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Abstract. Slender marine structures such as deep-water marine risers
are subjected to currents and will normally experience Vortex Induced
Vibrations (VIV), which can cause fast accumulation of fatigue damage.
The ocean current is often three-dimensional (3D), i.e., the direction and
magnitude of the current vary throughout the water column.

Today, semi-empirical tools are used by the industry to predict VIV
induced fatigue on risers. The load model and hydrodynamic parameters
in present VIV prediction tools are developed based on two-dimensional
(2D) flow conditions, as it is challenging to consider the effect of 3D
flow along the risers. Accordingly, the current profiles must be purposely
made 2D during the design process, which leads to significant uncertainty
in the prediction results.

Further, due to the limitations in the laboratory, VIV model tests are
mostly carried out under 2D flow conditions and thus little experimental
data exist to document VIV response of riser subjected to varying direc-
tions of the current. However, a few experiments have been conducted
with 3D current. We have used results from one of these experiments to
investigate how well (1) traditional and (2) an alternative method based
on a data driven prediction can describe VIV in 3D currents.

Data driven modelling is particularly suited for complicated problems
with many parameters and non-linear relationships. We have applied a
data clustering algorithm to the experimental 3D flow data in order to
identify measurable parameters that can influence responses. The riser
responses are grouped based on their statistical characteristics, which
relate to the direction of the flow. Furthermore we fit a random forest
regression model to the measured VIV response and compare its perfor-
mance with the predictions of existing VIV prediction tools (VIVANA-
FD).
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1 Introduction

Slender marine structures such as deep water marine risers are exposed to ocean
currents causing vortices to be shed in the wake of the circular cross-section
as illustrated in Fig. 1. This will cause alternating lift forces that may synchro-
nise with the cylinder’s motion such that high-frequency vibrations can occur,
a phenomenon termed Vortex Induced Vibrations (VIV). The vortex shedding
frequency may synchronise to a multiple set of riser eigen-frequencies. This may
lead to fatigue during short exposure times even if the associated response ampli-
tudes are small. As this limits riser lifetime, VIV are a major concern in riser
design and operation.

Fig. 1. Left panel: Vortex Induced Vibrations (VIV) due to vortices shed in the wake
of a slender marine riser (seen from above). The VIV manifest as movements e.g. in a
figure-of-eight like pattern (dashed red line). Right panel: Examples of riser trajectories
in the x/y plane perpendicular to the length of the riser. (Color figure online)

The load model and hydrodynamic parameters in present frequency domain
VIV prediction tools used by industry, i.e., VIVANA [7], Shear7 [14] and VIVA
[11], are developed for the simplified 2D flow conditions. However, the speed of
the current and spatial patterns in the field may vary over the water column lead-
ing to 3D flow conditions [8]. It is common practice to perform pure cross-flow
VIV analysis with current profiles purposely made 2D, which is an obvious over-
simplification. This is partially due to the lack of a reliable model in present VIV
prediction algorithms of combined in-line and cross-flow responses. In addition,
the hydrodynamic load in the frequency domain prediction tools is assumed to
be harmonic, which is a simplification of the true load process (non-harmonic).
A new time domain prediction tool has been developed [9,10], but systematic
validation of the tool subjected to 3D flow condition is needed.
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Experimental VIV model tests subjected to 2D flow have been carried out in
recent years [4,12,15, e.g.]. Limited test data can be found for VIV in 3D flow
conditions. The common challenge of these data is that VIV response becomes
increasingly complex with many parameters that interplay and influence the
physical process. Consequently, it is also difficult to model the process in a
simplified mathematical model.

Data driven modelling and machine learning algorithms are powerful and
highly flexible model-free methods for inferring relationships in data [3]. They
are constructed to handle highly complex problems with many parameters and
non-linear relationships. However, to take full advantage of the methods, high-
quality data with many samples are required.

VIV response modelling is complex and model tests provide experimental
data for testing the suitability of a machine learning approach (Sect. 2). First
we applied unsupervised learning (clustering) to explore and identify relation-
ships in the data in order to select the most relevant parameters from the high-
dimensional data set (Sect. 3). Secondly, we used supervised learning to build a
regression model that can predict the statistical properties of the VIV response
based on the flow properties (Sect. 4.2).

The overall objective of the research is to obtain more accurate estimation
of riser VIV fatigue damage by combining traditional prediction methods with
machine learning to be integrated in future on-site riser monitoring systems. This
paper presents a first attempt on the possible improvements by including the
effect of 3D current in the otherwise 2D traditional VIV prediction tools. VIV
response prediction is carried out with existing VIV prediction tools and com-
pared with similar predictions from a data driven model in order to investigate
the limitations and potentials of both methods.

2 VIV Model Test with 3D Flow

We use data from an experiment carried out in 1996 and 1997 at the MARINTEK
(now part of SINTEF Ocean) towing tank using a rotating rig.

Experimental Setup and Riser Model: In the laboratory, 3D flow conditions
were mimicked using a rotation rig as shown in Fig. 2. The rig was mounted in the
deepest part of a towing tank having a length, width, and depth of 80 m, 10.5 m
and 10 m, respectively. The test rig consisted of a 13 m long vertical cylinder
with a diameter of about 0.5 m. Bearings in both ends of the cylinder made it
possible to rotate the rig around its vertical axis by use of an electrical actuator.
The rotating cylinder was mounted with horizontal arms at the top and bottom.
The riser model was suspended between these arms in a pretension arrangement.
At the lower connection point it had a constant arm length of 4.6 m. The upper
connection arm length could be varied from 0.4 m to 4.6 m.

During the test, the rig was rotated around the vertical cylinder at constant
rotational velocity. Thus, the riser experienced a water flow given by the rota-
tional speed and distance to the rotational axis. For equal arm lengths, the flow
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Fig. 2. Upper panel: The geometrical configuration of the arms (blue) and the riser
(red). In the 2D configuration (left), the angle between the horizontal arms was 0◦

leading to a 2D flow. In the mild 3D configuration (middle) the angle between the arms
was 60◦ and in the strong 3D configuration (left) the angle was 120◦, both leading to a
3D sheared flow. Lower panel: Normalised velocities along the riser in the x-direction
(ux/U , blue), y-direction (uy/U , orange), and magnitude of total velocity (utot/U ,
black thick line), where U refers to the velocity of the tip of the lower arm. (Color
figure online)

speed was uniform in magnitude and direction along the riser model. Decreas-
ing the upper arm length, led to a variation in the flow along the riser model,
resulting in a sheared, but still 2D, flow. More detailed description of the test
set-up can be found in [5].

In order to accommodate 3D flow conditions, the planar angle between the
upper and lower arms could be adjusted. When the two arms were offset, the
current flow varied in direction along the riser model. Hence, it was possible to
test a riser model subjected to a well-defined 3D current profile. Seven different
setup set-up configurations were performed, where the length of the upper arm
varied between 2.7 m to 4.6 m, and the angle between the horizontal arms varied
between 0◦ and 165◦. In the present study only the three configurations with
constant upper arm length of 4.6 m were included. The angle between the arms
were 0◦, 60◦ and 120◦, resulting in a uniform 2D current profile, a mild 3D
current profile and a strong 3D current profile.

The outer diameter of the test model riser was 23 mm with a weight in water
of 1.433 Nm−1. The riser had been modified to house accelerometers, and stiffened
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Fig. 3. An example of a time series interval for sensor 5 in the 2D geometry with
rotational velocity of 1.629 ms−1 in the sample interval 5000 to 5500. The upper panels
show the time series and the lower panels the real part of the fast Fourier transform.

with a 4 mm steel wire to obtain a high axial elastic stiffness and strength. It was
filled with gelatin to avoid vibrations of the cabling inside.

Time Series: The response of the riser was measured with 10 pairs of bi-axial
accelerometers mounted along the length of the riser. The accelerations were
measured along and perpendicular to the length of the riser with a sampling
frequency of 120 Hz. During the tests two of the accelerometers (number 3 and
10 from the bottom) failed and were rejected from further analysis.

The measured accelerations were Fourier transformed and low-pass filtered
at 30 Hz to remove high frequency noise, before being doubly integrated in the
frequency domain to obtain displacement time series. The transient phase in the
measured signals at the beginning and the end of each test case were discarded
so the total signal consisted of time steps from 2500 to 8000 (21.8–66.7 s). We
split the time series in intervals of 500 samples corresponding to 4.2 s an example
of which is given in Fig. 3. We used a fast Fourier transform of the time intervals
to get the dominating oscillation frequencies (lower panels of Fig. 3).

We only considered local current and treated each sensor and each time
interval as independent measurements. This is a strong simplification since it is
known that VIV responses will be correlated over the length of the riser model.

The inaccuracy of the accelerometers and other sensors was a few percent of
the true values. In addition, it is observed that VIV response is not completely
stationary. Therefore, the standard deviation of the measured response can vary
depending on the time slot. For the total displacement, the deviation between
the time slots can be up to 15%.

Features: In total we considered the features listed in Table 1. They are not
independent and at different stages in the analysis different subsets were selected
as specified.
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Table 1. The full set of considered features. The x- and y-directions refer to the plane
perpendicular to the length of the riser (see Fig. 2)

Feature Explanation

σAcc,x, σAcc,y Standard deviation of acceleration in the x, y directions in ms−2

γAcc,x, γAcc,y Skewness of acceleration in the x, y direction, no units

κAcc,x, κAcc,y Kurtosis of acceleration in the x, y direction, no units

σDis,x, σDis,y Standard deviation of displacement divided by riser diameter

σtot Standard deviation of total displacement divided by riser diameter

γDis,x, γDis,y Skewness of displacement in the x, y direction, no units

κDis,x, κDis,y Kurtosis of displacement in the x, y direction, no units

fDis,x, fDis,y Frequency of oscillations in x, y direction in units of s−1

utot Total sensor velocity (equal to current) in ms−1

ux, uy Magnitude of sensor velocity in the x, y direction in ms−1

U Velocity of lower arm in ms−1

d Sensor distance from bottom in m

In addition to the variance (standard deviation) of the distributions, we
also regarded skewness and kurtosis. Skewness is the third standardised cen-
tral moment for the probability distribution. It describes the symmetry of the
distribution. Kurtosis is the fourth standardised central moment of the proba-
bility distribution. It is a measure of the combined weights of the tails relative to
the rest of the distribution [16]. Vandiver [13] used kurtosis to characterise the
VIV responses. It assumes a value of 1.5 for a sinusoidal process as typical for a
single mode lock-in response, and a value of 3.0 for a Gaussian process typical
for multi-frequency random vibration.

3 Clustering

We used unsupervised learning to investigate the relations between the dimen-
sionality of the current and the statistical properties of the oscillations. In order
to focus on the flow dimensionality, we only considered measurements where the
total sensor velocity fell within a narrow range, utot = 1.1−1.2 ms−1.

Hierarchical Density Based Clustering: Clustering basically means sort-
ing the data points according to similarities in the full parameter space. For a
few features this can easily be visualised, but for many features visualisation is
challenging.

Hierarchical density based clustering uses the density of the points in feature
space to build cluster trees hierarchically. The tree is then condensed based on a
minimum cluster size [2,6]. Contrary to other clustering methods, the user does
not specify a number of clusters, but instead specifies the minimal cluster size.
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The points that do not fulfil the criteria for becoming a cluster are assigned to
a noise/outlier category. The user can control the conservatism of the clustering
i.e. how strict the algorithm should be when assigning points to clusters or
noise. Density based scanning is particularly good at handing elongated and
overlapping clusters, and due to the noise option it is suitable for exploratory
data analysis.

Method and Results of Clustering: We applied hierarchical density based
clustering to the full set of features in Table 1 with Euclidian distance as sim-
ilarity matrix, minimum cluster size of 18 members, and minimum number of
samples (the conservatism) of 1. Since the data were equally distributed among
the three scenarios with different governing physics, we expected the clusters to
be small and homogeneous, and consequently we used the leaf method for cluster
selection (rather than the default mass excess method which has a tendency to
produce large clusters).

The importance of individual features in the clustering combined with phys-
ical reasoning and correlations between the features were used to select a subset
of relevant features consisting of: σAcc,x, σAcc,y, κAcc,x, κAcc,y, fDis,x, fDis,y, ux,
uy.

The upper panel of Fig. 4 shows the parameter distributions for each of the
clusters. The randomly selected cluster members shown in the lower panels have
visually similar trajectories. Consequently, the statistical information is descrip-
tive of the physical scenario, and can be used by the clustering algorithm do
distinguish between the scenarios.

Other Clustering Methods: In addition to the density based clustering, we
tested other methods such as Gaussian Mixture and Agglomerative clustering.
Gaussian mixture clustering is a generalisation of k-means clustering where it is
assumed that all data points are generated from a mixture of a finite number
of overlapping Gaussian probability distributions. Agglomerative clustering is
a bottom-up hierarchical clustering approach, where each data point starts as
its own cluster, and the clusters are subsequently merged. When using only the
parameters that have a high significance in the density based clustering, the
results of the three methods are very similar.

4 Response Prediction

Given the clear correlation between oscillation pattern, configuration and statis-
tical parameters, it should be possible to use supervised learning to predict the
statistical properties of the response from a simple input.

The end goal is to predict the long term fatigue for realistic current profiles.
Since the fatigue is strongly dependent on the response, we simplify the problem
and here we compare the response prediction from traditional methods, such as
VIVANA-FD, with a data driven random forest learning approach. We randomly
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Fig. 4. Upper panel: Distributions of the statistical parameters of the clusters. The
bars show the normalised histograms while the thin lines are the kernel density esti-
mates. The cluster numbers correspond to the cluster members shown below. Lower
panel: Examples of trajectories of cluster members. The colours and labels indicate the
configuration. The last row shows examples of data points that are assigned to the
noise category. The clusters are derived based on statistical properties of the accelera-
tions and displacements, and not the trajectories shown here. The fact that the cluster
members have visually similar trajectories indicate that the statistical parameters are
descriptive of the physical scenarios. (Color figure online)

selected a test case in the strong 3D configuration with bottom flow speed of
Utot = 1.105 ms−1 and sampling interval 2500–3000 for comparison.
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4.1 Traditional Method with VIVANA-FD

The flow speed varies in magnitude and direction along the length of the riser
model as shown in Fig. 2 (normalised by total flow speed). The empirical fre-
quency domain VIV prediction program VIVANA-FD was used for the case
study using discrete response frequencies. The equation of dynamic equilibrium
is defined as

Mr̈ + Cṙ + Kr = R, (1)

where R represents the external forces, M incorporates the structural and hydro-
dynamic added mass, C describes structural and hydrodynamic damping, and K
is the stiffness matrix. M , C and R are functions of the response vector r, which
necessitates an iterative solution scheme. It is assumed that the excitation and
response are harmonic at identical frequencies. This type of stationary response
is assumed by most of the empirical VIV softwares [7,11,14]. The main hydro-
dynamic coefficients are the added mass, excitation and damping coefficients,
which are generalised from VIV model test with 2D flows.

The 3D flow is normally converted to 2D by using the total velocity. The
displacement prediction with the 2D flow profile is presented in Fig. 5 (lower
panel, green line). VIVANA-FD predicts a single response frequency (fosc =
6.87 Hz) to dominate the responses along the length of riser model. Consequently,
the response will be harmonic due to the assumption of the load model.

4.2 Data Driven Approach

Instead of using a physics-based model, the purpose of data driven modelling is
to fit the data with a highly flexible model.

Random Forest Regression: Random forest regression is based on decision
trees with a technique called bootstrap aggregation (also known as bagging) [1].
Rather than using individual decision trees, the data is randomly sampled (with
replacement) and a decision tree is trained for each sample.

In order for each feature/variable to contribute equally to the fitting process,
the input and output features must be scaled individually to the same range.
We performed a min-max scaling to the range [0, 1], before randomly split-
ting the data into a training sample (80%) and a test sample (20%). The input
parameters were d, utot, ux, uy, and the output parameters were the remain-
ing parameters in Table 1. However, there was a clear connection between the
parameters with an important role in the clustering, and the parameters that
could be well determined with the random forest model, so we restricted the
output to σDis,x, σDis,y, fDis,x, fDis,y, σtot.

We used a grid search to optimise the hyper-parameters to a depth of 10
layers in the decision trees and 400 estimators. For a 5-fold cross validation,
the best mean squared error on the normalised training data was 0.0062 and
0.0060 on the normalised test data. That the model performed better on the
test data than the training data is a good sign that it was not over-fitting. For
the individual parameters the mean square error was varying from 0.002 to 0.009.
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Fig. 5. Top panel: Trajectories of the case study; the strong 3D configuration with a
bottom flow speed of 1.105 ms−1 for sample range 2500–3000. Subsequent panels: The
measurements (black crosses) and model predictions for the case study. The blue circles
show the random forest prediction from fitting to data from all sensors with the sensor
positions highlighted as larger circles. The orange squares show the predictions from
fitting only three sensors (highlighted as red circles), but predicting for all sensors.
The lowest panel shows the standard deviation of the displacement (in units of riser
diameter). The green line is the prediction from VIVANA-FD assuming 2D flow. (Color
figure online)

4.3 Results and Comparison

Figure 5 shows the results of both predictive approaches compared to the mea-
surements of the strong 3D configuration with bottom flow speed of Utot =
1.105 ms−1 (excluded from training and test samples). As discussed in Sect. 2,
the measured variation of displacement may vary up to 15% between the time
intervals, and hence it is a reasonable estimate of the uncertainty on the mea-
sured displacement amplitudes plotted in the lowest panel of Fig. 5.

Visually, the random forest model (blue) provide good predictions at the
sensor locations. The sensor closest to the bottom is also closest to the pinned
end. Consequently, it will have smaller displacements and the measurements are
more prone to noise. Further analysis is required to identify the origin of the
discrepancy and possible improvements of the model at this location. Around
6–7 m from the bottom there is an “oscillation” in the model, mostly pro-
nounced for σDis,y. Since there are no measurements between the accelerometers,
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it is uncertain whether this is an artefact of the model but the feature remains
when fitting the model to fewer sensors.

Deep-water risers will normally have a limited number of sensors. Hence we
tested the ability of the model to interpolate by fitting only to data from a sub-
sample of the sensors (orange in Fig. 5) but predicting the response at all sensor
locations. The three-sensor fit leads to larger deviations than fitting all sensors,
but still with decent performance, in particular for the predictions of the total
displacement (lowest panel in Fig. 5).

The lowest panel in Fig. 5 shows the variation of the total displacement. The
VIVANA-FD prediction (green line) over-predicts the displacement amplitude
relative to the measurements along the entire riser leading to a root mean squared
error of 4.8 relative to the measurements at the sensor locations. In addition,
the predicted response is harmonic compared to the almost flat behaviour of
the measured responses. The explanation lies in the simplifying assumptions of
VIVANA-FD. Firstly, the predicted responses are dominated by a single fre-
quency leading to harmonic oscillations. This is contrary to the multi-frequency
responses observed in the measurements (shown in Fig. 3). Secondly, the 2D
assumption clearly leads to over-prediction of the displacement amplitude.

The random fores prediction is closer to the data both when fitted to all
data (root mean squared error of 0.02 relative to sensor measurements) and to
a reduced set of sensors. In the present case study, the VIVANA-FD model is
significantly less accurate than the random forest model. This not surprising as
it has been derived for a simplified scenario with 2D current but is compared
to a 3D current scenario. However, the data driven method requires realistic
training data, and without further information about the system, it cannot easily
be transferred to e.g. a different type of riser. The ideal solution will be to
combine the methods into a hybrid solution in order to obtain high precision
and transferability.

5 Summary and Conclusion

Using density based clustering we found a clear relation between dimensionality
of the current and the observed pattern of riser movement and consequently
fatigue. The response pattern can be identified from the statistical properties of
the movement alone. We fitted a random forest model for the statistical parame-
ters based on the local current conditions and position on the riser. The random
forest model provide a more precise prediction of the displacement amplitude
(σtot) than the traditional approach using VIVANA-FD. However, as it is com-
pletely data driven, it does not provide any insights on the physics behind the
riser response, and in order to translate the random forest model between dif-
ferent riser types and scale it to operational risers, additional training data is
required spanning all relevant scenarios. The natural way forward is to combine
the physics based modelling with the data driven approach in a hybrid solution.
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