
 123

LN
BI

P
36

6

15th International Workshop, EOMAS 2019, Held at CAiSE 2019
Rome, Italy, June 3–4, 2019
Selected Papers

Enterprise and
Organizational Modeling
and Simulation

Robert Pergl · Eduard Babkin ·
Russell Lock · Pavel Malyzhenkov ·
Vojtěch Merunka (Eds.)

Lecture Notes
in Business Information Processing 366

Series Editors

Wil van der Aalst
RWTH Aachen University, Aachen, Germany

John Mylopoulos
University of Trento, Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0002-0955-6940
https://orcid.org/0000-0002-8698-3292
https://orcid.org/0000-0003-3303-2896

More information about this series at http://www.springer.com/series/7911

http://www.springer.com/series/7911

Robert Pergl • Eduard Babkin •

Russell Lock • Pavel Malyzhenkov •

Vojtěch Merunka (Eds.)

Enterprise and
Organizational Modeling
and Simulation
15th International Workshop, EOMAS 2019, Held at CAiSE 2019
Rome, Italy, June 3–4, 2019
Selected Papers

123

Editors
Robert Pergl
Czech Technical University in Prague
Prague 6, Czech Republic

Eduard Babkin
Higher School of Economics
National Research University
Nizhny Novgorod, Russia

Russell Lock
Loughborough University
Loughborough, UK

Pavel Malyzhenkov
Higher School of Economics
National Research University
Nizhny Novgorod, Russia

Vojtěch Merunka
Czech Technical University in Prague
Prague 1, Czech Republic

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-030-35645-3 ISBN 978-3-030-35646-0 (eBook)
https://doi.org/10.1007/978-3-030-35646-0

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-2980-4400
https://orcid.org/0000-0003-2597-9043
https://orcid.org/0000-0002-4543-3753
https://orcid.org/0000-0003-1973-5026
https://orcid.org/0000-0002-9056-1439
https://doi.org/10.1007/978-3-030-35646-0

Preface

The International Workshop on Enterprise and Organizational Modeling and Simula-
tion (EOMAS) represents a forum where researchers and practitioners exchange and
mutually enrich their views, approaches, and obtain results in the field of enterprise
engineering and enterprise architecture. The most valuable asset of every conference
and workshop is its community. The community of EOMAS is small, but it consists of
founding members, long-term contributors, and every year it attracts new innovative
participants. This year, EOMAS reached its 15th edition and took place in Rome, Italy,
during June 3–4, 2019.

Traditionally, we can offer a balanced assortment of papers addressing formal
foundations of enterprise modeling and simulation, conceptual modeling approaches,
higher-level insights and applications bringing novel ideas to traditional approaches, as
well as new emerging trends. In this post-proceedings you may find the selected papers.
Out of 24 submitted papers, 12 were accepted for publication as full papers and for oral
presentation, and each paper was carefully selected, reviewed, and revised. In addi-
tional to this we reflected on the interest of last year’s invited workshop on usability
and invited the experts to make a sequel. You can find a short report in this issue.

This year, we included a novel outlet of Master and Doctoral Consortium, which
attracted young talent to present their work. The presented work was then discussed,
and feedback, advice, and encouragement was given. We were really surprised by the
relevance, methodological quality, and results of their work – you may find their
contributions on our website https://eomas-workshop.org.

We would like to express our sincere thanks to the entire EOMAS community: the
authors, the Program Committee and the CAiSE organizers, the chairs for their
enthusiasm and devotion, as well as all participants for their contributions. We look
forward to the 16th edition of EOMAS!

June 2019 Robert Pergl
Eduard Babkin
Russell Lock

Pavel Malyzhenkov
Vojtěch Merunka

https://eomas-workshop.org

A Little Semi-round Retrospective

When we founded Sigmas (Special Interest Group on Modeling and Simulation) at the
Association for Information Systems and its EOMAS workshop 15 years ago, under
the leadership of Professor Joseph Barjis, this was the time of the final penetration of
object-oriented paradigm into the area of building large software applications. Indeed,
software analysis and design methods at that time had already assumed that software
engineering processes begin with the description of requirements, but finding, verify-
ing, and validating these requirements was considered as something that did not belong
to software engineering techniques, because the software engineer must get it ready
from other specialists. However, we have learned from our experience that this is not an
accurate statement and that the requirements engineering must be part of software
engineering, more specifically that software engineering has an essential intersection
with business engineering and management consulting. Over the past years, the
importance of this kind of analysis and prototyping of information systems grew as
compared with the writing program code. Also, agile methods do not even assume that
the requirements are accurately identified at the begin of the software development life
cycle.

We are also delighted that in our workshop various innovative approaches have
come into play, which later became asked at large conferences, but at the time of their
beginning, they would probably not have the chance to be accepted elsewhere than in
the EOMAS community. Our workshop should maintain this feature for the future and
remain a platform for communication, inspiration, and collaboration of new ideas. In
most countries, including mine, publications in peer-reviewed journals are more valued
than publications at conferences of our type. However, it is a big problem for young
scientists who cannot start to write journal articles without previous contact with the
expert community. Our workshop is designed especially for them.

Dear friends, 15 great years of our workshop have passed, and there is a future
ahead of us with new challenges. The dominance of Java has been declining already for
many years, and new programming languages and new programming paradigms have
come to the scene, in which return the spirit of the old ideas of Smalltalk, object
databases, and other nearly forgotten technologies. Also, the declarative and other
non-imperative styles of programming are no longer just an exciting toy but are
becoming a practical technology, thanks to the growing performance of today’s
computers. We are interested in metamodeling and ontologies and augmentation of
software engineering to the higher spheres of abstraction closer to classical philo-
sophical thinking. Today’s business consultants already use CASE tools and
business-process simulators. This confirms the need for our workshop. Thank you all
very much for the past 15 years of EOMAS workshop. Let us look into its future with
great hope.

June 2019 Vojtěch Merunka

Organization

EOMAS 2019 was organized by the Department of Software Engineering, Czech
Technical University in Prague, in cooperation with CAISE 2019 and CIAO!
Enterprise Engineering Network.

Executive Committee

General Chair

Robert Pergl Czech Technical University in Prague, Praha,
Czech Republic

Program Chairs

Eduard Babkin National Research University Higher School
of Economics, Nizhny Novgorod, Russia

Russell Lock Loughborough University, Loughborough, UK
Pavel Malyzhenkov National Research University Higher School

of Economics, Nizhny Novgorod, Russia
Vojtech Merunka Czech Technical University in Prague, Praha,

Czech Republic

Program Committee

David Aveiro Madeira University, Portugal
Eduard Babkin National Research University Higher School

of Economics in Nizhni Novgorod, Russia
Joseph Barjis San Jose State University, USA
Anna Bobkowska Gdansk University of Technology, Poland
Alexander Bock University of Duisburg-Essen, Germany
Mahmoud Boufaida Mentouri University of Constantine, Algeria
Peter de Bruyn University of Antwerp, Belgium
Simona Colucci Politecnico di Bari, Italy
Francesco M. Donini Università della Tuscia, Italy
Samuel Fosso Wamba Toulouse Business School, France
Sergio Guerreiro Instituto Superior Tecnico, University of Lisbon,

Portugal
Frantisek Hunka University of Ostrava, Czech Republic
Dmitry Kudryavtsev Graduate School of Management, St. Petersburg

University, Russia
Alexei Lapouchnian University of Toronto, Canada
Russell Lock Loughborough University, UK

Pavel Malyzhenkov National Research University Higher School
of Economics in Nizhni Novgorod, Russia

Vojtech Merunka Czech Technical University, Czech University of Life
Sciences, Czech Republic

Martin Molhanec Czech Technical University, Czech Republic
Maria Ntaliani Agricultural University of Athens, Greece
Josef Pavlicek Czech University of Life Sciences, Czech Republic
Robert Pergl Czech Technical University, Czech Republic
Erik Proper Luxembourg Institute of Science and Technology,

Luxembourg
Patrizia Ribino ICAR Institute of National Research Council, Italy
Ben Roelens Open University of the Netherlands, Ghent University,

Netherlands
Victor Romanov Russian Plekhanov University, Russia
Gustavo Rossi Universidad Nacional de La Plata, Argentina
Adrian Rutle Western Norway University of Applied Sciences,

Norway
Janis Stirna Stockholm University, Sweden
Michal Valenta Czech Technical University, Czech Republic
Steven van Kervel Formetis BV, Belgium
Michael Verdonck Ghent University, Netherlands
Jan Verelst University of Antwerp, Belgium

x Organization

Contents

Conceptual Modelling

Designing an Ontology for Semantic Integration of Various
Conceptual Models . 3

Marek Suchánek

Conceptual Normalisation in Software Engineering 18
Martin Molhanec

Object-Oriented Class Normalisation from a Conceptual
Modelling Perspective . 29

Vojtěch Merunka, Himesha Wijekoon, and Boris Shegolev

Enterprise Engineering

Evolvable and Machine-Actionable Modular Reports
for Service-Oriented Architecture . 43

Marek Suchánek and Jan Slifka

Challenges in Enterprise and Information Systems Modeling
in the Contexts of Socio Cyber Physical Systems . 60

Marite Kirikova

Proposing an Architecture of an Intelligent Evolvable Document
Generation System Based on the Normalized Systems Theory 70

Vojtěch Knaisl

Mapping UFO-B to BPMN, BORM, and UML Activity Diagram 82
Marek Suchánek and Robert Pergl

Exploration of Creativity Techniques in Software Engineering
in Training-Application-Feedback Cycle. 99

Anna E. Bobkowska

Formal Methods

SHACL Shapes Generation from Textual Documents 121
David Šenkýř

Detection of Declarative Process Constraints in LTL Formulas 131
Nicolai Schützenmeier, Martin Käppel, Sebastian Petter, Stefan Schönig,
and Stefan Jablonski

Measures of Quality in Business Process Modeling 146
Josef Pavlicek, Petra Pavlickova, and Pavel Naplava

Performance Impact to the Applying Design Patternization Techniques
to Object-Relational Databases . 156

Boris Schegolev, Himesha Wijekoon, Jakub Štěpán Novák,
and Vojtěch Merunka

Invited Workshop Notes

Business Process Models (BPMN and DEMO Notation) - Usability Study . . . 167
Petra Pavlickova and Josef Pavlicek

Author Index . 175

xii Contents

Conceptual Modelling

Designing an Ontology for Semantic
Integration of Various Conceptual Models

Marek Suchánek(B)

Faculty of Information Technology, Czech Technical University in Prague,
16000 Prague 6, Czech Republic
marek.suchanek@fit.cvut.cz

Abstract. Ontologies and conceptual modelling are very close areas
in software engineering. This paper is focused on initial steps towards
the integration of conceptual models by the foundation of Ontology for
Conceptual Models Integration to capture the knowledge about various
conceptual modelling languages, including process, event, and object-
role modelling. It is based on previous work in this area and has an
ambitious goal to allow semantic integration of conceptual models made
in different languages to cover more aspects and details of the problem
domain. The presented contribution consists of the related work research,
the initial ontology designed to be easily extensible, and related ideas for
future work based on this foundation. We foresee this ontology to help
also with using various conceptual models to create complete, consistent,
and requisite software implementation in an automated way.

Keywords: Ontology · Conceptual modelling · Integration · Mapping

1 Introduction

Conceptual modelling is a discipline and activity used for describing a part of
reality called problem domain (e.g., systems, environments, and organizations)
in order to promote the understanding and communication between people [21].
When we understand a domain, we can improve it or support it efficiently, for
example, by developing and incorporating software applications. There are many
languages for modelling a domain, and there is definitely not a single correct
way in choosing the language, similarly to programming languages [5]. Differ-
ent languages are focused on different aspects of a domain (structure, processes,
responsibilities, communication, etc.) and thus have certain advantages and dis-
advantages regarding a specific use case.

Although the modelling languages are more or less focus on different aspects
or model the same aspects differently to enhance or align its usability, there are
overlaps and connections in concepts and semantics [5]. Example of such connec-
tion can be nicely visible on models of the Unified Modelling Language (UML),
where models relations between model are straightforward, for example, use case
fulfilling a requirement, or object of a class from class diagram participating in
c© Springer Nature Switzerland AG 2019
R. Pergl et al. (Eds.): EOMAS 2019, LNBIP 366, pp. 3–17, 2019.
https://doi.org/10.1007/978-3-030-35646-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35646-0_1&domain=pdf
http://orcid.org/0000-0001-7525-9218
https://doi.org/10.1007/978-3-030-35646-0_1

4 M. Suchánek

sequence behaviour model [23]. Such links are across other modelling languages
as well. Using the links, we can interconnect the knowledge about the domain,
improve understanding of it, and also translate between modelling languages –
directly or interactively if personal decisions have to be made.

For the interconnection of models, we need to semantically integrate the
languages, i.e., find and describe the overlaps and links. Semantic integration is
a well-known process of interrelating information, and ontology mapping can be
used for this purpose [14]. Ontologies are in information technologies are used
for representing and storing knowledge using the formal encoding of taxonomies,
structure of entities (nouns), and relations between them (verbs). There are
already some works that encode modelling languages using their metamodels in
the Web Ontology Language (OWL) as we will show in Sect. 2. Having OWL
ontologies for various languages and then do ontology mapping seems a possible
way of contributing to this area of research.

First, in Sect. 2, we briefly introduced used terminology of conceptual mod-
elling; then we summarise related work in conceptual modelling and ontology
mapping that will be used as a foundation for this work. In Sect. 3, we propose
our solution to semantic integration of various conceptual models generically
using ontology mapping, so it is applicable for any modelling language now or
in the future. Section 4 contains the evaluation of our contribution and its pos-
sibilities of use based on the previous comprehensive description. Finally, Sect. 5
contains proposals of possibilities for further research in this area.

2 Related Work and Terminology

This section introduces basic terminology from conceptual modelling and ontol-
ogy to understand and grasp the topic correctly. Then we briefly describe similar
attempts to our topic and related work that we can use for our goals. It is further
used to design our own solution.

2.1 Conceptual Modelling

As the conceptual modelling, we understand, according to [21], as “the activity
of formally describing some aspects of the physical and social world around us
for purposes of understanding and communication”. This definition covers not
only the structural modelling of entities, their attributes, and relationships with
possible constraints but also processes or even social aspects such as responsi-
bilities or intentions. Thus, in this paper, we do not make a distinction between
structural, process or other models on the conceptual level.

Although the primary purpose of conceptual modelling is not strictly related
to software engineering, it is often used in it to design software systems according
to requirements of a well-described domain. There are various languages for con-
ceptual modelling that are focused on specific aspects. For structural modelling,
the study [28] shows that ontology-driven languages such as OntoUML [11] is
better to use over traditional approaches with UML or ER models. Slightly other

Ontology for Conceptual Models Integration 5

approach is taken in Object-Role Modeling (ORM) that is focused on modelling
facts and their roles in relations between them [12].

Facts-oriented is also part of the Design & Engineering Methodology for
Organizations (DEMO) that focuses on transactions, i.e., production and coor-
dination, in organisations and provides multiple consistent models to cover struc-
tures, processes, and action rules [7]. For purely process modelling, aside to well-
known BPMN and some UML models, there is also Business Objects Relation
Modelling (BORM) based on the object-oriented paradigm and formalism of
communicating finite machines [15].

2.2 Ontology Mapping, Alignment, and Matching

Ontology matching, sometimes called ontology alignment, is the process of find-
ing correspondences between concepts in two or more ontologies. A set of such
correspondences can be described with a term alignment. In the past, it was
mainly used for integrating databases or software applications with different
vocabularies. There are three dimensions by which we can match terms in ontolo-
gies: syntactic, external, and semantic [26].

When we have two ontologies with their sets of classes, relations, individuals,
data types, and values, we can match them using inter-ontology relationships.
A single matching is given by two terms that match and the similarity measure,
which is a value between 0 and 1. A pair of those two terms from a single
matching is called mapping [26].

For mapping multiple ontologies, you can map them in pairs (each-to-each),
or have one particular ontology as a central point to which is each ontology
mapped. The second option is what we want to do in our work. An important
note is that we do not want to lose important information about mapping by
using just similarity measure but to capture what semantic difference is between
terms even if it is very slight.

2.3 Description-Logics Based Ontologies

Formal specifications are used to represent some knowledge in a well-defined way
another family with this common goal is description logic (DL). Problem domains
can be described using DL languages, which can use various description logics:
general, spatial, temporal, spatiotemporal, and fuzzy [1]. DL is tightly connected
to ontologies in software engineering, for example, and more specifically, with the
Web Ontology Language (OWL), since version 2 defined by W3C consortium.

A model can be then described using OWL, where classes correspond to DL
concepts, properties to DL roles, and individuals are the same. An OWL ontology
is usually used in semantic web technologies or to describe some data in RDF
format and is compatible with RDF schemas. Thanks to its popularity over the
recent years, tooling support is on a granular level and also allows visualisation.
When compared to a graphical language it is more efficient to develop text-based
OWL for versioning using tools like Git instead of storing models in XMI or as
figures [10,19].

6 M. Suchánek

2.4 Matching in OWL

Matching, as we already described, is used to interconnect ontologies with rela-
tionships of equivalence and similarity [26]. In OWL, there are already defined
terms that can be used for matching ontologies [3]:

– owl:equivalentClass = a property for linking class descriptions that have
the same intensional meaning and are not necessarily totally equivalent (which
can be done with owl:sameAs).

– owl:equivalentProperty = a construct for stating that two properties
have the same property extension, i.e., intensional meaning. Just as with
owl:equivalentClass, totally equivalent property should be instead cap-
tured with owl:sameAs.

– owl:sameAs = a property for linking individuals with the same “identity”.
Similarly, there are also properties owl:differentFrom together with set-like
owl:AllDifferent for different individuals.

As those and also other exist [19], we should make use of those and do not “re-
invent the wheel”. OWL language is very expressive in this manner, and it can
significantly help us with our task of semantic integration of various conceptual
models.

2.5 Ontology for Conceptual Modelling

Very similar research to this has been done in [18], and we are highly inspired
by it. The significant difference in their and our work lies in their main focus on
structural aspects, i.e., its simplicity and actually mapping conceptual mod-
els into vocabularies with just types (i.e., classes or entities), qualities (i.e.,
attributes or properties), and relations. Also, they are focused on usability with
Biomedical Informatics Grid and clinical models that limit the generality of the
project.

The other problem is that the ontology is not available any more, and the
project seems abandoned. Our goal is to ensure future development of the ontol-
ogy and not leaving it to disappear. As another inspiring part of this work,
there are relations to terms in other upper ontologies such as BFO, SKOS, or
IAO. That can even allow mappings between different ontologies and conceptual
models as is done entirely in OntoUML modelling language [11].

2.6 Model Transformations

A lot of work in model transformations has been already done. First, in model-
driven software engineering, there are many tools and ways of translating a
conceptual model into (usually incomplete) implementation. The most known
approach is Model Driven Architecture (MDA) by OMG where computation
independent model (CIM) is transformed to platform independent model (PIM)
and then to platform specific model (PSM) [27]. During the transformations,
conceptual details can be lost, and implementation information is added.

Ontology for Conceptual Models Integration 7

Also, transformations between modelling languages and conceptual modelling
to ontologies have been done as well. For example, [2] describes transformation
of OntoUML to OWL and SWRL, similarly to [31] and [30] about UML to OWL
transformation. OntoUML can also be transformed into the formal specification
in language Alloy [4]. Such transformations are used often for increasing pos-
sibilities of the language, for example, transforming OntoUML to Alloy allows
validation with mathematical reasoning and generation of instances which would
be more complicated to reimplement purely for OntoUML.

2.7 Existing Ontologies for Modelling Languages

There are already existing ontologies that encode metamodels of modelling lan-
guages which is even more powerful than simple transformations of models into
ontology. It allows matching of modelling languages and querying as well as
it describes instances, i.e., models. One of many examples is [22] that encodes
BPMN 2.0 into ontology as organised knowledge from more than 500 pages of
the official specification. It provides annotations and information about BPMN
but also enables validations of BPMN models.

2.8 Meta-modelling and MOF

The Meta-Object Facility (MOF) [24] is a standard by Object Management
Group (OMG) used in model-driven engineering. It defines 4 levels wherein the
top M3 level is provided with a meta-metamodel which conforms to itself and
that can be used to build compliant metamodels on the M2 level for modelling
languages, such as, UML metamodel. Then on the M1 level are the models made
in the language defined by M2 metamodel, e.g., UML model. The M0 level is
data level with real-world objects, i.e., model instances.

Some modelling languages and their metamodels are conformed with MOF
and some, of course, are not. Sharing the meta-metamodel gives an advantage
in the form of transformation possibilities or interconnecting knowledge between
models that we want to achieve as well. Inspirations from MOF’s M3 model and
mapping it directly are essential to our work.

3 Our Approach

In this section, we propose and describe our initial ontology for the integration
of various conceptual models though matching their metamodels. For that pur-
pose, we highly gather inspirations from the discussed related work. Our goal is
to develop a high-quality foundation of ontology that will be extended continu-
ally in the future rather than struggling with an enormous amount of different
concepts from many modelling languages or developing totally new multi-aspect
language as is often the case in contemporary software engineering. The re-use
of concepts and ideas is the essence of our work together with abstractions and
categorisations of those terms if applicable and needed.

8 M. Suchánek

3.1 General Requirements

First, we need to summarise what are the demands that need to be fulfilled. Such
requirements are of two kinds. We want to develop an ontology that captures the
knowledge of conceptual models. It means we want to extract higher-level terms,
such as class, entity, relation, inheritance, and so on, used in various (commonly
used) conceptual modelling languages, group them, and name the group within
the ontology. Selected aspects (i.e., types of modelling) and modelling languages
for our purpose are:

– Class-oriented modelling: UML Class Diagram, OntoUML, ER
– Fact-oriented modelling: ORM, DEMO
– Behavioural modelling: UML Activity Diagram, BPMN, BORM
– Instance-level modelling: UML Object Diagram.

As for the second kind of requirements, which we can call as in software
engineering “non-functional” requirements, we narrow selection of technologies
and architecture in order to be extensible and interoperable in the future devel-
opment. Setting up and following such requirements should, for example, assure
that our work will not end up unavailable like mentioned Conceptual Modelling
Ontology from [18]. We will mainly focus on this using FAIR principles [29]:

– Findable = The ontology and related metadata should be publicly available
in a repository that assures long-term storage, and persistent identifier (for
example, DOI) will be assigned.

– Accessible = The ontology and metadata will be accessible using open and
free protocol via the Internet from the public repository.

– Interoperable = The selected format to represent the ontology and meta-
data needs to be open and widely used, preferably standardised, and it should
be clear how to use it.

– Reusable = The project should be released with a clear usage license,
detailed provenance, and it should meet standards used in similar projects.

To fulfil most of these “non-functional” requirements, we will use a public
GitHub repository, open Creative Commons license, and Zenodo service to assign
persistent Digital Object Identifier (DOI) [25]. The repository will contain aside
to the ontology description also files to clarifies its usage both human-readable
and machine-actionable.

Another aspect is the quality and truthfulness of the ontology. The ontology
must be, of course satisfiable, i.e., it is possible to instantiate the described model
without any violation of specified rules. There are also measures of quality pro-
posed by [16] in terms of syntax, (perceived) semantics, pragmatics, knowledge,
social, physical, and language aspects. In order to achieve validity and com-
pleteness, which will be a long-term goal above the scope of this paper, everyone
developing this ontology should take those quality aspects into account.

Ontology for Conceptual Models Integration 9

3.2 Technologies and Formats

Concerning the previously discussed requirements, we selected OWL format for
implementing the ontology. It is standardised by OMG, has excellent tooling sup-
port, has advantages over RDF schemas or previously used frame languages [19].
The ultimate tool to work with ontologies that we will also use is Protégé, which
is free and open-source [20]. For visualisations to explain the ontology in this
paper, we will use a web-based visualisation tool called WebVOWL [17].

To describe the project, we will use a simple documentation HTML docu-
mentation for people as well as machines. It will contain metadata encoded using
tool WIDOCO – a wizard for documenting ontologies [8]. The documentation
will contain information about the ontology, its license, authors, and intended
usage together with relevant references, including this paper. The OWL ontology
will also be annotated using well-known Dublin Core standard [13].

3.3 Ontology for Conceptual Models Integration

In our ontology called Ontology for Conceptual Models Integration (OCMI), we
gather key terms from various conceptual modelling languages as described in
requirements. The highest level of classes consists of five terms: Entity, Event,
Property, Relationship, and Participation. There are two more terms – Con-
straint and Instance – that are sort of “cross-cutting concerns” since they can
be related to one of the previous four terms, for example, a constraint for a
relationship or an instance of an entity. Thus, they have subclasses for each of
them. The core is well visible in Fig. 1 made by WebVOWL tool.

Aside from classes, we defined also data and object properties based on the
modelling languages analysis and conceptual modelling principles. The most
basic example is that every Entity, Property, Relationship, and other have a
name (e.g. entity “Person” or property “birthdate”). They also capture relations
between our classes, for instance, that one entity constraint is related to some
entities and that one entity can have multiple entity constraints. The core terms
forming the “spine” of ontology are:

Entity. We call an entity the same things as is a class in UML and its profiles,
a fact in ORM and DEMO and identically entity in the ER modelling. It is a
structural pattern for its instances, i.e., it groups definitions of properties and
relationships that the instances have in common. This is the core term of our
ontology used when defining all others.

Event. Event is a subclass of an entity which is special in terms of its usage.
It represents entity that occurs in time duration and has special relations and
properties related to that fact, such as a trigger, input, and output. In process
modelling, the equivalent naming is activity, transition, or task.

10 M. Suchánek

Fig. 1. WebVOWL visualisation of OCMI (core, details are collapsed)

Property. Commonly known attributes, fields, trait, or quality from conceptual
modelling languages, we call a property definition of having a named feature. In
the first version of ER modelling, this was captured by the special has relation,
for example, “Car has a colour”. It is important to mention here, that property
has no type definition - we understand typing as kind of constraint which are
defined later on.

Relationship. Aside from properties, an entity can have some relationships
with other entities or itself. In conceptual models, there are relations, links,
associations, and so on. We use the term relationship for any kind of connection
between two (or more) entities. The entities are connected to relationship via
special class participation to separate connection details. There are also sub-
classes of relationships such as specialization, association, or aggregation.

Participation. The Participation class serves to name and describe an relation-
ship “end”. It is better to separate details about a single connection of entity to
a relationship from others, especially when a relationship can be (theoretically)
between any number of entities. The main purpose is regarding the constraints.

Ontology for Conceptual Models Integration 11

Constraint. As being said, constraint realizes any sort of restriction of others
in our ontology. We understand as a constraint multiplicity of relationship (more
specifically participation of relationship), a stereotype of entity or relationship,
specially named meta-attributes, but even datatype of property, and so on. There
are subclasses of constraints for other classes and then special subclasses for
widely used constraints in conceptual modelling.

Instance. From instance-level modelling, we got inspired and incorporated class
instance for something called also object in the UML and its profiles. Instances of
entities, relationships, participations, or properties (i.e., values) form an instance
of a model and are related to its class.

The resulting ontology contains more terms and their properties than shown
in Fig. 1 but those are collapsed and are less significant to be explicitly stated
here. We expect that such lower-level terms and details might change over time
but mentioned and critical seven of higher-level terms will be stable and provide
a solid foundation.

3.4 Distribution

The ontology is published using GitHub repository, but we provide persistent
links to the repository itself http://purl.org/ocmi and the latest OWL file
http://purl.org/ocmi/ocmi.owl in the master branch. This mechanism of
purl.org service [9] allows us to change the provider, owner, or name of the
repository and keep the same URL as well as potentially change even the name
of the ontology itself. The universal Creative Commons license CC0 (Public
Domain) does not limit any use or distribution of the ontology [6]. The first
starting release allowed to create a release with DOI using Zenodo that makes
the ontology with specific versions simple to cite [25].

3.5 Relations with Upper Ontologies

As we developed an ontology of high-level terms of the conceptual modelling
domain, it inevitably overlaps on semantic and maybe even syntactic level with
upper (or foundational) ontologies. We selected some of the widely used upper
ontologies: General Formal Ontology (GFO), Basic Formal Ontology (BFO),
Unified Foundational Ontology (UFO), and Yet Another More Advanced Top-
level Ontology (YAMATO), and compared classes in our ontology with theirs.
The results are summarised in Table 1. The captured equivalences can also be
described using owl:equivalentClass and are based on empirical observations
of their use in multiple domain ontologies as well as its description in upper
ontologies.

We matched terms with an elementary knowledge of selected ontologies, and
it can be a source of other future discussions for improvements in our OCMI
ontology. It is visible that no existing ontology perfectly matches our new one,
but it can be mapped, often even with the partially identical terminology.

http://purl.org/ocmi
http://purl.org/ocmi/ocmi.owl

12 M. Suchánek

Table 1. Equivalent terms in the selected ontologies

OCMI GFO BFO UFO YAMATO

Entity Entity Entity Universal Entity

Event SpaceTime Occurent Perdurant Occurent

Relationship Relator (only) Relational quality Relation Relation

Participation Relational role N/A N/A N/A

Property Property Quality Aspect/Quality Property

4 Evaluation

The described Ontology for Conceptual Models Integration successfully fulfils
the set initial requirements. First, it contains all essential terms used in the
analysed modelling languages which enable future integrations on overlapping
terms, encoding models using RDF and the ontology, and querying in a standard
OWL way. Also, thanks to the selected standard OWL format, the ontology can
be interconnected with existing OWL ontologies for conceptual modelling, and
it is easily extensible.

4.1 Evolvability

As we already stated, our ontology presented in this paper is just an initial step,
and the main advantage is within its ability to be continually improved in a
crowd-sourced manner. Use of standard format, versioning, and overall design
enable easy changes in the future without causing any ripple effects. The ontology
maintainers can quickly review its distribution and licensing also allow anyone to
contribute and the contributions. The team of maintainers can, over time, change
based on proving expertise and ability to contribute regularly. Nevertheless, the
main ideas and requirements given by this paper should remain the same.

4.2 Versatility

The contribution in the form of a single initial ontology based on conceptual
modelling languages analysis can be marked as versatile. It uses only standard
technologies and procedures; therefore, it has no other limitations than those
set by the underlying technologies and human creativity. As the name states,
the primary purpose is to integrate conceptual models, but it can be used for
modelling itself or as an upper ontology to other ontologies. Also, usage as a
descriptor to generate software entities can be done as well. It is all achieved by
its simplicity that can, of course, disappear in the future as the ontology will get
mature.

Ontology for Conceptual Models Integration 13

4.3 Possibilities for Adoption

Thanks to its versatility mentioned above, there is plenty of opportunities for the
use of the Ontology for Conceptual Models Integration. First, as it is standard
OWL ontology, it can be freely used in other ontologies that describe conceptual
modelling languages (or are generic upper ontologies) with use of equivalence
or subtype relations similarly to what we have shown in Table 1. Such “crowd-
sourced” use would specify the mappings for integration itself.

Then, integration can be realised using OWL queries on the lower level of
domain models. Another option is to develop a framework that takes the ontol-
ogy, mapped modelling languages and upper ontologies, a domain model and
provides many options for results such as:

– manipulation (i.e., queries) of model composed of multiple conceptual models
from the input,

– transformations of models between modelling languages,
– consistency checks for multiple models,
– template-based generating documentation, statistics, and visualisations from

models.

There can be many implementations of such a framework using different tech-
nologies. The ontology defines very high-level terminology of conceptual mod-
elling with intentions but not specifications nor limitation of its use. However,
the core idea will persist – a well-defined combination of conceptual modelling
languages to describe a problem domain instead of developing new languages.

4.4 Availability and FAIRness

We published our work within the public Git repository and created a persistent
URL using purl.org service, which assures long-term availability. On top of that,
the repository also allows releases with DOI using Zenodo service. Development
of the ontology is simplified thanks to the regular Git workflow with branches,
tags, and forks. Due to permissive licensing, anyone can adjust the ontology or
contribute to it.

Finally, the documentation on how to use, extend, and integrate the ontology
is provided directly in the repository together with project-related metadata in
both human-readable and machine-actionable format. With all of this, the ontol-
ogy is ready for further elaboration and usage to integrate conceptual models
on the semantic level. Use of standard formats, open access, and metadata as
described in requirements makes this project FAIR.

5 Future Work and Research Ideas

While developing the ontology and studying related work, we have encountered
several challenges and possibilities for future research. Potential further steps
after this research are briefly described in this section.

14 M. Suchánek

5.1 More Modelling Languages

The most obvious way to continue in this work is to describe more modelling
languages using our ontology. For higher efficiency of the process, prioritisation
of languages should take place. Incorporating modelling languages that already
have some published and available OWL description should be more comfortable
and faster to adopt with ontology alignment instead of thoroughly research the
meta-model and encode it. On the other hand, widely-used languages should be
preferred to incorporate over less-used even if having OWL specification.

The primary purpose of doing this is, of course, to cover more aspects of a
domain and to provide more ways of modelling that can be plugged together.
There is also the second advantage in the form of improving the ontology for
integration. When we encounter a modelling language that has some constructs
which cannot be adequately captured with the ontology, or the loss of informa-
tion is too high, an improvement of the ontology should be made to increase its
expressiveness. Important is to still stay on a very generic level and do not dive
into describing too detailed concepts that would prevent a proper mapping.

5.2 Formal Specifications

Aside to incorporating more languages for conceptual modelling, the scope of
languages can be broadened, and other forms of a domain description could be
added. Formal specification, for example, Alloy, OCL, or algebraic specifications
(Maude, CASL, etc.), are an essential way how to capture specific details of a
domain or a system that are usually not possible to encode in graphical concep-
tual modelling languages. Importance of those models is mainly in its possibility
of mathematical reasoning and proving correctness or broad validation options
in terms of automatically generating instances.

Meta-models of languages for formal specifications differ in many aspects;
however, since they are often used as complements to conceptual models for
mission-critical parts of a domain, overlaps and interconnections must be present.
Further research could enhance the ontology to allow adopting formal specifica-
tion languages and enable its symbiotic connection to various conceptual models
in a simple way.

5.3 Similarity and Expressiveness of Modelling Languages

Since we can match various conceptual modelling languages using a common
ontology, we can also evaluate how are these languages similar, i.e., how much
they cover the same aspects of a domain in the same scope. Knowing easily
how expressive is each modelling language concerning particular domain aspect
or aspects should help with deciding what language is suitable to be used for
a description of a domain based on requirements and expectations. Moreover,
when it is known which other languages are highly compatible (i.e., can create
synergic models) – a whole suite of suitable languages for given problem domain
could be decided with higher quality.

Ontology for Conceptual Models Integration 15

5.4 Implementation Models and Transformations

Formal specifications are closer to a mathematical or programming-like descrip-
tion of a domain. Another natural broadening of the ontology scope would be
covering implementation models. It should allow transforming a set of conceptual
models and possibly formal specifications into a set of implementation models
able to be used for generating adequate software application. Of course, such
transformation is not straightforward, since between conceptual and implemen-
tation levels are gaps as technical details are missing in conceptual models but
contain other details that are omitted in implementations.

An existing approach used in MDA well describe such transformation and is
verified by practice. The novelty brought by our ontology would be in seamlessly
using multiple different models that cover more aspects, and thus hypothetically
more accurate implementation can be generated. This topic of all other men-
tioned here represents, in our opinion, the most complicated challenge, as well
as the most significant benefit.

6 Conclusion

In this paper, we presented our initial approach to semantically integrate various
conceptual models made in different modelling languages with the use of current
ontology technologies. Our work that was profoundly influenced by interesting
but discontinued Conceptual Modelling Ontology (CMO) [18] and Meta-Object
Facility collects knowledge from different approaches to conceptual modelling
and provides a way how to map them together in order to allow a description
of a problem domain from diverse aspects. The ontology is easily extensible
and can be continually improved when incorporating new modelling languages.
We hope that our contribution will be used as a foundation to further research
and application in practice to help in conceptual modelling and model-driven
development of software applications.

Acknowledgments. This research was supported by the grant of Czech Technical
University in Prague No. SGS17/211/OHK3/3T/18.

References

1. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: Introduction to Description Logic.
Cambridge University Press, Cambridge (2017)

2. Barcelos, P.P.F., dos Santos, V.A., Silva, F.B., Monteiro, M.E., Garcia, A.S.: An
automated transformation from OntoUML to OWL and SWRL. Ontobras 1041,
130–141 (2013)

3. Bechhofer, S., et al.: OWL: Web Ontology Language Reference. W3C recommen-
dation 10(02) (2004)

4. Braga, B.F., Almeida, J.P.A., Guizzardi, G., Benevides, A.B.: Transforming
OntoUML into alloy: towards conceptual model validation using a lightweight for-
mal method. Innov. Syst. Softw. Eng. 6(1–2), 55–63 (2010)

16 M. Suchánek

5. Brodie, M.L., Mylopoulos, J., Schmidt, J.W.: On Conceptual Modelling: Per-
spectives from Artificial Intelligence, Databases, and Programming Languages.
Springer, New York (2012)

6. Creative Commons: CC0 1.0 Universal (2019). https://creativecommons.org/
publicdomain/zero/1.0/deed.cs

7. Dietz, J.L.: Towards a discipline of organisation engineering. Eur. J. Oper. Res.
128(2), 351–363 (2001)

8. Garijo, D.: WIDOCO: a wizard for documenting ontologies. In: d’Amato, C., et al.
(eds.) ISWC 2017. LNCS, vol. 10588, pp. 94–102. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-68204-4 9

9. Graham, M.: Persistent URL Service, purl.org, Now Run by the Internet Archive.
blog.archive.org (2016)

10. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.:
OWL 2: the next step for OWL. Web Semant. Sci. Serv. Agents World Wide Web
6(4), 309–322 (2008)

11. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. Cen-
tre for Telematics and Information Technology, Telematica Instituut, University
of Twente, Enschede, The Netherlands (2005). http://doc.utwente.nl/50826/1/
thesis Guizzardi.pdf

12. Halpin, T.: Object-Role Modeling Fundamentals: A Practical Guide to Data Mod-
eling with ORM. Technics Publications, LLC, Basking Ridge (2015)

13. Dublin Core Metadata Initiative and others: Dublin core metadata element set,
version 1.1 (2012)

14. Kalfoglou, Y., et al. (eds.) Semantic Interoperability and Integration, no. 04391 in
Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszen-
trum für Informatik (IBFI), Schloss Dagstuhl, Germany, Dagstuhl, Germany
(2005)

15. Knott, R., Merunka, V., Polák, J.: The BORM method: a third generation object-
oriented methodology. In: Management of the Object-Oriented Development Pro-
cess. IGI Global (2005)

16. Krogstie, J., Lindland, O.I., Sindre, G.: Defining quality aspects for conceptual
models. In: Falkenberg, E.D., Hesse, W., Olivé, A. (eds.) Information System Con-
cepts. IAICT, pp. 216–231. Springer, Boston, MA (1995). https://doi.org/10.1007/
978-0-387-34870-4 22

17. Lohmann, S., Link, V., Marbach, E., Negru, S.: WebVOWL: web-based visual-
ization of ontologies. In: Lambrix, P., et al. (eds.) EKAW 2014. LNCS (LNAI),
vol. 8982, pp. 154–158. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
17966-7 21

18. McCusker, J.P., Luciano, J.S., McGuinness, D.L.: Towards an ontology for concep-
tual modeling. In: Proceedings of the 2nd International Conference on Biomedical
Ontology, Buffalo, NY, USA, 26–30 July 2011 (2011). http://ceur-ws.org/Vol-833/
paper25.pdf

19. McGuinness, D.L., Van Harmelen, F., et al.: OWL: Web Ontology Language
Overview. W3C recommendation 10(10), 2004 (2004)

20. Musen, M.A., et al.: The Protégé project: a look back and a look forward. AI
Matters 1(4), 4 (2015)

21. Mylopoulos, J.: Conceptual Modelling and Telos. Conceptual Modelling,
Databases, and CASE: An Integrated View of Information System Development,
pp. 49–68. Wiley, New York (1992)

https://creativecommons.org/publicdomain/zero/1.0/deed.cs
https://creativecommons.org/publicdomain/zero/1.0/deed.cs
https://doi.org/10.1007/978-3-319-68204-4_9
https://doi.org/10.1007/978-3-319-68204-4_9
http://doc.utwente.nl/50826/1/thesis_Guizzardi.pdf
http://doc.utwente.nl/50826/1/thesis_Guizzardi.pdf
https://doi.org/10.1007/978-0-387-34870-4_22
https://doi.org/10.1007/978-0-387-34870-4_22
https://doi.org/10.1007/978-3-319-17966-7_21
https://doi.org/10.1007/978-3-319-17966-7_21
http://ceur-ws.org/Vol-833/paper25.pdf
http://ceur-ws.org/Vol-833/paper25.pdf

Ontology for Conceptual Models Integration 17

22. Natschläger, C.: Towards a BPMN 2.0 ontology. In: Dijkman, R., Hofstetter, J.,
Koehler, J. (eds.) BPMN 2011. LNBIP, vol. 95, pp. 1–15. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25160-3 1

23. Object Management Group (OMG): OMG unified modeling language, v. 2.5. Tech-
nical report (2015). http://www.omg.org/spec/UML/2.5/PDF

24. OMG: OMG Meta Object Facility (MOF) Core Specification, Version 2.5.1 (2013).
http://www.omg.org/spec/MOF/2.5.1

25. Potter, M., Smith, T.: Making code citable with zenodo and github. Software
Sustainibility Institute (2015)

26. Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges.
IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)

27. Truyen, F.: The Fast Guide to Model Driven Architecture - The basics of Model
Driven Architecture (2006). http://www.omg.org/mda/mda files/Cephas MDA
Fast Guide.pdf

28. Verdonck, M., Gailly, F., Pergl, R., Guizzardi, G., Martins, B., Pastor, O.: Compar-
ing traditional conceptual modeling with ontology-driven conceptual modeling: an
empirical study. Information Systems (2018). http://dx.doi.org/10.1016/j.is.2018.
11.009

29. Wilkinson, M.D., et al.: The FAIR Guiding Principles for Scientific Data Manage-
ment and Stewardship. Scientific Data 3 (2016)

30. Zedlitz, J., Jörke, J., Luttenberger, N.: From UML to OWL 2. In: Lukose, D.,
Ahmad, A.R., Suliman, A. (eds.) KTW 2011. CCIS, vol. 295, pp. 154–163. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32826-8 16

31. Zedlitz, J., Luttenberger, N.: Transforming between UML conceptual models and
OWL 2 ontologies. In: Terra Cognita 2012 Workshop, vol. 6, p. 15 (2012)

https://doi.org/10.1007/978-3-642-25160-3_1
http://www.omg.org/spec/UML/2.5/PDF
http://www.omg.org/spec/MOF/2.5.1
http://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf
http://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf
http://dx.doi.org/10.1016/j.is.2018.11.009
http://dx.doi.org/10.1016/j.is.2018.11.009
https://doi.org/10.1007/978-3-642-32826-8_16

Conceptual Normalisation in Software
Engineering

Martin Molhanec(B)

Faculty of Electrical Engineering, Department of Electrotechnology,
Czech Technical University, Prague, Czech Republic

molhanec@fel.cvut.cz

Abstract. This article argues the necessity of conceptual normalisation in soft-
ware engineering and data development.Moreover, it aims to put a basis for formal
definitions of conceptual normal forms. The Author’s approach is ontologically
based exploiting an axiom of non-redundancy of the Real World. Further, the
Author also shows how relational and object normalisation are connected with
a conceptual one. In the end, the Author argues for herein proposed ideas and
definitions.

Keywords: Data normalisation · Conceptual normal forms · Object normal
forms · Relational normal forms · Conceptual modelling · Data modelling ·
Ontology

1 Introduction

This article is engaged with the issue of conceptual normalisation. The Author has been
concerned with this issue for many years and published his ideas in the past years at
different scientific events, for example, at EOMAS international workshop [1–3], ISD
(Information System Development) conference [4] and, as well as many local Czech
conferences and seminars;we afford to refer only a fewof them [5–7], so this article is one
of many of such disseminating the Author’s opinions in the wider scope of international
as well as local expert community engaging in conceptual, object and data modelling.
The Author hopes that this contribution can be a good starting point for a more extensive
discussion about these very interesting and serious problems.

The rest of this paper is organised as follows. Next, in Sect. 2, we start by motivating
the need for conceptual normalisation. Section 3 introduces our presumptions and app-
roach. After that, Sect. 4 gives the results of our work, i.e., the proposal of definitions,
formal and informal, of four conceptual normal forms, and finally, Sect. 5 summarises
the paper, suggests improvements and discusses future directions for research.

2 Motivation and Problem Statement

The paradigm of relational normalisation (1st to 3rd normal forms and others that are
not so common such as BNCF, etc.) is commonly taught in university courses in the field

© Springer Nature Switzerland AG 2019
R. Pergl et al. (Eds.): EOMAS 2019, LNBIP 366, pp. 18–28, 2019.
https://doi.org/10.1007/978-3-030-35646-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35646-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-35646-0_2

Conceptual Normalisation in Software Engineering 19

of database theory and design. There are no doubts about the usefulness and advisability
of it. We can refer, for example, the works of Codd [8–10] among others. Regrettably,
there are many opinions about the nonsensicality of the normalisation principle in the
field of an object-oriented paradigm given that object-oriented databases do not use the
concept of primary and foreign keys. This is false in the opinion of the Author.

It is true that issues of right design of data models have been discussed of the 70s
starting with a well-known article by Chen [11]. Particular attention to this issue is
paid by fact-based modelling approach, for example, in [12] and [13], among others.
Nevertheless, the Author’s modern-day approach based on ontology theory and covering
conceptual, object and relation modelling paradigm is in some respect different from
them, according to the opinion of the Author.

Another reason for conceptual normalisation is a need to retain a consistency of
gradual models during MDD (Model Driven Development) transformations (see, for
instance, [14]).

We argued that the need for object normalisation arises from the same reasons as
for relational normalisation, i.e., from the needfulness of elimination of redundancy
from our data. The employment of primary and foreign keys in definitions of relational
normalisation is, thus, to implement the process of relational normalisation for relational
databases. So, for the definition of object normalisation, we need a different tool for our
endeavour.

This approach is also supported bymany experts, for example, Ambler [15], Nooten-
boom [16], Yonghui [17], Tari [18] and Khodorkovsky [19], among others. A brief
description of approaches of all these authors is included in Molhanec and Merunka
[20]. It is clear that all these authorities agree on the necessity of object normalisation,
but still, there exist some issues to resolve, such as:

• There are no definitively and generally accepted definitions of object normal forms.
• Most of the authors have a problem with replacing the concept of relational keys with
other correct concept in the definition of object normalisation.

• It is not clear if the same count of normal forms exists in the object area as well as in
the relational area.

3 Presumptions and Our Approach

We start this section with the following, in our view, a fundamental presumption that
the relational and object models are specialisations of the more common and high-level
conceptual model, and simultaneously, that these models there are not a sub-type of each
other. For that account, we defend, that both the relational and object normalisations are
the specialisation of the conceptual normalisation aswell. This simple but basic assertion
is concisely shown in following Fig. 1.

20 M. Molhanec

Fig. 1. Conceptual, relational and object models

This basic idea (presumption, conjecture) can be defined more formally as follows:

Conjecture (relational and object models inherit from a conceptual model):
Let CM, RM and OM be Conceptual Model, Relational Model and Object Model
respectively. We assert that the following is true:

(RM � CM) ∧ (OM � CM) ∧ (RM �� OM) ∧ (OM �� RM) (1)

Here it should be mentioned the misguided argument which frequently arises in the
course of the conversation about the necessity of object normalisation and differences
between the object and relational approaches.

“The object approach has not and does not need any primary and foreign keys,
therefore it is better than the relational approach and its normalisation is thus
nonsense.”

This argument, along with the idea surrounding normalisation as something that
relates to the primary and foreign keys, implicates an idea that normalisation in the
area of an object-oriented paradigm is nonsense. However, as previously mentioned, the
normalisation paradigm is not about the keys, because the keys in the relational area are
only the proper devices that define the normal forms, but normalisation is essentially
about redundancy which rises from the absence of redundancy in the Real World around
us, in the sense of work [21].

In the sequel, we introduce some conjectures, definitions and lemmas needed to build
up our approach of conceptual normalisation and conceptual normal forms as well.

3.1 Uniqueness and Identity

Our approach conforms toQuine’s dictum“no entitywithout identity” [22]. The concepts
of uniqueness and identity of objects in Real World are essential for the Author because
that are very closely connected with the principle of non-redundancy of Real World as
well aswith the definitions of the conceptual normal forms discussed and defended by us.
Accordingly to Guizzardi [23] andHerre [24] wemay to formally formulate a conjecture
below. The formalisation is based on intensional sortal modal logics (i.e., intensional
modal logics with quantification restricted by sortal) with minimum additions to it as
used in [25].

Conceptual Normalisation in Software Engineering 21

Conjecture (identity and uniqueness): Let RW be Real World, and, x, y are objects
of that. Next, let the predicate id denote identity. We assert that the following is true:

∀(x ∈ RW)�∃id(x) (2)

∀(x ∈ RW)(y ∈ RW) (id(x) = id(y) → x ≡ y) (3)

Simply put, for all objects of Real World, there exists necessarily an output value of
identity function; as well as if values of identity function of two objects are equal, then
these objects are identical.

It is clear that these assertions are fundamental. We cannot predicate that any natural
world objects have any real internal identifiers. Any unique identification of an object
such as a serial number is an artificial property created by a human being for the intention
of creating a unique identification. However, the majority of natural world objects do
not have such identification at all. However, all real objects have their physical identity.
Abstract objects, such as an invoice in an information system, must always have an
artificial identifier. In any case, we only dealwith objects that can be clearly distinguished
from each other at a given time in our Real World. Whether any way.

3.2 The Conceptual Object and Its Features

This section introduces the concept of the property of a conceptual object as well as
some other essential definitions, lemmas and theorems employed in subsequent sections
of this work. We start by giving a simple definition of property of the object.

Definition (property): A property is a particular characteristic of an object
having a value. (4)

An example of such a property could be colour or age. Then, the property can also be a
set. We use our term in the same sense as Guizzardi and Wagner use the term intrinsic
moment in [26]. They claim that:

“Intrinsic Moments: qualities such as a color, a weight, an electric charge, a
circular shape; modes such as a thought, a skill, a belief, an intention, a headache,
as well as dispositions such as the refrangibility property of light rays, or the
disposition of a magnetic material to attract a metallic object.”

Thus, a property is a particular abstraction of an object’s characterisation, a constituent
of its intension and distinguishable or perceivable by a human being.

Lemma (property uniqueness): Let O be an object, and, p, q, be properties of it, and,
the predicate in denotes a set of all properties of that object, and, predicate cm denotes
a conceptual meaning of that. We assert that the following is true:

∀(p ∈ in(O))(q ∈ in(O)) (cm(p) = cm(q) → p ≡ q) (5)

22 M. Molhanec

It is to say if two properties of the object have the same conceptual meaning, thus
must be the same. Conversely, the set of object properties is unique in the context of it.

This lemma can be explained as follows. A car has only one colour property.
Of course, the colour of the car body is separate property to the colour of the car’s
chassis. Therefore, these two colours are two different properties. Next, a person has
only one age property, denominated ‘age’, and so on. We can prove the property, and the
result is that the property is a concept as well. In other words, a real car does not have
two colours, and a person does not have two ages at the same time.

The following theorems proposed by the Author relate to object properties as well.

Theorem (conceptual property atomicity): Let PO be a set of all properties of an
object O, and, p be a property of it, and, c be a concept, and, finally, predicate cm
denotes a conceptual meaning of its argument. We assert that the following is true:

∀p ∈ PO → ¬∃c � cm(p) (6)

In other words, a conceptual meaning of any object property is not dividable, i.e., object
property is atomic. If we need to work with a part of it, in the sense of conceptual
meaning, the part becoming the property of its own and original property turns into a
new object, often abstract, in relation to an original object. Finally, it is worth noting
that prospective atomicity of any property depends on a domain-oriented point of view.

Theorem (conceptual object simplicity): Let PO be a set of all properties of an object
O, and, s be a subset of it, and, c be a concept, and, finally, predicate cm denotes a
conceptual meaning of its argument. We assert that the following is true:

∀s ⊂ PO → ¬∃c = cm(s) (7)

Alternatively say, there is no conceptual meaning of any subset of object properties, i.e.,
all object properties are simple concepts in relation to it. If we need to work with a group
of object properties as if it was one concept in itself, the group becoming an object of
its own, with its own properties, often abstract, related to an original object. Again, it is
worth noting that prospective conceptualisation of any subset of properties depends on
the domain-oriented point of view.

A simple explanation of the above-introduced theorems with the aid of an example
relating to the name of a person is demonstrated in the sequel. So, if we work in the
domain of our special-interest always with the full personal name as a single concept
encompassing both first and last personal name, we can comprehend this property as
atomic and unique in view of the concept of person.

However, if we need to work, in the domain of our special-interest, with the first and
last name separately, then the personal name becomes an abstract concept by itself with
two properties (the first name property and the last name property). On the contrary, if
the concept of person has two properties, a first and last name, and we need to work with
this pair of properties any time jointly, the pair becomes a single concept by itself with
its own denomination, in others words, the pair is a new named concept.

In the end, it is important not to overlook the fact that in the conceptual world it is
necessary to think of a conceptual meaning of properties always in the context of just at
that moment used the domain-oriented point of view.

Conceptual Normalisation in Software Engineering 23

3.3 The Base for Conceptual Normalisation

Firstly, we must remind that our approach of conceptual normalisation arises from pri-
mary presumption about a non-redundancy of Real World, and all the Author’s sub-
sequent considerations used in this article arise from the basic assumption formally
articulated as follows:

Axiom (about non-redundancy): There is no redundancy in Real World. (8)

Let us appreciate the following facts. All objects in the real world exist only in one
occurrence. Each human being is a unique individual, and there is only one occurrence
of the SOFSEM2012 conference etc. In otherwords, in RealWorld, there are not any two
identical instances of the same object existing at the same time and space. Information
systems hold a model of Real World by means of included data, so it is clear that as Real
World exists without any redundancy, thus the model of that Real World also has no any
redundancy.

It is worth noting that it is not the case of warehouses that use redundancy to
achieve certain specific features. Similarly, database practises frequently rise above the
mentioned principles to achieve an increasing throughput in the database system.

3.4 Definition of Redundancy

Wecan informally define redundancy as the non-existence of identical objects (concepts)
in the system and can be formally defined as follows:

Definition (redundant system): Let S be a system, and, x, y be concepts of it, and, cm
be a predicate denoting the conceptual meaning of its argument. We define a predicate
RS denoting redundant system formally as:

RS(S) □ S, cm(x) = cm(y) (9)

Definition (non-redundant system): Let S be a system, and, x, y be concepts of it, and,
cm be a predicate denoting the conceptualmeaning of its argument.We define a predicate
NRS denoting non-redundant system formally as:

NRS(S) □∀x, y S, cm(x) != cm(y) (10)

In other words, we can say that a redundant system contains at least two concepts with
the same conceptual meaning, and, conversely, a non-redundant system has no concepts
with the same meaning.

It is assumed that the Real World is a non-redundant system; therefore, all mappings
of them to any information system result in a non-redundant system as well. Simply put,
the mapping must be isomorphic in the domain of our concern.

Finally, it is worth noting that there are different types of redundancy of the system,
concerning the level of system or instance scheme. However, in detail analysis of these
issues falls outside the scope of this work.

24 M. Molhanec

4 Results: Proposals of Conceptual Normal Forms (CNFs)

In the previous section, we have formally defined the concepts of redundancy and non-
redundancy of the system. Therefore, we may propose the definitions of conceptual
normal forms which are understood as the rules of redundancy prohibition already intro-
duced above and here altogether mentioned again in the sequel. We start this section
with the group of informal definitions directly based on previously submitted assertions.

0CNF: There is no redundancy in the real world.
1CNF: A set of object properties is unique in relation to it.
2CNF: Anobject property is not dividable; in otherwords, the object property is atomic.

If we need to work with its part, this part becomes the object of its own, often
abstract, with its own properties.

3CNF: If we need to work with a group of object properties as if it was one concept
in itself, the group becomes the object of its own, often abstract, with its own
properties.

For now, we can formally define these informal definitions as follows:

Definition (0CNF): Let WR be Real World and, x, y be concepts of it, and, predicate
cm denotes s conceptual meaning of its argument. We define 0CNF formally as:

0CNF(WR) ∀x, y S, cm(x) != cm(y) (11)

Definition (1CNF): LetWR be Real World, and, O be an object from it, and, the predi-
cate in denotes a set of all properties of that object, and, predicate cm denotes a conceptual
meaning of these properties. We define 1CNF formally as:

(12)

Definition (2CNF): LetWR be Real World, and,O be an object from it, and, PO be a set
of all properties of an object O, and, p be a property of that set, and, c be a concept, and,
finally, predicate cm denotes a conceptual meaning of its argument. We define 2CNF
formally as:

(13)

Definition (3CNF): Let WR be Real World, and, O be an object from it, and, PO be
a set of all properties of an object O, and, s be a subset of it, and, c be a concept, and,
finally, predicate cm denotes a conceptual meaning of its argument. We define a 3CNF
formally as:

(14)

The grounds for these conceptual normal forms have been introduced previously. The
Authors believe that the relational and object forms can be derived from these more
common conceptual forms. This can be briefly described in the following section.

Conceptual Normalisation in Software Engineering 25

4.1 CNFs in Relation to Relational Normal Forms (RNFs)

The Author of this article suggests that 1RNF arises from herein proposed 0CNF to
2CNF. The basis for this suggestion comes from the fact that 1RNF deals with atomicity
of data attributes, the prohibition of multi-attributes and the necessity of primary key
existence. Evidently, the issue of atomicity relates to the herein proposed 2CNF, the
prohibition of multi-attributes results from 1CNF and the issue of the necessity of the
primary key existence relates to principal 0CNF.

Further, the Author suggests that 2RNF is a specialisation, by specific manner, of
more common3RNF, but amore detailed discussionof this issue is outside the parameters
of this article. Thismeans that both 2RNFand3RNF follow fromabove-suggested 3CNF.
The evidence is based on the consideration that transitive dependency between relational
keys at the level of the relational data paradigm is simply an implication of the incorrect
recognition of conceptual objects at a higher level of comprehensibility.

Finally, it is worth noting, that the concept of relational keys in relational database
systems by itself presents only the programmer implementation of the concept of func-
tional dependency by the implication of mutual relationships among conceptual objects.
Thus, the incorrect recognition of objects at the conceptual level leads to a transitive
dependency between relational keys in the relational level. The all above mentioned
connections between all types of normal forms are intelligibly depicted in Fig. 2.

Fig. 2. Connectedness between CNFs and RNFs

4.2 CNFs in Relation to Object Normal Forms (ONFs)

Some authors emphasise a right designed object-oriented model of the information
system, for instance [27, 28], among others. The BORM methodology [29] as example
emphasises normalised object model as well. Currently, there is not any standard or
commonly accepted concept of object normal forms.

Notwithstanding, there are many scientists engaged in this issue. A brief survey of
these very different concepts is included in Molhanec and Merunka [20]. Moreover, this

26 M. Molhanec

work contains definitions of object normal forms based on an approach introduced
originally by Codd in [8] and further elaborated by them. Even though these authors deal
with the object-oriented paradigm, the definitions of object normal forms are mostly
based on analogical relational forms, i.e., 1ONF is based on 1RNF, and so on. This
analogy is not entirely rigorously because the 2RNF has not a direct counterpart.

Furthermore, the fundamental difference of these ONFs definitions in comparison
with definitions of RNFs lies in fact, that these are constructed without the use of rela-
tional keys concept naturally. The all ONFsmentioned above byMolhanec andMerunka
and its connections with our CNFs are intelligibly depicted in Fig. 3.

Fig. 3. Connections between ONFs and RNFs

To summarise this section, we can say that these definitions of ONFs are indeed very
similar to the definitions of CNFs proposed herein with respect the exceptions before
mentioned and we can apply the same or very similar argumentation for their reasoning.
However, it is clear that these ONFs do not deal with any analogy counterparts of our
0CNF and 2CNF.We strongly believe that it is a significant lack of theseONFdefinitions.

Therefore, in the end, we propose an idea to build proper ONFs by analogy with
CNFs proposed herein. However, it is clear that we have to proper reformulate all that
conceptual definitions with the aid of object-oriented paradigm terms.

5 Conclusion and Future Works

In this paper, the Author deals with the issue of conceptual normalisation but also pro-
poses the definitions of conceptual normal forms. The formalisation is based on inten-
sional sortal modal logics (i.e., intensional modal logics with quantification restricted
by sortal) with minimum additions to it.

Although this paper presents mainly the theory of conceptual normal forms, it can
immediately bring practical benefits. Classical relational normalisation deals primarily
with database keys and their values. However, we are primarily concerned with the

Conceptual Normalisation in Software Engineering 27

meaning of classes, objects and properties in the conceptual plane. This approach allows
us to think about the whole problem at a higher level of abstraction. This allows us to
understand the issue better and thus create the right model. The result may be a correct
relational model since we start from a higher abstraction of reality from the beginning.

The same is correct for object normalisation, where object normalisation theory is
not yet completed and is not even considered necessary. At other times, it simply mimics
relational normalisation. Even in this case, knowledge of conceptual normalisation leads
to proper object normalisation and thus to the correct object model.

Further, the Author also suggests that relational and object normalisations jointly
arise from the same source, i.e., from the conceptual normalisation. Surprisingly, this
principal and serious subject matter are not widely discussed in the expert community at
all. Also, the need for object normalisation that directly arises from the conceptual one
is often disputed.

Moreover, it is worth noting that this proposal is only a part of the extensive author’s
work in this area. The insinuated way of a possible creation of object normal forms will
be developed and argued in the future work of the Author. Firstly, there is a goal to build
proper ONFs by analogy with CNFs proposed herein. Secondly, we aim to define formal
methods of derivation RNFs and ONFs from CNFs. Eventually; we develop a universal
ontology-based theory of normalisation generally.

Finally, the Author believes that his contribution in this exciting and serious subject
matter can be a good starting point for the discussion of this issue in the frame of
international expert community engaging in conceptual, object and data modelling.

References

1. Molhanec, M.: A contribution to user interface modelling based on graph transformations
approach. In: Proceedings of the International Workshop on Enterprises & Organizational
Modeling and Simulation, p. 14 (2009)

2. Molhanec,M.: Towards the conceptual normalisation. In: Proceedings of the 6th International
Workshop on Enterprise & Organizational Modeling and Simulation, pp. 133–141 (2010)

3. Molhanec,M.: Conceptual normalisation formalised. In: Barjis, J., Eldabi, T., Gupta, A. (eds.)
EOMAS 2011. LNBIP, vol. 88, pp. 159–172. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24175-8_12

4. Molhanec, M.: Some reasoning behind conceptual normalisation. In: Pokorny, J., Repa, V.,
Richta, K., Wojtkowski, W., Linger, H., Barry, C., Lang, M. (eds.) Information Systems
Development, pp. 517–525. Springer, NewYork (2011). https://doi.org/10.1007/978-1-4419-
9790-6_41

5. Molhanec, M.: Úvod do konceptuální normalizace. In: Tvorba softvare 2010, Ostrava,
pp. 141–149 (2010)

6. Molhanec, M.: Krátká úvaha o normalizaci. In: Objekty 2009, Hradec Králové, pp. 149–160
(2009)

7. Molhanec, M.: Ontologické základy konceptuální normalizace. In: Objekty 2006, Ostrava,
pp. 81–90 (2006)

8. Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13(6),
377–387 (1970)

9. Codd, E.F.: Further normalization of the data base relational model. Data Base Syst. 33–64
(1972)

https://doi.org/10.1007/978-3-642-24175-8_12
https://doi.org/10.1007/978-1-4419-9790-6_41

28 M. Molhanec

10. Codd, E.F.: Recent investigations into relational data base systems, IBM Research Report
RJ1385, 23rd April 1974

11. Chen, P.P.-S.: The entity-relationship model—toward a unified view of data. ACM Trans.
Database Syst. TODS 1(1), 9–36 (1976)

12. Benci, E., Bodart, F., Bogaert, H., Cabanes, A.: Concepts for the design of a conceptual
schema. In: IFIP Working Conference on Modelling in Data Base Management Systems,
pp. 181–200 (1976)

13. Halpin, T.A.: What is an elementary fact? In: Proceedings of First NIAM-ISDM Conference
(1993)

14. Pícka, M., Pergl, R.: Gradual Modeling of Information System
15. Ambler, S.W.: Building Object Applications that Work. Cambridge University Press, New

York (1997)
16. Nootenboom, H.J.: Nuts - an online column about software design
17. Yonghui, W.: Research on normalization design for complex object schemes. In: 2001 Inter-

national Conferences on Info-Tech and Info-Net. Proceedings (Cat. No. 01EX479), vol. 3,
pp. 355–360 (2001)

18. Tari, Z., Stokes, J., Spaccapietra, S.: Object normal forms and dependency constraints for
object-oriented schemata. ACM Trans. Database Syst. TODS 22(4), 513–569 (1997)

19. Khodorkovsky, V.V.: On normalization of relations in databases. Program. Comput. Softw.
28(1), 41–52 (2002)

20. Molhanec, M., Merunka, V.: Object normalization as the contribution to the area of formal
methods of object-oriented database design. In: Sobh, T. (ed.) Advances in Computer and
Information Sciences and Engineering, pp. 100–104. Springer, Dordrecht (2007). https://doi.
org/10.1007/978-1-4020-8741-7_55

21. de Carvalho, V.A., Almeida, J.P.A., Guizzardi, G.: Using reference domain ontologies to
define the real-world semantics of domain-specific languages. In: Jarke, M., Mylopoulos,
J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014.
LNCS, vol. 8484, pp. 488–502. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07881-6_33

22. van Orman Quine, W.: Ontological Relativity and Other Essays. Columbia University Press,
New York (1969)

23. Guizzardi, G.: Ontological foundations for structural conceptual models (2005)
24. Heller, B., Herre, H.: Ontological categories in GOL. Axiomathes 14(1), 57–76 (2004)
25. Guizzardi, G., Wagner, G., Guarino, N., van Sinderen, M.: An ontologically well-founded

profile for UML conceptual models. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol.
3084, pp. 112–126. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25975-
6_10

26. Guizzardi, G., Wagner, G.: Some applications of a unified foundational ontology in business
modeling. In: Business Systems Analysis with Ontologies, pp. 345–367. IGI Global (2005)

27. Knott, R., Merunka, V., Polak, J.: The BORM methodology: a third-generation fully object-
oriented methodology. Knowl. Based Syst. 16(2), 77–89 (2003)

28. The Elements of UML™ Style (Sigs Reference Library): Scott W. Ambler: 9780521525473:
Amazon.com: Books. https://www.amazon.com/Elements-UML%C2%99-Style-Reference-
Library/dp/0521525470. Accessed 23 May 2019

29. Knott, R.P., Merunka, V., Polak, J.: The BORMmethodology: a third-generation fully object-
oriented methodology. Knowl. Based Syst. 16, 77–89 (2003)

https://doi.org/10.1007/978-1-4020-8741-7_55
https://doi.org/10.1007/978-3-319-07881-6_33
https://doi.org/10.1007/978-3-540-25975-6_10
https://www.amazon.com/Elements-UML%25C2%2599-Style-Reference-Library/dp/0521525470

Object-Oriented Class Normalisation
from a Conceptual Modelling Perspective

Vojtěch Merunka1,2(B), Himesha Wijekoon1, and Boris Shegolev1

1 Department of Information Engineering, Faculty of Economics and Management,
Czech University of Life Sciences Prague, Prague, Czech Republic

vojtech.merunka@fjfi.cvut.cz, {merunka,wijekoon,
shegolev}@pef.czu.cz

2 Department of Software Engineering, Faculty of Nuclear Sciences and Engineering,
Czech Technical University in Prague, Prague, Czech Republic

Abstract. This article deals with an original view on theAmbler’s approach to the
object-oriented class normalisation from the perspective of conceptual modelling.
This idea gives the possibility of using the object-oriented class normalisation
rules not only for the design of composition structure of classes but also for the
inheritance and inheritance-like structure of classes. This article also proposes a
new systemisation of the object-oriented class normalisation and suggests further
research. The authors applied their practical experience not only in teaching object-
oriented programming at a university but alsomany years of experience in software
development, especially in Smalltalk, C++, Java and C#.

Keywords: Object-oriented class normalisation · Conceptual modelling ·
Inheritance · Mixins · Symmetry

1 Introduction

Software engineers and practitioners are often confronted with the question “How to
design the best structure of classes?” In the past, by the enthusiasm of the benefits of
object-oriented programming, it was widespread that the object-oriented computation
model automatically supports the right design, so programmers don’t need much of
formal techniques. At that time, the only widely used design technique was following
set of requirements analysis rules: From the textual description of requirements, select
verbs and you have methods, select nouns, and you have objects, select adjectives,
and you have attributes… [2]. Later it was found that this is not enough and there were
inventedvarious object-orientedmodelling techniques similar to the designof a relational
database normalisation, decomposition or synthesis. Unfortunately, these techniques are
still neither standard nor widely known and used today.

In this paper, we bring our own improvement to the widely used Ambler’s approach
[1] to the class normalisation. Our approach extends the original method by adding to
two modelling levels - data and metadata. This leads to interesting new conclusions and
also unification with current trends in the field of conceptual modelling.

© Springer Nature Switzerland AG 2019
R. Pergl et al. (Eds.): EOMAS 2019, LNBIP 366, pp. 29–39, 2019.
https://doi.org/10.1007/978-3-030-35646-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35646-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-35646-0_3

30 V. Merunka et al.

2 Motivation

Software engineering community knows a few different approaches for the object-
oriented class normalisation, but one can find some common ground. The first three
object-oriented normal forms are more or less similar in most cases. Significant dif-
ferences occur only in higher object-oriented normal forms, if they are defined at all.
Finding a unifying view of this issue would certainly be of great benefit.

Next, in the physical world, the symmetry is an observable mathematical feature of a
real system that remains unchanged under some transformation. There is also the analogy
which is an effect of mapping some structure of one subsystem to another structure of
another subsystem. Symmetries and analogies are maybe the most essential principles
of how God is building the world and deserves our special attention. For example, the
Russian chemist Dmitri Mendeleev did the same when he published the first widely
recognised periodic table of chemical elements in 1869. He developed his periodic table
to illustrate repeating properties of the then-known elements, and he also predicted some
properties of then-unknown elements that would be expected to fill gaps in this table.
Most of his predictions were proven correct when the new chemical elements were
subsequently discovered. Analogically, we expected similar effect if the object-oriented
normalisation rules were systematised in a similar way.

3 Current Approaches to the Object-Oriented Class Normalisation

Relational database normalisation has been introduced to reduce data redundancy and
improve data integrity in relational databases via a concept called normal forms which
initially ranged from first to three normal forms (1NF, 2NF, 3NF) [3, 4]. Later it is
extended until sixth normal form (6NF). Each normal form deals with some steps to
enhance the design to minimise anomalies based on reducing functional dependencies
among attributes of relations.

Researchers have been interested on normalisation of object-oriented structures from
early 1990s [12]. Initially these researches were emphasised on improving relational
techniques to be effectively used in object-oriented systems as in [14], for example.
With the advent of object-oriented databases, the focus has also moved towards object-
oriented class normalisation. Object-oriented database normalisation was introduced as
class normalisation by Ambler [1]. Hence notable initial ideas regarding object-oriented
normalisation has been proposed by Ambler. His approach is discussed in detail in
Sect. 4.

Lohdi and Mehdi have attempted to map the relational database normalisation con-
cepts for object-oriented design [11]. But they have skipped 1NF mentioning it limits
storage of complex objects. Apart from that, they have covered 2NF, 3NF, 4NF and
5NF. The get and set methods are also taken into consideration when applying the
normalisation rules similar to attributes.

In a very recent paper Lo et al. have come up with seven steps for object-oriented
normalisation [10]. Their approach was based on both Ambler’s class normalisation and
relational database normalisation concepts. They have takenAmbler’s approach until the
third object-oriented normal form (3OONF) and have come up with 4OONF similarly to

Object-Oriented Class Normalisation from a Conceptual Modelling Perspective 31

the 4th relational database normal form. But in contrast to Ambler’s steps, they suggest
generalisation to eliminate homogenous operations between classes.

There have been also few researches to normalise object-oriented design not analog-
ically to relational database normalisation. Falleri et al. have proposed a methodology to
remove duplicate attributes by introducing general classes [5]. Their approach is based
on Relational Concept Analysis (RCA) and supports Model Driven Engineering (MDE)
by automating discovery of new classes and attributes when normalising. Ubaid et al.
have come up with Class Hierarchy Normal Form Pattern (CHNFP) to maintain class
schema in an object-oriented database [15]. CHNFP helps to manage objects and their
network of objects in a memory efficient manner by optimising the object graph loaded
into the memory by controlling the inheritance hierarchy.

4 Ambler’s Approach to the Object-Oriented Class Normalisation

S. W. Ambler is a pioneer of agile approach in programming. He has published three
object-oriented normal forms for object-oriented applications [1]. These normal forms
are similar to the first, second and third relational normal forms but use a different
theoretical apparatus than relational normal forms. The relational normalisation is based
on the functional dependencies between separate attributes but Ambler’s rules are based
on various relationships of different subsets of attributes. Ambler talks also about these
object-oriented normal forms as a tool for class structure design complementary with
the technique of design patterns. Let’s look at his approach in terms of our formalisation.

First Object-Oriented Normal Form - Multivalues

Rule 1. A class is in the first object-oriented normal form (1OONF) when its objects
do not contain group of repetitive attributes. Repetitive attributes must be extracted into
objects of a new class. The group of repetitive attributes is then replaced by the link
to the collection of the new objects. An object schema is in the 1OONF when all of its
classes are in the 1OONF.

Definition 1. Let us have an object a, where for k ≥ 1 (length of collections of repeat-
ing attributes) and n > 1 (number of repetitions of these repeating collections) is
data(a)= [

. . . , x11 , . . . , x
k
1 , . . . , x

1
n , . . . , x

k
n , . . .

]
, having ∀i ∈ (1, . . . , k): domain

(
xi1

)

= domain
(
xi2

) = … = domain
(
xin

)
. Then it is required to modify the object a and cre-

ate a collection of new objects
{
b j

}
for j ∈ (1, . . . , n) as data(a) = [

. . . ,
{
b j

}
, . . .

]

and data
(
b j

) =
[
x1j , . . . , x

k
j

]
.

There is our examplemodel of an object-oriented implementation of some air travel-
ling information systemwhich registers e-tickets inFig. 1.This is awell-knowndocument
for most travellers because today most of them buy tickets on the Internet and then go
to the airport with this e-ticket (printed on a piece of paper or only visible on a handheld
screen) and personal documents and luggage. A typical e-ticket includes at least two
flights: from home airport to destination and then back home. If there are connection
flights, it is normal that e-ticket includes yet more individual flights.

32 V. Merunka et al.

Figure 1 presents the situation before normalisation basically similar as it appears
printed on paper, for example. Figure 2 shows the same model transformed by our rules
into the first object-oriented normal form. This example model is only a little simplified
compared to reality. Practically, e-tickets have yet a few more detailed attributes that
we don’t need here for a demonstration of our approach to the object-oriented class
normalisation.

Fig. 1. Air traveling example – Electronic Ticket in the non-normalised form.

Second Object-Oriented Normal Form – Shared Values

Rule 2. A class is in the second object-oriented normal form (2OONF) when it is in the
1OONF and when its objects do not contain an attribute or a group of attributes, which
is shared with another object. Shared attributes must be extracted into new objects of a
new class, and in all objects, where they appeared, must be replaced by the link to the
object of the new class. An object schema is in the 2OONF when all of its classes are in
the 2OONF.

Definition 2. Let us have two objects a, b for k ≥ 1 (length of a collection of shared
attributes) as data(a)= [. . . , x1, . . . , xk, . . .] and data(b)= [. . . , y1, . . . , yk, . . .] hav-
ing ∀i ∈ (1, . . . , k): xi ≡ yi . Then it is required to modify objects a, b and to create
new object c as data(c) = [x1, . . . , xk] = [y1, . . . , yk] and data(a) = [. . . , c, . . .] and
data(b) = [. . . , c, . . .].

Object-Oriented Class Normalisation from a Conceptual Modelling Perspective 33

Fig. 2. Air traveling example – Electronic Ticket in the 1st object-oriented normal form.

In our example, the shared data are on individual flights as well as the agency that
sold the e-ticket. There are hundreds of passenger places on one plane, so every person
has their own seat and flight class and yet maybe meal (e.g. an Itinerary object), but the
flight info is the same for all passengers. Similarly, the info about the selling company
is the same on all e-tickets issued by the same company. That is why we have created
two new classes Agency and Flight as shown in Fig. 3.

Fig. 3. Air traveling example – Electronic Ticket in the 2nd object-oriented normal form.

Third Object-Oriented Normal Form – Independent Values

Rule 3. A class is in the third object-oriented normal form (3OONF) when it is in the
2OONF and when its objects do not contain an attribute or a group of attributes, which
has an independent interpretation in the modelled system. The independent attributes
must be extracted into object of a new class and in objects, where they originally
appeared, must be replaced by the link to this new object. An object schema is in the
3OONF when all of its classes are in the 3OONF.

Definition 3. Let us have an object a for k ≥ 1 (length of a collection of independent
attributes) having data(a) = [. . . , x1, . . . , xk, . . .], where [x1, . . . , xk] is a collection
of independent attributes. Then it is required to create a new object b and modify the
object a as data(a) = [. . . , b, . . .] and data(b) = [x1, . . . , xk].

In our example, four other classes have become extracted following this 3OONF
rule: Traveller, Operator, Equipment, and Airport.

34 V. Merunka et al.

Fig. 4. Air traveling example – Electronic Ticket in the 3rd object-oriented normal form.

5 Class Inheritance

Of course, composing object classes is a significant building element for the object-
oriented approach, but equally important is class inheritance. Although the presence
of inheritance between object classes is not a prerequisite for an object-oriented model
of calculation, because there exist object-oriented systems without classes or without
inheritance, but class-based object-oriented systems with the inheritance constitute a
de-facto standard. It is, therefore, striking that the development of formal class design
techniques does not address the inheritance sufficiently.

Mixins
In object-oriented programming languages, a mixin is a structure similar to a class that
contains methods for use by other classes without having to be the parent class of those
other classes. Mixins are traits (e.g. sets of independent methods that can be used to
extend the functionality of objects) which are used to compose classes. Mixins usage
is sometimes described as being “included” rather than “inherited”. At the conceptual
level, it can be said that mixins are technical tools for better software implementation of
the decorator design pattern [9].

Perhaps it can be said yet differently: some design patterns are made to solve the
tasks for which programming languages has no direct support:

• If a programming language supports mixins, there is no need to use the decorator
design pattern.

• Similarly, if a programming language supports migration instances between classes,
there is no need to use the state design pattern, as it is in the Gemstone/Smalltalk
programming language [7].

6 Our Proposal for Extension of Object-Oriented Class
Normalisation

Our basic idea is as follows: Existing three rules for object-oriented normal forms relate
to the properties of attribute data values and result in the composing structure (or has-a

Object-Oriented Class Normalisation from a Conceptual Modelling Perspective 35

hierarchy) of classes. We could use the same three rules once more but on the level of
attribute data types (e.g. one meta-level higher) and obtain the result in the inheritance
or inheritance-like structures (or is-a hierarchy) of classes. By doing this we can get
three more object-oriented normal forms which are presented in Table 1.

Table 1. Normal forms on the data and metadata levels.

data types level
attribute data types

INHERITANCE

4OONF

?
5OONF

sharing behaviour
in subclasses

6OONF
independent behav-

iour in mixins
data values level

attribute data values
COMPOSING

1OONF
multivalues

within objects

2OONF
sharing values
within objects

3OONF
independent values

within objects

Fifth (Made from the Second) Object-Oriented Normal Form – Shared Data Types

Here it is enough to use definition from the 2OONF and only replace all occurrences of
the term value with type and object by class. Let’s look at the result:

Rule 4. A class is in the fifth object-oriented normal form (5OONF) when it is in the
4OONF and when its objects do not contain an attribute or a group of attributes, whose
attribute types are shared with another object. Shared attribute types must be extracted
into new class linked as an inheritance superclass of all classes of objects, where they
originally appeared. An object schema is in the 5OONF when all of its classes are in
the 5OONF.

Definition 4. Let us have two classes a, b for k ≥ 1 (length of a collection of
shared attribute types) as datatypes(a) = [. . . , x1, . . . , xk, . . .] and datatypes(b) =
[. . . , y1, . . . , yk, . . .] having ∀i ∈ (1, . . . , k): xi ≡ yi . Then it is required to modify
classes a, b and to create new class c as datatypes(c) = [x1, . . . , xk] = [y1, . . . , yk]
and superclass(a) = c and superclass(b) = c (otherwise c ≺ a and c ≺ b).

In our example from Fig. 4, we have the opportunity to share the attribute type name
in five classes: Traveller, Agency, Operator, Equipment, and Airport. But it would be
foolish to create them all one common ancestor because they do not share exactly the
same conceptual thing. The same technical implementation of their name attribute (as
String or Varchar) does not mean that it is the same conceptual data type because, for
example, Traveller names (e.g. human names) form a completely different set from the
set of Equipment names (which includes, for example, Airbus A320, Boeing 737, ATR
72 …). The same is valid for names of airports.

Therefore, it makes sense to build inheritance and give a common superclass ancestor
to only two subclasses Agency and Operator, as shown in Fig. 5.

36 V. Merunka et al.

Fig. 5. Air traveling example – Electronic Ticket in the 5th (made from the 2nd) object-oriented
normal form.

Sixth (Made from the Third) Object-Oriented Normal Form – Independent Data
Types

Here it is also enough to use definition from the 3OONF and only replace all occurrences
of the term value with type and object by class. Let’s look at the result:

Rule 5. A class is in the sixth object-oriented normal form (6OONF) when it is in the
5OONF and when do not contain an attribute type or a group of attribute types, which
has an independent interpretation in the modelled system. These attribute types must
be extracted into a new mixin and in classes where they originally appeared, must be
replaced by the link to this new mixin. An object schema is in the 6OONF when all of
its classes are in the 6OONF.

Definition 5. Let us have a class a for k ≥ 1 (length of a collection of independent
attribute types) having datatypes(a) = [. . . , x1, . . . , xk, . . .], where [x1, . . . , xk] is a
collection of independent attribute types. Then it is required to create a new mixin b as
datatypes(b) = [x1, . . . , xk] and add mixin b to the class a.

In our example, such a transformation can be done for classes Traveller and Agency.
Both classes use attributes phone number and e-mail. Of course, in cases where our
programming language does not support mixins, we would need to use the Decorator
design pattern [6]. The result is shown in Fig. 6.

7 Discussion

We presented that Ambler’s rules for the 2OONF and 3OONF can be applied not only
to the data values of attributes but also one meta-level higher, that is, to the data types
of attributes. At the first level, these rules design the structure of class compositions
(e.g. has-a relationships), and on the second level, principally the same rules design the
structure of inheritance and inheritance-like (e.g. is-a relationships).

Object-Oriented Class Normalisation from a Conceptual Modelling Perspective 37

Fig. 6. Air traveling example – Electronic Ticket in the 6th (made from the 3rd) object-oriented
normal form.

The empty box in Table 1 in the 1OONF on the type level remains an unanswered
question. There might be an interesting solution; the first normal form is so specific that
its definition directly covers both levels. Such a solution is shown in Table 2. However,
it would disrupt the symmetry in our table. Of course, the periodical table of Mendeleev
is also not absolutely symmetrical, but it has clear evidence from practice. In our case,
only the idea about the hypothesis of analogy cannot be enough to prove us.

Table 2. Normal forms on the data and metadata levels – an alternative solution

data types level
attribute data types

INHERITANCE
1OONF

multivalues
within objects

4OONF
sharing behaviour

in subclasses

5OONF
independent behav-

iour in mixins
data values level

attribute data values
COMPOSING

2OONF
sharing values
within objects

3OONF
independent values

within objects

The evolution of the object-oriented paradigm has always been guided by sponta-
neous evolution from practice. Perhaps an interesting solution lies in the dual physical
implementation of object classes in some programming languages. They are ordinary
classes with a fixed number of uniquely named instance variables, and so-called vari-
able classes, where the number of instance variables is variable. An example of such a
language is Smalltalk-80 [8].

In our example, there is seen yet one interesting feature of Ambler’s rules for object-
oriented normalisation of classes. Figure 3 shows that the class Agency and the class
Flight were separated by the 2OONF rule because more objects of the class Electronic
Ticket have shared the same data about Agencies and Flights. However, these two classes
Agency and Flight can also be separated with the same result under the 3OONF rule if
we had not used the 2OONF rule before. This is why Agency data and Flight data are
also independent on issued Electronic Tickets.

38 V. Merunka et al.

Therefore, we can conclude that 2OONF and 3OONF are closely related and perhaps
could represent two special cases of only one rule. This phenomenonofAmbler’s 2OONF
and 3OONF was also described in [13]. However, in our experience for good practical
reasons, it is not appropriate to simplify these two rules into one rule only because
there exist some real situations when both rules are applicable to the same structure
and produce the same result. Even though in these situations, it does not really matter
whether we separated a new class according to the 2OONF rule or the 3OONF rule, the
existence of two rules still gives us greater certainty of better result.

8 Conclusion

This paper has presented an innovative approach to the object-oriented class normalisa-
tion technique.This approach enables the generalisation and the explanationof somecon-
nections with other object-oriented design pattern techniques and advanced inheritance-
related constructs of modern programming languages which aremixins and traits. Based
on our own experience, we believe that our proposal allowsmembers of the development
team to improve the quality of their software engineering work, reduce uncertainty and
improve conceptual consistency.

We think that themajor theoretical contribution of this paper is an alternative perspec-
tive on the current object-oriented design techniques, which provides a solid foundation
for both future theoretical research and also its practical implementation in some CASE
tools that support automated or semi-automated class structure modelling, for example
in our experimental tool OpenPonk [16]. In detail:

1. We added inheritance to the object-oriented normalisation rules.
2. We showed new conceptual connections (analogy, symmetry) between the object

composing and the object inheritance.
3. We found a theoretical reason of inheritance-like programming constructs trait and

mixin.
4. We have confirmed the previously known idea that behavioural design patterns can

be replaced by direct semantic constructs in some programming languages. Either
our language allows mixins or we need to use a decorator design pattern, but at the
conceptual level, it is the same.

5. Perhaps we have found a place for yet one more new inheritance-like conceptual
modelling property. This remains an unsolved question for the future.

Our future research will focus on the empirical justification of our statements and
programming algorithms of conceptual model transformation according to our rules of
the object-oriented normal forms.

References

1. Ambler, S.W.: Agile Database Techniques: Effective Strategies for the Agile Software
Developer. Wiley Publishing, Inc., New York (2003). ISBN 978-0-471-20283-7

Object-Oriented Class Normalisation from a Conceptual Modelling Perspective 39

2. Coad, P., Yourdon, E.: Object-Oriented Design. Yourdon Press and Prentice Hall, Inc.,
Englewood Cliffs (1991). ISBN 0-13-630070-7

3. Codd, E.: A relational model of data for large shared data banks. CACM 13(6), 377–387
(1970)

4. Codd, E., Rustin, R.: Further Normalisation of the Database Relational Model in Database
Systems. Prentice Hall, Englewood Cliffs (1972)

5. Falleri, J.-R., Huchard, M., Nebut, C.: A generic approach for class model normalisation. In:
Proceedings of the 2008 23rd IEEE/ACM International Conference on Automated Software
Engineering (ASE 2008), Washington, DC, USA, pp. 431–434. IEEE Computer Society
(2008). https://doi.org/10.1109/ASE.2008.66

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software with a Foreword of Grady BOOCH. Addison-Wesley Professional,
Reading (1995). ISBN 978-0201633610

7. Gemstone: GemStone/S v6.7.1 Programming Guide, GemStone Systems, Inc. (2018)
8. Goldberg, A., Robson, D.: Smalltalk-80: The Language and Its Implementation. Addison-

Wesley Professional, Reading (1989). ISBN 978-0201136883
9. Hollemans, M.: Mixins and Traits in Swift 2.0 (2015). http://machinethink.net/blog/mixins-

and-traits-in-swift-2.0/
10. Lo, S.-H., Shiue, Y.-C., Liu, K.F.: Seven steps for object-oriented normalisation in class

diagrams: example of jigsawpuzzle concept for image retrieval. J.Appl. Sci. Eng. 21, 463–474
(2018). https://doi.org/10.6180/jase.201809_21(3).0018

11. Lodhi, F., Mehdi, H.: Normalisation of object-oriented design. In: 7th International Multi
Topic Conference, INMIC 2003, Islamabad, pp. 446–450 (2003). https://doi.org/10.1109/
INMIC.2003.1416768

12. Mok, W.Y., Ng, Y.K., Embley, D.W.: An improved nested normal form for use in object-
oriented software systems. In: Proceedings of the 2nd International Computer ScienceConfer-
ence: Data and Knowledge Engineering: Theory and Applications, Hong Kong, pp. 446–452
(1992)

13. Molhanec,M.: Conceptual normalisation formalised. In: Barjis, J., Eldabi, T., Gupta, A. (eds.)
EOMAS 2011. LNBIP, vol. 88, pp. 159–172. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24175-8_12

14. Naiburg, E.J., Maksimchuk, R.A.: UML for database design. In: Chapter 7 - Database Design
Models - The UML Profile for Database Design. Addison Wesley Longman, Inc., Reading
(2003). ISBN 0201721635

15. Ubaid, M., Atique, N., Begum, S.: A pattern for the effective use of object-oriented databases.
In: 2009 InternationalConference on Information andCommunicationTechnologies,Karachi,
pp. 229–234 (2009). https://doi.org/10.1109/ICICT.2009.5267187

16. Uhnak, P., Pergl, R.: The OpenPonk modelling platform. In: Proceedings of the 11th Edition
of the International Workshop on Smalltalk Technologies, pp. 14:1–14:11 (2016). https://doi.
org/10.1145/2991041.2991055

https://doi.org/10.1109/ASE.2008.66
http://machinethink.net/blog/mixins-and-traits-in-swift-2.0/
https://doi.org/10.6180/jase.201809_21(3).0018
https://doi.org/10.1109/INMIC.2003.1416768
https://doi.org/10.1007/978-3-642-24175-8_12
https://doi.org/10.1109/ICICT.2009.5267187
https://doi.org/10.1145/2991041.2991055

Enterprise Engineering

Evolvable and Machine-Actionable
Modular Reports for Service-Oriented

Architecture

Marek Suchánek(B) and Jan Slifka

Faculty of Information Technology, Czech Technical University in Prague,
Prague 6 16000, Czech Republic

{marek.suchanek,jan.slifka}@fit.cvut.cz

Abstract. Independent and preferably atomic services sending mes-
sages to each other are a significant approach of Separations of Con-
cerns principle application. There are already standardised formats and
protocols that enable easy implementation. In this paper, we go deeper
and introduce evolvable and machine-actionable reports that can be sent
between services. It is not just a way of encoding reports and composing
them together; it allows linking semantics using technologies from seman-
tic web and ontology engineering, mainly JSON-LD and Schema.org. We
demonstrate our design on the Data Stewardship Wizard project where
reports from evaluations are crucial functionality, but thanks to its ver-
satility and extensibility, it can be used in any message-oriented software
system or subsystem.

Keywords: Service-Oriented Architecture · Reports · Messaging ·
Machine-actionability · Evolvability

1 Introduction

Complex software systems of these days are usually composed of integrated
parts to achieve better flexibility, re-usability, and separation of concerns [3].
Service-oriented architecture (SOA) and so-called microservices are one of the
often-used means for designing such systems allowing integration with external
third-party services [9]. Many protocols, formats, techniques, such as SOAP,
Messaging Queues, REST, or Enterprise Service Buses, already exist to support
this approach in software engineering, but we still encounter missing parts on
the higher level of implementation – the content of messages.

When there is an integration need where one part (i.e. a client) should request
an action from some other component (i.e. a service), the response is usually a
message with a service-specific format, and it is up to the client to implement the
mechanism to accept the message [3]. As for the syntactic level, there are libraries
and frameworks for standard formats, but on the semantic level, it gets more
complicated. Standard protocols provide none or minimal semantics (e.g. return
codes) to remain versatile. Due to that, the client needs to implement its own
c© Springer Nature Switzerland AG 2019
R. Pergl et al. (Eds.): EOMAS 2019, LNBIP 366, pp. 43–59, 2019.
https://doi.org/10.1007/978-3-030-35646-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35646-0_4&domain=pdf
http://orcid.org/0000-0001-7525-9218
http://orcid.org/0000-0002-4941-0575
https://doi.org/10.1007/978-3-030-35646-0_4

44 M. Suchánek and J. Slifka

way of “understanding” for each integration since no semantic standardisation
is provided to enable machine-actionability and re-usable libraries.

For machine-actionable data and semantic networks, RDF is often used
together with ontological RDF schema or even using the Web Ontology Lan-
guage (OWL) to describe the types, relations, and properties. One of the great
examples is the Schema.org for the semantic web, which also uses JSON-LD
for encoding Linked Data using traditional and widely-used JSON format [13].
Those technologies could be used to design modular architecture for reports
sent by services in SOA that would be easily evolvable in terms of creating
and changing types of reports or enriching its content and also that would be
machine-actionable and yet versatile.

Initially, we briefly introduce the terminology and summarise state-of-the-art
and related work in Sect. 2 that is then used to design our solution. In Sect. 3, we
describe the requirements, architecture and general usage of our evolvable and
machine-actionable modular reports. Then, we demonstrate it on the specific use
case. We explain the semantics as well as the syntax of our solution. Section 4
evaluates our contribution and its critical properties based on the design and
demonstration; it also summarises fulfilment of the set requirements. Finally,
Sect. 5 we propose possible directions for further research and practical usage.

2 Related Work

This section briefly describes state-of-the-art and related work in the area of our
work and also provides the necessary terminological and theoretical background
for the following design of evolvable reports for SOA.

2.1 SOA and Microservices

Service-oriented architecture (SOA) as described in [3] is a style of building soft-
ware that is based on services which are known using contract (i.e. they are
black-box) and are provided to others via communication protocols. The main
idea is that each service has its task as suggested in the Separation of Concerns
principle and they communicate using some messages in a defined and docu-
mented way. There are multiple approaches on how to implement SOA, such as
web services based on WSDL and SOAP, messaging, or RESTful APIs. With
SOA, there is also the term Microservices that goes even further. Microservices
are fine-grained, and the protocols are lightweight implementing a single func-
tionality and using other services for other tasks conforming low coupling and
high cohesion [9].

2.2 Messaging in SOA

Message-based integration is crucial in nowadays complex software systems and
many tools, frameworks, and design patterns have been developed to support

Evolvable and Machine-Actionable Reports for SOA 45

and enhance it. One of the fundamental integrator types is an enterprise service
bus (ESB). It can be described as a communication system between mutually
interacting SOA applications using various protocols and interfaces. Part of ESB
but also stand-alone can be so-called message broker that is a component that
can be used for message validation, transformation, enrichment, routing and
more. It often uses a message queue (MQ) that allows gathering messages for
further processing and in most cases supports publisher/subscriber pattern [1].
Our solution will be designed universally to be used with such tools and patterns.

2.3 Machine-Actionability

When we talk about machine-actionable reports, we use the definition by Data
Documentation Initiative [2] which described machine-actionable documents as
“information that is structured consistently so that machines, or computers, can
be programmed against the structure”. It says that the structure of a document
is well-designed and computers can process it efficiently. On the other hand, no
speculations or assumptions how the machines will handle it and what specific
actions will be done (i.e. autonomous communication or transformations). There
is a clear analogy to widely-known term human-readability that is similar, just
that the document is structured and composed with intention to simplify reading
by human beings.

The term machine-actionable is mainly emphasised lately in the domain of
data management plans and metadata [12,18]. Reasons for both cases are very
straightforward. For metadata, tools need to be able to process them to effec-
tively work with data that are being described and to provide help to scientists
or data analysts. In the case of data management plans, funders, project super-
visors, or other stakeholders need to quickly evaluate how data are or should be
managed in the selected projects. If the structure is well-defined and standard-
ised, i.e. documents or metadata are machine-actionable, then these tasks are
relatively easy to do.

2.4 RDF and OWL

Resource Description Framework (RDF) enables knowledge modelling and cap-
turing using descriptions of generic terms in a graph. It uses intensively Uniform
Resource Identifiers (URIs) for linking inside and outside the single document.
The core unit of knowledge in RDF is a single triplet consisting of a subject, a
predicate, and an object which is universal and is both machine-actionable and
human-readable using both graphical visualisations or textual representations.
The structure, i.e., a set of possible relationships and a vocabulary, in RDF can be
described using RDF Schema (RDFS) or more precisely using the Web Ontology
Language (OWL). These technologies are currently used for the semantic web,
open data, bioinformatics, and many others and are well supported by libraries,
frameworks, and persistence solutions in various programming languages [7].

46 M. Suchánek and J. Slifka

2.5 JSON-LD

JavaScript Object Notation for Linked Data [13] is a W3C recommendation of
encoding Linked Data using JSON which is widely used in the semantic web.
The core of linking in JSON-LD is about mappings of JSON with RDF models
using a context that connects concepts in an ontology with object properties in
a JSON document. The format allows modularity and reusability in terms of the
context definition inside single JSON-LD file or a separate reusable file. It can
be easily written and read by a human but thanks to vast of libraries for JSON
and extensions for JSON-LD it can be easily machine-actionable as well.

JSON-LD has already been used for adding semantics and assuring evolv-
ability in RESTful web services [5]. The syntax, which is compatible with JSON,
allows smooth upgrade of existing tools and services.

There are implementations of JSON-LD available in a variety of programming
languages, such as Java, C# or JavaScript [17]. We can assume that the format
will be used in the future because new tools and libraries are still arising, e.g.,
for TypeScript and NodeJS [14].

2.6 Schema.org

Schema.org [4] is a community project to develop a vocabulary for semantic web
that is usable via many formats including JSON-LD, RDFa and Microdata (i.e.
annotated HTML with special attributes itemscope, itemtype, and itemprop).
The schemas of Schema.org are types defined with their properties, and property
can use some of the defined types. There are basic data types such as Text or
Boolean but also more complex types like Person or SoftwareApplication,
each with its unique canonical URL. There are layers and standard versioning
to allow easy extensibility for different domain schemas, so anyone can build their
extension if needed. As it is a community project, discussions and contributions
can be done via GitHub [11].

2.7 Normalized Systems Theory

Normalized Systems (NS) theory [6] is general guideline based on solid math-
ematical proofs how to build an evolvable system with a fine-grained modular
structure. It clarifies design concepts from software engineering fields, such as
separation of concerns or data version transparency, and specifies how to use
them in practical use cases among various areas – not just software engineering.
Nevertheless, software engineering is a domain where Normalized Systems have a
significant impact using NS expanders that allow creating from a specification an
enterprise information system that conforms with NS theory [10]. We acknowl-
edge NS theory as the primary source of knowledge for building evolvable and
modular systems as are reports described in this paper, and we apply the core
principles. It is described then in Sect. 4 how the evolvability with respect to NS
is achieved.

Evolvable and Machine-Actionable Reports for SOA 47

2.8 Data Stewardship Wizard

A tremendous amount of data is produced during research in biology, chemistry,
artificial intelligence, and others. Researchers of those fields are not experts in
information technologies and data management. In order to assure correct work
with data (e.g. data will be stored with rich metadata for a long period of time in
a universal repository using standard formats and protocols), data management
plans (DMPs) are often required for project funding [8]. To help researchers
build DMPs and learn how to work with their data in projects, the Data
Stewardship Wizard provides a way how to construct elaborate questionnaires
using so-called knowledge models. The questionnaire can be linked to various
types of integrations to help researchers with answering or interlink external
services and resources. Answers can then serve to generate a DMP using a spe-
cific template to various formats [15].

We want to use the results of research in this paper to enrich the Wizard with
flexible and extensible Evaluators. The core idea is that an answered question-
naire can be evaluated in many ways, and reports from evaluators can be different
in their structure and meaning. For example, some evaluator can calculate values
for specific metrics and return scores, others can give textual feedback, and a
certification evaluator can return certificate ID or denial. Of course, we do not
want to implement a specific format for each, but universal and extensible one
for straightforward future development.

3 Our Approach

This section describes what the reports in the Data Stewardship Wizard are, our
requirements, where we started from, how we transformed our original report
format into a new one that is evolvable, modular and machine-actionable. Then,
we show an example of how clients can use the new format.

3.1 Reports

The workflow for researchers in the Data Stewardship Wizard starts with select-
ing a knowledge model (which is a template for hierarchical questionnaire) that
suits the needs of the research project. Then, the Wizard guides researchers
through the relevant chapters and questions of the questionnaire. Once the ques-
tionnaire is filled, researches can export the data management plan. They can
also evaluate the plan using so-called evaluators.

An evaluator is a service that reads the answers from the questionnaire and
evaluates some of its properties. For example, the result of the evaluation could
be expected costs for data storage or compliance with the FAIR principles [18].
The result of the evaluation, which we call report, should contain the data
presented in a machine-actionable way so that other services can process it.

If we use a standard format which is easily readable by machines, we can
simplify the complexity of implementation of services consuming the reports,
thus reduce the development costs.

48 M. Suchánek and J. Slifka

3.2 General Requirements

The reports should be used not only within the Data Stewardship Wizard but
also in other tools which we do not know about yet. Therefore, it is essential to
provide them in a format that can be easily read by other computer programs
and services. Moreover, we need to achieve some level of modularity because the
number of different reports is not fixed and we will have new types in the future.
We want to have a relatively small amount of components we can compose
together to create the final report. These components should be reusable in
different reports so that the clients can implement those and support new reports
out of the box.

We already used the JSON format in our API for communication between our
client and backend. JSON itself does not say anything about the meaning of the
data within though. It might be clear for the original authors but not for the third
parties. The documentation is somewhere else (if anywhere), so the developers,
that want to consume the reports, have to be aware of it and implement a custom
reading mechanism to understand the data in their intended application. That
is not very modular nor evolvable and requires much work when new types and
changes in existing types of reports are released.

We need a format that

– is easy to read by machines,
– contains not only the data itself but also metadata,
– allows creating our metadata,
– supports modularity.

3.3 Selected Technologies for Implementation

Even though JSON itself does not contain the metadata, it is still a prevalent
format used in a vast amount of nowadays APIs. As a consequence, there are
plenty of tools and libraries for using JSON. The ideal solution for this situation
seemed to be JSON-LD (JSON for Linking Data) format, which is based on
JSON. It provides a way to include metadata and links to other entities within
the JSON document itself.

Moreover, JSON-LD has available libraries for popular programming lan-
guages (like Python or Java), making it easier for third parties to use our
reports. They have significant advantages over the already mentioned pure-JSON
libraries that are also possible to be used thanks to identical syntax. It often helps
with querying linked data and doing validations over JSON-LD specific parts.

The JSON-LD format works in a way that the document contains links to
the definitions to describe the structure and the meaning of the data. We can use
Schema.org for common entities. In our case, however, we have a lot of particular
entities that are not available in Schema.org. The good thing is, we can define
our schema for the Data Stewardship Wizard where we describe new entities,

Evolvable and Machine-Actionable Reports for SOA 49

link their properties to existing entities in Schema.org and make the new schema
publicly available. As long as the consumers can understand the meaning of the
entities from Schema.org, they can derive the meaning of our entities as well.

3.4 Original Report Format

Our original report format was a plain JSON. You can see an example of FAIR-
ness report in Source Code 1.1. It contains several report fields – a summary
text, values for different metrics and final score and result of the evaluation. It
worked fine as long as we used it between our client and server. However, it is
evident that reading and understanding the JSON for a third party would be
hard, almost impossible without proper documentation. This format is also not
very modular. Our goal is to be able to compose different reports from small
reusable pieces. Now we have a fixed structure for each type of report.

Source Code 1.1: Original report JSON structure

1 {

2 "uuid": "<uuid>",

3 "title": "FAIR Metrics Report",

4 "createdAt": "2019-03-04T10:46:18.193223736Z",

5 "updatedAt": "2019-03-04T10:46:18.193223736Z",

6 "report": {

7 "text": "...",

8 "metrics": [{

9 "measure": 0.75,

10 "metricUuid": "<uuid>"

11 }, {

12 "measure": 0.8,

13 "metricUuid": "<uuid>"

14 }],

15 "score": {

16 "value": 0.87,

17 "passed": true

18 }

19 }

20 }

3.5 Modularity and Reusability of Reports

Before moving further, we need to resolve the modularity. The top-level object
representing report looks all right. We should model the fields in the report
section in a different way though. We can replace report object with a list of
different types of report modules. Later we can combine those modules to form
new reports. Example of how we transformed score into a report module is shown
in Source Code 1.2.

50 M. Suchánek and J. Slifka

Source Code 1.2: ScoreReportModule structure

1 {

2 "type": "ScoreReportModule",

3 "value": 0.87,

4 "passed": true

5 }

Then, we need to slightly modify the top level structure of the report by
replacing the report object with reports array (Source Code 1.3).

Source Code 1.3: Report JSON structure with improved modularity
(report modules skipped for brevity)

1 {

2 "uuid": "bad6f3c5-7f86-456a-9979-c418972bad89",

3 "title": "FAIR Metrics Report",

4 "createdAt": "2019-03-04T10:46:18.193223736Z",

5 "updatedAt": "2019-03-04T10:46:18.193223736Z",

6 "reports": [

7

8]

9 }

We can handle the modularity this way. When we need a new report module
in the future, we can add it and combine it with existing ones to form new
reports. Introducing a report module that would reuse other report modules as
its parts is also possible and in some cases might be very useful in terms of
reusability and composability. The readers of the report format would not have
to implement a whole new report structure but only the new report module.

Speaking of readers of reports, we still have a problem with the understand-
ing of what the keys and values in the report mean. That makes reusability and
machine-readability of them in different applications hard. Luckily, we can sig-
nificantly improve that using JSON-LD. The order of reports in the list should
not matter and be up to the client application to prioritise them based on type or
source. The important thing is that a service producing a report can aggregate
multiple reports into one, and the same type of report module can be repeated.

3.6 Transformation of Report Schema

First of all, we should define the entities which the report consist of. We have
UUID, title, and timestamp of creation and update. Then we have several report
modules. Text module which is just a text that should be visible when showing
the report. Metrics module which contains a list of measures (values between 0
and 1) and UUIDs for each metric. In the end, we have a scoring module with a
final result.

Evolvable and Machine-Actionable Reports for SOA 51

We can say a report consists of its identifier, name, timestamps, and a list
of report modules. For now, we have a text module, metrics module, and score
module. For the sake of completeness and consistency, we decided to expand
metrics in the metric report to include their name and description. The new
structure is shown in Fig. 1.

Fig. 1. Schema of the report model

We needed to rename some fields to define their meaning clearly. Instead of
using our field names, we used existing fields and types from Schema.org.

We also changed all the values in our report to use QuantitativeV alue type
from Schema.org that includes the upper and the lower bounds, which can be
useful when displaying the report. Till now, we know what the range was and
hardcoded it into the client that was displaying the report. The information
should be, however, included in the report.

Since not everything we required was available in Schema.org, we had to
define our own fields and types. The following tables shows the schema for Report
(Table 1), ReportModule (Table 2), TextReportModule (Table 3), MetricMea-
sureModule (Table 4, ScoreReportModule (Table 5), MetricMeasure (Table 6)
and Metric (Table 7). The fields and types from Schema.org are prefixed with
schema and our new fields and types are prefixed with dsw.

52 M. Suchánek and J. Slifka

Table 1. Report schema fields

Field Expected type Description

schema:name schema:Text A name of the report

schema:dateCreated schema:DateTime Date and time when
the report was created

schema:dateModified schema:DateTime Date and time when
the report was modified

dsw:reportModules dsw:ReportModule List of report modules

Table 2. ReportModule schema fields

Field Expected type Description

schema:name schema:Text A name of the report module

Table 3. TextReportModule schema

Field Expected type Description

schema:description schema:Text A text description that is part of the report

+ fields from ReportModule

Table 4. MetricMeasureModule schema

Field Expected type Description

dsw:metricMeasures dsw:MetricMeasure A list of values for different metrics

+ fields from ReportModule

Table 5. ScoreReportModule schema

Field Expected type Description

schema:value schema:QuantitativeValue Score value

dsw:passed schema:Boolean Represents whether the result of
report was successful

+ fields from ReportModule

Evolvable and Machine-Actionable Reports for SOA 53

Table 6. MetricMeasure schema

Field Expected type Description

schema:value schema:QuantitativeValue The result value for the metric

dsw:metric dsw:Metric A metric that was evaluated

Table 7. Metric schema

Field Expected Type Description

schema:name schema:Text A name of the metric

schema:description schema:Text A description of the metric

3.7 The New Report

Following the process described in previous chapters, we transformed the original
plain JSON report (mentioned in Source Code 1.1) into a JSON-LD format that
contains all the necessary metadata Source Code 1.4.

3.8 Workflow of Reports Processing

Let us say we updated our client to support the new modular structure that
we defined before moving to JSON-LD (Source Code 1.3). However, we have
different keys in our JSON now due to the transformation to JSON-LD. Do we
need to update our client again? Luckily no, JSON-LD is not only useful for
enriching the data with metadata and meaning. If we provide a new context, it
can remap all the fields from the original context to the new one.

For example, when we apply a context from Source Code 1.5 to our new
report format from Source Code 1.4 we get a result shown in Source Code 1.6. It
is still a valid JSON-LD. However, the keys in the document are the same as in
the report before we started using JSON-LD. So with this easy transformation,
we can use it with our original client code.

This example shows how easy it is to remap the fields to a new context with
JSON-LD. Should the report be used in a different application, it is possible to
follow the same steps to transform it into a format that can be easily readable
by the target application.

4 Evaluation

In this section, we briefly summarise the fulfilment of the requirements and key
properties of the designed evolvable reports in terms of usability and extensibility.

54 M. Suchánek and J. Slifka

Source Code 1.4: The new report structure

1 {

2 "@context": {

3 "schema": "http://schema.org/",

4 "dsw": "http://schema.ds-wizard.org/"

5 },

6 "@id": "https://ds-wizard.org/reports/<uuid>",

7 "@type": "dsw:Report",

8 "schema:name": "FAIR Metrics Report",

9 "schema:dateCreated": "2019-03-04T10:46:18.193223736Z",

10 "schema:dateModified": "2019-03-04T10:46:18.193223736Z",

11 "dsw:reportModules": [{

12 "@type": "dsw:TextReportModule",

13 "schema:name": "Summary",

14 "schema:description": "..."

15 }, {

16 "@type": "dsw:MetricsReportModule",

17 "schema:name": "FAIR Metrics Result",

18 "dsw:metricMeasures": [{

19 "@type": "dsw:MetricMeasure",

20 "schema:value": {

21 "@type": "schema:QuantitativeValue",

22 "schema:maxValue": 1,

23 "schema:minValue": 0,

24 "schema:value": 0.75

25 },

26 "dsw:metric": {

27 "@type": "dsw:Metric",

28 "@id": "https://ds-wizard.org/metrics/<uuid>",

29 "schema:name": "Fairness",

30 "schema:description": "..."

31 }

32 }]

33 }, {

34 "@type": "dsw:ScoreReportModule",

35 "schema:name": "Total Score",

36 "schema:value": {

37 "@type": "schema:QuantitativeValue",

38 "schema:maxValue": 1,

39 "schema:minValue": 0,

40 "schema:value": 0.87

41 },

42 "dsw:passed": true

43 }]

44 }

Evolvable and Machine-Actionable Reports for SOA 55

Source Code 1.5: The new JSON-LD context

1 {

2 "@context": {

3 "schema": "http://schema.org/",

4 "dsw": "http://schema.ds-wizard.org/",

5 "title": "schema:name",

6 "createdAt": "schema:dateCreated",

7 "updatedAt": "schema:dateModified",

8 "reports": "dsw:reportModules"

9 }

10 }

Source Code 1.6: Report with a new context (report modules skipped for brevity)

1 {

2 "@context": {

3 "schema": "http://schema.org/",

4 "dsw": "http://schema.ds-wizard.org/",

5 "title": "schema:name",

6 "createdAt": "schema:dateCreated",

7 "updatedAt": "schema:dateModified",

8 "reports": "dsw:reportModules"

9 },

10 "@id": "https://ds-wizard.org/reports/<uuid>",

11 "@type": "dsw:Report",

12 "reports": [

13

14],

15 "createdAt": "2019-03-04T10:46:18.193223736Z",

16 "updatedAt": "2019-03-04T10:46:18.193223736Z",

17 "title": "FAIR Metrics Report"

18 }

4.1 Versatility

Our contribution in the form of evolvable reports architecture for service-oriented
systems is not limited to any specific domain. It can be used in systems that
communicate using messages of any type and any size. The advantages will
have a higher impact with larger systems rather than systems composed of two
nodes (e.g. for communication between server and client of a web application).
Domain-specific requirements can be projected on the level of report modules
that represent specific concerns. Aside from SOA, the format can be used even
for storing reports and operations within a single application using, for instance,
MongoDB and JSON-LD libraries.

56 M. Suchánek and J. Slifka

4.2 Interoperability

High level of interoperability is achieved by using standard self-documented
JSON-LD format. It is now effortless for other applications to integrate our
reports into their functionality. Although the structure is not very complicated,
it allows straightforward extensibility. The solution provides a required mini-
mal structure in a report file, but services that are implementing our design in
practice may freely add custom attributes and other constructs without losing
compatibility with us.

The interpretation of a specific report type should be suggested by its devel-
opers, and the internal structure should be well described. When processing the
report, the client freely decides based on @type attribute if and how it should
be processed. Thanks to incorporating terms from Schema.org vocabularies, as
well as the possibility to add others if needed, integration with other services is
more accessible than if own terms are used. In such a case, the mapping would
be required for the integration.

4.3 Machine-Actionability

As being back and forth translatable to/from RDF, JSON-LD format is by
definition machine-actionable. It is even easier to implement the application for
processing the report in this format thanks to defined attributes from standard
ontologies and providing a mapping in the @context of a report. The semantics
of the report modules should also be described in the same way, so the application
knows the meaning of its parts again by using a linked ontology. These are critical
advantages when compared to JSON, YAML, or even some custom formats.

4.4 Evolvability

We transformed our report structure to be composed of report modules. We
can combine the modules differently and create new reports. When we need new
modules, we can easily define them in our schema based on the publicly available
ontology from Schema.org or elsewhere. Their meaning will be still obvious, and
it should be easy to work with updated versions of the reports.

When developing new modules, we suggest to apply semantic versioning and
backward compatibility, e.g., removed attributes should be just ignored, new
attributes should have a default value for deprecated reports and so on. If such
fundamental principles are maintained in modules, the whole report is evolvable.
Owing to the independence of modules, there are no ripple effects, and the report
modules can be processed in parallel and even if the processing of some fails,
others might be used without a problem.

As we use Normalized Systems theory as a source of knowledge for developing
an evolvable solution, the core principles can be discussed:

– Separation of Concerns: Each concern is encapsulated it a single report mod-
ule. If a module should contain more concerns (e.g. textual description and
related chart or dataset), then the report should also be composed of sub-
modules.

Evolvable and Machine-Actionable Reports for SOA 57

– Data Version Transparency: Report modules are independent with each other
and requirements on a module from a global perspective are minimal. Update
of a structure inside a module is encapsulated without any impact “outside”.

– Action Version Transparency: Action that process a single type of report
module is again independent on others. Implementation of report processing
can be composed of these simple actions, and they can be updated, again,
without any impact on each other,

– Separation of States: This principle is more related to the implementation of
chaining actions to process a report. The state of each action should exhibit
state keeping, and there are no obstacles given by our report structure.

5 Future Work

The solution designed in this work is entirely usable but still can be further
improved, extended, and used in specific use cases where more research might
be needed, and new exciting results can emerge. We briefly describe a few next
steps that we want to work on in the near future.

5.1 Application in Data Stewardship Wizard

The first impulse for this research was the need for universal and extensible
reports from integrations to the DSW, and the goal remains to implement it and
use widely for evaluations of questionnaires and data management plans. We plan
to build integrations using Apache Camel [16] where our reports will be generated
from an output of external services and then it will be passed through server
application on client’s request. There are multiple challenges in our vision. First,
integration modules will use the same report’s model but will be independent
on each other and on the server application itself. Then, the server will also be
independent and should pass the requests and responses between integrations
and the client application transparently. Finally, the client will implement its
way of displaying various types of report modules and reuse them for multiple
evaluations.

5.2 Enhancements with Specialized Modules

Naturally, as we described in this paper, more types of report modules can
be designed and used within our architecture without any changed thanks to
ensured evolvability. Aside from pure application-specific modules, there can be
domain-specific modules described and used within multiple applications. For
that, we could introduce a unified way of sharing such descriptions and enhance
our work with them. We might encounter interesting obstacles in that when mod-
ules will need to have submodules or if more complex content such as binary data,
encrypted content for higher security, and incorporating asynchronous commu-
nication in the architecture. It can lead to further research to design evolvable
solutions for such significant changes.

58 M. Suchánek and J. Slifka

5.3 Support for Programming Languages

Designing the format and architecture of the reports is just the first step. Imple-
mentations in real use cases are necessary to prove its principles by practice
and actually to help. To ensure implementation according to our visions and
to support its usage in practice, libraries and tools for programming languages
should be developed. Apparently, such libraries will be done as side-product of
incorporating the reports in our projects in languages we use, such as Haskell,
Elm, and Java. Nevertheless, thanks to its architecture and overall simplicity, it
should not be too hard to implement it for other main-stream languages used in
SOA, e.g., Python, Ruby, and Node.js.

6 Conclusion

In this paper, we designed architecture, processing, and structure of evolvable
and machine-actionable reports that can be used in service-oriented software
systems. Our contribution is focused on further extensibility for specific use
cases. Thanks to selected technologies, mainly the usage of JSON-LD format and
terms from Schema.org vocabulary, we achieved evolvability, interoperability,
and machine-actionability. The report modules are up to the specific applications
to be developed and described as we have shown a few simple but real and not
trivial examples. We pursue a goal to use the results of this research for Data
Stewardship Wizards to implement independent evaluators with common high-
level reports structure and processing.

Acknowledgements. This research was supported by the grant of Czech Technical
University in Prague No. SGS17/211/OHK3/3T/18. The work on the Data Steward-
ship Wizard is partially funded by IOCB of the CAS and ELIXIR infrastructure.

References

1. Chappell, D.: Enterprise Service Bus. O’Reilly Media, Inc., Newton (2004)
2. DDI Alliance: Machine-actionable (definition) (2018). https://www.ddialliance.

org/taxonomy/term/198. Accessed 21 May 2019
3. Erl, T.: Service-Oriented Architecture: Analysis and Design for Services and

Microservices. Prentice Hall Press, New Jersey (2016)
4. Guha, R.V., Brickley, D., Macbeth, S.: Schema.org: evolution of structured data

on the web. Commun. ACM 59(2), 44–51 (2016). https://doi.org/10.1145/2844544
5. Lanthaler, M., Gütl, C.: On using JSON-LD to create evolvable RESTful services.

Proceedings of the Third International Workshop on RESTful Design - WS-REST
12 (2012). https://doi.org/10.1145/2307819.2307827

6. Mannaert, H., Verelst, J., Bruyn, P.D.: Normalized Systems Theory: From Foun-
dations for Evolvable Software Toward a General Theory for Evolvable Design.
Koppa, Kermt (Belgie) (2016)

7. McGuinness, D.L., Van Harmelen, F., et al.: OWL web ontology language overview.
W3C Recommendation 10(10), 2004 (2004)

https://www.ddialliance.org/taxonomy/term/198
https://www.ddialliance.org/taxonomy/term/198
https://doi.org/10.1145/2844544
https://doi.org/10.1145/2307819.2307827

Evolvable and Machine-Actionable Reports for SOA 59

8. Mons, B.: Data Stewardship for Open Science: Implementing FAIR Prin-
ciples. CRC Press, Boca Raton (2018). https://books.google.cz/books?id=-
HhQDwAAQBAJ

9. Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly
Media Inc., Newton (2015)

10. Oorts, G., Huysmans, P., De Bruyn, P., Mannaert, H., Verelst, J., Oost, A.: Build-
ing evolvable software using normalized systems theory: a case study. In: 2014 47th
Hawaii International Conference on System Sciences, pp. 4760–4769. IEEE (2014)

11. Patel-Schneider, P.F.: Analyzing schema.org. In: Mika, P., Tudorache, T., Bern-
stein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz,
K., Goble, C. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 261–276. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11964-9 17

12. Simms, S., Jones, S., Mietchen, D., Miksa, T.: Machine-actionable Data Manage-
ment Plans (maDMPs). Research Ideas and Outcomes 3 (2017). https://doi.org/
10.3897/rio.3.e13086

13. Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., Lindström, N.: JSON-LD 1.0.
W3C Recommendation 16, 41 (2014)

14. Sterling, A.: NodeJS and Angular Tools for JSON-LD. In: 2019 IEEE 13th Inter-
national Conference on Semantic Computing (ICSC) (2019). https://doi.org/10.
1109/icosc.2019.8665625

15. Suchánek, M., Pergl, R.: Data Stewardship Wizard for Open Science. Brno, Czech
Republic (2018)

16. The Apache Software Foundation: Apache Camel. https://camel.apache.org.
Accessed 23 May 2019

17. W3C: JSON for Linking Data. https://json-ld.org/. Acceesed 22 May 2019
18. Wilkinson, M.D., et al.: The FAIR guiding principles for scientific data manage-

ment and stewardship. Sci. Data 3, 160018 (2016)

https://books.google.cz/books?id=-HhQDwAAQBAJ
https://books.google.cz/books?id=-HhQDwAAQBAJ
https://doi.org/10.1007/978-3-319-11964-9_17
https://doi.org/10.3897/rio.3.e13086
https://doi.org/10.3897/rio.3.e13086
https://doi.org/10.1109/icosc.2019.8665625
https://doi.org/10.1109/icosc.2019.8665625
https://camel.apache.org
https://json-ld.org/

Challenges in Enterprise and Information
Systems Modeling in the Contexts of Socio

Cyber Physical Systems

Marite Kirikova(B)

Riga Technical University, 1 Kalku, Riga 1658, Latvia
marite.kirikova@rtu.lv

Abstract. Nowadays information systems extend beyond the traditional enter-
prise resource planning systems, which often are regarded as socio-technical sys-
tems. With availability of cloud computing, open data, smart devices and smart
factories, information systems development requires considering enterprises as
socio-cyber-physical systems with emerging relationships to other systems; and
handling emerging data available in the cyberspace. Well known frameworks such
as ArchiMate enterprise architecture language, Reference Architecture Model
Industry 4.0, and Work System framework only partly can cover the needs of
socio-cyber-physical systems modeling. There are several challenges in the appli-
cation of these frameworks in information systems design in the contexts of socio-
cyber-physical systems. To meet the identified challenges, some extensions and
integration of the frameworks are suggested.

Keywords: Information system · Enterprise · Socio cyber physical system ·
ArchiMate · RAMI 4.0 ·Work system framework

1 Introduction

Traditionally EnterpriseModeling (EM) and Information Systems (IS) are applied in the
context of business organizations where, basically, the alignment of two types of systems
is to be achieved. Namely, these systems are a business system and an IS. However, with
the advances of artificial intelligence and new smart solutions, there are more alignments
and more types of systems to be considered. Partly this issue can be covered by socio-
technical systems approach. Socio-technical systems are often regarded as “complex
systems where social (human and organizational) and technical components interact
with each other to achieve common objectives” [1]. However, in many cases, these
technical components are regarded just as a cyber space, i.e., software and hardware
(including wireless networks). Physical devices with embedded cyber components and
their interaction with other devices or human beings are rarely considered. Therefore, in
this paper we will not take a position of socio-technical systems, but will rather consider
social, cyber and physical systems and their interplay for embracing such concepts as
Industry 4.0 (or cyber-physical systems - CPS), social networks and open data. We
define a socio-cyber-physical system (SCPS) as a system that includes all three types of

© Springer Nature Switzerland AG 2019
R. Pergl et al. (Eds.): EOMAS 2019, LNBIP 366, pp. 60–69, 2019.
https://doi.org/10.1007/978-3-030-35646-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35646-0_5&domain=pdf
http://orcid.org/0000-0002-1678-9523
https://doi.org/10.1007/978-3-030-35646-0_5

Challenges in Enterprise and Information Systems Modeling 61

elements: social, cyber and physical ones; and may include different combinations of
these elements as subsystems).

The research approach taken in this paper is as follows. First the information system
issues related to contemporary information usage variations is explored. Then these
issues are related to and analyzed in the context of three enterprise and information
systems modeling approaches/frameworks. The factors not covered by these approaches
are identified as challenges in enterprise and information systems modeling.

The paper is organized according to the research approach taken. Section 2 concerns
information system issues in the SCPS contexts. Section 3 ponders over possibilities
to address these issues in several modeling frameworks, such as enterprise architecture
representation language ArchiMate [2], Reference Architectural Model Industry 4.0
[3], and Work System model for defining information systems [4]. Section 4 discusses
commonalities and differences of these frameworks and points to the related works in
modeling of SCPSs. Section 5 presents brief conclusions and some directions of further
research.

2 Information Systems in the Context of SCPS

Hirschheim and Klein [5] in 2012 referred to four eras in IS history:

• First era (mid 1960 – to mid 1970): Centralization
• Second era (mid 1970 – to mid 1980): User led IS development projects
• Third era (mid 1980 – mid 1990): Decentralization, emergence of Internet
• Fourth era (mid 1990 – today): Management of widely distributed technologies and
personnel.

These four eras basically refer to an information system as “a manual or automated
system, such as an automatic data processing system, a computer system, or a computer
network, that (a) is composed of people, machines, or methods and (b) is organized to
collect, process, transmit, and disseminate data that represent user information” [6].Most
often “machine” here is understood as computer software and hardware. Now in 2019,
one of the most well-known conferences on IS, ICIS [7] calls for papers in such topics as
HumanComputer/Robot Interactions& Interfaces;Analytics andDataScience;Crowds,
SocialMedia andDigital Collaborations;Mobile, IoT andUbiquitousComputing; Smart
Cities and Digital Government; and Smart Service Systems and Service Science in line
with the more traditional ones. This shows that an IS now shall concern physical devices,
different emerging data sources, and serve for systems of arbitrary combinations of
such substances as social, cyber and physical systems. Actually an IS itself often is a
SCPS - “any configuration of a system that collects, organizes, stores, and distributes
information” [6],where socio, cyber andphysical (sub)systems canbe receivers, handlers
and providers of information.

In the context of SCPSs, an essential aspect of an IS is emergence (consider networks,
open data, system collaboration, etc.), because not all issues regarding the IS can be
under the control in CSPSs. In Table 1 we show a simple scheme of types of elements (or
subsystems) of IS that are of different nature and can be included in an IS. In Table 1 only

62 M. Kirikova

some examples of possible subsystems/elements are shown. The table demonstrates that
in all cases we shall deal with both – the elements purposely developed and the elements
that are emerging inside or outside the enterprise (a SCPS) under the consideration.
Depending on the viewpoint, purposely developed elements of one enterprise can be
emerging elements for another enterprise, e.g. purposely developed software services
developed by Company A can emerge as new opportunities of Company B.

Table 1. Different types of subsystems or elements of IS (from an enterprise viewpoint)

Type of a subsystem or
element

Developed in a controlled
manner

Emerging

Social Business process (manual);
Rules of the game

Peer network

Cyber Workflow engine, Database World Wide Web

Physical Factory equipment, sensor Natural phenomena – such as
weather conditions

Socio-cyber Workflow Social network, open data

Cyber-physical Robot Behavior of an intelligent
multi-agent system (e.g. smart
cars on the road)

Socio-physical People acting according to a
command

A human being interacting
with a mechanical machine
and natural object (e.g. stone)

Socio-cyber-physical Passenger in a smart car
(under the car’s control)

Human being interacting with
a robot

Similarly, and to some extent also consequently, taking into account the nature of
the above-mentioned systems; also data sources and data used in information systems
can be classified in the developed in a controlled manner (e.g. centralized databases, log
data, etc.) and emerging ones (e.g. open data, information available in social networks,
etc.). This issue impacts a possibility to define a border of an enterprise and a border of
an information system. For instance, we can question whether a cloud service, which
belongs to an information system, belongs also to an enterprise forwhich this information
system serves.

Above mentioned IS issues are challenging the existing approaches of alignment of
enterprises (SCPSs) and their information systems (see also discussion in Sect. 4).

In the next section we will analyze three well known frameworks regarding their
appropriateness to handle enterprise controlled and emergent data and systems listed in
Table 1.

3 Common Frameworks in the Context of SCPS

In this sectionwewill analyze how several frameworks can be used to address the various
IS issues (types of IS elements) explored in previous section. Three frameworks will be

Challenges in Enterprise and Information Systems Modeling 63

considered: enterprise architecture representation language ArchiMate [2], Reference
Architectural Model Industry 4.0 [3], and Work System model for defining informa-
tion systems [4]. These frameworks are chosen due to their popularity in the field of
Information Systems Research.

3.1 Applicability of ArchiMate

ArchiMate is a well-known enterprise architecture representation language [4] that com-
plies with the Open Group’s managed enterprise architecture framework TOGAF [8].
The latest version of this language, which initially addressed only socio-cyber systems,
includes new modeling elements for modeling physical systems. This new version of
ArchiMate has already been analyzed with respect its applicability for cyber-physical
systems [9], and some improvements have been suggested to address such issues as
construct overload, redundancy, excess and deficit.

We will discuss here four layers of ArchiMate framework [4]: Business layer, Appli-
cation layer, Technology layer, and Physical layer. Two other layers of the Archi-
Mate framework, namely, Strategy and Implementation & Migration layers will not
be discussed as they are out of the scope of the focus of this paper.

The Business, Application and Technology layers all have the same types of their
passive structure (data belongs to passive structure elements), behavior (represents func-
tions, processes, services, etc.) and active structure (elements which handle information
or materials) elements. The Physical layer differs from these layers as it provides only
“material” as a passive element and does not specify behavioral elements.

The representational capability of ArchiMate language layers regarding the systems
listed in Table 1 is illustrated in Table 2.

Table 2. Representation capabilities of ArchiMate framework layers

ArchiMate layer Represented system types

Business layer Social, Physical (partly), Socio-Physical (partly)

Application layer Cyber

Technology layer Cyber Physical (partly), Physical

Physical layer Physical (partly)

The Business layer of ArchiMate, from the point of view of socio-technical systems,
would represent the social system (“business” might be considered as a social activity).
However, in the context of SCPSs, a human being can be considered from two points
of view – as an element of a social system and as an element of a physical system [10,
11]. The same refers also to passive elements of the Business layer (e.g. hard copies of
documents also belong to physical systems). Elements of cyber systems are stretched
over two layers (Application and Technology), where elements of the Technology layer
can belong to both cyber and physical systems. It is not only because physical comput-
ing devices occupy a physical space; there can be cases where, e.g. heat generated by

64 M. Kirikova

computers should be considered and then the role of computers changes from the data
processing objects to the energy providing objects. As mentioned above, regarding the
Physical layer, here such elements as “equipment”, “facility”, “distribution network”
and “material” can be shown, however, the behavioral elements are missing at that level.
This becomes challenging when robotic or other artificial multi-agent systems must be
modeled.

ArchiMate language has no specific means to point to emerging systems or data,
so it is basically appropriate for modeling of systems organized or built in a controlled
manner. The language does not clearly distinguish in its layers among social, cyber
and physical systems; therefore, it cannot transparently represent all these systems and
their combinations. Also, the Physical layer has limited representational capability if
compared to other layers discussed in Table 2. On the other hand, such elements as
“path” and “communication networks” are available only at the Technology layer which
does not allow abstracting from this layer at other layers.

In order to have more flexible abstraction possibilities and possibility to reflect arti-
ficial agent behavior at Physical layer, the following extensions to ArchiMate language
would be welcome:

• Including “network” and “communication path” elements in all four layers (see
Table 2).

• Providing at the Physical layer the same set of elements as at other three layers
(Business, Application and Technology) of the ArchiMate framework.

3.2 Applicability of RAMI 4.0

While in the previous section we dealt with ArchiMate, which is a language for rep-
resentation of a generic enterprise and has not been developed specifically for SCPSs,
the wave of interest in cyber-physical systems has brought in several new models and
frameworks [12], where The Reference Architecture Model Industry 4.0 (RAMI 4.0)
is one of the most popular ones. RAMI 4.0 is a three-dimensional framework involv-
ing hierarchy levels, life cycle and value streams, and layers [13]. This framework is
designed to serve smart factories. Enterprise is one of the hierarchy levels (one between
Connected World and Work Centers). According to the framework, each hierarchy level
(thus also the Enterprise) can be considered at 6 layers, namely Business, Functional,
Information, Communication, Integration, and Asset layers.

Some researchers claim thatRAMI4.0 provides some room for emerging systems and
emerging data (through the connected world level of hierarchy and Communication and
Integration layers) [10], however, they have not provided transparent models approving
that claim. The framework is focused on cyber physical systems. It refers to human
beings but does not consider social system issues in detail.

The system types concerned by layers of RAMI 4.0 at the Enterprise level are
reflected in Table 3. More detailed description of RAMI 4.0 layers is available in [14].
This framework basically helps to represent how virtual world is related to the real
world. It does not suggest specific modeling elements as ArchiMate language provides.
The purpose of RAMI4.0 is not to transparently distinguish between social, cyber and

Challenges in Enterprise and Information Systems Modeling 65

physical systems; it rather is designed to control the physical systems with the help of
cyber systems. Different modeling approaches for the use of this framework are still
emerging [14–16].

Table 3. Representational capability of RAMI 4.0 layers (at the Enterprise level)

RAMI 4.0 layer Represented system types

Business layer Social (partly)

Functional layer Cyber, Physical (partly)

Information layer Cyber

Communication layer Cyber, Physical (partly)

Integration layer Cyber, Physical

Asset layer Social, Physical

One of the directions of further studies could be an investigation of possibilities
to apply extended ArchiMate language (see suggestions in the previous sub-section)
to the RAMI 4.0 framework. This would be a complex task considering differences
between RAMI 4.0 and TOGAF (to which ArchiMate has been adjusted). Nevertheless,
ArchiMate has already established modeling tools and many modelers are skilled in this
language due to its relative simplicity. With a possibility to clearly distinguish between
systems of different types and their combinations, the ArchiMate language, probably,
could be a suitable tool for reflecting different views of RAMI 4.0 SCPSs.

3.3 Applicability of Work Systems Framework

Work Systems is a flexible framework developed by American scientist Steven Alter [4].
The framework is theoretical and only first attempts to provide a supporting modeling
method have been made [17]. The framework concerns Environment, Infrastructure and
Strategies as a context in which particular activities or processes are done by Participants
using Information and Technologies to produce Products or Services for Customers
[18, 19]. This framework is attractive due to its simplicity. Obviously, it aligns with
socio-technical systems perspective (Participants and Technologies) and do not directly
distinguish between Social, Cyber and Physical Systems and heir combinations.

Nevertheless, a distinguished feature of the framework is the possibility to define
work systems at different levels of detail and abstraction using the same generic frame.
The approach has a potential to represent any combination of performers (be they parts
of social, cyber or physical systems) as a work system performing activities or processes
for providing products or services. TheWork Systems framework can embrace elements
form ArchiMate layers represented in Table 2 and RAMI 4.0 framework represented in
Table 3. Therefore, it might be suitable as an umbrella frame for modeling socio-cyber-
physical systems and their combinations. To achieve this, it is necessary to provide a
modeling environment that helps to distinguish between different types of systems and
their combinations, which means relating the elements under the consideration to all

66 M. Kirikova

types of systems in which they participate, as each type of base systems is governed
either by rules of social systems or computer code or physical laws.

4 Discussion

In Sect. 3, three well known frameworks were analyzed regarding their applicability for
SCPS contexts of IS. Each framework exposed some capabilities and some limitations.
These pros and cons are amalgamated in Table 4.

Table 4. Pros and cons of the frameworks analyzed in Sect. 3

Characteristic ArchiMate RAMI 4.0 Work Systems

1. Possibility to see transformations (input,
function, output)

Yes Yes Yes

2. Modeling elements prescribed Yes No In progress in
related work
[17]

3. Possibility to show all types of systems at the
same level of detail

Partly Yesa Yesa

4. Possibility to distinguish clearly between all
types of systems

No No No

5. Possibility to reflect (or distinguish) emerging
systems

No No evidence
provided

No

6. Possibility to reflect emerging data No No No
aOnly on a high abstraction level

We can see that all frameworks provide general means for representing transforma-
tions done by systems; i.e. functions and their inputs and outputs can be shown in the
frameworks; and also the performers of the functions. This is an essential feature to have
a transparent systems perspective.

Only ArchiMate has itsmodeling notation (and alsomodeling tools) for representing
the systems. RAMI4.0 does not prescribe any modeling language. Regarding Work
Systems, there is some initial work done to relate it to a particular modeling notation
[17]. Taking into account extensions suggested in Sect. 3.1, it might be useful to relate
the frameworks so that ArchiMate notation could be used for representing the systems. It
looks quite straight forward to relate ArchiMate to Work Systems framework. However
there are conceptual differences regarding ArchiMate and RAMI4.0. These differences
are reflected in Fig. 1.While both frameworks have layers, the meaning of these layers is
different. Especially it concerns data. There is a separate layer for data in RAMI 4.0; and
other layers are accessing this data. In ArchiMate, data is positioned at the Application
layer, but data has references to business objects at the Business layer and artifacts at the
Technology layer. Thus all layers are processing some kind of information. Similarly it
is with functions. In ArchiMate, it depends on interpretation what exactly is regarded as

Challenges in Enterprise and Information Systems Modeling 67

physical assets: these could be people, devices and facilities each at their corresponding
layers. InRAMI4.0, assets are at the dedicatedAsset layer. Considering these differences,
we can assume that relating RAMI4.0 and ArchiMate might require additional modeling
elements to transfer the meaning of layers correctly from one modeling framework to
another.

Fig. 1. Differences in layering of RAMI4.0 [3] and ArchiMate [2]

As was explained in Sect. 3.1, ArchiMate does not allow to model at the Physical
layer in the same manner as at the Business, Application and Technology layers. Thus
all systems cannot be modeled equally. Other two frameworks stay general with respect
to particular modeling notations and are equally suitable for modeling social, cyber,
and physical systems at the high level of abstraction. If suggested extensions would be
implemented in ArchiMate, it could be suitable for equal representation opportunities
for all three types of systems at a high level of abstraction and also in details.

None of frameworks give an opportunity to clearly distinguish between different
types of systems (the fact that the system can be represented by the framework, does
not yet say that it can be distinguished from other system types: e.g. computer at the
Technology layer and Physical layer of ArchiMate, or Human being as an asset or as a
participant of a the Business layer in RAMI4.0.

None of frameworks can clearly identify emerging systems and emerging data.
In this paper we concentrated on IS modeling in SCPS context. Some enterprise

and IS aspects, in the context of SCPSs, have been discussed in a number of research
papers. For instance, information and material flow models (on a high level of abstrac-
tion) are discussed in [20]; goal modeling integrated with systems modeling language
SysML is proposed in [21], where the author uses only a goal model for represent-
ing social (sub)systems and SysML for cyber and physical sub(systems); and authors
of [22] propose to integrate human factors in cyber physical systems by paying more
attention to human-machine interaction and user interface design. None of these works

68 M. Kirikova

provide models for representing transformation aspects in all three (social, cyber, phys-
ical) sub(systems). However, the findings from related works will be helpful in further
research regarding modeling of socio-cyber-physical systems.

5 Conclusions

In this paper we discussed applicability of some well-known frameworks for modeling
socio-cyber-physical systems: namely the enterprise architecture modeling language
ArchiMate, Industry 4.0 Reference Architecture Model RAMI 4.0, and St. Alter’s Work
Systems framework were discussed. Brief analysis of these frameworks revealed the
following challenges:

1. Noneof discussed frameworks currently providemeans for transparently distinguish-
ing between all types of systems (social, cyber, physical and their combinations).
For instance, human being is positioned at the Business layer (ArchiMate) or at the
Asset layer (RAMI 4.0).

2. To cover all three types of systems and their combinations, the ArchiMate language
should be extended so that all core layers and the Physical layer have the same
representational element types.

3. Regarding possibility to reflect all system types, RAMI 4.0 framework could benefit
from its integration with extended ArchiMate language, however, to integrate them,
the differences between TOGAF and RAMI 4.0 should be well understood.

4. Work System framework has a potential to be populated with the modeling tools for
transparent modeling of social, cyber and physical systems and their combinations,
but a mechanism must be found how to relate these systems to the rules by which
the systems are governed.

This paper is limited to preliminary discussion on modeling socio-cyber-physical
systems. Further research is needed to meet the above identified challenges and develop
tools for transparent modeling of socio-cyber-physical systems from different perspec-
tives or viewpoints. The necessity to model emerging systems and handle emerging data
should also be considered in this context.

References

1. Salnitri, M., Paja, E., Giorgini, P.: Preserving compliance with security requirements in socio-
technical systems. In: Cleary, F., Felici, M. (eds.) CSP 2014. CCIS, vol. 470, pp. 49–61.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12574-9_5

2. ArchiMate® 3.0.1 Specification, an OpenGroup Standard (2017). http://pubs.opengroup.org/
architecture/archimate3-doc/. Accessed 17 Mar 2019

3. Schweichhart, K.: Reference Architectural Model Industrie 4.0 (RAMI 4.0). https://ec.
europa.eu/futurium/en/system/files/ged/a2-schweichhart-reference_architectural_model_
industrie_4.0_rami_4.0.pdf. Accessed 17 Mar 2019

4. Alter, St.: Defining Information systems as work systems: implication for the IS field. Bus.
Anal. Inf. Syst. Paper 22 (2008). http://repository.usfca.edu/at/22. Accessed 17 Mar 2019

https://doi.org/10.1007/978-3-319-12574-9_5
http://pubs.opengroup.org/architecture/archimate3-doc/
https://ec.europa.eu/futurium/en/system/files/ged/a2-schweichhart-reference_architectural_model_industrie_4.0_rami_4.0.pdf
http://repository.usfca.edu/at/22

Challenges in Enterprise and Information Systems Modeling 69

5. Hirschheim, R., Klein, H.K.: A glorious and not-so-short history of the information systems
field. J. Assoc. Inf. Syst. 4, 188–235 (2012)

6. Weik, M.H.: Information system. In: Weik, M.H. (ed.) Computer Science and Communica-
tions Dictionary. Springer, Boston (2000). https://doi.org/10.1007/1-4020-0613-6

7. International Conference on Information Systems ICIS 2019. https://icis2019.aisconferences.
org/submissions/call-for-papers/. Accessed 17 Mar 2019

8. The TOGAF® Standard, Version 9.2 Overview. https://www.opengroup.org/togaf. Accessed
17 Mar 2019

9. Franck,T., Iacob,M.-E., vanSinderen,M.,Wombacher,A.: Towards an integrated architecture
model of smart manufacturing enterprises. In: Shishkov, B. (ed.) BMSD 2017. LNBIP, vol.
309, pp. 112–133. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78428-1_6

10. Stanescu, A.M., Repta, D., Moisescu, M.A., Sacala, I.S., Benea, M.: Towards a generic enter-
prise systems architecture based on cyber-physical systems principles. In: Camarinha-Matos,
L.M., Afsarmanesh, H. (eds.) PRO-VE 2014. IFIPAICT, vol. 434, pp. 245–252. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44745-1_24

11. Sandkuhl, K., Smirnov, A., Shilov, N.: Cyber-physical systems in an enterprise context: from
enterprise model to system configuration. In: Abramowicz, W. (ed.) BIS 2015. LNBIP, vol.
228, pp. 148–159. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26762-3_14

12. Basl, J.: Analysis of Industry 4.0 readiness indexes and maturity models and proposal of the
dimension for enterprise information systems. In: Tjoa, A.M., Raffai, M., Doucek, P., Novak,
N.M. (eds.) CONFENIS 2018. LNBIP, vol. 327, pp. 57–68. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-99040-8_5

13. Pisching,M.A., Pessoa,M.A.O., Junqueira, F.,Miyagi P.: PFS/PN technique tomodel Industry
4.0 systems based on RAMI 4.0. In: 2018 IEEE 23rd International Conference on Emerging
Technologies and Factory Automation (ETFA), vol. 1, pp. 1153–1156 (2018)

14. Mourtzis, D., Gargallis, A. Zogopoulos, V.: Modelling of Customer Oriented Applications
in Product Lifecycle using RAMI 4.0. Procedia Manuf. 28, 31–36 (2019). https://www.
sciencedirect.com/science/article/pii/S2351978918313489. Accessed 31 Mar 2019

15. Pisching, M.A. Pessoa, M.A.O., Junqueira, F., Filho, D.J.S., Miyagi, P.A.: An architecture
basedonRAMI4.0 to discover equipment to process operations requiredbyproducts,Comput.
Ind. Eng. 125, 574–591 (2018)

16. Nardello, M., Møller, Ch., Gøtze, J.: Organizational learning supported by Reference Archi-
tecture Models: Industry 4.0 laboratory study. Complex Syst. Inform. Model. Q. CSIMQ,
Issue (12), 22–38 (2017). https://doi.org/10.7250/csimq.2017-12.02. Accessed 31 Mar 2019

17. Alter, St., Bork, D.: Work System Modeling Method with Different Levels of Specificity
and Rigor for Different Stakeholder Purposes (2019). http://eprints.cs.univie.ac.at/5841/.
Accessed 31 Mar 2019

18. Alter, S.: The Work System Method: Connecting People, Processes, and IT for Business
Results. Work System Press, Lankspur (2006)

19. Alter, S.: Work system theory: overview of core concepts, extensions, and challenges for the
future. J. Assoc. Inf. Syst. 14, 72–121 (2013)

20. Frazzon, E.M., Hartmann, J., Makuschewitz, T.H., Sholz-Reiter, B.: Towards socio-cyber-
physical systems in production networks. Procedia CIPR 7, 49–54 (2013)

21. Anda, A.A.: Modeling adaptive socio-cyber-physical systems with goals and SysML. In:
Proceedings of IEEE 26th International Requirements Engineering Conference, pp. 442–447.
IEEE (2018)

22. Stern, H., Becker, H.: Development of a model for the integration of human factors in cyber-
physical production systems. Procedia Manuf. 9, 151–158 (2017)

https://doi.org/10.1007/1-4020-0613-6
https://icis2019.aisconferences.org/submissions/call-for-papers/
https://www.opengroup.org/togaf
https://doi.org/10.1007/978-3-319-78428-1_6
https://doi.org/10.1007/978-3-662-44745-1_24
https://doi.org/10.1007/978-3-319-26762-3_14
https://doi.org/10.1007/978-3-319-99040-8_5
https://www.sciencedirect.com/science/article/pii/S2351978918313489
https://doi.org/10.7250/csimq.2017-12.02
http://eprints.cs.univie.ac.at/5841/

Proposing an Architecture of an
Intelligent Evolvable Document
Generation System Based on the

Normalized Systems Theory

Vojtěch Knaisl(B)

Faculty of Information Technology, Czech Technical University in Prague,
Prague, Czech Republic
knaisvoj@fit.cvut.cz

https://ccmi.fit.cvut.cz

Abstract. In the current world, low evolvability of documents is a big
challenge which has not been fully addressed. This paper focuses on types
of documents which have mostly predefined structure, and we use them
over and over. Examples of these documents are contracts, applications,
legal documents or manuals. The key problem here is that the docu-
ments are not modular and evolvable. The problem of modularity and
evolvability is addressed by Normalized Systems Theory. This theory is
formally proven, and it has great practical results from the first applica-
tion in a software area. This paper designs a way how to apply principles
and recommendations from Normalized Systems Theory in the area of
non-evolvable documents.

Keywords: Evolvable documents · Normalized Systems Theory ·
Document management · Modularity

1 Introduction

One of the main challenges of traditional documents is that they are non-
evolvable. For many kinds of documents, it is not a problem. When we are
creating a document for one-time usage, we do not have to care about evolvabil-
ity. However, when we know that we will (re)use our document in future and we
will need to edit it, update it or create a new one based on the structure of the
first one, the non-evolvability of the traditional document may become a real
problem.

Imagine we are researchers and we have to create a data management plan
for every project which we are participating in. Otherwise, we will not be able
to get a subsidy. A data management plan is a formal document that outlines
how data is handled [1]. It covers two phases - a phase during a research project
and a phase after the project is completed. Because data stewardship is not our
main interest (we are for example natural scientists), we have no clue how we
c© Springer Nature Switzerland AG 2019
R. Pergl et al. (Eds.): EOMAS 2019, LNBIP 366, pp. 70–81, 2019.
https://doi.org/10.1007/978-3-030-35646-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35646-0_6&domain=pdf
http://orcid.org/0000-0003-0103-8468
https://doi.org/10.1007/978-3-030-35646-0_6

Proposing an Architecture of an Intelligent Evolvable Document 71

should create a data management plan. However, because we are smart, we will
somehow figure it out. We will learn about current legislative, best practices and
we will create one data management plan and successfully submit it. Because
it took a huge effort to assemble this document, we will reuse it and create a
few copies of it for our additional subsidies. So we will use the document as
a template for creating additional documents. However, because the world is
changing, we may find that we have to change the data management plan. The
change can be a correction of some error which we did, new legislation or new
requirements, etc. Generally, a change in the content of a document can appear.
However, it may also happen that we fail in a getting subsidy from one founder.
Then we would like to apply for a subsidy in another founder. However, his
structure of a data management plan is a little bit different. He requires the
same information but in a different form. If we want to apply for his subsidy,
again we have to rewrite a whole document. So the second type of change is just
changing a document template or structure without changing an actual content
of the document.

These two types of changes are not very good supported in traditional docu-
ments despite that we encounter this problem very often in our lives. This leads
to the fact that traditional documents are very bad in term of evolvability.

In this paper, we would like to offer an approach to solve that which is
based on Normalized System Theory [8]. In theory, evolvability is defined by
the absence of combinatorial effects. A combinatorial effect is then defined a
change whose impact is not solely related just to the kind of the change but also
to the size of the system on which the change is applied on. So our approach
should decrease these combinatorial effects and therefore make documents more
evolvable. Our approach will be compared with an application of NS Theory in
software development. This application has already proved that principles and
recommendations in NS Theory help the system to be more evolvable. Further,
our approach will be shown on an example of creating an evolvable document of
a data management plan.

2 Related Work

2.1 Normalized Systems Theory

The core of Normalized Systems Theory [8] is to deal with evolvability of sys-
tems. It highlights modularity as one of the aspects when most systems fail, and
therefore they have low evolvability. The modularity should be very high accord-
ing to the theory. The theory exactly says: “The system should be composed of
very fine-graded modules”. If we break this rule more “combinatorial effects”
may appear. To have combinatorial effects in the system means that the size of
the change also depends on the size of the system. So our goal is to reduce the
number of these effects to a minimum. Otherwise, the cost of the change could
be very high.

NS Theory is based on 4 principles - Separation of Concerns, Data Ver-
sion Transparency, Action Version Transparency, and Separation of States. In a

72 V. Knaisl

domain of documents, only the first two principles are applicable, because the
second two principles are workflow-related [10,12].

– Separation of Concerns states that we should separate all concerns from each
other.

– Data Version Transparency states that each module should be updatable
without any impact on others linked module

The NS Theory was originally invented mainly for information systems and
software development [9]. But because the theory is very abstract, it has been
successfully applied also to other domains, such as requirements engineering [13],
study programs [11], etc.

2.2 Template and Styles

The problem of splitting actual content of the document and graphical design of
the document was partly addressed for example by HyperText Markup Language
(HTML) and Cascading Style Sheets (CSS). However, the separation was just
on a level of graphical design. We can style the document, we can even hide some
parts with CSS, but when we want to change the structure of the document (not
its content, just a form), we have a problem.

2.3 Template Engine

Especially in web development, we can find many frameworks which offer to
dynamically generate pages (documents) from user’s defined templates. They
offer to create smaller templates and then compose them together. This allows
reusing some common parts in more documents. Further, they have a param-
eterization which gives you an option to passed some data into the template.
Then the template engine generates the desired document which is influenced
by parameters which passed in. This approach offers great modularity. However,
the separation of concerns is still violated here because the templates are mix-
ing both the actual content and the form of the document (document template)
together.

2.4 Darwin Information Typing Architecture (DITA)

Darwin Information Typing Architecture (DITA) is an open standard for writ-
ing modular technical documentation [5]. It was developed by IBM in 2001. It
enables to reuse common parts (“topics” in context of DITA) and assemble a
document from that parts. It has an ability for making conditions in text. This
means that you can distinguish between, for example, experts and normal users
(e.g., you can include more information to the version for experts). The target
audience of this technology are companies which need to maintain thousands of
pages of their documentation. On the other hand, if we would like to apply this
technology to the case of a user which wants to create a data management plan,

Proposing an Architecture of an Intelligent Evolvable Document 73

of course, his need is to reuse some parts, but moreover, he needs to add his
inputs to the document. This feature is not well supported in DITA because this
tool was not designed for that.

2.5 Document Management Environment (DME)

Document Management Environment (DME) is an extension to the Microsoft
Word. It should help users to designate any arbitrary document part as a tem-
plate’s variation point that can be customized to produce a specific document [6].
It identifies two roles - Document Senior Architect Clerk and Document Devel-
oper Clerk. The first one is designated to create and refine user guide templates.
The second one is designed to create customizations of document for concrete
clients. The core thing, which this tool adds over the DITA, is that it allows doc-
ument customizations. DITA allows just to create document fragments, compose
them, and based on some conditions, it allows to expand the desired document.
It does not have any mechanism which would cover the problem of specific cus-
tomization.

3 Violations of NS Theory in Traditional Documents

We assume that if we want to improve the evolvability of documents, we should
adhere to the principles and recommendations of the NS Theory. In term of
traditional documents, we can find several violations.

3.1 Separation of Concerns

The first principle is violated by combining the content of a document with a
document template together. In some document editors, we mix it also with the
style of the document. Putting these two (three) concerns together violates the
first principle.

In the introduction, we mentioned an example with data management plan
document. Imagine, we finalized a data management plan, and we submit it to
a funder in terms to get a subsidy. However, the funder refused us, so we want
to apply for a subsidy in a different funder. The content of the document is the
same, but the funder has a different template. So we have to manually create a
copy of the document, change the structure, reformulate parts of the documents,
etc. Just because the content and the form are combined together and we are
unable to exchange just one part. The big disadvantage of this approach is that
we lost all the connection between the old and new document. If we want to
add something in the future, we have to edit it in 2 places. That increases the
combinatorial effects too.

74 V. Knaisl

3.2 Modularity

NS Theory assumes the evolvable system is composed of very fined-grade mod-
ules. That is the exact opposite of traditional monolithic documents where all
parts are merged together. The result is that we can not easily reuse parts of the
document. If we have more documents which share some part we cannot easily
edit this shared part in one place. That increases combinatorial effects.

Back to our example, we have several data management plans which are the
same in content but have different forms (structure, formatting, etc.). Sometimes
we changed something, and we need to reflect it in our documents. Our only way
is to change it in all documents manually. It is obvious that the effort increases
together with a number of documents. So the size of the change is not constant.
It does not depend just on the size of the change. It also depends on the number
of affected documents.

4 Design Evolvable Documents

To build a generic technique for the evolvable document would be a quite hard
issue. As far we are in the beginning, we restrict the domain to just a subset of
all types of documents. We target types of documents which looks like a data
management plan from our example. These documents are mostly contracts,
applications, reports or legal documents. They serve as formal documents. They
are well structured, and the structure is predefined. They are used in our every-
day life, and we have to write them manually.

As we already discussed in Violation of NS Theory (Sect. 3), manual writing
in document editor is not very evolvable. Moreover, for creating these specific
types of documents, we have to be an expert in law or data stewardship domain.
Otherwise, we are unable to create them because it is very hard to formulate
sentences on our own about something where we are mostly not good at it. Our
approach will also help with this aspect, but mainly it is focused on the problem
of evolvability.

4.1 Separate Concerns

We split the process of creating document into three main parts - gathering infor-
mation from a user, specifying document template and generating (expanding)
target document (Fig. 1). First two parts are intended for users, so we are focus-
ing on evolvability there. The last part is done automatically by a computer, so
we do not have to take care of evolvability there because it is already evolvable
(it does not require any inputs from us, so if some change appears, it could be
just regenerated).

The first part (gathering information) is split into three additional sub-parts -
a metamodel, a knowledge model and a knowledge. Each part should be evolvable
by itself. In this paper, we would like to design the desired process. In the next
papers, we would like to focus on the evolvability of each part separately.

Proposing an Architecture of an Intelligent Evolvable Document 75

Fig. 1. Process overview

4.2 The Metamodel

NS Theory assumes that we build a whole system (document) from NS Elements.
When we look into an application of NS Theory in software development [9],
these elements are represented by data, task, connector, flow, and trigger ele-
ment.

In our application, NS Elements are individual parts of the metamodel. The
core of the metamodel are questions and answers. They are grouped in chap-
ters and also linked together. So the resulting structure is a tree. The tree is
structured from more general questions in the top to a more specific and detail
questions in the bottom.

Due to being able to get the right answer from the user, every question
can have a link to an expert. The question can also have references to related
information and documents, websites or chapter from books which may help
users to fill a right answer too.

The metamodel also offers to define metrics which can measure useful infor-
mation about the result document. When we go back to our example, we talked
about data management plans. There exists metrics which describe how good
our data is managed - F.A.I.R. [14]. By answering questions about data steward-
ship, we can get a view on how a user take care of his data, and we can evaluate
him. Moreover, we can even teach him how to do it better.

4.3 Knowledge Model

A knowledge model is composed of metamodel elements (NS Elements). For each
type of document, we have a specific knowledge model, e.g., a data management

76 V. Knaisl

Fig. 2. Metamodel

plan, a rental contract, etc. We try to capture the knowledge about a specific
domain and provide all questions about the actual topic. This does not mean
that the user has to answer all of them. By choosing answers, we will show him
just right sub-parts of the tree which are relevant to him (Fig. 2).

It is unrealistic to think we can create one generic knowledge model which
would cover a whole topic and would be shared across all users and organizations.
So it would be nice to have a mechanism for customizing the original generic
knowledge model (Fig. 3). Organizations may have special needs. In our example
with data management plans, organizations in natural science may want to add
more specific questions for their branch or remove some questions which are not
valid for them.

Fig. 3. Hierarchy of Knowledge Models (including generic knowledge model and its
customizations)

Because customized knowledge model lives its own life, it can become out-
dated. So there should be a mechanism of how to apply changes from generic

Proposing an Architecture of an Intelligent Evolvable Document 77

knowledge model to the forked knowledge model as far as we want to stay evolv-
able. This means that we should guarantee that the customizations are evolvable
in time.

We assume that this subpart of our process will evolve the most. There-
fore we started with the solving evolvability here as a first. More details about
the migration process of customized knowledge model can be found in Vojtech
Knaisl’s diploma thesis [7].

4.4 Knowledge

Knowledge is gathered from the user’s answers. As we have already mentioned,
the user does not have to answer all the questions. Based on his answers, we
show him another question which is relevant to him.

Compares to traditional document where the knowledge is spread over the
whole document, here we have a good granularity so we can better perform
some metrics on the knowledge and give user feedback. This is an example that
our approach is better machine-actionable compares to unstructured documents.
This may be used in the future as a great benefit.

We can see that it is easy to do a modification of knowledge like changing
user’s answer because all we have to do then is to just re-expand the document.
So the cost of the change here (e.g., changing user’s answers) depends just on
how many answers we want to change and does not have any connection to the
size of the expanded document. If we have more dependent document templates,
we can re-expand them all and get desired documents. We can observe that we
got rid of the combinatorial effects in this situation. Because normally, we would
have to rewrite parts in many documents which would be intellectually and
administratively unmanageable.

When we return to the application of NS Theory in software, the knowledge
model and the knowledge can be compared to a model where desired software
is defined. From that software model, the desired application is then expanded.
Same as we expand the desired document from the knowledge model and the
knowledge.

However, one problem remains here. The knowledge belongs to a specific
version of the knowledge model. When we upgrade the knowledge model, we
have also to upgrade our knowledge. This challenge is currently in front of us.
However, the great benefit here is that all data is well structured so we can
engage computer to do the migration progress automatically.

4.5 Document Template

The document template serves for a composition of a target document together.
It makes a view on knowledge gathered from a user, and together with docu-
ment template which relates to some knowledge model, it creates the desired
document. Further, it offers a space to do specific customization. Back to our
example with data management plans, each founding agency can have a specific

78 V. Knaisl

structure of a document, branding, etc. The agency may want to add to all their
documents some common header part, static text, etc. The document template
should be able to cover all these special needs.

Because of these extensions, we need to do a special migration process. When
we want to upgrade to a newer version, we have to do a harvest. It gathers
all our texts, images, etc., migrates to a newer template and then applies the
customization back to the template.

In the application of NS Theory in software development, this part is related
to the writing NS Customization to expanded code. It has the same goal - to
define a custom logic which can not be covered in the model. During the upgrade,
we can see there the same process as we have in our template. We need to harvest
the customized code, re-expand the newer model and put back the customized
code.

4.6 Separated Responsibility

In the process of creating a document, they are involved two kinds of users -
domain experts (e.g., data stewards, lawyers) and normal users (researchers who
want to create a data management plan, owners of an apartment who wants
to sign a rental contract). This split of roles guarantees better guidance for
normal users who are not well educated for example in data stewardship domain.
Knowledge models are mainly created by domain experts the same as document
templates. Filling knowledge models with actual knowledge are then left to users.

4.7 Version Management

To be able to do a proper migration process, all parts and sub-parts of the whole
process have their versions, or they depend on a specific version of other part or
sub-part. Here is a list for a recapitulation:

– Metamodel
• has its own version
• does not depend on anything

– Knowledge Model
• has its own version
• depends on version of the metamodel

– Knowledge
• does not have has its own version
• depends on version of the knowledge model

– Document Template
• does not have its own version
• depends on version of the knowledge model

Proposing an Architecture of an Intelligent Evolvable Document 79

5 Applying in Practice

To evaluate our approach in practice, we create an application which should
demonstrate our proposal [2]. We chose a data stewardship domain and create
a knowledge model for a data management plan. Currently, the web application
has implemented just a subset of all proposed functions which we mentioned here.
We may create a knowledge model or create its customization, fill it with the
knowledge, edit document template and then generate the document. Migrations
are almost missing there. This application is published as an open source [4].
Our goal is to test there our approach in practice. Further, we start one instance
as a demo where everyone can play with knowledge models and documents [3].
Currently, it has about 180 users from 112 institutions from whom we got mostly
positive feedback.

6 Conclusion

Our approach was to deal with low evolvability of traditional monolithic docu-
ments. We focused just on a subset of all documents where we try to improve
evolvability. We designed the architecture, and we tried to apply it in practice.
We may say that we were successful. We can claim (according to the results in
practice) that the number of combinatorial effects was reduced and generated
documents are more evolvable.

6.1 Future Work

Our plan for the future is to design migration processes between all parts and
sub-parts of the process. The list of needed migrations is here:

1. Metamodel → Knowledge Model
– Description: a structure of the metamodel may change. After the change,

it is needed to change all dependent knowledge model
– State: in planning

2. Generic Knowledge Model → Customized Knowledge Model
– Description: we may fork a generic knowledge model and create a cus-

tomized knowledge model. So we have two knowledge model which evolves
separately. However, to keep our customized knowledge model up to date,
we may want to upgrade it with new changes from the generic knowledge
model.

– State: the first simple version was implemented in Vojtech Knaisl’s
diploma thesis [7]

3. Knowledge Model → Knowledge
– Description: we filled our knowledge model with answers (knowledge).

Then we decided to change the knowledge model. So our knowledge is
outdated. We want to upgrade it with changes which come from a newer
version of the knowledge model.

– State: in planning

80 V. Knaisl

4. Knowledge Model → Document Template
– Description: we create our custom document template for a specific

knowledge model. The knowledge model changed. We may want to
upgrade the document template in terms to keep it up to date.

– State: in planning

Except for the migration processes, we will focus on the document template
and how to structure it. Currently, our approach is to put as most things as we
can to the knowledge model. The reason is that the knowledge model is very
good in evolvability. However, the result is that the target document is not as
human-readable as it could be. So it will be a big challenge to make it more
human-readable.

Acknowledgment. This research was supported by the grant of Czech Technical Uni-
versity in Prague No. SGS17/211/OHK3/3T/18. The work on the Data Stewardship
Wizard is partially funded by IOCB of the CAS and ELIXIR infrastructure.

References

1. Data management plan. https://library.stanford.edu/research/data-management-
services/data-management-plans. Accessed 13 Mar 2019

2. Data stewardship wizard. https://ds-wizard.org. Accessed 13 Mar 2019
3. Demo instance of data stewardship wizard. https://app.ds-wizard.org. Accessed

13 Mar 2019
4. Github repository for data stewardship wizard. http://github.com/ds-wizard.

Accessed 13 Mar 2019
5. Harrison, N.: The Darwin information typing architecture (DITA): applications

for globalization. In: Proceedings of the International Professional Communication
Conference, IPCC 2005, pp. 115–121 (2005). https://doi.org/10.1109/IPCC.2005.
1494167

6. Jarzabek, S., Dan, D.: Documentation management environment for software prod-
uct lines. In: 2017 Federated Conference on Computer Science and Information
Systems (FedCSIS), pp. 1325–1334 (2017). https://doi.org/10.15439/2017F106

7. Knaisl, V.: Migration tool for data stewardship knowledge model. Master’s thesis,
Czech Technical University in Prague, Faculty of Information Technology (2018)

8. Mannaert, H., Verelst, J., De Bruyn, P.: Normalized Systems theory: from foun-
dations for evolvable software toward a general theory for evolvable design

9. Oorts, G., Huysmans, P., Bruyn, P.D., Mannaert, H., Verelst, J., Oost, A.: Build-
ing evolvable software using normalized systems theory: a case study. In: 2014
47th Hawaii International Conference on System Sciences, pp. 4760–4769 (2014).
https://doi.org/10.1109/HICSS.2014.585

10. Oorts, G., Mannaert, H., De Bruyn, P.: Exploring design aspects of modular and
evolvable document management. In: Aveiro, D., Pergl, R., Guizzardi, G., Almeida,
J.P., Magalhães, R., Lekkerkerk, H. (eds.) EEWC 2017. LNBIP, vol. 284, pp. 126–
140. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57955-9 10

11. Oorts, G., Mannaert, H., De Bruyn, P., Franquet, I.: On the evolvable and trace-
able design of (under)graduate education programs. In: Aveiro, D., Pergl, R., Gou-
veia, D. (eds.) EEWC 2016. LNBIP, vol. 252, pp. 86–100. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-39567-8 6

https://library.stanford.edu/research/data-management-services/data-management-plans
https://library.stanford.edu/research/data-management-services/data-management-plans
https://ds-wizard.org
https://app.ds-wizard.org
http://github.com/ds-wizard
https://doi.org/10.1109/IPCC.2005.1494167
https://doi.org/10.1109/IPCC.2005.1494167
https://doi.org/10.15439/2017F106
https://doi.org/10.1109/HICSS.2014.585
https://doi.org/10.1007/978-3-319-57955-9_10
https://doi.org/10.1007/978-3-319-39567-8_6

Proposing an Architecture of an Intelligent Evolvable Document 81

12. Suchánek, M., Pergl, R.: Evolvable documents - an initial conceptualization, pp.
39–44. IARIA

13. Verelst, J., Silva, A.R., Mannaert, H., Ferreira, D.A., Huysmans, P.: Identifying
combinatorial effects in requirements engineering. In: Proper, H.A., Aveiro, D.,
Gaaloul, K. (eds.) EEWC 2013. LNBIP, vol. 146, pp. 88–102. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38117-1 7

14. Wilkinson, M.D., et al.: The FAIR guiding principles for scientific data manage-
ment and stewardship. Sci. Data 3, 160,018 (2016). https://doi.org/10.1038/sdata.
2016.18

https://doi.org/10.1007/978-3-642-38117-1_7
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18

Mapping UFO-B to BPMN, BORM,
and UML Activity Diagram

Marek Suchánek(B) and Robert Pergl

Faculty of Information Technology, Czech Technical University in Prague,
16000 Prague 6, Czech Republic

{marek.suchanek,robert.pergl}@fit.cvut.cz

Abstract. Process modelling is the key part of a problem domain anal-
ysis, and there are multiple modelling languages for that purpose. In
this paper, we present the mapping of three of such languages – namely
BPMN, BORM, and UML Activity Diagram – with Unified Foundational
Ontology UFO, more specifically its part describing behavioural aspects
called UFO-B. Due to the mapping, we were able to find out interesting
similarities and options when working with the selected languages and
we also compare them in terms of expressiveness with respect to UFO.
The specific properties of each languages became even more highlighted
and explained, so this comparison can be used for a decision which lan-
guage to use in a particular case. Our contribution can be used for future
work in models integrations and transformations.

Keywords: Unified foundational ontology · BPMN · BORM · UML
Activity Diagram · Ontology mapping

1 Introduction

In software and business engineering, the ontologies and structural conceptual
models together with process modelling, are being used more or less separately.
During recent years, more and more effort is put into integrating these two
approaches as their goal is the same – to describe various aspects of a system or
a domain [12]. One of the notable examples of this initiative is ontology-driven
conceptual modelling language OntoUML based on the Unified Foundational
Ontology (UFO).

UFO covers modelling of structural aspects (UFO-A) and behavioural aspects
(UFO-B). There are already process modelling languages that are widely used for
modelling behaviour of systems and domains such as UML, BPMN, or BORM.
Finding a mapping between these languages and the UFO-B ontology could
bring more ontological insight into the existing languages and potentially help
with models integration. It can provide an overview and comparison of their
expressiveness, i.e., what they can capture in terms of conceptual modelling of
behaviour.

c© Springer Nature Switzerland AG 2019
R. Pergl et al. (Eds.): EOMAS 2019, LNBIP 366, pp. 82–98, 2019.
https://doi.org/10.1007/978-3-030-35646-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35646-0_7&domain=pdf
http://orcid.org/0000-0001-7525-9218
http://orcid.org/0000-0003-2980-4400
https://doi.org/10.1007/978-3-030-35646-0_7

Mapping UFO-B to BPMN, BORM, UML 83

Our goal in this research is to find such matches between the UFO-B ontology
and BPMN, BORM, and UML Activity diagrams and to discuss possibilities,
their mutual advantages and disadvantages in situations where the mapping
is not evident and unambiguous directly. This work is part of a more massive
endeavour to achieve an integration framework for various conceptual, as well
as process modelling languages for capturing different aspects of the problem
domain. As a side product, it should also allow conversions between models.

First, we quickly go through the needed related work in Sect. 2, we clarify
the necessary terminological background, Unified Foundational Ontology and
process modelling languages that we want to map with UFO-B. We investigate
briefly possibilities of doing such ontological mappings based on already existing
examples. Then, we apply this knowledge in Sect. 3 which is split into parts where
we set requirements, then design the mapping for the modelling languages and
finally we summarise in a comparison. After that, in Sect. 4, we evaluate our
work from various aspects. In Sect. 5, we suggest possible follow-up research, as
well as the use of our contribution in practice.

2 Related Work and Terminology

In this section, we briefly describe the current state-of-the-art in process mod-
elling and its key purpose together with the selected modelling languages. Then
there is a basic information about UFO, its most recent development, and sum-
mary of the UFO-B terms that we use for the mapping.

2.1 Process Modelling

Process modelling is used similarly to other types of conceptual modelling to
capture aspects of a system called problem domain. For process modelling, the
aspects are behavioural, i.e., how people, machines, and other participants work
together in order to transform some inputs to outputs in a repeatable way. It can
capture the workflow in different levels of detail and cover also related parts such
as communication by artefacts or signals, timed events, intermediate states, and
so on. Process modelling languages historically originate from basic flow charts,
state machines, and Petri nets; therefore, they are never totally disjunct, and
significant similarities are well-observable. [26]

Usually, process models can be used for business analysis and optimizations
in terms of the Capability Maturity Model (CMM) or for understanding the
domain to develop a software system [16]. For software engineering, process
models can be often used for simulations or even orchestrations [19]. There are
process systems that use configurable workflows to notify users, gather data,
process them, and pass them to other services or users according to defined steps.
Process engineering is an important discipline for both business and software
analysis. [19]

84 M. Suchánek and R. Pergl

2.2 BPMN

Business Process Model and Notation (BPMN) is not just a notation but a
set of principles and rules for the description of business processes [9]. Process
modelling methods are defined over and using BPMN [23]. It is standardised by
OMG and therefore tooling, and process orchestrators using Business Process
Execution Language (BPEL) together with the notation are widely used [24].
BPMN in its version 2.0 uses stable metamodel called BPDM for a consistent
language. Due to that, XML schemas exist for BPMN models transformation for
decision making and other applications within organisation systems [1]. When
relating BPMN with UFO ontology, there is a research [13] that proposes “Onto-
BPMN” as a process ontology-driven language.

BPMN models can be seen as more complex flow charts [25]. Among others,
it introduces swimlines called pools and activities of several types. Activities can
also contain a subprocess enabling modularity. Not only activities have defined
types (based on its nature concerning processing), but also multiple types of
events and gateways are defined. In the BPMN standard, conditional events,
timed events, errors, and signals are defined. For gateways, instead of tradi-
tional decision branching and parallel fork, there are parallel, inclusive, exclusive,
sophisticated and event-based gateways [2]. The notation also allows associations
and message flows (as a complement to sequence flow between activities) and
artefacts of types: data objects, groups, and annotations [1].

2.3 UML

The universal Unified Modeling Language (UML) [21] provides several types of
diagrams, and there is the behavioural group of them. It contains diagrams such
as use case diagram, state machine diagram, object/class interaction diagrams,
and the activity diagram. For process modelling of a domain level, the Activity
Diagram offers the broadest assortment of constructs; others are more focused
on specific aspects of behaviour [5]. The Activity Diagram can be used even as
a workflow specification language, albeit a simple one [4].

In the UML Activity Diagram (UML AD) [21], there are swimlines for actors,
then their actions and activities, initial and end state. It supports decisions,
parallel forking, timing, sending and receiving messages, and it can also be bound
to states of objects modelled with state machine diagram. The activities can
be composed, so one activity represents whole “packed” process, enabling re-
usability and modularity. [7] shows that there is considerable overlap between
UML AD and BPMN, but BPMN provides a standard way of transformation to
the BPEL execution language and some symbols in BPMN can be substituted
only by multiple in UML AD, i.e., BPMN has higher expressiveness.

2.4 BORM

Business Objects Relation Modelling (BORM) is another process-modelling
method that is less-known than BPMN or UML AD, but on the other hand,

Mapping UFO-B to BPMN, BORM, UML 85

it introduces interesting concepts. When compared to them, it provides a sim-
pler notation, but practice suggests that it is conceptually sufficient for describ-
ing complex business processes in many situations. It is tied with object-
oriented analysis of a system and based on the formalism of communicating state
machines [17]. Model-driven engineering (MDE) is well supported in BORM, and
it provides modularity [22]. There are two types of diagrams. The first is Object
Relations (OR) diagram, which is used for process modelling as shown on a sim-
ple example in Fig. 1. The second one is the Business Architecture (BA) diagram,
and it can be used to model the modules of a system or business domain and
attach scenarios related to OR diagrams. [17]

Fig. 1. Example of BORM OR diagram – a café

BORM, similarly to the majority of process modelling languages, can be
seen as an improved and formalised flowchart. Instead of swimlines or pools,
participant “blocks” are used with a type – human, organisation, or technology.
Each participant has its state machine where states are separated by activities
acting as transitions. Similarly to UML AD and BORM, a state can contain
a nested state machine. Participants can influence each other only by sending
messages from their activities. Branching and forking is done without any other
constructs (gateways), just using conditional transitions and states. [17]

Although BORM is in its essence a combination of several UML diagrams
(Activity, Sequence and State Machine), we investigate it in this paper as a

86 M. Suchánek and R. Pergl

separate language. We hypothesise that mappings of BORM and UML AD will
be very similar, and the more significant difference will be in the case of mapping
to BPMN.

2.5 Unified Foundational Ontology

The Unified Foundational Ontology (UFO) is an upper ontology that describes
“high-level” terms such as ObjectType, Agent, Entity, or Event. It creates a hier-
archy of these terms and its relations, which can be used in lower ontologies to
describe a problem domain together with the defined constraints. It is separated
into three parts: UFO-A – structural aspects, UFO-B – behavioural aspects, and
UFO-C – social aspects. UFO is maintained by its author Giancarlo Guizzardi
and the NEMO research group. [10]

For UFO-A, there is a language – more specifically a UML profile –
OntoUML that uses stereotypes for classes and associations to denote UFO
concepts. As such, it provides a language to design ontologically well-founded
structural conceptual models. In a recent work [11], the OntoUML has been
revisited and improved as a new OntoUML 2.0 version. Unfortunately, there
is no well-established modelling language so tightly related to foundational
ontologies to allow process modelling despite the existing research, including
OntoBPMN [8,20].

2.6 UFO-B Summary

For work with UFO (including UFO-B) specification, we use the specification
and visualisations from online specification [14]. Here we describe the core terms
briefly that will be then analysed in the selected process modelling languages:

– Event is a perdurant, i.e., an entity which occurs in time. It is either atomic
or complex. Other perdurants are object snapshot (i.e. a state) and situation.
An event is bounded in time using begin and end time points.

– Atomic event is type of event that is not intended to be further split into
fragments. It always depends on an object and manifestates a disposition.

– Complex event is type of event that is composed of two or more events (atomic
or complex) which are its parts.

– Object is an instance of an entity and is subtype of endurant, i.e., can be
observed as a complete concept at any time point. Although it might change
over time and at some point object is created and then it stops to exist.
Therefore we can use object snapshot to capture how the object looked like
at some point of time.

– Participation as a special type of event which exclusively depends on the
object participant and is participation of another object. Subclasses of par-
ticipations are object creation, change, and deletion.

– Situation is a snapshot of object states valid in the given temporal range, i.e.,
it captures values of objects during certain time period. It triggers an event
which brings about a new situation which forms pre/post-situation relations.

Mapping UFO-B to BPMN, BORM, UML 87

A situation is obtained in a certain time point. There are derived relations
causes and directly causes between two events where the first brings a situa-
tion causing the other directly or via more events and situations – capturing
the causality between events.

– Fact is a special type of situation that is bound to exactly one time point.
For situation this relationship is not mandatory.

– Disposition is an property of a situation (is activated by situation) and can
be manifested in an atomic event. It can be understood as an “enabler” of
following event.

To improve understanding and work with the UFO-B specification, we com-
piled the models introduced already in UFO-B paper [14] and made aggregated
and convenient UML class diagrams depicting the previous description. First,
Fig. 2 shows situations and dispositions, i.e, state at some point of time. Then,
in Fig. 3 events are described with its subtypes and relations to situations and
dispositions.

Fig. 2. Situations and dispositions in UFO-B (according to [18])

3 Our Approach

In this section, we apply knowledge of UFO-B and map its terms to constructs
of the selected process modelling languages. Initially, we describe the method-
ological steps for each language to achieve our goals and to be able to compare
the results afterwards.

3.1 Mapping Procedure

For each of the selected languages, we explain for each of the previously described
UFO-B terms which modelling constructs could be used and how to achieve the
match. Basically, there can be the following situations:

– there is a 1:1 match between a construct and a term, i.e. a semantic equiva-
lence,

88 M. Suchánek and R. Pergl

Fig. 3. Events in UFO-B (according to [18])

– a construct from the language is capturing something that UFO-B describes
by multiple constructs,

– multiple constructs from the language must be used to capture a single term
defined in UFO-B (opposite to the previous),

– the modelling language construct is out of the scope of UFO-B ontology or
some UFO-B term is not covered.

Potentially, there can be more mapping options, and we will describe all
found. In the ideal case, all terms would be semantically equivalent with language
constructs, and all would be covered, i.e., mathematically speaking a bijection
between UFO-B terms and language constructs. After this formalised descrip-
tion, we will be able to compare how each language fits UFO-B and what special
construct has that cannot be mapped.

3.2 BPMN Analysis

We depict mapped terms of UFO-B to BPMN constructs in Fig. 4. Further expla-
nation follows to describe the mapping in higher detail.

Event. The BPMN 2.0 notation offers three types of flow objects: event, activity,
and gateway. All of them occur between time points. Events are simple and
typed, e.g., signal, timed, or message, and they can be start, end, or intermediate.
They denote that some atomic thing happens or is being awaited. In a similar
way work the gateways, they are also atomic and of several types, for instance,
exclusive, parallel, or complex. But they serve just to split the flow conditionally
or using some defined strategy. Activities in BPMN are the real events that
actually do some work in the workflow. Task is a single activity that is not
structured further, therefore it is mapped to an atomic event together with
events and gateways. A complex event is represented by subprocess activity that
can contain a new flow but it is important that this flow cannot contain pools

Mapping UFO-B to BPMN, BORM, UML 89

Fig. 4. Summary of UFO-B to BPMN mapping

and interact out of the borders. The pool captures the depends-on relation, i.e.,
an event, an activity, or a gateway depends on its executor (object) given by the
pool and its lane in which it belongs to.

Object and Snapshot. There is no way of modelling object structure in the
BPMN, but there are data objects that represent inputs and outputs of activities.
They can also have a meaning of a state, which can change in the process. These
objects can be stored in a data store that represents a sort of a database or a
collection of objects of the same type.

Participation. It tempts to say that the participation from UFO-B is matching
pool/lane capturing who “does” the activity but it would not fit with exclusively-
depends-on and participation-of relations that are both mandatory and exactly
with one object. A better match could be the usage of a data object in activity
with a problem, that it is not constrained in BPMN to just one object, but
multiple ones can be connected to an activity.

Situation and Fact. Situations should capture the current state in the flow.
Since there is actually nothing to capture because no “internals” of objects are
available in basic BPMN, we match situation to states that should be on each
end of flow object, i.e., after a flow object is finished. Surely, it is brought-about

90 M. Suchánek and R. Pergl

Fig. 5. Summary of UFO-B to BORM mapping

by the flow event which we map to UFO-B’s event, and it triggers following flow
events connected by a flow link. No bounding to time point is available, so facts
cannot be captured clearly.

Disposition. According to the previous, a situation is close to BPMN’s flow
object endpoint, the disposition as a thing that is activated by situation should
be a flow link which connects flow objects. It captures that if some flow object
is done, e.g., a task is completed, an event proceeds or decision is made in a
gateway, there is possible to continue with the next one. The manifested-by
relation then means that the flow was used, but in BPMN, it violates restriction
to manifesting only atomic events because it can relate subprocess activity, which
we identified as the complex event.

3.3 BORM Analysis

Matching terms of UFO-B with BORM OR diagram are shown in Fig. 5. Busi-
ness architecture diagram in BORM provides only modelling of structure and
relations between scenarios as explained in the following subsections.

Mapping UFO-B to BPMN, BORM, UML 91

Event. There is only one construct that represents, and that is the activity. It
cannot be further split into parts; therefore, it is mapped to the atomic event. It is
more complicated with the complex event in BORM because it allows subprocess
within a single state of a role or including activity inside a state. The state of
BORM in our mapping represents partially perdurant – there can be an included
activity or a subprocess as it is the complex event – but also endurant – it
snapshots the state of its participant.

Object and Snapshot. As objects, there are participants and data flow objects
used for the communication between them (more precisely between their activi-
ties). As the data flow objects are similar to BPMN, there is no modelling of their
structure and states. On the other hand, participants are more detailed than in
BPMN and allow associations and IS-A hierarchy to be captured. The states
allow snapshotting an object, the internal structure can be described in BORM
using ORD, but it is mostly omitted for the sake of clarity. Luckily, thanks to its
object-oriented nature, it can be easily related to some class model that would
be complementary and capture that.

Participation. Similarly to BPMN, activities as atomic events depends on the
participant, and activities inside some of its state depend on him transitively.
With the restriction that only one communication or a data flow that is incoming
(exclusive) or outcoming is permitted per single activity, it corresponds to a
participation of the other participant in the activity that belongs to the role of
the first one.

Situation and Fact. The snapshots are modelled as states of participants, and
then obviously, the situation is corresponding to a collection of states, where is
at least one per participant’s role. When there is a state of subprocess included
in another state, that a “substate” is included as well. That indeed snapshots
over the state in the process, but again it is not bounded to any time point, and
distinction with the fact is not possible.

Disposition. A disposition in BORM is a property of a participant as it is
mapped to an object that realises the transitions between states and activities.
It is manifested when the transition is used to move in the flow or participants
role. Some transitions might be conditional based on the state of participants
which fits well with the definition in UFO-B – inheres in the object, e.g., its
state in BORM.

3.4 UML Activity Diagram Analysis

Finally, Fig. 6 shows the mapping of UFO-B terms to UML AD according to
following description of analysis.

92 M. Suchánek and R. Pergl

Fig. 6. Summary of UFO-B to UML Activity Diagram mapping

Event. The base of the UML Activity Diagram is an activity that represents
the invocation of an operation, a step in a business process, or even an entire
business process because they can be decomposed into subactivities. The action
is a named element which represents a single atomic step within an activity, i.e.
that is not further decomposed within the activity. This is analogical to events
that are either complex or atomic. There are multiple predefined types of actions,
such as send, receive, timed, and so on.

Object and Snapshot. In UML, multiple diagrams can be interlinked. Activity
diagram can contain objects of classes from class diagrams with a defined state
from related state machine diagram. Such an object can be passed between
activities or just used in it or be created as a result. There are also datastores
similarly to BPMN. And just as BPMN and BORM, there are partitions (or
swimlanes) used for designating the executor of an activity or an action.

Participation. An object can participate in an activity or an action using an
object flow connection. Again, for matching with UFO-B, restriction to maxi-
mally one object that participates in a single activity is required. Dependence

Mapping UFO-B to BPMN, BORM, UML 93

between event and object from UFO-B is similarly to BPMN, and BORM cap-
tured using swimlanes.

Situation and Fact. Only states captured in the UML AD can be all individual
states of data objects. For mapping situations from UFO-B, the activity ends can
be used similarly to BPMN. Unluckily, there is no direct support for snapshotting
the whole state of all used objects in the process, nor relating it to a time point.
But semantically it is possible to create an object model representing the current
state of the instances in the situation and link it to a point in time in UML AD
(before or after an activity).

Disposition. Dispositions are closest to the places from which control flow links
can go, i.e., end of activity or control nodes (initial, decision, fork, merge, etc.). It
shows what next events can happen an eventually be manifested when decision
is made, a flow splits to parallel or it just simply continues.

3.5 A Comparison of the Analysed Languages

According to the previous analysis of UFO-B terms in the selected process mod-
elling languages, we were able to create a summary in Table 1. Some terms are
nicely matching modelling constructs, for example, events with its complex and
atomic subtypes have corresponding elements for modelling, but both BPMN
and UML AD provide even further specialised subtypes with defined semantics
and different symbols (such as timing or sending/receiving signals). In all three
languages, event dependence is captured using its executor, and only naming
differs – a pool with lanes, role, or partition – commonly known as swimlanes.

Participation as a particular type of event can be understood as including an
external object in an event in process modelling. Is it possible, but for compliance
restriction to just one incoming/outgoing object is necessary and it also seems as
good design approach in process modelling (otherwise the event would be very
complex, i.e., Separation of Concerns violation). None of the analysed languages
provides explicit capturing of a time point when the event or state starts and
ends. Due to that, we cannot distinguish between situation and fact of UFO-B,
but a situation is related to states captured in process modelling after doing
the event or before the very first one. Disposition is then realised by existing
flow links between event-mapped elements (and states in case of BORM) that
capture what events can be manifested next.

BPMN and UML AD are almost identical when mapping to UFO-B terms.
The only crucial difference is that UML provides an easy way of diagrams inte-
gration and thanks to that, more details such as object structure, internal states,
or snapshot in object diagram can be used. With this combination of diagrams,
UML outcomes as the best match of three selected. If we strictly stay just with
UML AD, then BORM is closer to UFO-B thanks to its inclusion of states in
roles.

94 M. Suchánek and R. Pergl

Table 1. Summary table of UFO-B mappings

UFO-B BPMN BORM UML AD

Event event, activity,
gateway

activity activity, action

- depends-on pool/lane role partition

- Atomic task activity action(s),
simple activity

- Complex subprocess subprocess in
state

structured
activity

Object participant,
data object
with state

participant,
data flow

participant,
data object,
UML objects

Participation event with
attached
object

event with
attached
object

event with
attached
object

- participation-of message flow data flow,
communica-
tion

object links

Situation/Fact activity end state in all
participants

activity end,
UML Object
Diagram

Disposition flow links flow control links

4 Evaluation

Our contribution described in the previous section shows how the widely used
process modelling languages can be mapped with a part of upper ontology UFO-
B. Although the mapping is not bijective nor trivial or straightforward and loses
details, it can be used to understand both languages and the ontology better.
Its mapping allowed us to see the process modelling languages from a different
perspective that will be useful for future work. Hypothetically, even terms from
UFO-C [18] (including Agent, Action, and performs relation) could be used for
mapping of process models.

We identified that the selected process modelling languages have more in
common together than with the more generic UFO-B ontology. Examples are
specific types of events or using different notions of participation. On the other
hand, mapping with UFO-B allows continuing with using models in those process
modelling languages as a complement to OntoUML (UFO-A) structural concep-
tual models. A better solution for the future might be to use the bottom-up
approach instead of top-down and develop an intermediary ontology of process
modelling languages merely using or integrating the selected terms from UFO-B
and possibly other upper ontologies.

Mapping UFO-B to BPMN, BORM, UML 95

Surely as this research is very initial, it could be broadened by mapping more
modelling languages that capture behaviour. Exciting and challenging would
be mapping for slightly different approaches than “flow-charts”, for example,
using Design & Engineering Methodology for Organizations (DEMO) which is
based on transactions [3] or ArchiMate with its behaviour aspects at business
layer [26]. Also, the enterprise-oriented approach using multi-aspect models and
metamodeling that would worth further analysis and mapping with UFO-B is
Multi-perspective Enterprise Modelling (MEMO) [6].

Another enhancement in this way could be done by integrating different
upper ontologies that describe behaviour as UFO-B, and therefore they should
contain terms that overlap or have some other relation across ontologies, for
example, specialisation or generalisation. That could allow broader integration
and allow generating process models from a semantic description in those ontolo-
gies. More languages and ontologies adopted would also result in increased pos-
sibilities if there is a transformation mechanism that uses this mapping. Trans-
forming models can result in loss of details since they are focused on different
aspects and have different expressiveness. On the other hand, the mapping could
also relate various process models made in distinct languages to provide a better
description of a problem domain.

5 Future Work Ideas

Although the presented analysis presents just first, mostly informal observations,
it shows how existing notations may be possibly enhanced in the direction of
ontological clarity. We also briefly suggest some of the other possibilities.

5.1 Integration with Structural Models

To capture behaviour in process models, a related notion of the domain structure
is needed, too. For example, actors performing actions, messages passed between
them, or states in which actors are before and after activities are tied to the
structure in the domains, i.e., concepts, properties, relations, and constraints.
Our mapping can help with interconnecting process models made in mapped
modelling languages with structural OntoUML models thanks to the relations
between UFO-A and UFO-B.

As there are many process modelling languages, also multiple conceptual
modelling languages for describing domain structure are available, for example,
UML class diagram, Entity-Relationship, or Object Role Modelling (ORM) [15].
It could be a way to map those models similarly using an ontology, similarly to
this analysis and then to integrate structural and behavioural ontologies. The
ultimate goal to interconnect various models and provide a complex holistic view
on a domain can be hypothetically achieved through that.

96 M. Suchánek and R. Pergl

5.2 Business Case Analysis

Another related research could investigate the use of different modelling lan-
guages in real-world scenarios. Hypothetically, for various types of processes,
different process modelling languages are more suitable, and its combination
in overall domain description is needed. The research would need to propose a
typology of such processes with a recommendation of modelling language using
solid proofs. If that is not applicable, then it should explain why such typology
is not possible and that there are more unbiased aspects involved in the selection
of the language.

The immediate problem is that analysis would need non-trivial real-world
business cases since any conclusion can be made based on a fictional case. How-
ever, acquiring multiple and well-modelled processes from business domains is
hard to achieve because it is often part of corporate secrets. An option then
could be to use processes from a public sector, but those are already very domain
specific.

5.3 Process Modelling Generic Ontology

As more languages can be mapped, we might need more terms and relations that
are not described in UFO-B to avoid losing important details in models. For that,
a new generic ontology focused purely on process modelling could be developed.
Of course, this approach would not mean leaving UFO-B and other foundational
or even process-oriented ontologies – they should remain connected using rela-
tions between terms in different ontologies. It could lead to higher versatility
and extensibility than with UFO-B as core vocabulary for the mappings.

6 Conclusion

In this paper, we presented our mapping of UFO-B terms with three process
modelling languages – BPMN, BORM, and UML Activity Diagrams. It is visible
from the description that the similarities between the languages are higher than
with the UFO-B ontology terms that are more generic. Modelling languages
often provide specialised types of events and actions over UFO-B, which are
lost when matching with a more generic term. Nevertheless, our contribution is
ready to be used for further research and used in practice, as we suggested in
the future work section. This mapping is the first and foundational step for us
in integrations of various process models.

Acknowledgements. This research was supported by the grant of Czech Technical
University in Prague No. SGS17/211/OHK3/3T/18.

References

1. Allweyer, T.: BPMN 2.0: Introduction to the Standard for Business Process Mod-
eling. BoD-Books on Demand, Norderstedt (2016)

Mapping UFO-B to BPMN, BORM, UML 97

2. Chinosi, M., Trombetta, A.: BPMN: an introduction to the standard. Comput.
Stand. Interfaces 34(1), 124–134 (2012)

3. Dietz, J.L., Hoogervorst, J.A.: Enterprise ontology in enterprise engineering. In:
Proceedings of the 2008 ACM Symposium on Applied Computing, pp. 572–579.
ACM (2008)

4. Dumas, M., ter Hofstede, A.H.M.: UML activity diagrams as a workflow specifi-
cation language. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185,
pp. 76–90. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45441-1 7

5. Fowler, M.: UML Distilled: A Brief Guide to the Standard Object Modeling Lan-
guage, 3rd edn. Addison-Wesley Professional, Reading (2003)

6. Frank, U.: Multi-perspective enterprise modeling (MEMO) conceptual framework
and modeling languages, pp. 1258–1267. IEEE Computer Society (2002). https://
doi.org/10.1109/HICSS.2002.993989

7. Geambaşu, C.V.: Bpmn vs uml activity diagram for business process modeling.
Account. Manag. Inf. Syst. 11(4), 637–651 (2012)

8. Ghidini, C., Rospocher, M., Serafini, L.: A formalisation of BPMN in description
logics. Technical report, TR 06–004, FBK-irst (2008)

9. Group, O.M.: Business process modeling notation, version 2.0 (2011). https://
www.omg.org/spec/BPMN/2.0

10. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. Cen-
tre for Telematics and Information Technology, Telematica Instituut, University
of Twente, Enschede, The Netherlands (2005). http://doc.utwente.nl/50826/1/
thesis Guizzardi.pdf

11. Guizzardi, G., Fonseca, C.M., Benevides, A.B., Almeida, J.P.A., Porello, D., Sales,
T.P.: Endurant types in ontology-driven conceptual modeling: towards OntoUML
2.0. In: Trujillo, J.C., Davis, K.C., Du, X., Li, Z., Ling, T.W., Li, G., Lee, M.L.
(eds.) ER 2018. LNCS, vol. 11157, pp. 136–150. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-00847-5 12

12. Guizzardi, G., Guarino, N., Almeida, J.P.A.: Ontological considerations about the
representation of events and endurants in business models. In: La Rosa, M., Loos,
P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 20–36. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45348-4 2

13. Guizzardi, G., Wagner, G.: Conceptual simulation modeling with Onto-UML. In:
Proceedings of the Winter Simulation Conference, WSC 2012, pp. 5:1–5:15. Win-
ter Simulation Conference (2012). http://dl.acm.org/citation.cfm?id=2429759.
2429765

14. Guizzardi, G., Wagner, G., de Almeida Falbo, R., Guizzardi, R.S.S., Almeida,
J.P.A.: Towards ontological foundations for the conceptual modeling of events. In:
Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 327–341.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41924-9 27

15. Halpin, T.: Comparing metamodels for ER, ORM and UML data models. In:
Advanced Topics in Database Research, vol. 3, pp. 23–44. IGI Global (2004)

16. Jalote, P.: CMM in Practice. Pearson Education India (2000)
17. Knott, R., Merunka, V., Polák, J.: The BORM method: a third generation object-

oriented methodology. In: Management of the Object-Oriented Development Pro-
cess. IGI Global (2005)

18. Křemen, P.: Unified foundational ontology documentation (2018). http://onto.fel.
cvut.cz/ontologies/ufo/. Accessed 25 Mar 2019

19. Laguna, M., Marklund, J.: Business Process Modeling, Simulation and Design.
Chapman and Hall/CRC, Boca Raton (2018)

https://doi.org/10.1007/3-540-45441-1_7
https://doi.org/10.1109/HICSS.2002.993989
https://doi.org/10.1109/HICSS.2002.993989
https://www.omg.org/spec/BPMN/2.0
https://www.omg.org/spec/BPMN/2.0
http://doc.utwente.nl/50826/1/thesis_Guizzardi.pdf
http://doc.utwente.nl/50826/1/thesis_Guizzardi.pdf
https://doi.org/10.1007/978-3-030-00847-5_12
https://doi.org/10.1007/978-3-030-00847-5_12
https://doi.org/10.1007/978-3-319-45348-4_2
http://dl.acm.org/citation.cfm?id=2429759.2429765
http://dl.acm.org/citation.cfm?id=2429759.2429765
https://doi.org/10.1007/978-3-642-41924-9_27
http://onto.fel.cvut.cz/ontologies/ufo/
http://onto.fel.cvut.cz/ontologies/ufo/

98 M. Suchánek and R. Pergl

20. de Oliveira Bringuente, A.C., de Almeida Falbo, R., Guizzardi, G.: Using a founda-
tional ontology for reengineering a software process ontology. J. Inf. Data Manag.
2(3), 511 (2011)

21. (OMG), O.M.G.: OMG unified modeling language, v. 2.5. Technical report (2015).
http://www.omg.org/spec/UML/2.5/PDF

22. Podloucký, M., Pergl, R., Kroha, P.: Revisiting the BORM OR diagram compo-
sition pattern. In: Barjis, J., Pergl, R., Babkin, E. (eds.) EOMAS 2015. LNBIP,
vol. 231, pp. 102–113. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24626-0 8

23. Silver, B.: BPMN Method and Style, with BPMN Implementer’s Guide: A Struc-
tured Approach for Business Process Modeling and Implementation Using BPMN
2.0. Cody-Cassidy Press, Aptos (2011)

24. Völzer, H.: An overview of BPMN 2.0 and its potential use. In: Mendling, J.,
Weidlich, M., Weske, M. (eds.) BPMN 2010. LNBIP, vol. 67, pp. 14–15. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16298-5 3

25. Wahl, T., Sindre, G.: An analytical evaluation of bpmn using a semiotic quality
framework. In: Advanced Topics in Database Research, vol. 5, pp. 94–105. IGI
Global (2006)

26. Weske, M.: Business process management architectures. Business Process Man-
agement, pp. 333–371. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-28616-2 7

http://www.omg.org/spec/UML/2.5/PDF
https://doi.org/10.1007/978-3-319-24626-0_8
https://doi.org/10.1007/978-3-319-24626-0_8
https://doi.org/10.1007/978-3-642-16298-5_3
https://doi.org/10.1007/978-3-642-28616-2_7
https://doi.org/10.1007/978-3-642-28616-2_7

Exploration of Creativity Techniques
in Software Engineering

in Training-Application-Feedback Cycle

Anna E. Bobkowska(B)

Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
annab@eti.pg.edu.pl

Abstract. Creativity research has proposed about a hundred and fifty creativity
techniques. The question is whether they can be applied in software engineer-
ing for creativity training or directing creativity in software projects. This paper
aims at answering this question via a quasi-experiment conducted in Training-
Application-Feedback cycle in which participants express their opinions about
selected creativity techniques after training and an attempt to apply them in
software-related context.

Keywords: Creativity techniques · Software project · Quasi-experiment ·
Creativity training · Directed creativity

1 Introduction

In consequence of increasing demands for innovations there is a need for more creativity
in software engineering. Creativity in technological context must deal with both novelty
and value. While several myths still circulate in popular understanding of creativity, a
certain level of control over creative processes seem to be necessary in technological
applications. The most popular creativity techniques in software engineering are brain-
storming and mind mapping. Most software engineers do not even suspect that other
creativity techniques might exist.

In creativity research area, one canfind about 150 creativity techniques [1–5], and one
might wonder about the potential to apply them in software projects. Some techniques,
e.g. drawings or tower building, have been already applied for creativity training, but
their impact on creativity in software projects has not been confirmed. Therefore, one
can pose the following questions: Which creativity techniques are useful for training
software engineers? Which creativity techniques are useful for directing creativity in
software projects?Which creativity techniques are useful for achieving particular effects
related to creativity? What could be a frame of reference for managing creativity issues
in software projects?

The goal of this paper is to explore applicability of creativity techniques in software
engineering area. We take an interdisciplinary approach which uses results of creativity
research. The fundamentals for this research are taken from research results conducted

© Springer Nature Switzerland AG 2019
R. Pergl et al. (Eds.): EOMAS 2019, LNBIP 366, pp. 99–118, 2019.
https://doi.org/10.1007/978-3-030-35646-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35646-0_8&domain=pdf
https://doi.org/10.1007/978-3-030-35646-0_8

100 A. E. Bobkowska

by Polish creativity researchers [5, 6]. The empirical studies were conducted in Training-
Application-Feedback cyclewhich allowed to acquire the feedback on selected creativity
techniques after the creativity trainingwith these techniques and an attempt to apply them
to software-related issues.

The paper is structured as follows. An overview of background issues related to
creativity in software development is presented in Sect. 2. The design of the quasi-
experiment and some remarks on conduct of the studies are described in Sect. 3. The
research results and their interpretation are presented in Sect. 4. Section 5 contains
conclusions and prospects for further work.

2 Background: Creativity in Software Development

This paper’s focus is on application of creativity techniques. However, it is useful to see
this topic in a broader context of creativity in software development. Thus, the following
sub-sections present:

• our approach to creativity studies in software project in terms of fundamentals of the
framework, its dimensions and related work within the framework,

• results of literature review regarding creativity in software development which shows
large diversity of topics and issues under studies,

• information about creativity techniques and discussion of their use in software project.

2.1 Framework for Creativity Studies in Software Project

Taking into account about 60 years of creativity research, it seems obvious that serious
studies about creativity in software project should be interdisciplinary. They should
integrate general knowledge about creativity with specifics of application in software
engineering. Creativity research contains a huge number of results which have been
formulated in a diversified context of discovery. So, the main question in the attempt of
applying creativity research in software development area is whether these results are
valid in the context of application to software development. On the other hand, creativity
research literature commences respect and prevents from generating simplified or naive
theories.

The framework includes macro-dimensions related to chapters from creativity
research handbook [6] and micro-dimensions of creativity process resulting from
research and practice related to directed creativity process [7]. They have been cus-
tomized to specifics of software development with an attempt to integrate them with
methodological approach in software engineering [8]. With this framework we have
also published papers on creativity management [9], risk of creativity in software project
[10] and dealing with positive risk of creativity in software project [11]. The follow-
ing macro-dimensions structure the framework: product of creativity, creativity process
(including use of creativity techniques), creative person, creative place (environment,
organization), creativity mechanisms on cognitive level as well as dynamics of creativ-
ity in interdisciplinary teams. The micro-dimensions of creativity process consist of:

Exploration of Creativity Techniques in Software Engineering 101

preparation phase (problem identification and analysis of related information), a phase
of generating ideas, solution elaboration and validation of the solution.

Another characteristic feature of the framework is integration and balance between
creative and methodological approaches in software project. Project manager, business
analyst and user interface designer have more space for creativity (as their decisions
have bigger impact on project or software product) than other roles which must deals
with several technological constraints. An interesting issue is also interplay between
software engineering techniques and creativity. Preparation phase of creativity is related
to several software analysis techniques, solution elaboration phase can use specific soft-
ware documentation and modeling methods, and validation of the solution can benefit
from validation, testing and other software quality assurance methods. Thus, business
analysis is the right place to use creativity techniques. Creativity can help in generat-
ing content which is later precisely described and analyzed with business models and
software models.

2.2 Related Work

Motivation to manage creativity in software company [12] results from continuous
changes in market environment and necessity to compete through sustained innova-
tions. Integration of creativity with information systems strategies is a challenge for
most organizations.

Creativity in requirements engineering is one of themost popular topics on the edgeof
creativity and software development. A paper containing literature review [13] maps 46
papers related to creativity and requirements engineering and concludes that “creativity
techniques enhance creative thinking in requirements activities” and “creative think-
ing strategies should be fully integrated in current requirements engineering processes,
methods and tools”. In order to address the problem that “requirements engineering isn’t
recognized as a creative process” one can encourage creative thinking during the require-
ments process with use of theories from cognitive science, e.g. analogical reasoning [14].
An attempt to integrate creativity techniques with different types of use case and sys-
tem context modeling was made in a scenario-driven requirements engineering process
that includes workshops [15]. A remedy in form of combining goal-oriented approach
and creativity is proposed for the problem that after creativity workshops “creative out-
puts are not grounded in user goals, are not amenable to decision support techniques,
and cannot be easily captured by non-experts” [16]. A link between business model-
ing and creativity applied in a business context at a strategic level is made in terms of
“a tool which bridges the gap between freedom of actions, encouraging creativity, and
constraints, allowing validation and advanced features” [17].

Another popular topic is creativity related to agile projects. A literature review [18]
“uses creativity theory as a lens to review the current agilemethod literature to understand
exactly how much we know about the extent to which creativity actually occurs in these
agile environments”. It reveals many gaps in the body of knowledge and conflicts of
opinions in current state as well as issues for further research. eXtreme Programming
(XP) has been analyzed and evaluated from the perspective of the creativity, in particular
the creative performance and structure required at the teamwork level [19]. Extending
an agile process with creativity techniques in a project for a large media organization

102 A. E. Bobkowska

resulted in better evaluation of requirements by domain experts both in novelty and
usefulness categories [20].

Other papers reflect the diversity of topics and issues on the edge of creativity and
software development. One can find a review of the literature on measurement of cre-
ativity in software products and evaluation of 6 applications with criteria of novelty and
utility [21]. In order to facilitate use of creativity techniques which are used as “tools for
stimulating creative thinking” [22] authors propose Creativity Patterns Guide tailored
for the requirements engineering phase. In category of creative person, preferences of
software developers were studied when giving them possibility to spend more time on
creative work [23]. An individual-team dynamics in creativity is touched in a frame-
work for enabling software development, interaction design, and information content
researchers and managers to understand the opportunities, challenges and principles of
social creativity [24]. Regarding the creative environment, an exploratory research has
investigated “the role of creative style and climate in work creativity on teams striving to
develop innovative IT designs” [25]. It has confirmed a positive relationships between
creative style and work creativity, a positive relationship between creative climate stim-
ulants and work creativity, a negative relationship between creative climate obstacles
and work creativity, and that creative climate stimulants were significant determinants
of work creativity.

There are also reports on applying creativity in education of software developers.
Application of “opportunistic software development principles in computer engineering
education” allows to produce innovative ideas and solutions by encouraging students
to be creative and to develop solutions that cross the boundaries of diverse technolo-
gies [26]. Several creativity techniques were applied in education of computer science
students [27–29]. A study of an individual creativity-enhancing technique (called Solo-
Brainstorming) [30] in area of improving the level of creativity of IT students when iden-
tifying requirements in context of software development ends with a recommendation
to incorporate creativity-enhancing techniques into the IT course curriculum.

2.3 Creativity Techniques in Software Project

The fundamental assumption underlying stimulating creativity is egalitarian approach
to creativity. It is based on research results which reveal that several natural cognitive
processes are activated in creative process. They sometimes gain their specifics, such
as free use of imagination, outside the box thinking, or flexible categorizations, and
they can be stimulated. One of myths about creativity, which was rejected by creativity
revisionists, was the belief that creativity is like a sudden illumination. Although some
ideas might come suddenly and unexpectedly, usually the creative process is a long-term
activity requiring a lot of effort.

In technological applications, one can speak about creative problem solving, which
must address both novelty and value (usefulness). Relativity is specific to both these
dimensions, what explains the roots of the problems with creativity measurement. There
are several types of creativity, including: potential, crystallized, mature and genius cre-
ativity. When speaking about creativity in software project, one must address at least

Exploration of Creativity Techniques in Software Engineering 103

the level of mature creativity, which is based on professional knowledge and neces-
sity to meet professional standards of quality. Genius creativity, by definition, happens
exceptionally and leads to great discoveries.

Creativity training is a way of stimulating creative processes with expectation that
they will be activated later during the work for purpose. Typical creativity trainings are
performed as workshops in order to stimulate children’s creativity or adult creativity.
One of the goals of the training for adults can be formation of creative teams. In this
case, a team attends a week-long workshop which consists of morning and afternoon
sessions. During each session, 3–5 creativity techniques selected by the trainer are being
worked out.

Creativity training handbook [5] collects 134 creativity techniques together with
their explanation and examples of topics for elaboration during the sessions. It includes
the following groups of techniques:

• Interpersonal skills - which aim at creating team spirit and removing obstacles for
interpersonal communication and cooperation,

• Creativity skills - which include skills of abstract thinking, making associations,
deduction, induction (analogy), use of metaphors, and transformation of the knowl-
edge,

• Motivation - which can be based on motive catalogues, on increase of interests as well
as on discovery of negative aspects to be repaired,

• Overcoming obstacles to creativity and acquiring new creativity patterns - which
appear to be important part of every training.

Several issues appear when trying to apply creativity techniques in software-related
area. Their root lies in the difference between the context of their discovery together with
their typical application for creativity training and the context of application in software
project. One can notice that one of the reasons why they are not used is the fact, that
software engineers do not know them. So, the question is, having such a big number of
techniques, which of them are the most useful for achieving project’s objectives?

Assuming that software engineers know creativity techniques, does it mean that they
can apply them properly? Sometimes creativity trainings are organized for students of
computer science. But what is their impact on software project (long time after the
training)? The impact of creativity training on software project has not been studied
extensively so far.

Additionally, one can ask question whether they can be applied not only as tools for
creativity training but also directing creativity?As creativity in software process is related
not only to generation of ideas but also preparation, elaboration of consistent solution and
validation - which techniques can support given micro-dimensions of creative process?

3 Quasi-experiment with Training-Application-Feedback Cycle

In theory, a big number of creativity techniques can be applied in software project
for both creativity training and directing creativity. But, how it is in practice? This
quasi-experiment aims at exploring this issue. The following sub-sections present:

104 A. E. Bobkowska

• an overview of the quasi-experiment,
• the Training-Application-Feedback cycle,
• creativity techniques selected for explorations together with examples of topics for
training and for application in software related context,

• a questionnaire for collecting feedback data,
• comments on the conduct of the empirical studies,
• and remarks on research method.

3.1 Overview

Figure 1 presents an overview of the quasi-experiment.

Introduction

Training Application Feedback

Discussion
and closing

Cycle for
7 creativity
techniques

Fig. 1. Parts of the quasi-experiment

The quasi-experiment started with an introduction. It included a brief presentation
of creativity in arts and creative problem solving in technology, kinds of creativity, and
impact of creativity techniques on the software project. The goals of the experiment and
its rules were explained and participants have filled out initial part of the questionnaire.
Then, Training-Application-Feedback cycle (described in details in the Subsect. 3.2)
was performed for 7 creativity techniques (described in details in the Subsect. 3.3).
Participants were evaluating ease of use, level of interest and usefulness. They were
also writing down any comments related to a given creativity technique (see details in
Subsect. 3.4). Finally, the part of closing and discussion was performed. The participants
filled out closing part of the questionnaire and they could share their reflections from
participation in the experiment and confront themwith the opinions of other participants.
It is important to mention that they handed only the questionnaires (keeping results of
their creative work for themselves) and they were encouraged to share their reflections
to the extent they felt comfortable.

Exploration of Creativity Techniques in Software Engineering 105

3.2 Activities in Training-Application-Feedback Cycle

The parts of the Training-Application-Feedback cycle address important problems
related to application of creativity techniques in software project, i.e. first - creativ-
ity techniques are not used because software engineers don’t know them, and the second
- software engineers have gone through creativity training but they don’t know how to
apply the techniques in software project. The training is related with the first problem,
the application part - with the second. The feedback is collected for research purpose.

The training part started with a short explanation of the creativity technique by the
experimenter including information about the goal of applying a given technique and
background mechanisms as well as activities to be performed. After this explanation,
training in form of a short exercise (approximately 5 min) was made to learn by doing
this technique with topics used in general creativity trainings.

The application part dealt with the application of newly-learned creativity technique
for elaboration of software-related problems (approximately 10 min). A flexible app-
roach to selecting problems at hand for this partwas taken in order to achieve participant’s
involvement. Thus, the problem could be related to research, software project, thesis in
case of diploma students, innovation made by software systems or any solution in the
area related to software. The participants were encouraged to think about issues they
work on and to do it in such a way which allows to achieve as many benefits from partici-
pation in this experiments as they can. They were asked to write the results of their work
down, but they didn’t have to show them to anyone later. This respect to privacy was
necessary in order to ensure comfort of the participants, especially in situations in which
they wouldn’t like to share their ideas for innovative solutions with other participants
or they might want to hide their obstacles in creativity. In case of techniques related to
overcoming obstacles (See Subsect. 3.3: I could be more creative if…; and Let’s invite
him/her…) there was just one joint part instead of training and application parts.

The feedback was collected with a questionnaire they were filling out for a given
creativity technique after application part. It included evaluation of the techniques in the
following dimensions: easy-difficult, interesting-boring and useful-useless. They were
encouraged to share as many comments as possible.

3.3 Creativity Techniques Under Exploration

Seven creativity techniques from three groups of techniques were selected for explo-
ration. These were:

• Naive questions and Reverse brainstorming from the Motivations group,
• Lunette, Chinese dictionary and What if… from the Skills group,
• I could be more creative if… and Let’s invite her/him… from the Obstacle overcoming
group.

Naive questions aim at increasing motivation through discovery of values, hidden
assumptions, implicit knowledge, and other aspects which seem to be obvious although
they are not. It allows to better understand the essence of the problem and to propose the
right change. The exercise starts with an introduction to the context: “Imagine a child

106 A. E. Bobkowska

or an alien… Someone who doesn’t understand basics of civilized world and he/she
asks naive, unexpected questions. And after receiving an answer, he/she asks the next
question…” (It’s task for 2 persons.) During the training, participants have used the
topic: Why do people work? In the application phase, they were trying to answer the
following questions: Why the topic of your project is important? Why it is worth doing?

Reverse brainstorming deals with expression of overwhelming negativism and criti-
cism. It is based on the internal tendency to repair and improve. In other words, exposing
people to negative aspects should motivate them to positive actions. The task in the exer-
cise was to identify all possible defects, weaknesses and other annoying things. During
the training, we started with a question: what don’t you like… in your town? At the
university? In drivers’ behaviors? In application phase, participants were working with
one of the following questions: What don’t you like in a given area (in order to propose
a change)? What don’t you like in solutions of others (in order to find a space for your
contribution)? What don’t you like in your solution (in order to eliminate defects and
improve it)?

Lunette is the first technique from the skills group. It allows to see reality (or arti-
facts) at different levels of abstraction with relationships among the views represent-
ing overview of entire object and richness of details. It uses typical generalization-
specialization skills (or top-down and bottom-up approaches) and it leads to novel dis-
coveries via untypical views or details other haven’t seen. It can be also used as a way
for systematic generation of descriptions. During the training, the participants used this
technique for description of their past or future holidays or their hobbies. They were
instructed to move between levels of abstraction and to discover something new. In
the phase of application, they were encouraged to start with describing their project or
solution in one sentence and then consciously focus on several issues, parts, pieces of
evidence etc.

Chinese dictionary technique performance started with presentation of an old animal
taxonomy (totally different from contemporary taxonomies). This technique encourages
to creating untypical classifications. Such classifications which are useful for us. During
the training, the participants could create their own classification of animals, or types of
activities…, or products in the market… In the phase of application to software project,
participants were creating their own taxonomies of issues related to project, tasks in the
projects or other software-related artifacts.

What if… is an exercise for searching hidden sequences of consequences. It is based
on remote associations in human mind. The discovery of possible consequences might
lead to new opportunities or outside the box solutions. During the training, the following
topics were used: What if… gravity law did not work anymore? What if… shoes got
alive? In the phase of application in software-related context, the participants were
considering consequences of application of their research results, systems or solutions.
What if… someone applied them in a given context? What if… all must have used this
approach, system or solution?

I could be more creative if… is a technique for increasing understanding of personal
obstacles to creativity which should be helpful in overcoming them later. The task for
participants was to complete this sentence with 7 ideas. They were informed that people

Exploration of Creativity Techniques in Software Engineering 107

usually start with external conditions which they cannot change, but it is good to consider
also personal aspects which we can influence.

Let’s invite him/her… is about using creativity patterns of experts in creativity. The
participants were encouraged to think and choose their symbol of creativity (an expert
in creativity). Is it any scientist? An artist? A leader of famous IT business? A science-
fiction creature? A multi-millionaire? Then, they should have imagined (variant 1) that
we invited him/her and asked for advices how to be more creative… What they could
say? Or, they should have imagined (variant 2) how the creativity expert dealt with their
projects. What would they have done? What kind of attitude would they have taken?
During this task for imagination, they should list at least 7 ideas of successful creativity
patterns.

3.4 Questionnaire

The initial part of the questionnaire collected the following information:

• assessment of participant’s potential creativity in scale of 0–10 (0-very low - 10 very
high),

• assessment of participant’s actual creativity level in scale of 0–10 (0-very low - 10
very high),

• evaluation of participant’s need for creativity training in scale of 0–10 (0-very low -
10 very high),

• Earlier participation in creativity training (yes/no).

Each technique was evaluated in 3-dimensional scale:

• dimension 1: easy - rather easy - rather difficult - difficult,
• dimension 2: interesting - rather interesting - rather boring - boring,
• dimension 3: useful - rather useful - rather useless - useless

Participants were encouraged to add as many comments as possible. Three-
dimensional evaluation was made in order to gain a common ground for compar-
isons. The evaluation in the scale and comments were expected to collect opinions
of participants about the application of creativity techniques.

Final part of the questionnaire was related to the results of training and it contained
the following questions:

• Was it helpful in increasing your creativity? (answers in scale: yes - rather yes - rather
no - no),

• Was it helpful in understanding what creativity is about? (answers in scale: yes - rather
yes - rather no - no),

• Are you going to use creativity techniques in future? (answers in scale: yes - rather
yes - rather no - no),

• Why?

108 A. E. Bobkowska

3.5 Comments on Conduct

The following participants took part in the experiment:

• Six persons of academic staff who perform their teaching and research in software
related area,

• Five diploma students who work on their Bachelor or Master thesis in the area of
software engineering,

• One person working in social sciences who represented a perspective of personal
development.

There were 6 women and 6 men. The participants spent about 1.5–2.5 h on exper-
iment. All of them assessed higher potential creativity than actual one. They haven’t
participated in creativity training before and they expressed diversified need of creativity
training (2–10).

The academic staff can be characterized by diversity of expertise and personality.
Their expertise ranged over business analysis, programming, IT technologies, software
engineering, social aspects of IT, and business aspects of IT technologies. This group
included both individuals with an open, positive attitude as well as very critical persons.
This personality specifics can be seen in all answers they were giving. It is worth to
mention that some of them really tried to be objective and they were describing both
positive and negative aspects of creativity techniques in their comments. To sum up, this
diversity of participants allow to expect that they are a good sample to cover possible
diversity of opinions about application of creativity techniques.

3.6 Remarks on Research Method

The problem with research on creativity in software development, and especially the use
of creativity techniques in software project, is in broad scope of inter-related issues and
variables. It is not possible to answer completely any research question in one study.
Applying approach of craft of research [31], the research questions (in introduction
and following discussion) represent what we would like to know about use of creativity
techniques in software project, and the goals of study take into account limited capability
of the study. The results contribute to answering research questions, but they don’t give
complete answers.

Quasi-experiment [32] is applied as a research method when effects of some treat-
ments are measured or observed, but researchers don’t have control over all variables.
They are applied typically in context of scarcity of data, e.g. state of patient after a treat-
ment in medicine. In this case, it is even more complex, because the topic of research is
related with the phenomena to be constructed. Participants, who do not know techniques
or use them unconsciously, could not properly report on their use. Thus, the design
of these studies includes giving the experience (construct a new phenomena) which is
equivalent to treatment.A straight application of creativity techniques in software-related
area would most likely suffer from problems related to trial-and-error phenomena which
appear when people learn something new. The training alone would not make a proper
experience of applying them to software development. Thus, the treatment aimed at

Exploration of Creativity Techniques in Software Engineering 109

creation of participant’s mindset able to provide valid data must have two parts: training
in a simple domain and when participants have felt comfortable with a given creativity
technique - application in software-related context.

Design of the feedback part has applied principia of exploratory studies and use
of mixed qualitative and quantitative approaches [33]. The exploratory focus was on
possibility of application and its specifics expressed in comments. A realistic flexibility
of applications was allowed and qualitative data play the primary role. The opinions
whether a technique is easy, interesting and useful are quantified in order to make some
comparisons between the techniques.

4 Research Results and Their Interpretation

The research results for all creativity techniques are presented in the following sub-
sections. They include presentation of opinions about the techniques for both academics
(6 academic staff in software related area and 1 researcher in social sciences) and 5
diploma students. Positive value answers (easy, interesting, useful) were assigned with
weight equal to 2; rather positive (rather easy, rather interesting, rather useful) - weight
equal to 1; rather negative (rather difficult, rather boring, rather useless) - weight equal to
−1; and negative (difficult, boring, useless) - weight equal to−2. The average value (av.)
is calculated as a weighted sum of all answers divided by the number of participants in
the group. The summary of comments contains presentation of both positive and negative
opinions. It covers also information about difficulties encountered by participants and
other information specific for a given technique.

4.1 Results for Naive Questions

Table 1 presents opinions about naive questions. The differences between the groups are
rather small. This technique was viewed in a very positive way.

Table 1. Opinions about naive questions

Academic staff av. Diploma students av.

Easy 3 4 Difficult 1.43 Easy 5 Difficult 2

Interest. 2 4 1 Boring 1 Interest. 2 3 Boring 1.4

Useful 4 2 1 Useless 1.29 Useful 1 4 Useless 1.2

A fewparticipants have appreciated that it allows to question things that seemobvious
and think again about their sense. It allows to reach original ideas, goals, needs… the
essence. It helps to clear mind from typical ways of thinking which are based on learned
knowledge or everyday experience. It allows to reject myths. It can be useful in problem
analysis and making decision in projects. In fact, when some participants got to the
non-conscious level, they have realized that the questions are not naive anymore. The
participants noticed that “asking questions is easy, but answering them - is not”. The

110 A. E. Bobkowska

most popular difficulty was “when to stop asking new questions”. A critical participant
said that he was using this technique without awareness and it shouldn’t be called a
technique. (He had the same opinion about the next technique.) Another participant,
who admitted “he didn’t go deep”, said that he was previously aware of all the results
of this exercise.

4.2 Results for Reverse Brainstorming

Table 2 presents opinions about Reverse brainstorming. This technique was the most
controversial. The differences in average opinions are 0.8 or bigger in all dimensions.
Additionally, there were several differences in its perception by participants in the same
group.

Table 2. Opinions about Reverse brainstorming

Academic staff av. Diploma students av.

Easy 2 2 3 Difficult 0.43 Easy 4 1 Difficult 1.8

Interest. 3 3 1 Boring 1.14 Interest. 2 3 Boring 0.2

Useful 4 1 2 Useless 1 Useful 2 3 Useless 0.2

Positive comments have shown a lot of enthusiasm towards this technique, e.g.
“the best of all techniques”, “it allows to identify problems explicitly”, “starting from
negativism is easier”, “very easy to find defects, and then we know what to improve”, “it
allows to overcome barriers to expressing criticism”. One of critical comments suggested
a possible opposite effect, i.e. “With toomuch of criticism,motivation to discoverymight
decrease. It’s rather discouraging.” Others have noticed that criticism is often right, but
it doesn’t solve problems. The attitude to this technique strongly depends on personality.
Some participants admitted they felt resistance to express criticism. Others didn’t like
negative perspective, e.g. “this is not a technique for optimistic people”. Yet others
claimed that they didn’t need to practice it, because critical way of thinking was typical
for them.

4.3 Results for Lunette

Table 3 presents opinions about Lunette. The difference in average opinions only in
case of usefulness is bigger than 0.6. Although average results show rather positive
perception, this technique was probably the most challenging.

Some participants have found the value of this technique in conscious and systematic
approachwhich allows for building consistent representation, e.g. “a newapproachwhich
requires focusing on issues”, “it allows to understand problem better by focusing in
several dimensions”. For one of them, it would be helpful to add representation of levels
of details. However, they have shared a lot of difficulties, e.g. a difficulty to select what to
focus on, a difficulty to focus on unknown details, a difficulty to “change direction” after

Exploration of Creativity Techniques in Software Engineering 111

Table 3. Opinions about Lunette

Academic staff av. Diploma students av.

Easy 2 3 1 1 Difficult 0.57 Easy 1 2 2 Difficult 0.4

Interest. 2 3 2 Boring 0.71 Interest. 4 1 Boring 0.6

Useful 3 2 2 Useless 0.86 Useful 3 2 Useless 0.2

work on details, and a difficulty to switch between content and managing this content.
The most critical participant doubted about its impact on creativity (and he expressed
the same for two following techniques as well.). Another critical participant wondered
about possibilities of applying this technique in software development process and he
expected a more clear clue where to use it.

4.4 Results for Chinese Dictionary

Table 4 presents opinions about Chinese dictionary. The differences in average opinions
about ease of use and level of interest are quite high: 0.93 and 1.29 respectively. This
technique was themost interesting for diploma students as it supported “outside the box”
thinking.

Table 4. Opinions about Chinese dictionary

Academic staff av. Diploma students av.

Easy 4 3 Difficult 1.57 Easy 2 1 2 Difficult 0.6

Interest. 2 3 2 Boring 0.71 Interest. 5 Boring 2

Useful 3 2 2 Useless 0.57 Useful 3 1 1 Useless 1

In software engineering area, we are used to precise taxonomies. At first, this tech-
nique encountered astonishment, feeling of a chaotic approach and feeling of difficulty
in some cases. Then, some participants appreciated its usefulness for broadening their
perspective, thinking outside the box, discovering new dimensions for already known
topic, and prioritetization in the project. It has appeared that this is a typical approach in
social sciences. The critical participants couldn’t see any benefits from untypical clas-
sifications till the end of cycle. One of them indicated for technological constraints as a
reason of their problematic use.

4.5 Results forWhat if

Table 5 presents opinions about What if… It can be called the most rational creativity
technique.

The participant who had the expertise in business analysis noticed that this is a
fundamental method of dealing withmulti-dimensional complexity. It allows for making

112 A. E. Bobkowska

Table 5. Opinions about What if…

Academic staff av. Diploma students av.

Easy 2 3 1 1 Difficult 0.57 Easy 1 3 1 Difficult 0.8

Interest. 3 3 1 Boring 1.14 Interest. 1 3 1 Boring 0.8

Useful 4 2 1 Useless 0.57 Useful 2 2 1 Useless 1

decisions regarding the business process based on analysis results. Other participants
discovered new possibilities, user experience issues, or new functionalities. For others,
it allowed to check what happens in case of unexpected consequences. It appeared to
be useful for predicting all consequences including threats to failure of the project.
The difficulties had several sources. As one of the participants said “just performing this
exercise in a creative way is difficult to persons with rational minds”. Evenmore difficult
was to reach final conclusion. Others reported difficulties related to interpretation of long
sequences of consequences and taking responsibility for them or reaching conclusions
which are hard to be accepted. The most critical participant stated that he didn’t see
any application of this technique in research and at this point he was more and more
disappointed with creativity techniques.

4.6 Results for I could be more creative

Table 6 presents opinions about I could be more creative… The difference in average
opinions is big in case of ease of use and usefulness, 0.89 and 0.69 respectively. This
technique was considered as useful for long-term personal development.

Table 6. Opinions about I could be more…

Academic staff av. Diploma students av.

Easy 4 2 1 Difficult 1.29 Easy 1 2 2 Difficult 0.4

Interest. 3 3 1 Boring 1.14 Interest. 3 2 Boring 1.6

Useful 3 2 1 1 Useless 0.71 Useful 2 3 Useless 1.4

The participants have reported a lot of positive comments, e.g. “it helps to find
obstacles to creativity and encourages to make brave decisions”, or “discovery!”. They
noticed that only honest answer to this question allows to identify real reasons and that
“it’s not easy to accept findings about your own weaknesses”. However, “it is useful in
a broader sense, i.e. for long-term personal development”. The fact of becoming aware
of the obstacles somehow makes them weaker. One can undertake actions in order
to overcome them. The participant with expertise in management claimed that “this
technique is a good self-justifications, creativity doesn’t depend on circumstances”. The
critical participants complained that identification of obstacles to creativity does not
directly help in eliminating them.

Exploration of Creativity Techniques in Software Engineering 113

4.7 Results for Let’s invite him/her

Table 7 presents opinions about Let’s invite him/her… This technique was the most
difficult for participants.

Table 7. Opinions about Let’s invite him/her…

Academic staff av. Diploma students av.

Easy 1 2 3 1 Difficult −0.14 Easy 1 1 3 Difficult 0

Interest. 4 1 2 Boring 1 Interest. 2 2 1 Boring 0.8

Useful 1 4 1 1 Useless 0.43 Useful 2 1 2 Useless 0.6

Positive comments were associated with discovering interesting attitudes, e.g. posi-
tive attitude, hard work, strength in fighting against all kinds of problems, or for taking
the approach which has lead someone to success in IT area. The results of this exercise
depended on “who is invited” and whether participants really have known their experts
in creativity. Anyway, they could bring “several benefits to our project.” The participants
have reported difficulties with imagination of creative persons and situation of inviting
him or her. The most critical participant has expressed it in the following way: “How
can I know what this creativity symbol might think???”.

4.8 Results of Closing Part

A majority of the participants were leaving the experiment with some increase of cre-
ativity, better understanding of what creativity is about and a rather positive attitude
to using creativity techniques in future. Final remarks included positive comments, e.g.
“Some of them are really interesting”, “the experiment helped to understand creativity in
a non-trivial way”. A few participants appreciated values coming from all three groups
of creativity techniques, i.e. increase in motivation, more awareness regarding skills
needed for creativity, and the ways of dealing with obstacles. In their opinion, “a mix
of creativity techniques will be useful in practice.” But they agreed that in order to use
selected creativity techniques theymust know them. They felt encouraged to spendmore
time on development of their creativity skills. The most critical participant concluded
that he cannot see usefulness of these creativity techniques for scientific research. He
wrote: “It seems to me that these techniques might be useful for stimulating creativity of
young children.” The second critical participant admitted that, in his opinion, creativity
is like an insight. This was contradictory to methodological approach, but “some of the
techniques might be useful in some cases.”

4.9 Analysis of Threats to Validity

The research results should be interpreted in categories of exploratory research. So
far, creativity trainings were applied by presumption of positive effects on participants
without evidence that they really work. This research was an attempt to check it in a

114 A. E. Bobkowska

methodological way. Obviously, it was not free from constraints and threats to valid-
ity. First of all, we have selected just 7 from about 150 creativity techniques for the
experiment. Second, 12 participants are a small sample of thousands of potential users
of creativity techniques in software related context. These factors should be taken into
account when making interpretation and generalization. Having said this, let’s analyze
validity issues in details.

The following aspects of study aimed at assuring theory validity. Creativity tech-
niques have been taken from the handbook written by creativity researchers. Thus, there
should be no mistake related to the content of creativity techniques. The difference
between context of discovery of these techniques and the context of application in soft-
ware related area was addressed during the quasi-experiment design by splitting the part
of training from the part of application. Selected creativity techniques were taken from
different groups in order to represent the diversity of creativity techniques.

In order to assure experiment validity, we have addressed two main problems related
to application of creativity techniques in software related context. The participants have
gone through training in order to learn the techniques, and theywere encouraged to apply
them to software-related problems, which required creativity and were interesting for
them. The experimenter took care about potential benefits, comfort and personal privacy
of the participants.

The number of techniques under exploration was a compromise between the desire
to cover large number of techniques and realistic planning of comfortable work and
reliable results. In order to assure data collection validity (including participants validity
and elimination of researcher bias), the following actions have been undertaken. In the
design phase, the decision was to collect both opinions in scale and comments. The
data in scale allow to compare opinions about the techniques in three dimensions. The
comments allow to discover more details and to broaden perspective.

The precision of participant’s opinions is not very high. Their opinions about use of
creativity techniques might change in future. Together with the fact that there were only
12 participants, we decided not to use advanced statistics methods to avoid impression of
precision which is not delivered. In fact, honest and extensive comments are much more
valuable. The experiment was conducted in Polish, thus some threats to validity might
result from translations of the comments. In order to minimize this risk, we focused on
meaning rather than on literal expressions during the translation.

In order to eliminate researcher’s bias, it was clearly announced at the beginning that
we are interested “to see reality as it is” and not to prove anything. The participants were
a small sample of all possible users of creativity techniques, but the fact that they were
a very diversified group with respect to age, gender, experience and attitude allows to
expect that threats to participants validity were minimized.

4.10 Interpretation and Issues for Further Studies

This study doesn’t allow to give complete answers to all research questions. Instead,
it allows to see the diversity of aspects and issues which should be taken into account
in further studies. All creativity techniques (with just one exception) gained on average
positive opinions in all three dimensions. Although none of participants made a great

Exploration of Creativity Techniques in Software Engineering 115

discovery during the experiment, most of them are going to use creativity techniques in
future. Thus, their usefulness in generating innovation is promising.

Naive questions gained the best opinions, i.e. 1.2 or more on average in each group
and each dimension. However, these opinions are not supported by any evidence that it
has led to any discovery. Quite often, the same technique received contradictory feedback
both in one group and in dimension of students vs. academics. Thus, it doesn’t allow us
to recommended any of them more than others for the use in software related context. It
can only encourage us for searching for factors on which it depends.

One of such factors is users’ attitude. These participants who were involved, gained
amore interesting results. They have got a broader perspective. They could even discover
that naive question are not naive indeed. On the other hand, those who doubted, lost
their chance to become more conscious about nature of creativity processes and to
overcome their obstacles to creativity. It is good to remind that creativity techniques are
usually at lower level of abstraction than software engineering techniques. They support
certain cognitive processes which should be consciously used for both organizing and
performing creative tasks.

The perception of creativity techniques depends also on personality and previous
experience. The personality specifics appeared the most clearly in confrontation with
criticism (reverse brainstorming technique). For some participants, it was the best tech-
nique, while for others - it could “cause the opposite effect”. When a given style of
thinking is natural for someone there is no need to teach him this style. A given style can
be natural due to performing some kind of activities, e.g.what if… by the business analyst
or untypical classifications (Chinese dictionary) by the researcher in social sciences.

What they are good for? Let’s take perspective of micro-dimensions of creative pro-
cess, i.e. preparation, idea generation, elaboration of consistent vision and validation.
The techniques of naive questions and reverse brainstorming can be helpful in prepara-
tion.Chinese dictionary can support idea generation.Lunette can be useful in elaboration
of consistent vision of solution.What if… technique can find its application in validation
of vision. They play a supportive role. None can guarantee that the product will be orig-
inal. Two last techniques, i.e. I could be creative if… and Let’s invite him/her… rather
do not have application for directing creativity in software project. They are useful just
for training creativity skills.

An interesting issue is in interplay between rationality and creativity. Is the way to
success in their smooth interplay? Is it in broadening perspective and including aspects
which others couldn’t associate or integrate? Another interesting issue is related to the
fact, that several creativity techniques appeal to imagination when setting context, e.g.
“imagine a child or an alien…” Could we get rid of them? Could we ask just rational
questions instead? This study doesn’t give insights in this area although they seem to
be important. In dynamic situations where adaptation to the actual needs and existing
skills in the team is required, project managers can undertake management of processes
related to creativity training and directing creativity with selected techniques. The fact
that the participants of the study have easily learned the techniques and for most of them
these techniques were interesting, seem to be a promising sign for conducting similar
sessions in real software projects.

116 A. E. Bobkowska

5 Conclusions

This research aimed at exploring application of creativity techniques in software-related
context. Creativity research and the creativity training handbook were used as funda-
mentals for this research. Seven creativity techniques from different groups of creativity
techniques were selected, which allowed to have a diversified sample of techniques.
General observation for all creativity techniques is that they are at lower level of abstrac-
tion comparing to software engineering techniques. They often address a specific aspect
of creativity process. Thus, they do not replace software engineering techniques. When
applied in a proper way, they can support (but not guarantee!) creativity process in
software project.

The quasi-experiment was conducted in training-application-feedback cycle. The
contribution of this research is the feedback on the creativity techniques after not only
creativity training but also their application in software-related context. The study has
shown that the following issues have impact on applicability:

• A technique itself and its potential use in a given stage of creativity process,
• Familiarity of participants with creativity techniques,
• Positive attitude towards applying them in software project,
• Personality and previous experience of the user,
• Aspects related to interplay between rationality and creativity,
• Objectives of application, i.e. whether it is used in creativity training (for switching
on a certain kind of thinking and behaviors, learning how to overcome obstacles) or
it is used for directing creativity in a given project.

Regarding recommendations for practice which result from the studies, we can say that
it is a question of awareness of issues related to creativity and skills for their proper
application. Project managers who are interested in increasing creativity and innovation
should manage creativity issues in teams and projects. As many factors have impact on
results, the best practice is to keep trying the most promising creativity techniques and
analyze their impact on project. Formore precise recommendations regarding usefulness
of creativity techniques in further work, one can analyze creativity mechanisms and con-
text of discovery of creativity techniques. The method of performing empirical studies
in Training-Application-Feedback cycle appeared to be a useful tool in exploring appli-
cability of creativity techniques in software related context and it can be recommended
to further empirical studies with other creativity techniques.

Acknowledgements. I wish to thank all participants of the quasi-experiment for their honest and
extensive opinions.

References

1. VanGundy, A.B.: 101 Activities for Teaching Creativity and Problem Solving. Pfeiffer, A
Wiley Imprint (2005)

2. de Bono, E.: Serious Creativity. HarperCollins Publishing, New York (1992)

Exploration of Creativity Techniques in Software Engineering 117

3. Higgins, J.M.: 101 Creative Problem Solving Techniques. New Management Publishing
Company, Winter Park, FL (1994)

4. von Oech, R.: A Whack on the Side of the Head. Warner Books, New York (2008)
5. Nęcka, E., Orzechowski, J., Słabosz, A., Szymura, B.: Trening twórczości (Creativity

training). Gdańskie Wydawnictwo Psychologiczne (2013)
6. Nęcka, E.: Psychologia twórczości (Creativity psychology). Gdańskie Wydawnictwo Psy-

chologiczne (2012)
7. Plsek, P.E.: Creativity, Innovation, and Quality. ASQC Quality Press, Milwaukee (1997)
8. Bobkowska,A.:Balance between creativity andmethodology in software project. In: Proceed-

ings of the 2015 Mutlimedia, Interaction, Design and Innovation International Conference
(MIDI 2015). ACM Press (2015) https://doi.org/10.1145/2814464.2814468

9. Bobkowska,A.: Zarządzanie kreatywnością w projekcie (CreativityManagement in Projects).
Res. Enterp.Mod. Econ. Theory Pract. 21 (2017). https://doi.org/10.19253/reme.2017.02.002

10. Bobkowska, A.: Ryzyko kreatywności w projektach informatycznych (Creativity Risk in
Software Projects). Res. Enterp. Mod. Econ. Theory Pract. 26 (2018). https://doi.org/10.
19253/reme.2018.03.003

11. Bobkowska, A.: Positive risk of creativity in software projects: an expected result, a threat
or an opportunity? In: 11th International Conference on Human System Interaction (HSI)
(2018). https://doi.org/10.1109/hsi.2018.8431364

12. Ulrich, F.,Mengiste, S.A.: The challenges of creativity in software organizations. In: Bergvall-
Kåreborn, B., Nielsen, P.A. (eds.) TDIT 2014. IFIPAICT, vol. 429, pp. 16–34. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43459-8_2

13. Lemos, J., Alves, C., Duboc, L., Rodrigues, G.N.: A systematicmapping study on creativity in
requirements engineering. In: Proceedings of the 27th Annual ACM Symposium on Applied
Computing (SAC 2012). ACM, New York (2012). https://doi.org/10.1145/2245276.2231945

14. Maiden, N., Gizikis, A., Robertson, S.: Provoking creativity: imagine what your requirements
could be like. IEEE Softw. 21, 68–75 (2004)

15. Maiden, N., Manning, S., Robertson, S., Greenwood, J.: Integrating creativity workshops
into structured requirements processes. In: Proceedings of the 5th Conference on Designing
Interactive Systems: Processes, Practices, Methods, and Techniques (DIS 2004). ACM, New
York (2004). https://doi.org/10.1145/1013115.1013132

16. Horkoff, J., Maiden, N., Lockerbie, J.: Creativity and goal modeling for software require-
ments engineering. In: Proceedings of the 2015 ACM SIGCHI Conference on Creativity and
Cognition (C&C 2015). ACM, New York (2015). https://doi.org/10.1145/2757226.2764544

17. Fritscher, B., Pigneur, Y.: Supporting business model modelling: a compromise between
creativity and constraints. In: England, D., Palanque, P., Vanderdonckt, J., Wild, Peter J.
(eds.) TAMODIA 2009. LNCS, vol. 5963, pp. 28–43. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11797-8_3

18. Conboy, K., Wang, X., Fitzgerald, B.: Creativity in agile systems development: a litera-
ture review. In: Dhillon, G., Stahl, B.C., Baskerville, R. (eds.) CreativeSME 2009. IFI-
PAICT, vol. 301, pp. 122–304. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02388-0_9

19. de la Barra, C.L., Crawford, B.: Fostering creativity thinking in agile software development.
In: Holzinger, A. (ed.) USAB 2007. LNCS, vol. 4799, pp. 415–426. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-76805-0_37

20. Hollis, B., Maiden, N.: Extending agile processes with creativity techniques. IEEE Softw. 30,
78–84 (2013)

21. Couger, J.D., Dengate, G.: Measurement of creativity of IS products. In: Proceedings of the
Twenty-Fifth Hawaii International Conference on System Sciences (1992)

https://doi.org/10.1145/2814464.2814468
https://doi.org/10.19253/reme.2017.02.002
https://doi.org/10.19253/reme.2018.03.003
https://doi.org/10.1109/hsi.2018.8431364
https://doi.org/10.1007/978-3-662-43459-8_2
https://doi.org/10.1145/2245276.2231945
https://doi.org/10.1145/1013115.1013132
https://doi.org/10.1145/2757226.2764544
https://doi.org/10.1007/978-3-642-11797-8_3
https://doi.org/10.1007/978-3-642-02388-0_9
https://doi.org/10.1007/978-3-540-76805-0_37

118 A. E. Bobkowska

22. Vieira, Elton R., Alves, C., Duboc, L.: Creativity Patterns Guide: Support for the Application
of Creativity Techniques in Requirements Engineering. In: Winckler, M., Forbrig, P., Bern-
haupt, R. (eds.) HCSE 2012. LNCS, vol. 7623, pp. 283–290. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34347-6_19

23. Gu,M., Tong, X.: Towards Hypotheses on Creativity in Software Development. In: Bomarius,
F., Iida, H. (eds.) PROFES 2004. LNCS, vol. 3009, pp. 47–61. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24659-6_4

24. Fischer, G., Giaccardi, E.: Sustaining social creativity. Commun. ACM 50, 12 (2007)
25. Fagan, M.H.: The influence of creative style and climate on software development team

creativity: an exporatory study. J. Comput. Inf. Syst. 44, 3 (2004)
26. Obrenovic, Z., Gaševic, D., Eliëns, A.: Stimulating creativity through opportunistic software

development. IEEE Softw. 25, 64–70 (2008)
27. Knobelsdorf, M., Romeike, R.: Creativity as a pathway to computer science. In: Proceedings

of ITiCSE 2008. ACM Press (2008). https://doi.org/10.1145/1597849.1384347
28. Salgian, A., Ault, Ch., Nakra, T.M., Wang, Y.: Teaching creativity in computer science. In:

Proceedings SIGCSE 2013. ACM Press (2013)
29. Kwasnik, M.: Nature of creativity in computer science education. designing innovative work-

shops for CS students. In: Proceedings of the 2014 Multimedia, Interaction, Design and
Innovation International Conference (MIDI 2014). ACM Press (2014). https://doi.org/10.
1145/2643572.2643580

30. Aurum, A., Handzic, M., Gardiner, A.: Supporting creativity in software development: an
application in IT education. In: Tomei, L. (ed.) Online and Distance Learning: Concepts,
Methodologies, Tools, and Applications. IGI Global, Hershey (2008)

31. Booth, W.C., Colomb, G.G., Williams, J.M.: The Craft of Research, 3rd edn. University of
Chicago Press, Chicago (2008)

32. Campbell, D.T., Stanley, J.C.: Experimental and Quasi-experimental Designs for Research.
Houghton Mifflin Company, Boston (1963)

33. Creswell, J.W., Plano-Clark, V.L.: Designing and Conducting Mixed Methods Research.
SAGE Publications, Thousand Oaks (2010)

https://doi.org/10.1007/978-3-642-34347-6_19
https://doi.org/10.1007/978-3-540-24659-6_4
https://doi.org/10.1145/1597849.1384347
https://doi.org/10.1145/2643572.2643580

Formal Methods

SHACL Shapes Generation
from Textual Documents

David Šenkýř(B)

Faculty of Information Technology, Czech Technical University in Prague,
Prague, Czech Republic

david.senkyr@fit.cvut.cz

Abstract. Shapes Constraint Language (SHACL) is the new recommen-
dation by W3C consortium to uniform both describing and constraining
the content of an RDF graph. Based on the inspiration of model gener-
ation from textual requirements specifications, we investigate the pos-
sibility of mapping parts of a textual document to shapes described by
SHACL. In this contribution, we present our approach of the patterns
(based on a grammatical inspection) that indicates candidates of domain
description in SHACL language. We argue that the standard methods of
linguistics can be supported by ontology resources as Schema.org.

Keywords: SHACL · Text processing · Grammatical inspection ·
Patterns · Ontology · RDF · OWL

1 Introduction

The problem of model generation based on textual requirements specification
is still a popular topic of research, as it proves by [2,4,10] and also our paper
[16]. The traditional output of model generation is in the form of UML diagrams
(typically class diagram) that represent a mapping of the problem domain (a part
of reality) into the model. This discipline is called conceptual modelling [13].

Computerized processing of natural language can be supported by acquired
semantic knowledge from an appropriate corresponding ontology database. It
may be difficult to obtain the ontology related to the client’s domain – for many
sectors, such ontology is not available. On the other hand, ontology databases
for common language are available, e.g., WordNET, ConceptNet, DBpedia, Free-
base, OpenCyc.

Nowadays, we can use Web Ontology Language (OWL) W3C consortium
recommendation or the new one recommendation called Shapes Constraint Lan-
guage (SHACL). Inspired by the ontology-based approach, we decided to apply
methods of computerized natural language processing together with data pro-
vided by an existing ontology database to generate SHACL expressions. In this
contribution, we do not focus only on textual requirements specifications, but
we consider the arbitrary textual document as an input source.

c© Springer Nature Switzerland AG 2019
R. Pergl et al. (Eds.): EOMAS 2019, LNBIP 366, pp. 121–130, 2019.
https://doi.org/10.1007/978-3-030-35646-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35646-0_9&domain=pdf
https://doi.org/10.1007/978-3-030-35646-0_9

122 D. Šenkýř

Following the outlined motivation, we have focused our research on two top-
ics. How to extract the knowledge from the plain text in the form of SHACL
shapes? Also, how to complete these shapes with some ontology resource?

This paper is divided into two parts. In the first section, we introduce the
domain. In the second section, we illustrate our approach of patterns and usage
of the ontology database, together with an example of the generated result.

2 Related Work and Terminology

In this section, we introduce the domains and the basic terminology that we face
in this paper.

2.1 Conceptual Modelling and Ontologies

Professor Mylopoulos in his paper [13] defined conceptual modelling as “the activ-
ity of formally describing some aspects of the physical and social world around
us for purposes of understanding and communication”. The understanding is
typically the key factor of a successful product as a result of conceptual mod-
elling. Therefore, we should eliminate the defects of ambiguity, inconsistency,
and incompleteness.

In that case, we can be supported by ontologies. In the context of infor-
mation technologies, the ontology represents knowledge in the form of entities
(concepts), properties, and relations between them using a formal encoding. In
the first point of view, the ontology should assist with the term definitions,
and in the second point of view, it should also help with the detection of some
constraint violation. Also, the study [21] shows that it is better to use ontology-
driven languages (such as OntoUML) over traditional approaches with UML or
E-R models.

2.2 Structured Knowledge on Web

Most, but not all of the structured knowledge on the Web is deeply connected to
the Semantic Web and its standards. From history, we can mention the original
intention of HTML meta tags, which were unfortunately predominantly used for
spam – therefore, they are widely ignored by search engines [18].

Nowadays, we can use description-logic-based languages (e.g., OWL, Shacl)
provided in the form of a recommendation by W3C consortium. Based on
them, in the second half of the 2000s, projects like DBpedia1 [3], Freebase2, or
Schema.org3 started. They represent knowledge graphs (ontologies) formed by
RDF triplets. We can also mention a semantic network called ConceptNet4 [17]

1 https://wiki.dbpedia.org/.
2 Terminated project – data still available via https://developers.google.com/freebase.
3 https://schema.org.
4 http://www.conceptnet.io.

https://wiki.dbpedia.org/
https://developers.google.com/freebase
https://schema.org
http://www.conceptnet.io

SHACL Shapes Generation from Textual Documents 123

that combines its own data with other resources (including mentioned DBpedia)
to provide meanings of word or phrase entered as a query.

Let us briefly introduce the mentioned standards and corresponding
technologies.

RDF. The Resource Description Framework (RDF) [5] is W3C specification
used as a general approach for conceptual modelling of information using various
syntax notations and data serialization formats. The structure is formed by a
set of triplets – each constiting of a subject, a predicate, and an object. The set
of triplets creates RDF graph.

RDF Schema. The Resource Description Framework Schema (RDF Schema
or just RDFS) [8] is a semantic extension of RDF. It provides a data-modelling
vocabulary for RDF data – a mechanism for describing groups of related
resources and the relationships between these resources.

OWL. The W3C Web Ontology Language (OWL) [12] is a computational logic-
based language. It is perceived as the first level above RDF required for the
Semantic Web what can formally describe the meaning of the terminology used in
Web documents. The knowledge expressed in OWL can be exploited by computer
programs, e.g., to extend knowledge of the specific problem or to verify the
consistency of specifically requested knowledge.

The basic building elements are classes, typically arranged in a sub-class
hierarchy. Below, you can find an example (in Turtle notation) presented in [1].
Note, that OWL rely on RDF Schema vocabulary for the basic mechanism.

@prefix ex: <http://example.com/ns#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .

ex:Person
a owl:Class ;
rdfs:label ”Person” ;
rdfs:comment ”A human being” .

ex:Customer
a owl:Class ;
rdfs:subClassOf ex:Person .

We introduced a sub-class Customer of parent class Person. In OWL nota-
tion, let us say that no Person can have more than one father.

124 D. Šenkýř

@prefix ex: <http://example.com/ns#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .

ex:Person
a owl:Class ;
rdfs:subClassOf [

a owl:Restriction ;
owl:onProperty ex:hasFather ;
owl:maxCardinality 1 ;

] ;
rdfs:subClassOf [

a owl:Restriction ;
owl:onProperty ex:hasFather ;
owl:allValuesFrom ex:Person ;

] .

OWL is operating on classes, which are understood as sets of instances that
satisfy the same restrictions. OWL includes the metaclass owl:Restriction
which is typically used as an anonymous superclass of the named class that the
restriction is about [1].

SHACL. The Shapes Constraint Language (SHACL) is the new recommenda-
tion by W3C introduced in July 2017. The purpose of SHACL is to uniform both
describing and constraining the content of the RDF graph. The set of constraints
used by SHACL for validation are expressed as an RDF graph and are called
shapes or shape graphs and the RDF data being validated is called the data
graph. Shapes offer a description of the data graph in the form of constraints
that a valid data graph satisfies [14].

Let us continue with the example above. SHACL offers in the way of restric-
tion definition more flexibility. The equivalent of the previous example in SHACL
language follows.

@prefix ex: <http://example.com/ns#> .
@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .

ex:Person
a owl:Class, sh:NodeShape ;
sh:property [

sh:path ex:hasFather ;
sh:maxCount 1 ;
sh:class ex:Person ;

] .

Another example of defining SHACL shapes is presented in [14]. Nice com-
parison of built-in constraint types is presented in [1].

SHACL Shapes Generation from Textual Documents 125

2.3 Related Work Concerning Entity Extraction

In the context of entity extraction from the text, the current research is oriented
on RDF triplets, e.g., [11], [15], or [6]. One can find also techniques about trans-
formation from RDF triplets to SHACL shapes, e.g., in [9]. Our work differs in
that we generate SHACL shapes directly from mapped parts of the text (via
patterns presented in the next section).

There are also publications focused on the “reverse approach” concerning
text descriptions generation from existing RDF triplets, e.g., [20] or [7].

3 Our Approach

In this contribution, we focus on (sub)classes and properties generation in
SHACL language based on textual document. We also try to generate restrictions
of properties, but only with a limitation to cardinality.

We reuse our approach of the patterns [16]. In the start phase of our project,
we empirically identify patterns by processing various text documents (primarily
using a source document of our experiment presented in the next section). Based
on that, we were able to construct a decision tree as a final structure used in our
implementation.

3.1 Suitable Patterns

Our implementation is written in Python based on Spacy NLP framework.
The method of grammatical inspection uses typical NLP steps like tokeniza-
tion, sentence segmentation, part-of-speech tagging, lemmatization, and depen-
dencies recognition provided by the framework. Within the following examples
of patterns, we use Penn Treebank [19] part of speech and dependency tags. The
notation 0..* within connection link means, like in the E-R schema, that a
target word with this connection does not have to exist or there can exist one
word of a specific type, or there can exist more words of a specific type at the
same time. Often, the subjects or the objects are represented by a composition
of several nouns. Therefore, we introduce a shortened notation NN* means that
at least one noun is required and there should also be more nouns composited
via compound relation.

Class Specialization Pattern. Based on the following pattern (Fig. 1), the
sentence “The user is either a student or a teacher.” contains a class (user) and
two sub-classes of this class (student, teacher). The matched parts of the pattern
against the example sentence is illustrated in Fig. 2. The bold and coloured parts
indicates matched parts.

126 D. Šenkýř

Fig. 1. The class specialization pattern

Fig. 2. The class specialization pattern matching example

Attributes Recognition Patterns. The patterns below focus determine the
cardinality between class and their properties. The first attribute recognition
pattern (Fig. 3) handles the adverb exactly that indicates the same minimal and
maximal cardinality. The matching against example sentence “Every user has
exactly one username.” is illustrated in Fig. 4.

Fig. 3. The attribute recognition pattern #1

Fig. 4. The attribute recognition pattern #1 matching example

The second attribute recognition pattern (Fig. 5) handles the minimal cardi-
nality in the form of word combination at least. The matching against example
sentence “Each student has at least one subject enrolled.” is illustrated in Fig. 6.

Fig. 5. The attribute recognition pattern #2

Fig. 6. The attribute recognition pattern #2 matching example

The third attribute recognition pattern (Fig. 7) combines the minimal and
maximal cardinality. The matching against example sentence “Each student has
a minimum of 0 and a maximum of 150 credits.” is illustrated in Fig. 8.

SHACL Shapes Generation from Textual Documents 127

Fig. 7. The attribute recognition pattern #3

Fig. 8. The attribute recognition pattern #3 matching example

Experiment Result. The implemented algorithm keeps a collection of founded
(sub)classes and their properties. This feature allows mapping of the resulting
model sentence by sentence. With the usage of example sentences used in the
patterns presentation above, in the end, the generated output in SHACL lan-
guage should look like the following one.

@prefix ex: <http://example.com/ns#> .
@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .

ex:User
a owl:Class, sh:NodeShape ;

sh:property [
sh:path ex:hasUsername ;
sh:minCount 1 ;
sh:maxCount 1 ;
sh:class ex:Username ;

] .
ex:Student

a owl:Class, sh:NodeShape ;
rdfs:subClassOf ex:User ;
sh:property [

sh:path ex:hasSubject ;
sh:minCount 1 ;
sh:class ex:Subject ;

] ;
sh:property [

sh:path ex:hasCredit ;
sh:minCount 0 ;
sh:maxCount 150 ;
sh:class ex:Credit ;

] .

ex:Teacher
a owl:Class .
rdfs:subClassOf ex:User ;

ex:Username
a owl:Class .

ex:Subject
a owl:Class .

ex:Credit
a owl:Class .

128 D. Šenkýř

3.2 Ontology Resource Support

We argue that ordinary textual document suffers from the problem of incom-
pleteness. That means that documents contain no proper or not complete
description of entities, attributes, and relations. The author(s) forgot to mention
it or the author(s) thought that some facts are best-known, and he or she did not
explain them. The ontology database can support us here. We use Schema.org5

API to get a collection of properties based on the entity (class) that we found
in the text document. We remove properties that we extract from the text doc-
ument and notify the user that there are some other properties that may forget
to mention or that may be useful for him or her.

4 Conclusions

Using our sentence patterns defined above, we are able to generate the frag-
ment of knowledge in SHACL language. With the help of ontology database, we
can also inform the user that the generated fragment of SHACL shape may be
extended. Our proposed method can be used in the very first phase of analysis
of text documents.

In the context of theoretical implication, the direct generation (without the
intermediate step of RDF generation and its transformation) offers the ability to
tailor text sentence patterns to SHACL language strengths, e.g., the cardinality
of properties. In the context of practical implication, the proposed method of
NLP technique should be used as the back-end method of a text documents
processing tool. The tool should process text sentence by sentence and at the
same time also inform the user about a possible extension.

Acknowledgement. This research was supported by the grant of Czech Technical
University in Prague No. SGS17/211/OHK3/3T/18.

References

1. SHACL and OWL Compared. http://spinrdf.org/shacl-and-owl.html. Accessed 08
Jan 2019

2. Arellano, A., Zontek-Carney, E., Austin, M.A.: Frameworks for natural language
processing of textual requirements. Int. J. Adv. Syst. Meas. 8, 230–240 (2015)

3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007.
LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-76298-0 52

4. Ben Abdessalem Karaa, W., Ben Azzouz, Z., Singh, A., Dey, N., Ashour, A.S., Ben
Ghazala, H.: Automatic builder of class diagram (ABCD): an application of UML
generation from functional requirements. Softw. Pract. Exp. 46(11), 1443–1458
(2016)

5 https://schema.org.

http://spinrdf.org/shacl-and-owl.html
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://schema.org

SHACL Shapes Generation from Textual Documents 129

5. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 concepts and Abstract Syntax.
W3C recommendation, W3C (2014). http://www.w3.org/TR/2014/REC-rdf11-
concepts-20140225

6. Draicchio, F., Gangemi, A., Presutti, V., Nuzzolese, A.G.: FRED: from natural
language text to RDF and OWL in one click. In: Cimiano, P., Fernández, M.,
Lopez, V., Schlobach, S., Völker, J. (eds.) ESWC 2013. LNCS, vol. 7955, pp. 263–
267. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41242-4 36

7. Gardent, C., Shimorina, A., Narayan, S., Perez-Beltrachini, L.: The WebNLG chal-
lenge: generating text from RDF data. In: Proceedings of the 10th International
Conference on Natural Language Generation, Spain, pp. 124–133. Association for
Computational Linguistics, Santiago de Compostela (2017)

8. Guha, R., Brickley, D.: RDF Schema 1.1. W3C recommendation, W3C (2014).
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/

9. Irene, P.: From OWL to SHACL in an automated way. https://www.topquadrant.
com/2018/05/01/from-owl-to-shacl-in-an-automated-way (2018). Accessed 19
May 2019

10. Landhäußer, M., Körner, S.J., Tichy, W.F.: From requirements to UML models
and back: how automatic processing of text can support requirements engineering.
Softw. Qual. J. 22(1), 121–149 (2014)

11. Martinez-Rodriguez, J.L., Lopez-Arevalo, I., Rios-Alvarado, A.B., Hernandez, J.,
Aldana-Bobadilla, E.: Extraction of RDF statements from text. In: Villazón-
Terrazas, B., Hidalgo-Delgado, Y. (eds.) KGSWC 2019. CCIS, vol. 1029, pp. 87–
101. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21395-4 7

12. McGuinness, D., van Harmelen, F.: OWL Web Ontology Language Overview. W3C
recommendation, W3C (2004). http://www.w3.org/TR/2004/REC-owl-features-
20040210

13. Mylopoulos, J.: Conceptual Modelling and Telos. Conceptual Modelling, Databases
and CASE: An Integrated View of Information System Development. Wiley, New
York (1992)

14. Pandit, H.J., O’Sullivan, D., Lewis, D.: Using ontology design patterns to define
SHACL shapes. In: Proceedings of the 9th Workshop on Ontology Design and Pat-
terns (WOP 2018) Co-located with 17th International Semantic Web Conference
(ISWC 2018), pp. 67–71 (2018)

15. Perera, R., Nand, P., Klette, G.: RealText-lex: a lexicalization framework for RDF
triples. Prague Bull. Math. Linguist. 106(1), 45–68 (2016)

16. Šenkýř, D., Kroha, P.: Patterns in textual requirements specification. In: Proceed-
ings of the 13th International Conference on Software Technologies, Porto, Portu-
gal, pp. 197–204. SCITEPRESS - Science and Technology Publications (2018)

17. Speer, R., Havasi, C.: Representing General Relational Knowledge in ConceptNet
5. In: Proceedings of the Eighth International Conference on Language Resources
and Evaluation (LREC-2012). European Language Resources Association (ELRA)
(2012)

18. Staab, S., Lehmann, J., Verborgh, R.: Structured knowledge on the Web 7.0. In:
Companion of the The Web Conference 2018 on The Web Conference 2018 - WWW
2018, Lyon, France, pp. 885–886. ACM Press (2018)

19. Taylor, A., Marcus, M., Santorini, B.: The Penn Treebank: an overview. In: Abeillé,
A. (ed.) Treebanks. Text, Speech and Language Technolog, vol. 20, pp. 5–22.
Springer, Dordrecht (2003). https://doi.org/10.1007/978-94-010-0201-1 1

http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225
https://doi.org/10.1007/978-3-642-41242-4_36
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://www.topquadrant.com/2018/05/01/from-owl-to-shacl-in-an-automated-way
https://www.topquadrant.com/2018/05/01/from-owl-to-shacl-in-an-automated-way
https://doi.org/10.1007/978-3-030-21395-4_7
http://www.w3.org/TR/2004/REC-owl-features-20040210
http://www.w3.org/TR/2004/REC-owl-features-20040210
https://doi.org/10.1007/978-94-010-0201-1_1

130 D. Šenkýř

20. Trisedya, B.D., Qi, J., Zhang, R., Wang, W.: GTR-LSTM: a triple encoder for
sentence generation from RDF data. In: Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics, Melbourne, Australia, vol. 1, pp.
1627–1637. Association for Computational Linguistics (2018)

21. Verdonck, M., Gailly, F., Pergl, R., Guizzardi, G., Martins, B., Pastor, O.: Com-
paring traditional conceptual modeling with ontology-driven conceptual modeling:
an empirical study. Inf. Syst. 81, 92–103 (2019)

Detection of Declarative Process
Constraints in LTL Formulas

Nicolai Schützenmeier(B), Martin Käppel, Sebastian Petter, Stefan Schönig,
and Stefan Jablonski

Institute for Computer Science, University of Bayreuth, Bayreuth, Germany
{nicolai.schuetzenmeier,martin.kaeppel,sebastian.petter,

stefan.schoenig,stefan.jablonski}@uni-bayreuth.de

Abstract. Declarative process models consist of temporal constraints
that a process must satisfy during execution. Constraint templates are
patterns that define parameterized classes of properties. Their seman-
tics can be formalized using formal logics such as Linear Temporal Logic
(LTL) over finite traces. There exists a big amount of different constraint
templates for different purposes. In practice, the variety of different tem-
plates yields complexity and performance issues with regard to model
comparison, compliance checking and in particular process mining. In
this paper we give a comprehensively overview about existing declare
templates and transform their underlying LTL formula into the positive
normal form (PNF), a canonical standard form for LTL formulas. On
this basis, we present an algorithm for detecting declare templates in
any LTL formula fulfilling the conditions for PNF. We reduce the num-
ber of process constraints that have to be proven by the algorithm to
speed up the runtime and give some advice for further optimizations.

Keywords: Declarative process management · Declare · Linear
temporal logic · Positive normal form

1 Introduction

A Process-Aware Information System is a collaborative system that executes
processes involving people, applications, and data on the basis of process mod-
els [1]. Two different paradigms can be distinguished: (i) procedural models
describe the execution paths in a graph-based structure, (ii) declarative models
consist of temporal constraints that a process must satisfy. Declarative languages
like Declare [2], DCR graphs [3], and Declarative Process Intermediate Language
(DPIL) [4,5] have been proposed to define the latter.

Declarative models represent processes by restrictions over the permissible
behaviour. The restricting rules are named constraints, which express those con-
ditions that must be satisfied throughout process execution. Modeling languages
like Declare [2] provide a repertoire of templates, i.e., constraints parametrized
over activities. Therefore Declare templates are represented by a formula in

c© Springer Nature Switzerland AG 2019
R. Pergl et al. (Eds.): EOMAS 2019, LNBIP 366, pp. 131–145, 2019.
https://doi.org/10.1007/978-3-030-35646-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35646-0_10&domain=pdf
https://doi.org/10.1007/978-3-030-35646-0_10

132 N. Schützenmeier et al.

Linear Temporal Logic (LTL) [6]. As an LTL formula is not unique, in litera-
ture there are often different representations of the same Declare template [7,8].
Hence, it is more difficult to compare two process models and to work out com-
mon properties. In this paper we transform each formula into the Positive Normal
Form (PNF) [9], a unique standard form for LTL formulas.

Based on the PNF, we develop and implement an algorithm to detect Declare
templates in any LTL formula fulfilling the conditions for PNF. Therefore, we
build a binary tree and search through this tree to discover the known Declare
templates using the fact that templates occur as subtrees.

This algorithm can be used to compare process models. As an introductory
example we consider the choice template. choice(A,B) means that in the pro-
cess execution at least activity A or activity B has to be executed. In other
words: activity A or activity B has to occur. This yields to the fact that the
choice template can be expressed by two existence templates using a disjunctive
connective:

choice(A,B) = existence(A) ∨ existence(B).

In general, a model checker would not find the common property of two different
process models using the described representations of the same fact. Our app-
roach is to handle this problem and to give an algorithm to detect these hidden
properties of process models.

The remainder of the paper is structured as follows: Sect. 2 gives an overview
about related work. In Sect. 3 we introduce Declare and the most common used
templates. In Sect. 4 we present the PNF and transform the LTL formulas behind
the Declare templates into the PNF. In Sect. 5 we introduce our approach and
the implementation of the algorithm. In Sect. 6 we give some ideas for further
optimizations. In the last Section we conclude the main results of this paper.

2 Related Work

Linear Temporal Logic (LTL) [10] specifications are traditionally used for
expressing the properties that a reactive system should exhibit or avoid. The
specifications are exploited by model checking tools for formal verification
(e.g., [11]). However, LTL has also been used to conceptually define process
models in Business Process Management (BPM). Declarative process modeling
languages like Declare [12], i.e. the ConDec language [8] adopt LTL to model
business processes, business rules and policies. The resulting LTL formula is
then converted to an automaton for execution [2]. In [13] semantics for defining
Declare constraints on non-atomic activities and an approach for the discovery
of this type of constraints are presented. Declare only constrains the starts of
activities and interrelates them temporally. Data oriented aspects and the orga-
nizational perspective [14] are completely missing in traditional Declare. The
approaches proposed in [15,16] allow for the specification of constraints that
go beyond the traditional Declare templates. In [17], the authors define Timed
Declare, an extension of Declare that relies on timed automata. In [18], the
authors introduce for the first time a data aware semantics for Declare. In [19]

Detection of Declarative Process Constraints in LTL Formulas 133

Table 1. Semantics for Declare constraints in LTLf .

Template LTLf Semantics

existence(A) F(A)

absence(A) ¬F(A)

atLeast(A, n) F(A ∧ X(atLeast(A, n − 1))), atLeast(A, 1) = F(A)

atMost(A, n) G(¬A ∨ X(atMost(A, n − 1))), atMost(A, 0) = G(¬A)

init(A) A

last(A) G(¬A → F(A))

respondedExistence(A, B) F(A) → F(B)

response(A, B) G(A → F(B))

alternateResponse(A, B) G(A → X(¬AUB))

chainResponse(A, B) G(A → X(B))

precedence(A, B) F(B) → ((¬B)UA)

alternatePrecedence(A, B) precedence(A, B) ∧ G(B → X(precedence(A, B))

chainPrecedence(A, B) precedence(A, B) ∧ G(X(B) → A)

succession(A, B) response(A, B) ∧ precedence(A, B)

chainSuccession(A, B) G(A ↔ X(B))

alternateSuccession(A, B) alternateResponse(A, B) ∧ alternatePrecedence(A, B)

notSuccession(A, B) G(A → ¬F(B))

notChainSuccession(A, B) G(A → ¬X(B))

notRespondedExistence(A, B) F(A) → F(B)

notResponse(A, B) G(A → ¬F(B))

notPrecedence(A, B) G(F (B) → ¬A)

notChainResponse G(A → ¬X(B))

notChainPrecedence(A, B) G(X(B) → ¬A)

coExistence(A, B) F(A) ↔ F(B)

notCoExistence(A, B) ¬(F(A) ∧ F(B))

choice(A, B) F(A) ∨ F(B)

exclusiveChoice(A, B) (F(A) ∨ F(B)) ∧ ¬(F(A) ∧ F(B))

a general multi perspective LTL semantics for Declare (MP-Declare) has been
presented. Here, Declare is extented with elements of first order logic to refer to
data values in constraints. Data aware as well as generalized MP-Declare models
are supported in the context of conformance checking [19], process discovery [20]
and trace generation [21,22]. Recently, the authors presented an approach for
executing MP-Declare specifications [23]. To best of our knowledge the PNF was
not applied in context of Declare Process Constraints until now.

134 N. Schützenmeier et al.

3 Declare

Declarative constraints are well-suited for representing the permissible behaviour
of business processes. Modeling languages like Declare [24] describe a set of con-
straints that must be satisfied throughout the process execution. Constraints, in
turn, are instances of predefined templates. Templates, in turn, are patterns that
define parameterized classes of properties. Their semantics can be formalized
using formal logics such as Linear Temporal Logic over finite traces (LTLf) [25].

The F, X, G, W and U LTLf future operators have the following meanings:
formula Fψ1 means that ψ1 holds sometime in the future, Xψ1 means that ψ1

holds in the next position, Gψ1 says that ψ1 holds forever in the future, and,
lastly, ψ1Uψ2 means that sometime in the future ψ2 will hold and until that
moment ψ1 holds (with ψ1 and ψ2 LTLf formulas). There is a weaker form of
the until operator, so called weak until ψ1Wψ2, where the second formula ψ2 is
not required to hold. In this case, the first formula ψ1 must hold forever.

In general, we distinguish between two types of templates: unary and binary
templates. Unary templates refer to one activity, e.g. the existence template F(A)
means that activity A has to occur in the process execution. So this template
only refers to activity A. On the other side, we consider the response constraint
G(A → F(B)). It indicates that if A occurs, B must eventually follow. So it
refers to the activities A and B. Therefore, this constraint is fully satisfied in
traces such as t1 = 〈A,A,B,C〉, t2 = 〈B,B,C,D〉, and t3 = 〈A,B,C,B〉, but
not for t4 = 〈A,B,A,C〉 because the second occurrence of A is not followed by
a B. In t2, it is vacuously satisfied [26], in a trivial way, because A never occurs.
Table 1 gives an overview about the most important Declare templates.

4 Transformation of Declare Templates

Any LTL formula can be transformed into a canonical form, the Positive Nor-
mal Form (PNF). These formulas are a syntactically restricted subset of LTL
formulas in which the use of negation (¬) is allowed only immediately in front
of atomic propositions [27,28]. The PNF is strongly related to disjunctive and
conjunctive normalform that are special cases of PNF. For the transformation of
an LTL formula into PNF, for each LTL-operator a dual operator is needed [27].

Hence, for the constant true we need to consider the constant false, for the
conjunction connective (∧) we need to consider the disjunctive connective (∨).
The operator X is dual to itself. Finally we have to consider the U operator. We
observe that

¬ (φ U ψ) ≡ ((φ ∧ ¬ψ)U (¬φ ∧ ¬ψ)) ∨ G (φ ∧ ¬ψ) ≡ (φ ∧ ¬ψ)W (¬φ ∧ ¬ψ)
¬ (φ W ψ) ≡ (φ ∧ ¬ψ)U (¬φ ∧ ¬ψ) .

Thus there is a duality between W and U. Consider that G and F can be
expressed by

Gφ ≡ φ W false

Fφ ≡ true U φ.

Detection of Declarative Process Constraints in LTL Formulas 135

Table 2. Declare constraints Positive Normal Form.

Template Positive Normal Form

existence(A) true UA

absence(A) false U¬A

atLeast(A, n) true U(A ∧ X(atLeast(A, n − 1))

atMost(A, n) (¬A ∨ X(atMost(A, n − 1)))Wfalse

init(A) A

last(A) (A ∨ (trueUA))Wfalse

respondedExistence(A, B) (¬AWfalse) ∨ (trueUB)

response(A, B) (¬A ∨ (trueUB))Wfalse

alternateResponse(A, B) (¬A ∨ X(¬AUB))Wfalse

chainResponse(A, B) (¬A ∨ X(B))Wfalse

precedence(A, B) ¬BWA

alternatePrecedence(A, B) (¬BWA) ∧ ((¬B ∨ X(¬BWA)))Wfalse

chainPrecedence(A, B) (¬BWA) ∧ ((X(¬B) ∨ A)Wfalse)

succession(A, B) (¬A ∨ (trueUB))Wfalse ∧ ¬BWA

chainSuccession(A, B) ((A ∧ X(B)) ∨ (¬A ∧ X(¬B)))Wfalse

alternateSuccession(A, B) (¬A ∨ X(¬AUB))Wfalse ∧ (¬BWA) ∧ ((¬B ∨ X(¬BWA)))Wfalse

notSuccession(A, B) (¬A ∨ (¬BWfalse))Wfalse

notChainSuccession(A, B) (¬A ∨ X(¬B))Wfalse

notRespondedExistence(A, B) (¬AWfalse) ∨ (¬BWfalse)

notResponse(A, B) (¬A ∨ (¬BWfalse))Wfalse

notPrecedence(A, B) ((¬BWfalse) ∨ ¬A)Wfalse

notChainResponse (¬A ∨ X(¬B))Wfalse

notChainPrecedence(A, B) (X(¬B) ∨ ¬A)Wfalse

coExistence(A, B) ((trueUA) ∧ (trueUB)) ∨ ((¬AWfalse) ∧ (¬BWfalse))

notCoExistence(A, B) (¬AWfalse) ∨ (¬BWfalse)

choice(A, B) (trueUA) ∨ (trueUB)

exclusiveChoice(A, B) ((trueUA) ∨ (trueUB)) ∧ ((¬AWfalse) ∨ (¬BWfalse))

Consequently the set of LTL-operators for PNF is restricted to X, U, and W.
Finally we can define the set of LTL formulas in PNF by [29]

φ ::= true | false | a | ¬a | φ1 ∧ φ2 | φ1 ∨ φ2 | X φ | φ1 U φ2 | φ1 W φ2.

We can transform an LTL formula into PNF by using the common LTL trans-
formations. As an example we transform the notChainPrecedence(A,B) template
into PNF:

G (X (B) → ¬A) ≡ (X (B) → ¬A)W false ≡ (¬X(B) ∨ ¬A)W false

≡ (X (¬B) ∨ ¬A)W false.

Analogously we transform all Declare templates from Table 1 into PNF as shown
in Table 2. For correct understanding we recall to the operator hierarchy for LTL
formulas: A unary operator binds stronger than a binary operator and U takes
precedence over ∧, ∨, and →. For the ease of use and better readability we enrich
the formulas by extensive use of brackets.

In literature the LTL representation of Declare templates differs. Often past
operators (O, Y, S), which are not part of LTL are used for ease of use. In PNF

136 N. Schützenmeier et al.

the set of operators is reduced and all formulas are built in the same way. In
combination with the uniqueness of PNF this leads to a strong simplification
of formula comparison and template detection. Furthermore there is a large
number of approaches for the theoretical analysis of logic formulas based on
PNF (e. g. classification of languages and their expressiveness). However, the
transformation of a formula into PNF can lead to an exponential grow in length
due to the translation of the until operator [28].

5 Approach and Implementation

Our goal is to transform any LTL formula in PNF into a composition of known
Declare templates. Therefore we first transform all known Declare templates into
binary trees in XML format to simplify the recognition of these templates. Our
approach is to get a valid PNF formula as string as user-input, transform this
string into a binary tree and subsequently replace all subtrees which are equal
to one of the template trees.

At first we define a grammar for the Xtext framework1 to parse the input
string to a binary tree. The grammar is based on the PNF with one additional
restriction: the position of the brackets. Every formula is a three tuple and
contains a left element, an operator and a right element. A general formula is
structured as follows:

(left : [Activity|Formula] op : Operator right : [Activity| Formula]). (1)

The operator is one of the four input operators, namely ∧,∨,W or U. The
left and the right element can be either another formula or an activity. Every
formula is surrounded by an opening and a closing bracket with an optional
LTL X-operator preceded. An activity can be any string with an optional ¬
beforehand. In addition, it is possible to write X(activity) instead of the activity
only.

After defining the grammar we write a code generator in Xtend to transform
the valid input string into an unique XML binary tree so we can subsequently
check for template appearances. The tree is built up from a formula as binary
tree where the operator of the formula is represented as node and the left and
the right element are the left respectively the right leaf.

With help of this code generator we are able to create a binary tree from every
input formula. We create an XML binary tree from each template in Table 2
by using the discovered PNF formulas. As an example we show the result of
the response template used as input. Figure 1 shows the resulting tree in XML
representation and visualizes the tree. To simplify the subtree algorithm every
node gets a unique ID as well as a customized value. Every activity is surrounded
by two # symbols. The ¬ operator is replaced by not and true/false are written
as true respectively false .

1 https://www.eclipse.org/Xtext/.

https://www.eclipse.org/Xtext/

Detection of Declarative Process Constraints in LTL Formulas 137

Fig. 1. XML representation and corresponding binary tree for the response template

The greatest challenge for template detection is the handling of commutative
and distributive laws for the conjunction and disjunctive connectives. The last(A)
template, for example, can be written in PNF either as

(A ∨ (true U A))W false or
((true U A) ∨ A)W false.

In some cases the underlying PNF formula contains a formula similar to A ∨
(B ∧ C). Hence, (A ∨ B) ∧ (A ∨ C) would be an equivalent form due to the
distributive law. Obviously there is additionally the possibility to apply the
distributive law together with the commutative law. With regard to flexibility
and expandability the algorithm should be able to detect all these representations
without a hard encoding of all variants. Obviously the detection of templates
becomes more difficult. In the following implementation, we will only focus on
the handling of the commutative law and leave the distributive law to the Xtext
framework.

Analogously to the input formula φi we build a binary tree for every Declare
template. We define the length lφ of a PNF formula φ as the number of nodes in the
corresponding binary tree. It means the length of a formula denotes the number
of atomic propositions, operators, connectives, and constants (true and false) in
the formula. Consider, for example, the response template has a length of 7 (two
atomic proposition, two constants, two operators and one disjunctive connective).
We compare the length lt of a Declare template t to the length lφi

of the input
formula to avoid unnecessary checks. Note that this method works independently
of the number of brackets or the name of their atomic propositions. During the
transformation into a binary tree, we store the IDs of the nodes that represent
a conjunction or disjunctive connective. We denote this set of IDs as Ot. Under
abuse of notation we use in the pseudocode the same notation for formula and
binary tree. Nevertheless this notation is acceptable because of the possibility to
transform a formula into a binary tree and vice versa.

138 N. Schützenmeier et al.

Fig. 2. Four swap trees of the chainPrecedence template

For the detection of a template we generate all possible variants of its under-
lying PNF formula with regard to the names of the atomic propositions in the
input formula. A variant of a template means the resulting binary tree after the
application of commutative or distributive laws or the renaming of the atomic
propositions. We generate the variants in two consecutive steps. In the first step,
the so called denomination step, we rename the atomic propositions according
to the names of the atomic propositions in the input formula (see Algorithm 3).
Afterwards we apply commutative laws on the resulting trees from the previous
step (so called swapping step). The swapping step is presented in Algorithm 4
and illustrated in Fig. 2.

As preparation of the denomination step we extract the names of the atomic
propositions in the input formula using the fact that they are surrounded by #.
We denote this set as Aφi

. We have to distinguish between unary and binary
Declare templates. If the template is unary, we prove its occurrence for all atomic
proposition of φi. If the template is binary, every a ∈ Aφi

must act once as
first parameter and once as second parameter of the template. Hence, we need
all two elementary subsets of Aφi

with respect to the ordering. We illustrate
the denomination step with a simple example. Assume that the input formula
φi contains three atomic propositions and that we want to prove whether φi

contains the unary existence and the binary response template. It means Aφi
=

{A,B,C}. First we prove the containment of existence(A), existence(B), and
existence(C). For the response template we have to consider the following sets:
(A,B), (B,A), (A,C), (C,A), (B,C), and (C,B).

In the swapping step we generate new variants by applying the commu-
tative law on all variants from the denomination step. The number of such

Detection of Declarative Process Constraints in LTL Formulas 139

Algorithm 1. Check the occurence of all templates
Data: set of templates T̃ , Input formula φi

1 for t ∈ T̃ do
/* call Algorithm 2 */

2 checkTemplate(t, φi)

3 end

Algorithm 2. Check the occurence of a specific template
Data: Template t, Input formula φi

/* Extract commutative positions from t */
1 Ot ← extractCommutativePositions(t)
2 variations ← ∅

/* Extract atomic propositions from φi */
3 Aφi ← extractPropositions(φi)
4 if t.length ≤ φi.length then

/* Denomination step, call Algorithm 3 */
5 variations ← denominationStep(t, Aφi)
6 allVariations ← ∅

/* Swapping step, call Algorithm 4 */
7 for v ∈ variations do

/* Looping over the power set of commutativePositionst */
8 for p ∈ P(Ot) do
9 allVariations.add(swap(v,p))

10 end

11 end
12 for v ∈ allVariations do
13 isSubtree(φi,v)
14 end

15 end

transformations is equal to the cardinality of the power set of Ot minus one.
The minus one is necessary because the empty set describes no transformation.
We can use Ot for all variants because renaming the atomic propositions in the
previous step does not effect the node’s ID. By means of the notation of binary
trees, applying the commutative law, means swapping left and right child of a
node that contains a conjunctive or disjunctive connective.

After this type of preprocessing we start with the template detection. We
use the fact that if a formula in PNF contains a Declare template, it occurs as
a subtree. So the problem is reduced to the well known subtree problem. Hence
it is sufficient to run a subtree algorithm on the corresponding binary tree of
the input formula for all variants of the template. The subtree algorithm (see
Algorithm 5) should not only answer the question whether the template occurs,
however it should give the positions and the number of occurrences.

140 N. Schützenmeier et al.

Algorithm 3. Denomination step
Data: Template t, set of atomic propositions Aφi

Result: Set of variations
1 variations ← ∅
2 for a ∈ Aφi do

/* Replace all node names #A# in the binary tree t with a */
3 variations.add(replace(#A#, a, t))

4 end
5 subset ← twoElementarySubsetsOf(Aφi)
6 for k ∈ subset do
7 tempTree ← replace(#A#, k.firstElement, t)
8 variations.add(replace(#B#, k.secondElement, tempTree))
9 tempTree ← replace(#B#, k.firstElement, t)

10 variations.add(replace(#A#, k.secondElement, tempTree))

11 end
12 return variations

Our subtree algorithm is based on pre- and inorder traversal of the involved
binary trees. We denote the preorder traversal of a binary tree T as preOrder(T)
and analogously the inorder traversal as inOrder(T). A binary tree S is a subtree
of T if the preOrder(S) is a substring of preOrder(T) and inorder(S) is a substring
of inOrder(T).

We use an own modification of the Knuth-Morris-Pratt-Algorithm [30] for
string matching that works on whole words instead of single characters. The
nodes of preorder and inorder traversal of both trees are stored in arrays. After-
wards the matching algorithm is applied to these arrays by comparing the names
of the nodes. Working on arrays is beneficial because the starting position of the
matching corresponds directly to a node. Hence, we can easily extract the ID in
inorder traversal which describes the root node of the subtree.

Based on that fact we can give an extension for simplifying the input formula.
At first we search for every match the root node of the subtree. Afterwards we
rename these nodes with the name of the found templates and remove the left
and right childs. After running the algorithm on all templates, the binary tree
is a simplified version of the input formula. It is not difficult to transform this
binary tree back into the formula representation.

A full runtime analysis of our algorithm is difficult because of the large num-
ber of auxiliary algorithms like the power set or the string matching algorithm.
Furthermore there are several implementations or other algorithms that work as
well as our proposed algorithms. Hence, we only determine the number of varia-
tions that have to be checked. We denote the set of templates as T = {t1, ..., td},
the number of atomic propositions in the input formula φi as n, and the number
of commutative positions of a template ti as cti . For the determination of the
number of variations it is sufficient to analyze the denomination and swapping

Detection of Declarative Process Constraints in LTL Formulas 141

Algorithm 4. Generates variants based on commutative law for conjunc-
tive and disjunctive connectives
Data: Variation v, Set of positions p
Result: Swapped tree according to positions p

1 swappedTree ← v
2 if p.isEmpty then
3 return swappedTree
4 else
5 for i ∈ p do

/* Search node in swappedTree with ID p.id */
6 result ← searchNodeWithID(swappedTree, p.id)

/* Change left and right child of the result node */
7 temp ← result.rightChild
8 result.rightChild ← result.leftChild
9 result.leftChild ← temp

10 end
11 return swappedTree

12 end

step in depth. The number of variations v can be calculated by:

v =
d∑

i=1

(
n +

(
n

2

)
· 2

)
· 2cti =

d∑

i=1

(
n +

n!
2 · (n − 2)!

· 2
)

· 2cti

=
d∑

i=1

(n + n(n − 1)) · 2cti = n2 ·
d∑

i=1

2cti .

This formula describes the worst case, where the length of φi is greater than or
equal to the length of each template. This is realistic for large Declare Process
Models.

6 Optimization and Further Work

In this section we want to give some advice for possible optimizations. Therefore
we decrease the number of templates that are checked on existence in the tree
in Sect. 5.

At first we can leave off the choice template because this one just consists of
two existence templates and a disjunctive connective:

choice(A,B) = existence(A) ∨ existence(B)

Due to this fact we do not have to look for the choice template in the LTL
formulas.

A second improvement is to replace the atLeast template by a specification
of the atMost template. We claim:

atLeast(A,n) = ¬atMost(A,n − 1) (2)

142 N. Schützenmeier et al.

Algorithm 5. Subtree algorithm
Data: Binary tree T , Binary Tree S
Result: Whether S is a subtree of T

1 if S.length = 0 then
2 return true
3 end
4 if T.length = 0 then
5 return false
6 end
7 if T.Length ≥ S.length then

/* Arrays with the names for node traversal */
8 tInOrder[] ← inOrder(T)
9 sInOrder[] ← inOrder(S)

10 tPreOrder[] ← preOrder(T)
11 sPreOrder[] ← preOrder(S)

/* String matching on arrays, returns positions and prints wheter T
containts variation S */

12 listOccurencesPre = KnuthMorrisPrattAlgorithm(tPreOrder, sPreOrder)
13 listOccurencesIn = KnuthMorrisPrattAlgorithm(tInOrder, sInOrder)
14 if listOccurencesPre.size > 0 and listOccurencesIn.size > 0 then

/* There you can insert a by optional simplification step for T
by iterating over listOccurencesIn */

15 return true

16 else
17 return false
18 end

19 else
20 return false
21 end

We prove the claim (1) in the following by induction over n.
We first show that (1) holds for the base case n = 1:

atLeast(A, 1) = F(A) = ¬¬F(A) = ¬G(¬A) = ¬atMost(A, 0)

So formula (1) holds for n = 1.
Our induction hypothesis is that (1) holds for any n ∈ N. We have to show

that
atLeast(A,n + 1) = ¬atMost(A,n).

By using the induction hypothesis (1) we get:

atLeast(A,n + 1) = F(A ∧ X(atLeast(A,n))) = F(A ∧ X(¬atMost(A,n − 1)))

Further transformations lead finally to:

F(A ∧ X(¬atMost(A,n − 1))) = ¬G(¬A ∨ ¬X(¬atMost(A,n − 1))) =
= ¬G(¬A ∨ X(atMost(A,n − 1))) = ¬atMost(A,n)

Detection of Declarative Process Constraints in LTL Formulas 143

�
Further optimization would be to find similar equations or properties. Every
single correlation between constraints decreases the runtime of the in Sect. 5
introduced algorithm.

7 Conclusion

In this paper we transform Declare templates into the PNF. Using the fact that
the PNF is unique for LTL formulas, we present an algorithm to detect Declare
templates in any LTL formula fulfilling the conditions for the PNF. Therefore
we use several different techniques, e.g. subtree algorithms or pattern matching.
With the introduced algorithm it is much easier to compare different process
models and to work out common properties. We finally give some advice for
further optimizations to decrease the runtime of the developed algorithm.

References

1. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management, 2nd edn. Springer, Heidelberg (2018). https://doi.org/10.
1007/978-3-662-56509-4

2. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: full support for loosely-
structured processes. In: IEEE EDOC Conference 2007, pp. 287–300 (2007)

3. Hildebrandt, T.T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Contracts for cross-
organizational workflows as timed dynamic condition response graphs. J. Log.
Algebr. Program. 82(5–7), 164–185 (2013)

4. Schönig, S., Ackermann, L., Jablonski, S.: Towards an implementation of data and
resource patterns in constraint-based process models. In: Modelsward, pp. 271–278
(2018)

5. Zeising, M., Schönig, S., Jablonski, S.: Towards a common platform for the support
of routine and agile business processes. In: Collaborative Computing: Networking,
Applications and Worksharing (2014)

6. Maggi, F.M., Mooij, A., van der Aalst, W.: User-guided discovery of declarative
process models. In: CIDM, pp. 192–199 (2011)

7. De Smedt, J., Weerdt, J., Vanthienen, J., Poels, G.: Mixed-paradigm process mod-
eling with intertwined state spaces. Bus. Inf. Syst. Eng. 58, 12 (2015)

8. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business
processes management. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103,
pp. 169–180. Springer, Heidelberg (2006). https://doi.org/10.1007/11837862 18

9. Baier, C., Katoen, J.-P.: Principles of Model Checking. Representation and Mind
Series. The MIT Press, Cambridge (2008)

10. Emerson, E.A.: Temporal and modal logic. In: Formal Models and Semantics, pp.
995–1072. Elsevier (1990)

11. Fornara, N., Colombetti, M.: Specifying artificial institutions in the event calculus.
In: Handbook of Research on Multi-agent Systems: Semantics and Dynamics of
Organizational Models, pp. 335–366. IGI Global (2009)

12. Pesic, M., Schonenberg, H., Van der Aalst, W.M.: Declare: full support for loosely-
structured processes. In: 11th IEEE International Enterprise Distributed Object
Computing Conference (EDOC 2007), p. 287. IEEE (2007)

https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1007/11837862_18

144 N. Schützenmeier et al.

13. Bernardi, M.L., Cimitile, M., Di Francescomarino, C., Maggi, F.M.: Using discrim-
inative rule mining to discover declarative process models with non-atomic activi-
ties. In: Bikakis, A., Fodor, P., Roman, D. (eds.) RuleML 2014. LNCS, vol. 8620, pp.
281–295. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09870-8 21

14. Baumann, M., Baumann, M.H., Schönig, S., Jablonski, S.: Resource-aware process
model similarity matching. In: ICSOC 2014 Workshops, pp. 96–107 (2014)

15. Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying inductive logic program-
ming to process mining. In: Inductive Logic Programming, pp. 132–146 (2007)

16. Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting
inductive logic programming techniques for declarative process mining. In: Jensen,
K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models
of Concurrency II. LNCS, vol. 5460, pp. 278–295. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00899-3 16

17. Westergaard, M., Maggi, F.M.: Looking into the future: using timed automata to
provide a priori advice about timed declarative process models. In: Meersman, R.,
et al. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 250–267. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33606-5 16

18. Montali, M., Chesani, F., Mello, P., Maggi, F.M.: Towards data-aware constraints
in declare. In: SAC, pp. 1391–1396. ACM (2013)

19. Burattin, A., Maggi, F.M., Sperduti, A.: Conformance checking based on multi-
perspective declarative process models. Expert Syst. Appl. 65, 194–211 (2016)

20. Schönig, S., Di Ciccio, C., Maggi, F.M., Mendling, J.: Discovery of multi-
perspective declarative process models. In: Sheng, Q.Z., Stroulia, E., Tata, S.,
Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 87–103. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46295-0 6

21. Ackermann, L., Schönig, S., Jablonski, S.: Simulation of multi-perspective declar-
ative process models. In: Dumas, M., Fantinato, M. (eds.) BPM 2016. LNBIP, vol.
281, pp. 61–73. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58457-
7 5

22. Skydanienko, V., Francescomarino, C.D., Maggi, F.: A tool for generating event
logs from multi-perspective declare models. In: BPM (Demos) (2018)

23. Ackermann, L., Schönig, S., Petter, S., Schützenmeier, N., Jablonski, S.: Execution
of multi-perspective declarative process models. In: OTM 2018 Conferences, pp.
154–172 (2018)

24. van der Aalst, W., Pesic, M., Schonenberg, H.: Declarative workflows: balancing
between flexibility and support. In: CSRD, pp. 99–113 (2009)

25. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.:
Declarative specification and verification of service choreographies. ACM Trans.
Web 4(1), 3 (2010)

26. Burattin, A., Maggi, F.M., van der Aalst, W.M., Sperduti, A.: Techniques for a
posteriori analysis of declarative processes. In: EDOC, Beijing, pp. 41–50. IEEE,
September 2012

27. Latvala, T., Biere, A., Heljanko, K., Junttila, T.: Simple bounded LTL model
checking. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp.
186–200. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30494-
4 14

28. Tauriainen, H.: Automata and linear temporal logic: translations with transition-
based acceptance, January 2006

https://doi.org/10.1007/978-3-319-09870-8_21
https://doi.org/10.1007/978-3-642-00899-3_16
https://doi.org/10.1007/978-3-642-33606-5_16
https://doi.org/10.1007/978-3-319-46295-0_6
https://doi.org/10.1007/978-3-319-58457-7_5
https://doi.org/10.1007/978-3-319-58457-7_5
https://doi.org/10.1007/978-3-540-30494-4_14
https://doi.org/10.1007/978-3-540-30494-4_14

Detection of Declarative Process Constraints in LTL Formulas 145

29. Namjoshi, K.S.: An efficiently checkable, proof-based formulation of vacuity in
model checking. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
57–69. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9 5

30. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J.
Comput. 6, 323–350 (1977)

https://doi.org/10.1007/978-3-540-27813-9_5

Measures of Quality in Business Process
Modeling

Josef Pavlicek1(B), Petra Pavlickova1, and Pavel Naplava2

1 Faculty of Information Technology, CTU, Zikova 4, Prague 6 - Dejvice,
166 27 Prague, Czech Republic

{josef.pavlicek,petra.pavlickova}@fit.cvut.cz
2 Faculty of Electrical Engineering, CTU, Technicka 2, Prague 6 - Dejvice,

166 27 Prague, Czech Republic
pavel.naplava@fel.cvut.cz

Abstract. Business process modeling is undoubtedly one of the most important
parts of Applied (Business) Informatics. Quality of business process models (dia-
grams) is crucial for any purpose in this area. The goal of a process analyst’s
work is to create generally understandable, explicit, unambiguous and error-free
models. If a process is properly described, created models can be used as an input
into deep analysis and optimization. Optimization is mostly focused on a higher
efficiency of the process or at least on a better clarification of its meaning and
working. Objective: It can be assumed that properly designed business process
models (similarly as in the case of correctly written algorithms) contain charac-
teristics that can be mathematically described. If it is possible to find measurable
attributes of business process model’s quality, it will be possible to define a differ-
ent quality maturity levels of business process modeling results. Furthermore, it
will be possible creating a tool helping process analysts designing proper models.
Method: A systematic literature reviewwas conducted in order to find and analyze
business process model’s design and business process model’s quality measuring
methods. Results: It was found that mentioned area had already been subject
of research investigation in the past. Thirty-three suitable scientific publications
and twenty-two quality measures were found. Conclusions: Analyzed articles and
existing quality measures do not reflect all important attributes of business process
model’s clarity, simplicity and completeness. Therefore it would be appropriate
adding new measures of quality.

Keywords: Business process modeling · Business processes ·Measures of
quality · BPMN

1 Introduction

A project of business processes modeling has been running at the Czech Technical
University in Prague at Faculty of Electrical Engineering (CTU FEE) since 2009 (led
by the Centre for Knowledge Management [1, 2]). Within this project more than 400
business processes in BPMN notation have described. Identical projects (also led by

© Springer Nature Switzerland AG 2019
R. Pergl et al. (Eds.): EOMAS 2019, LNBIP 366, pp. 146–155, 2019.
https://doi.org/10.1007/978-3-030-35646-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35646-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-35646-0_11

Measures of Quality in Business Process Modeling 147

the Centre for Knowledge Management) has been implemented at CTU - Faculty of
Mechanical Engineering, University Centre for Energy Efficient Buildings, University
ofWest Bohemia and Škoda Praha. An increasing demand for the future can be expected
for business process modeling not only in academic, but also in commercial environment
It was empirically encountered various difficulties which stem from deficiencies BPMN
during all mentioned projects [3]. These were mainly:

• Widely varying levels of detail captured business processes among individual creators.
• Changing participant’s role during the execution of one business process.
• The high number of BPMN symbols (tasks, gateways, events, etc.) within a business
process.

• Multiplicity of same BPMN symbols.
• The different levels of the distribution of one business process into multiple sub
processes.

The above-mentioned shortcomings have often led to a redesign of the entire business
process. Therefore, the time required for quality of design and process description was
disproportionately increased, which should be simple, easy to understand, and above all
to clearly demonstrate real execution, including all details.

The goal of this study is to provide a systematic search of the available literature and
to find answers to the following questions:

1. Can the quality of business process models be measured using certain measures,
indicators or other methods?

2. Do any measures, indicators or methods exist?
3. If so, are they used in common practice?
4. If so, are they part of any standards?
5. Is there any standard for presenting business process models?

The meaningfulness of mentioned questions confirms one publication [5] where the
authors deal with similar problems of measuring the quality and effectiveness of ten
thousand processes. For this reason, we decided to arrange for a systematic literature
review in order to find and analyze primary studies about business process modeling and
measures of business process design quality.

2 Research Method

2.1 Search Process

Systematic literature review was performed on the basis of [4]. To ensure quality, we
sought sources in knowledgeable digital libraries. We used the following databases:

• Web of Science
• ACM Digital Library
• EBSCO
• IEEE Xplore

148 J. Pavlicek et al.

• Scopus
• SpringerLink.

The area in which we wanted to perform literature review was the one of process
measures. When we were searching for relevant resources we started from general key-
words such as “Process metrics” and “BPMN measures”. The granularity of the search
was gradually improved by refinement of the keywords. The final form of keywords
stuck at “Process quality metrics” and “Process complexity metrics”. Using these key-
words we found set of relevant resources. In the last step of the search we were able to
specify process metrics using these expressions:

• Process coupling complexity.
• Process cohesion complexity.
• Control flow complexity.

We have also influenced the results of our research by following criteria:

• Publications are available online, in full text.
• Language of publications was limited to English.
• Publications are cited in other publications.
• Publications take the form of scientific work, books or conference publications.

The results of the search were generated in the period from 22nd January 2015 to
24th February 2015 and contains the literary sources published by this date.

3 Results

3.1 Search Results, Data Extraction and Synthesis

During literature reviews we found Thirty-three suitable scientific publications [6–37].
We read each of these publications and selected information regarding to measures of
quality in business processes. Subsequently we found twenty-two measures of quality.
The results of the study sources can be assessed as very relevant and of high-quality.
We searched relevant publications only in the established digital libraries. We therefore
conclude that the quality of the studies is high.

3.2 Measures of Quality

As mentioned above we found twenty-two measures of quality:

1. Number of activities (NOA, NOT) - [5, 8, 10, 11, 19, 20, 30, 32, 35].
2. Control-Flow Complexity (CFC) - [5, 7, 8, 10, 11, 14–17, 19–22, 25, 27, 29–33,

35, 37].
3. Max/mean nesting depth - [19, 20, 32].
4. Number of handles - [19].

Measures of Quality in Business Process Modeling 149

5. Cognitive weight (Cognitive Complexity) - [9, 13, 19, 20, 32, 35].
6. BPM (Anti) Patterns - [19, 20].
7. Fan-in/Fan-out (Modularization) - [11, 19, 20, 35].
8. Coefficient of network complexity (CNC) - [5, 8, 10, 11, 14, 26, 30, 32].
9. Cyclomatic number - [14, 21, 26].
10. Complexity index (CI) - [5, 8, 14, 26].
11. Restrictiveness estimator (RT) - [8, 14, 26].
12. Number of trees in graph - [14, 26].
13. Process Cohesion (TPC, LPC) - [6, 18, 24, 33].
14. Process Coupling (CBO, RFC, MPC, ICP) - [18, 23, 24, 33].
15. Process coupling/cohesion ratio - [18, 24].
16. Halstead-based Process Complexity (HPC) - [8, 10, 11, 25, 32, 33, 35].
17. Interface Complexity (IC) - [8, 10, 11, 32–35].
18. Density - [36].
19. Cross-Connectivity (CC) - [10, 29, 36].
20. CP - [12].
21. GQM - [20].
22. Q0, Q1, Q3 - [28].

The frequency of occurrence of metrics in publications is shown in Fig. 1. The most
widely accepted metrics are (1) the Control-Flow Complexity, (2) number of Activities
and (3) coefficient of network Complexity.

Fig. 1. Frequency of occurrence of metrics in publications.

150 J. Pavlicek et al.

In terms of timewe found publications between 2001 and 2014. Only one publication
has earlier publication date as specified in Fig. 2. Figure 2 shows that the interest in
metrics increased in 2005. Most publications were appearing between 2006 and 2010.

Fig. 2. Number of publications per published year.

3.3 Demographic Data

From a demographic point of view we found out that publications come mostly from
WesternEuropean regions,which indicates an increased interest in this issue, particularly
in countries like the Netherlands and Portugal (Fig. 3).

Fig. 3. Number of publications per state.

3.4 Metrics Implementation

We developed “Metrics calculation software” [40] according to the presented results.
The first version of this software was presented on the EOMAS 2016. From the year
2016 till end of year 2018 we updated the software calculation methods according to
our research [41, 42]. This software is available for free. The software is running in
the application server [41]. The approach for that is via an internet browser. It is not
necessary to install any software into the computer.

Measures of Quality in Business Process Modeling 151

4 Discussion

From the research it is obvious that similar problems are solved by other scientific teams.
As we supposed, a lot of metrics are based on the BPM chart analysis. Typical examples
can be: Number of activities, Control-Flow Complexity etc. The metrics based on the
chart analysis have got deep background in the typical software metrics as: Cyclomatic
number, etc. [14, 21, 26].

It is not easy to use these metrics in the real business at all, because the BPM is
influenced by factors which cannot be found from the BPM chart only. These factors
influence the final business process indirectly.

For example, these factors can be identified according to the actor type used in the
BPM [38, 39]:

• Exactly defined actor (for example students).
• Fuzzy defined actor (for example study department – nobody knows who will serve
study requests – it is ambiguous).

• Black box actor type (for example another system which communicates by defined
interface with the final business process).

Other factors can be identified according to the BPM development team skills:

• Beginners (less than 50 models designed).
• Intermediate (less than 500 models designed).
• Excellent (more than 500 models designed).

And finally, other factors that can be identified according to the BPM requested
company organization type [38, 39]:

1. Organic (organization with excellent knowledge sharing).
2. Semi-detached (organization with mixed quality knowledge sharing).
3. Embedded (organization with problematic knowledge sharing).

In fact the current BPM metrics do not take example from COCOMO [38] and
other methodologies (Function points, Use Case points). These methodologies try to
describe the implementation process more comprehensively. In the Constructive cost
model COCOMO [38], the authors defined cost estimation for the software development.
Although the business process modeling is not software development, we can recognize
some parallels. The parallels are factors which we have defined above. These factors
can influence process modeling significantly. We can supposed to find more factors
influencing the BPM.

The COCOMO [38] defines function count by type, direct quotation:
“The unadjusted function counts should be counted by a lead technical person based

on information in the software requirements and documents design. The number of each
of the five user function types should be counted (Internal Logical File* (ILF), External
Interface File (EIF), External Input (EI), External Output (EO), and External Inquiry

152 J. Pavlicek et al.

(EQ)).” (Fig. 4), [38]. The COCOMO determines the complexity level for function
counts, direct quotation:

“Classify each function count into Low, Average and High complexity levels depend-
ing upon the number of data element types contained and the number of file types
referenced. Use the following scheme” [38].

Fig. 4. Determined function counts by type COCOMO example [38].

Based on the COCOMO approaches we can try to understand the business process
as a chain of activities (parallel with COCOMO functions).

5 Conclusion

From this point of view, it’s very useful to design more business process metrics based
on the factors of realization. Not only based on the BPM chart analysis.

There are examples which we found during the research:

• Actor role is changed twice during the process of applicant study to student. It should
be solved by two actors – Applicant and Student. These roles may follow, but do not
change from one to the other.

• The fuzzy actor responsibility. The typical example is if some important artefact for
the process (for example the invoice) is consumed by the exact actor (director of
accounting department) or the fuzzy actor (accounting department).

• The business process is joined with more processes that can be wrong or ineffective.
In this case the business process can be designed perfectly and quality metrics can
report very positive values, nevertheless the complete system will not be working
effectively.

All these examples cannot be described by the metrics based on the BPM chart
analysis. Similarly as the COCOMO uses attributes of function complexity, we should
try to design new attributes for process complexity from the point of realization. Today
we can suppose the process model designer skills are fundamental. Do we have high or
low skills with modeling processes? These factors are described and used for software
complexity prediction by COCOMO. Maybe it will be useful to define them for the
BPM, too. This questions are still waiting for the answer. To start finding the answer for
them, we developed software tool. All metrics presented in this paper are now covered
viaMetrics calculation software [40]. We worked on that from 2016 till now.We try to
get interested person for some easy way to measure his/her BPMmodel. The volunteers

Measures of Quality in Business Process Modeling 153

are helping us to update implemented metrics. The problem is, the calculation algorithm
that must be robust. The BPM cases are not generating identical output during the model
saving. Thanks to that, we need to make a lot of updates at the software. And in need
time.

References

1. Hronza, R., Špeta, M.: Business Process Center of Excellence at the Faculty of Electrical
Engineering at the Czech Technical University in Prague. In: 2013 IEEE 15th Conference on
Business Informatics, pp. 346–349 (2013)

2. Pavel, N., Radek, H., Jan, K., Josef, P.: How to successfully start the transformation of an
academic institution. Case study on the process mapping project at the Czech Technical
University. In: Complementary proceedings of the 8th Workshop on Transformation & Engi-
neering of Enterprises (TEE 2014), and the 1st InternationalWorkshop onCapability-oriented
Business Informatics (CoBI 2014) co-located with the 16th IEEE International Conference
on B, pp. 1–15 (2014)

3. Van Nuffel, D., Mulder, H., Van Kervel, S.: Enhancing the formal foundations of BPMN by
enterprise ontology. In:Albani,A., Barjis, J., Dietz, J.L.G. (eds.) CIAO!/EOMAS.LNBIP, vol.
34, pp. 115–129. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01915-9_9

4. Kitchenham, B., Charters, S.: Guidelines for performing Systematic Literature Reviews in
Software Engineering (2007)

5. Vanderfeesten, I., Cardoso, J., Mendling, J., Reijers, H.A., Van Der Aalst, W.: Quality metrics
for business process models. In: BPM and Workflow Handbook, pp. 1–12 (2007)

6. Reijers, H.A.: A cohesion metric for the definition of activities in a workflow process. In: Pro-
ceedings EMMSAD (2003). http://www.win.tue.nl/~hreijers/H.A.ReijersBestanden/metric.
pdf. Accessed 01 Feb 2015

7. Fu, X., Zou, P., Ma, Y., Jiang, Y., Yue, K.: A control-flow complexity measure of web ser-
vice composition process. In: Proceedings of 2010 IEEE Asia-Pacific Services Computing
Conference, APSCC 2010, pp. 712–716 (2010)

8. Cardoso, J., Mendling, J., Neumann, G., Reijers, H.A.: A discourse on complexity of process
models. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp. 117–128. Springer,
Heidelberg (2006). https://doi.org/10.1007/11837862_13

9. Shao, J., Wang, Y.: A new measure of software complexity based on cognitive weights “Une
nouvelle métrique de complexité logicielle basée sur les poids cognitifs,” October, vol. 28,
no. 2, pp. 69–74 (2003)

10. Muketha, G.M., Abd Ghani, A.A., Selamat, M.H., Atan, R.: A survey of business process
complexity metrics. Inf. Technol. J. 9, 1336–1344 (2010)

11. Makni, L., Khlif, W., Haddar, N.Z., Ben-abdallah, H.: A tool for evaluating the quality of
business process models overview on current metrics for BPM, pp. 230–242

12. Vanderfeesten, I., Cardoso, J., Reijers, H.A.: A weighted coupling metric for business process
models. In: CEUR Workshop Proceedings, vol. 247, pp. 41–44 (2007)

13. Gruhn, V., Laue, R.: Adopting the cognitive complexity measure for business process models.
In: 2006 5th IEEE International Conference on Cognitive Informatics, vol. 1, pp. 236–241
(2006)

14. Roy, S., Sajeev, A.S.M., Bihary, S., Ranjan, A.: An empirical study of error patterns in
industrial business process models. IEEE Trans. Serv. Comput. 7(2), 140–153 (2014)

15. Parizi, R.M., Ghani, A.A.A.: An ensemble of complexity metrics for BPEL web processes.
In: Proceedings of 9th ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing. SNPD 2008 2nd Int. Work.
Adv. Internet Technol. Appl., pp. 753–758 (2008)

https://doi.org/10.1007/978-3-642-01915-9_9
http://www.win.tue.nl/%7ehreijers/H.A.ReijersBestanden/metric.pdf
https://doi.org/10.1007/11837862_13

154 J. Pavlicek et al.

16. Rolón, E., Cardoso, J., García, F., Ruiz, F., Piattini, M.: Analysis and validation of
control-flow complexity measures with BPMN process models. In: Halpin, T., et al. (eds.)
BPMDS/EMMSAD. LNBIP, vol. 29, pp. 58–70. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-01862-6_6

17. Cardoso, J.: Business process control-flow complexity: metric, evaluation, and validation. Int.
J. Web Serv. Res. 5, 49–76 (2008)

18. Reijers, H.A., Vanderfeesten, Irene T.P.: Cohesion and coupling metrics for workflow pro-
cess design. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080,
pp. 290–305. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25970-1_19.
http://www.processmining.org/_media/publications/reijers2004.pdf. Accessed 01 Feb 2015

19. Gruhn, V., Laue, R.: Complexity metrics for business process models. In: 9th International
Conference on Business Information Systems, pp. 1–12 (2006)

20. Azim, A., Ghani, A., Tieng, K., Geoffrey, W., Muketha, M., Wen, W.P.: Complexity metrics
for measuring the understandability and maintainability of business process models using
goal-question-metric (GQM). J. Comput. Sci. 8(5), 219–225 (2008)

21. Lassen, K.B., van der Aalst, W.M.P.: Complexity metrics for Workflow nets. Inf. Softw.
Technol. 51(3), 610–626 (2009)

22. Cardoso, J.: Control-flow complexity measurement of processes and Weyuker’s properties.
In: 6th International Conference on Enformatika, vol. 8, no. 8, pp. 213–218 (2005)

23. Khlif, W., Zaaboub, N., Ben-Abdallah, H.: Coupling metrics for business process modeling.
WSEAS Trans. Comput. 9, 31–41 (2010)

24. Vanderfeesten, I., Reijers, H.A., van der Aalst, W.M.P.: Evaluating workflow process designs
using cohesion and coupling metrics. Comput. Ind. 59, 420–437 (2008)

25. Solichah, I., Hamilton, M., Mursanto, P., Ryan, C., Perepletchikov, M.: Exploration on soft-
ware complexity metrics for business process model and notation. In: 2013 International
Conference on Advanced Computer Science and Information Systems, pp. 31–37 (2013)

26. Latva-Koivisto, A.M.: Finding a complexity measure for business process models. Complex-
ity (2001). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.2991&rep=
rep1&type=pdf. Accessed 01 Feb 2015

27. Cardoso, J.: How to measure the control-flow complexity of web process and workflows. In:
Workflow Handbook 2005, pp. 199–212 (2005)

28. Huang, Z., Kumar, A.: New quality metrics for evaluating process models. In: Ardagna, D.,
Mecella, M., Yang, J. (eds.) BPM 2008. LNBIP, vol. 17, pp. 164–170. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00328-8_16

29. Vanderfeesten, I., Reijers, H.A., Mendling, J., van der Aalst, W.M.P., Cardoso, J.: On a quest
for good process models: the cross-connectivity metric. In: Bellahsène, Z., Léonard, M. (eds.)
CAiSE 2008. LNCS, vol. 5074, pp. 480–494. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-69534-9_36

30. Mendling, J., Neumann,G., VanDerAalst,W.M.P.: On the correlation between processmodel
metrics and errors. In: 26th International Conference on Conceptual Modeling, pp. 173–178
(2007)

31. Cardoso, J.: Process control-flow complexity metric: an empirical validation. In: Proceedings
- 2006 IEEE InternationalConference onServicesComputing, SCC2006, pp. 167–173 (2006)

32. Kluza, K., Nalepa, G.J.: Proposal of square metrics for measuring business process model
complexity. In: Federated Conference on Computer Science and Information Systems,
pp. 919–922 (2012)

33. Khlif,W.,Makni, L.: Qualitymetrics for business processmodeling. In: Proceedings of the 9th
WSEAS International Conference on Applied Computer Science, vol. 9, no. 1, pp. 195–200
(2009)

34. Henry, S., Kafura, D.: Software structure metrics based on information flow. IEEE Trans.
Softw. Eng. SE-7(5), 510–518 (1981)

https://doi.org/10.1007/978-3-642-01862-6_6
https://doi.org/10.1007/978-3-540-25970-1_19
http://www.processmining.org/_media/publications/reijers2004.pdf
http://citeseerx.ist.psu.edu/viewdoc/download%3fdoi%3d10.1.1.25.2991%26amp%3brep%3drep1%26amp%3btype%3dpdf
https://doi.org/10.1007/978-3-642-00328-8_16
https://doi.org/10.1007/978-3-540-69534-9_36

Measures of Quality in Business Process Modeling 155

35. Thammarak, K.: Survey complexity metrics for reusable business process. In: National
Conference on Applied Computer Technology and Information System, pp. 18–22 (2010)

36. Mendling, J.: Testing density as a complexity metric for EPCs. In: Analysis (2006)
37. Sánchez-González, L., Ruiz, F., García, F., Cardoso, J.: Towards thresholds of control flow

complexity measures for BPMN models. In: Proceedings of the 2011 ACM Symposium on
Applied Computing, pp. 1445–1450 (2011)

38. Boehm, B., Clark, B., Horowitz, E., Westland, Ch., Madachy, R., Selby, R.: Cost models for
future software life cycle processes: COCOMO 2.0. Ann. Softw. Eng. 1(1), 57–94 (1995)

39. Pavlicek, J.: The estimation of managerial characteristics of IS development in the stage of
requirements specification, Pavlicek Ph.D. work, CULS-2006

40. Pavlicek, J., Hronza, R., Pavlickova, P.: Educational business process model skills improve-
ment. In: Pergl, R., Molhanec,M., Babkin, E., FossoWamba, S. (eds.) EOMAS 2016. LNBIP,
vol. 272, pp. 172–184. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49454-
8_12. ISBN 978-3-319-49454-8

41. Pavlicek, J., Hronza, R., Pavlickova, P., Jelinkova, K.: The business process model quality
metrics. In: Pergl, R., Lock, R., Babkin, E., Molhanec, M. (eds.) EOMAS 2017, vol. 298,
pp. 134–148. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68185-6_10. ISBN
978-3-319-681849

42. Pavlicek, J., Pavlickova, P.: Methods for evaluating the quality of process modelling tools.
In: Pergl, R., Babkin, E., Lock, R., Malyzhenkov, P., Merunka, V. (eds.) EOMAS 2018.
LNBIP, vol. 332, pp. 171–177. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
00787-4_12. ISBN 978-3-030-00787-4

https://doi.org/10.1007/978-3-319-49454-8_12
https://doi.org/10.1007/978-3-319-68185-6_10
https://doi.org/10.1007/978-3-030-00787-4_12

Performance Impact to the Applying Design
Patternization Techniques to Object-Relational

Databases

Boris Schegolev1(B), Himesha Wijekoon1, Jakub Štěpán Novák2,
and Vojtěch Merunka1,3

1 Faculty of Economics and Management, Department of Information Engineering,
Czech University of Life Sciences Prague, Prague, Czech Republic

{schegolev,wijekoon,merunka}@pef.czu.cz,
vojtech.merunka@fjfi.cvut.cz

2 Faculty of Economics and Management, Department of Information Technology,
Czech University of Life Sciences Prague, Prague, Czech Republic

novakjakub_stepan@pef.czu.cz
3 Faculty of Nuclear Sciences and Physical Engineering, Department of Software Engineering,

Czech Technical University in Prague, Prague, Czech Republic

Abstract. This paper looks at performance aspects of applying object-oriented
design patterns to databasesmainly on the level of computational complexity. Con-
sidering selected patterns that may be applied on both application and database
layer, algorithm complexity is evaluated. The authors focus on purely theoreti-
cal computational complexity of given algorithms and presents our preliminary
research in this area which tries to be independent on individual database ven-
dors and their particular implementations leading to a simple apple-to-apple com-
parison of the performance impact to the applying of the given patternization
technique.

Keywords: Object-oriented database · Relational database · Database
performance · Execution complexity · Design patterns

1 Introduction

Object orientation is considered one of the most important paradigms in software engi-
neering in the last several decades. It came with an important advancement in the
form of wide application of design patterns to support chosen solutions. With the
object-related support in the databases, it became possible to transfer object-oriented
models into databases including translation of corresponding design patterns and their
reimplementation on database layer.

Unfortunately, after the initial hopes of the 1990s (as written in [2, 11] and similar
books from that time), we still do not have a wide use of object-oriented databases and
the use of object-oriented design patterns has proven to be rather a complication than
a benefit. Great progress has been made in the field of the object-oriented theory (for
example [1]), but all the new advantages of the object-oriented approach are based on
behavioral and functional features,making themvery little usable in database technology.

© Springer Nature Switzerland AG 2019
R. Pergl et al. (Eds.): EOMAS 2019, LNBIP 366, pp. 156–163, 2019.
https://doi.org/10.1007/978-3-030-35646-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35646-0_12&domain=pdf
https://doi.org/10.1007/978-3-030-35646-0_12

Performance Impact to the Applying Design Patternization Techniques 157

2 Motivation

Database technology was always led by the effort to meet the requirements imposed by
practical applications. Today, the most used programming paradigm on the client-side
of database systems is the object orientation for many positive reasons. However, at
the server-side still remain a relational database. Of course, there is some remarkable
tendency to extend the relational database with various functions, for example, the pos-
sibility of direct representation of complex data types or return to the network-like (e.g.
graph) databasemodelwith direct pointers among database records but the old prognoses
did not come true.

Current systems integrate the database technologywith the object-oriented paradigm
which was developed in the area of programming languages and graphical user inter-
faces. This trend is driven by industrial development even though there are not yet strong
and consolidated theoretical foundations for database design. Although, from a technical
point of view, an object-oriented database is a return back to network databases and/or
graph databases that have been known and used since the 1960s, the theoretical tools
for their design do not use the experience of that time, but only object-oriented appli-
cation programming which are, however, useful only for constructing software running
in memory and not automatically applicable with the same positive effect in large data
collections on disks and multiuser and transactional data processing modes.

However, also the pure object-oriented databases are not a suitable environment for
applying object-design patterns. This is due to the fact that object-oriented programming
design patterns assume that objects are stored in the random access memory (RAM)with
direct pointer access, just as it is in object-oriented application programming languages.
But object-oriented databases have a different memory model (derived from network
and graph databases) and cannot use the benefit from placing all their objects in the
standardRAM. In addition, databases have large datasetswhereweneed to search objects
using their different attribute values which are dynamically calculated just because of
design patterns and cannot be easily indexed. We believe that this is the reason for the
remaining small practical usage of pure object-oriented databases and, on the contrary,
the popularity of a hybrid model with object-oriented client having data in a relational
database server using some object-relational interface. But even this hybrid solution does
not help to solve design pattern problems.

3 Object-Relational Performance

Mapping between client-side objects and serve-side records in relational tables is a
well-known weak point of most practical database applications [12]. Although pure
object databases allow objects to be stored directly on the server without transformation,
but with the above reasons, this solution does not bring any significant increase in
performance. We only get good results here when the object database just emulates the
static graph of interconnected records as we used it in network databases from the past
[13].

158 B. Schegolev et al.

3.1 Language Call Complexity

Measuring algorithmic complexity in procedural languages is well defined. Also, there
are known theoretical complexities for common data structures. For description of such
complexities Bachman’s and Landau’s Big O notation is used. In the context of this
paper, it is important to understand that Big O is most relevant to working with large
collection of data and is used to classify algorithms according to how their running time
(and also memory space usage) grow with the size of input collection [3, 9].

Another thing is that the complexity of individual language calls (going through the
current language statement to the next one, i.e. cyclomatic complexity) is may be easily
identified when working with procedural languages. Databases focus on collection-
wide operations, so Big O provides a better overview of how demanding given changes
may be.

3.2 Execution Plan

Execution plan generated for a given query in a database depends largely on the specific
optimization technique implemented by the given vendor. Furthermore, execution plans
rely on cost-based optimization, which leads to an approximation of a real performance
impact into the database, that are also vendor-dependent [4]. For purposes of this paper,
a theoretical computational complexity has to be formulated so that there can be found
a simple apple-to-apple comparison of the performance impact.

4 Object Patterns in Databases

Reference to application of object-oriented patterns to non object-oriented databases
is somewhat remote. This is due to the fact that SQL-based databases do not pro-
vide direct support for class definition and instantiation. A certain level of abstraction
is required to make application of certain groups of patterns possible on a relational
database management system (RDBMS) directly.

In application context it may be assumed that application-level business objects
are mapped to tabular structures of SQL databases. Generally speaking, entities cor-
respond to classes. This also translates applied structural and behavioral patterns to
the database layer. We may further assume that selected object-oriented patterns are
generally applicable in database context.

4.1 Adapter/Bridge

What it is in Object World. Converts the interface of a class into another interface
clients expect [7]. Implementation of these patterns lets classes work together that
couldn’t otherwise because of incompatible interfaces. These patterns are demonstrated
in Figs. 1 and 2 respectively.

What it is in Database World. Adapter/Bridge patterns may be implemented as a
functional call over individual rows or returned values. For conformity, the result may
be wrapped in a view or a procedure output.

Performance Impact to the Applying Design Patternization Techniques 159

Fig. 1. Adapter

Fig. 2. Bridge

Processing of functional calls over individual rows/values are rather slow. They may
not be cached or indexed or otherwise optimized.

Complexity. Assuming there are no queries going back into the same table within
the functional call, it is safe to say that the computational complexity remains same:
O(n) for sequential search and O(logb(n)) for indexed search, where b is the basis of
logarithm and n is the size of collection. For a typical b-tree index, this is about 5. It
also needs to be stated that in case a search is happening on the result value, usage of
index to retrieve the value is effectively prevented. Thus, even for indexed columns the
algorithmic complexity stays linear computational complexity O(n).

The different issue is that in the real world there are multiple other factors that come
into consideration. For example, memory requirements to run per-row calculations may
also become an issue, as in the cases considered here all processes happen within a single
transaction.

160 B. Schegolev et al.

4.2 Decorator

What it is in Object World. Decorator attaches additional responsibilities to an object
dynamically [8]. This provides a flexible alternative to sub-classing for extending
functionality. Decorator pattern is illustrated in Fig. 3.

Fig. 3. Decorator

What it is in Database World. The implementation of this design pattern is done by
simply JOINing individual data collections into larger blocks for behavioral extension.

If we consider a normalized relationship defined by a numeric key reference, we end
up with an index-based search or a nested loop.

Complexity. The join complexity depends on the algorithmused,which further depends
on statistics and index availability. It is generally considered to be between the best
possible value of O(1) for the ideal hash joins, O(logb(n)) for index loops and O(n) for
only sequence scans.

Technically, the concept of unifying different classes for extended functionality is
one of the things RDBMSwere specifically designed for. For simple cases of class use in
context of the Decorator pattern the efficiency is very high and requires no further fine-
tuning. Of course, in cases of awkward design, the composition may build on another
composition, degrading the performance near to O(n).

4.3 Observer

What it is in Object World. Observer defines a one-to-many dependency between
objects so that when one object changes state, all its dependents are notified and updated
automatically [7]. This pattern is depicted in Fig. 4.

Performance Impact to the Applying Design Patternization Techniques 161

Fig. 4. Observer

What it is in Database World. Here we intentionally skip the notify-listen approach
provided by some RDBMS vendors [6]. This is because the notification system does
not handle collections as classes in OOP understanding, thus rendering the matching of
individual points between OOP and database implementations impossible.

Alternatively, given concept is achieved through assigning triggers to data collec-
tions. The minor difference in understanding is that SQL natively works with collections
(classes) and processing individual entities is donewith application of filtering conditions
on processing instructions.

Complexity. The semantic approach to implementation of the Observer pattern largely
resembles the concept used in case of Adapter/Bridge patterns. In both described situa-
tions individual rows require further functional calls per individual instance (row being
processed). In this case though, the algorithm may not be optimized to use better than
O(n) complexity due to the fact that every individual value is being forwarded to the
functional call.

5 Discussion

It has been shown that some object-oriented patterns may be translated to databases. We
recognized that performance impact differs from one pattern to another. Performance
may be measured using standard tools and notations, so application of a pattern, too.
We used a limited tool set (Big O notation), yet other complexity estimates may further
refine the results.

Based on our analysis, we can assemble a list of database-friendly design patterns.
The main criterion will be their influence on computational complexity, which cannot be
worse than logarithmic. A worse-than-logarithmic patterns should not be used because
they invoke too long computational time when used in large collection of data. The
important question remains if such patterns should be generally avoided or replaced with

162 B. Schegolev et al.

something else. The example of these patterns is Observer. It is our practice to limit the
use of triggers particularly due to performance reasons. Another example of database-
unfriendly pattern is Adapter/Bridge which can be updated to store lazy initialized data
(e.g. creation and writing in the first time when it is needed) in multiple forms, so that a
different projection replaces a functional call. It is possible to make the same functional
call, store the result as a new column, and then provide different “views” on the same
data set. The results are summarized in Table 1.

Table 1. The results

The worse comp. complexity Is database-friendly Proposed strategy

Adapter O(n) No Replace by multiple lazy
initialized data

Bridge O(n) No Replace by multiple lazy
initialized data

Observer O(n) No Avoid usage

Decorator O(logb(n)) Yes No need

6 Conclusion

In our text, we have described the cause of the remaining small extension of pure object-
oriented databases in practice and the difficulties that programmers have to deal with
in the case of a hybrid model consisting of an object-oriented database client and a
relational database server.

We believe that the solution must be found not only in the new technical possibilities
of object indexing in the object-oriented database systems, but also in the search for new
database-friendly object-oriented design patterns.

Our future work will focus on the empirical justification of our statements and the
search for new design patterns and validate them in the GemStone/S v6.7.1 database
server environment.

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. Springer, New York (1998)
2. Bertino, E., Martino, L.: Object-Oriented Database Systems. Addison-Wesley, Wokingham

(1993)
3. Black, P.E.:Big-Onotation.DictionaryofAlgorithms andDataStructures.U.S.National Insti-

tute of Standards and Technology (2019). https://xlinux.nist.gov/dads/HTML/bigOnotation.
html. Accessed 31 Mar 2019

4. Chaudhuri, S.: Query optimizers: time to rethink the contract? In: Binnig, C., Dageville, B.
(eds.) Proceedings of the 2009 ACM SIGMOD International Conference on Management
of Data (SIGMOD 2009), pp. 961–968. ACM, New York (2009). https://doi.org/10.1145/
1559845.1559955

https://xlinux.nist.gov/dads/HTML/bigOnotation.html
https://doi.org/10.1145/1559845.1559955

Performance Impact to the Applying Design Patternization Techniques 163

5. Date, C.J.: An Introduction to Database Systems. Addison-Wesley, Reading (1995)
6. Fontaine, D.: Mastering PostgreSQL in Application Development. Lulu.com (2017). ISBN

978-024494525
7. Freeman, E., Freeman, E., Sierra, K., Bates, B.: Head First Design Patterns (paperback),

p. 244. O’Reilly Media, Sebastopol (2004). ISBN 978-0-596-00712-6. OCLC 809772256
8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software with a foreword of Grady BOOCH. Addison-Wesley Professional,
Reading (1995). ISBN 978-0201633610

9. Knuth, D.: Chapter 1.2.11: Asymptotic representations. Fundamental algorithms. In: The
Art of Computer Programming, vol. 1, 3rd edn. Addison-Wesley, Reading (1997). ISBN
978-0-201-89683-1

10. Gemstone: GemStone/S v6.7.1 Programming Guide, GemStone Systems, Inc. (2018)
11. Loomis, M.: ODBMS vs. relational. J. Object-Oriented Program. 3, 79–82 (1990)
12. Loomis, M.: Hitting the relational wall. J. Object-Oriented Program. 7, 56–59 (1994)
13. Taylor, R.W., Frank, R.L.: CODASYL Database Management Systems. ACMComput. Surv.

8(1), 67–103 (1976)

Invited Workshop Notes

Business Process Models (BPMN and DEMO
Notation) - Usability Study

Petra Pavlickova(B) and Josef Pavlicek

Faculty of Information Technology, CTU, Zikova 4, Prague 6 - Dejvice,
166 27 Prague, Czech Republic

{Petra.Pavlickova,Josef.Pavlicek}@fit.cvut.cz

Abstract. This paper deals with the comparison of BPMN and DEMO process
modelling tools in the form of Usability study. The authors present the methods
used to compare, define the appropriate equipment of the laboratory and propose
the CASE study model. The results from the two CASE studies performed are
critical and define the conclusion. The result is a recommendation when it is
advisable to use BPMN and when DEMO. Another result is the proposed method
of verification of process modelling tools.

Keywords: BPMN · DEMO · Eye tracking · Usability study · Process modelling
tools

1 Introduction

Over the years, our teamhas addressed a number of issues regarding the quality of process
models that have been published at EOMAS [1, 2], but also in journals and scientific
articles [3–8]. We discussed the BPMN notation in great detail [9, 10]. Our team has
proposed a number of methods to measure and qualitatively verify the quality of process
models [3]. We have demonstrated the possibility of using well-known techniques to
follow the classical Usability Study method as reported by Jacob Nielsen with his team
[15, 16, 21]. In addition to this approach, we suggested using methods published by
Josef Pavlíček, Petra Pavlíčková, RadekHronza etc. [1–3]. Unlike conducting a usability
study by Jacob Nielsen, they work with a large number of participants in the study. This
principle is called collaborative. We have designed the collaborative title [17] based
on experience from a number of studies. These have demonstrated effective interaction
between participants during the study.

The classical approach is based on the assumption that the participant is enclosed in
the room itself. There is only amoderator in his presence and only if the participant needs
some help. Some variations of usability studies allow testing two separate participants at
one time. However, the basic assumption of the study lies in the so-called voice thinking.
Simply solved, the participant says what they are thinking. This will allow one or two
participants to test the task at one time.

The collaborative approach focuses on the interaction of participants with the prob-
lem addressed [17]. To achieve this, the environment in which the participants are placed

© Springer Nature Switzerland AG 2019
R. Pergl et al. (Eds.): EOMAS 2019, LNBIP 366, pp. 167–174, 2019.
https://doi.org/10.1007/978-3-030-35646-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35646-0_13&domain=pdf
https://doi.org/10.1007/978-3-030-35646-0_13

168 P. Pavlickova and J. Pavlicek

must be appropriately oriented. A HUBRU usability laboratory [17] located on CULS
is provided for this purpose. These workstations orientation allows us to test a task with
up to 10 participants at a time. Two workstations are also equipped with eye tracking
tools. This also strengthens the qualitative outcome of the study, where the participants’
statements obtained by the final interview are supported by a record of eye movement.
In addition, we have also presented this practice last year at the EOMAS 2018 [23].
conference in addition to scientific articles and scientific papers [1–8].

Several interesting effects occur during the study. These can be classified by the
following scale:

• Uncertainty - originates either in a wrong assignment, or in a lack of participant’s
mental capacity during a task, or an error in Usability. Uncertainty manifests itself in
the effort to cooperate with “copying” from colleagues sitting side by side.

• Rapture - The participant is surprised by the GUI response and falls out of con-
centration. It manifests itself either by voice expression or very often by facial
expression.

• Blocking - the participant is unable to continue. This is either due to a gross mistake
in entering the test scenario, or a manifest violation of the participant’s mental model
by responding to the graphical interface.

• Frustration - its manifestation is loud commenting on the currently solved task.

The participant intuitively awaits cooperation with the environment that “has to have
the same problem” (and very often does). There is a heated debate. This is obviously a
GUI error (or a totally inappropriate test scenario).

In the case of collaborative testing, we do not evaluate or gradualize these grades.
We are wondering whether or not it has occurred. These are in fact absolute scales. If
so, it becomes a hypothesis for the researcher. This hypothesis must be confirmed or
excluded in interviews with participants.

Furthermore, the collaborative approach allows the study to be conducted using the:

• Heuristic - here we monitor whether the participant goes through all steps of the test
scenario in the required order and is not disturbed by improper GUI behaviour.

• Cognitive - here we see if the user interface is sufficient to perform the test task. We
are more interested in whether it will intuitively reveal (or whether its GUI itself will
guide) the correct path and solve the task.

In the collaborative approach we also find the possibility of so-called pair testing
[5, 6], where one task is solved by a pair of participants. Their interaction is required.

Collaborative procedures, or a mix of collaborative and classical Jacobs’ Nielsen
testing will allow us to answer our questions:

What is the general user friendliness of business process modelling tools BPMN
[9, 10] and for example BORM [11, 22].

These questions are probably important and arewaiting to be answered.One example
is scientificwork, which deals with the quality of processmodels and the implementation
of DEMOmethodology. Its title is: “An empirical study of the application of the DEMO
method for improving BPMN process models in academia” [14]. It is clear from the
authors’ work that simplification of process models is desirable for many reasons. After

Business Process Models (BPMN and DEMO Notation) - Usability 169

all, we studied and presented this problem with our team last year [23]. A similar prob-
lem is currently going through conceptual modelling tools such as OntoUML [12] and
UML [13].

2 Materials and Methods

In order to determine the scale which, we can determine the quality of the tool, we must
define the basic attributes of the measurement. Here we suggest to inspire of the Nielsen
Norman Group [15] and consider it as a crucial standard of quality of the Usability
process modelling tool.

Definition of Usability [15] “Usability is a quality attribute that assesses how easy
user interfaces are to use. The word “usability” also refers to methods for improving
ease-of-use during the design process”.

Usability has 5 attributes [15]:

• Learnability: How easy is it for users to accomplish basic tasks the first time they
encounter the design?

• Efficiency: Once users have learned the design, how quickly can they perform tasks?
• Memorability: When users return to the design after a period of not using it, how
easily can they re-establish proficiency?

• Errors: How many errors do users make, how severe are these errors, and how easily
can they recover from the errors?

• Satisfaction: How pleasant is it to use the design?

The Usability test [15–17] was performed according to the Collaborative Testing
Guidelines [1, 17] in the Usability Lab [17] by the method of collecting defined mea-
surement attributes. This was successfully used for the purpose of designing the quality
of process models [1–7]. The usability test has also been enhanced with Eye tracking,
which is currently supported by Tobii Tech [18]. The tool is part of HUBRU [17] and
the results from its activities were published by J. Pavlíček, Švec et al. scientific papers
[19, 20] or by the team J. Pavlíček, P. Pavlíčková at the EOMAS 2018 [23].

2.1 Laboratory Measurement Architecture

The HUBRU lab in which the measurements are made was follow the following
architecture:

• Observing room

– 4 environmental camcorders
– 10 Pc with face camcorder, screen recording, voice recording,
– 2 pc with eye tracking

• Control room

170 P. Pavlickova and J. Pavlicek

Fig. 1. Collaborative usability lab [17]

• Recorders for all pc, control monitors etc.

As can be seen from the Fig. 1, two workstations were equipped with an eye tracking
system. Here it is possible to record the course of the study at the speed of tens of frames
per second. Of course, the accuracy of the system depends on the original setting, but
also on the actual need of the researcher or research group.

2.2 Eye Tracking System

During the workshop our team presented an eye-tracking camera system used in the
study problems [1–7]. That help us to monitor the orientation of the participant’s view.
These results are graphically presented – Fig. 2.

Fig. 2. Process model tracked by Eye tracking system (Color figure online)

Business Process Models (BPMN and DEMO Notation) - Usability 171

As the sample picture shows Figs. 2 and 3, participant focuses from delivery activity
to process finish and returned back into Receive payment for pizza. On this activity he
spends long time (the red circle is increasing).

Fig. 3. Process model understanding test (Color figure online)

Of course, this model is simple, but it shows which values we can read from the
concrete test. However, in previous papers [1–7] we used this tool to design process
steps and the results were satisfactory [23].

Figure 3 shows the participant’s concentration on the test case and its solution by
reading and understanding the process model on the right side of the screen.

2.3 Usability Test

The Usability test is compound from:

1. UI test definition – defines study goals (to improve graphical user interface, find
usability issues etc.).

2. User groups or personas definition – defines consumers goal of the product (User
Groups – ideal for common application as internet web pages used for huge mas of
the users, Personas – for deeply user focused applications as apps formobile devices)

3. UI test - defines type of the usability study (heuristic or cognitive)
4. The post–test interview – tries to highlight findings gained during the UI Test.
5. The usability issues definition – defines gaps in the UI, improve recommendation

etc. (Fig. 4)

3 Results

During our workshop presentation we performed Usability study for two notations
(BPMN, Demo). The Usability study shows, the UX approaches are valid for evalu-
ation the process model quality (mainly usability). The presented models Fig. 5 were
tested via the Usability test methodology presented above.

172 P. Pavlickova and J. Pavlicek

Fig. 4. Usability test steps

The important step of Usability study is to fill the questionnaire. This method helps
us to recognize, if the participant’s understand the process (Fig. 6).

At the end of the Usability study we performed the final interviews. During that
we highlighted the observed usability issues. We gained important suggestions from the
process model areas and suggestions how to improve the used methodology.

Fig. 5. BPMN and DEMO notation examples

Business Process Models (BPMN and DEMO Notation) - Usability 173

Fig. 6. The model quality verification

4 Conclusion

There have been several studies of different business models in the past, some focused-
on DEMO, BORM and others on BPMN. It can be concluded from this research that
there are merits and demerits to both Business Models focused on in this work. There
are also some similarities between them. These demerits, merits and similarities have
been expatiated above.

Overall, even based on interviews, we can state that the Usability testing method can
be used to measure, evaluate and design metrics for the process model quality.

References

1. Pavlicek, J., Hronza, R., Pavlickova, P., Jelinkova, K.: The business process model quality
metrics. In: Pergl, R., Lock, R., Babkin, E.,Molhanec,M. (eds.) Enterprise andOrganizational
Modeling and Simulation. LNBIP, vol. 298, pp. 134–148. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-68185-6_10. ISBN: 978-3-319-68184-9

2. Pavlicek, J., Hronza, R., Pavlickova, P.: Educational business process model skills improve-
ment. In: Pergl, R., Molhanec,M., Babkin, E., FossoWamba, S. (eds.) EOMAS 2016. LNBIP,
vol. 272, pp. 172–184. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49454-
8_12

3. Hronza, R., Pavlíček, J., Náplava, P.: Míry kvality procesních modelů vytvořených v notaci
BPMN. Acta Inform. Pragensia 4(2), 140–153 (2015)

4. Jelínková, K.: Návrh měr kvality obchodních procesních modelů. Czech Technical University
in Prague (2017)

https://doi.org/10.1007/978-3-319-68185-6_10
https://doi.org/10.1007/978-3-319-49454-8_12

174 P. Pavlickova and J. Pavlicek

5. Lassaková, M.: Návrh a tvorba měr pro výpočet kvality procesních modelů. Czech Technical
University in Prague (2016)

6. Neumann, M.: Míry kvality procesních modelů. Czech Technical University in Prague (2016)
7. Hronza, R., Pavlíček, J., Mach, R., Náplava, P.: Míry kvality v procesním modelování. Acta

Inform. Pragensia 4(1), 18–29 (2015)
8. Mach, R.: Návrh a tvorba nástroje pro optimalizaci procesů na základě analýzy BPMmodelů.

Czech Technical University in Prague (2015)
9. Bruce, S.: BPMN Method and Style. Cody-Cassidy Press, Aptos (2011)
10. OMG: Business Process Model & Notation (BPMN) (2016). http://www.omg.org/bpmn/

index.htm. Accessed 21 Mar 2017
11. Knott, R., Merunka, V., Polak, J.: The BORM methodology: a third-generation fully object-

oriented. Knowl. Based Syst. (2003). https://doi.org/10.1016/S0950-7051(02)00075-8
12. Bassetto, L.: OntoUML Specification. http://ontology.com.br/ontouml/spec/
13. OMG: Unified Modeling Language (UML) (2008). http://www.uml.org
14. Náplava, P., Pergl, R.: Empirical study of applying the demo method for improving bpmn

process models in academic environment. In: Proceedings of the 17th IEEE Conference
on Business Informatics, pp. 18–26. IEEE Operations Center, Piscataway (2015). ISBN:
978-1-4673-7340-1

15. Nielsen Norman Group: Evidence-Based User Experience Research. https://www.nngroup.
com/

16. Nielsen, J.: Why you only need to test with 5 users. Jakob Nielsens Alertbox, vol. 19, pp. 1–4
(2000)

17. Pavlicek, J., Bock, R.: Collaborative Usability lab design and methodology to use that, part
of HUBRU (2017). http://hubru.pef.czu.cz

18. Tobii Tech: Eye tracking. https://www.tobii.com/tech/technology/what-is-eye-tracking
19. Pavlicek, J., Svec,V., Pavlickova, P., Kreckova, J.: FactOrEasy©Game. In: ERIE 2016 (2016).

ISBN: 978-80-213-2646-0. WOS: 000389901400056
20. Svec, V., Pavlicek, J., Ticha, I., Kreckova, J.: FactOrEasy©: art and craft of management? In:

ERIE 2016 (2016). ISBN: 978-80-213-2646-0. WOS: 000389901400072
21. Nielsen, J., Mack, R.L.: Usability Inspection Methods. Wiley, New York (1994). ISBN: 0-

471-01877-5
22. Merunka, V.: Object-oriented process modeling and simulation – borm experience. Trakia J.

Sci. 8(8), 71–87 (2010). http://www.uni-sz.bg
23. Pavlicek, J., Pavlickova, P.: Methods for evaluating the quality of process modelling tools.

In: Pergl, R., Babkin, E., Lock, R., Malyzhenkov, P., Merunka, V. (eds.) EOMAS 2018.
LNBIP, vol. 332, pp. 171–177. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
00787-4_12

http://www.omg.org/bpmn/index.htm
https://doi.org/10.1016/S0950-7051(02)00075-8
http://ontology.com.br/ontouml/spec/
http://www.uml.org
https://www.nngroup.com/
http://hubru.pef.czu.cz
https://www.tobii.com/tech/technology/what-is-eye-tracking
http://www.uni-sz.bg
https://doi.org/10.1007/978-3-030-00787-4_12

Author Index

Bobkowska, Anna E. 99

Jablonski, Stefan 131

Käppel, Martin 131
Kirikova, Marite 60
Knaisl, Vojtěch 70

Merunka, Vojtěch 29, 156
Molhanec, Martin 18

Naplava, Pavel 146
Novák, Jakub Štěpán 156

Pavlicek, Josef 146, 167
Pavlickova, Petra 146, 167
Pergl, Robert 82
Petter, Sebastian 131

Schegolev, Boris 156
Schönig, Stefan 131
Schützenmeier, Nicolai 131
Šenkýř, David 121
Shegolev, Boris 29
Slifka, Jan 43
Suchánek, Marek 3, 43, 82

Wijekoon, Himesha 29, 156

	Preface
	A Little Semi-round Retrospective
	Organization
	Contents
	Conceptual Modelling
	Designing an Ontology for Semantic Integration of Various Conceptual Models
	1 Introduction
	2 Related Work and Terminology
	2.1 Conceptual Modelling
	2.2 Ontology Mapping, Alignment, and Matching
	2.3 Description-Logics Based Ontologies
	2.4 Matching in OWL
	2.5 Ontology for Conceptual Modelling
	2.6 Model Transformations
	2.7 Existing Ontologies for Modelling Languages
	2.8 Meta-modelling and MOF

	3 Our Approach
	3.1 General Requirements
	3.2 Technologies and Formats
	3.3 Ontology for Conceptual Models Integration
	3.4 Distribution
	3.5 Relations with Upper Ontologies

	4 Evaluation
	4.1 Evolvability
	4.2 Versatility
	4.3 Possibilities for Adoption
	4.4 Availability and FAIRness

	5 Future Work and Research Ideas
	5.1 More Modelling Languages
	5.2 Formal Specifications
	5.3 Similarity and Expressiveness of Modelling Languages
	5.4 Implementation Models and Transformations

	6 Conclusion
	References

	Conceptual Normalisation in Software Engineering
	1 Introduction
	2 Motivation and Problem Statement
	3 Presumptions and Our Approach
	3.1 Uniqueness and Identity
	3.2 The Conceptual Object and Its Features
	3.3 The Base for Conceptual Normalisation
	3.4 Definition of Redundancy

	4 Results: Proposals of Conceptual Normal Forms (CNFs)
	4.1 CNFs in Relation to Relational Normal Forms (RNFs)
	4.2 CNFs in Relation to Object Normal Forms (ONFs)

	5 Conclusion and Future Works
	References

	Object-Oriented Class Normalisation from a Conceptual Modelling Perspective
	1 Introduction
	2 Motivation
	3 Current Approaches to the Object-Oriented Class Normalisation
	4 Ambler’s Approach to the Object-Oriented Class Normalisation
	5 Class Inheritance
	6 Our Proposal for Extension of Object-Oriented Class Normalisation
	7 Discussion
	8 Conclusion
	References

	Enterprise Engineering
	Evolvable and Machine-Actionable Modular Reports for Service-Oriented Architecture
	1 Introduction
	2 Related Work
	2.1 SOA and Microservices
	2.2 Messaging in SOA
	2.3 Machine-Actionability
	2.4 RDF and OWL
	2.5 JSON-LD
	2.6 Schema.org
	2.7 Normalized Systems Theory
	2.8 Data Stewardship Wizard

	3 Our Approach
	3.1 Reports
	3.2 General Requirements
	3.3 Selected Technologies for Implementation
	3.4 Original Report Format
	3.5 Modularity and Reusability of Reports
	3.6 Transformation of Report Schema
	3.7 The New Report
	3.8 Workflow of Reports Processing

	4 Evaluation
	4.1 Versatility
	4.2 Interoperability
	4.3 Machine-Actionability
	4.4 Evolvability

	5 Future Work
	5.1 Application in Data Stewardship Wizard
	5.2 Enhancements with Specialized Modules
	5.3 Support for Programming Languages

	6 Conclusion
	References

	Challenges in Enterprise and Information Systems Modeling in the Contexts of Socio Cyber Physical Systems
	1 Introduction
	2 Information Systems in the Context of SCPS
	3 Common Frameworks in the Context of SCPS
	3.1 Applicability of ArchiMate
	3.2 Applicability of RAMI 4.0
	3.3 Applicability of Work Systems Framework

	4 Discussion
	5 Conclusions
	References

	Proposing an Architecture of an Intelligent Evolvable Document Generation System Based on the Normalized Systems Theory
	1 Introduction
	2 Related Work
	2.1 Normalized Systems Theory
	2.2 Template and Styles
	2.3 Template Engine
	2.4 Darwin Information Typing Architecture (DITA)
	2.5 Document Management Environment (DME)

	3 Violations of NS Theory in Traditional Documents
	3.1 Separation of Concerns
	3.2 Modularity

	4 Design Evolvable Documents
	4.1 Separate Concerns
	4.2 The Metamodel
	4.3 Knowledge Model
	4.4 Knowledge
	4.5 Document Template
	4.6 Separated Responsibility
	4.7 Version Management

	5 Applying in Practice
	6 Conclusion
	6.1 Future Work

	References

	Mapping UFO-B to BPMN, BORM, and UML Activity Diagram
	1 Introduction
	2 Related Work and Terminology
	2.1 Process Modelling
	2.2 BPMN
	2.3 UML
	2.4 BORM
	2.5 Unified Foundational Ontology
	2.6 UFO-B Summary

	3 Our Approach
	3.1 Mapping Procedure
	3.2 BPMN Analysis
	3.3 BORM Analysis
	3.4 UML Activity Diagram Analysis
	3.5 A Comparison of the Analysed Languages

	4 Evaluation
	5 Future Work Ideas
	5.1 Integration with Structural Models
	5.2 Business Case Analysis
	5.3 Process Modelling Generic Ontology

	6 Conclusion
	References

	Exploration of Creativity Techniques in Software Engineering in Training-Application-Feedback Cycle
	1 Introduction
	2 Background: Creativity in Software Development
	2.1 Framework for Creativity Studies in Software Project
	2.2 Related Work
	2.3 Creativity Techniques in Software Project

	3 Quasi-experiment with Training-Application-Feedback Cycle
	3.1 Overview
	3.2 Activities in Training-Application-Feedback Cycle
	3.3 Creativity Techniques Under Exploration
	3.4 Questionnaire
	3.5 Comments on Conduct
	3.6 Remarks on Research Method

	4 Research Results and Their Interpretation
	4.1 Results for Naive Questions
	4.2 Results for Reverse Brainstorming
	4.3 Results for Lunette
	4.4 Results for Chinese Dictionary
	4.5 Results for What if
	4.6 Results for I could be more creative
	4.7 Results for Let’s invite him/her
	4.8 Results of Closing Part
	4.9 Analysis of Threats to Validity
	4.10 Interpretation and Issues for Further Studies

	5 Conclusions
	References

	Formal Methods
	SHACL Shapes Generation from Textual Documents
	1 Introduction
	2 Related Work and Terminology
	2.1 Conceptual Modelling and Ontologies
	2.2 Structured Knowledge on Web
	2.3 Related Work Concerning Entity Extraction

	3 Our Approach
	3.1 Suitable Patterns
	3.2 Ontology Resource Support

	4 Conclusions
	References

	Detection of Declarative Process Constraints in LTL Formulas
	1 Introduction
	2 Related Work
	3 Declare
	4 Transformation of Declare Templates
	5 Approach and Implementation
	6 Optimization and Further Work
	7 Conclusion
	References

	Measures of Quality in Business Process Modeling
	1 Introduction
	2 Research Method
	2.1 Search Process

	3 Results
	3.1 Search Results, Data Extraction and Synthesis
	3.2 Measures of Quality
	3.3 Demographic Data
	3.4 Metrics Implementation

	4 Discussion
	5 Conclusion
	References

	Performance Impact to the Applying Design Patternization Techniques to Object-Relational Databases
	1 Introduction
	2 Motivation
	3 Object-Relational Performance
	3.1 Language Call Complexity
	3.2 Execution Plan

	4 Object Patterns in Databases
	4.1 Adapter/Bridge
	4.2 Decorator
	4.3 Observer

	5 Discussion
	6 Conclusion
	References

	Invited Workshop Notes
	Business Process Models (BPMN and DEMO Notation) - Usability Study
	1 Introduction
	2 Materials and Methods
	2.1 Laboratory Measurement Architecture
	2.2 Eye Tracking System
	2.3 Usability Test

	3 Results
	4 Conclusion
	References

	Author Index

