
An Approach to Teaching Secure
Programming in the .NET Environment

Sifiso Bangani1 , Lynn Futcher1(B) , and Johan van Niekerk2

1 Department of IT, Nelson Mandela University, Port Elizabeth, South Africa
lynn.futcher@mandela.ac.za

2 Faculty of Computing, Noroff University College, Kristiansand, Norway
johan.vanniekerk@noroff.no

Abstract. The security aspect of software applications is considered as
the important aspect that can reflect the ability of a system to pre-
vent data exposures and loss of information. For businesses that rely
on software solutions to keep operations running, a failure of a software
solution can stop production, interrupt processes, and may lead to data
breaches and financial losses. Many software developers are not compe-
tent in secure programming. This leads to risks that are caused by vulner-
abilities in the application code of software applications. Although var-
ious techniques for writing secure code are known, these techniques are
rarely fundamental components of a computing curriculum. This paper
proposes the teaching of secure programming through a step-by-step app-
roach. Our approach includes the identification of application risks and
secure coding practices as they relate to each other and to basic pro-
gramming concepts. We specifically aim to guide educators on how to
teach secure programming in the .Net environment.

Keywords: Programming education · Secure coding practices ·
Secure programming

1 Introduction

As the world advances in technology by creating new software applications,
so does the need to protect these software applications as their vulnerabili-
ties and associated risks also increase. Software applications have become inte-
gral to many people as they use them on a day-to-day basis for working with
top-secret enterprise intellectual property, sharing personal information, making
bank transactions, or sharing pictures with family and friends [12].

Although software plays an important role on a day-to-day basis, it often has
associated risks as a result of vulnerabilities in the application layer [29]. The
security aspect of software applications is considered as the important aspect
that can reflect the ability of a system to prevent data exposures, and loss

Financially supported by the National Research Foundation (NRF), NMU Research
Capacity Development (RCD) and BankSETA, South Africa.

c© Springer Nature Switzerland AG 2020
B. Tait et al. (Eds.): SACLA 2019, CCIS 1136, pp. 35–49, 2020.
https://doi.org/10.1007/978-3-030-35629-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35629-3_3&domain=pdf
http://orcid.org/0000-0001-9550-3185
http://orcid.org/0000-0003-0406-8718
http://orcid.org/0000-0003-1739-4563
https://doi.org/10.1007/978-3-030-35629-3_3


36 S. Bangani et al.

of information [18]. Failure to secure software solutions can have more serious
effects than just a temporary interruption to a service. For businesses that rely
on software solutions to keep operations running, a failure of a software solution
can stop production, interrupt processes, and may lead to data breaches and
financial losses. The human factor, which includes the programmer, has a major
impact on the success and failure of efforts to secure and protect the business,
services, and information [17]. According to [30], the main cause of software
application failure is human error in application programming, which happens
during the coding process.

Software developers are typically equipped with relevant programming
knowledge and skills to develop innovative software [25]. However, software devel-
opers are rarely equipped with secure programming knowledge and skills from
the undergraduate level [19,31]. According to [7], “students graduating from tech-
nical programs such as information technology often do not have the attributes
to fill the needs of industry”. Fundamental programming principles are often
introduced to students without an understanding of their security implications.
This leads to non-adherence to secure programming [31]. For example, arrays
and loops are introduced and explained without the mention of buffer overflows
that could occur due to lack of adherence to secure programming.

The purpose of this paper is to help educators to teach secure programming in
the .Net environment. Secure programming is an important part of information
security education [32], whereby relevant topics of information security ought to
be taught to some extent in all modules of the main curriculum throughout all
years of study [15]. In this context, the contribution of this paper is five-fold:

1. It identifies relevant application risks in the .Net environment.
2. It identifies secure coding practices to be taught to undergraduate computing

students.
3. It determines the basic programming concepts taught in the .Net environment

in South African undergraduate computing curricula.
4. It maps the basic programming concepts to relevant application risks.
5. It maps the relevant application risks to the identified secure coding practices.

These mappings help us to understand how to teach secure programming in
undergraduate computing curricula. By ‘computing curricula’ we mean univer-
sity courses that teach programming for Computer Science or BSc IT degrees.

2 Related Work

As much as new software technologies are needed and are being developed, the
industry increasingly demands software developers that possess relevant security
knowledge, skills and abilities [7]. Advancements in technology also increase the
security risks associated with those technologies. This leads to a ‘gap’ of outdated
knowledge and skills for industry and academia [14]. In cybersecurity, according
to [7], “although jobs are and will be available, employers find it increasingly
difficult to find qualified people to fill them. Students graduating from techni-
cal programs such as information technology often do not have the attributes to



Teaching Secure Programming in .NET 37

fill the needs of industry”. Software security is becoming every company’s norm
and concern as a result of the rising trend of software application vulnerabilities
[12,14,26]. This is the driving force behind the demand for software develop-
ers with security knowledge and skills. This security skill demand results in
industry’s need to hire developers experienced in secure programming. These
developers must have the knowledge, skills, and abilities of secure programming
that enables them to implement security-related solutions.

The security skills scarcity often forces companies to enrol their employees
in secure programming certifications such as, IBM’s Application Security Ana-
lyst Mastery Award, or Microsoft’s Software Development Fundamentals course.
These certifications are an attempt to make software developers competent in
secure programming, as they often lack the required knowledge [9,24]. However,
the knowledge acquired with such certifications is not sufficient to be productive
in secure programming without the necessary skills, as there should be a bal-
ance between knowledge and skills [28]. Secure programming certifications and
training focus on two primary factors, namely: awareness of a specific security
threat, and having adequate training in the use of the security counter-measure
to such a threat [1]. However, these certifications and training do not guarantee a
change in human behaviour [1,17], as human behaviour requires more than just
awareness of a specific security threat. For software developers to be competent
in secure programming, they must be trained on the requisite skills of secure
programming at an undergraduate level.

Producing competent software developers should therefore begin in universi-
ties and colleges where students are being educated in understanding and apply-
ing learned concepts and the ability to work in a team environment [6,14]. Uni-
versities are responsible for providing a hands-on teaching approach for under-
graduate students, which includes lectures, computer laboratory practicals, and
experiments [28,29]. The fundamentals of computing are introduced to students
at university level. The learning outcomes of university curricula are used to
show what the students will know and be able to demonstrate after the comple-
tion of that course [14]. They are key to the shift of focus in education from a
paradigm of providing instructions to a paradigm of producing learning [3].

Various computing curricula guidelines, such as the Association for Comput-
ing Machinery’s (ACM), state that Information Assurance and Security (IAS)
belong to an advanced level of a four-year computing program. However, many
students in three-year computing courses graduate and leave university before
completing a fourth year of study [15]. This implies that many undergraduate
computing students are often not adequately exposed to secure programming.
Since students can only apply what they have been taught, the behaviour of
a student in a certain area such as secure programming can be improved by
providing students with the requisite knowledge [20]. This can be done through
software security education in computing at universities.

Software security is the idea implemented to protect software to ensure that it
functions correctly under malicious attacks [16]. Furthermore: “Software security
is about building secure software: designing software to be secure, making sure



38 S. Bangani et al.

that software is secure, and educating software developers, architects, and users
about how to build secure things” [16]. Software security is not simply imple-
mented by installing an anti-virus software to a computer or mobile device, as
hackers steal or get access to top secret enterprise information, or even damage
the behaviour of software applications. Hackers can damage software through
embedding malicious software or scripts in the code. Software applications with-
out proper security built-in can be vulnerable to various computer attacks such
as Cross-Site Scripting, SQL Injections, Session Hijacking, Cross-Site Request
Forgery, and Denial of Service attacks [29]. The only way to avoid such attacks
is by practising good secure programming techniques [2,30].

Secure programming is the manner of writing code to minimise software
security vulnerabilities, as many problems faced by users nowadays are caused
by vulnerabilities resulting from flaws in application code. Various techniques
for writing secure code are known [23,27,31]. Although these techniques exist,
they are rarely fundamental components of a computing curriculum, but rather
treated as secondary topics that are briefly discussed in programming courses
[31]. To maintain security in software applications, students must have the nec-
essary skills and knowledge. According to [5], “the ability to write secure code
should be as fundamental to a university computer science undergraduate as
basic literacy”. The following section briefly describes computing education in
the South African context.

3 Computing Education in the South African Context

Institutions of higher learning in South Africa are divided into public and pri-
vate universities [11]. In this paper our focus is on the public universities.
South African public universities are divided into three categories, namely: tra-
ditional universities, universities of technology, and comprehensive universities.
The South African public universities are overseen by the government’s Depart-
ment of Higher Education and Training (DHET) which is responsible for post-
school education and training.

South African universities offer three-to-four-year degree qualifications
depending on the type of university [10]. Comprehensive universities and univer-
sities of technology offer three-year diploma qualifications for workplace readiness
[15]. For a student in such universities to obtain a degree, the student would be
required to advance the diploma qualification by completing a fourth year of
study. Such a fourth year of study is considered to be ‘advanced’, wherein stu-
dents can be introduced to higher-level topics [14]. In the case of programming
qualifications, the fourth year of study would typically include an introduction
to security and secure programming basics [14,15]. Traditional universities with
three-year degree qualification teach programming basics in the undergraduate
level. In traditional universities the fourth year of study (a.k.a. ‘honours’ in
South Africa) is also considered to be an ‘advanced’ level wherein students are
introduced to higher-level topics.

South African universities offer semester courses as well as year courses.
Semester courses are usually carried out over a period of six months, whereas year



Teaching Secure Programming in .NET 39

courses are carried out throughout the academic year [11]. Both types of courses
in various universities offer fundamentals of programming. However, secure cod-
ing practices are rarely explicitly taught to undergraduate students. They are
rather treated as secondary topics that are briefly discussed in those program-
ming courses [31]. Examples of such courses include: Programming Fundamen-
tals, Computing Fundamentals, Development of Software, Applications Devel-
opment, Mobile Computing, Technical Programming, or Web Systems.

In this paper the focus is on applications development in the .Net environ-
ment, since most South African universities teach programming with it (whereby
Microsoft promotes free product usage by university students). Nonetheless our
proposed approach to teaching secure programming practices in undergraduate
computing curricula is suitable for other development environments and frame-
works as well.

4 Research Approach

A preliminary investigation and content analysis were conducted to determine
whether South African universities incorporate secure programming in their
undergraduate computing curricula. This preliminary investigation was con-
ducted on South African universities through a thematic content analysis by
reviewing the Prospectus or Study-Guides of various universities, where relevant
themes and topics relating to secure programming were sought. The purpose
of the investigation was to determine whether secure programming is already
included in the teaching of programming concepts, as writing secure code ought
to be fundamental to an undergraduate computing student [5]. A content anal-
ysis is typically conducted to make replicable and valid inferences from texts
and data [13,20]. For this paper, content analysis was applied w.r.t. the above-
mentioned matters.

Figure 1 sketches our research process which led to a step-by-step approach
for teaching secure programming in undergraduate computing curricula with the
following six steps; (for additional recommendations see [19]).
Step 1: Identification of relevant application risks in the .Net environment that

are important for teaching secure programming.
Step 2: Identification of secure coding practices that should be taught to com-

puting students as requisite knowledge for secure programming.
Step 3: Identification of basic programming concepts typically taught to under-

graduate students (in the .Net environment).
Step 4: Mapping application risks to programming concepts to demonstrate the

need for teaching application risks along with programming concepts.
Step 5: Mapping basic programming concepts to identified secure coding prac-

tices in order to highlight the need for, and relevance of, integrating secure
coding practices to programming concepts taught.

Step 6: Mapping application risks to identified secure coding practices in order
to show the relationship between application risks and secure coding practices
to highlight the importance of secure programming.

Each step is described in further detail in the following sub-sections.



40 S. Bangani et al.

Fig. 1. Research process

4.1 Step 1: Identification of Relevant Application Risks (ARs)

An initial literature review identified application risks that can affect software
applications developed in the .Net environment. The Open Web Application
Security Project (OWASP) was used as a source of software application security
guidance. OWASP is an international not-for-profit group dedicated to helping
organisations to develop, purchase, and maintain good software applications [22].
OWASP is known for providing free documents of application risks, including a
‘Top 10 Application Risks’ document for awareness in web application security
[7]. This document represents a broad consensus about the most critical secu-
rity risks to web applications [23]. Although this OWASP list is mostly relevant
to web applications, it can also be used for other software applications during
application development, testing, and maintenance. The examples provided in
this paper relate to web applications as they are often deemed the most vulner-
able software applications.



Teaching Secure Programming in .NET 41

Table 1. OWASP top 10 application risks for the year 2017

AR 1 Injection

AR 2 Broken authentication and session management

AR 3 Sensitive data exposure

AR 4 XML external entities

AR 5 Broken access control

AR 6 Security misconfiguration

AR 7 Cross-site scripting

AR 8 Insecure deserialisation

AR 9 Use of components with known vulnerabilities

AR 10 Insufficient logging and monitoring

Table 1 shows the OWASP Top 10 Application Risks (ARs) ordered by their
severity. This list can also be used in the development of other software solutions
that are not .Net-based, to guide and test for well-known vulnerabilities, as
these application risks can affect most applications regardless of the development
environment. In the identification of these application risks, the SANS Top 25
Programming Errors list [8] was used to compare the current application risks
to well-known programming errors, to determine the extent to which the errors
could cause the risks listed in OWASP’s list of Top 10 Application Risks. Some
errors in the SANS Top 25 Errors list are no longer critical, as there have been
changes in the security of development platforms and frameworks. This also
resulted in the change in OWASP’s list of the Top 10 Application Risks, with
cross-site scripting dropping from rank 2 in the list of 2013 to rank 7 in the list
of 2017 [8,23].

4.2 Step 2: Identification of Secure Coding Practices (SPs)

To identify the secure coding practices, a literature review identified principles,
techniques, and practices of secure programming. The literature review of fun-
damental secure coding practices was conducted to understand what software
developers need to be competent in w.r.t. secure programming [6].

The Secure Coding Practices Checklist recommended by OWASP was used
for the identification of secure coding practices. The OWASP Secure Coding
Practices Checklist can be used to mitigate most common software application
vulnerabilities [22]. This checklist addresses the application risks listed in Table 1
and is used later in this paper to map with application risks and basic program-
ming concepts. Table 2 shows OWASP’s Secure Coding Practices Checklist: the
encoding identifier is SP followed by its rank number in the list.

In the ongoing investigation of secure coding practices to be taught to under-
graduate students, the concept map by the University of California’s Davis
Secure Programming Clinic [4] was reviewed for the identification and classi-
fication of programming practices. The identification and classification of the



42 S. Bangani et al.

Table 2. OWASP secure coding practices checklist

SP 1 Input validation

SP 2 Output encoding

SP 3 Authentication and password management

SP 4 Session management

SP 5 Access control

SP 6 Cryptographic practices

SP 7 Error handling and logging

SP 8 Communication security

SP 9 System configuration

SP 10 Database security

SP 11 File management

SP 12 Memory management

SP 13 General coding practices

secure coding practices was supported by the OWASP Secure Coding Practices
Checklist [22]. This was done to assess the validity of the guidelines and princi-
ples in the current secure programming clinic.

4.3 Step 3: Identification of Basic Programming Concepts (PCs)

Having identified the secure coding practices, the globally published curricula
guidelines for undergraduate computing programs were reviewed to determine
the extent to which secure programming should be addressed in Computer Sci-
ence (CS) and Information Technology (IT) qualifications. The focus was on the
ACM curricula documents, as the ACM updates and adapts curricula recom-
mendations quickly to the rapidly changing landscape of computer technology.
Although the ACM curricula guidelines mention security as part of computing
curricula, the guideline documents for CS and IT do not have adequate guid-
ance on how secure programming can be taught to enable a graduate software
developer to be competent in secure programming. The key to educating and
training software developers is typically found in the Prospectus or Study-Guides
pertaining to each university [14,28].

To understand the state of programming in the undergraduate level, a the-
matic content analysis was conducted on undergraduate computing curricula in
South Africa. The content analysis was done to determine basic programming
concepts taught in the .Net environment, across different public universities in
South Africa. The Prospectus and Study-Guides that are available on the uni-
versities’ websites were used for this purpose.

Table 3 provides a list of basic programming concepts (PCs) that are typi-
cally taught in South African universities. The list does not provide any ‘correct
order’ in which the concepts are taught; it only outlines the fundamentals of



Teaching Secure Programming in .NET 43

programming for beginners developing in the .Net environment. Each PC item
in the list is followed by its position number. Although PC8 and PC9 are not
‘concepts’ in the strict sense ot the term, they were deemed essential enough by
most universities to be taught to beginners developing in the .NET environment.

Table 3. Basic programming concepts for beginners in the .Net environment

PC 1 Variable declaration (with data types)

PC 2 Conditional structures

PC 3 Arrays (including search and update)

PC 4 Collections (arrays, lists, stacks, queues)

PC 5 Loops (while, for, until)

PC 6 Database connection

PC 7 File operations

PC 8 Basic HTML and XML

PC 9 JavaScript

PC 10 Web control

PC 11 Data binding

PC 12 Error handling

PC 13 Validation

PC 14 State management

PC 15 Master pages and layouts

4.4 Step 4: Mapping Application Risks (ARs) to Basic
Programming Concepts (PCs)

After consolidating findings about what programming concepts should be
included when teaching secure programming in South African universities, we
created mapping links of how application risks can be taught when teaching
programming concepts. The purpose of these mapping links is to demonstrate
the need for, and relevance of, teaching application risks along with program-
ming concepts. The mapping links in the content analysis results were given an
impact value (I). I is based on how many times a programming concept (PC)
was linked to an application risk (AR). I can also be seen as a way of priori-
tising important links. Figure 2 shows the mapping links between the identified
programming concepts and the OWASP Top 10 Application Risks.

The mapping of programming concepts to application risks shows the rela-
tionship that the programming concept has directly to the application risk. A
programming concept can have a number of application risks associated with it,
and an application risk can occur due to poorly written programming concepts.
A programming concept that links with many application risks receives a high
impact value (I), where an impact value of 4 and above would mean that the
link needs special attention. Therefore, educators of programming courses could



44 S. Bangani et al.

Fig. 2. Mapping of basic programming concepts to OWASP Top 10 application risks

prioritise the lecture time taken for each link according to its impact value. In
this paper, the programming concepts with a high impact value will be used
to highlight the importance of considering application risks when teaching pro-
gramming.

For example, the programming concept Error Handling (PC12) links to many
application risks and, thus, it received a high impact value (I) of 6. Error handling
is the last defence in a software application when written code statements do not
execute as expected [22,30]. To educate students on how to program securely,
the associated application risks must be taught after the introduction of the
programming concept. The introduction of these application risks should begin
from the first year of study, and should be taught in parallel with programming
concepts as they occur in the syllabus. In an attempt to ensure that students
adhere to secure programming and avoid these application risks, students must
implement a means that recovers from errors (e.g. try-catch) [31].

Similarly, the programming concept Validation (PC13) received a high
impact value (I) of 6 which shows its importance to software applications. Appli-
cations without proper validation of data can be vulnerable to various appli-
cations risks [23]. Students must therefore be encouraged to always use input
validation to avoid the application risks such as Injection (AR1) associated with
Validation (PC13) in Fig. 2 [9]. Encouraging students to do Validation (PC13)
would require educators to examine the students’ adherence by setting labora-
tory practicals that require input validation. Students should be assessed and
their work graded by reviewing the code they develop.

In Fig. 2, Injection (AR1) is the first in the OWASP Top 10 Application Risks,
which shows how critical this risk is to software applications [23]. This application
risk should be introduced and taught in parallel with the associated programming
concepts to avoid this risk from occurring. To avoid Injections (AR1), students
must be taught how they relate to each of the associated programming concepts
(i.e. PC2, PC6, PC8, PC10, and PC12–13).



Teaching Secure Programming in .NET 45

4.5 Step 5: Mapping Basic Programming Concepts (PCs) to Secure
Coding Practices (SPs)

After understanding the application risks that must be taught to undergraduate
computing students, we created mapping links of how secure coding practices
can be taught in basic programming concepts. The purpose of the mapping
links is to demonstrate the need for, and relevance of, integrating secure coding
practices to basic programming concepts. The mapping links identified in the
content analysis results were given an impact value (I); see Fig. 3. I is based
on how many times a programming concept (PC) was linked to a secure coding
practice (SP) horizontally according to the programming concept (PC), and how
many times a secure coding practice (SP) was linked to a programming concept
(PC) vertically. I can thus be seen as a way of prioritising important links that
need special attention.

Fig. 3. Mapping of basic programming concepts to secure coding practices

The mapping link between programming concepts and secure coding prac-
tices shows a direct relationship between them. A programming concept can
have a number of secure coding practices that can be associated with it, and a
secure coding practice can be applied to a number of programming concepts. A
programming concept that links with many secure coding practices receives a
high impact value (I), whereby an impact value of ≥4 indicates that such a link
ought to be given special attention.

Figure 3 shows that the programming concepts Error Handling (PC12) and
Validation (PC13) in this mapping are most important, as they received the high-
est impact values (I) of 11 and 13 respectively. (Similarly, in Fig. 2, PC12 and
PC13 achieved high impact values of 6.) Most application failures are a result of
lack of Error Handling (PC12) and poor Validation (PC13). For Input Validation
(SP1) to work effectively, it is mostly used with Conditional Structures (PC2) to
avoid errors that might occur due to a lack of Error Handling (PC12) and Val-
idation (PC13). When Input Validation (SP1) is not properly implemented, an
application can be vulnerable to many application risks as shown in Fig. 2. When
educators teach these programming concepts, they should therefore pay specific



46 S. Bangani et al.

attention to the impact caused by the association, and try to keep a balance
between the programming concept and its associated secure coding practices.

4.6 Step 6: Mapping Application Risks (ARs) to Identified Secure
Coding Practices (SPs)

After understanding the secure coding practices that must be taught to under-
graduate computing students, we created mapping links that show the rela-
tionships between application risks and secure coding practices. As above, the
mapping links in the content analysis results were given an impact value (I).
Here, I is based on how many times an application risk (AR) was linked to a
secure coding practice (SP) horizontally, and how many times a secure coding
practice (SP) was linked to an application risk (AR) vertically; see Fig. 4. Again,
I can be seen as a way of prioritising important links that need special attention.

Fig. 4. Mapping of identified application risks to secure coding practices

The mapping links between application risks and secure coding practices
show a direct relationship between them. An application risk can have a number
of secure coding practices that address it, and a secure coding practice can be
applied to mitigate a number of application risks. An application risk that links
with many secure coding practices receives a high impact value (I), where (I)
of ≥4 would mean that such a link ought to receive special attention. There-
fore, educators must not teach application risks and secure coding practices in
isolation; the secure coding practices in Table 2 are used to prevent or mitigate
the application risks in Table 1. Broken Authentication (AR2) in Fig. 4 links
with many secure coding practices; thus it receives a high impact value (I) of 8.
Software applications without a properly structured authentication mechanism
can be vulnerable to privilege escalation [22,30]. The application risks Broken
Authentication (AR2) and secure coding practice Authentication and Password
Management (SP3) provide an example that can be used to teach students not
to hard-code passwords, nor to leave plaintext passwords in the configuration
files, as that can enable attackers to bypass access controls [30]. Error Handling
and Logging (SP7) received a high impact value (I) of 7, which shows the impor-
tance that error handling and logging has in avoiding application risks such as



Teaching Secure Programming in .NET 47

Sensitive Data Exposure (AR3). When error handling and logging is properly
used in an application, default errors that show critical information such as
server details are avoided by showing a custom error created by the program-
mer [21,30]. To avoid Security Misconfiguration (AR6), students must be taught
to avoid insecure default configurations and verbose error messages containing
sensitive information. For ASP.Net applications, students can avoid Security
Misconfiguration (AR6) by being taught to properly configure the .config file
in the solution. A typical example of configuring the .config file would be to
enable customErrors, so that default error messages will not be displayed.

5 Discussion and Conclusion

For (under)graduate software developers to be competent in secure software
development they should be equipped with relevant and necessary secure pro-
gramming knowledge in the curriculum. The literature shows that secure coding
practices and techniques already exist [23,27,31]. However, they are rarely used
as fundamental components of computing curricula, but are rather treated as
secondary topics which are merely briefly discussed in programming courses [31].

Universities are responsible for educating undergraduate computing students
where fundamentals of computing are introduced to students who are guided
through practical classes in the computer laboratories [28]. Although many uni-
versities teach programming, often only little attention is given to secure pro-
gramming, which results in incompetent undergraduate software developers. A
university’s Prospectus or Study-Guides are key to teaching undergraduate stu-
dents, as these documents show what the student will know and be able to do
apply after completion of the course.

Computing curricula reports such as the various ACM curricula guidelines
recommend the teaching of secure programming in undergraduate computing
courses. However, these guidelines do not provide adequate guidance on how
secure programming can be integrated into the curriculum to enable a graduate
software developer to be competent in secure programming.

The step-by-step approach proposed in this paper can be used at various
levels for preparing a computing curriculum. Our approach can be used in setting
up the Prospectus and Study-Guides, to ensure that relevant application risks
and secure coding practices are appropriately considered. The steps proposed
by this paper go hand-in-hand and cannot be addressed in isolation, as isolating
these steps may lead to vulnerabilities that can affect a software application.

In addition, the mappings presented in this paper show the relationships
between the programming concepts taught to undergraduate students with the
identified application risks and secure coding practices. These mappings serve
as a guide for how the application risks can be addressed by considering secure
coding practices relating to basic programming concepts. Secure coding practices
must be explicitly taught in undergraduate computing curricula to ensure that
students will be competent in secure software development.

This paper proposes that secure coding practices be taught throughout the
undergraduate programming modules, from the first year of study throughout



48 S. Bangani et al.

to the final year of study. This approach would not only impact the competence
of graduate software developers, but it would positively influence the security
of software applications developed by these graduate software developers for the
benefits of society.

The main limitation of this paper is that the approach and the mappings
suggested in this paper have not yet been thoroughly validated. This will be
part of future research as well as the actual implementation of this approach at
various universities in South Africa. In the next-following paper of this CCIS
volume we address the ‘pervasive integration’ of secure coding principles into
the entire computer science curriculum [19].

References

1. Aytes, K., Conolly, T.: A research model for investigating human behavior related
to computer security. In: Proceedings of the 9th Americas Conference on Informa-
tion Systems, pp. 1–6 (2003)

2. Aziz, N.A., Shamsuddin, S.N.Z., Hassan, N.A.: Inculcating secure coding for begin-
ners. In: Proceedings of the ICIC International Conference on Informatics and
Computing, pp. 164–168. IEEE (2016)

3. Barr, R.B., Tagg, J.: From teaching to learning - a new paradigm for undergraduate
education. Change Mag. High. Learn. 27(6), 12–26 (2012)

4. Bishop, M.: A clinic for secure programming. IEEE Secur. Priv. Mag. 8(2), 54–56
(2010)

5. Bishop, M., Frincke, D.A.: Teaching secure programming. IEEE Secur. Priv. 3(5),
54–56 (2005)

6. Buoncristiani, M., Buoncristiani, P.: How People Learn (2014). https://doi.org/10.
4135/9781483387772.n2

7. Burley, D., Bishop, M., Buck, S., Ekstrom, J., Futcher, L., Gibson, D.: Joint Task
Force on Cybersecurity Education (2017). http://www.csec2017.org/

8. Christey, S., Martin, B.: CWE-2011 CWE/SANS Top 25 Most Dangerous Software
Errors (2011). http://cwe.mitre.org/top25/#CWE-209

9. Cotler, J., College, S., Mathews, L., College, S., Hunsinger, S.: Information systems
applied research 2015 AITP education special interest group (EDSIG) board of
directors. Inf. Syst. Appl. Res. 8(1), 1–65 (2015)

10. Department of Education: Creating Comprehensive Universities in South Africa:
a Concept Document. Rep. of South Africa (2004)

11. Department of Education: Regulations for the Registration of Higher Education.
Rep. of South Africa (1997)

12. Hoekstra, M., Lal, R., Pappachan, P., Phegade, V., del Cuvillo, J.: Using innova-
tive instructions to create trustworthy software solutions. In: Proceedings of the
HASP 2013 2nd International Workshop on Hardware and Architectural Support
for Security and Privacy, p. 1 (2013)

13. Krippendorff, K.: Content Analysis: An Introduction to its Methodology (1985).
https://doi.org/10.1103/PhysRevB.31.3460

14. Lunt, B.M., Ekstrom, J.J., Lawson, E.: Curriculum guidelines for undergraduate
degree programs in information technology (2008)

15. Mabece, T., Futcher, L., Thomson, K.L.: Towards using pervasive information
security education to influence information security behaviour in undergraduate
computing graduates. In: Proceedings of the CONFIRM 2016, p. 14 (2016)

https://doi.org/10.4135/9781483387772.n2
https://doi.org/10.4135/9781483387772.n2
http://www.csec2017.org/
http://cwe.mitre.org/top25/#CWE-209
https://doi.org/10.1103/PhysRevB.31.3460


Teaching Secure Programming in .NET 49

16. McGraw, G.: Software security. EEE Secur. Priv. 2(2), 80–83 (2004)
17. Metalidou, E., Marinagi, C., Trivellas, P., Eberhagen, N., Skourlas, C., Gian-

nakopoulos, G.: The human factor of information security: unintentional damage
perspective. Procedia Soc. Behav. Sci. 147, 424–428 (2014)

18. Mumtaz, H., Alshayeb, M., Mahmood, S., Niazi, M.: An empirical study to improve
software security through the application of code refactoring. Inf. Softw. Technol.
96, 112–125 (2018)

19. Ngwenya, S., Futcher, L.: A framework for integrating secure coding principles
into undergraduate programming curricula. In: Tait, B., et al. (eds.) SACLA 2019.
CCIS, vol. 1136, pp. 50–63 (2020)

20. van Niekerk, J.F., von Solms, R.: Information security culture: a management
perspective. Comput. Secur. 29(4), 476–486 (2010)

21. OWASP: Secure Coding Practices Checklist (2016). https://www.owasp.org/
22. OWASP: Secure Coding Practices Quick Reference Guide (2010)
23. OWASP: Top 10 2017: The Ten Most Critical Web Application Security Risks

(2017). https://www.owasp.org/
24. Perrone, L.F., Aburdene, M., Meng, X.: Approaches to undergraduate instruction

in computer security. In: Proceedings of the ASEE Annual Conference and Exhi-
bition, pp. 651–663 (2005)

25. Rajlich, V.: Teaching developer skills in the first software engineering course. In:
Proceedings of the ICSE, pp. 1109–1116 (2013)

26. Ramachandran, M.: Software security requirements management as an emerging
cloud computing service. Int. J. Inf. Manag. 36(4), 580–590 (2016)

27. Singhal, A., Winograd, T., Scarfone, K.: Guide to secure web services. NIST Special
Publication 800–95 (2007)

28. The Joint Task Force on Computing Curricula: Information Technology Curricula
2017: Curriculum Guidelines for Baccalaureate Degree Programs in Information
Technology. ACM/IEEE (2017)

29. Uskov, A.V.: Hands-on teaching of software and web applications security. In:
Proceedings of the IEDEC 3rd Interdisciplinary Engineering Design Education
Conference, pp. 71–78 (2013)

30. Veracode: State of Software Security (2017)
31. Whitney, M., Lipford, H.R., Chu, B., Thomas, T.: Embedding secure coding

instruction into the IDE: complementing early and intermediate CS courses with
ESIDE. J. Educ. Comput. Res. 56(3), 415–438 (2018)

32. Wu, D., Fulmer, J., Johnson, S.: Teaching information security with virtual labo-
ratories. In: Carroll, J.M. (ed.) Innovative Practices in Teaching Information Sci-
ences and Technology, pp. 179–192. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-03656-4 16

https://www.owasp.org/
https://www.owasp.org/
https://doi.org/10.1007/978-3-319-03656-4_16
https://doi.org/10.1007/978-3-319-03656-4_16

	An Approach to Teaching Secure Programming in the .NET Environment
	1 Introduction
	2 Related Work
	3 Computing Education in the South African Context
	4 Research Approach
	4.1 Step 1: Identification of Relevant Application Risks (ARs)
	4.2 Step 2: Identification of Secure Coding Practices (SPs)
	4.3 Step 3: Identification of Basic Programming Concepts (PCs)
	4.4 Step 4: Mapping Application Risks (ARs) to Basic Programming Concepts (PCs)
	4.5 Step 5: Mapping Basic Programming Concepts (PCs) to Secure Coding Practices (SPs)
	4.6 Step 6: Mapping Application Risks (ARs) to Identified Secure Coding Practices (SPs)

	5 Discussion and Conclusion
	References




