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Abstract. In recent years, gene expression data combined with machine
learning methods revolutionized cancer classification which had been
based solely on morphological appearance. However, the characteristics
of gene expression data have very-high-dimensional and small-sample-
size which lead to over-fitting of classification algorithms. We propose
a novel gene expression classification model of multiple classifying algo-
rithms with synthetic minority oversampling technique (SMOTE) using
features extracted by deep convolutional neural network (DCNN). In our
approach, the DCNN extracts latent features of gene expression data,
then the SMOTE algorithm generates new data from the features of
DCNN was implemented. These models are used in conjunction with
classifiers that efficiently classify gene expression data. Numerical test
results on fifty very-high-dimensional and small-sample-size gene expres-
sion datasets from the Kent Ridge Biomedical and Array Expression
repositories illustrate that the proposed algorithm is more accurate than
state-of-the-art classifying models and improve the accuracy of classi-
fiers including non-linear support vector machines (SVM), linear SVM,
k nearest neighbors and random forests.

Keywords: Synthetic over sampling · Enhancing data · Deep
convolutional neural network · Support vector machines ·
Classification · Gene expression data

1 Introduction

In recent decades, cancer has become a major public health issue in the world.
According to the World Health Organization (WHO), the cancer patient rises
to 18.1 million new cases and 9.6 million cancer deaths in 2018. Therefore, more
and more studies have been done finding effective solutions to diagnose and treat
this disease in recent years. However, there are still many challenges in cancer
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treatment because possible causes of cancer are genetic disorders or epigenetic
alterations in the somatic cells [1]. Moreover, cancer could be known as a disease
of altered gene expression. There are many proteins are turned on or off and
they dramatically change the basic activity of the cell. Microarray technology
enables researchers to investigate and address issues which is once thought to be
impractical for the simultaneous measurement of the expression levels of thou-
sands of genes in a single experiment [2]. Information of gene expression profile
may be used to find and diagnose diseases or to see how well the body responds
to treatment, so many algorithms have been done to analyse gene expression
data. During the past decade, many classification algorithms have been used
to classify gene expression data, which include support vector machines (SVM)
used by [3], neural network in [4], k nearest neighbors (kNN) in [5], C4.5 decision
trees (C4.5) in [6], random forests (RF) in [7], decision trees based bagging and
boosting style algorithm in [8], bagging of oblique decision stumps (Bag-RODS)
and boosting of oblique decision stumps (Boost-RODS) in [9].

In spite of many classification algorithms for gene expression data have risen
during recent years but these algorithms remain a critical need to improve clas-
sifying accuracy. There are two main research challenges that most state-of-the-
art classification algorithms are facing when dealing with gene expression data
including very-high-dimensional and small-samples-size. These challenges mean
that a characteristic of microarray gene expression data is that the number of
variables (genes) n far exceeds the number of samples m, commonly known as
“curse of dimensionality” problem. These issues lead to statistical and analytical
challenges and conventional statistical methods give improper result due to the
high dimension of gene expression data with a limited number of patterns [10].
In practice, it isn’t feasible when to build machine learning model due to the
extremely large feature sets with millions of features and high computing cost.
In addition, another challenge of gene expression classification model is that
training data sample size is relatively small compared to features vector size,
therefore the classification models may give poor classification performance due
to over-fitting.

In order to solve the issues of classifying gene expression, people often use
dimension reduction and enhancing data methods. In recent, the problem very-
high-dimensional data can be solve by feature extraction with DCNN [11–14].
The main advantage of this network is the ability to extract new latent features
from the gene expression data, then send them to the classifiers. To tackle the
small-sample-size task, many studies have used enhancing methods to improve
classification accuracy. SMOTE [15] is a very popular over-sampling method
that generates new samples in by interpolation from the minority class. A ben-
efit of using SMOTE is that this algorithm can generate new data from orig-
inal data and it can use to enhance training sample size. However, this algo-
rithm often use on low-dimensional data [16] because it seems beneficial but
less effective for very-high-dimensional data. The cause of this problem is that
the interpolation process using k nearest neighbors algorithm. For this reason, it
could suffer over-fitting problem for very-high-dimensional data. In practical, this
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over-sampling algorithm for kNN without variable selection shouldn’t be used
because it strongly biases the classification towards the minority class [17].
Therefore, it often is combined with data preprocessing methods including fea-
ture selection or feature extraction.

In this paper, we proposed a new learning algorithms for the precise clas-
sification of gene expression data of non-linear support vector machine (SVM),
linear SVM (LSVM), kNN, RF with SMOTE using features extracted by DCNN
(call DCNN-SMOTE-[SVM, LSVM, kNN, RF]). The algorithms perform the
training task with three main steps. First of all, we use new DCNN model to
extract new features from gene expression data. The new features can improve
the dissimilarity power of gene expression representations and thus obtain a
higher accuracy rate than original features. Secondly, we propose SMOTE algo-
rithm to enhance gene expression data using new features extracted by extrac-
tion model. Two new algorithms are used in conjunction with the classifiers
learn to classify gene expression data efficiently. Results of 50 low-sample-size
and very-high-dimensional microarray gene expression datasets from Kent Ridge
Biomedical [18] and Array Expression repositories [19] illustrate that the pro-
posed DCNN-SMOTE-SVM are more accurate the state-of-the-art classifying
models including: SVM [20], LSVM [21], kNN [22], RF [23], C4.5 [24,25]. In
addition, DCNN and SMOTE also improve accurate of classifiers including lin-
ear SVM, RF and kNN.

The paper is organized as follows. Section refrela gives a brief overview of
DCNN, SMOTE, and our proposed. Section 4 discusses about related works.
Section 3 shows the experimental results, and the conclusions are presented in
the final section.

2 Related Works

Our proposal is in some aspects related to classification approaches for gene
expression data. The first approach is the popular frameworks for gene expres-
sion classification involve the main steps as follows: the feature extraction or
the feature selection of gene expression, and learning classifiers. [26] applied
GA/KNN method to generate the subset of the features and then use kNN
algorithm to classify. In recent years, deep convolutional neural network has
achieved remarkable results in computer vision [27], text classification [28]. In
addition, DCNN is also used for omics, biomedical imaging and biomedical signal
processing [29]. The paper of [30] proposed to use deep learning algorithm based
on the deep convolutional neural network, for classification of gene expression
data. Lyu et al. use DCNN [31] to predict over 11,000 tumors from 33 most
prevalent forms of cancer. These algorithms aim reduce dimension of data. More
recent DCNN-SVM [13] propose to classify gene expression data. In addition,
many other methods have been implemented for extracting only the important
information from the gene expression data thus reducing their size [32–35]. Fea-
ture extraction creates new variables as combinations of others to reduce the
dimensionality of the selected features.
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The second approach use enhancing data methods, then use in conjunction
with SVM that efficiently classify small-sample-size data. The paper [36] propose
enhancing the gene expression classification of support vector machines with
generative adversarial networks. SynTReN algorithm generate gene expression
data using network topology method [37]. Moreover, there have been several
applications of the enhancing data in bioinformatics, such as [38,39]. SMOTE
is a enhancing data method to generate new data with equal probabilities [15].
In spire of, its behaviour on high-dimensional data has not been thoroughly
investigated [40]. The paper [41] is shown in the high-dimensional setting only
kNN algorithm based on the Euclidean distance seem to benefit substantially
from the use of SMOTE, provided that feature selection is performed before
using SMOTE.

In our algorithm, we take advantages of both approaches DCNN and SMOTE
to solve two main issues of classifying gene expression data. Firstly, we use the
benefits of DCNN to extract new latent features from gene expression data. This
measure is proposed in previous our paper [13] that can address issue very-high-
dimension of gene expression. However, we upgrade new architecture of DCNN
for gene expression data classification in our approach. The new feature vector
size is only approximately 10% compare with origin size. Secondly, we propose
SMOTE algorithms to generate new samples from new features extracted by
DCNN. The advantages of DCNN for classifying gene expression data are taken
advantage when using SMOTE algorithm to generate new data as well as to
tackle limit of this algorithm for gene expression data. In addition, in this paper
we also apply our model for other algorithms including support vector machine
[42], linear SVM [21], k nearest neighbors [22], random forests [23] and decision
trees C4.5 [24,25].

3 Methods

In our study, we use multiple classifying algorithms, SMOTE and DCNN for the
precise classification of gene expression data. Our learning approach is composed
of three phases that is illustrated in Fig. 1. Firstly, the new DCNN is used to
extract new features from gene expression data. Secondly, we use SMOTE algo-
rithm to enhance gene expression data using new features extracted by DCNN.
Finally, these algorithms are used in conjunction with the various classifiers learn
to classify gene expression data efficiently.

Gene expression DCNN New features

SMOTE

Training data

Synthetic data

Classifiers

Fig. 1. The workflow of our method
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3.1 Feature Extraction Gene Expression Data by DCNN

Input

CONV1
kernel size: (3x3)
4 feature maps

POOLING1
kernel size: (3x3)

CONV2
kernel size: (3x3)
2 feature maps

POOLING2
kernel size: (3x3)

new features

Fig. 2. A new DCNN architecture for feature extraction in processing gene expression
data.

DCNN plays a dominant role in the community of deep learning models [43]. It
is a multi-layer neural network architecture that is directly inspired by the visual
cortex of the human brain [44]. In network structure, the successive layers are
designed to learn progressively higher-level features, until the last layer which
produces categories. Once training processing is completed, the last layer, which
is a linear classified operating on the features extracted by the previous layers.
Although DCNN is the most widely used method in the field of image processing.
However, it is a algorithms that is rarely used in gene expression classification.

In order to develop a powerful classifier which can implicitly extract sparse
feature relations from an extremely large feature space, we propose to a extrac-
tion model based on DCNN, which is one of the state-of-the-art learning tech-
niques. The architecture of this model consists of two convolutional layers, two
pooling layers, and a fully connected layer which is shown in Fig. 2. The layers
are respectively named CONV1, POOLING1, CONV2, POOLING2, and out-
put (numbers indicate the sequential position of the layers). The input layer
receives the gene expression in the 2-D matrix format. We embedded each high-
dimensional vector expression data into a 2-D image by adding some zeros at
the last line of the image. The first CONV1 layer contains 4 feature maps and
kernel size (3 × 3). The second layer, POOLING1 layer, is taken as input of the
average pooling output of the first layer and filter with (2 × 2) sub-sampling
layer. CONV2 uses convolution kernel size (3 × 3) to output 2 feature maps
POOLING2 is a (2 × 2) sub-sampling layer. We propose to use the Tanh acti-
vation function as neurons. The final layer has a variable number of maps that
combine inputs from all map in POOLING2. The feature maps of the final sub
sampling layer are then fed into the actual classifier consisting of an arbitrary
number of fully connected layers. The output layer uses to extract new features
from original gene expression data.

3.2 Enhancing Gene Expression Data by SMOTE

Synthetic Minority Over-sampling Technique was first introduced by [15] that is
an over-sampling approach. The main idea of this algorithm is that the minority
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class is over-sampled by creating synthetic examples rather than by oversam-
pling with replacement. It begins with define k nearest neighbors algorithm for
each minority sample, than generating synthetic examples duplication through
its neighbors as many as the desired percentage among minority class observa-
tions. However, this algorithm is often experimented on low-dimensional data
[16] in most situations. In fact, it seems beneficial but less effective for very-
high-dimensional data. Therefore, it often is combined with data preprocessing
methods including feature selection or feature extraction. These methods aim
reduce dimension of origin data.

We propose a new SMOTE algorithm (1) that generates new synthetically
gene expression data from new features extracted of DCNN. Our algorithm gen-
erates synthetic data which has almost similar characteristics of the training
data points. Synthetic data points (xnew) are generated in the following way.
Firstly, the algorithm takes the feature vectors and its nearest neighbors, com-
putes the distance between these vectors. Secondly, the difference is multiplied
by a random number (λ) between 0 and 1, and it is added back to feature vector.
This causes the selection of a random point along the line segment between two
specific features. Then, linear support vector machine is used to set label for
generating samples with constant C = 103. An amount of new samples (p%)
and k nearest neighbors are hyper parameters of the algorithm.

Algorithm 1: SMOTE(S, p, k)
Data: number of samples S; amount of SMOTE p%; number of nearest

neighbors k
Result: : (p/100) * S synthetic samples
initialization;
p = (int)(p/100);
nf = number of attributes;
data: array for original data;
count: number of synthetic data generated;
synthetic: array for synthetic data;
(*Compute k nearest neighbors for each sample*);
for i ← 1 to S do

Compute k nearest neighbors for i, save the indices → nnarray ;
*Generate data from original data* ;
while p �= 0 do

Choose a random number between 1 and k call it nn.;
In this step chooses one of the k nearest neighbors of i;
for f ← 1 to nf do

dif = data[nnarray[nn]][f ] − data[i][f ] ;
synthetic[k][f ] = data[i][f ] + random(0, 1) ∗ dif ;

count++ ;
p = p − 1 ;
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3.3 Gene Expression Classification of SVM with SMOTE Using
Features Extracted from DCNN

The original SVM algorithm was invented by Vapnik [42]. SVM algorithm is
systematic and properly motivated by the statistical learning theory. This algo-
rithm is a supervised learning model that is widely applied for classifications and
regressions [45].

The SVM algorithm find the best separating plane furthest from the differ-
ent classes. To achieve this purpose, the SVM tries to maximize the distance
between two boundary hyperplanes to reduce the probability of misclassifica-
tion. The optimal hyperplane found by SVM is maximally distant from the two
classes of labeled points located on each side (Fig. 3). In practice, the SVM algo-
rithm gives good accuracy in classifying very-high-dimensional data. Although
the SVM is well-known as an efficient model for classifying gene expression data,
the small-sample-size training datasets degrade the classification performance of
any model [46]. In addition to performing linear classification, the algorithm has
been very successful in building highly non-linear classifiers by means of kernel-
based learning methods [47]. Kernel-based learning methods aim to transform
the input space into higher dimensions, such as a radial basis function (RBF),
sigmoid function, and polynomial function. In the proposed approach, a non-
linear SVM with an RBF kernel is used for classifying gene expression after
extraction feature and enhancing data.

Fig. 3. SVM for binary classification

The proposed algorithm is effective combination of three algorithms DCNN,
SMOTE and SVM. The algorithm performs the training task with three main
phases (Fig. 1).

First of all, we implement a new DCNN that extract new features from origin
gene expression data. Our model has take advantage of DCNN is that this model
can learn latent features from very-high-dimensional input spaces. This process
can be viewed as projection of data from higher dimensional space to a lower
dimensional space. Moreover, these new features we can improve the dissimilarity
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power of gene expression representations and thus obtain higher accuracy rate
than original features.

Although the data dimension has reduced but training data sample size is
relatively diminutive compared to feature vector size, so that classifiers may
give poor classification performance due to over-fitting. In a second order phase
training, our model use SMOTE generates new sample from features extracted by
DCNN model. In our approach, in the very-high-dimensional data setting only
kNN classifiers based on the Euclidean distance seem to benefit substantially
from the use of over-sampling, provided that feature extraction by extraction
model is performed before using this algorithm. For traditional over-sampling
algorithm, it is not effective for very-high-dimensional data and this problem
has tackled by DCNN model in our approach.

Last but not least, our model generates new training data following which
the classifiers learns to classify gene expression data efficiently in this phase. The
classifiers consist non-linear SVM, linear SVM, kNN, RF and C4.5 that are used
to classify new data. In our approach, we propose to use RBF kernel type in
SVM model because it is general and efficient [45]. Moreover, the combination
of DCNN and SMOTE can improve accuracy classification of linear SVM, RF
and kNN.

4 Evaluation

We are interested in the classification performance of our proposal for gene
expression data classification. Therefore, we report the comparison of the clas-
sification performance obtained by our model and the best state-of-the-art
algorithms including support vector machine (SVM) [42], linear SVM (LSVM)
[21], decision trees (C4.5) [25], k nearest neighbors (kNN) [22], random forests
(RF) [23].

In addition, we also compare various version of DCNN-SMOTE (DCNN-
SMOTE → [SVM, LSVM, RF, kNN, C4.5]) with SVM, LSVM, RF, kNN, C4.5.
These results are used so as to evaluate performance of classifiers after using
DCNN-SMOTE. Moreover, we interested in the effective of enhancing model,
therefore we also evaluate the algorithms classification using features extracted
by extraction model (DCNN → [SVM, LSVM, RF, C4.5, kNN]), then they are
compared to our proposed.

In order to evaluate the effectiveness in classification tasks, we have imple-
mented DCNN-SMOTE-SVM and its version in Python using Scikit [48] and
TensorFlow [49] libraries. Other algorithms like RF, C4.5 in Scikit library. We
use the highly efficient standard SVM algorithm LibSVM [21] with one-versus-
one strategy for multi-class. We used the Student’s test to assess classification
results of learning algorithms.

All tests were run under Linux Mint on a 3.07 GHz Intel(R) Xeon(R) CPU
PC with 8 GB RAM.
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Table 1. Description of microarray gene expression datasets

ID Name �Samples Dim Classes Protocols ID Name � Samples Dim Classes Protocol

1 Leukemia Golub 72 7129 2 trn-tst 26 E-GEOD-62452 130 33297 2 loo

2 Breast Veer 97 24481 2 trn-tst 27 E-GEOD-51981 148 54675 2 loo

3 Colon 62 2000 2 loo 28 E-GEOD-21122 158 22283 7 loo

4 Breast Chowdaly 104 22283 2 loo 29 E-GEOD-73685 183 33297 8 loo

5 Leukemia Armstrong 72 12582 2 trn-tst 30 E-GEOD-32537 217 22283 7 loo

6 Lung Bhattacharjee 181 12533 2 trn-tst 31 E-GEOD-44077 226 33252 4 loo

7 Lung Gordon 180 12533 2 loo 32 E-GEOD-30784 229 54675 3 loo

8 Dlbcl Shipp 58 7129 2 loo 33 E-GEOD-29272 268 22283 2 loo

9 Breast Gravier 168 2905 2 loo 34 E-GEOD-22470 271 22283 2 loo

10 Leukemia Chiaretti 128 22283 6 loo 35 E-GEOD-68606 274 22283 16 loo

11 E-GEOD-30540 35 54675 2 loo 36 E-GEOD-2034 286 22283 2 loo

12 E-GEOD-14858 40 54675 2 loo 37 E-GEOD-21050 310 54613 4 10-fold

13 E-GEOD-29354 52 22283 2 loo 38 E-GEOD-16134 310 54613 4 10-fold

14 E-GEOD-39716 53 22215 3 loo 39 E-GEOD-20685 327 54627 6 10-fold

15 E-GEOD-66533 53 33297 3 loo 40 E-GEOD-13070 364 54675 2 10-fold

16 E-GEOD-65106 58 54675 3 loo 41 E-GEOD-68468 390 22283 6 10-fold

17 E-GEOD-31189 59 33297 3 loo 42 E-GEOD-50409 428 54613 2 10-fold

18 E-GEOD-37364 92 54675 2 loo 43 E-GEOD-26253 432 17419 2 10-fold

19 E-GEOD-51024 94 54675 4 loo 44 E-GEOD-6532 327 22645 3 10-fold

20 E-GEOD-3726 96 54675 2 loo 45 E-GEOD-31312 498 54630 3 10-fold

21 E-GEOD-36771 107 54675 2 loo 46 E-GEOD-39582 566 54755 6 10-fold

22 E-GEOD-37751 107 54675 2 loo 47 E-GEOD-33315 575 22283 10 10-fold

23 E-GEOD-43458 110 33252 2 loo 48 E-GEOD-47460 582 15261 10 10-fold

24 E-GEOD-31552 111 33297 3 loo 49 E-GEOD-36376 433 22283 2 10-fold

25 E-GEOD-19804 120 54675 2 loo 50 E-GEOD-7307 677 54675 12 10-fold

4.1 Experiments Setup

Experiments are conducted with fifty very-high-dimensional datasets from the
Biomedical [18] and Array Express repositories [19]. The characteristics of
datasets are summarized in Table 1.

The evaluation protocols are illustrated in the last column of Table 1. With
datasets having training set (trn) and testing set (tst) available, we use the
training data to tune the parameters of the algorithms for obtaining a good
accuracy in the learning phase. Then the obtained model is evaluated on the test
set. With a datasets having less than 300 data points, the test protocol is leave-
one-out cross-validation (loo). For the others, we use 10-fold cross-validation
protocols remains the most widely to evaluate the performance [50]. The total
classification accuracy measure is used to evaluate the classification models.

As for training model, we tune the parameters for three algorithms including
DCNN, SMOTE and the parameters of classifiers.

In order to train network, we use Adam for optimization [51] with batch size
is 8 to 32. We start to train with a learning rate of 0.00002 for all layers, and then
rise it manually every time when the validation error rate stopped improving.
Cross entropy is used to define a loss function in DCNN. The number of epochs
is 200.

In our algorithm, the number of neighbors (k) is chosen in 1, 3, 5, 7, 9.
The samples were over-sampled (p) at 100%, 200% and 300% of its original
samples size. We tune the hyper-parameter γ of RBF kernel and the cost C (a
trade-off between the margin size and the errors) to obtain the best correctness.
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Table 2. Hyper-parameters of DCNN-SMOTE-SVM

ID k p(%) C γ ID k p(%) C γ

1 3 300 1E+05 1E-05 26 9 200 1E+01 1E-03

2 9 300 1E+03 1E-04 27 3 100 1E+04 1E-05

3 9 200 1E+05 1E-05 28 9 400 1E+01 1E-02

4 3 100 1E+01 1E-02 29 3 100 1E+02 1E-04

5 3 100 1E+05 1E-05 30 3 150 1E+05 1E-02

6 11 200 1E+02 1E-04 31 9 200 1E+04 1E-05

7 3 100 1E+01 1E-02 32 3 100 1E+03 1E-05

8 11 200 1E+05 1E-04 33 9 100 1E+05 1E-05

9 3 100 1E+05 1E-05 34 11 150 1E+05 1E-03

10 3 100 1E+05 1E-04 35 3 100 1E+05 1E-05

11 3 100 1E+05 1E-05 36 5 400 1E+04 1E-04

12 9 200 1E+03 1E-05 37 9 100 1E+01 1E-03

13 3 100 1E+05 1E-02 38 3 100 1E+03 1E-05

14 3 100 1E+05 1E-05 39 3 100 1E+05 1E-04

15 3 100 1E+05 1E-05 40 9 100 1E+03 1E-05

16 5 300 1E+02 1E-03 41 9 150 1E+02 1E-03

17 3 100 1E+05 1E-05 42 3 100 1E+05 1E-05

18 11 200 1E+05 1E-05 43 9 100 1E+01 1E-04

19 9 100 1E+05 1E-05 44 9 200 1E+02 1E-04

20 9 100 1E+05 1E-04 45 9 100 1E+03 1E-05

21 3 100 1E+05 1E-05 46 9 200 1E+03 1E-05

22 9 100 1E+01 1E-03 47 3 100 1E+01 1E-03

23 9 100 1E+05 1E-05 48 3 100 1E+01 1E-04

24 3 100 1E+04 1E-05 49 9 200 1E+05 1E-05

25 9 100 1E+01 1E-04 50 9 100 1E+01 1E-05

The cost C is chosen in 1, 10, 102, 103, 104, 105, and the hyper-parameter γ of
RBF kernel is tried among 1.E − 1, 1.E − 2, 1.E − 3, 1.E − 4, 1.E − 5. All the
optimal parameters is show in Table 2.

With other algorithms, the cost constant C of linear SVM is set to 103. In
non-linear SVM, we adjust the hyper-parameter γ and the cost C to get the best
result. RF learns 200 decision trees to classify all datasets. kNN tries to use k
among {1, 3, 5, 7}.

4.2 Classification Results

Table 3 gives results of classifying algorithms on 50 gene expression datasets.
The best results are bold faces and the second ones are italic. The plot charts in
Figs. 4, 5 and 6 also visualise classification results. Table 4 summarizes results of
these statistical tests with paired Student ratio test present the mean accuracy
of these models.
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Table 3. Classification results of 15 models on 50 datasets (%)

ID SVM LSVM kNN RF C 4.5 DCNN→ DCNN-SMOTE→
SVM LSVM kNN RF C4.5 SVM LSVM kNN RF C4.5

1 97.06 97.06 88.24 82.36 91.18 97.06 97.01 91.18 67.65 85.29 97.06 97.06 97.06 85.29 85.29

2 63.16 63.16 47.37 73.68 63.16 73.68 63.16 52.63 73.68 63.16 89.47 89.47 57.89 78.95 78.95

3 85.48 80.65 85.48 79.52 74.19 87.10 82.26 80.64 80.65 66.13 88.71 88.71 85.48 80.65 77.41

4 90.08 97.12 90.38 92.17 92.31 98.08 98.08 98.08 94.23 85.58 98.08 98.08 93.27 96.15 86.54

5 86.67 86.67 99.33 86.67 86.67 100 100 100 100 100 100 100 99.33 100 100

6 98.66 98.66 96.64 100 90.60 98.66 98.66 100 97.32 70.47 99.33 99.33 99.33 99.33 91.94

7 82.87 100 99.45 97.78 93.37 100 98.90 92.82 93.92 87.85 98.9 98.90 93.92 95.58 91.71

8 55.17 56.90 58.62 59.62 56.90 58.62 55.17 55.17 51.72 62.07 63.79 62.07 50 51.72 55.17

9 78.98 76.19 67.86 69.13 80.95 84.52 77.38 70.24 70.83 63.10 78.57 76.79 71.43 70.24 74.4

10 83.59 84.38 73.44 76.56 68.75 85.16 84.38 64.84 75.00 71.88 85.94 85.94 72.65 75 65.63

11 74.29 74.29 60.00 71.43 51.43 74.29 74.29 68.57 71.43 60.00 80.00 80.00 71.43 74.29 68.57

12 87.50 74.29 85.00 71.43 51.43 87.50 85.00 85.00 85.00 80.00 87.5 85.00 85.00 88.00 85.00

13 79.25 71.70 69.81 71.70 58.49 79.25 77.36 77.36 77.36 71.70 79.25 79.25 79.25 79.24 73.58

14 86.79 90.57 84.91 79.25 84.91 90.57 90.57 90.57 86.79 67.92 90.57 90.57 90.57 90.57 79.25

15 96.55 96.55 93.10 89.66 77.59 96.55 96.55 93.10 93.10 79.31 96.55 96.55 93.10 91.38 75.86

16 74.58 74.58 55.93 61.02 64.41 71.19 71.19 54.24 59.32 55.93 71.19 59.53 61.02 67.8 66.1

17 56.52 69.57 57.61 59.78 45.65 72.83 71.74 55.43 56.52 55.43 73.91 72.83 63.04 58.69 63.04

18 80.85 73.40 76.60 76.60 87.23 79.79 78.72 76.60 75.53 65.96 79.11 78.72 76.6 75.83 75

19 95.83 95.83 93.75 95.83 91.67 96.88 96.88 93.75 96.88 92.71 98.96 97.92 92.7 96.88 89.58

20 96.15 90.38 94.23 96.15 87.50 94.23 92.31 92.31 92.31 82.69 96.15 96.15 96.15 92.3 82.69

21 93.46 92.52 85.98 92.52 85.98 91.59 91.59 81.31 86.92 86.91 92.52 92.52 85.05 87.85 85.98

22 87.96 84.26 80.56 89.81 79.63 89.81 84.23 83.33 87.96 82.41 87.96 83.33 85.19 88.89 81.3

23 98.18 98.18 96.36 94.55 91.82 98.18 98.18 93.63 95.45 94.55 99.09 99.09 95.45 96.36 93.64

24 88.29 87.39 79.28 86.49 77.48 89.19 87.39 77.48 87.39 72.07 89.19 88.29 77.48 87.39 74.77

25 94.17 94.17 88.33 95.83 85.00 95.83 95.00 85.00 95.83 90.00 95.83 95.00 87.5 95.83 90

26 80.00 80.00 71.54 82.31 62.31 80.77 80.77 77.69 81.54 70.00 81.54 80.77 77.69 81.54 73.08

27 77.03 79.05 59.46 66.89 71.62 79.73 79.73 66.22 68.24 62.84 80.41 79.73 69.59 68.24 64.86

28 86.71 87.34 82.91 85.44 70.89 87.34 87.34 85.44 84.81 68.99 87.34 85.44 81.01 84.81 61.39

29 80.87 80.33 78.69 77.60 75.96 80.33 80.87 74.32 79.23 64.48 80.33 78.69 75.96 79.23 63.93

30 77.88 77.97 75.58 77.46 62.74 79.72 78.80 78.80 79.72 74.65 79.72 80.18 80.18 80.18 76.04

31 99.56 99.56 98.23 98.32 94.32 99.12 99.12 97.34 97.79 94.25 99.56 99.12 97.79 98.23 94.25

32 91.70 92.14 88.21 88.21 83.41 90.83 90.39 85.15 88.65 85.59 92.14 92.14 89.51 90.39 86.03

33 99.25 99.25 99.25 99.25 97.01 99.25 99.25 99.25 99.25 97.76 99.25 99.25 99.25 99.25 98.5

34 91.51 90.45 88.19 85.63 78.87 91.14 90.77 85.98 85.24 80.07 91.88 91.51 87.45 84.5 83.39

35 100 100 77.37 100 100 100 100 88.32 100 100 100 100 100 100 100

36 73.08 87.41 82.87 86.71 83.94 89.51 87.76 79.37 80.07 78.32 88.11 87.76 81.81 82.86 73.78

37 43.91 62.38 54.75 72.44 59.85 95.08 94.02 93.40 95.05 90.87 95.09 94.08 92.7 94.44 86.91

38 95.49 93.55 88.99 92.27 85.84 96.14 96.14 88.36 92.56 88.71 96.46 94.86 88.42 92.29 88.41

39 88.01 84.43 74.40 85.79 68.89 89.93 89.93 69.63 76.76 53.46 89.35 87.74 71.75 77.72 51.75

40 50.54 76.31 56.62 68.13 59.88 71.42 69.79 55.47 62.33 59.33 69.77 65.13 61.02 68.34 59.34

41 63.38 97.20 89.78 94.16 95.44 94.37 94.37 88.32 100 100 95.93 96.17 84.13 84.38 78.03

42 76.21 72.90 57.70 65.19 60.12 74.11 72.18 61.45 66.60 61.22 75.54 74.10 61.21 65.4 60.92

43 65.94 66.38 58.13 60.25 51.25 66.66 63.46 57.20 62.48 52.07 64.57 84.51 58.5 61.52 57.08

44 91.45 89.53 88.99 91.06 83.39 91.45 90.54 89.93 91.14 85.29 91.45 89.66 90.84 91.45 91.45

45 86.41 86.14 71.87 84.75 64.64 97.99 97.98 96.80 97.19 94.21 97.99 97.79 98.39 98.19 96.79

46 84.73 83.10 68.01 78.52 60.03 83.69 83.68 98.76 98.41 92.17 83.86 83.32 83.52 98.24 89.41

47 87.46 83.51 62.99 80.33 69.33 88.01 87.84 73.70 75.80 56.30 88.00 85.25 75.66 76.18 50.91

48 81.01 80.68 77.15 78.52 65.29 80.44 80.27 75.66 76.17 65.97 79.81 77.16 76.16 78.38 70.96

49 100 100 96.53 99.30 97.68 79.60 100 100 99.77 97.23 100 100 100 100 99.77

50 82.90 74.01 82.27 82.93 63.81 82.31 81.27 92.46 93.20 84.93 82.89 81.42 82.88 94.99 75.03
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First and foremost, we evaluate feature extraction and enhancing data algo-
rithms. We compare the accuracy of classifying algorithms (SVM, LSVM, kNN
and RF) and various versions of DCNN-SMOTE including (DCNN-SMOTE-
SVM, DCNN-SMOTE-LSVM, DCNN-SMOTE-kNN and DCNN-SMOTE-RF).

At first sight, Tables 3, 4 and Fig. 6 show that DCNN-SMOTE-
SVM, DCNN-SMOTE-LSVM, DCNN-SMOTE-kNN, DCNN-SMOTE-RF sig-
nificantly increases the mean accuracy of 4.83, 3.37, 2.9, 2.08% points compared
to SVM, LSVM, kNN and RF respectively. All p-values are less than 0.05. In
detail, DCNN-SMOTE-SVM has good performances compared to SVM with 29
wins, 11 ties, 10 defeats, p-value = 1.33E-03 as well as DCNN-SMOTE-LSVM
has 34 wins, 7 ties, 9 defeats (p-value = 8.72E-03) compared to LSVM. In the
comparison to kNN, DCNN-SMOTE-kNN outperforms 29 out of 50 datasets (29
wins, 4 ties, 17 defeats, p-value = 2.26E-03). Besides, DCNN-SMOTE-RF has 29
wins, 12 ties, 9 defeats (p-value = 2.78E-02) compared to RF. These results show
effective of DCNN and SMOTE that improve accuracy of SVM, LSVM, RF and
kNN classifiers. In the comparison between DCNN-SMOTE-C4.5 with C4.5,
DCNN-SMOTE-C4.5 slightly superior to decision tree of C4.5 with 27 wins, 2
tie, 21 defeat, p-value = 1.06E-01 (not significant different).

In addition, it is clear that DCNN-SMOTE-SVM shows the best performance.
Tables 3 and 4 show that it significantly improves the mean accuracy of 4.82,
3.53, 9.40, 5.55, 12.48% points compared to SVM, LSVM, kNN, RF and C4.5
respectively. All p-values are less than 0.05. In detail, it has 29 wins, 10 ties,
11 defeats (p-value = 1.33E-03) against SVM and 33 wins, 11 ties, 6 defeats
(p-value = 4.68E-04) compared to LSVM. This model has also 48 wins, 1 tie,
1 defeat (p-value = 5.57E-09) compared to kNN and 41 wins, 5 ties, 4 defeats
(p-value = 6.01E-09) compared to RF. In the comparison to C4.5, our model
outperforms 46 out of 50 datasets (46 wins, 1 ties, 3 defeat, p-value = 3.12E-12).

Moreover, DCNN-SMOTE-SVM model efficiently classify more than various
versions including DCNN-SMOTE→[LSVM, kNN, RF and C4.5]. In detail, this
model gives good performances compared to DCNN-SMOTE→[LSVM, kNN, RF
and C4.5] which improves the mean accuracy of 0.63, 5.67, 3.47, 9.7 respectively.

Furthermore, DCNN, SMOTE models enhance the accuracy of classifiers
compared to the algorithms classifications using the features extraction from
DCNN. It is clear that DCNN-SMOTE→[SVM, LSVM, kNN, RF, C4.5] increase
the mean accuracy of 0.98, 1.09, 3.15, 1.06, 1.00% points compared to DCNN
→[SVM, LSVM, kNN, RF, C4.5]. These results show using DCNN and SMOTE
is effectively more than our paper previous [13].

The running time of a our model includes three parts: the time to train the
deep convolutional networks for extracting the features, the time to generate new
samples and the training time for the classifier on the new data. The average time
of the first part on 50 datasets is 48.26 s. The average time of the second part
is 29.37 s. Finally, the average time of the second part for SVM, kNN, LSVM,
RF and C4.5 in the our model are, respectively, 0.91, 0.08, 1.83, 2.75 and 1.37 s.
While the running time of SVM, kNN, LSVM, RF and C4.5 are 8.48, 0.31, 54.85,
10.76 and 6.3 s.
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Table 4. Summary of the accuracy comparison

Accuracy Means Win Tie Lose p-value

SVM 83.34

DCNN-SVM 87.19

DCNN-SMOTE-SVM 88.17

LSVM 84.64

DCNN-LSVM 86.45

DCNN-SMOTE-LSVM 87.54

kNN 78.77

DCNN-kNN 81.45

DCNN-SMOTE-kNN 82.51

RF 82.62

DCNN-RF 83.31

DCNN-SMOTE-RF 84.70

DCNN-SMOTE-SVM & SVM 29 11 10 1.33E-03

DCNN-SMOTE-LSVM & LSVM 34 7 9 8.72E-03

DCNN-SMOTE-kNN & kNN 29 4 17 2.26E-03

DCNN-SMOTE-RF & RF 29 12 9 2.78E-02

DCNN-SMOTE-C4.5 & C4.5 27 2 29 1.06E-01

DCNN-SMOTE-SVM & DCNN-SVM 23 17 10 8.20E-02

DCNN-SMOTE-LSVM & DCNN-LSVM 25 11 14 1.59E-01

DCNN-SMOTE-kNN & DCNN-kNN 31 8 11 8.45E-02

DCNN-SMOTE-RF & DCNN-RF 28 12 10 7.06E-02

DCNN-SMOTE-C4.5 & DCNN-C4.5 30 5 15 1.47E-01

DCNN-SMOTE-SVM & SVM 29 11 10 1.33E-03

DCNN-SMOTE-SVM & LSVM 33 11 6 4.68E-04

DCNN-SMOTE-SVM & kNN 48 1 1 5.57E-09

DCNN-SMOTE-SVM & RF 41 5 4 6.01E-09

DCNN-SMOTE-SVM & C4.5 46 1 3 2.91E-12

DCNN-SMOTE-SVM & DCNN-SMOTE-LSVM 29 17 4 2.09E-01

DCNN-SMOTE-SVM & DCNN-SMOTE-kNN 40 8 2 2.27E-08

DCNN-SMOTE-SVM & DCNN-SMOTE-RF 35 8 7 6.99E-05

DCNN-SMOTE-SVM & DCNN-SMOTE-C4.5 46 3 1 6.17E-11

These experiments allow us to believe that our approach efficiently handle
gene expression data with the small sample size in very-high-dimensional input.
Moreover, the combination of DCNN and SMOTE is not only improve perfor-
mance of non-linear SVM and but also linear SVM, kNN and random forests.
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Fig. 6. Comparison of the mean accuracy of the classification models

5 Conclusion and Future Works

We have presented a new classification algorithm of multiple classifiers with
SMOTE using features extracted by DCNN that tackle with the very-high-
dimensional and small-sample-size issues of gene expression data classification.
A new DCNN model extract new features from origin gene expression data,
then a SMOTE algorithm generates new data from the features of DCNN was
implemented. These models are used in conjunction with classifiers that effi-
ciently classify gene expression data. From the obtained results, it is observed
that DCNN-SMOTE can improve performance of SVM, linear SVM, random
forests and k nearest neighbors algorithms. In addition, the proposed DCNN-
SMOTE-SVM approach has the most accurate, when compared to the than
the-state-of-the-art classification models in consideration.

In the near future, we intend to provide more empirical test on large bench-
marks and compare to other algorithms. A promising future research aims at
automatically tuning the hyper-parameters of our algorithms.
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