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1 Introduction

Incentivizing the development of innovative solutions to real-world problems
through competitions has become a popular means for many companies to gather
new, diverse ideas [18]. The Amazon Robotics Challenge (ARC), formerly known
as the Amazon Picking Challenge, focuses on warehouse automation and has
become one of the most renowned robotics challenges. The challenge aims to
combine the state-of-the-art robotic manipulation and computer vision technologies
into practical solutions for warehouse operation.

With increasingly stricter rules, it models the problem of stocking and picking
items, which may not be known in advance. For reference of scale, Amazon
introduces 50,000 new items every day to warehouses and fulfills an estimated 35
orders per second. At the ARC 2016, the winning team achieved a success rate of
nearly 84%, approaching the performance of human workers, who pick and stow
about 400 items per hour at full speed with an almost 100% success rate [1].

In this chapter, we present our approach to the ARC 2017, with particular
emphasis on the lessons learned from past participants, our design philosophy and
our development strategy. Moreover, we describe two elements of our proposed
system, the suction tool and the shelf or storage system, and their development
process.

The remainder of this chapter is structured as follows: First, we summarize the
ARC 2017 tasks and technical challenges in Sect. 2. In Sect. 3, we present our
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approach, the lessons learned from past competitors, our design philosophy, and
our development strategy. In Sect. 4, we show an overview of our system and then
present the details of the suction tool and storage system development. Finally,
Sect. 5 concludes this chapter while highlighting the best lessons we learned.

2 Technical Challenges

The ARC consists of two tasks:

• Stow: Store 20 new items in the storage system, modeling the process of adding
newly arrived items into the warehouse.

• Pick: Move 10 items from the storage system to three boxes, modeling the
purchase process of Amazon.

The rules of the ARC 2017 have significant differences compared to previous
years [2]:

(a) Half of the items are unknown until 30 min before the round starts.
(b) The storage system is designed by the teams.
(c) The volume of the storage system is 70% smaller than the previous years, for a

total of 95 L.

(a) limits the applicability of conventional learning-based approaches in which
a classifier is trained with large amounts of data (e.g., up to 150,000 images/item)
to recognize items, which affects the approaches of eight of the top ten teams of
the ARC 2016 [20, 21]. This requirement is realistic for warehouse applications,
where new items are scanned and entered into the database and must be manipulated
shortly after. For reference, Amazon enters about 50,000 new items to its inventory
every day.

With (b), Amazon opened up a new design dimension in the challenge, allowing
the teams to adapt the storage solution to their robot and to propose new ideas
for the storage system. As the number of items remained the same as in previous
years, the reduction of volume in (c) almost inevitably causes items to be stacked
and occlusions to occur, which poses a significant challenge for object recognition,
manipulation, and planning.

In summary, the main challenges are:

• Object recognition: Half of the items are unknown until 30 min before
each round starts, which constrains following approaches where large
amount of data can be used.

• Robot manipulation: The target items belong to very diverse categories
(book, box, cylinder, deformable, wrapped, clamp-shell, and others), have

(continued)
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Fig. 1 Proposed warehouse automation robotic solution deployed by Team NAIST-Panasonic at
the ARC 2017. The system consists of a 7-DOF robot arm, a custom-made end effector, a weight-
aware storage system, and a recognition space. Each picked item is examined in the recognition
space equipped with four RGB-D cameras to quickly recognize items from multiple viewpoints
using both the state-of-the-art learning-based and feature-based technologies. Photo courtesy of
Amazon Robotics

a maximum weight of 2 kg, and fit in a maximum volume of 0.42×0.27×
0.14 m3.

• Storage system design: Each team designs a storage system to fit a
maximum of 32 items within 95 L of volume and 5000 cm2 of area. It
has to feature 2–10 bins, contain no actuators, a maximum of 50 USD in
sensors (if any) and should be used for both tasks.

3 Approach

In general, our strategy consists of getting an initial estimation of the target item
using the end effector camera, then pick it and move it to the recognition space, a
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dedicated and controlled space as shown in Fig. 1, where multiple methods vote to
determine its class. Our idea was to create a democratic sensor fusion system using
RGB-D cameras [5, 16], as well as weight, contact, and force sensors to identify all
items and reduce uncertainty to a minimum [11].

In the stow task, we move items from a container to the storage system relying
on the deep learning classification and weight, and discard erroneous classifications
with the item list provided before the round and the already moved items. In the
pick task, we (1) search for known items which are recognizable by the deep
learning classifier, and (2) explore the bins by grasping unknown items and moving
them to the recognition space to be identified. Finally, we move the items to its
corresponding box, if it is a target item, or to another bin or location inside the same
bin otherwise.

In the rest of this section, we present the logic behind our development and design
decisions during the ARC 2017. We also present a survey on the experiences of past
competitors, describe our design philosophy, and present the development strategy
that we followed.

3.1 Past Competitions

We have started our development by investigating other teams’ efforts in the two
previous editions of the competition, which are instructive both in terms of how
some approaches succeeded and what went wrong for others. In the remainder of
this section, we detail past work that helped us gain insights into past editions of the
ARC, and how this knowledge shaped our own design approach.1

A number of reports and media coverage have summarized the state of the art of
ARC, as well as the accumulated heuristics, such as [10] by Team RBO who took
first place in ARC 2015.

Correll et al. [6] describe platforms, grippers, sensors, and perception and
motion planning techniques used by the teams competing in the 2015 edition. They
conclude that there is trade-off between customization and dependability of software
developed by the teams and third parties.

This was complemented by an in-depth report from Nikkei [20, 21] about the
solutions of the 2016 teams. Additional reports from the Robotics Society of Japan
illuminated some more approaches and problems in [9, 22].

A number of previous competitors, such as Team C^2M [19], Team R U
Pracsys [28], and Team MIT-Princeton [32], also provide implementations of
their approaches, as well as the datasets generated during the competitions. These
datasets have been useful as a starting point to train and test our object recognition
algorithms, as many of the items are also found in the ARC 2017 practice kit.

1While this section summarizes our literature review preparing for the ARC 2017, we note that
papers detailing the ARC 2017 results have been presented at the 2018 ICRA workshop on
Advances in Robotic Warehouse Automation [3], and/or awarded Amazon Robotics Best Paper [14].
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Table 1 Common failures and the potential impact on the performance

Failure Potential impact

Collision with storage system Round loss

Planning failure Round loss

Items left on recognition space Object recognition capability loss

Losing suction contact Point loss due to dropped item

Two-item grasping Point loss due to lost item

Object recognition errors Point loss due to misplaced item

Grasping failures Time loss

Slow path-planning Time loss

Looking at the past competitions, it becomes clear that using suction cups and
deep learning has tended to increase teams’ success rates. Furthermore, the reports
show that teams using a single robot manipulator perform better, and make a strong
case for reusability by using the Robot Operating System (ROS) [24, 25].

We have identified the most common problems that have occurred during the
competition and summarized their potential impact in Table 1.

With these failures in mind, we drew the following main conclusions to guide
our development effort:

• Suction is an effective grasping tool, as 80% of the items are suctionable.
• A professional suction system is important for reliable operation.
• Learning-based object recognition can yield up to 90% success rate [20,

21].
• Using depth information does not improve object recognition signifi-

cantly, and may even be counterproductive.
• Robust error recovery is fundamental for a competitive performance.
• A 7-DOF manipulator can save time by achieving the target pose quicker

as demonstrated by the previous winners [10, 13].
• Task planning using state machines is effective [4].
• Modifying the code in the last minute must be avoided, as it leads to

human error.
• Sensors can overheat and stability issues should be anticipated.
• Illumination in the venue significantly affects the object recognition

performance.



92 G. A. Garcia Ricardez et al.

3.2 Design Philosophy

Our design philosophy is centered around simplicity and reliability. As there is no
miracle solution for vision and manipulation in unstructured environments, we focus
on designing dependable systems that tolerate errors, recover from failures, and
continue the tasks safely.

The concept of separation of functions allows the specialization of components
and supports clean design [31]. In our solution, we separated the functions of the
end effector into suction and gripper tools, as shown in Fig. 2. The suction and
gripper tools are mounted on separate linear actuators, which are used to advance
and retract each tool before the manipulation. This arrangement allows separating
their functions and increases both versatility and redundancy, as the implementation
of per-tool as well as per-item manipulation strategies become simpler.

From the mechanical design to the software implementation, we harden our
system against errors and implement recovery strategies. We implement error
avoidance and recovery strategies on both the hardware and software level to make
the system more robust. For example, if the drawer gets stuck and cannot be closed,
the linear actuator shakes the drawer to make the blocking items fall inside and
avoid massive penalties in the score. Though less likely but critical errors are hard
to recover from, protocols for quick restart should always be prepared.

We use learning-based methods such as YOLO v2 [26, 27] and feature-based
methods such as color histogram, bounding box volume, weight, and histogram of

Fig. 2 The end effector (middle) consists of a suction tool (right) and gripper tool (left), each of
which can move. The protruding hose contracts upon suction, which pulls the aluminum suction
cup casing against the yellow ABS ring. Two markers on the casing allow the suction cup to be
located easily during the recognition phase. A force-sensitive resistor (FSR) on the outside of
the suction cup acts as a contact sensor. On the gripper, two protruding FSRs detect contact, and
sensors underneath the rubber surface measure the contact force
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oriented gradients [7] to detect and classify the items. The usage of multiple sensing
technologies and methodologies helped to compensate for the weaknesses of each.
For example, combining weight and volume by training a support vector machine
yielded high accuracy in the recognition.

3.3 Development Strategy

In a first step, we aim to develop a minimal system that performs under limited
and controlled conditions, so that we can test the basic functionality. We then
iterate through short design and prototyping cycles, testing new ideas as early in
the development process as possible.

In terms of hardware, we use the KUKA LBR iiwa [17] with a 14 kg payload,
which has torque sensors in each of its seven joints. We use 3D printed parts and
aluminum frames that are quickly accessible, versatile, and durable, and Arduino
microcontrollers for both prototyping and deployment.

In our solution, the robot uses motion primitives to move between known
configurations, as well as a planner [29] to pick up and deliver the items. This
improves the overall performance of the robot, simplifies the high-level planning,
and avoids getting stuck if planning solutions are time-consuming.

We use ROS to simplify the development, facilitate the integration, and increase
the code reusability. To control the robot arm, we use the iiwa_stack [12] package
to interface ROS and the KUKA API. We also use Git [30] version control
and Docker [8] containers, which make it easy to share code and development
environments across multiple devices and programmers. This helped us to quickly
recover from an accidental deletion of source code and data that might have had a
significant impact in our score, if no such tools have been employed.

The source code of our solution is publicly available online in the official ARC
repository.2

4 Proposed Solution

The proposed system consists of a custom-made end effector mounted on a serial
robotic manipulator, a controlled recognition space formed by an array of RGB-
D cameras, and a storage system with weight sensors. The end effector features
suction and gripper tools for manipulation, as well as an RGB-D sensor for object
recognition and grasping point estimation. An overview of the components of the
system is shown in Fig. 3.

2Warehouse Picking Automation Challenges, Team NAIST-Panasonic: https://github.com/
warehouse-picking-automation-challenges/team_naist_panasonic.

https://github.com/warehouse-picking-automation-challenges/team_naist_panasonic
https://github.com/warehouse-picking-automation-challenges/team_naist_panasonic
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In this section, we focus on describing the development of the storage system
and the suction tool, which was the most used manipulation tool since 80% of the
items are graspable by suction.

4.1 Suction Tool

The suction tool consists of a compliant, partially-constrained vacuum cleaner hose
of 150 mm in length and 35 mm in diameter connected to an aluminum tube of
150 mm length and 35 mm in diameter. The tip of the suction tool is made of flexible
rubber and has a force-sensitive resistor to detect contact with the items. The suction
tool dimensions were determined by analyzing the suction force required to lift the
maximum possible weight of an item set in the ARC rules as well as the flow over
force ratio to ensure a reliable suction seal.

As shown in Fig. 2, several centimeters of the compliant hose extend beyond the
fixation. This compliant connection allows the suction cup to move and incline, thus
compensating for angular and position errors as the suction pulls the cup and object
together. Furthermore, it enables the robot to move quickly into the containers,
without danger of damaging articles during a collision. Lastly, when the suction
seal is successful, the hose contracts, which pulls the suction cup casing and the
suctioned item towards the fixation, making the formerly compliant connection
more rigid and reducing the item movement (e.g., swinging) after suction.

Fig. 3 Overview of the Team NAIST-Panasonic solution deployed at ARC 2017
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In past competitions, teams have struggled with designing a suction mechanism
with sufficient suction force. Commercial vacuum cleaners and similar solutions do
not generate the necessary flow and pressure difference to secure all items. On the
other hand, excessive suction force may damage the packaging of the item, e.g.,
clothes in PVC bags. To respond to this problem and to design a system that can
suction all items safely, we have investigated the suction force systematically.

First, we modeled the suction tool as shown in Fig. 4 as a long tube with
an opening at the end. Then, with the pressure difference and flow rate of the
blower, the hose diameter, the suction cup size, and the relative opening at the end
(assuming an imperfect seal), we calculate the resulting normal force. We performed
preliminary experiments with suction cups of 30, 40, and 50 mm in diameter dp, and
hoses of 10, 20, 30, 40, and 50 mm in diameter d and 5 m in length L. Figure 5 shows
the results.

The combination of dp = 40 mm and d = 30 mm had the best performance when
tried with all items from the ARC 2017 practice kit: 36 items can be suctioned
(90%). The suction force has to be controlled because nine of the items (22.5%)
can be damaged by excessive suction force. Thin and cylindrical items (e.g., wine
glass, toilet brush, dumbbell) and the mesh cup were the most challenging to pick
via suction. Nonetheless, it is notable that even porous, deformable, and irregularly
shaped items such as the marbles and the body scrubber could be picked reliably.

The main conclusion is that with sufficient hose diameter and air flow, items can
be held even if the suction seal is imperfect, such as when the item surface is uneven
or rough. With smaller hose sizes, suction cups of smaller diameters break away
significantly earlier, as they cannot transport enough air to sustain a leaking seal.

We decided to use an industrial grade blower [15] with a maximum vacuum of
−40 kPa to power the suction tool. We use a pressure sensor to detect when an item
has been suctioned and if the item has been dropped (i.e., when the suction seal has
broken). To avoid damaging the delicate packaging of items, we added a waste gate
with a PD controller to the hose that can regulate the static pressure at the suction
cup between 0 and −40 kPa.

Blower

Fig. 4 Simplified model of the suction tool to systematically investigate the suction force. Q is
the flow rate, pa and ps are the external and internal static pressures, respectively. A, Ap, and Ao
are the cross sections of the tube, the suction cup chamber and the suction cup border, respectively,
and their corresponding diameters are denoted with d. L is the length of the hose
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Fig. 5 Effective suction force for an imperfect suction seal, assuming the vacuum machine
Induvac VC 355-720. 1 − Ao/Ap is 1 for a perfect suction seal, and 0 when no part of the object
is in contact. It can be seen that larger hose diameters make the suction seal more robust, as they
allow higher air flow

Fig. 6 Storage system featuring three bins. Bin A (top left) is designed to store large items. Bin B
and C (bottom left) are shallower to store small items. Bin C is a drawer opened and closed by a
linear actuator. The black skirts around the bins prevent items falling out of the storage area

4.2 Storage System

The final version of our storage system consists of three bins. It is made of wood
and features one drawer, as shown in Fig. 6.

We started our development with a storage system composed of adjustable
aluminum profiles. In retrospect, the ability to adjust division sizes was unnecessary,
as we did not end up testing many different configurations. For the first prototype,
we fixed the depth of the shelf to accommodate the second largest dimension
of the item maximum size, i.e., 27 cm. The other two dimensions were set to
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Table 2 Dimensions of the
bins used in the horizontally
oriented storage system

Name Length (m) Width (m) Depth (m)

Bin A 0.90 0.40 0.19

Bin B 0.40 0.30 0.08

Bin C 0.38 0.29 0.08

an approximated square, making the shelf compliant with the rule of 95,000 cm3

maximum volume.
During the preliminary tests with this initial design, we realized that it becomes

cluttered very easily, and requires precise manipulation to avoid items falling out.
We experimented with different configurations and drawers to decrease the clutter
and finally opted for a horizontally oriented storage system with three bins, as
described in Table 2. It is worth mentioning that most successful teams included
a system that increased the available surface area of the storage system to spread
out items and reduce clutter.

We aimed to maximize the surface available to place items considering both the
maximum allowed volume and the kinematic reachability of the manipulator. To this
end, we designed bin C as a drawer which is opened and closed by a linear actuator
attached to the robot structure. This drawer holds small items which otherwise
would be difficult to find in an unstructured pile of items.

We placed two sets of weight sensors: one under bin A and another under bins
B and C. Each set of weight sensors consists of four 3D force sensors [23] attached
to a rectangular base made of aluminum frames and can detect changes of up to 2 g.
Taking into account the considerable effort and cost to implement a custom weight
sensing solution, as well as the hysteresis effects in the force sensors that negatively
affect overall precision, we would strongly recommend choosing an off-the-shelf
alternative.

The data from the weight sensors is used to discriminate between events such
as (un)successful grasping and accidental drops, as well as to classify the items
by weight or a combination of weight and other features. Actually, we combined
the weight of the item measured by the force sensors, and the bounding box
volume calculated in the recognition space with a Support Vector Machine (SVM)
for classification. Combining weight and volume not only allows the SVM to
include a measure of density into its classification, which is especially helpful to
differentiate the numerous light items, but also catches certain edge cases such as
clamshell items (e.g., open books) effectively. On the other hand, the bounding box
of highly deformable objects can be inconsistent, which makes them vulnerable to
misclassification.

Finally, in order to avoid dropping items outside of the bins and to increase the
chances of recovery, we installed ramps around the bins that help catch dropped
items.
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5 Conclusion

We presented our approach to the ARC 2017, with particular emphasis in the lessons
learned from past participants, our design philosophy and our development strategy.
We also described two particular features of our proposed system, namely the
suction tool and the storage system, which we believe played an important role
in our performance.

The main lessons from our experience in the ARC 2017 can be summarized
as follows:

• Consider previous competitors’ experience to avoid making similar mis-
takes.

• Use code and datasets from past competitors to get started.
• Keep it simple and only do what is necessary. Overengineering and

unnecessary redundancy make the system more prone to fail.
• Use tools such as Git, Docker, and ROS to facilitate development and

recovery from unexpected errors.
• Start with a minimal system that can be iterated upon quickly, to keep

prototyping and development cycles short.
• Develop a robust error recovery as perception and manipulation errors as

well as uncertainty are unavoidable.
• Avoid modifying the code in the last minute, as this leads to human error.
• Take into account illumination as this significantly affects the object

recognition performance in the venue.
• Protect sensors against overheat and anticipate stability issues.
• Work on logistics from the beginning as transporting robots is often time-

consuming.

Appendix

Table 3 shows the final results obtained by Team NAIST-Panasonic during the
ARC 2017.

Table 3 Final results of Team NAIST-Panasonic at ARC 2017

Tasks Results Rank Participants

Stow task 110 points Fourth place 16 teams

Pick task 80 points Tenth place 16 teams

Combined final 90 points Sixth place 8 teams

Overall challenge Finalist prize Sixth place 16 teams
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