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Preface

This volume contains the papers presented during the 2019 Symposium of the
Norwegian AI Society (NAIS 2019) that was held during May 27–28, 2019, at the
Norwegian University of Science and Technology in Trondheim. The NAIS Sympo-
sium was held for the third time and the first time since 2010. The symposium aims at
bringing together researchers and practitioners in the field of Artificial Intelligence
(AI) from Norway and Scandinavia to present on-going work and discuss the future
directions of AI. With the symposium, NAIS provides a forum for networking among
researchers as well building links with related research fields, practitioners, and
businesses.

This year there were 21 submissions. Each submission was reviewed by at least two
Program Committee members as well as an additional review by the Program
Committee chairs. The committee decided to accept 14 papers presented in 3 technical
sessions (9 papers and 5 posters). The program also included four invited talks as well
as a panel discussion about the status of AI in Norway.

The symposium started on Monday with a welcome by symposium co-chair,
Massimiliano Ruocco, and the head of the computer science department at NTNU,
John Krogstie. The first invited talk was given by Agnar Aamodt and Odd Erik
Gundersen, on the history and future of the Norwegian AI Society. Agnar Aamodt,
who was among the founding members of NAIS in 1985, took a look back on the
history of AI research over the past 30+ years, while the current chair of NAIS, Odd
Erik Gundersen, spoke about the challenges ahead in research and industry. The invited
talk was followed by two technical sessions and another two invited talks. The second
invited talk was given by Jon Bratseth on Vespa.ai, an open source platform for storing,
selecting, processing, and making model inferences over large data sets at end user
request time. Jon presented the motivation to build Vespa.ai, which aims to move the
focus from technologies for offline analysis and learning from big data towards making
data-driven decisions in real time. The final talk of the day was given by Bernt Viggo
Matheussen, from Agder Energi, on “AI in the Renewable Energy Sector.” Bernt gave
insights in trends and challenges for industrial applications of machine learning in the
energy sector and presented current work by Agder Energi on price forecasting,
hydropower optimization, and snow estimation. The day closed with a dinner for all
participants in the heart of Trondheim’s old town, Bakklandet.

On Tuesday, the symposium featured a panel on the current status and future
direction of AI in Norway chaired by Kerstin Bach. The four panelists were Ole Jakob
Mengshoel (professor at NTNU and director of the Norwegian Open AI Lab), Klas
Pettersen (CEO of NORA), Signe Riemer-Sørensen (Research Scientist at Sintef
Digital), and Ola Tørudbakken (SVP Rackscale at Graphcore). The core discussion
of the panel, as well as with the audience, was centered around the strength of the AI
environment in Norway and how the AI community could play an active role. There
was an agreement that the Norwegian industry must understand the value and utilize

http://vespa.ai


their data by developing AI systems that are safe, explainable, and trustworthy.
Moreover, the value creation should take place in Norway, and therefore, we need to
invest the AI research – especially in fundamental research. After a lively discussion
among the panelists and challenging questions from an engaged audience, the program
continued with the third and final technical session and the closing invited talk by
Arnoldo Frigessi from the University of Oslo. Arnoldo presented joint work with
Qinghua Liu, Marta Crispino, Ida Scheel, Valeria Vitelli, Øystein Sørensen, and Elja
Arjas on “Bayesian Preference Learning.” He reviewed their work on probabilistic
approaches to preference learning, including the Mallows and Bradley-Terry models,
and discussed the use of these methods, comparing them to matrix factorization
approaches. Throughout both days, we had all the posters presented during the breaks,
and participants were discussing them over a cup of coffee.

The success of the symposium would not be possible without the help of many
colleagues. We would like to thank the Program Committee for reviewing papers and
giving feedback to the authors. Furthermore, we are grateful for the support we
received from the Department of Computer Science (IDI) at NTNU and the Norwegian
Open AI Lab for hosting the event. The student organization BRAIN assisted during
the registration and our colleagues from the NAIS board for suggesting and contacting
invited speakers and sponsors. A very special thanks goes to Marianne Lyseng, who
kept track of all administrative work and ensured a smooth symposium.

We are thankful for our sponsors who helped to keep the registration fees low, and
in particular, supported the next generation of researchers to join the symposium and
network with the members of the AI community in Norway. Our sponsors were the IDI
at NTNU, Trønderenergi, Telenor Research, DNV GL, as well as the Research Council
of Norway. Managing submissions and proceeding through EasyChair made our work
a lot easier and we warmly thank EasyChair for this.

Last but not least, we thank all participants of the symposium for presenting their
work, engaging in discussions, and actively participating in a lively exchange among
researchers in AI.

May 2019 Kerstin Bach
Massimiliano Ruocco
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Evolved Art with Transparent,
Overlapping, and Geometric Shapes

Joachim Berg, Nils Gustav Andreas Berggren, Sivert Allergodt Borgeteien,
Christian Ruben Alexander Jahren, Arqam Sajid, and Stefano Nichele(B)

Faculty of Technology, Art, and Design - AI Lab, Oslo Metropolitan University,
Oslo, Norway

stefano.nichele@oslomet.no

Abstract. In this work, an evolutionary art project is presented where
images are approximated by transparent, overlapping and geometric
shapes of different types, e.g., polygons, circles, lines. Genotypes rep-
resenting features and order of the geometric shapes are evolved with
a fitness function that has the corresponding pixels of an input image
as a target goal. A genotype-to-phenotype mapping is therefore applied
to render images, as the chosen genetic representation is indirect, i.e.,
genotypes do not include pixels but a combination of shapes with their
properties. Different combinations of shapes, quantity of shapes, muta-
tion types and populations are tested. The goal of the work herein is
twofold: (1) to approximate images as precisely as possible with evolved
indirect encodings, (2) to produce visually appealing results and novel
artistic styles.

Keywords: Artificial intelligence · Evolutionary art

1 Introduction

In nature, all species of all organisms evolve through natural selection by passing
their traits to the next generation, but with small variations, to increase the
next generation’s ability to survive, compete, and reproduce [6]. This is called
evolution by natural selection and can be seen as an algorithm to search for an
increasingly better or fitter solution. The algorithm adapts to the environment by
making small changes, or mutations, to its previous solution, and by repeating
this process the algorithm will iteratively find an equal or a better solution.
The DNA sequences are passed from a parent to a child, and this compressed
representation of DNA sequences is referred to as genotype. A genotype is a
complete heritable genetic identity used to pass genetic information from one
generation to the next generation. It can be seen as the recipe for the phenotype
which is the actual visual representation of the organism. By applying this to
evolution, one can say that the organism passes on its genotype with small
variations to the next generation. While it is the genotype that is passed through
the generations, it is the phenotype that is evaluated and subjected to fitness.
c© Springer Nature Switzerland AG 2019
K. Bach and M. Ruocco (Eds.): NAIS 2019, CCIS 1056, pp. 3–15, 2019.
https://doi.org/10.1007/978-3-030-35664-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35664-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-35664-4_1


4 J. Berg et al.

Fig. 1. An example of a rendered image genome evolved with the described algorithm.

The phenotype’s ability to compete, survive, and reproduce is determined by
its compatibility with the surrounding environment, i.e., a fitness function. If the
child of this phenotype has traits that are less compatible with the environment
than its parent, the child’s ability to compete and survive may not be enough for
it to reproduce. The initial phenotype has to produce children with an equal or
better genotype to make sure the newer generations can continue to reproduce.

Using this concept of evolutionary algorithm, we develop a program which
uses the same logic as in natural selection, to recreate a target image using
arbitrary geometrical shapes such as transparent overlapping circles, polygons,
and lines. The chosen geometrical shapes can vary in size, colour, transparency,
and placement. In each iteration, or generation, of this process, a collection of
shapes is created, and their structures are represented as instance objects with
changeable parameters. These objects represent the genes in the genotype. We
will refer to this collection of genes as an image genome.

To distinguish a bad solution from a fit solution, a fitness function is needed.
If the new solution has a better fitness score than the previous one, the new
solution will replace the old one and be used for the next generation. Using this
technique the program will find an increasingly better solution, and when the
fitness score is good enough or a termination criteria is met, the program will
stop. An example of rendered image genome is shown in Fig. 1.

Evolutionary art is an active area of research. One of the seminal work in this
field is [13] by Karl Sims, where virtual creatures were evolved for the first time.
Our work is inspired by [5], where they evolved images with overlapping polygons
with genotypes of fixed size, and the resulting images produce fairly sharp edges.
In [12] an evolutionary algorithm to reconstruct 3D objects based on images is
presented. The work in [4] introduces an user-interactive image evolution system
that does not rely on user feedback or supervision. Recent work includes [14]
for the coevolution of encodings and representations, [11] which uses stochas-
tic hillclimbing, simulated annealing and the plant propagation algorithm, [1]
which uses genetic programming, [3] for evolving fractal art, and [2] for cellular
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Table 1. Sample gene values

Type Width × HeightColour AlphaCoordinates Vertices/
Radius/
Thickness

Polygon200 × 200 (65, 6, 197) 0.64 [[22, 36], [110, 172], [72, 0]] 3

Circle 200 × 200 (243, 159, 253)0.77 (59, 182) 97

Line 200 × 200 (35, 89, 71) 0.12 (51, 130), (162, 60) 6

automata-based evolutionary art. Previous work by the authors on evolution of
cellular automata structures development and replication include [7–10].

2 Methodology

2.1 Image Genome Structure

All image genomes are implemented in the program as objects consisting of
genes for each shape. Each gene is made up by parameters that define the size
of the canvas, the shape’s colour, the transparency/alpha of that shape, and
its coordinates on the canvas, and depending on the shape, number of vertices,
the radius length and the thickness. A shape’s initial gene structure is made up
by these parameters: The width and height of the target image, an array for
the colours with values from 0–255, a transparency/alpha value between 0–1,
and the coordinates as x (value from 0 to width of image) and y (value from 0
to height of image). Additional parameters such as the number of vertices, the
length of the radius, and the thickness of the line are added to the end of the
gene when it is generated. See Table 1 for examples for each of the shapes. Their
phenotypes are represented visually in Fig. 2 (left).

2.2 Mutation Operations

Any gene in the genome can be mutated based on a set of given parameters
in the program. A modification of a specific or random parameter of the gene

Fig. 2. Visual representation of the genes in Table 1
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is done by retrieving the values of the relevant parameters and modifying them
within the limitations given. In our implementation we have included three muta-
tion operations, soft mutation, medium mutation, and a hybrid mutation. The
soft mutation updates parameters within a limit, whilst the medium operation
replaces existing parameters with new values. The hybrid mutation combines
the two former mutations by first doing two soft mutation and then one medium
mutation (ratio 2:1). We have also added two mutation factors, probability muta-
tion and chunk mutation. The probability mutation is based on the parameter
mutation probability, set in the program with a value from 0 to 1. This gives all
genes in a genome a probability of mutating decided by the parameter’s value.
When using the chunk mutation, a number of genes in the genome are always
mutated. The number is based on the same parameter, mutation probability,
but is multiplied with the number of genes in the genome. Example with the
probability mutation: If the parameter is set to 0.5, all genes in the genome will
have a 50% probability of mutation. Example with the chunk mutation: If a
genome has 100 genes and the variable is set to 0.5, then 50 mutations will take
place. This means that there is a probability for the same gene being mutated
twice (or more).1

2.3 From Genotype to Phenotype

To render the genotype’s phenotype, a black canvas is created, and then each
gene in the genotype is rendered onto the canvas one by one. In our implementa-
tion we have used a Python library called OpenCV, as it is capable of rendering
shapes with correct alpha values. It also provides simple utility for working with
red, green, and blue channels of a 24-bit image. As every gene represents one
shape, the circles, polygons, and lines are drawn, filled, and rendered in their
respective order, in compliance with the genome structure. The resulting phe-
notype is evaluated by the fitness function.

2.4 Fitness Function

The goal of the fitness function is to measure how close the generated image
is to the target image, and to distinguish bad solutions from good ones. Our
implementation of the fitness function is done by summarising the pixel by pixel
difference of the images and that way determine a score. This score is used to
determine whether to replace the parent image genome with the child image
genome, or discard it. If the score of the child is lower than the parent image
genome, the parent is replaced.

To improve the readability of the fitness score, we convert the absolute score
to a relative fitness in percent. The percentage score is calculated by dividing the
actual fitness score by the theoretical worst fitness score: The maximum differ-
ence (255) in each channel of the image (r, g and b) multiplied by the dimensions

1 The minimum number of genes to be mutated is 1.
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Fig. 3. Example of Graphical User Interface (GUI)

of the image in pixels (255× 3×width× height). Furthermore, the ratio is con-
verted to a percent and then flipped (100.0% minus the calculated percentage)
to reflect approximation towards 100% instead of 0%. The difference decreases
as the approximation improves. This way the fitness score is comparable between
images of different dimensions and easier to put into context.

The fitness score does not necessarily determine the best rendered image
for human eyes. (e.g. image with worse score can be more recognisable than
another image with better score.) Certain defined features of an image can be
more important for recognition by humans.

The program and data from the experiments are available on GitHub2.
A graphic interface is available to facilitate the execution of the program, as

shown in Fig. 3.

3 Experiments and Results

To make the tests comparable, the same target image was used in all experi-
ments. This image was also chosen because it is easily recognisable, see Fig. 4.
The initial parameters for the experiments are summarised in Table 2. In partic-
ular, the Number of Parents parameter reflects how many parents the algorithm
has to work with. The best parent has its phenotype shown in the GUI, but
every parent’s phenotype is saved in the output folder. The Children per Parent
parameter is the number of children each parent will produce. The minimum
value of both is 1, so the program has a population to evolve and compare, and
the maximum is set to 100 to limit the processing and the total time it takes. As
previously explained, the genome of a genotype consists of a number of genes.
The next parameter you see here is Genes Total, which is made up of the values
of the three parameters below it. The initial number in these tests is 20 genes
per genotype. As the experimenting progresses, the number of Polygons, Circles,
and Lines will change. The number of Vertices for the polygons is an editable

2 https://github.com/joacber/Evolved-art-with-transparent-overlapping-and-
geometric-shapes.

https://github.com/joacber/Evolved-art-with-transparent-overlapping-and-geometric-shapes
https://github.com/joacber/Evolved-art-with-transparent-overlapping-and-geometric-shapes
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Fig. 4. Target image used in experiments: Mona Lisa by Leonardo.

parameter, but the radius of the circle and the thickness of the lines are under
evolutionary control and are not editable by the user (and therefore not present
in the table).

The Mutation Probability parameter defines the rate of probability and chunk
mutation factors. The Genetic Restructure Rate parameter is based on the pre-
vious parameter, Mutation Probability. If the current number of generations dur-
ing the process is below one tenth of the maximum number of generations, each
gene in the genotype will have 0.1 probability to mutate. The Soft Mutation
Rate parameter decides the level of change that any gene’s parameter can be
subjected to. Hybrid (Medium Mutation) determines for how many generations
in a row the algorithm should run with medium mutation. If it is 0 it only runs
soft. Hybrid (Soft Mutation) determines how many generations in a row the algo-
rithm should run with soft mutation. If it is 0 and Hybrid (Medium Mutation)
is not 0 it only runs medium mutation.

The Save Rate parameter defines how often the image is saved (e.g. every
1,000th generation). The Maximum Generations is set to 10,000. That means
reaching generation number 10,000 is a termination condition, and thus the algo-
rithm will terminate. Chunk Mutation decides whether to use chunk mutation as
a factor in the mutation operations, instead of probability, which is the standard.
The parameter is true or false. The functions of these two mutation factors are
explained later. Crossover Mutation determines if 2 parents should cross-mutate
when producing a child. The parameter is true or false. The child is made up
of the main parent’s coordinates and shape relevant parameters, and the second
parent’s colour and alpha values.

3.1 Number of Vertices

The initial test was to determine the most appropriate number of vertices to use
in further testing of polygons. All tests were executed 15 times. Using a genome
consisting of 20 polygons, we were able to determine the number of vertices with
the most positive impact on the fitness score over 10,000 generations. The best
average score was achieved by genomes consisting of polygons with 8 vertices,
followed by 10 and 15 (see Table 3). The top graph in Fig. 5 displays the average
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Table 2. Initial test parameter values

Parameter name Parameter value

Number of Parents 1

Children per Parent 1

Genes Total 20

Polygons 20

Circles 0

Lines 0

Vertices 3

Mutation Probability 0.1

Genetic Restructure Rate 0

Soft Mutation Rate 0.1

Hybrid (Soft Mutation) 0

Hybrid (Medium Mutation) 0

Chunk Mutation False

Crossover Mutation False

Save Rate 1,000

Maximum Generations 10,000

Table 3. Top results from the vertices tests

Rank Number of vertices Average score Average relative score

1 8 2,885,838 90.57%

2 10 3,014,961 90.15%

3 15 3,032,196 90.09%

results of 15 tests with the number of vertices increasing from 3 to 20. The
differences are apparently small. The bottom graph in the same figure displays
the standard deviation (STD). If the fitness score has a high variation during
the process, the STD value will also be high. Here we can see that the STD value
is relatively dynamic in the first 5,000 generations, but flattens out later. This
makes sense because in the early stages the image is being created from scratch,
and later on the image is mostly being fine-tuned (Examples in Fig. 6).

3.2 Polygons

Using genomes consisting only of polygons with 8 vertices, we found that the
fitness score increases almost linearly with an increase in the genome complex-
ity (more polygons). The genome size was increased by 5 after 15 consecutive
runs with the same parameters. We saw that the bigger leaps in fitness hap-
pened between 5 and 15 polygons (see top graph in Fig. 7) - hitting 3,072,442
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Fig. 5. Results from the vertices test with 20 polygons and a number of vertices. Top
graph: average result from all the vertices tests. Bottom graph: standard deviation
from the same tests.

Fig. 6. Samples from the vertices tests (10,000 generations), with 3, 8, and 20 vertices.

(89.96%) average score at 15 contrary to 4,391,165 (85.65%) at 5. 20 polygons
is the milestone hitting 2,996,858 (90.21%) average score, and 25 polygons sub-
sequently hitting 2,751,771 (91.01%) average score with an increase of 0.80%
points. Increases were minimal with more complex genomes and disproportion-
ate increases in process time up to 40 polygons, with fitness score even dropping
between 40 (Avg. Score: 2,494,330) and 50 (Avg. Score: 2,507,859) polygons,
thus making 25 polygons the apparent winner for 10,000 generations with an
approximation of above 90% and a relatively big increase (0.80% points) from
20 polygons. In the bottom graph of Fig. 7, we can see that the STD value
flattens out after 4,000 generations (Examples in Fig. 8).

3.3 Circles

Using genomes consisting only of circles, testing showed that, similarly to poly-
gons, the fitness score increases steadily when adding more circles to the genome
(see Fig. 9). An all circles genome gets an average approximation of over 90%
at 15 circles. (Whereas polygons were right below that at 15.) The increases in
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Fig. 7. Results from polygons tests with 8 vertices and increasing number of polygons.
The legend shows number of polygons - number of vertices

Fig. 8. Samples from polygon tests (10,000 generations), with 5, 25, and 50 polygons.

fitness score when increasing genome complexity are more volatile with circles
than polygons. We only tested up to 40 circles per genome and do not know
if average fitness score decreases between 40 and 50 circles as with polygons.
Using 40 circles was however only slightly better than using 35 (92.20% over
92.15% (0.05% point increase)), whereas using 30 circles was a great deal better
than using 25 (91.75% over 91.17% (0.58% point increase)). There are no clear
winners, but genomes consisting of 15, 20 and 30 circles stand out among the
rest (Examples in Fig. 10).

3.4 Lines

Testing with genomes consisting only of lines was shown to be an ineffec-
tive option. Starting at an average approximation of 65.50% using 5 lines in
the genome, ending at an average approximation of 83.86% using 40 lines per
genome. While using lines is worse at getting desired fitness results, it may still
provide a certain aesthetic and artistic value for human eyes. And may prove
useful in approximating certain pictures containing elements with straight lines
(Examples in Fig. 11).
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Fig. 9. Result from the circles tests from 5 to 40 circles. Top graph: Collection of the
circles tests. Bottom graph: The STD flattens out already after 2,000 generations. The
legend shows number of circles.

Fig. 10. Samples from the circles tests (10,000 generations), with 5, 20, and 40 circles.

3.5 Combinations of Polygons, Circles, and Lines

To determine if a combination of different genes had any advantage over single
gene types, we tested 6 different compositions with 20 genes in total. The tests
showed that the combination of circles and polygons had the best results. The
best composition of genes was a 1:1 ratio of polygons and circles, and the second
best a 3:1 ratio of polygons to circles. Based on the experiments, lines make very
little impact on the fitness results over the course of 10,000 generations, but they
may provide functionality for certain images and artistic purposes (Examples in
Fig. 12).

3.6 Mutation Probability

To find the best mutation probability we chose to only do tests on the small-
est population size of 1, due to computational time. The result showed that
a mutation probability higher than 50% overall gave poor results over 10,000
generations.
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Fig. 11. Samples from the lines tests (10,000 generations), with 5, 20 and 40 lines

Fig. 12. Samples from the gene combination tests (10,000 generations) with [10 Circles
10 Poly], [5 Circles 15 Polygons], [5 Circles 5 Polygons 10 Lines]

This prompted us to limit the future testing to 10% and 30%. A mutation
probability of 10% entails that every single gene has a 10:1 chance of mutating.
One genome consisting of 40 genes will on average have 4 of its genes mutated
every generation. If the probability is 30%, then the average will be 12 genes per
generation.

4 Other Considerations

After thorough testing, we have found a collection of suitable values for every
parameter to produce visually pleasing results. Some of the values disproportion-
ately increase the computation time, and are therefore not beneficial even if they
produce a better fitness. Some parameter values that have been omitted might
have potential to give aesthetically pleasing or interesting results. Interestingly,
some of the parameters we tested did not have the impact we initially thought
they would, such as Lines and Crossover, and have been omitted from the col-
lection. Polygons and circles were both relatively good at around 25 genes, and
are therefore both represented at 25 in order to maintain a 1:1 ratio, which was
the best distribution of genes in the tests.

5 Conclusions

Our work shows that it is possible to generate artistic images through evolution-
ary algorithms, and could be used for artistic purposes. We have certainly been
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amazed and puzzled by the images our algorithm has produced. Some examples
are shown below in the Appendix.

Appendix

See Figs. 13, 14 and 15.

Fig. 13. Blue Nude by Pablo Picasso

Fig. 14. Google Chrome logo

Fig. 15. Nokken by Theodor Kittelsen
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Abstract. In this paper, we present work in progress on activity recog-
nition and prediction in real homes using either binary sensor data or
depth video data. We present our field trial and set-up for collecting and
storing the data, our methods, and our current results. We compare the
accuracy of predicting the next binary sensor event using probabilistic
methods and Long Short-Term Memory (LSTM) networks, include the
time information to improve prediction accuracy, as well as predict both
the next sensor event and its time of occurrence using one LSTM model.
We investigate transfer learning between apartments and show that it
is possible to pre-train the model with data from other apartments and
achieve good accuracy in a new apartment straight away. In addition, we
present preliminary results from activity recognition using low resolution
depth video data from seven apartments, and classify four activities – no
movement, standing up, sitting down, and TV interaction – by using a
relatively simple processing method where we apply an Infinite Impulse
Response (IIR) filter to extract movements from the frames prior to
feeding them to a convolutional LSTM network for the classification.

Keywords: Smart home · Sequence prediction · Time prediction ·
Binary sensors · Recurrent neural network · Probabilistic methods

1 Introduction

The Assisted Living project is an interdisciplinary project with expertise in the
fields of smart-home technology, machine learning, nursing and occupational
therapy, and ethics. The aim is to develop assisted living technology (ALT) to
support older adults with mild cognitive impairment or dementia (MCI/D) live
a safe and independent life at home [25]. MCI and dementia involve a cogni-
tive decline that can affect attention, concentration, memory, comprehension,
reasoning, and problem solving. A number of research studies have investigated
functions in smart-home environments to support older adults in general, and
those with MCI/D in particular, in their everyday life. These include assisting
functions such as prompting with reminders or encouragement, diagnosis tools,
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as well as alarm creation, prediction, anticipation, and prevention of hazardous
situations. The majority of these functions requires reliable activity/action recog-
nition and prediction algorithms to work properly. This field is at a quite early
stage at the moment. With the exception of fall detection, there are currently
no commercial systems with such functionality nor are there any complete pro-
totypes available at research and development level.

The aim of our work is to use activity prediction to realize support func-
tions for older adults with MCI/D. In this paper we present work in progress
on action/activity recognition and prediction using data from real homes, seven
apartments, each with one older adult resident over 65 years old – the major-
ity over 80 years old. We use binary sensors as well as a low resolution depth
video camera that is in fact a commercial fall detection system called Room-
Mate [1]. We present results on activity prediction based on the binary sensors,
where we compare probabilistic methods and neural networks, include the time
information and predict the time of occurrence as well as the next sensor event,
and investigate transfer learning between apartments. In addition, we present
preliminary results from action recognition based on video frames that contain
movement information.

2 Related Work

2.1 Activity Prediction Using Binary Sensors

Several sequential data prediction algorithms have been investigated in the past
years [21]. The Active LeZi (ALZ) is a probabilistic method that has been exten-
sively employed for prediction on sequential data [10]. Based on the ALZ, the
Sequence Prediction via Enhanced Episode Discovery (SPEED) algorithm was
implemented [2]. Recurrent neural network (RNN) models – Echo State Network
(ESN), Back Propagation Through Time (BPTT), and Real Time Recurrent
Learning (RTRL) – were applied and the ESN performed better when predict-
ing the next sensor in a sequence [13].

Activity prediction includes mainly two tasks: sequence prediction and time
prediction. In addition to sequence prediction, the algorithms mentioned above
should also be able to predict when the next symbol (representing either a sensor
or an activity) will occur. Several algorithms have been used to predict the time
of occurrence alone, such as the time series methods Autoregressive Moving
Average (ARMA) and Autoregressive Integrated Moving Average (ARIMA) [5];
non-linear Autoregressive Network (NARX), Elman network to predict a sensor
activation’s start and end time [14]; decision trees [16]; Poisson process [15].

To our knowledge, only one work predicts both sensor event and time in
the same model [17]. This work uses a Bayesian network and predicts the next
location, time of day (slots of 3 h through the day), and day of the week with
reported accuracies of 46–60%, 66–87% and 89–97%. Subsequently, the activity is
predicted with an accuracy of 61–64% based on a combination of these features.
They use data from testbeds. Our dataset was collected from a real home, it
contains events from fifteen binary sensors, i.e. twice as many as used in [13,14],
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less than one third of the number of sensors used in the Mavlab testbed [2,10,
16], and half of [17]. Our work predicts the next sensor event and the time of
occurrence for a set with 15 sensors in the same model using LSTM networks.

2.2 Activity Recognition Using Depth Video Data

There is strong evidence that technology can support aging at home [18] and a
large number of studies have implemented assistive technology to support older
adults live a safe and independent life at home [4]. Human activity recognition
(HAR) has been well studied in the past years [24] and a number of algorithms
have been used. Hidden Markov Models (HMM) achieved a maximum accuracy
of 97% with the MSR Action3D dataset with skeleton data histograms fed to a
HMM [22]. Yang et al. [23] reached 97% accuracy on the same dataset by using
Depth Motion Maps and Histogram of Oriented Gradients (DMM-HOG) features
and SVM. Convolutional neural networks have achieved remarkable results for
HAR from depth data. Wang et al. [20] achieved 100% accuracy on the same
action dataset with a deep convolutional network by using weighted hierarchical
DMMs of the video sequences.

3 Field Trial

Our field trial involves seven independent one-bedroom apartments within a
community care facility for people over 65 years old. Each apartment comprises
a bedroom, a living room, open kitchen area, a bathroom, and an entrance hall
(Fig. 1). Our set of sensors contains motion, magnetic, and power sensors. These
enable inference of occupancy patterns (movement around the apartment) and
some daily and leisure activities. Unfortunately, not all apartments could have
the exact same set of sensors due to physical limitations (e.g. fridge door with a
too big gap to enable the use of magnetic sensor) and/or different equipment (e.g.
residents either have a coffee machine or a kettle). However, all the participants
had the same initial proposal of set of sensors, as shown in Fig. 1. There are two
RoomMate depth video cameras in each apartment, one in the living room and
kitchen area, the other in the bedroom area, as shown in Fig. 1. The RoomMate
is an infra-red (IR)-based depth sensor and measures the distance of surfaces
to the camera by time-of-flight (TOF) technology. The resolution is 160 × 120
pixels, with a rate of 25 frames per second. This is rather low resolution – a fact
that is advantageous with respect to privacy, but makes data processing quite
challenging.

4 Activity Prediction Using Binary Sensors

4.1 Data Preprocessing

The preparation of the binary data includes two steps: data correction and data
conversion. The data correction is necessary because the data acquired from
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Fig. 1. Sensors system installed in the field trial apartment.

Table 1. Binary sensors data

Timestamp Sensor ID Sensor message

01.09.2017 07:58:40 4 1

01.09.2017 07:59:02 10 1

01.09.2017 08:03:05 10 0

binary sensors often contain faulty events [9]. In our system, occasionally the
motion sensors do not send an activation event when they should. Missing sensor
events have been inserted to correct for this. For example, it is not possible to
go to the bedroom directly from the kitchen without passing through the living
room. When the living room activation event is missing, it is inserted. The time
of the inserted event is the mean between the previous and next event. This
does not compromise the dataset accuracy because the faulty events are usually
between relatively fast motions around the apartment, hence the elapsed time is
short. Subsequently, the corrected data is converted to sequences of letters. This
is inspired by the SPEED algorithm [2]. Upper- and lower- case letters represent
a sensor’s “on” and “off” events. For the sample data in Table 1, SPEED would
generate the sequence “ABb”, where sensors 4 and 10 are assigned the letters
a/A and b/B, respectively. Afterwards, we include the time information. This is
done in two ways as follows. In all cases the generated sensor events are treated
as independent events, as presented also in the next section.

Sensor Event with Elapsed Time Classes. Here we use two fixed sets of
time intervals: [<1 min, 1–15 min, 15 min–1 h, >1 h] and [<1 min, 1–5 min, 5–
15 min, 15–30 min, 30 min–1 h, 1–2 h, 2–5 h]. This results in a 4-class case and an
8-class case.

Sensor and Time-Cluster with Hour of the Day and Elapsed Time to
the Next Event. We apply the K-means algorithm to cluster each sensor event
according to the hour of the day occurrence and the time elapsed to the following
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sensor event. In the K-means algorithm the samples of each sensor are classified
into K clusters such that the sum of square distances (SSD) within the clusters
is minimized [3]. Each cluster contains a centroid, given by the mean value of
each feature of the algorithm. We perform K-means for a maximum number of
clusters (K) equal to 8 and choose the best K manually according to the elbow
method [12].

4.2 Probabilistic Methods

Both ALZ and SPEED translate the data acquired from the sensors into a
sequence of letters and identify patterns that occur frequently [7,8]. The pat-
terns and their frequency of occurrence are used to generate a tree, which is then
used to calculate the next most probable event to occur based on the Prediction
Partial Matching algorithm (PPM) [2].

4.3 Long Short-Term Memory Network

RNN has been broadly applied to sequence prediction due to its property of
keeping an internal memory. Hence, it attains a good performance for inputs
that are sequential in time. The LSTM is an RNN architecture designed to be
better at storing and accessing information than the standard RNN [11]. In this
work the LSTM network is configured as a text generation network. The number
of inputs is a certain number of symbols (sensor events with numbers indicating
time) – equal to the memory length – and the output is the predicted next symbol
in the sequence (Fig. 2). The input and output are one-hot encoded. Hence, our
input vector has as many values as the number of symbols in the sequence. In
the case of 15 sensors, we have 30 inputs to represent the “on” and “off” states
of each of these. E.g. when the 4-class interval is taken into account, the number
of inputs is multiplied by 4 (120 inputs in total) and similarly in the other cases.

A stateless LSTM network model was implemented in Python 3 using Keras
open source library for neural networks. The memory length (i.e. number of
previous events used to predict the next event) [6] had value 10. The model
has one hidden layer with hyperbolic tangent activation and 64 neurons. Our
batch size (i.e. number of samples used for training each iteration of the epoch)
was 512. We used Adam as the optimization function with learning rate of 0.01
and categorical cross-entropy as loss function. The output layer was a softmax
activation function. We used the early stopping method to avoid overfitting and
unnecessary computations, allowing a maximum of 200 epochs for each model’s
training.

4.4 Sensor Event Prediction Using Binary Data

In this section we compare four methods, two probabilistic and two neural net-
works. In all cases, the results show the mean accuracy achieved using a 5-fold
cross-validation process (using 60% of the data for training, 20% for validation,
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Fig. 2. Configuration of LSTM network.

and 20% for testing). We investigate the dependence of the accuracy on the size
of the dataset used for the complete process of training, validating, and testing
the models. Prior to this, the optimum number of previous events to base the
prediction of the next event on is found for each of the methods [7]. The accuracy
results are computed within the testing set using the optimal memory length for
each method. Figure 3 shows the results when the algorithms are applied to a
dataset from a single apartment. A peak accuracy of 83% was achieved by LSTM
with SPEED-text, while the SPEED algorithm achieved a peak accuracy of 82%.
The accuracy achieved by the LSTM with ALZ-text was considerably lower at
69%. In this case, stability is achieved much later than with the other methods.
Finally, the ALZ method reached a top accuracy of 70% with 4 weeks of data.
Note that the probabilistic methods attain a good accuracy (close to the peak
accuracy) with only 2 days of data. By comparison, the LSTM networks need
approximately 2–3 weeks of data to start approaching their top accuracy. This
indicates that the LSTM can learn longer term patterns and dependencies, and
attain better accuracy based on these. In addition, LSTM networks needed much
shorter time to train than SPEED - eight times faster.

Fig. 3. Accuracy vs. size of dataset for all algorithms.

Subsequently, we develop the model further by using the time information
in the best method – LSTM with SPEED-text. Here, the LSTM network was
trained based on a 3-fold cross-validation. We use in total 40 weeks with recorded
data from one apartment where we apply our algorithms, which accounts for
163347 events. Some accuracy curves do not show significant improvement after
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a certain number of events, and we therefore show the plots up to a certain point
for better clarity on the lower range of the graph.

Firstly, we predict the next sensor event based on the two proposed input
sequences with the time information (Sect. 4.2). Figure 4 shows the performance
of the prediction vs. the amount of data in the dataset. When we include the time
information in the input, the accuracy is improved by 1–1.4% for all methods
as compared to Fig. 3. The highest accuracy (84.39%) is achieved by the 4-class
time-interval. The small improvement compared to the best results from Fig. 3,
was initially somewhat surprising, however, it can be explained by the fact that
the apartments are quite small and there is a limited number of sensors and
alternative sequences. The choice of 4- or 8-class time-interval classes does not
have a significant effect on the accuracy. This is presumably because most of the
events have a short elapsed time to the next event.

Fig. 4. Accuracy of prediction of next sensor event vs. the number of events in the
dataset.

4.5 Prediction of Next Sensor Event and Time of Occurrence

We examine the accuracy of predicting both the next sensor event and time infor-
mation using 4- and 8-class time-intervals or the K-means time-cluster. Lower
accuracies are attained than when predicting only the next sensor event, as
expected, since now more information is being predicted with the same model.
The best accuracy was achieved by the K-means time-cluster (79.68%), 4% bet-
ter than the second best-performing method (Fig. 5). The required number of
events in the dataset is similar for the three methods, about 10000 events.

4.6 Transfer Learning Between Apartments

As described in Sect. 3, some power and magnetic sensors differ within the five
apartments. In order to transfer the learning across the apartments, we re-label
the sensors that refer to the same activity. Lamp power sensor events were
removed from the datasets since we did not manage to assign them to an activity
that was common for all lamps and apartments. In all cases, the LSTM network
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Fig. 5. Accuracy of prediction of next sensor event and time information vs. the number
of events in the dataset.

was trained based on a certain number of events and tested on a test set contain-
ing 3000 events. This process is repeated three times and the accuracy values
in the graph correspond to the mean of the best test accuracy of each training.
Figure 6b presents the accuracy results when transfer learning is carried out as
follows. The model is trained using data from four apartments and fine-tuned
with and tested on the target apartment. A very low number of events is required
for the fine-tuning to achieve quite high accuracy straight away. The accuracy
increases slowly as more events are added for the fine-tuning.

Fig. 6. Accuracy of prediction of the next sensor and time-cluster vs. number of events
in the training dataset, using as input both sensor event and time-cluster, (a) separately
for each apartment, (b) transfer learning, training the model with data from four
apartments, fine-tuning with and testing on the target apartment.

5 Activity Recognition Using Depth Video Data

5.1 Data Preprocessing

Median filtering is applied to the raw depth video data to remove noise. The
process consists of removing very low and very high pixel values in the image
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and replacing them with the median value of the nearest neighbors. A 5×5 filter
was applied to each frame, as a compromise between image sharpness (quality)
and its high frequency background noise. After this first step, we apply an Infinite
Impulse Response (IIR) filter. The filter is configured as a first-order high pass in
this work, which leads to capturing any movement. Finally, a last processing step
is performed in order to normalize the length ni of frames of the video samples
to a fixed length N, as this is a prerequisite for the convLSTM model. Frames
are deleted if the sequence is shorter than N, or inserted if the sequence is longer
than N. In both cases this takes place in equally spaced positions in the sequence
(in accordance with the number of frames that need to be deleted/inserted),
ni = N. The value of each pixel in the inserted frames is equal to the mean
between the preceding and succeeding frames. We use a convolutional long short-
term memory network (convLSTM) for the classification. Convolutional neural
networks (CNNs) have been widely used to process multiple arrays of data,
including color or depth images. By combining CNNs with RNNs, the model is
able to learn both spatial and temporal features from a sequence of frames [19].

In this work, the preprocessed and IIR-filtered frame sequences were labelled
into four movement categories: TV-related movements (turn it on/off and switch
over channels), standing up, sitting down and no movement. After the prepro-
cessing, the sequences were fed to a convLSTM. The first two steps were imple-
mented by using the median and IIR filters from the SciPy library. The con-
vLSTM was implemented using the Keras library. The trained model comprises
one convLSTM layer with three 3 × 3 filters and hyperbolic tangent activation,
followed by a dense layer with softmax activation. The batch size was 16 and
learning rate 0.01. Optimization function Adam and loss function categorical
cross-entropy were optimal. We set the dropout ratio to 0.5 in order to avoid
overfitting, as well as early stopping.

5.2 Activity Recognition

A total of 800 video sequences (200 of each category) were extracted from
recordings acquired from real homes, from seven different residents. Each video
sequence is length normalized to a size of 100 frames. We split our dataset into
training (80%) and testing (20%) sets. They are both balanced for all classes
(i.e. equal percentage of samples per class in each set).

We analyze the test accuracy attained for different sizes of datasets for two
cases: only median filter, and both median and IIR filter. The obtained results
correspond to an average of the three best accuracies achieved by different
trained models – shuffling the training and testing data. The use of the IIR
filter resulted in a best average peak accuracy of 86.04%, whereas by compari-
son without the IIR filter the best average peak accuracy achieved was 82.50%.
Using the IIR filter improves the accuracy by approximately 4%, for all data
sizes. The accuracy improves slowly as more samples are added, in both cases.
The model did not reach stability with the available data, as the accuracy keeps
increasing with data size. Hence better accuracy should be possible to achieve
with additional samples. The confusion matrix is shown in Fig. 7.
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Fig. 7. Confusion matrix of model for 800 samples using both median and IIR filter.

6 Conclusion and Future Work

In this paper, we present work in progress, our field-trial and set-up for collecting
and storing the data from real homes, and our results on activity recognition and
prediction using either binary sensor data or depth video data. We compare the
accuracy of predicting the next binary sensor event using probabilistic methods
and LSTM networks. LSTM achieved the best accuracy of 83%. Using time
information referring to the next sensor event improved this accuracy by 1.4%.
Finally, we predicted both the next sensor event and its time of occurrence with
a peak average accuracy of 80%. We have investigated transfer learning between
apartments and shown that it is possible to pre-train the model with data from
other apartments and achieve good accuracy straight away (70–80%) from the
first day. The top accuracy in this case is similar to the one achieved when
training each apartment individually.

We have in addition shown preliminary results from activity recognition using
low resolution depth video data from seven apartments. 800 video samples were
extracted containing four classes: no movement, standing up, sitting down, and
TV interaction. We use a relatively simple processing method where we apply
an IIR filter to extract movements from the frames prior to feeding them to
a convLSTM network for the classification. We achieved an overall mean peak
accuracy of 86%, with the accuracy of all classes reaching at least 85%. The
method managed to identify TV-interaction actions with a peak accuracy of
97.5%. When the IIR filter is not used the accuracy is about 4–5% lower.

Future work will use state-of-the-art video processing techniques to carry
out activity recognition and prediction in the homes, investigate data fusion
combining binary data and depth video data, and carry out higher level activity
recognition by utilizing movement and location information.
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Abstract. A long-standing challenge in Reinforcement Learning is
enabling agents to learn a model of their environment which can be
transferred to solve other problems in a world with the same underlying
rules. One reason this is difficult is the challenge of learning accurate
models of an environment. If such a model is inaccurate, the agent’s
plans and actions will likely be sub-optimal, and likely lead to the wrong
outcomes. Recent progress in model-based reinforcement learning has
improved the ability for agents to learn and use predictive models. In
this paper, we extend a recent deep learning architecture which learns
a predictive model of the environment that aims to predict only the
value of a few key measurements, which are indicative of an agent’s per-
formance. Predicting only a few measurements rather than the entire
future state of an environment makes it more feasible to learn a valuable
predictive model. We extend this predictive model with a small, evolv-
ing neural network that suggests the best goals to pursue in the current
state. We demonstrate that this allows the predictive model to transfer
to new scenarios where goals are different, and that the adaptive goals
can even adjust agent behavior on-line, changing its strategy to fit the
current context.

Keywords: Reinforcement Learning · Prediction · Neural networks ·
Neuroevolution

1 Introduction

Humans and animals rely on internal models (mental simulations of how objects
respond to interaction) to predict the consequences of their actions and generate
accurate motor commands in a wide range of situations [13,17]. Recent advances
in deep learning have enabled computers to learn such predictive models by
gathering a large collection of observations from an environment [9,16]. This
opens up the possibility for guiding the actions of robots and computer agents
by having them predict the consequences of each action and selecting the one
leading to the best outcome.

When using predictions for guiding the actions of an agent, it is beneficial to
limit the prediction to the most essential parts of the environment. For instance,
if we would like to predict the effect of turning the steering wheel of a car,
we should not try to predict the effect this has on birds we see in the sky,
c© Springer Nature Switzerland AG 2019
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trees far away from us, and so on. Rather, we should focus on the effect on some
key observable measurements, such as the car speed, and the distance to other
cars and pedestrians. If we focus on predicting the parts of the environment we
currently care about, the prediction problem becomes much more manageable.

This intuition is the background for a recent, popular technique for learning
to act by predicting the future [2]. The technique makes the assumption that
we can analyze the outcome of an action by focusing on a few measurements.
These measurements should be the observable quantities that are most related
to success or failure in some scenario. The authors propose that a way to learn
how to act in an environment is to learn to predict the effect one’s actions have
on these measurements. Such predictions can readily be learned by gathering a
large set of examples of observations, actions and resulting measurements from
the environment (e.g. by simulating thousands of car trips).

Once one has learned to predict the measurements resulting from one’s
actions, it is possible to select the best action for a given situation, by choosing
the one giving the most optimal predicted measurements. This requires some way
to map the predicted future measurements to a number representing the utility
of this future. [2] solved this by defining a goal vector, which weights the different
measurements according to user-defined rules. For instance, a rule could be that
we give a very high weight to the measurement of distance to the nearest pedes-
trian, and a lower positive weight to the measurement of car speed, reflecting
that we want to drive efficiently, but only if pedestrians around us are safe.

In this paper, we explore the potential for automatically adapting such goal
vectors to a given scenario (Fig. 1). We show that this allows the reuse of a
learned predictive model in new situations, where the best strategy has changed.
The automatically adapting goal vectors, together with the already learned pre-
dictive model, can quickly generate behaviors for new scenarios where the under-
lying rules are the same (allowing reuse of learned predictions), but the goals
are different. We further show that our adaptive goal vectors can adapt agent
strategies on-line, responding to changes as they occur.

2 Background

2.1 Model-Based Reinforcement Learning

The problems we target in this paper are reinforcement learning (RL) problems,
meaning an agent is tasked with learning how to solve some problem without
any explicit guidance – relying instead on infrequent feedback in the form of
rewards and punishment from the environment. Reinforcement learning can be
divided into two high-level categories: Model-based and model-free RL. Model-
free RL means we try to solve the problem without forming an explicit model
of the environment, relying instead on learning a mapping from observations to
values or actions. Many of the recent successes in deep RL have been in this
category, including deep Q learning [10], which was the first example of power of



30 K. O. Ellefsen and J. Torresen

(a) The Goal-ANN produces goals adapted to the current situation

(b) The predictive ANN (developed by [2]) predicts the consequence
of taking each action in the current situation.

Fig. 1. Combining adaptive goals with prediction-based action selection. Top:
Our proposed Goal-ANN produces a weighting of the agent’s goals adapted to the cur-
rent situation (indicated by current measurements). Bottom: The resulting weights are
given to the predictive ANN, together with the current state and current measurements,
resulting in a vector of predicted future values for the measurements.

deep RL for playing computer games, and the deep deterministic policy gradient
algorithm (DDPG) which demonstrated that deep neural networks can also learn
to solve continuous control problems [8].

Model-based RL attempts to solve two key challenges with model-free
approaches: (1) They require enormous amounts of training data, and (2) there
is no straightforward way to transfer a learned policy to a new task in the same
environment [12]. To do this, model-based RL takes the approach of first learn-
ing a predictive model of the environment, before using this model to make a
plan that solves the problem. An internal predictive model facilitates transfer
of knowledge to new tasks in the same environment: Once the predictions are
learned, they can be used for planning ahead to solve many different tasks.

Despite these advantages of model-based algorithms, model-free RL has so
far been most successful for complex environments. A key reason for this is that
model based RL is likely to produce very bad policies if the learned predictive
model is imperfect, which it will be for most complex environments [12]. Recently,
algorithms have been developed which address this problem, for instance by
learning to interpret imperfect predictions [12], applying new video prediction
techniques [3] and dynamics models [4], or periodically restarting prediction
sequences, reducing the effect of accuracy degrading for long-term prediction [5].

Another way to mitigate the problem of having an imperfect predictive model
is to keep the prediction task as simple as possible. While the methods above
generally try to predict the entire future state (more specifically, entire frames of
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input in the example of video games), one could predict more accurately by focus-
ing on predicting exactly the values needed to guide action making. Dosovitskiy
and Koltun [2] presented impressive results on the VizDoom RL environment
by teaching agents to predict just a few key measurements, and combining this
with a goal vector that defines a weighting among the measurements, effectively
defining which type of future we most wish to observe. Here, we propose to com-
bine this method with adaptive goal vectors, which has the potential to allow
reuse of a predictive model in new scenarios where the goals are different.

2.2 Combining Deep Learning and Neuroevolution

Our proposed method combines two neural networks (Fig. 1), which are trained
in different ways. The Prediction ANN is trained in a self-supervised manner,
using the difference between predicted and actual future states as loss function.
For the Goal-ANN, we have no target value, since we do not know the “correct”
goal. We therefore optimize this networks by using neuroevolution, a technique
employing a population of neural networks, having the ones performing their
task best become further adapted and specialized to the problem [14].

A few other papers have recently combined deep learning with neuroevolu-
tion, aiming to get the benefits of both. Neuroevolution (NE) requires far more
computation to solve problems than backpropagation-based deep learning. On
the other hand, NE does not rely on a differentiable architecture, and works
well in problems with sparse rewards, which are a challenge for most deep rein-
forcement learning algorithms [11]. A promising way to combine NE and DL is
therefore to let the deep learning do the “heavy lifting”, for instance learning
to make predictions or recognize objects based on a large number of examples,
and train a small action-selection component using NE with the pre-trained deep
neural network as a back-end. This approach was taken by [3], who trained a self-
supervised deep neural network to predict the future, and then evolved a much
smaller network for selecting actions based on internal states in the predictive
network. A similar idea is to train a convolutional neural network to translate
raw pixels to compact feature representations, before training a smaller evolving
ANN to use the learned features to choose the right actions in an RL problem.
This has been done successfully for simulated car racing [7], for learning to aim
and shoot in a video game [11] and for a health-gathering VizDoom scenario [1].

Similarly to the work described above, our method lets the DL component do
the data-intensive job, which is to learn to predict the consequences of actions
from a large number of examples. Unlike the methods above, we only require
our deep network to predict a few key future measurements, greatly simplifying
its task, and potentially reducing the impact of errors due to faulty predictions.

3 Methods

3.1 Learning to Act by Predicting the Future

The algorithm we propose in this paper is an extension of “Direct Future Predic-
tion” (DFP) from the paper Learning to act by predicting the future [2]. DFP is
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based on the idea of transforming an RL problem into a self-supervised learning
problem of predicting parts of future states and selecting actions that produce
those states that align best with an agent’s goals. A deep neural network is
trained to predict the future value of a set of different measurements, m, given
the current state and action. m should contain metrics that give an indication of
how successfully an agent is solving its task. The scenario explored here and in [2]
is a video game where an agent attempts to survive and kill monsters. m there-
fore contains measurements of an agent’s ammunition, health and the number
of enemies killed, which are all interesting indicators of an agent’s performance.

If an agent can learn a model of how its actions affect future measurements,
selecting the best action is reduced to a problem of finding which of the potential
future m-vectors correspond best with the agent’s goals. [2] solve this by formu-
lating a goal-vector g, where each element indicates how much we care about
the corresponding measurement in m. For instance, given that we use ammu-
nition, health and enemies killed as measurements, the goal-vector [0.5, 1,−1]
would indicate that we are interested in collecting ammunition, twice as inter-
ested in collecting health, and interested in avoiding attacking enemies (due to
the negative value for that goal).

Training this network to predict the effect of one’s actions can now be done by
collecting many episodes of gameplay, storing at each timestep t current mea-
surements (mt), sensory input (st – frames of images from gameplay in this
case), the action taken (at) and the goal vector (gt – this is not changed dur-
ing an episode while training). A sample of (st , mt , at, gt) would now be the
training input (I), while the target output value (O) would be the change in the
measurements at selected future timesteps (mt+τ1 , ..., mt+τn

). The network is
trained using backpropagation with the loss function depending on the differ-
ence between its predicted change in future measurements (Ô) and the actual
observed values (O).

3.2 Adaptive Goals Guiding Action Selection

The contribution of this paper is a technique for adapting the goals (g) of DFP-
agents, which enables them to (1) transfer predictive models to new tasks and
(2) adjust goals on-line according to current measurements. To do so, we take
a pre-trained predictive model from the DFP-algorithm, and extend it with an
additional neural network that suggests the best goal-vector given the current
measurements (Fig. 1).

This Goal-ANN is trained using neuroevolution [14]: A population of neural
networks compete for their ability to produce relevant goals. The best networks
are randomly changed, by adding or removing nodes and connections, while
worse networks are discarded. To select between networks, they are each assigned
a fitness score reflecting how well they perform their task. In our setup, we
calculate the fitness by inserting the agent governed by the evaluated Goal-ANN
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and the (pre-trained) Predictive ANN into the game scenario, and measuring how
well it performs its task (which varies slightly between our different experiments
– see Sect. 4). To counter effects of randomness, each evaluation tests the agent
8 times and calculates the average performance.

The evolving networks are relatively small feed-forward ANNs where the
connectivity and number of neurons are being optimized. The inputs are the
3 measurements (mt), and the output is the goal vector (gt) with the 3 cor-
responding goal weights. The inputs give the current value for the amount of
ammunition, health and number of enemy kills (in that order), and the outputs
represent the weight of the ammunition-objective, the health-objective, and the
killing monsters-objective, all in the range [−1, 1].

Our setup uses the popular neuroevolution algorithm NEAT [15], more specif-
ically the NEAT-Python implementation1, with the parameters shown in Table 1.
With these parameters, each run of the algorithm results in 5,000 evaluations,
corresponding to 5,000 1-min episodes of game play. The original DFP-algorithm
was trained for around 95,000 episodes, demonstrating that our proposed goal-
adaptation is an order of magnitude faster than training new strategies from
scratch.

Table 1. Parameters for Python-NEAT

Parameter Value
Add Connections 0.15
Delete Connection 0.1
Add Node 0.15
Delete Node 0.1
Weight Mutation 0.8
Weight Replacement 0.02

(a) Mutation Rates

Parameter Value
Population Size 50
Generations 100
ANN Inputs / Outputs 3 / 3
Weights Range [-30, 30]
Activation Function Clamped linear re-

sponse in range [-1,1]

(b) Other parameters

3.3 Training Scenario

The scenario we use for training and testing the Goal-ANN is from the original
paper suggesting DFP [2]. The scenario is based on the VizDoom platform [6],
a popular platform for developing and testing reinforcement learning algorithms.
VizDoom is based on the first-person shooter (FPS) Doom, and offers the poten-
tial to train agents to handle complex 3D environments directly from pixel inputs.
VizDoom scenarios can be used to train and test skills such as understanding one’s
surroundings, navigation, exploration and dealing with opponents/enemies. The
violent nature of the game is a concern, and we are eager to test our technique on
more peaceful scenarios soon. However, to test extending the exact model trained
in [2], we needed to reuse one of their scenarios.

1 https://neat-python.readthedocs.io/.

https://neat-python.readthedocs.io/
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The specific VizDoom scenario we use here is the one titled “D3-Battle”
in [2]. This is a challenging scenario where the agent is under attack by alien
monsters inside a maze, and has to try to kill as many of the monsters as possible.
To aid the agent, ammunition and health kits are scattered around the maze. The
agent is provided with (and learns to predict) three measurements: Its current
amount of ammunition and health, as well as how many enemies it has killed.
We use a trained predictive model from the original paper, which was trained
in a “goal-agnostic” manner, that is, the goal vector g was randomized between
episodes (each value uniformly sampled from the interval [−1, 1]). Such goal-
agnostic training was found to generalize better to new tasks than fixed-goal
predictors [2], and we therefore focus on this model for our study.

4 Results

We want to explore two possible advantages of evolved goal weights: (1) Their
ability to adapt an existing predictive model to new scenarios where strategies
need to be different, and (2) Their ability to produce context-dependent goals,
that is, goals that vary depending on current measurements.

To do so, we compare three main techniques: (1) Acting by following the
same static goal-vector applied in [2], (2) Acting by following a simple rule
for adapting the goal to the current situation and (3) Acting by following the
evolved Goal-ANN. The static goal vector from [2] is [0.5, 0.5, 1.0] where the
three numbers represent the importance of the ammunition-, health- and enemy
kills-objectives, respectively. This goal captures the intuition that the aim of the
game is to kill as many monsters as possible, but collecting some ammunition
and health is a good side-goal to help the agent in its primary mission. The
simple rule to improve this static goal (called “Hardcoded” in plots below) is to
switch to the goal [0, 1.0,−1.0] whenever the agent’s health is below 50%, which
adds the intuition that we should stop attacking and focus on gathering health
when injured.

In all plots below, fitness values are averaged over 20 independent evaluations
of each agent.

4.1 The Original Scenario

As mentioned above, we test our method on a VizDoom scenario developed by [2],
using their pre-trained agent together with our evolved adaptive goals. The sce-
nario consists of a maze populated by monsters and the agent. The goal of the
trained agent is to kill as many monsters as possible, and to do so, it can bene-
fit from collecting ammunition and health packages along the way. In this original
scenario, the final reward (also referred to as Fitness below, as is common in Evo-
lutionary Algorithms) is based only on the number of monsters killed.

Figure 2 shows the average reward (number of monsters killed in one minute)
of the three compared techniques on the original scenario. There are no signif-
icant differences between the compared techniques. In other words, there is no
advantage to adapting the goals in this scenario.
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Fig. 2. The original scenario. No signifi-
cant differences in fitness values between using
the original goal (Static), a simple adaptive
goal (Hardcoded) and the evolved Goal-ANN.

Analyzing the agents’ game-
play in this scenario reveals why
this is the case: Agents are very
fast, killing monsters without tak-
ing much damage, which makes the
default goal of aggressively attack-
ing monsters while picking up any
health or ammo ahead a very good
choice. In other words, there is no
conflict among the goals and no
reason why a different choice of
goal weights should improve perfor-
mance.

4.2 A Hard Scenario

To test the ability of the adaptive goals to solve different scenarios, and the
potential for adjusting goals during gameplay, we set up a much harder scenario.
We introduce the following difficulties that force the agent to sometimes change
its strategy between defensive and aggressive modes:

– Monsters are tougher (they have twice as much health as before).
– Player is weaker (it begins the game with only 10% health)
– A fitness penalty of 100 is given for dying (versus 0 before).
– Player starts with 0 initial ammunition (versus 20 bullets before).

(a) Fitness (b) Evolving Goals

Fig. 3. The hard scenario. Left: The evolved adaptive Goal-ANN significantly out-
performs both the standard (static) and hardcoded (dynamic) goals. Right: The mean
population value for each goal through evolution. The evolved strategies tend to focus
more on health and less on attacking.

Since the monsters are now stronger and the player weaker, the default static
goals result in a strategy that is too aggressive and frequently results in the player
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dying. The hardcoded strategy performs better, since it balances aggression and
defense. The evolved strategy significantly outperforms both the others (p <
0.05), finding an even better balance between the three objectives (Fig. 3a).

We can see what the evolved strategy has learned by plotting the output of
the Goal-ANN. In Fig. 3b we plot the output of the Goal-ANN per generation
of evolution, averaged both over the entire population and all timesteps in each
individual’s life. We see that the evolved strategies gradually move towards a
focus on the health-objective, while reducing focus on attacking enemies.

Fig. 4. The hard scenario. The strategy
discovered by evolution is to focus on gath-
ering ammunition until some has been col-
lected, after which the agent switches to
attacking. Simultaneously, the agent focuses
on collecting health.

Figure 3b summarizes strategies
over complete game episodes. How-
ever, the Goal-ANN has the poten-
tial to produce strategies that vary
through a game, depending on the
current measurements. To investi-
gate if this is taking place, we per-
formed a sweep over sensible values
for all three measurements, passed
these values through the best evolved
Goal-ANN and measured the result-
ing output goals. The results show
that changing the current health or
the number of kills has no effect on
the produced goals. However, chang-
ing the amount of ammunition does
affect the output goals, as plotted in Fig. 4. We see that evolution has discovered
the strategy of focusing less on attacking and more on gathering ammunition
when the current ammunition level is low2.

4.3 The No-Ammunition Scenario

To test the potential for the Goal-ANN to adapt strategies to scenarios where
rules are very different, we set up a scenario with no ammunition available to
the agent. The scenario is otherwise identical to the hard scenario above. This
change turns the game into a defensive exercise, where staying away from enemies
and gathering health is the best strategy. Since the aggressive default goal now
results in a very bad strategy, we here test an additional defensive goal, which has
the maximum negative weight on the attack-objective, and maximum positive
weights on the two others (g = [1, 1,−1]).

As expected, the default aggressive strategy performs very badly in this sce-
nario, while the hardcoded and the new defensive strategy do better (Fig. 5a).
The evolved strategy significantly outperforms all others, with p < 0.01 accord-
ing to the Mann-Whitney U test, for all pairwise comparisons. We were initially
surprised to see the evolved strategy outperform the defensive strategy, since

2 https://youtu.be/NCzrO5KHMXQ shows an agent playing according to this strat-
egy.

https://youtu.be/NCzrO5KHMXQ
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we expected its full focus on avoiding confrontation to be optimal. We therefore
took a closer look at the evolved strategy3.

(a) Fitness (b) Evolving Goals

Fig. 5. The scenario with no ammunition. Left: Evolved adaptive goals generated
by the Goal-ANN significantly outperform both the static (Aggressive and Defensive)
and Hardcoded goals. Right: The mean population value for each goal through evolu-
tion. The evolved strategies quickly learn to not focus on attacking.

Fig. 6. The scenario with no ammuni-
tion. The strategy discovered by evolution is
to focus on only on health if it is low, but add
focus on gathering ammunition otherwise.

As expected, we found the evolv-
ing strategy to give a strong nega-
tive weight to the attack-objective,
and strong positive weights to
the two others (Fig. 5b). Repeating
the sweep across measurements, we
found that the current health mea-
sure is the only value that leads to
different goals when changed. The
evolved strategy is to focus exclu-
sively on collecting health when the
measure is critically low, and other-
wise to also include a drive for col-
lecting ammunition, in both cases
avoiding attacking as strongly as
possible (Fig. 6). It may seem surprising that the ammunition objective is valu-
able at all here, since there is no ammunition in the environment. We hypothe-
size that a high value for this objective can be valuable, since it can encourage
the agent to keep moving, heading towards objects with a small resemblance of
ammunition, thus staying away from danger.

3 https://youtu.be/6pTnkCGV6NI shows an agent playing according to this strategy.

https://youtu.be/6pTnkCGV6NI
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5 Conclusion

We proposed extending an existing technique for selecting actions based on pre-
dictions of the consequences of those actions with an adaptive goal-producing
neural network. This Goal-ANN can modify the behavior resulting from predic-
tions of the future, by changing the agent’s preference among different future
outcomes.

We demonstrated that the Goal-ANN allows the transfer of a predictive
model to scenarios where the optimal behavior is different, due to different
amounts of resources in the environment. Such knowledge transfer has the poten-
tial to greatly improve the efficiency of Reinforcement Learning methods, since
they allow training a model on one task, and adapting it rapidly to other, related
problems.

We also showed that the Goal-ANN is capable of learning adaptive strategies,
where goals change on-line, depending on the current state of the environment.
This is a very valuable property, since most complex problems require one to
modify one’s strategy depending on the current context.

A final valuable feature of the Goal-ANN is its interpretability : We can eas-
ily probe the rules it has learned by sweeping across input measurements and
observing the resulting output goals. We demonstrated that in our target scenar-
ios, such an analysis allows us to verify that the learned goal-switching behavior
is sensible.

This has been an initial study of the potential for combining self-adapting
goals with a predictive deep neural network. There are many future questions
here that we aim to address, including tests on more scenarios, comparison with
other techniques for transfer learning and testing if the Goal-ANN could perform
even better if given more information about the current state of the world.
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Abstract. In recent years, considerable progress has been made towards
a vehicle’s ability to operate autonomously. An end-to-end approach
attempts to achieve autonomous driving using a single, comprehensive
software component. Recent breakthroughs in deep learning have sig-
nificantly increased end-to-end systems’ capabilities, and such systems
are now considered a possible alternative to the current state-of-the-art
solutions.

This paper examines end-to-end learning for autonomous vehicles in
simulated urban environments containing other vehicles, traffic lights,
and speed limits. Furthermore, the paper explores end-to-end sys-
tems’ ability to execute navigational commands and examines whether
improved performance can be achieved by utilizing temporal dependen-
cies between subsequent visual cues.

Two end-to-end architectures are proposed: a traditional Convolu-
tional Neural Network and an extended design combining a Convolu-
tional Neural Network with a recurrent layer. The models are trained
using expert driving data from a simulated urban setting, and are evalu-
ated by their driving performance in an unseen simulated environment.

The results of this paper indicate that end-to-end systems can operate
autonomously in simple urban environments. Moreover, it is found that
the exploitation of temporal information in subsequent images enhances
a system’s ability to judge movement and distance.

Keywords: End-to-end learning · Imitation learning · Autonomous
vehicle control · Artificial intelligence · Deep learning

1 Introduction

We are currently at the brink of a new paradigm in human travel: the fully
autonomous, self-driving car. Only 50 years ago, cars were completely analog
devices with almost no mechanisms for assisting the driver. Over the decades,
additional features, controls, and technologies have been integrated, and cars
have evolved into exceedingly complex machines.
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In recent years, substantial progress has been made towards a vehicle’s ability
to operate autonomously. Primarily, two different approaches have emerged. The
prevailing state of the art approach is to divide the problem into a number of sub-
problems and solve them by combining techniques from computer vision, sensor
fusion, localization, control theory, and path planning. This approach requires
expert knowledge in several domains and often results in complex solutions,
consisting of several cooperating modules.

Another approach is to develop an end-to-end solution, solving the problem
using a single, comprehensive component, e.g., a deep neural network. A tech-
nique for training such a system is to employ imitation learning. This entails
studying expert decisions in different scenarios, to find a mapping between the
perceived environments and the executed actions. While some believe that the
black-box characteristics of such systems makes them untrustworthy and unre-
liable, others point to recent years’ advances in deep-learning and argue that
end-to-end solutions show great potential.

However, end-to-end systems cannot make the correct navigational decision
solely based on a perceived environment. It is also necessary to incorporate a
user’s intent in situations that require a decision (e.g., when approaching an
intersection). Hence, an end-to-end system should be able to receive and adapt
to navigational commands.

The objective of this paper is to investigate end-to-end systems’ ability to
drive autonomously in simulated urban environments. Specifically, to study their
performance in environments containing other vehicles, traffic lights, and speed
limits; to examine their ability to oblige navigational commands in intersections;
and to explore if a system can improve its performance by utilizing temporal
dependencies between subsequent visual cues.

This paper seeks to combine different aspects from recent research in the field
of end-to-end learning for autonomous vehicles. Concretely, the use of naviga-
tional commands as network input, and the exploitation of temporal dependen-
cies between subsequent images. There have been no attempts - to our knowledge
- to combine both techniques in one system. Hopefully, this can lead to a more
complete end-to-end system and improved driving quality.

The rest of this paper is organized as follows. Section 2 presents previous
related work, while Sect. 3 addresses the environment in which the data was
collected and the experiments were conducted. Section 4 reviews the collection
and preprocessing of the data. The model architectures are presented in Sect. 5.
Sections 6 and 7 covers the experimental setup and results, while Sect. 8 discusses
the results. Finally, Sect. 9 covers the conclusions.

2 Related Work

There have been several advances in end-to-end learning for autonomous vehi-
cles over the last decades. The first approach was seen already in 1989 when
a fully connected neural network was used to control a vehicle [10]. In 2003 a
proof-of-concept project called DAVE emerged [9], showing a radio controlled
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vehicle being able to drive around in a junk-filled alley and avoiding obstacles.
DAVE truly showed the potential of an end-to-end approach. Three years later
NVIDIA developed DAVE-2 [1], a framework with the objective to make real
vehicles drive reliably on public roads. DAVE-2 is the basis for most end-to-end
approaches seen today [2,7]. The project used a CNN to predict a vehicle’s steer-
ing commands. Their model was able to operate on roads with or without lane
markings and other vehicles, as well as parking lots and unpaved roads.

Codevilla et al. [2] further explored NVIDIA’s architecture by adding nav-
igational commands to incorporate the drivers intent into the system and pre-
dicted both steering angle and acceleration. The authors proposed two network
architectures: a branched network and a command input network. The branched
network used the navigational input as a switch between a CNN and three fully
connected networks, each specialized to a single intersection action, while the
command input network concatenated the navigational command with the out-
put of the CNN, connected to a single fully connected network.

Hubschneider et al. [7] proposed using turn signals as control commands to
incorporate the steering commands into the network. Furthermore, they pro-
posed a modified network architecture to improve driving accuracy. They used a
CNN that receives an image and a turn indicator as input such that the model
could be controlled in real time. To handle sharp turns and obstacles along the
road the authors proposed using images recorded several meters back to obtain
a spatial history of the environment. Images captured 4 and 8 m behind the cur-
rent position were added as an input to make up for the limited vision from a
single centered camera.

Eraqi et al. [4] tried to utilize the temporal dependencies by combining a
CNN with a Long Short-Term Memory Neural Network. Their results showed
that the C-LSTM improved the angle prediction accuracy by 35% and stability
by 87%.

3 Environment

Training and testing models for autonomous driving in the physical world can be
expensive, impractical, and potentially dangerous. Gathering a sufficient amount
of training data requires both human resources and suitable hardware, and it
can be time consuming to capture, organize and label the desired driving sce-
narios. Moreover, the cost of unexpected behavior while testing a model may be
considerable.

An alternative is to train and test models in a simulated environment. A
simulator can effectively provide a variety of corner cases needed for training,
validation, and testing; while removing safety risks and material costs. Addition-
ally, the labeling of the dataset can be automated, removing the cost of manual
labeling, as well as the potential of human error.

The drawback, however, is the loss of realism. A simulation is only an imi-
tation of a real-world system, and a model trained on only simulated data may
not be able to function reliably in the real world. Nonetheless, a simulator can
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give a good indication of a model’s actual driving performance and serves well
for benchmarking different models. Once a model can perform reliably in a sim-
ulated environment, the model can be fine-tuned for further testing in real envi-
ronments.

In this paper, the CARLA simulator [3] is used to gather training data and
to evaluate the proposed models. CARLA is an open source simulator built
for autonomous driving research and provides an urban driving environment
populated with buildings, vehicles, pedestrians, and intersections.

4 Data Generation

4.1 Data Collection

When performing imitation learning, the quality of the training data plays a
significant role in a model’s ability to perform reliably in different conditions.
However, a model trained only using expert data in ideal environments may
not learn how to recover from perturbations. To overcome this, several types of
driving data was captured. Expert driving was captured using CARLA’s built-
in autopilot, resulting in center-of-lane driving while following speed-limits. To
capture more volatile data, a randomly generated noise value was added to the
autopilot’s outgoing control signal. This resulted in sudden shifts in the vehicle’s
trajectory and speed, which the autopilot subsequently tried to correct. To elim-
inate undesirable behavior in the training set, only the autopilot’s response to
the noise was collected, not the noisy control signal. Finally, recovery from possi-
ble disaster states was captured by manually steering the vehicle into undesired
locations, e.g., the opposite lane, or the sidewalk; while recording the recovery.

For each recorded frame, images from three forward-facing cameras (posi-
tioned at the left, center, and right side of the vehicle) were captured, along
with the vehicle’s control signal (i.e., steering angle, throttle, and brake values),
and additional information (i.e., speed, speed limit, traffic light state, and High-
Level Command). The High-Level Command (HLC) is the active navigational
command, labeling the data with the user’s current intent. Possible HLCs are:
follow lane, turn left at the next intersection, turn right at the next intersection,
and continue straight ahead at the next intersection.

Two different datasets were gathered, one for training and one for testing.
The training set was captured in CARLA’s Town 1, while the test set was cap-
tured in Town 2. Data were gathered in four different weather conditions: Clear
noon, cloudy noon, clear sunset, and cloudy sunset. The training set contained
driving data captured both with and without other vehicles. The test set exclu-
sively contained driving data alongside other vehicles. All data were captured
in environments without pedestrians. Table 1 summarizes the gathered datasets.
All expert data was captured driving 10 km/h below the speed limit to match
the velocity of other vehicles.
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Table 1. The collected datasets. An observation contains the captured data from a
single rendered frame in the simulator.

Dataset Number of observations Size [GB]

Training 117 889 31.5

Testing 23 173 8.32

4.2 Data Preparation

For each recorded observation, a data sample was created containing the center
image, the vehicle’s control signal, and the additional information. Moreover, to
simulate the recovery from drifting out of the lane, two new data samples were
generated using the observation’s left and right images. To counteract the left
and right images’ positional offset, the associated steering angle was shifted by
+0.1 and −0.1 respectively.

For each data sample, a new augmented sample was generated using one
of the desirable transformations picked at random. These included a random
change in brightness or contrast, the addition of Gaussian noise or blur, and the
addition of randomly generated dark polygons differing in position and shape.

When recording the datasets, the majority of the observations were captured
driving straight. To prevent an unbalanced dataset, data samples with a small
steering angle were downsampled (by removal), while data samples with a large
steering angle were upsampled (by duplication). Additionally, the data samples
corresponding to the different intersection decisions (i.e., turn left, turn right, or
straight ahead) were balanced by analyzing the distributions of HLC-properties
in the dataset and downsampling the over-represented choices. Finally, some of
the data samples where the vehicle was not moving (e.g., waiting for a red light)
were downsampled.

5 Model Architectures

In this paper, two related end-to-end architectures are proposed. The first is a
Convolutional Neural Network (CNN) inspired by NVIDIA’s DAVE-2 [1] system,
while the second extends the CNN with Long-Short-Term-Memory (LSTM) units
to capture temporal dynamic behavior.

5.1 CNN Model

The CNN model consists of two connected modules: a feature extractor and a
prediction module. The former uses a CNN to extract useful features from the
input image, while the latter combines the detected features with the additional
inputs (i.e., current speed, speed limit, traffic light state, and HLC) to predict
a control signal (i.e., steering angle, throttle and brake values).

The convolutional part of the model is inspired by the architecture used in
NVIDIA’s DAVE-2 system [1]. The modified network takes a 180×300×3 image
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as input, followed by a cropping layer and a normalization layer. The cropping
layer removes the top 70 pixels from the image, while the normalization layer
scales the pixel values between −0.5 and 0.5. Next follows six convolutional
layers, all using a ReLU activation function. The first three layers use a 5 × 5
filter, while the last three use a 3 × 3 filter. The first four layers use a stride of
2, while the last two use a stride of 1. The output of the last convolutional layer
is flattened resulting in a one-dimensional feature layer containing 768 nodes.

The output from the convolutional layers is concatenated with the additional
input containing the speed, speed-limit, traffic-sign, and HLC values. The con-
catenated layer serves as an input for the predictive part of the model which
consists of three dense layers containing 100, 50, 10 nodes respectively. All the
dense layers use a ReLU activation function. The last of the dense layers are
finally connected to an output layer, consisting of 3 nodes. The complete archi-
tecture is shown in Fig. 1.

Fig. 1. The architecture of the CNN model. The model accepts a single RGB image
and predicts a control signal.

5.2 CNN-LSTM Model

The CNN-LSTM model consists of two connected modules: a feature extractor
and a temporal prediction module. The former follows the same architecture
as the previous model, shown in Fig. 1. The feature extractor is connected to
an LSTM layer with 5 hidden states. The model uses a sequence of feature
extractions over time to predict a control signal. This allows the model to learn
temporal dependencies between time steps.

For each time step, the output of the feature extractor is concatenated with
the additional input containing speed, speed limit, traffic light, and an HLC.
This is sent through a dense layer containing 100 nodes and fed into an LSTM
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layer with 10 nodes. For each time step in the sequence, the LSTM layer sends its
output to itself. At the last time step, the output is sent through a dense layer,
consisting of three nodes. This is the final prediction. The complete architecture
is shown in Fig. 2.

Fig. 2. The architecture of the CNN-LSTM model.

6 Experimental Setup

6.1 Training

Training and Validation. The dataset was split into a training set (70%) and
a validation set (30%).

For the CNN-LSTM, the data samples were further structured into sequences
of length five, using a sampling interval of three. The sequence length determines
the number of time steps the LSTM layer is able to remember, while the sampling
interval decides the period between successive individual time steps within the
sequences. Figure 3 illustrates the structuring of sequences from 15 data samples.

Hyperparameters. Both models were trained using an Adam optimizer [8]
and an Mean Squared Error loss function. The models were trained for a 100
epochs, with a batch size of 32 data-samples. The models’ weights were recorded
after each epoch along with the associated validation error. After the training
was complete, the weights associated with the lowest validation error were chosen
for further testing.
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Fig. 3. The structuring of sequences from an array of data samples. A sequence length
of five and a sampling interval of three is used.

6.2 Testing

After training, each model’s predictive and real-time performance was measured.
The predictive performance was tested by exposing the models to the unseen test
set while calculating the average prediction error. The real-time performance was
tested by letting the models control a simulated vehicle in CARLA’s second town.
Each model was to drive through a predefined route ten times. The test evaluator
provided HLCs to the model before each intersection. A model’s performance
was measured in the number of route completions, the average route completion
percentage, and the number of failures. Model failures were recorded according to
severity. Touching a lane line was considered a minor failure, while a low-speed
rear-ending or an object collision was considered a moderate failure. Object
collisions without recovery or an ignored HLC were considered a severe failure.
Catastrophic failures consisted of either entering the opposite lane, disregarding
a red traffic light, or colliding with oncoming traffic.

7 Experimental Results

7.1 Validation and Test Error

After 100 epochs of training, both models’ training and validation loss had sta-
bilized. The CNN and CNN-LSTM had their lowest validation error after epoch
66 and 81 respectively. The models were then evaluated on the unseen test set
from CARLA’s second town. On the test set, the CNN was able to predict a
control signal with an average error of 0.023, a 43% increase compared to its
validation error. The CNN-LSTM was able to predict a control signal with an
average error of 0.022, a 57% increase compared to its validation error (Table 2).

7.2 Real-Time Test in Simulated Environment

Both models were real-time tested in CARLA’s second town. To test their ability
to handle various driving scenarios in an urban environment, each model drove
a predefined route ten times. The results are described below. Two videos were
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Table 2. Test and validation loss during the training of the models.

Model Validation loss Test loss

CNN 0.016 0.023

CNN-LSTM 0.014 0.022

Table 3. Summary of test results. Each model attempted to drive a predefined route
ten times. A model’s performance were measured in the number of route completions
and the average route completion percentage.

Model Route completions Avg. route completion

CNN 2 56% ± 39

CNN-LSTM 5 81% ± 9

Table 4. Average failures per run. The models’ failures were recorded according to
severity. Touching a lane line was considered a minor failure, while a low-speed rear-
ending or an object collision was considered a moderate failure. Object collisions with-
out recovery or an ignored HLC were considered a severe failure. A catastrophic failure
consisted of either entering the opposite lane, disregarding a red traffic light, or colliding
with oncoming traffic.

Model Minor Moderate Severe Catastrophic

CNN 2.10 ± 1.73 0.65 ± 0.99 0.25 ± 0.44 0.23 ± 0.57

CNN-LSTM 2.90 ± 1.72 0.10 ± 0.31 0.05 ± 0.22 0.17 ± 0.38

created to show a successful run and some common failures. One demonstrates
the CNN model [5] and the other demonstrates the CNN-LSTM model [6].

CNN. Out of ten runs, the CNN model was able to complete the predefined
route twice, with an average completion percentage of 56% over all runs. The
model performed well on lane following and drove reliably in the center of the
lane most of the time. The model handled most intersections but had a tendency
to perform very sharp right turns. This resulted in 2.1 minor failures (i.e., the
vehicle touching the lane line) per run. It always tried to follow the provided
HLC, and never ignored a traffic light. It was able to handle complex light
conditions, such as direct sunlight and dark shadows in the road. The model
hit objects without recovery several times, leading to 0.5 severe failures per run.
The vehicle rarely hit objects outside of the lane, but occasionally struggled
to stop for other vehicles, leading to several low speed rear-end collisions. In
total, the model had 0.1 object collisions, and 1.2 rear-end collisions per run.
Finally, 0.7 times per run it struggled to find the lane after a turn, leading to a
catastrophic failure. The model usually held the speed limit but found it hard
to slow down fast enough to a speed limit when the speed was high. The results
are summarized in Tables 3 and 4.
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CNN-LSTM. The CNN-LSTM model was able to complete the predefined
route five out of ten times, with an average completion percentage of 81% over
all runs. It drove reliably in the center of the lane most of the time but tended
to perform sharp turns. This lead to 2.9 minor failures (i.e., lane line touches)
per run. The model always tried to follow the provided HLC, and never ignored
a traffic light. It managed to handle various light conditions, such as direct
sunlight and dark shadows in the road. The vehicle rarely struggled to stop
for other objects or vehicles, resulting in 0.1 object collisions and 0.1 rear-end
collisions per run. Finally, 0.5 times per run it struggled to find the lane after a
turn, leading to a catastrophic failure. The model adapted well to the different
speed limits. The results are summarized in Tables 3 and 4.

8 Discussion

This paper proposed two architectures for an end-to-end system: a traditional
CNN inspired by NVIDIA’s DAVE-2 system [1], and an extended design combin-
ing the CNN with an LSTM layer to facilitate learning of temporal relationships.
Both models were able to follow a lane consistently and reliably. Any distur-
bances or shifts in the trajectory were quickly corrected, without being overly
sensitive. The CNN exhibited less volatile steering compared to the CNN-LSTM
in the high-speed stretch of the route, but the CNN-LSTM outperformed the
CNN in turns following high-speed stretches. Additionally, both models obeyed
all traffic lights and always tried to follow the provided HLC at intersections.

When introducing other vehicles, the differences between the models became
more apparent. The CNN-LSTM adapted its speed according to traffic, and only
rear-ended another vehicle once throughout the whole experiment. In scenarios
where another vehicle blocked most of the view (e.g., when following another
vehicle closely in a turn), the CNN-LSTM seemed to be able to use past predic-
tions as a guide. The CNN, on the other hand, experienced more trouble when
driving alongside other vehicles. Although the model, to some degree, adapted
its speed according to traffic, it often failed to react upon sudden changes. This
led to frequent rear-endings throughout the experiment.

The difference between the models’ performance may be explained in their
architectural differences. The CNN-LSTM model used five subsequent obser-
vations when making predictions. This allowed it, by all indication, to learn
some important temporal dependencies - acquiring some knowledge about the
relationships between movement, change in object size, and distance. The CNN
model, however, interpreted each observation independently, which restrained
its ability to understand motion. It still learned to brake when approaching a
vehicle, but was not able to differentiate between fast approaching and slow
approaching objects. Predictions related to distance were solely dependent on
the size of objects. Moreover, the CNN could not rely on past predictions when
faced with confusing input, which seemed to result in more unreliable behavior.

It should be mentioned that although the CNN model had 28% less minor
failures than the CNN-LSTM model, its completion rate was 32% lower than
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the CNN-LSTM. The reduction in minor failures was probably a result of the
lower average route completion, not an indication of better performance.

8.1 Consistency with Related Work

The implemented models in this paper are based on the architecture in [1]. The
authors were able to use a CNN to drive on trafficked roads with and without
lane markings, parking lots and unpaved roads. This complies with this paper’s
results. Even though the implemented models were not tested on unmarked
roads or parking lost, they were able to drive on roads with lane marking, both
on roads with and without pavements.

Codevilla et al. [2] claimed that their command input network performed
inadequately when executing navigational commands. This does not comply with
the results of this paper. The proposed architecture takes the navigational com-
mand as input after the CNN, in a similar matter to the command input network,
but was able to execute the given navigational commands with a high degree of
success.

In [7] the turn indicators of the car was used as the navigational commands,
which were sent as input to the network. The authors did not use an RNN,
but fed three subsequent images to three CNNs and concatenated the output.
It was able to perform lane following, avoid obstacles and change lanes. The
navigational commands in this paper were introduced to the network in a similar
way, and both approaches were able to execute the navigational commands. The
proposed system was not tested for lane changes, but seeing achievements in
similar approaches indicates that this should be possible.

The CNN model in this paper was extended with an LSTM to utilize temporal
dependencies. A similar approach was attempted in [4]. They showed that adding
temporal dependencies improved both the accuracy and stability of a model
using a single CNN. Similar results can be seen in this paper.

9 Conclusion

The results of the experiments indicates that end-to-end systems are able to
operate autonomously in simulated urban environments. The proposed systems
managed to follow lanes reliably in varying lighting conditions and were not dis-
rupted by disturbances or shifts in trajectory. They were able to abide by traffic
lights and speed limits and learned to execute different navigational commands
at intersections.

Both systems managed to adapt its speed according to traffic, but their abil-
ity to respond to sudden changes varied. The CNN-LSTM were, by all indication,
able to acquire some insight into the relationships between movement, distance,
and change in the perceived size of objects. The regular CNN, interpreting each
observation independently, was not able to learn these essential temporal depen-
dencies. Hence, the results suggest that exploiting temporal information in sub-
sequent images improves an end-to-end systems ability to drive reliably in an
urban environment.
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Even though the systems’ performed several mistakes during testing, their
achievements demonstrated great potential for using end-to-end systems to
accomplish fully autonomous driving in urban environments.
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ing via conditional imitation learning. CoRR abs/1710.02410 (2017). http://arxiv.
org/abs/1710.02410

3. Dosovitskiy, A., Ros, G., Codevilla, F., López, A., Koltun, V.: CARLA: an open
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Abstract. Power meters are widely used for measuring training and rac-
ing effort in cycling, and the use of such sensors is now spreading also to
other sports. Data collected from athletes’ power meters are used to help
coaches analyse and understand training load, racing efforts, technique etc.
In this pilot project, we have collaborated with Skisens AB, a company pro-
ducing handles for cross country ski poles equipped with power meters.
We have conducted a pilot study on the use of machine learning tech-
niques on sensor data from Skisens poles to identify which sub-technique a
skier is using (double poling or gears 2–4 in skating). The dataset contain
labelled time-series data from three individual skiers using four different
sub-techniques recorded in varied locations and varied terrain. We evalu-
ated three machine learning models based on neural networks, with best
results obtained by a LSTM network (accuracy of 95% correctly classified
strokes), when a subset of data from all three skiers was used for training.
As expected, accuracy dropped to 78%when the model was trained on data
from only two skiers and tested on the third.

1 Introduction

The development of a wide range of sensors and products such as GPS, heart-
rate monitors, motion sensors and power sensors have made it possible to record
a vast amount of data from athletes, providing a rich source of information to
help coaches and athletes measure, analyse and understand training load, racing
efforts and technique. Sports like cycling has lead the way among the endurance
sports, as it its relatively easy to equip a bicycle with various sensors, for instance,
to accurately measure the power in each pedal stroke. Given the relative ease
at which large volumes of data can be recorded from sensors, we believe that
machine learning has the potential to provide valuable tools for assisting data
analysis in sports. In this pilot project, we have collaborated with Skisens AB,
a spin-off company from Chalmers University of Technology that is developing
a power meter for cross-country skiing, mounted inside the handle of the pole.
Unlike cycling where all power comes from the legs via the pedals, in skiing the
proportion of power measured in the poles depends on skiing technique. Broadly
speaking, the skiing techniques are divided into classical style and freestyle, each
regulated by rules in competition. Furthermore, the two styles can each be broken
c© Springer Nature Switzerland AG 2019
K. Bach and M. Ruocco (Eds.): NAIS 2019, CCIS 1056, pp. 52–57, 2019.
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down into several sub-techniques. The most effective sub-technique will depend
on the terrain, the snow conditions and the individual strengths of the skier.
In order for an athlete and/or coach to accurately analyse the effort based on
data recorded from a race it is therefore valuable to be able to get an automated
classification of which sub-technique was used where during the race. This work
focuses on free-style technique, however, the methods may be applied also to
classical style.

A longer version of this paper is available as a technical report [5].

2 Related Work

There has been several previous works aiming at classifying cross-country skiing
technique using a variety of sensors, following the initial experiments with wear-
able sensors by Marshland et al. [6]. Stöggl et al. used accelerometer data from a
mobile phone attached to a belt around the chest of the skier and a Markov chain
model to classify strokes [3,11]. Rindal et al. used wearable inertial measurement
units (IMUs) attached to the skiers arms and chest, together with gyroscopes
attached to the skiers arms [8]. Sakurai et al. also used data from several IMUs
attached to the skis and poles to construct a decision tree classifier both for clas-
sical and skating techniques [9,10]. Recently, Jang et al. conducted a study using
wearable gyroscope sensors to identify both classical and skating techniques and
a deep machine learning model combining CNN and LSTM layers [4]. The main
difference between our work and the above ski technique classifiers is that we
do not use any dedicated wearable sensors for the task, but simply explore if we
can identify technique using only the sensors already present in the Skisens pole
for measuring power. Our sensor data only records the movements of the hands,
and does not include any sensors on the body or on the skis, which would make
the task easier.

3 The Dataset

The dataset consists of data from three individuals (male, experienced recre-
ational skiers). The data was collected on roller skis on different days, in varied
terrain and under varied conditions. There were both uphill and downhill sec-
tions as well as turns, with skiers using double poling plus three different skating
styles, referred to as Gear 2, Gear 3 and Gear 4, following notation in [7]1. For
each gear there are a number of disjoint data segments, where each segment
is a continuous time-series of data during which the skier only uses a specified
style. The data collected is summarised in Table 1. Data was recorded at 50 Hz
(50 samples per second), hence when we refer to time-steps, these are recorded
0.02 s apart. The raw data was pre-processed and longer segments divided into
short segments, containing a single stroke each. The resulting dataset contains

1 We note that the notation varies between different countries, these techniques are
sometimes also referred to as V1, V2 and V2a. See [7] for a discussion.
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1671 individual strokes, of which 252 strokes in Gear 2, 473 in Gear 3, 360 in
Gear 4 and 585 strokes using double poling. Each single-stroke sample is 140
time-steps long, zero-padded when necessary.

Table 1. Description of the dataset columns used for machine learning. The coordinate
system for the vectors of acceleration and angular velocity is relative to the pole with
(a) First axis: pointing right (orthogonal to pole), (b) Second axis: pointing down
(parallel to pole), and (c) Third axis: pointing forward (orthogonal to pole)

No. Data Unit

1 Time second

2 Force in the left pole Newton

3 Pole-ground angle of the left pole degrees

4–6 Left angular velocity rad/s

7–9 Left acceleration m/s2

10 Force in the right pole Newton

11 Pole-ground angle of the right pole degree

12–14 Right angular velocity rad/s

15–17 Right acceleration m/s2

We remark that the data recorded also included the GPS position, but we
choose not to include this information as a feature. Different techniques are
naturally used at distinct road segments, as some techniques are more natural
to use e.g. in uphill terrain. If this was included, the models would end up basing
their predictions primarily on GPS-position, ignoring the other features, which
would lead to poor performance on unseen data recorded in a different location.

4 Machine Learning Models

We experimented with three different types of deep machine learning models for
stroke classification: a long short term memory network (LSTM) [2], a bidirec-
tional long short term memory network (BLSTM) [1], and a one dimensional
convolutional neural network (CNN). The models were implemented in Python
using the Keras/TensorFlow libraries2. The code is available online3.

The LSTM model in our experiment combines an LSTM cell with two dense
layers (see Fig. 1). The input of the LSTM model is a sequence of 140 time-steps,
corresponding to one pole push. The number of neurons in each layer was chosen
experimentally. The two dense layers can be interpreted as a weighted majority
vote, weighing the importance of each time-step for giving a result of the most
likely class for the entire pole push.

The BLSTM network has the same basic architecture as the LSTM network,
but with 64 neurons in the first layer (chosen experimentally). While the LSTM

2 https://www.tensorflow.org/guide/keras.
3 https://github.com/moajohansson/ai-in-sports.

https://www.tensorflow.org/guide/keras
https://github.com/moajohansson/ai-in-sports
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Fig. 1. Network architecture for the LSTM model, with an LSTM cell with two dense
layer. The light blue boxes indicates layers in the network, and the number of neurons
in each layer is stated inside the brackets in each layer. (Color figure online)

network passes information only in the forward direction, the BLSTM network
passes information in both the forward and backward direction, thus using twice
as many weights.

Our CNN model consists of two one-dimensional convolutional layers and two
dense layers (see Fig. 2), as well as max-pooling and global max-pooling layers.
The latter two layers are used for down-sampling, locally and globally. Number
of neurons, filters, kernel- and pool size were decided experimentally.

Fig. 2. The network architecture for the CNN model.

5 Experiments and Results

We conducted two experiments to assess classification accuracy. In Experiment
1, both the training set and unseen test set contain data from all three skiers.
In Experiment 2, two skiers are used for training and the third for testing.

Experiment 1: We trained the models on a subset of the data containing
samples from all three skiers, and evaluated on another, unseen, subset as test
data. We suspect that the same person performs strokes in the same techniques
in a relatively consistent manner, hence the strokes in the test set are likely
to be quite similar to something from the training set. A motivation for this
kind of experiment is envisaging an application using Skisens-sensors which is
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personalised to the owner, who initially “calibrates” the product by skiing using
specified sub-techniques to collect personal training data.

Experiment 1 was performed for all three models described above, using five-
fold cross-validation, with each fold containing approximately the same number
of strokes and the same proportion of strokes in each sub-technique (folds 1–4
of 329 strokes, fold 5 of 355 strokes, from the total dataset of 1671 strokes).

The results are promising with both the LSTM and BLSTM models reaching
an accuracy of 95% on average over the five folds. We note that the CNN model
performed slightly worse than the other two, reaching an average accuracy of
90%, with higher variation over the different folds. We suspect that the CNN
model suffered more than the LSTM-based models from the relatively small
dataset. We note that the LSTM-based models also contains more trainable
parameters than the CNN-model, so more experimentation is needed with dif-
ferent CNN architectures. Training took about 6–10 times longer for the LSTM
and BLSTM models compared to the CNN model.

For the best-performing model (LSTM), we note that Gear 4 and double pol-
ing were the easiest to classify, while Gear 3 was the hardest. This was somewhat
surprising, as the arm movements of Gear 4 and double poling are visually quite
similar.

Experiment 2: Experiment 1 does not test the capability to generalise to a
person not seen before. This was somewhat difficult to test, due to the small
dataset. However, we did a second experiment with the best-performing model
from Experiment 1 (the LSTM model) where we trained on data from two skiers,
and evaluated on unseen data from the third individual. This was expected
to be harder, as the model would have to generalise, and ideally learn how
an “average” stroke in each sub-technique would be represented by the sensor
data. As expected, performance dropped to 78%. We believe that this could be
improved by training on a larger dataset with samples from many individuals,
and performing a larger study is future work.

6 Discussion and Further Work

We have conducted a pilot study using data from sensors fitted to ski pole handles
to predict which technique or gear the skier is using. This experiment aimed
at classifying time-series for single strokes, as these are easy to identify from
the power data recorded from the poles (near-zero readings indicating when the
poles are in the air). We have not yet attempted the task of passing in continuous
sequences of skiing strokes and identifying gear changes. This is an interesting
problem, as some previous work, e.g. [8], report that mis-classifications of single
strokes often happen near change points.

Most other works in cross-country skiing technique classification come from
the sports science domain, and often include only a few individuals in the studies
(e.g. 10 skiers in [8], four skiers in [4]). Furthermore, these studies often primarily
focus on reaching high accuracy for these specific individuals (often elite athletes).
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Experiments are often in the style of our Experiment 1, i.e. the training set and
test set contain data from the same individuals. On this task, our LSTM model
reached an accuracy of 95%, which is similar to other models from the literature
[3,8,11]. In the setting of Experiment 2, with tests on unseen individuals, Jang et
al. [4], reports an accuracy of between 87.2%–95.1%, compared to ours at 78%, but
they had access to more data.

Our dataset, of merely 1671 strokes, is on the small side for deep learning, as
seen in Experiment 2. We are however encouraged by the results in this study to
gather a larger dataset and perform a larger evaluation. We would like a dataset
containing both professional and recreational skiers to investigate whether one
can train a model to generalise without taking small individual variations into
account. This is particularly relevant from the perspective of Skisens, as they
are interested in including technique classification together with their ski-pole
sensors in for example a smart sports watch. Ideally, one would like to have a
pre-trained model which does an acceptable job out of the box, and possibly
then adapts to the individual user, without having to be trained from scratch.
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Abstract. Creating robust robot platforms that function in the real
world is a difficult task. Adding the requirement that the platform should
be capable of learning, from nothing, ways to generate its own movement
makes the task even harder. Evolutionary Robotics is a promising field
that combines the creativity of evolutionary optimization with the real-
world focus of robotics to bring about unexpected control mechanisms
in addition to whole new robot designs. Constructing a platform that is
capable of these feats is difficult, and it is important to share experiences
and lessons learned so that designers of future robot platforms can bene-
fit. In this paper, we introduce our robotics platform and detail our expe-
riences with real-world evolution. We present thoughts on initial design
considerations and key insights we have learned from extensive experi-
mentation. We hope to inspire new platform development and hopefully
reduce the threshold of doing real-world legged robot evolution.

Keywords: Evolutionary robotics · Real-world evolution · Lessons
learned

1 Introduction

Robots are used in more and more complex environments, and are expected
to be able to adapt themselves to changes and unknown situations. The eas-
iest and quickest way to adapt is to change the control system of the robot,
but for increasingly complex environments one should also change the body of
the robot—its morphology—to better fit the task at hand [1]. To achieve this
vision, researchers need access to flexible robot platforms that can be adapted to
new environments and tasks. For many projects this limits choices to simulated
experiments on virtual robots that are never tested in the real world.

This work is partially supported by The Research Council of Norway under grant agree-
ment 240862 and through its Centers of Excellence scheme, project number 262762.
Simulations with DyRET were performed on resources provided by UNINETT Sigma2
- the National Infrastructure for High Performance Computing and Data Storage in
Norway.
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Fig. 1. Initial version of DyRET (left) without self-modifying legs. Latest version of
DyRET (right) with fully extended legs.

Evolutionary Robotics takes inspiration from natural evolution, with concepts
such as hereditary traits and genome mutation, and applies these principles to
robotics. This combination has shown incredible creativity, not only creating
novel robot controllers but, going as far as creating whole new robot bodies.
However, this creativity is usually constrained to the software realm due to
the ease of simulating these new creations and the difficulty in performing the
same number of experiments in the real world. In contrast to the majority of
work in Evolutionary Robotics, Eiben argues for real-world experiments in his
“Grand Challenges for Evolutionary Robotics” [2]. This requires robust hardware
platforms that are capable of repeated experiments. At the same time, these
platforms must be flexible to manage unforeseen demands.

An emerging concept within evolutionary robotics is the theory of Embod-
ied Cognition. This theory suggests that reasoning and cognition cannot be fully
understood if studied in simple computer models alone. The mind, body, environ-
ment, and the interaction between these all contribute as cognitive resources [3].
Taking advantage of these concepts could lead to improved adaptivity, robust-
ness, and versatility [4], however, executing these concepts on real-world robots
puts additional requirements on the hardware and raises several challenges when
compared to learning just control [5].

In this paper, we will present related work before introducing our robot
platform with self-adaptive morphology, seen in Fig. 1. The main section of the
paper will describe the challenges we have faced when designing the robot, and
the lessons learned from real-world evolution and experimentation. By summa-
rizing our experiences we can report on key insights which can hopefully lead to
better robotics platforms in the future.
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2 Background

Robots are becoming a more widely used tool in many industries, and are used
for advanced tasks and in complex environments. Historically wheeled robots
have been used extensively in industrial settings because of their simplicity and
ease of deployment [6]. However, we are now starting to see the need for robots to
operate in more complex environments, both inside and out in the real world [7].
Using legs instead of wheels allows the robot to traverse difficult terrains and
environments, making the robot accommodate the user instead of requiring the
user to adapt to the robot.

2.1 Evolutionary Robotics

The field of Evolutionary Robotics (ER) uses techniques from evolutionary com-
putation to optimize both a robot’s control and body [8]. Many different legged
robots have been used in ER research. Some use off-the-shelf standard robots
not specifically designed for ER research, like Sony’s Aibo [9], while others use
robots specifically built for the purpose, like the Aracna [10].

Most earlier work in ER only optimize the control system of the robot [2].
This can allow the robot to adapt to the environment it is operating in [11],
or to changes to the robot itself [12]. However, only changing the control has
its limitations, and earlier work has shown that changing the morphology yields
results that could not be achieved by changing control alone [13]. Furthermore,
most work is done on virtual robots in simplified physics simulations, and not
on actual physical robots [14]. This allows for simple parallelization and noise-
free evaluations, but the inaccuracies in the simulator or models used often
lead to big discrepancies in the performance of the virtual robot and its real
world counterpart [15]. In simple cases these discrepancies can lead to differing
performance when transferring from simulation to the real world and can in
the worst cases lead the optimization algorithm to focus on behaviors that are
not possible to perform at all in the real world. Within the field of ER this
challenge is known as the reality gap and is one of the biggest hurdles facing
robotics researchers currently [16]. There are many techniques to reduce the
reality gap [17], but even with recent strides [18], this is becoming more and
more challenging, as both the robots themselves, the environment they operate
in, and the tasks they are solving become more complex and harder to model.

2.2 Embodied Cognition

The theory of Embodied Cognition originally came from psychology, but is mak-
ing its way into many sub-fields of robotics, including swarm robotics and modu-
lar robotics [19]. The original theory states that the brain is not the only cognitive
resource a human has, and that the body, the environment, and the interactions
between these can also serve as cognitive resources [3]. There are several exam-
ples where this has been used successfully in robotics [20]. An important aspect
of this approach, is that a large part of the cognition, or problem solving ability
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of a robot, can be placed in the robot body, its environment, and the interactions
these form with each other and the robot controller. Therefore, inaccurate mod-
els of either environment or body can make it impossible to accurately exhibit
Embodied Cognition on anything but the physical robot in the real world [2].

3 The ‘DyRET’ Robot

Our robot, DyRET (Dynamic Robot for Embodied Testing), was developed to
be a platform for experiments on self-adaptive morphologies and embodied cog-
nition [21], shown in Fig. 2. It is a fully certified open source hardware project,
and documentation, code and design files are freely available online [22]. Since it
is intended for use with machine learning techniques it is designed to be robust,
so that is can withstand falls from unstable gaits [23]. It can actively reconfig-
ure its morphology by changing the lengths of its femurs and tibias. Shorter leg
length increases the force at the end of the leg, given constant torque from the
servo. The self-changing morphology therefore allows the robot to change the
trade-off between movement speed and force surplus continuously, and can serve
as a gearing of the motor [24].

Fig. 2. Top and left views of our reconfigurable robotic platform, and examples of the
legs at two different lengths.

The robot is built using Commercial-off-the-shelf (COTS) components where
possible, and all custom parts can be made with consumer grade 3D printers.
We also use composite tubing for structural integrity. Selected parts have an
alternative design in aluminium for more demanding requirements, and have
been milled. Dynamixel servos are used in all rotational joints, which feature
on-board PID controllers for accurate position control. The servos are connected
to a common bus that interfaces to a computer over USB. The length of each
leg segment is controlled by a custom linear actuator, driven by a standard DC
motor. The main mechanism consists of a lead screw that moves carriages along
two rails using a chain, all COTS components. An encoder gives the position
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of each actuator, and a simple positional controller is run on an Arduino Mega
board with a custom interface shield. The robot features an XSense MTi-30
Attitude and Heading Reference System that measures linear acceleration, rota-
tional velocity and absolute orientation. The robot has reflective markers that is
used with motion capture equipment to get the absolute position of the robot. It
also features directional force sensors mounted on each foot which can be used
to detect when the feet touch the ground.

4 Experiences and Challenges

In this section, we present some key lessons we have learned when working with
DyRET. We have tried to summarize the lessons, followed by more detailed
explanations.

Initial design considerations

Robustness and maintainability are more important than ease of build-
ing. Using rapid prototyping and design for manufacturability principles,
along with exploiting Commercial-Off-The-Shelf components are crucial
in achieving an effective design process of a legged robot.

Legged robots are very complex systems, and anticipating all demands and
challenges early in the design process is impossible. Techniques from rapid proto-
typing allowed us to quickly get physical prototypes of the robot, which allowed
us to see and fix challenges that would be difficult to find without having phys-
ical proof-of-concept models of the system available. An important part of this,
is to use already existing Commercial-Off-The-Shelf (COTS) components where
available. This allows us to capitalize on the work of others, and also makes
it easier for others to build or utilize lessons learned from our designs. Design
for manufacturability is another important concept, and promotes adapting the
design to manufacturing considerations during the initial design process, where
they can be solved much more easily than during operation. As an example of
this we have included the designs in Fig. 3 which illustrates how the manufac-
turing methods should help inform the design of the individual parts. Making
a robot that is easy and cheap to build can be important, but our experience
is that maintainability is even more important, especially when using machine
learning that puts considerable strains on the physical robot.
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Fig. 3. The two parts on the left are designed for two different 3D printers while the
part on the right is designed for milling. This is an example of designing for manufac-
turability where parts are designed for the same purpose, but optimized for different
manufacturing methods.

Repairs and mechanical failures

A good strategy for redesign is important to balance quick spot repairs
and laborious systematic analyses of failures. Increasing the strength of
individual parts that break is often not an effective way to do iterative
design.

Designing parts for legged robots is always a trade-off between strength and
weight, and mechanical failures during prototyping is guaranteed. Strengthen-
ing the part that broke can be a quick fix, but our experience is that this often
results in the problem being transferred to other parts of the robot. Both high
persistent forces and sudden shock travel through the mechanical design, and
lead to failures in the next weakest link of the chain. Reducing stress concen-
trations locally in a particular part can sometimes be successful in allowing the
robot to withstand a similar situation again, however, excessive force can often
lead to cascading failures throughout the system. An example of this can be
seen in Fig. 4, where a strengthening of a part that broke lead to the next part
in the chain breaking instead. Having a clear strategy for when and what to do
when mechanical failures happen is important, and early on deciding on a bal-
ance between quick spot repairs and laborious systematic analyses of failures.
Once an experiment is underway, replacing parts with similar parts might be
the only option without skewing the results, so extra efforts on failure identi-
fication during the prototyping phase might be worth the effort. Larger cracks
in the material are often easy to identify, but deflection during operation, small
fractures, or material creep can be harder to detect.



64 T. F. Nygaard et al.

Fig. 4. An example showing a cascading mechanical failure, where an initial strength-
ening of a broken part (left, and circled blue on the right) leads to a failure in the next
part in the chain (red circle) (Color figure online).

Controller complexity

Low controller complexity puts less strain on the robot by testing solutions
that are safer and more conservative, and is quicker to optimize. High
complexity controllers can give better results by having higher freedom, but
will necessarily test solutions that are incautious. This complexity trade-off
is often not considered when doing simulation-only experiments, but can
be imperative when working on physical robots.

Learning legged locomotion is a difficult challenge. To optimize the walking
pattern, the gait, the movement of the legs is parameterized through a gait con-
troller. Much a priori knowledge can be embedded into the controller, resulting
in few parameters that are easy to optimize. Less prior knowledge requires more
of the optimization algorithm, resulting in an increased number of evaluations.
The more knowledge that is embedded, the less room there is for a varied range
of behaviors, which might be needed to adapt to new or changing tasks, environ-
ments or the robot itself [25]. Finding the right complexity balance can be very
challenging, especially in real-world learning where the number of evaluations
are limited. We have successfully used a gait controller with dynamic complex-
ity [26], which can be seen in Fig. 5. Another option is using different controllers
for different environments or tasks [27], for instance a complex controller when
optimizing the gait in a simulator with cheap evaluations, and a less complex
controller in the real world.

Starting in the real world

Using a virtual robot can be a quick way to get started learning locomotion.
It is, however, more difficult to transition from abstract simulated robots
to the real world, compared to going from a physical system to simulation.
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Fig. 5. Diagram of a controller with adaptable gait complexity. Here, a dynamic
genotype-phenotype mapping allows a single parameter to control the complexity of
generated gaits in-turn affording the experimenter the ability to trade-off optimization
demands with task/environment difficulty [26].

Evaluating solutions on a physical robot system can take seconds to several
minutes, depending on gait complexity and experiment design. Evaluating in
physics simulations or with simplified models, often done in software, can give a
speedup of several orders of magnitude. This often makes simulation a flexible
and easy starting point. However, our experience with DyRET indicates that
going from a real-world robot to simulation can yield more realistic simulation
results which in turn translates to more sensible real-world gaits after software
optimization. Not basing a virtual robot on a physical prototype makes it easier
to make choices resulting in solutions that turn out to be infeasible in the real
world [14], illustrated in Fig. 6.

Fig. 6. Comparison of different legged robots in simulation, with DyRET on the right.
Since DyRET was first designed in hardware and then transferred to simulation it is
known that it would function in the real world after simulation. In contrast, the first two
simulated robots, on the left, were designed without these constraints making it difficult
to predict how algorithms applied to these will function on real-world counterparts.
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Experiment design

Both the environment and the robot itself are dynamic, and changes will
happen during operation. This can lead to biases in the experiment results,
which have to be controlled by proper experiment design.

One of the key insights we have experienced after real-world experiments on
DyRET is how components change characteristics during the course of experi-
ments. Because of this gradual change, it is important to store as much informa-
tion as possible so that automatic procedures can be applied to detect differences
during and after experiments. A big difference between simulation and real-world
experiments is that a real-world experiment can never be perfectly replicated.
The change in characteristics should also guide the experiment design in the real
world. Because components are expected to change, it is important to evenly test
different solutions so as to not bias the experiment towards a specific one [28,
Chapter 11]. A specific example is the reduction in performance of our joints as
the motors heat up. If the solutions are always tested in the same order, this
might affect the results, and give spurious effects that can result in noise or skew
in the collected data.

5 Conclusion

In this paper we have presented lessons learned through extensive experimenta-
tion on the DyRET platform. This includes both initial design considerations,
and challenges such as the trade-off between simulated experiments and real
world evolution. Having a mechanically self-modifying quadruped robot is rare
among platforms used in evolutionary robotics research. This gives us a unique
insight into evolution of control and morphology in the real world. By shar-
ing knowledge usually not found in experiment-based publications, we hope to
encourage more researchers within the evolutionary robotics community to try
real-world experiments.
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Abstract. This paper describes the application of neural network
approaches to the discovery of new materials exhibiting thermoelectric
properties. Thermoelectricity is the ability of a material to convert energy
from heat to electricity. At present, only few materials are known to have
this property to a degree which is interesting for use in industrial appli-
cations like, for example, large-scale energy harvesting [3,8]. We employ
a standard neural network architecture with supervised learning on a
training dataset representing materials and later predict the properties
on a disjoint test set. At this proof of concept stage, both sets are syn-
thetically generated with plausible values of the features. A substantial
increase in performance is seen when utilising available physical knowl-
edge in the machine learning model. The results show that this approach
is feasible and ready for future tests with experimental laboratory data.

Keywords: Neural networks · Thermoelectric materials ·
Physics-oriented machine learning

1 Introduction

About 70% of the energy globally produced is released in the atmosphere as heat
[2]. Given the predicted increase in energy demands, coupled with the pressure
on our planet’s resources and climate, it is clear we cannot afford to lose such,
and it is therefore important to be able to recover the produced heat and use it
in further processes. The most common way to recover waste heat is for heating
buildings or smaller environments like a car. This produces already good results:
An average fossil-fuel power plant is able to turn into electricity only about 30%
of the energy contained in the fuel, but when the excess heat is recovered, the
total efficiency rises to 60–80% [1]. However, heat is sub-optimal compared to
other energy sources: It is difficult to transport, it is easily lost, and in general our
technology to exploit heat is not particularly advanced. The reason why waste
heat is mostly reused simply in its raw form is that heat has high entropy, it is
difficult to transform it back into more valuable energy types. Thermoelectric
c© Springer Nature Switzerland AG 2019
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materials accomplish just that: They are capable of generating an electrical cur-
rent from a temperature difference, and are therefore highly valuable ingredients
in heat recovery processes and development of new technologies.

This property of converting heat to electricity has sparked wide attention in
several research communities and application areas [4,6,9]. Enabling the recovery
and use of what was previously almost lost thermal energy, they are seen as
an important step toward more sustainable, efficient, and circular industrial
processes. Despite numerous ongoing researches, the amount of available data
on thermoelectric materials is unfortunately still somewhat limited; this because
most current state of the art techniques for theoretical material analysis make use
of the density functional theory (DFT) [5], which is computationally relatively
expensive [7]. In principle, DFT allows us to study in detail and precisely a
variety of physical properties of a crystalline material, including whether the
material in question presents good thermoelectric properties or not, but doing
this for every possible material is clearly not yet feasible.

One quantity indicating how “thermoelectric” a material is, is the so called
figure of merit, ZT , given by the formula:

ZT =
Tσα2

κE + κL
, (1)

Where T is the temperature, σ is the electrical conductivity, α is the Seebeck
coefficient, κE is the electronic part of the thermal conductivity, and κL is the
phonon part (lattice vibrations) of the thermal conductivity. A brief description
of these and other physical quantities is given below in Sect. 2.1.

Machine learning (ML) is a collection of techniques, and the study of such
techniques, to produce algorithms capable of inferring the solution to a given
problem by analysing sets of (related) data. Machine learning algorithms have
the distinctive property of being able to extrapolate from the provided data the
often very complex underlying patterns linking input to output, in a “cause and
effect” fashion. In this work we focus on using such techniques to predict the
ZT value given some physical descriptors of the materials.

We see this as a step toward a practical methodology where ML can be used
to scan large parts of the input domain, i.e. the different materials composi-
tions, in order to search for candidate thermoelectric materials. This will allow
a laboratory to focus their research and computational efforts to few selected
promising materials, thus accelerating the development of new technologies.

2 Methodology

The problem is handled with a classical regression/supervised learning approach:
We first train our chosen neural network (NN) architecture using pairs (xi, ZTi),
where xi is a database entry vector collecting a material’s information and ZTi

is its associated ZT value. Then we perform predictions on a test set containing
datapoints which have not been used before.
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2.1 The Database

The dataset we employed consisted of roughly 250000 synthetically-generated
datapoints. The descriptors (features) included in the dataset are:

– num bands: The number of electronic bands included in the simulation, gives
an idea of the complexity of the band structure around the chemical potential;

– effmass arithmetic: The effective mass of the charge carriers using the arith-
metic mean, in units of the bare electron mass;

– effmass geometric: The effective mass of the charge carriers using the geomet-
ric mean, in units of the bare electron mass;

– shift arithmetic: The average energy shift from zero (location of the chemical
potential on the energy scale where 0 eV is the energy reference), of all the
electronic bands using the arithmetic mean, units of eV;

– shift min: The minimum energy shift (see definition of shift arithmetic);
– shift max : The maximum energy shift (see definition of shift arithmetic);
– T : The temperature in Kelvin;
– chempot : The chemical potential in eV;
– n: The free carrier concentration in 1021 cm−3;
– sigma: The electrical conductivity, σ, in S/m;
– seebeck : The Seebeck coefficient, α, in V/μK;
– kappae: The electronic part of the thermal conductivity carried by the elec-

trons, κE , in units of W/(m · K);
– ZT 01 : The value of ZT when κL = 0.1 W/(m · K);
– ZT 1 : The value of ZT when κL = 1 W/(m · K);
– ZT 10 : The value of ZT when κL = 10 W/(m · K);

The descriptors’ values were chosen in a plausible range, so that the tests, while
not being connected to any application, could still be instructive regarding the
feasibility and performance of this approach when enough real-world data is
available. For a similar study performed on a smaller but real-world dataset, we
reference the interested reader to [10]. The full dataset of 250000 samples has
been randomly shuffled and split in a train set (0.6 fraction), validation set (0.2
fraction), and test set (0.2 fraction).

2.2 Features Selection

Not all of the descriptors listed above have been used in our ML model. To choose
which descriptors to use as training features we employed a simple correlation
analysis, selecting those that displayed high correlation with the target output
and discarding those that are highly correlated with each other. The logic behind
the former criteria is obvious: In order to exploit the approximating power of
neural networks, the features used as input have to be meaningfully related to
the target output. The reason for the latter criteria is that one wants to avoid
over-representing some characteristics of the data. For example, it’s clear that
the descriptors effmass arithmetic and effmass geometric both represent the same
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information just in two different ways, therefore only one should be included in
the training data.

We note that, since the dataset has been synthetically generated, one could
think a correlation analysis approach is not necessary. However, we thought it
meaningful to treat the dataset like if it contained unknown real-world data, and
therefore applied the same strategies we would have applied in that case.

With the above in consideration, the descriptors that were selected as training
features are: num bands, effmass geometric, shift arithmetic, shift max, chempot,
and n. Note, in particular, that we did not select the values of σ, α, and κE as
features since those quantities are the ones that are computed with the expensive
DFT and the whole reason to use a NN to predict ZT values is to avoid that
step. Indeed, if the values of σ, α, and κE were available, one should employ the
formula in (1) directly.

2.3 Neural Network Architecture

Since the purpose of this investigation was to check the feasibility of the app-
roach, we didn’t delve too much in fine-tuning the network’s parameters and
instead wanted to test how an almost out-of-the-box approach performed. For
this reason we employed a very standard NN consisting of the input layer for
the features, three hidden layers with 100 neurons each with Re-LU activation
function, and output nodes, so that the results contained in this work form a
baseline for further research and comparison. All layers are fully connected. Both
the amount of neurons and number of hidden layers have been decided a pri-
ori, before doing any tests, and no regularisation, dropout, or other fine tuned
features have been used, so that the results obtained here constitute indeed a
lower bound for the quality and accuracy one can expect from this approach.
The only tuning we performed was to prevent strongly overfitting the train data.
This, staying true to the philosophy of keeping the network’s parameters at a
minimum, was achieved with early stopping based on the error on the validation
set. The model has been constructed in Keras and trained using the Adams opti-
mizer with default parameters values. As loss function we employed the standard
mean square error between predictions and target values.

We tried two different choices of activation function for the output layer:
In Test 1 no special function was employed, so that the last layer produced a
simple linear output. Moreover, since the maximum values of the three ZT s
differed at most by one order of magnitude, we did not normalise the target
values. In Test 2, on the other hand, we wanted to use the physical knowledge
at our disposal, namely that ZT values are positive, to increase the performance
of the NN approximation, and therefore enforced output values to be positive
through the application of a sigmoid activation function on the last layer. Since
the range of the sigmoid is (0, 1), this also naturally called for the normalisation
of the target values.

The two simple changes above considerably improved the performance of the
model, as shown in the results below.
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3 Results

3.1 Test 1

Our first test was conducted with a neural network consisting of an input layer
with 6 input nodes, three hidden layers of 100 neurons each with Re-Lu activation
function, and a linear activation output layer with 3 nodes, one for each value
of ZT . The output data has not been normalised.

Figure 1a shows the training history, i.e. the loss function value, for both the
train and validation set over the 400 training epochs.

Fig. 1. Test 1. (a) The error function on the train and validation set during the
training epochs. (b) The predictions for ZT0.1 on train and test set. (c) The predictions
for ZT1 on train and test set. (d) The predictions for ZT10 on train and test set. The
black dashed line is the bisector of the first quadrant.

Probably thanks to the fact that our dataset is synthetically generated, and
therefore we have ample quantity of data and no skewed classes, no appreciable
overfitting in the model is observed. The decision to early-stop training at 400
epochs was taken because that is the point at which the validation error reaches
a plateau. We also note that although the general trend of the ZT values is
correctly identified, the accuracy of the prediction is somewhat coarse. This
becomes even more apparent when plotting the same data as in Figs. 1b–1d on
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a logarithmic scale, to better see the differences in orders of magnitude. Figure 2
shows that the network fails for small values, with the predictions being several
orders of magnitude off.

Fig. 2. Test 1. (a) Logarithmic plot of the predictions for ZT0.1 on train and test set.
(b) Logarithmic plot of the predictions for ZT1 on train and test set. (c) Logarithmic
plot of the predictions for ZT10 on train and test set. The black dashed line is the
bisector of the first quadrant.

It has to be remarked that the accuracy in the predictions for large values
of ZT , which is the area of interest, is acceptable, but the strange behaviour
exemplified in Fig. 2 made us wonder whether we could improve the performance
by adding just a little of physical knowledge to the model; this led us to Test 2.

3.2 Test 2

In the second test we incorporated some physical knowledge into the model. In
particular we enforced the output of only positive values by applying a sigmoid
activation function to the last layer in place of the normal linear activation. Since
the sigmoid range is in (0, 1), the target output has also been normalised before
training. Figure 3 shows the results in this case.
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Fig. 3. Test 2. (a) The error function on the train and validation set during the
training epochs. (b) The predictions for ZT0.1 on train and test set. (c) The predictions
for ZT1 on train and test set. (d) The predictions for ZT10 on train and test set. The
black dashed line is the bisector of the first quadrant.

As before, no appreciable overfitting is found, but the accuracy of the predic-
tions is sensibly improved as the bands around the diagonal line are narrower.
This is visible also from the error recorded in the training history, Fig. 3a, which
after 400 epochs is about four times lower than that in Test 1.

The change in behaviour of the model transpires clearly also in the loga-
rithmic plots for the predictions, displayed in Fig. 4. Now the network predicts
accurately across the entire range of values, with errors well within acceptable
range.

The introduction of the sigmoid function in the last layer, forcing the NN
to learn only positive values, has thus substantially improved the overall perfor-
mance of the ML model.
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Fig. 4. Test 2. (a) Logarithmic plot of the predictions for ZT0.1 on train and test set.
(b) Logarithmic plot of the predictions for ZT1 on train and test set. (c) Logarithmic
plot of the predictions for ZT10 on train and test set. The black dashed line is the
bisector of the first quadrant.

4 Conclusions

We applied a very standard neural network model to the problem of predicting
the thermoelectric figure of merit, the ZT value, of a set of synthetic band struc-
tures corresponding to idealised unknown test materials. The dataset has been
synthetically generated in order to have plenty of data, which allowed investi-
gating the feasibility of such an approach in scenarios where large quantities of
real-world data are available. The results have been very promising.

In our first test we predicted the values of ZT using a completely out-of-
the-box approach. While the general trend of the figure of merit was correctly
identified, the quality of the predictions was somewhat coarse. This applied espe-
cially to the smaller values which, while being the least interesting quantities for
the application in which this work is concerned, could still be important for other
aspects.

In our second test we specialised the neural network to output only positive
values. The reason behind this was the physical knowledge that the ZT is a pos-
itive number. This change impacted the performance of the model very visibly,
gaining accuracy in the predictions across the whole range of materials used for
testing.
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Our results show that a neural network approach can be a powerful tool
in predicting physical properties of materials which would otherwise be very
expensive to compute in classical ways, for example through a DFT approach.
The application of machine learning techniques can therefore boost the research
of novel energy materials by analysing large sectors of the parameters space, i.e.
large quantities of chemical compounds, and providing an indication about which
materials are promising candidates exhibiting high thermoelectric properties.
One can then perform the expensive, but accurate, DFT laboratory tests only
on those promising candidates. Machine learning approaches have therefore a
very good potential to greatly increase the efficiency in the use of scientific
resources. This simple but significant experiment further shows that it can be
beneficial when physical prior knowledge is built-in in a machine learning model.
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Abstract. Slender marine structures such as deep-water marine risers
are subjected to currents and will normally experience Vortex Induced
Vibrations (VIV), which can cause fast accumulation of fatigue damage.
The ocean current is often three-dimensional (3D), i.e., the direction and
magnitude of the current vary throughout the water column.

Today, semi-empirical tools are used by the industry to predict VIV
induced fatigue on risers. The load model and hydrodynamic parameters
in present VIV prediction tools are developed based on two-dimensional
(2D) flow conditions, as it is challenging to consider the effect of 3D
flow along the risers. Accordingly, the current profiles must be purposely
made 2D during the design process, which leads to significant uncertainty
in the prediction results.

Further, due to the limitations in the laboratory, VIV model tests are
mostly carried out under 2D flow conditions and thus little experimental
data exist to document VIV response of riser subjected to varying direc-
tions of the current. However, a few experiments have been conducted
with 3D current. We have used results from one of these experiments to
investigate how well (1) traditional and (2) an alternative method based
on a data driven prediction can describe VIV in 3D currents.

Data driven modelling is particularly suited for complicated problems
with many parameters and non-linear relationships. We have applied a
data clustering algorithm to the experimental 3D flow data in order to
identify measurable parameters that can influence responses. The riser
responses are grouped based on their statistical characteristics, which
relate to the direction of the flow. Furthermore we fit a random forest
regression model to the measured VIV response and compare its perfor-
mance with the predictions of existing VIV prediction tools (VIVANA-
FD).
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1 Introduction

Slender marine structures such as deep water marine risers are exposed to ocean
currents causing vortices to be shed in the wake of the circular cross-section
as illustrated in Fig. 1. This will cause alternating lift forces that may synchro-
nise with the cylinder’s motion such that high-frequency vibrations can occur,
a phenomenon termed Vortex Induced Vibrations (VIV). The vortex shedding
frequency may synchronise to a multiple set of riser eigen-frequencies. This may
lead to fatigue during short exposure times even if the associated response ampli-
tudes are small. As this limits riser lifetime, VIV are a major concern in riser
design and operation.

Fig. 1. Left panel: Vortex Induced Vibrations (VIV) due to vortices shed in the wake
of a slender marine riser (seen from above). The VIV manifest as movements e.g. in a
figure-of-eight like pattern (dashed red line). Right panel: Examples of riser trajectories
in the x/y plane perpendicular to the length of the riser. (Color figure online)

The load model and hydrodynamic parameters in present frequency domain
VIV prediction tools used by industry, i.e., VIVANA [7], Shear7 [14] and VIVA
[11], are developed for the simplified 2D flow conditions. However, the speed of
the current and spatial patterns in the field may vary over the water column lead-
ing to 3D flow conditions [8]. It is common practice to perform pure cross-flow
VIV analysis with current profiles purposely made 2D, which is an obvious over-
simplification. This is partially due to the lack of a reliable model in present VIV
prediction algorithms of combined in-line and cross-flow responses. In addition,
the hydrodynamic load in the frequency domain prediction tools is assumed to
be harmonic, which is a simplification of the true load process (non-harmonic).
A new time domain prediction tool has been developed [9,10], but systematic
validation of the tool subjected to 3D flow condition is needed.
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Experimental VIV model tests subjected to 2D flow have been carried out in
recent years [4,12,15, e.g.]. Limited test data can be found for VIV in 3D flow
conditions. The common challenge of these data is that VIV response becomes
increasingly complex with many parameters that interplay and influence the
physical process. Consequently, it is also difficult to model the process in a
simplified mathematical model.

Data driven modelling and machine learning algorithms are powerful and
highly flexible model-free methods for inferring relationships in data [3]. They
are constructed to handle highly complex problems with many parameters and
non-linear relationships. However, to take full advantage of the methods, high-
quality data with many samples are required.

VIV response modelling is complex and model tests provide experimental
data for testing the suitability of a machine learning approach (Sect. 2). First
we applied unsupervised learning (clustering) to explore and identify relation-
ships in the data in order to select the most relevant parameters from the high-
dimensional data set (Sect. 3). Secondly, we used supervised learning to build a
regression model that can predict the statistical properties of the VIV response
based on the flow properties (Sect. 4.2).

The overall objective of the research is to obtain more accurate estimation
of riser VIV fatigue damage by combining traditional prediction methods with
machine learning to be integrated in future on-site riser monitoring systems. This
paper presents a first attempt on the possible improvements by including the
effect of 3D current in the otherwise 2D traditional VIV prediction tools. VIV
response prediction is carried out with existing VIV prediction tools and com-
pared with similar predictions from a data driven model in order to investigate
the limitations and potentials of both methods.

2 VIV Model Test with 3D Flow

We use data from an experiment carried out in 1996 and 1997 at the MARINTEK
(now part of SINTEF Ocean) towing tank using a rotating rig.

Experimental Setup and Riser Model: In the laboratory, 3D flow conditions
were mimicked using a rotation rig as shown in Fig. 2. The rig was mounted in the
deepest part of a towing tank having a length, width, and depth of 80 m, 10.5 m
and 10 m, respectively. The test rig consisted of a 13 m long vertical cylinder
with a diameter of about 0.5 m. Bearings in both ends of the cylinder made it
possible to rotate the rig around its vertical axis by use of an electrical actuator.
The rotating cylinder was mounted with horizontal arms at the top and bottom.
The riser model was suspended between these arms in a pretension arrangement.
At the lower connection point it had a constant arm length of 4.6 m. The upper
connection arm length could be varied from 0.4 m to 4.6 m.

During the test, the rig was rotated around the vertical cylinder at constant
rotational velocity. Thus, the riser experienced a water flow given by the rota-
tional speed and distance to the rotational axis. For equal arm lengths, the flow
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Fig. 2. Upper panel: The geometrical configuration of the arms (blue) and the riser
(red). In the 2D configuration (left), the angle between the horizontal arms was 0◦

leading to a 2D flow. In the mild 3D configuration (middle) the angle between the arms
was 60◦ and in the strong 3D configuration (left) the angle was 120◦, both leading to a
3D sheared flow. Lower panel: Normalised velocities along the riser in the x-direction
(ux/U , blue), y-direction (uy/U , orange), and magnitude of total velocity (utot/U ,
black thick line), where U refers to the velocity of the tip of the lower arm. (Color
figure online)

speed was uniform in magnitude and direction along the riser model. Decreas-
ing the upper arm length, led to a variation in the flow along the riser model,
resulting in a sheared, but still 2D, flow. More detailed description of the test
set-up can be found in [5].

In order to accommodate 3D flow conditions, the planar angle between the
upper and lower arms could be adjusted. When the two arms were offset, the
current flow varied in direction along the riser model. Hence, it was possible to
test a riser model subjected to a well-defined 3D current profile. Seven different
setup set-up configurations were performed, where the length of the upper arm
varied between 2.7 m to 4.6 m, and the angle between the horizontal arms varied
between 0◦ and 165◦. In the present study only the three configurations with
constant upper arm length of 4.6 m were included. The angle between the arms
were 0◦, 60◦ and 120◦, resulting in a uniform 2D current profile, a mild 3D
current profile and a strong 3D current profile.

The outer diameter of the test model riser was 23 mm with a weight in water
of 1.433 Nm−1. The riser had been modified to house accelerometers, and stiffened
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Fig. 3. An example of a time series interval for sensor 5 in the 2D geometry with
rotational velocity of 1.629 ms−1 in the sample interval 5000 to 5500. The upper panels
show the time series and the lower panels the real part of the fast Fourier transform.

with a 4 mm steel wire to obtain a high axial elastic stiffness and strength. It was
filled with gelatin to avoid vibrations of the cabling inside.

Time Series: The response of the riser was measured with 10 pairs of bi-axial
accelerometers mounted along the length of the riser. The accelerations were
measured along and perpendicular to the length of the riser with a sampling
frequency of 120 Hz. During the tests two of the accelerometers (number 3 and
10 from the bottom) failed and were rejected from further analysis.

The measured accelerations were Fourier transformed and low-pass filtered
at 30 Hz to remove high frequency noise, before being doubly integrated in the
frequency domain to obtain displacement time series. The transient phase in the
measured signals at the beginning and the end of each test case were discarded
so the total signal consisted of time steps from 2500 to 8000 (21.8–66.7 s). We
split the time series in intervals of 500 samples corresponding to 4.2 s an example
of which is given in Fig. 3. We used a fast Fourier transform of the time intervals
to get the dominating oscillation frequencies (lower panels of Fig. 3).

We only considered local current and treated each sensor and each time
interval as independent measurements. This is a strong simplification since it is
known that VIV responses will be correlated over the length of the riser model.

The inaccuracy of the accelerometers and other sensors was a few percent of
the true values. In addition, it is observed that VIV response is not completely
stationary. Therefore, the standard deviation of the measured response can vary
depending on the time slot. For the total displacement, the deviation between
the time slots can be up to 15%.

Features: In total we considered the features listed in Table 1. They are not
independent and at different stages in the analysis different subsets were selected
as specified.
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Table 1. The full set of considered features. The x- and y-directions refer to the plane
perpendicular to the length of the riser (see Fig. 2)

Feature Explanation

σAcc,x, σAcc,y Standard deviation of acceleration in the x, y directions in ms−2

γAcc,x, γAcc,y Skewness of acceleration in the x, y direction, no units

κAcc,x, κAcc,y Kurtosis of acceleration in the x, y direction, no units

σDis,x, σDis,y Standard deviation of displacement divided by riser diameter

σtot Standard deviation of total displacement divided by riser diameter

γDis,x, γDis,y Skewness of displacement in the x, y direction, no units

κDis,x, κDis,y Kurtosis of displacement in the x, y direction, no units

fDis,x, fDis,y Frequency of oscillations in x, y direction in units of s−1

utot Total sensor velocity (equal to current) in ms−1

ux, uy Magnitude of sensor velocity in the x, y direction in ms−1

U Velocity of lower arm in ms−1

d Sensor distance from bottom in m

In addition to the variance (standard deviation) of the distributions, we
also regarded skewness and kurtosis. Skewness is the third standardised cen-
tral moment for the probability distribution. It describes the symmetry of the
distribution. Kurtosis is the fourth standardised central moment of the proba-
bility distribution. It is a measure of the combined weights of the tails relative to
the rest of the distribution [16]. Vandiver [13] used kurtosis to characterise the
VIV responses. It assumes a value of 1.5 for a sinusoidal process as typical for a
single mode lock-in response, and a value of 3.0 for a Gaussian process typical
for multi-frequency random vibration.

3 Clustering

We used unsupervised learning to investigate the relations between the dimen-
sionality of the current and the statistical properties of the oscillations. In order
to focus on the flow dimensionality, we only considered measurements where the
total sensor velocity fell within a narrow range, utot = 1.1−1.2 ms−1.

Hierarchical Density Based Clustering: Clustering basically means sort-
ing the data points according to similarities in the full parameter space. For a
few features this can easily be visualised, but for many features visualisation is
challenging.

Hierarchical density based clustering uses the density of the points in feature
space to build cluster trees hierarchically. The tree is then condensed based on a
minimum cluster size [2,6]. Contrary to other clustering methods, the user does
not specify a number of clusters, but instead specifies the minimal cluster size.
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The points that do not fulfil the criteria for becoming a cluster are assigned to
a noise/outlier category. The user can control the conservatism of the clustering
i.e. how strict the algorithm should be when assigning points to clusters or
noise. Density based scanning is particularly good at handing elongated and
overlapping clusters, and due to the noise option it is suitable for exploratory
data analysis.

Method and Results of Clustering: We applied hierarchical density based
clustering to the full set of features in Table 1 with Euclidian distance as sim-
ilarity matrix, minimum cluster size of 18 members, and minimum number of
samples (the conservatism) of 1. Since the data were equally distributed among
the three scenarios with different governing physics, we expected the clusters to
be small and homogeneous, and consequently we used the leaf method for cluster
selection (rather than the default mass excess method which has a tendency to
produce large clusters).

The importance of individual features in the clustering combined with phys-
ical reasoning and correlations between the features were used to select a subset
of relevant features consisting of: σAcc,x, σAcc,y, κAcc,x, κAcc,y, fDis,x, fDis,y, ux,
uy.

The upper panel of Fig. 4 shows the parameter distributions for each of the
clusters. The randomly selected cluster members shown in the lower panels have
visually similar trajectories. Consequently, the statistical information is descrip-
tive of the physical scenario, and can be used by the clustering algorithm do
distinguish between the scenarios.

Other Clustering Methods: In addition to the density based clustering, we
tested other methods such as Gaussian Mixture and Agglomerative clustering.
Gaussian mixture clustering is a generalisation of k-means clustering where it is
assumed that all data points are generated from a mixture of a finite number
of overlapping Gaussian probability distributions. Agglomerative clustering is
a bottom-up hierarchical clustering approach, where each data point starts as
its own cluster, and the clusters are subsequently merged. When using only the
parameters that have a high significance in the density based clustering, the
results of the three methods are very similar.

4 Response Prediction

Given the clear correlation between oscillation pattern, configuration and statis-
tical parameters, it should be possible to use supervised learning to predict the
statistical properties of the response from a simple input.

The end goal is to predict the long term fatigue for realistic current profiles.
Since the fatigue is strongly dependent on the response, we simplify the problem
and here we compare the response prediction from traditional methods, such as
VIVANA-FD, with a data driven random forest learning approach. We randomly
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Fig. 4. Upper panel: Distributions of the statistical parameters of the clusters. The
bars show the normalised histograms while the thin lines are the kernel density esti-
mates. The cluster numbers correspond to the cluster members shown below. Lower
panel: Examples of trajectories of cluster members. The colours and labels indicate the
configuration. The last row shows examples of data points that are assigned to the
noise category. The clusters are derived based on statistical properties of the accelera-
tions and displacements, and not the trajectories shown here. The fact that the cluster
members have visually similar trajectories indicate that the statistical parameters are
descriptive of the physical scenarios. (Color figure online)

selected a test case in the strong 3D configuration with bottom flow speed of
Utot = 1.105 ms−1 and sampling interval 2500–3000 for comparison.
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4.1 Traditional Method with VIVANA-FD

The flow speed varies in magnitude and direction along the length of the riser
model as shown in Fig. 2 (normalised by total flow speed). The empirical fre-
quency domain VIV prediction program VIVANA-FD was used for the case
study using discrete response frequencies. The equation of dynamic equilibrium
is defined as

Mr̈ + Cṙ + Kr = R, (1)

where R represents the external forces, M incorporates the structural and hydro-
dynamic added mass, C describes structural and hydrodynamic damping, and K
is the stiffness matrix. M , C and R are functions of the response vector r, which
necessitates an iterative solution scheme. It is assumed that the excitation and
response are harmonic at identical frequencies. This type of stationary response
is assumed by most of the empirical VIV softwares [7,11,14]. The main hydro-
dynamic coefficients are the added mass, excitation and damping coefficients,
which are generalised from VIV model test with 2D flows.

The 3D flow is normally converted to 2D by using the total velocity. The
displacement prediction with the 2D flow profile is presented in Fig. 5 (lower
panel, green line). VIVANA-FD predicts a single response frequency (fosc =
6.87 Hz) to dominate the responses along the length of riser model. Consequently,
the response will be harmonic due to the assumption of the load model.

4.2 Data Driven Approach

Instead of using a physics-based model, the purpose of data driven modelling is
to fit the data with a highly flexible model.

Random Forest Regression: Random forest regression is based on decision
trees with a technique called bootstrap aggregation (also known as bagging) [1].
Rather than using individual decision trees, the data is randomly sampled (with
replacement) and a decision tree is trained for each sample.

In order for each feature/variable to contribute equally to the fitting process,
the input and output features must be scaled individually to the same range.
We performed a min-max scaling to the range [0, 1], before randomly split-
ting the data into a training sample (80%) and a test sample (20%). The input
parameters were d, utot, ux, uy, and the output parameters were the remain-
ing parameters in Table 1. However, there was a clear connection between the
parameters with an important role in the clustering, and the parameters that
could be well determined with the random forest model, so we restricted the
output to σDis,x, σDis,y, fDis,x, fDis,y, σtot.

We used a grid search to optimise the hyper-parameters to a depth of 10
layers in the decision trees and 400 estimators. For a 5-fold cross validation,
the best mean squared error on the normalised training data was 0.0062 and
0.0060 on the normalised test data. That the model performed better on the
test data than the training data is a good sign that it was not over-fitting. For
the individual parameters the mean square error was varying from 0.002 to 0.009.
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Fig. 5. Top panel: Trajectories of the case study; the strong 3D configuration with a
bottom flow speed of 1.105 ms−1 for sample range 2500–3000. Subsequent panels: The
measurements (black crosses) and model predictions for the case study. The blue circles
show the random forest prediction from fitting to data from all sensors with the sensor
positions highlighted as larger circles. The orange squares show the predictions from
fitting only three sensors (highlighted as red circles), but predicting for all sensors.
The lowest panel shows the standard deviation of the displacement (in units of riser
diameter). The green line is the prediction from VIVANA-FD assuming 2D flow. (Color
figure online)

4.3 Results and Comparison

Figure 5 shows the results of both predictive approaches compared to the mea-
surements of the strong 3D configuration with bottom flow speed of Utot =
1.105 ms−1 (excluded from training and test samples). As discussed in Sect. 2,
the measured variation of displacement may vary up to 15% between the time
intervals, and hence it is a reasonable estimate of the uncertainty on the mea-
sured displacement amplitudes plotted in the lowest panel of Fig. 5.

Visually, the random forest model (blue) provide good predictions at the
sensor locations. The sensor closest to the bottom is also closest to the pinned
end. Consequently, it will have smaller displacements and the measurements are
more prone to noise. Further analysis is required to identify the origin of the
discrepancy and possible improvements of the model at this location. Around
6–7 m from the bottom there is an “oscillation” in the model, mostly pro-
nounced for σDis,y. Since there are no measurements between the accelerometers,



88 S. Riemer-Sørensen et al.

it is uncertain whether this is an artefact of the model but the feature remains
when fitting the model to fewer sensors.

Deep-water risers will normally have a limited number of sensors. Hence we
tested the ability of the model to interpolate by fitting only to data from a sub-
sample of the sensors (orange in Fig. 5) but predicting the response at all sensor
locations. The three-sensor fit leads to larger deviations than fitting all sensors,
but still with decent performance, in particular for the predictions of the total
displacement (lowest panel in Fig. 5).

The lowest panel in Fig. 5 shows the variation of the total displacement. The
VIVANA-FD prediction (green line) over-predicts the displacement amplitude
relative to the measurements along the entire riser leading to a root mean squared
error of 4.8 relative to the measurements at the sensor locations. In addition,
the predicted response is harmonic compared to the almost flat behaviour of
the measured responses. The explanation lies in the simplifying assumptions of
VIVANA-FD. Firstly, the predicted responses are dominated by a single fre-
quency leading to harmonic oscillations. This is contrary to the multi-frequency
responses observed in the measurements (shown in Fig. 3). Secondly, the 2D
assumption clearly leads to over-prediction of the displacement amplitude.

The random fores prediction is closer to the data both when fitted to all
data (root mean squared error of 0.02 relative to sensor measurements) and to
a reduced set of sensors. In the present case study, the VIVANA-FD model is
significantly less accurate than the random forest model. This not surprising as
it has been derived for a simplified scenario with 2D current but is compared
to a 3D current scenario. However, the data driven method requires realistic
training data, and without further information about the system, it cannot easily
be transferred to e.g. a different type of riser. The ideal solution will be to
combine the methods into a hybrid solution in order to obtain high precision
and transferability.

5 Summary and Conclusion

Using density based clustering we found a clear relation between dimensionality
of the current and the observed pattern of riser movement and consequently
fatigue. The response pattern can be identified from the statistical properties of
the movement alone. We fitted a random forest model for the statistical parame-
ters based on the local current conditions and position on the riser. The random
forest model provide a more precise prediction of the displacement amplitude
(σtot) than the traditional approach using VIVANA-FD. However, as it is com-
pletely data driven, it does not provide any insights on the physics behind the
riser response, and in order to translate the random forest model between dif-
ferent riser types and scale it to operational risers, additional training data is
required spanning all relevant scenarios. The natural way forward is to combine
the physics based modelling with the data driven approach in a hybrid solution.
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Abstract. Autonomy refers to a system that decides and performs actions moti-
vated by some intended objectives, and those actions are justifiable by sound rea-
soning with respect to these objectives. Artificial intelligence (AI) is here intended
as the technology that enables autonomy. Artificially intelligent autonomous
robots are predicted to play an increasingly important role in the energy industry
capability to address the society demand for energy. The development of such
advanced systems needs to start with defining AI and autonomy for asset own-
ers in the energy industry. In general, different applications will require different
engineering definitions of AI and different levels of autonomy.

Keywords: Autonomy · Artificial intelligence ·Mobile robots · Energy industry

1 Introduction

The energy industry is sustained by support functions as monitoring, inspection and
maintenance of capital intensive and long service life assets. These support functions
ensure safe and optimal operations of complex installations and highly engineered assets,
and imply often works at heights, underwater, under chemical exposure, in restrained
spaces, or in explosive environments. Performing such functions in remote locations
as offshore and/or on a 24/7 response capability, makes it for an even more resource
intensive activity.

The value potential of autonomous robots in the energy industry is enormous [1, 2].

2 Artificially Intelligent Autonomous Robots

In general, autonomy needs to be differentiated from automation. Automation refers to
a system that does exactly what it is programmed to do, without choice or possibility to
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act in any different way. Instead, autonomy refers to a system that decides and performs
actions motivated by some intended objectives, and those actions are justifiable by sound
reasoning with respect to these objectives. Artificial intelligence (AI) is here intended
as the technology that enables autonomy.

Many definitions of AI have been proposed in the literature [3] reflecting different
aspects and perspectives. However, most often the given definition remains at a rather
academic and general level to be used directly for an engineering design process. An
interesting definition is “AI is the attempt to get the machine to do things that, for the
moment, people are better at” [4]. This definition implies that once a task is performed
successfully by amachine, then that technology becomes no longer AI. Another interest-
ing definition is “AI is creating machines that perform functions that require intelligence
when performed by people” [5]. This definition implies that only tasks that requires
human intelligence in order to be solved are defining AI. Combining these two defini-
tions one could define autonomy for robots as “Autonomy is creating a robot to perform
non-trivial functions that, for themoment, people are better at.” This definition highlights
an important aspect for the industry. Autonomy is not an ultimate technology state to aim
for, it is rather a continuous improvement process that empowers the company human
resources to tackle complex challenges more efficiently. This continuous improvement
process is formed by a sequence of stepping stones that brings incremental value to the
business.

However, this definition is still not suited for a direct engineering design process.
In fact, an engineering definition of autonomy cannot be given without considering a
specific task and application domain, and itwill in general differ from task to task, domain
to domain. For example, the automotive industry defines autonomy as “an autonomous
car is a vehicle that can travel between destinationswithout a human operator”. However,
it easy to see that transferring this definition to equipment inspection applications, for
example, will not be sufficient: a robot able to move from A to B without a human
operator will certainly be a valuable and advanced solution, but it cannot be said to be
an autonomous inspection solution since the inspection goal is not achieved by simply
having the robot at a certain position. This is obvious if one considers autonomy of
complex assets in the energy industry as offshore production platforms. Full autonomous
production in this case entails autonomy of many interconnected functions and systems
(Fig. 1). In general, here the way to full autonomy starts from the functions at the base of
the hierarchy, climbing to higher functions as autonomy is achieved; as functions higher
in the pyramid are considered, implementing full autonomy becomes more involved and
challenging.

This aspect is also relevant if one considers simpler systems as an unmanned ground
vehicle or an unmanned aerial vehicle. In fact, these robots may be performing their
tasks on an offshore production platform and will have to integrate to existing systems,
procedures, processes and operate among and together human operators.

The requirement of autonomous robot to work with human operators highlights
another relevant aspect. Full autonomy in the automotive domain implies removing
the human completely from the loop. Instead, for applications in the energy industry
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Remaining operator
ac vi es and func ons
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Start-up and shutdown sequence automa on

Wells and flowline control

Basic process control

Control of actuators, field instrument, sensors

Fig. 1. Hierarchy view of main functions in production platforms

autonomous robots are most often part of a process at the top of which there is a respon-
sible human operator. Autonomous robots are intended as empowering the skilled human
workforce. Therefore, it is more appropriate to follow a human-robot interaction (HRI)
[6] approach in the definition of autonomy. Implications of an HRI approach are that the
autonomous robot design should ensure that the human operator is never removed from
the overall command role. The decisions and actions taken by the autonomous robot
should be comprehensible to the operator, and the robot system should support situation
awareness. The autonomous system should be designed taking into due consideration
that the operator will become reliant on the system correct functioning.

3 Levels of Autonomy

One of the most important aspects to consider is that autonomy is in general not a binary
property, a robot is not either autonomous or not. Instead, it is more appropriate to talk
about Levels of Autonomy (LoA). As an engineering definition of autonomy depends
on the specific application, so does the engineering definition of levels of autonomy.

In general, the levels of autonomy describe to what degree a robot is capable to act
on its own accord. Different definitions of LoA have been proposed in the literature, a
comprehensive review can be found in [7]. In the following we consider only a selection
of LoA definitions to highlight key aspects.
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A popular example today of LoA is the one given by the Society of Automotive
Engineers (SAE) for the automotive industry [8] (Fig. 2):

Fig. 2. SAE levels of autonomy in the automotive industry

The 6 levels span from no automation to full automation of the so-called dynamic
driving task, which includes operational (as steering, acceleration) and tactical (as deter-
mining when to turn, change lines) features of driving. Note how the car system takes
increasingly more responsibility over the driver as the LoA increases, with key point
between level 2 and 3 where the system takes over the responsibility to monitor the driv-
ing environment. At level 4 the system is responsible to perform fallback manoeuvres
to counteract unexpected events or failures.

Another relevant definition of autonomywith high focus on safe operations is the one
related to autonomous ships [9]. Ship autonomy types (Fig. 3) are defined as function
of autonomy levels and bridge manning level. Moreover, the definition of autonomy for
ships needs to consider all the support systems to navigation and the general operational
context. It is important to note here that full autonomy does not mean complete inde-
pendence from human operator, in fact in almost all cases the ship is expected to be
remotely supervised from a remote control centre.

One of the most well-known definition to measure the autonomy of a system is the
Sheridan’s scale of levels of autonomy [10].

The 10 levels of autonomy given by Sheridan (Table 1) are focused on machine
decision-making and execution, moving from level 1 where the human has full respon-
sibility, to levels 2–4 concerned with who takes the decision, then levels 5–9 dealing
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Fig. 3. Ship autonomy types (from [9])

with mode of execution, and to level 10 where the system is completely independent
from the human (it does not even inform the human).

Table 1. Sheridan’s levels of autonomy

(1) The computer offers no assistance, human must do it all

(2) The computer offers a complete set of action alternatives, and

(3) Narrows the selection down to a few, or

(4) Suggests one, and

(5) Executes that suggestion if the human approves, or

(6) Allows the human a restricted time to veto before automatic execution, or

(7) Executes automatically, then necessarily informs the human, or

(8) Informs him after execution only if he asks, or

(9) Informs him after execution if it, the computer, decides to

(10) The computer decides everything and acts autonomously, ignoring the human

Another notable definition based on system capability to perform functions is based
on the Boyd’s OODA (Observe, Orient, Decide, and Act) loop, which is a description
of the human process of decision-making [11]. This approach has been used in the
space industry to define the levels of autonomy required for a mission, and then to
design the system according to those requirements. The use of the Boyd’s system has
the advantage to include feedback and implicit control concepts into the definition. Eight
levels of autonomy are defined, each level describing the requirement within function
types: the Observe function referring to gathering, monitoring and filtering data; the
Orient function referring to deriving a list of options through analysis, trend predictions,
interpretations and integrations; the Decide function referring to decision-making based
on ranking of available options; and the Act function referring to execution and authority
to act on the chosen options.
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Another well-known definition more focused on unmanned mobile robots is the
AutonomyLevels forUnmannedSystems (ALFUS) framework [12]. TheALFUS frame-
work (Fig. 4) is the result of a collaboration of military and civilian practitioners, and
defines autonomy based on the system capability to integrate sensing, perceive, analyse,
communicate, plan, make decisions, and execute such to achieve its goal.

Fig. 4. ALFUS framework, contextual autonomous capability model

It is important to note that the ALFUS framework measures autonomy along
3 dimensions: mission complexity, environment complexity, and required human
independence.

A similar multi-dimensional approach to define levels of autonomy is given by [13],
where the autonomy capability of a robot is represented as an automation state in a two
dimensionalmatrix: the rowof thismatrix representing the level of autonomy; the column
representing the level of intelligence. In this approach, the level of autonomy indicates
how much authority the robot has in taking actions, while the level of intelligence
describes to which sophistication the robot is able to process information.

The importance of the HRI aspect for the definition of autonomy has been already
mentioned in Sect. 2. Designing systems with increasing levels of autonomy needs
to consider elements as nature of information exchange between human and robots,
structure of the task and the team, adaptation, learning and training of people (and robot).
Levels of autonomy with a focus on HRI consider teleoperation as the lowest level,
increasing then to mediated teleoperation, supervisory control, collaborative control and
then peer-to-peer collaboration as the highest level [6]. It is important to consider that
higher levels of autonomy involve typically larger amounts of data and information
produced and managed. This requires more sophisticated human-robot interfaces and
system integration such to address issues as risk of excessive cognitive load on the
operator and requirements of appropriate cognitive skills on the system for effective
operator-robot interaction.
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4 Energy Industry Asset Owner Perspective

As described in [7], many different approaches and definitions of levels of autonomy
have been proposed in the literature. The authors in [7] also propose a table where all
the different LOA definitions considered are compared (Fig. 5).

Fig. 5. Comparison LoA table from [7], with clustering in 6 main levels of autonomy

From the comparison in Fig. 5 it is possible to note that all the given characteristics
that define autonomy levels can be clustered around six main levels (Table 2):
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Table 2. Six levels of autonomy and corresponding HRI level.

LoA Name HRI level Description

1 The robot is
human
operated

Teleoperation Full manual control, the robot visualizes
information to support

2 The robot is
human
assistance

Mediated
teleoperation

Manual control with robot assistance, the robot
visualizes processed information to support
decisions

3 The robot is
human
delegated

Supervisory
control (function
level)

Basic form of supervisory control, the operator
activates functions that are executed by the robot.
The robot process information and provides list of
options

4 The robot is
human
supervised

Supervisory
control (task
level)

The operator is in the loop, but the robot executes
the task. The robot provides necessary
information for performance assessment, and
option to veto

5 The robot and
the human share
mixed-initiative

Collaborative
control

The operator does not need to be in the loop all
the time. The robot executes the task and informs
only if requested to

6 The robot has
full autonomy

Peer-to-peer
collaboration

The operator does not need to be in the loop. The
robot executes the task

The LoA description in Table 2 considers a single robot. However, higher levels of
autonomy enable for multi-robot system applications, where a possibly heterogeneous
collection of autonomous mobile robots works together to achieve common goals. Sig-
nificant benefits and advantages are expected from multi-robot systems as: increased
overall system robustness and reliability, increased capabilities, increased reactivity and
speed.

To clarify the terminology used in this paper, a function is a process that changes
the state of the robot and its environment, which includes sensing and data gathering.
Functions can be combined to form a more complex function. A task refers to the
execution of a potentially complex function characterized by a start and an end. Task
performance can be typically measured at the end of execution. A mission refers to the
operation assigned to a team of which the robot is part of and can be composed by
different tasks. To exemplify, a team can be composed by the asset operator, the robot
pilot and the robot; or by the asset operator and the autonomous robot.

To consider autonomy and the levels of autonomy from an energy industry asset
owner perspective, one must have clear the role of the asset owner in the autonomous
robotics market and what are the asset owner priorities.

Being the core business the production and sale of energy, the asset owner has clearly
the end-user role in the robotics market. From an asset owner point of view, the main
drivers for the use of robots and autonomous systems can be categorized under threemain
areas: Safety and security; Effectiveness and efficiency; Data value management. These
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priorities interplay among each other to define each level of autonomy. Moreover, the
levels of autonomy are influenced by the needs for increasing system integrability and for
adaptability. However, while the end-user role of the asset owner in the robotics market
is easy to see, it should be also considered that asset owner aim to ensure its priorities
can position the asset owner to play other important roles in the robotics market, for
example as system integrator and/or operation control responsible.

Another aspect to highlight is that a fully autonomous robot designed to performa sin-
gle task in a fixed, well-modelled environment will be different than a fully autonomous
robot designed to perform different tasks in a diversity of environments, with a range
of interactions. The latter autonomous robot needs in fact deliberation capabilities [14],
which means the robot ability to reason, justify and perform actions with respect to some
intended objectives.

Putting together all the aspects considered so far, from an energy industry asset owner
perspective it is more appropriate to look at the levels of autonomy as multidimensional.
Herewe propose the definition of autonomy to extends in at least three directions (Fig. 6).

Fig. 6. Three dimensions of the levels of autonomy
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4.1 Machine Operation/Automation

This dimension indicates the capability of the robot to execute functions without the
need of operator intervention. Generally, a function implies a process that takes as input
the robot sensing data and generates the best action according to desired references or
commands. The functions are executed exactly as programmed by the programmer, the
robot has no possibility to perform any differently than how designed to at the beginning.
Increasingmachine operation/automation capabilities can be illustrated by the following
scale:

1. The robot is fully manually operated.
2. The robot can execute single specific functions.
3. The robot can combine functions to execute complex functions.
4. The robot can coordinate and collaborate with other robots/equipment to execute

complex functions.

4.2 Risk Management

The risk management dimension indicates the capability of the robotic system to handle
extreme conditions and/or system failures without operator intervention. This can be
considered asmaking the robotic systeman active and conscious risk preventive/recovery
barrier. Increasing riskmanagement capabilities can be illustrated by the following scale:

1. The robot warns the operator when approaching limits of design operating envelope.
2. The robot continuously assesses the risk and adjust warnings accordingly.
3. The robot assesses risk/events and provides list of preventive/mitigation options.
4. The robot is capable to deciding the best risk management policy.

4.3 Data Integration/Deliberation

Data integration/deliberation indicates the capability of the robotic system to inte-
grate data from different sources and to deliberate with respect to intended objectives.
Increasing capabilities here can be illustrated by the following scale:

1. The system analyses onboard robot sensor data and provides the operator with
information relevant for the task.

2. The system analyses data from all connected devices in the same physical envi-
ronment, extract relevant information, decide on adjusting desired references
accordingly.

3. The system analyses distributed and historic data, makes predictions and compares
with observations, decide on adjusting plans accordingly.

4. The system can reason on distributed and heterogeneous data, perform high level
planning and learn from experience.
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Note that here the three dimensions represent characteristics of the robot, differently
than the ALFUS approach where the dimensions are defined by the environment, the
mission and the required human interaction. The multidimensional approach here pre-
sented puts the definition of autonomy and LoA closer to a robot design context. We
also do not exclude that there may be specific applications where it will be opportune to
consider more axes.

Each level of autonomy in Table 2 will correspond to certain capabilities in the
three dimensions illustrated in Fig. 6. It is easy to imagine that a robot at LoA 1 will
have limited capabilities in all the three dimensions, while a robot at LoA 6 will have
high capabilities in all dimensions. It is not so straightforward to imagine how inter-
mediate LoAs will correspond to capabilities in the three dimensions. In fact, to the
same intermediate LoA it may correspond different capabilities depending on the spe-
cific application and the current priorities: for example, the R&D plans for a specific
underwater intervention drone may move towards higher LoAs by prioritizing first the
increase of capabilities within machine operation/automation and only at a later stage
the data integration/deliberation capabilities.

5 Conclusions

This paper highlighted several important aspects defining autonomous mobile robots for
asset owners in the energy industry. To realize the large innovation opportunities within
robotics and digital technologies, the metric for autonomy needs to account for these
aspects and to reflect the business drivers in the industry. Therefore, a multidimensional
measure of autonomy is recommended.

However, there is still a way to go before arriving to suitable autonomy requirements
and specifications for the engineering of solutions for the energy industry. This is a
challenge to be addressed together by all actors in themarket. There are also opportunities
to leverage the learning and experience from other industries.

There are many related topics that have not been addressed in this paper, which
are as well important for successful autonomous robot applications. These include:
safe failure policies for critical operations; autonomous robot system architecture for
industry applications; communication infrastructure supporting remote control, edge
and cloud computing; collaborative robots performing complex tasks; system security;
standardization and integration of robotic systems from different vendors.
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Abstract. The need for simulated data in autonomous driving appli-
cations has become increasingly important, both for validation of pre-
trained models and for training new models. In order for these models
to generalize to real-world applications, it is critical that the underly-
ing dataset contains a variety of driving scenarios and that simulated
sensor readings closely mimics real-world sensors. We present the Carla
Automated Dataset Extraction Tool (CADET), a novel tool for generat-
ing training data from the CARLA simulator to be used in autonomous
driving research. The tool is able to export high-quality, synchronized
LIDAR and camera data with object annotations, and offers configura-
tion to accurately reflect a real-life sensor array. Furthermore, we use
this tool to generate a dataset consisting of 10 000 samples and use this
dataset in order to train the 3D object detection network AVOD-FPN,
with finetuning on the KITTI dataset in order to evaluate the potential
for effective pretraining. We also present two novel LIDAR feature map
configurations in Bird’s Eye View for use with AVOD-FPN that can
be easily modified. These configurations are tested on the KITTI and
CADET datasets in order to evaluate their performance as well as the
usability of the simulated dataset for pretraining. Although insufficient to
fully replace the use of real world data, and generally not able to exceed
the performance of systems fully trained on real data, our results indi-
cate that simulated data can considerably reduce the amount of training
on real data required to achieve satisfactory levels of accuracy.

Keywords: Autonomous driving · Simulated data · 3D object
detection · CARLA · KITTI · AVOD-FPN · LIDAR · Sensor fusion

1 Introduction

Machine learning models are becoming increasingly complex, with deeper archi-
tectures and a rapid increase in the number of parameters. The expressive power
of such models allow for more possibilities than ever before, but require large
amounts of labeled data to properly train. Labeling of data in the autonomous
driving domain requires extensive amounts of manual labour, either in the form
of actively producing annotations such as class labels, bounding boxes and
semantic segmentation by hand, or by supervising and adjusting automated gen-
eration of these using a pretrained ensemble of models from previously labeled
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data. For the use of modern sensors such as LIDAR, not many sizable labeled
datasets exists, and those that do generally offer little variation in terms of envi-
ronments or weather conditions to properly allow for generalization to real world
conditions. Popular datasets such as KITTI [2] offers a large array of sensors,
but with largely unchanging weather conditions and lighting, while the larger
and more diverse BDD100K [3] dataset does not include multimodal sensor data,
only offering camera and GPS/IMU. The possibility of new sensors being intro-
duced that greatly impact autonomous driving also carry the risk of invalidating
the use of existing datasets for training state-of-the-art solutions.

1.1 Simulated Data for Autonomous Driving

With the advances in recent years in the field of computer graphics, both in
terms of photorealism and accelerated computation, simulation has been a vital
method of validating autonomous models in unseen environments due to the effi-
ciency of generating different scenarios [13]. More recently there has been added
interest in the use of modern simulators for also generating the data used to
train models for autonomous vehicles, both for perception and end-to-end rein-
forcement learning [10–12]. There are several advantages in generating training
data through simulation. Large datasets, with diverse conditions can be quickly
generated provided enough computational resources, while labeling can be fully
automated with little need for supervision. Specific, difficult scenarios can be
more easily constructed and advanced sensors can be added provided they have
been accurately modeled. Systems such as the NVIDIA Drive Constellation [5]
are pushing the boundaries for photorealistic simulation for autonomous driv-
ing using clusters of powerful NVIDIA GPUs, but is currently only available
to automakers, startups and selected research institutions using NVIDIAs Drive
Pegasus AI car computer, and only offers validation of models, not data genera-
tion for training. However, open source solutions based on state-of-the-art game
engines such as Unreal Engine 4 and Unity, are currently in active development
and offer a range of features enabling anyone to generate high quality simulations
for autonomous driving. Notable examples include CARLA [1] and AirSim [4],
the former of which was used for this research.

2 Simulation Toolkit

In order to facilitate the training and validation of machine learning models
for autonomous driving using simulated data, the authors introduce the Carla
Automated Dataset Extraction Tool (CADET) [8], an open-source tool for gen-
erating labeled data for autonomous driving models, compatible with Carla 0.8.
The tool supports various functionality including LIDAR to camera projection
(Fig. 1), generation of 2D and 3D bounding box labels for cars and pedestrians
(Fig. 2), detection of partially occluded objects (Fig. 3), and generation of sensor
data including LIDAR, camera and ground plane estimation, as well as sensor



104 Å Brekke et al.

calibration matrices. All labels and calibration matrices are stored in the data
format defined by Geiger et al. [2], which makes it compatible with a number
of existing models for object detection and segmentation. As a varied dataset is
crucial for a machine learning model to generalize from a simulated environment
to real-life scenarios, the data generation tool includes a number of measures to
ensure variety. Most importantly, the tool resets the environment after a fixed
number of samples generated. Here, a sample is defined as the tuple containing
a reading from each sensor, corresponding ground truth labels and calibration
data. Resetting the environment entails randomization of vehicle models, spawn
positions, weather conditions and maps, and ensures a uniform distribution of
weather types, agent models for both pedestrians and cars and starting positions
of all vehicles. The LIDAR and camera sensors are positioned identically and
synchronized such that a full LIDAR rotation exists for each image1. The raw
sensor data is projected to a unified coordinate system used in Unreal Engine
4 before determining visible objects in the scene, and projecting to the relative
coordinate spaces used in KITTI. As the initial LIDAR configuration in CARLA
ignores the pitch and roll of the vehicle it is attached to, additional transforma-
tions are applied after projection such that the sensor data is properly aligned.
One challenge when generating object labels is determining the visible objects
in the current scene. In order to detect occluded objects, the CARLA depth map
is utilized. A vertex is defined as occluded if the value of one of its neighbour-
ing pixels in the depth map is closer than the vertex distance to the camera.
An object is defined as occluded if at least four out of its eight bounding box
vertices are occluded. This occlusion detection performs satisfactory and much
faster than tracing the whole object, even when objects are localized behind
see-through objects such as chain-link fences, shown in Fig. 3. A more robust
occlusion detection can be performed by using the semantic segmentation of the
scene, but this is not implemented as of yet.

Fig. 1. LIDAR point cloud projected to image space. The color of each LIDAR point
is determined by its depth value (Color figure online).

1 Note that this only implies an approximate correspondance between points from the
camera and LIDAR sensors.
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Fig. 2. 2D (top) and 3D (bottom) bounding boxes as generated by CADET. Class
labels are omitted.

Fig. 3. Occluded vertices behind a chain fence. Note that both cars are visible, and
thus have a bounding box drawn around them. Occluded and visible vertices are drawn
with red and green, respectively (Color figure online).

3 Generated Dataset

Using CADET we generate the CADET dataset, consisting of 10 000 samples.
In total, there are 13989 cars and 4895 pedestrians in the dataset, averaging
about 1.9 labeled objects per image. The dataset contains 2D and 3D bounding
box annotations of the classes Car and Pedestrian, and contains both LIDAR
and camera sensor data, as well as ground plane estimation and generation
of sensor calibration matrices. The environment is generated from two maps,
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namely Town01 and Town02 in the CARLA simulator, which are both subur-
ban environments. The distribution of objects in each image is shown in Fig. 8.
In comparison with the KITTI dataset, the CADET dataset has less cars and
pedestrians per image, which is mostly due to city-environment of KITTI, where
cars are frequently parked at the side of the road and pedestrians are present in
a higher degree. The orientation of each labeled object is shown in Fig. 9. We
observe that the distribution of orientation have a sharp multimodal distribution
with three peaks, namely for objects seen from the front, behind or sideways.
Note that the pedestrians in the dataset generally have a smaller bounding box
than cars, shown in Fig. 7, making them harder to detect.

4 Training on Simulated Data

In order to evaluate the use of the simulated CADET dataset, as well experi-
ment with LIDAR feature map representations, several configurations were used
of the AVOD-FPN [6] architecture for 3D object detection using camera and
LIDAR point cloud. The AVOD-FPN source code has been altered to allow for
customized configurations by specifying the features wanted for two groups, slice
maps and cloud maps. Slice maps refer to feature maps taken from each vertical
slice the point cloud is split into, as specified in the configuration files, while the
cloud maps consider the whole point cloud. Following the approach described
in [6], two networks were used for detecting cars and pedestrians separately,
repeating the process for each configuration. As multiclass detection might also
produce more unstable results when evaluating per class, this was considered
the better option. All models used a feature pyramid network to extract fea-
tures from images and LIDAR, with early fusion of the extracted camera and
LIDAR features. Training data is augmented using flipping and jitter, with the
only differences between models of the same class being the respective repre-
sentations of LIDAR feature maps in Bird’s Eye View (BEV) as described in
Sect. 4.1. All configurations used are available in the source code [9].

4.1 Model Configurations

AVOD-FPN uses a simplified feature extractor based on the VGG-16 architec-
ture [14] to produce feature maps from camera view as well as LIDAR projected
to BEV, allowing the LIDAR to be processed by a Convolutional Neural Network
(CNN) designed for 2D images. These separate feature maps are fused together
using trainable weights, allowing the model to learn how to best combine mul-
timodal information. In addition to what will be referred to as the default BEV
configuration, as proposed in [6], two additional novel configurations are pro-
posed for which experimental results either show faster inference with similar
accuracy, or better accuracy with similar inference speed. In all cases the BEV
is discretized horizontally into cells at a resolution of 0.1m. The default con-
figuration creates 5 equally sized vertical slices within a specified height range,
taking the highest point in each cell normalized by the slice height. A separate
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image for the density of the entire point cloud is generated from the number of
points N in each cell following Eq. 1, as used in [6] and [7], though normalized by
log(64) in the latter. We propose a simplified structure, taking the global maxi-
mum height, minimum height and density of each cell over the entire point cloud,
avoiding the use of slices and halving the amount of BEV maps. We argue that
this is sufficient to determine which points belong to large objects and which are
outliers, and that it sufficiently defines box dimensions. For classes that occupy
less space, we argue that taking three slices vertically using the maximum height
and density for each slice can perform better with less susceptibility to noise, as
the network could potentially learn to distinguish whether the maximum height
value of a slice belongs to the object or not depending on the slice density. All
configurations are visualized in Figs. 4, 5 and 6.

Fig. 4. Visualization of default BEV
configuration, taking the maximum
height within 5 vertical slices as well
as the density of the full point cloud.

Fig. 5. Visualization of first custom
BEV configuration, taking the maximum
height and density within 3 vertical slices.

Fig. 6. Visualization of second custom BEV configuration, taking the maximum height,
minimum height and density of the full point cloud.

min(1.0,
log(N + 1)
log(16)

) (1)

4.2 Results

In order to gather qualitative results each model trained for a total of 120k steps
on the respective datasets, with a batch size of 1, as described in [6]. Checkpoints
were stored at every 2k steps, of which the last 20 were selected for evaluation.
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Tables 1 and 2 show generated results on the KITTI dataset, for the Car and
Pedestrian classes respectively, selecting the best performing checkpoint for each
of the 3 BEV configurations. To measure inference speed, each model performs
inference on the first 2000 images of the validation set, with learning deactivated,
using a NVIDIA GTX 1080 graphics card. The mean inference time is rounded
up to the nearest millisecond and presented in the tables.

Table 1. KITTI-trained model evaluated on the KITTI dataset for the Car class

Method Runtime (ms) AP3D(%) APBEV (%)

Easy Moderate Hard Easy Moderate Hard

Default 119 83.46 73.94 67.81 89.37 86.44 78.64

Max*3, Density*3 120 83.16 73.97 67.98 89.84 86.62 79.85

Max, Min, Density 114 82.98 73.92 67.84 89.62 86.61 79.68

Table 2. KITTI-trained model evaluated on the KITTI dataset for the Pedestrian
class

Method Runtime (ms) AP3D(%) APBEV (%)

Easy Moderate Hard Easy Moderate Hard

Default 122 41.05 37.00 32.00 44.12 39.54 38.11

Max*3, Density*3 122 45.61 42.66 38.06 49.16 45.99 44.53

Max, Min, Density 117 27.85 27.17 24.54 33.39 33.10 29.78

Following evaluation on the KITTI dataset, all configurations were trained
from scratch on the generated CADET dataset following the exact same process.
Results from evaluation on the validation set of the CADET dataset can be seen
in Tables 3 and 4. Note that as dynamic occlusion and truncation measurements
are not included in the dataset (these are only used for post training evaluation
in KITTI), evaluation does not follow the regular easy, moderate, hard categories
used in KITTI. Instead objects are categorized as large or small, following the
minimum height requirements for the bounding boxes of 40 pixels for easy and 25
pixels for moderate and hard. These models were additionally evaluated directly
on the KITTI validation set, with results summarized in Tables 5 and 6.

Table 3. CADET-trained model evaluated on the CADET dataset for the Car class

Method AP3D(%) APBEV (%)

Large Small Large Small

Default 70.86 69.37 80.13 71.32

Max*3, Density*3 70.96 69.59 79.81 71.28

Max, Min, Density 68.79 60.87 78.75 70.72
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Table 4. CADET-trained model evaluated on the CADET dataset for the Pedestrian
class

Method AP3D(%) APBEV (%)

Large Small Large Small

Default 75.43 73.89 75.43 73.91

Max*3, Density*3 76.13 72.99 80.24 73.41

Max, Min, Density 75.49 71.82 79.73 72.37

Table 5. CADET-trained model evaluated on the KITTI dataset for the Car class

Method AP3D(%) APBEV (%)

Easy Moderate Hard Easy Moderate Hard

Default 29.85 20.29 18.40 50.58 37.81 30.77

Max*3, Density*3 35.85 29.40 24.99 57.32 49.63 43.25

Max, Min, Density 30.34 24.28 20.25 45.22 37.56 31.17

Table 6. CADET-trained model evaluated on the KITTI dataset for the Pedestrian
class

Method AP3D(%) APBEV (%)

Easy Moderate Hard Easy Moderate Hard

Default 9.09 9.09 9.09 9.38 9.33 9.38

Max*3, Density*3 2.27 2.27 2.27 2.27 2.27 2.27

Max, Min, Density 9.09 9.09 9.09 9.78 9.09 9.09

Table 7. CADET-trained model, fine-tuned and evaluated on the KITTI dataset for
the Car class

Method AP3D(%) APBEV (%)

Easy Moderate Hard Easy Moderate Hard

Default 83.84 68.67 67.40 89.41 79.77 78.86

Max*3, Density*3 76.85 72.44 66.55 88.20 85.18 78.71

Max, Min, Density 81.00 66.95 65.88 88.76 79.36 78.41

The CADET-trained models were subsequently restored from their check-
points at step 90k and modified for further training on the KITTI dataset.
Training was resumed until step 150k, meaning the models received 60k
steps of training on the KITTI training set as opposed to 120k originally.
Other than increasing the amount of steps and switching the target datasets,
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Table 8. CADET-trained model, fine-tuned and evaluated on the KITTI dataset for
the Pedestrian class

Method AP3D(%) APBEV (%)

Easy Moderate Hard Easy Moderate Hard

Default 40.26 38.55 33.93 46.96 44.80 40.73

Max*3, Density*3 39.19 38.02 34.15 46.14 43.54 40.44

Max, Min, Density 37.32 34.34 32.60 45.71 42.43 37.62

the configuration files were not altered from when training on the CADET
dataset. Tables 7 and 8 show results from the top performing checkpoint of each
model.

5 Discussion

For the fully KITTI-trained models, results on the Car class are very similar for
all configurations, where the largest loss in amounts to only 0.5% 3D AP on the
easy category from the default configuration to our configuration using half as
many layers in the BEV map. Larger differences are apparent for the Pedestrian
class, where 3 layers is not sufficient to compete with the default configuration.
However, the use of 3 slices of maximum heights and density, totalling 6 layers as
with the default configuration, shows noticeably better results across the board
suggesting a more robust behaviour.

Evaluation of the CADET-trained models on the CADET validation set
shows similar relative performance between the models, however with the sim-
pler custom configuration showing a dip in accuracy for the moderate category
on the Car class. With regards to pedestrians, differences are much smaller than
what could have been expected. Also considering the unremarkable and rather
inconsistent performance on the Pedestrian class of the KITTI dataset, we can
likely accredit this to overly simplified representation of the physical collision of
pedestrians visible in the simulated LIDAR point cloud. The CADET-trained
models do perform better on the Car class however, suggesting better and more
consistent generalization for this task.

The fine-tuned models show performance on the Car class mostly similar
to the fully KITTI-trained models, however with each model showing a notice-
able drop in performance on either the easy or moderate category. Results on
the Pedestrian class are a bit more interesting. The default configuration sees
a slight increase in accuracy on the moderate and hard category, with a slight
decrease for easy. The max/density configuration sees a significant decrease in
performance on all categories, where as the less complex max/min/density con-
figuration, although still being the weakest performer, sees a significant increase
in performance compared to when only trained on the KITTI dataset. The reason
for the rather inconsistent results when compared to the KITTI-trained models
are not thoroughly investigated, but can in part be due to somewhat unstable
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Fig. 7. Dimension of 2D bounding boxes for the classes in the CADET dataset.

Fig. 8. Number of annotations for each class per image in the CADET dataset.

Fig. 9. Distribution of orientation per class in the CADET dataset.

gradients not producing fully reliable results. The CARLA generated LIDAR
point cloud does not feature accurate geometry due to simplified collision of all
dynamic objects. As such the different capabilities of the configurations may not
be exploited during the pretraining on the CADET dataset, impacting overall
results. The simplest configuration significantly closing the gap on the Pedestrian
class may be a testament to this, as the simplified pedestrian representation is
more easily recognizable.

While results from simulated and partly simulated training do not generally
exceed the performance of direct training on the dataset, there is a clear indi-
cation that the use of simulated data can achieve closely matched performance
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with less training on actual data. The ease of generation and expandabililty in
terms of sensors, scenarios, environments and conditions makes tools such as
CADET very useful for training and evaluating models for autonomous driving,
although improvements are needed before they are sufficient for training real
world solutions.

6 Conclusion

In recent years, the use of synthetic data for training machine learning models
has gained in popularity due to the costs associated with gathering real-life data.
This is especially true with regards to autonomous driving because of the strict
demand of generalizability to a diverse number of driving scenarios. In this study,
we have described CADET - a tool for generating large amounts of training
data for perception in autonomous driving, and the resulting dataset. We have
demonstrated that this dataset, while not sufficient to directly train systems for
use in the real world, is useful in lowering the amount of real-life data required
to train machine learning models to reasonably high levels of accuracy. We have
also suggested and evaluated two novel BEV representations, easily configurable
before training, with potential for better detection of smaller objects and reduced
complexity for detection of larger objects respectively. The CADET toolkit, while
still requiring improved physical models in LIDAR modelling, is currently able
to generate datasets for training and validation of virtually any model designed
for the KITTI object detection task.
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Abstract. Univariate and multivariate feature selection methods can
be used for biomarker discovery in analysis of toxicant exposure. Among
the univariate methods, differential expression analysis (DEA) is often
applied for its simplicity and interpretability. A characteristic of meth-
ods for DEA is that they treat genes individually, disregarding the cor-
relation that exists between them. On the other hand, some multivariate
feature selection methods are proposed for biomarker discovery. Provided
with various biomarker discovery methods, how to choose the most suit-
able method for a specific dataset becomes a problem. In this paper,
we present a framework for comparison of potential biomarker discovery
methods: three methods that stem from different theories are compared
by how stable they are and how well they can improve the classification
accuracy. The three methods we have considered are: Significance Anal-
ysis of Microarrays (SAM) which identifies the differentially expressed
genes; minimum Redundancy Maximum Relevance (mRMR) based on
information theory; and Characteristic Direction (GeoDE) inspired by
a graphical perspective. Tested on the gene expression data from two
experiments exposing the cod fish to two different toxicants (MeHg and
PCB 153), different methods stand out in different cases, so a decision
upon the most suitable method should be made based on the dataset
under study and the research interest.

Keywords: Feature selection · Stability · Classification · Biomarker
discovery

1 Introduction

Atlantic cod (Gadus morhua) is one of the most important commercial fish species
in Norway [1], forming the basis for fisheries, trade, and, historically, civilization.
Unfortunately, cod is increasingly susceptible to marine pollution from petroleum
activities [2,3]. Atlantic cod is commonly used as an indicator species in marine
environmental monitoring programs, and a useful model organism to investigate
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the effect of toxicants [4–6]. Finding the best set of biomarkers for Atlantic cod
exposed to toxicants is of high research and commercial value. Biomarkers can
for example be defined based on the expression level of a set of genes or proteins.
Biomarker discovery is an essential part in study of toxicant exposure, and many
methods have been proposed to find biomarkers [7]. However, a remaining ques-
tion is, provided with numbers of biomarker discovery methods, which method is
the most suitable one for a particular dataset. This paper provides a framework to
compare potential biomarker discovery methods and to give researchers a better
basis for choosing which one to use for the task at hand.

In the context of statistics and machine learning, biomarker discovery cor-
responds to a feature selection problem, where the purpose is to identify the
most distinguishing features, for example, distinguishing normal and toxicant-
treated cod livers. The task of feature selection is to identify, from a wide range
of features, those that are best suited for classification.

The strategies of feature selection methods can be divided into two cate-
gories [7]:

1. Classical univariate statistical methods, where the features are considered
as independent from each other. Genes that are differentially expressed are
regarded as biomarkers.

2. Multivariate methods, which take the interaction between features into con-
sideration when selecting the important features allowing to distinguish sam-
ples coming from different groups.

The classical univariate methods try to find the features having significantly
different values between the different groups, e.g. control group and treated
group. One of the most popular and basic methods is Student’s t-test [8]. Some
similar research also adopted Analysis of Variance (ANOVA) and Significance
Analysis of Microarrays (SAM) to find the differential expressed genes [9–13]. A
main drawback of such approaches is that they rest on the assumption that all
the genes or proteins are independent from each other, which is clearly not true,
since both genes and proteins are part of a biological system where they interact
with each other [14,15].

On the other hand, multivariate methods will take the interaction among
features into consideration, reflecting that the features are acting in groups.
Many feature selection and machine learning methods try to find the features
most correlated with the class labels and take the interaction among features
into consideration at the same time.

Feature selection methods are often divided into three categories: filter meth-
ods which focus on the relation between feature values and class labels; wrapper
methods which use an objective function (can be the classification accuracy of the
classifier) to evaluate features; and embedded methods where the classifier selects
the features automatically [16]. The latter two are both classifier-dependent, and
filter methods are more like a one-way decision without feedback from prediction
accuracy. In order to find a more general feature selection method, which does
not only work well with one specific classifier, we will only focus on the filter
methods.



116 X. Zhang and I. Jonassen

In toxicant exposure study, or more generally, in the context of biology,
very often, researchers are faced with the high-dimension-small-sample-size issue,
since it is hard and expensive to get a high number of samples (it is often around
10 or even lower), but the number of features (genes or proteins) is usually very
high (over one thousand). In such cases, two problems are difficult to avoid:
finding a reliable feature subset, as in this case the possibility of chance cor-
relation is quite high; assuring that the selected features are true biomarkers.
The true biomarkers should be data-independent, meaning that a small change
in the samples should not lead to a large change in the selected features, which
requires the feature selection method to be stable. Besides of that, they should
also be qualified to be treated as the representatives of the whole feature list and
should therefore be able to improve a classifier’s prediction accuracy while clas-
sifying samples from different biological conditions. Therefore, we will compare
the feature selection methods based on two aspects of their performance: stabil-
ity to find a reliable feature subset and ability to improve a classifier’s prediction
accuracy.

To make the work reproducible, all the data sets and source codes are publicly
available at https://github.com/zhxiaokang/FScompare.

2 Methods

2.1 Data Sets

Two datasets from study of toxicant-treated Atlantic cod liver are used here.
One is from the study of the hepatic proteome of MeHg-exposed Atlantic cod,
where there are 10 samples in control group, 9 samples in low-dose treated
group (0.5 mg/kg Body Weight MeHg), and 9 samples in high-dose treated group
(2 mg/kg BW MeHg). The abundances of 1143 proteins were measured after the
samples were exposed in vivo to MeHg for two weeks [12]. The other study is from
the quantitative proteomics analysis of Atlantic cod livers treated with PCB 153
of various doses of PCB 153 (0, 0.5, 2 and 8 mg/kg BW PCB 153) for two weeks.
There are 10 samples in each control group, low-dose treated group, medium-
dose treated group, and high-dose treated group. Then 1272 liver proteins are
quantified [13].

2.2 Principle of Method and Notations

Consider a set of m samples {xi, yi} (i = 1, 2, . . .m). Each sample has n input
variables xi,j (j = 1, 2, . . . n) and one output variable yi. From the original
feature set F , a feature selection method will select a subset S of k variables.

Suppose that there are P feature selection methods to be compared. Using
Leave-One-Out Cross-Validation (LOOCV), m feature subsets will be generated
for each pre-defined value of k. The stability of each feature selection method
Stabp,k (p = 1, 2, . . . P ) can be calculated based on those m subsets.

https://github.com/zhxiaokang/FScompare
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To test their ability to improve a classifier’s prediction accuracy, the gen-
erated feature subsets will then be applied to train a classifier and the predic-
tion accuracy of the corresponding classifier will also be measured. Area Under
the Curve (AUC) is used to measure the classifier’s prediction accuracy [17].
If tested on Q classifiers, the prediction accuracy of each classifier can be cal-
culated AUCp,q,k (q = 1, 2, ...Q). Considering both matrices Stab and AUC, a
general evaluation of each feature selection method can finally be achieved so
that researchers can choose a proper method for their data.

But the stability does not necessarily agree with the prediction accuracy:
the most stable feature selection method may not achieve the highest prediction
accuracy. Then the researchers need to balance between these two measures
according to their preference and the needs of the project.

2.3 Feature Selection Methods

Some representatives of those two strategies (univariate and multivariate) are
compared. For the univariate methods, SAM is applied here, since it was used
in the literature from where our data comes. SAM was designed to identify
genes with significantly differential expression in microarray experiments. For
the multivariate methods, we utilize minimum Redundancy Maximum Rele-
vance (mRMR) [18] and Characteristic Direction from a geometrical aspect
(GeoDE) [19]. mRMR is based on information theory. It tries to find out the fea-
ture subset in which the redundancy among the features are minimized and the
relevance of features and the targeted classes are maximized. GeoDE uses linear
discriminant analysis to define a separating hyperplane and the orientation of
the hyperplane is used to identify the differentially expressed genes.

Those methods are selected for our comparison because they are based on
different theories so that our results are more likely to be valid in general, and
they are all widely used biomarker discovery methods. So P equals 3 in this case,
but researchers can always compare as many feature selection methods as they
want.

2.4 Performance Measurement

Performance of feature selection methods is measured by two factors: stability
and accuracy.

Many measures of stability have been proposed. Nogueira et al. studied 15
different measures proposed between 2002 and 2018 and also proposed their
novel measure [20]. In our case where the purpose is to compare the stability of
different feature selection methods, the absolute values of stability are not that
important as long as they are comparable for different methods under the same
settings. In each round of comparison, the number of selected features k is a
constant, so the stability measure does not need to be able to cope with various
numbers of features. LOOCV will generate more than two feature sets based on
which the stability is calculated, so the measures which are defined for a pair of
feature sets are not proper choices. Considering the measures that satisfy all the



118 X. Zhang and I. Jonassen

requirements, we chose StabPerf [21] for its simplicity and interpretability. The
stability is defined as:

Stabp,k =

∑
f∈F (freq(f)/m)

|F | (1)

Where Stabp,k is the stability of a given feature selection method p with a pre-
defined k; m is the number of feature subsets analyzed; F is the set of features
that appear in at least one of the m subsets and |F | indicates the cardinality of
F ; freq(f) is the frequency of feature f ∈ F that appears in those m subsets.

To test the ability to improve a classifier’s prediction accuracy, four popu-
lar classification methods are utilized here: Random Forest (RF) [22], Support
Vector Machine (SVM) [23], and extended two-class logistic regression (RIDGE
and LASSO are applied) [24].

2.5 Cross-Validation Approach

We characterize our problem as a two-class classification problem: the control
group versus the treated group. In the process of classification, we need to divide
the samples into training set and testing set. But since the number of samples
is quite limited, we apply the strategy of LOOCV, which means that in every
training-prediction process, we leave one sample out as testing set, and use the
other samples as training set to search for the most important features and to
train a classifier. With m samples, we will use the ith sample to test the pre-
diction accuracy of the classifier trained from the other m − 1 samples. The
average of performance observed over all m predictions will be regarded as the
estimate of the performance of the model trained over the whole sample set. To
avoid overfitting or an overly optimistic estimate, it should be noted that the
feature selection and training of classifiers are only limited to the training set,
to avoid the information from the testing set leaking into the model training
procedure [25]. That makes the size of testing set decided by the number of sam-
ples in one classification problem, e.g. 19 in MeHg’s high-dose case. Moreover,
19 samples indicate 19 rounds of feature selection and prediction, resulting in
19 selected feature subsets and 19 * 4 classifiers. Therefore, if a feature selec-
tion method is stable enough, there should be a big overlap among these 19
selected feature subsets; at best the feature subsets would be identical. And if
the selected features are true biomarkers, the resulting 76 classifiers should yield
high prediction accuracies.

To make our comparison more stable, avoiding the accidental findings, and to
analyze the characteristic of the feature selection methods, we repeat the above
process with different numbers of selected features (ranging from 40 to 400 with
a step of 40, but also including 12 and 24 to look into more details with small
numbers of selected features where the output varies a lot).

Tukey’s Honestly Significant Difference Test (Tukey HSD Test) [26] is also
applied to test the significance of the differences between different methods’
performance on stability and prediction accuracy.
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Fig. 1. Stability of feature selection methods on MeHg data. (a) Experiment on high-
dose group versus control group. (b) Experiment on low-dose group versus control
group.
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Fig. 2. Stability of feature selection methods on PCB 153 data. (a) Experiment on
high-dose group versus control group. (b) Experiment on medium-dose group versus
control group. (c) Experiment on low-dose group versus control group.

3 Results

3.1 Stability

We can see from Figs. 1 and 2 that the performance of GeoDE is more stable
than SAM and mRMR across different numbers of selected features (with the
smallest variance). Another big difference between GeoDE and the other two
methods can be seen in low-dose condition of both MeHg and PCB 153: with all
numbers of selected features, GeoDE consistently outperforms SAM and mRMR
(Figs. 1b and 2c).

The results from Tukey HSD Test on stability are shown in Table 1. We limit
the family error rate to 0.05, so the cases with an adjusted p-value (p-adj) smaller
than 0.05 are regarded as significantly different. In accordance with the previous
analysis, in low-dose condition both for MeHg and PCB 153, GeoDE is much
more stable than the other two feature selection methods.

Table 1. Tukey HSD test on stability

Toxicant Dose condition Comparison p-adj

MeHg low GeoDE is better than SAM 0.0006

MeHg low GeoDE is better than mRMR 0.0005

PCB 153 low GeoDE is better than SAM 0.0014

PCB 153 low GeoDE is better than mRMR 0.0007
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Table 2. Tukey HSD test on prediction accuracy

Toxicant Dose condition Classifier Comparison p-adj

MeHg high RIDGE mRMR is better than GeoDE 0.0107

MeHg high RIDGE mRMR is better than SAM 0.0344

MeHg high LASSO mRMR is better than GeoDE 0.0002

MeHg high RIDGE SAM is better than GeoDE 0.0003

MeHg low LASSO GeoDE is better than SAM 0.0004

PCB 153 high LASSO mRMR is better than GeoDE 0.0003

PCB 153 high LASSO SAM is better than GeoDE 0.0006

PCB 153 medium SVM mRMR is better than GeoDE 0.0077

PCB 153 medium LASSO SAM is better than GeoDE 0.0009

PCB 153 medium LASSO mRMR is better than GeoDE 0.0009

PCB 153 low RF GeoDE is better than mRMR 0.0002

PCB 153 low RF GeoDE is better than SAM 0.0082

PCB 153 low SVM GeoDE is better than SAM 0.0183

3.2 Accuracy

We find that the results of accuracy are not straightforward, since we will get
different answers when asking which feature selection method performs the best.
In each dose condition, all four classification methods are applied to assess the
feature selection methods’ ability to improve the prediction accuracy. Across
different numbers of selected features, the AUCs of prediction are calculated.
Figure 3 is an example in the condition of low-dose MeHg. It shows that SAM
performs the best when the classifier is SVM, but GeoDE turns out to be the best
with the other three classifiers. To make it simple, for every experiment (each
dose of each toxicant), we select the best classification method for it: a classifier
that can give a high prediction accuracy for all three feature selection methods.
For example, in low-dose condition of MeHg (Fig. 3), RIDGE gets the highest
prediction accuracy compared with the other three classifiers regardless of the
used feature selection method. Then Fig. 4 gives us all results for all conditions.
As we can see, different feature selection methods stand out as the best. In low-
dose condition of MeHg and PCB 153 (Figs. 4b and e), GeoDE performs the
best, because it has a higher AUC than the other two in most cases of different
numbers of selected features. For the other conditions, in high-dose condition
of both MeHg and PCB 153 (Figs. 4a and c), and medium-dose condition of
PCB 153 (Fig. 4d), mRMR stands out, especially with a low number of selected
features.

Another phenomenon we can see from Fig. 4 is that based on gene expression
data and our analysis, MeHg appears to influence cods more than PCB 153 does,
since it is easier for classifiers to distinguish between control group and treated
group with a small number of features (higher prediction accuracy), and the
performance is also more stable.
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Fig. 3. Prediction accuracy on MeHg low dose data. (a) using RF (b) using SVM (c)
using RIDGE (d) using LASSO.
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Fig. 4. Prediction accuracy. (a) in high-dose condition of MeHg (b) in low-dose condi-
tion of MeHg (c) in high-dose condition of PCB 153 (d) in medium-dose condition of
PCB 153 (e) in low-dose condition of PCB 153.

According to the result of Tukey HSD Test on prediction accuracy (Table 2),
in different dose conditions and with different classifiers, different feature selec-
tion methods will stand out. However, generally speaking, in high-dose condi-
tion, mRMR seems to outperform the other two feature selection methods, and
in low-dose condition, GeoDE outperforms the other two.

4 Discussion and Conclusion

In this article, we have presented a framework to choose the most suitable
biomarker discovery method for a specific dataset by comparing the poten-
tial candidates from two aspects: stability, reflecting whether the selected fea-
ture subset is robust to changes in the training data, and resulting prediction
accuracy.
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On the aspect of stability to find a reliable feature subset, our results show
that GeoDE is more stable than SAM and mRMR in two ways: its stability
varies little across different numbers of selected features for all conditions, and
the absolute values of stability are always the highest for all numbers of selected
features in low-dose condition.

On the aspect of feature selection methods’ ability to improve a classifier’s
prediction accuracy, in different dose conditions, different feature selection meth-
ods show up as the best. mRMR performs well in high-dose condition, but in
low-dose condition, GeoDE outperforms the other two.

To conclude this case study, the choice of the most suitable biomarker dis-
covery method quite depends on the dataset under study. If the experiments are
conducted in high dose, then mRMR is the best choice, since it gives the highest
prediction accuracy and its stability is comparable with the other two. If it’s
in low dose, then GeoDE is definitely the best choice, considering its excellent
performance both in stability and prediction accuracy.

The framework of the comparative analysis is not limited to only this case
study, but can be applied to any other similar study.
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Abstract. Recently, Convolutional Neural Networks (CNNs) have
shown unprecedented success in the field of computer vision, especially on
challenging image classification tasks by relying on a universal approach,
i.e., training a deep model on a massive dataset of supervised exam-
ples. While unlabeled data are often an abundant resource, collecting a
large set of labeled data, on the other hand, are very expensive, which
often require considerable human efforts. One way to ease out this is to
effectively select and label highly informative instances from a pool of
unlabeled data (i.e., active learning). This paper proposed a new method
of batch-mode active learning, Dual Active Sampling (DAS), which is
based on a simple assumption, if two deep neural networks (DNNs) of
the same structure and trained on the same dataset give significantly
different output for a given sample, then that particular sample should
be picked for additional training. While other state of the art methods
in this field usually require intensive computational power or relying on
a complicated structure, DAS is simpler to implement and, managed
to get improved results on Cifar-10 with preferable computational time
compared to the core-set method.

Keywords: Active Learning · Deep Learning · Image classification

1 Introduction

Over the last few years, Deep Convolutional Neural Networks (CNNs) have com-
pletely dominated the field of Image Recognition and proven itself to be a ver-
satile and robust tool for achieving top performance on many tasks. However,
as a data-driven method, it requires a considerable amount of labeled data in
order to provide a good result. More importantly, the performance of CNNs, in
most cases, better with more data, which led to a constant desire to collect more
data, even though data labeling is a time consuming and expensive task. Aiming
at improving the performance of an existing model by incrementally selecting
and labeling the most suitable/informative unlabeled samples, Active Learning
(AL) has been well studied over recent decades, and most of the early work can
be found in [8]. With the rise in popularity of Deep Learning, especially in using
CNNs to solve challenging image recognition problems [6], several attempts to
develop an effective AL strategy on this field have been made, notably Core-
set selection [7], where the active learner learn to pick the most representative

c© Springer Nature Switzerland AG 2019
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data by treating the problem as a metric k-center. However, considering that the
nature of DNNs are often complex and unpredictable, nearly all of the state of
the art methods are often depended on the extracted output information from
the networks as the selecting criteria, e.g., Wang et al. [10]. While this approach
is proven to be effective, it has made the traditional serial AL, i.e., queries and
re-train one at a time, less desirable. One of the main reasons is that DNNs
are often slow to train and computationally expensive. For this reason, batch-
mode AL, i.e., agent queries multiple samples at once, has become a much more
suitable approach. As for batch-mode AL, one of the main challenges compared
with the serial mode is the lack of constant feedback from the model for each
selection, which often leads to overlapping of information between samples in a
batch [8], i.e., the majority of them has similar features. Consequently, the goal
of the strategies involving batch-mode AL is not to select the “best” sample but
to pick the best combination of samples, i.e., the most informative dataset.

This paper proposed a new method of batch-mode AL, which is based on
a simple assumption, if two DNNs of the same structure and trained on the
same dataset give significantly different output for a given sample, then that
particular sample should be picked for additional training. While other state of
the art methods in this field normally require intensive computational power [7]
or having a complicated structure [10], the method proposed in this paper is fast
and simple to implement.

2 Related Work

When it comes to mapping the landscape of AL, the work “active learning lit-
erature survey” by [8] has to be mentioned. This paper has addressed all of the
basic and advanced methods in AL up until 2010. However, the landscape of AL
has changed a lot in the last few years. Followed by the rise of deep learning,
most of the focus in AL has switched to supporting DNNs. Some of the notable
recent works that put special focus in batch-mode AL for DNNs is, [10] and [5].
The former paper addressed the use of pseudo labeling, and the latter introduces
a way to combine batch-mode AL with meta-learning.

In this work, core-set selection [7] was chosen as the baseline beside random
sampling. This method uses an upper bound of the core-set loss, which is the
gap between the training loss on the whole set and the core-set. By minimizing
this upper bound, the authors show that the problem is equivalent to a K-center
problem which can be solved by using a greedy approximation method or a mixed
integer program (MIP) solver. Core-set selection is one of the current state of
the art methods in the field of image classification for CNNs. However, both of
them are very time consuming and could take several days to find the optimal
solution, as for core-set selection is to solve an NP-Hard problem that grows
exponentially with the size of the data set.
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Algorithm 1. Dual Active Sampling(Simple)
Initialize model1 and model2 with pre-trained weight from Image-Net.
Initialize an empty Train set, S and unlabelled dataset, U
for step = 1 to step = N do

if step < M then
Query and Update S with n randomly selected samples from U

else
for i = 1 to n do

random pick a batch of sample, R from U
index = argmax(distance(model1(R),model2(R))
get label for R[index] and add to S

end for
end if
for epoch = 1 to epoch = m do

train(model1)
train(model2)
validate model1

end for
end for

3 Theory and Method

In this paper, the proposed method is called dual active sampling, since it
uses two DNNs with the same structure to perform the selection. Dual Active
Sampling (DAS) or just dual sampling is motivated by the fact that a neural
network trained on the same dataset tends to give slightly different results on
different runs. In DAS, both DNNs uses the same structure and the same opti-
mization parameters. However, due to data augmentation of the training data,
using random image crop and random horizontal flip [9] combined with random
dropout, after some training epoch, the internal weights of these networks can
become significantly different from each other.

4 Experimental

4.1 Datasets and Experiment Settings

Because of time limitation, the experiment was only performed on Cifar-10 [4],
which consists of 60000 32×32 color images from 10 different classes. This dataset
was then further divided into a training-set of 48000 images, a validation set of
2000 images and a test-set of 10000 images. In the experiment, only samples
from the training-set got queried for labels. Additionally, the VGG-16 net had
been chosen as the base model because of its simplicity, relative short training
time, and powerful performance. The experiment was conducted on PyTorch,
where the performance of DAS got compared with random selection and the
core-set selection.
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4.2 Implementation Details

The algorithm for the experiments can be found in Algorithm1. The experi-
ments were performed on CIFAR10 using VGG16 with ADAM optimizer [3].
The learning rate for both networks was chosen to be 0.0001, and only one of
the networks got access to the validation-set and got tested on the test-set in
order to save time. Both validation-set and test-set in the experiments were fully
labeled. Additionally, the Euclidean distance was used to calculate the normal-
ized distance between the output.

For every step, the agent added n = 100 of labeled data to the training set
and trained its networks for m = 10 epochs. In the first two steps, the selection
was performed randomly, while for the rest, the agent picked the sample that has
the highest distance between networks from a pool of randomly selected samples.
The selection was repeated for N = 100 times. This experiment was performed
incremental, i.e., on each new step, the models got trained on the top of the
previous step.

5 Result

In this section, the accuracy of DAS got compared with random sampling and core-
set, both in terms of total accuracy and accuracy per class. The “full-set acc” in
Fig. 1 is the accuracy of the model that trained on the whole training dataset.

Fig. 1. Average test accuracy for Core-set, random sampling and DAS on 9 runs

6 Discussion

6.1 Comparison Between Dual Sampling and Coreset

In Fig. 1, DAS gave a preferable result compare with core-set selection in the
beginning and surpassed the core-set method after it reached around 5000
instances. While most other AL methods except core-set tend to perform well
in the beginning and get closer to random selection in the end, DAS seems to
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(a) Random Sampling (b) Core-set Sampling (c) DAS

Fig. 2. Distribution of items/class for 10000 samples.

(a) Random Sampling (b) Core-set Sampling (c) DAS

Fig. 3. Correct classified item/class for 10000 samples (1000 samples on each class)

behave oppositely. Since DAS is depended on the output of the models, these
models likely need to be stable and converge in order for DAS to work. In terms
of computational time, DAS is both faster and highly parallelizable compare
with core-set selection since the networks can get trained parallelly, i.e., if given
enough computational power, DAS can theoretically be nearly as fast as random
selection.

6.2 Distribution of Label and Accuracy per Class

In Fig. 2, the result of DAS shown a very unbalanced distribution of classes
within the selected dataset, even though both random sampling and Core-set
sampling followed the original balanced distribution of the Cifar-10. Besides
that, DAS gave a substantial difference in number between class 1, 320 images
of ships, and class 4, 1802 images of cats. By looking at Fig. 3a and b, in terms
of accuracy, cats seem to be the most challenging class in Cifar-10 while images of
ships seem to be much easier to classify. Furthermore, in Fig. 3c, while the model
that used DAS selection had only be trained on around 300 of ship’s images, it
was able to achieve a comparable accuracy with the other results, which trained
on nearly a thousand of pictures. It is also worth noting that in the case of DAS,
the four classes in the middle got selected more often than the other classes,
and they are also the classes that have the lowest accuracy in both core-set and
random selection. By looking more closely at the pictures in Figs. 4 and 5, while
the environment/background and object form are quite similar (sky and water)
in the case of ship’s pictures, the variation of background and form for cat’s
pictures is much more significant. This difference can explain why images of cats
are more difficult for a model to learn to classify than images of ships.
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Fig. 4. Pictures of cats from Cifar-10

Fig. 5. Pictures of ships from Cifar-10

7 Conclusion

In this paper, dual active sampling was introduced as a simple yet effective
method in active learning. However, the method still needs to be tested on more
data set to confirm its effectiveness. The method was able to give an impres-
sive result on the Cifar-10 dataset with superior accuracy and computational
time compared to the core-set selection, which is found to be very interesting,
provided the simplicity of its implementation. By looking at the distribution of
selected items per class and the respective accuracy, DAS has shown an impres-
sive behavior. It was able to select more samples from the challenging classes
while maintaining a comparable accuracy on the less challenging classes, with
much less sampling effort.
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Abstract. In this paper, we present a set of key demarcations, particu-
larly important when discussing ethical and societal issues of current AI
research and applications. Properly distinguishing issues and concerns
related to Artificial General Intelligence and weak AI, between symbolic
and connectionist AI, AI methods, data and applications are prerequi-
sites for an informed debate. Such demarcations would not only facili-
tate much-needed discussions on ethics on current AI technologies and
research. In addition, sufficiently establishing such demarcations would
also enhance knowledge-sharing and support rigor in interdisciplinary
research between technical and social sciences.

Keywords: Artificial Intelligence · Ethics · Narrow AI · Artificial
General Intelligence · Bias

1 Introduction

The original goal of Artificial Intelligence (AI) research was to create an artificial
(electronic) brain. This idea was explored in the seminal work by McCullock
and Pitts [14], where they proposed a network of simplified abstract versions
of biological neurons. The goal of creating a full artificial brain with the same
degree of intelligence of a human brain is still an open challenge. From the idea of
a brain capable of general (human) intelligence, the interest of the AI community
quickly moved towards simplified (narrow) versions of artificial intelligence, to
solve specific tasks.

The state-of-the-art in (narrow) AI was described by D. Waltz on the Scien-
tific American back in 1982 [18] as “Computer programs that not only play games
but also process visual information, learn from experience and understand some
natural language”. In addition, he added that “The most challenging task is
simulating common sense”. The current state-of-the-art in AI has not changed
radically from Waltz’s definition. Today the most compelling and less understood
aspect is still the simulation of common sense, i.e., reasoning and cognition. The
scaling of computational resources has allowed advances in playing computer
games, computer vision, and natural language processing, pretty much with the
same methods used in the ‘80s. While the initial AI inspiration was the human
brain, in the meanwhile several methods to simulate intelligence without neural-
based systems emerged, e.g., symbolic AI. Such methods had a certain degree
c© Springer Nature Switzerland AG 2019
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of success thanks to the less need for computational resources. The recent avail-
ability of massive computational resources has allowed scaling of neural systems
with results that surpassed non-neural systems in most application domains.

In December 2018, the European Commission’s High-Level Expert Group on
Artificial Intelligence has proposed the following updated definition of AI [7]:

“Artificial Intelligence (AI) refers to systems designed by humans that, given
a complex goal, act in the physical of digital world by perceiving their environ-
ment, interpreting the collected structured or unstructured data, reasoning on the
knowledge derived from this data and deciding the best action(s) to take (accord-
ing to pre-defined parameters) to achieve the given goal. AI systems can also be
designed to learn and adapt their behaviour by analyzing how the environment
is affected by their previous actions. As a scientific discipline, AI includes sev-
eral approaches and techniques, such as machine learning (of which deep learn-
ing and reinforcement learning are specific examples), machine reasoning (which
includes planning, scheduling, knowledge representation and reasoning, search,
and optimization), and robotics (which includes control, perception, sensors and
actuators, as well as the integration of all other techniques into cyber-physical
systems).”

The current understanding of AI ethics is rather vague, due to the broad
definitions of AI used in the literature, and do not necessarily reflect the aspects
and demarcations within the research community, the algorithms and methods,
the computing substrates [11], and the target applications.

In the remainder of this paper, we will outline and discuss some important
AI demarcations which have strong implications for the ethical aspects and pos-
sible reflections to address key issues in research on societal impacts such as
Responsible Research and Innovation (RRI).

2 AI Demarcations

2.1 Weak AI vs AGI

The first and perhaps the most well known AI demarcation is the one between
Weak AI (also known as Narrow AI, Applied AI) and Artificial General Intel-
ligence (also called Strong AI or Full AI). While Weak AI aims at making a
machine learn to solve a specific task, AGI targets machines that can learn and
perform any intellectual task. This implies that AGI has the ability to “learn to
learn”, as well as the ability of problem-solving, reasoning, modelling and plan-
ning. G. Marcus and Y. LeCun, two prominent AI researchers, while disagreeing
in many aspects of the future of AI, agree on a list of seven points [13]:

– AI is still in its infancy
– Machine learning is fundamentally necessary for reaching strong AI
– Deep learning is a powerful technique for machine learning
– Deep learning is not sufficient on its own for cognition
– Model-free/Reinforcement learning is not the answer, either
– AI systems still need better internal forward models
– Commonsense reasoning remains fundamentally unsolved
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Fig. 1. (a) Connectionist representation where information is represented by synapses
(red lines) between neurons (blue nodes). (b) two examples of symbolic representations,
b1 with a tree representation and b2 with logic expression. (Color figure online)

It is evident that the demarcation between weak AI (all AI today and in the
near future) and AGI implies that all current methods do not incorporate any
form of commonsense reasoning, and the most used method of deep learning is
not sufficient for a truly cognitive system. In addition, there is no current under-
standing or scientific theory on how commonsense reasoning could be achieved.

2.2 Symbolic AI vs Connectionist AI

Another important demarcation for AI systems is represented by the way infor-
mation and relations are represented and encoded. In symbolic AI (also called
algorithmic AI), knowledge is encoded in a symbolic form, together with rules to
manipulate symbols and their relations. While symbol representation and manip-
ulation makes it possible for a more rigorous study and explanation of weak AI
systems, there is no evidence that the human brain is programmed as a symbolic
machine. On the other hand, connectionist AI refers to a large network of units
(neurons) that are interconnected together and encode/process information in
a distributed way. While such models are more biologically plausible, they are
typically data and compute hungry. Examples of symbolic and connectionist AI
representations are depicted in Fig. 1.

2.3 AI Method vs Data

One demarcation that is often confused, especially in the context of AI bias, is
the dataset used to train the AI model vs. the learning algorithm used to train
the AI model (Note: the result of the training process using a specific dataset is
an actual trained model, see next subsection). The fact that a trained model is
biased is a feature of the AI model and not a bug. In fact, if one wants to model
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a real-world system, the actual real-world model may be biased. The training
algorithm is transparent to bias and therefore should not be attributed for the AI
system being biased. If the intention of the AI model is to be unbiased, then the
used dataset (the sole source of bias) should be corrected. One example of train-
ing algorithm for neural networks is backpropagation. Backpropagation involves
mathematical operations such as calculating the derivative of the squared error
function with respect to the weights of the network. This type of mathematical
operations does not allow for algorithmic bias.

2.4 AI Method vs Application

The actual trained AI model, and therefore the application in which the AI is
used, is not to be confused with the AI algorithm or method used for training.
This demarcation is very important as restrictions have to be considered at the
application level rather than at the AI method and algorithmic level (i.e., the
method may be the same in very different domains, and obviously with very
different sets of data). An example: regulating databases. It is the wrong level
of abstractions. What is regulated is the use cases of databases (e.g., credit
card companies, or insurance companies). We regulate lawyers, not Word. We
regulate financial companies, not Excel. We do not regulate steel companies, we
regulate guns. And we do not ask steel companies to regulate guns. AI is not an
application, it is a general set of building blocks.

2.5 AI vs Humans

Would regulators approve and consider ethically acceptable human-driven cars
if they were invented today? Probably not. They are very dangerous by today’s
ethical standards. One important demarcation is human intelligence vs. artifi-
cial intelligence. Many of the issues with artificial intelligence are also present in
human intelligence, e.g., black box. Can our intelligence be inspected when we
drive a car? Is human intelligence open-source? Is the intelligence architecture
known? Is the data used to train us for driving biased? Yes indeed. As we are
given different datasets when we learn to drive. Is human intelligence determin-
istic? Can human intelligence be evaluated under different environmental condi-
tions or noise? Are experiments repeatable? Those are all relevant questions to
better understand the demarcation between human intelligence and AI.

2.6 Embodied AI

Features of the human cognition are shaped by aspects of the body (beyond
the brain) [16]. Intelligence and cognition include high-level mental constructs
(concepts and categories) and human performance on various cognitive tasks
(reasoning/judgment), as a result of embodiment. Aspects of the body that
shape cognition include the motor system, the perceptual systems, as well as the
body interactions with the environment. It is therefore expected that artificial
general intelligence requires embodied agents living in an environment. One may
argue that weak AI lacks often embodiment and a reactive environment.
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2.7 Compelling Questions

Through the description of the AI demarcations above, a list of relevant com-
pelling questions for AI ethics emerged, and is listed below:

– What do we consider artificial intelligence?
– Are intelligent machines considered living machines?
– Can we demonstrate the emergence of intelligence and mind in an artificial

living system?
– What ethical principles should be established for artificial general intelligence

and weak artificial intelligence?
– What role do societal and ethical perspectives play in understanding the

difference between human and machine intelligence?

3 Analysis

Based on the above synopsis of demarcations, we turn to how ethical and societal
considerations are addressed within the generic field of AI. Current ethical and
social science issues in and around artificial intelligence may benefit from a more
rigorous articulation of demarcations within AI research. However, an overview of
such issues would first benefit from situating applied ethics in new and emerging
technologies.

Applied ethics as a discipline could be understood as relating to various prac-
tical applications of moral thought and principles and has a longstanding role
within such fields as medicine, law and within various processions. In recent
years, a range of approaches within ethics has addressed applications and impli-
cations of various ethical concerns within AI and machine learning [6,12]. Never-
theless, scholars have argued that merely addressing specific technical and ethi-
cal concerns in isolation may not be the most viable approach to the legitimacy
of the future of AI research and applications [1]. The humanities and social sci-
ences have gained validity when facing the many uncertainties related to societal
impacts of new and emerging technologies. Arguably, AI research poses unprece-
dented societal and ethical questions both to the nature of such research and its
outcomes. Thus, specific ethical questions and implications could also be seen
in a broader context. Among such broader considerations are the importance
of stakeholder involvement, transparency and accountability. Such issues engage
considerations beyond the discipline of applied AI ethics and involve questions
of governance and policy. As a consequence, AI research benefits from research
addressing these concerns in particular. But what kinds of research incorporate
these broader concerns and how does such research sufficiently incorporate the
necessary rigor related to technical demarcations within various sub-fields of AI?

Within new and emerging technologies, ethical and societal considerations
gained prominence after the surge in genomic research in the U.S through the
Human Genome Project (HGP) under the label of ethical, legal and social impli-
cations (ELSI) [8] and later through its European counterpart ELSA. ELSI
Research was seen as a necessary component of addressing potential social and
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ethical implications of the vast uncertainties related to genomic research, partic-
ularly through its commercialization. These avenues of research have in recent
decades been applied to new and emerging technology areas such as nanotech-
nology [10], synthetic biology [3] and various ICT research [15]. After 2010 these
research areas, through increased awareness of policy considerations combined
through the term responsible research and innovation (RRI), which soon was
adopted by the European Unions Framework Programmes. From both a research
and policy perspective RRI emphasized the need to take the societal, ethical and
environmental impacts of emerging science and technology into account. Simul-
taneously RRI has emphasized the need to align research and innovation with
societal challenges. Nevertheless, research on applied ethics on AI and also RRI-
informed research on AI is still in its infancy and is fraught with many short-
comings. Among these are establishing necessary demarcations and distinctions
that are both epistemic and normative in nature. In fact, very few examples
exist in current RRI-literature where a clarification between key concepts and
issues in both research and applications are undertaken in a systematic man-
ner. Such clarifications and demarcations would inform the trajectory of various
discussions around ethics and societal impacts. Arguably they would also con-
tribute to establishing a better understanding and learning outcomes between AI
researchers, ethicists and social scientists. To further illustrate the importance of
such demarcations in the context of RRI- or other forms of social science-based
research, a few key examples will be presented in the following paragraphs.

Sufficiently distinguishing between weak AI and AGI underscores the need
to separate broad debates on AGI from timely and necessary reflection on soci-
etal embedding of weak AI. Although compelling, AGI debates are marked by
both dystopian and utopian narratives and based on probability and hype [2].
Moreover, obvious knowledge gaps in the current research frontier seem to under-
emphasize the limitations of the current understanding of common sense reason-
ing and cognition in humans. Such limitations are currently making the real-
ization of superintelligent AGI unforeseeable [19]. Nevertheless, the recurring
worst-case scenarios and hype of AGI threaten the legitimacy of various weak
AI applications and research in the general public. These debates may also over-
shadow the need to address pressing questions in relation to governance and
regulation or areas where weak AI already is being implemented. Moreover,
weak AI-based research frequently lacks the presence of integrated social science
and ethical perspectives in their design. Such perspectives may contribute to
a broader understanding of challenges within areas such as machine learning.
Designed on the semblance of human learning, it draws from cultural and social
structures and extrapolates from them. However, a better understanding of how
algorithms build on such structures would also inform our understanding of what
they cannot do, i.e such as present solutions for any scenario.

The nature of algorithmic design also shows that ethical and societal issues
may be of very different natures with regard to current symbolic and connec-
tionist AI and thus also provide very different ethical and societal scenarios.
Symbolic AI may have vulnerabilities related to the quality of the design and/or
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hidden bias embedded into the algorithm itself, i.e bias related to relationships
or symbols within symbolic language such as representing ‘nurse’ as ‘female’.
Although easily correctable it shows that ethical considerations such as gender
equality point back to tacit linguistic biases and cannot be seen in isolation.
At the same time, symbolic AI yields greater transparency towards such bias.
Connectionist AI, as in deep neural networks, represents concerns more related
to accountability and lack of transparency of what now seems to be ‘black box-
issues’. These may involve biases embedded in the data sets, such as societal,
linguistic, cultural and heuristic biases that are embedded in data while at the
same time present correlations that are context-sensitive, such as deep neural
networks that may successfully predict sexual orientation by image analysis [20].
Further, by being ‘data-hungry’, connectionist AI seems vulnerable to error if
data sets are not sufficiently substantial. Thus, in this regard ethical discourse
around symbolic AI may yield results swiftly while in various connectionist AI
context-of-use scenarios may be the most viable area of study.

The demarcation between the trained (applied) AI model and the training
algorithm should inform what forms of ethical considerations are addressed;
considerations that may often be misplaced. Some scholars argue regulation and
law should primarily focus on the use of the model while the training algorithm
itself could be considered as merely a tool [17]. Others argue that regulation
and standardization are equally important in both [9]. Nevertheless, arguments
that the training algorithms themselves are biased could be resolved by a proper
demarcation between the training algorithm and application of the model. How-
ever, more research on the value-assumptions embedded in algorithmic training
is needed, particularly in the discrepancy of the data embedded in the training
algorithm and real-life scenarios [5]. Beyond these demarcations, there are dif-
ferent ethical considerations to be accounted for in the role that certain data
sets play in the model and how an AI-tool is applied to various decision-making
situations. In particular, if the bias is unknown or unidentified before the model
is implemented it may have downstream impacts. Thus, in a range of scenarios,
considerations such as distributive justice and or privacy may engage concerns
related to both the training algorithm and the applied model. The data used in
the training algorithm and the context of which the trained model is applied may
in different ways combine to produce a complex set of urgent ethical and societal
considerations. Nevertheless, distinguishing between the algorithm itself and the
application of the model may itself resolve a range of unnecessary discussions
about AI bias.

The distinction and/or similarities between human and artificial intelligence
in relation to autonomous systems points to a discussion about the role of ‘ethical
algorithms’ that in many situations may be a misplaced concern. Albeit debates
of whether the ‘Trolley-problem’ poses a contrived and unrealistic dilemma
between utilitarianist and deontological reasoning in real-life scenarios [4], its
resolution may reside elsewhere. Both humans and autonomous systems opaque
reasoning may in decision-making situations pose unreasonable risks and uncer-
tainties. However, as of yet, the unforeseen consequences of outsourcing legal
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agency and responsibility from humans to autonomous systems may potentially
be a more considerable societal risk. The incommensurability of legal, ethical and
scientific reasoning may here be a more pressing subject than making algorithms
‘ethical’ and should address such issues as the problem of legal accountability.
To what extent may we accept bias in humans while not in autonomous systems
if we consider autonomous systems bias to be a liability? Some may argue that
ethical considerations for humans and machines should be considered distinct
and separate. Humans are by default prone to error while legally accountable.
Machines, who we seek to error-correct all the time, may be equally imperfect
while in particular scenarios present algorithmic decision-making that seems eth-
ically ‘superior’ to human action. While the question remains if we should base
moral judgments on the outcomes or intention of an action, demarcating human
and machine ‘ethics’ is a pressing concern. It would at least seem important to
define what moral status human and machine action have when they are equally
nontransparent. However opaque, human intelligence is a product of adaptation
to the environment. This embodied aspect of intelligence may at least provide
us with a demarcation between machine and human intelligence (embodied vs
disembodied). Weak AI, by virtue of lacking embodiment, substantially differs in
nature from human intelligence. It would thus follow that there should be other
ethical considerations (i.e moral rights and obligations) for weak AI systems than
embodied systems.

4 Conclusions

For the purpose of our discussion, a substantial part of the current debate about
AGI evolves around threats and promise based on speculation. However, such
concerns are less pressing and bound by considerable uncertainties and unre-
solved scientific challenges to develop a fully cognitive system. We argue that a
proper demarcation between AGI and weak AI would facilitate a more informed
debate about pressing concerns related to challenges and opportunities. Such
scenarios are worthy of discussion, not only for ethicists but for AI research
institutions, policy-makers and for society-at-large. Further, when ethical and
societal impacts are discussed, a distinction between issues related to connec-
tionist and symbolic AI is needed to be able to identify both vulnerabilities, risks
and countermeasures. Similarly, in discussing AI bias, distinguishing between the
AI method and the bias embedded into the data, the training algorithm itself
and the trained model would resolve uncertainties and identify how and to what
extent bias should play a role in training algorithms. Further, it would clarify
where ethical and societal issues may most adequately be identified. Sufficiently
clarifying the difference between human and machine ethics points back to the
insufficient demarcation between human and machine reasoning which is often
equally opaque. Such a clarification would inform the debate on how to proceed
with developing a more feasible ‘machine ethics’ and ‘ethical algorithms’, and
potentially point the attention to issues of legal accountability.
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It has been the overarching objective of this paper to illustrate the need for
more rigor in the discourse on ethical and societal impacts of AI research in rela-
tion to a lack of sufficiently demarcating between key features of AI methods and
tools. By providing illustrations of key demarcations, we have also suggested to
what extent this may inform research on ethical and societal issues, both on weak
AI and AGI. Further, through establishing the relevance such demarcations in
the context of ethical and societal impacts, a range of ongoing discussions about
AI could adopt them to provide a more nuanced and more elaborate dialogue
across disciplinary boundaries. In particular, such a broader approach to ethical
and societal impacts of AI should shift focus from isolated and narrow ethi-
cal questions to include governance and regulatory considerations and facilitate
knowledge-sharing among stakeholders. However, approaches such as RRI may
not successfully engage in knowledge-sharing with AI researchers if the afore-
mentioned demarcations are not taken sufficiently into account.
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Abstract. In this paper, we demonstrate a data-driven methodology
for modelling the local similarity measures of various attributes in a
dataset. We analyse the spread in the numerical attributes and estimate
their distribution using polynomial function to showcase an approach
for deriving strong initial value ranges of numerical attributes and use
a non-overlapping distribution for categorical attributes such that the
entire similarity range [0,1] is utilized. We use an open source dataset
for demonstrating modelling and development of the similarity measures
and will present a case-based reasoning (CBR) system that can be used
to search for the most relevant similar cases.

Keywords: Case-based reasoning · Local similarity modelling ·
Knowledge modelling

1 Introduction

CBR has gained popularity in the recent years due to its novel approach to
abstract and transfer domain-specific expert knowledge into a user-friendly tool
which offers appropriate reasoning for solutions to problems ranging from simple
daily life tasks to complex tasks which otherwise necessitate expert guidance.

Modelling the local similarities of attributes while preparing a CBR model can
be a challenging task for small and simple, and large and complex data sets alike.
In this paper, we direct our attention towards the knowledge engineering process of
creating a CBR model and present a data-driven approach for modelling local sim-
ilarity measures using the openly available User Knowledge Modelling dataset1 in
the myCBR workbench [2,6]. The main contribution of this paper is a methodology
for modelling the local similarity measures using a data-driven approach. We will
showcase how the knowledge stored in a data set can be leveraged to define strong
initial value ranges for both numerical and categorical attributes and therewith
moderate and stratify the knowledge modelling process.
1 https://archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling.
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The remainder of this paper is organised into sections as follows: in Sect. 2, we
discuss related work about the use of data-driven similarity measure development
and its application in CBR, followed by Sect. 3 wherein we present our similarity
modelling approach. Finally, Sect. 4 concludes the work presented in this paper.

2 Related Work

Similar to the preference-based similarity measure development framework pre-
sented by authors in [1,4], we are presenting a framework for modelling local
similarity measures based on the data set available. Therewith we can tailor
each similarity measure to the application domain. Using a data-driven approach
for automatic similarity learning and feature weighting has been presented by
Gabel and Godehardt [3] where they trained a neural network to induce local
and global similarity measures [5]. While we are not automatically assigning the
similarity measures, we use the existing cases to derive them.

3 Data-Driven Knowledge Modelling

In this section, we explain how we implement a CBR system that can be applied
to find the most similar and relevant cases. We use the local-global-principle
[5] for tailoring the similarity measure for each attribute and thereby build a
knowledge model. Once the local similarity measures are defined, we continue to
use weighted sum for defining the global similarity.

Some of the most common challenges for utilizing any dataset for developing
a CBR system are the identification of suitable dataset context for the problem
at hand, definition of initial similarity measures, representation of cases and
determination of valuable cases for populating the case base. In this section, we
first describe how we populate the case base and generate cases in the developed
case representation. Then we present our method for utilizing a given dataset
to model the local similarity measures for both numerical as well as categorical
attributes.

3.1 Case Generation

Developing a case representation is the first step of the CBR system development.
Depending on the domain and the available data this can be a challenging process
on its own. For presenting our data-driven modelling technique, we use the User
Knowledge Modelling dataset, which comprises of six attributes, five numerical
and one categorical. The description of all the attributes is presented in Table 1.

The categorical attribute USN has four permitted values: Very Low, Low,
Middle, High. Table 2 shows the data statistics of the numerical attributes in the
dataset.

The case base is then populated by loading the dataset into the previously
defined case representation in the myCBR workbench. A single case in myCBR
is represented as shown in Fig. 1, where User is the name of the concept which
comprises of six attributes present in the original dataset.
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Table 1. Description of attributes in User Knowledge Modelling dataset

Attribute Description

STG The degree of study time for goal object materials

SCG The degree of repetition number of user for goal object materials

STR The degree of study time of user for related objects with goal object

LPR The exam performance of user for related objects with goal object

PEG The exam performance of user for goal objects

UNS The knowledge level of user

Table 2. Data set statistics

STG SCG STR LPR PEG

count 403 403 403 403 403

mean 0.3531 0.3559 0.4576 0.4313 0.4563

min 0 0 0 0 0

max 0.99 0.90 0.95 0.99 0.99

Fig. 1. Case representation in myCBR

3.2 Data-Driven Similarity Measures Development

The local-global-principle requires both the local similarity measure on the
attribute level and the global one on the conceptual to be defined.

Researchers in CBR domain face the challenge of balancing the input from
the domain experts and the available data while modelling the local similarity
measures for different attributes in myCBR. Having a criteria which can lead the
knowledge modelling process is helpful for both parties. We therefore suggest to
make use of the existing data in this process. While setting upper and lower limits
for numerical attributes is straight-forward, assigning the similarity behaviour
is not. Consecutively, we assume that local similarity measures for continuous
numerical attributes are polynomial distance functions (due to their flexibility
and better converging ability) and the question is how steep of a similarity
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decline should be chosen. Therefore, we focus on the polynomial function of the
similarity measure for numerical attributes and our goal is to determine their
degree. We use box plots for visualizing the distributions and variations in the
data set and map this into modelling local similarity measures.

Fig. 2. Example for data-driven local similarity modelling: on the left there is a screen
shot of a polynomial similarity function for a value range between 0 and 1. With the
arrows we depict how the box-plot for attribute STR relates to the decrease in similarity
at a certain distance.

Figure 2 shows an example of a local similarity measure for a numerical
attribute. From there we look into the Q1 and Q3, which indicate the majority
spread of the attributes in the data set. In line with [1,7], we decided to take
these values as reference points for determining the decrease in similarity.

Hence, creating a box-plot of the data set will allow modelling each attribute
since we only take the Inter Quartile Range (IQR) and the range (min to max)
into account:

r1 = IQR

r2 = range
(1)

It represents the difference between upper (Q3) and lower (Q1) quartiles in
the box-plot, that is IQR = Q3 − Q1.

We assume that all similarity functions are polynomial and adjust the poly-
nomial degree of the similarity function such that

y(r1) ≈ 0.30
y(r2) ≈ 0

(2)

We can observe in Fig. 2 how the similarity function varies with respect to
the attribute value after applying the methodology in Eqs. 1 and 2. The big-
ger the polynomial degree, the steeper the similarity function and more precise
the attribute values in retrieved cases. The decline in the similarity function is
steeper in the beginning until at r1 it reaches close to y(r1) and then decreases
gradually until at r2 it is approximately close to y(r2). This way, the similarity
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function covers the entire attribute range as well as the similarity measure range
[0, 1]. We use this as the initial definition of similarity measures.

While the local similarity measures for numerical attributes can be derived
using their data distributions, assigning the similarity behaviour for categori-
cal attributes can be challenging as it depends on whether or not there is a
pre-existing relationship between the categorical values. In our dataset, the cat-
egorical attribute UNS has four permitted values which have an implicit rela-
tionship amongst each other. The local similarity measure for such an attribute
can be modelled such that the relationship amongst the values is preserved while
achieving the desired variation in the similarity measure in the range [0,1], as
shown in Fig. 3. In case of no relationship amongst the values, the similarity of
one value to every different value can be set to zero.

Fig. 3. Similarity measure modelling for non-overlapping categorical attribute

3.3 Retrieving Similar Cases

Once the casebase and similarity measures are in place, the model can be used
to find similar cases. Figure 4 shows the result of one such query retrieval in
myCBR. The retrieved cases are sorted by similarity value in descending order,
that is, most similar case are displayed at the top while least similar are at the
bottom. On the lower part of the figure, the four most similar Users are shown
in a detailed view. The tool marks closer matches darker.

Fig. 4. A query and its retrieval result in the myCBR workbench
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4 Discussion and Conclusion

In this paper, we have presented an approach to model the local similarity mea-
sures of a given dataset in myCBR in a data-driven manner. Our approach can
be applied on any dataset to model the similarity measures. A more detailed
evaluation of our approach can be found in [7] where we statistically evaluated
its effectiveness using a public health domain dataset and showed that the CBR
model created using our approach outperforms the k-NN regressor model in find-
ing the most similar cases. The approach presented in this work can significantly
reduce the efforts required to create new CBR models using different data sets
from scratch. Therefore, it is safe to conclude that the approach works well on
the used dataset and may also be applicable to other domains.
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