
Detect Abnormal Behaviours in Ethereum
Smart Contracts Using Attack Vectors

Quoc-Bao Nguyen1, Anh-Quynh Nguyen2, Van-Hoa Nguyen3,
Thanh Nguyen-Le3, and Khuong Nguyen-An1(B)

1 University of Technology (HCMUT), VNU-HCM, Ho Chi Minh City, Vietnam
{1510180,nakhuong}@hcmut.edu.vn

2 Nanyang Technological University, Singapore, Singapore
aqnguyen@ntu.edu.sg

3 Verichains Lab, Ho Chi Minh City, Vietnam
{vanhoa,thanh}@verichains.io

Abstract. Blockchain has gradually been popularized by its trans-
parency, fairness, and democracy. This technology has opened the door
to the development of Ethereum, a blockchain platform with smart con-
tracts that can hold and automatically transfer tokens. Like a legacy
computer program, smart contracts are vulnerable to security bugs. In
recent years, many successful attacks on Ethereum network have been
recorded, cost victims millions of dollars. In this paper, we classify attack
vectors of Ethereum smart contracts, then propose some behaviour-based
methods to detect them. To realize the ideas, we implement Abbe, a tool
that can not only discover known attacks but also detect zero-day vul-
nerabilities.

Keywords: Smart contract · Security · Ethereum · Blockchain

1 Introduction

The term smart contract was conceived by Szabo [24] in 1994, which simply
describes a computer program facilitating the terms and conditions of a real-
world contract. These negotiations are presented as ‘if-else’ statements. For
example, “if A transfers money to B, A may gain access to B’s apartment”.
Different from normal contracts, smart contracts automatically enforce these
negotiations once the predefined conditions are satisfied, without the interfer-
ence of an authorized notary or a trusted third-party. Although this concept has
existed since the early of 90s, due to a missing prerequisite, namely, a decen-
tralized platform, smart contracts could not come into use until the birth of
blockchain technology.

Since Nakamoto [18] introduced the concept of blockchain in 2008, a large
amount of attention has been paid to this prominent technology. At this time,
Nakamoto represented his idea through an implementation version named Bit-
coin. The blockchain technology is claimed to have many interesting properties,
c© Springer Nature Switzerland AG 2019
T. K. Dang et al. (Eds.): FDSE 2019, LNCS 11814, pp. 485–505, 2019.
https://doi.org/10.1007/978-3-030-35653-8_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35653-8_32&domain=pdf
https://doi.org/10.1007/978-3-030-35653-8_32

486 Q.-B. Nguyen et al.

including transparency, fairness, and democracy. These properties are manifested
whilst all member nodes in the network hold a replica of the blockchain shared-
data. The data is publicly-verifiable, tamper-resistant even in the absence of a
trusted party. This is because all nodes have equal rights to commit new updates
into the shared-data of blockchain. In order to guarantee the network synchro-
nization, every new update must be processed through a cryptographic scheme
which ensures all new records are verified by all nodes and securely appended
into the database of these nodes. In 2014, in the a improvement proposal of Bit-
coin, a new op-code was added to describe a specific time in the future at which
the transaction will be executed. There remains the fact that this enhancement
is not enough to make up the features of a smart contract. In 2013, Buterin et al.
[8] first combined the concept of smart contract and the blockchain technology
and successfully implemented into a platform named Ethereum. Among current
blockchain platforms, Ethereum, whose capitalization has reached 34 million dol-
lars in June 20191, stands out to be the most prominent framework supporting
smart contracts.

Due to being developed and running on top of blockchain infrastructure,
smart contracts inherit certain interesting properties. The bytecode of smart
contracts is immutable i.e., cannot be tampered once deployed. Moreover, the
results returned after smart contract execution are irreversible and permanently
recorded inside the blockchain database. However, smart contracts basically are
computer programs which may contain vulnerabilities due to either mistakes of
developers or the instinct of programming language. Recall that the most inter-
esting property of smart contracts is the ability to hold ether, which creates
economic incentive to be attacked. Many security vulnerabilities have been dis-
covered by systematic exposition [2], practical development experience [10] and
analysis of Ethereum smart contracts [14]. Some of these vulnerabilities actually
have been exploited in real world attacks leading to hundred millions dollars
drained [1,11,20,23].

To address these issues, many security research teams [14,17,21,26] have
conducted solutions for auditing smart contracts’ source code before deploying
them onto the blockchain. However, this approach only deals with security issues
in the development stage, which is before the execution stage in a life-cycle of
a product. It is demanding to identify whether the execution of smart contracts
contains any security issues. A solution addressing this problem can be helpful
for smart contracts’ developer team as they can detect abnormal behaviours,
or worst, recognize money loss in their contracts and make quick responses to
those incidents. Moreover, this solution can be used by blockchain developer to
improve their infrastructure regarding to occurred issues. However, up to now,
there is no related work tackling the above-mentioned problem.

Indeed, the smart contracts cannot start to execute themselves but have to
be triggered by several external entities such as other contracts or, especially,
by users. The appearance of security issues is now mostly from the transactions
that users send to the smart contracts. This paper proposes several methods

1 https://coinmarketcap.com/currencies/ethereum/.

https://coinmarketcap.com/currencies/ethereum/

Detect Abnormal Behaviours in Ethereum Smart Contracts 487

to discover abnormal behaviours in Ethereum smart contracts of Ethereum by
detecting their attack vectors. We built a tool named Abbe to demonstrate the
methods.

Our contributions in this paper are threefold:

• Our work collects known vulnerabilities from many scattered sources and
systematically classified them.

• We then define an attack vector for each vulnerability. Afterwards, we record
all tracks that are left by each attack vectors and classified them according
to some properties.

• Since each property in these tracks category requires different preliminaries to
be detected, we also implement several modules to handle them. A tool named
Abbe, is implemented and can detect abnormal executions in all transactions
of Ethereum smart contracts.

2 Backgrounds of Ethereum Smart Contracts

Ethereum is a transaction-based state machine in which smart contracts execute
as regards the intentions of developers. Ethereum has its own virtual machine,
named Ethereum Virtual Machine (EVM), to execute smart contract code.

1 contract BobCompany {
2 mapping (address => uint) stock;
3 uint stockPrice;
4 constructor () {
5 stock[0 x00000000000000000000000000000000deadbeef] = 100
6 };
7 function buyStock (address _from , address _to , uint _amount) payable

{
8 if (stock[_from] == 0 || msg.value == 0) throw;
9 if (stock[_from] > _amount && _amount*stockPrice < msg.value) {

10 stock[_from] -= _amount;
11 stock[_to] += _amount;
12 }
13 }
14 function sellStock(address _from , uint _amount) {
15 if (stock[_from] > _amount) {
16 stock[_from] -= _amount;
17 msg.sender.transfer(_amount*stockPrice);
18 }
19 }
20 }

Listing 1. An example of smart contract

Programming. At first, smart contracts are programmed in high-level pro-
gramming languages, e.g. Solidity (a likewise of C and Javascript), Vyper (a
contract-oriented language), LLL (a low-level language similar to Lisp), etc. A
simple smart contract written in Solidity is illustrated in Listing 1 which fea-
tures buying stock of Bob company. In this contract, Bob owns initially 100
percent of his company stock which defined in constructor function (line 5).
This constructor executes exactly once during the deployment of contract.

Deployment. In order to be run on-top of EVM, the source code is compiled
into EVM bytecode [27]. Afterwards, an address is determined for this new
contract. Information of the address along with its corresponding bytecode is

488 Q.-B. Nguyen et al.

stored by all nodes in blockchain network assuring these data could not be altered
after deploying.

Execution. Assume that, Alice—a businesswoman—is willing to buy a cou-
ple of stock from Bob’s company, she actually sends an appropriate amount of
ethers2 via a transaction to the contract. Afterwards, the contract verifies some
pre-defined conditions to proceed her demand. For example, if Bob held no stock
or Alice did not send any ether (line 8), the contract could raise an exception
to revert all temporary changes, return Alice’s ether, etc., but all fees are con-
sumed. Otherwise, if all conditions were satisfied as shown in line 9, the contract
would make changes in Alice and Bob’s balances, respectively. Moreover, if Alice
calls sellStock function (line 14) to sell a couple of her stocks, the contract will
essentially create a call, a.k.a. internal transaction, to finish her order (line 19).
Note that, a contract is able to send ethers to another normal account or invoke
functions of other smart contracts. It is important to be aware that each trans-
action may interact with contract to invoke a function and requires fees (named
gas3 in Ethereum) to be processed by all nodes in the blockchain. Due to this
reason, smart contracts are only suitable for low computational effort tasks such
as signature verification, money transfer. The restriction placed by gas is for
preventing the whole Ethereum network from being abused.

3 Taxonomy of Vulnerabilities

3.1 Reentrancy

In terms of transaction processing, atomicity and sequentiality are two among
four essential properties of a transaction. Those properties are represented as a
non-recursive function cannot be invoked until the function execution state ends
up in a terminated state. However, fallback and call functions may break those
properties of contracts, since they allow an adversary to continuously recall, or
to re-entrant, before the termination of the transaction. This vulnerability is
illustrated in a simple version contract (see Listing 2) of the historical attack of
the Decentralized Autonomous Organization (DAO) [11] in 2016, which caused
the loss of $60M dollars in total.

contract Alice { contract Fraudster {
bool sent = false; function () payable {
function send(address c){ Alice(msg.sender).send(this);

if (!sent) { }
c.call.value (1)(); }
sent = true;

}

}
}

Listing 2. Contract contains reentrancy

2 Name of the cryptocurrency used in Ethereum blockchain. Ether can be transferred
among accounts and exchanged to other currencies. 1 ether will be exchanged for
each US$217 (recorded at Aug 18, 2019).

3 Price per each unit of gas is determined by the sender. The higher the price, the
faster the transaction may be processed. All consumed gas must be paid in ether.

Detect Abnormal Behaviours in Ethereum Smart Contracts 489

In this contract, Alice is able to call to an arbitrary contract deployed at
address c with an empty signature, which means invoking the fallback of recip-
ient, and unlimited gas. For re-withdrawal prevention, sent is meant to be set
to true after c successfully withdraws 1 ether. However, before switching to
the terminated state, the fallback of Fraudster re-enters the send function of
Alice and forces her to transfer ether endlessly, since sent still has value equal
to false.

3.2 Gasless Send

A send function can be used in order to transfer ether among accounts with a gas
stipend equals to 2300 units. However, this limited amount of gas is only enough
to perform a single instruction (transferring ethers in this case) and cannot
used for executing more complicated business logic that may lead to an “out-of-
gas” exception. Different from c.call.value(amount)() at which the callee’s
signature is empty and all remaining gas is passed, send and call will return
false to the caller contract (instead of throwing an exception and terminating
transaction execution), and continue to execute the rest of instructions after the
call to c with the remaining gas. Note that, the return values of call and send
are often disregarded by developers; therefore, the remnant of code continues to
execute at risk without any restriction.

3.3 Force-Sending Ether by Suicide

A smart contract is able to self-destruct for cleaning up all related information
about itself in the blockchain data, including its bytecode and storage. These
pieces of data will no longer exist from this point. And after the moment of
self-destruction, this contract will transfer all ether that it is holding to another
pre-defined contract.

Unlike a regular call, selfdestruct function does not invoke the fallback
function of the recipient, but the balance of recipient is altered without any
restriction. Assume that, the recipient is not allowed to receive any ether to
prevent some adverse functions can occur. For example, a contract may discard
all incoming ether transfers to it by reverting the transactions which trigger
its fallback function. This is because some negative impacts may happen if the
contract balance contains a positive value.

3.4 Integer Overflow

In Ethereum smart contract, balance of an arbitrary account is presented by an
unsigned 256-bit integer denoted as uint256. After transferring, balances of the
sender and receiver will be updated respectively. Because operations are being
done in the 32-byte integer field, an integer overflow can happen in case there is
no verification. Consider a contract (illustrated in Listing 3), where Alice will be
able to withdraw some ether if her balance satisfies to some conditions. However,

490 Q.-B. Nguyen et al.

if the conditions are set unrestrictedly, she still can proceed her transfer call.
In Ethereum, let imagine a 1-byte integer works as an odometer, clocking from 0
to 255 and rollover to 0 afterwards. Hence, in 32-byte field, the operation of 0–1
yields a result of 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ≈ 3.4 × 1038, instead
of −1. This means that the business logic of smart contract works unintendedly
since Alice’s withdrawal draft is not rejected. Alice now, therefore, can endlessly
withdraw 1 ether from the contract until contract balance runs out at 0.

1 function withdraw () {
2 if (balance[alice] > 1) {
3 balance[alice]--;
4 alice.transfer (1);
5 }
6 }

Listing 3. Contract contains integer overflow

3.5 Array Overflow

Recall that contracts in Ethereum hold the root of a Merkle Patricia tree in
which all permanent data of the corresponding contract is stored. Each node in
the tree is identified by a 256-bit index. Each contract, therefore, has ability to
store up to 2256 32-byte virtual storage slots. It seems that collision cannot
happen since variables are stored in distinct slots.

However, Hoyte [12] showed that there may exist unexpected data overridden
if a dynamic array is declared in contract. In Listing 4, isAttacked and map vari-
ables are stored at 0x00..00 and 0x00..01 slot (64 hex-character in length),
respectively. Since map is a dynamically allocated variable, its elements must
be stored somewhere else which is nonconsecutive to two mentioned variables.
The index of the first element of map is map[0] → KECCAK256(index of map)
= KECCAK256("00...01") = 0xd874...2827, and the rest follows this slot.
Because the dynamic array has no upper-bound for its number of elements,
the index of element will increase linearly as the array expands. This results in
an element will be allocated at index of 0xFF...FF (64 F’s). The next element
will be in the 0x00..00 slot (slot indexes are also 256-bit integer) which are
collided to value of isAttacked.

1 contract ArrayOverflowBug {
2 bool public isAttacked;
3 uint256 [] map;
4

5 function set(uint256 key , uint256 value) public {
6 // Expand dynamic array as needed
7 if (map.length <= key) {
8 map.length = key + 1;
9 }

10

11 map[key] = value;
12 }
13 }

Listing 4. Contract contains array overflow

Detect Abnormal Behaviours in Ethereum Smart Contracts 491

3.6 Uninitialized Storage Pointer

In EVM, both memory and storage are used for handling stored value of contract
variable. According to Ethereum’s specification, a variable declared outside of a
function are stored in storage by default. Meanwhile, the position where to store
in-function variable is determined by the corresponding variable type. In details,
elementary type variables (e.g. int, bytes, bool, etc.) are stored in memory;
other complex types such as array and struct, however, have their value in
storage.

1 contract StructStorageBug {
2 struct Donation {
3 uint256 timestamp;
4 uint256 etherAmount;
5 }
6 Donation [] public donations; // slot 0
7 address public owner; // slot 1
8

9 function donate(uint256 etherAmount) public payable {
10 Donation donation;
11 donation.timestamp = now;
12 donation.etherAmount = etherAmount;
13

14 donations.push(donation);
15 }
16 }

Listing 5. Contract contains uninitialised storage pointer

Related to this innate of EVM, Beyer [4] explained a complex attack exploit-
ing this dangerous behaviour. Consider a sample contract in Listing 5. If a donor
transfers ether to this contract, it will record the amount and time the dona-
tion would have been sent. All donations are handled by an array of structures
donations which is stored at slot 0 of storage. In addition, the fundholder has
her address declared at slot 1. This owner address is required to perform some
severe tasks such as drawing on the fund and must not be amended unless
all pre-defined conditions are satisfied. However, notice that a local variable
donation is declared at Line 10, whose type belongs to complex types. Hence,
donation is not stored in memory but becomes a pointer to storage. Note that,
the donation variable is not initialized resulting being allocated at slot 0 of
storage by default, instead of at memory. Hence, in the next following line,
the assignment to donation.timestamp will be essentially overriding over the
donations variable. Similarly, owner will be overridden by the assignment to
etherAmount property. In order to gain permission to this contract, an adver-
sary could simply make a donation with his account address as parameter.

3.7 Overridden by Delegate Call

Since smart contracts have limitation in code size at approximately 24 KB [7],
they may need to recycle functions from other contracts as using libraries in pro-
gram development. Solidity allows contract to invoke functions of other contracts
via delegatecalls whereas the context of storage, information of msg.sender
and msg.value are preserved [6]. However, this call may be considered as a secu-
rity risk for the caller contract because it must trust the callee contract which
is permitted to commit changes on caller’s storage [9].

492 Q.-B. Nguyen et al.

In many cases, the address of caller is immutably determined in the callee
contract source code. Problems will occur if this address can be manipulated
by an adversary. Note that, all variables in the caller are treated as pointers to
the callee’s storage, which means all amendments during callers’ execution will
affect on callee’s storage without any verification. The detailed explanation for
a historical attack to “multi-sig” wallet Parity was described in [20].

4 Detection Methods for Attack Vectors

In this section, we introduce our detection methods for each type of attack vec-
tors. In simple terms, smart contracts may contain vulnerabilities, which cause
contracts to run on an unplanned scenario. However, these vulnerabilities are
still harmless until an adversary takes advantage by exploiting them. Gener-
ally, he must send transactions, which are termed as attack vectors in security
field, to exploit these vulnerabilities. These attack vectors are divided into cate-
gories, which will be explained in detail in Subsect. 4.1, according to the tracks
that they left during the execution of attacking. The detailed explanation of the
methods for detecting these attacks can be found in the subsections following
the classification.

4.1 Category of Attack Vectors

In order to establish categories for assigning the known attack vectors, we show
typical examples to illustrate how vital evidence left whilst attacking. In terms
of transaction results, the final result, which is comprised of the shift in
involved addresses balance, consumed gas amount, etc., can be used to label the
category. For example, the average gas amount used to proceed a transaction in
Ethereum blockchain is approximately 21,000 units. This common number of gas
usage can help detect any transaction consuming a huge amount of gas. Besides,
the intermediate result calculated during transaction execution, including
temporary values of all operations in stack and memory of smart contract, can
lead to a successful attack. Consider a step in stack using SUB operator with two
corresponding parameters 0 and 1, this operation leads to a result of 0xFFFF..FF
(64 F’s) since integer overflow happens here. This unusual output can be worse
if these numbers, respectively, present for an adversary tried to send 1 unit of
token, while her balance was at 0 but the receiver got an unacceptably high
amount of value.

In another aspect, each contract is able to store 2256 32-bytes-long slots,
which form contract storage. Any modifications in the storage also help to rec-
ognize whether the smart contract has been exploited. Some attacks seemed
to alter the storage values to unusual ones. The irregularity is presented in
value of variable, where i.e., the address of an immutable contract owner has
been changed to an extraordinary address. For another example, the balance
of an account is often declared in balance variable. If this variable contains
an extremely high value, we may consider it as being modified by an unusual

Detect Abnormal Behaviours in Ethereum Smart Contracts 493

behaviour. Moreover, changes in storage can be counted as abnormal regard-
ing to type of variable. In some attack scenarios, the storage slots are over-
written by values whose type mismatches to the declared type of correspond-
ing variables. For instance, assume that uint256 variable holds the value of
0x54686973497341537472696e6700..00 which infers to a meaningful string—
ThisIsAString. In such cases, we can imply that there have occurred abnormal
transactions.

Table 1. Category of attack vectors according to their tracks

Level Attack vector Result Storage

Final Internal Value Type

Solidity Reentrancy � � — —

Gasless send — � — —

Force-sending ether by suicide — � — —

EVM Integer overflow — � — —

Array overflow — � � �
Uninitialised storage pointer — � � �
Overridden by delegate call — � � �

To sum up, our category of attack vectors consists of the unusual value in final
and intermediate results of the transaction; and the extraordinary modification
in type and value in the storage of the involved smart contract. Table 1 represents
our classification. Recall that the findings of these attack vectors along with their
description are collected from [2] and many security blogs and will be represented
in the next following subsections.

Additionally, based on possible methods to detect whether an incoming trans-
action is an attack vector, detecting each attack vector requires vary inputs. Dur-
ing experiments, we found that there are three valuable factors may be used as
input for the detection. For details, we need to perform the detection algorithms
on only the newest transaction or all previous transactions. Moreover, only con-
tract bytecode is involved in the detection stage, or we also need the information
of corresponding source code. And lastly, the storage is whether used as input
data to detect the attack. Table 2 summarizes the necessary inputs for detecting
each type of attack vectors.

4.2 Reentrancy

During the exploitation of this attack, a chain of nested internal function calls
was created, in which internal calls have a same information of sender and recip-
ient. In order to capture the attack, we re-execute the transaction and verify if
there exists any nested internal calls with duplicated patterns. Note that, the
duplicated calls do not need to be called right after another call, but can be
squeezed in by some manipulated calls created by the attacker.

494 Q.-B. Nguyen et al.

Table 2. Inputs for detecting each type of attack vectors

Attack vector Transaction Contract Storage

Integer overflow Current Bytecode No

Reentrancy Current Bytecode No

Gasless send Current Bytecode No

Force-send ether by suicide Current Bytecode and sourcecode No

Array overflow Current Bytecode No

Uninitialised storage pointer All Bytecode and sourcecode Yes

Overridden by delegate call All Bytecode and sourcecode Yes

4.3 Gasless Send

The detection method for this kind of attack is similar to reentrancy case. Note
that, in gasless send attack vector, there exists at least a failed internal transac-
tion while its parent transaction executes successfully. At EVM bytecode level,
an internal transaction is considered as success if its last instruction is either
STOP or SSTORE [16]. Meanwhile, an internal transaction fails to execute when
reach to these following conditions (see Fig. 1):

• Function call is reverted by assert() function and generates INVALID instruc-
tion;

• Function call is reverted by either revert() or throw() and generates REVERT
instruction;

• Execution is terminated at an arbitrary step where gas stipend is all con-
sumed, resulting in a field named error = {} generated in debug logs.

To detect this kind of attack vector, we track through nested calls, starting
from the deepest transaction in debug logs, and apply these following steps.

Step 1. Verify whether current transaction is reverted, according to above-
listed conditions;
Step 2. Verify whether ancestor transaction is consequently reverted:

• If ancestor transaction is an internal call, we will apply Step 1 to this
transaction;

• If ancestor transaction is a normal transaction, we will need to make sure
that this transaction executes successfully, described by false value in
failed field of debug calls.

4.4 Force-Sending Ether by Suicide

In this kind of attack vector, we consider the recipient contract as the supervised
target (instead of the contract committing suicide). Note that, payable keyword
is used to declare that this contract ignores all ether. Therefore, we detect suicide
to force-send ether by two steps:

Detect Abnormal Behaviours in Ethereum Smart Contracts 495

(a) Successfully executed internal transaction

(b) Unsuccessfully executed internal transaction

Fig. 1. Stack states of internal transaction

• Generating abstract syntax tree (AST) while compiling sourcecode. Checking
value of payable field of fallback function.

• Re-executing all transactions in blockchain, and filtering SELFDESTRUCT
instruction with its corresponding recipient address. Verifying if this address
matches address of supervised contract.

4.5 Integer Overflow

The root cause of integer overflow vulnerabilities is because all arithmetic oper-
ations are not checked for overflow at the EVM level. However, this instinct
is not improperly developed due to two important purposes. Firstly, reducing
the number of computational steps that allows users to pay a smaller fee of
gas. Secondly, EVM needs overflowed results for some specific tasks. For exam-
ple, to invert 0x00001010 to 0x11110101, EVM will start at 0xFFFFFFFF = 0
- 1 and calculate 0x00001010 XOR 0xFFFFFFFF to get the desired result. In an
Ethereum improvement proposal, Alex Beregszaszi [3] listed all possible cases
lead to integer overflow, including:

• DIV and SDIV with a zero divisor;
• ADD, MUL, EXP equals to a result whose length is greater than 256 bits;
• SUB when the subtrahend exceeds minuend;
• SDIV when −2255 divided by −1;
• ADDMOD and MULMOD with mod equals 0;
• SIGNEXTEND when the parameter of position is greater than 31.

496 Q.-B. Nguyen et al.

In terms of detecting this integer overflow attack, we catch all unexpected
overflowed results appearing during transaction execution satisfying the above-
mentioned conditions. However, all exploitation related to this attack are found
to be invoked by a function along with extraordinary parameter values, which
are all controlled by the adversary. In order to improve the detection algorithm,
we introduce tracer aiming at backtracking over each step in the stack if an
overflowed value has origin from user’s input.

Figure 2 illustrates how stack state changes after each instruction. In the
upper image, the result from ADD op-code is considered as overflow due to two
reasons, (i) the first parameter 00000022 is calculated from a value loaded by
CALLDATALOAD, and (ii) the result is truncated to a 4 bytes value. Meanwhile,
in the lower image, although ADD gives a result which is overflowed, two input
parameters do not originate in a CALLDATALOAD opcode but are pushed directly
from the contract’s bytecode via PUSHx instead.

Fig. 2. Example of stack trace in integer overflow

4.6 Array Overflow

The detection method for this case recycles results from integer overflow. Indeed,
starting from instructions detected as related to integer overflow attack vector,
we track straightforwardly through stack states to capture SSTORE instructions
which use overflowed value to determine the index of slot to modify (see Fig. 3).

Fig. 3. Stack states of array overflow attack vector

Detect Abnormal Behaviours in Ethereum Smart Contracts 497

4.7 Uninitialized Storage Pointer

It is important to note that all data transfers (reading and writing) among
stack, memory and storage are done over 32-bit field. However, there is no type
checking is done for all operations in EVM, including those transfer operations.
Because of that, type-mismatching between variable type and variable usage
context can occur. For instance, an arbitrary address variable as owner in the
previous example can easily overridden by a uint256 value. In fact, according
to Solidity documentation4, each type of variable in EVM has different layout of
state variable. Therefore, to detect whether a write-access is trying to override
the storage, we propose a heuristic based on involved constructs’ type.

On purpose of implementing this heuristic, we need the help of a storage
recreator for each contract. From the input of AST and amendments on each
transaction, we can recover the information of each byte in storage including
its corresponding type, value and to which variable this byte belongs. On each
transaction altering contract storage, we will mark it as a suspicious transaction
if one of the following condition is violated:

1. Unallocated bytes i.e. bytes that present the value of no variable, are written
illegally;

2. A slot belonging to a mapping variables is altered;
3. A slot of a non-string variable contains an in-string-format value;
4. A huge value is stored in a slot that represents value of a dynamic array.

Finally, the algorithm to detect this kind of attack is described as follow.

Step 1. Filtering all transactions interacting to the supervised contract;
Step 2. On each transaction, seeking for SSTORE:

• If this operation is performed on an untracked slot, marking its corre-
sponding type;

• Else, verifying this operation according to above-defined conditions.

4.8 Overridden by Delegate Call

The detection method for this attack vector is similar to Uninitialized storage
pointer (see Subsect. 4.7) since it is based on storage overrides. The only differ-
ence is we need to verify whether the SSTORE is performed in the context of a
DELEGATECALL whose caller is the supervised contract.

5 System Architecture

In order to investigate attack vectors sent to smart contracts in Ethereum
blockchain, we introduce Abbe—the abnormal behaviours detecting tool. Our
tool takes several information of contracts as input parameters as regards type of
4 https://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-

variables-in-storage.

https://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
https://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage

498 Q.-B. Nguyen et al.

attack vectors. This section presents our proposed architecture for Abbe, which
is comprised of five components as illustrated in Fig. 4.

Contract Initialization. At the first step, the Contract Initialiser module gets
address and sourcecode with respect to the supervised contract for initialization
purpose. Users must specify the address at the beginning. Meanwhile, this mod-
ule will seek for the source-code of contract in Etherscan. Etherscan is the de
facto location for exploring and seeking Ethereum transactions, tokens, smart
contracts, etc. The source-code that belongs to an arbitrary smart contract is
committed by the developers and is double-checked on Etherscan by comparing
two versions of bytecode, one is fetched from Ethereum blockchain and the other
one is taken after compiling the submitting sourcecode. In case of the source-
code is missing in Etherscan, another option is preferred, a local path leading to
sourcecode must be specified by the users.

Fig. 4. System architecture of Abbe

Block Parsing and Transaction Parsing. After loading, this module con-
tinues to compile sourcecode of the smart contract into bytecode form. During
this step, the compiler generates an abstract syntax tree containing information
about type, scope, and other properties of all tokens in contract source. Note
that there are nearly 50 versions of Solidity compiler which may be used to
compile the contract source code. Because of this massive amount of releases,
instead of importing all releases of compiler, the Initialiser finishes this step with

Detect Abnormal Behaviours in Ethereum Smart Contracts 499

the help of a remote compiler solcjs5, featured by web3 library, for the sake of
convenience.

Simultaneously, the Block Listener and Parser module serves as a listener that
fetches new blocks from the Blockchain Provider. Blockchain Provider essentially
is the main application programming interface (API) of an Ethereum client,
which is GETH in this tool. All new blocks are generated, processed by GETH
and are emitted to all connections that GETH holds via its main API. On input
the new block, this module parses it into block header along with all transactions
grouped inside. Each parsed transaction will be processed by the Transaction
Parser module in the next step.

Transaction Parser. This module takes all information of each transaction
as its input, and then filters out the data of hash, sender address, receiver
address, consumed gas amount, etc. The use of this information helps call the
debug traceTransaction API to generate corresponding debug logs. This API
is provided by the GETH provider mentioned in the previous step.

Storage Recreation. Following these steps, the relevant information of smart
contracts including the AST of contract and debug logs of all executed transac-
tions (regardless of whether their transaction type is normal or internal) from
genesis block is used as input for the Storage Recreator module. At this time,
the Storage Recreator creates a mapping table of variables’ name, type, and slot
storage index where its value stored.

Transaction Diagnosis. Finally, the tool passes data of AST, address and
storage of the contract, along with all transactions attached with their debug logs
into Laser—the diagnosing module. On each incoming transaction, this module
matches it to the pre-defined attack vectors patterns, and returns whether this
transaction is considered as an abnormal behaviour.

6 Implementation and Testing

According to the architecture introduced in Sect. 5, we successfully implemented
the Abbe tool6,7 and performed testing in our private Ethereum network. Since
our implementation requires an archive node of GETH client, the large-scale
experiment of Abbe in Ethereum mainnet will be carried out in future work.

To start, users have to determine the address of contract and specify the local
path leading to contract sourcecode, if exist. Users are also allowed to configure
the number of block where Abbe starts to perform detection. A snapshot of a
sample result given by Abbe is illustrated in Fig. 5. On each input transaction,

5 All releases of solcjs are listed at https://ethereum.github.io/solc-bin/bin/list.js.
6 The private repository of Abbe is located at https://github.com/nxqbaos/abbe2.

Access to this repository is granted upon requests.
7 The Abbe tool has been invited to be presented at

Hack In The Box (HITB+) Cyber Week’s Conference, Oct. 15–17, 2019, Abu
Dhabi, UAE.

https://ethereum.github.io/solc-bin/bin/list.js
https://github.com/nxqbaos/abbe2
https://cyberweek.ae/session/abbe-detecting-attacks-in-ethereum-smart-contracts/

500 Q.-B. Nguyen et al.

Fig. 5. Sample result given by Abbe

if there is any abnormal behavior detected, Abbe will put out an alert. The
format of output is as follows. First, the LASER yields the hash of the transaction
that performs attack and its final state, which is FAILURE or SUCCESS. The
next following lines represent the name of the detected attack vectors and their
corresponding information. This information consists of different fields according
to each type of attack vector. Generally, these fields include:

• EVMOpcode: Instruction mnemonic.
• ExecStep: The execution step counter in the debug log.
• EVMDepth: The depth number of the current call in the list of nested call. This

number of depth starts from 1, equivalent to the origin call which is triggered
from a normal transaction.

• ErrMsg: The cause that leads to failure of internal transaction (in Gasless-
Send case); or, the cause leading to override in contract storages (in
DelegateCall and UninitPointer case).

The test suite that we used for testing Abbe comprises of contracts con-
taining vulnerabilities, or have been attacked in the past, or have been collected
from [2,22,28]. On each attack vector, we performed multiple test and visualize
the result in the confusion matrix form.

Especially, as for three attack vectors reentrancy, gasless send and force-
sending ether by suicide in the Solidity level, the tool is able to fully detect
all transactions exploiting these three vulnerabilities. The confusion matrix in
Table 3 shows that there is no false detection occurring during the tests.

However, while performing test on smart contracts that contain reentrancy
vulnerability, the tool detects that there also exist the gasless send attack. This
is because the pattern of gasless send is similar to the reentrancy case. Recall
that, a transaction related to the reentrancy behaviour recursively calls a spe-
cific function until gas is all consumed. When this transaction creates the call

Detect Abnormal Behaviours in Ethereum Smart Contracts 501

Table 3. Testing results in Solidity level cases

Reentrancy Gasless send Suicide to force-send

Pos Neg Pos Neg Pos Neg

Result of Abbe Pos 10 0 29 0 10 0

Neg 0 7 0 10 0 0

which is the most-inner internal transaction, the gas that passed into this call
is insufficient to execute that function properly. Hence, we consider all gasless
send alerts caused by reentrancy is valid.

Besides, for early awareness of being attacked, we also record all transactions
which attempt to perform gasless send attack but result in failure. To achieve
this, Abbe marks the transactions having the attack pattern of this case, in
other words, there exists an internal transaction which got an insufficient gas
stipend, although the transaction ended up in a failed state.

Table 4. Testing results in overflow cases

Integer overflow Array overflow

Pos Neg Pos Neg

Result of Abbe Pos 30 3 13 1

Neg 28 36 0 12

Meanwhile, as for integer overflow, the result in the Table 4 shows that our
Abbe tool produces positive result as it passes most of test cases. However, there
are 28 test cases that lead to false negative, since the tool only defines integer
overflow pattern on the field of 32-bit integer. The detection of overflow in fields
whose bit-size is smaller will be supported in further work. A small number of
false positive is recorded. These false positive results happen when there exists
reentrancy in the transaction.

As for the array overflow case, the result achieved is apparently impressive
since there is only 01 false positive left. In this test case, the input does create
an intermediate result which is arithmetic overflowed. Recall that our algorithm
detects array overflow by verifying whether the calculations of slot index that to
be written are overflowed. The overflow of intermediate result, however, is equal
to the index of slot that need to be written in the storage, while the calculations
for identifying the slot indexes are not related to the input values.

Lastly, the results obtained when applying the heuristic to detect two attack
vectors related to overriding on EVM storage is presented in Table 5. Although
Abbe can recognise attacks in many testcases, our tool still fails under some
tricky inputs.

502 Q.-B. Nguyen et al.

Table 5. Testing results in heuristic-based cases

Delegated call Uninitialised pointer

Pos Neg Pos Neg

Result of Abbe Pos 8 1 8 1

Neg 13 9 11 10

The false negative results are all caused by the mishandling the verification in
types of value. In our proposed algorithm, the detecting pattern checks whether
the actual type of the input value and the expected type of the accessing slot
are mismatched. Due to this reason, if the input value and the slot have the
same type, our tool cannot detect the abnormality occurred. Besides, if the slot
containing data of some variables which are padded together into a form of 32
bytes, e.g. uint16=0x6464, uint232=0x0, bool=true sequentially, is overridden
by a string, Abbe also cannot catch this illegal write access since the string
has the value of 646400...0001 which matches the value-format of that slot.
Generally, Abbe has a drawback in detecting attacks that exploit mismatches
in types. However, this major drawback is because the checks for arithmetic
instructions in EVM is not accomplished.

The only false positive is produced when an arbitrary variable is set to an
extremely large value. Especially, users can set array name.length to a huge
value for some specific purposes. However, this situation may not happen in real
contracts since array name.length regularly cannot be changed manually, or
altered to a huge value as in our test.

7 Related Work

Taxonomy of Vulnerabilities. Our work is guided by the previous taxonomy
of Atzei et al. [2], the first classification that divides Ethereum smart contract
attacks into three categories according to three levels of smart contracts. Since
this work published, many new vulnerabilities have been reported and described
by many personal blogs. Therefore, we append those new vulnerabilities that
our tool can detect into the existed taxonomy.

Smart Contract Security Analysis. To the best of our knowledge, there has
not existed any work investigating attacks detection in smart contracts so far.
The major attacks recorded in the past few years were all discovered manually.

In efforts to feature smart contract security analyses, many security teams
provide solutions to tackle this problem. The project introduced by SmartCheck
[21] supports detecting vulnerabilities in the smart contracts’ source code based
on the defined bug patterns. Because this tool performs analysis on only Solidity
level, the vulnerabilities that can be detected are independent of contracts’ logic
flaws. Oyente, introduced by Luu et al. [14], is a security analysis tool that
relies on both contracts’ source code and bytecode to perform symbolic execu-
tion. Moreover, Oyente aims to detect four specified vulnerabilities, including

Detect Abnormal Behaviours in Ethereum Smart Contracts 503

integer overflow, transaction dependency, stack-depth and reentrancy. On the
other hand, our tool focuses on detecting the exploit transactions and in a wider
range of vulnerabilities.

In the same vein with Oyente, the tool Maian [15], Mythril [17], Man-
ticore [19] and Securify [26] perform analyses for vulnerabilities in smart
contracts by using symbolic execution on EVM bytecode. This approach, how-
ever, produces all possible condition paths as all logic flaws that the contract
execution can reach. As the size of contracts enlarges, these tools need to ver-
ify a larger number of paths, the consumed-time for security analysis therefore
increase. On the other hand, Abbe not only reason about EVM bytecode but
it also analyses Solidity source code of the contracts since each vulnerability is
expressed differently in these two levels.

Tann et al. [25] used a divergent method that applied sequence learning
to detect security threats in smart contracts. By using long-short term memory
neural network, this work introduced a machine learning technique that processes
over smart contract bytecode. After generating the training set from over 640,000
distinct contracts which are labelled as safe or vulnerable by the Maian tool [15],
the authors claimed their proposed model obtain a surprising result and provide
improvements over symbolic analysis methods. Although Abbe currently follows
the traditional approach, the idea of analysis by machine learning for detecting
attacks is a viable research direction to follow.

Formal Verification. In addition to vulnerability detection, there have also
been works on checking smart contracts against user-defined policy. F* [5]
chooses a subset of EVM and Solidity to translate bytecode and source code
of the smart contracts into F* respectively. This translated program is then ver-
ified by the F*-based verifier against the defined-assertions of users. However,
the capability of F* is limited at processing over a small subset of EVM which
does not contain loop. In another work of Kalra et al. [13], the formal verification
is supported by Zeus framework. Similar to F*, Zeus also translates both smart
contracts’ source code and bytecode into an intermediate representation based
on LLVM, then starts the verification by using an SMT-based solver.

8 Conclusion

This paper expands the taxonomy of vulnerabilities in smart contracts with new
types of attacks. For each vulnerability, we also propose methods to detect its
attack vectors and demonstrated them in Abbe—the detecting tool. Abbe can
detect seven kinds of attacks with good performance. Especially, our tool can
detect all attacks which related to vulnerabilities in Solidity level and some other
kinds of attack with zero false positives. Because our methodology is based on
verifying all modifications on smart contract storage, not only the known attacks
can be detected, but zero-day attack patterns can also be discovered.

For the intermediate future, we are working on conducting tests at a larger
scale on the mainnet of Ethereum and other blockchain networks that support

504 Q.-B. Nguyen et al.

smart contracts written in Solidity. In order to potentially identify undefined-
attacks, we also plan to apply data mining techniques based on the previous
transactions in the contract’s history. Further work using data classification
model may allow security threats that exploit smart contract vulnerabilities can
be detected in a higher efficiency.

Acknowledgement. During the preparation of this work, the first author was par-
tially supported by University of Technology (HCMUT), VNU-HCM under “Student
Scientific Research” Grant Number 121/H--D---DHBK-KHCN&DA; and the last author
was partially funded by Vietnam National University-HCMC under Grant C2019-20-
14. The authors would like to thank Nguyen Van Thanh for his comments helping to
improve the manuscript significantly.

References

1. Post-Mortem Investigation (2016). https://www.kingoftheether.com/postmortem.
html

2. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart con-
tracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6 8

3. Beregszaszi, A.: EVM: overflow detection in arithmetic instructions (2016).
github.com/ethereum/EIPs/issues/159

4. Beyer, S.: Storage allocation exploits in ethereum smart contracts (2018).
https://medium.com/cryptronics/storage-allocation-exploits-in-ethereum-smart-
contracts-16c2aa312743

5. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: Pro-
ceedings of the 2016 ACM Workshop on Programming Languages and Analysis for
Security, pp. 91–96. ACM (2016)

6. Buterin, V.: Ethereum Improvement Proposal 7 (2015). https://github.com/
ethereum/EIPs/blob/master/EIPS/eip-7.md

7. Buterin, V.: Ethereum Improvement Proposal 170 (2016). https://github.com/
ethereum/EIPs/blob/master/EIPS/eip-170.md

8. Buterin, V., et al.: A next-generation smart contract and decentralized application
platform. White Paper (2014)

9. Buterin, V., et al.: Difference between CALL, CALLCODE and DELEGATECALL
(2016). https://ethereum.stackexchange.com/questions/3667/difference-between-
call-callcode-and-delegatecall

10. Consensys: Solidity Recommendations (2018). https://consensys.github.io/smart-
contract-best-practices/recommendations/

11. Falkon, S.: The story of the DAO - its history and consequences (2017).
https://medium.com/swlh/the-story-of-the-dao-its-history-and-consequences-
71e6a8a551ee

12. Hoyte, D.: MerdeToken: it’s some hot shit (2018). https://github.com/Arachnid/
uscc/tree/master/submissions-2017/doughoyte

13. Kalra, S., Goel, S., Dhawan, M., Sharma, S.: Zeus: analyzing safety of smart con-
tracts. In: NDSS (2018)

14. Luu, L., et al.: Making smart contracts smarter. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pp. 254–269.
ACM (2016)

https://www.kingoftheether.com/postmortem.html
https://www.kingoftheether.com/postmortem.html
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
http://www.github.com/ethereum/EIPs/issues/159
https://medium.com/cryptronics/storage-allocation-exploits-in-ethereum-smart-contracts-16c2aa312743
https://medium.com/cryptronics/storage-allocation-exploits-in-ethereum-smart-contracts-16c2aa312743
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-7.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-7.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-170.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-170.md
https://ethereum.stackexchange.com/questions/3667/difference-between-call-callcode-and-delegatecall
https://ethereum.stackexchange.com/questions/3667/difference-between-call-callcode-and-delegatecall
https://consensys.github.io/smart-contract-best-practices/recommendations/
https://consensys.github.io/smart-contract-best-practices/recommendations/
https://medium.com/swlh/the-story-of-the-dao-its-history-and-consequences-71e6a8a551ee
https://medium.com/swlh/the-story-of-the-dao-its-history-and-consequences-71e6a8a551ee
https://github.com/Arachnid/uscc/tree/master/submissions-2017/doughoyte
https://github.com/Arachnid/uscc/tree/master/submissions-2017/doughoyte

Detect Abnormal Behaviours in Ethereum Smart Contracts 505

15. Manticore (2018). https://github.com/trailofbits/manticore
16. McKie, S.: Solidity learning: Revert(), Assert(), and Require() in solidity, and the

new REVERT Opcode in the EVM (2017). https://medium.com/blockchannel/
the-use-of-revert-assert-and-require-in-solidity-and-the-new-revert-opcode-in-
the-evm-1a3a7990e06e

17. Mueller, B.: Mythril - Reversing and Bug Hunting Framework for the Ethereum
Blockchain

18. Nakamoto, S., et al.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)
19. Nikolić, I., et al.: Finding the greedy, prodigal, and suicidal contracts at scale. In:

Proceedings of the 34th Annual Computer Security Applications Conference, pp.
653–663. ACM (2018)

20. Palladino, S.: The parity wallet hack explained - zeppelin blog (2017). https://
blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7

21. SmartDec: automatically checking smart contracts for vulnerabilities and bad prac-
tices (2018). https://tool.smartdec.net

22. SMARX: Capture the ether - the game of ethereum smart contract security (2018).
https://capturetheether.com

23. SpankChain: We Got Spanked: What We Know So Far (2018). https://medium.
com/spankchain/we-got-spanked-what-we-know-so-far-d5ed3a0f38fe

24. Szabo, N.: Smart Contracts. Unpublished manuscript (1994)
25. Tann, A., Han, X.J., Gupta, S.S., Ong, Y.S.: Towards safer smart contracts:

a sequence learning approach to detecting vulnerabilities (2018). arXiv preprint
arXiv:1811.06632

26. Tsankov, P., et al.: Securify: practical security analysis of smart contracts. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pp. 67–82. ACM (2018)

27. Wood, G., et al.: Ethereum: A Secure Decentralised Generalised Transaction
Ledger. Ethereum project yellow paper 151, 1–32 (2014)

28. Zeppelin team: The Ethernaut Wargame. https://ethernaut.zeppelin.solutions

https://github.com/trailofbits/manticore
https://medium.com/blockchannel/the-use-of-revert-assert-and-require-in-solidity-and-the-new-revert-opcode-in-the-evm-1a3a7990e06e
https://medium.com/blockchannel/the-use-of-revert-assert-and-require-in-solidity-and-the-new-revert-opcode-in-the-evm-1a3a7990e06e
https://medium.com/blockchannel/the-use-of-revert-assert-and-require-in-solidity-and-the-new-revert-opcode-in-the-evm-1a3a7990e06e
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://tool.smartdec.net
https://capturetheether.com
https://medium.com/spankchain/we-got-spanked-what-we-know-so-far-d5ed3a0f38fe
https://medium.com/spankchain/we-got-spanked-what-we-know-so-far-d5ed3a0f38fe
http://arxiv.org/abs/1811.06632
https://ethernaut.zeppelin.solutions

	Detect Abnormal Behaviours in Ethereum Smart Contracts Using Attack Vectors
	1 Introduction
	2 Backgrounds of Ethereum Smart Contracts
	3 Taxonomy of Vulnerabilities
	3.1 Reentrancy
	3.2 Gasless Send
	3.3 Force-Sending Ether by Suicide
	3.4 Integer Overflow
	3.5 Array Overflow
	3.6 Uninitialized Storage Pointer
	3.7 Overridden by Delegate Call

	4 Detection Methods for Attack Vectors
	4.1 Category of Attack Vectors
	4.2 Reentrancy
	4.3 Gasless Send
	4.4 Force-Sending Ether by Suicide
	4.5 Integer Overflow
	4.6 Array Overflow
	4.7 Uninitialized Storage Pointer
	4.8 Overridden by Delegate Call

	5 System Architecture
	6 Implementation and Testing
	7 Related Work
	8 Conclusion
	References

