
OCL2PSQL: An OCL-to-SQL
Code-Generator for Model-Driven

Engineering

Hoang Nguyen Phuoc Bao(B) and Manuel Clavel

Faculty of Engineering, Vietnamese-German University, Thu Dau Mot City, Vietnam
ngpbhoang1406@gmail.com, manuel.clavel@vgu.edu.vn

Abstract. The Object Constraint Language (OCL) is a textual, declar-
ative language typically used as part of the UML standard for specifying
constraints and queries on models. Several attempts have been proposed
in the past for translating OCL expressions into SQL queries in the con-
text of Model Driven Engineering (MDE). To cope with OCL expressions
that include iterators, previous attempts resorted to imperative features
(loops, cursors) of SQL, with the consequent loss of efficiency. In this
paper, we define (and implement) a novel mapping from OCL to SQL
that covers (possibly nested) iterators, without resorting to imperative,
non-declarative features of SQL. We show with a preliminary benchmark
that our mapping generates SQL queries that can be efficiently executed
on mid- and large-size SQL databases.

Keywords: OCL · SQL · Model-driven engineering · Code-generation

1 Introduction

In the context of software development, model-driven engineering (MDE) aspires
to develop software systems by using models as the driving-force. Models are
artifacts defining the different aspects and views of the intended software system.
Ideally, the gap between the models and the real software systems would be
covered by appropriate code-generators.

The Unified Modeling Language [12] is the facto standard modeling lan-
guage for MDE. Originally, it was conceived as a graphical language: models
were defined using diagrammatic notation. However, it promptly became clear
that UML diagrams were not expressive enough to define certain aspects of
the intended software systems, and the Object Constraint Language (OCL) [11]
was added to the UML standard. OCL is a textual language, with a formal
semantics. It can be used to specify in a precise, unambiguous way complex con-
straints and queries over models. For example, to define integrity constraints and
authorization constraints in the context of secure database-centric application
model-driven development [5].

c© Springer Nature Switzerland AG 2019
T. K. Dang et al. (Eds.): FDSE 2019, LNCS 11814, pp. 185–203, 2019.
https://doi.org/10.1007/978-3-030-35653-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35653-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-35653-8_13

186 H. Nguyen Phuoc Bao and M. Clavel

In the past a number of mappings from OCL to other languages have been
proposed, each with its own goals and limitations. In particular, [7,8,10,13] intro-
duce different mappings from OCL to SQL. The limitations of these mappings,
when used as OCL-to-SQL code-generators in a software development process
driven by UML/OCL models, can be organized into two groups. The first group
contains the limitations related to language coverage, i.e., how much part of the
OCL language a mapping can cover. The second group contains the limitations
related to execution-time efficiency, i.e., how much time it takes to execute a
query generated by a mapping.

In this paper we provide a novel solution to the question of whether OCL
queries can be transformed into executable software. Our solution covers a sig-
nificant subset of the OCL language, including (possibly) nested iterators as
well as undefined values. It also reduces significantly the limitation of previous
mappings regarding execution-time efficiency.

Organization. The rest of the paper is organized as follows. In Sect. 2 we intro-
duce background material about SQL and OCL. Next, in Sect. 3 we define the
sub-language of OCL that our OCL-to-SQL mapping currently covers. Then,
in Sect. 4 we introduce our mapping, which is defined recursively over the sub-
language presented in Sect. 3. Next, in Sect. 5 we discuss some preliminary bench-
marks. Finally, in Sect. 6 we review previously proposed OCL-to-SQL, and we
conclude, in Sect. 7, with some closing remarks and future work.

2 Background

SQL [14] is a special-purpose programming language designed for managing data
in relational database management systems (RDBMS). Originally based upon
relational algebra and tuple relational calculus, its scope includes data insert,
query, update and delete, schema creation and modification, and data access
control. Although SQL is to a great extent a declarative language, it also includes
procedural elements. In particular, the procedural extensions to SQL support
stored procedures which are routines (like a subprogram in a regular computing
language, possibly with loops) that are stored in the database.

Notation. Let tb be a table. Let r and col be, respectively, a row and a column
of tb. In what follows, we denote by col(r) the value stored in the column col in
the row r. Let qry be an SQL-query. Let db be an SQL-database. We denote by
Exec(qry , db) the result of executing qry on db.

OCL [11] is a language for specifying constraints and queries using a textual
notation. Every OCL expression is written in the context of a model (called the
contextual model). OCL is strongly typed. Expressions either have a primitive
type, a class type, a tuple type, or a collection type. OCL provides standard
operators on primitive data, tuples, and collections. For example, the operator
includes checks whether an element is inside a collection. OCL also provides a
dot-operator to access the values of class instances’ attributes and association-
ends in the given data model instance. For example, suppose that the contextual

OCL2PSQL: An OCL-to-SQL Code-Generator for Model-Driven Engineering 187

model includes a class c with an attribute at and an association-end as. Then,
if o is an object of class c in the given data model instance, the expression o.at
refers to the value of the attribute at for the object o in this data model instance,
and o.as refers to the objects linked to the object o through the association-
end as. OCL provides operators to iterate over collections, such as forAll,
exists, select, reject, and collect. Collections can be sets, bags, ordered sets
and sequences, and can be parametrized by any type, including other collection
types. Finally, to represent undefinedness, OCL provides two constants, namely,
null and invalid, of a special type. Intuitively, null represents an unknown or
undefined value, whereas invalid represents an error or exception. OCL is a pure
specification language: when an expression is evaluated, it simply returns a value
without changing anything in the model.

Notation. Let e be an OCL expression. In what follows, we denote by FVars(e)
the set of variables that occur free in e, i.e., that are not bound by any iterator.
Let e be an OCL expression, and let v be a variable introduced in e by an iterator
expression s −>iter (v | b). In what follows, srce(v) denotes the source s of v
in e. Let e be an OCL expression and let e′ be a subexpression of e. Then, we
denote by SVarse(e′) the set of variables which (the value of) e′ depends on, and
is defined as follows:

SVarse(e′) =
⋃

v∈FVars(e′)

{v} ∪ SVarse(srce(v)).

Let e be an OCL expression, such that FVars(e) = ∅. Let O be an OCL
Scenario. In what follows, we denote by Eval(e,O) the result of evaluating e in
O, according to the semantics of the language.

In what follows, without loss of generality, we assume that the names of the
iterator variables within an OCL expression are unique.

3 The OCL2PSQL Language

The OCL2PSQL-language is currently defined by the following inductive rules:1

– true and false are OCL2PSQL-expression of type Bool.
– i is an OCL2PSQL-expression, for i an integer number. The type of i is

Integer.
– w is an OCL2PSQL-expression, for w a string. The type of w is String.
– c .allInstances() is an OCL2PSQL-expression, for c a class-type. The type of c

.allInstances() is Set(c).
1 Notice that we do not include in our language operations on collections of collections,

nor we support the invalid value. Since SQL does not natively support (parametrized)
structured collections, mappings from OCL to SQL would need to explicitly encode
this “structure” in the generated queries, as proposed in [8]. Similarly, since SQL does
not natively support the invalid value, mappings from OCL to SQL would have to
handle this value in “ad hoc” ways. Currently, none of the other mappings is able to
support (parametrized) structured collections or the invalid value.

188 H. Nguyen Phuoc Bao and M. Clavel

– v .at is an OCL2PSQL-expression, for v a variable of a class-type t, and at
an attribute of the class-type t. The type of v .at is the type of at .

– v .ase is an OCL2PSQL-expression, for v a variable of a class-type t, and ase
an association-end of the class-type t. The type of v .ase is Set(c′), where c′

is the class at the other end of ase.
– l = r is an OCL2PSQL-expression, for l and r OCL2PSQL-expressions of the

same predefined type or class-type. The type of l = r is Bool.
– s −>size() is an OCL2PSQL-expression, for s an OCL2PSQL-expression of

type Col(t), where Col is either Set or Bag and t is a predefined type or a
class-type. The type of s −>size() is Integer.

– s −>forAll(v |b) is an OCL2PSQL-expression, for s an OCL2PSQL-expression
of type Col(t), where Col is either Set or Bag, with t a class type or a prede-
fined type, and where v is a variable of the type t , and b is an OCL2PSQL-
expression of type Bool. The type of s −>forAll(v |b) is Bool.

– s −>exists(v |b) is an OCL2PSQL-expression, for s an OCL2PSQL-expression
of type Col(t), where Col is either Set or Bag, with t a class type or a prede-
fined type, and where v is a variable of the type t , and b is an OCL2PSQL-
expression of type Bool. The type of s −>exists(v |b) is Bool.

– s −>select(v |b) is an OCL2PSQL-expression, for s an OCL2PSQL-expression
of type Col(t), where Col is either Set or Bag, with t a class type or a prede-
fined type, and where v is a variable of the type t , and b is an OCL2PSQL-
expression of type Bool. The type of s −>select(v |b) is Set(t).

– s −>collect(v |b) is an OCL2PSQL-expression, for s an OCL2PSQL-
expression of type Col(t), where Col is either Set or Bag, with t a class
type or a predefined type, and where v is a variable of the type t , and b is an
OCL2PSQL-expression of type u, where u either a class-type or a predefined
type or a type Col(u ′), where u ′ either a class-type or a predefined type. The
type of s −>collect(v |b) is Bag(u).

– s −>flatten() is an OCL2PSQL-expression, for s an OCL2PSQL-expression of
type Bag(Col(t)), where Col is either Set or Bag, with t a predefined type or
a class-type. The type of s −>flatten() is Bag(t).

– l .oclIsUndefined() is an OCL2PSQL-expression, for l an OCL2PSQL-
expression of type t , with t a predefined type or a class-type. The type of
l .oclIsUndefined() is Bool.

4 The OCL2PSQL Mapping

To illustrate the definition of our mapping, we will use the following example
throughout this section. Consider the diagram CarOwnership shown in Fig. 1. It
models a simple domain, where there are only cars and persons. The persons can
own cars (they are their owners), and, logically, the cars can be owned by persons
(they are their ownedCars). No restriction is imposed regarding ownership: a
person can own many different cars (or none), and a car can be owned by many
different persons (or by none). Finally, each car can have a color, and each person
can have a name.

OCL2PSQL: An OCL-to-SQL Code-Generator for Model-Driven Engineering 189

Fig. 1. The CarOwnership model

4.1 Data Models

Firstly, we formally define the valid context for OCL2PSQL expressions. An
OCL2PSQL-data model is a tuple 〈C,AT ,AS 〉 where:

– C is a set of classes c.
– AT is a set of attribute declarations. An attribute declaration 〈at , c, t〉 denotes

that at is an attribute, of type t, of the class c.
– AS is a set of association declarations. An association declaration 〈as, asel,

cl, aser, cr〉 denotes that as is an association between two classes, cl and cr,
where asel is the association-end whose source is cl and target is cr, and, vice
versa, aser is the association-end whose source is cr and target is cl.

Next, we define a mapping map() from OCL2PSQL-data models to SQL-
schemata.

Let D = 〈C,AT ,AS 〉, be a data model. Then map(D) is defined as follows:

– For every c ∈ C,

CREATE TABLE c (
c_id int NOT NULL
AUTO_INCREMENT PRIMARY KEY);

– For every attribute 〈at , c, t〉 ∈ AT

ALTER TABLE c ADD COLUMN at SqlType(t);

where:
• if t = Integer, then SqlType(t) = int;
• if t = String, then SqlType(t) = varchar;
• if t ∈ C, then SqlType(t) = int.

Moreover, if t ∈ C, then

ALTER TABLE c ADD FOREIGN KEY fk_c_iat(at)
REFERENCES t(t_id);

– For every association 〈as, asel, cl, aser, cr〉 ∈ AS ,

CREATE TABLE as (
asel int,
aser int,
FOREIGN KEY fk_cl_asel(asel)

REFERENCES cl(cl_id),
FOREIGN KEY fk_cr_aser(aser)

REFERENCES cr(cr_id));

190 H. Nguyen Phuoc Bao and M. Clavel

Example 1. In Fig. 2 we show the SQL-schema generated by our mapping for the
OCL2PSQL-data model CarOwnership. In what follows, we denote by CarDB the
database create with the aforementioned schema.

Fig. 2. Example: map(CarOwnership)

4.2 Data Model Instances

Firstly, we formally define the instances of OCL2PSQL-data models, i.e., the
valid scenarios for evaluating OCL2PSQL-expressions. Let D = 〈C ,AT ,AS 〉 be
a data model. A D-instance is a tuple 〈OC ,OAT ,OAS 〉 where:

– OC is a set of objects declarations. An object declaration (oc, c) denotes that
oc is an object of the class c.

– OAT is a set of attribute value declarations. An attribute value declaration
〈〈at , c′, t〉, (oc, c), vl〉 denotes that the value of the attribute at in the object
oc is vl .

– OAS is a set of association link declarations. Each association link declaration
〈〈as, asel, cl, aser, cr〉, (ocl, cl), (ocr, cr)〉 denotes that the objects ocl and
ocr are linked through the association as, in such a way that ocr is among
the objects linked to ocl through the association-end asel, and, vice versa,
ocl is among the objects linked to ocr through the association-end aser.

Next, we define a mapping map() from instances of OCL2PSQL-data models
to SQL-databases.

Let D = 〈C ,AT ,AS 〉 be an OCL2PSQL-data model. Let OD =
〈OC ,OAT ,OAS 〉 be a D-instance. Then map(O) is defined as follows:

OCL2PSQL: An OCL-to-SQL Code-Generator for Model-Driven Engineering 191

– For every oc ∈ OC ,

INSERT INTO c VALUES ();

For our reference, let id(oc) denote the integer-value automatically generated
for the column c_id.

– For every 〈〈at , c′, t〉, (oc, c), vl〉 ∈ OAT

UPDATE c SET at = vl WHERE c_id = id(oc);

– For every 〈as, asel, cl, aser, cr〉 ∈ OAS ,

INSERT INTO as (asel, aser) VALUES (ocl, ocr);

4.3 Expressions

Finally, in this section we recursively define our mapping map() from
OCL2PSQL-expressions to SQL-queries. The correctness of our mapping could
be formalized as follows: Let e be an OCL2PSQL-expression, such that
FVars(e) = ∅, and let O be an OCL2PSQL-scenario. Then,

Exec(mape(e),map(O)) ≡OCL2PSQL Eval(e,O).

The different cases in our recursive definition below follow the same key idea
underlying our mapping: namely, let e be an OCL2PSQL-expression, let e′ be a
subexpression of e, and let O be an OCL2PSQL-scenario. Then, Exec(mape(e′),
map(O)) returns a table, with a column res, a column val, and, for each
v ∈ SVarse(e′), a column ref_v. Informally, for each row in this table: (i) the
columns ref_v contain a valid “instantiation” for the iterator variables of which
the evaluation of e′ depends on (if any); (ii) the column val contains 0 when
evaluating the expression e′, with the “instantiation” represented by the columns
ref_v, evaluates to the empty set ; otherwise, the column val contains 1;
(iii) when the column val contains 1, the column res contains the result of
evaluating the expression e′ with the “instantiation” represented by the columns
ref_v; when the column val contains 0, the value contained in the column res
is not meaningful. More concretely,

Remark 1. Let e be an OCL2PSQL-expression. Let e′ be a subexpression
of e, such that FVars(e′) = ∅. Let O be an OCL2PSQL-scenario. Then,
Exec(mape(e′), map(O)) returns a table, with a column res and column val,
such that, for each row r, val(r) = 1. Intuitively, each row in the table returned
by Exec(mape(e′),O) represents an element in Eval(e′,O), and vice versa.

Remark 2. Let e be an OCL2PSQL-expression. Let e′ be a subexpression of e,
such that FVars(e′) is not empty. Let O be an OCL2PSQL-scenario. Then,
Exec(mape(e′),O) returns a table, with a column res, a column val, and,
for each v ∈ SVarse(e′), a column ref_v, and such that, for each row r,
val(r) is either 1 or 0. Intuitively, for each row r in the table returned by
Exec(mape(e′),O)

192 H. Nguyen Phuoc Bao and M. Clavel

– if val(r) is 1, then res(r) is an element in Eval(θ(e′),O), and vice versa,
where θ is the substitution {v �→ ref_v(r) | v ∈ SVars(e′)}.

– if val(r) is 0, then Eval(θ(e′),O) = ∅, where, as before, θ is the substitution
{v �→ ref_v(r) | v ∈ SVars(e′)}.

Variables

Let e be an OCL2PSQL-expression. Let e′ be a subexpression of e. Let e′ = v,
where v is a variable. Then,

mape(v) =
SELECT
TEMP_dmn.res as res,
TEMP_dmn.res as ref_v,
TEMP_dmn.val as val,
TEMP_dmn.ref_v′ as ref_v′, for each v′ ∈ SVarse(src(v))

FROM (mape(src(v))) as TEMP_dmn.

Attributes

Let e be an OCL2PSQL-expression. Let e′ be a subexpression of e. Let e′ = v
.att , where v is a variable of class-type c and att is an attribute of the class c.
Then,

mape(v .att) =
SELECT

c.att as res,
TEMP_obj.val as val,
TEMP_obj.ref_v′ as ref_v′, for each v′ ∈ SVarse(v)

FROM (mape(v)) as TEMP_obj
LEFT JOIN c
ON TEMP_obj.ref_v = c.c_id AND TEMP_obj.val = 1.

Association-ends

Let e be an OCL2PSQL-expression. Let e′ be a subexpression of e. Let e′ = v
.ase, where v is a variable of class-type c, and ase is an association-end of the class
c. Let Assoc(ase) be the association to which ase belongs, and let Oppos(ase)
be the association-end at the opposite end of ase in Assoc(ase). Then,

mape(v .ase) =
SELECT
Assoc(ase).ase as res,
CASE Assoc(ase).Oppos(ase) IS NULL
WHEN 1 THEN 0
ELSE 1 END as val,

OCL2PSQL: An OCL-to-SQL Code-Generator for Model-Driven Engineering 193

TEMP_obj.ref_v′ as ref_v′, for each v′ ∈ SVarse(v)
FROM (mape(v)) as TEMP_obj
LEFT JOIN Assoc(ase)
ON TEMP_obj.ref_v = Assoc(ase) .Oppos(ase) AND TEMP_obj.val = 1.

AllInstances

Let e be an OCL2PSQL-expression. Let e′ be a subexpression of e. Let e′ = c
.allInstances(), where c is a class type. Then,

mape(c .allInstances())=
SELECT c_id as res, 1 as val FROM c.

Equality

Let e be an OCL2PSQL-expression. Let e′ be a subexpression of e. Let e′ = (l
=r). We need to consider the following cases:

– FVars(l) = FVars(r) = ∅. Then,

mape(l =r) =
SELECT
TEMP_left.res = TEMP_right.res as res,
1 as val

FROM (mape(l)) AS TEMP_left, (mape(r)) AS TEMP_right

– FVars(l)
= ∅, SVars(r) ⊆ SVars(l). Then,

mape(l =r) =
SELECT

TEMP_left.res = TEMP_right.res as res,
CASE TEMP_left.val = 0 OR TEMP_right.val = 0

WHEN 1 THEN 0
ELSE 1 END as val,

TEMP_left.ref_v as ref_v, for each v ∈ SVarse(l)
FROM (mape(l)) AS TEMP_left
[LEFT] JOIN (mape(r)) AS TEMP_right
[ON] TEMP_left.ref_v = TEMP_right.ref_v, for each v ∈ SVarse(l) ∩ SVarse(r).

– FVars(r)
= ∅, SVars(l) ⊆ SVars(r). As before, but swapping the order of the
elements in the left-join.

– FVars(l)
= ∅, FVars(r)
= ∅, SVars(l)
⊆ SVars(r), and SVars(r)
⊆ SVars(l).
Then,

mape(l =r) =
SELECT
TEMP_left.res = TEMP_right.res as res,
CASE TEMP_left.val = 0 OR TEMP_right.val = 0
WHEN 1 THEN 0

194 H. Nguyen Phuoc Bao and M. Clavel

ELSE 1 END as val,
TEMP_left.ref_v, for each v ∈ SVarse(l),
TEMP_right.ref_v, for each v ∈ SVarse(r)

FROM (mape(l)) AS TEMP_left, (mape(r)) AS TEMP_right

Size

Let e be an OCL2PSQL-expression. Let e′ be a subexpression of e. Let e′ = s
−>size(). We need to consider the following cases:

– FVars(s) = ∅. Then,

mape(s −>size()) =
SELECT
COUNT(*) as res,
1 as val

FROM (mape(s)) AS TEMP_src.

– FVars(l)
= ∅, Then,

mape(s −>size()) =
SELECT
CASE TEMP_src.val = 0
WHEN 1 THEN 0
ELSE COUNT(*) END as res,

TEMP_src.ref_v as ref_v, for each v ∈ SVarse(s)
1 as val

FROM (mape(s)) AS TEMP_src
GROUP BY TEMP_src.ref_v, for each v ∈ SVarse(s), TEMP_src.val.

Collect

Let e be an OCL2PSQL-expression. Let e′ be a subexpression of e. Let e′ = s
−>collect(v | b). We need to consider the following cases:

– v ∈ FVars(b) and FVars(e′) = ∅.

SELECT TEMP_body.res as res,
TEMP_body.val as val,

FROM (mape(b)) as TEMP_body

– v ∈ FVars(b) and FVars(e′)
= ∅.

SELECT TEMP_body.res as res,
TEMP_body.val as val,
TEMP_body.ref_v′ as ref_v′, for each v′ ∈ SVars(s),
TEMP_body.ref_v′ as ref_v′, for each v′ ∈ SVars(b) \ SVars(s) \ {v}

FROM (mape(b)) as TEMP_body

– v
∈ FVars(b). Similarly, but the source and the body would need to be joined
using a JOIN-clause.

OCL2PSQL: An OCL-to-SQL Code-Generator for Model-Driven Engineering 195

Exists

Let e be an OCL2PSQL-expression. Let e′ be a subexpression of e. Let e′ = s
−>exists(v | b). We need to consider the following cases:

– v ∈ FVars(b) and FVars(e′) = ∅. Then

SELECT
COUNT(*) > 0 as res,
1 as val

FROM (mape(b)) as TEMP_body
WHERE TEMP_body.res = 1

– v ∈ FVars(b) and FVars(e′)
= ∅. Then

SELECT
CASE TEMP_src.ref_v IS NULL
WHEN 1 THEN 0
ELSE TEMP.res END as res,

1 as val,
TEMP_src.ref_v′ as ref_v′, for each v′ ∈ SVars(s),
TEMP_body.ref_v′ as ref_v′, for each v′ ∈ SVars(b) \ SVars(s) \ {v}

FROM (mape(s)) as TEMP_src
LEFT JOIN (
SELECT COUNT(*) > 0 as res,
TEMP_body.ref_v′ as ref_v′, for each v′ ∈ SVars(b) \ {v}

FROM (mape(b)) as TEMP_body
WHERE TEMP_body.res = 1
GROUP BY TEMP_body.ref_v′, for each v′ ∈ SVars(b) \ {v}

) as TEMP_body
ON TEMP_src.ref_v′ = TEMP_body.ref_v′, for each v′ ∈ SVars(s)

– v
∈ FVars(b). Similarly, but the source and the body would need to be joined
using a JOIN-clause.

ForAll

Let e be an OCL2PSQL-expression. Let e′ be a subexpression of e. Let e′ = s
−>forAll(v | b). We need to consider the following cases:

– v ∈ FVars(b) and FVars(e′) = ∅. Then

SELECT
COUNT(*) = 0 as res,
1 as val

FROM (mape(b)) as TEMP_body
WHERE TEMP_body.res = 0

196 H. Nguyen Phuoc Bao and M. Clavel

– v ∈ FVars(b) and FVars(e′)
= ∅.

SELECT
CASE TEMP_src.ref_v IS NULL
WHEN 1 THEN 1
ELSE TEMP.res END as res,

1 as val,
TEMP_src.ref_v′ as ref_v′, for each v′ ∈ SVars(s),
TEMP_body.ref_v′ as ref_v′, for each v′ ∈ SVars(b) \ SVars(s) \ {v}

FROM (mape(s)) as TEMP_src
LEFT JOIN (
SELECT COUNT(*) = 0 as res,
TEMP_body.ref_v′ as ref_v′, for each v′ ∈ SVars(b) \ {v}

FROM (mape(b)) as TEMP_body
WHERE IFNULL(TEMP_body.res, 0) = 0 AND TEMP_body.val = 1
GROUP BY TEMP_body.ref_v′, for each v′ ∈ SVars(b) \ {v}

) as TEMP_body
ON TEMP_src.ref_v′ = TEMP_body.ref_v′, for each v′ ∈ SVars(s)

– v
∈ FVars(b). Similarly, but the source and the body would need to be joined
using a JOIN-clause.

Select

Let e be an OCL2PSQL-expression. Let e′ be a subexpression of e. Let e′ = s
−>select(v | b). We need to consider the following cases:

– v ∈ FVars(b) and FVars(e′) = ∅.

SELECT
TEMP_body.ref_v as res,
TEMP_body.val as val

FROM (mape(b)) as TEMP_body
WHERE TEMP_body.res = 1

– v ∈ FVars(b) and FVars(e′)
= ∅.

SELECT
CASE TEMP_src.val = 0 OR TEMP_body.ref_v IS NULL
WHEN 1 THEN NULL
ELSE TEMP_src.res END as res,

CASE TEMP_src.val = 0 OR TEMP_body.ref_v IS NULL
WHEN 1 THEN 0
ELSE 1 END as val,

TEMP_src.ref_v′ as ref_v′, for each v′ ∈ SVars(s),
TEMP_body.ref_v′ as ref_v′, for each v′ ∈ SVars(b) \ SVars(s) \ {v}

FROM (mape(s)) as TEMP_src
LEFT JOIN (

OCL2PSQL: An OCL-to-SQL Code-Generator for Model-Driven Engineering 197

SELECT * FROM (mape(b)) as TEMP
WHERE TEMP.res = 1) AS TEMP_body

ON TEMP_src.res = TEMP_body.ref_v,
TEMP_src.ref_v′ = TEMP_body.ref_v′, for each v′ ∈ SVars(s).

– v
∈ FVars(b). Similarly, but the source and the body would need to be joined
using a JOIN-clause.

OclIsUndefined

Let e be an OCL2PSQL-expression. Let e′ be a subexpression of e. Let e′ = s.
oclIsUndefined(). Then,

mape(s. oclIsUndefined()) =
SELECT
CASE TEMP_src.val = 0
WHEN 1 THEN NULL
ELSE TEMP_src.res IS NULL as res END as res,

TEMP_src.val as val,
TEMP_ref.v′ as ref_v′, for each v′ ∈ SVarse(s)

FROM map(s) as TEMP_src.

Flatten

Let e be an OCL2PSQL-expression. Let e′ be a subexpression of e. Let e′ = e′′

−>flatten(). Currently, e′′ must be a collect-expression, e′′ = s −>collect(v | b),
where b is of type Col(t), where Col is either Set or Bag, and where t is a
predefined type or a class-type.

We need to consider the following cases:

– FVars(e′) = ∅.

SELECT
TEMP_src.res as res,
1 as val

FROM (mape(e′′)) as TEMP_src
WHERE TEMP_src.val = 1

– FVars(e′)
= ∅. Let assume that v ∈ FVars(b).

SELECT
CASE TEMP_flat.val IS NULL
WHEN 1 THEN NULL
ELSE TEMP_flat.res END as res,

CASE TEMP_flat.val IS NULL
WHEN 1 THEN 0

198 H. Nguyen Phuoc Bao and M. Clavel

ELSE TEMP_flat.val END as val,
TEMP_flat.ref_v′ as ref_v′, for each v′ ∈ SVars(s)

FROM (mape(s)) as TEMP_src
LEFT JOIN (
SELECT * FROM (mape(e′′)) as TEMP
WHERE TEMP.val = 1) as TEMP_flat

ON TEMP_src.ref_v′ = TEMP_flat.ref_v′, for each v′ ∈ SVars(s)

5 Preliminary Benchmarks

As part of the work presented here, we have implemented in Java the OCL2PSQL
mapping. The interested reader can experiment with the latest version of our
tool at:2

http://cs.vgu.edu.vn/se/tools/ocl2psql/.

In this section we provide some experiments to evaluate our mapping with
respect to execution-time efficiency of the generated queries.3 To this end, we
will consider different scenarios of the database CarDB, introduced in Example 1.
In particular, CarDB(n) will denote an instance of the database CarDB containing
10n cars and 10(n−1) persons, where each car is owned by one person and each
person owns 10 different cars, and each car has a color different from ‘no-color’,
and each person has a name different from ‘no-name’. We use a server machine,
with Intel(R) Xeon(R) CPU E5-2620 v3 at 2.40GHz with 16 GB RAM, using
MySQL 5.7.25.4 The execution-times reported here correspond to the arithmetic
mean of 50 executions. The figures reported are given in seconds, unless otherwise
stated.

First, suppose that we want to know the number of cars whose color is
‘no-color’. In SQL we can use the following query:
SELECT COUNT(*) FROM (SELECT * FROM Car WHERE color = ’no-color’) AS TEMP;

In OCL we can specify the same query using the following expression:

Car.allInstances()−>select(c|c.color =’no−color’)−>size()

If we execute the above queries on CarDB(6) and CarDB(7), (without indexing
the column color) in the table Car, we obtain the following results. The figures
shown in the row “OCL2PSQL” correspond to the execution-time of the SQL-
query generated, for the above OCL expression, by the OCL2PSQL mapping.

2 At the time of writing, our tool temporarily uses an OCL parser that requires adding
contextual information to the OCL expressions to be input. Please, check the latest
information about this issue in our tool’s web site.

3 SQL engines have highly optimized strategies for executing queries over large
databases. Our OCL2PSQL mapping follows some of the well-known optimization
“tips” for SQL engines. Nevertheless, we should be aware that “development [for SQL
engines] is ongoing, so no optimization tip is reliable for the long term.” (MySQL
8.0 Reference Manual, (13.2.11.11 Optimizing Subqueries).

4 Although we have used MySQL for running our examples, we believe that our overall
results should apply likewise to the other SQL engines.

http://cs.vgu.edu.vn/se/tools/ocl2psql/

OCL2PSQL: An OCL-to-SQL Code-Generator for Model-Driven Engineering 199

CarDB(6) CarDB(7)
SQL 0.22 2.28
OCL2PSQL 0.26 3.30

Next, suppose that we want to know if there is at least one car whose color
is different from ‘no-color’. In SQL we can use the following query,

SELECT COUNT(*) > 0
FROM (SELECT * FROM Car WHERE color <> ’no-color’) AS TEMP;

We can specify in OCL the original query using the following expression:

Car.allInstances()−>exists(c|c.color <>’no−color’)

If we execute the above queries on CarDB(6) and CarDB(7), without indexing
the column color in the table Car, we obtain the following results.

CarDB(6) CarDB(7)
SQL 0.22 2.72
OCL2PSQL 0.28 3.28

Finally, suppose that we want to know the number of cars that has at least
one owner whose name is ‘no-name’. In SQL we can also use the following query,
which uses joins (instead of correlated subqueries):

SELECT COUNT(*)
FROM (SELECT COUNT(*) > 0 FROM Car

JOIN Ownership
on Car_id = ownedCars
JOIN Person
ON Person.Person_id = owners
WHERE Person.name = ’no-name’
GROUP BY Car_id) AS TEMP;

We can specify in OCL the original query using the following expression:

Car.allInstances()−>select(c|c.owners−>exists(p|p.name =‘no−name’))−>size()

If we execute the above queries on CarDB(6) and CarDB(7), without indexing
the column name in the table Person, we obtain the following results.

CarDB(6) CarDB(7)
SQL 0.04 0.28
OCL2PSQL 0.36 4.24

200 H. Nguyen Phuoc Bao and M. Clavel

6 Related Work

To the best of our knowledge, OCL2SQL [6,10] was the first attempt of mapping
OCL into SQL. Based on a set of transformation templates, OCL2SQL automat-
ically generates SQL queries from OCL expressions. OCL2SQL only covers (a
subset of) OCL boolean expressions. Moreover, the high execution-time for the
queries generated by OCL2SQL makes it impractical, as an OCL-to-SQL code-
generator, for large scenarios. For example, [4] reported that the query generated
by OCL2SQL for the expression:

Writer.allInstances()−>forAll(a|a.books−>forAll(b|b.page >300))

takes more than 45min to execute on a scenario consisting of 102 writers and 105

books, each writer being the author of 103 books and each book having exactly
150 pages.5

MySQL4OCL [8] is defined recursively over the structure of OCL expressions.
For each OCL expression, MySQL4OCL generates a stored procedure that, when
called, creates a temporary table containing the values corresponding to the eval-
uation of the given expression. More concretely, for the case of iterator expres-
sions, the stored procedure generated by MySQL4OCL repeats, using a loop,
the following process: (i) it fetches from the iterator’s source collection a new
element, using a cursor ; (ii) it calls the stored procedure corresponding to the
iterator’s body with the newly fetched element as a parameter ; (iii) it processes
the resulting temporary table according to the semantics of the iterator’s oper-
ator. Although cursors and loops (inside stored procedures) allow MySQL4OCL
to cover a large subclass of the OCL language (including nested iterators), they
also bring about a fundamental limitation to the use of MySQL4OCL as an
OCL-to-SQL code-generator: they often impede the highly-optimized execution
strategies implemented by SQL engines.

An interesting method for efficiently checking OCL constraints by means of
SQL queries is proposed in [13]. According to this method, an OCL constraint
is satisfied if its corresponding SQL query returns the empty set. As in the case
of OCL2SQL, this method is limited to (a subset of) OCL boolean expressions.
With regards to execution-time efficiency, the figures provided in [13] are not
easily comparable with normal execution times, since the generated SQL queries
are computed in an incremental way. More specifically, “whenever a change in the
data occurs, only the constraints that may be violated because of such change
are checked and only the relevant values given by the change are taken into
account.”

SQL-PL4OCL [7] closely follows the design of MySQL4OCL and, conse-
quently, bears the same fundamental limitation regarding execution-time effi-
ciency, as we illustrate with an example below. Still, with respect to its pre-
decessor, SQL-PL4OCL simplifies the definition of the mapping, improves the
execution-time of the generated queries (by reducing the number of temporary

5 The experiment was carried out on a machine with Intel Pentium M 2.00 GHz
600 MHz, and 1 GB of RAM.

OCL2PSQL: An OCL-to-SQL Code-Generator for Model-Driven Engineering 201

tables), and implements some of the features that were left in [8] as future work:
namely, handling the null value and supporting (unparameterized) sequences.

To illustrate the costly consequences, in terms of execution-time efficiency,
of using cursors and loops to implement OCL iterator expressions, consider the
following OCL query:

Car.allInstances()−>select(c|c.owners−>exists(p|p.name =’no−name’))−>size().

The stored procedure generated by SQL-PL4OCL for this query is given in [7]
(Example 11). Now, if we call this stored procedure on the scenarios CarDB(3),
CarDB(4), CarDB(5), CarDB(6), and CarDB(7), we obtain the following execution-
times:

CarDB(3) CarDB(4) CarDB(5) CarDB(6) CarDB(7)
SQL-PL4OCL 0.76 6.17 1 min 3.02 10 min 24.00 > 90min

Note that the above query, when implemented in SQL in the expected way
(without cursors and loops), takes less than 1 second to execute on the scenario
CarDB(7), while the stored procedure generated by SQL-PL4OCL (using cursors
and loops) did not finish its execution after 90min. As reported in Sect. 5, the
SQL-query generated by OCL2PSQL takes less than 10 seconds to execute on
the scenario CarDB(7). OCL2PSQL diverts completely from MySQL4OCL/SQL-
PL4OCL in that it does not rely on the use of cursors and loops for implementing
iterator expressions, neither does it create temporary tables for storing interme-
diate results. Instead, (i) for intermediate results, it uses standard subqueries and
(ii) for iterator expressions, it adds to the subquery corresponding to the itera-
tor’s body an extra column corresponding to the iterator’s variable. Intuitively,
this column stores the element in the iterator’s source that is “responsible” for
the result that is stored in the corresponding row.

Finally, there have been also different proposals [1,3,4,9] in the past for what
we may call OCL evaluators. These are tools that load first the scenario on which
an OCL expression is to be evaluated, and then evaluate this expression using
an OCL interpreter. As reported in [4], the (insurmountable) problem with OCL
evaluators is the time required for loading a large scenario: none of the existing
tools were able to finish loading a scenario with 106 objects after 20min.

7 Concluding Remarks and Future Work

The Object Constraint Language (OCL) plays a key role in adding precision
to UML models, and therefore it is called to be a main actor in model-driven
engineering (MDE). However, to fulfill this role, smart/advanced code-generators
must bridge the gap between UML/OCL models and executable code. This is
certainly the case for secure database-centric applications [2].

202 H. Nguyen Phuoc Bao and M. Clavel

In this paper, we have defined (and implemented) a novel mapping, called
OCL2PSQL, from a significant subset of OCL to SQL. Our mapping generates
queries that can perform on par with queries manually implemented in SQL for
non-trivial examples, overcoming the main limitations of previously proposed
mappings.

Looking ahead, we recognize that manually implementing in SQL complex
queries is not an easy task; in fact, we can argue that it is a more difficult task
than specifying them in OCL. Suppose, for example, that we are interested in
querying our database CarDB (without assuming that every car has at least one
owner) about: (i) if it exists a car whose owners all have the name ‘no-name’,
and (ii) how many cars have at least one owner with no name declared yet. We
can specify (i) in OCL as follows:

Car.allInstances()−>exists(c|c.owners−>forAll(p|p.name=’no−name’))

Similarly, we can specify ii) in OCL as follows:

Car.allInstances()−>select(c|c.owners−>exists(p|p.name.oclIsUndefined()))−>size()

We invite the reader to implement (i) and (ii) in SQL, and draw his/her own
conclusions. In our opinion, this state of affairs offers exciting opportunities for
smart/advanced OCL-to-SQL code-generators.

Our challenge now is two-fold. On the one hand, we want to extend our
mapping to cover the part of the OCL language that is not covered yet. In
particular, (i) collection of collections (e.g., OCL expressions that represent set
of sets, or sequences, or ordered sets); (ii) operations on collections of collections
(e.g., union, intersection); (iii) type operations (e.g., oclIsTypeOf or oclAsType,
which are particularly relevant when dealing with UML models that include
generalizations); and (iv) invalid values. On the other hand, we want to formally
prove the correctness of our mapping, based on the semantics of SQL and OCL,
using an interactive theorem prover (proof assistant) like Isabelle/HOL or Coq.

Finally, we plan to use our mapping to generate appropriate executable code
from UML/OCL models containing OCL invariants, and pre and post conditions.
Notice that these are ultimately OCL queries of type Boolean, and therefore are
covered by our mapping.

Acknowledgments. This work has been supported by the Vietnamese-German Uni-
versity (VGU-PSSG grant 14/01 - 11/06/2019).

References

1. Baar, T., Markovic, S.: The RoclET tool (2007). http://www.roclet.org/index.php
2. Basin, D.A., Clavel, M., Egea, M., de Dios, M.A.G., Dania, C.: A model-driven

methodology for developing secure data-management applications. IEEE Trans.
Softw. Eng. 40(4), 324–337 (2014)

3. Chiorean, D., Bortes, M., Corutiu, D., Botiza, C., Carcu, A.: An OCL environ-
ment (OCLE) 2.0.4 (2005). Laboratorul de Cercetare in Informatica, University of
BABES-BOLYAI. http://lci.cs.ubbcluj.ro/ocle/

http://www.roclet.org/index.php
http://lci.cs.ubbcluj.ro/ocle/

OCL2PSQL: An OCL-to-SQL Code-Generator for Model-Driven Engineering 203

4. Clavel, M., Egea, M., de Dios, M.A.G.: Building an efficient component for OCL
evaluation. ECEASST 15 (2008)

5. de Dios, M.A.G., Dania, C., Basin, D., Clavel, M.: Model-driven development
of a secure eHealth application. In: Heisel, M., Joosen, W., Lopez, J.,
Martinelli, F. (eds.) Engineering Secure Future Internet Services and Systems.
LNCS, vol. 8431, pp. 97–118. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-07452-8_4

6. Demuth, B., Hussmann, H.: Using UML/OCL constraints for relational database
design. In: France, R., Rumpe, B. (eds.) UML 1999. LNCS, vol. 1723, pp. 598–613.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46852-8_42

7. Egea, M., Dania, C.: SQL-PL4OCL: an automatic code generator from OCL to
SQL procedural language. Softw. Syst. Model. 18, 769–791 (2017)

8. Egea, M., Dania, C., Clavel, M.: MySQL4OCL: a stored procedure-based MySQL
code generator for OCL. ECEASST 36 (2010)

9. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based specification environ-
ment for validating UML and OCL. Sci. Comput. Program. 69, 27–34 (2007)

10. Heidenreich, F., Wende, C., Demuth, B.: A framework for generating query lan-
guage code from OCL invariants. ECEASST 9 (2008)

11. Object Management Group. Object constraint language specification version 2.4.
Technical report, OMG, February 2014. https://www.omg.org/spec/OCL/About-
OCL/

12. Object Management Group. Unified Modeling Language. Technical report, OMG,
December 2017. https://www.omg.org/spec/UML/About-UML/

13. Oriol, X., Teniente, E.: Incremental checking of OCL constraints through
SQL queries. In: Brucker, A.D., Dania, C., Georg, G., Gogolla, M., (eds.)
OCL@MoDELS, volume 1285 of CEUR Workshop Proceedings, pp. 23–32.
CEUR-WS.org (2014)

14. ISO/IEC 9075-(1–10) Information technology - Database languages - SQL. Tech-
nical report, International Organization for Standardization (2011). http://www.
iso.org/iso

https://doi.org/10.1007/978-3-319-07452-8_4
https://doi.org/10.1007/978-3-319-07452-8_4
https://doi.org/10.1007/3-540-46852-8_42
https://www.omg.org/spec/OCL/About-OCL/
https://www.omg.org/spec/OCL/About-OCL/
https://www.omg.org/spec/UML/About-UML/
http://www.iso.org/iso
http://www.iso.org/iso

	OCL2PSQL: An OCL-to-SQL Code-Generator for Model-Driven Engineering
	1 Introduction
	2 Background
	3 The OCL2PSQL Language
	4 The OCL2PSQL Mapping
	4.1 Data Models
	4.2 Data Model Instances
	4.3 Expressions

	5 Preliminary Benchmarks
	6 Related Work
	7 Concluding Remarks and Future Work
	References

