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Abstract. In recent years, considerable progress has been made towards
a vehicle’s ability to operate autonomously. An end-to-end approach
attempts to achieve autonomous driving using a single, comprehensive
software component. Recent breakthroughs in deep learning have sig-
nificantly increased end-to-end systems’ capabilities, and such systems
are now considered a possible alternative to the current state-of-the-art
solutions.

This paper examines end-to-end learning for autonomous vehicles in
simulated urban environments containing other vehicles, traffic lights,
and speed limits. Furthermore, the paper explores end-to-end sys-
tems’ ability to execute navigational commands and examines whether
improved performance can be achieved by utilizing temporal dependen-
cies between subsequent visual cues.

Two end-to-end architectures are proposed: a traditional Convolu-
tional Neural Network and an extended design combining a Convolu-
tional Neural Network with a recurrent layer. The models are trained
using expert driving data from a simulated urban setting, and are evalu-
ated by their driving performance in an unseen simulated environment.

The results of this paper indicate that end-to-end systems can operate
autonomously in simple urban environments. Moreover, it is found that
the exploitation of temporal information in subsequent images enhances
a system’s ability to judge movement and distance.

Keywords: End-to-end learning · Imitation learning · Autonomous
vehicle control · Artificial intelligence · Deep learning

1 Introduction

We are currently at the brink of a new paradigm in human travel: the fully
autonomous, self-driving car. Only 50 years ago, cars were completely analog
devices with almost no mechanisms for assisting the driver. Over the decades,
additional features, controls, and technologies have been integrated, and cars
have evolved into exceedingly complex machines.
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In recent years, substantial progress has been made towards a vehicle’s ability
to operate autonomously. Primarily, two different approaches have emerged. The
prevailing state of the art approach is to divide the problem into a number of sub-
problems and solve them by combining techniques from computer vision, sensor
fusion, localization, control theory, and path planning. This approach requires
expert knowledge in several domains and often results in complex solutions,
consisting of several cooperating modules.

Another approach is to develop an end-to-end solution, solving the problem
using a single, comprehensive component, e.g., a deep neural network. A tech-
nique for training such a system is to employ imitation learning. This entails
studying expert decisions in different scenarios, to find a mapping between the
perceived environments and the executed actions. While some believe that the
black-box characteristics of such systems makes them untrustworthy and unre-
liable, others point to recent years’ advances in deep-learning and argue that
end-to-end solutions show great potential.

However, end-to-end systems cannot make the correct navigational decision
solely based on a perceived environment. It is also necessary to incorporate a
user’s intent in situations that require a decision (e.g., when approaching an
intersection). Hence, an end-to-end system should be able to receive and adapt
to navigational commands.

The objective of this paper is to investigate end-to-end systems’ ability to
drive autonomously in simulated urban environments. Specifically, to study their
performance in environments containing other vehicles, traffic lights, and speed
limits; to examine their ability to oblige navigational commands in intersections;
and to explore if a system can improve its performance by utilizing temporal
dependencies between subsequent visual cues.

This paper seeks to combine different aspects from recent research in the field
of end-to-end learning for autonomous vehicles. Concretely, the use of naviga-
tional commands as network input, and the exploitation of temporal dependen-
cies between subsequent images. There have been no attempts - to our knowledge
- to combine both techniques in one system. Hopefully, this can lead to a more
complete end-to-end system and improved driving quality.

The rest of this paper is organized as follows. Section 2 presents previous
related work, while Sect. 3 addresses the environment in which the data was
collected and the experiments were conducted. Section 4 reviews the collection
and preprocessing of the data. The model architectures are presented in Sect. 5.
Sections 6 and 7 covers the experimental setup and results, while Sect. 8 discusses
the results. Finally, Sect. 9 covers the conclusions.

2 Related Work

There have been several advances in end-to-end learning for autonomous vehi-
cles over the last decades. The first approach was seen already in 1989 when
a fully connected neural network was used to control a vehicle [10]. In 2003 a
proof-of-concept project called DAVE emerged [9], showing a radio controlled



42 H. Haavaldsen et al.

vehicle being able to drive around in a junk-filled alley and avoiding obstacles.
DAVE truly showed the potential of an end-to-end approach. Three years later
NVIDIA developed DAVE-2 [1], a framework with the objective to make real
vehicles drive reliably on public roads. DAVE-2 is the basis for most end-to-end
approaches seen today [2,7]. The project used a CNN to predict a vehicle’s steer-
ing commands. Their model was able to operate on roads with or without lane
markings and other vehicles, as well as parking lots and unpaved roads.

Codevilla et al. [2] further explored NVIDIA’s architecture by adding nav-
igational commands to incorporate the drivers intent into the system and pre-
dicted both steering angle and acceleration. The authors proposed two network
architectures: a branched network and a command input network. The branched
network used the navigational input as a switch between a CNN and three fully
connected networks, each specialized to a single intersection action, while the
command input network concatenated the navigational command with the out-
put of the CNN, connected to a single fully connected network.

Hubschneider et al. [7] proposed using turn signals as control commands to
incorporate the steering commands into the network. Furthermore, they pro-
posed a modified network architecture to improve driving accuracy. They used a
CNN that receives an image and a turn indicator as input such that the model
could be controlled in real time. To handle sharp turns and obstacles along the
road the authors proposed using images recorded several meters back to obtain
a spatial history of the environment. Images captured 4 and 8 m behind the cur-
rent position were added as an input to make up for the limited vision from a
single centered camera.

Eraqi et al. [4] tried to utilize the temporal dependencies by combining a
CNN with a Long Short-Term Memory Neural Network. Their results showed
that the C-LSTM improved the angle prediction accuracy by 35% and stability
by 87%.

3 Environment

Training and testing models for autonomous driving in the physical world can be
expensive, impractical, and potentially dangerous. Gathering a sufficient amount
of training data requires both human resources and suitable hardware, and it
can be time consuming to capture, organize and label the desired driving sce-
narios. Moreover, the cost of unexpected behavior while testing a model may be
considerable.

An alternative is to train and test models in a simulated environment. A
simulator can effectively provide a variety of corner cases needed for training,
validation, and testing; while removing safety risks and material costs. Addition-
ally, the labeling of the dataset can be automated, removing the cost of manual
labeling, as well as the potential of human error.

The drawback, however, is the loss of realism. A simulation is only an imi-
tation of a real-world system, and a model trained on only simulated data may
not be able to function reliably in the real world. Nonetheless, a simulator can
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give a good indication of a model’s actual driving performance and serves well
for benchmarking different models. Once a model can perform reliably in a sim-
ulated environment, the model can be fine-tuned for further testing in real envi-
ronments.

In this paper, the CARLA simulator [3] is used to gather training data and
to evaluate the proposed models. CARLA is an open source simulator built
for autonomous driving research and provides an urban driving environment
populated with buildings, vehicles, pedestrians, and intersections.

4 Data Generation

4.1 Data Collection

When performing imitation learning, the quality of the training data plays a
significant role in a model’s ability to perform reliably in different conditions.
However, a model trained only using expert data in ideal environments may
not learn how to recover from perturbations. To overcome this, several types of
driving data was captured. Expert driving was captured using CARLA’s built-
in autopilot, resulting in center-of-lane driving while following speed-limits. To
capture more volatile data, a randomly generated noise value was added to the
autopilot’s outgoing control signal. This resulted in sudden shifts in the vehicle’s
trajectory and speed, which the autopilot subsequently tried to correct. To elim-
inate undesirable behavior in the training set, only the autopilot’s response to
the noise was collected, not the noisy control signal. Finally, recovery from possi-
ble disaster states was captured by manually steering the vehicle into undesired
locations, e.g., the opposite lane, or the sidewalk; while recording the recovery.

For each recorded frame, images from three forward-facing cameras (posi-
tioned at the left, center, and right side of the vehicle) were captured, along
with the vehicle’s control signal (i.e., steering angle, throttle, and brake values),
and additional information (i.e., speed, speed limit, traffic light state, and High-
Level Command). The High-Level Command (HLC) is the active navigational
command, labeling the data with the user’s current intent. Possible HLCs are:
follow lane, turn left at the next intersection, turn right at the next intersection,
and continue straight ahead at the next intersection.

Two different datasets were gathered, one for training and one for testing.
The training set was captured in CARLA’s Town 1, while the test set was cap-
tured in Town 2. Data were gathered in four different weather conditions: Clear
noon, cloudy noon, clear sunset, and cloudy sunset. The training set contained
driving data captured both with and without other vehicles. The test set exclu-
sively contained driving data alongside other vehicles. All data were captured
in environments without pedestrians. Table 1 summarizes the gathered datasets.
All expert data was captured driving 10 km/h below the speed limit to match
the velocity of other vehicles.
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Table 1. The collected datasets. An observation contains the captured data from a
single rendered frame in the simulator.

Dataset Number of observations Size [GB]

Training 117 889 31.5

Testing 23 173 8.32

4.2 Data Preparation

For each recorded observation, a data sample was created containing the center
image, the vehicle’s control signal, and the additional information. Moreover, to
simulate the recovery from drifting out of the lane, two new data samples were
generated using the observation’s left and right images. To counteract the left
and right images’ positional offset, the associated steering angle was shifted by
+0.1 and −0.1 respectively.

For each data sample, a new augmented sample was generated using one
of the desirable transformations picked at random. These included a random
change in brightness or contrast, the addition of Gaussian noise or blur, and the
addition of randomly generated dark polygons differing in position and shape.

When recording the datasets, the majority of the observations were captured
driving straight. To prevent an unbalanced dataset, data samples with a small
steering angle were downsampled (by removal), while data samples with a large
steering angle were upsampled (by duplication). Additionally, the data samples
corresponding to the different intersection decisions (i.e., turn left, turn right, or
straight ahead) were balanced by analyzing the distributions of HLC-properties
in the dataset and downsampling the over-represented choices. Finally, some of
the data samples where the vehicle was not moving (e.g., waiting for a red light)
were downsampled.

5 Model Architectures

In this paper, two related end-to-end architectures are proposed. The first is a
Convolutional Neural Network (CNN) inspired by NVIDIA’s DAVE-2 [1] system,
while the second extends the CNN with Long-Short-Term-Memory (LSTM) units
to capture temporal dynamic behavior.

5.1 CNN Model

The CNN model consists of two connected modules: a feature extractor and a
prediction module. The former uses a CNN to extract useful features from the
input image, while the latter combines the detected features with the additional
inputs (i.e., current speed, speed limit, traffic light state, and HLC) to predict
a control signal (i.e., steering angle, throttle and brake values).

The convolutional part of the model is inspired by the architecture used in
NVIDIA’s DAVE-2 system [1]. The modified network takes a 180×300×3 image
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as input, followed by a cropping layer and a normalization layer. The cropping
layer removes the top 70 pixels from the image, while the normalization layer
scales the pixel values between −0.5 and 0.5. Next follows six convolutional
layers, all using a ReLU activation function. The first three layers use a 5 × 5
filter, while the last three use a 3 × 3 filter. The first four layers use a stride of
2, while the last two use a stride of 1. The output of the last convolutional layer
is flattened resulting in a one-dimensional feature layer containing 768 nodes.

The output from the convolutional layers is concatenated with the additional
input containing the speed, speed-limit, traffic-sign, and HLC values. The con-
catenated layer serves as an input for the predictive part of the model which
consists of three dense layers containing 100, 50, 10 nodes respectively. All the
dense layers use a ReLU activation function. The last of the dense layers are
finally connected to an output layer, consisting of 3 nodes. The complete archi-
tecture is shown in Fig. 1.

Fig. 1. The architecture of the CNN model. The model accepts a single RGB image
and predicts a control signal.

5.2 CNN-LSTM Model

The CNN-LSTM model consists of two connected modules: a feature extractor
and a temporal prediction module. The former follows the same architecture
as the previous model, shown in Fig. 1. The feature extractor is connected to
an LSTM layer with 5 hidden states. The model uses a sequence of feature
extractions over time to predict a control signal. This allows the model to learn
temporal dependencies between time steps.

For each time step, the output of the feature extractor is concatenated with
the additional input containing speed, speed limit, traffic light, and an HLC.
This is sent through a dense layer containing 100 nodes and fed into an LSTM
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layer with 10 nodes. For each time step in the sequence, the LSTM layer sends its
output to itself. At the last time step, the output is sent through a dense layer,
consisting of three nodes. This is the final prediction. The complete architecture
is shown in Fig. 2.

Fig. 2. The architecture of the CNN-LSTM model.

6 Experimental Setup

6.1 Training

Training and Validation. The dataset was split into a training set (70%) and
a validation set (30%).

For the CNN-LSTM, the data samples were further structured into sequences
of length five, using a sampling interval of three. The sequence length determines
the number of time steps the LSTM layer is able to remember, while the sampling
interval decides the period between successive individual time steps within the
sequences. Figure 3 illustrates the structuring of sequences from 15 data samples.

Hyperparameters. Both models were trained using an Adam optimizer [8]
and an Mean Squared Error loss function. The models were trained for a 100
epochs, with a batch size of 32 data-samples. The models’ weights were recorded
after each epoch along with the associated validation error. After the training
was complete, the weights associated with the lowest validation error were chosen
for further testing.
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Fig. 3. The structuring of sequences from an array of data samples. A sequence length
of five and a sampling interval of three is used.

6.2 Testing

After training, each model’s predictive and real-time performance was measured.
The predictive performance was tested by exposing the models to the unseen test
set while calculating the average prediction error. The real-time performance was
tested by letting the models control a simulated vehicle in CARLA’s second town.
Each model was to drive through a predefined route ten times. The test evaluator
provided HLCs to the model before each intersection. A model’s performance
was measured in the number of route completions, the average route completion
percentage, and the number of failures. Model failures were recorded according to
severity. Touching a lane line was considered a minor failure, while a low-speed
rear-ending or an object collision was considered a moderate failure. Object
collisions without recovery or an ignored HLC were considered a severe failure.
Catastrophic failures consisted of either entering the opposite lane, disregarding
a red traffic light, or colliding with oncoming traffic.

7 Experimental Results

7.1 Validation and Test Error

After 100 epochs of training, both models’ training and validation loss had sta-
bilized. The CNN and CNN-LSTM had their lowest validation error after epoch
66 and 81 respectively. The models were then evaluated on the unseen test set
from CARLA’s second town. On the test set, the CNN was able to predict a
control signal with an average error of 0.023, a 43% increase compared to its
validation error. The CNN-LSTM was able to predict a control signal with an
average error of 0.022, a 57% increase compared to its validation error (Table 2).

7.2 Real-Time Test in Simulated Environment

Both models were real-time tested in CARLA’s second town. To test their ability
to handle various driving scenarios in an urban environment, each model drove
a predefined route ten times. The results are described below. Two videos were
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Table 2. Test and validation loss during the training of the models.

Model Validation loss Test loss

CNN 0.016 0.023

CNN-LSTM 0.014 0.022

Table 3. Summary of test results. Each model attempted to drive a predefined route
ten times. A model’s performance were measured in the number of route completions
and the average route completion percentage.

Model Route completions Avg. route completion

CNN 2 56% ± 39

CNN-LSTM 5 81% ± 9

Table 4. Average failures per run. The models’ failures were recorded according to
severity. Touching a lane line was considered a minor failure, while a low-speed rear-
ending or an object collision was considered a moderate failure. Object collisions with-
out recovery or an ignored HLC were considered a severe failure. A catastrophic failure
consisted of either entering the opposite lane, disregarding a red traffic light, or colliding
with oncoming traffic.

Model Minor Moderate Severe Catastrophic

CNN 2.10 ± 1.73 0.65 ± 0.99 0.25 ± 0.44 0.23 ± 0.57

CNN-LSTM 2.90 ± 1.72 0.10 ± 0.31 0.05 ± 0.22 0.17 ± 0.38

created to show a successful run and some common failures. One demonstrates
the CNN model [5] and the other demonstrates the CNN-LSTM model [6].

CNN. Out of ten runs, the CNN model was able to complete the predefined
route twice, with an average completion percentage of 56% over all runs. The
model performed well on lane following and drove reliably in the center of the
lane most of the time. The model handled most intersections but had a tendency
to perform very sharp right turns. This resulted in 2.1 minor failures (i.e., the
vehicle touching the lane line) per run. It always tried to follow the provided
HLC, and never ignored a traffic light. It was able to handle complex light
conditions, such as direct sunlight and dark shadows in the road. The model
hit objects without recovery several times, leading to 0.5 severe failures per run.
The vehicle rarely hit objects outside of the lane, but occasionally struggled
to stop for other vehicles, leading to several low speed rear-end collisions. In
total, the model had 0.1 object collisions, and 1.2 rear-end collisions per run.
Finally, 0.7 times per run it struggled to find the lane after a turn, leading to a
catastrophic failure. The model usually held the speed limit but found it hard
to slow down fast enough to a speed limit when the speed was high. The results
are summarized in Tables 3 and 4.
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CNN-LSTM. The CNN-LSTM model was able to complete the predefined
route five out of ten times, with an average completion percentage of 81% over
all runs. It drove reliably in the center of the lane most of the time but tended
to perform sharp turns. This lead to 2.9 minor failures (i.e., lane line touches)
per run. The model always tried to follow the provided HLC, and never ignored
a traffic light. It managed to handle various light conditions, such as direct
sunlight and dark shadows in the road. The vehicle rarely struggled to stop
for other objects or vehicles, resulting in 0.1 object collisions and 0.1 rear-end
collisions per run. Finally, 0.5 times per run it struggled to find the lane after a
turn, leading to a catastrophic failure. The model adapted well to the different
speed limits. The results are summarized in Tables 3 and 4.

8 Discussion

This paper proposed two architectures for an end-to-end system: a traditional
CNN inspired by NVIDIA’s DAVE-2 system [1], and an extended design combin-
ing the CNN with an LSTM layer to facilitate learning of temporal relationships.
Both models were able to follow a lane consistently and reliably. Any distur-
bances or shifts in the trajectory were quickly corrected, without being overly
sensitive. The CNN exhibited less volatile steering compared to the CNN-LSTM
in the high-speed stretch of the route, but the CNN-LSTM outperformed the
CNN in turns following high-speed stretches. Additionally, both models obeyed
all traffic lights and always tried to follow the provided HLC at intersections.

When introducing other vehicles, the differences between the models became
more apparent. The CNN-LSTM adapted its speed according to traffic, and only
rear-ended another vehicle once throughout the whole experiment. In scenarios
where another vehicle blocked most of the view (e.g., when following another
vehicle closely in a turn), the CNN-LSTM seemed to be able to use past predic-
tions as a guide. The CNN, on the other hand, experienced more trouble when
driving alongside other vehicles. Although the model, to some degree, adapted
its speed according to traffic, it often failed to react upon sudden changes. This
led to frequent rear-endings throughout the experiment.

The difference between the models’ performance may be explained in their
architectural differences. The CNN-LSTM model used five subsequent obser-
vations when making predictions. This allowed it, by all indication, to learn
some important temporal dependencies - acquiring some knowledge about the
relationships between movement, change in object size, and distance. The CNN
model, however, interpreted each observation independently, which restrained
its ability to understand motion. It still learned to brake when approaching a
vehicle, but was not able to differentiate between fast approaching and slow
approaching objects. Predictions related to distance were solely dependent on
the size of objects. Moreover, the CNN could not rely on past predictions when
faced with confusing input, which seemed to result in more unreliable behavior.

It should be mentioned that although the CNN model had 28% less minor
failures than the CNN-LSTM model, its completion rate was 32% lower than
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the CNN-LSTM. The reduction in minor failures was probably a result of the
lower average route completion, not an indication of better performance.

8.1 Consistency with Related Work

The implemented models in this paper are based on the architecture in [1]. The
authors were able to use a CNN to drive on trafficked roads with and without
lane markings, parking lots and unpaved roads. This complies with this paper’s
results. Even though the implemented models were not tested on unmarked
roads or parking lost, they were able to drive on roads with lane marking, both
on roads with and without pavements.

Codevilla et al. [2] claimed that their command input network performed
inadequately when executing navigational commands. This does not comply with
the results of this paper. The proposed architecture takes the navigational com-
mand as input after the CNN, in a similar matter to the command input network,
but was able to execute the given navigational commands with a high degree of
success.

In [7] the turn indicators of the car was used as the navigational commands,
which were sent as input to the network. The authors did not use an RNN,
but fed three subsequent images to three CNNs and concatenated the output.
It was able to perform lane following, avoid obstacles and change lanes. The
navigational commands in this paper were introduced to the network in a similar
way, and both approaches were able to execute the navigational commands. The
proposed system was not tested for lane changes, but seeing achievements in
similar approaches indicates that this should be possible.

The CNN model in this paper was extended with an LSTM to utilize temporal
dependencies. A similar approach was attempted in [4]. They showed that adding
temporal dependencies improved both the accuracy and stability of a model
using a single CNN. Similar results can be seen in this paper.

9 Conclusion

The results of the experiments indicates that end-to-end systems are able to
operate autonomously in simulated urban environments. The proposed systems
managed to follow lanes reliably in varying lighting conditions and were not dis-
rupted by disturbances or shifts in trajectory. They were able to abide by traffic
lights and speed limits and learned to execute different navigational commands
at intersections.

Both systems managed to adapt its speed according to traffic, but their abil-
ity to respond to sudden changes varied. The CNN-LSTM were, by all indication,
able to acquire some insight into the relationships between movement, distance,
and change in the perceived size of objects. The regular CNN, interpreting each
observation independently, was not able to learn these essential temporal depen-
dencies. Hence, the results suggest that exploiting temporal information in sub-
sequent images improves an end-to-end systems ability to drive reliably in an
urban environment.
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Even though the systems’ performed several mistakes during testing, their
achievements demonstrated great potential for using end-to-end systems to
accomplish fully autonomous driving in urban environments.
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