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Abstract. In this work, an evolutionary art project is presented where
images are approximated by transparent, overlapping and geometric
shapes of different types, e.g., polygons, circles, lines. Genotypes rep-
resenting features and order of the geometric shapes are evolved with
a fitness function that has the corresponding pixels of an input image
as a target goal. A genotype-to-phenotype mapping is therefore applied
to render images, as the chosen genetic representation is indirect, i.e.,
genotypes do not include pixels but a combination of shapes with their
properties. Different combinations of shapes, quantity of shapes, muta-
tion types and populations are tested. The goal of the work herein is
twofold: (1) to approximate images as precisely as possible with evolved
indirect encodings, (2) to produce visually appealing results and novel
artistic styles.
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1 Introduction

In nature, all species of all organisms evolve through natural selection by passing
their traits to the next generation, but with small variations, to increase the
next generation’s ability to survive, compete, and reproduce [6]. This is called
evolution by natural selection and can be seen as an algorithm to search for an
increasingly better or fitter solution. The algorithm adapts to the environment by
making small changes, or mutations, to its previous solution, and by repeating
this process the algorithm will iteratively find an equal or a better solution.
The DNA sequences are passed from a parent to a child, and this compressed
representation of DNA sequences is referred to as genotype. A genotype is a
complete heritable genetic identity used to pass genetic information from one
generation to the next generation. It can be seen as the recipe for the phenotype
which is the actual visual representation of the organism. By applying this to
evolution, one can say that the organism passes on its genotype with small
variations to the next generation. While it is the genotype that is passed through
the generations, it is the phenotype that is evaluated and subjected to fitness.
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Fig. 1. An example of a rendered image genome evolved with the described algorithm.

The phenotype’s ability to compete, survive, and reproduce is determined by
its compatibility with the surrounding environment, i.e., a fitness function. If the
child of this phenotype has traits that are less compatible with the environment
than its parent, the child’s ability to compete and survive may not be enough for
it to reproduce. The initial phenotype has to produce children with an equal or
better genotype to make sure the newer generations can continue to reproduce.

Using this concept of evolutionary algorithm, we develop a program which
uses the same logic as in natural selection, to recreate a target image using
arbitrary geometrical shapes such as transparent overlapping circles, polygons,
and lines. The chosen geometrical shapes can vary in size, colour, transparency,
and placement. In each iteration, or generation, of this process, a collection of
shapes is created, and their structures are represented as instance objects with
changeable parameters. These objects represent the genes in the genotype. We
will refer to this collection of genes as an image genome.

To distinguish a bad solution from a fit solution, a fitness function is needed.
If the new solution has a better fitness score than the previous one, the new
solution will replace the old one and be used for the next generation. Using this
technique the program will find an increasingly better solution, and when the
fitness score is good enough or a termination criteria is met, the program will
stop. An example of rendered image genome is shown in Fig. 1.

Evolutionary art is an active area of research. One of the seminal work in this
field is [13] by Karl Sims, where virtual creatures were evolved for the first time.
Our work is inspired by [5], where they evolved images with overlapping polygons
with genotypes of fixed size, and the resulting images produce fairly sharp edges.
In [12] an evolutionary algorithm to reconstruct 3D objects based on images is
presented. The work in [4] introduces an user-interactive image evolution system
that does not rely on user feedback or supervision. Recent work includes [14]
for the coevolution of encodings and representations, [11] which uses stochas-
tic hillclimbing, simulated annealing and the plant propagation algorithm, [1]
which uses genetic programming, [3] for evolving fractal art, and [2] for cellular
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Table 1. Sample gene values

Type Width × HeightColour AlphaCoordinates Vertices/
Radius/
Thickness

Polygon200 × 200 (65, 6, 197) 0.64 [[22, 36], [110, 172], [72, 0]] 3

Circle 200 × 200 (243, 159, 253)0.77 (59, 182) 97

Line 200 × 200 (35, 89, 71) 0.12 (51, 130), (162, 60) 6

automata-based evolutionary art. Previous work by the authors on evolution of
cellular automata structures development and replication include [7–10].

2 Methodology

2.1 Image Genome Structure

All image genomes are implemented in the program as objects consisting of
genes for each shape. Each gene is made up by parameters that define the size
of the canvas, the shape’s colour, the transparency/alpha of that shape, and
its coordinates on the canvas, and depending on the shape, number of vertices,
the radius length and the thickness. A shape’s initial gene structure is made up
by these parameters: The width and height of the target image, an array for
the colours with values from 0–255, a transparency/alpha value between 0–1,
and the coordinates as x (value from 0 to width of image) and y (value from 0
to height of image). Additional parameters such as the number of vertices, the
length of the radius, and the thickness of the line are added to the end of the
gene when it is generated. See Table 1 for examples for each of the shapes. Their
phenotypes are represented visually in Fig. 2 (left).

2.2 Mutation Operations

Any gene in the genome can be mutated based on a set of given parameters
in the program. A modification of a specific or random parameter of the gene

Fig. 2. Visual representation of the genes in Table 1
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is done by retrieving the values of the relevant parameters and modifying them
within the limitations given. In our implementation we have included three muta-
tion operations, soft mutation, medium mutation, and a hybrid mutation. The
soft mutation updates parameters within a limit, whilst the medium operation
replaces existing parameters with new values. The hybrid mutation combines
the two former mutations by first doing two soft mutation and then one medium
mutation (ratio 2:1). We have also added two mutation factors, probability muta-
tion and chunk mutation. The probability mutation is based on the parameter
mutation probability, set in the program with a value from 0 to 1. This gives all
genes in a genome a probability of mutating decided by the parameter’s value.
When using the chunk mutation, a number of genes in the genome are always
mutated. The number is based on the same parameter, mutation probability,
but is multiplied with the number of genes in the genome. Example with the
probability mutation: If the parameter is set to 0.5, all genes in the genome will
have a 50% probability of mutation. Example with the chunk mutation: If a
genome has 100 genes and the variable is set to 0.5, then 50 mutations will take
place. This means that there is a probability for the same gene being mutated
twice (or more).1

2.3 From Genotype to Phenotype

To render the genotype’s phenotype, a black canvas is created, and then each
gene in the genotype is rendered onto the canvas one by one. In our implementa-
tion we have used a Python library called OpenCV, as it is capable of rendering
shapes with correct alpha values. It also provides simple utility for working with
red, green, and blue channels of a 24-bit image. As every gene represents one
shape, the circles, polygons, and lines are drawn, filled, and rendered in their
respective order, in compliance with the genome structure. The resulting phe-
notype is evaluated by the fitness function.

2.4 Fitness Function

The goal of the fitness function is to measure how close the generated image
is to the target image, and to distinguish bad solutions from good ones. Our
implementation of the fitness function is done by summarising the pixel by pixel
difference of the images and that way determine a score. This score is used to
determine whether to replace the parent image genome with the child image
genome, or discard it. If the score of the child is lower than the parent image
genome, the parent is replaced.

To improve the readability of the fitness score, we convert the absolute score
to a relative fitness in percent. The percentage score is calculated by dividing the
actual fitness score by the theoretical worst fitness score: The maximum differ-
ence (255) in each channel of the image (r, g and b) multiplied by the dimensions

1 The minimum number of genes to be mutated is 1.
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Fig. 3. Example of Graphical User Interface (GUI)

of the image in pixels (255× 3×width× height). Furthermore, the ratio is con-
verted to a percent and then flipped (100.0% minus the calculated percentage)
to reflect approximation towards 100% instead of 0%. The difference decreases
as the approximation improves. This way the fitness score is comparable between
images of different dimensions and easier to put into context.

The fitness score does not necessarily determine the best rendered image
for human eyes. (e.g. image with worse score can be more recognisable than
another image with better score.) Certain defined features of an image can be
more important for recognition by humans.

The program and data from the experiments are available on GitHub2.
A graphic interface is available to facilitate the execution of the program, as

shown in Fig. 3.

3 Experiments and Results

To make the tests comparable, the same target image was used in all experi-
ments. This image was also chosen because it is easily recognisable, see Fig. 4.
The initial parameters for the experiments are summarised in Table 2. In partic-
ular, the Number of Parents parameter reflects how many parents the algorithm
has to work with. The best parent has its phenotype shown in the GUI, but
every parent’s phenotype is saved in the output folder. The Children per Parent
parameter is the number of children each parent will produce. The minimum
value of both is 1, so the program has a population to evolve and compare, and
the maximum is set to 100 to limit the processing and the total time it takes. As
previously explained, the genome of a genotype consists of a number of genes.
The next parameter you see here is Genes Total, which is made up of the values
of the three parameters below it. The initial number in these tests is 20 genes
per genotype. As the experimenting progresses, the number of Polygons, Circles,
and Lines will change. The number of Vertices for the polygons is an editable

2 https://github.com/joacber/Evolved-art-with-transparent-overlapping-and-
geometric-shapes.

https://github.com/joacber/Evolved-art-with-transparent-overlapping-and-geometric-shapes
https://github.com/joacber/Evolved-art-with-transparent-overlapping-and-geometric-shapes
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Fig. 4. Target image used in experiments: Mona Lisa by Leonardo.

parameter, but the radius of the circle and the thickness of the lines are under
evolutionary control and are not editable by the user (and therefore not present
in the table).

The Mutation Probability parameter defines the rate of probability and chunk
mutation factors. The Genetic Restructure Rate parameter is based on the pre-
vious parameter, Mutation Probability. If the current number of generations dur-
ing the process is below one tenth of the maximum number of generations, each
gene in the genotype will have 0.1 probability to mutate. The Soft Mutation
Rate parameter decides the level of change that any gene’s parameter can be
subjected to. Hybrid (Medium Mutation) determines for how many generations
in a row the algorithm should run with medium mutation. If it is 0 it only runs
soft. Hybrid (Soft Mutation) determines how many generations in a row the algo-
rithm should run with soft mutation. If it is 0 and Hybrid (Medium Mutation)
is not 0 it only runs medium mutation.

The Save Rate parameter defines how often the image is saved (e.g. every
1,000th generation). The Maximum Generations is set to 10,000. That means
reaching generation number 10,000 is a termination condition, and thus the algo-
rithm will terminate. Chunk Mutation decides whether to use chunk mutation as
a factor in the mutation operations, instead of probability, which is the standard.
The parameter is true or false. The functions of these two mutation factors are
explained later. Crossover Mutation determines if 2 parents should cross-mutate
when producing a child. The parameter is true or false. The child is made up
of the main parent’s coordinates and shape relevant parameters, and the second
parent’s colour and alpha values.

3.1 Number of Vertices

The initial test was to determine the most appropriate number of vertices to use
in further testing of polygons. All tests were executed 15 times. Using a genome
consisting of 20 polygons, we were able to determine the number of vertices with
the most positive impact on the fitness score over 10,000 generations. The best
average score was achieved by genomes consisting of polygons with 8 vertices,
followed by 10 and 15 (see Table 3). The top graph in Fig. 5 displays the average
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Table 2. Initial test parameter values

Parameter name Parameter value

Number of Parents 1

Children per Parent 1

Genes Total 20

Polygons 20

Circles 0

Lines 0

Vertices 3

Mutation Probability 0.1

Genetic Restructure Rate 0

Soft Mutation Rate 0.1

Hybrid (Soft Mutation) 0

Hybrid (Medium Mutation) 0

Chunk Mutation False

Crossover Mutation False

Save Rate 1,000

Maximum Generations 10,000

Table 3. Top results from the vertices tests

Rank Number of vertices Average score Average relative score

1 8 2,885,838 90.57%

2 10 3,014,961 90.15%

3 15 3,032,196 90.09%

results of 15 tests with the number of vertices increasing from 3 to 20. The
differences are apparently small. The bottom graph in the same figure displays
the standard deviation (STD). If the fitness score has a high variation during
the process, the STD value will also be high. Here we can see that the STD value
is relatively dynamic in the first 5,000 generations, but flattens out later. This
makes sense because in the early stages the image is being created from scratch,
and later on the image is mostly being fine-tuned (Examples in Fig. 6).

3.2 Polygons

Using genomes consisting only of polygons with 8 vertices, we found that the
fitness score increases almost linearly with an increase in the genome complex-
ity (more polygons). The genome size was increased by 5 after 15 consecutive
runs with the same parameters. We saw that the bigger leaps in fitness hap-
pened between 5 and 15 polygons (see top graph in Fig. 7) - hitting 3,072,442
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Fig. 5. Results from the vertices test with 20 polygons and a number of vertices. Top
graph: average result from all the vertices tests. Bottom graph: standard deviation
from the same tests.

Fig. 6. Samples from the vertices tests (10,000 generations), with 3, 8, and 20 vertices.

(89.96%) average score at 15 contrary to 4,391,165 (85.65%) at 5. 20 polygons
is the milestone hitting 2,996,858 (90.21%) average score, and 25 polygons sub-
sequently hitting 2,751,771 (91.01%) average score with an increase of 0.80%
points. Increases were minimal with more complex genomes and disproportion-
ate increases in process time up to 40 polygons, with fitness score even dropping
between 40 (Avg. Score: 2,494,330) and 50 (Avg. Score: 2,507,859) polygons,
thus making 25 polygons the apparent winner for 10,000 generations with an
approximation of above 90% and a relatively big increase (0.80% points) from
20 polygons. In the bottom graph of Fig. 7, we can see that the STD value
flattens out after 4,000 generations (Examples in Fig. 8).

3.3 Circles

Using genomes consisting only of circles, testing showed that, similarly to poly-
gons, the fitness score increases steadily when adding more circles to the genome
(see Fig. 9). An all circles genome gets an average approximation of over 90%
at 15 circles. (Whereas polygons were right below that at 15.) The increases in
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Fig. 7. Results from polygons tests with 8 vertices and increasing number of polygons.
The legend shows number of polygons - number of vertices

Fig. 8. Samples from polygon tests (10,000 generations), with 5, 25, and 50 polygons.

fitness score when increasing genome complexity are more volatile with circles
than polygons. We only tested up to 40 circles per genome and do not know
if average fitness score decreases between 40 and 50 circles as with polygons.
Using 40 circles was however only slightly better than using 35 (92.20% over
92.15% (0.05% point increase)), whereas using 30 circles was a great deal better
than using 25 (91.75% over 91.17% (0.58% point increase)). There are no clear
winners, but genomes consisting of 15, 20 and 30 circles stand out among the
rest (Examples in Fig. 10).

3.4 Lines

Testing with genomes consisting only of lines was shown to be an ineffec-
tive option. Starting at an average approximation of 65.50% using 5 lines in
the genome, ending at an average approximation of 83.86% using 40 lines per
genome. While using lines is worse at getting desired fitness results, it may still
provide a certain aesthetic and artistic value for human eyes. And may prove
useful in approximating certain pictures containing elements with straight lines
(Examples in Fig. 11).
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Fig. 9. Result from the circles tests from 5 to 40 circles. Top graph: Collection of the
circles tests. Bottom graph: The STD flattens out already after 2,000 generations. The
legend shows number of circles.

Fig. 10. Samples from the circles tests (10,000 generations), with 5, 20, and 40 circles.

3.5 Combinations of Polygons, Circles, and Lines

To determine if a combination of different genes had any advantage over single
gene types, we tested 6 different compositions with 20 genes in total. The tests
showed that the combination of circles and polygons had the best results. The
best composition of genes was a 1:1 ratio of polygons and circles, and the second
best a 3:1 ratio of polygons to circles. Based on the experiments, lines make very
little impact on the fitness results over the course of 10,000 generations, but they
may provide functionality for certain images and artistic purposes (Examples in
Fig. 12).

3.6 Mutation Probability

To find the best mutation probability we chose to only do tests on the small-
est population size of 1, due to computational time. The result showed that
a mutation probability higher than 50% overall gave poor results over 10,000
generations.
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Fig. 11. Samples from the lines tests (10,000 generations), with 5, 20 and 40 lines

Fig. 12. Samples from the gene combination tests (10,000 generations) with [10 Circles
10 Poly], [5 Circles 15 Polygons], [5 Circles 5 Polygons 10 Lines]

This prompted us to limit the future testing to 10% and 30%. A mutation
probability of 10% entails that every single gene has a 10:1 chance of mutating.
One genome consisting of 40 genes will on average have 4 of its genes mutated
every generation. If the probability is 30%, then the average will be 12 genes per
generation.

4 Other Considerations

After thorough testing, we have found a collection of suitable values for every
parameter to produce visually pleasing results. Some of the values disproportion-
ately increase the computation time, and are therefore not beneficial even if they
produce a better fitness. Some parameter values that have been omitted might
have potential to give aesthetically pleasing or interesting results. Interestingly,
some of the parameters we tested did not have the impact we initially thought
they would, such as Lines and Crossover, and have been omitted from the col-
lection. Polygons and circles were both relatively good at around 25 genes, and
are therefore both represented at 25 in order to maintain a 1:1 ratio, which was
the best distribution of genes in the tests.

5 Conclusions

Our work shows that it is possible to generate artistic images through evolution-
ary algorithms, and could be used for artistic purposes. We have certainly been
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amazed and puzzled by the images our algorithm has produced. Some examples
are shown below in the Appendix.

Appendix

See Figs. 13, 14 and 15.

Fig. 13. Blue Nude by Pablo Picasso

Fig. 14. Google Chrome logo

Fig. 15. Nokken by Theodor Kittelsen
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Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS,
vol. 9921, pp. 14–25. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45823-6 2

8. Nichele, S., Ose, M.B., Risi, S., Tufte, G.: CA-NEAT: evolved compositional pat-
tern producing networks for cellular automata morphogenesis and replication.
IEEE Trans. Cogn. Dev. Syst. 10(3), 687–700 (2018)

9. Nichele, S., Tufte, G.: Evolutionary growth of genomes for the development and
replication of multicellular organisms with indirect encoding. In: 2014 IEEE Inter-
national Conference on Evolvable Systems, pp. 141–148. IEEE (2014)

10. Nichele, S., Tufte, G.: Morphogenesis and replication of multi-cellular organisms
with evolved variable length self-modifying genomes. In: Proceedings of the Euro-
pean Conference on Artificial Life 13, p. 42. MIT Press (2015)

11. Paauw, M., van den Berg, D.: Paintings, polygons and plant propagation. In: Ekárt,
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