well. It is known 
that Cd availability in the soil can decrease with time using Salix cultures, but the 
rate of the decline is poorly known. Pulford et al. (2002) have portrayed that the 
concentration of EDTA-extractable Cd, Cu, Ni, and Zn in sewage sludge-amended 
soil is higher at the site of Salix alba soil than in any other cultivation or in the 
unplanted areas. With the leaf fall, a considerable amount of metals are recycled in 
the soil-stand surface of the Salix alba in comparison with the stem harvesting. 
Hence a promising preference for the management is to harvest the leaves notwith-
standing the wood which would decrease the danger of the natural pecking order 
collection that is food chain.

12.6  Phytoremediation Potential

Miroslaw et  al. (2010) tested two Salix species, Salix viminalis and Salix alba, 
which were already cloned for the study of phytoremediation and accumulation of 
the heavy metals. The dormant cuttings were planted straight in the unprepared soil 
in rows at a distance of 0.5 m and were assessed during the two consecutive seasons. 
The Salix clones were as follows:

 1. S. alba.
 2. S. viminalis “v1” (two samples).
 3. S. viminalis “v2”.
 4. S. viminalis “v3”.
 5. S. viminalis “v4”.
 6. S. viminalis “v5”.
 7. S. viminalis “v6”.
 8. S. viminalis “v7” (two samples).
 9. S. viminalis “v8”.

Soil tests were gathered toward the start of the test around the specimens at first 
from the whole study region so as to decide the level of soil homogeneity. The 
bioaccumulation factors (BAFs) were determined as the proportion of substantial 
metal fixation in Salix shoots to focus on this metal in soil. The investigation of 
substantial metal substance in plant material and soil was directed by electrother-
mal atomic absorption spectrometry (ETAAS) utilizing a Varian SpectraAA 200 
spectrometer. Overall concentration of chosen substantial metals in individual 
Salix shoots was essentially differing. Results in mean qualities are exhibited in 
Table  12.4. So as to decide accumulation proficiency, bioaccumulation factors 
(BAFs) for every taxon (Table 12.4) were determined, and the proportion of accu-
mulated metals in the plant, what’s more in the soil, was determined. The position-
ing was readied contemplating contrasts in concentrated substantial metals in the 
particular plants.

J. A. Malik et al.



265

Table 12.4 Concentration of heavy metals [mg kg−1] in examined soil and Salix sprouts

Salix clone

Heavy metal

Cd Cu Pb Zn
Clone 
position

Accuml. abilities 
(simultaneous)

S. viminalis “v1a” 1.9834 (I) 5.1842 (M) 2.8392 (M) 52.8259 (I) 1 S. alba

S. viminalis “v1b” 2.4739 (I) 5.9482 (M) 2.3566 (M) 46.5762 (I) 2 S. viminalis “v8”

S. viminalis “v4” 1.9472 (I) 6.7877 (M) 3.3764 (M) 53.7994 (I) 3 S. viminalis “v4”

S. viminalis “v6” 3.4822 (I) 4.0445 (M) 4.8492 (M) 56.2389 (I) 4 S. viminalis “v3”

S. viminalis “v5” 2.7445 (I) 5.4829 (M) 3.3816 (M) 50.7029 (I) 5 S. viminalis “v2”

S. viminalis “v7a” 2.4925 (I) 6.4239 (M) 4.9942 (M) 57.1304 (I) 6 S. viminalis “v7b”

S. viminalis “v7b” 2.8237 (I) 6.0821 (M) 5.2814 (M) 63.4672 (I) 7 S. viminalis “v1b”

S. viminalis “v3” 3.6488 (I) 7.6725 (M) 3.4873 (M) 48.4779 (I) 8 S. viminalis “v7a”

S. viminalis “v2” 2.0036 (I) 6.8247 (M) 2.8342 (M) 59.3849 (I) 9 S. viminalis “v6”

S. viminalis “v8” 2.0462 (I) 6.2894 (M) 4.0508 (M) 56.9821 (I) 10 S. viminalis “v5”

S. alba 2.4837 (I) 5.8745 (M) 6.8372 (M) 59.9242 (I) 11 S. viminalis “v1a”

LSD 0.0262 0.0296 0.0334 0.0338

The rank of clones in accumulation of all metals concurrently (Miroslaw et al. 2010)
I intensive accumulation (BAFs >1), M medium accumulation (1 > BAFs >0.1)

Fig. 12.1 A view of the Salix alba at a wetland near Nilandrusu, Bijbehara

Hence it is evident from the studies of Miroslaw et al. (2010) that Salix alba is 
having a high translocation rate from the root to the shoot and same with the metal 
accumulation and the extent of the phytoextraction as well, which makes it the use-
ful phytoextractor for the polluted soils (Fig. 12.1).
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12.7  Conclusion

In view of the present scenario of urban environmental contamination, there is a 
need for planting the Salix alba and other plant species. Plants with the capability of 
mitigating heavy metal contaminations would be a reasonable option for cleanup of 
all metal substances to acceptable levels. Salix species are promising for the practice 
of phytoremediation of filthy land. Willows are laid to proliferate and propagate 
fast-growing, metal-tolerant, persistent crops, with a widespread root system and 
high evaporation and transpiration rates that are known to decontaminate the land 
and subsequently control to stop metal transference to other cubicles of the ecosys-
tem. Phytoremediation by Salix alba (having a huge economic value) offers eco- 
friendly machinery for conventional remediation of the heavy metals from the soil 
as the plant is having a deep-root system as well as high biomass yields. The first 
step for developing an effective phytoremediation method with the hybridization of 
Salix alba is the complete understanding of the growth dynamics and the physiolog-
ical machines which administer the relations among a unwavering plant genotype 
and pollutants. The genetically identical stem cuttings of Salix alba are a potential 
advantageous apparatus for air quality monitoring.
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Chapter 13
Mycoremediation: A Sustainable Tool 
for Abating Environmental Pollution

Sajad Ahmad Raina, Nesrine Ben Yahmed, Rouf Ahmad Bhat, 
and Moonisa Aslam Dervash

13.1  Introduction

“Environmental contamination due to heavy metals (by anthropogenic and industrial 
activities)” has posed substantial and irreversible damage to “aquatic environs.” The 
sources include “mining” and “fusion operations of minerals,” discharges from stor-
age batteries and car exhausts, manufacture and bulk use of fertilizers and pesticides, 
(Bhat et al. 2017b). Commonly found metals and metalloids “(lead, chromium, mer-
cury, uranium, selenium, zinc, arsenic, cadmium, silver, gold, and nickel)” pollute the 
water and which are of concern because of their relatively high toxicity. In addition to 
being dangerous to human health, they are detrimental to “fauna and flora” and are 
“recalcitrant in nature.” Therefore, there is a need to develop new approaches or strate-
gies to minimize or even eliminate metals from the environment.

Various physical, chemical, and “biological processes are commonly used to 
remove heavy metals from industrial wastewaters before they are discharged into 
the environment” (Fomina and Gadd 2014; Mehmood et al. 2019). Traditional phys-
icochemical methods “(such as electrochemical treatment, ion exchange, precipita-
tion, osmosis, evaporation and absorption) are not much profitable with the notion 
that some of them are not even environment friendly” (Mulligan et  al. 2001; 
Kadirvelu et al. 2002). On the other hand, bioremediation processes show promis-
ing results for the elimination of metals, even when they are present in very low 
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concentrations where physical-chemical elimination procedures do not work. 
Besides, bioremediation is an eco-friendly and economically viable option that is 
based on “the high binding capacity of metals of biological agents, which can 
remove heavy metals from contaminated sites with high efficiency.” In this fashion, 
microorganisms can be counted among “biological tools for the elimination of met-
als by concentrating, removing and recovering heavy metals from contaminated 
aquatic environments” (Riggle and Kumamoto 2000). Scientific temper using 
microorganisms as an alternative strategy to conventional treatments for the absorp-
tion of heavy metals in contaminated water possesses a broader scope (Tsezos and 
Volesky 1981). Microbial bioremediation is incredibly helpful in an array of condi-
tions ranging from the highly dilute solutions to the extreme conditions. Although 
“the mechanism associated with the biosorption of metals by microorganisms are 
not yet well understood, studies show that they play an imperative function in the 
absorption of metals and that this action implies ‘accumulation or resistance.’”

Fungi (mushrooms) are very economical, effectual, and eco-friendly way to help 
eliminate a wide range of toxins from damaged wastewater or module environ-
ments. The toxins are an array of entities like “heavy metals, persistent organic 
pollutants, textile dyes, chemicals and the tanning wastewater industry, petroleum 
derived fuels, polyaromatic hydrocarbons, pharmaceutical and personal care prod-
ucts, pesticides and herbicides,” in the earth, freshwater, and marine environments. 
The bioremediation by-products can be useful materials themselves, such as 
enzymes (Strong and Burgess 2007) and edible or medicinal mushrooms 
(Kulshreshtha et al. 2014), which makes the process of repair even profitable.
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13.2  Mycoremediation Treatment Techniques

Mushrooms employ different strategies to detoxify contaminated sites and eventu-
ally stimulate the environment. These methods include the following.

13.2.1  Biodegradation

It is the utmost “degradation and recycling of complex molecules” to their “mineral 
components.” It is the progression that leads to the absolute mineralization of the 
complex compounds to simpler substances (such as CO2, H2O, NO3, and other inor-
ganic compounds) by biotic organisms, in particular microbes.

13.2.2  Biosorption

The procedure of abolition of metals/xenobiotics from the environment (by fungi) 
is called biosorption which is considered as “an alternative to the reclamation of 
industrial effluents, as well as to the recovery of metals present in the effluent.” It is 
a procedure based on the absorption of “metal ions/contaminants/xenobiotics” from 
the “effluent by live or dry biomass” that often shows a discernible tolerance to met-
als and other adverse conditions.

13.2.3  Bioconversion

“The conversion of industrial/agro-industrial mud into other beneficial forms is 
called bioconversion.”

13.3  Contaminants/Pollutants

Mycoremediation is commonly used worldwide by scientific fraternity in waste 
treatment to remove contaminants and pollutants such as the following.

13 Mycoremediation: A Sustainable Tool for Abating Environmental Pollution
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13.3.1  Heavy Metal Pollution, Effects, and Their Remediation 
with Fungi

Heavy metals are detrimental to humans, for example, Hg, Pb, Cd, Cu, Ni, and Co 
(Pierzynski et  al. 2000), depending on quantum and period of exposure. Heavy 
metal pollution causes many harmful effects encompassing all life forms, viz., 
fauna, flora, and essential microbes, and also poses negative impact on human 
health (Ilyina et al. 2003; Chakraborty et al. 2013). Heavy metal ions possess strong 
bonds “(electrostatic attraction and high binding affinities)” with the same sites to 
which metal ions normally unite in various cellular structures, causing “the destabi-
lization of structures and biomolecules (cell wall enzymes, DNA and RNA), which 
stimulates replication defects and consequential mutagenesis, hereditary genetic 
disorders and cancers” (Perpetuo et al. 2011). “Heavy metals are noteworthy pollut-
ants because they are toxic, non-biodegradable in the environment and easily accu-
mulate in living organisms” (Zhuang and Gao 2013).

Water contamination with xenioboitics (heavy metals) occurs through natural and 
anthropogenic activities, mainly associated with industrialization. The “natural and 
anthropogenic sources of some of the most widely studied heavy metals as environ-
mental pollutants, along with a brief list of their adverse health effects (Table 13.1) 

Table 13.1 Contamination sources, uses, and adverse health effects of some heavy metals

Metal
Source

Uses Adverse health effectsNatural Anthropogenic

Cd Zn and Pb 
minerals, 
phosphate 
rocks

Mining waste, 
electroplating, battery 
plants 

Automobile 
exhaust 

Respiratory, 
cardiovascular, renal 
effects 

Cr Chromite 
mineral 

Electroplating, metal 
alloys, industrial 
sewage, anticorrosive 
products 

Pesticides, 
detergents 

Mental disturbance, 
cancer, ulcer, 
hypokeratosis 

Cu Sulfides, 
oxides 
carbonates 

Electroplating, metal 
alloys, domestic and 
industrial waste, mining 
waste, pesticides 

Most uses are 
based on 
electrical 
conductor 
properties 

Anemia and other toxicity 
effects induced indirectly 
through interaction with 
other nutrients 

Pb Galena 
mineral 

Battery plants, 
pipelines, coal, 
gasoline, pigments 

Batteries, alloys Neurotoxic 

Ni Soils Metal alloys, battery 
plants, industrial waste, 
production of vegetable 
oils 

Batteries, 
electronics, 
catalysts 

Skin allergies, lung 
fibrosis, diseases of the 
cardiovascular system 

Zn Minerals 
(sulfides, 
oxides, and 
silicates) 

Metal alloys, pigments, 
electroplating, 
industrial waste, 
pipelines 

Fertilizers, 
plastics, 
pigments 

Abdominal pain, nausea, 
vomiting and diarrhea, 
gastric irritation, headache, 
irritability, lethargy, 
anemia 
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and their applications” (Rajendran et al. 2003). Although the bioremediation studies 
generally consider the type of metal complex in the environment, but, the levels of 
toxicity depends on the chemical form of respective metal which may include spe-
cies and cationic/anionic complexes (hydroxylated or complexed with Cl), and their 
oxidation states vary according to the pH and the composition of the soil.

Metal contamination is very common because of wide functional range like gal-
vanic, textile, leather and paint (Bhatia et al. 2017). Wastewater in these areas is 
often used for agricultural purposes, so in addition to the immediate damage to the 
ecosystem in which it is reflected, metals find their route into the creatures and 
humans through the trophic linkages (food chain). Mycoremediation is one of the 
most economical, most effective, and friendly solutions to deal with various envi-
ronmental problems (Joshi et al. 2011). Many mushrooms are hyper-accumulators, 
which mean that they are able to concentrate toxins in their fruiting bodies for later 
disposal. This is usually true for people who have been exposed to pollutants for a 
long time and have developed a high tolerance, and it occurs through bio-absorption 
on the surface of the cells, which urges that the metals enter the mycelium passively 
via intracellular diffusion (Gazem and Nazareth 2013). A variety of fungi, “such as 
Pleurotus, Aspergillus and Trichoderma has been shown to be effective in the 
removal of lead” (Gazem and Nazareth 2013; Joshi et al. 2011), cadmium (Joshi 
et  al. 2011), nickel (Cecchi et  al. 2017), chrome (Joshi et  al. 2011), mercury 
(Kurniati et al. 2014), arsenic (Singh et al. 2015), copper (Gazem and Nazareth 
2013; Zotti et al. 2014), boron (Taştan et al. 2016), iron, and zinc (Vaseem et al. 
2017) in the marine environment, wastewater, and earth. The ability of some fungi 
to extract metals from the soil can also be useful as bioindicators and can be a 
problem when the fungus is edible. For example, “the shaggy ink cap (Coprinus 
comatus), a common edible mushroom from the northern hemisphere, can be an 
excellent bio- indicator of mercury and accumulate it in various trophic levels with 
certain toxicity” (Falandysz 2016).

13.3.2  Considerations on the Metal’s Uptake Capacity 
of Microorganisms

The path through which metal orients to a particular polluted region has foremost 
importance in connection to the effectiveness of a “bioremediation process.” For 
instance, the inoculation of “sediments by microorganisms” will measure the core 
route of metal contamination.  Although the free metal ions present in sediment 
waters are generally considered to be the most bioavailable form of metals. 
Therefore, “the accumulation of metal is influenced by the feeding behavior of 
microorganisms” (Fukunaga and Anderson 2011). After the “ingestion of heavy 
metals,” a procedure of “excretion and/or detoxification of metals begins to avoid 
possible toxic effects.” However, “the microorganisms will not suffer the toxic 
effects of the presence of metals if they are stored in detoxified forms” (Fukunaga 
and Anderson 2011). Furthermore, “the metal-biomass interaction depends on the 
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type of metal that can bind to ligands containing O2, N and S while this can be a 
simple description of the mechanisms involved, it can act as a starting point to pro-
pose new approaches to efficiency of absorption of metal by microorganisms”.

Otherwise, “microorganisms can synthesize metal proteins, such as binding MT 
or PC, and proteins are strongly linked to the capacity of adsorption, accumulation 
and metal resistance”.

The metal-binding proteins (on the outside of the cell membrane) aid in attach-
ment of metal ions. These ions help in transportation within the cytosol, where 
metallochaperones (specialized protein chelators) transfer metal to the suitable 
recipient protein. It is a well-established fact that “the binding sites of the metal 
binding proteins have been improved for other proteins such as heterologous metal-
loproteins using genetic techniques”. Some researchers have developed metallopro-
teins known as “heterologous metalloproteins with higher affinity and metal binding 
capacity and / or specificity and selectivity, which is expressed in bacteria to improve 
its metal absorption capacity”. Furthermore, “the technique modifies the proteins on 
the cell surface in a heterogeneous using recombinant DNA, emerged as a new 
approach to improve adsorption capacity” (Saleem et al. 2008). Both bacteria and 
yeasts have been studied for this purpose, “glutathione (GSH) ligands, phytochela-
tin (PC) related GSH rich metallothionein cysteine and synthetic fitoquelaminas 
(ECN) possess attributes to improve heavy metal bioaccumulation” (Saleem et al. 
2008). For example, “recombinant bacterial cloned mercury strain of the operon 
that encodes the regulatory gene (MERR) and other genes involved in transport was 
constructed. The strain showed high resistance to mercury detoxification of mercury 
ions within the cell” (Saleem et al. 2008).

It is a well-established fact that the expression of metal binding proteins or pep-
tides in microorganisms to improve the accumulation and/or tolerance of heavy 
metals has great potential (Joshi et al. 2011). Various peptides and proteins have 
been explored with different resistance mechanisms (Mejare and Bülow 2001), for 
example, “the production of peptides from the family of metal-binding proteins, 
such as MT or phytochelatin (PC); the regulation of the intracellular concentration 
of metals, with the expression of protein transporters of metal-ligand complexes 
from the cytoplasm towards the inside of the vacuoles; and the flow of metal ions 
through the ion channels present in the cell wall” (Perpetuo et al. 2011). Consequently, 
genes with remarked tolerance to metal toxicity are often encoded in transposons or 
plasmids, which facilitates their dispersion from one cell to another (Perpetuo et al. 
2011). Eventually, “tolerance is attributed to the activity that produces bacterial 
resistance to metals, either by pumping the active flow of toxic metals out of the 
cell, or by enzymatic detoxification (usually through the redox chemistry), where a 
lethal ion becomes a less toxic metal ion or less available” (Perpetuo et al. 2011).

It has been also explored, several metal-binding peptides have been studied for 
the purpose of increasing Cd resistance or accumulation by E. coli cells” (Mejare 
and Bülow 2001). Natural Cd-binding proteins and peptides (such as MT and PC) 
are very rich in cysteine residues. Furthermore, it is known that histidines have a 
high affinity for transition metal ions such as Zn2+, Co2+, Ni2+ and Cu2+ (Mejare and 
Bülow 2001). Therefore, to bind the Cd; several peptides comprising different 
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 cysteine or histidine sequences can be employed and, therefore, Cd tolerance and 
accumulation could be improved in E. coli cells and would be interesting to evaluate 
peptides and Cd-binding proteins designed to form bacteria more resistant to the 
environment, such as Pseudomonas, for possible use in bioremediation (Mejare and 
Bülow 2001).

It has been also explored, “hexavalent chromium is mobile, highly toxic and is 
considered a priority environmental pollutant, whereas, chromatin reductase present 
in chromium-resistant bacteria has the potential to be used in the bioremediation 
process because it is known to catalyze the reduction of Cr (VI) to Cr (III)” (Thatoi 
et al. 2014). Furthermore, “the enzymatic reduction of Cr (VI) in Cr (III) involves 
the transfer of electrons from electron donors, such as NADPH to Cr (VI) with the 
simultaneous generation of reactive oxygen species (ROS)” (Thatoi et  al. 2014). 
The microbial consortiums that possess the ability to reduce Cr (VI) are known as 
chromium-reducing bacteria (CRB) (Thatoi et  al. 2014) with the attribute that 
“Gram-positive CRB shows a significant tolerance to Cr (VI) toxicity even at high 
concentrations, while Gram-negative bacteria are much more sensitive to Cr (VI)” 
(Thatoi et al. 2014). Some genes responsible for Cr (VI) resistance have been deter-
mined in bacteria, for example, “the chrR gene located on the P. aeruginosa chro-
mosome confers chromate resistance. Ochrobactrum tritici contains several genes 
associated with chromic resistance, ie chrB, chrA, chrC, chrF and ruvB” (Thatoi 
et al. 2014). The presence of enzymes that play a role in reducing Cr (VI) has been 
reported for several microorganisms, and enzymes (such as quinone reductase, 
nitroreductases, and NADPH-dependent enzymes) vary in their ability to transform 
the chromate and involve different pathways (Thatoi et al. 2014). Several bacteria 
also possess unique enzymes that reduces the chromium Cr (VI) through membrane- 
bound reductases, such as flavin reductase, cytochromes and hydrogenases (Thatoi 
et al. 2014); “these enzymes can be part of the electron transport system and use 
chromate as a terminal electron acceptor” (Thatoi et al. 2014).

An extensive array of microbes has so far been considered for the development 
of a proficient technology for the removal of heavy metal ions from contaminated 
effluents (Shafi et al. 2018), and the capability of distinctive microorganisms (algae, 
bacteria, fungi, and yeasts) to remove heavy metals from certain environments 
(Shafi et al. 2018) is depicted in Table 13.2.

13.4  Remediation of Organic Contaminants

Mushrooms are among the primary saprotrophs in an ecosystem and are capable in 
the degradation of matter. Trudge putrefaction fungi, mainly white caries, exude 
“extracellular enzymes” and acids that putrefy “lignin and cellulose.” These are 
“long-chain organic compounds” (carbon-based) and similar to various “organic 
pollutants.” Fungi are very effective in case of “polycyclic aromatic hydrocarbons” 
(IPA), complex “organic compounds” with fused and highly “stable polycyclic 
aromatic ring” (Batista-García et  al. 2017), and also in “marine environments” 
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(Passarini et al. 2011). The enzymes taking part in ligninolytic degradation include 
“lignin peroxidase,” “versatile peroxidase,” “peroxidase,” “manganese lipase,” “lac-
case,” and sometimes “intracellular enzymes,” especially “cytochrome P450” 
(Deshmukh et al. 2016; Pozdnyakova 2012).

Other toxins that fungi can degrade into harmless compounds include petroleum- 
derived fuels (Young et  al. 2015), “phenols in wastewater” (Batista-García et  al. 
2017), and “polychlorinated biphenyls” (PCB) in soils “contaminated with Pleurotus 
ostreatus” (Stella et al. 2017).

Table 13.2 Sorption potential of certain microorganisms to remove heavy metals

Microorganism Type Metal Reference

Algae Ascophyllum nodosum Pb, NiPb, 
Cu, Cd, Zn

Holan and Volesky (1994); 
Romera et al. (2007)

Chlorella pyrenoidosa U Singhal et al. (2004)
Cladophora fascicularis Pb Deng et al. (2007)
Fucus vesiculosus CrPb, Cd Holan and Volesky (1994); 

Singhal et al. (2004); 
Murphy et al. (2008)

Hydrodictyon, Oedogonium, and 
Rhizoclonium

V, As Saunders et al. (2012)

Spirogyra and Cladophora Pb, Cu Lee and Chang (2011)
Spirogyra and Spirulina Cr, Cu, Fe, 

Mn, Zn
Mane and Bhosle (2012)

Bacteria Bacillus cereus Cr Kanmani et al. (2012)
Burkholderia Cd, Pb Jiang et al. (2008)
Kocuria flava Cu Achal et al. (2011)
Pseudomonas veronii Cd, Zn, Cu Murphy et al. (2008)
Sporosarcina ginsengisoli As Singhal et al. (2004)
Stenotrophomonas Au Song et al. (2008)

Fungi Agaricus bisporus Cd, Zn Nagy et al. (2014)
Aspergillus fumigatus Pb Ramasamy et al. (2011)
Aspergillus versicolor Cr, Ni, Cu Tastan et al. (2010)
Aspergillus, Mucor, Penicillium, 
and Rhizopus

Cd, Cu, Fe Fulekar et al. (2012)

Aspergillus niger, Aspergillus 
foetidus, and Penicillium 
simplicissimum

Ni, Co, Mo, 
V, Mn, Fe, 
W, Zn

Anahid et al. (2011)

Ganoderma lucidum and 
Penicillium

Ar Loukidou et al. (2003)

Penicillium canescens Cr Say et al. (2003)
Yeasts Candida tropicalis Cd, Cr, Cu, 

Ni, Zn
Mattuschka et al. (1993)

Candida utilis Cd Kujan et al. (2006)
Pichia guilliermondii Cu Mattuschka et al. (1993)
Saccharomyces cerevisiae Cr, Ni, Cu, 

Zn
Machado et al. (2010)

Streptomyces longwoodensis Pb Friss and Myers-Keith 
(1986)
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13.4.1  Degradation of Pesticides

“Pesticide contamination can be long term and have a significant impact on the 
decomposition processes and, therefore, in the nutrient cycle” (Magan et al. 2010; 
Mushtaq et al. 2018) and its “degradation can be expensive and difficult (Bhat et al. 
2018a). The most widely used to facilitate the “degradation of pesticides” are white 
caries fungi and ligninolytic extracellular enzymes (laccase and manganese peroxi-
dase). Examples include the “insecticide endosulfan” (Rivero et al. 2012), “imaza-
lil,” “thiophanate-methyl,” “ortho-phenylphenol,” “diphenylamine,” “chlorpyrifos” 
(Karas et al. 2011), and “atrazine” wastewater (Chan-Cupul et al. 2016).

13.4.2  Degradation of Toxic Chemical Dyes

Dyes are used in several “industrial sectors,” such as “paper printing” and “fabrics.” 
Most of them are recalcitrant to breakdown and, in some cases, like some “carcino-
genic or toxic azo dyes” (Bhattacharya et al. 2011). The mechanism by which “fungi 
degrade” these “dyes” is their “lignolytic,” particularly “laccase enzymes,” so that 
white fungi are more commonly used.

Mycoremediation has demonstrated economical and effective remedy dye tech-
nology such as malachite green, nigrosin, and basic fuchsine with “Aspergillus 
niger and Phanerochaete chrysosporium” (Rani et al. 2014); “Congo red,” a recal-
citrant carcinogenic dye for biodegradation processes (Bhattacharya et al. 2011); 
and direct blue 14 (using Pleurotus) (Singh et al. 2013).

13.5  Advantages of Mycoremediation

Fungi, with the help of their “non-specific enzymes,” can degrade various kinds of 
“harmful pollutants.” They are used as follows:

• “Pharmaceuticals and fragrances” that are normally “recalcitrant” to the “deg-
radation” of bacteria, such as “paracetamol,” whose “decomposition products 
are toxic.”

• Traditional “water treatment,” using “Mucor hiemalis” and “phenols and pigments” 
from the “wastewater” of the “wine distillery.”

Besides, “mycoremediation” is a cost-effective technique for “removal of hazard-
ous substances” form any “pollutant affected” environs. Because of this potential, it 
can be a viable tool for “small-scale industries” and will act as “microfiltration of 
domestic wastewater.”
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13.5.1  Synergy with Phytoremediation

Phytoremediation is a “plant-based technology” to decontaminate polluted environs 
(Bhat et  al. 2018b). Most plants can form a “symbiosis association with fungi,” 
which is beneficial to the organisms involved in this kind of interaction, and this 
relationship is called “mycorrhiza.” “Mycorrhizal fungi,” in particular “arbuscular 
mycorrhizal fungi” (AMF), can appreciably improve the “power of remediation” in 
some plants (Khanday et al. 2016; Bhat et al. 2017a). This is mainly because the 
“stress experienced by plants” due to contaminants is significantly reduced in the 
presence of AMF, so that they can grow and produce more biomass (Rabie 2005). 
Fungi “interactions also provide more nutrition (particularly phosphorus) and pro-
motes the general health of the rapidly expanding mycelium plant can also greatly 
extend the area of influence of the rhizosphere (hifósfera), which provides access to 
more nutrients and pollutants” (Sofi et al. 2017) and also help in exploring bacteria 
community for degradation of harmful pollutants (Rabie 2005; Bhatti et al. 2017). 
This kind of relationship has been proved to be useful for remediation of lead pol-
lutants. For instance,  Rhizophagus intraradices and Robinia pseudoacacia  are 
involved in decontamination of lead from the soils contaminated with lead toxicity.  
(Yang et al. 2016). Furthermore Rhizophagus intraradices with Glomus have versi-
form incoulado in vetiver for lead removal (Bahraminia et  al. 2016), AMF and 
Calendula officinalis in soil “contaminated with cadmium and lead” (Tabrizi et al. 
2015; Singh et al. 2018), and it was generally effective to increase the capacity of 
bioremediation plants for metals (Yang et al. 2015; Li et al. 2013), fuel oil (Xun 
et  al. 2014; Hernández-Ortega et  al. 2012), and IPA (Rabie 2005). In wetlands, 
“AMF greatly promotes biodegradation of organic pollutants such as benzene, 
methyl tert-butyl ether and underground ammonia when inoculated into Phragmites 
australis” (Fester 2013).

13.6  Mechanisms of Bioremediation

Bioremediation can be divided into two categories: “biosorption and bioaccumula-
tion” as depicted in Fig. 13.1. “Biosorption is a rapid and reversible passive adsorp-
tion mechanism” (Gadd and White 1993; Ahalya et al. 2003). Metals are retained by 
the “physical-chemical interaction (ion exchange, adsorption, complexation, 
precipitation and crystallization) between the metal and the functional groups 
present on the cell surface” (Gadd and White 1993; Ahalya et al. 2003; Volesky 
2004; Gadd 2009; Fosso-Kankeu and Mulaba-Bafubiandi 2014). Numerous factors 
can manipulate “the biosorption of metals, such as pH, ionic strength, biomass con-
centration, temperature, particle size and the presence of other ions in the solution” 
(Volesky 2004). “Live and dead biomass can be produced for biosorption because it 
is independent of cellular metabolism” (Gadd and White 1993; Ahalya et al. 2003). 
On the other hand, “bioaccumulation includes intra and extracellular processes in 
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which passive absorption plays a limited and not very well defined role” (Gadd and 
White 1993). Therefore, an ample mass of living organism are produced by way of 
 bioaccumulation.

13.7  Bioremediation Potential of Fungi

Fungi have been shown to play an important role in the “bioremediation of a variety 
of contaminants such as POPs, textile dyes, petroleum hydrocarbons, effluent from 
pulp and paper for leather tanning, PAHs, pesticides, PPCP” (Table  13.3). 
“Filamentous fungi such as Aspergillus, Curvularia, Acrimonium and Pythium have 
been studied for their ability to tolerate metal” (Akhtar et  al. 2013). It has been 
reported as “members of the Basidiomycota, such as T. versicolor and black rot 
Pleurotus ostreatus, to degrade PAH in solid-state fermentation (SSF) models dur-
ing growth in agri-food waste, such as orange peel” (Rosales et  al. 2013). 
“Bioremediation / bleaching of colored effluents from the sugar sector, textile dye, 
bleached kraft paste plant, effluent from tanning has been reported in the case of 
fungi belonging to various groups, including Aspergillus, Penicillium and alkaline 
rot fungi, which indicates a different preference of the substrate of these mush-
rooms” (Jebapriya and Gnanadoss 2013; Huang et  al. 2014; Reya et  al. 2013); 
“decaffeinated coffee pulp may contain mushrooms in controlled conditions with 
additional nutrients for applications in the preparation of feed or for the production 
of bioethanol, as discussed in the case of fungi such as Aspergillus restrictus, 

Microorganisms

Microalgae, bacteria, fungi, yeast

Biosportion mechanism Bioaccumulation mechanism

Passive processes Active processes

Dead and living biomass Living biomass

Fig. 13.1 “Microorganisms employed in the bioremediation and processes/mechanisms involved 
in the case of dead and living biomass” (Gadd and White 1993)
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Table 13.3 Overview of the bioremediation potential of fungi

Compound Fungi References

POPs
Polychlorinated 
biphenyls 

Doratomyces nanus, D. purpureofuscus 
D. verrucisporus, Myceliophthora thermophila, 
Phoma eupyrena, and Thermoascus crustaceus

Mouhamadou et al. 
(2013)

Aspergillus niger Reya et al. (2013)
Polychlorinated 
dibenzofurans 

White rot fungi Wu et al. (2013)
Phanerochaete sordida Turlo (2014)

Phenylurea 
herbicide diuron 

Mortierella Ellegaard-Jensen et al. 
(2013)

Textile dye 
decolorization 

Aspergillus niger, A. foetidus, T. viride, 
A. sojae, Geotrichum candidum, Penicillium 
sp., Pycnoporus cinnabarinus, Trichoderma sp. 

Jebapriya and Gnanadoss 
(2013)

White-rot fungi, Bjerkandera adusta, Ceriporia 
metamorphosa, Ganoderma sp. 

Ma et al. (2014)

Petroleum products
Crude oil A. niger, Rhizopus sp., Candida sp., Penicillium 

sp., Mucor sp. 
Damisa et al. (2013)

Gasoline Exophiala xenobiotica Isola et al. (2013)
Bleached Kraft 
pulp mill effluent 

Rhizopus oryzae and Pleurotus sajor-caju Duarte et al. (2013)

Effluent from 
leather tanning 

Aspergillus flavus, Aspergillus sp., A. niger, and 
Aspergillus jegita

Bennett et al. (2013); 
Reya et al. (2013)

PAH
Diphenyl ether White-rot fungi, Pleurotus ostreatus, Trametes 

versicolor
Rosales et al. (2013); Wu 
et al. (2013)

Anthracene Armillaria sp. Hadibarata et al. (2013)
Naphthalene White-rot fungi, Pleurotus eryngii Hadibarata et al. (2013)
PPCP
Caffeine Chrysosporium keratinophilum, Gliocladium 

roseum, Fusarium solani, A. restrictus, 
Penicillium, and Stemphylium

Nayak et al. (2013)

Citalopram, 
fluoxetine, 
sulfamethoxazole

Bjerkandera sp. R1, Bjerkandera adusta, and 
Phanerochaete chrysosporium

Rodarte-Morales et al. 
(2011)

Fungicide
Metalaxyl and 
Folpet 

Gongronella sp. and R. stolonifer Martins et al. (2013)

Pesticide
Chlorinated 
hydrocarbons; 
heptachlor 

P. ostreatus Purnomo et al. (2013)

Chlorpyrifos Aspergillus terreus Silambarasan and 
Abraham (2013)

Heavy metals Aspergillus, Curvularia, Acrimonium, Pythyme, 
and Aspergillus flavus

Akhtar et al. (2013)
Kurniati et al. (2014)
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Chrysosporium keratinophilum, Fusarium solani, Gliocladium roseum, Penicillium 
and Stemphylium” (Nayak et al. 2013). “Bioremediation in the presence of fungi 
A. niger and P. chrysosporium exhibited substantial removal of oil hydrocarbons 
from contaminated soil in short time gasoline and diesel short incubation, as indi-
cated by improved removal of total organic carbon” (Maruthi et  al. 2013). The 
“elimination of chlorpyrifos and its metabolite 3, 5, 6-trichloro-2-pyridinol (TCP) 
for the fungal soil strain A. niger JAS1 contaminated even in the absence additional 
nutrient with the complete  elimination of both metabolites” (Silambarasan and 
Abraham 2013). “TCP degradation from the degrading chlorpyrifos strain was a 
significant finding considering the antimicrobial nature and the catabolite repres-
sion property exhibited by TCP.”

13.8  Fungal Enzymes in Bioremediation

Fungi have healthy morphology and metabolic capacity that can provide sustainable 
alternative for the remediation of contaminated sites. Fungi are also known to grow 
in harsh condition, thus can play significant role in the degradation of recalcitrant 
pollutants. Different enzymes from fungi like amylases, cellulases, xylanases, 
lipases, proteases, peroxidases, laccases, and catalases have a great scientific, indus-
trial importance and also have significant capacity of depollution and bioremedia-
tion. Fungus is the only organism that breaks down wood by developing white 
threadlike structure called mycelium that release enzymes necessary for the decom-
position of lignin and cellulose. Organic wastes from food industries as well as resi-
dential areas are rich in polymeric substances such as cellulose, lipid, fats, and 
protein and are hydrolyzed by different enzymes. Organic waste (vegetables, food, 
kitchen waste, algae) can be used for the production of industrially valuable prod-
ucts like biogas, biofuel, and fatty acids (Khardenavis et al. 2013). Enzymes from 
fungus can also be utilized for efficient treatment of municipal waste (Marco et al. 
2013). Kitchen waste after pretreatment can serve efficient feedstock for solid-state 
fermentation of cellulase enzymes produced by Aspergillus niger (Bansal et  al. 
2012). Besides, locally isolated strain of Aspergillus fumigatus produces cellulase 
enzyme that can degrade macroalgae and its valorization for bioethanol production 
(Ben Yahmed et al. 2016, 2018). Pretreatment of waste is beneficial in many ways 
such as biological pretreatment of green algae Ulva sp. Using SSF of Aspergillus 
fumigatus was also exploited for the bioremediation of green tides and the biogas 
production (Ben Yahmed et al. 2017). Moreover, their effect on the enhancement of 
saccharification efficiency of biomasses was studied by applying consortium of 
fungi (Armillaria gemina and Pholiota adiposa) for the hydrolysis of rice straw and 
willow biomasses (Dhiman et al. 2015). Various important enzymes are produced 
by microorganisms for the degradation of the waste, but among them ligninolytic 
enzymes released by white-rot fungi degrade not only lignocellulosic substrate but 
also compounds including dyes (Novotný et al. 2004).
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Extracellular enzymes only include peroxidases and laccases (Janusz et al. 2013). 
Persistent organic pollutants cannot be removed easily, but extracellular enzymes (lac-
cases and some fungal class II peroxidases) produced by white-rot basidiomycetes 
can degrade these toxic pollutants. Toxic pollutants are released into the environment 
at rapid rate without any efficient treatment, but enzymes produced from the fungi 
have shown great potential (efficiency and selectivity) in degrading toxic pollutant in 
economical and eco-friendly manner (Viswanath et  al. 2014). White-rot fungi are 
responsible for transformation of persistent pollutants like pesticide by releasing lig-
ninolytic enzyme and promote microbial activity by providing nutrients. Table 13.4 
presented various applications of fungal enzymes in bioremediation field. 
Currently, a lot of researches are interested in developing modified enzymes 
through recombinant expression of genes from white-rot fungi and protein engineer-
ing techniques for environment-friendly degradation of different toxic pollutants 
(Deshmukh et al. 2016; Janusz et al. 2013).

Table 13.4 Fungal enzymes and its various applications in bioremediation

Enzymes “Bioremediation applications” “Fungi-producing enzymes” References

Laccases Decolorization of dyes
Decolorization of several 
synthetic dyes such as Azure B 
and Brilliant Blue R in low 
nitrogen medium
Partial decolorization of two 
azo dyes and complete 
decolorization of two 
triphenylmethane dyes 
(bromophenol blue and 
malachite green)
Degradation of the dye Navy 
blue HER
Degradation of triarylmethane, 
indigoid, azo, and athraquinonic 
dyes used in dyeing textiles
Degradation of 92% in the Azo 
Black Reactive 5 dye
Decolorization of effluent 
containing textile indigo dye as 
well as 23 industrial dyes
Degradation of xenobiotics
Oxidation of alkenes
Immobilization of soil 
pollutants by coupling to soil 
humic substances
Pulp and paper industry

Flavodon flavus
Pycnoporus sanguineus
Trichosporon beigelii 
NCIM-3326
Trametes hirsuta
P. chrysosporium
P.chrysosporium and 
Curvularia lunata
Trametes hirsuta
ND

Soares et al. 
(2001)
Pointing and 
Vrijmoed (2000)
Saratale et al. 
(2009)
Kaushik (2015)
Enayatizamir 
et al. (2011)
Rita de Cássia 
et al. (2013)

(continued)
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Enzymes “Bioremediation applications” “Fungi-producing enzymes” References

Decolorization of flexographic 
inks in presence of synthetic 
and artificial mediators in 
recycled paper industry
Decolorization of the alkaline 
effluents of the pulp and paper 
industry
Dechlorination and removal of 
chorophenols and chlorolignins 
from bleach effluents
Reduction of the kappa number 
of pulp and improvement of the 
papermaking properties of pulp 
Effluent treatment
Degradation of bisphenol A
Detoxification of agricultural 
byproducts including olive mill 
wastes or coffee pulp
Decolorization of the effluent 
from a Kraft paper mill bleach 
plant 
Degradation of xenoestrogen 
nonylphenol

Ascomycete 
(Myceliophthora 
thermophila), 
Basdiomycetes (Trametes 
villosa, Coriolopsis rigida, 
Pycnoporus coccineus) 
Coriolopsis gallica
NDa

ND
Fusarium incarnatum
Lentinula edodes
Trametes versicolor B7
Clavariopsis aquatica

Niku-Paavola 
(2000)
Ahn et al. (2002)
Fillat et al. (2012)
Calvo et al. 
(1998)
Milstein et al. 
(1988)
Bajpai (1999); 
Wong et al. 
(2000)
Chhaya and 
Gupte (2013)
D’Annibale et al. 
(2000)
Bajpai et al. 
(1993)
Junghanns et al. 
(2005)

Peroxidases Degradation of toxic 
compounds 
Decolorization of azo and 
phthalocyanine dye 
Oxidation of recalcitrant dyes 
(e.g., Azure B), phenolic 
substrate 2,6-dimethoxyphenol 
and non-phenolic aromatic 
compounds (Reactive Black B)
Delignification

White-rot and 
Basidiomycetes fungi 
Bjerkandera adusta
Mycetinis scorodonius, 
Auricularia auricula-judae, 
Exidia glandulosa, Mycena 
epipterygia
Basidiomycetes fungi 
(Pleurotus ostreatus sensu 
Cooke, Coriolus versicolor 
(L.) Quel., Tyromyces 
albidus (Schaeff.) Donk, and 
Trametes gallica

Deshmukh et al. 
(2016)
Baratto et al. 
(2015)
Liers et al. (2010)
Hong et al. (2011)

Catalases Bioremediation of metal 
contaminated sites
Bioremediation of oil 
contaminated soil 

Aspergillus foetidus
ND

Chakraborty et al. 
(2013)
Lin et al. (2009)

aNot determined

Table 13.4 (continued)
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13.9  Conclusions

A huge quantity of effluents are produced with the urbanization, industrial develop-
ment, and population explosion mainly in developing countries. Effluent produced 
is rich in different types of pollutant which are persistent and in small concentration 
can pose serious risk to the environment. Conventional techniques for the purifica-
tion of contaminated water and waste management are not efficient in removing 
different toxic pollutants; thus focus is shifting toward eco-friendly techniques like 
mycoremediation. Microorganism needs to be exploited widely for the remediation 
of toxic pollutants from the contaminated water and degradation of the municipal, 
agriculture, and industrial waste. Microorganism has great potential to remove pol-
lutant from effluent by bioaccumulation, biosorption, or degradation by the release 
of different enzymes. Microorganism like fungi is efficient in degrading the organic 
waste by releasing various enzymes like cellulases, oxidases, phosphatases, chitin-
ases, and proteases that convert the waste into valuable product. Thus, enzymes 
released from fungi should be widely utilized for degradation of pollutants in a cost-
effective and environment-friendly manner.
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Chapter 14
Microbial Biofilm Cell Systems 
for Remediation of Wastewaters

Muhammad Faisal Siddiqui, Lakhveer Singh, Farhana Maqbool, 
Ziaur Rahman, Abdul Rehman, Fazal Adnan, Sadia Qayyum, 
and Ajmal Khan

14.1  Introduction

The increasing pollution in water is of great alarm for the public about recalcitrant 
hazardous compounds from different sources. It is important to know that environ-
ment is contaminated via different pollutants like heavy metals, pesticides, phenolic 
compounds, dyes, nutrients and organic compounds which pose serious environ-
mental issues (Mohamed et al. 2016; Rodgers-Vieira et al. 2015; Smułek et al. 2015; 
Bhat et al. 2017).

The majority of wastewater comes from different industries, and these wastewa-
ters are deleterious and pose serious environmental and human health issues. Thus, 
it is of prime importance to control these pollutants via effective treatment technolo-
gies which must be efficient and cheap. Treated water must be recycled back to 
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the  same process or reused. Various methods have been tested to treat industrial 
wastewaters such as chemical, biological and mechanical treatment methods. 
Biotechnological methods that use microbes for degradation of pollutants in waste-
water have been largely used (Zhang et al. 2018). These biological treatment strate-
gies are cheap and in these treatment processes no toxic chemical is added. Also, 
these methods have the ability to completely degrade pollutants (Sharma 2012). 
However, using microbes for the removal of pollutants from wastewater, there is 
also difficulty of separating microbes after treatment of wastewater (Tam et al. 2010).

Treatments of pollutant control methods have mainly two limitations: the micro-
bial cells are difficult to separate after treatment process; their reuse and long-term 
stability. Thus, immobilized microbial cells via physical or chemical ways can over-
come these limitations (Hartmeier 2012; Yiğitoğlu and Temoçin 2010). Immobilized 
microbial cells are gaining huge significance due to their numerous benefits com-
pared to free cell methods for the treatment of wastewater. Immobilized microbial 
cells provide high mechanical strength, high mass, reuse, stability and resistance to 
toxic pollutants (Kadimpati et al. 2013).

Microbial cells can be attached or entrapped on/in different support materials. 
These support materials can be organic or inorganic or water-insoluble materials. 
Different immobilization cell systems and support materials were used for various 
wastewaters (Kadimpati et al. 2013). Whole cell immobilization for wastewater pro-
vides simple separation from treated water. Also, whole cell microbial immobiliza-
tion makes available long-term stability of microbial stability of enzymes and 
activity of enzymes (Stolarzewicz et al. 2011).

In this chapter, we have comprehensively discussed the role of immobilized 
microbial cells and focused on immobilization methods and support materials for 
immobilization of microbial cells. Also, the role of microbial immobilized cell sys-
tems in the bioremediation of contaminated wastewater is discussed. Lastly, conclu-
sions and future prospects in biofilm-based bioremediation are highlighted.

14.2  Microbial Immobilization

Microbial immobilization is the attachment or entrapment of microbial cells using 
support materials. Generally immobilization is the imprisonment or restriction of 
the movement of a cell (Zhang et al. 2004). Usually immobilization can be used for 
plant cells, animal cells, microbial cells or enzymes. In recent studies, whole micro-
bial cells have been immobilized on support materials for the control of environ-
mental pollutants. Immobilized microbial cells are of three types which consist of 
growing, dead and living. Therefore, it is important to select the suitable type of 
immobilized cells for a particular application (Rahman et al. 2006).

Microbial immobilized cells are more stable compared to immobilized enzymes. 
In this system, it is not necessary to extract enzymes from microbial cells. When 
using enzymes, they are prone to less stability in harsh conditions; moreover, 
enzyme systems’ unnecessary reactions take place (Stolarzewicz et al. 2011). It is 
important to know that the area of whole cell immobilization is different from health 
sciences to food industries. Immobilized microbes on support materials can be 
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reused in fresh bioprocess reactions for treatment of wastewater or production of a 
variety of products. Reuse of immobilized cells can reduce cost of the production or 
treatment process (Mrudula and Shyam 2012; Ohta et al. 1994).

14.3  Support Materials for Immobilization

For microbial cell immobilization, it is important to select a suitable support mate-
rial. Support materials must meet the following norms (Zacheus et al. 2000):

 (a) Immobilization support materials must have long shelf life.
 (b) Support materials must be non-biodegradable and must be nonhazardous.
 (c) Materials must be cheap and easily available.
 (d) These support materials must be easily separated from cells.
 (e) Support materials must have high chemical and mechanical stability.
 (f) These materials can be sterilizable.
 (g) Materials must be suitable for regeneration.

It is vital to know that the choice of support material for anoxic biomass immobili-
zation can greatly affect the efficacy of a bioreactor or fermenter. Microbial cells 
attached on the surface depend on the support material which directly affects the 
number of microbes attached to it. Support materials are mainly classified in two 
main sets: organic and inorganic support materials (Lu and Toy 2009). Organic sup-
port materials are used such as dextran, celluloses, and agarose, while inorganic 
materials are porous glass, activated charcoal, clay, etc. (Lu and Toy 2009).

Organic support materials are available in large variety compared to inorganic 
support materials. Also, organic immobilization materials can be acquired with 
desired porosity. These materials are sensitive to pH, while inorganic support mate-
rials are resistant to chemicals, pH and microbial degradation. These support mate-
rials are also more feasible in scale-up process (Ispas et al. 2009; Magner 2013).

Also, organic support materials can be classified into synthetic and natural poly-
mers. Different synthetic polymers such as polyvinyl, resins, acrylamide and poly-
urethane are also employed for microbial immobilization. Few examples of organic 
natural materials are agar, agarose and carrageenan (Hartmann 2005). In most of the 
studies, alginate polymers were used due to various benefits like they are 
environment- friendly and nontoxic to humans. Also, they are cheap and obtainable 
in huge amount. Moreover, immobilization in alginate also avoids changes in physi-
ological condition (Buque et al. 2002).

14.4  Immobilization Methods

Recently, there is more focus on using immobilization methods for bioremediation of 
wastewater. Different types of immobilization methods have been employed for 
immobilization. Among these methods most important are encapsulation, adsorption, 
binding on surface and entrapment (Kourkoutas et  al. 2004). This method is also 
elaborated briefly in Fig. 14.1.
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14.4.1  Adsorption

This method is simple and quick. This method is reversible. Adsorption is the most 
commonly used method for bioremediation of wastewater via immobilization tech-
nique. Adsorption can be defined as immobilization of enzymes or microbes via 
their physical interaction with surface of support materials. There is no need for 
addition of chemical additives. Adsorption method is cheap and environment- 
friendly. Adsorption completely is achieved via formation of weak bonds (hydro-
gen, ionic and van der waals forces, etc.). Also, these interactions are not strong and 
unstable; hence there is possibility of leakage in environment (Hou et al. 2014).

14.4.2  Covalent Binding

This method of immobilization is reversible due to covalent bond formation with 
the support material and microbial cell when a cross-linking material is present. 
This method is mostly used for immobilization of enzymes. In rare cases covalent 
binding method is applied owing to the toxicity which causes cell death. Covalent 
binding method is different from electrostatic binding (Groboillot et al. 1994).

14.4.3  Entrapment in Porous Matrix

Entrapment of microbial cells is widely used for pollutants treatment. Once microbes 
are entrapped, they can move inside the entrapped support material. Depending on 
the support materials, it can reduce the leakage of materials across the support mate-
rial. Also, it can reduce the passage of nutrients. It is found that those microbes 
which stay near the surface have high activity and metabolic process, while other 
microbes have less activity (Bleve et al. 2011). There are numerous advantages of 
entrapment method such as it is environmentally friendly, cheap and nontoxic 
(Wojcieszyńska et al. 2012). This method helps in protection of microbes from the 
harsh environmental conditions. It is vital to understand that pore sizes of the sup-
port entrapment material must be smaller than the microbes. If these support materi-
als have large pore size, there is possibility of leakage (Bleve et al. 2011).

a)Adsorption b) Covalent Binding c)Entrapment d) Encapsulation

Fig. 14.1 Different immobilization methods (Bayat et al. 2015)
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14.4.4  Encapsulation

This method is quite similar to the method of entrapment. It is irreversible method 
of immobilization of microbial cells. In this method particles are isolated from 
external environment. The major benefit of this method is the protection of cells 
from toxic or extreme conditions. The protective barrier around the microorganism 
allows the passage of nutrients. This technique is cheap and fast. In addition to its 
benefits, there are also some limitations which hinder the large-scale application of 
this technique. Among the major limitations is injury can occur to the encapsulation 
material. Due to the limitations discussed here, this method is not widely used for 
bioremediation of wastewater. Pore size is also important, and if immobilization 
support material leaks, it can decrease the loading, and hence, it affects the effi-
ciency of bioremediation process (Klein et al. 2012).

14.5  Role of Microbial Biofilm Cell Systems 
in Bioremediation of Wastewater

The increasing water pollution poses serious environmental concerns. It is impor-
tant to find new ways to control water pollution. Recently, microbial biofilm-based 
strategies for the control of water pollution are increasing to cater this issue. In this 
section of the chapter, we will focus on the bioremediation of different wastewaters 
via immobilized microbial cells.

14.5.1  Bioremediation of Heavy Metals

Most of the industrial wastewaters contain hazardous metals such as copper, lead, 
cadmium, etc. (Jencarova and Luptakova 2017). These wastewaters produce free 
radicals which can cause serious environmental hazards and concerns (Gumpu et al. 
2015). Hence, it is of prime important to treat heavy metals containing wastewater. 
Several methods have been tested for the treatment of heavy metal wastewater, but 
most of these methods are expensive and have various limitations. In few methods, 
several adsorbents are used but mostly are not efficient. Also their efficiency is usu-
ally augmented by increasing the surface area of the adsorbents (Ahmed et al. 2015). 
In one of the study reported, Penicillium citrinum was entrapped sodium alginate 
matrix. Sodium alginate beads containing Penicillium citrinum were produced, and 
beads were used for bioremediation of Cu(II) removal. It was observed that immo-
bilized beads containing microbe remove Cu(II) up to 84.5%. However, for free 
cells it was 82.4%. From these results, it was exhibited that immobilized microbial 
cells are more efficient in removal of tested metal. Table 14.1 also demonstrates 
other methods for bioremediation of heavy metals using immobilized microbes. 
In another study, under batch conditions, 95% metal removal was achieved using 
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sulphate- reducing bacteria in sodium alginate. A continuous removal strategy was 
also employed in which 99% of Cu(II) and 95.8% of Zn(II) were achieved (Kiran 
et al. 2018).

14.5.2  Bioremediation of Refractory Organic Wastewater

Bioremediation of phenolic- or aniline-based compounds is difficult to achieve 
(Luan et al. 2017). Most of the refractory compounds such as aniline or phenolic 
compounds are not degraded efficiently through present conventional treatment 
methods (Cesaro et al. 2013). It is owing to the long time needed for the microbial 
cells to grow and stay in the reaction process. However, immobilized microbial cells 
provide higher mass of cells and also microbial cells are more stable. In one of the 
study, Bacillus sp. SAS19 for phenol degradation was immobilized on porous car-
bonaceous gels. In this study it was exhibited that immobilized bacteria were more 
efficient in degradation of phenolics. It was found that immobilized bacteria can 
degrade phenol (1600 mg/L) up to 100% in 24 h (Ke et al. 2018). Lu and Toy (2009) 
also reported application of Phanerochaete chrysosporium. This fungus was immo-

Table 14.1 Role of immobilized microbial cells in bioremediation of different pollutants

Pollutants Microbes Support materials References

Phenol Bacillus thuringiensis 
J20

Sodium alginate Ereqat et al. (2018)

Phenol Bacillus cells Polyvinyl alcohol-sodium 
alginate

Ismail and Khudhair 
(2015)

Cu, Ni Chlorella vulgaris Alginate Mehta and Gaur 
(2001)

Uranium Chlamydomonas 
reinhardtii

Cellulose beads Erkaya et al. (2014)

As(III), as(V) Corynebacterium 
glutamicum

Neem leaves Podder and Majumder 
(2015)

Cr(VI) Bacillus species Biomass of tea Gupta and 
Balomajumder (2015)

Nitrite Nitrite-oxidizing 
bacteria

Chitosan Lertsutthiwong et al. 
(2013)

NH4-N Nitrifier cells Polyvinyl alcohol and 
sodium alginate

Wang et al. (2016)

Phosphorus and 
nitrogen

Scenedesmus 
intermedius

Alginate Jimenez-Perez et al. 
(2004)

Nitrate Chlorella vulgaris Chitosan nanofibres Eroglu et al. (2012)
Reactive dyes Pseudomonas putida 

and Bacillus
Licheniformis

Sodium alginate and 
polyacrylamide
Gel beads

Suganya and Revathi 
(2016)

Methylene blue Bacillus subtilis Calcium alginate bead Upendar et al. (2016)
Polyazo dye Bacillus firmus Tubular polymeric gel Ogugbue et al. (2012)
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bilized on wood chips. Immobilized fungus was applied for biodegradation of phe-
nolic compounds from coking wastewater. Immobilized fungus exhibited 87.05% 
degradation of phenol which was higher compared to non-attached fungus. The 
optimal removal of phenol was 84% in 3 days.

14.5.3  Bioremediation of Industrial Dyes

Different industries utilize dyes for different purposes including textile, leather, 
pharmaceutical, etc. After these processes, a huge amount of wastewater containing 
these dyes is discharged into the water bodies which pose different environmental 
concerns. Also, these dyes cause mutation and deleterious health concerns. Thus, it 
is important to treat these dyes containing wastewater. Many studies are performed 
to cater this issue and control dye wastewater before its discharge into the water 
streams. Different microorganisms are tested for dye treatment under different con-
ditions in batch and continuous mode. Most common microbes are funguses which 
are more efficient in removal and degradation of dyes from wastewater (Couto 
2009). In one of the study, Brevibacillus parabrevis was immobilized on coconut 
shell biochar. It was exhibited that under optimum conditions and with inoculum of 
3 ml, removal of 95.7% of Congo red dye was achieved after 6 days (Talha et al. 
2018). Hameed and Ismail (2018) found that using immobilized mix cells, reactive 
red dye (10 mg/L) was completely decolourized within 30 h under anaerobic condi-
tions. For other studies, Table 14.1 shows different methods of bioremediation of 
dye wastewater.

14.5.4  Bioremediation of Nitrogen and Phosphorus

Nutrients are vital for the growth of microorganisms, but their increase in water 
bodies causes eutrophication (Tang et al. 2017).

Hence, it is necessary to treat water containing excessive nutrients before dis-
charging it into rivers and lakes. Various techniques have been used for the control 
of nutrients (e.g. nitrogen and phosphorus). These conventional processes are 
adsorption, membrane processes, chemical precipitation, biological processes, etc. 
(Kumar et al. 2018). Due to the tremendous benefits of immobilized microbial cell 
technology, various studies have utilized immobilized cells for the bioremediation 
of nitrogen and phosphorus removal from wastewater. Shi et al. (2007) tested two 
green microalgae (Chlorella vulgaris and Scenedesmus rubescens) for phosphorus 
and nitrogen removal. Microalgae were immobilized via twin-layer system. It was 
exhibited that both algae tested removed nitrate from wastewater. When they have 
used secondary wastewater, both algae removed nitrate and phosphate to less than 
10% in 9 days. Table 14.1 illustrates different immobilized microbial cells to control 
nutrients from wastewater.
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14.6  Conclusions

It is exhibited from the studies that immobilized microbial cells have great potential 
for bioremediation of wastewater. In many studies it was found that immobilized 
cells are efficient compared to free cells for bioremediation of polluted water. 
Immobilized microbial cell systems provide numerous benefits compared to free 
cells for treatment of wastewater. In various studies, it was reported that immobi-
lized cells have longer stability, lower cost, and higher degrading ability. Also, 
immobilized cells increase tolerance to harsh conditions which also makes them 
more suitable compared to free cells.

14.7  Future Prospects

Cloning of genes for biosurfactant synthesis and chemotactic ability of Genetically 
Engineered Microbes (GEMs) can further enhance the biodegradative capability of 
modified microbes. Nevertheless, the release and use of GEM in the nature and 
transmission is under much debate and controversial. However, the majority of 
organisms usually have other disabling mutations that will not permit the microbes 
to grow outside a given environment. Reengineering of secreted proteins in biofilm 
matrix is also an area for further development in the field of bioremediation. 
Bioremediation studies to test the effectiveness of biofilm under conditions similar 
to those encountered in natural environment still remain few. Many issues remain 
unclear such as the correlation between biofilm microstructure and biodegradation 
process, long-term behaviour of biofilms exposed to fluctuations in pollutant con-
centrations and the detail of the correlation between soil composition and biofilm 
behaviour. Solutions to these issues will provide a predictive and quantitative model 
for bioremediation using biofilm-based methods, so to improve this large scale of 
application of this environmentally sustainable technology.
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Chapter 15
Pollution Remediation by Way of Using 
Genetically Modified Plants (GMPs)

Fernanda Maria Policarpo Tonelli and Flávia Cristina Policarpo Tonelli

15.1  Introduction: Biotechnology and Phytoremediation

Environmental contamination with some harmful organic and inorganic contaminants 
is a consequence of some human economic activities that generate dangerous wastes 
(e.g., the ones from mine exploitation; petroliferous, fabric, and pharmaceutical indus-
tries; the agricultural use of herbicides) and pose a serious concern. These pollutants 
are hard to eliminate from nature and can cause serious damages to human and other 
forms of life. Among the organic ones, it is possible to highlight chlorinated solvents, 
halogenated hydrocarbons, and nitrogen compounds commonly present in explosives. 
Among the inorganic ones are the heavy metals and other elements such as the radioac-
tive uranium (Jafari et al. 2013; Mendes et al. 2019; Pesantes et al. 2019; Pu et al. 2019; 
Rosculete et al. 2019; Vázquez-Luna and Cuevas-Díaz 2019; Zhang et al. 2019).

Heavy metal pollution is among the most serious environmental problems nowa-
days; once it is capable of bioaccumulating in living systems, is difficult to elimi-
nate from contaminated water and soil, presents toxicity being able to cause 
poisoning and oxidative stress and also presents high carcinogenic potential 
(Alkorta et al. 2004; Ali et al. 2019). It is necessary to develop ways to extract them 
from contaminated environments, and the genetic manipulation of plants to per-
form this task is an elegant solution. In fact plants are more suitable to act in this 
sense once microorganisms can only convert metals into a less toxic form instead 
of removing them from a contaminated environment (Garbisu et al. 2002; Ojuederie 
and Babalola 2017).
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Transgenic plants are the ones that underwent DNA manipulation with the inten-
tion to introduce a new trait to the organism, which does not occur naturally in the 
species. So, by applying methodologies to genetically modify plant DNA, it is pos-
sible to develop transgenic organisms to express or overexpress genes related to 
metal (or other contaminants) uptake/transportation/metabolization and apply these 
genetically modified organisms to perform phytoremediation with efficiency. By 
doing that it becomes possible to remove these contaminants from the environment, 
minimizing the risk they consist in our lives. Heavy metals were the first target of 
genetic manipulation of plants to perform remediation of contaminated soil (Misra 
and Gedamu 1989).

Plants offer some interesting characteristics that make its use advantageous when 
compared to the use of microorganisms for remediation. Working with plants is eas-
ier, especially when it comes to nutrient input due to the fact that as autotrophic sys-
tems they manage to provide their own nutrient sources. It is also an interesting 
feature the fact that plants can be controlled to avoid undesirable spreading, main-
taining in situ remediation and also preventing the dispersion of contaminants. An 
eco-friendly system can be developed avoiding erosion, being suitable to application 
in a broad range of remediation sites, and presenting low costs associated with this 
renewable phytoremediation technology (Suresh and Ravishankar 2004; Abhilash 
et al. 2009; Lee 2013; Wan et al. 2016).

Transgenesis in plants for remediation commonly aims to insert or overexpress 
genes that codify proteins related to the uptake and/or sequestration of pollutants 
(Shukla et al. 2013; Mani and Kumar 2014; Das et al. 2016), for example, binding 
proteins and transporters (Table 15.1).

Among transporters it is interesting to highlight the members of ATP-binding cas-
sette (ABC) family (proteins related to not only plant detoxification but also to 
important ion regulation process) (Martinoia et al. 2002), cation diffusion facilitator 
(CDF) family (e.g., the metal tolerance/transport protein (MTP) involved in metal 
storage) (Ricachenevsky et al. 2013), and metal ion transporters like the ones respon-
sible for cytoplasmic transport of zinc and iron from the family of ZRT/IRT- related 
proteins (ZIP) (Ducic and Polle 2005).

Metals are important pollutants in the environment especially heavy ones, and it 
is common that plants possess genes related to their transportation to the organism’s 
inner part as they consist in essential microelements for these organisms (Williams 
et al. 2000). Metal phytoremediation can be performed through different technolo-
gies such as phytoextraction (removing metals from soils and concentrating them in 
the shoots), phytostabilization (accumulating metals in roots or minimizing their 
mobility by causing their precipitation in rhizosphere), and phytovolatilization 
(Nascimento and Xing 2006).

Plants can be engineered to increase the accumulation of heavy metal in its shoots 
(phytoextraction); Brassica juncea, Nicotiana tabacum, Arabidopsis thaliana, and 
plants from Populus gender have already been modified with this purpose. Cd and Pb 
increased accumulation and tolerance in B. juncea shoots can be achieved by the 
overexpression of the ATP-binding cassette (ABC) family transporter AtATM3 
(Bhuiyan et al. 2011); a transporter from the same family (in transgenic plants, the 
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Table 15.1 Examples of GMP developed to perform phytoremediation

Source of 
transgene

Transgene or 
desired gene 
product

Genetically 
modified plant 
(GMP) species 
generated

Desired characteristic 
presented by the GMP Reference

Arabidopsis 
thaliana

ATM3 Brassica juncea Cd and Pb increased 
accumulation and 
tolerance

Bhuiyan et al. 
(2011)

Saccharomyces 
cerevisiae

YCF1 Populus 
tremula and 
Populus alba

Cd, Zn, and Pb increased 
accumulation

Shim et al. 
(2013)

Psychotria 
gabriellae

IREG1 Arabidopsis 
thaliana

Ni tolerance and 
accumulation increased

Merlot et al. 
(2014)

Pseudomonas sp. copC Arabidopsis 
thaliana

Cu tolerance and 
accumulation increased

Rodríguez- 
Llorente et al. 
(2012)

Arabidopsis 
thaliana

CAX2 and 
CAX4

Nicotiana 
tabacum

Increased biomass when 
grown in the presence of 
heavy metals and higher 
accumulation of Cd, Mn, 
and Zn

Korenkov 
et al. (2007)

Oryza sativa MTP1 Nicotiana 
tabacum

Cd increased accumulation Das et al. 
(2016)

Astragalus 
bisulcatus

SMT A. thaliana and 
B. juncea

Se increased volatilization 
and tolerance

LeDuc et al. 
(2004)

Arabidopsis 
thaliana

IRT1 Arabidopsis 
thaliana

Cd and Zn increased 
accumulation

Connolly et al. 
(2002)

Noccaea 
caerulescens

ZNT1 Arabidopsis 
thaliana

Zn and Cd increased 
accumulation

Lin et al. 
(2016)

Escherichia coli gshI Brassica juncea Cd, Cr, Cu, Pb, and Zn 
increased uptake

Zhu et al. 
(1999a, b)

Allium sativum 
and 
Saccharomyces 
cerevisiae

PCS1 / GSH1 Arabidopsis 
thaliana

Cd and As increased 
accumulation

Guo et al. 
(2008)

Thlaspi 
caerulescens

PCS1 Nicotiana 
glauca

Cd, Zn, and Pb increased 
accumulation

Martinez et al. 
(2006)

Arabidopsis 
thaliana

PCS1 Brassica juncea Cd and As increased 
tolerance

Gasic and 
Korban (2007)

Elsholtzia 
haichowensis

MT1 Nicotiana 
tabacum

Cu increased tolerance and 
accumulation

Xia et al. 
(2012)

Sedum alfredii MT2 Nicotiana 
tabacum

Cu increased tolerance and 
accumulation

Zhang et al. 
(2014)

Brassica 
campestris

MT1 and 
MT2

Arabidopsis 
thaliana

Cd and Cu increased 
tolerance

Lu et al. 
(2015)

Oryza sativa MT2c Arabidopsis 
thaliana

Cu increased tolerance Liu et al. 
(2015)

(continued)
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ABC transporters are commonly localized in the tonoplast, sequestrating metals in the 
vacuolar lumen (Song et  al. 2014), the yeast cadmium factor 1 (YCF1), can be 
expressed in transgenic Populus tremula and Populus alba to increase the shoots’ 
accumulation of Cd and Zn (Shim et al. 2013); A. thaliana can have its shoots’ nickel 
and copper tolerance and accumulation increased by being genetically engineered to 
express, respectively, the metal transporter PgIREG1 (a gene originally expressed, 
e.g., in the hyperaccumulator shrub Psychotria gabriellae) (Merlot et al. 2014) and 
the copper-resistant protein (from Pseudomonas sp.) (Rodríguez-Llorente et  al. 
2012); N. tabacum can be genetically modified to overexpress the rice metal tolerance 
protein OsMTP1 increasing its capacity of Cd accumulation in shoots by high level of 
generation of thiol compounds that can chelate metals sequestrating them into vacu-
oles (Das et al. 2016). The A. thaliana CAX2 and CAX4 (low-affinity Ca2+, heavy 
metal cation/H+ antiporters) when expressed in N. tabacum results in organisms with 

Table 15.1 (continued)

Source of 
transgene

Transgene or 
desired gene 
product

Genetically 
modified plant 
(GMP) species 
generated

Desired characteristic 
presented by the GMP Reference

Bacillus 
megaterium

TnMERI1 Arabidopsis 
thaliana

Cd and Pb increased 
accumulation and 
tolerance

Hsieh et al. 
(2009)

Enterobacter 
cloacae

Onr Nicotiana 
tabacum

TNT and GTN increased 
tolerance

French et al. 
(1999)

Enterobacter 
cloacae

NfsI Nicotiana 
tabacum

TNT increased tolerance Hannink et al. 
(2007)

Arabidopsis 
thaliana

743B4, 73C1 Arabidopsis 
thaliana

TNT increased tolerance Gandia- 
Herrero et al. 
(2008)

Rhodococcus 
rhodochrous

XplA, XplB Arabidopsis 
thaliana

RDX phytoremediation Jackson et al. 
(2007)

Escherichia coli NfsA Arabidopsis 
thaliana

TNT increased tolerance Kurumata 
et al. (2005)

Homo sapiens CYP2E1 Arabidopsis 
thaliana

Capacity to deal with 
residues of TCE

Doty et al. 
(2000)

Homo sapiens CYP1A1, 
CYP2B6, and 
CYP2C19

Oryza sativa Phytoremediation of the 
herbicides atrazine and 
metolachlor

Kawahigashi 
et al. (2006)

Homo sapiens CYP2C9, 
CYP1A1, 
CYP2B6, and 
CYP2C19

Solanum 
tuberosum

Phytoremediation of 
herbicides including 
sulfonylureas

Inui and 
Ohkawa 
(2005)

Pseudomonas sp. Modified 
bacterial atzA 
gene

Medicago 
sativa and 
Nicotiana 
tabacum

Atrazine-enhanced 
metabolism

Wang et al. 
(2005)

Zea mays gstI-6His Nicotiana 
tabacum

Phytoremediation of the 
herbicide alachlor

Karavangeli 
et al. (2005)
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an increased biomass when grown in the  presence of heavy metals and higher 
accumulation of Cd, Mn, and Zn (Korenkov et al. 2007).

N. tabacum and A. thaliana can be genetically modified to perform Hg phytovola-
tilization. Bacterial gene from the reductase merA and organomercurial lyase gene 
merB are interesting tools to achieve this goal. MerA transgenic plants can uptake 
Hg2+ through roots and convert it into Hg0: a less toxic and volatile form. Mer B 
plants can convert the uptaken methylmercury into sulfhydryl-bound Hg2+. And 
transgenic plants expressing both genes are able to convert not only Hg2+ but also 
methylmercury into the volatile form (Rugh et al. 1996, 1998, 2000; Heaton et al. 
1998). The selenocysteine methyltransferase from Astragalus bisulcatus when over-
expressed in A. thaliana and B. juncea leads to an increase in Se volatilization and 
tolerance (LeDuc et al. 2004).

Phytostabilization can be achieved by limiting the uptaken heavy metal transporta-
tion from plant’s roots to the shoots. In transgenic N. tabacum expressing AtHMA4, the 
Cd transport is restricted by apoplastic barrier (Siemianowski et al. 2014); in Manihot 
esculenta the overexpression of the transporters AtZIP1 and AtMTP1 make possible to 
achieve Zn accumulation in the roots with restrict transportation to the shoots (Gaitán-
Solís et al. 2015); in A. thaliana the overexpression of the metal transporter IRT1 can 
induce an increase in accumulation of Cd and Zn by the plant (Connolly et al. 2002), 
and the overexpression of Zn transporter ZNT1 from Noccaea caerulescens can 
increase in the transgenic plant the accumulation of Zn and Cd (Lin et al. 2016); and in 
the Populus gender species mentioned before, the same gene YCF1 when expressed 
also increases the accumulation of Pb in the plant roots (Shim et al. 2013).

When it comes to remediation of heavy metals by genetically modifying plants to 
express or overexpress binding proteins, it is necessary to highlight metal chelators 
like the peptides phytochelatins (Hirata et al. 2005), metallothioneins (Tripathi et al. 
2015), and mercuric ion binding protein proteins (MerPs) (Huang et al. 2003).

When it comes to transgenic plants producing phytochelatins, the genetic modifi-
cations involve mainly two important enzymes that play a key role in their synthesis: 
phytochelatin synthase and c-glutamylcysteine synthetase (Hirata et  al. 2005). 
Brassica juncea can extract more Cd, Cr, Cu, Pb, and Zn than wild plants when modi-
fied to overexpress γ-glutamylcysteine synthetase and glutathione synthetase (pro-
teins involved in phytochelatin synthesis) (Zhu et al. 1999a, b). Bacterial and yeast 
glutathione synthetase expression in A. thaliana leads to increased accumulation of 
Cd and As in the transgenic organism (Guo et al. 2008). Nicotiana glauca genetically 
modified to overexpress TaPCS1 gene (from which product is a phytochelatin syn-
thase) can accumulate high levels of Cd, Zn, and Pb (Martinez et  al. 2006). The 
expression of phytochelatin synthase from Arabidopsis in Brassica juncea increases 
the transgenic tolerance not only to Cd but also to As (Gasic and Korban 2007).

Metallothionein genes can be introduced in target plant species to enhance heavy 
metal tolerance. These proteins rich in cysteine amino acid residues possess high 
affinity to cationic metals (Singh et al. 2003). N. tabacum can be modified using the 
EhMT1 (Xia et al. 2012) or SaMT2 (Zhang et al. 2014) gene to increase the Cu toler-
ance and accumulation; A. thaliana can be engineered using BcMT genes to increase 
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the tolerance to Cd and Cu accumulating the latter in shoots (Lu et al. 2015); Cu 
tolerance can also be increased by OsMT2c gene (Liu et al. 2015).

A MerP from Bacillus megaterium strain MB1 transposon TnMERI1 when 
expressed in cell membrane and vesicles of transgenic A. thaliana can induce the 
increased accumulation and tolerance to Hg, Cd, and Pb (Hsieh et al. 2009).

In 1999 tobacco plants (N. tabacum) were engineered to also remediate other pol-
lutants than heavy metals. By introducing the sequence responsible for codifying 
pentaerythritol tetranitrate reductase from Enterobacter cloacae into this plant spe-
cies DNA makes it possible for it to increase the tolerance to TNT (2,4,6- trinitrotoluene) 
and glyceryl trinitrate (GTN); plants can also be engineered to remediate explosive 
residues that are persistent environmental cytotoxic pollutants (French et al. 1999). 
The attempts to reprogram plants to degrade toxic nitro- substituted compound con-
tinued allowing the development of other transgenic tobacco plant variants to remove 
TNT residues by using, for example, E. cloacae nitroreductase NfsI gene (Hannink 
et al. 2007); transgenic A. thaliana is able to deal well with TNT residues by overex-
pressing its own bifunctional O- and C-glucosyltransferases (Gandia-Herrero et al. 
2008) or by being genetically modified to express Escherichia coli nitroreductase 
(Kurumata et al. 2005). A. thaliana can also be engineered to eliminate residues of 
the military explosive RDX (hexahydro- 1,3,5-trinitro-1,3,5-triazine) by using genes 
of cytochrome P450 monooxygenases from Rhodococcus rhodochrous (Jackson 
et al. 2007).

In 2000 tobacco plants were also engineered to deal with residues of halogenated 
organic compound trichloroethylene (TCE), an industrial solvent. This substance can 
be metabolized up to 640-fold faster than in wild tobacco plants after receiving the 
DNA information to express mammalian cytochrome P450 2E1 enzyme. It also 
makes possible for the transgenic plant to increase not only the uptake but also the 
debromination of ethylene dibromide (Doty et al. 2000).

Herbicides are other important target for phytoremediation. These chemicals 
are  applied to protect crop yields from weed; however to combat the resistant 
organisms it is necessary to increase the amount of chemicals used. By doing that 
the residues that remain on soil and water next to the plantations are worrying pol-
lutants. The family of proteins most commonly used as tools to remediate this kind 
of residues is P450 family (Abhilash et al. 2009). By genetically modifying Oryza 
sativa to express human CYP1A1, CYP2B6, and CYP2C19, it is possible to pro-
gram rice plants to phytoremediate the herbicides atrazine and metolachlor 
(Kawahigashi et al. 2006), and by using these genes and also CYP2C9, not only 
transgenic rice but also transgenic potato plants  can be developed to deal with 
herbicide residues. CYP1A1, CYP2B6, and CYP2C19 make potato plants resis-
tant to several herbicides, and transgenic rice plant expressing CYP2C9 presents 
resistance to sulfonylureas being both suitable for environment phytoremediation 
(Inui and Ohkawa 2005). Atrazine-enhanced metabolism can also be achieved by 
modifying plants to express bacterial atrazine chlorohydrolase; this commonly 
used herbicide can be efficiently degraded by transgenic Medicago sativa and 
N. tabacum (Wang et al. 2005). The chloroacetanilide herbicide alachlor can be 
efficiently remediated by using genetically modified tobacco plants overexpress-
ing maize enzyme glutathione S-transferase I (Karavangeli et al. 2005).
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15.2  Main Strategies of Plant Transgenesis

In order to manipulate the DNA from plants, there is a wide range of techniques 
that can be applied; these strategies can be divided in two main groups: biological 
and nonbiological methodologies.

The nonbiological genetic modification techniques most commonly applied 
include biolistics, gene delivery performed by different delivery vehicles (e.g., poly-
mers, nanomaterials, and liposomes), electroporation, and microinjection. Biolistics 
consists in particle incorporated in a desirable DNA bombardment to deliver this 
DNA to plant target cells even in intact tissue fragment or to microspores. Proposed 
in the late 1980s (Sanford et al. 1987) and also known as gene gun and particle bom-
bardment, it commonly uses tungsten particles of low cost or gold particles that offer 
higher efficiency in the process. Loaded particles accelerated by pressurized helium 
can penetrate cell efficiently to deliver the DNA making it possible to transform not 
only the nuclear genome but also the mitochondrial and plastidial ones; it is the most 
popular nonbiological technique to produce transgenic plants (Southgate et al. 1995; 
Baltes et  al. 2017; Cunningham et  al. 2018). Electroporation causes temporary 
opening of pores in cell membrane to allow DNA entrance into cells by submitting 
the sample to strong electric field pulses; it is commonly performed in protoplasm as 
target (Weaver 1995; Keshavareddy et al. 2018). Microinjection consists in inject-
ing, with a glass microcapillary-injection pipette, the DNA sequence into proto-
plasts commonly immobilized by low melting point agarose (Mohanty et al. 2016). 
Polymers (Bart et al. 2006), nanoparticles (Cunningham et al. 2018), and liposomes 
(Wordragen et al. 1997) can also serve as gene delivery vehicles to plant transgene-
sis having as target most frequently the protoplasm.

When it comes to biological techniques, the most commonly applied is the use 
of Agrobacterium tumefaciens (most commonly or Agrobacterium rhizogenes), 
but it is also possible to use viral vectors (DNA or RNA virus) to deliver the 
transgene to target cells (Zaidi and Mansoor 2017). The use of A. tumefaciens to 
generate transgenic plants started in the 1970s and is up to date the most widely 
used method with this purpose. This soil bacterium naturally infects dicots, 
inserting in a stable way its DNA inside host’s DNA causing crown gall disease. 
So, by engineering bacterial plasmid DNA replacing virulence genes by trans-
genes of interest, it is possible to generate transgenic plants by using this pro-
karyote (Cunningham et al. 2018) (Fig. 15.1).

15.3  Difficulties Associated with Phytoremediation and New 
Molecular Biology Strategies in Plant Transgenesis Field

There are plant species that can naturally hyperaccumulate metals such as some 
members of Brassicaceae family, and before plant genetic modification techniques 
fully developed, phytoremediation was performed using these species: able to uptake 
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a great amount of heavy metals and transport them from the root to the shoot. 
However some of these species, especially in the presence of a high level of contami-
nants, presented slow growth turning the decontamination process very time- 
consuming (Jafari et al. 2013).

The plant transgenesis presented solution to this kind of problem and other diffi-
culties faced in this field of expertise. It made possible to implant desirable character-
istics to some plant species and change undesirable ones. For example, plants that 
grow fast but were unable to survive in toxic environment or were unable to accumu-
late high levels of contaminants could be converted, for example, using genes from 
hyperaccumulators, into organisms suitable for phytoremediation (Ali et al. 2013). 
For example, as already mentioned, Brassica juncea (the Indian mustard) grows fast, 
and by adding to its DNA the codifying sequence for a selenocysteine methyltrans-
ferase from Astragalus bisulcatus (a selenium hyperaccumulator) made it possible to 
obtain a B. juncea, able to accumulate more Se, and tolerate it better than the wild 
type and also perform this element volatilization (e.g., suitable feature for soil decon-
tamination) (LeDuc et al. 2004).

However inserting genes inside an organism DNA is not always an easy task. 
There are mainly three types of difficulties associated with plant genetic manipula-
tion: undesirable effects associated with insertion (the transgene’s insertion can occur 
in target cells’ genome in a place different to the one previously planned resulting in 
undesirable results such as mutation and loss of function of important genes that can 
be interrupted by the insertion process), position (depending on the insertion place 
the regulatory sequences nearby can cause, e.g., unexpected transgene silencing), and 

Fig. 15.1 Biological method of producing a transgenic plant using bacterium from Agrobacterium 
gender as transgene’s delivery vehicle. The tumor-inducing plasmid (Ti-plasmid) from A. tumefa-
ciens, for example, can receive the DNA sequence, in a site called T-DNA, which should be deliv-
ered to target plant cell to develop the transgenic organism. The recombinant plasmid containing 
the transgene can be processed and guided to the host genome. So, the desirable sequence can be 
integrated to the host’s DNA making it possible to obtain the transgenic plant
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somaclonal events (plant in vitro manipulation commonly induces somaclonal varia-
tion, impacting plant exhibited characteristics, changing some of them) (Ziemienowicz 
2010). And these undesirable events become even more important when not only one 
gene insertion is aimed.

Sometimes not only one gene is necessary to be inserted in a plant genome in 
order to transform it into an efficient organism for phytoremediation (e.g., for Hg 
remediation). And the task of inserting multiple genes in nuclear genome can be 
laborious, elevate the study costs and may not lead to the desirable result. However, 
when multiple genes are involved, the target of genetic manipulation is commonly 
the chloroplast genome and the approach of homologous recombination to insert the 
transgene into DNA reduces problems related to off-target insertion (Hussein et al. 
2007; Martret et al. 2011).

With advances in molecular biology field, more precise strategies for targeted 
genome editing have been developed (such as CRISPR/Cas9), and they are already 
being applied to obtain transgenic plants (Petolino 2015; Forsyth et al. 2016; Malzahn 
et al. 2017; Borrelli et al. 2018).

And it is also possible to make plants’ present desirable characteristics without 
inserting an exogenous gene inside of their genome or without inserting more gene 
copies from the same species. RNA silencing can also be applied to obtain organism 
optimized to perform phytoremediation. Rice OsNRAMP5 Cd transporter, for exam-
ple, can have its mRNA degraded by silencing methodology, resulting in enhanced 
cadmium translocation to the shoots, intensifying its pollutant phytoextraction from 
contaminated soil (Takahashi et al. 2014).

As genome projects from plant species continue to be performed and the identifi-
cation of genes’ function investigated, new possible sequences to be used to generate 
transgenes with desirable characteristics to phytoremediation continue to appear. But 
other important opportunity that genetic engineering of plants presents regarding 
dealing with environmental persistent pollution is the possibility to reduce the use of 
toxic chemical in crops, for example. It is possible to produce, for example, trans-
genic corn based on Bacillus thuringiensis as natural bioinsecticide (inducing, for 
example, the production of Cry protein endotoxins), offering a reduction of 56 mil-
lion kilograms of insecticide use in USA from 1996 to 2011 (Benbrook 2012).

When it comes to transgenic plants developed to perform phytoremediation, there 
are few biosafety concerns once they are designed for one specific purpose (i.e., 
removing contaminants from the environment) and will not serve as food for human 
beings and animals. The major concerns would be related to gene flow from the 
transgenic plants used for phytoremediation in the environment to wild plants natu-
rally present in that area (which chloroplast modification instead of nuclear DNA 
modification would help to avoid) and potential loss of diversity once transgenic 
plants would possess advantageous characteristics to survive in contaminated soil 
(Kotrba et al. 2009). However when it comes to the abovementioned strategies to 
reduce the use of chemicals in crops, as the use of insecticide in corn fields, concerns 
regarding biosafety stand out. Corn is used not only in human but also animals’ food. 
So, food safety and allergenicity of new proteins produced in the transgenic plant, 
among other risks related to resistance genes introduced in the ecosystem, should 
receive attention.
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15.4  Future Perspectives

The development of transgenic plants for phytoremediation is a promising and 
important tool in plant biotechnology field to deal with persistent and highly toxic 
environment pollution and also offers the opportunity to increase the knowledge 
regarding plant genomes and DNA manipulation, metabolism of heavy metals, and 
some organic substances that can be environmental contaminants.

Naturally, as the researches advance, advances also the comprehension over: 
metal uptake and elimination by plants, genetic manipulation of plant nuclear and 
chloroplastic genome, interaction plant-other forms of life and with the environment 
(also in contaminated areas) specially in rhizosphere, species that can be useful in 
phytoremediation providing genes to development of transgenic organisms or per-
forming contaminants neutralization, and strategies to deal with mixed contamina-
tion in polluted sites. It is also expected that the numbers of field trials increase to 
enhance the understanding of transgenic plants’ interaction and effects on the ecosys-
tem and to evaluate the possible occurrence of negative economic and biological 
impacts.

Therefore it is expected that new techniques involving plant species can be devel-
oped by teams of researchers from diverse fields of expertise to offer interesting solu-
tions to phytoremediation.

15.5  Conclusion

GMPs are an important tool when it comes to dealing with the increasingly evident 
global problem of pollution, especially the one related to heavy metals, explosives, 
industrial solvents, and herbicides. The transgenic plants make it possible to achieve, 
at low cost, removal of contaminant residues from the environment. Therefore, it is 
expected that new techniques involving plant species continue to be developed by 
teams of researchers from diverse fields of expertise to offer interesting and safe 
innovative solutions to phytoremediation.
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