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Abstract. Source code comprehension (SCC) continues to be a chal-
lenge to undergraduate CS students. Understanding the mental processes
that students follow while comprehending source code can be crucial in
helping students to overcome related challenges. The ‘Decoding the Dis-
ciplines’ (DtDs) paradigm that is gaining popularity world-wide provides
a process to help students to master the mental actions they need to be
successful in a specific discipline. In focusing on the first DtDs step of
identifying mental obstacles (“bottlenecks”), this paper describes a study
aimed at uncovering the major SCC bottlenecks that senior CS students
experienced. We followed an integrated methodological approach where
data were collected by asking questions, observations, and artefact anal-
ysis. Thematic analysis of the collected data revealed a series of SCC
difficulties specifically related to arrays, programming logic, and control
structures. The identified difficulties, including findings from the liter-
ature as well as our own teaching experiences, were used to compile a
usable list of SCC bottlenecks. By focusing on senior students (instead
of first-year students), the identified SCC bottlenecks point to learning
difficulties that need to be addressed in introductory CS courses.

Keywords: Computer programming · Source code comprehension ·
Students’ learning bottlenecks · Decoding the Disciplines

1 Introduction

Despite the continuous efforts of committed instructors to share the intricacies
of their academic disciplines and their students’ desperation to succeed, many
students still struggle to master course material [32]. The specific points where
students’ learning gets interrupted can be referred to as bottlenecks [11,28]. A
bottleneck typically occurs when students are unsure about how to approach
a problem and consequently follow inappropriate strategies [32]. In an attempt
to assist instructors in addressing students’ learning bottlenecks, Middendorf
and Pace devised the Decoding the Disciplines (DtDs) paradigm [28]. One of
the underlying principles of this paradigm is that each discipline has unique
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ways of thinking [28]. Students who fail to master the required ‘ways of think-
ing’ are unlikely to succeed in their higher-level studies. In the DtDs paradigm,
instructors are therefore encouraged to identify discipline-specific learning bot-
tlenecks that could prevent students from mastering the basic disciplinary ways
of thinking. Subsequently, specific strategies to address the bottlenecks are iden-
tified, implemented and evaluated [32]. Despite the recent uptake in decoding
research in other disciplines [40,43], limited information about DtDs research in
Computer Science (CS) is available.

However, during the past three decades numerous investigations have been
launched to gain better understanding of the various difficulties that computer
programming students experience [3,4]. One such difficulty—which has been
studied extensively—relates to the way in which students (also referred to as
‘novice programmers’) interpret pieces of source code [9,23]. This activity—
commonly referred to as source code comprehension (SCC)—is regarded a vital
skill that novice programmers have to master [39]. Most of the previous SCC
studies, however, focused on the evaluation of difficulties that students enrolled
for introductory programming courses experience [26,38]. Pace points out that
a student’s inability to master certain basic concepts may not necessarily lead
to his/her failure of an introductory course [32]. However, it is likely that such
a student’s confusions will continue to accumulate, thus causing diminishing
performance of basic tasks. As such, it is possible for students to progress to
advanced courses while they are still experiencing bottlenecks related to basic
concepts. Their failure to grasp these basic concepts can have a negative impact
on their ability to complete their degrees. This paper therefore attempts to
answer the following two questions:

1. What are the major SCC difficulties experienced by senior CS students?
2. How can knowledge of these difficulties be used to identify SCC bottlenecks

that should ideally be addressed in introductory programming courses?

In the remainder of this paper, a review of relevant background literature is
presented in Sect. 2. This is followed by a discussion of the research design and
method in Sect. 3, and a presentation and interpretation of the results in Sect. 4.
The identified SCC bottlenecks are presented in Sect. 5, and conclusions and
recommendations for future research in Sect. 6.

2 Related Work

The first step of the seven-step DtDs framework [28] is to identify students’ learn-
ing bottlenecks. The identification of discipline-specific bottlenecks allows instruc-
tors to identify specific areas in a module where they need to intervene more
strongly in order to facilitate better learning [29,32]. In identifying a learning bot-
tleneck, the instructor must ensure that the bottleneck is ‘useful’. A bottleneck is
‘useful’ if it affects the learning of many students, interferes with the major learn-
ing in a module, is relatively focused, and does not involve a large number of dis-
parate operations. It must also be defined clearly without jargon [32]. In the DtDs
paradigm [28], instructors can take various ways to identify bottlenecks.
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2.1 Bottleneck Identification Approaches

In one of the popular approaches [29], instructors themselves identify bottle-
necks based on specific student problems they discover during their teaching
of a specific module [34]. Instructors can also identify bottlenecks by focusing
on a single assignment. In History, for example, Pace identified a specific diffi-
culty while grading a writing assignment [32], whereas Shopkow was alerted to
a specific difficulty as a result of questions voiced by her students regarding the
specifications of an assignment [40].

In most of the limited number of decoding studies in the CS discipline to date,
researchers have also identified specific bottlenecks based on personal teaching
experiences. For a Database Design and Data Retrieval module, the authors of
[19] identified creating Entity Relationship diagrams, reasoning in MySQL and
dualism as the main student learning bottlenecks. Menzel used her experience in
teaching an introductory CS module to identify recursion —a threshold concept in
CS [38]— as her students’ main bottleneck [27]. For a follow-up module, German
focused his decoding study on the challenges of program debugging [14].

Bottleneck identification for a specific module can also be facilitated by an
outsider (e.g. a pedagogical advisor). In [43], module-specific bottlenecks were
identified by asking seven participants representing five disciplines (Engineer-
ing, Chemistry, History, Social Sciences and Electronics) to each write a 10-line
description of two or three bottlenecks they could think of for the modules they
were teaching. In an attempt to identify the top bottlenecks experienced by
Accounting students in their Taxation modules, Timmermans and Barnett first
asked instructors to identify potential bottlenecks [42]. Their eventual selection
of the top bottlenecks was based on the responses of 4th-year Taxation students
who were asked to rate the 40 potential bottlenecks w.r.t. level of understanding
and importance.

When the goal is to identify common bottlenecks in a specific discipline, the
collective experiences of a group of instructors can also be a valuable source.
In this regard, various researchers from the History discipline have used individ-
ual interviews with instructors to identify common discipline-specific bottlenecks
[11,41]. Wilkinson chose a peer dialogue strategy where Law instructors collec-
tively established that the reading of case law was their students’ major learning
bottleneck [46]. For bottleneck identification in Political Science, Rouse (et al.)
based their selection of literature reviews as the major bottleneck on the experi-
ences of both instructors and students (from different year levels) as well as on
the findings of other studies [37]. Thus an instructor’s insight often is the main
source for bottleneck identification. However, the role of students in bottleneck
identification should not be ignored. Further justification for the seriousness of
specific bottlenecks can also be found by linking bottlenecks to discipline-specific
learning difficulties identified in other non-decoding studies (such as [31]).

2.2 SCC Difficulties

As mentioned above, numerous previous studies have attempted to uncover the
specific difficulties experienced by novice programmers in comprehending source
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code. Although none of these studies were specifically conducted in the DtDs
framework, Middendorf and Shopkow suggest that relevant literature can also
be used to identify bottlenecks [29].

In an investigation of the programming competency of students enrolled for
CS1 and CS2 courses, McCracken (et al.) stated that many students still do not
know how to program at the end of their introductory programming courses [26].
This problem was further explored in the BRACElet project which confirmed
students’ lack of programming skills [45]. In an attempt to expand understanding
of the difficulties experienced by students, [26] refers to the potential role that
in-depth analysis of narrative data collected from students can play.

The ITiCSE 2004 working group study [23] was conducted as a follow-up
on the McCracken (et al.) study. A set of 12 multiple-choice questions (MCQs)
was used to test students’ ability on two tasks: firstly, to predict the output of
executing the given fragments of source code; secondly, to select a piece of source
code (from a small set of options) that would correctly complete a given near-
complete code snippet. Although many students were found to be lacking the
skills required to do both tasks, the latter was found to be the most challenging.
The final ITiCSE 2004 report states that students were unable to “reliably work
their way through the long chain of reasoning required to hand-execute code,
and/or... to reason reliably at a more abstract level to select the missing line of
code” [23] (p. 132).

All 12 questions used in [23] focused strongly on the concept of arrays. In
a study aimed at improving students’ learning experiences, Hyland and Clynch
found arrays to be the most challenging topic for first- and second-year students
[18]. In an attempt to record all the difficulties that students experience during
practical computer programming sessions, Garner (et al.) found arrays to be
featuring among the top three difficulties [13]. Other studies, too, have identified
arrays as a challenging concept for novice programmers [2,24].

All ITiCSE 2004 questions [23] included basic control structures such as con-
ditionals (e.g. if, if-else), loops (e.g. while, for), or a combination thereof.
According to [30], many novice programmers struggle to comprehend basic con-
trol structures. Various studies have described the specific difficulties that stu-
dents experienced while interpreting looping (repetition) structures [6,16,18,24].
Garner (et al.) mention that most of the difficulties associated with loops orig-
inate in students’ incorrect comprehension of either the header or body of the
looping structure [13].

Although logic generally is regarded as a mathematical field, it has grown
more relevant to CS especially w.r.t. its applications [17]. Programming logic
involves executing statements contained in a given piece of code one after another
in the order in which they are written. Though still logical and correct, there
are some programming control structures that may violate this execution order
[10]. It is therefore not surprising that students struggle with logical reasoning
in solving computer programming related problems [6]. The logical flow of the
source code statements is closely related to the control flow of such statements
[13]. This implies that for a programmer to fully comprehend a computer pro-
gram, he/she must skilfully combine the programming logic with the control flow
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of the program. Students are more likely to logically work (or trace) through a
piece of source code if they have adequate knowledge of the semantics of the
programming language and can keep track of changes made to variable values
[23]. Therefore novices especially struggle to follow a program’s execution [4,36]
and control flow [13].

As the proponents of the DtDs paradigm argue that bottlenecks directly
relate to difficulties hindering many students’ learning [28], the previously iden-
tified difficulties can serve as a baseline for the identification of common and
useful SCC bottlenecks. The exact nature of some of these difficulties, however,
remains unclear: Where exactly are students getting stuck? Why are they get-
ting stuck? What are they doing wrong? Which strategies do they resort to when
they get stuck? Better knowledge about the nature of these difficulties can thus
be valuable in determining teaching and learning gaps related to SCC.

3 Research Methods

3.1 Design

Within the scope of a DtDs-based research design, we followed an approach
based on Plowright’s Frameworks for an Integrated Methodology (FraIM) [35].
Thereby, our focus was on collecting narrative and/or numeric data by means of
observations, asking questions, and/or artefact analysis. The study population
consisted of final-year undergraduate CS students (referred to as ‘senior students’
in this paper) from a South African university. The empirical part of our study
comprised two phases. The aim of Phase 1 was to identify specific senior CS
students having trouble in comprehending short pieces of source code. In Phase
2 we wanted to detect specific points or ‘places’ [28] where these students were
experiencing SCC difficulties, with the goal of identifying common and useful
SCC bottlenecks.

3.2 Phase 1

Participants, Data Collection and Analysis. The sample for Phase 1 con-
sisted of 40 students registered for a 3rd-year Internet Programming module.
The selection of this sample was both ‘purposeful’ and ‘convenient’ [33]. The
sample was purposeful because the students had already completed four earlier
programming modules. However, they could still be regarded as ‘novice’ pro-
grammers since they did not yet have any professional programming experience.
The sample was also convenient since we had easy access to the participants
because the lecturer responsible for this module agreed to make available one of
her scheduled class sessions for our research activity.

For the research activity of Phase 1, participants were given a test consisting
of the 12 questions of [23]. For each of these questions, participants had to work
through a short fragment of source code, and then either predict the execution
output of the code fragment or select (from a small set of options) the rele-
vant piece of code needed to complete the given fragment. The questions of [23]
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were chosen for two reasons: Firstly, all of them contained source code fragments
that students had to comprehend before they could answer the related question.
Secondly, these questions had already been tested with a large population of
students from several universities in the USA and other countries.1 Since the
original questions were formulated in Java, we had to convert their code frag-
ments to C# because this is the programming language familiar to our chosen
population.

The participants’ answer sheets (regarded as ‘artefacts’) were our primary
data source for Phase 1. After ‘grading’ the artefacts, the performance data
for each participant were captured into a spreadsheet, and descriptive statistics
were used to rank the questions in order of difficulty (based on the number
of participants who incorrectly answered such question). The three apparently
most difficult questions (Q3, Q6, Q8) were chosen for further use in Phase 2.

3.3 Phase 2

Data Collection. Based on the student performance data collected in Phase 1,
15 students were invited to take part in Phase 2. These were the students who
provided wrong answers to all three of the questions identified in Phase 1. Ten
of the 15 invited students agreed to partake in Phase 2. The research activity
in Phase 2 consisted of individual sessions during which each participant had
to verbally expose his/her thinking process(es) in a form of ‘thinking aloud’ [7]
while answering anew the same three above-mentioned SCC questions. This data
collection strategy can be regarded as a means of ‘asking questions’.

Time slots of 45min were scheduled for each individual session. However, the
participants were informed that they could take as much time as they needed to
complete the tasks. Since none of the participants had prior experience with the
required think-aloud technique, this technique was first demonstrated to each
participant on an unrelated SCC question. Thereby, one of us played the role of
the ‘interviewer’ by asking probing questions when required (i.e. no progress or
silence). Where necessary we also recorded some observations, as an additional
means of data collection, after the permission for audio-recording was obtained
by the corresponding participant.

Data Analysis. To transcribe and analyse the audio recordings from the indi-
vidual think-aloud sessions, we followed the approach of [8]. Upon data transcrip-
tion we ‘cleansed’ the data by searching for faults and by repairing them accord-
ingly [47]. Since the participants had to verbalise their thoughts as part of the
think-aloud process, the transcripts contained numerous illogical and repeated
statements. We therefore decided to use ‘fuzzy validation’ (instead of strict val-
idation which requires the complete removal of invalid or undesired responses)
[47]. In fuzzy validation we are allowed to correct some data if there is a reason-
ably ‘close match’ to a known right answer. Thereafter we familiarised ourselves
with the data [25] by listening and re-listening to the audio records numerous

1 Benchmark for international comparability.
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times as well as by intensively and repeatedly reading the transcripts. This helped
us to devise a coding plan in which the analysis would be guided by the data
related to our research questions. At this stage, the 10 validated transcripts were
imported into the Nvivo 12 Professional tool. Thereafter, codes were developed
(by creating several nodes) for each SCC difficulty identified in the data.

For coding, Klenke recommends the use of ‘units of analysis’ [22]. These can
be words, sentences or paragraphs. Accordingly, we coded the data by highlight-
ing and/or underlining text (from which the SCC difficulties could be extracted)
within the domain of the stated units of analysis. Then we ‘populated’ the cre-
ated codes by associating the corresponding texts with them. During this process
of refinement, the names of the codes were continuously revised until relevant
themes began to emerge. For each emerging theme, its Nvivo-generated frequency
of occurrence was taken into account.

4 Results and Interpretation

Given the large amount of data collected during Phase 2, the results discussion
only focuses on the participants’ comprehension of Question 3 (Fig. 1, with line
numbers 1–12 inserted in aid of this discussion). This question was selected since
its related ‘think-aloud’ data revealed most clearly the numerous difficulties that
can be directly associated with SCC. Q3 also tested students’ comprehension of
arrays and basic control structures—i.e. the concepts previously identified as
challenging for novice programmers (see above). In the following discussion, the
eight most common SCC difficulties identified are grouped into three categories:
arrays, programming logic, and control structures.

4.1 Array-Related Difficulties

Analysis of the Q3 think-aloud data revealed the following four major array-
related difficulties experienced by the participants.

Array Index. An array index refers to a non-negative integer number that
identifies the position of an element stored in an array. Four participants
had difficulties to interpret simple array indices, with a total of nine occur-
rences identified. Participant 1 (P1) had the most difficulties in this regard,
with three occurrences identified. In her interpretation of b[i], she regarded
i as a value contained in array b instead of a position of an element. Par-
ticipant P8 confused the square brackets indicating the array index with a
multiplication operator when he interpreted b[i] as b multiplied by i: “int
i is equal to 0 [Line 8], and then for this times that , it is equal to true
[Line 10] then increment the counter [Line 11], that times that is equal to
true . . . it is a difficult one but then . . . that times that is true and that
times that is true ”. Thus, both participants were challenged by the notation
[20] of the array index.

Array Length. The length of an array refers to the maximum number of values
that can be stored in it. Three participants struggled to determine the length of
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Fig. 1. Question 3 according to [23]

the arrays in Q3. P1 had no idea how to determine the length of the Boolean
array b and remarked: “I do not know what is the length of array b ”. Also P6
was unable to correctly determine the length of the array. He interpreted the
Boolean array b to have the length of 4 (instead of the correct length 5): “So
now is 0 less than 4 because our b value is 4 ” while looking at the condition
of the for loop in [Line 3].

Boolean Array. A Boolean array is an array of which the elements can only con-
tain the values true or false. Five occurrences of Boolean array difficulties were
identified, whereby P7 was most challenged (with three identified occurrences).
Overall, the identified difficulties ranged from the declaration of the Boolean
array to basic understanding regarding the effects of operations performed on
such arrays.

P7 got stuck at the Boolean array declaration in [Line 2] and skipped the
question: “Do I understand what I am doing? ...it is a Boolean array, array is
a Boolean, what does it mean? ... (pause) ... I am not sure about this one yet,
let me...” (turning the page to see the next question). When P7 returned to
this question later, his confusion regarding Boolean arrays became even more
apparent as he regarded the index value of 1 as the Boolean equivalent of true:
“Once it gets to the if statement, i is now equal to 1 and 1 is equal to true ”
[Line 10].
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P9 was under the impression that since b was a Boolean array it could only
consist of two elements (instead of two possible values per element): “In position
0 , I have 1 , which means now at b[1] I have true . In my bool array I have
stored two values” [Line 10].

In their comprehension of [Line 10], both P7 and P9 disregarded the actual
code syntax. Instead, they fell back to some semantic according to which a 0
represents false and a 1 represents true. Both participants believed the numeric
index positions 0 and 1 to represent their Boolean truth value equivalents.

Decomposition—whereby a complex piece of code is ‘split’ into its constituent
components to simplify its interpretation [21]—is a task with which many novice
programmers struggle [15]. In their comprehension of Q3, seven participants
found it particularly difficult to decompose the compound index in the expression
b[x[i]] of [Line 6]. Altogether 29 occurrences of this difficulty were identified.

P10 misinterpreted [Line 6] as ‘resetting’ all values in b to true, whereas
de-facto only the selected values in array b are set to true: “b[x[i]] set to
true [Line 6]... yes, no, I am very confused ...(longer pause)... b[i] ...then the
second for loop [Line 5] sets everything from the integer array to true , so, if
I am correct, then it resets everything from the first for loop [Line 3] back to
true ”.

P6 became so confused with the meaning of the compound index expression
that he could not even grasp how the code in [Line 6] was related to the for loop
in [Line 5]: “Now I am worried about this for loop, the second for loop [Line
5], it seems like it has nothing to do with the rest of the statements that come
after it... so this second for loop is the one that is freaking me out”. Although
P6 had no difficulty to understand any of the other for loops in Q3, it seems
that his inability to decompose the compound index expression caused so much
confusion that he suddenly could not comprehend the basic execution of the for
loop in [Line 5].

4.2 Programming Logic Difficulties

The following three programming logic difficulties were identified from our Q3-
related think-aloud transcripts.

Ripple Effect. This effect occurs when the misinterpretation of one statement
has a direct impact on the interpretation of statements that follow. This dif-
ficulty, which was observed with three participants, typically arises when pro-
grammers misinterpret programming logic [20]. Due to P1’s failure in interpret-
ing array indices (see above), her interpretation of the statements contained in
the third for loop completely ignored any changes made to the elements of b
in the first two for loops [Lines 3–6]. She remarked: “If b[i] is true [Line
10], I increment count [Line 11]. So if I increment count every time until it is
over 5 , then I will have 5”. Thus she wrongly chose ‘5’ (option e) as her answer
to Q3.
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The difficulties that P6 had in interpreting the second for loop [Lines 5–6]
(see above: Decomposition) caused him to disregard that loop entirely while
interpreting the third for loop: “When looking at this third for loop [Line 8],
it is the same as the first one [Line 3] that says the bool array is always equal
to false . Now in the third one they are saying if the element at position i in
the Boolean array is equal to true [Line 10], then increment count [Line 11].
But according to this [Line 4], the b value is always false ”.

The utterances by both P1 and P6 indicated that they were not thinking
sequentially [5], and therefore failed to follow the algorithmic logic of the source
code in question [1]. P9 showed similar behaviour after she realised that she could
not interpret any of the for loops and the containing statements. In response, she
reverted her attention to those statements that she could comprehend and only
considered those to arrive at count=1 as her answer to Q3. Her non-sequential
(non-algorithmic) reasoning appears in the following excerpt: “My first index: I
have a false [Line 4], and then my second: I have a true [Line 6], and then
int count is equal to 0 [Line 7] ...it will only increment when I get to this point
[Line 11], whereby count needs to be 1 ” (option a).

The most concerning aspect of the thinking patterns portrayed by these par-
ticipants is the ‘mental block’ caused by the statements they could not fully
comprehend, and their consequent anxious behaviour (observed by the inter-
viewer). These participants tried to ‘escape’ the block by entirely ignoring the
troublesome statements as if those were no longer part of the given code.2

Guessing. A common critique of MCQs is that they are solvable through guess-
ing. This is also true of our 12 MCQs (Part 1) for which guessing behavior was
previously observed [12,23]. However our format of think-aloud sessions (Phase
2) discouraged guessing, because the participants were repeatedly prompted to
explain their reasoning in as much detail as possible. Nonetheless, one partic-
ipant (P8) attempted guessing when saying “I just have to go with option a”
after having traced only a small fraction of the given code. At that stage he was
unable to show how he arrived at the chosen answer and had to be prompted by
the interviewer to re-explain his reasoning.

Mathematical Expressions. When a line of code contains a mathematical
expression, the misinterpretation of an operator can interfer with the compre-
hension of program logic; for comparison see [31]. One example of such a mistake
was observed when P7 failed to grasp the execution of the third for loop [Line 8]
when the value of i increased to 5: “Yes, i becomes 5... once it runs throughout
the loop and becomes 5 then... b[i] is going to be true... then the count also
increments”. He thus treated the < as if it was a ≤ operator, which is typically
regarded as a ‘logical error’ in the comprehension of source code.

2 This observation points to the psychology of programming which is a field of research
since the late 1960s/early 1970s [44].
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4.3 Programming Control Structure Difficulty

The code in Q3 only contained one type of control structure in the form of
three for repetition structures. As mentioned above (Ripple Effect), the lack
of understanding that P6 and P9 portrayed regarding the overall functioning of
a for loop caused them to eventually ignore the lines of code related to these
structures. Another for loop misconception was observed when P7 repeatedly
executed the loop counter increment statement (++i) at the beginning of each
loop, thereby setting the initial value of i to 1 for each of the three loops. Since
repetition structures are one of the concepts that novices find challenging [16],
it is not surprising that some participants experienced difficulties in this regard.
However, one area of concern is the level of difficulty that these senior students
experienced in comprehending basic for repetition structures.

5 Identification of Six SCC Bottlenecks

The results of Phase 2 showed that the participants in this study experienced
eight major SCC difficulties related to the concept of arrays, programming logic,
and programming control. Following the bottleneck identification guidelines of
[29,32], we used our collective experience of more than 25 years of teaching
introductory and advanced programming courses, combined with the insights
gained from this study as well as relevant literature, to formulate the following
six ‘usable’ SCC bottlenecks.

5.1 Bottleneck 1

Students cannot keep track of variable values while tracing through
a piece of code. The above-mentioned think-aloud excerpts contain numerous
examples in which students lost track of the changes made to variable values.
The students tried to remember the changes to the variable values (instead of
writing notes on a provided piece of paper), which put unnecessary strain on
their working memories. Their incorrect answers were thus a direct consequence
of failing memory or guessing. Lister (et al.) pointed out that, when students
document changes to variable values, they are much more likely to produce the
correct answer [23]. Most students in our study did not follow a reliable strategy
to keep track of such value changes.

5.2 Bottleneck 2

Students cannot comprehend statements containing arrays and basic
operations on array elements. The bulk of the identified difficulties can be
related to the students’ wrong understanding of array concepts: for comparison
see [2,13,18,24]. Our students particularly struggled to interpret array indices—
especially in combination with other concepts. While one student confused the
square [index] brackets with a multiplication operator, others were not able to
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determine an array’s length. Although most students had little trouble to com-
prehend the array of numeric values, many of them were lost when having to
deal with the Boolean array type.

5.3 Bottleneck 3

Students cannot comprehend the execution of basic for repetition
structures. Most of the difficulties observed with the for loops are due to
our students’ incorrect comprehension of either the header or the body of the
looping structure (as in [13]). While some students failed to recognise when and
how a loop terminates (see also [16]), one instance was observed where the loop
counter increment statement was executed at the wrong time. Although most of
the difficulties observed in comprehension of the body of the looping structure
are more specifically related to arrays, referencing the incorrect value of the loop
counter variable also caused problems for some students. Most worrying were
the two students who entirely gave up interpreting the for loops and ignored
either the entire structure or the loop header for the remainder of their Q3
interpretation.

5.4 Bottleneck 4

Students do not have adequate strategies to interpret lines of code that
look unfamiliar. This bottleneck was observed in cases where students were
unable to read, interpret and understand (execute) a specific code statement.
Of particular interest here are cases where two or more separate concepts—
which a student could comprehend earlier—were combined to form one ‘complex’
concept. The students were unable to decompose the more complex piece of code
into smaller parts in order to simplify the interpretation thereof, (see also [21]).
Their most common response to this challenge was to ignore those complex
statements or lines of code. Although decomposition is a task that many novice
programmers struggle with [15], students may never learn how to deal with
complex concepts if they are not taught explicit strategies to resort to in such
situations.

5.5 Bottleneck 5

Students view a piece of source code as consisting of separate lines
of code, thereby ignoring the significance of each individual line. We typically
teach our students that, in order to fully comprehend what a program does,
they first need to understand the meaning of each distinct line of code of that
program. However, it seems that in following our ‘guidelines’ some students not
only lose sight of how the parts fit together but also of the overall significance of
each individual line of code or statement. This behaviour was evident with those
students who completely ignored sections of code they could not comprehend,
with a complete disregard for the impact this would have on their ability to
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determine the correct answer to Q3. For comparison see the ‘ignore significance’
bottleneck in [41] about History students’ disregard of how individual facts relate
to the story they are trying to tell.

5.6 Bottleneck 6

Students cannot reliably think their way through a long chain of rea-
soning required to comprehend a piece of source code. This bottleneck can be
regarded as ‘overarching’ since it refers to one of the most common and sig-
nificant SCC difficulties identified in [23]. In our study it is directly related to
our ‘ripple effect’ that refers to mistakes made when students are unable to
think sequentially [5] or fail to follow the source code logic [1]. In our study, we
noticed the significant negative impact that inadequate knowledge of semantics
and inability to keep track of variable values can have on a student’s comprehen-
sion of a piece of code. These are all examples of actions that can cause a ‘mental
block’ in students’ reasoning ability, which they are unlikely to overcome if they
do not have the necessary knowledge and abilities to deal with such difficulties.

Although we present these as six separate bottlenecks, they should be seen
as “interconnected with each other” [41], since they are all indicators of mental
challenges experienced by novice programmers while comprehending source code.

6 Conclusions and Future Work

SCC continues to be a challenge to undergraduate CS students. Understand-
ing the mental processes that students follow while comprehending source code
can be crucial in helping students to overcome related challenges. By focusing
on Step 1 of the seven-step DtDs framework, this study aimed to expose the
major SCC bottlenecks experienced by senior CS students. Thematic analysis
of data collected by means of asking questions, observations, and artefact anal-
ysis revealed several SCC difficulties specifically related to arrays, programming
logic and control structures. The detected difficulties, combined with findings
from the literature and our personal experiences, were used to formulate six
bottlenecks that are indicative of the typical mental challenges experienced by
novice programmers during the comprehension of source code. By focusing on
senior students we were able to identify major bottlenecks that point to students’
learning difficulties that are currently not adequately addressed in introductory
CS courses, and therefore continue to influence the mental processes of final-year
undergraduate students.

With this paper we also wanted to raise awareness among instructors regard-
ing the role that a systematic ‘decoding’ approach can play in exposing the
mental processes and bottlenecks unique to the CS discipline. To address the
remaining six steps of the DtDs framework [28], future research is needed, firstly,
to uncover the mental activities of expert programmers to overcome the identi-
fied SCC bottlenecks. This knowledge could then be used to devise teaching and
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learning strategies that model the mental strategies of the experts. After creat-
ing opportunities for students to practice these skills and to receive feedback on
their efforts, instructors can assess students’ efforts to determine whether they
have benefited from the implemented strategies or not. The ultimate goal of this
suggested research is to help students to master the mental actions they need to
be successful in the CS discipline.
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