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Abstract. We introduce a novel approach to implementing a browser-
based tool for web users to protect their privacy. We propose to monitor
the behaviors of JavaScript code within a webpage, especially operations
that can read data within a browser or can send data from a browser to
outside. Our monitoring mechanism is to ensure that all potential infor-
mation leakage channels are detected. The detected leakage is either
automatically prevented by our context-aware policies or decided by the
user if needed. Our method advances the conventional same-origin pol-
icy standard of the Web by enforcing different policies for each source of
the code. Although we develop the tool as a browser extension, our app-
roach is browser-agnostic as it is based on standard JavaScript. Also, our
method stands from existing proposals in the industry and literature. In
particular, it does not rely on network request interception and blocking
mechanisms provided by browsers, which face various technical issues.

We implement a proof-of-concept prototype and perform practical
evaluations to demonstrate the effectiveness of our approach. Our exper-
imental results evidence that the proposed method can detect and pre-
vent data leakage channels not captured by the leading tools such as
Ghostery and uBlock Origin. We show that our prototype is compati-
ble with major browsers and popular real-world websites with promising
runtime performance.
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1 Introduction

Privacy is a big challenge and risk today for Internet users [7]. This risk is mostly
due to the presence of online trackers on almost all websites [17]. These trackers
typically collect users’ sensitive information such as personal data, browsing his-
tory, activities, and interests [33], mostly without the awareness of users [33,35].
Standard web security mechanisms such as same-origin policy [41] or Content-
Security policy (CSP) [60] could not prevent these privacy risks since the track-
ers, either from the first- or third parties, are included by the developers [36]. Do
Not Track (DNT) [61] is a mechanism to prevent tracking by sending an HTTP
header indicating that a browser does not want to be tracked. Although most
web browsers support DNT, there is currently no policy or mechanism about
how a website has to respond upon receiving a DNT header. This technical issue
of DNT leaves it a currently ineffective solution for security on the web [6].

Advanced users concerning their privacy usually adopt browser-based block-
ing tools for privacy protection such as ad or tracker blocker extensions [33].
While these tools are effective in blocking third-party trackers [36], there are a
couple of limitations in these mechanisms. First, existing blocking browser exten-
sions only enforce the “all-or-nothing” rule. This rule either blocks or allows a
tracker or an ad network based on a URL defined in a filter list, generally iden-
tified by the tool or set by users [5]. This blocking approach creates challenges
and dilemmas for users as they do not know if they should block an ad or a
tracker [33]. Also, several studies show that not every user wants to block ads or
trackers [9,59], and a big crowd desire advanced methods to control their foot-
print [1,30]. Second, the existing blocking mechanisms implemented in browser-
based extensions face several technical issues outlined below.

The first technical issue is that the implementation of the blocking mechanism
is browser-dependent. Extensions usually implement the blocking mechanism by
intercepting all network requests from a web page and blocking it if the URL is
in a filter list [13,36]. This method relies on a web API webRequest provided
by major browsers [22,40], which developers have to follow the requirements of
a specific browser. For example, recently, Google has just announced to replace
their webRequest API by the declarativeNetRequest API together with the
Manifest specification V3 [13,55]. This change will restrict the functionality of
many of the current blockers on the marketplace. For example, it limits the
maximum number of rules and domains that can be blocked by extensions like
uBlock Origin [55]. Another technical issue is that extensions are dependent on
the filter list predefined by developers. Therefore, new trackers or other third-
party content are not captured or blocked by these extensions. For example, in
[64], the authors demonstrated that existing extensions could not catch requests
that utilize a DNS CNAME alias in order to prevent detection. Our experiments
also confirm this technical issue. As demonstrated in Sect. 5.1, popular extensions
such as Ghostery and uBlock Origin do not detect trackers and data leakage
channels simulated in our test suite.

The limitations discussed above motivate us to develop a novel approach
to protecting web users. Different from existing tools that block a particular
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network request, our method is to monitor the code execution in a browser. The
goal of our code monitoring is to ensure that users’ sensitive information cannot
be leaked to the outside of a browser without the concern of users. As JavaScript
is the language executed in browsers to perform all of the activities on a web
page, we propose to intercept critical privacy-related JavaScript operations. In
particular, we intercept JavaScript operations that can read data belonging to
the user, e.g., cookies, and can send out data to the Internet. We then define
and enforce context-aware policies on these operations to prevent possible pri-
vacy leakages. Our proposed method also stands from the state-of-the-art of
JavaScript monitoring by tracking the origin of the code, i.e., where the code
comes. From this origin tracking mechanism, we can enforce distinct policies for
each origin of the code. This mechanism advances (and in contrast to) the tra-
ditional same-origin policy [41], which treats all the code, even included from an
external server, within a web page as the same origin. Our main contributions
in this work include:

• We introduce a novel approach to controlling the behaviors of JavaScript code
within a web page to detect and prevent potential privacy leakage.

• We implement a proof-of-concept prototype as a browser extension, named
MyWebGuard. Our MyWebGuard tool monitors the source of data and the sinks
where the data can be sent to in order to detect potential data leakage pre-
cisely. Our mechanism is in contrast with existing blocking browser extensions
that only focus on the web request interception with a static filter list.

• We perform evaluations and report practical experimental results on various
aspects. Our approach is browser-agnostic, as it is compatible with major
browsers. We show that our prototype implementation can detect and prevent
potential data leakage while preserving the web page functionality. We also
report the performance overhead of our prototype that is quite low for popular
real-world websites.

We proceed as follows. In the next section, we review the background, includ-
ing the landscape of browsers and their security, browser extension, and web
security standards. We survey the literature and discuss related work compared
with our work in Sect. 2.4. In Sect. 3, we describe our technical approach and
the design of our method. We present our prototype implementation in Sect. 4.
In Sect. 5, we demonstrate our evaluations and discuss the experimental results.
Section 6 concludes our contributions and outlines the future work.

2 Background and Related Work

2.1 Security and Privacy in Browsers

In this subsection, we review the landscape of existing browsers and their security
and privacy features. We relate these features to our work.

There are many browsers in the industry, including popular ones such as
Google Chrome, Apple Safari, Mozilla Firefox, and more niche browsers such
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as Chromium and Brave. Almost all browsers have and implement security and
privacy standards to ensure degrees of users’ privacy either by default or within
the browser settings. Among popular browsers, Google Chrome is considered
as a leader in browser security with automatic updates and a Web Authentica-
tion API [10]. However, due to its closed-source structure and Google’s incident
for collecting user information, some users feel that Google has the incentive
to break its stance on privacy [8]. Microsoft Edge uses sandboxing to contain
browser processes, and it retains Internet Explorer’s filtering of suspicious web-
sites. However, Edge has not retained IE’s tracking protection, and biannual
updates can leave plenty of time for attackers to utilize unpatched exploits [38].
Mozilla Firefox offers users a wide range of security features that are comparable
to Chrome. These include add-on warnings, malware protection, content block-
ing, and filtering of reported malicious websites. Also, thanks to its open-source,
users can be confident that their browser is functioning without the inclusion of
malicious code [44].

Looking at more niche browsers that advertise a greater emphasis on user
privacy, Chromium retains the positives of Chrome while being open-source [10].
Privacy concerns with Chromium include the lack of automatic updates that
could leave some users open to attacks, and WebRTC leaks are a concern since
it cannot be disabled without third-party software [8]. Brave is a relatively new
browser that focuses heavily on privacy; features include a built-in ad-blocker,
chrome extension functionality, and fingerprinting blocker, to name a few. While
Brave is still new and gains limited market share of browsers, its open-source
structure and firm stance on privacy are gearing it up to be a strong contender
in the browser landscape [8].

Although our work is to build a tool added-on in a browser, our approach
can be integrated into a browser to enhance its security and privacy features for
protecting web users.

2.2 Browser Extensions

A browser extension is an open-source software module, developed using web
technology, i.e., HTML, CSS, and JavaScript, to be integrated into a browser by
users. When loading a web page, a browser also loads and executes installed
extensions enabled for that web page [43]. Therefore, JavaScript code in a
browser extension has the same privilege as the web page, i.e., it can access and
modify the data or content of the web page [43]. A typical extension contains
a manifest specification in JSON format, HTML pages, and JavaScript files. A
browser extension can access general web APIs, available for every web page, and
a special set of JavaScript APIs provided by browsers but are not available for
web pages. For example, Google Chrome and Opera browsers provide the exten-
sion API (https://developer.chrome.com/extensions), which is also supported in
other major browsers such as Firefox or Microsoft Edge [43].

In this work, we develop our tool as a browser extension. In Sect. 2.4, we
survey and discuss related work in browser extensions and their security.

https://developer.chrome.com/extensions
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2.3 Web and JavaScript Security

Our work focuses on the security and privacy of web pages within a browser.
Therefore, server-side security such as SQL Injection, command injection, or
denial-of-service attacks is out-of-scope of this work. In this subsection, we briefly
review the web page security model and JavaScript security standards, including
Same-Origin Policy and Content Security Policy.

Nowadays, almost all web pages contain JavaScript code. Statistics in [62]
show that 95.2% of all websites contain JavaScript code. Among these, websites
include JavaScript code from external third-party servers. These facts are evi-
denced in a survey of the Alexa Top 10,000 websites, which reveals that 88.45%
of them include at least one third-party JavaScript library [47]. The work also
exposes some contents in the trusted libraries of these sites that can be com-
promised. They later identify four newly discovered vulnerabilities that could be
used in attacks. The work also reviews the effectiveness of proposed solutions
for protecting web applications that utilize third-party content.

In principle, JavaScript code in a web page is loaded and executed by
a browser within a JavaScript engine. JavaScript code can interact with
users, modify the web content, and can access (read/write) data stored in a
browser such as cookies. Browsers enforce the same-origin policy to ensure that
JavaScript code from one origin cannot access the data belongs to other origins.

Same-Origin Policy. The same-origin policy (SOP) is a critical web security
standard that prevents JavaScript code from one origin from accessing data of
other origins [41]. An origin in the web is identified by the scheme, host, and
port of a URL. The SOP does not apply for the code included in a web page
but sourced from a third-party server. For example, if a web page from https://
mywebguard-host.github.io (the host) includes JavaScript code from https://
thirdparty.com, e.g., using
<script src="https://thirdparty.com/script.js"></script>,
then the script code from https://thirdparty.com/script.js is executed in the host
web page and has the same origin as the host. This policy means that the external
code can access data belongs to that host. This issue is a known limitation of
SOP as identified in the literature, e.g., [45,48,54]. Our work addresses this
drawback by tracking where the code comes from and enforce different policies
for different code origin.

Content Security Policy. Content-Security-Policy (CSP) [60] is a web stan-
dard that functions to prevent code injection attacks such as Cross-Site Scripting
(XSS). This prevention is done by allowing the creation of a whitelist of trusted
content that can be rendered and executed by the browser. The CSP can be
used to prevent data leakage to external domains, not in the whitelist. However,
it cannot prevent potential privacy leakage to whitelisted domains, as we inves-
tigated in this work. Moreover, there has also been a surge in the attempts to
study the CSP. In [63], the authors explore how challenges presented by CSP

https://mywebguard-host.github.io
https://mywebguard-host.github.io
https://thirdparty.com
https://thirdparty.com
https://thirdparty.com/script.js
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lead to a low adoption rate among the Alexa Top 1M. The results show that the
inclusion of CSP lags other security headers, and CSP policies are often inef-
fective at preventing content injection attacks like XSS. Additionally, they also
suggest an improvement in CSP that could increase its use on the web.

2.4 Related Work

Below, we survey the literature on topics related to our work, including
JavaScript security and browser extensions. We also discuss how our work
advances the state-of-the-art.

JavaScript Security. In the past decade, there are many research works and
proposals focused on the topic of JavaScript security. In 2007, BrowserShield [52]
was introduced as a JavaScript security solution by vulnerability-driven filtering
dynamic HTML in web pages. The BrowserShield system rewrites web pages to
secure vulnerabilities relied on embedded scripts. Caja [21,39] is a similar app-
roach developed at Google. Google Caja allows passive data to become active
content and rewrites scripts into an object-capability language to ensure that
their operations are safe on a webpage. In [31], Maffeis et al. design language-
based methods that websites use to filter untrusted JavaScript. They also propose
a foundation for language-based filtering that addresses website vulnerabilities.
Phung et al. [49] introduce a lightweight self-protecting JavaScript approach
to controlling the behaviors of JavaScript code to prevent potential attacks.
Meyerovich and Livshits in [37] present a new design, termed ConScript, that
empowers to host webpages byways of fine-grained security policies. These poli-
cies are to constrain executed code to protect against vulnerabilities opened when
untrusted JavaScript codes appear. In [48], Phung et al. introduce a new app-
roach to enforcing security policies on untrusted third-party ad content, referred
to as FlashJaX. Their design, FlashJaX, addresses the problem of vulnerability
assessment sites that are mixed by JavaScript with Adobe ActionScript content.

There are also other JavaScript security proposals; however, they focus on
advertisement networks. For example, ADSafe [12] is a safe subset of JavaScript
for ads. Ad developers must follow this subset so that an ad can be included
in a hosting web page; otherwise, it will be rejected. In [50], Politz et al. pro-
pose a lightweight and efficient technique to verify sandbox sources that utilize
ADsafe to demonstrate the effectiveness of the system by securing previously
unknown weakness within ADsafe rooted in sandboxing. And, Finifter et al. in
[18] examine a vulnerability found among one-third of the Alexa Top 100, acces-
sible via ADsafe-verified advertisements. This vulnerability is rooted in third-
parties exploiting prototype objects of the hosting page. The authors propose a
JavaScript subset that retains static verification while upgrading security. Fur-
thermore, in [24], there is a development of an online advertising system, referred
to as Privad, that aims to secure user privacy while still allowing advertisers
to serve targeted ads. This design focuses on improving user’s browser experi-
ence through increased speeds over other online advertising systems, presenting
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microbenchmarks and informal analysis of Privad’s privacy properties. In addi-
tion to these studies, Fredrikson and Livshits in [19] present RePriv, a tracker
implemented as a browser extension to collect user interests and share them with
third-parties with the user’s permission. This paper also shows how RePriv can
collect user interests to personalize the content on various websites with high
quality and keep a low overhead, as well as preserve user privacy.

Information flow-control in JavaScript to prevent potential leakages in web
pages, similar to our work, has also been studied in the literature. For instance,
in [11], the authors present a web system supported by inlined information flow
control monitor as well as an evaluation of that monitor. This application uses
“mashups” of JavaScript code that is one of the most common types of codes
using on many web apps today. Hedin et al. [26] introduce JSFlow as a method
for tracking the information flow of JavaScript on sites that utilizes third-party
code, deploying it as a browser extension. Through the utilization of JSFlow, they
also indicate the different main policies of sharing sensitive user information on
websites.

JavaScript security is still an emerging topic in recent years. For example, in
2018, the authors in [51] provide a comprehensive survey of existing client-side
web application security solutions that consider desirable features and develop
a framework for specifying and enforcing security policies for JavaScript web
applications, namely GUARDIA. In [45], Musch et al. propose a ScriptProtect
framework that instruments third-party JavaScript code to prevent the string-
to-code conversions to protect the first-party origin from potential XSS attacks.

Although the works mentioned above provide possible solutions to secure
JavaScript code in web pages, they aim to be used at the development phase. In
contrast, our work aims at a tool that end-users can use to protect their privacy.

Browser Extensions. In addition to the research works on JavaScript security,
there are many studies on browser extension design problems in recent years.
Although these browser extensions provide a tool for web users to protect them-
selves from possible attacks, their technical approaches are different from our
work, as we discuss in detail below.

In [3], the authors propose a new approach to blocking malicious third-party
content achieved through an analysis of inclusion sequences constructed from
an in-browser vantage point and implemented with EXCISION in a modified
Chromium browser. Many experiments conducted in [4] simulate how advisement
and analytics companies bypass ad-block extensions and how a bug with chrome
web request help to block the extension from functioning. They base on the
evaluation of the bug fix in different states to indicate that some companies still
use WebSocket in troubleshooting like serving advertisements, infiltrating the
DOM, and fingerprinting.

In addition, Barshir et al. [5] develop a methodology for detecting ad
exchange information flow (both client- and server-side) by leveraging retar-
geted ads. Also, in [2], the authors propose a new approach (referred to as
ORIGINTRACER) to determining the source of content modifications done
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by over-privileged browser extensions or other third-party content. They indi-
cate that this approach statistically improves the ability of users to recognize
injected advertisements through the use of visual indicators while incurring a
modest overhead. In [23], the authors present a framework for the verification of
browser extensions to ensure they are secure and not over-privileged. Ter et al.
in [58] also provide an approach to synthesizing abstract behavioral models from
XPCOM interfaces. Their method invokes sequences of extensions obtained by
the runtime interface invoking approach. This approach requires the prepara-
tory implementation of a behavior monitoring system. It also proposes to define
the vulnerable behavior sequence patterns. The design in this paper is used to
guide the testing process adopted on sequence matching methods for detecting
the security and reliability vulnerability of extensions.

In [14], Dhawan and Ganapathy present an in-browser system for tracking
information-flow in order to analyze JavaScript-based browser extensions and
identify their violations. In [65], they design Expector, a system for identifying
chrome extensions that serve malicious ads, utilizing this system to detect exten-
sions that inject ads or participate in malvertising. In [27], the authors propose a
preliminary extension system design for protecting users’ privacy from malicious
extensions. Their method is also based on the idea of mandatory access control.
Moreover, the authors in [57] study a comprehensive new model for extension
security that aims to redress the shortcomings of existing extension mechanisms.
Their proposed model works through the use of a logic-based specification lan-
guage. The language describes fine-grained access control and data flow policies
that govern an extension’s privilege over web content. This model verifies exten-
sions through analysis and includes a module for converting safe extensions into
a form that allows for the execution of safety checks at runtime.

There are also other research studies focusing on the interaction between
a browser extension and the security policy. For instance, in [25], Hausknecht
et al. examine why browser extension’s interaction with Content Security Policy
is one reason for its slow adoption. They also classify three types of vulnerabilities
arising from the interaction between extensions and CSP, proposing a solution,
and providing a case study as a proof-of-concept. Besides, the authors in [56]
explore browser extension discovery and the invasive nature of both websites
and extensions. Roeshner et al. [53] and Mayer and Mitchell [34] investigate the
web tracking. The former is with a focus on the technical implementation and
functions of trackers, and the latter one is with the focusing on the policy debate
over trackers. In [15], the authors explore the ability of browsers to be uniquely
identified through fingerprinting. They implement a fingerprinting algorithm to
estimate future success rates and discuss the privacy threats and implications
posed by fingerprinting.

Likewise, in [46], the authors propose a new client-side JavaScript framework
in order to check the integrity, origin, authentication, and risks of all JavaScript
third-party resources, evaluating the solution through implementation. More-
over, in [36], the authors provide insight into the landscape of tracker blocker
tools. Wills and Uzunoglu [64] explore the effectiveness of ad-blocking tools.
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In [28], Iqbal et al. study a graph-based machine learning approach to blocking
ads and tracker. They create a graph representation used to trace relationships
between page contents (HTML structure, network requests, JavaScript behav-
ior of the webpages) and (third-party) ads/trackers. Besides, the authors in [29]
investigate a framework that manages which security mechanism is active to cut
down on high overheads created by outdated security solutions.

3 Proposed Approach

3.1 Overview

The objective of our method is to monitor the JavaScript code execution and
stop a JavaScript operation if it violates a given policy. To this end, we intercept
JavaScript operations, including property access and method calls, to enforce
policies. In our enforcement code, we track the actual caller of the operation
(we termed it code origin) and apply a specific policy for each code origin.
Listing 1 illustrates the overview of our technical approach in pseudo-code, where
we implement the interception within an anonymous function. Code within an
anonymous function is to ensure that any code outside of the scope cannot access
our code. In the next subsection, we describe our interception method, how we
track the code origin, and how we enforce policies for each code origin.

Listing 1. The overview of our technical approach in pseudo-code.

(function (){

let reference = original;

let code_origin = getCodeOrigin (..);

original = wrapper (){

if (PolicyCheck(code_origin , reference_name ,arguments ))

execute(reference );

}//the wrapping

})();

3.2 JavaScript Interception

We review the JavaScript operations and categorize them into three different
types: method calls, object creation and access, and property access. For each
type of operation, we propose to intercept as follows.

Method Calls. Method calls are functions belonging to a global object. For
example, document.getElementById(..) is a method call, which invokes the
getElementById function of the document global object. For each method call,
we wrap the original reference and its aliases by capturing any available pro-
totype inheritance chain of the reference. We leverage a prior library [32] that
implements these types of wrapping for our approach. In Sect. 4, we elaborate
in more details of this approach.
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Listing 2. Simplified code of mediating the access to document.write

var desc= Object.getOwnPropertyDescriptor (Document.prototype ,

"cookie");

// assert the desc object and its prototype chain

Object.defineProperty(document , "cookie", {get: function (){

var code_origin = getCodeOrigin(new Error (). stack );

if (originAllowed(code_origin ,"cookie")) {

setOriginSourceRead (code_origin ,"cookie");

return desc.get.call(document );

}

return;

},

set: function(val){ desc.set.call(document ,val); },

enumerable : false ,

configurable : false

});

Property Access. A property is a field of an object that can be accessed (read
or write) by JavaScript code. As these properties, for example, document.cookie
may contain sensitive data of users, we need to mediate the access to them. To
this end, we leverage the Object.defineProperty(..) API (standardized in
ECMAScript 5 and still supported in later versions [16]) to define the handler
functions whenever a property is read (get) or write (set). Simplified code (for
brevity) in Listing 2 illustrates this mediation process for the document.cookie
property.

Object Creation and Access. There are several JavaScript operations that
are based on object creation. For example, the "new Image(..)" operation
creates a new image object (HTMLImageElement) that can be appended to
a web page to display an image. In our observations and experiments, in
some cases, although this object creation operation returns the same object
type as an equivalent function call (for example, new Image(..) (object
creation) and document.createElement("img") (method call) both return
an HTMLImageElement object), wrapping the object prototype alone, e.g.,
HTMLImageElement.prototype, does not capture the object creation operation
and therefore cannot control the property access to this newly created object.
For this reason, we manually create a wrapper class for each original class and
mediate the access to the wrapper class using the Proxy object, standardized in
ECMAScript 6 [16] and define a specific policy each access operation. Listing 3
demonstrates an implementation example for mediating the "new Image(..)"
operation.

Listing 3. Simplified code of mediating the access to new Image(..)

var imgPolicy = {

get: function(obj , prop) { /* policies for get */},

set: function(obj , prop , value) { /* policies for set */}
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};

var OriginalImage = Image;

class ImageWrapper {

constructor(height , width) {

var imgObject = new OriginalImage(height ,width );

imgObject = new Proxy(imgObject ,imgPolicy );

return imgObject;

}

}

Image = ImageWrapper;

3.3 Tracking the Source (origin) of the Code

A web page nowadays includes typically JavaScript code that can be sourced
from different servers [47]. Browsers enforce the same-origin policy to ensure
that JavaScript code comes from one origin (specified by the protocol, host, and
port of an URL) cannot access the credentials of other origins [41]. However,
the same-origin policy treats all code included in a web page as the same origin
even though the code comes from an external web site [41,45,54]. Several prior
works, e.g., [20,48], recognize this security issue and propose new approaches
to enforcing different policies for JavaScript within a web page but is sourced
from external servers. For example, FlashJax [48] provides a new JavaScript API
to load and execute JavaScript under a principal and enforces principal-based
policies for external JavaScript code. However, FlashJax requires web developers
to use this new JavaScript API on the web page; thus, it is not applicable for a
browser-based tool. In our work, we leverage the call stack of JavaScript language
to trace the source of the code, i.e., from which origin (scheme, host, port) the
code is included. We term this source of the code as code origin. We note that
our code origin concept is different from the web origin term usually used in
the same-origin policy [41]. To track the code origin at runtime when we want
to enforce a policy, we create a new Error object (new Error().stack) to get
its stack and trace the top of the stack to get the code origin (We notice that
a similar approach has been introduced in [45]; however, our implementation
is independent and concurrently with that work). Our experiments demonstrate
that this code origin tracing method can keep track of exactly where a JavaScript
operation is invoked. The usage of this approach has already been illustrated in
Listing 2.

3.4 Context-Aware and Code Origin-Based Policies

As we can trace the origin of the code, we wish to define and enforce more pre-
cise policies that can detect and prevent possible information leakage channels.
The ideal method is to encode information flow policies. However, this approach
requires new language constructors with new browser implementation [26]. In
this work, we propose to control the information flow at the endpoints. This
method means that we monitor the operations that read from sensitive data
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sources or send information to the outside of a browser. When a sending opera-
tion is called, we check whether sensitive information was read. As we can keep
track of the code origin, we can enforce policies that depend on the code origin.
We can also consult the user and let the user decides to allow or deny a data
send operation that might be suspicious.

4 Implementation

We realize our proposed method in a JavaScript library and deploy it into a
browser extension to develop a self-protecting tool for web users. In this section,
we describe our JavaScript library, the concrete policies we have implemented,
and how we develop a browser extension that leverages our library.

4.1 JavaScript Monitoring Library

We implement our method by developing a JavaScript library to intercept Java-
Script operations that might cause privacy leakage. Our library must be executed
first in a web page to ensure that it can keep the original references to the
intercepted operations.

We divide our interception implementation into two types: (i) data source
access: operations can get sensitive data; (ii) data sink channels: operations can
send data to the outside of a browser . We detail each type below.

Data Source Access. The data sources in a web page include the cookie,
HTML local storage, browsing history, location, the values of form elements,
and the web page contents [34,49]. These data can be accessed by method
calls or property read. We implement each type of data source read according
to the approach presented in Sect. 3.2. For each operation, we check whether
the code origin is allowed to read the data. If allowed, we mark that the
code origin has read the data by update the corresponding state. The code
in Listing 2 (in Sect. 3.2) illustrates this interception implementation method
for a property access of a data source (cookie). In Listing 4, we demon-
strate the interception implementation of a data source using a method call
(localStorage.getItem(..)). In this code, monitorMethod is a wrapping inter-
face implementing the wrapping approach for method calls presented in Sect. 3.
We list the common data source read operations implemented in our library
in Table 1 (document.getElement* in the first row stand for getElementById,
getElementsByTagName, getElementsByClassName).

Listing 4. Interception implementation of a method call accessing a data source

function localStorage_getItem_policy(args , proceed , obj) {

var itemID = args [0];

var code_origin = getCodeOrigin(new Error (). stack );

if (originAllowed(code_origin ,"localStorage",

"getItem", itemID )) {
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setOriginSourceRead (code_origin ,"localStorage");

return proceed (); // execute the method call

}

return; // supress the method call

}

monitorMethod(localStorage , "getItem",

localStorage_getItem_policy );

Table 1. List of operations that can access users’ data

Operation Type Data source

document.getElement* Method call Page contents

localStorage.getItem Method call Local storage

document.cookie Property access Cookies

window.history Property access Browsing history

navigator.geolocation.getCurrentPosition Method call Location

Data Sink Channels. We consider the channels where data can be sent
from a browser to outside. We do not consider the attack scenarios that are
aware by end-users such as redirection as this is out of the scope of our
work. Generally speaking, these data channels are HTTP requests sent from
a browser [41]. JavaScript operations that can generate a HTTP request include
assigning an URL source to an object such as Frame, IFrame, Image, Script, and
Form, Ajax, and WebSocket. We note that WebSocket is not an actual HTTP
request yet allows browsers to open two-way interactive communication to a
server to send and receive messages asynchronously [42]. In the past, track-
ing companies have leverage WebSocket to circumvent the blocking mechanism
in ad blockers [4]. We intercept these channels using the approach for object
creation presented in Sect. 3.2. Also, we intercept method calls, for example,
document.createElement(..) that create these objects and enforce the same
policy as the object creation interception. We stop a data send operation if it
violates a policy.

4.2 MyWebGuard - The Privacy Protection Tool in Browsers

In principle, our library can be deployed either at the server or client-side. How-
ever, as we aim to develop a tool for web users, we opt to implement a browser
extension using our library. As discussed earlier, our method requires that the
interception library run first before a web page is loaded. To this end, we put our
JavaScript library code within the innerHTML property of a script object and
append it to the current page. We perform experiments to confirm that our code
is executed before any other code in a web page. Listing 5 depicts this inclusion
method of our library.
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Listing 5. Injection of our code in a browser extension

var mywebguard = document.createElement("script");

mywebguard.innerHTML = ‘

(function () {

//the full JavaScript interception library here

//...

})(); ‘;

document.documentElement.appendChild(mywebguard );

Implemented as a JavaScript library, our method should be able to be
deployed in any browser extension. In this implementation prototype, we develop
our MyWebGuard extension and evaluate it in Chromium family, including
Google Chrome, Chromium, and Brave. In the future, we explore to deploy
our library in other major browsers.

5 Evaluation

In this section, we report the evaluation of our method implemented in a browser
extension. We first create a test suite that contains a web page for the first-party
and a script file for the third-party. We simulate attack scenarios to evaluate the
effectiveness of our method.

To evaluate our method, we installed our MyWebGuard extension in
Chromium family browsers. We perform the evaluations on a Dell Inspiron
3521 machine with CPU 2127U @ 1.90 GHzx2, 8 GB memory, Ubuntu 18.04.2
LTS. We test our extension in Google Chrome (Version 76.0.3809.100 64-bit),
Chromium (Version 76.0.3809.87 64-bit) and Brave (version 0.65.121) browsers.

5.1 Privacy Leakage Detection and Prevention

We create a test web site and develop first-party code to perform operations that
we intercept. We include a third-party JavaScript code that performs similar
operations. Our experiments demonstrate that potential information leakage to
the first-party or third-party server is captured by our method. Figure 1 shows
two test cases that leak data detected by our browser extension.

Fig. 1. MyWebGuard can detect and prevent potential information leakage that is
ignored by Ghostery and uBlock Origin extensions
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Interestingly enough, these simulated data leakage channels are not detected
by leading browser extensions such as Ghostery, and uOrigin Block, demon-
strated in Fig. 2. This evidence reflects and confirms our observation and moti-
vation discussed in the introduction.

Fig. 2. Ghostery and uBlock Origin extensions do not detect the tracking requests on
our test suite site

In an intensive mode with all alert messages turned on, MyWebGuard can
detect potential leakage sent to external origins and warn the user in real-world
websites. For example, Fig. 3 shows the case that our MyWebGuard extension
detects a cross-origin data leakage on Youtube.

Fig. 3. MyWebGuard extension detects cross-origin data leakage on Youtube

5.2 Compatibility and Load Time Overhead

We turn on our extension with alert messages disabled in the tested browsers
(Google Chrome, Chromium, and Brave) and load regular websites to test
whether these sites are loaded as usual. We do not notice any issues when load-
ing the websites with our extension. Figure 4 demonstrates that a Youtube video
can play when our extension is turned on in Chromium.

We also measure if our extension slowdowns the load time of actual web-
sites. We test this by getting the load time numbers in the Network debug in
a Chromium browser for top websites in Alexa and several Vietnamese news,
with and without our extension. We disable alert and debug messages and load
each website ten times to get the average numbers. Figure 5 illustrates the load
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Fig. 4. Youtube video can be played functionally with MyWebGuard extension in
Chromium

time overhead of our extension over ten popular websites. As we can see from
this graph, our MyWebGuard tool does not pose a great slow down in load
time. The average slow down ratio is 1.33, but in some cases, the load time is
even faster with our extension. For example, the slow down for https://ebay.
com and https://vnexpress.net is 0.95 and 0.99, respectively. This improvement
might be due to the fact that some wrapped operations can be executed faster
than the original ones, as reported in the literature [48]. We note that we test
https://facebook.com and https://mail.google.com in logged-in sessions because
the content of these web pages are too light to test without logged-in.

Fig. 5. Load time overhead of MyWebGuard in actual websites

6 Conclusions and Future Work

In this paper, we have presented MyWebGuard, a user-centric tool to protect the
privacy of web users. MyWebGuard can enforce context-aware and code origin-
based policies to prevent privacy leakage channels that cannot be captured by
existing tools in the industry. The evaluations of our prototype implementation
evidence that our novel enforcement method can effectively protect the privacy
of web users yet pose lightweight overhead on popular real-world websites.

https://ebay.com
https://ebay.com
https://vnexpress.net
https://facebook.com
https://mail.google.com
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In the future, we plan to extend and refine the security policies as well as
the enforcement mechanism to allow end-users can customize their privacy pref-
erences. We will perform large-scale evaluations of our tool on top websites and
investigate whether our tool interferes with co-existing browser extensions. We
also plan to leverage machine learning to produce practical policies that protect
users but do not break legitimate third-party code. Our objective is to provide a
robust and mature tool that web users can use in the real-world to protect their
privacy. We also want to explore the effectiveness of our approach when built-in
into a browser.

Acknowledgment. The authors wish to thank the anonymous reviewers for their
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