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Abstract. A long-standing challenge in Reinforcement Learning is
enabling agents to learn a model of their environment which can be
transferred to solve other problems in a world with the same underlying
rules. One reason this is difficult is the challenge of learning accurate
models of an environment. If such a model is inaccurate, the agent’s
plans and actions will likely be sub-optimal, and likely lead to the wrong
outcomes. Recent progress in model-based reinforcement learning has
improved the ability for agents to learn and use predictive models. In
this paper, we extend a recent deep learning architecture which learns
a predictive model of the environment that aims to predict only the
value of a few key measurements, which are indicative of an agent’s per-
formance. Predicting only a few measurements rather than the entire
future state of an environment makes it more feasible to learn a valuable
predictive model. We extend this predictive model with a small, evolv-
ing neural network that suggests the best goals to pursue in the current
state. We demonstrate that this allows the predictive model to transfer
to new scenarios where goals are different, and that the adaptive goals
can even adjust agent behavior on-line, changing its strategy to fit the
current context.

Keywords: Reinforcement Learning · Prediction · Neural networks ·
Neuroevolution

1 Introduction

Humans and animals rely on internal models (mental simulations of how objects
respond to interaction) to predict the consequences of their actions and generate
accurate motor commands in a wide range of situations [13,17]. Recent advances
in deep learning have enabled computers to learn such predictive models by
gathering a large collection of observations from an environment [9,16]. This
opens up the possibility for guiding the actions of robots and computer agents
by having them predict the consequences of each action and selecting the one
leading to the best outcome.

When using predictions for guiding the actions of an agent, it is beneficial to
limit the prediction to the most essential parts of the environment. For instance,
if we would like to predict the effect of turning the steering wheel of a car,
we should not try to predict the effect this has on birds we see in the sky,
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trees far away from us, and so on. Rather, we should focus on the effect on some
key observable measurements, such as the car speed, and the distance to other
cars and pedestrians. If we focus on predicting the parts of the environment we
currently care about, the prediction problem becomes much more manageable.

This intuition is the background for a recent, popular technique for learning
to act by predicting the future [2]. The technique makes the assumption that
we can analyze the outcome of an action by focusing on a few measurements.
These measurements should be the observable quantities that are most related
to success or failure in some scenario. The authors propose that a way to learn
how to act in an environment is to learn to predict the effect one’s actions have
on these measurements. Such predictions can readily be learned by gathering a
large set of examples of observations, actions and resulting measurements from
the environment (e.g. by simulating thousands of car trips).

Once one has learned to predict the measurements resulting from one’s
actions, it is possible to select the best action for a given situation, by choosing
the one giving the most optimal predicted measurements. This requires some way
to map the predicted future measurements to a number representing the utility
of this future. [2] solved this by defining a goal vector, which weights the different
measurements according to user-defined rules. For instance, a rule could be that
we give a very high weight to the measurement of distance to the nearest pedes-
trian, and a lower positive weight to the measurement of car speed, reflecting
that we want to drive efficiently, but only if pedestrians around us are safe.

In this paper, we explore the potential for automatically adapting such goal
vectors to a given scenario (Fig. 1). We show that this allows the reuse of a
learned predictive model in new situations, where the best strategy has changed.
The automatically adapting goal vectors, together with the already learned pre-
dictive model, can quickly generate behaviors for new scenarios where the under-
lying rules are the same (allowing reuse of learned predictions), but the goals
are different. We further show that our adaptive goal vectors can adapt agent
strategies on-line, responding to changes as they occur.

2 Background

2.1 Model-Based Reinforcement Learning

The problems we target in this paper are reinforcement learning (RL) problems,
meaning an agent is tasked with learning how to solve some problem without
any explicit guidance – relying instead on infrequent feedback in the form of
rewards and punishment from the environment. Reinforcement learning can be
divided into two high-level categories: Model-based and model-free RL. Model-
free RL means we try to solve the problem without forming an explicit model
of the environment, relying instead on learning a mapping from observations to
values or actions. Many of the recent successes in deep RL have been in this
category, including deep Q learning [10], which was the first example of power of
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(a) The Goal-ANN produces goals adapted to the current situation

(b) The predictive ANN (developed by [2]) predicts the consequence
of taking each action in the current situation.

Fig. 1. Combining adaptive goals with prediction-based action selection. Top:
Our proposed Goal-ANN produces a weighting of the agent’s goals adapted to the cur-
rent situation (indicated by current measurements). Bottom: The resulting weights are
given to the predictive ANN, together with the current state and current measurements,
resulting in a vector of predicted future values for the measurements.

deep RL for playing computer games, and the deep deterministic policy gradient
algorithm (DDPG) which demonstrated that deep neural networks can also learn
to solve continuous control problems [8].

Model-based RL attempts to solve two key challenges with model-free
approaches: (1) They require enormous amounts of training data, and (2) there
is no straightforward way to transfer a learned policy to a new task in the same
environment [12]. To do this, model-based RL takes the approach of first learn-
ing a predictive model of the environment, before using this model to make a
plan that solves the problem. An internal predictive model facilitates transfer
of knowledge to new tasks in the same environment: Once the predictions are
learned, they can be used for planning ahead to solve many different tasks.

Despite these advantages of model-based algorithms, model-free RL has so
far been most successful for complex environments. A key reason for this is that
model based RL is likely to produce very bad policies if the learned predictive
model is imperfect, which it will be for most complex environments [12]. Recently,
algorithms have been developed which address this problem, for instance by
learning to interpret imperfect predictions [12], applying new video prediction
techniques [3] and dynamics models [4], or periodically restarting prediction
sequences, reducing the effect of accuracy degrading for long-term prediction [5].

Another way to mitigate the problem of having an imperfect predictive model
is to keep the prediction task as simple as possible. While the methods above
generally try to predict the entire future state (more specifically, entire frames of
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input in the example of video games), one could predict more accurately by focus-
ing on predicting exactly the values needed to guide action making. Dosovitskiy
and Koltun [2] presented impressive results on the VizDoom RL environment
by teaching agents to predict just a few key measurements, and combining this
with a goal vector that defines a weighting among the measurements, effectively
defining which type of future we most wish to observe. Here, we propose to com-
bine this method with adaptive goal vectors, which has the potential to allow
reuse of a predictive model in new scenarios where the goals are different.

2.2 Combining Deep Learning and Neuroevolution

Our proposed method combines two neural networks (Fig. 1), which are trained
in different ways. The Prediction ANN is trained in a self-supervised manner,
using the difference between predicted and actual future states as loss function.
For the Goal-ANN, we have no target value, since we do not know the “correct”
goal. We therefore optimize this networks by using neuroevolution, a technique
employing a population of neural networks, having the ones performing their
task best become further adapted and specialized to the problem [14].

A few other papers have recently combined deep learning with neuroevolu-
tion, aiming to get the benefits of both. Neuroevolution (NE) requires far more
computation to solve problems than backpropagation-based deep learning. On
the other hand, NE does not rely on a differentiable architecture, and works
well in problems with sparse rewards, which are a challenge for most deep rein-
forcement learning algorithms [11]. A promising way to combine NE and DL is
therefore to let the deep learning do the “heavy lifting”, for instance learning
to make predictions or recognize objects based on a large number of examples,
and train a small action-selection component using NE with the pre-trained deep
neural network as a back-end. This approach was taken by [3], who trained a self-
supervised deep neural network to predict the future, and then evolved a much
smaller network for selecting actions based on internal states in the predictive
network. A similar idea is to train a convolutional neural network to translate
raw pixels to compact feature representations, before training a smaller evolving
ANN to use the learned features to choose the right actions in an RL problem.
This has been done successfully for simulated car racing [7], for learning to aim
and shoot in a video game [11] and for a health-gathering VizDoom scenario [1].

Similarly to the work described above, our method lets the DL component do
the data-intensive job, which is to learn to predict the consequences of actions
from a large number of examples. Unlike the methods above, we only require
our deep network to predict a few key future measurements, greatly simplifying
its task, and potentially reducing the impact of errors due to faulty predictions.

3 Methods

3.1 Learning to Act by Predicting the Future

The algorithm we propose in this paper is an extension of “Direct Future Predic-
tion” (DFP) from the paper Learning to act by predicting the future [2]. DFP is
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based on the idea of transforming an RL problem into a self-supervised learning
problem of predicting parts of future states and selecting actions that produce
those states that align best with an agent’s goals. A deep neural network is
trained to predict the future value of a set of different measurements, m, given
the current state and action. m should contain metrics that give an indication of
how successfully an agent is solving its task. The scenario explored here and in [2]
is a video game where an agent attempts to survive and kill monsters. m there-
fore contains measurements of an agent’s ammunition, health and the number
of enemies killed, which are all interesting indicators of an agent’s performance.

If an agent can learn a model of how its actions affect future measurements,
selecting the best action is reduced to a problem of finding which of the potential
future m-vectors correspond best with the agent’s goals. [2] solve this by formu-
lating a goal-vector g, where each element indicates how much we care about
the corresponding measurement in m. For instance, given that we use ammu-
nition, health and enemies killed as measurements, the goal-vector [0.5, 1,−1]
would indicate that we are interested in collecting ammunition, twice as inter-
ested in collecting health, and interested in avoiding attacking enemies (due to
the negative value for that goal).

Training this network to predict the effect of one’s actions can now be done by
collecting many episodes of gameplay, storing at each timestep t current mea-
surements (mt), sensory input (st – frames of images from gameplay in this
case), the action taken (at) and the goal vector (gt – this is not changed dur-
ing an episode while training). A sample of (st , mt , at, gt) would now be the
training input (I), while the target output value (O) would be the change in the
measurements at selected future timesteps (mt+τ1 , ..., mt+τn

). The network is
trained using backpropagation with the loss function depending on the differ-
ence between its predicted change in future measurements (Ô) and the actual
observed values (O).

3.2 Adaptive Goals Guiding Action Selection

The contribution of this paper is a technique for adapting the goals (g) of DFP-
agents, which enables them to (1) transfer predictive models to new tasks and
(2) adjust goals on-line according to current measurements. To do so, we take
a pre-trained predictive model from the DFP-algorithm, and extend it with an
additional neural network that suggests the best goal-vector given the current
measurements (Fig. 1).

This Goal-ANN is trained using neuroevolution [14]: A population of neural
networks compete for their ability to produce relevant goals. The best networks
are randomly changed, by adding or removing nodes and connections, while
worse networks are discarded. To select between networks, they are each assigned
a fitness score reflecting how well they perform their task. In our setup, we
calculate the fitness by inserting the agent governed by the evaluated Goal-ANN
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and the (pre-trained) Predictive ANN into the game scenario, and measuring how
well it performs its task (which varies slightly between our different experiments
– see Sect. 4). To counter effects of randomness, each evaluation tests the agent
8 times and calculates the average performance.

The evolving networks are relatively small feed-forward ANNs where the
connectivity and number of neurons are being optimized. The inputs are the
3 measurements (mt), and the output is the goal vector (gt) with the 3 cor-
responding goal weights. The inputs give the current value for the amount of
ammunition, health and number of enemy kills (in that order), and the outputs
represent the weight of the ammunition-objective, the health-objective, and the
killing monsters-objective, all in the range [−1, 1].

Our setup uses the popular neuroevolution algorithm NEAT [15], more specif-
ically the NEAT-Python implementation1, with the parameters shown in Table 1.
With these parameters, each run of the algorithm results in 5,000 evaluations,
corresponding to 5,000 1-min episodes of game play. The original DFP-algorithm
was trained for around 95,000 episodes, demonstrating that our proposed goal-
adaptation is an order of magnitude faster than training new strategies from
scratch.

Table 1. Parameters for Python-NEAT

Parameter Value
Add Connections 0.15
Delete Connection 0.1
Add Node 0.15
Delete Node 0.1
Weight Mutation 0.8
Weight Replacement 0.02

(a) Mutation Rates

Parameter Value
Population Size 50
Generations 100
ANN Inputs / Outputs 3 / 3
Weights Range [-30, 30]
Activation Function Clamped linear re-

sponse in range [-1,1]

(b) Other parameters

3.3 Training Scenario

The scenario we use for training and testing the Goal-ANN is from the original
paper suggesting DFP [2]. The scenario is based on the VizDoom platform [6],
a popular platform for developing and testing reinforcement learning algorithms.
VizDoom is based on the first-person shooter (FPS) Doom, and offers the poten-
tial to train agents to handle complex 3D environments directly from pixel inputs.
VizDoom scenarios can be used to train and test skills such as understanding one’s
surroundings, navigation, exploration and dealing with opponents/enemies. The
violent nature of the game is a concern, and we are eager to test our technique on
more peaceful scenarios soon. However, to test extending the exact model trained
in [2], we needed to reuse one of their scenarios.

1 https://neat-python.readthedocs.io/.

https://neat-python.readthedocs.io/
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The specific VizDoom scenario we use here is the one titled “D3-Battle”
in [2]. This is a challenging scenario where the agent is under attack by alien
monsters inside a maze, and has to try to kill as many of the monsters as possible.
To aid the agent, ammunition and health kits are scattered around the maze. The
agent is provided with (and learns to predict) three measurements: Its current
amount of ammunition and health, as well as how many enemies it has killed.
We use a trained predictive model from the original paper, which was trained
in a “goal-agnostic” manner, that is, the goal vector g was randomized between
episodes (each value uniformly sampled from the interval [−1, 1]). Such goal-
agnostic training was found to generalize better to new tasks than fixed-goal
predictors [2], and we therefore focus on this model for our study.

4 Results

We want to explore two possible advantages of evolved goal weights: (1) Their
ability to adapt an existing predictive model to new scenarios where strategies
need to be different, and (2) Their ability to produce context-dependent goals,
that is, goals that vary depending on current measurements.

To do so, we compare three main techniques: (1) Acting by following the
same static goal-vector applied in [2], (2) Acting by following a simple rule
for adapting the goal to the current situation and (3) Acting by following the
evolved Goal-ANN. The static goal vector from [2] is [0.5, 0.5, 1.0] where the
three numbers represent the importance of the ammunition-, health- and enemy
kills-objectives, respectively. This goal captures the intuition that the aim of the
game is to kill as many monsters as possible, but collecting some ammunition
and health is a good side-goal to help the agent in its primary mission. The
simple rule to improve this static goal (called “Hardcoded” in plots below) is to
switch to the goal [0, 1.0,−1.0] whenever the agent’s health is below 50%, which
adds the intuition that we should stop attacking and focus on gathering health
when injured.

In all plots below, fitness values are averaged over 20 independent evaluations
of each agent.

4.1 The Original Scenario

As mentioned above, we test our method on a VizDoom scenario developed by [2],
using their pre-trained agent together with our evolved adaptive goals. The sce-
nario consists of a maze populated by monsters and the agent. The goal of the
trained agent is to kill as many monsters as possible, and to do so, it can bene-
fit from collecting ammunition and health packages along the way. In this original
scenario, the final reward (also referred to as Fitness below, as is common in Evo-
lutionary Algorithms) is based only on the number of monsters killed.

Figure 2 shows the average reward (number of monsters killed in one minute)
of the three compared techniques on the original scenario. There are no signif-
icant differences between the compared techniques. In other words, there is no
advantage to adapting the goals in this scenario.
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Fig. 2. The original scenario. No signifi-
cant differences in fitness values between using
the original goal (Static), a simple adaptive
goal (Hardcoded) and the evolved Goal-ANN.

Analyzing the agents’ game-
play in this scenario reveals why
this is the case: Agents are very
fast, killing monsters without tak-
ing much damage, which makes the
default goal of aggressively attack-
ing monsters while picking up any
health or ammo ahead a very good
choice. In other words, there is no
conflict among the goals and no
reason why a different choice of
goal weights should improve perfor-
mance.

4.2 A Hard Scenario

To test the ability of the adaptive goals to solve different scenarios, and the
potential for adjusting goals during gameplay, we set up a much harder scenario.
We introduce the following difficulties that force the agent to sometimes change
its strategy between defensive and aggressive modes:

– Monsters are tougher (they have twice as much health as before).
– Player is weaker (it begins the game with only 10% health)
– A fitness penalty of 100 is given for dying (versus 0 before).
– Player starts with 0 initial ammunition (versus 20 bullets before).

(a) Fitness (b) Evolving Goals

Fig. 3. The hard scenario. Left: The evolved adaptive Goal-ANN significantly out-
performs both the standard (static) and hardcoded (dynamic) goals. Right: The mean
population value for each goal through evolution. The evolved strategies tend to focus
more on health and less on attacking.

Since the monsters are now stronger and the player weaker, the default static
goals result in a strategy that is too aggressive and frequently results in the player
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dying. The hardcoded strategy performs better, since it balances aggression and
defense. The evolved strategy significantly outperforms both the others (p <
0.05), finding an even better balance between the three objectives (Fig. 3a).

We can see what the evolved strategy has learned by plotting the output of
the Goal-ANN. In Fig. 3b we plot the output of the Goal-ANN per generation
of evolution, averaged both over the entire population and all timesteps in each
individual’s life. We see that the evolved strategies gradually move towards a
focus on the health-objective, while reducing focus on attacking enemies.

Fig. 4. The hard scenario. The strategy
discovered by evolution is to focus on gath-
ering ammunition until some has been col-
lected, after which the agent switches to
attacking. Simultaneously, the agent focuses
on collecting health.

Figure 3b summarizes strategies
over complete game episodes. How-
ever, the Goal-ANN has the poten-
tial to produce strategies that vary
through a game, depending on the
current measurements. To investi-
gate if this is taking place, we per-
formed a sweep over sensible values
for all three measurements, passed
these values through the best evolved
Goal-ANN and measured the result-
ing output goals. The results show
that changing the current health or
the number of kills has no effect on
the produced goals. However, chang-
ing the amount of ammunition does
affect the output goals, as plotted in Fig. 4. We see that evolution has discovered
the strategy of focusing less on attacking and more on gathering ammunition
when the current ammunition level is low2.

4.3 The No-Ammunition Scenario

To test the potential for the Goal-ANN to adapt strategies to scenarios where
rules are very different, we set up a scenario with no ammunition available to
the agent. The scenario is otherwise identical to the hard scenario above. This
change turns the game into a defensive exercise, where staying away from enemies
and gathering health is the best strategy. Since the aggressive default goal now
results in a very bad strategy, we here test an additional defensive goal, which has
the maximum negative weight on the attack-objective, and maximum positive
weights on the two others (g = [1, 1,−1]).

As expected, the default aggressive strategy performs very badly in this sce-
nario, while the hardcoded and the new defensive strategy do better (Fig. 5a).
The evolved strategy significantly outperforms all others, with p < 0.01 accord-
ing to the Mann-Whitney U test, for all pairwise comparisons. We were initially
surprised to see the evolved strategy outperform the defensive strategy, since

2 https://youtu.be/NCzrO5KHMXQ shows an agent playing according to this strat-
egy.

https://youtu.be/NCzrO5KHMXQ


Self-adapting Goals Allow Transfer of Predictive Models to New Tasks 37

we expected its full focus on avoiding confrontation to be optimal. We therefore
took a closer look at the evolved strategy3.

(a) Fitness (b) Evolving Goals

Fig. 5. The scenario with no ammunition. Left: Evolved adaptive goals generated
by the Goal-ANN significantly outperform both the static (Aggressive and Defensive)
and Hardcoded goals. Right: The mean population value for each goal through evolu-
tion. The evolved strategies quickly learn to not focus on attacking.

Fig. 6. The scenario with no ammuni-
tion. The strategy discovered by evolution is
to focus on only on health if it is low, but add
focus on gathering ammunition otherwise.

As expected, we found the evolv-
ing strategy to give a strong nega-
tive weight to the attack-objective,
and strong positive weights to
the two others (Fig. 5b). Repeating
the sweep across measurements, we
found that the current health mea-
sure is the only value that leads to
different goals when changed. The
evolved strategy is to focus exclu-
sively on collecting health when the
measure is critically low, and other-
wise to also include a drive for col-
lecting ammunition, in both cases
avoiding attacking as strongly as
possible (Fig. 6). It may seem surprising that the ammunition objective is valu-
able at all here, since there is no ammunition in the environment. We hypothe-
size that a high value for this objective can be valuable, since it can encourage
the agent to keep moving, heading towards objects with a small resemblance of
ammunition, thus staying away from danger.

3 https://youtu.be/6pTnkCGV6NI shows an agent playing according to this strategy.

https://youtu.be/6pTnkCGV6NI
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5 Conclusion

We proposed extending an existing technique for selecting actions based on pre-
dictions of the consequences of those actions with an adaptive goal-producing
neural network. This Goal-ANN can modify the behavior resulting from predic-
tions of the future, by changing the agent’s preference among different future
outcomes.

We demonstrated that the Goal-ANN allows the transfer of a predictive
model to scenarios where the optimal behavior is different, due to different
amounts of resources in the environment. Such knowledge transfer has the poten-
tial to greatly improve the efficiency of Reinforcement Learning methods, since
they allow training a model on one task, and adapting it rapidly to other, related
problems.

We also showed that the Goal-ANN is capable of learning adaptive strategies,
where goals change on-line, depending on the current state of the environment.
This is a very valuable property, since most complex problems require one to
modify one’s strategy depending on the current context.

A final valuable feature of the Goal-ANN is its interpretability : We can eas-
ily probe the rules it has learned by sweeping across input measurements and
observing the resulting output goals. We demonstrated that in our target scenar-
ios, such an analysis allows us to verify that the learned goal-switching behavior
is sensible.

This has been an initial study of the potential for combining self-adapting
goals with a predictive deep neural network. There are many future questions
here that we aim to address, including tests on more scenarios, comparison with
other techniques for transfer learning and testing if the Goal-ANN could perform
even better if given more information about the current state of the world.
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