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Åsmund Brekke , Fredrik Vatsendvik(B) , and Frank Lindseth

Norwegian University of Science and Technology, Trondheim, Norway
{aasmunhb,fredrva}@stud.ntnu.no, frankl@ntnu.no

Abstract. The need for simulated data in autonomous driving appli-
cations has become increasingly important, both for validation of pre-
trained models and for training new models. In order for these models
to generalize to real-world applications, it is critical that the underly-
ing dataset contains a variety of driving scenarios and that simulated
sensor readings closely mimics real-world sensors. We present the Carla
Automated Dataset Extraction Tool (CADET), a novel tool for generat-
ing training data from the CARLA simulator to be used in autonomous
driving research. The tool is able to export high-quality, synchronized
LIDAR and camera data with object annotations, and offers configura-
tion to accurately reflect a real-life sensor array. Furthermore, we use
this tool to generate a dataset consisting of 10 000 samples and use this
dataset in order to train the 3D object detection network AVOD-FPN,
with finetuning on the KITTI dataset in order to evaluate the potential
for effective pretraining. We also present two novel LIDAR feature map
configurations in Bird’s Eye View for use with AVOD-FPN that can
be easily modified. These configurations are tested on the KITTI and
CADET datasets in order to evaluate their performance as well as the
usability of the simulated dataset for pretraining. Although insufficient to
fully replace the use of real world data, and generally not able to exceed
the performance of systems fully trained on real data, our results indi-
cate that simulated data can considerably reduce the amount of training
on real data required to achieve satisfactory levels of accuracy.

Keywords: Autonomous driving · Simulated data · 3D object
detection · CARLA · KITTI · AVOD-FPN · LIDAR · Sensor fusion

1 Introduction

Machine learning models are becoming increasingly complex, with deeper archi-
tectures and a rapid increase in the number of parameters. The expressive power
of such models allow for more possibilities than ever before, but require large
amounts of labeled data to properly train. Labeling of data in the autonomous
driving domain requires extensive amounts of manual labour, either in the form
of actively producing annotations such as class labels, bounding boxes and
semantic segmentation by hand, or by supervising and adjusting automated gen-
eration of these using a pretrained ensemble of models from previously labeled
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data. For the use of modern sensors such as LIDAR, not many sizable labeled
datasets exists, and those that do generally offer little variation in terms of envi-
ronments or weather conditions to properly allow for generalization to real world
conditions. Popular datasets such as KITTI [2] offers a large array of sensors,
but with largely unchanging weather conditions and lighting, while the larger
and more diverse BDD100K [3] dataset does not include multimodal sensor data,
only offering camera and GPS/IMU. The possibility of new sensors being intro-
duced that greatly impact autonomous driving also carry the risk of invalidating
the use of existing datasets for training state-of-the-art solutions.

1.1 Simulated Data for Autonomous Driving

With the advances in recent years in the field of computer graphics, both in
terms of photorealism and accelerated computation, simulation has been a vital
method of validating autonomous models in unseen environments due to the effi-
ciency of generating different scenarios [13]. More recently there has been added
interest in the use of modern simulators for also generating the data used to
train models for autonomous vehicles, both for perception and end-to-end rein-
forcement learning [10–12]. There are several advantages in generating training
data through simulation. Large datasets, with diverse conditions can be quickly
generated provided enough computational resources, while labeling can be fully
automated with little need for supervision. Specific, difficult scenarios can be
more easily constructed and advanced sensors can be added provided they have
been accurately modeled. Systems such as the NVIDIA Drive Constellation [5]
are pushing the boundaries for photorealistic simulation for autonomous driv-
ing using clusters of powerful NVIDIA GPUs, but is currently only available
to automakers, startups and selected research institutions using NVIDIAs Drive
Pegasus AI car computer, and only offers validation of models, not data genera-
tion for training. However, open source solutions based on state-of-the-art game
engines such as Unreal Engine 4 and Unity, are currently in active development
and offer a range of features enabling anyone to generate high quality simulations
for autonomous driving. Notable examples include CARLA [1] and AirSim [4],
the former of which was used for this research.

2 Simulation Toolkit

In order to facilitate the training and validation of machine learning models
for autonomous driving using simulated data, the authors introduce the Carla
Automated Dataset Extraction Tool (CADET) [8], an open-source tool for gen-
erating labeled data for autonomous driving models, compatible with Carla 0.8.
The tool supports various functionality including LIDAR to camera projection
(Fig. 1), generation of 2D and 3D bounding box labels for cars and pedestrians
(Fig. 2), detection of partially occluded objects (Fig. 3), and generation of sensor
data including LIDAR, camera and ground plane estimation, as well as sensor
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calibration matrices. All labels and calibration matrices are stored in the data
format defined by Geiger et al. [2], which makes it compatible with a number
of existing models for object detection and segmentation. As a varied dataset is
crucial for a machine learning model to generalize from a simulated environment
to real-life scenarios, the data generation tool includes a number of measures to
ensure variety. Most importantly, the tool resets the environment after a fixed
number of samples generated. Here, a sample is defined as the tuple containing
a reading from each sensor, corresponding ground truth labels and calibration
data. Resetting the environment entails randomization of vehicle models, spawn
positions, weather conditions and maps, and ensures a uniform distribution of
weather types, agent models for both pedestrians and cars and starting positions
of all vehicles. The LIDAR and camera sensors are positioned identically and
synchronized such that a full LIDAR rotation exists for each image1. The raw
sensor data is projected to a unified coordinate system used in Unreal Engine
4 before determining visible objects in the scene, and projecting to the relative
coordinate spaces used in KITTI. As the initial LIDAR configuration in CARLA
ignores the pitch and roll of the vehicle it is attached to, additional transforma-
tions are applied after projection such that the sensor data is properly aligned.
One challenge when generating object labels is determining the visible objects
in the current scene. In order to detect occluded objects, the CARLA depth map
is utilized. A vertex is defined as occluded if the value of one of its neighbour-
ing pixels in the depth map is closer than the vertex distance to the camera.
An object is defined as occluded if at least four out of its eight bounding box
vertices are occluded. This occlusion detection performs satisfactory and much
faster than tracing the whole object, even when objects are localized behind
see-through objects such as chain-link fences, shown in Fig. 3. A more robust
occlusion detection can be performed by using the semantic segmentation of the
scene, but this is not implemented as of yet.

Fig. 1. LIDAR point cloud projected to image space. The color of each LIDAR point
is determined by its depth value (Color figure online).

1 Note that this only implies an approximate correspondance between points from the
camera and LIDAR sensors.
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Fig. 2. 2D (top) and 3D (bottom) bounding boxes as generated by CADET. Class
labels are omitted.

Fig. 3. Occluded vertices behind a chain fence. Note that both cars are visible, and
thus have a bounding box drawn around them. Occluded and visible vertices are drawn
with red and green, respectively (Color figure online).

3 Generated Dataset

Using CADET we generate the CADET dataset, consisting of 10 000 samples.
In total, there are 13989 cars and 4895 pedestrians in the dataset, averaging
about 1.9 labeled objects per image. The dataset contains 2D and 3D bounding
box annotations of the classes Car and Pedestrian, and contains both LIDAR
and camera sensor data, as well as ground plane estimation and generation
of sensor calibration matrices. The environment is generated from two maps,
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namely Town01 and Town02 in the CARLA simulator, which are both subur-
ban environments. The distribution of objects in each image is shown in Fig. 8.
In comparison with the KITTI dataset, the CADET dataset has less cars and
pedestrians per image, which is mostly due to city-environment of KITTI, where
cars are frequently parked at the side of the road and pedestrians are present in
a higher degree. The orientation of each labeled object is shown in Fig. 9. We
observe that the distribution of orientation have a sharp multimodal distribution
with three peaks, namely for objects seen from the front, behind or sideways.
Note that the pedestrians in the dataset generally have a smaller bounding box
than cars, shown in Fig. 7, making them harder to detect.

4 Training on Simulated Data

In order to evaluate the use of the simulated CADET dataset, as well experi-
ment with LIDAR feature map representations, several configurations were used
of the AVOD-FPN [6] architecture for 3D object detection using camera and
LIDAR point cloud. The AVOD-FPN source code has been altered to allow for
customized configurations by specifying the features wanted for two groups, slice
maps and cloud maps. Slice maps refer to feature maps taken from each vertical
slice the point cloud is split into, as specified in the configuration files, while the
cloud maps consider the whole point cloud. Following the approach described
in [6], two networks were used for detecting cars and pedestrians separately,
repeating the process for each configuration. As multiclass detection might also
produce more unstable results when evaluating per class, this was considered
the better option. All models used a feature pyramid network to extract fea-
tures from images and LIDAR, with early fusion of the extracted camera and
LIDAR features. Training data is augmented using flipping and jitter, with the
only differences between models of the same class being the respective repre-
sentations of LIDAR feature maps in Bird’s Eye View (BEV) as described in
Sect. 4.1. All configurations used are available in the source code [9].

4.1 Model Configurations

AVOD-FPN uses a simplified feature extractor based on the VGG-16 architec-
ture [14] to produce feature maps from camera view as well as LIDAR projected
to BEV, allowing the LIDAR to be processed by a Convolutional Neural Network
(CNN) designed for 2D images. These separate feature maps are fused together
using trainable weights, allowing the model to learn how to best combine mul-
timodal information. In addition to what will be referred to as the default BEV
configuration, as proposed in [6], two additional novel configurations are pro-
posed for which experimental results either show faster inference with similar
accuracy, or better accuracy with similar inference speed. In all cases the BEV
is discretized horizontally into cells at a resolution of 0.1m. The default con-
figuration creates 5 equally sized vertical slices within a specified height range,
taking the highest point in each cell normalized by the slice height. A separate
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image for the density of the entire point cloud is generated from the number of
points N in each cell following Eq. 1, as used in [6] and [7], though normalized by
log(64) in the latter. We propose a simplified structure, taking the global maxi-
mum height, minimum height and density of each cell over the entire point cloud,
avoiding the use of slices and halving the amount of BEV maps. We argue that
this is sufficient to determine which points belong to large objects and which are
outliers, and that it sufficiently defines box dimensions. For classes that occupy
less space, we argue that taking three slices vertically using the maximum height
and density for each slice can perform better with less susceptibility to noise, as
the network could potentially learn to distinguish whether the maximum height
value of a slice belongs to the object or not depending on the slice density. All
configurations are visualized in Figs. 4, 5 and 6.

Fig. 4. Visualization of default BEV
configuration, taking the maximum
height within 5 vertical slices as well
as the density of the full point cloud.

Fig. 5. Visualization of first custom
BEV configuration, taking the maximum
height and density within 3 vertical slices.

Fig. 6. Visualization of second custom BEV configuration, taking the maximum height,
minimum height and density of the full point cloud.

min(1.0,
log(N + 1)
log(16)

) (1)

4.2 Results

In order to gather qualitative results each model trained for a total of 120k steps
on the respective datasets, with a batch size of 1, as described in [6]. Checkpoints
were stored at every 2k steps, of which the last 20 were selected for evaluation.
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Tables 1 and 2 show generated results on the KITTI dataset, for the Car and
Pedestrian classes respectively, selecting the best performing checkpoint for each
of the 3 BEV configurations. To measure inference speed, each model performs
inference on the first 2000 images of the validation set, with learning deactivated,
using a NVIDIA GTX 1080 graphics card. The mean inference time is rounded
up to the nearest millisecond and presented in the tables.

Table 1. KITTI-trained model evaluated on the KITTI dataset for the Car class

Method Runtime (ms) AP3D(%) APBEV (%)

Easy Moderate Hard Easy Moderate Hard

Default 119 83.46 73.94 67.81 89.37 86.44 78.64

Max*3, Density*3 120 83.16 73.97 67.98 89.84 86.62 79.85

Max, Min, Density 114 82.98 73.92 67.84 89.62 86.61 79.68

Table 2. KITTI-trained model evaluated on the KITTI dataset for the Pedestrian
class

Method Runtime (ms) AP3D(%) APBEV (%)

Easy Moderate Hard Easy Moderate Hard

Default 122 41.05 37.00 32.00 44.12 39.54 38.11

Max*3, Density*3 122 45.61 42.66 38.06 49.16 45.99 44.53

Max, Min, Density 117 27.85 27.17 24.54 33.39 33.10 29.78

Following evaluation on the KITTI dataset, all configurations were trained
from scratch on the generated CADET dataset following the exact same process.
Results from evaluation on the validation set of the CADET dataset can be seen
in Tables 3 and 4. Note that as dynamic occlusion and truncation measurements
are not included in the dataset (these are only used for post training evaluation
in KITTI), evaluation does not follow the regular easy, moderate, hard categories
used in KITTI. Instead objects are categorized as large or small, following the
minimum height requirements for the bounding boxes of 40 pixels for easy and 25
pixels for moderate and hard. These models were additionally evaluated directly
on the KITTI validation set, with results summarized in Tables 5 and 6.

Table 3. CADET-trained model evaluated on the CADET dataset for the Car class

Method AP3D(%) APBEV (%)

Large Small Large Small

Default 70.86 69.37 80.13 71.32

Max*3, Density*3 70.96 69.59 79.81 71.28

Max, Min, Density 68.79 60.87 78.75 70.72
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Table 4. CADET-trained model evaluated on the CADET dataset for the Pedestrian
class

Method AP3D(%) APBEV (%)

Large Small Large Small

Default 75.43 73.89 75.43 73.91

Max*3, Density*3 76.13 72.99 80.24 73.41

Max, Min, Density 75.49 71.82 79.73 72.37

Table 5. CADET-trained model evaluated on the KITTI dataset for the Car class

Method AP3D(%) APBEV (%)

Easy Moderate Hard Easy Moderate Hard

Default 29.85 20.29 18.40 50.58 37.81 30.77

Max*3, Density*3 35.85 29.40 24.99 57.32 49.63 43.25

Max, Min, Density 30.34 24.28 20.25 45.22 37.56 31.17

Table 6. CADET-trained model evaluated on the KITTI dataset for the Pedestrian
class

Method AP3D(%) APBEV (%)

Easy Moderate Hard Easy Moderate Hard

Default 9.09 9.09 9.09 9.38 9.33 9.38

Max*3, Density*3 2.27 2.27 2.27 2.27 2.27 2.27

Max, Min, Density 9.09 9.09 9.09 9.78 9.09 9.09

Table 7. CADET-trained model, fine-tuned and evaluated on the KITTI dataset for
the Car class

Method AP3D(%) APBEV (%)

Easy Moderate Hard Easy Moderate Hard

Default 83.84 68.67 67.40 89.41 79.77 78.86

Max*3, Density*3 76.85 72.44 66.55 88.20 85.18 78.71

Max, Min, Density 81.00 66.95 65.88 88.76 79.36 78.41

The CADET-trained models were subsequently restored from their check-
points at step 90k and modified for further training on the KITTI dataset.
Training was resumed until step 150k, meaning the models received 60k
steps of training on the KITTI training set as opposed to 120k originally.
Other than increasing the amount of steps and switching the target datasets,
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Table 8. CADET-trained model, fine-tuned and evaluated on the KITTI dataset for
the Pedestrian class

Method AP3D(%) APBEV (%)

Easy Moderate Hard Easy Moderate Hard

Default 40.26 38.55 33.93 46.96 44.80 40.73

Max*3, Density*3 39.19 38.02 34.15 46.14 43.54 40.44

Max, Min, Density 37.32 34.34 32.60 45.71 42.43 37.62

the configuration files were not altered from when training on the CADET
dataset. Tables 7 and 8 show results from the top performing checkpoint of each
model.

5 Discussion

For the fully KITTI-trained models, results on the Car class are very similar for
all configurations, where the largest loss in amounts to only 0.5% 3D AP on the
easy category from the default configuration to our configuration using half as
many layers in the BEV map. Larger differences are apparent for the Pedestrian
class, where 3 layers is not sufficient to compete with the default configuration.
However, the use of 3 slices of maximum heights and density, totalling 6 layers as
with the default configuration, shows noticeably better results across the board
suggesting a more robust behaviour.

Evaluation of the CADET-trained models on the CADET validation set
shows similar relative performance between the models, however with the sim-
pler custom configuration showing a dip in accuracy for the moderate category
on the Car class. With regards to pedestrians, differences are much smaller than
what could have been expected. Also considering the unremarkable and rather
inconsistent performance on the Pedestrian class of the KITTI dataset, we can
likely accredit this to overly simplified representation of the physical collision of
pedestrians visible in the simulated LIDAR point cloud. The CADET-trained
models do perform better on the Car class however, suggesting better and more
consistent generalization for this task.

The fine-tuned models show performance on the Car class mostly similar
to the fully KITTI-trained models, however with each model showing a notice-
able drop in performance on either the easy or moderate category. Results on
the Pedestrian class are a bit more interesting. The default configuration sees
a slight increase in accuracy on the moderate and hard category, with a slight
decrease for easy. The max/density configuration sees a significant decrease in
performance on all categories, where as the less complex max/min/density con-
figuration, although still being the weakest performer, sees a significant increase
in performance compared to when only trained on the KITTI dataset. The reason
for the rather inconsistent results when compared to the KITTI-trained models
are not thoroughly investigated, but can in part be due to somewhat unstable
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Fig. 7. Dimension of 2D bounding boxes for the classes in the CADET dataset.

Fig. 8. Number of annotations for each class per image in the CADET dataset.

Fig. 9. Distribution of orientation per class in the CADET dataset.

gradients not producing fully reliable results. The CARLA generated LIDAR
point cloud does not feature accurate geometry due to simplified collision of all
dynamic objects. As such the different capabilities of the configurations may not
be exploited during the pretraining on the CADET dataset, impacting overall
results. The simplest configuration significantly closing the gap on the Pedestrian
class may be a testament to this, as the simplified pedestrian representation is
more easily recognizable.

While results from simulated and partly simulated training do not generally
exceed the performance of direct training on the dataset, there is a clear indi-
cation that the use of simulated data can achieve closely matched performance
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with less training on actual data. The ease of generation and expandabililty in
terms of sensors, scenarios, environments and conditions makes tools such as
CADET very useful for training and evaluating models for autonomous driving,
although improvements are needed before they are sufficient for training real
world solutions.

6 Conclusion

In recent years, the use of synthetic data for training machine learning models
has gained in popularity due to the costs associated with gathering real-life data.
This is especially true with regards to autonomous driving because of the strict
demand of generalizability to a diverse number of driving scenarios. In this study,
we have described CADET - a tool for generating large amounts of training
data for perception in autonomous driving, and the resulting dataset. We have
demonstrated that this dataset, while not sufficient to directly train systems for
use in the real world, is useful in lowering the amount of real-life data required
to train machine learning models to reasonably high levels of accuracy. We have
also suggested and evaluated two novel BEV representations, easily configurable
before training, with potential for better detection of smaller objects and reduced
complexity for detection of larger objects respectively. The CADET toolkit, while
still requiring improved physical models in LIDAR modelling, is currently able
to generate datasets for training and validation of virtually any model designed
for the KITTI object detection task.
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