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AoS Apraxia of speech
atDCS Anodal transcranial direct current stimulation
BA Brodmann area
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DLPFC Dorsolateral prefrontal cortex
F Female
h Hours
HD tDCS High-density transcranial direct current stimulation
IFG Inferior frontal gyrus
ITG Inferior temporal gyrus
LTD Long-term depression
LTP Long-term potentiation
M Male
M1 Primary motor cortex
min Minutes
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MTG Middle temporal gyrus
NMDA N-Methyl-d-aspartate
PFC Prefrontal cortex
PML Principles of motor learning
pSTG Posterior superior temporal gyrus
STG Superior temporal gyrus
tDCS Transcranial direct current stimulation
TMS Transcranial magnetic stimulation

6.1  Introduction

The modulation of cognitive functions by noninvasive stimulation of the human 
brain has gained increasing attention over the last few decades. The two most known 
neuromodulation techniques are transcranial magnetic stimulation (TMS) and tran-
scranial direct current stimulation (tDCS). The popularity of tDCS compared to 
TMS is due to its safety, portability, and cost-effectiveness. Moreover tDCS is an 
easy-to-use, painless, tolerable corticomotor modulation technique with no or mini-
mal side effects (Bolognini, Pascual-Leone, & Fregni, 2009). While TMS impli-
cates more artefacts such as acoustic noise and muscle twitching, only minor 
adverse effects are reported from tDCS (Fertonani, Ferrari, & Miniussi, 2015; 
Poreisz, Boros, Antal, & Paulus, 2007). 

tDCS can be used to probe and modulate cortical plasticity (Prehn & Flöel, 2015) 
that is defined as the capacity of the brain to develop new neuronal-synaptic inter-
connections and thereby develop and adapt new functions or reorganize/compensate 
for changes. During tDCS, weak polarizing direct currents are delivered to the cor-
tex via two electrodes placed on the scalp. The current induces changes in the rest-
ing membrane potential of the neurons. This means that tDCS does not directly 
elicit action potentials but changes the amount of additional input needed to gener-
ate an action potential in neuronal populations. In other words, tDCS changes the 
likelihood that an incoming action potential will result in postsynaptic firing both 
immediately during stimulation and a short period of time after stimulation. 
Therefore, tDCS has an impact on two neurophysiological mechanisms: (1) 
 subthreshold alterations of the resting membrane potential involving ionic concen-
tration shifts within the extracellular fluid (“primary effect”) and (2) the synaptic 
plasticity of glutamatergic connections (i.e., N-methyl-d-aspartate (NMDA) 
receptor- dependent processes) (“aftereffect”) (Prehn & Flöel, 2015). Since tDCS 
acts upon the resting membrane potential and NMDA-receptor activity, it promotes 
synaptic plasticity of glutamatergic connections (namely, synaptic long-term poten-
tiation (LTP)-/long-term depression (LTD)-like mechanisms) that can outlast the 
duration of stimulation for several hours (Stagg & Nitsche, 2011). In general, the 
resting membrane potential is lowered underneath the anode, inducing higher excit-
ability, while it is heightened underneath the cathode, inducing lower excitability. 
While these neurophysiological effects are well understood, little is known about 
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the long-term effects, especially with respect to cognitive enhancement (Holland, 
Leff, Penny, Rothwell, & Crinion, 2016). 

Studies show a high variability in terms of the methodological approach, the 
characteristics of the study group, the targeted cognitive functions (Cappon, 
Jahanshahi, & Bisiacchi, 2016), and the outcome measures used. To the best of our 
knowledge, there is no standard protocol to evaluate the impact of tDCS. A standard 
protocol is arguable considering the differential impact and the diversity of the 
research, but a road map focusing on different parameters and their impact might be 
a valuable starting point (Jacobson, Koslowsky, & Lavidor, 2012). In this chapter, 
we provide a critical review on all the influencing parameters, along with a draft for 
such a road map. In the Appendix in the Back matter of this book, a non-exhaustive 
overview of studies using tDCS to study/boost language functions in healthy 
(Appendix A: Tables A1 and A2) and patient (Appendix B: Tables B1, B2, and B3) 
populations is included, which will give the reader a general idea of the demo-
graphic characteristics of the targeted population (Tables A1 and B1) and the meth-
odological (Tables A2 and B2) and therapeutic (Table B3) approach of the current 
studies. 

6.2  Variability in Methodological Approach

6.2.1  tDCS Protocol

Zooming in on the methodological approach, many parameters pertaining to the 
tDCS device may influence its impact: (1) the stimulation schedule (frequency, 
duration, and type), (2) the current of the stimulation (intensity, density, and total 
charge), (3) the targeted area of stimulation (left/right, frontal/temporal), (4) the 
used electrodes (montage, material, sizes, and shape), and (5) the combination of 
tDCS and therapy (online or offline stimulation, impact of stimulation on task 
performance). 

 Stimulation Schedule

The stimulation schedule has three general dimensions: frequency, duration, and 
type. Frequency pertains to the amount of tDCS sessions a participant gets. In lit-
erature, one session is often used for healthy participants and repeated sessions are 
used in participants with speech-language impairments. In research, sessions are 
often separated by at least four hours since the cortical excitability alterations can 
last for over an hour after the end of the stimulation (Westwood & Romani, 2017). 
In practice, sessions are often separated by a minimum of 24 h or even one week. In 
clinical practice, daily sessions are recommended to evoke a cumulative and long- 
term effect. Repeated stimulations after a short interval of 20 min (i.e., during the 
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aftereffects of stimulation) result in initially reduced yet ongoing excitability 
enhancement (LTP-like plasticity), while temporally contiguous stimulation and 
repeated stimulation after a prolonged time interval (i.e., after the aftereffects have 
disappeared) might result in a reversal of neuroplasticity (Monte-Silva et al., 2013). 
This suggests that, in a clinical population, studies need to focus not only on the 
frequency but also on the interval time between consecutive sessions, so that opti-
mal neuroplasticity effects can be induced. 

By duration we mean the total number of time one session takes. This parameter 
ranges in the literature from 6 to 30 min, with a mean duration of 20 min. 

Different types of stimulation can be used: anodal tDCS (atDCS), cathodal tDCS 
(ctDCS), and placebo (sham). From a neurophysiological point of view, the type of 
stimulation refers to the polarity of the current and thereby to the way neurons are 
influenced. However, a nonlinear system like the brain is unlikely to have a linear 
response to an externally applied electric current (Westwood & Romani, 2017). In 
general, anodal stimulation increases cortical excitability, whereas cathodal stimu-
lation decreases it (Fiori et al., 2011). In literature, however, there is a consensus 
about the stimulation effect of atDCS (e.g., Alberto Pisoni et al., 2015; Jacobson 
et al., 2012), but there is no consensus about the effect of ctDCS. Sham is the pla-
cebo stimulation where the electrodes are also attached on the head, but the current 
is turned on for a maximum period of one minute. The current is quickly ramped up 
and down in the beginning (and in some studies in the end as well) of each stimula-
tion session. This technique is useful within a research context, since it blinds the 
participant from knowing whether they are actively stimulated or not, by giving 
them the initial sensation of the current building up (Gandiga, Hummel, & Cohen, 
2006). Bastani and Jaberzadeh (2012) state that the application of tDCS is associ-
ated with minimal or no somatosensory input, implicating that the stimulation 
remains imperceptible by most people during its application. However, some par-
ticipants do report an itching sensation beneath both electrodes during the early 
rising phase of the current. This tingling sensation elicited on the scalp lasts only for 
the first few seconds and then disappears (Nitsche et  al., 2003). However, the 
research of O’Connell et al. (2012) showed that participants receiving both types of 
stimulation can easily discriminate between real and sham stimulation. When par-
ticipants only received one type of stimulation, blinding was much more reliable 
(Russo, Wallace, Fitzgerald, & Cooper, 2013). Unreliable blinding may play a role 
in data variability present in current tDCS literature. In a research context, often 
different types of stimulation are used with the order of sessions counterbalanced 
across participants to control for learning effects. However, in clinical practice, 
repeated sessions of one type of stimulation are the most favorable approach in 
order to accumulate the most positive effect. The assumption that atDCS enhances 
and ctDCS diminishes cortical excitability (Nitsche & Paulus, 2000) has been 
mainly supported by studies that focus on the effects of tDCS on motor functions. 
However, a meta-analysis of tDCS studies found that the probability of achieving 
this classical “anodal-facilitatory/cathodal-inhibitory” effect on motor outcomes 
was only 0.67 and for cognitive outcomes only 0.16 (Jacobson et al., 2012). The 
underlying explanation might be that the anodal electrode increases further neuro-
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nal firing of a previously activated region, contributing to a greater facilitation of 
(cognitive) performance of this area. Decreased neural firing, resulting from the 
cathodal electrode, cannot generate sufficient inhibition when the initial rate is 
already high, since subjects are engaged in cognitive tasks. Moreover, since cogni-
tive functions are not restricted to a specific brain area but rather to a brain network, 
these functions may be immune to inhibitory stimulation. 

Stimulation Current

The applied current can be defined by its intensity, density, and total charge. The 
current intensity varies from 1 to 2 mA. Although stimulation with a stronger cur-
rent over a longer period of time is more intense, it is unknown whether stimulation 
is also more effective (Prehn & Flöel, 2015). Vöröslakos et al. (2018) found that 
current intensities conventionally used in tDCS studies are insufficient to affect neu-
ronal circuits directly, suggesting that reported behavioral and cognitive effects 
result from indirect mechanisms. The current intensity has an impact on local (i.e., 
modulation of endogenous low-frequency oscillations) brain areas (Hartwigsen, 
2015), within network connectivity (Meinzer et al., 2012), as well as on functionally 
connected, remote brain areas (i.e., spreading via excitatory and inhibitory neural 
pathways (Polanía, Nitsche, Korman, Batsikadze, & Paulus, 2012)); the exact 
amount of the impact is still questionable. Therefore, researchers often define the 
current density, i.e., the stimulation intensity (mA) per area of stimulating electrode 
size (cm2). This density is independent of the duration of the stimulation. Densities 
below 25 mA/cm2 are considered safe, since 25 mA/cm2 is the threshold for brain 
tissue damage in rats. Electrode sizes of 25–35 cm2 are commonly used with a con-
stant current of 2 mA intensity, resulting in a current density of 0.080–0.057 mA/
cm2 at the skin which will not induce brain tissue damage. Nonetheless, the inten-
sity of current that reaches and affects the cortex below the electrodes is difficult to 
determine. It is typically inferred from physiologic outcomes such as functional 
imaging, which is not necessarily linear or even monotonic with local current inten-
sity, or from behavioral changes, where the relationship with regional current flow 
is yet less clear (Edwards et al., 2013). Moreover, Sandars, Cloutman, and Woollams 
(2016) reported that even though current density is uniform, between 41% and 61% 
of the applied current does not penetrate the skull. This limited spatial accuracy is a 
potential limitation of tDCS (Raffin & Siebner, 2014). In order to overcome this 
limitation, high-density (HD) tDCS is required, which can be achieved by using 
smaller electrodes, in configurations that yield more focal stimulation (Datta, Baker, 
Bikson, & Fridriksson, 2011). While the exact amount and the spreading of the cur-
rent are hard to define, the maximum effect may not be below the electrode pads as 
assumed, making it more complicated to choose the appropriate stimulation site. 
Precise modeling studies might be essential for future research to employ stimula-
tion parameters that optimize current density distribution. Therefore, researchers 
also report the total charge of the current, i.e., the amount of current that is applied 
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over the head during the session and is determined by the duration of the session and 
the current intensity. 

Area of Stimulation

The next important question is the area of stimulation, since therapeutic goals and 
outcomes of tDCS are linked to the targeted brain regions. For this parameter as 
well, there is no consensus about the optimal location of the electrodes. The place-
ment of the tDCS electrodes is usually guided by the 10–20 EEG system, since this 
is a helpful and easy-to-use technique facilitating the incorporation of tDCS in day- 
to- day clinical practice (Meinzer, Darkow, Lindenberg, & Flöel, 2016). As outlined 
earlier, the stimulated area is a window onto a large-scale functional network, rather 
than on an isolated site (e.g., Bikson, Datta, Rahman, & Scaturro, 2010; Manjaly 
et al., 2005; Moliadze, Antal, & Paulus, 2010). So the question is: which is the ideal 
network to stimulate in order to obtain the maximum out of tDCS? Many research-
ers stimulate the left frontal cortex, since this includes the area of Broca, which is 
important for speech production, i.e., speech repetition, reading, writing, and nam-
ing (Bashir & Howell, 2017). The frontal cortex is 1/3 of the cortex and electrodes 
are 25–35 cm2, so a more specific spot needs to be chosen. For example, Meinzer 
et al. (2014) have shown that tDCS over the primary motor cortex (M1, C3) induces 
long-lasting changes in cortical excitability and can improve word retrieval in 
healthy participants. Besides the primary motor cortex, the left dorsolateral prefron-
tal cortex (DLPFC, Fp1/AF3) (Manenti et  al., 2015; Saidmanesh, Pouretemad, 
Amini, Nillipour, & Ekhtian, 2012; Shah-Basak et al., 2015; Wirth et al., 2011) or 
the inferior frontal gyrus (F5) (e.g., Campana, Caltagirone, & Marangolo, 2015; 
Fiori et al., 2013; Pisoni, Papagno, & Cattaneo, 2012; Vestito, Rosellini, Mantero, 
& Bandini, 2014) are frequently targeted areas of stimulation. Depending on the 
behavioral task administered during stimulation, researchers also stimulate other 
brain areas beyond the frontal cortex, such as the left temporal region. Sparing, 
Dafotakis, Meister, Thirugnanasambandam, and Fink (2008), for example, applied 
tDCS over the posterior perisylvian region, i.e., an area which includes Wernicke’s 
area (T5), and reported an impact on lexical-phonological retrieval. Besides the 
therapeutic goals and outcomes, interindividual variability may also influence the 
impact of tDCS.  Therefore, studies that employed similar areas of stimulation 
resulted in highly variable stimulation effects (de Aguiar, Paolazzi, & Miceli, 2015). 
Klaus and Schutter (2018) argue that the placement of the active electrode over the 
targeted region and the reference electrode over the contralateral supraorbital region 
yields the highest field strengths anterior to the targeted region as well as additional 
frontal effects in the right hemisphere. These wide electrical field distributions may 
cause collateral activation of surrounding tissue and contribute to the heterogeneous 
findings reported in previous studies. It remains to be tested whether additional 
modifications of the montages (e.g., by using smaller electrodes or a HD tDCS 
setup) further reduce induced field strengths in regions peripheral to the targeted 
region. The area chosen for stimulation also depends on the location of the reference 
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electrode. Most researchers place the reference electrode on the contralateral (right) 
supraorbital region (e.g., Buchwald et  al., 2019), whereas others place it on the 
contralateral (right) homologue area (e.g., Marangolo et al., 2013). 

 Electrodes

Different electrodes, i.e., different montages, materials, shapes, and sizes, vary 
across studies. Different montages are available: (a) bipolar (two cephalic elec-
trodes) (e.g., Marangolo et al., 2013) or (b) unipolar (one cephalic and one extrace-
phalic electrode) (e.g., Nitsche & Paulus, 2000). The magnitude of the tDCS-elicited 
changes in cortical excitability depends on the electrode montage, due to the inter-
dependence between neuronal orientation and the orientation of the induced current 
(Wagner et al., 2007). At present, different electrode arrangements have been evalu-
ated – this has been done mainly for stimulation of the primary motor cortex, less 
for non-motor areas. Since language is a complex cognitive task involving language 
networks, not specific areas, in recent literature, researchers have investigated the 
added benefits of bilateral/bipolar stimulation over unilateral stimulation (e.g., Li 
et al., 2015; Moliadze et al., 2010). Regarding the material of the electrodes, two 
types are most often used: nonmetallic, conductive rubber electrodes, covered by 
saline-soaked sponges or rubber electrodes used with conductive gel (Prehn & 
Flöel, 2015), minimizing chemical reactions at the electrode-skin interface. 

Looking at the size and shape of the electrodes, two large electrode pads with 
areas of several tens of cm2 are used (Saturnino, Antunes, & Thielscher, 2015). This 
conventional tDCS electrode montage results in very diffuse brain current flow, with 
areas of clustering (“hot spots”) and ineffective pervasion of the targeted area 
(Edwards et al., 2013). When using the conventional large stimulation electrodes 
(i.e., 25–35 cm2), tDCS is less suitable to investigate functional-anatomic subdivi-
sions within language areas, but it might be preferable for therapeutic, longitudinal 
purposes (Monti et al., 2013).  

Combination of tDCS and Behavioral Task

The fifth variable concerns the combination of tDCS and the behavioral task; 
researchers distinguish between online and offline tDCS. Online tDCS implicates 
that the tDCS stimulation is given during a therapy session, therefore potentially 
optimizing the effects of language therapy, whereas offline tDCS implicates that the 
tDCS stimulation is given before a therapy session, potentially priming the lan-
guage system in preparation for the task used during treatment (de Aguiar, Paolazzi, 
& Miceli, 2015). Behavioral priming results in improved performance due to 
repeated encounters with the same or related stimuli and is caused by a reduction in 
task-dependent neural activity (Holland et al., 2011). Neural priming is the neuro-
physiological explanation of the cumulative effect of tDCS on behavior. Since the 
human brain consists of dense neuronal tissue, it operates on limited neural resources 
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and thereby consists of overlapping neural networks (Brem, Unterburger, Speight, 
& Jäncke, 2014). In cognitive and neurobiological models, cognitive functions are 
supported by distributed, interconnected, overlapping, and highly parallel process-
ing networks (Hebb, 1949; Horwitz, Heng, & Quazi, 2003). In these networks, 
higher-order cortices can be involved in a flexible, context-dependent manner in 
different functions (Behrens & Sporns, 2012; Bressler & Menon, 2010). For exam-
ple, the language and motor action systems feature tight functional connections and 
share neural resources (Willems & Hagoort, 2007). This implicates that enhance-
ment of cognitive functions by means of tDCS is never isolated. The facilitated 
switching between the overlapping neural systems involved during the behavioral 
task explains the improved behavioral performance afterwards. In this way, priming 
cortical excitability using tDCS optimizes the learning processes involved in lan-
guage therapy and leads to more distinct and long-term functional communication 
gains (Bolognini et  al., 2009). However, the exact cumulative mechanism of the 
externally applied tDCS, the internal modulation of neuronal activity, and the 
impact on an individual’s behavior has yet to be determined (Holland et al., 2016). 
Since Monti et  al. (2008) suggest the absence of effects of offline perilesional 
atDCS, recent studies have focused on online atDCS in elderly participants with or 
without aphasia (e.g., Binney et al., 2018). 

Based on the results of the literature, we believe that the following tDCS param-
eters should result in the most effective outcome: multiple  stimulation sessions (>5) 
should be used, each lasting for at least 20 min, with a short time interval (~24 h), 
so that neurons are triggered effectively. The current strength is set at 2 mA and the 
25–35 cm2−electrodes are placed in saline-soaked sponges to obtain an optimal cur-
rent flow. The area and the type of stimulation are linked to the training/therapeutic 
goal (Table 6.1). This leads to determining the influencing parameters of one spe-
cific behavioral task.

6.2.2  Behavioral Task

To the best of our knowledge, there is no consensus on what the behavioral task, i.e., 
the speech-language therapy, should be. Nonetheless, selecting the correct pairing 
between the area of stimulation and the behavioral task may crucially influence the 
therapeutic outcome and thereby its efficiency. The goals of speech-language ther-
apy may be better achieved if tDCS is delivered to an area putatively involved in the 
task at hand, as this ensures that electrical stimulation is paired with ongoing synap-
tic activation, a seemingly necessary factor for lasting effects (Fritsch et al., 2010). 

In an ideal cumulative situation, tDCS enhances corticomotor excitability and 
augments the efficacy of therapeutic approaches inducing lasting neurobiological 
effects (Hummel & Cohen, 2006). Different tasks might be differentially sensitive 
to performance changes induced by tDCS. Moreover, there is an economical argu-
ment as well: therapists have less time to treat patients and limited funding is avail-
able. Therefore, clinicians are looking for the most ideal therapy program to 
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maximize the patient’s communicative skills in as little time as possible and at the 
lowest possible cost, aiming for the most effective outcome (Maas et al., 2012). 

Considering the literature on the cumulative effects of tDCS and behavioral 
speech-language therapy, researchers have reported cognitive enhancement in 
healthy participants for different cognitive (e.g., sustained attention, working mem-
ory, information processing, and language) and executive (e.g., inhibition and plan-
ning) functions. This chapter will focus on language and on motor speech, the two 
main domains of speech-language therapy. 

 tDCS and Language

Most studies focus on phonological and semantic aspects of oral language produc-
tion, examining the effects of tDCS on picture naming (Fertonani, Brambilla, 
Cotelli, & Miniussi, 2014; Holland et  al., 2011; Indefrey, 2011), verbal fluency 
(e.g., Iyer et al., 2005), or picture-word interference (Indefrey & Levelt, 2004). Few 
studies focus on the cumulative effect of tDCS and semantic aspects of language 
comprehension, using lexical decision (Brückner & Kammer, 2017), semantic judg-
ment (McDermott, Petersen, Watson, & Ojemann, 2003), or ambiguous words 
(Peretz & Lavidor, 2013). Two studies have focused on the syntactic aspects of 
language (e.g., Cattaneo, Pisoni, & Papagno, 2011; De Vries et al., 2010). Two stud-
ies (Dick, Goldin-Meadow, Hasson, Skipper, & Small, 2009; Manuel & Schnider, 
2016) have focused on tDCS and nonverbal communication, and three studies have 
combined tDCS with functional communication (Campana et al., 2015; Marangolo 
et al., 2014; Marangolo, Fiori, Calpagnano, et al., 2013) (Appendix A). 

With respect to phonology and semantics, several researchers have reported the 
cumulative effect of tDCS on picture naming (Fertonani et al., 2014; Holland et al., 
2011; Indefrey, 2011). However, no consensus has been reached on the stimulation site, 

Table 6.1  Recommended tDCS parameters based on current literature results

tDCS parameter Settings

Intensity Frequency: >5 sessions
Duration: 20–30 min
Type: atDCS, ctDCS (or sham)

Current Intensity: 1.5–2 mA
Density: 25 mA/cm2

Total charge: 0.057 mA/cm2

Area of stimulation Left/right/bihemispheric, frontal/temporal
Adapted to therapeutic task

Used electrodes Montage: uni- or bipolar
Material: nonmetallic or rubber
Covered in saline-soaked sponges or coated with conductive 
gel
Size: 25–35 cm2

Shape: rectangle
Combination of tDCS and 
therapy

Online/offline
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since a large left frontotemporal network plays an important role in a naming task, 
including phonological and semantic skills. This network supports many cognitive pro-
cesses, i.e., word-retrieval processes and different cognitive control processes, the ini-
tiation and sequencing of speech, and the motor speech act (Crosson, 2013; Dick, 
Bernal, & Tremblay, 2014; Eickhoff, Heim, Zilles, & Amunts, 2009). As Westwood 
and Romani (2017) state, picture naming necessitates cortical excitation (word retrieval) 
as well as inhibition (fending off alternative competitors). This network consists of the 
dorsal stream (i.e., left frontal hemisphere, the mapping of sensory input, and phono-
logical information on the articulatory network) and the ventral stream (i.e., bilateral 
temporal hemispheres, the mapping of sounds onto meanings and meanings onto spo-
ken output) (Hickok & Poeppel, 2000; Sandars et al., 2016). Studies have reported 
significant effects from applying atDCS over the left superior temporal gyrus and 
DLPFC on object and action naming (Fertonani et al., 2014; Fertonani, Rosini, Cotelli, 
Rossini, & Miniussi, 2010; Sparing et al., 2008), with tDCS mostly affecting naming 
latencies, rather than error rates (Table 6.2). 

Table 6.2 Combination of behavioral task and targeted stimulation area

Behavioral task Stimulated brain area
Type of 
stimulation

Language production 
(phonology + semantics)

Picture naming Left STG (word 
rehearsal)  (T7) 
Right STG (T8)
Left DLPFC (word 
selection)  (AF3/Fp1)

ctDCS
ctDCS
atDCS

Verbal fluency Left PFC (switching) 
(Fp1)
Left IFG (word finding) 
(F5)
Left STG (clustering) 
(T7)
Left ITG (semantics) 
(FT9)

atDCS
atDCS
atDCS

Picture-word 
interference

Left MTG (semantics) 
(T7)
Left STG (phonology) 
(T7)
Left temporal cortex 
(T7)

atDCS
atDCS
atDCS

Language comprehension 
(semantics)

Lexical decision Left pSTG (T5) ctDCS
Semantic judgment Left IFG (F5) atDCS
Ambiguous words Right STG (T8) atDCS

Syntax Grammar Left IFG (F5) atDCS
Nonverbal communication Gesture-language 

interplay
Left IFG (F5) atDCS

Functional communication Conversational 
therapy

Left IFG (F5) atDCS

STG superior temporal gyrus, DLPFC dorsolateral prefrontal cortex, PFC prefrontal cortex, ITG 
inferior temporal gyrus, MTG middle temporal gyrus, STG superior temporal gyrus, pSTG poste-
rior superior temporal gyrus, IFG inferior frontal gyrus
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Another frequently examined language task pertains to verbal fluency (e.g., Iyer 
et  al., 2005; Meinzer, Flaisch, et  al., 2012). This usually involves a short test in 
which participants are required to generate as many words as possible from a 
semantic category (i.e., “semantic fluency,” which is a more common task, since we 
organize our daily lives in semantic categories) or beginning with a specific letter 
(i.e., “phonemic fluency,” a more complex and less familiar task) within a limited 
period of time. Many cognitive processes are involved in verbal fluency. In order to 
name as many examples as possible, one has to search the word content, retrieve it, 
monitor it, and select the appropriate word form from among competing alternatives 
(Fertonani et al., 2010). Considering its cognitive complexity, many brain areas are 
involved: (1) the prefrontal cortex (“switching,” i.e., changing from subcategories, 
as seen when one goes from providing examples of one subcategory to another, a 
more controlled process), (2) the inferior frontal gyrus (finding words), and (3) the 
superior temporal gyrus (“clustering” of words, i.e., the contiguous generation of 
words, a more automatic process) (Hirshorn & Thompson-Schill, 2006) (Table 6.2). 
To make it even more complex, phonemic and semantic word fluency involve par-
tially different neural networks: semantic fluency is associated with a greater activa-
tion of the left inferior temporal lobe, reflecting the site of stored information being 
retrieved (Heim, Eickhoff, & Amunts, 2008). The inferior frontal gyrus is likely to 
subserve common processes critical for both semantic and phonemic tasks 
(Costafreda et al., 2006). Clustering and switching processes are also dependent on 
a number of participant characteristics, such as age and level of education 
(Vannorsdall et al., 2016). Evidence suggests that older healthy participants switch 
less frequently on semantic fluency tasks and produce larger clusters on phonemic 
fluency tasks than younger participants (Troyer, Moscovitch, & Winocur, 1997). 
While some studies report increased verbal fluency during or after tDCS (inferior 
frontal gyrus: Cattaneo et al., 2011; Iyer et al., 2005; Penolazzi, Pastore, & Mondini, 
2013; Pisoni et al., 2018; DLPFC: Vannorsdall et al., 2012), other studies have not 
obtained such an effect (inferior frontal gyrus: Cattaneo et  al., 2011; Ehlis, 
Haeussinger, Gastel, Fallgatter, & Plewnia, 2016; Vannorsdall et al., 2016; DLPFC: 
Cerruti & Schlaug, 2009). A third, less frequently reported language production 
task is a picture-word interference task. Participants are asked to name pictures 
while ignoring a visually or aurally presented distractor word. The relatedness of 
the target and the distractor is systematically varied. Typically, a semantically 
related distractor increases naming latencies compared to an unrelated distractor, 
while a phonologically related distractor speeds up naming latencies. Lexical- 
semantic processing has been associated with the left medial temporal gyrus, while 
phonological processing has been located in the left superior temporal gyrus 
(Indefrey & Levelt, 2004) (Table 6.2). Semantically related distractors are examined 
in more detail in semantic blocking tasks. In such a task, naming latencies are com-
pared between semantically homogeneous (i.e., containing words from the same 
semantic category) and heterogeneous (i.e., semantically unrelated words) blocks. 
Retrieving and producing semantically related words in a row typically results in 
longer naming latencies compared to producing semantically unrelated words. This 
effect is called “the semantic interference effect” and underlines the competitive 
selection of target responses. This process is believed to rely on the left temporal 
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cortex (Indefrey, 2011). Therefore, Indefrey (2011) and Wirth et al. (2011) focused 
on semantic interference during spoken word production using continuous and 
blocked cyclic naming paradigms (Damian, Vigliocco, & Levelt, 2001; Howard, 
Nickels, Coltheart, & Cole-Virtue, 2006). The underlying explanation is that in 
order to map a conceptual representation onto a speech representation, lexical- 
semantic encoding needs to take place (Belke & Stielow, 2013). However, on the 
one hand, researchers still have to unravel the precise functionality of the human 
brain. For example, Indefrey (2011) suggests that more research is needed to disen-
tangle the precise role of subregions of the left inferior frontal gyrus and of the 
inferior parietal cortex in word production. On the other hand, the setup of the lan-
guage task itself is still open for debate. Belke and Stielow (2013) demonstrate that 
the study of semantic context effects on object naming has proven to be a powerful 
tool for investigations in language production, although the persistency of semantic 
context effects still remains to be elucidated. 

While there is an abundance of literature on language production, less is known 
on language comprehension, on syntax, on nonverbal communication, or on func-
tional communication. Looking at language comprehension, Brückner and 
Kammer (2017) focused on the relationship between a lexical decision task and 
ctDCS across the left posterior superior temporal gyrus. McDermott et al. (2003) 
focused on semantic judgment and the specific role for the left inferior frontal 
gyrus, while Yang, Fuller, Khodaparast, and Krawczyk (2010) reported a positive 
effect of atDCS over Broca’s area while performing a figurative language 
 comprehension task (Table 6.2). Peretz and Lavidor (2013) focused on ambiguous 
words while using a semantic decision task. De Vries et al. (2010) and Cattaneo 
et al. (2011) focused on syntax: they combined implicit artificial grammar learning 
with atDCS of the inferior frontal gyrus. 

Only one study (Dick et al., 2009) focused on nonverbal communication. They 
reported the cumulative effect of gesture-language interplay, in which the inferior 
frontal gyrus plays a critical role. 

Looking at functional communication, Marangolo, Fiori, Campana, et  al. 
(2014); Marangolo et al. (2013); and Campana et al. (2015) combined tDCS with 
activity-based intensive conversational therapy. They used short video clips to set up 
a natural conversation and encouraged the individual to use a broad range of com-
municative means (e.g., gestures, drawings, orthographic or phonological cues) to 
exchange salient information about the video clip. They concluded that atDCS 
delivered over Broca’s area improved informative speech, i.e., individuals used 
more and more communicative units and the improvement persisted after 1 month 
(Table 6.2).  

 tDCS and Motor Speech Act

Recently tDCS has also been used in normal motor control (e.g., Grimaldi et al., 
2016; Kang, Summers, & Cauraugh, 2016; Lefaucheur, 2016). The literature on the 
effects of tDCS on the motor speech act is far more scarce compared to tDCS and 
language. Five studies have combined tDCS with repeating orally presented words 
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(Bashir & Howell, 2017; Buchwald et al., 2019; Chesters, Hsu, Bishop, Watkins, & 
Mottonen, 2017; Fiori, Cipollari, Caltagirone, & Marangolo, 2014; Simione, Fregni, 
& Green, 2018) and only one study has combined tDCS with oral reading (Wong, 
Chan, Ng, & Zhu, 2019). Their overall focus was on maximizing speech motor 
performance, i.e., the fluent and accurate articulation of sequential sounds in words, 
measured by acquisition, retention, and generalization of speech motor performance 
(e.g., Maas, 2015; Marangolo, Fiori, Campana, et al., 2014). Although speech pro-
duction is a habitual and unique form of human daily communication, it is a com-
plex behavior requiring the integration of concurrent linguistic, cognitive, 
attentional, and sensorimotor processes (Oh, Duerden, & Pang, 2014; Simione 
et al., 2018). When speaking, one should carefully plan and program precise muscle 
instructions, and oral movements must be highly coordinated. 

During the last two decades, studies (Adams & Page, 2000; Bislick, Weir, 
Spencer, Kendall, & Yorkston, 2012; Ito, Coppola, & Ostry, 2016; Jones & Croot, 
2016; Lisman & Sadagopan, 2013; Steinhauer & Grayhack, 2000; Wong, Whitehill, 
Ma, & Masters, 2013) have primarily focused on the integration of training princi-
ples in the nonspeech domains of motor learning, i.e., principles of motor learning 
(PML) (Schmidt, 1988; Schmidt & Lee, 2005). These PML are derived from rela-
tively easy motor tasks, implicating that they cannot be directly translated to such 
complex motor tasks as the speech motor act, which possibly depends on a separate 
and unique motor system (Ziegler, 2003). PML specify (1) the structure of the prac-
tice, i.e., practice amount, distribution, variability and schedule, attentional focus, 
and target complexity, and (2) the nature of feedback, i.e., type, frequency, and tim-
ing, in order to enhance the learning capabilities for novel movements (Bislick 
et al., 2012). Although the application of these PML in speech motor learning has 
shown positive results in a healthy population, further investigation is warranted 
(Bislick et al., 2012; Maas, 2015), including replication of current research, exten-
sion of investigations of young healthy participants to older healthy participants, 
extension of investigations to motor speech disorders (e.g., ataxic dysarthria), and 
investigations of additional PML in both healthy participants and participants with 
motor speech disorders. In this way, PML can function as a theoretical framework, 
generating specific hypotheses that need to be investigated in more detail in differ-
ent populations. 

Recently, Buchwald et al. (2019) found that atDCS over the left motor cortex 
(C3) can improve speech motor learning in an offline condition, which makes it a 
possible stimulation target to enhance the performance in pure speech motor pro-
cessing, such as syllable repetition or nonword repetition (Fuertinger, Horwitz, & 
Simonyan, 2015). Fiori et al. (2014) have confirmed critical involvement of the left 
premotor region (BA 6), including Broca’s area (BA 44/45), in speech repetition 
(e.g., Baddeley, 2010; Trost & Gruber, 2012). They showed that speech accuracy 
and vocal reaction times while repeating tongue twisters during atDCS significantly 
improved during and 1 h after the stimulation. On the contrary, ctDCS significantly 
reduced speech articulation performance, while sham had no influence on speech 
articulation. Moreover, they showed generalization effects to untreated language 
production skills, which underlined the fact that speech engages motor and linguis-
tic networks (Simione et al., 2018).  
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tDCS and Task Complexity

Besides the specific speech-language task, the complexity of the task influences the 
effect of tDCS and thereby the functional outcome. de Aguiar, Paolazzi, and Miceli 
(2015) reported that atDCS may be more suitable for easy tasks, while ctDCS may 
be more appropriate when the task is difficult. The question remains which task is 
easy and which task is not. Difficulty is not a one-way scale from “easy” to “com-
plex ”, and different multi-way parameters have an impact on the level of complex-
ity in different ways. First, the input, i.e., the way the task is delivered, might affect 
task complexity and thus the effectiveness of tDCS. A visually presented task, such 
as a reading task, impacts other, more occipital brain areas than an aural task, such 
as a repetition task, which impacts more temporal brain areas (Church, Coalson, 
Lugar, Petersen, & Schlaggar, 2008). For example, in a recent study, Rollans, 
Cheema, Georgiou, and Cummine (2017) suggested that the left inferior fronto- 
occipital fasciculus is more sensitive to overt response times that reflect slower and 
nonautomatic processes. Secondly, cueing and feedback, i.e., the way the task is 
supported, can be defined in different ways to influence the level of complexity. 
Miniussi, Harris, and Ruzzoli (2013) created a cueing strategy for a picture naming 
task, while Peach and Chapey (2008) postulated a cueing hierarchy of different 
semantic, orthographic, and phonological cues for the same task. Thirdly, the out-
put, i.e., the way the task is performed, will impact which brain regions will be 
involved. For example, an oral response induces activity in other brain regions than 
a written response, the same for a verbal response versus a nonverbal response. 
Finally, the training material itself might impact task complexity. A consistent find-
ing has been that when naming objects in context with other items from the same 
semantic category, response time increases compared to naming in unrelated con-
texts (Gauvin, Meinzer, & de Zubicaray, 2017).

6.2.3 Study Group

Besides stimulation- and task-related parameters, one should also take into account 
interindividual variability. Individual cortical susceptibility to stimulation may dif-
fer, inducing different levels of excitability among participants (Krause & Cohen 
Kadosh, 2014; Parazzini, Fiocchi, Liorni, & Ravazzani, 2015). 

Mattson (2015) and Rabipour, Wu, Davidson, and Iacoboni (2018) report a list of 
interindividual differences: (1) general physiognomic differences, such as the mor-
phology of the individual’s brain (Kim et al., 2014); (2) cognitive differences, such 
as information processing capacity, processing speed, attention, episodic memory, 
decision making, executive control functions, emotion processing, regulation, and 
lifelong cognitive stimulation; (3) demographic differences, such as age, gender 
(Madhavan, McQueeny, Howe, Shear, & Szaflarski, 2014), and level of education 
(El Hachioui et al., 2013); (4) social differences, such as social support and lifestyle 
factors; (5) medical differences, such as diabetes, overweight, or the use of medica-
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tion; (6) physical differences, such as physical activity; and (7) psychological differ-
ences, such as motivation, expectations of outcomes, and affect (Table 6.3). 

 Physiognomic Differences

Regarding physiognomic differences, interindividual differences in cranial and 
brain anatomy can influence the impact of tDCS by inducing variability in the actual 
current received by the brain, even when the same electrical dose is administered. 
Some examples of these physiognomic differences are skull thickness and cerebro-
spinal fluid thickness (Opitz, Paulus, Will, Antunes, & Thielscher, 2015), subcuta-
neous fat (Truong, Magerowski, Blackburn, Bikson, & Alonso-Alonso, 2013), gyral 
pattern (Datta, Truong, Minhas, Parra, & Bikson, 2012), local tissue heterogeneities 
(Shahid, Wen, & Ahfock, 2014), and orientation of neurons (Arlotti, Rahman, 
Minhas, & Bikson, 2012). Anatomical factors do not always have the expected 
influence. For example, Opitz et al. (2015) demonstrated that a thicker skull resulted 
in a more complex relationship between skull thickness and current density.  

Cognitive Differences

As for cognitive differences, Smith and Clithero (2009) demonstrate that both 
atDCS and ctDCS over the left DLPFC can enhance performance in attention tasks, 
working memory, planning abilities, information processing capacity, and speed. 
For example, sustained attention is an influencing factor in the rehabilitation pro-
cess, since it is a prerequisite of cognitive relearning. 

Table 6.3 Checklist of interindividual differences impacting the responsiveness to tDCS

Interindividual differences Examples

Physiognomic differences Morphology of the brain
Cognitive differences Information processing capacity and speed

Attention
Memory
Executive functioning
Lifelong cognitive stimulation

Demographic differences Age
Gender
Level of education

Social differences Social support
Lifestyle factors

Medical differences Diabetes
Overweight
Use of medication

Physical differences Physical activity
Psychological differences Motivation

Expectation
Emotional state
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Demographic Differences

With respect to demographic differences, such as aging, researchers often start 
with healthy, young participants. Nevertheless, Summers, Kang, and Cauraugh 
(2016) underline that the neuroplasticity of the elder brain differs from that of a 
younger brain. They reported that it is more difficult for older participants to retrieve 
proper names in a naming task and that their verbal fluency is slowing down. This 
implicates that test results of a younger population cannot be extrapolated to an 
older population. At the neurophysiological level, aging negatively impacts gray 
and white matter integrity and neurotransmitter activity (Gutchess, 2014). The 
impact ranges from a loss of neurons and cortical thinning over impaired 
neurotransmitter- receptor binding and signaling and an accumulation of neurofibril-
lary tangles and amyloid plaques to altered concentrations of various brain metabo-
lites (Jagust, 2013). Tatti, Rossi, Innocenti, Rossi, and Santarnecchi (2016) suggested 
this results in reduced hemispheric lateralization in cognitive aging, which leads to 
a complex relationship between functional overactivation, structural integrity, and 
cognitive abilities. Meinzer, Lindenberg, Antonenko, Flaisch, and Floel (2013) 
showed that elderly participants present with greater bilateral prefrontal activation 
than young adults and that this correlated with poorer performance in semantic 
word generation. In word-retrieval studies, decreased accuracy (Meinzer et  al., 
2009) and increased reaction times (Wierenga et  al., 2008) have been noted for 
older populations. Right frontal activity has only been found in more demanding 
tasks, i.e., when the older participants produced fewer correct responses compared 
to the young adults (Meinzer et  al., 2009; Meinzer, Flaisch, et  al., 2012). This 
increased bilateral activity is explained by enhanced cognitive demands. According 
to Meinzer et al. (2014), there might be a co-interference of aging and challenging 
task conditions. They reported enhanced activity in right prefrontal areas in healthy 
older compared to younger participants when performing a language task. This 
enhanced activity might be due to an age-related phenomenon or it might reflect 
task difficulty effects. Moreover, control processes may have been more challenged 
in the older group due to deterioration of specialized neural populations in left fron-
tal areas (Park & Reuter-Lorenz, 2009) or medial temporal structures (Pihlajamäki 
et al., 2000). Changes in hippocampal functions (Pihlajamäki et al., 2000) may also 
explain selectively impaired semantic word generation in healthy older participants. 
This may result in local changes in brain activity and also disruption of coordinated 
activity between different brain regions. Bennett and Madden (2014) have also 
demonstrated widespread changes in structural connectivity in aging, which has 
been linked to behavioral impairment and changes in functional networks, such as 
frontoparietal attention networks. Taking this into account, researchers agreed that 
atDCS is a viable tool to improve language function in aging (Fertonani et al., 2014; 
Perceval, Flöel, & Meinzer, 2016). 

Moreover, cognitive performance declines with age (Mattson, 2015), although 
this decline does not affect all individuals equally (Berryhill & Jones, 2012). This 
decline is due to structural changes, i.e., neural atrophy from prefrontal and parietal 
regions, as well as functional changes, i.e., the recruitment of additional resources 
to maintain cognitive task performance (Davis, Dennis, Daselaar, Fleck, & Cabeza, 
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2008). Besides the impact of age, the level of education might impact the functional 
outcome after tDCS. For example, Katz et al. (2017) show that cognitive training 
may be more beneficial to those who already have strong cognitive abilities. The 
advantage of tDCS seemed to increase proportionally with decreasing baseline abil-
ity and conferred little additional advantage to a participant who had already per-
formed high at baseline. It is still unclear which specific cognitive ability, such as 
higher levels of numeracy, literacy, or academic attainment, may mediate the inter-
action between stimulation and low baseline performance.  

Social Differences

Social differences may also affect responsiveness to therapy. Patients with better 
social support experience better and faster recovery (Glass, Matchar, Belyea, & 
Feussner, 1993). To the best of our knowledge, the specific impact of social differ-
ences on tDCS efficacy has not been examined yet, but it is a factor that needs to be 
taken into account when using tDCS as a therapeutic aid.  

 Medical Differences

As for medical differences, besides concomitant diabetes or overweight, medica-
tion as well can impact the effect of tDCS. Prehn and Flöel (2015) focused on the 
interference of dopaminergic and serotonergic agents and tDCS, which could 
change the outcome of the stimulation. More research is necessary to investigate the 
value of additional biomarkers, such as learning relevant candidate genes, inflam-
matory markers, neurotransmitter concentrations, markers of cortical excitability 
and neurodegeneration, as well as neuronal activation patterns in predicting the 
therapeutic efficacy of tDCS.  

 Physical Differences

Regarding physical differences, even something as seemingly minor as hair thick-
ness may impact the outcome of tDCS, since poorer electrode contact can reduce 
the amount of current passing through the scalp and skull. Other more obvious dif-
ferences, such as poorer motor coordination or postural control, might influence the 
impact of tDCS on functional outcome (Uehara, Coxon, & Byblow, 2015).  

Psychological Differences

tDCS studies rarely examine psychological differences such as motivation, expec-
tations of outcome, affect, and attitude which may influence tDCS responsiveness 
through placebo-like effects. Two findings in the literature have underlined the 
importance of examining psychological differences in tDCS studies: evidence for 

6 Transcranial Direct Current Stimulation (tDCS) and Language/Speech…



98

the influence of (1) expectations on cognitive interventions (e.g., Foroughi, Monfort, 
Paczynski, McKnight, & Greenwood, 2016) and performance (e.g., Schwarz, 
Pfister, & Büchel, 2016) and (2) factors such as emotional state (Sarkar, Dowker, & 
Cohen Kadosh, 2014) and motivation (Jones, Stephens, Alam, Bikson, & Berryhill, 
2015) on responsiveness to tDCS.  

 Brain Lesions

Besides these seven interindividual differences in a healthy population, an extra 
category of differences is linked to the brain lesion underlying an acquired speech- 
language disorder. Focusing on a participant with a brain lesion, a variety of factors 
has the potential to influence the outcome of speech-language therapy. Relevant 
roles can be played by:

 1. Stroke severity (Pedersen, Vinter, & Olsen, 2004): for example, Maas et  al. 
(2012) reported the negative influence of a larger lesion on post-stroke aphasia 
recovery.

 2. Lesion characteristics such as site, size (Maas et al., 2012), and type (El Hachioui 
et al., 2013): looking at the lesion site, lesions of the left hemisphere might pro-
vide cortical disinhibition in perilesional structures, thereby increasing activity 
in left areas involved in language, with this perilesional activation associated 
with good recovery. However, this lesion can also disrupt the balance of inter-
hemispheric competition. Whether increased right hemisphere activation is ben-
eficial or maladaptive is controversial (Hamilton, Chrysikou, & Coslett, 2011).

 3. Characteristics of the speech-language disorder: less severe overall aphasic def-
icits (Pedersen et al., 2004) and sparing of phonological skills (El Hachioui et al., 
2013) are significant predictors of recovery. 

Several stroke studies showed that participants with larger deficits and less sur-
viving brain structures, assessed by lesion size (Bolognini et al., 2015), white matter 
tract integrity (Bradnam, Stinear, & Byblow, 2013), or level of impairment (Saucedo 
Marquez, Zhang, Swinnen, Meesen, & Wenderoth, 2013), appeared to experience 
less benefit from tDCS. Bradnam et al. (2013) reported that ctDCS on the contral-
esional hemisphere in severely impaired patients could even have a negative effect. 
The underlying explanation might be that the contralesional activity is having a 
compensatory effect rather than impairing recovery of the lesioned hemisphere 
(O’Shea et  al., 2014). Other factors such as time post-onset (Saucedo Marquez 
et  al., 2013) and increased baseline functional connectivity (Rosso et  al., 2014) 
might also confer better responsiveness to tDCS. Knowledge of the mechanisms 
underlying spontaneous recovery and of those underlying the effect of tDCS is yet 
insufficient to constrain neurostimulation strategies in participants with post-stroke 
aphasia.
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6.2.4 Outcome Measures

A final methodological variable is the used outcome measure. The reported mea-
sures vary across studies and are often not ideal for evaluating the therapeutic goals. 
Speech-language therapy is a type of neurorehabilitation that focuses not only on 
the rehabilitation of an impairment but also searches for compensating strategies, 
implicating a progress in functional communication. Therefore, in a picture naming 
task, researchers should not only evaluate the impairment (i.e., using a picture nam-
ing task after naming therapy), but they should also focus on transfer (i.e., does the 
patient’s naming also improve on non-trained words) and generalization (i.e., does 
the patient use the trained words in functional communication) of the naming abili-
ties. Moreover, researchers should not only focus on naming accuracy but also on 
the reaction time, since higher reaction times are associated with more fluent lan-
guage output, which maintains the flow of the conversation. This implicates that 
they should focus on the functional outcome and on the impact on the participant’s 
quality of life. An impairment-based outcome measure has an advantage for the 
researcher, since it assesses the interplay between the neurophysiological effects of 
tDCS and levels of cortical excitability. For the clinician and the patient, however, 
the impairment-based focus is less crucial; they are more focused on improving the 
functional communication and the patient’s quality of life. 

Moreover, the outcome measures should not only be evaluated immediately after 
therapy, but follow-up measures should be included as well to determine whether 
treatment effects endure after treatment. Some studies (e.g., Shah-Basak et  al., 
2015) have shown only a trend towards improvement immediately after the combi-
nation of atDCS and naming therapy, but showed significant improvement at 
2 months’ follow-up.

6.3 tDCS in Patients with Language/Speech Disorders

6.3.1 Aphasia

The clinical application of tDCS in participants with aphasia was first reported in 
August 2006 (Hummel & Cohen, 2006). Since then, 44 studies have been pub-
lished, investigating the therapeutic potential of the technique. These studies have 
included 394 participants with aphasia due to a vascular lesion. About 76% of the 
participants (n = 301) had chronic aphasia, 17% (n = 68) (Hesse et al., 2007; Kang, 
Kim, Sohn, Cohen, & Paik, 2011; Jung, Lim, Kang, Sohn, & Paik, 2011) had sub-
acute aphasia (4–8 weeks post-stroke), and 6% (n = 25) (Rosso et al., 2014) were in 
the lesion phase (3–6 months post-stroke). To exclude spontaneous recovery, most 
studies zoom in on participants with chronic aphasia. However, in clinical practice 
it might be better to combine tDCS with aphasia therapy in the lesion phase so that 
the cumulative effect of spontaneous recovery and therapy-induced recovery can 
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merge into the most optimal recovery for the individual participant with aphasia. 
Zooming in on the tDCS parameters, most of these 44 studies use: (1) multiple 
tDCS sessions (ranging from 1 to 30 sessions, mean: 7.1 sessions); (2) with a cur-
rent strength of 1.5 mA (ranging from 1 to 2 mA); (3) the active electrode is most 
often placed on the left inferior frontal gyrus and the reference electrode is placed 
on the right supraorbital region; (4) a unipolar montage is used; (5) current is trans-
ferred by nonmetallic electrodes covered in saline-soaked sponges of 35 cm2; and 
(6) tDCS is combined with online therapy. Most studies focused solely on patients 
with non-fluent aphasia (n = 172; 44%), i.e., Broca’s aphasia, global aphasia, and 
transcortical motor aphasia (e.g., Marangolo et  al., 2014; Marangolo, Fiori, 
Campana, et al., 2014; Saidmanesh et al., 2012). Fridriksson, Richardson, Baker, 
and Rorden (2011) reported a study focusing solely on patients with fluent aphasia 
(n = 8; 2%), i.e., Wernicke’s aphasia, amnestic aphasia, and transcortical sensory 
aphasia. Other studies combine patient groups: non-fluent aphasia (n = 161; 40.5%), 
fluent aphasia (n = 47; 12%) and mixed aphasia (n = 6; 1.5%) (Baker, Rorden, & 
Fridriksson, 2010; de Aguiar, Paolazzi, & Miceli, 2015; Jung et  al., 2011; Kang 
et al., 2011; Lee, Cheon, Yoon, Chang, & Kim, 2013; Vestito et al., 2014; Volpato 
et al., 2013). 

With these different methodological approaches in mind, determining a specific 
pathway for participants with aphasia is far from simple. Aphasia is among the most 
devastating consequences of stroke, as it affects vocational integration, social life, 
and psychological well-being on the individual level and places major burdens on 
the healthcare system. Intensive and deficit-oriented treatment can alleviate aphasia 
even in the chronic stage, but treatment effect sizes are often modest (e.g., Brady, 
Kelly, Godwin, & Enderby, 2012; Wilssens et al., 2015); hence there is a pressing 
need to explore new strategies to enhance treatment efficacy in chronic aphasia. The 
combination of tDCS and behavioral therapy might be important in evidence-based 
language therapy (Marangolo, 2017). Multisession tDCS has been shown to induce 
more permanent behavioral and neural modulation (Meinzer, Darkow, et al., 2016). 
Therefore, interest in tDCS as a therapeutic tool for aphasia is booming (e.g., 
Crinion et al., 2006; Holland & Crinion, 2012; Tippett, Niparko, & Hillis, 2015), 
based on its potential to guide neuroplasticity in recovery and thereby facilitate 
learning during behavioral therapy. 

Recent neuroimaging and behavioral data have indicated that considerable 
changes in the cortical representation of language processing can occur in the days, 
weeks, and months following stroke in the left hemisphere, and the degree of lan-
guage recovery after stroke depends significantly on the degree of neuroplasticity in 
the participant’s brain (Hamilton et  al., 2011). Three kinds of changes in neural 
activity after stroke may be most relevant for aphasia recovery: (1) recruitment of 
perilesional left hemisphere regions for language-related tasks; (2) acquisition, 
unmasking, or refinement of language processing ability in the nondominant right 
hemisphere; and (3) dysfunctional activation of the nondominant hemisphere that 
may interfere with language recovery. Evidence indicates that unilateral injury, such 
as left hemispheric stroke, can lead to cortical disinhibition in at least two regions: 
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(1) neighboring ipsilesional cortical areas and (2) contralesional homotopic areas 
connected via the corpus callosum (Bütefisch, Kleiser, & Seitz, 2006). 

It is well established that activity in one cerebral hemisphere affects activity in 
the other one via a rich network of interhemispheric connections and that these 
interactions represent a dynamic process that can be flexibly modulated based on 
task demands or by exogenous stimulation (Chrysikou & Hamilton, 2011). The 
inhibitory interplay between homologous hemispheric regions likely contributes to 
normal performance on a variety of tasks and can be manipulated with 
tDCS. Unilateral stroke gives rise to maladaptive patterns of interhemispheric com-
petition. In the healthy brain, there is a mutual inhibitory control between the two 
hemispheres, mediated by transcallosal connections (Bütefisch, Weβling, Netz, 
Seitz, & Hömberg, 2008). Thus, a unilateral left-side lesion reduces transcallosal 
inhibition of the right hemisphere by the left hemisphere and therefore increases 
activity in the intact right hemisphere. Since the right hemisphere can still send 
transcallosal inhibitory impulses to the left hemisphere, activation in the damaged 
left hemisphere is further reduced (de Aguiar et al., 2015; de Aguiar, Paolazzi, & 
Miceli, 2015). 

Appendix A shows an overview of the heterogeneous literature on tDCS and 
aphasia. The first reports focused on the safety of the tDCS device in participants 
with aphasia (e.g., Hesse et al., 2007). Since 2011, the focus has moved from the 
most ideal stimulation site over to the most ideal task and the most ideal stimulation 
schedule. Unfortunately, researchers do not formulate a clear step-by-step protocol 
that fits all patients, due to all the interrelated methodological variables. In Sect. 6.4, 
we will present a road map for determining a tDCS protocol that can be used in 
therapy.  

6.3.2  Motor Speech: Dysarthria/Apraxia of Speech (AoS)

As in the case of aphasia, it is complex to specify a pathway for participants with 
isolated motor speech disorders, i.e., dysarthria (Duffy, 2013) or apraxia of speech 
(AoS), or for individuals with motor speech disorders in the presence of aphasia 
(Wambaugh, Duffy, McNeil, Robin, & Rogers, 2006). 

In daily clinical practice, many treatment approaches have been developed to 
remediate motor speech disorders. For dysarthria, the application of PML can be 
interesting as a therapeutic approach (Austermann Hula, Robin, Maas, Ballard, & 
Schmidt, 2008; Ballard, Maas, & Robin, 2007; Kaipa & Peterson, 2016; Van der 
Merwe, 2011; Wambaugh et  al., 2017, 2018; Wambaugh, Nessler, Cameron, & 
Mauszycki, 2013; Wambaugh, Nessler, Wright, & Mauszycki, 2014; Whitfield & 
Goberman, 2017). Systematic reviews (Mitchell, Bowen, Tyson, Butterfint, & 
Conroy, 2017) have indicated that people with AoS benefit from articulatory treat-
ment at the impairment level. However, no data are available about the impact of 
motor speech disorders and/or motor speech disorder therapy on functional com-
munication (Wambaugh & Mauszycki, 2010) and well-being. 
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To the best of our knowledge, no research data exist about the impact of tDCS on 
speech motor performance for participants with dysarthria. For AoS, Marangolo 
and colleagues are the only researchers who have studied the impact of tDCS in this 
patient population (Marangolo et al., 2016, 2011; Marangolo, Fiori, Cipollari, et al., 
2013). Marangolo et al. (2011) treated three right-handed native Italian speakers (2 
M, 1 F, mean age 66 years) with stroke-induced (ischemic lesion, n = 2; hemor-
rhagic lesion, n = 1) chronic non-fluent aphasia and severe AoS. All three had a 
lesion in the left hemisphere involving damage to (1) structures functionally con-
nected with Broca and (2) the insula. None of them showed damage to the inferior 
frontal gyrus. In a randomized double-blinded experiment, all three underwent 
online intensive articulatory training with online tDCS for 2 weeks. The tDCS pro-
tocol involved sessions (atDCS, 20 min, 1 mA) followed by a 6-day intersession 
interval and another five sessions (sham tDCS, 20 min, 1 mA) or vice versa. The 
behavioral task was an aurally presented repetition task of speech stimuli (n = 40 per 
condition) ranging from consonant-vowel (CV) syllables to CVCCV disyllabic 
words. The word list was adapted for each participant according to their own spe-
cific motor speech disorder. Training was delivered in five different steps: (1) the 
patient could watch the articulatory movements of the clinician; (2 and 3) the patient 
repeated this focusing on syllable-segmentation, vowel-sound prolonging and exag-
gerating the articulatory gestures; and (4 and 5) the patient fluently repeated this. 
The stimulating electrode (atDCS) was positioned over the left inferior frontal gyrus 
(inferior frontal gyrus, F7), and the cathodal electrode was placed over the contra-
lateral supraorbital region. The accuracy of training was measured pre- and post-
treatment. Results showed a significant acquisition effect indicated by a higher 
accuracy of syllable/word repetition in the post-training phase in both tDCS condi-
tions. Moreover, the mean percentage of correct responses was greater after atDCS 
than after sham. Language measures showed generalization effects to oral (i.e., 
reading aloud) and written (i.e., writing to dictation) production tasks. None of the 
participants improved on oral naming. Marangolo et  al. (2011) conducted three 
follow-ups (1 week, 1 and 2 months), which resulted in significantly better retention 
effects after atDCS than after sham. However, study results established significant 
improvements on acquisition, retention, and generalization of training in both 
atDCS and sham. 

Marangolo and colleagues replicated these findings in a group of 17 right-handed 
subjects (9 M, 8 F, mean age 56.71 years) with chronic, ischemic stroke. All 17 were 
native Italian speakers with non-fluent aphasia and severe AoS (Marangolo et al., 
2016; Marangolo, Fiori, Cipollari, et al., 2013). All 17 had a lesion in the left hemi-
sphere involving damage to (1) structures functionally connected with Broca and 
(2) the insula. These studies as well resulted in improved accuracy of speech articu-
lation and generalization effects. The studies of 2013 and 2016 differ at some meth-
odological variables from the study of 2011:

 1. tDCS parameters, i.e., (a) the intensity of the current is now set at 2 mA (instead 
of 1 mA); (b) the treatment intensity is augmented from five to 15 sessions; and 
(c) bihemispheric stimulation (instead of unihemispheric stimulation) is used. 
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This means that the anode was placed over the ipsilateral and the cathode over 
the contralateral IFG (F7 and F6).

 2. The outcome measures: two tasks, i.e., vocal reaction times and picture descrip-
tion, were added and only one follow-up (after 1 week) was performed. Vocal 
reaction times declined after atDCS and 11 out of 17 patients improved on the 
picture description task after atDCS. 

In the 2016 study, Marangolo et al. (2016) included fMRI data and showed that 
atDCS boosted the recovery process by increasing functional connectivity in the left 
lesioned cerebral hemisphere. After sham stimulation, on the other hand, functional 
connectivity increased in the right intact cerebral hemisphere.

6.4 Road Map

In Fig. 6.1 we have constructed a road map, summing up all the variables and link-
ing them in a patient-centered virtuous circle. We believe that speech-language 
therapy should be an iterative process where the clinician is in constant dialogue 
with the patient. (A–B) The clinician should formulate shared, monitored, accessi-
ble, relevant, transparent, evolving, and relationship-centered (SMARTER: Hersh, 
Worrall, Howe, Sherratt, & Davidson, 2012) therapeutic goals taking into account 
interindividual differences and the patient’s expressed needs (Table 6.3). (C) These 
goals should be linked to therapy, identifying the therapeutic material that is rele-
vant for each particular patient in each particular stage of their rehabilitation. 
Meanwhile, the clinician should consider how they will present the material to the 
patient (nonverbal, oral, or written input), how they will support the patient (cueing 
and feedback), and how the patient should respond (nonverbal, oral, or written 

PATIENT-CENTERED APPROACH
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Fig. 6.1 Road map for tDCS implementation in speech-language therapy
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 output). (D) The clinician should choose the area of stimulation, identifying the 
brain regions that are involved in the language processes in question (Table 6.2). 
Here, a specific brain area or a language network can be targeted. To optimize the 
effects of tDCS on impaired networks and to choose the relevant targeted area and 
polarity, clinicians need a better understanding of brain reorganization, the time 
course of the reorganization, and the involvement of perilesional and contralesional 
cortices, in addition to the precise molecular mechanisms associated with tDCS 
(Biou et al., 2019). Moreover, the right Broca homologue and supplementary motor 
area seem to be involved in the subacute phase of stroke, and language reorganiza-
tion needs these divergent processes before a normalization and reshifting of cortex 
activity towards the left can occur at the chronic stage (Saur, 2006). Klaus and 
Schutter (2018) showed in their meta-analysis a small, but reliable effect of online 
tDCS on language production. On the other hand, Westwood and Romani (2017) 
found no effect of tDCS on performance in language production and reading tasks. 
(E) The clinician has to determine the type of stimulation, taking into account the 
location and the severity of the stroke. Different strategies can be used through inhi-
bition of interfering areas or excitation of compensating/perilesional tissue. This 
will depend on several different factors (e.g., timing of stimulation and area of stim-
ulation). (F) The clinician has to establish the stimulation parameters, determining 
the intensity, current, and area of stimulation; the placement, type, size, and shape 
of the electrodes; and linking these settings with the therapeutic goal (Table 6.1). 
(G) The most sensitive outcome measure should be chosen with a focus on the 
impairment, the transfer, or the generalization to functional communication. (H) 
Follow-up is needed to evaluate if the progression remains or possibly augments. 
Here, it is also important to take into account the patient’s subjective feeling of 
progress and well-being. In close consultation with the patient, new therapeutic 
goals can be set, thereby repeating the circle.  

6.5  Discussion

These heterogeneous influencing parameters illustrate the difficulties associated 
with tDCS in anticipating the direction and the magnitude of its behavioral effects 
(Jacobson et al., 2012; Oldrati & Schutter, 2017). Recent publications have high-
lighted substantial variability among reported stimulation effects in healthy partici-
pants (e.g., Wiethoff, Hamada, & Rothwell, 2014), criticized methodological 
reasons (Antal, Keeser, Priori, Padberg, & Nitsche, 2015), or even questioned the 
potential of tDCS to induce behavioral effects on cognition and on motor function 
(Horvath, Forte, & Carter, 2015). They have motivated reflections on the use and the 
efficacy of tDCS and prompted urgent calls for more rigorous methodology (e.g., 
within-subject instead of between-subject designs), including replication studies 
(Fertonani & Miniussi, 2017) and extension of investigations to older participants, 
to other language disorders (e.g., semantics or syntax) and other motor speech dis-
orders (e.g., ataxic dysarthria), and to specific behavioral tasks (e.g., investigations 
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of additional PML in participants with motor speech disorders). However, the more 
parameters one can distinguish as impacting the functional outcome, the more com-
plex it becomes to find homogeneous groups in order to unravel the cumulative 
effect of speech-language therapy and tDCS. 

Moreover, the complexity of the brain network which controls speech and lan-
guage remains largely unknown. Functional MRI (fMRI) data highlight (1) the exis-
tence of a shared core network of segregated local neural communities in the 
primary sensorimotor and parietal regions, in which the left primary motor cortex 
plays an important role in the speech network organization; (2) the flexibility of 
these strong interconnected local neural communities based on their participation in 
several functional domains across different networks; and (3) the capacity to adap-
tively switch long-range functional connectivity, depending on the nature of the 
task. This means that each behavioral task addresses a different functional network 
which is related to a different neural community structure (Fuertinger et al., 2015). 
For example, the motor speech production network and the real-life language net-
work share high-strength neural communities but also recruit function-specific non- 
shared network nodes. Predicting the efficacy of tDCS over a specific region will 
therefore depend on our knowledge about the exact involvement of that region in the 
task that will be used in combination with tDCS. Especially in patients, the underly-
ing neural mechanisms are usually not easy to determine or understand. Therefore, 
besides as an interventional tool, tDCS should also be used as a research tool to 
complete neuroimaging approaches, neurophysiological parameters, and behavioral 
measures and thereby unravel the mechanism of neuroplasticity (Hartwigsen, 2015). 
This more fundamental methodological approach could be developed in parallel 
with clinical practice, in which therapy goals should be carefully planned and train-
ing should be impairment, activity, or participation oriented.  

6.6  Conclusion

Considering patients with aphasia, atDCS over the left inferior frontal gyrus (F5) 
associated with naming therapy can result in higher naming accuracy for right- 
handed participants with chronic non-fluent vascular aphasia. Patients with severe 
AoS and chronic non-fluent vascular aphasia might benefit more from atDCS asso-
ciated with articulation therapy, i.e., oral repetition. However, the generalizability of 
the tDCS findings to other aphasic symptoms or to other speech motor impairments 
in other stages of rehabilitation might be limited. Concerning tDCS parameters, 
bihemispheric stimulation might be more efficient than unihemispheric stimulation 
(Marangolo et al., 2016; Marangolo, Fiori, Cipollari, et al., 2013). These findings 
are in line with the interhemispheric inhibition hypothesis and confirm the impor-
tance of activating perilesional brain tissue for enhanced speech-language outcome. 
The stimulation schedule should include repeated sessions of tDCS that might 
induce more permanent behavioral and neural long-term effects in the stimulated 
network (Meinzer et al., 2014; Meinzer, Darkow, et al., 2016; Reis et al., 2009). To 
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determine the appropriate behavioral task, reactivation or (mal-)adaptation strate-
gies should be monitored. More evidence from behavioral treatment studies in 
speech motor learning could help in exploring the impact of tDCS. However, the 
impact of tDCS with modality- and task-specific speech-language therapy remains 
limited and equivocal. Interindividual differences should be taken into account; in 
tDCS studies only demographic information about age, gender, and education has 
been well reported. Since it is known that the neuroplasticity of the elder brain dif-
fers from that of a younger brain, further research is warranted in all age categories 
of a healthy population (Summers et al., 2016). 

However, it is impossible to set up a standard protocol since many parameters 
co-interfere with the behavioral task and interindividual variability and therefore 
hamper comparability between studies. While there is study-specific evidence for 
the efficacy of tDCS in language production research, the methodological variabil-
ity between studies is large. Therefore, a patient-centered road map has been 
described in this chapter, which can be used as a guideline to determine the tDCS 
protocol with the most potential for each individual patient. This road map has been 
constructed as a virtuous circle since the needs of the patient and the neural com-
plexity of the damaged network will change over time. This also allows for timely 
evaluation of the efficacy of the tDCS protocol and makes it possible to adjust if 
needed. 

In general, further research should bridge the gap between tDCS and neuroimag-
ing, neurophysiological, and behavioral findings in speech-language therapy, while 
using a more homogeneously constructed research methodology. The implementa-
tion of tDCS in the clinical speech-language therapy is promising, but remains 
experimental. Many research questions still need to be addressed: (1) More research 
is required to study the advantages of high definition tDCS, which can be used to 
stimulate more focally. (2) More research is needed for specific patient populations. 
There is evidence to promote online tDCS in participants with chronic non-fluent 
aphasia (combined with severe AoS), but up until now, there is less to no evidence 
to promote online tDCS in other patient populations, such as individuals with dys-
arthria. And (3) research should focus more on functional communication, well- 
being, and follow-up results, instead of focusing only on the impairment.  
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