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Abstract. Access Control is becoming increasingly important for
today’s ubiquitous systems which provide mechanism to prevent sen-
sitive resources against unauthorized users. In access control models,
the administration of access control policies is an important task that
raises a crucial analysis problem: if a set of administrators can give a
user an unauthorized access permission. In this paper, we consider the
analysis problem in the context of the Administrative Role-Based Access
Control (ARBAC), one of the most widespread administrative models.
We describe how we design heuristics to enable an analysis tool, called
asaspXL, to scale up to handle large and complex ARBAC policies and
a sequence of analysis problems. An extensive experimentation shows
that the proposed heuristics play a key role in the success of the analysis
tool over the state-of-the-art analysis tools.

Keywords: Access control · Security analysis · Automated
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1 Introduction

Modern information systems contain sensitive information and resources that
need to be protected against unauthorized users who want to steal it. The most
important mechanism to prevent this is Access Control [4] which is thus becom-
ing increasingly important for today’s ubiquitous systems. In general, access
control systems protect the resources of the systems by controlling who has
permission to access what objects/resources.

Today, one of the most widely adopted access control models in the real world
is Role-Based Access Control (RBAC) model [12]. In general, RBAC access con-
trol policies specify which users can be assigned to roles which, in turn, are
granted permissions to perform certain operations in the system. RBAC policies
need to be evolved according to the rapidly changing environments and thus, it is
demanded to have some mechanisms to control the modification of the policies.
Administrative RBAC (ARBAC) [3] is the corresponding widely used adminis-
trative model for RBAC policies. In ARBAC, certain specific users, called admin-
istrators, are provided some permissions to execute operations, called adminis-
trative actions, to modify the RBAC policies. In fact, permissions to perform
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administrative actions must be restricted since administrators can only be par-
tially trusted. For instances, some of them may collude to, inadvertently or
maliciously, modify the policies (by sequences of administrative actions) so that
untrusted users can get sensitive permissions. Thus, automated analysis tech-
niques taking into consideration the effect of all possible sequences of adminis-
trative actions to identify the safety issues, i.e. administrative actions generating
policies by which a user can acquire permissions that may compromise some
security goals, are needed.

Several automated analysis techniques (see, e.g., [1,5,10,15,16]) have been
developed for solving the user-role reachability problem, an instance of the safety
issues, in the ARBAC model. Recently, a tool called asaspXL [11] has been
shown to perform better than the state-of-the-art tools on sets of benchmark
problems in [9,15]. The main advantage of the analysis technique inside asaspXL
over the state-of-the-art techniques is that the tool can solve the user-role reach-
ability problem with respect to a finite but unknown number of users in the
policies manipulated by the administrative actions. However, asaspXL does
not scale to solve problems in some recently proposed benchmarks in [16]. This
is because the so-called state explosion problem has not been handled carefully
and thus, prevent asaspXL to tackle such benchmarks. Additionally, asaspXL
does not also scale to solve a sequence of reachability problems. The main rea-
son is that the explored states during the previous analysis processes are not
optimized.

In this paper, we study how to design heuristics to enable asaspXL to ana-
lyze large and complex instances of user-role reachability problems and also to
analyse the sequence of reachability problems more efficiently. The main idea is
to try to alleviate the state explosion problem, which is well-known problem in
model checking techniques, and reuse as many as possible the explored states,
in the analysis of ARBAC policies. We also perform an exhaustive experiment
to conduct the effectiveness of proposed heuristics and compare asaspXL’s per-
formance with the state-of-the-art analysis tools.

The paper is organized as follows. Section 2 introduces the RBAC, ARBAC
models, and the related analysis problem. Section 3 briefly introduces the frame-
work to automatically analyse the infinite state transition systems, namely
mcmt. The proposed heuristics to enable asaspXL to scale to solve user-role
reachability problem are described in Sect. 4. Section 5 summarizes our experi-
ments and Sect. 6 concludes the paper.

2 Administrative Role-Based Access Control

In the Role-Based Access Control (RBAC) model [12], access decisions are based
on the roles that individual users have as part of an organization. Permissions
are grouped by role name and correspond to various uses of a resource. Roles can
have overlapping responsibilities and privileges, i.e. users belonging to different
roles may have common permissions. Thus, it would be inefficient to repeatedly
specify common permissions for a certain set of roles. To overcome this prob-
lem, (so-called) role hierarchies reflect the natural structure of an enterprise and
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make the specification of policies more compact by requiring that one role may
implicitly include the permissions that are associated with another role.

Once RBAC policies are determined they need to be maintained according to
the evolving needs of the organization. For flexibility and scalability, large sys-
tems usually require several administrators, and thus there is a need not only to
have a consistent RBAC policy but also to ensure that the policy is only modified
by the administrators who are allowed to do so. One of the most popular admin-
istrative frameworks is the Administrative RBAC (ARBAC) model [3] whose
main insight is to use RBAC to control how RBAC policies may evolve through
administrative actions that assign or revoke user memberships into roles. Since
administrators can be only partially trusted, administration privileges must be
limited to selected parts of the RBAC policies, called administrative domains.
The ARBAC model defines administrative domains by using roles and RBAC
itself to control how security officers can delegate (part of) their administra-
tive permissions to trusted users. In this way, several administrators are able to
modify the RBAC policy of a large system by following certain rules.

Formalization. Let U be a set of users, R a set of roles, and P a set of permis-
sions. Users are associated to roles by a binary relation UA ⊆ U × R and roles
are associated to permissions by another binary relation PA ⊆ R × P . A role
hierarchy is a partial order � on R, where r1 � r2 means that r1 is more senior
than r2 for r1, r2 ∈ R. A user u is a member of role r when (u, r) ∈ UA. A user
u has permission p if there exists a role r ∈ R such that (p, r) ∈ PA and u is a
member of r. A RBAC policy is a tuple (U,R, P, UA, PA,�).

Usually (see, e.g., [15]), administrators may only update the relation UA
while PA and � are assumed constant. An administrative domain is specified
by a pre-condition, i.e. a finite set of expressions of the forms r or r (for r ∈ R),
called role literals. A user u ∈ U satisfies a pre-condition C if, for each � ∈ C, u
is a member of r when � is r or u is not a member of r when � is r for r ∈ R.
Permission to assign users to roles is specified by a ternary relation can assign
containing tuples of the form (Ca, C, r) where Ca and C are pre-conditions, and
r a role. Permission to revoke users from roles is specified by a binary relation
can revoke containing tuples of the form (Ca, r) where Ca is a pre-condition
and r a role. In both cases, we say that Ca is the administrative pre-condition,
C is a (simple) pre-condition, r is the target role, and a user ua satisfying Ca

is the administrator. When there exist users satisfying the administrative and
the simple (if the case) pre-conditions of an administrative action, the action
is enabled. The relation can revoke is only binary because simple pre-conditions
are useless when revoking roles (see, e.g., [15]).

The semantics of the administrative actions in ψ := (can assign, can revoke)
is given by the binary relation →ψ defined as follows: UA →ψ UA′ iff there exist
users ua and u in U such that either (i) there exists (Ca, C, r) ∈ can assign, ua

satisfies Ca, u satisfies C (i.e. (Ca, C, r) is enabled), and UA′ = UA∪{(u, r)} or
(ii) there exists (Ca, r) ∈ can revoke, ua satisfies Ca (i.e. (Ca, r) is enabled),
and UA′ = UA \ {(u, r)}. A run of the administrative actions in ψ :=
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(can assign, can revoke) is a possibly infinite sequence UA0, UA1, ..., UAn, ...
such that UAi →ψ UAi+1 for every i ≥ 0.

A pair (ug, Rg) is called a (RBAC) goal for ug ∈ U and Rg a finite set of roles.
The cardinality |Rg| of Rg is the size of the goal. Given an initial RBAC policy
UA0, a goal (ug, Rg), and administrative actions ψ = (can assign, can revoke);
(an instance of) the user-role reachability problem consists of establishing if there
exists a finite sequence UA0, UA1, ..., UAn (for n ≥ 0) where (i) UAi →ψ UAi+1

for each i = 0, ..., n − 1 and (ii) in the policy UAn we have that ug is a member
(explicit or implicit) of each role in Rg.

The definition of the user-role reachability problem considered here is the
same of that in [15]. In the rest of the paper, we focus on user-role reachability
problems where U and R are finite, P plays no role, and � is ignored because
it can be eliminated by a pre-processing [13]. Thus, a RBAC policy is a tuple
(U,R,UA) or simply UA when U and R are clear from the context.

3 Framework to Analyse Infinite State Transition
Systems

mcmt [7] attempts to solve reachability problems for a certain class of infinite
state systems whose state variables are arrays, that can be seen as functions map-
ping indexes to elements. Such transition systems can be used as suitable abstrac-
tions of parametrised protocols, sequential programs manipulating arrays, etc.
The main idea underlying mcmt is to use a backward reachability procedure that
repeatedly computes pre-images of the set of goal states, that is usually obtained
by complementing a certain safety property that the system should satisfy. The
set of backward reachable states of the system is obtained by taking the union
of such pre-images. At each iteration of the procedure, it is checked whether the
intersection with the initial set of states is non-empty (safety test), reporting
the unsafety of the system, i.e. there exists a (finite) sequence of transitions that
leads the system from an initial state to one satisfying the goal. Otherwise, when
the intersection is empty, it is checked if the set of backward reachable states is
contained in the set computed at the previous iteration (fix-point test), report-
ing the safety of the system, i.e. no (finite) sequence of transitions leads the
system from an initial state to one satisfying the goal. The peculiarity of mcmt
is that sets of states and transitions are represented by first-order formulae so
that the computation of pre-images boils down to logical manipulations and the
safety and fix-point tests are reduced to satisfiability checks of first-order formu-
lae. The resulting satisfiability problems are efficiently solved by state-of-the-art
tools, called Satisfiability Modulo Theories (SMT) solvers.

mcmt was successfully used for the verification of several infinite state sys-
tems [6] and features some interesting heuristics to automatically synthesize
invariants that can be used to prune the search space of the system that become
also available to the user for a deeper understanding of the structure of the
system. For more details on mcmt, the interested reader is pointed to [7]. Since
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model checking techniques have been found quite useful for the analysis of autho-
rization policies, it would be interesting to apply mcmt in this context. Unfor-
tunately, as observed in [1], there some practical problems to do this. Two of the
most important ones are the following:

P1 mcmt permits only mono-dimensional arrays while RBAC policies seem to
require at least bi-dimensional arrays to encode the characteristic function of
the binary relation UA.

P2 mcmt restricts the number of existentially quantified variables in formulae
representing transitions to (at most) two while can assign and can revoke
actions usually require more of such variables.

These and other problems have lead us to build a new tool, called asasp [1],
based on the same ideas of mcmt but specifically tuned for the symbolic anal-
ysis of authorization policies. We were successfull in doing this as asasp shows
a better scalability than rbac-pat [8] on a set of synthetic user-role reacha-
bility problems introduced in [15]. However, our aim in building asasp was to
reach a good trade-off between efficiency and expressivity. In fact, we were able
to extend the classical ARBAC policies with attributes and to efficiently solve
the associated user-role reachability problems in [2]. Key to the expressivity of
asasp input language is the capability of handling arbitrary (possibly infinite)
set of roles—such as those depending on parameters, see, e.g., [14]—and sev-
eral existentially quantified variables in formulae representing transitions that
are fundamental to express conditions involving role hierarchies and attribute
values [2].

Almost at the same time of [1], a new tool, called mohawk [9], has been
proposed for the analysis of ARBAC policies especially tailored to error-finding
rather than verification as it is the case of both rbac-pat and asasp. In [9], it
is shown that mohawk outperforms rbac-pat on the problems in [15] and on
a new set of synthetic, much larger problems. Indeed, we tried asasp on new
problems of mohawk and, rather disappointingly, it was not able to scale up
and handle large problem instances. After a careful analysis of the behavior of
asasp, we made the following crucial observations.

O1 Since the set R of roles is finite, it is not necessary to use the binary relation
UA to record user-role assignments. It is sufficient to replace it with a finite
collection of sets, one per role. Formally, let R = {r1, ..., rn} for n ≥ 1, define
Uri

= {u|(u, ri) ∈ UA} for i = 1, ..., n. Straightforward modifications to the
definition of →ψ (for ψ a pair of relations can assign and can revoke), given
in Sect. 2, allows one to replace UA with the Uri

’s.
O2 Since the role-hierarchy can be pre-processed before attempting to solve a

user-role reachability problem (see, e.g., [13]), the definition of →ψ, for a given
tuple in can assign or can revoke, existentially quantifies over two users, the
administrator and the user to which the administrative action is going to be
applied.

On the one hand, the two observations suggest that asasp expressivity is
too much for modelling large synthetic problems (as those in [9]) that are
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characterized by simple pre-conditions in which even role hierarchies are not
used. Since it is well-known that expressivity and efficiency are opposing forces
when developing automated analysis techniques, we believe this to be one of the
main reasons for the poor results obtained by asasp on the problems in [9]. On
the other hand, O1 and O2 pave the way to the use of mcmt on this kind of syn-
thetic problems as they remove the two problems discussed above. In particular,
we can represent the characteristic function of a Uri

by using a mono-dimensional
array ari

mapping users to Booleans; thus overcoming P1. Also P2 is no more a
problem as mcmt supports the definition of transitions by formulae containing
(at most) two existentially quantified variables.

We illustrate the encoding in mcmt of user-role reachability problem by
means of an excerpt of an example from [15].

Example 1. Let U = {u1, u2}, R = {ra, r1, ..., r8}, and UA := {(u1, r1), (u1, r4),
(u1, r7), (u2, ra)} and the tuple ({ra}, {r1}, r2) is in can assign whereas the tuple
({ra}, r1) is in can revoke. The goal of the user-role reachability problem is
{(u1, r6)}.

To formalize this problem in mcmt, we introduce one array per role ur for
r ∈ R mapping a user in U to a Boolean that encodes the characteristic function
of the set Ur, as defined above. The initial relation UA can be expressed as
follows:

∀x.
[
ur1(x) ↔ x = u1 ∧ ur4(x) ↔ x = u1 ∧ ur7(x) ↔ x = u1 ∧ ura(x) ↔ u = u2∧
¬ur2(x) ∧ ¬ur3(x) ∧ ¬ur5(x) ∧ ¬ur6(x)

]

The tuple ({ra}, {r1}, r2) in can assign is formalized as

∃xa, x.
[
ura(xa) ∧ ur1(x) ∧ ∀y.(u′

r2(y) ↔ (y = x ∨ ur2(x)))
]

and ({ra}, r1) in can revoke as

∃xa, x.
[
ura(xa) ∧ ur1(x) ∧ ∀y.(u′

r1(y) ↔ (y �= x ∧ ur2(x)))
]

where ur and u′
r indicates the value of Ur immediately before and after, respec-

tively, of the execution of the administrative action and we have omitted identi-
cal updates, i.e. a conjunct ∀y.(u′

r(y) ↔ u′
r(y)) for each r not mentioned in the

formula. Finally, the goal can be represented as ∃x.ur6(x) ∧ x = u1. �

We built a translator to create mcmt reachability problems out of user-role

reachability problems and mcmt on the problems resulting from the transla-
tions of those in [9]: the results were still disappointing in terms of scalability.
After analysing the behavior of mcmt, we identified another important source
of complexity: the number of transitions or, equivalently, the number of tuples in
can assign and can revoke is so large that the heuristics implemented in mcmt
to control the state space explosion problem are not enough. This is due to the
fact that the problems that mcmt is successful in solving comprise tens of tran-
sitions, each one involving complex conditions and updates of data structures
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and updates. Instead, the transitions obtained from the translation of user-role
reachability problems in [9] are hundreds or thousands (up to 80,000) involving,
as discussed above and shown in the example, simple conditions and updates. In
the following section, we describe how this difficulty can be tamed by designing
a suitable wrapper around mcmt in order to generate a sequence of user-role
reachability problems with an increasing number of transitions. We will also
explain how the solution of the problem Pi (for i > 0) in the sequence can
be speeded up by caching the invariants synthesized by mcmt in the runs to
solve P0, ..., Pi−1. The synthesized invariants encode “structural” properties of
the user-assignment relation UA; e.g., ‘a given role can be assigned to no user’ or
‘if a user is not assigned to a certain set of roles then he/she will not be assigned
to the roles in another set.’ Clearly, this kind of properties is using when solving
problem Pi. For example, if we know from a previous run of mcmt that no user
can be assigned to role r7 and the goal of the user-role reachability problem is
(u, {r1, r7, r9}), we can immediately conclude that the goal is unreachable.

4 asasp 2.1: New Clothes for Analyzing ARBAC Policies

In this section, we describe the architecture of our technique. asasp 2.1 receives
an ARBAC policy and a safety query as its input. In case it finds a sequence of
transitions (including can assign, can revoke rules) that leads the RBAC system
to the query state, the result UNSAFE is reported. Otherwise, asasp 2.1 reports
that the system is SAFE. Figure 1 illustrates the architecture of asasp 2.1.

Fig. 1. asasp 2.1 architecture

In general, the policy and the query are verified through the following steps:

Pre-processing: The query is analyzed to find the answer in the database. If
an answer is found, the result is reported without running the remains of the
technique.
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Administrative Action Filter: The policy and the query are analyzed to filter
the related transitions and roles for current verification step.

Model checking: The technique verifies the filtered policy. The model checker
mcmt [7] is used in the verification.

Learning: The learning component analyzes the verification result before out-
putting them.

We discuss the details of these steps here in the remains of this section. Because
of the separate administration restriction [..], we do not care the administrative
roles in asasp 2.1.

4.1 Pre-processing

In general, the time spent in running the model checker holds the most important
part in the amount of time taken for the verification process of automatic analysis
techniques. Therefore, if we reduce the time spent in running the model checker,
the total time will also be reduced significantly. With our technique, if the answer
is found in this pre-processing step, asasp 2.1 returns the result without calling
other components, including mcmt, and hence the time for verification process
is reduced.

In order to speed up the verification processes, the states which have been
visited in the previous verifications are saved to a database. When a new query is
issued, asasp 2.1 first checks the database to find the answer for the query. If it
finds the answer, the result is reported. Otherwise, the remains of the technique
are called. For example: in the database, we have a state in which “User x is
assigned both role A and role B.” This state is marked as an unsafe state. It
means that the state is reachable from the initial state of the policy. When a new
query such as “User x can be assigned role A or not” is issued, asasp 2.1 finds
in the database and returns UNSAFE. This means that there exists a sequence
of transitions which lead the system from the initial state to the query state.
Another example is that a state in which “User y is assigned both role B and
role C” is marked as a safe state in the database. A safe state means that it is
unreachable from the initial state. If asasp 2.1 receives a query such as “User
y can be assigned role A, role B and role C at the same time or not”, it returns
the result SAFE quickly.

4.2 Administrative Action Filter

For a complex ARBAC policy with many users, roles and transitions, it is not
efficient to analyze the entire policy. Many previous techniques fail to verify these
policies. The reason is that the model checkers used in these techniques require
large resources, including memory and processor, to verify the entire policies,
meanwhile, hardware technologies currently can not satisfy these requirements.
Therefore, there is a need to filter these policies before sending to the model
checkers for verifying. The model checkers then can verify these filtered policies
in a reasonable time.
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In this analysis step, our technique removes all the redundant transitions,
users and roles which do not relate to the current verification process. Moreover,
the technique also reuses the states which have been verified in the previous
verification processes to speed up the current verification.

The idea to filter the complex policies comes from the one in [9]. In this
technique, the authors refine the complex policies according to the related-by-
assignment relationship between roles. At each refinement step, the technique
selects the users, roles and transitions which relate to the roles in the current
priority degree. The refined policy is then verified by a model checker. In our
technique, we do not define the priority of each role, we just care which roles is
related to the current analysis step. The roles related to the first analysis step
are the roles in the safety query. We call the set of the roles related to the current
analysis step as a current related role set. In the current analysis step, asasp 2.1
analysis the policy to extract the transitions related to current analysis step. A
transition is related to the current analysis step if its goal contains at least one
role in the current related role set. For example, in the first analysis step of the
policy in Fig. 2, the current related role set contains role Manager. The set of the
transitions related to the first analysis step contains (Admin,QC∧IT ,Manager),
(Admin,Tester ,Manager), and (Admin,Manager).

Fig. 2. An example of ARBAC policy

Moreover, asasp 2.1 also considers removing the transitions which are not
able to be executed in the current verification step. The idea comes from the
observation that a transition may be executed if the preconditions of the transi-
tion are satisfied (e.g., the transition (Admin,QC ∧ IT ,Manager) may be exe-
cuted if there is at least one user who has both roles QC and IT ). In our
technique, we use the idea with less constraint as follows: a transition may be
executed (and therefore this transition will be added to the current filtered pol-
icy) if each role in its precondition is:

– In the initial state or
– In the current related role set and there is at least a transition in the original

policy whose goal contains the role.
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For example in Fig. 2: we assume that the current related role set includes Man-
ager and Tester. The transition (Admin,Developer ∧QA,Tester ∧QC ) is a tran-
sition related to the current analysis step because its goal Tester ∧QC contains
the role Tester. Furthermore, all roles in its precondition Developer ∧QA are in
the initial state. This transition therefore is added to the current filtered pol-
icy. The transition (Admin,QC ∧ IT , Manager) is also a transition related to
the current analysis step. However, it is not added to the current filtered policy
because the roles in its precondition are not in the current related role set and
there is no transition whose goal contains the role IT .

After running the current analysis step, asasp 2.1 will calculate the set
of the roles related to next analysis step. The next related role set will con-
tain all roles in the current related role set. Moreover, for each assignment
transition (can assign rule) in the set of the transitions related to the cur-
rent analysis step, the roles in its precondition will also be added to the
next related role set if: for each role in the precondition, there is at least
a transition in the original policy whose goal contains the role. For exam-
ple in Fig. 2, we assume that the current related role set includes Manager.
The set of transitions related to the current analysis step is 〈(Admin,QC ∧
IT ,Manager), (Admin,Tester ,Manager), (Admin, Manager)〉. After running
the analysis step, the next related role set will be 〈Manager ,Tester〉. The roles
QC and IT of the transition (Admin,QC ∧ IT ,Manager) are not added to the
next related role set because there is no transition in the original policy whose
goal contains the role IT .

One of the key points in our technique is to reuse the states which have been
visited in the previous verifications. Normally, the users tend to query the policy
many times with different safety queries, hence the reuse of visited states will
reduce the time taken by the model checker significantly. In our technique, the
results of the previous verifications were analyzed by the learning component
after the model checker found the answer for the previous queries. All states
extracted from the results and their statuses (safe or unsafe) were saved to the
database. This information is then added to each analysis step of the current
verification. Intuitively, each unsafe state can be considered as an initial state of
the filtered policy of the current analysis step. If the state in the query can be
reachable from one of these initial states, it is also unsafe. However, this imple-
mentation requires that the model checker supports the system with multiple
initial states. In the current version of asasp 2.1, we use another way to add
the visited states to the current filtered policy. The idea is that:

– For each unsafe state, a new transition which “connects” the initial state to
the unsafe state will be added to the filtered policy.

– For each safe state, we remove from the filtered policy the transitions whose
preconditions contain the roles in the safe state.

For example in Fig. 3(a), from the previous verifications, state B, C and D are
un-safe states while state G is a safe state. At the current verification, two new
transitions are added and one transition is removed. The current policy is shown
in Fig. 3(b). If we want to check state E, we just go backward to state C and
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Fig. 3. Reusing visited states

then can reach the initial state. If we want to check state F, we do not care the
states G, H and I.

After executing the current analysis step, the filtered policy is transfer to the
verification step in order to determine whether the query state is safe or not. If
the state is unsafe, asasp 2.1 will call the learning step to analyze the results
and then terminate the verification process. Otherwise, asasp 2.1 will call the
next analysis step to refilter the policy. After the next analysis step, if some
transitions can be added to the current filtered policy, the verification step then
will be called to verify the new filtered policy. If the current filtered policy is not
changed, the results of the verification step will be transfer to the learning step
and the verification process is terminated after finishing the learning step.

4.3 Model Checking

In this step, asasp 2.1 translates the filtered policy and the query to an infinite
state based system in the MCMT code. It then invokes MCMT to verify the
system. If MCMT determines that the query is satisfied in the filtered policy, it
returns the result UNSAFE as well as a log file. The log file contains a sequence
of transitions that leads the system from the initial state to the query state.
Similarly, the result SAFE and a log file are also returned if the model checker
determines that the query is not satisfied in the filtered policy. In this case, the log
file provides a list of invariants which are tracked during the verification. In case
MCMT returns the result UNSAFE, the log file and the result are transferred
to the learning component. In this component, the log file is analyzed in order
to extract the unsafe states. No additional verification step is executed and
the result is outputted after being analyzed. Conversely, asasp 2.1 calls again
the analysis step to refilter the policy with the next related role set and an
additional verification step may then be executed. After the analysis step, if
some additional transitions are added to the previous filtered policy, asasp 2.1
will call the verification step again. Otherwise, it transfers the result and the log
file of the previous verification step to the learning component. In this case, the
learning component analyzes the log file to get the safe states and then outputs
the result SAFE.
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4.4 Learning

After verifying the policy, our technique will analyze the output of the verifi-
cation step and save the states which have been visited during the verification.
According to the result of the verification step, the learning component will
process as follows:

– If the result UNSAFE is returned, the learning component analyzes the
sequence of transitions which leads the RBAC system from the initial state
to the query state. The states which are extracted from the analysis of these
transitions then will be saved as unsafe states.

– If the result is SAFE, the learning component will extract invariants which
have been tracked during the verification step. These invariants then will be
saved as safe states.

In the next section, we provide an example to describe asasp 2.1’s operations
in detail.

4.5 Worked Out Example

We illustrate asasp 2.1’s operations using the example in Fig. 2. The safety
query in this example asks whether Bob can be assigned to the role Manager or
not. Table 1 describes the status of the analysis component during the verifica-
tion: (RS: Current related role set; RT: Current set of related transitions; NRS:
Next related role set; FT: the set of transitions in the current filtered policy).
After the analysis step 1, mcmt returns the result SAFE. Therefore, a new anal-
ysis step is executed. When mcmt verifies the filtered policy in the analysis step
2, the result UNSAFE is returned. asasp 2.1 then calls the learning component
to analyze the output of the verification step 2. The query state can be reached
by executing the following sequence of transitions:

– Bob is assigned to Tester and QC by the transition (Admin,Developer ∧
QA,Tester ∧ QC ).

– Bob is then assigned to Manager by the transition (Admin,Tester ,Manager).

Table 1. The status of the analysis component during verification

Step RS RT NRS FT Result

1 Manager (Admin,QC ∧ IT ,Manager)

(Admin,Tester,Manager)

(Admin,Manager)

Manager

Tester

(Admin,Manager) SAFE

2 Manager

Tester

(Admin,Manager)

(Admin,Tester)

(Admin,Developer ∧ QA,

Tester ∧ QC)

(Admin,QC ∧ IT ,Manager)

(Admin,Tester,Manager)

Manager

Tester

(Admin,Manager)

(Admin,Tester)

(Admin,Developer ∧ QA,

Tester ∧ QC)

(Admin,Tester,Manager)

UNSAFE
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The learning component finds and saves the unsafe state (Bob,Developer ∧QA∧
Tester ∧QC ∧Manager) to the database. The state means that the user Bob has
roles Developer , QA, Tester , QC and Manager at the same time. At the next
verification, if the query asks whether Bob can be assigned to the role QC or
not, asasp 2.1 returns the result UNSAFE without running the model checker.

5 Experimental Evaluation

In this section, we show the evaluation we conducted in order to evaluate the
effectiveness of our technique. In [9], the authors compared mohawk to other
state-of-the-art verification tools for ARBAC policies such as symbolic model
checking, bounded model checking and RBAC-PAT [8]. They also demonstrated
that mohawk is more efficient than other tools. In this paper, instead of com-
paring our tool to the symbolic model checking, the bounded model checking
or RBAC-PAT, we just compare asasp to mohawk and show that our tool
analyzes ARBAC policies better than mohawk.

We use the dataset which was used to compare mohawk to other verification
tools as shown in [9]. The dataset includes three test suites. The first one (called
as Test suite 1) contains policies with positive conjunctive can assign rules and
non-empty can revoke rules. The second one (called as Test suite 2) includes poli-
cies with mixed conjunctive can assign rules and empty can revoke rules while
the last one (Test suite 3) contains policies with mixed conjunctive can assign
rules and non-empty can revoke rules. For each policy in the test suites, we call
asasp and mohawk 5 times with different safety queries and measure the aver-
age time taken for the verification process. All experiments were performed on
an Intel Core 2 Duo T6600 (2.2 GHz) CPU, 2 GB Ram and Ubuntu 11.10.

Table 2 describes the experimental results.
mohawk takes two stages to verify an ARBAC policy. In the first stage, it

slices the original policy and then, in the second stage, the sliced policy is verified
by the refinement steps. We consider that the time taken for the verification
process is the sum of time consumed by these stages. The table shows that our
tool answers the safety queries faster than mohawk in most cases. In other word,
these experimental results demonstrate the effectiveness of our technique.

We also test our technique in verifying a sequence of safety queries. It means
that asasp receives a set of safety queries, it verifies the first query and then
the second query, and so on until the last query. We perform the verification of
an ARBAC policy with a set of 8 different safety queries. Figure 4 shows that
the time which asasp takes for verifying n-th query is smaller than the one
of the previous verifications. The reason is that asasp reuses the states which
have been visited in the previous verifications and hence, the time taken for the
current verification may be reduced.
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Table 2. Experimental results for single queries

Test suite Number of roles,

rules

Time for verification Variance

Mohawk (Slicing time +

Refinement time)

ASASP 2.1 Mohawk ASASP 2.1

Test suite 1 3, 15 0.42 (0.17 + 0.25) 0.12 0.00034 0.00126

5, 25 0.50 (0.20 + 0.30) 0.22 0.00104 0.02188

20, 100 0.60 (0.28 + 0.32) 0.11 0.00048 0.00314

40, 200 0.94 (0.39 + 0.55) 0.10 0.19242 0.00294

200, 1000 2.65 (1.25 + 1.40) 0.18 0.7027 0.02758

500, 2500 4.87 (2.27 + 2.60) 0.43 7.0337 0.29594

4000, 20000 16.90 (11.41 + 5.49) 1.64 1.26694 0.11166

20000, 80000 71.56 (44.70 + 26.86) 24.17 7.56264 0.27724

30000, 120000 195.54 (119.39 + 76.15) 59.08 66.4833 0.38058

40000, 200000 455.14 (263.82 + 191.32) 109.07 32.35406 2.42496

80000, 400000 2786.33 (1600.22 + 1186.11) 398.63 1251.832 0.51542

Test suite 2 3, 15 0.40 (0.16 + 0.24) 0.12 0.00046 0.00204

5, 25 0.50 (0.19 + 0.31) 0.21 0.0019 0.02012

20, 100 0.54 (0.25 + 0.29) 0.10 0.00036 0.00242

40, 200 1.21 (0.37 + 0.84) 0.10 1.07136 0.00108

200, 1000 2.54 (1.24 + 1.30) 0.14 0.6452 0.01008

500, 2500 5.02 (2.29 + 2.73) 0.43 5.91882 0.32836

4000, 20000 14.33 (9.65 + 4.68) 1.48 0.53058 0.06206

20000, 80000 74.32 (45.35 + 28.97) 24.99 13.9347 0.0716

30000, 120000 194.85 (115.58 + 79.27) 57.09 42.39056 0.18292

40000, 200000 470.89 (262.39 + 208.50) 98.49 585.6608 0.26196

80000, 400000 2753.12 (1589.97 + 1163.15) 360.96 1493.596 3.19596

Test suite 3 3, 15 0.41 (0.17 + 0.24) 0.09 0.00012 0.00078

5, 25 0.47 (0.19 + 0.28) 0.08 0.00164 0.0001

20, 100 0.77 (0.29 + 0.48) 0.54 0.0771 0.08822

40, 200 0.77 (0.38 + 0.39) 0.37 0.0012 0.00468

200, 1000 5.93 (1.53 + 4.4) 1.51 47.2814 0.20348

500, 2500 3.78 (2.15 + 1.73) 1.12 0.05662 0.00298

4000, 20000 14.05 (9.96 + 4.09) 11.13 0.09255 0.317425

20000, 80000 80.61 (48.64 + 31.97) 27.25 23.98093 2.974775

30000, 120000 259.15 (148.35 + 110.80) 97.55 325.5216 6343.912

40000, 200000 604.17 (346.10 + 258.07) 110.65 1247.141 110.9948

80000, 400000 3477.19 (1951.41 + 1525.78) 402.22 2776.703 0.50856
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Fig. 4. Experimental results for a sequence of queries

6 Conclusions, Related and Future Work

We have presented techniques to enable the MCMT framework to solve instances
of user-role reachability problem. We have also designed a set of heuristics that
help our analysis techniques to be more scalable. The main idea is to reduce as
much as possible the number of administrative actions in the original problem
and reuse the visited states of previous analysis processes. We have shown that
the proposed techniques do not miss errors in buggy policies and performs sig-
nificantly better than mohawk on the larger problem instances in [9]. As future
work, we plan to consider the combination of backward and forward reachability
procedure to speed up the analysis of the model checker.
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