
Bobby Tait
Jan Kroeze
Stefan Gruner (Eds.)

48th Annual Conference of the Southern African
Computer Lecturers’ Association, SACLA 2019
Northern Drakensberg, South Africa, July 15–17, 2019
Revised Selected Papers

ICT Education

Communications in Computer and Information Science 1136

Communications
in Computer and Information Science 1136

Commenced Publication in 2007
Founding and Former Series Editors:
Phoebe Chen, Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu,
Krishna M. Sivalingam, Dominik Ślęzak, Takashi Washio, Xiaokang Yang,
and Junsong Yuan

Editorial Board Members

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-0044-503X
https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0001-6859-7120

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Bobby Tait • Jan Kroeze •

Stefan Gruner (Eds.)

ICT Education
48th Annual Conference of the Southern African
Computer Lecturers’ Association, SACLA 2019
Northern Drakensberg, South Africa, July 15–17, 2019
Revised Selected Papers

123

Editors
Bobby Tait
School of Computing
University of South Africa
Johannesburg, South Africa

Jan Kroeze
School of Computing
University of South Africa
Johannesburg, South Africa

Stefan Gruner
Department of Computer Science
University of Pretoria
Pretoria, Gauteng, South Africa

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-35628-6 ISBN 978-3-030-35629-3 (eBook)
https://doi.org/10.1007/978-3-030-35629-3

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-7118-4853
https://doi.org/10.1007/978-3-030-35629-3

Preface

This volume of CCIS contains the revised selected papers of SACLA 2019, the 48th
Annual Conference of the Southern African Computer Lecturers’ Association,1 held at
Alpine Heath in the Northern Drakensberg region, South Africa,2 July 15–17, 2019,
whereby it is now for the 4th time that our revised post-proceedings are published by
Springer-Verlag in this CCIS series.3 The Northern Drakensberg region is well known
for many famous natural features, including the Amphitheatre, which rises a thousand
metres straight up over a distance of five kilometres, and the Tugela Falls, which is the
second-highest waterfall in the world.

The objective of SACLA is to promote cooperation among South African, southern
African, as well as international experts, specifically to further the method and contents
of university education in the field of computing. The annual conference brings
together lecturers, researchers, scientists, post-graduate students, industry, and society
stakeholders interested in the field of computing education, and for this reason it
provides opportunities for networking and for learning from one another.

The theme of this conference was: “Computing Matters of Course”. Our conference
logo not only points at what makes a successful lecturer but also at the role SACLA
2019 would play in getting our minds and heads in gear. Intending to help others to
become better computing lecturers, SACLA 2019 invited national and international
submissions that focused on practical experiences and successes in computing edu-
cation at the tertiary level, in the following topic areas:

– Classroom innovation, and assessment of the impact thereof
– Novel tools developed, or novel use of existing tools, for purposes of learning

and/or assessment
– Research undertaken to investigate aspects of computing education

Our Program Committee had more than 50 members, whereby more than half
of them were international members (from outside southern Africa). This international
mixture of the Program Committee ensures that all papers presented at our conference
meet international quality standards. Each submitted paper was reviewed by three
members of the Program Committee in a rigorous, double-blind mode, whereby
especially the following criteria were taken into consideration: topic choice, problem
choice, helpfulness for the ICT lecturer’s self-improvement, coverage of related work
and accuracy of references, empirical findings, solution development, as well as lan-
guage and technical editing. Of the three reviews for each submission, at least one was
provided by an international reviewer (from outside southern Africa).

1 http://www.sacla.org.za/index.php/about/
2 http://sacla2019.unisa.ac.za/
3 Previous volumes: CCIS 642, 730, 963.

http://www.sacla.org.za/index.php/about/
http://sacla2019.unisa.ac.za/

After the international dissemination of our call for papers, 57 submissions were
initially received and carefully reviewed. 25 of them were accepted for presentation at
the SACLA 2019 conference as full papers, 6 as short papers, and 12 as extended
abstracts. 31 of those were actually presented. Of those full papers, a fine selection of
16 revised and further improved versions were finally accepted for inclusion in this
volume of CCIS as the conference’s most noteworthy contributions. The overall paper
acceptance rate for this CCIS book is thus 28%, which shows our commitment to high
academic quality.

Thereby, SACLA’s ongoing process of internationalization, which was started at
SACLA 2016 is making progress and already bears fruit: the papers compiled in this
volume of CCIS have authors or co-authors from universities located (in alphabetical
order) in Germany, Kenya, the Netherlands, Norway, Puerto Rico, and South Africa.
We hope to be able to continue to attract international submissions also in the forth-
coming years, because a globalised world requires the exchange of good ideas from
everywhere.

We were fortunate to have Dolf Steyn (from South Africa) as the keynote speaker.
The topic of his interesting motivational talk was: “Is Big Data a DNA or a Diet
Problem? Either way, it does not fit comfortably yet.”4 Moreover, the paper by
Pakiso J. Khomokhoana and Liezel Nel, “Decoding Source Code Comprehension:
Bottlenecks Experienced by Senior Computer Science Students”,5 received the
conference’s Best Paper Award.

Affliated with our conference were the following three successful workshops:

– The South African Computing Accreditation Board (SACAB) Meeting, hosted by
André Calitz as facilitator

– Academic Writing for Junior Informaticians and Computer Scientists, hosted by
Stefan Gruner as facilitator and instructor

– Amazon Web Services (AWS) Educate and Academy Programs, hosted by Ama-
zon’s South African branch

Moreover, our conference also had two interesting Open Discussion Forums on the
following topics

– The Corporatisation of Universities, hosted by Colin Pilkington and Wynand van
Staden as moderators

– Perspectives for the Establishment of Didactics of Informatics Chairs at South
African Universities, hosted by Stefan Gruner as moderator

We hope that the ideas exchaned at these affiliated workshops and open discussion
forums will continue to grow and bear fruit in the future.

We extend our thanks and appreciation to the conference’s general chair, Mac van
der Merwe, the entire Organising Committee, and all colleagues and friends who
contributed to the success of SACLA 2019. On behalf of the SACLA community we
also express our deepest appreciation to our sponsors: Oracle Academy, AWS Educate,

4 Not included as a paper in this volume.
5 Paper #2, on page 17 of this volume.

vi Preface

IITPSA, Cambridge University Press, Smart SWOT, and Cengage Learning, without
whom our conference at Alpine Heath would not have been possible. Also the friendly
and helpful service personnel of Alpine Heath shall not be forgotten. Further words of
thanks are addressed to the authors for having chosen SACLA 2019 as the forum for
communicating their noteworthy insights and interesting thoughts. Many thanks also to
the members of our international Program Committee, who—also with help from
several additional reviewers—all provided extensive and insightful reviews. Last but
not least, many thanks also to the helpful staff of Springer-Verlag, who made this CCIS
publication possible.

Throughout the remainder of this book, the term ‘ICT’ stands for information and
communication technologies, comprising computer science, information systems,
information science, and related areas of studies (which cannot be sharply distinguished
from each other). We wish our readers a fruitful reading experience with this volume of
CCIS, and we look forward to the continuation of the SACLA series in the following
years.

The sponsors and supporters of SACLA 2019 are herewith gratefully acknowledged

October 2019 Bobby L. Tait
Jan H. Kroeze
Stefan Gruner

Preface vii

Organization

General Chair

Mac van der Merwe UNISA Johannesburg, South Africa

Programme Committee Co-Chairs

Bobby Tait UNISA Johannesburg, South Africa
Jan Kroeze UNISA Johannesburg, South Africa

Local Arrangements and Additional Support

Mathias Mujinga UNISA Johannesburg, South Africa
Hanifah Abdullah UNISA Johannesburg, South Africa
Bester Chimbo UNISA Johannesburg, South Africa
Colin Pilkington UNISA Johannesburg, South Africa

SACLA Publications Chair and CCIS Post-Proceedings Co-Editor

Stefan Gruner University of Pretoria, South Africa

Programme Committee

Juan-Carlos Augusto Middlesex University, London, UK
Maurice ter Beek ISTI-CNR, Pisa, Italy
Dines Bjørner Lyngby Technical University of Denmark, Denmark
Jürgen Börstler Blekinge Institute of Technology, Sweden
Mark van den Brand* Technische Universiteit Eindhoven, The Netherlands
Torsten Brinda* Universität Duisburg-Essen, Germany
Helmut Caba Pädagogische Hochschule Salzburg, Austria
Serge Chaumette LaBRI/Université de Bordeaux, France
Loek Cleophas+ Technische Universiteit Eindhoven, The Netherlands
Andrea Corradini Università di Pisa, Italy
Marian Daun Universität Duisburg-Essen, Germany
Jörg Desel Fernuniversität in Hagen, Germany
Gordana Dodig-Crnkovic Chalmers University of Technology, Göteborg,

Sweden

Rachid Echahed Université de Grenoble, France
Marko van Eekelen* Radboud Universiteit, Nijmegen, The Netherlands
Sigrid Ewert University of the Witwatersrand, Johannesburg,

South Africa
Carla Ferreira Universidade Nova de Lisboa, Portugal
Karl-Josef Fuchs Universität Salzburg, Austria
Kurt Geihs* Universität Kassel, Germany
Jaco Geldenhuys Stellenbosch University, South Africa
Richard Glassey Robert Gordon University, Aberdeen, UK
Stefan Gruner* University of Pretoria, South Africa
Jurriaan Hage Universiteit Utrecht, The Netherlands
Pieter Hartel Universiteit Twente, The Netherlands
Michaela Huhn Ostfalia Hochschule für angewandte Wissenschaften,

Wolfenbüttel, Germany
Fourie Joubert Universiteit van Pretoria, South Africa
Agnes Koschmider Karlsruher Institut für Technologie, Germany
Eduan Kotzé* University of the Free State, South Africa
Hans-Jörg Kreowski Universität Bremen, Germany
Jan Kroeze UNISA, Johannesburg, South Africa
Nguyen-Thinh Le Humboldt-Universität zu Berlin, Germany
Horst Lichter* RWTH, Aachen, Germany
Reza Malekian Malmö University, Sweden
Carlos Matos Royal Holloway University of London, UK
Greg Michaelson Heriot-Watt University, Edinburgh, UK
Thomas Noll RWTH, Aachen, Germany
Peter-Csaba Ölveczky University of Oslo, Norway
Barbara Paech Universität Heidelberg, Germany
Nelishia Pillay University of Pretoria, South Africa
Karen Renaud* Abertay University, Dundee, UK
Arend Rensink Universiteit Twente, The Netherlands
Ian Sanders* UNISA, Johannesburg, South Africa
Holger Schlingloff Humboldt-Universität zu Berlin, Germany
Gerardo Schneider Chalmers University of Technology, Göteborg,

Sweden
Monika Seisenberger Swansea University, UK
Bobby Tait UNISA, Johannesburg, South Africa
Bob Travica University of Manitoba, Winnipeg, Canada
Lorna Uden Staffordshire University, Stoke-on-Trent, UK
Janis Voigtländer Universität Duisburg-Essen, Germany
George Wells Rhodes University, Grahamstown, South Africa
Bernhard Westfechtel Universität Bayreuth, Germany
Uwe Wolter University of Bergen, Norway
Akka Zemmari LaBRI/Université de Bordeaux, France
Olaf Zukunft* Hochschule für angewandte Wissenschaften, Hamburg,

Germany

x Organization

Additional Reviewers

Alexander, Peter
Babur, Önder
Denisova, Alena
Fleitas, Yeray del C. B.
Hacks, Simon
Jahl, Alexander
James, Phillip
Karkhanis, Priyanka
Kuiper, Ruurd

Ossenkopf, Marie
Plewnia, Christian
Rohmann, Astrid
Rauchas, Sarah
Safari, Solmaz
van Staden, Wynand
Staudemeyer, Ralf C.
Walton, Sean

PC members marked with * are continuing PC members from the previous year’s
conference, SACLA 2018 (Springer: CCIS 963), and PC members marked with + had
acted as additional reviewers for SACLA 2018.

Organization xi

Contents

Computer Programming Education

Synthesis of Social Media Messages and Tweets as Feedback Medium
in Introductory Programming . 3

Sonny Kabaso and Abejide Ade-Ibijola

Decoding Source Code Comprehension: Bottlenecks Experienced
by Senior Computer Science Students . 17

Pakiso J. Khomokhoana and Liezel Nel

System Security Education

An Approach to Teaching Secure Programming in the .NET Environment . . . 35
Sifiso Bangani, Lynn Futcher, and Johan van Niekerk

A Framework for Integrating Secure Coding Principles into
Undergraduate Programming Curricula. 50

Sandile Ngwenya and Lynn Futcher

Developing a Digital Forensics Curriculum: Exploring Trends
from 2007 to 2017 . 64

Roshan Harneker and Adrie Stander

Software Engineering Education

Hackathons as a Formal Teaching Approach in Information Systems
Capstone Courses . 79

Walter F. Uys

Modernizing the Introduction to Software Engineering Course 96
Marko Schütz-Schmuck

Exercise Task Generation for UML Class/Object Diagrams,
via Alloy Model Instance Finding . 112

Violet Kafa, Marcellus Siegburg, and Janis Voigtländer

Education of Post-Graduate Research-Students

A Connectivist View of a Research Methodology Semantic Wiki 131
Colin Pilkington and Laurette Pretorius

Cohort Supervision: Towards a Sustainable Model for Distance Learning. . . . 147
Judy van Biljon, Colin Pilkington, and Ronell van der Merwe

Guidelines for Conducting Design Science Research
in Information Systems . 163

Alta van der Merwe, Aurona Gerber, and Hanlie Smuts

Our Students, Our Profession

Making Sense of Unstructured Data: An Experiential Learning Approach . . . 181
Sunet Eybers and Marie J. Hattingh

Connecting Generation Z Information Systems Students to Technology
Through the Task-Technology Fit Theory . 197

Adriana A. Steyn, Carina de Villiers, Joyce Jordaan,
and Tshegofatso Pitso

Detecting Similarity in Multi-procedure Student Programs Using only
Static Code Structure . 211

Karen Bradshaw and Vongai Chindeka

Enhancing Computer Students’ Academic Performance Through
Explanatory Modeling . 227

Leah Mutanu and Philip Machoka

The Use of Industry Advisory Boards at Higher Education Institutions
in Southern Africa. 244

Estelle Taylor and Andre P. Calitz

Author Index . 261

xiv Contents

Computer Programming Education

Synthesis of Social Media Messages
and Tweets as Feedback Medium
in Introductory Programming

Sonny Kabaso and Abejide Ade-Ibijola(B)

Department of Applied Information Systems, University of Johannesburg,
Johannesburg, South Africa

abejideai@uj.ac.za

Abstract. Social Media have been recognised as supportive tools in
education for creating benefits that supplement students’ collaboration,
class interactions, as well as communication between instructors and stu-
dents. Active informal interaction and feedback between instructors and
students outside class belong to the main reasons behind social media
pedagogy. Despite the prevalence of traditional email methods of pro-
viding feedback to students, the literature shows that they do not check
their emails as frequently as they check their social media accounts. In
this paper we present the automatic generation of feedback messages and
tweets with context-free grammars (CFG). Our system takes a class list
of students and their mark sheets and automatically composes Twitter
tweets concerning statistical ‘fun facts’ about programming problems,
exercises, class performances, as well as private messages about indi-
vidual student performances. A survey with 116 participating students
showed that the majority of them would like to receive such notifica-
tions on social media rather than emails. Lecturers found our system
promising, too.

Keywords: Introductory programming · Social media · Tweet
synthesis · Context-free grammar · Procedural generation

1 Introduction

Social media are a collection of web-based applications built on the foundations
of Web 2.0 technology. They consist of a multitude of user-generated and shared
information [19]. Over the years social media have come to count to the most
popular internet services in the world [14]. They made remote communication
possible for many people [25], and became an essential part of our everyday lives
[18]. Despite the fact that social media were only used for social communica-
tion when first introduced, they can be used in professional contexts and have

This work is financially supported by the National Research Foundation (NRF) of
South Africa (Grant No. 119041). Bridge Labs Inc., Johannesburg, provided an addi-
tional travel grant.

c© Springer Nature Switzerland AG 2020
B. Tait et al. (Eds.): SACLA 2019, CCIS 1136, pp. 3–16, 2020.
https://doi.org/10.1007/978-3-030-35629-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35629-3_1&domain=pdf
http://orcid.org/0000-0001-6550-1445
http://orcid.org/0000-0001-9507-0455
https://doi.org/10.1007/978-3-030-35629-3_1

4 S. Kabaso and A. Ade-Ibijola

evolved into a platform for student engagement and interaction [8,37], includ-
ing collaboration and feedback [1,10]. For instance, Twitter has driven instant
interaction between instructors and their students, student participation, formal
communication outside the classroom, and continued learning when students
are off-campus [16,20,26]. ‘Digital natives’ are frequent social media users and
would rather receive information using modern technology; this aids traditional
learning and teaching methods [10,13,17].

Some studies have shown that when social platforms like Twitter are used
in an educational setting, learning is more engaging and stimulating than tra-
ditional teaching methods [26,39]. Students also prefer to use mobile devices
for social media because they have access to their devices at any time, thus
extending the time of interaction outside the classroom [8,10,34]. Thus, incor-
porating social media in education can improve the amount of time students
interact with their studies. This should also be beneficial for new students in
introductory programming courses.

Introducing new students to computer programming requires time and
patience [15,22]. It is considered a challenge by many computer program-
ming instructors [32]. Many novice programmers find—and have always found—
learning new programming concepts difficult [12], with many publications pro-
viding evidence of high failure and drop-out rates [7,15,23,33,38]. Novice pro-
grammers have minimal engagement with programming concepts and problems.
They fail to create clear mental models of programme execution [27]. In order to
address this problem, we need to develop teaching methods that enable regular
practice by programming students, preferably using social media as auxiliary
tools [24]. Given that many institutions still depend on traditional pedagogical
models of teaching in our digital era, the amount of time students have with
‘classical’ course content is rather limited as they are almost always ‘on’ social
media [37]. Hence, it has become imperative that we create innovative methods
of engaging with the ‘digital natives’ also in the programming courses.

One innovation will be to send ‘push’ notifications to novice programmers
on social media, automatically. With social media’s popularity, creating sup-
plementary communication methods among students and instructors can have
positive learning effects [34]. Therefore, in this paper, we present the synthesis
of social media messages and ‘tweets’ as feedback means for novice programmers
by employing techniques from natural language generation (NLG) [30,31] and
formal (context-free) grammars. We generate tweets. taking into account student
information and predefined templates. Our tweets are categorised into ‘broad-
casts’ (for everybody) or direct messages (to individual students). Broadcasts
include performance statistics, learning guides, test announcements, exercises,
assignment notifications, as well as new topics and concepts. Direct messages
refer to individual students’ attendance and performance. This communication
processes is depicted in Fig. 1.

In the process shown in Fig. 1, an instructor inserts a class list containing stu-
dents’ course information into a database. The Tweet Synthesizer then auto-
matically generates feedback tweets and messages. These tweets and messages
are pushed to Twitter via its web API (Appl. Progr. Interface).

Social Media Messages in Introductory Programming 5

Fig. 1. Process of tweet feedback generation with CFGs

In the following sub-sections we define somewhat more precisely what was
the motivation for our work and what research questions we wanted to address.
For the sake of clarity we also recapitulate the well-known definition of context-
free grammars. Thereafter, the rest of this paper is organised as follows: Sect. 2
outlines some related work. Section 3 describes our CFG for tweet generation.
Section 4 shows the implementation of our tool together with examples of gen-
erated tweets. Section 5 evaluates and discusses our achievement. Section 6 con-
cludes the paper and hints at further work to be done.

1.1 Motivation

Our work is motivated by the following problems faced by programming instruc-
tors and novice students.

Location and Time Constraints: Time and location constraints become a
major setback in a traditional setting because students only interact with
course work during ‘school time’ [10].

Students’ Preference: Students use social media more compared to e-mail
[10,17]. Also [34] indicated that students preferred to use the social media
rather than e-mail.

6 S. Kabaso and A. Ade-Ibijola

Course Difficulty: Programming is a difficult subject to learn [7,12,15,23,38].
In order to obtain long-term knowledge and proficiency it is important that
novice programmers have continuous interaction and practice with program-
ming puzzles [24].

1.2 Research Questions

Thus motivated, this paper shall answer the following research questions:

1. How can we generate personalised social media messages and tweets as feed-
back, based on real-time data on students’ attendance and performance, with
limited or no lecturer involvement?

2. How can we improve learning methods for Introductory Programming and
make it more interactive outside normal classes in informal contexts?

3. How can we define CFG rules to implement such a system?

1.3 Contribution

For the purpose of answering our research questions we have:

– developed a method of automatically generating educational feedback to sup-
port Introductory Programming in the form of tweets using CFG rules;

– built a tool called the Tweet Synthesiser that automatically generates and
posts programming concepts, practice exercises and solutions in the form of
tweets for novice programmers;

– evaluated how useful the Tweet Synthesiser is for novice programmers.

1.4 Context-Free Grammars

A concept that appears many times in this paper is that of a context-free gram-
mar. From [5] we adopt the following

Definition: Context-Free Grammar (CFG). A CFG is a quadruple G =
(N,Σ,P, S), where:
1. N is a restricted set of elements known as non-terminal or syntactic

variables.
2. Σ is a restricted alphabet of terminal symbols where Σ �⊆ N . Terminals

appear on the right side of Replacing Rules
3. P is a set of Replacing Rules, with the form A −→ a, where A ∈ N

anda ∈ (N ∪ Σ)∗.
4. S is the selected starting non-terminal where S ∈ N .

Social Media Messages in Introductory Programming 7

2 Related Work

Twitter is a popular micro-blogging platform for social networking which was
established in 2006. It is estimated to have ≈555 million active users around
the world [28]. Many of them are ‘digital natives’ and students [8]. It allows for
people to communicate using short text messages (280 characters limit) or status
updates known as ‘tweets’. These can be posted via the Twitter application,
instant text messaging via other third party applications (e.g. Facebook), e-mail,
or web sites using the Twitter API [36]. Twitter is easily accessible regardless of
the geographical location of the user.

Twitter being a ‘push’ technology, feedback is instant because the Twitter
mobile application is readily available on students’ mobile devices [10] as soon as
it is downloaded and installed. In the education domain, Buettner has described
how to ‘push’ concepts, subject-related resources and new topics to Twitter with
the aim of each student having direct notifications on a mobile device every
morning. The majority of the students in that study found this practice much
more engaging and useful [9,39]. Although there has not been any work directly
related to automatically generating messages and tweets as feedback to Twitter,
previous works in NLG and Problem Generation are mentioned as follows.

Natural Language Generation. Generation of social media profiles using
probabilistic CFGs on Facebook can be found in [4]. Human-like language gen-
eration using Monte Carlo Tree Search employing context-free grammars is
described in [21]. Sentence generation for probabilistic TAG grammars can be
found in [6,11]. The generation of narratives of SQL queries using context-free
grammars is described in [29], and in-game text generation with expressive free
text markup and CFGs in [35].

Problem Generation. Automatic generation of python practice problems
using context-free grammars can be found in [2], and automatic generation of
regular expression practice problems (with solutions) in [3].

3 Grammar Design for Tweet Synthesis

3.1 Structure of a Tweet

Before we can design the grammar for synthesising tweets, we first need to out-
line the structure and components of a tweet. A tweet can contain up to 280
characters, including spaces [40]. In this paper we assume a tweet to be made of
four components:

1. text: the short message that a user wants to deliver to a specified audience;
2. hashtag: a word or phrase preceded by the hash symbol #. This is used to

indicate (as ‘meta data’ for purposes of search and retrieval) a topic, event, or
community associated to the tweet. A tweet can contain one or more hashtags
inclusive to the allowed 280 characters;

8 S. Kabaso and A. Ade-Ibijola

3. mention: the user name or Twitter ‘handle’ of a specific user, preceded by
the ‘at’ symbol @;

4. url: a web link to an external source outside the Twitter domain. It is usually
related to the context of the tweet.

Each of these four components is optional though at least one of them must
occur in every tweet, (i.e.: no empty tweets).

3.2 Building Blocks

Rule (1) defines an <identifier> via the regular expression [A−Za−z0−9]+.
Rule (2) states that a ‘mention’ must be preceded by the ‘@’ symbol representing
a Twitter handle or user name. Rule (3) is similar whereby a <hashtag> must
always be preceeded by #. Rule (4) defines the context of the message being
tweeted. Rule (5) define the message itself. Rule (7) specifies any permissible
URL with less than 280 characters.

<identifier> → [A − Za − z0 − 9]+ (1)
<mention> → @<identifier> (2)
<hashtag> → #<identifier> (3)
<context> → <exercise>|<schedule>|<attendance>|<performance> (4)

<msg> → <context><url>|<context>|<url> (5)
<optional txt> → <text>| ε (6)

<url> → usual web address string of maximally 280 characters (7)

3.3 Tweet

Rule (8) states that a tweet can either be a broadcast <broadcast tweet> or a
direct message <inbox tweet>:

<tweet> → <broadcast tweet>| <inbox tweet> (8)
whereby the entire tweet must not exceed 280 characters

3.4 Broadcast Tweet

Rule (9) makes a sequence of hashtags optional. Rule (10) defines a broadcast.
Contrary to the general rules of Twitter (see Subsect. 3.1), we here demand for
our application that a tweet’s <msg> component cannot be optional. As usual,
the entire tweet with all components may not exceed 280 characters.

<tag> → [<hashtag>]∗ (9)
<broadcast tweet> → <msg>|<msg><tag>| (10)

(<mention><msg>|<msg><mention>)<tag>|
<tag>(<mention><msg>|<msg><mention>)|
<msg>(<mention><tag>|<tag><mention>)|
<mention>(<msg><tag>|<tag><msg>)

Social Media Messages in Introductory Programming 9

To produce a <broadcast tweet> for an exercise or a solution we can fur-
ther decompose the variables for <exercise> and <solution> (Rules 11–12),
whereby <optional txt> may contain any wording that ‘makes sense’ in the
context of the tweet. Rule (13) defines specifies schedules of events.

<exercise> → <optional txt><category><topic><optional txt>
<problem no><problem txt><optional txt> (11)

<solution> → <optional txt><category><topic><optional txt>
<solution no><solution txt><optional txt> (12)

<schedule> → (<event><optional txt>)| (13)
(<optional txt><event>)<schedule>

3.5 Inbox Tweet

Finally we define the rules for producing direct inbox message tweets:

<inbox tweet> → <msg><tag>|<tag><msg> (14)
<performance> → <optional txt><marks><module><optional txt>

<event> (15)
<attendance> → <optional txt><avg attendance><optional txt> (16)

Note: unlike broadcast tweets, which are limited to 280 characters, inbox tweets
are allowed to consist of more than 280 characters. Two examples of tweet pro-
ductions from the grammar of above are given in the following paragraphs.

Example 1: Direct Message. In this example we produce a direct message
about a student’s performance in some test. Rule (14) is the starting point.

<inbox tweet>
→ <performance><hashtag>
→ <optional txt><marks><module><optional txt><event><hashtag>
→ You scored <marks><module><optional txt><event><hashtag>
→ You scored 50% <module><optional txt><event><hashtag>
→ You scored 50% DSW1A <optional txt><event><hashtag>
→ You scored 50% DSW1A in <event><hashtag>
→ You scored 50% DSW1A in TEST1 28/06/2019 <hashtag>
→ You scored 50% DSW1A in TEST1 28/06/2019 #assessments

Example 2: Schedule Tweet. Here we produce a broadcast announcement
for a scheduled test. Rule (10) is the starting point.

<broadcast tweet>
→ <msg><hashtag>
→ <optional txt><event><optional txt><hashtag>
→ You have <event><optional txt><hashtag>
→ You have Test1 on 28/06/2019. <optional txt><hashtag>
→ You have Test1 on 28/06/2019. Do not forget to add it to your calendar.

<hashtag>
→ You have Test1 on 28/06/2019. Do not forget to add it to your calendar.

#assessments

10 S. Kabaso and A. Ade-Ibijola

Fig. 2. Setup for educational Tweet Synthesiser: (a) Topic selection for exercise and
solution, (b) Students’ performance, (c) Attendance, (d) Schedule and deadlines

4 Implementation

In the previous section we presented our rules for generating tweets. Now we
describe how we have implemented these rules in a push notification tool for
messages and feedback on Twitter. Our tool, developed in the .Net framework, is
shown in Fig. 2. It is divided into four sections for four tweet categories namely:
exercises/solutions, student performance, attendance, and schedule. For an exer-
cise tweet, we first select a programming category and a topic for the desired
tweet. For instance, the category could be algorithm design and the topic if-
statements. With those selections a problem exercise (with solution) is automat-
ically generated via the AAI API [2]. We generate procedural practice algorithms
and programs in Python.

The problem and its solution are then passed through the tweet synthesizer
to post a broadcast exercise tweet with problem and solution temporally sep-
arated. Figure 4 shows two generated tweets for a problem exercise (a) and its
solution (b). Our Tweet Synthesiser generated 500 tweet exercises and 500

Social Media Messages in Introductory Programming 11

Fig. 3. Tweet Synthesiser: work-flow

tweet solutions for their corresponding questions within a minute of time. A five
second interval separates the posting of two tweets to avoid ‘flooding’ the API.

Performance and attendance tweets work similarly: we select a class list with
the fields (student id, twitter handle, module and marks/attendance) as
a CSV file. With this information, we compose custom tweet messages depending
on students’ performance average and class attendance; they are sent specifically
to individual students. We also generate schedule or deadline tweets from a
digital study-guide by inserting important events or dates. Figure 3 shows the
flow of tweet generation with our tool. Some output examples are shown in Fig. 4.

5 Evaluation: Students’ Perception of Tweet Synthesiser

Next we describe the results of a survey concerning students’ opinions about
receiving educational announcements via our Tweet Synthesiser. The survey
was conducted online at our university. The majority of the respondents were
enrolled in Information Technology and/or Information Systems curricula in
which they take computer programming courses. 116 responses were received.
About 92% of the respondents were students between the age of 18 to 25, 6.2%
were above the age of 25, while the remaining 1.8% were less than 18 years of
age, (Fig. 6a). Students were asked if their instructors used social media to sup-
port teaching and learning: only 17.7% answered Yes (thereby also considering

12 S. Kabaso and A. Ade-Ibijola

Fig. 4. Output tweets: (a) Problem task, (b) Solution advice

platforms like WhatsApp as ‘social media’) while 82.3% stated No, (Fig. 6b).
Students were also asked if they frequently used social media. Most of them said
‘yes’, whereby 81.3% of the answers were placed between 6 and 10 on the answer-
scale. A minority of 19% used social media rarely, (scale: 10 = ‘very frequent’—1
= ‘not at all’). 76.1% claimed to be frequent on Facebook, 66.4% on Instagram,
and 44.2% on Twitter, whereby some students used all three, (Fig. 5). They were
also asked how frequently they access their student-mailbox compared to how
frequently they use social media: only 8.8% claimed to regularly check their e-
mails; 43.4% claimed to check their e-mails 2–5 times per day, while the rest
checked e-mails only once per day or rarely at all, (Fig. 6c). When the students
were asked if they preferred class feedback and learning on social media, 86.7%
of them agreed. Part of that majority preferred that our tool to be implemented
on other social platforms such as Facebook or WhatsApp which would allow
them to be continuously exposed to programming concepts, (Fig. 6d). Hence we
conclude that automating course feedback on social media may be beneficial for
continuous learning outside the classrooms.

Social Media Messages in Introductory Programming 13

Fig. 5. Survey results: frequency of social media usage

Fig. 6. Survey results: (a) Age group, (b) Do instructors use social media in support of
teaching, (c) Frequency of e-mail access, (d) Preference for educational announcements
on social media

6 Conclusion and Future Work

In this paper we have presented a CFG for the automatic generation of social
edia messages and tweets for novice programmers. We demonstrated a method
for automating feedback in education on social media. Not limited to Twitter,
our technique can be used also on other popular platforms (e.g. Facebook). Our

14 S. Kabaso and A. Ade-Ibijola

evaluation shows that a majority of students in our survey are frequent social
media users and would prefer this form of feedback for educational purposes.

In the future we want to explore the synthesis of educational feedback on
other social media platforms. Furthermore we will investigate how we can use
similar techniques in other areas such as marketing or gaming.

Acknowledgment. Many thanks to Nikita Patel for having drawn the pictures which
appear in this paper.

References

1. Abe, P., Jordan, N.A.: Integrating social media into the classroom curriculum.
About Campus 18(1), 16–20 (2013)

2. Ade-Ibijola, A.: Syntactic generation of practice novice programs in python. In:
Kabanda, S., Suleman, H., Gruner, S. (eds.) SACLA 2018. CCIS, vol. 963, pp.
158–172. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05813-5 11

3. Ade-Ibijola, A.: Synthesis of regular expression problems and solutions. Accepted
for publ. Int. J. Comput. Appl. (forthcoming)

4. Ade-Ibijola, A.: Synthesis of social media profiles using a probabilistic context-free
grammar. In: PRASA-RobMech Proceedings of Pattern Recognition Association
of South Africa and Robotics and Mechatronics, pp. 104–109. IEEE (2017)

5. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers — Principles, Techniques
and Tools, 2nd edn. Addison Wesley, Boston (2007)

6. Bauer, D., Koller, A.: Sentence generation as planning with probabilistic LTAG.
In: TAG+10 Proceedings of the 10th International Workshop on Tree Adjoining
Grammar and Related Frameworks, pp. 127–134 (2010)

7. Bergin, S., Mooney, A., Ghent, J., Quille, K.: Using machine learning techniques to
predict introductory programming performance. Int. J. Comput. Sci. Softw. Eng.
4(12), 323–328 (2015)

8. Bicen, H., Cavus, N.: Twitter usage habits of undergraduate students. Procedia
Soc. Behav. Sci. 46, 335–339 (2012)

9. Buettner, R.: The utilization of Twitter in lectures. In: Proceedings of the GI-
Jahrestagung, pp. 244–254 (2013)

10. Chawinga, W.D.: Taking social media to a university classroom: teaching and
learning using Twitter and blogs. Int. J. Educ. Technol. High. Educ. 14(1), 3
(2017)

11. Danlos, L., Maskharashvili, A., Pogodalla, S.: Interfacing sentential and discourse
TAG-based grammars. In: TAG+12 Proceedings of the 12th International Work-
shop on Tree Adjoining Grammars and Related Formalisms, pp. 27–37 (2012)

12. Dijkstra, E.W.: How do we tell truths that might hurt? Manuscr. EWD 498. In:
Dijkstra, E.W. (ed.) Selected Writings on Computing: A personal Perspective.
MCS, pp. 129–131. Springer, New York (1982). https://doi.org/10.1007/978-1-
4612-5695-3 22

13. Gachago, D., Ivala, E.: Social media for enhancing student engagement: the use
of Facebook and blogs at a university of technology. S. Afr. J. High. Educ. 26(1),
152–167 (2012)

14. Gil de Zúñiga, H., Jung, N., Valenzuela, S.: Social media use for news and indi-
viduals’ social capital, civic engagement and political participation. J. Comput.
Mediat. Commun. 17(3), 319–336 (2012)

https://doi.org/10.1007/978-3-030-05813-5_11
https://doi.org/10.1007/978-1-4612-5695-3_22
https://doi.org/10.1007/978-1-4612-5695-3_22

Social Media Messages in Introductory Programming 15

15. Gomes, A., Mendes, A.J.: Learning to program: difficulties and solutions. In: Pro-
ceedings of the International Conference on Engineering Education, vol. 7, p. 5
(2007)

16. Hepplestone, S., Holden, G., Irwin, B., Parkin, H.J., Thorpe, L.: Using technology
to encourage student engagement with feedback: a literature review. Res. Learn.
Technol. 19(2), 117–127 (2011)

17. Hussain, I.: A study to evaluate the social media trends among university students.
Procedia Soc. Behav. Sci. 64, 639–645 (2012)

18. Kaplan, A.M., Haenlein, M.: Social media: back to the roots and back to the future.
J. Syst. Inf. Technol. 14(2), 101–104 (2012)

19. Kaplan, A.M., Haenlein, M.: Users of the world, unite! The challenges and oppor-
tunities of social media. Bus. Horiz. 53(1), 59–68 (2010)

20. Kassens-Noor, E.: Twitter as a teaching practice to enhance active and informal
learning in higher education: the case of sustainable tweets. Act. Learn. High.
Educ. 13(1), 9–21 (2012)

21. Kumagai, K., Kobayashi, I., Mochihashi, D., Asoh, H., Nakamura, T., Nagai, T.:
Human-like natural language generation using monte carlo tree search. In: Pro-
ceedings of the INLG Workshop on Computational Creativity in Natural Language
Generation, pp. 11–18 (2016)

22. Lahtinen, E., Ala-Mutka, K., Järvinen, H.M.: A study of the difficulties of novice
programmers. ACM SIGCSE Bull. 37(3), 14–18 (2005)

23. Malik, S.I.: Role of ADRI model in teaching and assessing novice programmers.
Technical report, Deakin Univ. (2016)

24. Malik, S.I., Coldwell-Neilson, J.: A model for teaching and introductory program-
ming course using ADRI. Educ. Inf. Technol. 22(3), 1089–1120 (2017)

25. Mangold, W.G., Faulds, D.J.: Social media: the new hybrid element of the promo-
tion mix. Bus. Horiz. 52(4), 357–365 (2009)

26. Menkhoff, T., Chay, Y.W., Bengtsson, M.L., Woodard, C.J., Gan, B.: Incorpo-
rating microblogging tweeting in higher education: lessons learnt in a knowledge
management course. Comput. Hum. Behav. 51, 1295–1302 (2015)

27. Milne, I., Rowe, G.: Difficulties in learning and teaching programming: views of
students and tutors. Educ. Inf. Technol. 7(1), 55–66 (2002)

28. Murthy, D.: Twitter. Wiley, Hoboken (2018)
29. Obaido, G., Ade-Ibijola, A., Vadapalli, H.: Generating narrations of nested SQL

queries using context-free grammars. In: Proceedings of the ICTAS Conference on
Information Communications Technology and Society, pp. 1–6. IEEE (2019)

30. Paris, C.L., Swartout, W.R., Mann, W.C. (eds.): Natural Language Generation in
Artificial Intelligence and Computational Linguistics. Springer, New York (1991).
https://doi.org/10.1007/978-1-4757-5945-7

31. Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge
University Press, Cambridge (2000)

32. Renumol, V., Jayaprakash, S., Janakiram, D.: Classification of Cognitive Diffi-
culties of Students to Learn Computer Programming. Technical report, Indian
Institutes of Technology (2009)

33. Robins, A., Rountree, J., Rountree, N.: Learning and teaching programming: a
review and discussion. Comput. Sci. Educ. 13(2), 137–172 (2003)

34. Roblyer, M.D., McDaniel, M., Webb, M., Herman, J., Witty, J.V.: Findings on
Facebook in higher education: a comparison of college faculty and student uses
and perceptions of social networking sites. Internet High. Educ. 13(3), 134–140
(2010)

https://doi.org/10.1007/978-1-4757-5945-7

16 S. Kabaso and A. Ade-Ibijola

35. Ryan, J., Seither, E., Mateas, M., Wardrip-Fruin, N.: Expressionist: an authoring
tool for in-game text generation. In: Nack, F., Gordon, A.S. (eds.) ICIDS 2016.
LNCS, vol. 10045, pp. 221–233. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-48279-8 20

36. Small, T.A.: What the hashtag? A content analysis of canadian politics on Twitter.
Inf. Commun. Soc. 14(6), 872–895 (2011)

37. Sobaih, A.E.E., Moustafa, M.A., Ghandforoush, P., Khan, M.: To use or not to use?
Social media in higher education in developing countries. Comput. Hum. Behav.
58, 296–305 (2016)

38. Tan, P., Ting, C., Ling, S.: Learning difficulties in programming courses: undergrad-
uates’ perspective and perception. In: Proceedings of the International Conference
on Computer Technology and Development, pp. 42–46 (2009)

39. Tang, Y., Hew, K.F.: Using Twitter for education: beneficial or simply a waste of
time? Comput. Educ. 106, 97–118 (2017)

40. Twitter: Post, Retrieve and Engage with Tweets. https://developer.twitter.com/
en/docs/tweets/post-and-engage/overview

https://doi.org/10.1007/978-3-319-48279-8_20
https://doi.org/10.1007/978-3-319-48279-8_20
https://developer.twitter.com/en/docs/tweets/post-and-engage/overview
https://developer.twitter.com/en/docs/tweets/post-and-engage/overview

Decoding Source Code Comprehension:
Bottlenecks Experienced by Senior

Computer Science Students

Pakiso J. Khomokhoana and Liezel Nel(B)

Department of Computer Science and Informatics, University of the Free State,
Bloemfontein, South Africa

nell@ufs.ac.za

Abstract. Source code comprehension (SCC) continues to be a chal-
lenge to undergraduate CS students. Understanding the mental processes
that students follow while comprehending source code can be crucial in
helping students to overcome related challenges. The ‘Decoding the Dis-
ciplines’ (DtDs) paradigm that is gaining popularity world-wide provides
a process to help students to master the mental actions they need to be
successful in a specific discipline. In focusing on the first DtDs step of
identifying mental obstacles (“bottlenecks”), this paper describes a study
aimed at uncovering the major SCC bottlenecks that senior CS students
experienced. We followed an integrated methodological approach where
data were collected by asking questions, observations, and artefact anal-
ysis. Thematic analysis of the collected data revealed a series of SCC
difficulties specifically related to arrays, programming logic, and control
structures. The identified difficulties, including findings from the liter-
ature as well as our own teaching experiences, were used to compile a
usable list of SCC bottlenecks. By focusing on senior students (instead
of first-year students), the identified SCC bottlenecks point to learning
difficulties that need to be addressed in introductory CS courses.

Keywords: Computer programming · Source code comprehension ·
Students’ learning bottlenecks · Decoding the Disciplines

1 Introduction

Despite the continuous efforts of committed instructors to share the intricacies
of their academic disciplines and their students’ desperation to succeed, many
students still struggle to master course material [32]. The specific points where
students’ learning gets interrupted can be referred to as bottlenecks [11,28]. A
bottleneck typically occurs when students are unsure about how to approach
a problem and consequently follow inappropriate strategies [32]. In an attempt
to assist instructors in addressing students’ learning bottlenecks, Middendorf
and Pace devised the Decoding the Disciplines (DtDs) paradigm [28]. One of
the underlying principles of this paradigm is that each discipline has unique
c© Springer Nature Switzerland AG 2020
B. Tait et al. (Eds.): SACLA 2019, CCIS 1136, pp. 17–32, 2020.
https://doi.org/10.1007/978-3-030-35629-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35629-3_2&domain=pdf
http://orcid.org/0000-0003-3642-1248
http://orcid.org/0000-0002-6739-9285
https://doi.org/10.1007/978-3-030-35629-3_2

18 P. J. Khomokhoana and L. Nel

ways of thinking [28]. Students who fail to master the required ‘ways of think-
ing’ are unlikely to succeed in their higher-level studies. In the DtDs paradigm,
instructors are therefore encouraged to identify discipline-specific learning bot-
tlenecks that could prevent students from mastering the basic disciplinary ways
of thinking. Subsequently, specific strategies to address the bottlenecks are iden-
tified, implemented and evaluated [32]. Despite the recent uptake in decoding
research in other disciplines [40,43], limited information about DtDs research in
Computer Science (CS) is available.

However, during the past three decades numerous investigations have been
launched to gain better understanding of the various difficulties that computer
programming students experience [3,4]. One such difficulty—which has been
studied extensively—relates to the way in which students (also referred to as
‘novice programmers’) interpret pieces of source code [9,23]. This activity—
commonly referred to as source code comprehension (SCC)—is regarded a vital
skill that novice programmers have to master [39]. Most of the previous SCC
studies, however, focused on the evaluation of difficulties that students enrolled
for introductory programming courses experience [26,38]. Pace points out that
a student’s inability to master certain basic concepts may not necessarily lead
to his/her failure of an introductory course [32]. However, it is likely that such
a student’s confusions will continue to accumulate, thus causing diminishing
performance of basic tasks. As such, it is possible for students to progress to
advanced courses while they are still experiencing bottlenecks related to basic
concepts. Their failure to grasp these basic concepts can have a negative impact
on their ability to complete their degrees. This paper therefore attempts to
answer the following two questions:

1. What are the major SCC difficulties experienced by senior CS students?
2. How can knowledge of these difficulties be used to identify SCC bottlenecks

that should ideally be addressed in introductory programming courses?

In the remainder of this paper, a review of relevant background literature is
presented in Sect. 2. This is followed by a discussion of the research design and
method in Sect. 3, and a presentation and interpretation of the results in Sect. 4.
The identified SCC bottlenecks are presented in Sect. 5, and conclusions and
recommendations for future research in Sect. 6.

2 Related Work

The first step of the seven-step DtDs framework [28] is to identify students’ learn-
ing bottlenecks. The identification of discipline-specific bottlenecks allows instruc-
tors to identify specific areas in a module where they need to intervene more
strongly in order to facilitate better learning [29,32]. In identifying a learning bot-
tleneck, the instructor must ensure that the bottleneck is ‘useful’. A bottleneck is
‘useful’ if it affects the learning of many students, interferes with the major learn-
ing in a module, is relatively focused, and does not involve a large number of dis-
parate operations. It must also be defined clearly without jargon [32]. In the DtDs
paradigm [28], instructors can take various ways to identify bottlenecks.

Decoding Source Code Comprehension 19

2.1 Bottleneck Identification Approaches

In one of the popular approaches [29], instructors themselves identify bottle-
necks based on specific student problems they discover during their teaching
of a specific module [34]. Instructors can also identify bottlenecks by focusing
on a single assignment. In History, for example, Pace identified a specific diffi-
culty while grading a writing assignment [32], whereas Shopkow was alerted to
a specific difficulty as a result of questions voiced by her students regarding the
specifications of an assignment [40].

In most of the limited number of decoding studies in the CS discipline to date,
researchers have also identified specific bottlenecks based on personal teaching
experiences. For a Database Design and Data Retrieval module, the authors of
[19] identified creating Entity Relationship diagrams, reasoning in MySQL and
dualism as the main student learning bottlenecks. Menzel used her experience in
teaching an introductory CS module to identify recursion —a threshold concept in
CS [38]— as her students’ main bottleneck [27]. For a follow-up module, German
focused his decoding study on the challenges of program debugging [14].

Bottleneck identification for a specific module can also be facilitated by an
outsider (e.g. a pedagogical advisor). In [43], module-specific bottlenecks were
identified by asking seven participants representing five disciplines (Engineer-
ing, Chemistry, History, Social Sciences and Electronics) to each write a 10-line
description of two or three bottlenecks they could think of for the modules they
were teaching. In an attempt to identify the top bottlenecks experienced by
Accounting students in their Taxation modules, Timmermans and Barnett first
asked instructors to identify potential bottlenecks [42]. Their eventual selection
of the top bottlenecks was based on the responses of 4th-year Taxation students
who were asked to rate the 40 potential bottlenecks w.r.t. level of understanding
and importance.

When the goal is to identify common bottlenecks in a specific discipline, the
collective experiences of a group of instructors can also be a valuable source.
In this regard, various researchers from the History discipline have used individ-
ual interviews with instructors to identify common discipline-specific bottlenecks
[11,41]. Wilkinson chose a peer dialogue strategy where Law instructors collec-
tively established that the reading of case law was their students’ major learning
bottleneck [46]. For bottleneck identification in Political Science, Rouse (et al.)
based their selection of literature reviews as the major bottleneck on the experi-
ences of both instructors and students (from different year levels) as well as on
the findings of other studies [37]. Thus an instructor’s insight often is the main
source for bottleneck identification. However, the role of students in bottleneck
identification should not be ignored. Further justification for the seriousness of
specific bottlenecks can also be found by linking bottlenecks to discipline-specific
learning difficulties identified in other non-decoding studies (such as [31]).

2.2 SCC Difficulties

As mentioned above, numerous previous studies have attempted to uncover the
specific difficulties experienced by novice programmers in comprehending source

20 P. J. Khomokhoana and L. Nel

code. Although none of these studies were specifically conducted in the DtDs
framework, Middendorf and Shopkow suggest that relevant literature can also
be used to identify bottlenecks [29].

In an investigation of the programming competency of students enrolled for
CS1 and CS2 courses, McCracken (et al.) stated that many students still do not
know how to program at the end of their introductory programming courses [26].
This problem was further explored in the BRACElet project which confirmed
students’ lack of programming skills [45]. In an attempt to expand understanding
of the difficulties experienced by students, [26] refers to the potential role that
in-depth analysis of narrative data collected from students can play.

The ITiCSE 2004 working group study [23] was conducted as a follow-up
on the McCracken (et al.) study. A set of 12 multiple-choice questions (MCQs)
was used to test students’ ability on two tasks: firstly, to predict the output of
executing the given fragments of source code; secondly, to select a piece of source
code (from a small set of options) that would correctly complete a given near-
complete code snippet. Although many students were found to be lacking the
skills required to do both tasks, the latter was found to be the most challenging.
The final ITiCSE 2004 report states that students were unable to “reliably work
their way through the long chain of reasoning required to hand-execute code,
and/or... to reason reliably at a more abstract level to select the missing line of
code” [23] (p. 132).

All 12 questions used in [23] focused strongly on the concept of arrays. In
a study aimed at improving students’ learning experiences, Hyland and Clynch
found arrays to be the most challenging topic for first- and second-year students
[18]. In an attempt to record all the difficulties that students experience during
practical computer programming sessions, Garner (et al.) found arrays to be
featuring among the top three difficulties [13]. Other studies, too, have identified
arrays as a challenging concept for novice programmers [2,24].

All ITiCSE 2004 questions [23] included basic control structures such as con-
ditionals (e.g. if, if-else), loops (e.g. while, for), or a combination thereof.
According to [30], many novice programmers struggle to comprehend basic con-
trol structures. Various studies have described the specific difficulties that stu-
dents experienced while interpreting looping (repetition) structures [6,16,18,24].
Garner (et al.) mention that most of the difficulties associated with loops orig-
inate in students’ incorrect comprehension of either the header or body of the
looping structure [13].

Although logic generally is regarded as a mathematical field, it has grown
more relevant to CS especially w.r.t. its applications [17]. Programming logic
involves executing statements contained in a given piece of code one after another
in the order in which they are written. Though still logical and correct, there
are some programming control structures that may violate this execution order
[10]. It is therefore not surprising that students struggle with logical reasoning
in solving computer programming related problems [6]. The logical flow of the
source code statements is closely related to the control flow of such statements
[13]. This implies that for a programmer to fully comprehend a computer pro-
gram, he/she must skilfully combine the programming logic with the control flow

Decoding Source Code Comprehension 21

of the program. Students are more likely to logically work (or trace) through a
piece of source code if they have adequate knowledge of the semantics of the
programming language and can keep track of changes made to variable values
[23]. Therefore novices especially struggle to follow a program’s execution [4,36]
and control flow [13].

As the proponents of the DtDs paradigm argue that bottlenecks directly
relate to difficulties hindering many students’ learning [28], the previously iden-
tified difficulties can serve as a baseline for the identification of common and
useful SCC bottlenecks. The exact nature of some of these difficulties, however,
remains unclear: Where exactly are students getting stuck? Why are they get-
ting stuck? What are they doing wrong? Which strategies do they resort to when
they get stuck? Better knowledge about the nature of these difficulties can thus
be valuable in determining teaching and learning gaps related to SCC.

3 Research Methods

3.1 Design

Within the scope of a DtDs-based research design, we followed an approach
based on Plowright’s Frameworks for an Integrated Methodology (FraIM) [35].
Thereby, our focus was on collecting narrative and/or numeric data by means of
observations, asking questions, and/or artefact analysis. The study population
consisted of final-year undergraduate CS students (referred to as ‘senior students’
in this paper) from a South African university. The empirical part of our study
comprised two phases. The aim of Phase 1 was to identify specific senior CS
students having trouble in comprehending short pieces of source code. In Phase
2 we wanted to detect specific points or ‘places’ [28] where these students were
experiencing SCC difficulties, with the goal of identifying common and useful
SCC bottlenecks.

3.2 Phase 1

Participants, Data Collection and Analysis. The sample for Phase 1 con-
sisted of 40 students registered for a 3rd-year Internet Programming module.
The selection of this sample was both ‘purposeful’ and ‘convenient’ [33]. The
sample was purposeful because the students had already completed four earlier
programming modules. However, they could still be regarded as ‘novice’ pro-
grammers since they did not yet have any professional programming experience.
The sample was also convenient since we had easy access to the participants
because the lecturer responsible for this module agreed to make available one of
her scheduled class sessions for our research activity.

For the research activity of Phase 1, participants were given a test consisting
of the 12 questions of [23]. For each of these questions, participants had to work
through a short fragment of source code, and then either predict the execution
output of the code fragment or select (from a small set of options) the rele-
vant piece of code needed to complete the given fragment. The questions of [23]

22 P. J. Khomokhoana and L. Nel

were chosen for two reasons: Firstly, all of them contained source code fragments
that students had to comprehend before they could answer the related question.
Secondly, these questions had already been tested with a large population of
students from several universities in the USA and other countries.1 Since the
original questions were formulated in Java, we had to convert their code frag-
ments to C# because this is the programming language familiar to our chosen
population.

The participants’ answer sheets (regarded as ‘artefacts’) were our primary
data source for Phase 1. After ‘grading’ the artefacts, the performance data
for each participant were captured into a spreadsheet, and descriptive statistics
were used to rank the questions in order of difficulty (based on the number
of participants who incorrectly answered such question). The three apparently
most difficult questions (Q3, Q6, Q8) were chosen for further use in Phase 2.

3.3 Phase 2

Data Collection. Based on the student performance data collected in Phase 1,
15 students were invited to take part in Phase 2. These were the students who
provided wrong answers to all three of the questions identified in Phase 1. Ten
of the 15 invited students agreed to partake in Phase 2. The research activity
in Phase 2 consisted of individual sessions during which each participant had
to verbally expose his/her thinking process(es) in a form of ‘thinking aloud’ [7]
while answering anew the same three above-mentioned SCC questions. This data
collection strategy can be regarded as a means of ‘asking questions’.

Time slots of 45min were scheduled for each individual session. However, the
participants were informed that they could take as much time as they needed to
complete the tasks. Since none of the participants had prior experience with the
required think-aloud technique, this technique was first demonstrated to each
participant on an unrelated SCC question. Thereby, one of us played the role of
the ‘interviewer’ by asking probing questions when required (i.e. no progress or
silence). Where necessary we also recorded some observations, as an additional
means of data collection, after the permission for audio-recording was obtained
by the corresponding participant.

Data Analysis. To transcribe and analyse the audio recordings from the indi-
vidual think-aloud sessions, we followed the approach of [8]. Upon data transcrip-
tion we ‘cleansed’ the data by searching for faults and by repairing them accord-
ingly [47]. Since the participants had to verbalise their thoughts as part of the
think-aloud process, the transcripts contained numerous illogical and repeated
statements. We therefore decided to use ‘fuzzy validation’ (instead of strict val-
idation which requires the complete removal of invalid or undesired responses)
[47]. In fuzzy validation we are allowed to correct some data if there is a reason-
ably ‘close match’ to a known right answer. Thereafter we familiarised ourselves
with the data [25] by listening and re-listening to the audio records numerous

1 Benchmark for international comparability.

Decoding Source Code Comprehension 23

times as well as by intensively and repeatedly reading the transcripts. This helped
us to devise a coding plan in which the analysis would be guided by the data
related to our research questions. At this stage, the 10 validated transcripts were
imported into the Nvivo 12 Professional tool. Thereafter, codes were developed
(by creating several nodes) for each SCC difficulty identified in the data.

For coding, Klenke recommends the use of ‘units of analysis’ [22]. These can
be words, sentences or paragraphs. Accordingly, we coded the data by highlight-
ing and/or underlining text (from which the SCC difficulties could be extracted)
within the domain of the stated units of analysis. Then we ‘populated’ the cre-
ated codes by associating the corresponding texts with them. During this process
of refinement, the names of the codes were continuously revised until relevant
themes began to emerge. For each emerging theme, its Nvivo-generated frequency
of occurrence was taken into account.

4 Results and Interpretation

Given the large amount of data collected during Phase 2, the results discussion
only focuses on the participants’ comprehension of Question 3 (Fig. 1, with line
numbers 1–12 inserted in aid of this discussion). This question was selected since
its related ‘think-aloud’ data revealed most clearly the numerous difficulties that
can be directly associated with SCC. Q3 also tested students’ comprehension of
arrays and basic control structures—i.e. the concepts previously identified as
challenging for novice programmers (see above). In the following discussion, the
eight most common SCC difficulties identified are grouped into three categories:
arrays, programming logic, and control structures.

4.1 Array-Related Difficulties

Analysis of the Q3 think-aloud data revealed the following four major array-
related difficulties experienced by the participants.

Array Index. An array index refers to a non-negative integer number that
identifies the position of an element stored in an array. Four participants
had difficulties to interpret simple array indices, with a total of nine occur-
rences identified. Participant 1 (P1) had the most difficulties in this regard,
with three occurrences identified. In her interpretation of b[i], she regarded
i as a value contained in array b instead of a position of an element. Par-
ticipant P8 confused the square brackets indicating the array index with a
multiplication operator when he interpreted b[i] as b multiplied by i: “int
i is equal to 0 [Line 8], and then for this times that , it is equal to true
[Line 10] then increment the counter [Line 11], that times that is equal to
true . . . it is a difficult one but then . . . that times that is true and that
times that is true ”. Thus, both participants were challenged by the notation
[20] of the array index.

Array Length. The length of an array refers to the maximum number of values
that can be stored in it. Three participants struggled to determine the length of

24 P. J. Khomokhoana and L. Nel

Fig. 1. Question 3 according to [23]

the arrays in Q3. P1 had no idea how to determine the length of the Boolean
array b and remarked: “I do not know what is the length of array b ”. Also P6
was unable to correctly determine the length of the array. He interpreted the
Boolean array b to have the length of 4 (instead of the correct length 5): “So
now is 0 less than 4 because our b value is 4 ” while looking at the condition
of the for loop in [Line 3].

Boolean Array. A Boolean array is an array of which the elements can only con-
tain the values true or false. Five occurrences of Boolean array difficulties were
identified, whereby P7 was most challenged (with three identified occurrences).
Overall, the identified difficulties ranged from the declaration of the Boolean
array to basic understanding regarding the effects of operations performed on
such arrays.

P7 got stuck at the Boolean array declaration in [Line 2] and skipped the
question: “Do I understand what I am doing? ...it is a Boolean array, array is
a Boolean, what does it mean? ... (pause) ... I am not sure about this one yet,
let me...” (turning the page to see the next question). When P7 returned to
this question later, his confusion regarding Boolean arrays became even more
apparent as he regarded the index value of 1 as the Boolean equivalent of true:
“Once it gets to the if statement, i is now equal to 1 and 1 is equal to true ”
[Line 10].

Decoding Source Code Comprehension 25

P9 was under the impression that since b was a Boolean array it could only
consist of two elements (instead of two possible values per element): “In position
0 , I have 1 , which means now at b[1] I have true . In my bool array I have
stored two values” [Line 10].

In their comprehension of [Line 10], both P7 and P9 disregarded the actual
code syntax. Instead, they fell back to some semantic according to which a 0
represents false and a 1 represents true. Both participants believed the numeric
index positions 0 and 1 to represent their Boolean truth value equivalents.

Decomposition—whereby a complex piece of code is ‘split’ into its constituent
components to simplify its interpretation [21]—is a task with which many novice
programmers struggle [15]. In their comprehension of Q3, seven participants
found it particularly difficult to decompose the compound index in the expression
b[x[i]] of [Line 6]. Altogether 29 occurrences of this difficulty were identified.

P10 misinterpreted [Line 6] as ‘resetting’ all values in b to true, whereas
de-facto only the selected values in array b are set to true: “b[x[i]] set to
true [Line 6]... yes, no, I am very confused ...(longer pause)... b[i] ...then the
second for loop [Line 5] sets everything from the integer array to true , so, if
I am correct, then it resets everything from the first for loop [Line 3] back to
true ”.

P6 became so confused with the meaning of the compound index expression
that he could not even grasp how the code in [Line 6] was related to the for loop
in [Line 5]: “Now I am worried about this for loop, the second for loop [Line
5], it seems like it has nothing to do with the rest of the statements that come
after it... so this second for loop is the one that is freaking me out”. Although
P6 had no difficulty to understand any of the other for loops in Q3, it seems
that his inability to decompose the compound index expression caused so much
confusion that he suddenly could not comprehend the basic execution of the for
loop in [Line 5].

4.2 Programming Logic Difficulties

The following three programming logic difficulties were identified from our Q3-
related think-aloud transcripts.

Ripple Effect. This effect occurs when the misinterpretation of one statement
has a direct impact on the interpretation of statements that follow. This dif-
ficulty, which was observed with three participants, typically arises when pro-
grammers misinterpret programming logic [20]. Due to P1’s failure in interpret-
ing array indices (see above), her interpretation of the statements contained in
the third for loop completely ignored any changes made to the elements of b
in the first two for loops [Lines 3–6]. She remarked: “If b[i] is true [Line
10], I increment count [Line 11]. So if I increment count every time until it is
over 5 , then I will have 5”. Thus she wrongly chose ‘5’ (option e) as her answer
to Q3.

26 P. J. Khomokhoana and L. Nel

The difficulties that P6 had in interpreting the second for loop [Lines 5–6]
(see above: Decomposition) caused him to disregard that loop entirely while
interpreting the third for loop: “When looking at this third for loop [Line 8],
it is the same as the first one [Line 3] that says the bool array is always equal
to false . Now in the third one they are saying if the element at position i in
the Boolean array is equal to true [Line 10], then increment count [Line 11].
But according to this [Line 4], the b value is always false ”.

The utterances by both P1 and P6 indicated that they were not thinking
sequentially [5], and therefore failed to follow the algorithmic logic of the source
code in question [1]. P9 showed similar behaviour after she realised that she could
not interpret any of the for loops and the containing statements. In response, she
reverted her attention to those statements that she could comprehend and only
considered those to arrive at count=1 as her answer to Q3. Her non-sequential
(non-algorithmic) reasoning appears in the following excerpt: “My first index: I
have a false [Line 4], and then my second: I have a true [Line 6], and then
int count is equal to 0 [Line 7] ...it will only increment when I get to this point
[Line 11], whereby count needs to be 1 ” (option a).

The most concerning aspect of the thinking patterns portrayed by these par-
ticipants is the ‘mental block’ caused by the statements they could not fully
comprehend, and their consequent anxious behaviour (observed by the inter-
viewer). These participants tried to ‘escape’ the block by entirely ignoring the
troublesome statements as if those were no longer part of the given code.2

Guessing. A common critique of MCQs is that they are solvable through guess-
ing. This is also true of our 12 MCQs (Part 1) for which guessing behavior was
previously observed [12,23]. However our format of think-aloud sessions (Phase
2) discouraged guessing, because the participants were repeatedly prompted to
explain their reasoning in as much detail as possible. Nonetheless, one partic-
ipant (P8) attempted guessing when saying “I just have to go with option a”
after having traced only a small fraction of the given code. At that stage he was
unable to show how he arrived at the chosen answer and had to be prompted by
the interviewer to re-explain his reasoning.

Mathematical Expressions. When a line of code contains a mathematical
expression, the misinterpretation of an operator can interfer with the compre-
hension of program logic; for comparison see [31]. One example of such a mistake
was observed when P7 failed to grasp the execution of the third for loop [Line 8]
when the value of i increased to 5: “Yes, i becomes 5... once it runs throughout
the loop and becomes 5 then... b[i] is going to be true... then the count also
increments”. He thus treated the < as if it was a ≤ operator, which is typically
regarded as a ‘logical error’ in the comprehension of source code.

2 This observation points to the psychology of programming which is a field of research
since the late 1960s/early 1970s [44].

Decoding Source Code Comprehension 27

4.3 Programming Control Structure Difficulty

The code in Q3 only contained one type of control structure in the form of
three for repetition structures. As mentioned above (Ripple Effect), the lack
of understanding that P6 and P9 portrayed regarding the overall functioning of
a for loop caused them to eventually ignore the lines of code related to these
structures. Another for loop misconception was observed when P7 repeatedly
executed the loop counter increment statement (++i) at the beginning of each
loop, thereby setting the initial value of i to 1 for each of the three loops. Since
repetition structures are one of the concepts that novices find challenging [16],
it is not surprising that some participants experienced difficulties in this regard.
However, one area of concern is the level of difficulty that these senior students
experienced in comprehending basic for repetition structures.

5 Identification of Six SCC Bottlenecks

The results of Phase 2 showed that the participants in this study experienced
eight major SCC difficulties related to the concept of arrays, programming logic,
and programming control. Following the bottleneck identification guidelines of
[29,32], we used our collective experience of more than 25 years of teaching
introductory and advanced programming courses, combined with the insights
gained from this study as well as relevant literature, to formulate the following
six ‘usable’ SCC bottlenecks.

5.1 Bottleneck 1

Students cannot keep track of variable values while tracing through
a piece of code. The above-mentioned think-aloud excerpts contain numerous
examples in which students lost track of the changes made to variable values.
The students tried to remember the changes to the variable values (instead of
writing notes on a provided piece of paper), which put unnecessary strain on
their working memories. Their incorrect answers were thus a direct consequence
of failing memory or guessing. Lister (et al.) pointed out that, when students
document changes to variable values, they are much more likely to produce the
correct answer [23]. Most students in our study did not follow a reliable strategy
to keep track of such value changes.

5.2 Bottleneck 2

Students cannot comprehend statements containing arrays and basic
operations on array elements. The bulk of the identified difficulties can be
related to the students’ wrong understanding of array concepts: for comparison
see [2,13,18,24]. Our students particularly struggled to interpret array indices—
especially in combination with other concepts. While one student confused the
square [index] brackets with a multiplication operator, others were not able to

28 P. J. Khomokhoana and L. Nel

determine an array’s length. Although most students had little trouble to com-
prehend the array of numeric values, many of them were lost when having to
deal with the Boolean array type.

5.3 Bottleneck 3

Students cannot comprehend the execution of basic for repetition
structures. Most of the difficulties observed with the for loops are due to
our students’ incorrect comprehension of either the header or the body of the
looping structure (as in [13]). While some students failed to recognise when and
how a loop terminates (see also [16]), one instance was observed where the loop
counter increment statement was executed at the wrong time. Although most of
the difficulties observed in comprehension of the body of the looping structure
are more specifically related to arrays, referencing the incorrect value of the loop
counter variable also caused problems for some students. Most worrying were
the two students who entirely gave up interpreting the for loops and ignored
either the entire structure or the loop header for the remainder of their Q3
interpretation.

5.4 Bottleneck 4

Students do not have adequate strategies to interpret lines of code that
look unfamiliar. This bottleneck was observed in cases where students were
unable to read, interpret and understand (execute) a specific code statement.
Of particular interest here are cases where two or more separate concepts—
which a student could comprehend earlier—were combined to form one ‘complex’
concept. The students were unable to decompose the more complex piece of code
into smaller parts in order to simplify the interpretation thereof, (see also [21]).
Their most common response to this challenge was to ignore those complex
statements or lines of code. Although decomposition is a task that many novice
programmers struggle with [15], students may never learn how to deal with
complex concepts if they are not taught explicit strategies to resort to in such
situations.

5.5 Bottleneck 5

Students view a piece of source code as consisting of separate lines
of code, thereby ignoring the significance of each individual line. We typically
teach our students that, in order to fully comprehend what a program does,
they first need to understand the meaning of each distinct line of code of that
program. However, it seems that in following our ‘guidelines’ some students not
only lose sight of how the parts fit together but also of the overall significance of
each individual line of code or statement. This behaviour was evident with those
students who completely ignored sections of code they could not comprehend,
with a complete disregard for the impact this would have on their ability to

Decoding Source Code Comprehension 29

determine the correct answer to Q3. For comparison see the ‘ignore significance’
bottleneck in [41] about History students’ disregard of how individual facts relate
to the story they are trying to tell.

5.6 Bottleneck 6

Students cannot reliably think their way through a long chain of rea-
soning required to comprehend a piece of source code. This bottleneck can be
regarded as ‘overarching’ since it refers to one of the most common and sig-
nificant SCC difficulties identified in [23]. In our study it is directly related to
our ‘ripple effect’ that refers to mistakes made when students are unable to
think sequentially [5] or fail to follow the source code logic [1]. In our study, we
noticed the significant negative impact that inadequate knowledge of semantics
and inability to keep track of variable values can have on a student’s comprehen-
sion of a piece of code. These are all examples of actions that can cause a ‘mental
block’ in students’ reasoning ability, which they are unlikely to overcome if they
do not have the necessary knowledge and abilities to deal with such difficulties.

Although we present these as six separate bottlenecks, they should be seen
as “interconnected with each other” [41], since they are all indicators of mental
challenges experienced by novice programmers while comprehending source code.

6 Conclusions and Future Work

SCC continues to be a challenge to undergraduate CS students. Understand-
ing the mental processes that students follow while comprehending source code
can be crucial in helping students to overcome related challenges. By focusing
on Step 1 of the seven-step DtDs framework, this study aimed to expose the
major SCC bottlenecks experienced by senior CS students. Thematic analysis
of data collected by means of asking questions, observations, and artefact anal-
ysis revealed several SCC difficulties specifically related to arrays, programming
logic and control structures. The detected difficulties, combined with findings
from the literature and our personal experiences, were used to formulate six
bottlenecks that are indicative of the typical mental challenges experienced by
novice programmers during the comprehension of source code. By focusing on
senior students we were able to identify major bottlenecks that point to students’
learning difficulties that are currently not adequately addressed in introductory
CS courses, and therefore continue to influence the mental processes of final-year
undergraduate students.

With this paper we also wanted to raise awareness among instructors regard-
ing the role that a systematic ‘decoding’ approach can play in exposing the
mental processes and bottlenecks unique to the CS discipline. To address the
remaining six steps of the DtDs framework [28], future research is needed, firstly,
to uncover the mental activities of expert programmers to overcome the identi-
fied SCC bottlenecks. This knowledge could then be used to devise teaching and

30 P. J. Khomokhoana and L. Nel

learning strategies that model the mental strategies of the experts. After creat-
ing opportunities for students to practice these skills and to receive feedback on
their efforts, instructors can assess students’ efforts to determine whether they
have benefited from the implemented strategies or not. The ultimate goal of this
suggested research is to help students to master the mental actions they need to
be successful in the CS discipline.

References

1. Alston, P., Walsh, D., Westhead, G.: Uncovering ‘threshold concepts’ in web devel-
opment: an instructor perspective. ACM Trans. Comput. Educ. 15(1), 1–18 (2015)

2. Anyango, J.T., Suleman, H.: Teaching programming in Kenya and South Africa:
what is difficult and is it universal? In: Proceedings of the 18th Koli Calling Inter-
national Conference on Computing Education Research. ACM (2018)

3. Bosse, Y., Gerosa, M.A.: Difficulties of programming learning from the point of
view of students and instructors. EEE Lat. Am. Trans. 15(11), 2191–2199 (2017)

4. du Boulay, B.: Some difficulties of learning to program. J. Educ. Comput. Res.
2(1), 57–73 (1986)

5. Boustedt, J., et al.: Threshold concepts in computer science: do they exist and
are they useful? In: Proceedings of the 38th SIGCSE Technical Symposium on
Computer Science Education, pp. 504–508. ACM (2007)

6. Butler, M., Morgan, M.: Learning challenges faced by novice programming students
studying high level and low feedback concepts. In: Proceedings Ascilite Singapore,
pp. 99–107 (2007)

7. Charters, E.: The use of think-aloud methods in qualitative research: an introduc-
tion to think-aloud methods. Brock Educ. 12(2), 68–82 (2003)

8. Creswell, J.W., Creswell, J.D.: Research Design: Qualitative, Quantitative, and
Mixed Methods Approaches. SAGE, Thousand Oaks (2017)

9. Cunningham, K., Blanchard, S., Ericson, B., Guzdial, M.: Using tracing and sketch-
ing to solve programming problems: replicating and extending an analysis of what
students draw. In: Proceedings of the International Conference on Computing Edu-
cation Research, pp. 164–172. ACM (2017)

10. Deitel, P.J., Deitel, H., Deitel, A.: Visual Basic 2012 — How to Program. Pearson
Education, London (2013)

11. Diaz, A., Middendorf, J., Pace, D., Shopkow, L.: The history learning project: a
department ‘decodes’ its students. J. Am. Hist. 94(4), 1211–1224 (2008)

12. Fitzgerald, S., Simon, B., Thomas, L.: Strategies that students use to trace code:
an analysis based in grounded theory. In: Proceedings of the 1st International
Workshop on Computing Education Research, pp. 69–80. ACM (2004)

13. Garner, S., Haden, P., Robins, A.: My program is correct but it doesn’t run: a pre-
liminary investigation of novice programmers’ problems. In: Australasian Comput-
ing Education Conference, pp. 173–180. Australian Computer Society Inc., New-
castle (2005)

14. German, A., Menzel, S., Middendorf, J., Duncan, F.J.: How to decode student
bottlenecks to learning in computer science. In: Proceedings of the 45th Technical
Symposium on Computer Science Education, p. 733. ACM (2014)

15. Goldman, K., et al.: Identifying important and difficult concepts in introductory
computing courses using a delphi process. In: Proceedings of the 39th SIGCSE
Technical Symposium on Computer Science Education, pp. 256–260. ACM (2008)

Decoding Source Code Comprehension 31

16. Grover, S., Basu, S.: Measuring student learning in introductory block-based pro-
gramming: examining misconceptions of loops, variables, and boolean logic. In:
Proceedings of the SIGCSE Technical Symposium on Computer Science Educa-
tion, pp. 267–272. ACM (2017)

17. Gurevich, Y.: Logic and the challenge of computer science. In: Börger, E. (ed.)
Current Trends in Theoretical Computer Science, pp. 1–57. Computer Science
Press (1988)

18. Hyland, E., Clynch, G.: Initial experiences gained and initiatives employed in the
teaching of Java programming in the Institute of Technology Tallaght. In: Joint
Proceedings of the Inaugural Conference on the Principles and Practice of Pro-
gramming, and 2nd Workshop on Intermediate Representation engineering for Vir-
tual Machines, pp. 101–106. ACM (2002)

19. IUBCITL: Team-Based Learning For Practice and Motivation (2016). https://
www.youtube.com/watch?v=1obB-n6JZ8k

20. Kallia, M., Sentance, S.: Computing teachers’ perspectives on threshold concepts:
functions and procedural abstraction. In: Proceedings of the WIPSCE 12th Work-
shop on Primary and Secondary Computing Education, pp. 15–24 (2017)

21. Keen, A., Mammen, K.: Program decomposition and complexity in CS1. In: Pro-
ceedings of the 46th Technical Symposium on Computer Science Education, pp.
48–53. ACM (2015)

22. Klenke, K.: Qualitative Research in the Study of Leadership, 2nd edn. Emerald
Publishing, Bingley (2016)

23. Lister, R., et al.: A multi-national study of reading and tracing skills in novice
programmers. ACM SIGCSE Bull. 36(4), 119–150 (2004)

24. Malik, S.I., Coldwell-Neilson, J.: A model for teaching an introductory program-
ming course using ADRI. Educ. Inf. Technol. 22(3), 1089–1120 (2017)

25. Marshall, C., Rossman, G.B.: Designing Qualitative Research, 6th edn. SAGE,
Thousand Oaks (2016)

26. McCracken, M., et al.: A multi-national, multi-institutional study of assessment
of programming skills of first-year CS students. In: Working Group Reports from
ITiCSE on Innovation and Technology in Computer Science Education, pp. 125–
180. ACM (2001)

27. Menzel, S.: ISSOTL 2015: Recursion as a Bottleneck Concept (2017). https://www.
youtube.com/watch?v=iNvQlm9phEI

28. Middendorf, J., Pace, D.: Decoding the disciplines: a model for helping students
learn disciplinary ways of thinking. New Dir. Teach. Learn. 98, 1–12 (2004)

29. Middendorf, J., Shopkow, L.: Overcoming Student Learning Bottlenecks: Decode
Your Disciplinary Critical Thinking. Stylus Publishing/LLC (2018)

30. Milne, I., Rowe, G.: Difficulties in learning and teaching programming: views of
students and tutors. Educ. Inf. Technol. 7(1), 55–66 (2002)

31. Mutanu, L., Machoka, P.: Enhancing computer students’ academic performance
through explanatory modeling. In: Tait, B., et al. (eds.) SACLA 2019. CCIS, vol.
1136, pp. 227–243 (2020)

32. Pace, D.: The Decoding the Disciplines Paradigm: Seven Steps to Increased Student
Learning. Indiana University Press (2017)

33. Patton, M.Q.: Qualitative Research & Evaluation Methods: Integrating Theory
and Practice, 4th edn. SAGE, Thousand Oaks (2015)

34. Pinnow, E.: Decoding the disciplines: an approach to scientific thinking. Psychol.
Learn. Teach. 15(1), 94–101 (2016)

35. Plowright, D.: Using Mixed Methods: Frameworks for an Integrated Methodology.
SAGE, Thousand Oaks (2011)

https://www.youtube.com/watch?v=1obB-n6JZ8k
https://www.youtube.com/watch?v=1obB-n6JZ8k
https://www.youtube.com/watch?v=iNvQlm9phEI
https://www.youtube.com/watch?v=iNvQlm9phEI

32 P. J. Khomokhoana and L. Nel

36. Qian, Y., Lehman, J.: Students’ misconceptions and other difficulties in introduc-
tory programming: a literature review. ACM Trans. Comput. Educ. 18(1), 1–24
(2017)

37. Rouse, M., Phillips, J., Mehaffey, R., Mcgowan, S., Felten, P.: Decoding and disclo-
sure in students-as-partners research: a case study of the political science literature
review. Int. J. Stud. Partn. 1(1), 1–14 (2017)

38. Sanders, K., McCartney, R.: Threshold concepts in computing: past, present, and
future. In: Proceedings of the 16th International Conference on Computing Edu-
cation Research, pp. 91–100. ACM (2016)

39. Shaft, T.M., Vessey, I.: The relevance of application domain knowledge: the case
of computer program comprehension. Inf. Syst. Res. 6(3), 286–299 (1995)

40. Shopkow, L.: How many sources do i need? Hist. Teach. 50(2), 169–200 (2017)
41. Shopkow, L., Diaz, A., Middendorf, J., Pace, D.: From bottlenecks to epistemology

in history: changing the conversation about the teaching of history in colleges and
universities. In: Changing the Conversation about Higher Education. Rowman &
Littlefield Publishing (2013)

42. Timmermans, J., Barnett, J.: The Role of Identifying and Decoding Bottlenecks in
the Redesign of Tax Curriculum. In: Society for Teaching and Learning in Higher
Education Conference, Canada (2013)

43. Verpoorten, D., et al.: Decoding the disciplines — a pilot study at the University of
Liege (Belgium). In: Proceedings of 2nd EuroSoTL Conference, pp. 263–267 (2017)

44. Weinberg, G.M.: The Psychology of Computer Programming. Van Nostrand Rein-
hold/Litton Educational Publishing (1971)

45. Whalley, J.L., et al.: An Australasian study of reading and comprehension skills
in novice programmers, using the bloom and SOLO taxonomies. In: Proceedings
of the 8th Australasian Conference on Computer Science Education, pp. 243–252
(2006)

46. Wilkinson, A.: Decoding learning in law: collaborative action towards the reshaping
of university teaching and learning. Educ. Media Int. 51(2), 124–134 (2014)

47. Willes, K.L.: Data cleaning. In: The SAGE Encyclopedia of Communication
Research Methods. SAGE (2017)

System Security Education

An Approach to Teaching Secure
Programming in the .NET Environment

Sifiso Bangani1 , Lynn Futcher1(B) , and Johan van Niekerk2

1 Department of IT, Nelson Mandela University, Port Elizabeth, South Africa
lynn.futcher@mandela.ac.za

2 Faculty of Computing, Noroff University College, Kristiansand, Norway
johan.vanniekerk@noroff.no

Abstract. The security aspect of software applications is considered as
the important aspect that can reflect the ability of a system to pre-
vent data exposures and loss of information. For businesses that rely
on software solutions to keep operations running, a failure of a software
solution can stop production, interrupt processes, and may lead to data
breaches and financial losses. Many software developers are not compe-
tent in secure programming. This leads to risks that are caused by vulner-
abilities in the application code of software applications. Although var-
ious techniques for writing secure code are known, these techniques are
rarely fundamental components of a computing curriculum. This paper
proposes the teaching of secure programming through a step-by-step app-
roach. Our approach includes the identification of application risks and
secure coding practices as they relate to each other and to basic pro-
gramming concepts. We specifically aim to guide educators on how to
teach secure programming in the .Net environment.

Keywords: Programming education · Secure coding practices ·
Secure programming

1 Introduction

As the world advances in technology by creating new software applications,
so does the need to protect these software applications as their vulnerabili-
ties and associated risks also increase. Software applications have become inte-
gral to many people as they use them on a day-to-day basis for working with
top-secret enterprise intellectual property, sharing personal information, making
bank transactions, or sharing pictures with family and friends [12].

Although software plays an important role on a day-to-day basis, it often has
associated risks as a result of vulnerabilities in the application layer [29]. The
security aspect of software applications is considered as the important aspect
that can reflect the ability of a system to prevent data exposures, and loss

Financially supported by the National Research Foundation (NRF), NMU Research
Capacity Development (RCD) and BankSETA, South Africa.

c© Springer Nature Switzerland AG 2020
B. Tait et al. (Eds.): SACLA 2019, CCIS 1136, pp. 35–49, 2020.
https://doi.org/10.1007/978-3-030-35629-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35629-3_3&domain=pdf
http://orcid.org/0000-0001-9550-3185
http://orcid.org/0000-0003-0406-8718
http://orcid.org/0000-0003-1739-4563
https://doi.org/10.1007/978-3-030-35629-3_3

36 S. Bangani et al.

of information [18]. Failure to secure software solutions can have more serious
effects than just a temporary interruption to a service. For businesses that rely
on software solutions to keep operations running, a failure of a software solution
can stop production, interrupt processes, and may lead to data breaches and
financial losses. The human factor, which includes the programmer, has a major
impact on the success and failure of efforts to secure and protect the business,
services, and information [17]. According to [30], the main cause of software
application failure is human error in application programming, which happens
during the coding process.

Software developers are typically equipped with relevant programming
knowledge and skills to develop innovative software [25]. However, software devel-
opers are rarely equipped with secure programming knowledge and skills from
the undergraduate level [19,31]. According to [7], “students graduating from tech-
nical programs such as information technology often do not have the attributes
to fill the needs of industry”. Fundamental programming principles are often
introduced to students without an understanding of their security implications.
This leads to non-adherence to secure programming [31]. For example, arrays
and loops are introduced and explained without the mention of buffer overflows
that could occur due to lack of adherence to secure programming.

The purpose of this paper is to help educators to teach secure programming in
the .Net environment. Secure programming is an important part of information
security education [32], whereby relevant topics of information security ought to
be taught to some extent in all modules of the main curriculum throughout all
years of study [15]. In this context, the contribution of this paper is five-fold:

1. It identifies relevant application risks in the .Net environment.
2. It identifies secure coding practices to be taught to undergraduate computing

students.
3. It determines the basic programming concepts taught in the .Net environment

in South African undergraduate computing curricula.
4. It maps the basic programming concepts to relevant application risks.
5. It maps the relevant application risks to the identified secure coding practices.

These mappings help us to understand how to teach secure programming in
undergraduate computing curricula. By ‘computing curricula’ we mean univer-
sity courses that teach programming for Computer Science or BSc IT degrees.

2 Related Work

As much as new software technologies are needed and are being developed, the
industry increasingly demands software developers that possess relevant security
knowledge, skills and abilities [7]. Advancements in technology also increase the
security risks associated with those technologies. This leads to a ‘gap’ of outdated
knowledge and skills for industry and academia [14]. In cybersecurity, according
to [7], “although jobs are and will be available, employers find it increasingly
difficult to find qualified people to fill them. Students graduating from techni-
cal programs such as information technology often do not have the attributes to

Teaching Secure Programming in .NET 37

fill the needs of industry”. Software security is becoming every company’s norm
and concern as a result of the rising trend of software application vulnerabilities
[12,14,26]. This is the driving force behind the demand for software develop-
ers with security knowledge and skills. This security skill demand results in
industry’s need to hire developers experienced in secure programming. These
developers must have the knowledge, skills, and abilities of secure programming
that enables them to implement security-related solutions.

The security skills scarcity often forces companies to enrol their employees
in secure programming certifications such as, IBM’s Application Security Ana-
lyst Mastery Award, or Microsoft’s Software Development Fundamentals course.
These certifications are an attempt to make software developers competent in
secure programming, as they often lack the required knowledge [9,24]. However,
the knowledge acquired with such certifications is not sufficient to be productive
in secure programming without the necessary skills, as there should be a bal-
ance between knowledge and skills [28]. Secure programming certifications and
training focus on two primary factors, namely: awareness of a specific security
threat, and having adequate training in the use of the security counter-measure
to such a threat [1]. However, these certifications and training do not guarantee a
change in human behaviour [1,17], as human behaviour requires more than just
awareness of a specific security threat. For software developers to be competent
in secure programming, they must be trained on the requisite skills of secure
programming at an undergraduate level.

Producing competent software developers should therefore begin in universi-
ties and colleges where students are being educated in understanding and apply-
ing learned concepts and the ability to work in a team environment [6,14]. Uni-
versities are responsible for providing a hands-on teaching approach for under-
graduate students, which includes lectures, computer laboratory practicals, and
experiments [28,29]. The fundamentals of computing are introduced to students
at university level. The learning outcomes of university curricula are used to
show what the students will know and be able to demonstrate after the comple-
tion of that course [14]. They are key to the shift of focus in education from a
paradigm of providing instructions to a paradigm of producing learning [3].

Various computing curricula guidelines, such as the Association for Comput-
ing Machinery’s (ACM), state that Information Assurance and Security (IAS)
belong to an advanced level of a four-year computing program. However, many
students in three-year computing courses graduate and leave university before
completing a fourth year of study [15]. This implies that many undergraduate
computing students are often not adequately exposed to secure programming.
Since students can only apply what they have been taught, the behaviour of
a student in a certain area such as secure programming can be improved by
providing students with the requisite knowledge [20]. This can be done through
software security education in computing at universities.

Software security is the idea implemented to protect software to ensure that it
functions correctly under malicious attacks [16]. Furthermore: “Software security
is about building secure software: designing software to be secure, making sure

38 S. Bangani et al.

that software is secure, and educating software developers, architects, and users
about how to build secure things” [16]. Software security is not simply imple-
mented by installing an anti-virus software to a computer or mobile device, as
hackers steal or get access to top secret enterprise information, or even damage
the behaviour of software applications. Hackers can damage software through
embedding malicious software or scripts in the code. Software applications with-
out proper security built-in can be vulnerable to various computer attacks such
as Cross-Site Scripting, SQL Injections, Session Hijacking, Cross-Site Request
Forgery, and Denial of Service attacks [29]. The only way to avoid such attacks
is by practising good secure programming techniques [2,30].

Secure programming is the manner of writing code to minimise software
security vulnerabilities, as many problems faced by users nowadays are caused
by vulnerabilities resulting from flaws in application code. Various techniques
for writing secure code are known [23,27,31]. Although these techniques exist,
they are rarely fundamental components of a computing curriculum, but rather
treated as secondary topics that are briefly discussed in programming courses
[31]. To maintain security in software applications, students must have the nec-
essary skills and knowledge. According to [5], “the ability to write secure code
should be as fundamental to a university computer science undergraduate as
basic literacy”. The following section briefly describes computing education in
the South African context.

3 Computing Education in the South African Context

Institutions of higher learning in South Africa are divided into public and pri-
vate universities [11]. In this paper our focus is on the public universities.
South African public universities are divided into three categories, namely: tra-
ditional universities, universities of technology, and comprehensive universities.
The South African public universities are overseen by the government’s Depart-
ment of Higher Education and Training (DHET) which is responsible for post-
school education and training.

South African universities offer three-to-four-year degree qualifications
depending on the type of university [10]. Comprehensive universities and univer-
sities of technology offer three-year diploma qualifications for workplace readiness
[15]. For a student in such universities to obtain a degree, the student would be
required to advance the diploma qualification by completing a fourth year of
study. Such a fourth year of study is considered to be ‘advanced’, wherein stu-
dents can be introduced to higher-level topics [14]. In the case of programming
qualifications, the fourth year of study would typically include an introduction
to security and secure programming basics [14,15]. Traditional universities with
three-year degree qualification teach programming basics in the undergraduate
level. In traditional universities the fourth year of study (a.k.a. ‘honours’ in
South Africa) is also considered to be an ‘advanced’ level wherein students are
introduced to higher-level topics.

South African universities offer semester courses as well as year courses.
Semester courses are usually carried out over a period of six months, whereas year

Teaching Secure Programming in .NET 39

courses are carried out throughout the academic year [11]. Both types of courses
in various universities offer fundamentals of programming. However, secure cod-
ing practices are rarely explicitly taught to undergraduate students. They are
rather treated as secondary topics that are briefly discussed in those program-
ming courses [31]. Examples of such courses include: Programming Fundamen-
tals, Computing Fundamentals, Development of Software, Applications Devel-
opment, Mobile Computing, Technical Programming, or Web Systems.

In this paper the focus is on applications development in the .Net environ-
ment, since most South African universities teach programming with it (whereby
Microsoft promotes free product usage by university students). Nonetheless our
proposed approach to teaching secure programming practices in undergraduate
computing curricula is suitable for other development environments and frame-
works as well.

4 Research Approach

A preliminary investigation and content analysis were conducted to determine
whether South African universities incorporate secure programming in their
undergraduate computing curricula. This preliminary investigation was con-
ducted on South African universities through a thematic content analysis by
reviewing the Prospectus or Study-Guides of various universities, where relevant
themes and topics relating to secure programming were sought. The purpose
of the investigation was to determine whether secure programming is already
included in the teaching of programming concepts, as writing secure code ought
to be fundamental to an undergraduate computing student [5]. A content anal-
ysis is typically conducted to make replicable and valid inferences from texts
and data [13,20]. For this paper, content analysis was applied w.r.t. the above-
mentioned matters.

Figure 1 sketches our research process which led to a step-by-step approach
for teaching secure programming in undergraduate computing curricula with the
following six steps; (for additional recommendations see [19]).
Step 1: Identification of relevant application risks in the .Net environment that

are important for teaching secure programming.
Step 2: Identification of secure coding practices that should be taught to com-

puting students as requisite knowledge for secure programming.
Step 3: Identification of basic programming concepts typically taught to under-

graduate students (in the .Net environment).
Step 4: Mapping application risks to programming concepts to demonstrate the

need for teaching application risks along with programming concepts.
Step 5: Mapping basic programming concepts to identified secure coding prac-

tices in order to highlight the need for, and relevance of, integrating secure
coding practices to programming concepts taught.

Step 6: Mapping application risks to identified secure coding practices in order
to show the relationship between application risks and secure coding practices
to highlight the importance of secure programming.

Each step is described in further detail in the following sub-sections.

40 S. Bangani et al.

Fig. 1. Research process

4.1 Step 1: Identification of Relevant Application Risks (ARs)

An initial literature review identified application risks that can affect software
applications developed in the .Net environment. The Open Web Application
Security Project (OWASP) was used as a source of software application security
guidance. OWASP is an international not-for-profit group dedicated to helping
organisations to develop, purchase, and maintain good software applications [22].
OWASP is known for providing free documents of application risks, including a
‘Top 10 Application Risks’ document for awareness in web application security
[7]. This document represents a broad consensus about the most critical secu-
rity risks to web applications [23]. Although this OWASP list is mostly relevant
to web applications, it can also be used for other software applications during
application development, testing, and maintenance. The examples provided in
this paper relate to web applications as they are often deemed the most vulner-
able software applications.

Teaching Secure Programming in .NET 41

Table 1. OWASP top 10 application risks for the year 2017

AR 1 Injection

AR 2 Broken authentication and session management

AR 3 Sensitive data exposure

AR 4 XML external entities

AR 5 Broken access control

AR 6 Security misconfiguration

AR 7 Cross-site scripting

AR 8 Insecure deserialisation

AR 9 Use of components with known vulnerabilities

AR 10 Insufficient logging and monitoring

Table 1 shows the OWASP Top 10 Application Risks (ARs) ordered by their
severity. This list can also be used in the development of other software solutions
that are not .Net-based, to guide and test for well-known vulnerabilities, as
these application risks can affect most applications regardless of the development
environment. In the identification of these application risks, the SANS Top 25
Programming Errors list [8] was used to compare the current application risks
to well-known programming errors, to determine the extent to which the errors
could cause the risks listed in OWASP’s list of Top 10 Application Risks. Some
errors in the SANS Top 25 Errors list are no longer critical, as there have been
changes in the security of development platforms and frameworks. This also
resulted in the change in OWASP’s list of the Top 10 Application Risks, with
cross-site scripting dropping from rank 2 in the list of 2013 to rank 7 in the list
of 2017 [8,23].

4.2 Step 2: Identification of Secure Coding Practices (SPs)

To identify the secure coding practices, a literature review identified principles,
techniques, and practices of secure programming. The literature review of fun-
damental secure coding practices was conducted to understand what software
developers need to be competent in w.r.t. secure programming [6].

The Secure Coding Practices Checklist recommended by OWASP was used
for the identification of secure coding practices. The OWASP Secure Coding
Practices Checklist can be used to mitigate most common software application
vulnerabilities [22]. This checklist addresses the application risks listed in Table 1
and is used later in this paper to map with application risks and basic program-
ming concepts. Table 2 shows OWASP’s Secure Coding Practices Checklist: the
encoding identifier is SP followed by its rank number in the list.

In the ongoing investigation of secure coding practices to be taught to under-
graduate students, the concept map by the University of California’s Davis
Secure Programming Clinic [4] was reviewed for the identification and classi-
fication of programming practices. The identification and classification of the

42 S. Bangani et al.

Table 2. OWASP secure coding practices checklist

SP 1 Input validation

SP 2 Output encoding

SP 3 Authentication and password management

SP 4 Session management

SP 5 Access control

SP 6 Cryptographic practices

SP 7 Error handling and logging

SP 8 Communication security

SP 9 System configuration

SP 10 Database security

SP 11 File management

SP 12 Memory management

SP 13 General coding practices

secure coding practices was supported by the OWASP Secure Coding Practices
Checklist [22]. This was done to assess the validity of the guidelines and princi-
ples in the current secure programming clinic.

4.3 Step 3: Identification of Basic Programming Concepts (PCs)

Having identified the secure coding practices, the globally published curricula
guidelines for undergraduate computing programs were reviewed to determine
the extent to which secure programming should be addressed in Computer Sci-
ence (CS) and Information Technology (IT) qualifications. The focus was on the
ACM curricula documents, as the ACM updates and adapts curricula recom-
mendations quickly to the rapidly changing landscape of computer technology.
Although the ACM curricula guidelines mention security as part of computing
curricula, the guideline documents for CS and IT do not have adequate guid-
ance on how secure programming can be taught to enable a graduate software
developer to be competent in secure programming. The key to educating and
training software developers is typically found in the Prospectus or Study-Guides
pertaining to each university [14,28].

To understand the state of programming in the undergraduate level, a the-
matic content analysis was conducted on undergraduate computing curricula in
South Africa. The content analysis was done to determine basic programming
concepts taught in the .Net environment, across different public universities in
South Africa. The Prospectus and Study-Guides that are available on the uni-
versities’ websites were used for this purpose.

Table 3 provides a list of basic programming concepts (PCs) that are typi-
cally taught in South African universities. The list does not provide any ‘correct
order’ in which the concepts are taught; it only outlines the fundamentals of

Teaching Secure Programming in .NET 43

programming for beginners developing in the .Net environment. Each PC item
in the list is followed by its position number. Although PC8 and PC9 are not
‘concepts’ in the strict sense ot the term, they were deemed essential enough by
most universities to be taught to beginners developing in the .NET environment.

Table 3. Basic programming concepts for beginners in the .Net environment

PC 1 Variable declaration (with data types)

PC 2 Conditional structures

PC 3 Arrays (including search and update)

PC 4 Collections (arrays, lists, stacks, queues)

PC 5 Loops (while, for, until)

PC 6 Database connection

PC 7 File operations

PC 8 Basic HTML and XML

PC 9 JavaScript

PC 10 Web control

PC 11 Data binding

PC 12 Error handling

PC 13 Validation

PC 14 State management

PC 15 Master pages and layouts

4.4 Step 4: Mapping Application Risks (ARs) to Basic
Programming Concepts (PCs)

After consolidating findings about what programming concepts should be
included when teaching secure programming in South African universities, we
created mapping links of how application risks can be taught when teaching
programming concepts. The purpose of these mapping links is to demonstrate
the need for, and relevance of, teaching application risks along with program-
ming concepts. The mapping links in the content analysis results were given an
impact value (I). I is based on how many times a programming concept (PC)
was linked to an application risk (AR). I can also be seen as a way of priori-
tising important links. Figure 2 shows the mapping links between the identified
programming concepts and the OWASP Top 10 Application Risks.

The mapping of programming concepts to application risks shows the rela-
tionship that the programming concept has directly to the application risk. A
programming concept can have a number of application risks associated with it,
and an application risk can occur due to poorly written programming concepts.
A programming concept that links with many application risks receives a high
impact value (I), where an impact value of 4 and above would mean that the
link needs special attention. Therefore, educators of programming courses could

44 S. Bangani et al.

Fig. 2. Mapping of basic programming concepts to OWASP Top 10 application risks

prioritise the lecture time taken for each link according to its impact value. In
this paper, the programming concepts with a high impact value will be used
to highlight the importance of considering application risks when teaching pro-
gramming.

For example, the programming concept Error Handling (PC12) links to many
application risks and, thus, it received a high impact value (I) of 6. Error handling
is the last defence in a software application when written code statements do not
execute as expected [22,30]. To educate students on how to program securely,
the associated application risks must be taught after the introduction of the
programming concept. The introduction of these application risks should begin
from the first year of study, and should be taught in parallel with programming
concepts as they occur in the syllabus. In an attempt to ensure that students
adhere to secure programming and avoid these application risks, students must
implement a means that recovers from errors (e.g. try-catch) [31].

Similarly, the programming concept Validation (PC13) received a high
impact value (I) of 6 which shows its importance to software applications. Appli-
cations without proper validation of data can be vulnerable to various appli-
cations risks [23]. Students must therefore be encouraged to always use input
validation to avoid the application risks such as Injection (AR1) associated with
Validation (PC13) in Fig. 2 [9]. Encouraging students to do Validation (PC13)
would require educators to examine the students’ adherence by setting labora-
tory practicals that require input validation. Students should be assessed and
their work graded by reviewing the code they develop.

In Fig. 2, Injection (AR1) is the first in the OWASP Top 10 Application Risks,
which shows how critical this risk is to software applications [23]. This application
risk should be introduced and taught in parallel with the associated programming
concepts to avoid this risk from occurring. To avoid Injections (AR1), students
must be taught how they relate to each of the associated programming concepts
(i.e. PC2, PC6, PC8, PC10, and PC12–13).

Teaching Secure Programming in .NET 45

4.5 Step 5: Mapping Basic Programming Concepts (PCs) to Secure
Coding Practices (SPs)

After understanding the application risks that must be taught to undergraduate
computing students, we created mapping links of how secure coding practices
can be taught in basic programming concepts. The purpose of the mapping
links is to demonstrate the need for, and relevance of, integrating secure coding
practices to basic programming concepts. The mapping links identified in the
content analysis results were given an impact value (I); see Fig. 3. I is based
on how many times a programming concept (PC) was linked to a secure coding
practice (SP) horizontally according to the programming concept (PC), and how
many times a secure coding practice (SP) was linked to a programming concept
(PC) vertically. I can thus be seen as a way of prioritising important links that
need special attention.

Fig. 3. Mapping of basic programming concepts to secure coding practices

The mapping link between programming concepts and secure coding prac-
tices shows a direct relationship between them. A programming concept can
have a number of secure coding practices that can be associated with it, and a
secure coding practice can be applied to a number of programming concepts. A
programming concept that links with many secure coding practices receives a
high impact value (I), whereby an impact value of ≥4 indicates that such a link
ought to be given special attention.

Figure 3 shows that the programming concepts Error Handling (PC12) and
Validation (PC13) in this mapping are most important, as they received the high-
est impact values (I) of 11 and 13 respectively. (Similarly, in Fig. 2, PC12 and
PC13 achieved high impact values of 6.) Most application failures are a result of
lack of Error Handling (PC12) and poor Validation (PC13). For Input Validation
(SP1) to work effectively, it is mostly used with Conditional Structures (PC2) to
avoid errors that might occur due to a lack of Error Handling (PC12) and Val-
idation (PC13). When Input Validation (SP1) is not properly implemented, an
application can be vulnerable to many application risks as shown in Fig. 2. When
educators teach these programming concepts, they should therefore pay specific

46 S. Bangani et al.

attention to the impact caused by the association, and try to keep a balance
between the programming concept and its associated secure coding practices.

4.6 Step 6: Mapping Application Risks (ARs) to Identified Secure
Coding Practices (SPs)

After understanding the secure coding practices that must be taught to under-
graduate computing students, we created mapping links that show the rela-
tionships between application risks and secure coding practices. As above, the
mapping links in the content analysis results were given an impact value (I).
Here, I is based on how many times an application risk (AR) was linked to a
secure coding practice (SP) horizontally, and how many times a secure coding
practice (SP) was linked to an application risk (AR) vertically; see Fig. 4. Again,
I can be seen as a way of prioritising important links that need special attention.

Fig. 4. Mapping of identified application risks to secure coding practices

The mapping links between application risks and secure coding practices
show a direct relationship between them. An application risk can have a number
of secure coding practices that address it, and a secure coding practice can be
applied to mitigate a number of application risks. An application risk that links
with many secure coding practices receives a high impact value (I), where (I)
of ≥4 would mean that such a link ought to receive special attention. There-
fore, educators must not teach application risks and secure coding practices in
isolation; the secure coding practices in Table 2 are used to prevent or mitigate
the application risks in Table 1. Broken Authentication (AR2) in Fig. 4 links
with many secure coding practices; thus it receives a high impact value (I) of 8.
Software applications without a properly structured authentication mechanism
can be vulnerable to privilege escalation [22,30]. The application risks Broken
Authentication (AR2) and secure coding practice Authentication and Password
Management (SP3) provide an example that can be used to teach students not
to hard-code passwords, nor to leave plaintext passwords in the configuration
files, as that can enable attackers to bypass access controls [30]. Error Handling
and Logging (SP7) received a high impact value (I) of 7, which shows the impor-
tance that error handling and logging has in avoiding application risks such as

Teaching Secure Programming in .NET 47

Sensitive Data Exposure (AR3). When error handling and logging is properly
used in an application, default errors that show critical information such as
server details are avoided by showing a custom error created by the program-
mer [21,30]. To avoid Security Misconfiguration (AR6), students must be taught
to avoid insecure default configurations and verbose error messages containing
sensitive information. For ASP.Net applications, students can avoid Security
Misconfiguration (AR6) by being taught to properly configure the .config file
in the solution. A typical example of configuring the .config file would be to
enable customErrors, so that default error messages will not be displayed.

5 Discussion and Conclusion

For (under)graduate software developers to be competent in secure software
development they should be equipped with relevant and necessary secure pro-
gramming knowledge in the curriculum. The literature shows that secure coding
practices and techniques already exist [23,27,31]. However, they are rarely used
as fundamental components of computing curricula, but are rather treated as
secondary topics which are merely briefly discussed in programming courses [31].

Universities are responsible for educating undergraduate computing students
where fundamentals of computing are introduced to students who are guided
through practical classes in the computer laboratories [28]. Although many uni-
versities teach programming, often only little attention is given to secure pro-
gramming, which results in incompetent undergraduate software developers. A
university’s Prospectus or Study-Guides are key to teaching undergraduate stu-
dents, as these documents show what the student will know and be able to do
apply after completion of the course.

Computing curricula reports such as the various ACM curricula guidelines
recommend the teaching of secure programming in undergraduate computing
courses. However, these guidelines do not provide adequate guidance on how
secure programming can be integrated into the curriculum to enable a graduate
software developer to be competent in secure programming.

The step-by-step approach proposed in this paper can be used at various
levels for preparing a computing curriculum. Our approach can be used in setting
up the Prospectus and Study-Guides, to ensure that relevant application risks
and secure coding practices are appropriately considered. The steps proposed
by this paper go hand-in-hand and cannot be addressed in isolation, as isolating
these steps may lead to vulnerabilities that can affect a software application.

In addition, the mappings presented in this paper show the relationships
between the programming concepts taught to undergraduate students with the
identified application risks and secure coding practices. These mappings serve
as a guide for how the application risks can be addressed by considering secure
coding practices relating to basic programming concepts. Secure coding practices
must be explicitly taught in undergraduate computing curricula to ensure that
students will be competent in secure software development.

This paper proposes that secure coding practices be taught throughout the
undergraduate programming modules, from the first year of study throughout

48 S. Bangani et al.

to the final year of study. This approach would not only impact the competence
of graduate software developers, but it would positively influence the security
of software applications developed by these graduate software developers for the
benefits of society.

The main limitation of this paper is that the approach and the mappings
suggested in this paper have not yet been thoroughly validated. This will be
part of future research as well as the actual implementation of this approach at
various universities in South Africa. In the next-following paper of this CCIS
volume we address the ‘pervasive integration’ of secure coding principles into
the entire computer science curriculum [19].

References

1. Aytes, K., Conolly, T.: A research model for investigating human behavior related
to computer security. In: Proceedings of the 9th Americas Conference on Informa-
tion Systems, pp. 1–6 (2003)

2. Aziz, N.A., Shamsuddin, S.N.Z., Hassan, N.A.: Inculcating secure coding for begin-
ners. In: Proceedings of the ICIC International Conference on Informatics and
Computing, pp. 164–168. IEEE (2016)

3. Barr, R.B., Tagg, J.: From teaching to learning - a new paradigm for undergraduate
education. Change Mag. High. Learn. 27(6), 12–26 (2012)

4. Bishop, M.: A clinic for secure programming. IEEE Secur. Priv. Mag. 8(2), 54–56
(2010)

5. Bishop, M., Frincke, D.A.: Teaching secure programming. IEEE Secur. Priv. 3(5),
54–56 (2005)

6. Buoncristiani, M., Buoncristiani, P.: How People Learn (2014). https://doi.org/10.
4135/9781483387772.n2

7. Burley, D., Bishop, M., Buck, S., Ekstrom, J., Futcher, L., Gibson, D.: Joint Task
Force on Cybersecurity Education (2017). http://www.csec2017.org/

8. Christey, S., Martin, B.: CWE-2011 CWE/SANS Top 25 Most Dangerous Software
Errors (2011). http://cwe.mitre.org/top25/#CWE-209

9. Cotler, J., College, S., Mathews, L., College, S., Hunsinger, S.: Information systems
applied research 2015 AITP education special interest group (EDSIG) board of
directors. Inf. Syst. Appl. Res. 8(1), 1–65 (2015)

10. Department of Education: Creating Comprehensive Universities in South Africa:
a Concept Document. Rep. of South Africa (2004)

11. Department of Education: Regulations for the Registration of Higher Education.
Rep. of South Africa (1997)

12. Hoekstra, M., Lal, R., Pappachan, P., Phegade, V., del Cuvillo, J.: Using innova-
tive instructions to create trustworthy software solutions. In: Proceedings of the
HASP 2013 2nd International Workshop on Hardware and Architectural Support
for Security and Privacy, p. 1 (2013)

13. Krippendorff, K.: Content Analysis: An Introduction to its Methodology (1985).
https://doi.org/10.1103/PhysRevB.31.3460

14. Lunt, B.M., Ekstrom, J.J., Lawson, E.: Curriculum guidelines for undergraduate
degree programs in information technology (2008)

15. Mabece, T., Futcher, L., Thomson, K.L.: Towards using pervasive information
security education to influence information security behaviour in undergraduate
computing graduates. In: Proceedings of the CONFIRM 2016, p. 14 (2016)

https://doi.org/10.4135/9781483387772.n2
https://doi.org/10.4135/9781483387772.n2
http://www.csec2017.org/
http://cwe.mitre.org/top25/#CWE-209
https://doi.org/10.1103/PhysRevB.31.3460

Teaching Secure Programming in .NET 49

16. McGraw, G.: Software security. EEE Secur. Priv. 2(2), 80–83 (2004)
17. Metalidou, E., Marinagi, C., Trivellas, P., Eberhagen, N., Skourlas, C., Gian-

nakopoulos, G.: The human factor of information security: unintentional damage
perspective. Procedia Soc. Behav. Sci. 147, 424–428 (2014)

18. Mumtaz, H., Alshayeb, M., Mahmood, S., Niazi, M.: An empirical study to improve
software security through the application of code refactoring. Inf. Softw. Technol.
96, 112–125 (2018)

19. Ngwenya, S., Futcher, L.: A framework for integrating secure coding principles
into undergraduate programming curricula. In: Tait, B., et al. (eds.) SACLA 2019.
CCIS, vol. 1136, pp. 50–63 (2020)

20. van Niekerk, J.F., von Solms, R.: Information security culture: a management
perspective. Comput. Secur. 29(4), 476–486 (2010)

21. OWASP: Secure Coding Practices Checklist (2016). https://www.owasp.org/
22. OWASP: Secure Coding Practices Quick Reference Guide (2010)
23. OWASP: Top 10 2017: The Ten Most Critical Web Application Security Risks

(2017). https://www.owasp.org/
24. Perrone, L.F., Aburdene, M., Meng, X.: Approaches to undergraduate instruction

in computer security. In: Proceedings of the ASEE Annual Conference and Exhi-
bition, pp. 651–663 (2005)

25. Rajlich, V.: Teaching developer skills in the first software engineering course. In:
Proceedings of the ICSE, pp. 1109–1116 (2013)

26. Ramachandran, M.: Software security requirements management as an emerging
cloud computing service. Int. J. Inf. Manag. 36(4), 580–590 (2016)

27. Singhal, A., Winograd, T., Scarfone, K.: Guide to secure web services. NIST Special
Publication 800–95 (2007)

28. The Joint Task Force on Computing Curricula: Information Technology Curricula
2017: Curriculum Guidelines for Baccalaureate Degree Programs in Information
Technology. ACM/IEEE (2017)

29. Uskov, A.V.: Hands-on teaching of software and web applications security. In:
Proceedings of the IEDEC 3rd Interdisciplinary Engineering Design Education
Conference, pp. 71–78 (2013)

30. Veracode: State of Software Security (2017)
31. Whitney, M., Lipford, H.R., Chu, B., Thomas, T.: Embedding secure coding

instruction into the IDE: complementing early and intermediate CS courses with
ESIDE. J. Educ. Comput. Res. 56(3), 415–438 (2018)

32. Wu, D., Fulmer, J., Johnson, S.: Teaching information security with virtual labo-
ratories. In: Carroll, J.M. (ed.) Innovative Practices in Teaching Information Sci-
ences and Technology, pp. 179–192. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-03656-4 16

https://www.owasp.org/
https://www.owasp.org/
https://doi.org/10.1007/978-3-319-03656-4_16
https://doi.org/10.1007/978-3-319-03656-4_16

A Framework for Integrating Secure
Coding Principles into Undergraduate

Programming Curricula

Sandile Ngwenya and Lynn Futcher(B)

Department of IT, Nelson Mandela University, Port Elizabeth, South Africa
lynn.futcher@mandela.ac.za

Abstract. The rise of the use of the internet has led to significant
growth in software applications for conducting business, entertainment
and socialising, which in turn has led to a higher rate of attacks on software
applications. This problem has led to industry requiring software devel-
opers skilled in developing software in a secure manner. The problem that
industry faces is that many software development graduates do not have
the requisite knowledge in secure programming. Academia should thus
address these needs of industry by integrating secure coding principles into
undergraduate programming curricula. In South Africa, however, this is
often not formally done. This paper suggests some secure coding principles
that could be integrated into programming curricula, together with vari-
ous integration approaches and related challenges. It presents a framework
for integrating secure coding principles into undergraduate programming
curricula to ensure the formal planning and ‘buy-in’ of academic staff at
all levels. The purpose of the framework is to guide computing faculties
about ‘what’ secure coding principles to teach and ‘where’ to teach them.

Keywords: Undergraduate curricula · Secure coding principles ·
Secure programming

1 Introduction

Secure coding, also known as secure programming, is the practice of developing
software programs that are safe from attacks [4]. This definition points us to
the practical aspect of the application of security to software. Over the past
decade, the software development industry’s focus has grown to include security.
This change in focus signifies the need for software developers who can program
secure software applications. This need has resulted in a demand for continuing
secure coding education as it was already stated over a decade ago [12] and
has been further compounded due to the increase in the number of application
vulnerabilities prevalent in software applications today.

Financially supported by the National Research Foundation (NRF), South Africa, and
the NMU Research Capacity Development (RCD) programme.

c© Springer Nature Switzerland AG 2020
B. Tait et al. (Eds.): SACLA 2019, CCIS 1136, pp. 50–63, 2020.
https://doi.org/10.1007/978-3-030-35629-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35629-3_4&domain=pdf
http://orcid.org/0000-0002-6766-224X
http://orcid.org/0000-0003-0406-8718
https://doi.org/10.1007/978-3-030-35629-3_4

Secure Coding Principles in Undergraduate Curricula 51

According to [9], many undergraduate programming courses teach some ele-
ments of secure coding, such as good program structure, basic input validation,
checking bounds for array references, and checking that pointers are non-null.
However, many programming courses tend to focus more on the skills required
for developing functional and user-friendly applications than on the security
aspects. Without a conscious learning effort from both lecturers and students
towards secure coding, software applications developed by many programming
graduates will remain prone to vulnerabilities and susceptible to attacks.

According to [22], teaching secure coding has never been more important than
nowadays, such that the need for the formal inclusion of secure coding principles
into undergraduate programming curricula must be effected. These secure cod-
ing principles should be assessed both theoretically and practically. The support
for the inclusion of security in undergraduate programming curricula by vari-
ous ACM curricula documents [6,19,23] serves to show that attention to secure
coding is mandatory for the education of computing students. We should ensure
they have the ability to develop software applications that can perform the vital
function of consistently securing critical data and information.

In order to address the problem of the lack of formal inclusion of secure cod-
ing principles into undergraduate programming curricula, this paper—which can
be read as a continuation of our foregoing paper [5] in this CCIS volume—firstly
highlights the need for teaching secure coding principles in undergraduate com-
puting curricula (as determined by various ACM curricula documents). Secondly,
it presents some secure coding principles to be considered in the teaching of
secure coding. Furthermore, it describes the various challenges and approaches to
integrating secure coding principles into programming curricula. Finally, it pro-
poses a three-phased approach to integrate secure coding principles into under-
graduate programming curricula in the form of a framework.

2 Related Work

The Association for Computing Machinery (ACM) has an ongoing education ini-
tiative in which it produces and updates curricular recommendations in computer
science, computer engineering, information systems, information technology, and
software engineering, that are trusted resources utilised by computing faculties
globally [1,6,19,23]. As the field of IT continues to change and grow rapidly, IT
curricula must follow suit. Inculcating modern skills into the IT curriculum pre-
pares students for professional practice upon graduation [19]. Furthermore, [19]
states that it is vital to include professional preparedness into IT curricula because
graduates of IT programs will be faced with real-world problems after graduation.
In this context the ‘Cyber Principles’ domain is considered essential [19].

In addition, [19] specifically includes a “focus on implementation, operation,
analysis, and testing of the security of computing technologies” as part of its scope.
As part of the ‘Integrated Systems Technology’ domain it requires undergraduate
programming students to be able to “illustrate the goals of secure coding and show
how to use these goals as guideposts in dealingwith preventing buffer overflow,wrap-
per code, and securing method access”. This document thus confirms that secure
coding education must be part of undergraduate programming curricula.

52 S. Ngwenya and L. Futcher

Similarly, [23] describes an Information Assurance and Security Knowledge
area for which it demands security education in undergraduate Computer Sci-
ence curricula. The document states: “Information assurance and security as a
domain is the set of controls and processes... intended to protect and defend infor-
mation and information systems by ensuring their confidentiality, integrity, and
availability, and by providing for authentication and non-repudiation” [23]. The
mention of the technical aspect of security suggests that the practical aspects
of security such as secure coding are relevant in undergraduate programming
curricula. Security education therefore includes all efforts to prepare graduates
with the needed knowledge, skills, and abilities to develop information systems
and attest to the security of processes and data [23].

Also according to [6] developers must ensure that their software is designed
to meet security requirements. Again this implies an appropriate education at
undergraduate level.

3 Secure Coding Principles

Secure coding aims at a software product’s robustness against accidental or mali-
cious unexpected behaviour that causes a problem [8]. Coding responsibly means
knowing how to develop secure code which is essential for the implementation
of modern software systems [2]. As mentioned above it is important that under-
graduate students learn how to code responsibly by being taught the theoretical
and practical aspects of various secure coding principles.

The implementation of secure coding principles is key in the development of
software applications that adhere to security requirements. The list given below
provides examples of secure coding principles that can be taught in undergrad-
uate programming curricula as identified by OWASP [18]. The same principles
also occur in the Software Security Knowledge area of [6]. Note that this list is
not all-encompassing, but contains some fundamental secure coding principles
that can be formally included in undergraduate programming curricula.

1. Input Validation refers to the process of ensuring that data that is entered
as input in applications is filtered and protected against ‘unclean’ data.

2. Authentication and Password Management is defined by [7] as the
process of a server deciding whether a user should be allowed to login or not.
Authentication controls must be validated on a trusted system (e.g. a server).

3. Session Management tracks the activity of users as they interact with a
website across sessions. Its most widespread use is the login functionality,
but it is also used to track other types of interactions users may have with a
website [24].

4. Access Control ensures that restricted areas of a software system are only
accessed by authorised users. A user would have to provide credentials to be
granted access.

5. Cryptographic Practices involve the conversion of data into a format that
is unreadable to users that are not authorised to do so [10].

Secure Coding Principles in Undergraduate Curricula 53

6. Error Handling and Logging entails the recovery of an application from
an error condition using recovery responses. Error handling anticipates the
possibility of error conditions, detects errors, and provides a resolution of an
error to maintain the execution of an application.

7. Data Protection aims to keep private data only available for business pur-
poses or to maintain data privacy rights [20].

8. Database Security: Information stored in today’s databases is highly valu-
able and confidential. As such, secure coding must play an active role in the
protection of that information from unauthorised access to it [15].

9. File Management: File types include text files, data files, binary, or graphic
files. File upload controls should support anti-malware and anti-virus capa-
bilities to avoid the upload of files that can compromise the application or
database where they would get to be saved [3].

Table 1. Secure coding principles and related content according to [18]

SCP Related Content

1 Input validation should be processed on a trusted system (e.g. a
server); input that fails validation should be rejected; expected data
types must be validated; the data range of input must be validated

2 All authentication should be processed on a trusted system (e.g. a
server); passwords stored on a database must be encrypted;
password complexity must be enforced; minimum password length
must be validated

3 Logout functionality should be protected by authorisation across all
pages where it is used in a website; a session must be configured to
expire within a reasonably short amount of time; Session identifiers
must not be exposed such as on URL headers

4 Access controls must fail securely if they fail; only authorised users
may be granted access to services

5 All cryptographic functions used should be processed on a trusted
system (e.g. a server); highly sensitive data must be encrypted

6 Do not disclose sensitive information in error responses, including
system details, session identifiers or account information; feedback
must be in the form of generic error messages, and custom error
pages must be used

7 Feedback must be in the form of generic error messages, and custom
error pages must be used; URL headers must not include sensitive
information

8 Parametrised queries must be used for the interaction between the
application and a database; connection strings should be stored and
encrypted separately in a configuration file on a trusted system;
they must not be hard-coded

9 Files should never be uploaded without authentication; only allow
the upload of file types that are required for business purposes

54 S. Ngwenya and L. Futcher

These nine secure coding principles (SCP) are listed again in Table 1 together
with the related topic-content that can be taught in programming curricula.
Programming lecturers can use the related content in Table 1 as a basis for
determining the learning outcomes that can be achieved for each secure cod-
ing principle. This content should be aligned with the relevant undergraduate
programming curricula as seen fit by the educators of such computing courses.

4 Challenges and Approaches to Integrating Secure
Coding Principles into Programming Curricula

There are several challenges that affect undergraduate programming curricula in
integrating learning outcomes that are specifically aimed at teaching secure cod-
ing principles. Although there might be a genuine desire and interest in teaching
secure coding [8], the reality is that it is not an easy task to accomplish. Three
challenges that hinder progress in the teaching of secure coding include [8]:

1. Lack of room in the already ‘crammed’ software development curricula;
2. Focus on introductory software development matters;
3. Teaching in a manner that does not promote the consequent application of

already learnt programming techniques.

The first challenge is due to the notion that software development courses that
include secure coding principles must be separate courses. This is an assump-
tion as introductory coding courses already teach some of the basics of secure
coding such as validating inputs and the handling of exceptions [22]. There are
various ways of adding secure coding principles to undergraduate programming
curricula. The common approach would be to add lectures and practical classes
that include the teaching of secure coding [25].

The second challenge stems from the primary focus on introductory under-
graduate programming courses which is to teach programming logic—whereby
many students already fail [14]. For many computing faculties, the problem is
knowing where to infuse the secure coding principles within the sequence of the
primary focus. Undergraduate programming courses mainly focus on algorith-
mic and programming language issues rather than secure coding. The norm is
that undergraduate students do not need to know the secure coding concepts in
detail [8]. This leads to students not being sufficiently equipped.

The third challenge speaks to the practical application of what students learn
when they are taught how to code and how their work is graded. It is assumed
that students can be introduced to basic secure coding techniques and that they
then apply the principles of secure coding by themselves. However, students tend
to focus their preparations rather narrowly according to what they are taught
and assessed on. The result is that students do not apply the principles of secure
coding, as most often the grading only focuses on good program structure and
on whether a program ‘works’. This leaves students with the tacit belief that
security is less important than functionality [8].

Secure Coding Principles in Undergraduate Curricula 55

These challenges can be overcome if there is an extensive effort by faculty
members to integrate secure coding principles into undergraduate programming
courses. An important factor in the drive to include comprehensive secure cod-
ing principles is to create a ‘security mindset’ amongst faculty members and
students. Many experts consider this approach to be one of the most important
strategies in making progress towards improving the implementation of secure
coding education in undergraduate programming courses [22].

Thus we acknowledge the need for a structured method of integrating secure
coding principles into undergraduate programming curricula similar to [16]. The
‘pervasive theme’ approach provides a structured method for achieving this.
Pervasive themes are defined as topics that are addressed multiple times from
different perspectives [16]. This means that the teaching of similar content within
different undergraduate programming courses can occur. Teaching in this man-
ner is necessary for a topic such as secure coding because students need to learn
secure coding as part of all programming courses holistically and repetitively.
The suggestion is that of considering the use of pervasive themes across under-
graduate programming curricula.

A further approach to be considered is the ‘pillars-first’ approach which pro-
vides students with the core understanding of foundational software development
concepts before integrating the pervasive themes. The main disadvantage of the
pillars-first approach is that it tends to present each core concept in an isolated
manner [16]. This problem can be addressed by a joint effort by faculty members
by lecturing in a manner that enables students to understand how the various
core concepts are connected.

In this paper we propose the application of the pillars-first approach as it
allows fundamental concepts to be understood by students first, before vari-
ous secure coding concepts are introduced across the several modules taught
within an institution’s undergraduate programming curriculum. This approach
also enables lecturers to gradually integrate secure coding into the curriculum
without diminishing the focus on the core programming concepts [16]. The con-
tent for the students can then be taught by the lecturers at a rate they consider
feasible for the given course. The importance of repeatedly addressing secure
coding across several programming courses in computing curricula ensures that
students understand that secure coding is an integral part of software develop-
ment and not just an optional ‘nicety’.

5 A Phased Approach for Integrating Secure Coding
Principles into Undergraduate Programming Curricula

The following sub-sections outline three phases that specify how secure coding
principles can be integrated into undergraduate programming curricula. These
phases are: identification, buy-in, and implementation.

56 S. Ngwenya and L. Futcher

5.1 Identification Phase

The identification phase (Fig. 1) is the first phase—motivated by the require-
ments of industry and its need for academia to teach undergraduate program-
ming students secure coding. These requirements may change over time such that
it is essential for universities to keep up-to-date with these changes. Similarly,
the standards and best practices relating to secure coding and related vulner-
abilities may also change. It is thus necessary that universities take cognisance
of this when identifying which secure coding principles to integrate into their
programming courses. Currently, the secure coding principles of [6,18,19,23] are
noteworthy. Furthermore, universities should refer to the relevant ACM cur-
ricular documents for Computer Science, Information Technology, Information
Systems, etc. Figure 1 depicts the identification phase with these key elements,
resulting in a set of relevant secure coding principles.

Fig. 1. Organisation of the identification phase

5.2 Buy-In Phase

The buy-in phase is the second phase, which requires lecturers to take the initia-
tive in choosing the secure coding principles to be included into the ‘learning out-
comes’ of their courses. Such an initiative would need a mixture of ‘top down’ and
‘peer-to-peer’ communications to satisfy both the head of department’s overal
strategy as well as the teachings staff’s individual concerns. The initiative to
integrate secure coding principles into the various programming courses must be
supported and initiated by the faculty’s leadership. The buy-in of leadership is
crucial for the success of such a long-lasting measurement. In [11], for example,
we can find an organizational model for a university according to which a ‘direc-
tor of school’ acts at the strategic level, a ‘head of department’ at the tactical
level, and ‘lecturers’ at the operational level (as shown in Fig. 2).1

1 Less hierarchic models of academic organisation are known in the universities of other
countries where the professors of a discipline constitute a ‘subject group’ without a
formal director. Nonetheless, our curricular proposals can be implemented by such
collaborative professoral ‘subject groups’ as well.

Secure Coding Principles in Undergraduate Curricula 57

Fig. 2. Organisational model of [11]

Table 2. Example checklist for integrating secure coding principles

Secure Coding Principle Study-Year

Input Validation 1, 2, 3

Authentication and Password Management 2, 3

Session Management 2, 3

Access Control 2, 3

Cryptographic Practices 3

Error Handling and Logging 1, 2, 3

Data Protection 2, 3

Database Security 3

File Management 2, 3

Furthermore, academic staff need a mechanism for determining which secure
coding principles should be integrated into which programming courses and at
which appropriate year of study. The observation of pervasive themes can guide
a faculty in the understanding that each secure coding principle can be taught
repeatedly across different course levels albeit with a different focus at each
level. Table 2 shows an example of how an academic department can create a
checklist for formally integrating secure coding principles into an undergraduate
programming course in each year of study.

A secure coding checklist forms part of this phase due to the need for a formal
structure for determining learning outcomes for each level of study in undergrad-
uate programming curricula. Each department would need to customise such a
checklist according to prior knowledge of its students as well as the structure of
the curriculum in question. As an example, Fig. 4 shows a snippet of what can
be taught to students for input validation [13]. The organisation of the buy-in
phase is sketched in Fig. 3.

58 S. Ngwenya and L. Futcher

Fig. 3. Organisation of the buy-in phase

<form action="/action page.php" method="post">

<input type="text" name="fname" required>

<input type="submit" value="Submit">

</form>

Fig. 4. Input validation example, from [13]

Figure 5 depicts the hierarchial learning model of Bloom’s taxonomy [17].
For the sake of simplicity we assume in this paper that the ‘remembering’ level
is most appropriate for study-year 1, the ‘understanding’ level most appropri-
ate for study-year 2, and the ‘applying’ level most appropriate for study-year 3
(although in practice all levels of learning can occur to some lesser or greater
extent in each study-year). Already in the buy-in phase, this hierarchy of dif-
ficulties ought to be remembered when determining the appropriate learning
outcomes for each course at each level. Details follow in the subsequent phase.

5.3 Implementation Phase

The revised version of Bloom’s Taxonomy [17] defines a multi-level model of
learning, arranged according to six cognitive levels of complexity of classifying
thinking. For the sake of simplicity, we refer in this paper only to the bottom
three levels to illustrate how secure coding principles can be aligned to each of
the three years. “When each topic is presented with a Bloom-level of mastery,
the instructor is better informed as to what level of mastery is expected; thus
he will be able to determine the required time and necessary instruction to help
the student achieve the proper knowledge level for each topic” [21]. The three
bottom levels (Fig. 5) are defined as follows [17]:

Secure Coding Principles in Undergraduate Curricula 59

Fig. 5. Levels of difficulty, from [17], to be taken into account

Remembering refers to retrieving, recognising, and recalling relevant knowl-
edge from long term memory.

Understanding refers to constructing meaning from oral, written and graphic
messages through interpreting, exemplifying, classifying, summarising, infer-
ring, comparing, and explaining.

Applying refers to carrying out or using a procedure through executing or
implementing.

The bottom three levels of Bloom’s taxonomy can assist lecturers with devis-
ing learning outcomes that can be relatively understandable for undergraduate
programming students. However, complexity of learning secure coding principles
might perhaps become too difficult for students within the scope of a three-year
undergraduate degree —for comparison see [14]— when the topic itself demands
higher levels of mastery in the upper half of the pyramid. These levels could be
addressed in fourth-year and postgraduate studies. Figure 6 sketches the it inte-
gration of the lower levels of Bloom’s taxonomy into the planning considerations
of the implementation phase.

Table 3 provides the relationship between the bottom three levels of Bloom’s
taxonomy and the possible learning outcomes that can be implemented in each
undergraduate year of study. Thereby, Table 3 is based on only one example
—input validation— to illustrate how the learning outcomes for an identified
secure coding principle can be determined by using appropriate levels of Bloom’s
taxonomy. Since the complexity of secure coding principles varies at each level,
the assessment at each level of teaching must also differ. Although this paper
does not capture all details of all secure coding principles, Bloom’s taxonomy is
well applicable throughout the implementation of the new curriculum.

The integration of secure coding principles in our ‘pillars-first’ approach
allows students to learn secure coding principles in classroom settings and be
assessed through periodic assignments and tests. However, the practicality of

60 S. Ngwenya and L. Futcher

Fig. 6. Considerations for the implementation phase

Table 3. Example of ‘input validation’ mapped to learning outcomes

Level Learning Outcome for Secure Coding Principle

1st Year (remember) 1. State why input validation is important

2. Define and provide examples of input validation

2nd Year (understand) 1. Determine the types of input validation output in code segments

2. Explain how input is validated in various C# code segments

3rd Year (apply) 1. Write C# code to validate input

2. Modify C# code to suit input validation principles

secure coding requires that a student’s learning progress be also assessed outside
the formal classroom setting. According to [19], the IT curriculum must provide
students with a ‘capstone’ experience that gives them a chance to apply their
skills and knowledge to solve a challenging problem. The capstone project in
undergraduate programming courses thus provides an opportunity for students
to practically apply secure coding principles they have been taught. Therefore
we include the capstone project into our curricular considerations, too.

Figure 7 shows the proposed framework with all three phases. The figure
shows how the three phases are linked to each other for the sake of integrating
secure coding principles into undergraduate programming curricula. The secure
coding principles from the identification phase are approved and agreed upon
by various computing faculty members in the buy-in phase. The lecturers of
the various programming courses are responsible for determining the learning
outcomes related to each secure coding principle according to the level of study at
which they teach. These learning outcomes are then used as a basis for teaching
and assessment during the implementation phase, whereby the capstone project
in the 3rd year is the final assessment of students’ secure coding abilities.

Secure Coding Principles in Undergraduate Curricula 61

Fig. 7. Framework for integrating secure coding principles

6 Conclusion and Outlook

Evidence from the literature indicates that secure coding in undergraduate pro-
gramming curricula is still not extensively taught. The literature emphasises the
need for computing faculties in universities to consider integrating secure coding
into their undergraduate programming courses to ensure that, upon graduation,
these students can meet the software security needs of the IT industry. The var-
ious ACM Computing Curricula documents [6,16,19,23] emphasise the need for
secure software development, too.

The problem addressed by this paper is the general lack of formal inclusion of
secure coding into undergraduate programming curricula. The proposed solution
to this problem is the development of a framework to assist computing faculty
members in this regard. The proposed framework incorporates a three-phased
approach including: an identification phase, a buy-in phase and an implementa-
tion phase.

In the identification phase of our framework the ACM computing curricula
recommendations can be used to justify the need for teaching secure coding
principles in undergraduate programming courses, since the ACM considers the
changing needs of the IT industry. This phase specifically assists with the iden-
tification of current standards and best practices related to secure coding by
referring to the work of organisations such as OWASP.

The buy-in phase clarifies how multiple computing faculty stakeholders must
be consulted to ensure the acceptance of the innovation at strategic, tactical
and operational levels in the faculty. It includes the use of checklists to ensure

62 S. Ngwenya and L. Futcher

that the identified secure coding principles are addressed in several programming
courses at various levels of study.

The implementation phase enforces the pervasive integration of secure coding
principles into undergraduate programming curricula. Some of these principles
are described in our foregoing paper [5], to which this paper can be read as a ‘con-
tinuation’. The use of Bloom’s taxonomy in the implementation phase ensures
that well-defined learning outcomes are set appropriately for the relevant years
of study. In addition, we suggest that a capstone project be used to ensure that
undergraduate programming students learn to practically apply secure coding
principles about which they must also be systematically assessed.

The purpose of our framework is to guide the integration of secure cod-
ing principles into undergraduate programming curricula by illustrating the key
components and role players to be considered. The current limitation of our
work is that it has not yet been validated by any actual implementation. Future
work shall be dedicated to implementing our framework at various South African
universities.

References

1. ACM: Key Education Activities. https://www.acm.org/education/about-
education

2. Agama, E., Chi, H.: A framework for teaching secure coding practices to STEM
students with mobile devices. In: Proceedings of the ACM Southeast Regional
Conference, pp. 1–4 (2014)

3. Aratyn, T., Kazerooni, S.: Secure Web Application Framework Manifesto (2010)
4. Aziz, N.A., Shamsuddin, S.N.Z., Hassan, N.A.: Inculcating secure coding for begin-

ners. In: Proceedings of the ICIC International Conference on Informatics and
Computing, pp. 164–168 (2016)

5. Bangani, S., Futcher, L., van Niekerk, J.: An approach to teaching secure program-
ming in the .NET environment. In: Tait, B., et al. (eds.) SACLA 2019. CCIS, vol.
1136, pp. 35–49 (2020)

6. Burley, D., Bishop, M., Buck, S., Ekstrom, J., Futcher, L., Gibson, D.: Cybersecu-
rity Curricula. Technical report (2017)

7. Choudhury, A.J., Kumar, P., Sain, M., Lim, H., Hoon, J.L.: A strong user authen-
tication framework for cloud computing. In: Proceedings of the APSCC IEEE
Asia-Pacific Services Computing Conference, pp. 110–115 (2011)

8. Dark, M.J., Lauren, S., Ngambeki, I., Bishop, M.: Effect of the secure programming
clinic on learners’ secure programming practices (2016)

9. Dark, M.J., Ngambeki, I., Bishop, M., Belcher, S.: Teach the hands, train the
mind — a secure programming clinic. In: Proceedings of the 19th Colloquium for
Information Systems Security Education (2015)

10. Duong, T., Rizzo, J.: Cryptography in the web: the case of cryptographic design
flaws in ASP.NET. In: Proceedings of the IEEE Symposium on Security and Pri-
vacy, pp. 481–489 (2011)

11. Gomana, L.G.: Towards a framework for the integration of information security
into undergraduate computing curricula. Masters dissertation, Nelson Mandela
Metropolitan Univ. (2017)

https://www.acm.org/education/about-education
https://www.acm.org/education/about-education

Secure Coding Principles in Undergraduate Curricula 63

12. Ingham, K.L.: Implementing a successful secure coding continuing education cur-
riculum for industry: challenges and successful strategies. In: Proceedings of Soft-
ware Engineering Education and Training Workshops, pp. 1–11 (2006)

13. Javascript. https://www.w3schools.com/js/jsvalidation.asp
14. Khomokhoana, P.J., Nel, L.: Decoding source code comprehension: bottlenecks

experienced by senior computer science students. In: Tait, B., et al. (eds.) SACLA
2019. CCIS, vol. 1136, pp. 17–32 (2020)

15. Kindy, D.A., Pathan, A.S.K.: A survey on SQL injection: vulnerabilities, attacks,
and prevention techniques. In: Proceedings of the ISCE International Symposium
on Consumer Electronics, pp. 468–471 (2011)

16. Lunt, B., et al.: Information technology: curriculum guidelines for undergraduate
degree programs in information technology. ACM/IEEE Joint Technical report
(2008)

17. Orey, M., Forehand, M.: Emerging perspectives on learning, teaching, and tech-
nology (2011)

18. OWASP: Secure coding practices quick reference guide. Technical report (2010)
19. Sabin, M., et al.: Information technology curricula. Technical report. ACM (2017)
20. Sadeghi, A.R., Wachsmann, C., Waidner, M.: Security and privacy challenges in

industrial Internet of Things. In: Proceedings of the DAC Design Automation
Conference, pp. 1–6 (2015)

21. Starr, C., Manaris, B., Stalvey, R.: Bloom’s taxonomy revisited: specifying assess-
able learning objectives in computer science. In: Proceedings of the 39th SIGCSE
Technical Symposium on Computer Science Education, p. 22 (2008)

22. Taylor, B., Bishop, M., Hawthorne, E., Nance, K.: Teaching secure coding: the
myths and the realities. In: Proceedings of the 44th ACM Technical Symposium
on Computer Science Education, pp. 281–282 (2013)

23. The joint task force on computing curricula: curriculum guidelines for undergrad-
uate programs in computer science. ACM Technical report (2013)

24. Visaggio, C., Blasio, L.C.: Session management vulnerabilities in today’s web.
IEEE Secur. Priv. 8(5), 48–56 (2010)

25. Whitney, M., Richter, H.L., Chu, B., Zhu, J.: Embedding secure coding instruction
into the IDE: a field study in an advanced CS course. In: Proceedings of the 46th
ACM Technical Symposium on Computer Science Education, SIGCSE 2015 pp.
60–65 (2015)

https://www.w3schools.com/js/jsvalidation.asp

Developing a Digital Forensics
Curriculum: Exploring Trends

from 2007 to 2017

Roshan Harneker1(B) and Adrie Stander2

1 Department of Information Systems, University of Cape Town,
Cape Town, South Africa

roshan.harneker@uct.ac.za
2 Digital Forensics and E-Discovery Research Unit,

Leiden University of Applied Sciences, Leiden, The Netherlands
stander.a@hsleiden.nl

Abstract. The young science of digital forensics has made great strides
in the last decade, but so, too, has cyber crime. The growing complex-
ity of cyber crime has necessitated that traditional forensics methods be
updated to accommodate new technologies, and that further research is
carried out to keep up with the rate of technological innovation. The main
purpose of this paper is to determine how academic teaching and research
can support the needs of the industry in investigating cyber crime. Cur-
rent digital forensics curricula in higher education are discussed, followed
by an analysis of academic research trends for this discipline for the years
2007 to 2017. We conclude by highlighting trends for which more research
is required and which could possibly contribute towards shaping future
teaching and learning of digital forensics in higher education.

Keywords: Digital forensics · Trends · Curriculum

1 Introduction

The proliferation and accessibility of the Internet have indelibly changed our
lives in many positive ways. The Internet has, amongst others, improved cross-
border collaboration, enabled almost instantaneous communication, and brought
vast amounts of information to our fingertips at the click of a button. However,
the Internet’s accessibility has also lead to a cyber crime explosion, whereby it
is estimated (for example) that South Africa alone loses several billions of Rand
annually to cybercrime.

Digital forensics, regarded as a relatively young science [12], is an emerging
area found under the broader umbrella of computer security that is mainly con-
cerned with the discovery and preservation of evidence in a digital format for
proof of criminal behaviour and ultimately prosecution of criminal activity [1].

For a new discipline there is a need for the creation of a digital forensics
taxonomy to guide the academic teaching to ensure that industry expectations
c© Springer Nature Switzerland AG 2020
B. Tait et al. (Eds.): SACLA 2019, CCIS 1136, pp. 64–76, 2020.
https://doi.org/10.1007/978-3-030-35629-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35629-3_5&domain=pdf
http://orcid.org/0000-0001-5716-2586
http://orcid.org/0000-0003-2468-6820
https://doi.org/10.1007/978-3-030-35629-3_5

Developing a Digital Forensics Curriculum 65

and academic offerings are aligned. As technological change progresses at a rapid
speed, such a digital forensics taxonomy should be updated regularly to ensure
that academia keeps up with industry’s needs. There is also a requirement to
support overburdened law enforcement agencies that need to keep up with ever-
changing technological trends and the ways these are used to commit cyber
crime.

In this paper we outlines our research objectives and research limitations
before moving to a definition of ‘digital forensics’, Higher Education Institutional
(HEI) curricula, and current challenges. This is followed by a description of our
methodology, a trend analysis, our results, and our summary and conclusions.

Our work aims to determine digital forensics trends covering the years 2007
to 2017 by investigating digital forensics (DF) trends published in academic
resources. It also aims to highlight the current state of digital forensics research
and, where possible, the needs of an industry that academic research should shift
its focus to.

By highlighting certain trends, explaining their significance, and making rec-
ommendations on trends requiring more research, our analysis shall also assist
with emphasising specific knowledge areas and with differentiating them from
the more general knowledge areas.

There is always a possibility that the data may not match the research ques-
tions, or that it will contain particular gaps. Another limitation likely to be
experienced is that many papers conflate information security with digital foren-
sics. Many papers, therefore, had to be scrutinized for proper digital forensics
contents before we were able to decide whether to include them into our research
data set.

2 Related Work

2.1 Digital Forensics

Reith (et al.) distinguish between computer forensics and digital forensics by
asserting that the former pertains specifically to methods used to find digital
evidence on computers, while the latter uses scientifically verifiable methods to
preserve, collect, validate, identify, analyze, interpret documents, and present
evidence in digital form to be able to reconstruct incidents deemed to be of a
criminal nature [13].

2.2 Higher Education Institutional Curricula and Challenges

Lang (et al.) highlighted some of the obstacles encountered when attempting to
formulate an academic curriculum for digital forensics [9]. They found a lack of
a standard curriculum and HEI-appropriate textbooks. Forensics training and
education has a significant reliance on an instructor’s or lecturer’s personal expe-
rience. Moreover, the lack of a globally accepted curricular model can also con-
tribute to institutions not adopting a forensics programme due to uncertainty

66 R. Harneker and A. Stander

and impedance to curriculum development. Lang (et al.) also emphasise that
digital forensics as a discipline straddles the areas of computer science and law
[9]. Knowledge from both these fields is therefore a requirement—however: stu-
dents studying digital forensics are highly unlikely to be studying both disci-
plines. This results in difficulties in deciding which prerequisites from each field
students should have to meet, and which concepts from each field should be
included in the curriculum.

Gottschalk (et al.) highlighted further difficulties pertaining to digital foren-
sics training which is reliant on an instructor’s personal experience [7]. This can
turn out to be problematic due to a shortage of qualified digital forensics practi-
tioners. Hence it can be difficult to find qualified academics to provide training
in an HEI setting.

To date no generally accepted model for a digital forensics curriculum exists,
although there are some curriculum standard proposals. In this context is inter-
esting to note that the fast pace at which the discipline is growing, and the
generally slow pace at which academic learning material is created and altered
to keep up with current digital forensics trends, did not feature as a ‘challenge’
to the curriculum designers.

For further recent work on these (and similar) topics see also [2,10,14,15].

3 Method

Our descriptive review is meant to reveal patterns in the analyzed literature
on the basis of quantifiable data such as publication time, the research meth-
ods underlying those papers, as well as their research results. Our method is
bibliometric—i.e.: mostly using searching, filtering, and classification. We con-
ducted a thorough and extensive literature review for relevant papers that per-
tain to the research area. Each paper is then treated as a single data record.
This is followed by identifying trends and patterns. The result is claimed to be
an accurate ‘snapshot’ of the current situation.

It is not practical to explore the totality of the field using interviews with
academic or industry experts in the Digital Forensics field, or using question-
naires. Therefore we opted to use a descriptive literature review to determine
what new topics emerged in the field and to get an indication of the relative
importance of their focus areas.

Academic data was collected with help of Mendeley, a desktop- and web-
based program that is used to manage and share research papers. Mendeley’s
use also encourages collaboration and the discovery of research data online. We
opted for Mendeley’s search function to avoid any bias which may arise from
using specific databases such as ScienceDirect, EBSCOHost, IEEE Xplore, or
the ACM DL. Search results were then further narrowed to the years from 2007
to 2017. Only the search term ‘digital forensics’ was entered. As the papers
available via Mendeley are crowd-sourced and show the number of times an article
has been read, we believe that Mendeley provides a reliable source of well-read
peer-reviewed quality papers that have already been selected by a large pool of

Developing a Digital Forensics Curriculum 67

independent researchers. We added a further delimiter to the retrieved papers
by only choosing ones read by at least 5 readers.

Once enough peer-reviewed references were retrieved, the actual papers were
downloaded via their hosting databases, websites or other sources. We collected
2200 articles and citations which were scanned manually for relevance by first
reading abstracts and keywords. In cases where title, abstract and keywords did
not provide enough information, the entire document was read to determine its
relevance for our study.

During a second round of data analysis, we scanned abstracts (and read full
texts if required) to exclude papers that did not have Digital Forensics as their
central theme but merely mentioned it along with other interest areas. We also
found papers which merely gave Digital Forensics a rather un-specific general
coverage. Thus we filtered the papers that could not be placed into any relevant
specific category. The papers which contained Digital-Forensics-related themes
but could not be placed into a specific category were then placed into a ‘general’
category.

A third round of analysis involved reading all the remaining papers, and then
applying open coding to ascertain and label variables in the form of categories,
concepts and properties, as well as their interrelationships. The codes were gen-
erated from keywords as well as from analyzing the abstracts and the content of
each paper.

4 Results

Our data analysis of 2200 papers, according to the method described above,
revealed ≈ 50 trends. These are summarised in the following table—and further
discussed thereafter—whereby the trend labeled ‘General’ (Rank 6) consisted
(as mentioned above) of a range of papers that either did not fit any of the
specific categories, or where the topic of research was fairly broad. ‘General’ is
thus not regarded as a trend in itself, though the papers listed under ‘General’
are still DF-related. Thus we consider our analysis as having revealed 49 specific
trends, (not 50).

Rank Digital Forensics Trend 2007–2017 #Papers %Percent

1 DF Process 173 8.33

2 Cloud Forensics 148 7.13

3 Image Forensics 141 6.79

4 DF Tools 128 6.16

5 Mobile Forensics 117 5.63

6 General 82 3.95

7 Digital Evidence 74 3.56

(contniued)

68 R. Harneker and A. Stander

(contniued)

Rank Digital Forensics Trend 2007–2017 #Papers %Percent

8 Network Forensics 73 3.51

9 Legal 70 3.37

10 Digital Forensics Framework 66 3.18

11 Education 62 2.99

12 Cyber crime 61 2.94

13 Digital Forensics Challenges 53 2.55

14 Hardware Forensics 52 2.50

15 Operating Systems Forensics 51 2.46

16 Information Security 51 2.46

17 Memory Forensics 49 2.36

18 Multimedia Forensics 48 2.31

19 Digital Forensics Standards 39 1.88

20 Malware Forensics 38 1.83

21 Virtualization 33 1.59

22 Internet Forensics 31 1.49

23 Live Forensics 29 1.40

24 Anti-Forensics 28 1.35

25 Digital Forensics Readiness 28 1.35

26 Email Forensics 26 1.25

27 Steganography 26 1.25

28 OSINT Forensics 25 1.20

29 Cryptography 24 1.16

30 IoT Forensics 23 1.11

31 Software Forensics 21 1.01

32 Database Forensics 20 0.96

33 Digital Forensics Trends 20 0.96

34 Big Data 16 0.77

35 Biometrics 13 0.63

36 Digital Records Forensics 13 0.63

37 Console Forensics 12 0.58

38 Drone Forensics 11 0.53

39 GPS Forensics 11 0.53

40 Incident Response 11 0.53

41 Peer 2 Peer Forensics 11 0.53

42 Digital Forensics Research 10 0.48

(contniued)

Developing a Digital Forensics Curriculum 69

(contniued)

Rank Digital Forensics Trend 2007–2017 #Papers %Percent

43 eDiscovery 10 0.48

44 Visualisation 10 0.48

45 Digital Forensics Analysis 8 0.39

46 SCADA 8 0.39

47 Bitcoin 7 0.34

48 Encryption 6 0.29

49 FaaS 5 0.24

50 Machine Learning 5 0.24

Total 2077 100

4.1 The Most Important Trends

Trends, generally, demonstrate a pattern of change in output, state or process,
or the generalized inclination of a series of data points and the directions in
which they shift over a period. Looking for consequential, relevant and significant
trends is an important and prevalent undertaking in scientific work, whereby
the statistical noteworthiness of a linear trend plotted against a time series is
regularly used to classify and quantify the ‘usefulness’ of a trend observed [3].

Trend 1: Digital Forensics (DF) Process. The Digital Forensics Process
is recognised as a valid scientific and forensic method used to conduct Digital
Forensics investigations. It is defined as the steps to be taken from the time an
alert of an incident is received to the time of the formal reporting of the analytic
findings. These processes are mostly conducted on computing devices, including
mobile ones, and the steps mentioned above follow the route of acquiring an
image, analysing the image, and providing a written report of the investigation’s
findings [4].1 In our case, the trend encompassed a range of processes and/or
procedures that were proposed for use for investigations that do not necessarily
fit the mould of a traditional DF-related case. Notably, the year 2013 had a ‘dent’
in the number of papers about processes. No papers in the data sample showed
process-related papers. This does of course not mean that no papers were writ-
ten that year—only that none were found with Mendeley as auxiliary tool. The
analysed papers discussed digital forensics case reconstruction, chains of custody
processes, text string searching, how to conduct investigations, processes to use
for embedded systems, hashing, data classification, insider threats, as well as
processes pertaining to log gathering and analysis. Some of the more interest-
ing papers discussed the use of digital forensics for medical cases and pattern
matching by means of artificial intelligence. A variety of process methodologies
and models were also described together with practical use cases.

1 An internationally standardized definition of the term ‘Digital Forensic Process’ can
be found in ISO 27043.

70 R. Harneker and A. Stander

Much research has gone into the development of processes to follow when
conducting DF-related investigations. As technology changes, this topic will no
doubt continue to attract much research interest. 173 peer-reviewed papers of
this topic were analysed, i.e.: 8.33% of our entire data sample.

Trend 2: Cloud Forensics. Cloud computing delivers services via shared pools
of configurable computing system resources and is an ever-present transforma-
tive technology that is well known for its flexibility, scalability, elasticity, and
consistency of service. It has changed the way in which data is created, stored,
managed, used, shared and secured [1].

Zawoud and Hasan explain that cloud forensics is often considered as part
of network forensics since cloud computing services require substantial network
access, and network forensics investigations are conducted on private and public
networks and the IP space [16]. Cloud forensics also includes the investigation
of operating system processes, file systems, registry entries, and caches of the
participating machines. Different forensics steps must be followed depending
on which implementation model of cloud computing is involved. For example,
collecting evidence for SaaS relies solely on the cloud service provider to obtain
and send application logs, whereas with IaaS the data owner can obtain a virtual
machine image directly from customers using the cloud service. This allows a
forensics practitioner to examine and analyse the images.

Although cloud forensics is commonly thought of as a subset of network
forensics, the research on this topic was significant enough to be considered a
trend on its own. Cloud forensics came to rank 2 in our table with 148 peer-
reviewed research papers, i.e.: 7.1% of the entire data sample. With the move
away from private physical infrastructure towards cost-saving cloud solutions,
this topic will continue to garner interest and research. Interestingly, however,
research seems to wane after 2016 according to our data sample. We believe
that this could be due to Digital Forensics being lumped more and more into
information security research.

Since many cloud solutions are cross-jurisdictional there are also legal impli-
cations that affect where organisations and individuals store their data. Clouding
is also a move away from traditional computing upon which traditional Digital
Forensics methods are based. Clouding has become a ubiquitous part of life given
that cloud features are built into most current smartphone and tablet mobile
devices—making it both a consumer and enterprise product. Cloud investiga-
tions can stymy those who are used to the concept of taking custody of a hard
drive to forensically image and analyse it, as the hard drive is not physically
present on the computing device used to access the cloud service which is often
accessed via a web client. The existence and use of cloud computing and its
associated services such as IaaS, SaaS, and PaaS meant that new, forensically
sound methods needed to be developed to acquire and analyse cloud-based data.
Here we must bear in mind the different ways in which the cloud will affect the
ability of a forensic practitioner to obtain the data required in a forensically
sound manner.

Developing a Digital Forensics Curriculum 71

Trend 3: Image Forensics. Image forensics refers to the processes followed to
analyse and investigate digital photographic images. This should not be confused
with forensic photography which refers to pictures taken at and of crime scenes
for a court of law. Kim (et al.) explain 5 classification types of image forensics
techniques [8]: pixel-based, format-based, camera-based, physically-based, and
geometry-based. Farid describes these techniques in more detail [6]. Pixel-based
techniques identify statistical deviations introduced at the pixel level and can
analyse interconnections that occur because of image tampering. Format-based
techniques analyse statistical associations that arise from a specific lossy com-
pression scheme. Camera-based techniques highlight artefacts introduced by the
camera’s lens, sensor or onboard processing chip. Physically-based techniques
model and highlight irregularities in the interaction between the camera, physi-
cal objects, and light. Lastly, geometry-based techniques measure objects being
photographed and their position in relation to the camera photographing them.

The technology of today caters for almost imperceptible changes to be made
to digital media that would not have been possible as recently as 20 years ago.
The plethora of papers noted for image forensics—141 in total—made this trend
the third most important one in our data sample assessed, (6.79% of all papers
analysed). Most of those papers focused on forgery and image manipulation.
Several papers described methodologies and algorithms to detect anomalies and
variances from original images. The number of papers per year that contributed
to this trend reached a maximum in the year 2009 and a minimum in 2017.

Trend 4: Digital Forensics Tools. This trend refers to the array of tools
available for imaging, indexing and analysing digital forensics images and data
artefacts. These tools are commonly used for cases that may be tried in a court
of law. They must thus withstand legal scrutiny and satisfy legal requirements.
21 out of the 128 analyzed articles delved into the use of open source tools and
their associated merits. Interest in this topic peaked in 2013; the 2017 yielded
no such papers with our method of search. Related topics included the use of
tools for automation of manual tasks, challenges associated with the use of DF
tools, and using tools for investigation standardisation (amongst others).

Trend 5: Mobile Forensics. This trend covers digital forensics conducted on
mobile devices including cell phones and tablets. According to [11], the influx of
smartphone devices on the consumer market resulted in a burgeoning demand
for digital forensics that could not be met by traditional forensics investigative
techniques. There were 117 papers (5.63%) covering this trend which reached
its peak in the year 2013 when smartphone usage became more ubiquitous.
The papers assessed discussed operating systems forensics for Android, iOS, and
Windows smartphones, legal issues pertaining to the use of cell phone data, the
development of frameworks specifically for mobile device forensics, application
and software forensics for mobile devices, and data recovery. Marturana (et al.)
further observe that law enforcement officials are more than likely to encounter
criminals with at least a smartphone in their possession than a larger computing
device such as a laptop or desktop [11]. This trend in the ‘top 5’ also relates to
the evolution of investigations from ‘live forensics’ which consists of examining

72 R. Harneker and A. Stander

mobile content via the screen in a decidedly non-forensic manner. It, therefore,
became important to create and streamline image acquisition, indexing, and
analysis techniques that could be conducted with forensics in mind, and therefore
also withstand legal scrutiny in a court of law.

Quasi-‘Trend’ 6: General. This quasi-‘trend’ is actually only a label to list
all assessed papers which remained uncategorized either due to the broadness of
their topics or due to too few other papers with similar content. These papers
consisted of a wide range of topics covering the detection of hoaxes, fraud, and
deception based on online writing style, how forensics is being shaped, and many
others. In total, 86 papers fell into this category.

Trend 7: Digital Evidence. Casey defines ‘digital evidence’ as data in a binary
form that is transmitted via or stored on a computing device that either supports
or refutes a hypothesis held about how an offense has taken place or that speaks
to certain aspects of the offense such as intention or alibi [4]. Data comprising
digital evidence consists of either text, images, audio or video or a combination
of these elements. Digital evidence has, in the past, been submitted to courts of
law in the form of emails, word processor documents, GPS coordinates, digital
photographs, computer printouts, backups, and computer memory to name a
few. This topic consisted of 75 papers (3.56% of the total data sample). 74 of
those were peer-reviewed; 1 came from a popular media sources. They discussed
automated production of digital evidence, a network-based architecture proposal
for the storage of digital evidence, guidelines for seizing, imaging and analysing
digital evidence, the need for standardising digital evidence, how to manage
digital evidence, challenges facing digital evidence, court judges’ awareness of
digital evidence, how to assess whether digital evidence is forensically sound,
and digital evidence for mobile devices. There was an almost consistent interest
in this theme between 2009 and 2015, with far fewer papers published from 2016
onwards.

Trend 8: Network Forensics. Network forensics, according to [1], forms part
of network security which addresses the requirement for dedicated investigative
competencies to be able to investigate the origin and traversing of malicious net-
work traffic—which constitutes security attacks—by dealing with the acquisition,
recording, and analysis of network-related events for law enforcement purposes.
73 papers were analysed for this trend with discussions of intrusion investiga-
tions, analysis of VoIP traffic, proposals of network forensics frameworks, IP
traceback models, analysis of wireless network traffic, connection chain analy-
sis, network security, locational wireless and social media surveillance, wireless
security vulnerabilities, evidential discovery of networked smart devices, organ-
isational network forensics readiness, network analysis of the ToR network, net-
work forensics education, network forensics challenges, and analysis of honeypot
traffic, to name a few. Most of those papers were written in 2010 and then again
in 2014. Fewer papers in this category appeared from 2016 onwards—perhaps
due to the tie-in between this topic and network security which is a subset of

Developing a Digital Forensics Curriculum 73

information and cyber security. This topic constituted 3.51% of the total number
of papers analysed.

Trend 9: Legal Matters. This trend refers to the legal aspects of digital
forensics. As the 9th trend in our list it consists of 73 papers, 70 of which are
peer-reviewed; (2 were duplicates and 1 came from a popular media source).
This trend comprised 3.37% of our total data sample. These papers discussed
legal issues affecting digital forensics tools, forensics and the legal system, the
validation of digital evidence for legal argument, bridging differences in digital
forensics for law enforcement and national security, forensic analysis of a false
digital alibi, investigating and prosecuting cyber crime, digital forensics and
legal systems across different countries, legal and technical issues affecting digital
forensics, and digital forensics testimony in courts of law. Interest in this research
topic peaked in 2008 and then again in 2011, but declined from 2016 onwards.
This is decline of interest is peculiar, as digital forensics is a process that exists
primarily for courts of law.

Trend 10: Digital Forensics Frameworks. This very important field of
research addresses frameworks for digital forensics, of which many have been
proposed since this science first emerged. At present, there is no de-facto frame-
work that acts as a one-size-fits-all. Since digital evidence can be found on almost
any computing device, several frameworks exist to cater for the different hard-
ware and software technologies. What remains constant is that the methods used
to extract and analyse data for a digital forensics investigation must withstand
legal scrutiny. This trend accounts for 68 papers (3.18% of the entire sample) of
which 66 were peer-reviewed, (1 was a duplicate and 1 was from a popular media
source). The papers discussed digital forensics investigative frameworks, foren-
sics frameworks for web-related services, triage frameworks for digital forensics,
open source frameworks for digital forensics, frameworks for analysing internet-
related traffic, frameworks aimed at enhancing timeline analysis during a forensic
investigation, disk monitoring and analysis frameworks, frameworks for hybrid
evidence investigation, and a case-based reasoning framework aimed at improv-
ing the trustworthiness of forensic investigations.

Trend 11: Education. This trend comprised 62 papers (2.99% percent of the
total data sample) with 2010 as the year in which most of its papers were pub-
lished. The discussion in these papers focussed on various education programmes
and curricula in use in countries around the world, on incorporating digital foren-
sics understanding into law school programmes, creation of practical lab exercises
for students studying forensics, case studies in teaching forensics, defining agen-
das for forensics education, assessment strategies for forensics training, as well
as teaching forensics in different operating system environments.

74 R. Harneker and A. Stander

Year Most-Researched Trend

2007 Digital forensic process

2008 Digital forensic process

2009 Image forensics

2010 Image forensics

2011 Image forensics

2012 Cloud forensics

2013 Digital forensic process

2014 Cloud forensics

2015 Cloud forensics

2016 Cloud forensics

2017 Cloud forensics

4.2 Data Analysis of Papers by Years

From a starting point in 2007 with 120 papers, the field showed consistent growth
until 2016 with 279 papers, at which point it began to taper off. This may be
attributed to the increase in academic research focused on information and cyber
security. Facets of forensics have been absorbed into information security, such as
incident response and general forensic and cyber security readiness, which follow
similar methods to achieve their respective aims. However, it is recommended
that future research be conducted to fully explore and compare the number of
papers submitted relating to digital forensics and information security respec-
tively. Another possible cause could be the stagnation of developments in the
field at that stage. This is likely to change with many recent developments that
incorporate machine learning and artificial intelligence.

By year, the following most researched topics trends were observed; The small
table of above shows that the top 3 trends for this period are digital forensic
processes, image forensics, and cloud forensics.

5 Conclusions and Outlook to Future Work

We suggest that still more research is required to determine the digital forensics
trends that are important for curriculum development for HEI. For this purpose
we analysed a significant sample of publications that dealt with digital forensics
trends. Practitioners’ and academic interest in digital forensics continues, follow-
ing the trends in cyber crime. While we cannot claim this paper to be exhaus-
tive, it provides insights into digital forensics trends previously researched. This
overview could be valuable to researchers and/or experts who are looking for
further direction w.r.t. where to focus their teaching, learning, and publication
efforts. This paper shall, in particular, contribute towards the design of curric-
ula, as it points out areas of interest that might otherwise be overlooked, such
as cloud forensics, digital image forensics, and investigation frameworks.

Developing a Digital Forensics Curriculum 75

We pointed to a range of topics that have seen significant research already
and are thus important for inclusion into forthcoming digital forensics-related
HEI curricula. Based on our findings we can emphasise cloud forensics, mobile
forensics, digital forensics processes, image forensics, and digital forensics tools
for this purpose. Cloud and mobile forensics, as discussed above, tend to
move away from traditional forensics techniques, processes, and methodologies.
They are complemented by forensics processes and forensics tools which have had
to evolve to accommodate this move away from traditional forensics methods.
Image forensics remains relevant due to several factors: cameras being incorpo-
rated into mobile and smartphone devices, the rise of social media, the use of
photography, and the increase in the use of technology to commit cyber crime
by altering digital images.

With our data sample it was not yet possible to fully determine the scope of
forthcoming digital forensics curricula in HEIs. However, our data sample was
able to comprehensively determine where academia had concentrated its digi-
tal forensics research efforts. 49 distinct trends were identified. Future research
should also address the trends highlighted via popular media, as the corporate
world tends to advance and adopt technology at a faster rate than HEIs do.

There is also a need to determine why the number of papers published on
digital forensics seems to be declining despite the ever-growing urgency for orga-
nizations to be able to conduct digital forensic investigations caused by the sharp
increase in cyber crime. There would be value in determining whether other dis-
ciplines, e.g. information and cyber security, are incorporating aspects of digital
forensics into their research agendas. Lastly, another area of forensics in need of
active research is that of standardisation, not only w.r.t. investigative method-
ologies (see ISO 27043), but also and especially HEI curricula, as this fledgling
discipline continues to grow and evolve in complexity as a result of the fast rate
of technological change and the globally sharp rise in cyber crime.

References

1. Almulhem, A.: Network forensics: notions and challenges. In: Proceedings of IEEE
ISSPIT International Symposium on Signal Processing and Information Technol-
ogy, pp. 463–466 (2009)

2. Bagby, J.W.: The cyber forensic war room: an immersion into IT aspects of public
policy. In: Carroll, J.M. (ed.) Innovative Practices in Teaching Information Sciences
and Technology: Experience Reports and Reflections, pp. 117–132. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-03656-4 11

3. Bryhn, A.C., Dimberg, P.H.: An operational definition of a statistically meaningful
trend. PLoS ONE 6(4), e19241 (2011)

4. Casey, E.: Digital Evidence and Computer Crime: Forensic Science, Computers,
and the Internet. Academic Press, Orlando (2011)

5. Endicott-Popovsky, B., Frinke, D.: Embedding forensic capabilities into networks:
addressing inefficiencies in digital forensics investigations. In: Proceedings of IEEE
Workshop on Information Assurance, pp. 133–139 (2006)

6. Farid, H.: Image forgery detection. IEEE Sign. Proc. Mag. 26(2), 16–25 (2009)

https://doi.org/10.1007/978-3-319-03656-4_11

76 R. Harneker and A. Stander

7. Gottschalk, L., Liu, J., Dathan, B., Fitzgerald, S., Stein, M.: Computer forensics
programs in higher education: a preliminary study. ACM SIGCSE Bull. 37(1),
147–151 (2005)

8. Kim, H.J., Lim, S., Kim, B., Jung, E.S.: A new approach to photography forensics
using 3D analysis for correcting perception errors: a case study. In: Proceedings of
ACM Workshop on Surreal Media and Virtual Cloning, pp. 27–30 (2010)

9. Lang, A., Bashir, M., Campbell, R., de Stefano, L.: Developing a new digital foren-
sics curriculum. Digit. Investig. 11, s76–s84 (2014)

10. Leung, W.S.: Cheap latex, high-end thrills: a fantasy exercise in search and seizure.
In: Liebenberg, J., Gruner, S. (eds.) SACLA 2017. CCIS, vol. 730, pp. 265–277.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69670-6 19

11. Marturana, F., Me, G., Berte, R., Tacconi, S.: A quantitative approach to triaging
in mobile forensics. In: Proceedings of the IEEE TrustCom 10th International
Conference on Trust, Security and Privacy in Computing and Communications,
pp. 582–588 (2011)

12. Olivier, M., Gruner, S.: On the scientific maturity of digital forensics research. In:
Peterson, G., Shenoi, S. (eds.) DigitalForensics 2013. IAICT, vol. 410, pp. 33–49.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41148-9 3

13. Reith, M., Carr, C., Gunsch, G.: An examination of digital forensic models. Int. J.
Digit. Evid. 1(3), 1–12 (2002)

14. Stenvert, M., Brown, I.: Qualifications and skill levels of digital forensics practition-
ers in South Africa: an exploratory study. In: Kabanda, S., Suleman, H., Gruner, S.
(eds.) SACLA 2018. CCIS, vol. 963, pp. 345–361. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-05813-5 23

15. Wu, D., Fulmer, J., Johnson, S.: Teaching information security with virtual labora-
tories. In: Carroll, J.M. (ed.) Innovative Practices in Teaching Information Sciences
and Technology: Experience Reports and Reflections, pp. 179–192. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-03656-4 16

16. Zawoad, S., Hasan, R.: Cloud forensics: a meta-study of challenges, approaches,
and open problems. Technical report, arXiv:1302.6312 (2013)

https://doi.org/10.1007/978-3-319-69670-6_19
https://doi.org/10.1007/978-3-642-41148-9_3
https://doi.org/10.1007/978-3-030-05813-5_23
https://doi.org/10.1007/978-3-030-05813-5_23
https://doi.org/10.1007/978-3-319-03656-4_16
http://arxiv.org/abs/1302.6312

Software Engineering Education

Hackathons as a Formal Teaching
Approach in Information Systems

Capstone Courses

Walter F. Uys1,2(B)

1 SDL Research Focus Area, North-West University, Mahikeng, South Africa
walter.uys@nwu.ac.za

2 CITANDA, University of Cape Town, Cape Town, South Africa

Abstract. Hackathons are ‘hacking marathons’ in which participants
collaboratively and rapidly prototype new applications over a 24–48 h
period. The potential of hackathons as a strategy for stimulating interest
in the CS fields is well known. Hackathons share many similarities with
capstone courses, however their application as a formal teaching app-
roach in the CS/IS curriculum is less prevalent. This paper describes the
introduction of a curricular hackathon in a 3rd-year IS capstone course
at a South African university. An exploratory case study was conducted
to evaluate feedback from the participants and organizers. In the process,
the students completed seven new applications which they had conceptu-
alized during the course. They also learned something about new tech-
nologies and programming interfaces as well as they exhibited growth
in personal and inter-personal competencies. Seven fundamental differ-
ences between curricular and traditional hackathons are highlighted. Sug-
gestions for integrating hackathons into undergraduate CS/IS capstone
courses are provided together with possible areas for further research.

Keywords: Information systems education · Capstone courses ·
Software application development · Hackathons · Project-based learning

1 Introduction

Application development is one of the fastest growing high-paying careers in
the USA [6]. Because software development environments are free and easily
accessible, there is a perception that anyone can become a successful developer
without any formal education or training [6]. Contrasted against this growth in
demand for application developers is the concern about the value of a university
degree versus practical experience [12,16,31,48,50].1 Thus there remain concerns
w.r.t. the workplace-readiness of graduates as well as a general lack of soft-skills
that are needed in the workplace [3,21,40].

1 See also https://www.diskonto.net/2019/02/18/skills-vs-degrees-debate/.

c© Springer Nature Switzerland AG 2020
B. Tait et al. (Eds.): SACLA 2019, CCIS 1136, pp. 79–95, 2020.
https://doi.org/10.1007/978-3-030-35629-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35629-3_6&domain=pdf
http://orcid.org/0000-0001-7709-9326
https://www.diskonto.net/2019/02/18/skills-vs-degrees-debate/
https://doi.org/10.1007/978-3-030-35629-3_6

80 W. F. Uys

In higher education institutions (HEI) there is a fair understanding of this
need, and the capstone course is one of the strategies used to fill this gap [50].
Capstone courses provide students with the opportunity to integrate theoretical
and practical aspects of the curriculum in such a way as to develop a real-world
project that has some benefit to society [27]. There are different models of cap-
stone courses ranging from limited support and no classes (the traditional model)
to clearly defined deliverables, extensive tutor/lecturer support and scheduled
classes and/or meetings [2]. Most courses find a balance between these two mod-
els. Because capstone courses are mainly student-driven through ‘learning by
doing’, the role of the lecturer and lectures are less clear. The role of the lecturer
is to transition students from academic/theoretical studies towards real-world
professional practice. Some guidance in this process is useful, however indica-
tions are that fostering a real-world environment that encourages active learn-
ing strategies has greater benefit than the minimally guided approach.There are
many active teaching/learning strategies that can be implemented as an instruc-
tional design in CS/IS to narrow the theory/practice gap and develop some of the
‘soft-skills’ that are globally needed in the software- and IT-industry: see [32]
for comparison. The primary strategy adopted in capstone courses is referred
to as project-based learning (ProjBL) [22,26] which is not to be confused with
problem-based learning (PBL) [60]. Other strategies that can be used are experi-
ential learning [14], work-integrated learning [59], case-based learning [56], game-
based learning [23,38] as well as virtual learning [36]; for a broader overview see
[13]. Though these strategies have some commonalities, project-based learning
emphasizes an educational strategy aimed at solving real-world project-based
problems [22].

An under-represented approach for implementing ProjBL in CS/IS capstone
courses is the hackathon [15]. Whilst colleges and universities are frequently
the preferred setting for hackathons [33,44,57], they are mainly used as an
informal approach to expose the youth to CS/IS and leverage their creativ-
ity [29,44,52]. Hackathons share many key characteristics with capstone courses
[41], yet their use in the software engineering (SE) and computer science curricu-
lum is not widely reported [18,41,42]. This means that educators have minimal
guidance/tips or techniques for introducing hackathons in their courses.

This paper responds to this desideratum by showing how hackathons can
be used as a formal educational approach for implementing ProjBL in the
CS/IS curriculum—specifically in our 3rd-year Information Systems Develop-
ment course for the Bachelor of Commerce (BCom) degree. The secondary
research question is about the differences between traditional versus curricular
hackathons. We describe our experiences of introducing a curricular hackathon
in our course at a South African HEI. We do so by outlining the central concepts
of hackathons, recapitulating related work, outlining our research method, and
presenting our findings and recommendations for implementing hackathons in
the future under-graduate (UG) IS curriculum.

Hackathons in Information Systems Capstone Courses 81

2 Central Concepts and Related Work

Hackathons originated in 1999 from the voluntary efforts of programmers in
order to develop/advance a free/open-source operating system called OpenBSD
[45]. Although the concept of a hackathon is in need of a more precise definition
[24], we adopted the following

Working Definition: Hackathons are events where computer programmers
and others involved in software development, including graphic designers,
interface designers and project managers, collaborate intensively on software
projects in a short period of time, typically 24–36 h [34].

There are many different kinds of hackathons—each with a unique approach.
Some are referred to as data-dives, code-fests, code-jams, hack-days, sprints, edit-
a-thons [35], data-thons [1,4], code-camps [42] or game-labs [23]. Over time these
events have increasingly become sponsored by corporations such Facebook [9],
F-Secure [24] or KPMG, as well as by governmental agencies such as Gov-
Hack [43], CivHack [17] or NDPHack.2 These sponsorships have transitioned
hackathons from their philanthropic roots to become more competitive with
teams keeping their innovations closely guarded until they are presented for
adjudication [45]. Motivation for participating in hackathons is mainly for finan-
cial gain, personal development, having fun, or “the opportunity to meet new
people while learning and experimenting with technologies” [24].

Hackathons promote innovation in product and application development, new
uses for existing products or apps or new solutions for government, business or
education [25,46,51,52,54]. Ideas or innovations may be bottom-up or top-down
[24], i.e.: originating either from the developers or from senior management,
thereby fostering an entrepreneurial approach. They typically take place over
extended and focused periods of between 24 and 72 h in dedicated venues [34].
Participants remain primarily at the venues with limited breakaways for ablu-
tions or eating and optional sleeping during such events [46] although there are
reports of virtual participation [33]. Catering such as food, energy drinks and
coffee is normally provided [24] and infrastructure such as computers and data
projectors may be available, although participants are normally encouraged to
provide their own laptops or hardware devices [10].

The targeted participants for hackathons are mainly software developers and
technical personnel, although teams may be comprised of programmers, ana-
lysts, designers, subject-matter experts, managers and community representa-
tives [46]. Team sizes can vary between three and five people, with anything
from five to fifty teams competing at a particular event [57]. Hackathons can
also specifically target under-represented groups such as women and historically
disadvantaged individuals (HDIs) [7,24,53]. There is also general consensus that
(good) programmers are a scarce resource at hackathons [45]. Furthermore, it is
acknowledged that financial and material support by leadership is important to
hosting such events [46].
2 See http://www.ndp2030hackathon.gov.za/ndp-2030.

http://www.ndp2030hackathon.gov.za/ndp-2030

82 W. F. Uys

Hackathons can either be closed or open events. Closed events are internal to
organizations [24]. Open events are organized as public or civic events that are
open to everybody [17]. Open events are broadly publicized and attract large cor-
porate sponsorship to encourage attendance and participation [24]. Open events
mostly focus on a specific topic or theme such as health and fitness [24], health-
care [52,55], Internet of things (IoT) or wearable devices [10], whereas closed
events might be geared around a new product feature or innovations for a spe-
cific company such as Facebook [9,24].

Hackathons are able to provide “new and exciting opportunities for education
and research” [23] as well as to develop project management and communica-
tion skills in addition to creativity and innovation amongst participants [18].
They are, however, known to restrict sound software-architectural approaches
to development and provide only limited testing and quality-assurance oppor-
tunities [44]. It is also questionable how much new (programming) skills can be
acquired during such short events. The perception remains that participants rely
on familiar skills and techniques [45] and have only “limited time to interact with
industry experts or learn valuable hard and soft skills relevant to SE” [41].

Though there is a shortage of published reports of formal hackathons in
the UG CS/IS curriculum [18,41,41], there are some related studies that can
provide insights into how to introduce those into the curriculum. For example,
[19] describes a method for implementing a Hackathon for UG course projects.
That approach followed a software development methodology over a period of
24 h with 22 students divided into seven groups. The purpose of that hackathon
was to develop an Internet-of-Things application using Rasberry Pi devices. The
event was hosted outside the university according to a traditional hackathon
format. The event was however bespoke and took students through the entire
SDLC and was thus not integrated into a capstone course.

A follow-up paper by the same author [18] describes the experiences of devel-
oping student projects in a continuous 10 h ‘Hack Day’ on a Saturday at the end
of the semester. Although a ‘Hack Day’ does not have the full time commit-
ment of a 24–72 h Hackathon, it appears to offer similar benefits. Students were
organized into groups of three. They were co-located to avoid groups working
remotely as well as to fostering collaboration amongst students and allowing the
instructor to provide support. Feedback was obtained from the 24 students in
the course, whereby the results indicated that the students learned more during
the experience than with traditional classes, and that the event fostered greater
motivation and engagement amongst the students and closer relationships with
the instructor. Further feedback indicated a high degree of task focus during the
event as well as an increase in time management skills as a result of the time
pressure during the event.

The principles of hackathons were also applied to address student learning
outcomes in a first-year Engineering curriculum [44]. Even though this inter-
vention was targeted at achieving course-level objectives, the approach fol-
lowed included ‘design days’ which bear minimal resemblance with informal
hackathons. The main outcome was new designs (not software applications).

Hackathons in Information Systems Capstone Courses 83

The purpose of those ‘design days’ was to improve collaboration between stu-
dents and staff, to expose students to engineering design concepts, to integrate
knowledge from across the curriculum, and to stimulate creative thinking. The
primary curriculum outcomes of the ‘design days’ were improved teamwork,
better understanding of design, and greater student engagement. Non-curricular
outcomes were a highly creative and fun/engaging event for the students as well
as increased motivation to participate in such events.

Another study examined the efficacy of the hackathon approach to stimulate
students’ enrollments and interest in CS [33]. Six hackathons were hosted at a
university over a period of three years. Participation was voluntary after the stu-
dents had been invited to participate in the event. The hackathon gave students
an opportunity to learn and network with subject matter experts and to be part
of larger project teams that were focused on rapidly developing socially rele-
vant solutions. The primary outcomes raised students’ exposure to mentoring,
work-integrated learning, and collaborative learning. Limited integration with
the formal coursework was achieved due to the open nature of the hackathon.
The curricular benefits were latent, with students reporting an improved social
and practical understanding of CS concepts, further developing their interest and
passion for participating in the field, as well as of changing their perceptions of
CS by-and-large.

As it can be seen from the basic definition of hackathons and from how
they have been used in higher education in the case studies recapitulated above,
there remains the question of how a hackathon can be better integrated into the
curriculum. This question is addressed in the subsequent sections.

3 Methods and Materials

For this paper an exploratory case study [61] was carried out. This method is
suited for novel studies where the experiences of participants and the context
of action is important [5]—in our case: normal classroom activities and student
evaluations. In compliance with our university’s regulations, participants’ names
and identities have been kept anonymous, and statements were attributed with
three-letter acronyms (TLA) representing the corresponding persons. The par-
ticipants completed an informed-consent form which outlined the purpose of our
study, the use of the students’ answers, and the confidentiality of their informa-
tion. The students were also told that their voluntary participation would have
no bearing on their final marks (course results). Our case study was supported
by first-person reports and reflections, additional reports by the hosting orga-
nization, as well as anonymous student feedback and evaluation. No personal
interviews were conducted. The answers obtained were analyzed by means of
topical analysis [47] which can reveal key topics or issues in a corpus of text,
a discourse or some particular event. Topical analysis provides a method for
comparing and analyzing similarities and differences between related topics, def-
initions, artifacts or concepts [20].

84 W. F. Uys

4 Case Study

There are sufficient commonalities between a traditional hackathon and our cur-
riculum hackathon for us to refer to our object of study as ‘hackathon’. Some
of the main similarities between the two are that our event was a focused event
that occurred at a particular venue (a computer lab on campus), over a fixed
period of 24 h. Catering, coffee and drinks as well as PCs were provided and
attendees had access to a kitchen and ablution facilities. Students and lecturers
were encouraged to stay awake and present at the venue for the entire period
although there were some exceptions.

The event was scheduled over a Friday/Saturday and timed closer to the end
of the second semester of the South African academic year (19–20 October) so
that there were no conflicts with other courses, assignments, tests or exams. After
the hackathon, our students had 2–3 weeks to complete their documentations for
examination purposes. Students were divided into seven teams of three students
each. There were different roles in each team, such as project manager, analyst,
developer.

4.1 Aims and Objectives

The emphasis at our hackathon was the delivery of a working system, whereby
the documentation for the system was drafted afterwards for assessment pur-
poses. Although there were no incentives offered at the hackathon, students were
informed that the top three teams would be selected to participate at the above-
mentioned SITA NDP2030 hackathon which itself carried a prize of 100’000
South African Rand (≈US$6’000) for the winning team.

4.2 Phases

The typical hackathon can be represented by means of the classical IS Input-
Process-Output model [24]. The input phase is the pre-hackathon phase where
ideation and team building take place. The process phase is the actual hackathon
where intense ‘hacking’ occurs and results are demonstrated. The post-hackathon
phase is where teams decide to continue with the idea, form new teams or grow
the teams and adopt new technologies and develop plans for funding.

In our case the pre-hackathon phase took approximately 12 weeks which
overlapped with the traditional capstone curriculum. During this time, the stu-
dents formed their teams, conceptualized their ideas, developed a business case,
designed their apps, started building them and elicited requirements from other
stakeholders. One of the teams was also responsible for planning the event and
had to facilitate the event t-shirts, catering and permission for the event. The
week before the event, the preparations began in earnest and all students were
involved in final preparations for the event. On the final days before the event,
drinks and meals were purchased and the catering orders confirmed.

The hackathon event itself (process phase) started at 18h00 (planned was
17h00) on the Friday, and, after initial presentations and motivation by the

Hackathons in Information Systems Capstone Courses 85

organizing team, the students had dinner. After dinner the students ‘hacked’
for 4 h and presented their progress to the entire forum at midnight. After the
presentations the students had snacks and then continued to hack till 05h00
when they presented their results again to the forum.

Departing from the traditional hackathon approach we had some physical
exercise in the morning of the second day whereby some sports games were
played by the students to get energetic again after a long night of intense coding.
Thereafter, the students started hacking again from 08h00 till 12h00. At noon the
students had lunch and resumed hacked again 13h00–17h00; then they submitted
their final projects. According to one participant (TLM),

“the results that we reached at the hackathon were amazing: we managed to get
most features of the application working during those 24 h”.

At the conclusion of the formal hackathon activities, students, lecturers and facil-
itators were treated to a barbecue. Thereafter, our students were so exhausted
that they were glad to ‘pack up’ and go home.

During the post-hackathon phase (output phase), the students made the final
changes to their apps in order to capture screenshots for their project report
and also to prepare for their final assessment presentations and demonstrations.
They were also required to write individual reports to explain their individual
contributions to the their groups. For this report they had been advised already
at the beginning of the semester to keep a record of their personal tasks and
activities. The final demonstrations and presentations were held four weeks later.
This gave the students the opportunity to explain their solutions to invited
representatives from government, industry and the university.

4.3 Projects

During the first semester (February to June) of our academic year, our students
were required to develop a project plan that included the business case, user
requirements, project scope and costs as well as high-level designs and GANTT
charts. In the second semester the students started implementing these system
development projects. These ideas were initially conceptualized by the students
and implemented through various iterations and interactions with the lectur-
ers and stakeholders. Only during the hackathon the students completed and
presented their final systems; (see Table 1).

4.4 Results

The course’s lecturers found that the event gave the students the opportunity to
focus solely on the completion of their projects without other distractions. The
event also imposed personal challenges to the students, such as to stay awake for
its entire duration and to work under pressure. During the hackathon, students
learned how to work with new technologies, tools and software development
platforms. For example, they learned how to develop in Java on Android Studio;

86 W. F. Uys

Table 1. App development: teams and systems

Team/App Specification

Residence Control System Monitoring and managing visitors access to
student residences to avoid illegal squatting

e-License App A mobile app to register and represent ‘virtual’
driver licenses. It must allow road officers to
validate physical and virtual licenses as well as to
check for outstanding fines or license expiry. It has
a front-end sub-app and back-end sub-app

Soapy Shine Car Wash A car wash loyalty app that allows members to
check a shop’s availability (or current queue
length), to book and be notified at any of the
participating shops

Billboards Innovation Facilitates the remote management and hosting of
advertisements on electronic billboards

Stay Residence Booking System A variation of ‘AirBnB’ for student
accommodation: intended mainly for finding and
booking of ‘approved’ university ‘digs’

Virtual Housing Project A VR system to convert 2D plans into 3D virtual
walkthroughs for visualizing the architectural
features of real estate properties

Clinic Appointments A queuing system for public hospitals and clinics,
similar to those found in banks or other mobile
service providers. It must be able to distinguish
emergency cases from dispensary patients

they learned database development as well as the use of technologies such as
XAMMP, PHP, or umajin. They were exposed to cross-platform development
architectures and the use of APIs (such as Google’s authentication features and
maps in Android Studio) as well as to interfacing with bulk SMS providers which
had not been part of their under-graduate coursework so far. Consequently,

“I got to understand more about cross-platform development. I did more research
on it during the hackathon as we were busy with the coding and develop-
ment. I also learned more about APIs as we had to do research on how we’re
going to integrate them into our application to work better with other existing
applications (i.e. Google Maps)” (KJT).

Surprising were the unintended ‘soft skills’ the students developed during the
project; see [40] for comparison. The students learned much about teamwork,
project management (the first semester complement of this module), time man-
agement under pressure, punctuality, responsibility, creativity, bug-fixing as well
as presentations an audience. Although these skills are not considered to be the
main outcomes of an IS course [28], they are recognized as critical for the suc-
cessful integration of graduates into the workplace [11,48]. Thus the hackathon

Hackathons in Information Systems Capstone Courses 87

can be regarded as a suitable ‘active learning’ method for developing these ‘soft
skills’ which are hard to teach in the lecture hall.

The students also provided some insightful comments as to the efficacy of
the approach through entries in the university-administered anonymous Student
Experience Survey that was completed online at the end of the semester; (see
Table 2). In particular:

“The project on its own requires that each individual has to play a role in making
progress. There is no time for dependency. Teamwork pays off, but, most
importantly, the ability to communicate with other people is very essential
when you are working on something so volatile” (ZAN).

Table 2. Learning experiences and suggested improvements

What did you like about the teaching and learning experiences of this
module?

Stud.

To communicate and be able to work in a group, to participate in class.
This class prepares us for the life outside university

(ST1)

The experiences were great; it taught us about our pre-professional lives (ST2)

It also taught me to grow as an adult and be more responsible (ST3)

The learning styles used (ST4)

Creativity (ST5)

It is like doing real events that affect my life in a very tangible way (ST6)

What suggestions do you have to improve the teaching and learning
experiences of this module?

This module needs [more] time to be able to complete the project as there
is so much to do

(ST7)

Introduce the work-integrated learning strategy in other modules, [too] (ST8)

Every group must be assigned a supervisor (ST9)

The use of a study guide (ST10)

More practicals, field trips and recruiting of sponsors for practicals
(like Microsoft, hackathon- and other IT-related companies)

(ST11)

The class experience was very new; I don’t think there is much more
that I can add

(ST12)

It’s perfect! (ST13)

Without a suitable control group it is difficult to assess the effect or out-
comes that the hackathon had on the quality of the students’ solutions, i.e.:
what they learned during the process as compared to a traditional approach.
Even the students’ final marks would not provide a fair representation of learn-
ing, as students and project topics in other years would differ individually.
Assessing software development progress in industry is an ongoing challenge [39],

88 W. F. Uys

though the usual metrics (such as lines of code, function points or completed
features) could also be used to assess the value that the hackathon had on the
students’ projects progress. Ultimately, the measure of success for such an app-
roach would be to ‘track’ these students into the industry and see how they are
faring there in practice.

5 Discussion

Some similarities and differences between the curricular and the traditional
hackathon are explored next, as per our secondary research question.

5.1 Curricular Hackathons

Scope and Purpose. The scope and purpose of the curricular hackathon is
much narrower than the traditional hackathon, which typically takes an idea
from concept to prototype stage during the event. The objective of the curricular
hackathon is to provide the students with a focused 24 h period in which to
complete the projects that they had been working on over the course of the
semester. The purpose for introducing the hackathon was in response to the
problems that students were experiencing in completing their projects during
the semester due to competing demands from other courses.

Conceptualization of Projects. Unlike in traditional hackathons, the ideas
for the projects originated mainly from the students themselves. This was due to
limited participation from outside stakeholders. In [33], by contrast, project ideas
originated from schools, non-profit organizations, expert and, in some instances,
from computer students. After coming up with their ideas, however, our students
were encouraged to engage with other lecturers and industry stakeholders in the
field for which the solutions were intended. This meant that the projects or
ideas were not necessarily aligned with ‘national priorities’. It is suggested that
in curricular hackathons, ideas for projects such as those from the list of national
priorities are given to students to choose from.

Time Frame. As the hackathon was held at the end of the capstone course,
students had the entire year to conceptualize and plan their projects. The stu-
dents were required at the beginning of the year to produce ideas for innovative
apps that address some organizational, societal or academic needs. In the first
semester the students developed the business case, user requirements, system
requirements, prototypes and project plans. In the second semester they did
systems analysis and design, system architecture, use-cases, and user interfaces;
then they and started building the system.

Closed Event. Another difference between the two is that curricular hackathons
are closed events as opposed to open events for traditional hackathons. Our
event was restricted to 3rd-year IS students who were enrolled in the course.
The reason for excluding other students were that this group of students had

Hackathons in Information Systems Capstone Courses 89

been working on their projects from the beginning of the year. Inviting other
participants at such a late stage would have detracted from the educational focus
described above, and would also have disadvantaged those participants who had
not already been working on a project during the course of the year.

Incentives. Also, unlike in a traditional hackathon, students earned marks for
completing particular aspects of their solution throughout the year. There were
key points where students needed to interact with stakeholders from industry in
order to develop their ideas and designs as well as to present them to lecturers
in the faculty. Marks were allocated for documentation, apps and presentations
during the semester according to formative assessments. The final assessment was
a presentation of students’ working projects to industry stakeholders, lecturers
from the department, and the external examiners. Students were also evaluated
on the project documentation as well as the software code that was submitted
at the end of the hackathon. All the material that was developed by the students
during the course was uploaded to the institutional E-Learning system.

Compulsory. In contrast to the free open culture of traditional hackathons,3

curricular hackathons restrict the voluntary nature of traditional hackathons,
yet still allow for the philanthropic [45] and socially relevant [33] ideals. Firstly,
participation in the hackathon was compulsory. Secondly, students were required
to develop socially relevant solutions, although this might not always be feasible,
especially if organizational pressures or corporate funding prevails. Thirdly, it
is conjectured that students were not necessarily motivated by the social cause
of their solution, but by obtaining marks, and thus may have complied with
the design brief merely to pass the course. They still had, however, a large
degree of freedom in choosing which topic they wanted to focus on as well as the
technologies or design scheme they wished to apply.

Intellectual Property. Questions were also raised by the students as to the
ownership of the intellectual property that was developed during the hackathon.
It was suggested that the same regulations that pertain to academic research
be applied to hackathons. In the end, however, it appears as if few students or
groups intended to incubate or continue with the projects which they developed
during the hackathon. The sustainability of such projects should be designed into
the activities in order to move away from disposable assignments to renewable
projects [58].

5.2 Teaching Approach

One of the clear advantages of integrating the hackathon into the traditional
capstone course [49] is that it puts students into a high-pressure, team-based
learning environment where they need to perform much like in industry. By
contrast, the traditional capstone course imposes no such demands, resulting in
students remaining undecided on particular system or technology decisions that

3 For comparison see http://www.gnu.org/philosophy/free-sw.html.

http://www.gnu.org/philosophy/free-sw.html

90 W. F. Uys

need to be made, and rushing their projects at the end of the semester. Some
other challenges and opportunities with this approach are discussed below.
All-nighter. Some concerns have been raised as to the effects of sleep depri-
vation amongst the students. Research shows that students are accustomed to
‘all-nighters’ due to academic and social pressures and that acute sleep depri-
vation can have a physical but not necessarily a cognitive impact on healthy
university students [37]. In order to ameliorate this effect (based on the orga-
nizers past experience of 72 h hackathons) an exercise session was held in the
morning to boost the participants vitality. These concerns can also be addressed
by changing the format to a ‘code camp’ [42] which is a coding event that is
hosted over the period of a week during normal class times. The test week would
be an ideal time for such a ‘code camp’ and would provide greater opportunities
for the students to interact with industry experts and to develop the soft skills
that are expected of software engineers.

Facilitation. Another limitation of the hackathon approach is that it requires
additional management, teaching facilitation, time and resources from the lec-
turer and department that are not necessarily catered for by traditional curricu-
lum teaching activities. The process can be facilitated by external parties that
ease the transition of hosting a hackathon; however this will incur additional
costs. In our case, we used the services of a professional organization (PRO)
to run the event as well as the residence catering services to provide the food.
PRO was responsible for advertising the event, managing its schedule as well as
providing transport and accommodation for the mentors that were brought in
from other companies and regions.

Mentoring. In addition, the curricular hackathon emphasizes an apprenticeship
model where students are guided by experienced mentors from industry, lecturers
and senior students. The mentors were responsible for motivating the students at
the start of the event, and for providing feedback and advice during presentations
throughout the night as well as technical advice. Because the event was held on
campus after academic hours, we needed to obtain permission from the campus
security services, the director of student life, the students’ representative council,
and the manager of the soccer institute where the end function was held. This
was all arranged by one of the groups of students with the guidance of the
lecturer.

Accelerating Projects. Additionally, we found that the hackathon was effec-
tive in accelerating the completion of student projects, especially at the end of
the semester when they were pressured by other courses to prepare for exams
and final reports. Finally, we learned that a curricular hackathon can be a fun
event that stimulates students’ interests in the discipline as well as ‘awe’ amongst
non-participants.

Closed Event. One concern raised by students from other years and other
departments was why they could not participate in the curricular hackathon.
This was explained to them due to the closed nature as part of the IS capstone
course. Our suggestions are now to host two hackathon events during the year:

Hackathons in Information Systems Capstone Courses 91

The first event at the start of the year should be open to all students in order to
expose them to the concept and to allow the third-year students to conceptualize
their projects. A second, closed event should be held towards the end of the
semester and be restricted to the final-year IS students for them to complete
their projects for marks.

Asessing Progress. It is difficult to assess the degree of software development
progress that groups can achieve during hackathons. We suggest that source-
code repositories such as GitHub be used to manage and monitor the software
development progress throughout the semester and during the hackathon.

In summary, curricular hackathons are closed events that are directed at
accelerating students’ capstone projects in a focused 24 h session that is hosted on
campus by experienced facilitators. Students are divided into teams of between 3
and 5 students at the start of the semester. The projects are conceptualized and
developed during the semester and completed at the hackathon. Participation is
compulsory. Projects (presentations) are assessed for marks during the hackathon
and at the final project-day. These events require other expertise and resources
to facilitate than traditional teaching and/or capstone projects. Last but not
least the integration of academic (assessment) requirements into a traditional
hackathon creates a number of additional challenges for the facilitators.

6 Conclusion

Hackathons provide a unique blend of active learning approaches [8,10,22,23,25,
30,34,44] in focused 24–72 h events. Although they are widely hosted at colleges
and universities [33,44,57], their role as a formal teaching approach in the CS/IS
curriculum was hitherto not well understood.

This paper describes the three phases [24] of a curricular hackathon con-
ducted in a 3rd-year undergraduate capstone course for information systems
design and development. During a 12 week pre-hackathon phase the teams were
formed, ideas conceptualized, projects planned and development commenced
(much like a traditional capstone course). During the 24 h hackathon event the
students completed their projects through a process of mentorship and regular
feedback. Functional support for the students was provided by means of catering
and other facilities. In a post-hackathon phase of 4 weeks, the students finalized
their projects, completed their documentation, and presented their software apps
to industrial and academic stakeholders.

Our students found that the hackathon was a valuable activity that pre-
pared them for the demands of the industrial work environment. They learned
more about working with new technologies and tools, doing cross-platform devel-
opment, using Google APIs and public SMS services. More importantly they
developed a number of important ‘soft skills’ [40] during the process. They
learned much about teamwork, project management, time management under
pressure, punctuality, responsibility, creativity, bug-fixing and presentation of
achievements.

92 W. F. Uys

Thus a curricular hackathon is a viable approach to facilitating workplace
skills in the CS/IS curriculum that complements traditional capstone courses.
This paper provides some guidelines on how curricular hackathons can be imple-
mented and highlights some of the most important differences and similarities
in comparison to traditional hackathons. Some challenges and limitations of this
approach are also outlined.

Future work should evaluate the efficacy of ‘code camps’ as opposed to curric-
ular hackathons. Improved means of assessment are also called for in evaluating
curricular hackathons. Further research may also look at what it means to ‘hack’,
and how these approaches foster workplace skills amongst new generations of
ICT students.

Acknowledgments. The research described in this paper was done as part of the
author’s participation in our regional Institutional Teaching Excellence Awards (ITEA).
Thanks to the senior staff of our faculty who supported this project both financially
and administratively; the directors of student life and campus security; the facilitation
company who assisted us in planning and hosting the event; the management team
from the student group who did additional work in order to ensure the event’s success;
as well as the other lecturers and students who participated in the event. Thanks
to the external examiner for suggesting such an educational intervention as well as for
attending the final presentations and providing guidance during the process. Thanks for
the financial contribution made by the schools’ directors towards hosting the hackathon.
Last but not least thanks the anonymous reviewers for their critical feedback as well
to the SACLA‘2019 conference’s audience for some insightful remarks following the
presentation of this work.

References

1. Aboab, J., et al.: A ‘Datathon’ model to support cross-disciplinary collaboration.
Sci. Transl. Med. 8(333), 1–5 (2016)

2. Adams, L., Daniels, M., Goold, A., Hazzan, O., Lynch, K., Newman, I.: Challenges
in teaching capstone courses. ACM SIGCSE Bull. 35(3), 219 (2004)

3. Andrews, J., Higson, H.: Graduate employability, ‘Soft Skills’ versus ‘Hard’ busi-
ness knowledge: a European study. High. Educ. Eur. 33(4), 411–422 (2008)

4. Anslow, C., Brosz, J., Maurer, F., Boyes, M.: Datathons: an experience report of
data hackathons for data science education. In: Proceedings of SIGCSE 2016, pp.
615–620 (2016)

5. Benbasat, I., Goldstein, D.K., Mead, M.: The case research strategy in studies of
information systems. MIS Q. 11(3), 369–386 (1987)

6. Bhardwaj, P.: This is the Fastest-Growing Six-Figure Job in America and it Doesn’t
Require a Degree (2019). http://money.com/money/5635712/this-is-the-fastest-
growing-six-figure-job-in-america-and-it-doesnt-require-a-degree/

7. Blanco, L.: BeSmart hackathon: HBCU students hacked into their futures in silicon
valley. Black Enterp. 49(2), 54–57 (2018)

8. Bowen, L.M.: The limits of hacking composition pedagogy. Comput. Compos. 43,
1–14 (2017)

9. Burnham, K.: Inside Facebook’s Hackathons: 5 Tips for Hosting Your Own
(2012). http://www.pcadvisor.co.uk/news/internet/3377232/inside-facebooks-
hackathons-5-tips-for-hosting-your-own/

http://money.com/money/5635712/this-is-the-fastest-growing-six-figure-job-in-america-and-it-doesnt-require-a-degree/
http://money.com/money/5635712/this-is-the-fastest-growing-six-figure-job-in-america-and-it-doesnt-require-a-degree/
http://www.pcadvisor.co.uk/news/internet/3377232/inside-facebooks-hackathons-5-tips-for-hosting-your-own/
http://www.pcadvisor.co.uk/news/internet/3377232/inside-facebooks-hackathons-5-tips-for-hosting-your-own/

Hackathons in Information Systems Capstone Courses 93

10. Byrne, J.R., O’Sullivan, K., Sullivan, K.: An IoT and wearable technology
hackathon for promoting careers in computer science. IEEE Trans. Educ. 60(1),
50–58 (2017)

11. Calitz, A.P., Greyling, J.H., Cullen, M.D.M.: South African industry ICT graduate
skills requirements. In: Proceedings of SACLA 2014 Annual Conference of the
Southern African Computer Lecturers’ Association, pp. 135–145 (2014)

12. Carr, W.: Theories of theory and practice. J. Philos. Educ. 20(2), 177–186 (1986)
13. Carroll, J.M. (ed.): Innovative Practices in Teaching Information Sciences and

Technology — Experience Reports and Reflections. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-03656-4

14. Clark, R.W., Threeton, M.D., Ewing, J.C.: The potential of experiential learning
models and practices in career and technical education & career and technical
teacher education. J. Career Tech. Educ. 25(2), 46–62 (2010)

15. Duhring, J.: Project-based learning kickstart tips: hackathon pedagogies as educa-
tional technology. In: Proceedings of NCIIA, pp. 1–8 (2014)

16. Gallet, F.: The Education vs. Experience Debate. Bona Magazine (2015). https://
showme.co.za/lifestyle/the-education-vs-experience-debate/

17. Gama, K.: Crowdsourced software development in civic apps – motivations of civic
hackathons participants. In: ICEIS, vol. 2, pp. 550–555 (2017)

18. Gama, K.: Developing course projects in a hack day: an experience report. In:
Proceedings of ITiCSE 2019, Aberdeen, pp. 388–394 (2019)

19. Gama, K., Alencar, B., Calegario, F., Neves, A., Alessio, P.: A hackathon method-
ology for undergraduate course projects. In: Proceedings of FiE 2018 Conference
(2019)

20. deGaray, J.: Aristotelism of difference. Found. Sci. 13(3/4), 229–237 (2008)
21. Hendarman, A.F., Tjakraatmadja, J.H.: Relationship among soft skills, hard skills,

and innovativeness of knowledge workers in the knowledge economy era. Procedia
Soc. Behav. Sci. 52, 35–44 (2012)

22. Janse van Rensburg, J.T., Goede, R.: A reflective practice approach for supporting
IT skills required by industry through project-based learning. In: Kabanda, S.,
Suleman, H., Gruner, S. (eds.) SACLA 2018. CCIS, vol. 963, pp. 253–266. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-05813-5 17

23. Jennett, C., Papadopoulou, S., Himmelstein, J., Vaugoux, A., Roger, V., Cox, A.L.:
Case study 3: students’ experiences of interdisciplinary learning while building
scientific video games. Int. J. Game-Based Learn. 7(3), 93–97 (2017)

24. Komssi, M., Pichlis, D., Raatikainen, M., Kindström, K., Järvinen, J.: What are
Hackathons for? IEEE Softw. 32(5), 60–67 (2015)

25. Lara, M., Lockwood, K.: Hackathons as community-based learning: a case study.
TechTrends 60(5), 486–495 (2016)

26. Laware, G.W., Walters, A.J.: Real-world problems bringing life to course content.
In: Proceedings of 5th Conference on Information Technology in Education, pp.
6–12 (2004)

27. Leidig, P.M., Ferguson, R., Leidig, J.: The use of community-based non-profit
organizations in information systems capstone projects. ACM SIGCSE Bull. 38(3),
148 (2006)

28. Loveland, T.R.: Teaching personal skills in technology and engineering education:
is it our job? Tech. Eng. Teach. 1, 15–20 (2017)

29. Lyndon, M.P., et al.: Hacking Hackathons: preparing the next generation for the
multidisciplinary world of healthcare technology. Int. J. Med. Inform. 112, 1–5
(2018)

https://doi.org/10.1007/978-3-319-03656-4
https://showme.co.za/lifestyle/the-education-vs-experience-debate/
https://showme.co.za/lifestyle/the-education-vs-experience-debate/
https://doi.org/10.1007/978-3-030-05813-5_17

94 W. F. Uys

30. Maaravi, Y.: Running a research marathon. Innov. Educ. Teach. Int. 55(2), 212–
218 (2018)

31. Merriam, S.: Some thoughts on the relationship between theory and practice. In:
Merriam, S.B. (ed.) New Directions for Continuing Education, pp. 87–91. Jossey-
Bass, San Francisco (1982)

32. Motta, G., Wu, B. (eds.): Software Engineering Education for a Global E-Service
Economy – State of the Art, Trends and Developments. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-04217-6

33. Mtsweni, J., Hanifa, A.: Stimulating and maintaining students’ interest in com-
puter science using the hackathon model. Indep. J. Teach. Learn 10(1), 85–97
(2015)

34. Nandi, A., Mandernach, M.: Hackathons as an informal learning platform. In:
Proceedings of 47th ACMSIGCSE, pp. 346–351 (2016)

35. Nolte, A., Pe-Than, E.P.P., Herbsleb, J., Filippova, A., Bird, C., Scallen, S.: You
hacked and now what? Exploring outcomes of a corporate hackathon. In: Proceed-
ings of ACM Conference on Human-Computer Interaction, p. 129 (2018)

36. Padayachee, I., van der Merwe, A., Kotzé, P.: Virtual learning system usage in
higher education - a study at two South African institutions. South Afr. Comput.
J. 57, 32–57 (2015)

37. Patrick, Y., et al.: Effects of sleep deprivation on cognitive and physical perfor-
mance in university students. Sleep Biol. Rhythm. 15(3), 217–225 (2017)

38. Perrotta, C., Featherstone, G., Aston, H., Houghton, E.: Game-Based Learning:
Latest Evidence and Future Directions. NFER Research Programme: Innovation
in Education, Slough (2013)

39. Pfleeger, S.L.: Software metrics: progress after 25 years? IEEE Softw. 25(6), 32–34
(2008)

40. Pieterse, V., van Eekelen, M.: Which are harder? Soft skills or hard skills? In:
Gruner, S. (ed.) SACLA 2016. CCIS, vol. 642, pp. 160–167. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-47680-3 15

41. Porras, J., et al.: Hackathons in software engineering education – lessons learned
from a decade of events. In: Proceedings of ICSE, pp. 40–47 (2018)

42. Porras, J., Knutas, A., Ikonen, J., Happonen, A., Khakurel, J., Herala, A.: Code
camps and hackathons in education – literature review and lessons learned. In: Pro-
ceedings of 52nd Hawaii International Conference on Systems Science, pp. 7750–
7759 (2019)

43. Powell, D.: Want to run your first Internal Hackathon? Here are some Tips
from KPMG (2017). https://www.smartcompany.com.au/startupsmart/advice/
want-run-first-internal-hackathon-tips-kpmg/

44. Rennick, C., Hulls, C., Wright, D., Milne, A.J., Li, E., Bedi, S.: Engineering design
days: engaging students with authentic problem-solving in an academic hackathon.
In: Proceedings ASEE Annual Conference, Salt Lake City (2018)

45. Richterich, A.: Hacking events: project development practices and technology use
at hackathons. Converg. Int. J. Res. New Media Tech. 25, 1000–1026 (2017)

46. Rosell, B., Kumar, S., Shepherd, J.: Unleashing innovation through internal
hackathons. In: Proceedings of IEEE Innovation in Technnical Conference, War-
wick (2014)

47. Ross, W.D. (ed.): The Works of Aristotle, vol. I. Clarendon Press, Oxford (1928)
48. Scholtz, B., Cilliers, C., Calitz, A.: Bridging the Enterprise Systems (ES) skills gap:

the South African challenge. In: Proceedings of SACLA 2014 Annual Conference
of the Southern African Computer Lecturers’ Association, pp. 3–5 (2010)

https://doi.org/10.1007/978-3-319-04217-6
https://doi.org/10.1007/978-3-319-47680-3_15
https://www.smartcompany.com.au/startupsmart/advice/want-run-first-internal-hackathon-tips-kpmg/
https://www.smartcompany.com.au/startupsmart/advice/want-run-first-internal-hackathon-tips-kpmg/

Hackathons in Information Systems Capstone Courses 95

49. Scott, E.: From requirements to code: issues and learning in IS students systems
development projects. J. Inf. Tech. Educ. 7, 1–13 (2008)

50. Scott, E., Alger, R., Pequeno, S., Sessions, N.: The skills gap observed between IS
graduates and the systems development industry: a South African experience. In:
Proceedings of Information Science and IT Education Conference, Cork (2002)

51. Senghore, F., Campos-Nanez, E., Fomin, P., Wasek, J.S.: Applying social network
analysis to validate mass collaboration innovation drivers: an empirical study of
NASA’s international space apps challenge. J. Eng. Tech. Manag. 37, 21–31 (2015)

52. Silver, J.K., Binder, D.S., Zubcevik, N., Zafonte, R.D.: Healthcare hackathons pro-
vide educational and innovation opportunities: a case study and best practice rec-
ommendations. J. Med. Syst. 40(7), 177 (2016)

53. Tobor, N.: The Largest All-Female Hackathon in South Africa (2017). https://
www.iafrikan.com/2017/08/12/girlcode-the-largest-all-female-hackathon-in-
south-africa/

54. Tsjardiwal, L.: Hackathons: an effective communication tool for innovation within
an organization? Thesis, Erasmus Universiteit Rotterdam (2016). https://pdfs.
semanticscholar.org/360b/1ebef9c6c75aafa20b6b7831a3aeb82a55b3.pdf

55. Wang, J.K., Pamnani, R.D., Capasso, R., Chang, R.T.: An extended hackathon
model for collaborative education in medical innovation. J. Med. Syst. 42(12), 239
(2018)

56. Ward, R.: Active, collaborative and case-based learning with computer-based case
scenarios. Comput. Educ. 30(1/2), 103–110 (1998)

57. Warner, J., Guo, P.J.: Hack.edu: examining how college hackathons are perceived
by student attendees and non-attendees. In: Proceedings of ICER 2017 ACM Con-
ference on International Computing Education Research, pp. 254–262 (2017)

58. Wiley, D.: What is Open Pedagogy? (2013). http://opencontent.org/blog/
archives/2975/

59. Winberg, C., Garraway, J., Engel-Hills, P., Jacobs, C.: Work-Integrated Learning:
Good Practice Guide #12 (2011). http://www.ru.ac.za/media/rhodesuniversity/
content/communityengagement/documents/Higher Education Monitor 12.pdf

60. Yaqinuddin, A.: Problem-based learning as an instructional method. J. Coll. Phys.
Surg. Pak. 23(1), 83–85 (2013)

61. Yin, R.K.: Case Study Research: Design and Methods, vol. 5, 2nd edn. SAGE
Publ., Thousand Oaks (1994)

https://www.iafrikan.com/2017/08/12/girlcode-the-largest-all-female-hackathon-in-south-africa/
https://www.iafrikan.com/2017/08/12/girlcode-the-largest-all-female-hackathon-in-south-africa/
https://www.iafrikan.com/2017/08/12/girlcode-the-largest-all-female-hackathon-in-south-africa/
https://pdfs.semanticscholar.org/360b/1ebef9c6c75aafa20b6b7831a3aeb82a55b3.pdf
https://pdfs.semanticscholar.org/360b/1ebef9c6c75aafa20b6b7831a3aeb82a55b3.pdf
http://opencontent.org/blog/archives/2975/
http://opencontent.org/blog/archives/2975/
http://www.ru.ac.za/media/rhodesuniversity/content/communityengagement/documents/Higher_Education_Monitor_12.pdf
http://www.ru.ac.za/media/rhodesuniversity/content/communityengagement/documents/Higher_Education_Monitor_12.pdf

Modernizing the Introduction to Software
Engineering Course

Marko Schütz-Schmuck(B)

Department of Mathematical Sciences, University of Puerto Rico at Mayagüez,
Mayagüez, Puerto Rico
marko.schutz@upr.edu

Abstract. We describe the modernization of an undergraduate intro-
ductory course in software engineering that started in 2017–2018
(semester 2) offered at the University of Puerto Rico. We present the
institutional setting, our underlying philosophy, and resources consid-
ered. We aimed at complementing informal descriptions in any phase
with formal ones. We describe the revised course, discuss evaluations of
the modernized course as held in two subsequent semesters, and outline
options for future improvement.

Keywords: Software engineering · Formal methods · Education

1 Introduction

What should be taught in an introductory software engineering (I2SE) course
and how should it be taught? Or, even more generally: What is software engi-
neering, and what is engineering? After two colleagues retired who had been
teaching our I2SE course, we took the opportunity to revisit these questions
and to review the I2SE course. No simple or final answer would be expected.
Nonetheless, the questions lead to valuable insights and allow us to discover our
tenets.

We accept that engineering combines scientific knowledge with creativity and
imagination to design an artifact and to show of this design that the resulting
artifact will have desired properties. To predict the properties engineering uses
scientific results and mathematics. Each of the sub-disciplines of engineering
uses the branches of mathematics most appropriate for the type of properties of
interest in the sub-discipline. Many of the sub-disciplines use differential equa-
tions for modeling and simulation, also calculus and linear algebra are frequently
used.

Branches of mathematics relevant in software engineering are logic and
proofs, algebra, and discrete mathematics. Properties of software-intensive sys-
tems can then be expressed and justified using such mathematics.

We believe that descriptions, statements, etc., in an adequate formal language
should complement (not replace) any informal descriptions of properties of a

c© Springer Nature Switzerland AG 2020
B. Tait et al. (Eds.): SACLA 2019, CCIS 1136, pp. 96–111, 2020.
https://doi.org/10.1007/978-3-030-35629-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35629-3_7&domain=pdf
http://orcid.org/0000-0002-0059-2726
https://doi.org/10.1007/978-3-030-35629-3_7

Modernizing the Introduction to Software Engineering 97

system-to-be or of its environment. Or, in the words of Mills: “Natural language
is imprecise; formal language is inaccurate” [16]. This affects all phases and/or
iterations into which we might choose to subdivide the software engineering
process. The use of suitable formal languages thus cuts across the topics of our
course.

We also believe the little use of formal texts is an indication of the immaturity
of software engineering. Considering its relative age, it is not surprising that
this discipline is less mature than (e.g.) mechanical engineering. First uses of
the term ‘software engineering’ date back to the mid to late 1960s, so software
engineering is now in its 50s. Mechanical engineering, in comparison, can be said
to have started with Newton’s laws of motion —first published 1687— which
make it about 330 years of age. This time has allowed the body of skills and
knowledge in mechanical engineering to mature and stabilize while at the same
time allowing society to form reasonable expectations towards the discipline. By
contrast, the body of skills and knowledge in software engineering still seems
much less stable and as society experiments with this young discipline it shows
lenience towards the discipline’s failures. From the discipline’s successes and
failures reasonable expectations have to form, and to the extent to which society
increases its reliance on the outcomes of software engineering, the discipline will
have to mature. To this end it will increasingly develop and incorporate scientific
(in this case mathematical) foundations in similar ways as what can be seen in
the more mature engineering disciplines [2].

We do not believe an introduction of formal texts to be a panacea. Con-
versely, we do believe that most phases of software engineering benefit from
complementing informal with formal descriptions, justifications, etc., and that
the mere attempt to express more formally an understanding of the domain, of
requirements, etc., improves such understanding.

Coming back to our initial question: What should be taught in an introduc-
tory software engineering course, and how should it be taught? As it can be
expected, the answer was already largely constrained. The existing programs at
our university which require the I2SE course with the courses that build on it,
the existing programs’ accreditation, the way the courses leading up to I2SE
are taught, and the professional opinions of colleagues constrained and guided
the exploration of this question. We detail the context in which we operate
and the constraints arising from it in Sect. 3. We considered related courses at
other universities, a selection of textbooks, and reports on innovative ideas on
introducing rigor and formal reasoning into computing curricula. Only one of
the textbooks considered combined formal and informal language in the way we
wanted, namely the triple-volume of [3–5]. More related work is presented in
Sect. 2. None of the related courses at other institutions seemed directly usable
as a model for our revised course: either for lack of consistently complementing
the formal with the informal or for lack of openly accessible information about
details of the course. However, from Bjørner’s textbook and his direct advice we
revised the course: Sect. 4 presents details of the way the course was offered in
2017–2018 (semester 2) and in 2018–2019 (semester 1). Students did not receive

98 M. Schütz-Schmuck

the revised course as positively as we had hoped. Section 5 describes feedback
from students’ blogs and surveys of the two distinct editions held up to the time
of this writing, but low student response rates to our surveys make conclusions
rather difficult. For the upcoming edition we plan to make improvements in the
delivery of the course. Our lessons learned and plans for the future of the course
are in Sect. 6.

2 Related Work

Much has been written on the topic of software engineering education [17]. With
a young (and rapidly changing) discipline like software engineering it is not
surprising that the (introductory) courses of it would change rapidly as well.
On the other hand, most educators will aim to balance immediately actionable
content and timeless principles (and everything in between).

This can be achieved by going from the very concrete to the more principled.
Abelson and Greenspun take this approach: in [1] they describe the development
over several years of MIT Course 6.916: Software Engineering of Innovative Inter-
net Applications. At the time of their writing this had developed into a survey
course in which students completed 4–5 projects instead of the one semester-long
project often found in similar courses. The topics were targeted very specifically
to the students’ projects and included user registration and management, discus-
sion systems, voice interfaces, protocols (e.g. SOAP, WSDL, UDDI). Presumably,
students are thus led from the concrete to the abstract and will learn about (e.g.)
concurrency issues. Much of the audience of course 6.916 had already completed
a software engineering lab at MIT. Their course was comparatively small (≈30
students) and they found student progress presentations in lecture-time greatly
useful. They also had alumni willing to act as coaches to the student teams. The
two variants of the course both have a common teaching goal: students’ ability to
“take vague and ambitious specifications and turn them into a system design that
can be built and launched within a few months”. They conclude that their course
supports this goal by having students build several applications in one semester,
by their use of alumni as software engineering coaches, by the availability of a
collaborative student workspace, by real clients, and by “an emphasis on oral
and written presentations”.

In [25], Vallino and Basham describe the history of their introductory soft-
ware engineering course of over 20 years during which the course was revised at
least 8 times. Over time they used opposing approaches on some characteristics
of the course: e.g.: ‘heavy on process’ vs. ‘minimal process’, Java vs. C++ vs.
Python, or desktop applications vs. web applications. Their course had 450 stu-
dents per year in up to 13 sections per semester. Neither faculty nor students
felt “like we had gotten it right”. Two premises were identified as the cause:
“it needed to provide a broad overview of the software engineering discipline,
and it would use one of the classic software engineering textbooks that covers
all of those areas”. A key insight here is that dropping some topics that are
typically included in introductory courses does not harm: in the former version

Modernizing the Introduction to Software Engineering 99

of the course these topics were “not being covered at a level that imparted that
full understanding to begin with, and the software engineering students would
see the full breadth and depth of those topics later in their program”. One filter
applied to the topics excluded all those on which students were merely required
to remember knowledge. Their remaining design topics were: domain analysis,
OO design, appreciation for software architecture, web architecture and devel-
opment, domain-driven design, state-based behavior, unit testing, sequence dia-
grams, code metrics, and appreciation for usability. The authors decided not
to use an encyclopedic textbook, and instead supplied a collection of resources
including (e.g.) Youtube videos. For the course material that they developed
themselves they followed a process very much like the process that the stu-
dents were expected to follow on their course project. Based on their surveys the
authors conclude that there remain areas for improvement, but that the revision
has improved student perception of the course in most aspects.

We very much like the idea of following a similar process for the course mate-
rial development as the one the students will follow on their projects. Aside from
the benefits the authors mention, changing our view from ‘instructors develop-
ing course materials’ to ‘instructors developing a teaching and learning process’
makes the task amenable to the well-established process improvement practices.

These two publications are almost 20 years apart. Both agree that students
should produce in the introductory software engineering course working imple-
mentations. Consequently, they lean towards the software design and implemen-
tation end of the development process and are less concerned with (e.g.) domain
description or rigorous reasoning about properties of resulting artifacts. Among
the topics covered in [25] we find very little on the ‘earlier’ phases, and nei-
ther [25] nor [1] offer any topic related to rigorous reasoning. This is possibly
due to an underlying view of software engineering in which source code is the
only ‘verifiable’ medium of expressing knowledge. In our opinion students have
other courses that expose them to design and implementation issues. If we drop
the requirement of full implementation in source code and instead accept spec-
ification languages as verifiable media of expressing knowledge, students can
experience the development process topics and we can emphasize the ‘ontology
engineering’ aspects of software engineering. Typically, the curriculum of com-
puter science or software engineering students does not require them to take a
course that would already cover these aspects.

Whether the university computing curricula in general need a stronger
emphasis on complementing informal descriptions with formal ones is an issue
of ongoing debate. Lethbridge’s survey has been used to argue for reducing the
formal, more rigorous, forms of description [15], such as the ones described in
[26]. Even where the need for a stronger emphasis on FM is accepted, there
are different opinions about the way in which such stronger emphasis should be
implemented in the curricula. Proposals range from elective courses on ‘logic for
everybody’ [23] to the gamification of formal specification [20],1 to an integra-
tion of relevant topics into the entire program of study that affects almost every

1 http://verigames.com/about-us.html.

http://verigames.com/about-us.html

100 M. Schütz-Schmuck

course related to computing or mathematics.2 Bjørner proposed at least as early
as 1993 (possibly earlier) this emphasis of the complementary nature of informal
and formal descriptions as a cross-cutting aspect of university computing cur-
ricula in software engineering [6]. In [7], he Cuéllar expand substantially those
ideas, which were later incorporated into Bjørner’s triple-volume [3–5]. Similar
views are presented in [9]: “Eventually, the working group aspires to see the con-
cepts of formal methods integrated seamlessly into the computing curriculum so
that it is not necessary to separate them in our discussions”.

We considered the publicly available course catalog entries and syllabi of soft-
ware engineering courses at numerous reputable institutions, including (but not
limited to) MIT, Cornell, Stanford, and McMaster. MIT does not have an explicit
software engineering course; the one that comes closest would be ‘Software Con-
struction’,3 although it focuses most on implementation aspects. Cornell has
a ‘Software Engineering’ course,4 which includes very little material related to
formal descriptions, specifications, verification, etc. Stanford does not seem to
offer any introductory software engineering course and it is not clear whether or
how the relevant topics are distributed over other courses. McMaster offers many
courses covering software engineering,5 including (but not limited to) ‘Software
Design I: Introduction to Software Development’, ‘Software Design II: Large Sys-
tem Design’, ‘Software Design III: Concurrent System Design’, ‘Software Devel-
opment’, ‘Software Requirements and Security Considerations’, and ‘Software
Testing’. Only short descriptions of these courses are available on McMaster’s
web pages. From the short course descriptions it is impossible to see to what
extent they are concerned with the complementary nature of informal and formal
descriptions.

We further considered the main undergraduate software engineering text-
books including (but not limited to) Sommerville [22], Pfleeger [19], Schach [21],
and Ghezzi (et al.) [8]. All of these mention formal languages (there often called
‘formal methods’). None of them uses a suitable formal language in the cross-
cutting and complementary way we would like. On the contrary, we find the
treatment of ‘formal methods’ delegated to a single chapter, possibly even an
online supplement.

To our knowledge Bjørner’s triple-volume [3–5] is the only textbook wherein
formal text consistently complements informal text. This was our reason to select
it. In his work Bjørner proposes the triptych paradigm which separates domain
description, requirements prescription, and software design as the major phases
of software development in-the-large. This paradigm differs from (e.g.) that of
van Lamsweerde [14] in its identification of domain description as a phase of
its own, whereas van Lamsweerde considers the elicitation and elaboration of
domain properties and assumptions to be part of requirements capture. Bjørner’s

2 For comparison see [18] in which such an over-arching curricular integration is pro-
posed not for formal methods but for software security.

3 http://web.mit.edu/6.031.
4 http://www.cs.cornell.edu/courses/cs5150/2019sp/lectures.html.
5 https://www.eng.mcmaster.ca/cas/programs/course-listing.

http://web.mit.edu/6.031
http://www.cs.cornell.edu/courses/cs5150/2019sp/lectures.html
https://www.eng.mcmaster.ca/cas/programs/course-listing

Modernizing the Introduction to Software Engineering 101

books use the formal language RSL (the RAISE Specification Language) [3]:
“RSL, which we primarily use in these volumes, features both property-oriented
and model-oriented means of expression, has a somewhat sophisticated object-
oriented means of compositionality, and borrows from CSP [...] to offer a means
of expressing concurrency. Extensions to RSL have also been proposed, for exam-
ple with timing [...], and with Duration Calculus, that is, temporal logic ideas
[...]”.

CSP (Communicating Sequential Processes) [11] allows for describing pat-
terns of communication and synchronization among concurrently running activ-
ities. Bjørner uses RSL and CSP throughout his entire triple-book to formally
complement topics as diverse as container harbors or state machines.

3 Initial Situation

For historical reasons our institution offers several programs in computing at the
undergraduate level: see Table 1.

There are 4 courses focusing on Software Engineering: ‘Introduction to Soft-
ware Engineering’, ‘Software Requirements’, ‘Software Design’, and ‘Software
Reliability Testing’. Moreover, there are two offers of a course called ‘Intro-
duction to Software Engineering’: one is by the Department of Mathematical
Sciences, the other by the (recently founded) Department of Computer Science
and Engineering. The two courses are considered equivalent w.r.t. students’ pro-
gram requirements. They only differ in the faculty assigned to the course and,
as a consequence, in the textbook used, the homework assignments, and other
such aspects, as they vary from one faculty member to another.

Students in all of the above programs need to take I2SE, but only students in
SE need to take all the remaining courses. For students in other programs they
are electives. For the students in SE and in CE the I2SE course is a pre-requisite
for taking their capstone project course. The programs are ABET-accredited,
except for the CS program which is currently working towards accreditation. The
I2SE ABET-accredited syllabus allocates times for covering topics as shown in
Table 2. When two colleagues, who had been involved in teaching I2SE, retired in

Table 1. Our undergraduate programs in computing

Program Department Faculty/College

Computer Engineering
(CE)

Electrical Engineering Engineering

Computer Science (CS) Mathematical Sciences Arts and Sciences

Computer Science &
Engineering (CS & E)

Computer Science &
Engineering

Engineering

Software Engineering (SE) Computer Science &
Engineering

Engineering

102 M. Schütz-Schmuck

short succession and a new colleague started teaching the course, we considered
this to be a good opportunity to take a fresh look at how I2SE is taught.

Table 2. Old I2SE: time allocated to topics

Topic Contact Hours

Introduction to the course 1

The Software Lifecycle 3

Estimation: Cost, effort and agenda 3

Planning and tracking 3

Risk analysis and management 2

User Interface design 1

UML language 4

Requirements analysis and specification 5

Design principles and concepts, system design testing 6

Software testing 4

Exams, discussion sessions, and presentations 13

Total: (equivalent to contact period) 45

4 Revised Course

Diverse influences contributed to the shape of the revised course. We contacted
Bjørner about the use of his textbooks in our course, (see acknowledgments at
the end of this paper). His books complement informal with formal descriptions
in every aspect of software engineering—be it a phase of development (domain
description, requirements prescriptions and software design), structuring tech-
niques (like modularization), or the structure and semantics of computational
models (like finite-state automata or Petri nets).

Example:

– A class of phenomena of behaviors is introduced, informally as proceeding
in time by performing actions, generating or receiving events and otherwise
interacting with behaviors. We then present in class (as does the textbook)
as a generic simple formal example an RSL specification of two processes
communicating across a shared channel and controlled by a channel each,
connected to the environment. This formal example is then again comple-
mented with text describing informally but in detail the formal text as well
as a process diagram and a message sequence chart, which again informally
complement the formal text.

Modernizing the Introduction to Software Engineering 103

– The first example for domain descriptions is that of air traffic. It exemplifies
domain attributes we would consider continuous (in the mathematical sense)
and the formal description in RSL is interleaved and complemented with
informal text.

– The interface requirements for a GUI for a system allowing clients to browse
time tables and staff to update such time tables likewise interleave formal
and informal text.

– The textbook (and the lectures) present algebras as a foundational tool for
specification and object-oriented programming is explained as an applica-
tion of the algebra concept. Several examples present informal descriptions
together with algebraic, formal descriptions in RSL •

We follow the complementary presentation of the textbook in the lectures. Stu-
dents are reminded to complement the informal parts of their coursework with
formal texts from the start of the course; later they are required to provide such
complementary texts for some exercises and exam problems.

As mentioned above, Bjørner’s triple-book uses RSL as its ‘running’ formal
method throughout. Additionally, the book introduces formal tools like finite
state machines, push-down machines, Petri nets, message sequence charts, live
sequence charts, statecharts, and CSP, which are then (with the exception of
CSP, which is part of RSL) explained —i.e.: given a formal execution semantics—
in RSL.

Due to the very large volume of contents provided in this triple-book, we
initially selected undergraduate-suitable material from it in consultation with its
author. As our course contributes to ABET-accredited programs, we needed
to revise our course in such a manner that it remained consistent with the
existing ABET-accredited syllabus. For example: for some students in programs
with a capstone course requirement, I2SE would be the only course explicitly
exposing them to software engineering topics. In light of these requirements
we re-balanced the time spent on covering some of the triple-book’s material,
but also added other material on time management, scheduling, planning and
estimation, risk management, and user interfaces. These concerns, together with
our ‘philosophy’ presented in Sect. 1, the choice of textbook, and discussions with
colleagues finally shaped the revised course. It was first held in the 2017–2018
spring semester in 3 separate small sections with 14, 17, and 19 students, and
then a second time in the 2018–2019 fall semester in one larger section with 53
students. In both cases we used Moodle as the course’s learning management
system.6 The details changed a little between those 2 semesters, due to the
difference in section size, and since we made some adjustments based on the
experience from the first offering.

In our first offering we did not include time management. Also, algebra, math-
ematical logic, and CSP channels were discussed immediately after the chapter
on the Triptych SE Paradigm (instead of somewhat later) in the course. We
initially thought that students would benefit from the relatively early exposure

6 https://moodle.org/.

https://moodle.org/

104 M. Schütz-Schmuck

Table 3. Resources and topics of our new course

Contact Hours Literature Topics

1 [5] Ch.1 Triptych SE Paradigm

2 [12,24] Time management, Planning, Scheduling,
Tracking

2 [5] Ch.2 Documents

2 [5] Ch.5 Phenomena and concepts

1 [3] Ch.8 Algebras

1 [3] Ch.9 Mathematical logic

2 [3] Ch.21 CSP channels

3 [5] Ch.8 Overview of domain engineering

[5] Ch.11 Domain facets

[5] Ch.16 Domain engineering process model

2 [4] Ch.10 Modularisation (objects)

2 [4] Ch.11 Automata and machines

1 [4] Ch.12 Petri nets

2 [4] Ch.13 Message sequence charts

1 [4] Ch.14 Statecharts

1 [5] Ch.17 Overview of requirements engineering

2 [5] Ch.19 Requirements facets

[5] Ch.24 Requirements engineering process model

1 [5] Ch.25 Hardware-software codesign

[5] Ch.26 Software architecture design

[5] Ch.30 Computing systems design process model

[5] Ch.31 Triptych development process model

1 [5] Ch.32 ‘Finale’

1 [14] Ch.3.2 Risk analysis

1 (other) User interface design

Total 29

to these topics; however from personal conversation we concluded that placing
them later in the course would benefit the students. The topics of the new course
are now covered according to Table 3.

The course emphasizes application by giving the students homework for every
week. We time the homework so that students have to independently study the
material in order to complete the homework. The goal is to make learning more
problem-based. Homework was due on each Friday before class.

For the duration of the semester, students work within a broad application
domain from one of the 15 domains outlined in the textbook (assigned to them on
the basis the student ID number modulo 15). We took homework exercises from

Modernizing the Introduction to Software Engineering 105

the textbook and most exercises referred to the student’s domain. We chose
the 15 domains from the textbook since they have already been substantially
elaborated and they are each broad enough to allow students to find a distinct
niche within the domain.

One of the criteria we applied when deciding on the formalisms to use in the
course was the availability of tools to support experimentation in the formalism.
We considered a long list of tools, including eRAISE, rsltc, Overture, Rodin,
Idris, Maude, Snoopy [10], Formose, jUCMNav, TLA+ [13], AutoFocus3, etc.7

For each tool we found some strong reason which in our opinion disqualified
it as a mandatory tool in the students’ coursework. For TLA+ and Maude our
reason was a lack of resources to prepare formal descriptions in these formalisms
to accompany and replace those given in the textbook in RSL (however, see
Sect. 6). We considered the treatment of concurrency in Idris too different to the
treatment of concurrency in the textbook based on CSP. Other tools were too
specialized and/or too limited.

Tool support can be a boon or a bane: if students get over tool-specific obsta-
cles quickly enough, then support in experimenting helps them to get a better
grasp of the formalism. On the other hand, tool-specific obstacles can become
time-consuming and take away from time that could otherwise be spent explor-
ing the formalism with pencil and paper. The tool support for RSL, in particular,
is not very beginner-friendly. A case in point are syntax errors: while line and
column numbers are given, no more information about the syntax rule that is
being violated is available. As another example, editing statecharts in Eclipse
Papyrus consistently aborted the entire Eclipse process. Based on these findings
and considerations we did not mandate that students use any tool support, but
we pointed from the course’s Moodle page to several tools: for RSL to eRAISE
and rsltc, and for Petri nets to the Simple Petri Net Editor and Snoopy2.

4.1 2017–2018: Semester 2

Since we had 3 small sections for the first offering, and no assistance, we decided
on the following way of homework assessment:

– Friday’s sessions were for homework discussion.
– Students individually presented one exercise at a time.
– The work was discussed with the other students.
– Students’ turn followed the class list.
– If a student forfeited a turn, it was the next student’s turn to present the

current exercise.
– We managed an average of 5 presentations per Friday session of 50 min.
– The average of a student’s best 4 presentations made the homework grade.
7 https://github.com/FreeAndFair/eRAISE https://github.com/dtu-railway-verifica-

tion/rsltc http://overturetool.org/ http://wiki.event-b.org/index.php/Rodin Plat
form\ Releases https://www.idris-lang.org/ http://maude.cs.illinois.edu/ http://
formose.lacl.fr/ http://jucmnav.softwareengineering.ca/foswiki/ProjetSEG https://
af3.fortiss.org/.

https://github.com/FreeAndFair/eRAISE
https://github.com/dtu-railway-verifica-tion/rsltc
https://github.com/dtu-railway-verifica-tion/rsltc
http://overturetool.org/
http://wiki.event-b.org/index.php/Rodin_Platform\protect \global \let \OT1\textunderscore \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}\OT1\textunderscore Releases
http://wiki.event-b.org/index.php/Rodin_Platform\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}Releases
https://www.idris-lang.org/
http://maude.cs.illinois.edu/
http://formose.lacl.fr/
http://formose.lacl.fr/
http://jucmnav.softwareengineering.ca/foswiki/ProjetSEG
https://af3.fortiss.org/
https://af3.fortiss.org/

106 M. Schütz-Schmuck

4.2 2018–2019: Semester 1

The second offering was also without assistance. The mode of homework presen-
tation used in the previous semester was not practical for a single group of 53
students. Therefore we decided to use peer assessment, as follows:

– The homework grade was split in two sub-grades: one for the homework a
student submitted, and another one for homework a student assessed of other
students.

– For every one of the 15 homework assignments we prepared a catalog of (on
average) 15 assessment aspects.

– Assessment aspects had weights in the range 1–10.
– Students assessed the aspects in the range 1–100.
– Friday’s sessions (after submission) were used to discuss example solutions,

to clarify remaining doubts on the assessment aspects, and to lead into the
assessment in general.

– For every homework submission the submitting student assessed 5 randomly
assigned peer submissions.

– Every student’s assessment had a weight of 1.
– For every homework we randomly assigned 6 student submissions to be

assessed by the professor with the same assessment criteria.
– The professor’s assessments had a weight of 6.
– We used the grade calculation in the Moodle workshop activity for the grade

on the assessments.8

5 Reception

5.1 From Students’ Blogs

One of the students’ (graded) course work activities was to regularly write a
reflective learning journal (blog). We encouraged the students to write about
any aspect of the course, its content, the presentation, their experiences, sugges-
tions, etc. We can expect that the fact that this is graded and not anonymous
will change the way the students write and also what they write. On the other
hand, we get a very high response rate. We collected the following opinions from
the blogs. Students stated that the course widened their understanding of soft-
ware engineering as not purely programming and that they were able to apply
knowledge from the class on an intern job (to their surprise). Students stated the
homework was too much and they were dissatisfied when other students seemed
to give them random grades in the peer assessment. Several students praised the
weekly homework and assessments as very helpful for remaining invested and for
deeply considering alternative solutions (by other students). One student “hated”
the textbook and “didn’t get” RSL and CSP. Others considered it strange, but
found it good once they got used to it. A good proportion of the course top-
ics received praise. The topics Documents, Domain Facets, Requirements Facets
8 https://docs.moodle.org/36/en/Using Workshop#Grade for assessment.

https://docs.moodle.org/36/en/Using_Workshop#Grade_for_assessment

Modernizing the Introduction to Software Engineering 107

and Software Design, State Charts, Sequence Charts, and Petri Nets were explic-
itly praised by several students and deemed fun and most important topics that
“improved the modeling ability”. The project and time management lectures were
called “impressive” and it was suggested to extend them. One student lamented
the absence of a discussion of agile methodologies (which we had mentioned),
and one student appreciated the “long exams”.

5.2 Student Surveys

2017–2018: Semester 1. We conducted a survey towards the semester’s end.
Students anonymously rated aspects concerning the professor on a scale from 1
(‘never’) to 7 (‘frequently’). Only 11 of the students from all 3 courses together
responded. To summarize we list the aspects in the order of increasing average
student response (on the scale 1–7): Adjusts pace of class to the students’ level of
understanding (4); Explains material clearly (4.2); Stimulates interest in mate-
rial (4.5); Seems well-prepared (4.9); Indicates important points to remember
(5.1); Is effective, overall, in helping me learn (5.3); Provides helpful comments
on homework (5.4); Indicates where the class is going (5.5); Explains think-
ing behind statements (5.6); Effectively directs and stimulates discussion (5.8);
Shows genuine interest in students (6.2); Effectively encourages students to ask
questions and give answers (6.4); Is tolerant of different opinions expressed in
class (6.9); Is available outside of class (7); Treats students with respect (7).

Students also rated aspects of the course on a scale of 1 (‘no or very little’)
to 7 (‘yes or very much’). Again, we list the aspects in the order of increasing
average student response (on the scale 1–7): Would you likely recommend this
course to a friend or fellow student? (3.1); How actionable do you think the
information is that you received in the course? (4); Did the content that was
delivered and the organization of the course match what you were promised in
the syllabus? (5.5); How much new information and knowledge did you receive
in the course? (5.6).

Finally, we asked them to provide free feedback on: What do you like best
about this course? What would you like to change about this course? What do
you think is this instructor’s greatest strength? What suggestions would you
give to improve this instructor’s teaching? They were also asked to indicate:
Approximately how many class meetings have you missed (including excused
absence)?

Respondents to these ‘open’ questions mentioned that they liked the weekly
homework, the clarity of presentation, feeling that they became better organized
in problem solving in general, as well as an improvement in their presentation
skills. The weekly homework with the student presentations was mentioned most.

On the other hand, respondents would like to change the textbook, the grad-
ing of the homework (expressing that not presenting when they had done the
homework felt like a waste of time), and to add more coverage of RSL. Respon-
dents also suggested changing the homework evaluation (again expressing that
not presenting when they had done the homework felt like a waste of time),

108 M. Schütz-Schmuck

shortening the exams and switching to a different formal language than RSL.
Changing the homework evaluation was mentioned most.

2018–2019: Semester 2. We conducted a similar survey after the second offer-
ing of the course. The response rate was lower than the first semester. This is
likely due to the fact that one student created his own survey during the semester.
Thought we know the results of this survey, too, the student’s own survey was
structured very differently from ours which makes the results hard to compare.

Only 6 of the 53 students responded to our survey. Again we summarize
their responses concerning the professor by listing the aspects in the order of
increasing average student response (on the scale 1–7): Adjusts pace of class
to the students’ level of understanding (3.2); Is effective, overall, in helping me
learn (3.5); Stimulates interest in material (3.7); Explains material clearly (3.8);
Effectively directs and stimulates discussion (4.0); Provides helpful comments on
homework (4.0); Indicates important points to remember (4.2); Explains think-
ing behind statements (5.0); Effectively encourages students to ask questions
and give answers (5.0); Is tolerant of different opinions expressed in class (5.2);
Seems well-prepared (5.2); Shows genuine interest in students (5.3); Indicates
where the class is going (5.5); Is available outside of class (5.7); Treats students
with respect (6.2).

As far as the course as such was concerned: Would you likely recommend
this course to a friend or fellow student? (2.7); How actionable do you think the
information is that you received in the course? (3.0); How much new information
and knowledge did you receive in the course? (3.7); Did the content that was
delivered and the organization of the course match what you were promised in
the syllabus? (4.5).

In the ‘open feedback’ section respondents liked the practicality of the topics,
their exposure to project planning, that “it teaches you good problem solving
skills”, and their experience in peer assessment.

On the other hand, they disliked the slides from the textbook and would
like to see the use of RSL removed, or at least more time for its introduction.
They would also like to change the domain, to which they were assigned for the
semester, to be more like a project they pursue throughout the semester.

6 Lessons Learned, and Future Work

The blogs (high participation, not anonymous) and the surveys (low participa-
tion, anonymous) by themselves give very incomplete pictures. Even when they
are combined we have to be careful not to follow a few opinions just because
they are loudly voiced.

Respondents Did Not Find the Course’s Message Very Actionable.
For the future, we hope to improve this by more strongly tying the homework
exercises together into a single project. While the textbook already goes a long
way towards this end, we feel that students’ perception of the exercises and the
perceived actionability of their experience will improve with this change.

Modernizing the Introduction to Software Engineering 109

Respondents Disliked the High Workload of the Homework.
We hope that this perception changes at least in part when we integrate (most
of) the current individual homework exercises into one semester-long project.

No Respondent Expressed a Like for RSL, Some Expressed Dislike, Others Did
Not Mention It.
We need to evaluate how to best improve this. Options include spending more
time introducing RSL at the start of the course. This would clearly help stu-
dents with reading and writing in that language. It would not address students’
concern that there is too little additional material (tutorials or blogs) available,
and/or no visible use of RSL in the IT industry. Another option would be to
switch to a different formal language, (e.g. TLA+/Pluscal). While this would
give the students many more secondary sources of material to study, it would
also require a thorough evaluation of the differences (e.g. in the representation of
internal vs. external nondeterminism, and in the treatment of concurrency and
synchronization), as well as a redevelopment in TLA+/Pluscal of a substantial
portion of the examples used in the textbook.

Dislike of the Slides Accompanying the Textbook.
An obvious option would be to create slides in a style similar to the slides on
time management, scheduling, tracking, and estimation, which the respondents
preferred. We also consider transitioning more and more to a ‘flipped classroom’,
which implies successively replacing slide-based lectures with in-class demonstra-
tions of solving example problems.

Lacking Adjustment of Pace to Students’ Level of Understanding.
The textbook is a great source of knowledge and wisdom on software engineering.
Possibly, the level of detail is too much for our audience, and we would do better
limiting the lectures to the most prominent parts of the messages of the textbook.

Lacking Clarity of Explanation.
Here also, we might see an improvement by focusing the message of the lectures
on fewer statements from the volominous textbook.

Lacking Stimulation of Interest in Material.
We will have to analyze this result much more to understand the reasons for
failing to stimulate interest in the past and how to succeed in this aspect in the
future.

7 Conclusion

We have shared our experience about revising our I2SE course to reflect better
what is (in our opinion) a more modern approach to teaching software engineer-
ing which is rooted in our philosophy that formal texts and informal texts must
complement one another. We explored existing teaching materials and courses
offered elsewhere on whether they were compatible with our philosophy. Except
for the textbook we chose, none of the others seemed compatible with our views.
Our initial situation imposed diverse constraints on the course’s revision. We had

110 M. Schütz-Schmuck

to adjust some of our initial choices in order to satisfy these constraints. The
course now differs consideravly from traditional I2SE courses in its use of suit-
able formalisms to complement most of the topics of traditional I2SE courses.
Reception is still far from what we aim for. In future offerings of the course
we will make improvements based on the feedback we received from our past
students.

Acknowledgments. We sincerely thank the three anonymous reviewers of SACLA‘
2019 for their critical reading of earlier versions of this paper and for their suggestions
which helped to improve and to clarify it. Many thanks also to Dines Børner for our
valuable conversations about this topic.

References

1. Abelson, H., Greenspun, P.: Teaching Software Engineering (2001). http://philip.
greenspun.com/teaching/teaching-software-engineering

2. Baber, R.: Comparison of electrical ‘Engineering’ of Heaviside’s times and software
‘Engineering’ of our times. IEEE Ann. Hist. Comput. 19(4), 5–16 (1997)

3. Bjørner, D.: Software Engineering 1: Abstraction and Modelling. Springer, Heidel-
berg (2006). https://doi.org/10.1007/3-540-31288-9

4. Bjørner, D.: Software Engineering 2: Specification of Systems and Languages.
Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-33193-3

5. Bjørner, D.: Software Engineering 3: Domains, Requirements, and Software Design.
Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-33653-2

6. Bjørner, D.: University curricula in software technology. In: Software Engineering
Education, pp. 5–16. Elsevier (1993)

7. Bjørner, D., Cuéllar, J.R.: Software engineering education: rules of formal specifi-
cation and design calculi. Ann. Softw. Eng. 6(1/4), 365–409 (1998)

8. Ghezzi, C., Mehdi-Jazayeri, D.M.: Fundamentals of Software Engineering, 2nd edn.
Pearson Prentice Hall, Englewood Cliffs (2003)

9. Goelman, D., Hilburn, T.B., Smith, J.: Support for Teaching Formal Methods:
Report of the ITiCSE 2000 Working Group on Formal Methods Education (2000).
http://www.cs.utexas.edu/users/csed/FM/work/final-v5-7.pdf

10. Heiner, M., Herajy, M., Liu, F., Rohr, C., Schwarick, M.: Snoopy – a unifying
Petri net tool. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS,
vol. 7347, pp. 398–407. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31131-4 22

11. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood
Cliffs (1985)

12. Humphrey, W.: Introduction to the Personal Software Process. Addison Wesley,
Reading (1997)

13. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison Wesley, Reading (2002)

14. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Mod-
els to Software Specifications. Wiley, Chichester (2009)

15. Lethbridge, T.: What knowledge is important to a software professional? Computer
33(5), 44–50 (2000)

16. Mills, B.: Practical Formal Software Engineering: Wanting the Software You Get.
Cambridge University Press, Cambridge (2009)

http://philip.greenspun.com/teaching/teaching-software-engineering
http://philip.greenspun.com/teaching/teaching-software-engineering
https://doi.org/10.1007/3-540-31288-9
https://doi.org/10.1007/978-3-540-33193-3
https://doi.org/10.1007/3-540-33653-2
http://www.cs.utexas.edu/users/csed/FM/work/final-v5-7.pdf
https://doi.org/10.1007/978-3-642-31131-4_22
https://doi.org/10.1007/978-3-642-31131-4_22

Modernizing the Introduction to Software Engineering 111

17. Motta, G., Wu, B. (eds.): Software Engineering Education for a Global E-Service
Economy: State of the Art, Trends and Developments. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-04217-6

18. Ngwenya, S., Futcher, L.: A framework for integrating secure coding principles into
undergraduate programming curricula. In: Tait, B., Kroeze, J., Gruner, S. (eds.)
SACLA 2019, CCIS, vol. 1136, pp. 50–63. Springer, Cham (2020)

19. Pfleeger, S., Atlee, J.: Software Engineering: Theory and Practice. Pearson Prentice
Hall, Englewood Cliffs (2006)

20. Prasetya, I.S.W.B., et al.: Having fun in learning formal specifications. Technical
report (2019). http://arxiv.org/abs/1903.00334v1

21. Schach, S.: Object-Oriented and Classical Software Engineering. McGraw-Hill,
New York (2011)

22. Sommerville, I.: Software Engineering. Pearson, London (2011)
23. Spichkova, M.: Boring formal methods or Sherlock Holmes deduction methods?

Technical report (2016). http://arxiv.org/abs/1612.01682v1
24. Spolsky, J.: Evidence Based Scheduling (2007). https://www.joelonsoftware.com/

2007/10/26/evidence-based-scheduling/
25. Vallino, J.R., Basham, B.: A re-look at the introduction to software engineering

course. In: Proceedngs of ASEE Annual Conference and Expos (2018)
26. Zamansky, A., Farchi, E.: Exploring the role of logic and formal methods in infor-

mation systems education. In: Bianculli, D., Calinescu, R., Rumpe, B. (eds.) SEFM
2015. LNCS, vol. 9509, pp. 68–74. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-49224-6 7

https://doi.org/10.1007/978-3-319-04217-6
http://arxiv.org/abs/1903.00334v1
http://arxiv.org/abs/1612.01682v1
https://www.joelonsoftware.com/2007/10/26/evidence-based-scheduling/
https://www.joelonsoftware.com/2007/10/26/evidence-based-scheduling/
https://doi.org/10.1007/978-3-662-49224-6_7
https://doi.org/10.1007/978-3-662-49224-6_7

Exercise Task Generation for UML
Class/Object Diagrams, via Alloy Model

Instance Finding

Violet Kafa, Marcellus Siegburg, and Janis Voigtländer(B)

University of Duisburg-Essen, Duisburg, Germany
janis.voigtlaender@uni-due.de

Abstract. The Unified Modelling Language (UML) is the standard for
designing and documenting object-oriented software systems. Its most
frequent use is for static modelling in the form of class diagrams. A cor-
related concept is that of object diagrams. An object diagram may or may
not adhere to a given class diagram, and the understanding of this con-
nection is key to correctly using class diagrams in practice. We present an
approach for automatic generation of verified, non-trivial, conceptually
relevant examples and counterexamples of class/object diagram combi-
nations, aimed at providing exercise tasks in a university course setting.
The underlying technique is model instance finding using the Alloy spec-
ification language and analyser. We provide an implementation of our
approach in an e-learning system.

Keywords: E-learning · UML · Alloy

1 Introduction

The Unified Modelling Language (UML) [10] is widely used in the software indus-
try and academia. It is a standard for specifying, visualising, constructing and
documenting artifacts of object-oriented systems and has a rich set of diagram-
matic notations along with their well-formedness rules. The language of class
diagrams (CDs) and object diagrams (ODs) is part of the UML standard and
supported by many commercial and academic software modelling tools. These
specific diagrams are also a typical subject matter in a software modelling course
at university.

To facilitate learning and understanding of the CD and OD concepts, it is
desirable to confront students with many and diverse examples and counterex-
amples. For instance, a useful exercise task in a software modelling course is to
present a certain number n of CDs and a certain number m of ODs and ask
students to determine for each combination of CD and OD whether the latter
is a correct instance of the former or not, along with explanation of the reasons
(such as possible violations of multiplicities or other constraints). Fig. 1 shows
a hand-crafted exercise task of this kind, with n = 2 and m = 5, used in a con-
crete course in the past. Our undertaking here is to develop tooling that helps
c© Springer Nature Switzerland AG 2020
B. Tait et al. (Eds.): SACLA 2019, CCIS 1136, pp. 112–128, 2020.
https://doi.org/10.1007/978-3-030-35629-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35629-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-35629-3_8

Exercise Task Generation for UML, via Alloy Model Instance Finding 113

the instructor by systematically and automatically constructing similar exercise
tasks.

Fig. 1. A sample exercise task.

To that end, formal method techniques from the verification and model gener-
ation domain are employed. The basic idea is to randomly generate CDs subject
to certain complexity constraints, and with a reduced feature set according to
didactic considerations, and to use the Alloy specification language and anal-
yser [5,6] to generate appropriate model instances and non-instances, to be pre-
sented as candidate ODs to the students. To make use of Alloy, we employ (and
extend/revise) a translation from CDs to Alloy modules that was introduced in
related work on CD analysis and OD generation [8]. For the generation of inter-
esting counterexample ODs, which was not a topic of the mentioned CD2Alloy
work, we devise a strategy that involves variations of the original CD, such as
removing or adding some relationships, manipulating some multiplicities etc.

2 Background on UML’s CDs and ODs

There is a vast literature on UML, including many textbooks introducing its
various diagram types [2,4,11], so we will not provide another substantial intro-
duction here. But we want to at least give motivating examples of a CD and
a conforming OD, to illustrate which model elements these types of diagrams
can contain, as well as to shortly discuss the relevant relationships. Moreover, we
already briefly delineate what aspects we will not cover in our generated exercise
tasks (more details then in the next section, about didactic considerations).

Fig. 2 shows a CD, illustrating the static design of a certain object-oriented
system. In it, we see classes, some with attributes and operations/methods, an
inheritance relationship, and additional relationships in the forms of composi-
tions and general associations with attached multiplicities.

114 V. Kafa et al.

Fig. 3 shows an OD conforming to the CD from Fig. 2. Note that no opera-
tions/methods are present in ODs. In our exercise tasks we will actually cover
neither attributes nor operations/methods, since we are more interested at this
point in teaching in considering the relationships between classes/objects.

Fig. 2. A CD.

Inheritance between classes is not reflected on the object level by explicit
connections/links between corresponding objects in any way. Instead, inheritance
expresses that the child class has all the same relationships to other classes as
the parent class has, and that will be reflected on the object level. For example,
according to Fig. 2 every headquarter is a department, so in Fig. 3 we could
have replaced d1 by an object of type Headquarter and still let it have the
link to c.

Association between classes, such as between offices and persons or between
offices and departments in Fig. 2, is a broad term that encompasses just about
any logical connection between classes. On the object level, associations are
represented by links, such as between o and p in Fig. 3. Multiplicities at the
ends of associations in a CD express how many objects of one class can be
related to one object of the other class. In our example, each office needs to
be linked to at least one person (due to the multiplicity 1..∗ at one end of the
relevant association), but not each person needs to be linked to an office (due to
the multiplicity 0..∗ at the other end). So in Fig. 3 we could not simply delete p
(while keeping o), but we could add another object of type Person without
adding any links. We consider 0..∗ the default multiplicity, so it will not always
be depicted (see Fig. 1).

Exercise Task Generation for UML, via Alloy Model Instance Finding 115

Fig. 3. An OD.

Another kind of relationship is aggregation. It does not appear in Fig. 2, but
in Fig. 1, see the hollow diamond shapes there. While from a modelling perspec-
tive aggregations are special, in that they are intended to represent whole/part
relationships, from a formal perspective concerning conformance of ODs to CDs,
aggregations are to be handled just like associations. Their default multiplicities
are also as for associations.

Finally, a composition relationship is a stronger form of aggregation which
actually comes with additional constraints in considering conformance of an OD
to a CD. Namely, every “part” must be linked to at most one “whole”. The
example in Fig. 2 has a composition relationship between companies and offices,
and another one between companies and departments, with companies playing
the role of “whole” in both cases (as marked by the filled diamond shape). So
in Fig. 3 there could be additional companies, but they could not also be linked
to the existing objects o and d1. Instead, there would have to be additional
offices and departments present, due to the multiplicity 1..∗ at the “part” end
of both composition relationships. The default multiplicity at those ends would
have again been 0..∗, while at the “whole” end of composition relationships the
default multiplicity is 1..1 (which would be written simply as 1) and actually
only the multiplicities 0..1 and 1..1 are allowed there at all.

Besides the fact that we will not include attributes or operations/methods
in our generated examples (manifesting in depictions as in Fig. 1, each class
and object being just a simple box with name and/or type inscribed, instead of
additional compartments in the boxes as in Figs. 2 and 3), another difference
from what we have seen in the current section is that the generated examples will
be artificial, with class and object names like A, B, c, d, instead of real world
notions like Company etc. The reason is that we want to use the generated
exercise tasks for teaching the formal concepts of the CD and OD language,
and the correct interplay between model elements, emphasising the similarities

116 V. Kafa et al.

and differences between the relationship flavours considered. Thus enabled, free
modelling set in real world scenarios is part of separate activities in the course.

3 Didactic Considerations

What makes a good generator for exercise tasks of the kind considered? We
would like to be able to generate many different, but analogous tasks, in order
to provide students with ample opportunities for practising without repeated or
predictable instances/solutions. We want to be able to control the complexity
and difficulty of tasks, for example to enable a transition from simple, prepara-
tory instances to more challenging ones, or to level the field for student groups
from different backgrounds (e.g., ones that have already had an object-oriented
programming course and thus know some UML concepts at least from a pro-
gramming language perspective, and ones for which this is not the case). There
are additional dimensions along which we would like to be able to parametrise
the task generation. For example, at a certain teaching stage we might want to
tailor tasks to focus on one specific concept (“give us only tasks in which the cor-
rect understanding of aggregation makes the difference between right and wrong,
despite other relationships also being present”) or to exclude some concept (“do
not produce tasks with occurrences of composition relationships, because we
have not yet covered that in the lecture”). Generated tasks should be non-trivial
and interesting, in the sense that there is really something to discover in them.
For example, if the task is to decide for a CD and two ODs which one of the
latter two conforms to the CD and which one does not, then it should not be the
case that one of the two ODs is obviously far off from possibly having anything
to do with the given CD, thus making the question boring and uninstructive.
Instead, we should have a degree of control over how far off a counterexample
OD is allowed to be from a positive example. And while it might be obvious, it
is crucial to ensure that the generated exercise tasks are correct. If we consider
a certain OD to be (or to not be) conforming to a certain CD, and use that
assessment in feedback to students, or for grading, then it better be the case
that it holds true. When hand-crafting artificial tasks that try to emphasise a
certain CD/OD language aspect as well as aiming to produce interesting and
challenging instances, it can be surprisingly easy to violate this assurance by
accidentally not taking into account some subtlety of the UML standard.

Besides the above general considerations, there are more concrete decisions
to make about the design of the exercise tasks (generator). For example, in
Figs. 1, 2, and 3, we have not annotated names for associations, aggregations,
and compositions. UML does allow such annotations, and sometimes they – or
some other means of distinguishing links – are needed to properly decide about
conformance between CDs and ODs. As a simplistic example, consider the two
CDs on the left in Fig. 4 and assume we want to provide an OD that conforms
to the first CD, but not to the second CD. The OD on the left in Fig. 5 fits the
bill. But if we omit association names, see the right halves of Figs. 4 and 5, this
is not discernible anymore, because now the link between objects a and b could
be accidentally perceived as stemming from the association between A and C

Exercise Task Generation for UML, via Alloy Model Instance Finding 117

that B inherits in the second CD. The examples in Fig. 1 were carefully crafted
to ensure that no such confusion exists, or put differently, that students always
have a chance to puzzle out which association or aggregation a link corresponds
to, even in the absence of names. But for our task generator we have decided
to always provide those names, thus making the generated tasks more beginner
friendly in that respect.

Fig. 4. CD examples with and without association names.

Fig. 5. OD examples with and without association names.

On the other hand, we do omit other annotations on associations, aggrega-
tions, and compositions: namely role names and navigation or reading directions.
This also has an impact on the level of challenge the checking of conformance
poses. For example, if we present the CD shown on the left in Fig. 6, then stu-
dents are likely to be sceptical about conformance of an OD that has two y links
between the same two objects of type A, as in the middle of Fig. 6. After all,
even though A inherits from B and is thus allowed (since B is) to be linked with
A via y, the double linkage seems strange and at least subtly at odds with the
multiplicities written on the ends of y in the CD. If, however, we were to anno-
tate direction arrows on the associations in the CD, and then present the OD
also with direction arrows, as on the right in Fig. 6, then the situation would be
less surprising (since the revelation “the two y-links go in opposite directions”
makes things clearer), and thus possibly less of a challenge. The point here is,
even with names provided on associations, aggregations, and compositions, there
are still interesting bits to puzzle out by the learner.

We have made further decisions about the CDs and ODs to generate. For exam-
ple, we do not allow multiple inheritance and we impose structural constraints

118 V. Kafa et al.

Fig. 6. A somewhat surprising case of conformance.

(such as no two associations between the same pair of classes in a CD) that are
not mandated by the UML standard. These decisions are also driven by what
aspects we want the learning to focus on, by experience with hand-crafted exer-
cise tasks, and by trying to balance challenge and approachability of tasks. We
might revise them, or the decisions about providing association names and/or
other annotations, as we gain experience with automatically generated tasks. In
any case, even within the frame of the decisions as currently set, we have enough
means to produce tasks of varying difficulty, such as by parametrisation over the
numbers of classes, inheritances, associations, . . . , objects, links.

4 Background on Alloy Usage

It is important that the exercise tasks we will generate automatically, and present
to students without prior inspection of every instance by an instructor, are one
hundred percent semantically correct. If the e-learning system assesses that a
certain OD does, or does not, conform to a certain CD, then that should be
guaranteed. Simply programming a random generator for CD/OD pairs that
should serve as examples and counterexamples in an exercise task would risk
introducing errors, even under best effort to truly implement what the UML
standard implies. Moreover, using such a hand-written coupled generator, it
would probably be difficult to tailor generated tasks for special, possibly changing
needs, such as emphasis on certain model elements and diagram features. So
instead we decided to take a more declarative, and at the same time verifiable,
route. We build on the CD2Alloy work [8] that translates CDs to modules in
Alloy, a specification language based on mathematical sets and relations and
backed by SAT solving [6].

Compared to other translations from the UML domain to Alloy [1,9,12] (and
in reverse, to interpret models found by the SAT solver back into UML as object
diagrams), the CD2Alloy translation performs a deeper embedding of CD con-
cepts into the Alloy logic. That is, instead of rather directly mapping CD con-
cepts (classes, associations, . . .) to quite-similar-but-not-really-equivalent Alloy

Exercise Task Generation for UML, via Alloy Model Instance Finding 119

concepts (signatures, fields, . . .), the translation in some sense explicitly pro-
grams out the UML semantics as functions and logical predicates. That allows
more accurate representation, capture of more UML features, and very impor-
tantly, analysis over more than one CD at a time. In particular the last aspect
will be crucial for us here. The details of the embedding/translation are not of
superior importance for the current work, but to at least provide a flavour, Fig. 7
shows excerpts of the Alloy module obtained for the CD shown on the left in
Fig. 6. For example, the fun definitions essentially express that in any model the
set of objects of type A is exactly the set of objects directly belonging to A (since
A has no subclasses in the CD), while for example the set of objects of type B is
the union of the sets of objects of B, C, and A (due to the inheritance relation-
ships in the CD). And the lines involving ObjLUAttrib and ObjLU express the
multiplicities at the two ends of association y in the CD, using predicates whose
definitions are not shown in the excerpt. The translation rules are described in
a technical report [7]. For our purposes here we use a subset of them (due to
our restricted set of CD features used), and actually had to perform a few revi-
sions/adaptations (to more exactly express some desired constraints). But the
fundamental principles are as in the previous work.

. . .

one sig y extends FName {}

. . .

fun ASubsCD : set Obj {

A

}

fun BSubsCD : set Obj {

B + CSubsCD

}

fun CSubsCD : set Obj {

C + ASubsCD

}

. . .

ObjLUAttrib[ASubsCD , y, BSubsCD , 1, 1]

ObjLU[BSubsCD , y, ASubsCD , 0, 1]

. . .

Fig. 7. A glimpse of Alloy code for the CD from Fig. 6.

An Alloy module as in Fig. 7 (completed) can be given to the Alloy anal-
yser, which will try to find a model/instance, in a finite scope, and will return
any ones existing in a textual form. That textual form can be interpreted as

120 V. Kafa et al.

describing ODs. In fact the ODs in the middle and right (depending on whether
navigation directions are to be depicted or not) of Fig. 6 are thus obtained. An
Eclipse plug-in exists that implements this whole workflow, thus for example
allowing a software engineer to check whether a certain software design is mean-
ingfully populated at all (by letting ODs be created for inspection, from the CD
of a software system/component under development). Since our objective here
is different, we need a different workflow/approach (see next section), but the
CD2Alloy translation is a crucial ingredient.

It is worth pointing out that we are still using a hand-written random gen-
erator, but not for CD/OD pairs, just for CDs. That is, CDs are not generated
by the Alloy analyser from some meta model. Instead, we have programmed a
CD generator (see description in Sect. 6) that is driven by our didactic consid-
erations about which features to support, which structural constraints (beyond
those mandated by the UML standard) to adhere to, etc., see also relevant dis-
cussion in the previous section. That was a pragmatic decision and does not
incur the risk painted in the first paragraph of the current section, concerning
semantic correctness. After all, creating CDs essentially just means we need to
get the syntax right. The semantics will be covered (and verified!) via Alloy.

5 Approach to Counterexample Generation

Being able to provide positive instances of ODs for a given CD is nice, but only at
most half (actually much less) of what we need for our exercise task generation.
We also need to be able to provide negative instances, counterexamples. One
tempting approach, given the deep embedding of CD concepts into Alloy logic
that CD2Alloy performs and which allows first-class use of all of Alloy’s logic
expressivity on top, would be to simply make use of logical negation. That is,
given that the OD in Fig. 6 was obtained (along with many others) by calling
the Alloy analyser on the module from Fig. 7 with command:

run { cd } for 4 Obj

where cd is the name of a predicate that builds on all the things introduced by
the translation for the given CD (such as the fun ASubsCD definitions etc.), and
where the 4 stands for at most how many objects should be present in the OD, a
naive attempt at counterexample generation would be to instead call the Alloy
analyser on the same module but with command:

run { not cd } for 4 Obj

Unfortunately, the results are of questionable value. Fig. 8 shows the OD-style
rendition of the first of a multitude of instances found. That is indeed not an OD
conforming to the CD from Fig. 6, but it is utterly useless for an exercise task,
because it is off at first look. In fact, even if we were to somehow structurally
constrain or filter out instances that seem too far off from being worth showing
as solution candidates in an exercise task, for example by discarding everything

Exercise Task Generation for UML, via Alloy Model Instance Finding 121

with perceivedly too many parallel edges, we would not necessarily be better
served. Specifically, without additional precaution there lurks a potential deeper
problem here, because the predicate cd conceptually expresses:

“[what Alloy finds as model] is an OD instance of the given CD”

and the logical negation of that (in formal or in natural language) happens to
not be:

“is an OD that is not an instance of the given CD”

but instead simply:

“is not an OD instance of the given CD”

which actually means:

“is not an OD or is an OD that is not an instance of the given CD”.

So it is not ruled out up front that not cd might produce structures that are
not even proper ODs. We could dispel this concern by additional analysis, but
that does still not necessarily, generally give us instances that would serve as
useful counterexamples in an exercise task.

Fig. 8. Result of a naive attempt at counterexample generation.

Instead, we make use of a crucial advantage of the CD2Alloy translation/em-
bedding over competing approaches, namely its ability to perform analysis over
more than one CD at once. This ability was already briefly mentioned in the pre-
vious section and comes in handy now. The basic idea is that if we have a CD
and want to produce a counterexample OD for it, we could look for a structure
that is not just not an OD for that CD, but at the same time actually is an OD
for a CD similar to, but somewhat mutated from, the original CD. That way,
we can guarantee that we are not getting something wildly off, and we can even
control in some sense how much and which kind of conceptual distance there
will be between OD examples and counterexamples we present, by controlling
the degree and character of mutation applied on the CD level. For example,
if we want to emphasise/train the semantics of composition relationships, we
could take an original CD that contains a composition, produce a new CD via a

122 V. Kafa et al.

mutation that specifically affects this composition (moving one of its endpoints
to a different class, changing the multiplicity at one of its ends, or even turning
the composition into an aggregation or other relationship), and then look for an
OD that is an instance of the mutated CD, but not of the original CD. What we
will get is an OD that is a counterexample for the original CD, and is so not by
having nothing to do with that original CD at all, but instead more targetedly by
something having to do with the composition relationship we touched. Of course,
we would not tell the students that touching this composition relationship in the
way we did is what happened in the background, in order to not disclose too
much about what they should actually discover in the example/counterexample.

So our approach in its simplest form can be described as follows. We have a
CD (randomly generated), and translate it into an Alloy module. The relevant
all-encompassing predicate resulting from that could be called cd1.1 We mutate
the original CD to a similar one, and put that one through the CD2Alloy trans-
lation as well, resulting in an overall predicate cd2. By combining Alloy modules
appropriately (there is some overlap between modules due to common defini-
tions, so combining does not simply mean concatenating), we obtain a single
one for which we can call verification commands like:

run { (not cd1) and cd2 }

or:

run { cd1 and (not cd2) }

Instances found by the former call correspond to relevant OD counterexamples
for the original CD, as outlined in the previous paragraph. And instances found
by the second call can also be used: as interesting positive examples for the
original CD, or of course as counterexamples for the mutated CD, or indeed as
part of cross check exercise tasks like the one in Fig. 1.

The approach as described above is sketched in Fig. 9. Actually, we use a
more elaborate strategy, to be discussed in the next section. Here, let us just
note that it is not hard to imagine that the combination approach generalises
well to more than two CDs, so that we can consider instances that have certain
positive or negative inhabitation properties regarding three or more CDs. That
will be used to create more interesting exercise tasks.

As a side note, an alternative approach could conceivably have consisted of
not mutating a CD, for which one or more conforming ODs are already given
and counterexample ODs are still being sought, but instead performing mutation
on the OD level, that is, turning a conforming OD into a counterexample OD
by deleting a link or similar changes. However, we would then still have to
check whether the obtained OD has all the desired characteristics relative to the
given CD(s). After all, deleting a link may or may not turn an example into a

1 That involves variants of the stuff shown and elided in Fig. 7, e.g., definitions fun
ASubsCD1 etc., while for the predicate cd2 considered in a moment, separate variants
fun ASubsCD2 etc. would be produced.

Exercise Task Generation for UML, via Alloy Model Instance Finding 123

counterexample. So after applying OD mutations we would have to separately
establish that what we got is an OD that conforms to the CD(s) we want it
to conform to and does not conform to the CD(s) we want it to not conform
to. And if it turned out that we did not get what we wanted, we would have
to try some other changes. Instead of such a search-and-check procedure, our
declarative approach (expressing the desired characteristics in Alloy verification
commands) is more targeted and directly gives us appropriate ODs, if they exist.

Fig. 9. Sketch of the approach in its simplest form.

124 V. Kafa et al.

6 Strategy and Implementation

As already mentioned, we are using a hand-written random generator for CD
syntax without attributes or methods. The generation is parameterised by a
configuration comprised of a minimum and maximum number each for classes,
inheritance relationships, associations, aggregations, and compositions. The de-
fault configuration is: exactly four classes, between one and two inheritances, at
most two associations, at most two aggregations, and at most one composition.
The multiplicities used in the CD are drawn from a small set of choices: the de-
fault multiplicities and some special cases like 0..1, 0..2, 1..∗, but not arbitrary
n..m. We do not create CDs with multiple inheritance (one class having two
outgoing inheritance arrows) and impose some additional structural constraints:

– Classes have no self-relationships of any kind. That is, a class cannot inherit
from itself, cannot have an association relationship to itself, etc. Note that
this does not mean that objects cannot have self-links, in fact we will see the
opposite at the end of this section.

– There is at most one relationship between the same pair of classes.
– There are no inheritance cycles and no directed composition cycles.

Some of these are actually already imposed by the UML standard, which we
adhere to anyway and also beyond what is listed above.

When it comes to mutating a CD to another one, we randomly choose from
the following operations (while preserving all constraints mentioned above):

– adding a new relationship between any two classes,
– removing an existing relationship,
– flipping the direction of an existing inheritance, aggregation, or composition

relationship,
– exchanging an existing relationship with another relationship, e.g., turning

an inheritance into an aggregation,
– changing an existing multiplicity by increasing, decreasing, or shifting its

range.

Note that some of these have the character that a CD2 obtained from a CD1
can only ever have more (or only ever have fewer) OD instances than originally.
In such cases, simply using run {cd1 and not cd2} and run {cd2 and not
cd1} as sketched in Fig. 9 would not result in interesting exercise tasks, since at
most one of these commands would actually produce instances. Possibilities to
counter this include to perform more than one mutation and/or to involve more
than two CDs. Another reason to involve at least a third CD is that we would
also like to present ODs in an exercise task that do not conform to either of
two given CDs.2 But simply calling run {not cd1 and not cd2} is not a good
idea, due to the same issues that led to Fig. 8. So a third predicate cd3 should

2 For example, can you spot which of the five ODs in Fig. 1 do not conform to either
of the two CDs given there?

Exercise Task Generation for UML, via Alloy Model Instance Finding 125

be involved, for yet another mutated CD. Actually, our exercise task generation
strategy uses overall four CDs, and is described next.

We step through an explanation of our generation strategy in the remainder
of this section, along with a concrete example. First of all, we create a random
CD, see CD0 in Fig. 10. In this case, it so happens that CD0 does not contain
any non-inheritance relationship. That limits which mutations are applicable in
the next step here, since for example there are no multiplicities to change, but
in general the next step chooses, twice, from the whole assortment of mutations
listed above. We mutate CD0 into CD1, and CD0 into CD2, see again in Fig. 10.
In this case, CD1 was obtained by adding an association, and CD2 by adding an
aggregation elsewhere. The thick edge in CD1 will be explained in a short while;
to students it will be shown as normal edge. In general, we now have CD1 and
CD2 that are one or two mutations apart from each other.3 We only continue if
at least one of them contains a non-inheritance relationship; otherwise we start
over with generating a new CD0. The motivation is that CD1 and CD2 will be
the CDs included in the exercise task, and having them contain only inheritance
relationships would not give interesting tasks. Next we mutate CD0 yet again,
into CD3, see Fig. 10. This time, an inheritance was turned into an aggregation.

Now, Alloy is asked to find instances for all combinations of CD1/CD2 satis-
fied positively/negatively, with CD3 involved as a “safeguard” in the otherwise
all negative case:

– cd1 and not cd2
– cd2 and not cd1
– cd1 and cd2
– not cd1 and not cd2 and cd3

The search is limited by a maximum number of objects allowed, our default being
four (see earlier remarks on configurability). In addition, structural constraints
on the ODs are possible. At the moment, we use the following Alloy code:

fact LimitIsolatedObjects {
#Obj > mul[2, #{o : Obj | no o.get and no get.o}]

}

to prevent generation of instances in which half or more of the objects are not
linked to other objects.

In the concrete example, the numbers of OD instances found for the calls
listed above are: 23, 9, 0, 5. So here there exists no OD (within the search
constraints) that is an instance of both CD1 and CD2. From all the ODs we now
randomly choose five, while ensuring that not more than two are taken from the
same “bucket”, i.e., not three or more ODs that satisfy cd1 and not cd2, etc.

3 By happenstance, they could also be identical, but that would be detected and
rejected in a later step.

126 V. Kafa et al.

CD0 CD1 CD2 CD3

Fig. 10. CDs created in the concrete example.

If that is not possible, we start over with generating a new CD0.4 Fig. 11 shows
the five ODs obtained in our example run of the generator, each annotated with
the bucket it came from.

We have implemented the strategy explained above, along with visualisa-
tion etc., and made it available through integration into an instance of the Au-
totool [13] e-learning system at https://autotool.fmi.iw.uni-due.de/alloy-cd-od.
What is shown to students for each task are CD1 and CD2 (but thick edges
turned normal) and OD1–OD5, of course without the bucket annotations. Imme-
diate feedback is provided on student answers by checking them against what
the system knows about the origin (buckets) of the presented ODs. Seeds for the
random task generator would be derived from student identification numbers in
an actual course.

What remains to be done here in the paper is to explain the role of thick
edges in CDs. These are associations, aggregations, or compositions that inter-
act in a somewhat subtle way with inheritance. For example, the thick asso-
ciation in CD1 in Fig. 10 will be inherited at one end from B to D to C,
with the consequence that C objects can have links to themselves (see OD3 in
Fig. 11). Ultimately, the “puzzle” concerning Fig. 6 in Sect. 3 was also caused by a
“thick edge” (though it was not depicted thick there). So treatment of these
specific constellations of relationships in CDs is one way of making exercise
tasks less or more challenging. We currently permit them for CD0, for at most
one of CD1 and CD2, but not for CD3. We do not disclose their presence or

4 This is also the step where we would reject the case that CD1 and CD2 happened
to be identical. For if they were, then the first two buckets, cd1 and not cd2 as
well as cd2 and not cd1, would be empty, and it would be impossible to choose
five ODs from the remaining two buckets while not taking more than two from one
bucket.

https://autotool.fmi.iw.uni-due.de/alloy-cd-od

Exercise Task Generation for UML, via Alloy Model Instance Finding 127

OD1: ¬CD1, ¬CD2 OD2: ¬CD1, CD2 OD3: CD1, ¬CD2

OD4: ¬CD1, ¬CD2 OD5: ¬CD1, CD2

Fig. 11. Randomly chosen ODs in the concrete example run.

absence (showing everything as normal lines instead) to students, just as we do
not disclose CD0, CD3, or which mutations have been made between CDs.

7 Related and Future Work

We have already mentioned existing translations from the UML domain to Al-
loy [1,7–9,12] throughout the paper. Instead of generating ODs using Alloy,
instances for a given CD may also be found using an instance generating graph
grammar [3]. To do so, the meta model in that context would require essentially
two extensions. First, analogously to the customisation of CD2Alloy, support for
mutations of CDs would be additionally needed. Second, constraints would have
to be put in place to ensure that the ODs generated as instances are (or are not)
instances of certain mutated variants.

Besides empirically evaluating our own exercise task generation via use with
student cohorts, it would be interesting to further investigate ways of tailoring
tasks to specific teaching goals. We have already discussed some possibilities,
such as in the last paragraph of the previous section. We could also provide even
more control to instructors for variability of tasks, for example not just letting
them configure the numbers of classes, relationships etc., but also which CD
mutations should be employed in a certain setup (thus allowing generation of

128 V. Kafa et al.

tasks focusing on a specific CD/OD concept, or in which we can actually ask
students for the reasons a certain OD does not conform to a certain CD), or
allowing a larger mutation distance between the CDs used in a task. Extending
the approach in order to go beyond structural aspects of CDs and ODs, for
example by including attribute fields and methods, would be feasible since the
CD2Alloy translation already supports these features. Of course, we would have
to use didactic considerations, such as which kinds of bad examples related to
attributes and methods we want to handle, for devising appropriate mutations
to employ. On a more technical level, future changes could see us using Alloy for
generation of CDs (under a range of structural and possibly other constraints)
as well. And in a departure from our current use of completely artificial class and
object names, we could aim for generating tasks with more meaningful names,
also for attributes etc., instead.

References

1. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transfor-
mation from UML to Alloy. Softw. Syst. Model. 9(1), 69–86 (2010)

2. Booch, G.: The Unified Modeling Language User Guide. Pearson Education India
(2005)

3. Ehrig, K., Küster, J.M., Taentzer, G.: Generating instance models from meta mod-
els. Softw. Syst. Model. 8(4), 479–500 (2009)

4. Fowler, M.: UML Distilled: A Brief Guide to the Standard Object Modeling Lan-
guage. Addison-Wesley Professional, Reading (2004)

5. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. (TOSEM) 11(2), 256–290 (2002)

6. Jackson, D.: Software Abstractions – Logic, Language, and Analysis, Revised edn.
MIT Press, Cambridge (2011)

7. Kautz, O., Maoz, S., Ringert, J.O., Rumpe, B.: CD2Alloy: a translation of class
diagrams to Alloy. Technical report AIB-2017-06, RWTH Aachen University (2017)

8. Maoz, S., Ringert, J.O., Rumpe, B.: CD2Alloy: class diagrams analysis using Alloy
revisited. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol.
6981, pp. 592–607. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24485-8 44

9. Massoni, T., Gheyi, R., Borba, P.: A UML class diagram analyzer. In: Proceedings
of Workshop on Critical Systems Development with UML, pp. 143–153 (2004)

10. Object Management Group: Unified Modeling Language (OMG UML), Version
2.5.1, December 2017

11. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual. Pearson Higher Education (2004)

12. Shah, S.M.A., Anastasakis, K., Bordbar, B.: From UML to Alloy and back again.
In: Ghosh, S. (ed.) MODELS 2009. LNCS, vol. 6002, pp. 158–171. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12261-3 16

13. Waldmann, J.: Generating and grading exercises on algorithms and data structures
automatically. In: Proceedings of Automatische Bewertung von Programmierauf-
gaben. CEUR Workshop Proceedings, vol. 2015. CEUR-WS.org (2017)

https://doi.org/10.1007/978-3-642-24485-8_44
https://doi.org/10.1007/978-3-642-24485-8_44
https://doi.org/10.1007/978-3-642-12261-3_16

Education of Post-Graduate
Research-Students

A Connectivist View of a Research
Methodology Semantic Wiki

Colin Pilkington1(B) and Laurette Pretorius2

1 Department of Computer Science, University of South Africa,
Florida Park, Roodepoort, South Africa

pilkicl@unisa.ac.za
2 College of Graduate Studies, University of South Africa,

Muckleneuk, Pretoria, South Africa
laurette@acm.org

Abstract. The use of virtual learning spaces for learning and teaching
needs to be underpinned by a pedagogy that provides a basis for the
approach used. Connectivism takes a networked view of knowledge; its
characteristics and understanding of learning were investigated. Here,
the structure and development of a research methodology semantic wiki
are described, including how the contents of the wiki allowed for the
exploration of the structures of various research methodologies. Positive
evaluation of the wiki was obtained from our research students.

Keywords: Connectivism · Semantic wiki · Research methodology ·
Distance education · Post-graduate students · Online learning

1 Introduction

Virtual learning spaces must be implemented w.r.t. a pedagogy that informs the
use of such online approaches [18]. While it has been argued that there is no
single learning theory that can be used to understand online learning [30], it
has been suggested that current learning environment development is driven by
technological advances rather than a considered pedagogy [10]. Thus, the drive
to use alternative, often online, approaches to face-to-face modes of delivery
of learning and teaching [9] needs to be achieved within a framework that is
pedagogically sound. This would be true, too, of the research education that
accompanies postgraduate research supervision.

Understanding research methodology is fundamental to good research and
developing competent researchers [8]. However, the research methodology
domain is widely believed to be difficult to learn in that it is both conceptually
complex and technical [28], leading to students having difficulty dealing with the
diversity of conceptions of the domain, with little consistent understanding of
the constructs involved. There is “a lack of shared language describing impor-
tant foundational concepts of research methodology” [8] (p. 230). Students are

c© Springer Nature Switzerland AG 2020
B. Tait et al. (Eds.): SACLA 2019, CCIS 1136, pp. 131–146, 2020.
https://doi.org/10.1007/978-3-030-35629-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35629-3_9&domain=pdf
http://orcid.org/0000-0001-6996-0841
http://orcid.org/0000-0003-3341-4675
https://doi.org/10.1007/978-3-030-35629-3_9

132 C. Pilkington and L. Pretorius

frequently concerned about the difficulties associated with research methodol-
ogy and typically bring misconceptions about the domain into their studies [14],
leading to calls for clearer and more concrete distinctions to be made between
the various constructs that make up a research methodology, as well as an under-
standing of the relationships between them [32]. Blended approaches that extend
research education to online tools are being used to support this learning [14,19].

Advances in technology have led to alternative forms of presenting research
methodology education, including web-based approaches [17]. It has also been
noted that the growth in participatory technologies and Web 2.0, in which much
of current social media is situated, has altered the environment in which inter-
action is enabled, information is accessed, and knowledge is created, allowing
anyone to connect and share with others in the creation (and publishing) of
this knowledge [15]. Online environments used for teaching and learning pur-
poses have moved past institutional learning management systems to virtual
communities of practice [21], where little is done in isolation, and are charac-
terised by more social and collaborative models of learning [18]. Here, students
are immersed in situated networks of social relationships of learning and shared
practice with supervisors, other academics, and peers [11,30]. However, such vir-
tual communities are still in their beginning phases, and the role that Web 2.0
technologies play in these virtual learning communities still needs to be explored
further [21].

The Semantic Web is one area where knowledge representation and integra-
tion with e-learning can have an impact on higher education [29]. Semantic web
technologies support linking data using semantics, which help provide meaning
to the link, and so supersede the basic linking that Web 2.0 provides [33]. Com-
bining semantic web technologies with learning theory and teaching and learning
practice is producing interesting results, although it is still at an early stage of
exploration [29]. Interestingly, the Semantic Web is not yet recognised by the
NMC Horizon Report [3] as one of the enabling technologies that will transform
what can be expected of online tools in higher education.

Recognising the role that the Semantic Web can play in knowledge repre-
sentation, and the necessity for researchers to master research methodologies,
the question explored here is to appreciate to what extent a learning framework
provided by connectivism can be used to understand the use of the affordances
provided by semantic technologies in the learning of research methodology struc-
ture by postgraduate students.

The remainder of this paper is organised as follows. An understanding of
connectivism as a learning model will be presented next, followed by the descrip-
tion of a semantic wiki employed to explore research methodology structure. The
connections between the two, showing how a semantic wiki can be seen as an
implementation of connectivist approaches to learning, will be discussed. Finally,
some conclusions will be drawn.

Research Methodology Semantic Wiki 133

2 Related Work

The learning environment has changed in the last 15 years [7], and knowledge is
no longer seen as immutable (something that can be learnt once and is known
or mastered forever), but is now seen as the ability to find and create knowledge
rather than simply consume it [15]. Knowledge and learner management solu-
tions have often failed as a result of the heavy dependence on content and/or
technology [6], whereas a connectivist approach leads to a shift away from know-
ing what to knowing how or who and even where [31]. Connectivism recognises
that the ways in which knowledge flows have changed substantially as a result
of the data communication networks that have become available [30].

2.1 Connectivism

There has been a move from more behaviourist and cognitivist theories of learn-
ing [7], through constructivist and social constructivist theories, to Siemens’s
connectivist theory of learning [15,31,35]. It is an approach that is not built on
past learning theories [2], although connectivism was influenced by social con-
structivism and the growth of technologies that allowed online participation and
collaboration [15]; it may be characterised as networked social learning [13]. It
must be noted that there is some disagreement about whether connectivism is
a theory of learning, or a pedagogy and model of learning [2,13]. However, here
connectivism will be used as a conceptual framework in which to understand a
semantic wiki approach, as it is believed that it is a valuable contribution to the
ideas of learning within a technologically connected (and networked) world [13].

Connectivism considers knowledge to have a distributed structure [11]; that is,
knowledge can be seen as a network with nodes, with a node being any object that
can be connected into a network of some sort [2], and the most effective and reli-
able way of accessing knowledge is via these networks [12,33]. These nodes can be
understood at different levels, from the lowest (the neural network in the brain), to
the conceptual or internal (the thoughts and ideas that humans use to interpret the
world), to the external (which can be made up of a range of node types and infor-
mation sources, including people, books, websites, programs, and databases) [1].

These nodes are then linked by interactive relationships, where this link may
have direction, may have an inverse link, and may even connect back to the node
itself [2]. Concepts then grow by connecting to other concepts [2], where a group
of connections seen as a whole is known as a pattern [1] that holds meaning. This
pattern may itself be considered a node, so that a node may contain a network
of its own, where the node is made up additional nodes [2]. Connectivism holds
that such composite, pattern nodes are greater than the sum of their constituent
parts [2]. Although knowledge is conceived of as having structure, this structure
is not necessarily well organised, is complex, may be chaotic, and does not have
layers or a hierarchy; furthermore, the relationships between nodes can be active
or inactive [1]. This implies that, as concepts connect to other concepts, the
link strength may vary from person to person, leading to different ideas, and
meaning, in knowledge networks [2].

134 C. Pilkington and L. Pretorius

The role of technology is emphasised differently by various authors [1],
although it has been argued that it can play a role both as actor (such as an
artificial intelligence agent on the Semantic Web) and connector (the Internet
itself) [2]. Certainly these digital information and communication technologies
allow students to follow links in the process of exploring new information [33],
whereby the connector allows node relationships to current information to be
built more easily [2].

2.2 Connectivist Learning

According to [12] (p. 8), “knowledge is embedded in the mesh of connections, such
that, through interaction with the network, the learner can acquire the knowl-
edge”. Learning is thus a process of network formation and pattern recognition
and acquisition, distributed across a social network of connections [20], and what
students can reach in the knowledge network while exploring, and finding pat-
terns, is considered learning [2]. Also, better connections lead to better flow of
information [1]. Learning is, therefore, not acquired (and one cannot rely solely
on what an individual knows to make good decisions). Rather, knowledge is
“knowledge of the interaction” [11] (p. 78) between entities, and learning is the
ability to access and navigate these knowledge networks, seeing and building
connections between concepts and finding and evaluating information [33]—i.e.:
learning as “actionable knowledge” [31] (p. 4). Connectivist approaches, which
focus on connections rather than frequently changing current content, allow thus
for rapid changes in both learning context and content [33]. “The pipe is more
important than the content within the pipe” [31] (p. 5), and knowing where
to find updated information is more valuable than remembering its current
state [33]. Additionally, in this approach, the student becomes a member of
a learning network and is a node, too, that can connect with other students or
nodes [1]. This leads to collaborative approaches to learning.

According to [31] connectivism also has implications for the design of learn-
ing environments; and instead of a content push design, there needs to be an
acknowledgement of the contribution connectivism makes to learning theory—
hence the need for new models that reflect this approach to learning and knowl-
edge [6]. Concepts should be seen as forming a network rather than simply being
linear [13].

However, connective knowledge is “no magic pill, no simple route to relia-
bility” [11] (p. 100). It remains one approach to knowledge that can be used to
examine learning and teaching practice. Furthermore, connectivism is not with-
out its critics [1,35]. The argument is that, with the focus on what constitutes
learning in a connected world, there is no clear account of how connections are
made and how learning is achieved. Additionally, it is not really anything new,
and current theories (behaviourism, cognitivism, and constructivism) [7] are suf-
ficient to deal with technology in learning. There are also concerns that it is not
testable and that it underplays human interaction.

Research Methodology Semantic Wiki 135

2.3 Research Methodology Education

A focus on research methodology education is more than simply a matter of
providing a postgraduate student with online resources, and it can be anchored
in a theory of learning that takes cognisance of the networked, and continuous,
nature of learning [15]. This pedagogy can focus on a learning community where,
through collective, diverse contributions, connections, and reflection, there is the
negotiation of a collective understanding and meaning [15]. With the exploding
nature of the access to information, including research articles, it would seem
that this model of learning is capable of expressing how postgraduate students
gain knowledge about research methodologies. Also, a virtual learning environ-
ment should be a tool to help build interconnections between research method-
ology constructs, allowing the research student an opportunity to make connec-
tions between pieces of information and extending these to further maintain and
build his/her networked knowledge. Additionally, the Semantic Web and seman-
tic computing tools could conceivably make this networked knowledge machine
processable, leading to dynamic knowledge representations and automated rea-
soning about such representations, with a positive effect on further networking of
knowledge and increased learning. Considered w.r.t. the eight principles of con-
nectivism [31], learning about research methodologies is centred on the process
of connecting research methodology conceptual nodes using appropriate rela-
tionships, including the learning that may be found in a Semantic Web environ-
ment, and cultivating these connections to ensure continued learning. Not only
is the ability to see the connections between the various concepts and relations
embedded in research methodologies a core skill, but learning and knowledge
in such an environment rely on the variety of views and opinions contained in
the domain and the decision-making that is required when choosing which con-
nections to hold on to w.r.t. current knowledge. Ultimately the emphasis is on
the capacity to not only know more, but to also have access to accurate and
up-to-date knowledge. However, while research methodology courseware can be
delivered online at least as successfully as more traditional approaches, with sim-
ilar student performance [5,17], there is appreciable variation in experience [25].
Although online participation has been linked to wider opportunities for growth
and higher assessment marks, it may not be the preferred approach chosen by
some students [5,25].

3 A Semantic Wiki for Research Methodology

A semantic wiki is a merging of the benefits of social software (such as a tradi-
tional wiki) with the Semantic Web [27]. It allows for the creation of semanti-
cally enriched, formalised domain content that supports collaborative knowledge
production and presentation [34]. Web pages are then at least partially machine
processable after being tagged with a concept or property name, and queries can
also be achieved using the query language of the Semantic Web, SPARQL [16]. A
number of semantic wikis were developed after the initial wiki in 2004, with much
of the effort happening around 2005 and 2006 [4]. Semantic MediaWiki (SMW),

136 C. Pilkington and L. Pretorius

Fig. 1. UML class diagram of our conceptual model

the wiki used for the research methodology wiki, is an open-source extension of
MediaWiki [34], which is the engine used to create the well-known Wikipedia,
and is considered the most popular semantic wiki engine [34].

3.1 Our Semantic Wiki

Developing our semantic wiki required an ontology of the domain, which, in turn,
required a conceptual model. An ontology engineering process was applied to
develop such a conceptual model of research methodology structure, followed by
an ontology built in Protégé, which was then implemented in SMW.1 In our app-
roach, a research scheme is a container for the components that make up a research
methodology (Fig. 1). It consists of a ‘philosophical world view’ that underpins
the research, a ‘research design’ that provides the structure of the research, and
‘research methods’ that are used in a research design to gather data.

Our main landing page describes the overall structure of a research method-
ology as well as indicating how the wiki could be used. Other pages describe how
to explore the semantics of the wiki, make comparisons between this research
methodology structure and others that have been proposed, and indicate how to
edit existing pages, add citations, and create new content. A graph view provides
functionality to explore research schemes graphically and a link to a special page
that allows users to explore any of the categories in the wiki. A ‘breadcrumbs’
feature was added to provide links to the last five pages visited. The text on each
page would be the main content of the wiki, with an associated Discussion page
allowing the content, and the justifications for or against it, to be separated.
This supports collaborative work, as it enables users to present the main ideas
concisely, while, at the same time, using an accompanying page to discuss and
argue about the rationale for the content.

1 http://eagle.unisa.ac.za/mediawiki/index.php/Semantic Web and Research
Methodology.

http://eagle.unisa.ac.za/mediawiki/index.php/Semantic_Web_and_Research_Methodology
http://eagle.unisa.ac.za/mediawiki/index.php/Semantic_Web_and_Research_Methodology

Research Methodology Semantic Wiki 137

Fig. 2. (a) An example of an SMW Category page, (b) An example of an SMW fact
box, (c) The SMW Browse wiki view

Categories and Properties. Most pages belong to some ontological entity,
having different namespaces to differentiate between, and classify, the entity
types [34]. The main and data type classes are represented as Category pages,
where data type classes are used for entity attributes. All properties (both object
properties that point to other entities/objects and data properties that imple-
ment entity attributes) are represented as Property pages, where the target is
the value of property [34]. Thus:

– the ResearchDesign class is realised as the Category:Research Design page;
– the ResearchApproachType attribute of a ResearchDesign is realised as a Cat-
egory:Research Approach page;

– the hasResearchMethod object property of a ResearchDesign is realised as a
Property:Has research method page; and

– the hasResearchApproach data property is realised as a Property:Has research
approach page.

Category and Property pages were populated with basic data describing the
entity/property, ensuring that users use them consistently [34]. Even though a
Property: is represented by a page, it is used to create typed linking from one
page to another page or data value. Each individual (or instance) in the ontology
is also implemented as a separate, normal page. Thus, the Pragmatism individual
of a Category:Philosophical World View has a page of its own and would contain
all the attributes of a Category:Philosophical World View as well as a description
of the world view. Where the individual is of a class that is lower in the class
hierarchy, such as an instance of a case study, it would contain all the attributes
of the superclasses, that is, of Category:Research Design, Category:Empirical
Research Design, and Category:Case Study Research Design, as well as some
extra detail pertaining to that particular case study individual.

138 C. Pilkington and L. Pretorius

Annotations and Browsing the Wiki. Annotations are used to make seman-
tic statements about entities in SMW. Even though individuals, categories, and
properties are realised as separate pages, the annotations refer to the concept
discussed on the page rather than the actual web page itself [24]. These anno-
tations are added to the wikitext using a simplified markup format [34], mak-
ing page semantics machine readable. For example, adding an annotation on
a normal article page declares that page to be an instance of the specific con-
cept. These annotations are used for the instances (or article pages) of specific
research schemes, philosophical world views, research designs, research methods,
and data types used as entity attributes. When such an annotation is added to
a Category page, it declares it to be a sub-class of the given category; these
annotations were used to set up the inheritance hierarchy for research designs
and research methods.

The result of such annotation is that when a Category page is displayed
(Fig. 2a), the subcategories of that page (point 1), the article pages of that cate-
gory type (point 2), and the page category type (point 3) are displayed dynami-
cally. A further advantage of such semantic annotation is that it allows intelligent
browsing of the wiki [34]. Semantic information is dynamically displayed at the
bottom of each ordinary article page (Fig. 2b): a Categories box indicates what
kind of page this is, where the whole category-subcategory hierarchy is shown
(point 4). A fact box displays all the annotations on the page in a linked format,
allowing a user to click on a property link (on the left) to visit that property’s
page (and see other individuals where this property is used) or to click on the
property’s value (on the right) if the value is represented by another article page
(point 5). A user can also access an inverse link search by clicking on the eye
symbol to the right of the page name in the fact box. This takes the user to the
Browse wiki page view (Fig. 2c), which shows the links that point to the current
page (point 6). It is thus possible to follow this link back to the specific page
that points to the current page or to click on the property link that was used to
link the two pages. This Browse wiki page can be accessed from any link on any
page.

Queries. SMW has an easy-to-use inline query engine that allows a query to
be included on a page, which then provides updated, dynamic results when the
page is accessed. For example, the query (#ask:[[Has case study design::
SUBJECTPAGENAME]]) can be used to display all pages that have the property
Has case study design that point to the current page.

Wiki Individuals. To test the functionality of the wiki and to provide content,
research articles were read, manually extracting the research methodology struc-
ture used, and added as instances or individuals of Category:Research Schemes.
The provision of attribute data is not required to allow for cases where reported
research might not have mentioned the attributes that have been included in the
conceptual model on which the wiki was structured.

Research Methodology Semantic Wiki 139

3.2 Students’ Evaluation

With permission by our university, a link to the wiki was sent to all 316 students
registered for an ‘honours’ research report module,2 and they were later sent a
link to the questionnaire. This was a non-probabilistic, self-selected survey, and
the results may not be representative of the entire research student population.
Fifty-nine responses were received, yielding a response rate of 19%.

Demographic and Background Information. The respondents were mainly
males in their 30s (40%), followed by females in their 30s (26%). Of these, 98%
considered their Internet expertise level as good or expert, with 95% using online
communication regularly. In total, 96% indicated a strong enjoyment of online
tools, although only 53% used social networks often; 86% had used a wiki 10 or
more times; and 78% had never contributed to one.

Using the Wiki. Table 1 summarises our students’ responses to the wiki; per-
centages may not add up to 100% due to some non-responses. Our students found
the wiki easy to navigate and indicated that it provided valuable information
and helped them to understand research methodology structure. However, 81%
of the students did not contribute to the wiki, mostly indicating that they did
not have enough knowledge (38%), did not think it was necessary (23%), or had
no time (21%). Of those who did contribute, 23% were very confident of their
contributions, and 62% were sure about them; 67% found it easy to contribute,
while 25% noted that it became easier as they progressed. Overall, 43% enjoyed
using the wiki, 72% found it useful, and 50% indicated that it made them think
and that they would use it again. Only 36% would recommend it.

Table 1. Student responses to our semantic wiki, on a Likert scale with (5) = strongly
agree, (4) = agree, (3) = not sure, (2) = disagree, (1) = strongly disagree

Statement (5) (4) (3) (2) (1)

The wiki was easy to navigate 45% 45% 3% 0% 0%

I could understand the research methodology structure 26% 59% 9% 2% 0%

The wiki provided valuable information 41% 55% 3% 0% 0%

Themes. Seven themes were identified in the textual responses given by par-
ticipants. Many found it useful : as the most comprehensive, easy-to-understand
structure they had ever seen on this topic. However, some noted that more was
required, as it would not be enough to ensure effective learning; a ‘question and
answer’ functionality ought to be included. Some students also wanted more of
an overview, like a high-level road-map, or a stepwise presentation which would
be easier to follow. Also more resources were asked for, such as links to research

2 The South African ‘honours’ degree is an extension to our ‘short’ bachelor degree,
approximately comparable to the final study-year of the (longer) US-American bach-
elor degree. It is typically a prerequisite for starting a master project in South Africa.

140 C. Pilkington and L. Pretorius

methodology papers or referencing software. In several cases the instances of
research schemes were either not found or too few, which lead to requests for
more intuitive examples of each methodology. Finally, there might be some lack
of confidence on the part of students to add content, as they were not always
sure whether their own contributions were correct.

4 Discussion

Some students clearly found value in the semantic wiki, and connectivism can
be employed as a theoretical framework from which to explore the source of this
value of an applied semantic approach to teaching and learning the structure of
research methodologies. It has previously been noted that semantic web tech-
nologies and ontologies, which can be used to set up the formal specifications of
concepts and relationships, are able to operationalise the principles of connec-
tivism [33]. While it has been noted that Wikipedia can be seen as an instance
of connectivist knowledge [11], the extent to which the research methodology
semantic wiki can be understood to be a valid approach to presenting domain
knowledge will be discussed here. It is noteworthy that connectivism has been
used before as an argument to support the ongoing learning that occurs in a
knowledge-based engineering environment [20].

4.1 Nodal Structure

The conceptual model of the research methodology structure used in the wiki has
a definite hierarchical structure with typed links between the four main entities:

1. the research scheme as a container for
2. a philosophical world view and
3. a research design, where each research design contains
4. appropriate research methods.

Included in this structure are links to object attributes for the types of designs
and methods. This structure fits well with the connectivist concept of knowledge
as structured [2]. Furthermore, it supports the idea that knowledge of research
methodologies can be conceptualised as a network that is not just a flat, linear
set of entities [13], but that the links/connections between the entities carry
semantics and meaning. The semantic wiki provides the connections between
concepts, providing a pattern to be discovered.

This structure can also be interpreted as nodes (Fig. 3; text in italics will
refer to the specific detail in this figure). The whole site may be seen as a
node to which a knowledge network can link as a place to find information
about the structure of a research methodology. One level of granularity lower,
a whole research scheme may be seen as a node; these nodes can be taken as
instances of research reports that have been published in journals and conference
proceedings and are, in a sense, self-contained. The research scheme concept
grows by connection to other concepts [2] like ‘ethical clearance’, philosophical

Research Methodology Semantic Wiki 141

Fig. 3. Zooming into a research scheme node

world views, and research designs. A research scheme can also be interpreted as
a ‘pattern’, which is a set of connections tied together as one whole [2], whereby
the meaning about the roles of the included parts is encapsulated in this pattern.

Continuing into the structure, it is possible to zoom into one of the research
scheme nodes to find the sub-nodes contained within it and to explore how these
are structured: it contains a link to a world view (Pragmatism), some indication
of an ethical clearance, and a link to a research design (Design science research).
Zoom into the design node to find an approach type (Hybrid approach) and other
nodes specific to the type of design being used (Context, Artefacts), as well as
a link to a research method (Focus group). Zoom into that node to find nodes
that give detail about the specific method that was used (Low level of control,
Five participants, Thematic analysis, Face-to-face). Additionally, following a link
from one of the properties (such as the hybrid approach in the design science
research node) will take the student to other types of approaches that could have
been used.

Any technology-enhanced environment, such as a semantic wiki, that is to
support a connectivist approach to learning needs to structure or organise knowl-
edge and handle the connections, so that information is discoverable [33]. A
semantic wiki is also able to handle the dynamic nature of growing knowledge
through the queries that can be placed on pages. Thus, as new instances (with
their associated links) are added to the structure, these will show up automati-
cally on the appropriate pages. This, again, emphasises a connectivist model of
knowledge, its changing nature, and the importance of knowing where to find
the most current information.

142 C. Pilkington and L. Pretorius

Furthermore, it has been argued that nodes have ‘autonomy’ to such an
extent that concepts can accept or reject connections to other nodes largely as
a result of the connections that are already linked to concepts. This leads to
differences of opinion and reasoning [2]. Thus, although the structure (nodes
and links) is provided by the semantic wiki, the content of a node, and strength
and status of a link (active or inactive), in the mind of the explorer of the wiki
are not always the same for all individuals. Hence there will be different ideas
about the value of the wiki. Thus, some supervisors or students may find the
structure useful—others not.

4.2 Learning

Semantic wikis can be seen to facilitate learning when viewed from a connec-
tivist model of learning. When presented in a semantic wiki, a research student
is able to follow typed links, promoting a connectivist approach to learning [33],
as the student explores the networked knowledge about research methodologies
present in the semantic wiki. A student is able to see the interconnectedness of
the concepts by following the links to more information and can so build paths
of knowledge through the chaotic maze of terminology that characterises the
domain. Furthermore, the connectivist view of learning as pattern recognition
applies here: students see, and can acquire, the pattern of linkages and rela-
tionships that constitute research methodology concepts, getting the meaning
represented by the pattern to be accepted by the current concepts that are held.

Also, when two concepts are connected, they allow knowledge of the one to
be transferred to the other [2]. In the semantic wiki, since one research design
can be replaced by another (as they are seen to be connected by the inheritance
relationship), it is possible to transfer the knowledge that the student has about
one research design (i.e.: by what it is constituted and how it relates to other
parts of a research methodology) to some new design, although some specifics
of it will have to be reorganised.

Connectivist learning has been characterised by four activities—namely:
‘aggregate’, ‘relate’, ‘create’, and ‘share’ [20,23] (also called ‘aggregate’, ‘remix’,
‘repurpose’, and ‘feed forward’ [1])—and four levels of interaction, namely: ‘oper-
ation’, ‘wayfinding’, ‘sensemaking’, and ‘innovation’ [22,35]. These may be rein-
terpreted for explaining learning in this research methodology semantic wiki, as
well as for considering the needed critical skills, as follows:

1. Operation: initially, students need to master the technical human-wiki inter-
face necessary to participate in the learning available in the wiki. This basic
interaction points to a critical literacy required to be an effective connectivist
learner using this wiki.

2. Aggregation and wayfinding: students access the resource, learn to navigate
it, and build connections between nodes that they find reliable within it. In
aggregating concepts around a research scheme, for example, students learn
what it consists of and how the parts relate to one another. Students also
need to judge the content and connections to determine what is important

Research Methodology Semantic Wiki 143

and valuable, (i.e.: another critical literacy is required). Students orientate
themselves in the spacial structure presented by the wiki and develop a loose
network.

3. Relate, remix, and sensemaking: students reflect on what they have found
and use research scheme instances to relate to their own experience and
how past research has been conceptualised and patterned. In sensemaking
interactions, they construct patterns of meaning and understanding (leading
to a consistent comprehension) and remix concepts from different domains
(rearranging parts to meet their needs by changing some connections to link
to more appropriate nodes or concepts for their particular research). The
result is a tighter network. Here, critical analysis skills are needed.

4. Create, repurpose, and innovation: students now create something of their
own; they build their own research schemes from the knowledge that they
have gathered and reworked within the network and so build up their own
patterns. Thus, a certain level of ability to create and innovate is another
connectivist critical literacy, and innovation interaction is the deepest, most
challenging, and applied level to reach.

5. Share and feed forward: students then share what was created with others,
and the discussion pages in the wiki further allow students to share their
ideas about why choices were made and to discuss these with other people.

By actively using the wiki in getting students to comment on the discussion
pages about a research scheme or its component parts, supervisors will be sup-
porting students to aggregate. Furthermore, students could use the wiki to con-
struct their own research methodology pathways in the wiki and justify their
choices, which would take students through the other three phases of learning
via a semantic wiki. Thus, in a sense, students become content generators, as
they restructure the information contained in the patterns they have seen in
the semantic wiki to form new patterns that they can use in their own research
methodology [2]. The semantic wiki is thus able to act as the place of interac-
tion between supervisors and students, which leads to knowledge [11], and fur-
ther consolidates the link between the wiki and the connectivist learning model.
In this study, the extent to which students created research schemes for their
research reports is not known. However, there was no sharing of ideas evident
in the wiki, as it appears that there is little confidence among the students to
engage. This result has been reported before, where only a minority of students
created an artefact [23].

Since the new aggregation or organisation of existing knowledge is new
knowledge (because such compounded nodes are greater than the sum of their
parts) [2], students, in gathering the parts of a research scheme (to define a
research methodology structure for use in a specific research project with specific
questions), are actually learning and generating new knowledge as they work.
In some senses the work of a supervisor is to find the best way of using such
networked knowledge in order to enhance a student’s learning experience [1]. It
is necessary, though, to appreciate the level of autonomous, self-directed learning
that is called for in connectivist learning when students have to find resources,

144 C. Pilkington and L. Pretorius

make connections, and independently take responsibility for their learning [23].
Furthermore, not the mode of delivery is important, but rather the representa-
tion of the content [17]; a semantic wiki may thus be an efficient tool for using
connectivist ideas to support students’ learning.

5 Conclusion

Although “learning research methodology is a multifaceted and intellectually
challenging endeavour” [8] (p. 230), it is a task that students undertaking
research have to master to some extent if they are to produce acceptable research
results. The move to use technological tools in higher education—especially ‘off-
campus’ distance learning—including the Web with its access and collaborative
affordances has lead to alternative approaches to the research education that
accompanies the learning of research methodologies. In this paper we described
one such attempt that uses the Semantic Web, in the form of a semantic wiki,
to support the learning and teaching of the structure of a research methodology.
All-in-all it was well received by our students. However, the use of advanced
(including online) technology is not necessarily going to lead to better-quality
learning or success [26]. Teaching and learning should not be turning to the
unquestioned use of technological advances, but rather to a thoughtful prac-
tice of pedagogical principles [17]. Connectivism can provide these pedagogical
principles in the case of the semantic wiki explored here and lays a good founda-
tion for understanding how semantic technologies may be of value. Furthermore,
semantic wikis equip a course designer with tools that can be used for developing,
supporting, and maintaining network formation, which would support connec-
tivist learning [22]. The connectivist approach to learning places a focus on a
networked view of knowledge and its acquisition, which is strongly supported
by the semantics available in a semantic wiki. Also, it encourages the gathering
and reviewing of a wide variety of resources, points of view, and judgements of
what is of value, before reaching decisions about the creation of a student’s own
opinions and new knowledge. In a sense, connectivism allows one to think in new
ways about objects of learning and how they can be presented to students [22].

References

1. Al Dahdouh, A.A.: Jumping from one resource to another: how do students navi-
gate learning networks? Int. J. Educ. Tech. High. Educ. 15(1), 45 (2018)

2. Al Dahdouh, A.A., Osorio, A., Caires, S.: Understanding knowledge network, learn-
ing and connectivism. Int. J. Instruct. Tech. Distance Learn. 12(10), 3–21 (2015)

3. Becker, S.A., et al.: NMC Horizon Report: 2018 Higher Higher Education Edition.
Technical report, EDUCAUSE, Louisville (2018)

4. Bry, F., Schaffert, S., Vrandečić, D., Weiand, K.: Semantic wikis: approaches, appli-
cations, and perspectives. In: Eiter, T., Krennwallner, T. (eds.) Reasoning Web
2012. LNCS, vol. 7487, pp. 329–369. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33158-9 9

https://doi.org/10.1007/978-3-642-33158-9_9
https://doi.org/10.1007/978-3-642-33158-9_9

Research Methodology Semantic Wiki 145

5. Campbell, M.: Teaching, communities of practice and the police. In: Proceedings
of the 31st HERDSA Annual Conference, pp. 106–116 (2008)

6. Chatti, M., Jarke, M., Frosch-Wilke, D.: The future of e-Learning: a shift to knowl-
edge networking and social software. Int. J. Knowl. Learn. 3(4/5), 404–420 (2007)

7. Dakich, E.: Theoretical and epistemological foundations of integrating digital tech-
nologies in education in the second half of the 20th century. In: Tatnall, A., Davey,
B. (eds.) Reflections on the History of Computers in Education. IFIP AICT, vol.
424, pp. 150–163. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
55119-2 10

8. Daniel, B., Kumar, V., Omar, N.: Postgraduate conception of research methodol-
ogy: implications for learning and teaching. Int. J. Res. Meth. Educ. 41(2), 220–236
(2018)

9. Department of Higher Education and Training: White Paper for Post-School Edu-
cation and Training. Republic of South Africa (2013)

10. Dillenbourg, P., Schneider, D.K., Synteta, P.: Virtual learning environments. In:
Proceedings of the 3rd Hellenic Conference on Information and Communication
Technologies in Education, pp. 3–18 (2002)

11. Downes, S.: An introduction to connective knowledge. In: Hug, T. (ed.) Media,
Knowledge & Education — Exploring New Spaces, Relations and Dynamics in
Digital Media Ecologies, pp. 77–102. Innsbruck University Press, Innsbruck (2008)

12. Downes, S.: Learning Networks in Practice. Technical report, National Research
Council, NRC Publications Archive, Canada (2007)

13. Duke, B., Harper, G., Johnston, M.: Connectivism as a learning theory for the
digital age. In: Proceedings of the Higher Education Teaching and Learning Asso-
ciation Orlando Conference (2013)

14. Earley, M.A.: A synthesis of the literature on research methods education. Teach.
High. Educ. 19(3), 242–253 (2014)

15. Farkas, M.: Participatory technologies, Pedagogy 2.0 and information literacy. Libr.
Hi Tech 30(1), 82–94 (2012)

16. Feigenbaum, L., Prud’hommeaux, E.: SPARQL by Example: a Tutorial (2010).
https://www.cambridgesemantics.com/blog/semantic-university/learn-sparql/
sparql-by-example/

17. Girod, M., Wojcikiewicz, S.: Comparing distance vs. campus-based delivery of
research methods courses. Educ. Res. Q. 33(2), 47–61 (2009)

18. Hunt, L., Huijser, H., Sankey, M.: Learning spaces for the digital age: blending
space with pedagogy. In: Keppell, M., Souter, K., Riddle, M. (eds.) Physical and
Virtual Learning Spaces in Higher Education, pp. 182–197. Information Science
Reference (2012)

19. Ivankova, N., Plano Clark, V.: Teaching mixed methods research: using a socio-
ecological framework as a pedagogical approach for addressing the complexity of
the field. Int. J. Soc. Res. Meth. 21(4), 409–424 (2018)

20. Johansson, J., Contero, M., Company, P., Elgh, F.: Supporting connectivism in
knowledge-based engineering with graph theory, filtering techniques and model
quality assurance. Adv. Eng. Inform. 38, 252–263 (2018)

21. Kirkwood, K., Best, G., McCormack, R., Tout, D.: Student mentors in physical and
virtual learning spaces. In: Keppell, M., Souter, K., Riddle, M. (eds.) Physical and
Virtual Learning Spaces in Higher Education, pp. 278–294. Information Science
Reference (2012)

22. Kizito, R.N.: Connectivism in learning activity design: implications for
pedagogically-based technology adoption in African higher education contexts. Int.
Rev. Res. Open Distrib. Learn. 17(2), 19–39 (2016)

https://doi.org/10.1007/978-3-642-55119-2_10
https://doi.org/10.1007/978-3-642-55119-2_10
https://www.cambridgesemantics.com/blog/semantic-university/learn-sparql/sparql-by-example/
https://www.cambridgesemantics.com/blog/semantic-university/learn-sparql/sparql-by-example/

146 C. Pilkington and L. Pretorius

23. Kop, R.: The challenges to connectivist learning on open online networks: learning
experiences during a massive open online course. Int. Rev. Res. Open Distrib.
Learn. 12(3), 19–38 (2011)

24. Krötzsch, M., Vrandečić, D., Völkel, M.: Semantic MediaWiki. In: Cruz, I., et al.
(eds.) ISWC 2006. LNCS, vol. 4273, pp. 935–942. Springer, Heidelberg (2006).
https://doi.org/10.1007/11926078 68

25. Lim, J.H., Dannels, S.A., Watkins, R.: Qualitative investigation of doctoral stu-
dents’ learning experiences in online research methods courses. Q. Rev. Distance
Educ. 9(3), 223–236 (2008)

26. Maor, D., Zariski, A.: Is there a fit between pedagogy and technology in online
learning? In: Proceedings of the 12th Annual Teaching and Learning Forum (2003)

27. Meilender, T., Lieber, J., Palomares, F., Jay, N.: From Web 1.0 to social semantic
web: lessons learnt from a migration to a medical semantic wiki. In: Simperl, E.,
Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol.
7295, pp. 618–632. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-30284-8 48

28. Nind, M., Lewthwaite, S.: Hard to teach: inclusive pedagogy in social science
research methods education. Int. J. Incl. Educ. 22(1), 74–88 (2018)

29. Pástor, D., Jiménez, J., Gómez, O.S., Isotani, S.: New perspectives in instruc-
tional design using semantic web technologies: a systematic literature review. Ing.
Desarro. 36(1), 215–239 (2018)

30. Picciano, A.G.: Theories and frameworks for online education: seeking an inte-
grated model. Online Learn. 21(3), 166–190 (2017)

31. Siemens, G.: Connectivism: a learning theory for the digital age. Int. J. Instruct.
Tech. Distance Learn. 2(1), 1 (2005)

32. Thomas, G.: Teaching research methods in the social sciences. J. Educ. Teach.
37(3), 366–368 (2011)

33. Vas, R., Weber, C., Gkoumas, D.: Implementing connectivism by semantic tech-
nologies for self-directed learning. Int. J. Manpow. 39(8), 1032–1046 (2018)

34. Vrandečić, D.: Ontology Evaluation. Doctoral Dissertation, Karlsruher Institute of
Technology (2010)

35. Wang, Z., Chen, L., Anderson, T.: A framework for interaction and cognitive
engagement in connectivist learning contexts. Int. Rev. Res. Open Distance Learn.
15(2), 121–141 (2014)

https://doi.org/10.1007/11926078_68
https://doi.org/10.1007/978-3-642-30284-8_48
https://doi.org/10.1007/978-3-642-30284-8_48

Cohort Supervision: Towards
a Sustainable Model for Distance

Learning

Judy van Biljon1 , Colin Pilkington2(B) , and Ronell van der Merwe2

1 Department of Information Systems, University of South Africa,
Florida Park, Roodepoort, South Africa

vbiljja@unisa.ac.za
2 Department of Computer Science, University of South Africa,

Florida Park, Roodepoort, South Africa
{pilkicl,vdmerwer}@unisa.ac.za

Abstract. In response to the challenge of increasing supervision capac-
ity while at the same time also improving the supervision experience, we
used a design science research approach to guide the design, implementa-
tion and evaluation of a cohort supervision model for master’s students
in computing at an open-distance university. This paper describes the
implementation of a cohort programme in 2018, the findings from data
collected during a focus group with students and supervisors, students’
reflective evaluations at the end of the module, feedback from the super-
visors, and our reflective notes. Our main theoretical contribution is the
cohort model proposed for developing supervision capacity at master’s
level. Our practical contribution is a method for a practical supervision
model for master’s students based on the concepts of co-operative learn-
ing and conversational theory.

Keywords: Post-graduate supervision · Group supervision · Cohort
supervision · Distance education · Design science

1 Introduction

Massification and marketisation of higher education have resulted in increas-
ing numbers of research candidates with different levels of capabilities entering
postgraduate studies nationally and internationally [5]. Universities are under
pressure because of the growing number of students doing research and the
increased emphasis on completion rates. This is particularly the case also at our
University of South Africa, as its approach to open distance learning (ODL)
is aimed at “bridging the time, geographical, economic, social, educational and

Supported by the South African Research Chairs Initiative of the Government’s Depart-
ment of Science and Technology, and the National Research Foundation of South Africa
(Grant No. 98564).

c© Springer Nature Switzerland AG 2020
B. Tait et al. (Eds.): SACLA 2019, CCIS 1136, pp. 147–162, 2020.
https://doi.org/10.1007/978-3-030-35629-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35629-3_10&domain=pdf
http://orcid.org/0000-0002-4646-1641
http://orcid.org/0000-0001-6996-0841
http://orcid.org/0000-0003-2714-9967
https://doi.org/10.1007/978-3-030-35629-3_10

148 J. van Biljon et al.

communication distance between student and institution, student and academics,
student and courseware, and student and peers” [27]. In the context of little
face-to-face teaching, ODL focuses on greater flexibility and removing barriers,
leading to wider access to learning, greater student-centricity and support, as
well as a focus on student success. Not only has this openness led to signifi-
cantly increased student numbers; the realities of the South African society led
to the admission of students who vary widely in their readiness for postgraduate
study, with those from disadvantaged areas and schools lacking logical writing
skills [13]. The increasing student numbers, in combination with students’ lack
of preparedness for postgraduate studies, put pressure on supervision capacity,
because the increase in student numbers has not been met by a corresponding
increase in the provision of experienced supervisors [3,5]. Given the risks and the
impact of failed supervision, higher education institutions cannot afford to have
novice supervisors follow a trial-and-error approach [22]. The need is not only to
increase the number of supervisors but also to provide experiential supervision
training. This discrepancy between required and available supervision capacity
is the rationale for this paper in which we seek to explore the following

Research question: What are the components of an effective model for cohort
supervision in distance learning which increases supervision capacity while
providing support and experiential learning to supervisors of different expe-
rience levels?

The term cohort model refers to a group or unit set up as a structure in a commu-
nity of learning to support intellectual development and knowledge production
in postgraduate education research [11]. The use of cohort supervision to address
the problem of improving supervision capacity is not new: several previous stud-
ies investigated doctoral cohort supervision [10]. Dysthe, Samara, and Westrheim
proposed a three-pronged approach in master’s supervision combining supervi-
sion groups, student colloquia and individual supervision [6]. More recent studies
published on master’s cohort supervision include [15,21]. Cohort studies focusing
on both master’s and doctoral supervision include [23], although not in an ODL
context. Manyike investigated supervisor challenges in the supervision of mas-
ter’s and doctoral students in an open distance e-learning institution in South
Africa [14]. She suggested collaboration between experienced and novice super-
visors as means of enhancing the quality of feedback and communication but
did not propose a new model. Similarly, [3] described supervisor development
as part of cohort supervision in ODL and proposed a cohort supervision model
at ‘honours’ level.1 Besides considering master’s cohort supervision at an ODL
institution, the contribution of this paper lies in the concomitant development
of supervision capacity at different experience levels.

1 For readers from outside South Africa: The ‘honours’ level in South Africa is a
voluntary ‘top-up’ to a shorter Bachelor degree—somewhat comparable to the final
stage of the longer Bachelor curriculum in the USA. The ‘honours’ level is typically
a prerequisite for commencing master-studies in South Africa.

Cohort Supervision for Distance Learning 149

2 Related Work

We used the pattern ‘postgraduate supervision’ and (‘group supervision’ or
‘cohort supervision’) to search the ACM, Springer, ERIC, Scopus and Web of
Science databases for the years 2013–2018 (in January 2019). The total number
of full-papers from each database were as follows: ACM 3484, ERIC 115, Scopus
780, Springer 3526, and Web of Science 457. Thus the number of papers in most
of the databases was too large for complete analysis. Therefore we considered
only the top 20 papers (rated by relevance) of each database, i.e.: 100 papers
altogether—actually 96 after some duplicates were removed. We then read their
abstracts and removed 55 papers that did not relate to post-graduate supervi-
sion in our field (ICT). The remaining 41 papers came from various countries—
including South Africa, Australia, the United Kingdom, China, the USA, the
Netherlands, New Zealand, Denmark, Finland, Sweden, Japan, Israel, Colombo,
Malaysia, and Mauritius—which indicates that our problem is globally relevant.
The research methods used in those studies included individual interviews (14)
and group interviews (3), surveys (24), focus groups (5), case studies (2), and
observations (2).2 These salient publications can be summarised w.r.t. advan-
tages, disadvantages, best practices (including cohort models proposed), and
critical success factors as described below.

Cohort supervision is proposed as an alternative pedagogy for the supervi-
sion of large groups of master’s students in an efficient and effective manner,
maintaining quality research and graduate output [15]: this approach improved
students’ motivation through peer-sharing of experiences and feedback, as well
as students taking responsibility for their own academic progress. Ahern (et al.)
noticed enhanced morale, the benchmarking of learning and learning from oth-
ers’ mistakes, as well as collegiality [1]. The benefit to supervisors included the
sharing of ideas, what constituted best practice, and strategies for improving
supervision. Addressing capacity constraints is an important motivation for using
cohort supervision [1,2], though Choy (et al.) warned that universities need to
invest both time and resources for cohort development if such a cohort approach
is to yield good results as a supervision model [4].

Considering the challenges supervisors experienced in group supervision as
part of a guidance and counselling master’s programme, Wichmann-Hansen
(et al.) identified three major challenges experienced by the cohort supervi-
sors: (1) promoting equal participation within student groups that are often
heterogeneous, (2) ensuring a balance between providing answers and involving
students, and (3) recognising and growing students’ analytical skills [28]. Meng
(et al.) found that informational contextual factors promoted intrinsic motiva-
tion, whereas controlling contextual factors have negative effects [16].

Papers considering best practices for cohort supervision emphasise the impor-
tance of providing a holistic, integrated approach. For example, [24] mentions the
fundamental principles of connectedness, wholeness and being. Hutchings main-

2 Those methods are not mutually exclusive; one research design might use more than
one of those methods.

150 J. van Biljon et al.

tains that group supervision can foster sustained mutual support [9] and proposes
technology-mediated interactions which are not tied to a specific location—thus
facilitating participation and reducing isolation. Maor and Currie support their
argument for the use of technology by focusing on the transformational role
that it can play in the move from more traditional, dyadic forms of supervision
to more collaborative group processes [12]. Other papers specify the specific ele-
ments of best practice, like scaffolding, guiding students in the completion of key
learning tasks involved in writing a dissertation proposal independently [21], or
using proactive communication to engage in meaningful preparation before meet-
ings [20]. Han and Schuurmans-Stekhoven recommend comprehensive research
literacy training [7], which should include the critical search for information,
understanding, interpreting and evaluating as well as finally synthesising it.

Various studies proposed alternative cohort supervision models. Choy (et al.)
investigated the development of postgraduate research degrees cohorts [4]. Their
approach included four provisions, namely an initial residentially based work-
shop, developing a learning community, cultivating scholarship, and spaces for
continuing learning. Their interventions resulted in the development of a learn-
ing environment that supported students and a culture that was nurturing [4].
Marnewick and Nel proposed an efficient and effective master’s programme that
would lead to good quality research and improved graduate output [15]. Their
findings indicate that peer feedback, sharing experiences in the group, and stu-
dents taking responsibility for their own progress led to improved student moti-
vation. The benefits of the cohort model to the supervisors included sharing of
ideas and best practices, as well as shared strategies for improving supervision
[15]. In some of our own research group’s earlier work [3] we proposed a pyramid
cohort supervision model (PCSM) for supervising computing honours students
in an ODL environment. That model was based on cooperative learning, con-
versational theory and scaffolding, whereby the model purposefully integrated
technology as part of student support and collaboration [3].

The critical success factors relating to the supervisors include the following:
a supervisor’s own knowledge [26], availability and willingness to help [29], work
load and the pressures of the academic environment [15,22], and the quality of
feedback given in formal supervision meetings which require advance preparation
[20]. The importance of feedback is also emphasised in [18] whereby, moreover,
the harmony between (co)supervisors has an effect on the supervisor-supervisee
relationship. Other skills include coaching, scaffolding and support in articula-
tion and reflection practices [19]. Spiller (et al.) recognised further factors that
may influence the success of cohort supervision: cross-cultural environments, co-
publishing with students, supervisor and student negotiations to ensure common
understanding about important aspects, and written feedback on students’ drafts
[25]. Njie (et al.) argued that supervisors need to be involved in group activi-
ties to counter-act unwanted practices such as ‘free riding’ (not contributing to
group activities) [17]. The number and diversity of the personal and contextual
factors affecting cohort supervision signifies the complexity of the task and the
expectation of the skills required.

Cohort Supervision for Distance Learning 151

As far as the students are concerned, Marnewick and Nel mention cross-
cultural issues, barriers related to language differences, the lack of academic
resources, unrealistic expectations by students, lack of academic scholarship in
students, and the academic pressure experienced by supervisors, as important
factors [15]. Also highlighted are barriers to communication with lecturers [21],
which is exacerbated by students’ level of language proficiency [22]. Further-
more, students’ misunderstanding of the scope of postgraduate studies and their
lack of critical thinking skills need to be considered [22]. Manyike investigated
ODL supervision and identified weaknesses in the following areas [14]: allocating
postgraduate students to supervisors without consultation, meeting the needs
of students who come to postgraduate studies underprepared by guiding them
during the thesis-writing process, as well as the challenges inherent in an ODL
model which relies primarily on written communication. Co-supervision as part
of cohort supervision was highlighted as more than just a ‘safety net’ for insti-
tutions [18]; it leads to a complex web of both interpersonal and institutional
relationships (which carry power) whilst also providing opportunities (as there
are many ways in which co-supervision can be organised). Therefore it min-
imises the risk of dual relationships and increased supervisors’ opportunity to
experience both leading and participating in groups [4].

In summary, the papers recapitulated above support the argument that
cohort supervision has potential for increasing supervision capacity and qual-
ity, and that the benefits extend to both students and supervisors. However,
research also provides evidence of numerous and diverse problems relating to
supervisors, students and their interaction. Complexity leads to the develop-
ment and implementation of various context-specific cohort supervision models.
To our best knowledge (to date), the only approach that specifically addresses
the issue of supporting novice supervisors while developing supervision capacity
in ODL is the pyramid cohort supervision approach for supervising computing
honours students [3]. Therefore, we used this model as our point of departure in
the research design discussed in the following section.

3 Research Design

For this paper we applied the well-known design science method [8]. Our research
was guided by a pragmatic philosophy with a single-case study [30], whereby
the units of analysis are the students. The supervisors (as collectives with the
students) are our data collection sources.3 A focus group and reflective ques-
tionnaires were used as methods to gather data. The design of the intervention
is based on the above-mentioned pyramid cohort supervision model [3], where
a design science approach was used together with principles of constructivist
learning as an active, social, meaning-making process based on individual and
shared experiences [25]. Cooperative learning was also involved in assuming a
positive interdependence between students in the cohort while maintaining their
individual accountability [13].
3 Permission was obtained from the relevant authorities at our university.

152 J. van Biljon et al.

Table 1. Events and actions undertaken in the cohort supervision process

Stage Event Actions

1. Introduction and
orientation

Providing a tutorial letter detailing the purpose of
the proposal module, tasks, deadlines, resources
and organizational support. Providing online
resources (including literature) in a wiki

1st meeting: (March) Group meeting between students, supervisors,
administrative support staff, and practitioners, for
feedback on initial research questions

2. Research
questions/design

Individual meetings with supervisors, informal
group interaction

2nd meeting: (May) Presentations to group and external supervisor on
literature review, research questions, research
design

3. 3rd meeting: (August) Proposal presentations and focus group to evaluate
the students’ research approaches. (Our reflective
questionnaire was distributed only in December,
after all assessment marks had been finalised)

For this paper, however, our approach is different in the following ways. We
now apply the model to the proposal development phase for master’s students in
computing, thus hoping to use collaborative peer approaches to encourage the
students to critique each other’s work, and—in so doing—learn how to critique
their own work, too. Thus we hope to yield more solid proposals. As far as sup-
port is concerned, we enlisted the help of a part-time administrator for organising
the interactions and the reporting, and we also involved external domain experts
and experienced supervisors as far as necessary (and available). In our practice
we introduced face-to-face meetings for student presentations and feedback.4

The specific interventions are listed in Table 1. Our cohort consisted of seven
students (master’s students who registered for the ‘research proposal’ module
in 2018 with a senior supervisor) and three supervisors (of varying levels of
supervision experience). The central idea was to support the postgraduate stu-
dents in the preparation of their proposals by bringing together a cohort of stu-
dents who would be working in similar fields, so that they can learn from each
other.5 A project site was created on the web-based learning management system
that included (amongst others) tutorial letters, background information to the
proposal module, as well as links to important resources. Some initial training
was offered in the form of a workshop as well as in providing an opportunity for
the students to discuss their research topics and questions. This discussion took

4 In ‘pure’ distance education without seminar rooms, technical means like ‘Skype’
can be used to facilitate ‘virtual meetings’ via the Internet.

5 For comparison see the ‘post-graduate school’ models in various implementations in
different countries.

Cohort Supervision for Distance Learning 153

place in small groups of students as they considered each other’s work, as well
as between individual students and one of the supervisors.

A subsequent group event provided students with the opportunity to present
their work, to develop skills in condensing their ideas into presentation format
(introduction, research questions, brief literature review, and proposed method-
ology) and to present them in spoken words. The students were also expected to
critique another student’s work and to give constructive feedback, thereby com-
menting on strengths, weaknesses, and gaps in the other student’s argument.
Meta feedback was provided by peers, supervisors, and external supervisors who
were brought in to add objectivity and new perspectives; this was achieved in
a large group with all participants present. A third group meeting was held in
which the students again had to present an outline of their proposal to the group
and to receive feedback from supervisors and peers. This again took place as a
whole-group event.

In the time between these group events, the students submitted drafts of
their work to the supervisors for feedback. Students were initially allocated two
supervisors, which was however not done in a ‘classical’ primary/co-supervisor
arrangement: instead, the senior supervisor in the supervisory group was involved
in all participating students’ work.

4 Results

4.1 Evaluation Based on the Students’ Responses

Reflective Survey. The students were asked to complete a reflective ques-
tionnaire focused on their experience of the cohort supervision; our reflective
questions are provided in Appendix A. The following discussion is a summary of
the insights gained from a thematic analysis of the responses. Our findings are
structured w.r.t. benefits and drawbacks of cohort supervision as experienced by
the students in the group, as well as the critical success factors (requirements to
make the approach useful) and recommendations towards improving the model.
The different respondents are represented by capital letters in square brackets.

Considering benefits, all students noted benefits associated with the cohort
supervision process. It provided an overview, allowing students “to know where
everyone is in their studies and not to miss deadlines! It kept me on track”
[F]. The collective nature was noted in the team work “from both colleagues
and the supervisor” [B], which afforded the students the possibility of tapping
into “collective intelligence for problem solving” [A]. Another student noted:
“Comments from various persons helped me in writing the proposal” [E]. The
same student also obtained advice “on what needed to be improved” [E], whereby
awareness was raised “on some aspects of the proposal that were not clear” [E].
Furthermore, the approach helped to “build my confidence by knowing we are all
learning and there are no stupid questions” [B]. The requirement for the students
to give presentations “was very useful” [D] and “improved communication and
presentation skills” [C]. Also, the students learnt “indirectly from other students
because you see how they do things during their presentations” [D].

154 J. van Biljon et al.

Considering the group interactions, the cohort led to a sense of “belonging and
knowing that you are not alone” [A]. Additionally, “our group has a WhatsApp
group, and that is great” [F], (i.e.: peer-group initiatives to enhance communi-
cation). Students gained from others in the group. “They helped a lot by sharing
the articles and research papers which they thought they can benefit my research”
[C]. They also contributing to the group: “I helped them on technical issues such
as using referencing tools and explaining what is expected in each section of the
proposal” [A].

The extent to which the cohort process affected the quality of the work pro-
duced varied. It had its value in highlighting “what is needed in the research,
starting from research topic, problem, methodologies, and literature reviews” [C].
However, “we could still be possibly stuck in our silo mentality when approaching
our work”, as “there was not much robust discussion on the WhatsApp group”
[A]. Student [F] responded: “Not really”. Students also noted drawbacks from
participating in cohort supervision. One student mentioned “limited time given
to a student” [A] to do a presentation due to the size of the group, and suggested
workshops to be held more frequently. Too little contact was noted by another
student: “the workshops are too little”; it would be better to “perhaps have one
every second month” [G]. One student had not learned anything from the other
students, while the other six students stated that they had learnt much from fel-
low students. This may be because the particular one student had started later
in the year and also had a distinctly different project topic.

Success factors often focussed on contact opportunities: “Regular meetings
encourage members to engage and exchange knowledge, give sufficient time to
each student within a group” [A]. Also [G] wrote: “Regular contact with students”.
The role of the supervisor was also mentioned: “Commitment. The lecturer was
there for us and responded to emails on time” [B]. Student [E] mentioned: “Eval-
uation, comment or feedback from all the supervisors from that group”. However,
the cohort approach by itself was not deemed sufficient: “one-on-one sessions
with my supervisors are an absolute must. That is where I grew and learnt the
most” [F]. “I would like a mixed approach, as group- and one-on-one sessions
are all important” [A].

Focus Group. A focus group discussion was held with our students to gauge
their collective view of the approach that had been taken to their supervision.
Five main themes emerged from a thematic analysis of the focus group tran-
scription.

Students commented on their initial expectations of the supervision process.
Apart from not being sure how it works, they had expected supervision to be
based on emails and supervisor meetings. There was the expectation of meeting
the supervisor maybe once or twice a month, initiated by both the student and
supervisor, “because if supervisors do not do that, students can sit back and
discussions between supervisor and student end up not happening”. Largely, the
students’ expectation was that they would communicate with their supervisors
via email, and that supervisors would send out messages via the university’s

Cohort Supervision for Distance Learning 155

LMS, whereby “if you miss something it is your fault”. One-on-one meetings with
supervisors were liked “because you get instant feedback and follow-on questions”.

As far as the group approach is concerned, the students were “comfortable
with the environment created and the support given”, whereby they “learnt a lot
from the workshops” and also “from each other”. Thereby the students also had
to learn “not to react negatively to criticism”. Knowing what had been covered in
the group meetings encouraged one student to realise that “I am not a quitter; I
will try to make success out of this”. However, it was clear that “it is not possible
for me to take leave days frequently”, and that group meetings should be “after
working hours, it will give us an opportunity to attend”.6

It is noteworthy that the students set up a WhatsApp group by and for them-
selves. As “everyone has a phone on-the-go, it is convenient”, and “if someone
has a question, it is asked and anyone can answer”. This tool “created unity
amongst the students”, as well as it built “a sense of comfort”, because other-
wise “this journey can be a lonely journey”. There was an appreciation of the
group and a belief that the students benefited from belonging to it. Nonethe-
less, the students “have not really shared each other’s papers”, and did also not
appear to “share and ask the difficult questions”.

As far as the future of the group is concerned, there was a feeling that they
enjoyed this method, that it would be good to continue working in this manner,
and that the group should not be split along any topic area lines. The group also
expressed the belief that its members would be able to advise future proposal
students about what is expected in this module.

As the students were expected to present their research topics, presentation
skills was identified as yet another theme in the focus group discussion. The
students took their presentations “very seriously”, and prepared themselves by
“watching YouTube videos”, by checking “the dos and don’ts and expectations”,
as well as by asking “experienced friends”.

4.2 Evaluation Based on the Supervisors’ Responses

As part of the reflective process, the supervisors completed a questionnaire about
their experiences of cohort supervision; the questions are listed in Appendix B.

W.r.t. the question of whether the cohort supervision approach met the
expectations of the individual supervisors, the respondents reflected that the
cohort supervision model provides a platform for “quality assurance on many
levels, including supervision practices, disciplinary content and general research
knowledge”. One respondent indicated that the cohort process addressed some
of the anxieties experienced by novice supervisors. This was also emphasised by
another respondent who indicated that the process provides “a safety net against
individual biases, inexperience and ignorance for both students and supervisors”
on various levels, including the management of individual experiences, personal-
ity clashes, and overall administration problems. Reflecting on the organisational
processes, all respondents mentioned that they did not realise the extent of the

6 Many of our students are employed in day-time jobs.

156 J. van Biljon et al.

complexity of the organisational overheads, and that it would not have been pos-
sible to do this without the administrative assistant. One respondent mentioned
that, because the projects were all different, it made reading and conceptualis-
ing the different projects difficult. The more senior supervisor also commented
on the mentor-mentee process and the danger that lies in this process of super-
vising not only the students but also the less experienced supervisors. One of
the less experienced respondents mentioned that more defined rules for both the
supervisors and the students should have been set before the project.

The supervisors agreed that the students benefited from the cohort supervi-
sion as it assisted the students with peer support on “emotional, cognitive and
organisational” levels. From conversations with the students it was learned that
the students created their own support group, separate from the official cohort
group. One respondent mentioned the positive input that has been received from
several sources: the advice provided by the external expert supervisors during
the initial group sessions, the positive feedback students who attended a post-
graduate workshop at a local conference received, as well as the assistance of, and
advice from, a post-doctoral fellow. Moreover, the respondents agreed that the
approach positively affected the completion rate for the students. One respon-
dent mentioned that, compared to previous years, the students received more
input and that the proposals were of a better quality as a result.

In reflecting on what the supervisors would change, the respondents identi-
fied that the field of research should be better defined, and that students should
be linked to a specific supervisor earlier in the process. This would eliminate the
problem of a student redundantly contacting multiple supervisors. The “lack of
a shared platform” also resulted in too many emails being sent. One respondent
commented on teaching the students the skills required to critique their peers’
work. Another one suggested the introduction of a structured presentation tem-
plate that would support students in presenting (and thus getting feedback on)
the critical details of their research design, rather than dwelling on interesting
but irrelevant details regarding the rationale for their projects.

5 Discussion and Recommendations

5.1 Discussion of the Results

It is possible to understand the results w.r.t. shared experience, a concept that
emerged from our literature review. This shared experience added value for both
students and supervisors.

The shared journey was for our students an opportunity to see that they
were not alone and that they belonged to a group that, together, learnt what was
required in a research proposal. The WhatsApp group that they created points to
their initiative in supporting each other, if only from a social and administrative
standpoint. This built confidence. Another insight was the importance of pre-
sentation opportunities were students could get instant and balanced feedback,
and could learn together how to present their work in the most efficient manner.

Cohort Supervision for Distance Learning 157

However, the students will not necessarily have learnt from others in all situa-
tions, and the need for regular as well as one-to-one meetings was highlighted.
It could be argued that a mixed approach that merges cohort and individual
supervision is most likely to meet most academic and social needs.

A shared approach which included external expertise also had benefits for
the supervisors—albeit more for the junior supervisors with less experience than
the more experienced ones. This support was noticeable in the ‘backup’ that
colleagues offered to early-career supervisors, and in ensuring that quality did
not rest on an individual’s shoulders alone. The shared experience entailed a
shared responsibility.

However, two further points must be noted. Firstly, a cohort supervision
model does not save supervision time, and in fact increases the work that a
supervisor has to do (as each piece of work is now read by two supervisors
instead of one). It is thus unlikely to solve immediate supervision capacity prob-
lems. However, this extra effort may be considered as an ‘investment’ in future
supervision capacity if we consider the experience that is gained by junior super-
visors in the process which may lead to better sole supervision later. Secondly,
the expectation that the students analyse each other’s work, and provide con-
structive feedback which helps them to critically analyse their own work, was
somewhat too naive. The comments provided tended to be superficially positive,
such that it will be necessary to focus on training students in what to look for
when reviewing and analysing academic work in future iterations of our app-
roach. Our findings confirm the value of student colloquia for personal support.
They serve as a first filter for ideas and texts, and also bring to light any needs for
individual supervision sessions for more specific advice [6]. In our investigation,
the supervision groups only started to form towards the end of the first year;
perhaps smaller groups would form a better forum for the critical multi-voiced
feedback that we found lacking.

5.2 Proposed Cohort Supervision Model

The proposed components of our model for cohort supervision, which is based
on the experience described above, are shown in Fig. 1. The components consist
of the actors and the relationships between them as well as the recommended
resources. The actors include the cohort leader, supervisors, the administrator,
external experts, and the students. A cohort leader must be an experienced
supervisor who can lead a project and can provide ‘vision’ and guidance where
necessary. This person may or may not serve as immediate supervisor to the
students. The supervisors are supported by two further role-players: an admin-
istrator, who assists in managing the flow of documents and in organising the
cohort meetings, and the external experts, who join the cohort on suitable occa-
sions to provide domain knowledge, expert advice, and alternative viewpoints.
The students thus benefit from a well-managed process, appropriate supervision,
and expert input.

Several resources may be utilised. Shared resources are used to benefit the
whole cohort and the process of cohort supervision. Academic resources are

158 J. van Biljon et al.

Fig. 1. Proposed cohort supervision model

those that support proposal content development (reading/writing). Coopera-
tive resources are ‘places’ where all role players in the process get together to
further the supervision process. Evaluation resources encompass the processes
w.r.t. giving feedback.

5.3 Recommendations

Our findings confirm the benefits of cohort supervision in developing capacity
and providing emotional, intellectual and practical support for students and
supervisors. Our most important contribution lies in uncovering new challenges
related to cohort supervision and in suggesting recommendations to address
some of these problems.

Institutional. Institutional practices need to support co-supervision explicitly
by providing administrative support, since cohort supervision creates an organ-
isational overhead. Such a support person shall manage the flow of documents,
organise cohort meetings, handle queries around registration, bursary applica-
tions, ethical research clearance permissions, and the like.

Furthermore, the interactions between the cohort supervisors and the stu-
dents need to be managed for sustainability. The load on the cohort supervisor
can become insurmountable if the cohort supervisor tries to be involved with
every student as well as with mentoring the cohort supervisors. If a cohort

Cohort Supervision for Distance Learning 159

supervisor takes on a mentoring role with responsibility for students without
being a co-supervisor, then such a cohort supervisor should be recognised as a
(meta) supervisor of supervisors in order to facilitate satisfactory progress over-
all. Institutions need to consider introducing such a role formally in the supervi-
sion process. Currently, most higher education institutions have a postgraduate
supervision model of sharing credits equally between supervisors and awarding
credits per registered student supervised. Mentoring novice supervisors is pur-
ported to be important; however if mentoring is not part of the institutional
rewards system, experienced supervisors may shy away from the considerable
effort and responsibility the role entails.

Structural. The cohort supervision model should clearly delineate the respon-
sibilities to preserve supervision capacity. For example, when two supervisors
read the same document for providing feedback, some agreement as to whether
this will be done in parallel or sequentially needs to be in place. Also the rel-
ative roles of primary and co-supervisors must be defined. Furthermore, while
external experts could play a bigger part in helping students to formulate their
final research questions and design decisions, how this is to be achieved needs
to be negotiated with both students and supervisors, because this process may
require extra time to be carried out with integrity.

Organisational. The initial face-to-face meeting, where students can get to
know each other and form trust networks with their own social connections, is
critical to establishing an informal social support network. Additionally, such
meetings provide opportunities for students to do presentations—although the
possibility of ‘virtual meetings’ (online) should be further explored.

Academic. The students’ research topics should have sufficiently large overlaps
in their ‘theoretical lenses’ and research methodologies. This promotes peer sup-
port since the participating students are thus more familiar with the domain and
hence better able to constructively critique each other’s work. External experts
(and even co-supervisors) can fill gaps when students venture into areas outside
the core competency areas of the cohort supervisors, but diverse topics have an
efficiency trade-off. The external experts also have a quality assurance role at
the proposal acceptance stage.

6 Conclusion and Outlook to Future Work

This paper describes the use of cohort supervision as a way to improve super-
vision capacity while supporting both students’ research-learning and novice
supervisors. Specifically, our findings concerning the implementation of a cohort
supervision programme for master’s student at an ODL institution highlight the
benefits of our approach for students on emotional, social, cognitive, organisa-
tional and quality assurance levels. Nonetheless, institutional buy-in and admin-
istrative support will be needed to enable the sustainability of our cohort model.
Besides the components proposed for an effective cohort supervision model that
incorporates co-operative learning, conversational theory and scaffolding, our

160 J. van Biljon et al.

paper also contributes a method for implementing cohort supervision on master’s
level in an ODL context. As many students at residential universities face time-
access- and isolation-constraints, too, our model should be applicable beyond
ODL institutions as well. According to the design science approach our pro-
posed supervision cohort model will be applied, evaluated, and reflected on in
future research. Future work should consider a longitudinal study to investi-
gate the sustainability of our approach for growing research capacity while also
providing satisfactory supervision at the same time. In particular, structural
interaction innovations towards improving supervision capacity deserve more
attention. Additionally, whereas a qualitative study was conducted here, a more
quantitative evaluation (considering, for example, student’s pass rates, marks
obtained, publications yielded from students’ projects, and the like) may pro-
vide results that may lead to further refinement of the components of our cohort
model.

Acknowledgements. Thanks to Sewisha Lehong and Donald Mothisi for advice and
assistance in analysing our data. Thanks also to the audience at SACLA’2019 for
interesting remarks relating to the incorporation of external sources to broaden and
strengthen our cohort supervision model.

A Students’ Reflective Questionnnaire

Supervision for your studies has taken place in a group setting with other students
who are on the same journey. Please think about how this process has played itself out
and how it has influenced your postgraduate studies, then answer the questions below
giving as much detail as you can and are comfortable giving. Please note that you
should feel free to be completely honest when answering these questions and none of
your answers will determine your research progress in any way. Remember that these
questions have no right or wrong answers.

1. Name / Gender / Age
2. When did you first register for your postgraduate studies?
3. What is the current status of your postgraduate studies?
4. Have your postgraduate studies this year been a positive or negative experience

for you? Why do you say so?
5. To what extent has the group approach influenced your experience?
6. What has worked, or not worked, for you in this group process? What have been

the benefits and drawbacks?
7. To what extent have the other students in the group helped you?
8. To what extent have you helped other students in the group?
9. To what extent do you believe this approach has affected the quality of your work?

10. What do you think are the critical factors for success with group supervision
approaches?

11. What would you change about the group approach to supervision used?
12. This was a formal approach to group supervision where you were expected to

attend and participate. How would you feel about a more informal peer support
approach based on social media (or some other approach)? Would it be more
appealing?

13. Would you prefer to continue in this mode of supervision or not, and why?

Cohort Supervision for Distance Learning 161

B Supervisors’ Reflective Questionnaire

1. What has been your experience of a group supervision approach?
(a) Has it been good or bad?
(b) To what extent is it what you expected?

2. From your observations, have the students benefited from the experience or not?
3. Identify challenges and risks in the use of such an approach.
4. How has this approach affected the quality of work submitted?
5. How has this approach affected the completion rates of students?
6. What would you change?

References

1. Ahern, C.M., van de Mortel, T.F., Silberberg, P.L., Barling, J.A., Pit, S.W.: Ver-
tically integrated shared learning models in general practice: a qualitative study.
BMC Fam. Pract. 14(144), 1–11 (2013)

2. Anderson, M., et al.: The construction of a postgraduate student and supervisor
support framework: using stakeholder voices to promote effective postgraduate
teaching and learning practice. J. Univ. Teach. Learn. Pract. 15(2), 6 (2018)

3. van Biljon, J.A., van Dyk, T., Naidoo, L.: Towards increasing supervision capacity:
the pyramid cohort supervision model. In: Proceedings of SACLA 2014 Annual
Conference of the Southern African Computer Lecturers’ Association, pp. 166–173
(2014)

4. Choy, S., Delahaye, B.L., Saggers, B.: Developing learning cohorts for postgraduate
research degrees. Aust. Educ. Res. 42(1), 19–34 (2015)

5. Cloete, N., Mouton, J., Sheppard, C.: Doctoral Education in South Africa: Policy,
Discourse and Data. Somerset West: African Minds (2015)

6. Dysthe, O., Samara, A., Westrheim, K.: Multivoiced supervision of master’s stu-
dents: a case study of alternative supervision practices in higher education. Stud.
High. Educ. 31(3), 299–318 (2006)

7. Han, J., Schuurmans-Stekhoven, J.: Enhancement of higher degree candidates’
research literacy: a pilot study of international students. Asia Pac. Educ. Res.
26(1/2), 31–41 (2017)

8. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS Q. 28(1), 75–105 (2004)

9. Hutchings, M.: Improving doctoral support through group supervision: analysing
face-to-face and technology-mediated strategies for nurturing and sustaining schol-
arship. Stud. High. Educ. 42(3), 533–550 (2017)

10. Kobayashi, S., Grout, B.W., Rump, C.Ø.: Opportunities to learn scientific thinking
in joint doctoral supervision. Innov. Educ. Teach. Int. 52(1), 41–51 (2015)

11. de Lange, N., Pillay, G., Chikoko, V.: Doctoral learning: a case for a cohort model
of supervision and support. South Afric. J. Educ. 31(1), 15–30 (2017)

12. Maor, D., Currie, J.K.: The use of technology in postgraduate supervision pedagogy
in two Australian universities. Int. J. Educ. Tech. High. Educ. 14(1), 1–15 (2017)

13. McFarlane, J.: Group supervision: an appropriate way to guide postgraduate stu-
dents? Acta Acad. 42(4), 148–170 (2010)

14. Manyike, T.V.: Postgraduate supervision at an open distance e-Learning institu-
tion in South Africa. South Afric. J. Educ. 37(2), 1–11 (2017)

162 J. van Biljon et al.

15. Marnewick, A., Nel, H.: A model for postgraduate supervision of large student
numbers in engineering management at the University of Johannesburg. In: Pro-
ceedings of IEEE Technology & Engineering Management Conference, TEMSCON,
pp. 394–399 (2017)

16. Meng, Y., Tan, J., Li, J.: Abusive supervision by academic supervisors and post-
graduate research students’ creativity: the mediating role of leader-mmember
exchange and intrinsic motivation. Int. J. Leadersh. Educ. 20(5), 605–617 (2017)

17. Njie, B., Asimiran, S., Basri, R.: An exploratory study of the free-riding debacle in
a Malaysian university: students’ perspectives. Asia Pac. Educ. Res. 22(3), 257–262
(2013)

18. Olmos-López, P., Sunderland, J.: Doctoral supervisors’ and supervisees’ responses
to co-supervision. J. Furth. High. Educ. 41(6), 727–740 (2017)

19. Olmos-Vega, F., Dolmans, D., Donkers, J., Stalmeijer, R.E.: Understanding how
residents’ preferences for supervisory methods change throughout residency train-
ing: a mixed-methods study. BMC Med. Educ. 15(177), 1–8 (2015)

20. Patel, P.: An evaluation of the current patterns and practices of educational super-
vision in postgraduate medical education in the UK. Perspect. Med. Educ. 5(4),
205–214 (2016)

21. Pringle Barnes, G., Cheng, M.: Working independently on the dissertation pro-
posal: experiences of international master’s students. J. Furth. High. Educ. 43(8),
1120–1132 (2019). https://doi.org/10.1080/0309877X.2018.1450965

22. Roets, L., Botha, D., van Vuuren, L.: The research supervisor’s expertise or post-
graduate student preparedness: which is the real concern? Afric. J. Nurs. Midwifery
19(2), 1–10 (2017)

23. Sidhu, G.K., Kaur, S., Chan, Y.F., Lee, L.F.: Establishing a holistic approach
for postgraduate supervision. In: Tang, S.F., Logonnathan, L. (eds.) Taylor’s 7th
Teaching and Learning Conference 2014 Proceedings, pp. 529–545. Springer, Sin-
gapore (2015). https://doi.org/10.1007/978-981-287-399-6 48

24. Sidhu, G.K., Kaur, S., Choo, L.P., Fook, C.Y.: Developing a framework for post-
graduate supervision. In: Teh, G.B., Choy, S.C. (eds.) Empowering 21st Century
Learners Through Holistic and Enterprising Learning, pp. 255–267. Springer, Sin-
gapore (2017). https://doi.org/10.1007/978-981-10-4241-6 26

25. Spiller, D., Byrnes, G., Fergusan, P.B.: Enhancing postgraduate supervision
through a process of conversational inquiry. High. Educ. Res. Dev. 32(5), 833–
845 (2013)

26. Stephens, S.: The supervised as the supervisor. Educ. + Train. 56(6), 537–550
(2014)

27. University of South Africa: Open Distance eLearning Policy. Pretoria (2018)
28. Wichmann-Hansen, G., Thomsen, R., Nordentoft, H.M.: Challenges in collective

academic supervision: supervisors’ experiences from a master programme in guid-
ance and counselling. High. Educ. 70(1), 19–33 (2015)

29. van Wyk, N.C., Coetzee, I.M., Havenga, Y., Heyns, T.: Appreciation of the research
supervisory relationship by postgraduate nursing students. Int. Nurs. Rev. 63(1),
26–32 (2016)

30. Yin, R.K.: Case Study Research: Design and Methods. SAGE, Thousand Oaks
(2014)

https://doi.org/10.1080/0309877X.2018.1450965
https://doi.org/10.1007/978-981-287-399-6_48
https://doi.org/10.1007/978-981-10-4241-6_26

Guidelines for Conducting Design Science
Research in Information Systems

Alta van der Merwe1(B) , Aurona Gerber1,2 , and Hanlie Smuts1

1 Department of Informatics, University of Pretoria, Pretoria, South Africa
{alta,aurona.gerber,hanlie.smuts}@up.ac.za

2 Centre for AI Research (CAIR), Pretoria, South Africa

Abstract. Information Systems (IS) as a discipline is still young and
is continuously involved in building its own research knowledge base.
Design Science Research (DSR) in IS is a research strategy for design
that has emerged in the last 16 years. Junior IS researchers are often
lost when they start with a project in DSR. We identified a need for a
set of guidelines with supporting reference literature that can assist such
novice adopters of DSR. We identified major themes relevant to DSR
and proposed a set of six guidelines for the novice researcher supported
with references summaries of seminal works from the IS DSR literature.
We believe that someone new to the field can use these guidelines to
prepare him/herself to embark on a DSR study.

Keywords: Information Systems · Design Science Research ·
Postgraduate students · Guidelines

1 Introduction

Design Science Research (DSR) in Information Systems (IS) has received signif-
icant attention in the last 16 years and is now accepted as an approach in top IS
publication outlets such as MISQ [14]. In DSR we differentiate between design
and a design theory, where design focuses on the “use of scientific principles,
technical information and imagination in the definition of a structure, machine
or system to perform pre-specified functions with the maximum economy and
efficiency” and design theory is “a prescriptive theory based on theoretical under-
pinnings which says how a design process can be carried out in a way which is
both effective and feasible” [52] (pp. 36–37). One of the first references in IS to
the concept of ‘design science’ (DS) was in 1993 when Cross referred to DS as
“an explicitly organised, rational and wholly systematic approach to design” [12]
(p. 66). Bayazit focused on the concept of man-made things when he defined
design research as a “systematic inquiry whose goal is knowledge of, or in, the
embodiment of configuration, composition, structure, purpose, value, and mean-
ing in man-made things and systems” [7] (p. 16). In contrast, Hevner (et al.)
focus more on the practical nature of DSR when referring to design science as
“fundamentally a problem solving paradigm” in that “DS seeks to create innova-
tions that define the ideas, practices, technical capabilities, and products through
c© Springer Nature Switzerland AG 2020
B. Tait et al. (Eds.): SACLA 2019, CCIS 1136, pp. 163–178, 2020.
https://doi.org/10.1007/978-3-030-35629-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35629-3_11&domain=pdf
http://orcid.org/0000-0002-3652-7512
http://orcid.org/0000-0003-1743-8167
http://orcid.org/0000-0001-7120-7787
https://doi.org/10.1007/978-3-030-35629-3_11

164 A. van der Merwe et al.

which the analysis, design, implementation, management, and use of IS can be
effectively and efficiently accomplished” [22] (p. 76).

Because of the many DS and DSR discourses, novice researchers in postgrad-
uate studies introduced to the world of research in IS have problems in making
sense of the concepts. Adopting DSR as the appropriate approach to use in
research requires from a researcher in-depth understanding of the literature and
the progression of the field. It is however imperative to understand that there
have been different viewpoints in the field, for example, on what could be con-
sidered as a research contribution, how DSR should be executed and what the
underpinning philosophy of DSR is. It is important for the novice DSR researcher
to take cognisance of these viewpoints, but it should also be understood that
guidance is needed to assist the researcher in embarking on DSR. The purpose of
this paper is therefore to contribute to the understanding of the novice researcher
in DSR of the concepts on which to focus and to give an overview of the lead-
ing works that should be considered in preparing to embark on a DSR research
project.

In this paper we will next discuss how we conducted our research in Sect. 2,
followed by the suggested guidelines in Sect. 3, before proceeding to an overview
of the different concepts to be consulted by the novice researcher or postgraduate
student. We conclude the paper in Sect. 4 with some suggestions for future work.

2 Method

The focus of this paper is on giving guidelines and discussing some of the con-
cepts that we believe are of importance to the novice researcher or postgraduate
student. We followed a two-phase approach to answer the research questions
listed in Table 1.

Table 1. Research questions

Research Questions Data Collection

rq1 What are the guidelines supervisors give to novice
DS researchers embarking on a new DSR project?

Focus group

rq2 Who are the key DSR research leaders to consult for
the different concepts identified in rq1?

Literature
review

rq3 What are the seminal works that should be
considered by a novice DS researcher?

Literature
review

Our two-phase approach (Subsects. 3.1 and 3.2) consists of involving a focus
group to answer the first research question and a systematic literature review in
the second phase to answer the second and third research questions.

For the first phase, the focus group, we used the guidelines provided by Barber
and Rossi [3] with three experienced DSR supervisors selected by convenience

Guidelines for Conducting Design Science Research in Information Systems 165

Table 2. Themes for conducting DSR

Focus Area Theme Description

Positioning of
DSR

Artefact “Design science products are of four types:
constructs, models, methods, and
implementations” [29]

Relevance,
Rigour,
Practice

This theme focuses on the discussion of
DSR as a practice (relevance), but also
contributes to existing theory (rigour) [22]

Design Theory Design theories are also seen as a product of
DSR by several authors [4], and emerged as
theme

Research Design Philosophy In conducting research, the ontological
stance of a researcher is discussed during
research design

Method The method followed during DSR was one
of the first focus areas in the development of
DSR as a field [45]

Communication Argument This theme relates to how a researcher
communicates the research to the research
community

Thesis
(Research
Report)

This theme relates to practices for sharing
the processes of the DSR and the new
knowledge related to the creation of the
artefact or the nature of the artefact

sampling from our university. The supervisors have been collectively involved in
supervision of 26 PhD and Master students who used the DSR approach in their
projects. The focus group was conducted as a group interview with the goal to
capture the way in which the supervisors guide the researcher new to DSR in
finding his/her way in order to do a DSR study. The summarised notes were
analysed with two goals: firstly to identify the themes (Table 2) and secondly
to identify the guidelines (Table 3) linked to the themes on conducting DSR
research. After the themes were identified by the focus group, a short survey
was send out to 22 experienced supervisors at other universities to confirm the
themes. There was a response from 13 supervisors from 9 universities where the
themes were confirmed with all of them—indicating that the DSR process is the
most important theme.

The second phase of our project was to identify the research leaders in DSR,
linked to the themes identified in the first phase, and to ensure that we were
able to give guidance in this paper on the seminal works linked to the themes.
We followed the steps of a systematic literature review with the goal to describe
available knowledge. This is in line with Okoli who states that “one of the reasons
for conducting a systematic literature review is to describe available knowledge
for professional practice” [34] (p. 82). An eight-step process was followed in

166 A. van der Merwe et al.

Table 3. DSR guidelines for novice researchers or postgraduate students

Guideline

1. Contextualise DSR in the field of Information Systems and be able to
distinguish between concepts such as design, design science and DSR

2. Understand the philosophical underpinning of research and the discourse on
the nature of DSR

3. Obtain a historical perspective of DSR and consult the work of the pioneers
in the field

4. Consider the role of the artefact in DSR and the different views on design
theory

5. Select an appropriate DSR method for execution of the research study

6. Strategise on how research done in DSR should be communicated in a report
such as a thesis

the review according to [34], including: (1) identifying the purpose, (2) drafting
protocol, (3) applying practical screen, (4) searching for literature, (5) extracting
data, (6) appraising quality, (7) synthesising studies and (8) writing the review.

For the first step, identifying the purpose, the research questions were used
as guideline. The draft protocol was compiled together with the application of
the practical screen, where the procedure was discussed that would be used
during the systematic literature review. The search terms identified included the
following terms (and combinations of the terms), ‘design science’, ‘design science
research’, ‘design research’, and ‘information systems’. During the fourth step,
searching for literature, we started with the ‘basket of eight’ in IS [1], followed
by searches for publications in DESRIST which hosted a conference every year
since 2006 that focus on DSR in IS.1 We followed an iterative process during the
search process: if a publication in later years referenced earlier works that were
not in the initial set, these were also included. This extended the documents to
include material from other sources not listed above. We excluded works from
other fields, such as Education, Engineering and Economic and Management
Sciences, since our focus was specifically only on IS. We acknowledge that there
might be valuable resources available in these fields, but we believe that this
opens up a new research topic where future research is possible to see how the
different fields align, especially from a practice point of view. We did not include
papers focusing only on DSR examples or case studies—all papers contributed
to the themes identified in the first phase (focus group) of the data collection.
In total 124 papers were identified, which were captured in an Excel spreadsheet
and included in the remaining analysis. Our next step was to extract the data,
where the extraction consisted of doing a Google scholar classification for each
paper to indicate the citation as in February 2019 (this information was used to
identify the most referenced papers) and then the papers were sorted according

1 http://desrist.org/about/.

http://desrist.org/about/

Guidelines for Conducting Design Science Research in Information Systems 167

to citation value. The next step was to appraise the quality, where each paper
was classified according to the themes identified in the focus group sessions and
papers that did not align to one of the themes were excluded. We synthesised the
studies by firstly grouping together studies that focused on specific themes with
high citations and then as a second step considering papers with lower citations
that focused on topics relevant to the themes identified for DSR. The last step
was to communicate the results of the research, as done in this paper.

3 An Information Systems Design Science Research
Roadmap

3.1 Phase 1: DSR Guidelines and Themes

The first phase of the data analysis was based on the data collected during the
focus group session. Firstly, seven themes were identified as pertinent in DSR
for a novice researcher. These themes were categorised into three broader focus
areas, including the positioning of DSR, the research design and communication
(Table 2).

For the focus area, positioning of DSR, the focus is on the artefact, the rele-
vance and rigour of creating the artefact, and the design theory. A second focus
area relates to the design of the research and focuses on the philosophy and the
method (or process) followed. The last focus area relates to the communication
of the design process followed, where a researcher should focus on the argument
and guidelines relating to structuring a thesis or publication. After identification
of the focus areas and themes, guidelines were identified that would help a novice
researcher or postgraduate student to conduct DSR (Table 3).

3.2 Phase 2: Relevant DSR Content According to Guidelines
and Themes

Here we discuss the literature that was identified during the systematic literature
review according to the themes and the guidelines identified.

Guideline 1: Contextualise DSR in the field of Information Systems and be
able to distinguish between concepts such as design, design science and DSR.

In IS, novice researchers are exposed to different research directions either by
supervisors or more formally in courses taken by students as part of their prepa-
ration for a research project. In a research project a researcher will typically
start exploring the problem, read the literature and explore different directions
to conduct the research, depending on what the researcher has been exposed to
or guidance given by a mentor. During this phase the researcher might consider
DSR if (s)he is involved in the process of design.

DSR is often discussed from the perspective of the science of the artificial, as
done by Simon [42], who introduced the notion that one can study the artefact
as part of science in 1969. We acknowledge that the concept of design was used

168 A. van der Merwe et al.

in other fields, such as engineering [51], but in IS the work of Simon as originally
written in 1969 and revised later editions [42] is cited by many authors as a
seminal work. Gregory argues that in doing design one is creating something that
does not yet exist [19]. There are two concepts of importance in this argument—
there is creation of something (the artefact), and there is the process of creation.
Design is therefore “both a noun and a verb” [19] (p. 3), or a process and a
product. In 1992 Walls emphasised that we as IS practitioners and IS users
have been involved in the process of design for several years through systems
development [52]. As mentioned in the introduction, Cross in 1993 described DS
as “a systematic approach to design” [12]. In the same year Smith and Browne
also focused on the topic of DS and emphasised the difficulties in design due
to human involvement [43]. They argue that Simon’s view in [42] was a DS
view, although Simon never used the term DS. Simon referred to the “science
of design”. According to [43], DS should focus on understanding the designer as
well as on the processes to be used for design. Another view is that of March and
Smith, who contrast natural science and DS and argue that DS is “concerned with
the creation of artefacts to attain goals that serve human purposes” [29] (p. 253).

DSR in IS reached a milestone in 2004 when Hevner (et al.) presented their
framework for IS research and guidelines for DSR [22]. In that work they referred
to DSR as a paradigm where the “knowledge and understanding of a prob-
lem domain and its solution are achieved in the building and application of the
designed artefact” [22] (p. 75). More or less in the same timeframe Vaishnavi
(et al.) started a web site focusing on DSR in IS [48]. According to them, “DSR
uses a set of synthetic and analytical techniques and perspectives for perform-
ing research in IS”. Furthermore, they define “DSR as being involved in the
creation of new knowledge, firstly through the development of artefacts and sec-
ondly through the study of the use of the artefact afterwards”.

Guideline 2: Understand the philosophical underpinning of research and the
discourse on the nature of DSR.

In conducting the data collection on the ‘philosophy’ theme, only works were
included that explicitly discuss the philosophical stand of DSR. Research con-
ducted in IS is mostly multi-disciplinary and the philosophy mostly found is
either positivist, interpretivist, or critical research. In the papers reviewed, three
discourses emerged, including (1) DSR as paradigm, (2) Traditional paradigms,
and (3) Pragmatism: see below.

DSR as Paradigm. Originally Vaishnavi (et al.) discussed DSR as a paradigm
on its own [48]. They argued that design can be research and that it changes
the world through the development of new artefacts. Their initial ideas were
shared on a website hosted by DESRIST and later replicated in their book [47]
in which they contrast interpretivism, positivism, and DSR in tabular form. We
summarise their table in Table 4, as a partial view of their comparison, to show
how DSR is described.

Cross also argues for the recognition of DSR as discipline [11]: he states that
we can have discussions on design and the value of the creative activity and

Guidelines for Conducting Design Science Research in Information Systems 169

Table 4. Philosophical assumptions of DSR, taken from [48]

Ontology Epistemology Methodology Axiology

Multiple,
contextually
situated alternative
world-states. Socio-
technologically
enabled

Knowing through
making; objectively
constrained
construction within
a context. Iterative
circumscription
reveals meaning

Developmental
Measure
artefactual
impacts on the
composite
systems

Control; creation;
problem-solving;
progress (i.e.
improvement);
understanding

share experiences of the process. He further argues that designers understand
and know the artificial world and know how to change and add to this world.

Traditional Paradigms. In the second discourse on philosophical grounding of
DSR, arguments are provided for the use of philosophies traditionally used in
IS, such as interpretivism or positivism. Gregory claims that “DSR is conducted
most frequently within a positivistic epistemological perspective” [19]. Venable
(et al.) propose a framework for understanding design research where the frame-
work focuses on theory building as well as evaluation of the solutions from a pos-
itivist or interpretivist angle [49]. Carlsson proposes a framework of IS DSR with
the aim to develop practical knowledge for the design and realisation of IS ini-
tiatives including socio-technical systems [9]. His underpinning philosophy of the
framework is critical realism. Critical realism’s aim is to “recognize the reality of
the natural order and the events and discourses of the social world”. It holds that
we will only be able to understand—and so change—the social world if we identify
the structures at work that generate those events or discourses [9] (p. 200).

Pragmatism as Paradigm. March and Smith were some of the first authors to
emphasise pragmatism when they argued that truth is what works in practice
[29]. In 2007, Hevner devoted the closure of his article to claiming pragmatism as
the nature of DSR [20]. His view of pragmatism is that it is a “school of thought
that considers practical consequences or real effects to be vital components of both
meaning and truth” [20] (p. 93). He argues that the synergy between practical
and theoretical contributions is what defines good DSR. His view is confirmed
in later papers [15,21,28]. A useful source on the nature of DSR is the paper
by Goldkuhl [15]. In this seminal work he investigates the epistemological foun-
dation for design research and argues that the pragmatist perspective is fit for
DSR based on its focus on utility and knowledge growth through development,
starting with a problematic situation and aiming for knowledge (by) building.
More recently Deng and Ji argued that pragmatism is the underpinning philos-
ophy for DSR [13] but does not exclude different phases wherein a researcher
is involved as interpretivist, positivist and constructive observer or intervener
(Fig. 1).

170 A. van der Merwe et al.

Fig. 1. Iterative design science process according to [13]

Fig. 2. IS research framework according to [22]

Guideline 3: Obtain a historical perspective of DSR and consult the work of
the pioneers in the field.

As mentioned previously, the field of DSR evolved much earlier in other fields
such as engineering and architecture. The most frequently cited work in IS is the
work of Simon [42] wherein he argues for the acceptance of the study and devel-
opment of artificial or man-made objects. He also refers to problems experienced
in management in the field of IS.

Following the work of Simon [42], the seminal work of Hevner (et al.) [22] from
the year 2004 was most highly cited; in it they contrasted behavioural science
and DS, and presented a framework (Fig. 2) for IS research together with a set
of guidelines for DSR.

Hevner (et al.) argue that IS research has the dual value of rigour and rele-
vance [22]. On the rigour side (Fig. 2), the researcher gets applicable knowledge

Guidelines for Conducting Design Science Research in Information Systems 171

Table 5. DSR guidelines according to [22]

Guideline Advice

1. Design as Artefact Design science research must produce a viable
artefact in the form of a construct, a model, a
method, or an instantiation

2. Problem Relevance The objective of design science research is to
develop technology-based solutions to important
and relevant business problems

3. Design Evaluation The utility, quality, and efficacy of a design
artefact must be rigorously demonstrated via
well-executed evaluation methods

4. Research Contributions Effective design science research must provide
clear and verifiable contributions in the areas of
the design artefact, design foundations, and/or
design methodologies

5. Research Rigour Design science research relies upon the application
of rigorous methods in both the construction and
evaluation of the design artefact

6. Design as Search The search for an effective artefact requires
utilising available means to reach desired ends
while satisfying laws in the problem environment

7. Communication of Results Design science research must be presented
effectively to both technology-oriented and
management-oriented audiences

from the knowledge base, including existing theories, frameworks etc. On the
relevance side the need for a new artefact arises, articulated as business needs
(Fig. 2). Business needs from the environment can stem from people, technology,
or organisations. In the centre are the activities related to development, building
and evaluation of the new artefact. At the bottom of Fig. 2 the contribution is
both back to the environment in the form of an artefact with practical value and
to rigour in the form of new knowledge. A further contribution of [22] are the
guidelines summarised in Table 5.

Prior to [22], three papers were published in the 1990s that led to significant
citations. These included that by March and Smith [29], which proposed the
four types of artefacts referenced in later years by several authors, that of Walls
(et al.) [52], which focused on the creation of a design theory (Guideline 4), and
that of Nunamaker (et al.) [32], which proposed to conduct design research based
on the system analysis and design method (Guideline 5). In 2007 Gregor and
Jones built on [52] in design theory (Guideline 4) and distinguished between a
product and a process artefact [18]. Gregor and Hevner elaborated on the nature
of design research [17], and provided a guide for reporting on and communicating
DSR (Guideline 6). These papers, which are regarded as seminal works, are
summarised in Table 6.

172 A. van der Merwe et al.

Table 6. Seminal publications in DSR

Ref. #Cit. Year Significance

[29] 3979 1995 Initially proposed types of artefacts

[52] 1530 1992 Focus on design theory; method for theory building

[32] 1508 1991 Proposes method; argues from system development
background for design

[18] 1428 2007 Focus on design theory; distinguishes between two different
kinds of purposeful artefacts that can be designed: product
artefacts and process artefacts

[17] 1402 2013 DSR overview; positions DSR; gives guidance on publishing

[11] 1306 2001 Nature of DSR; distinguishes between scientific design,
design science, a science of design

[30] 1282 2002 Example of a design theory for knowledge management
processes

More recent work with fewer citations that serves as a good starting point
in understanding the concepts in DSR has been published by Baskerville (et al.)
[4], and Deng and Ji [13].

In the early days of DSR many authors argued that DSR and action research
(AR) would be the same. A novice researcher needs to take cognisance of these
discussions to be able to understand that, though there are similarities, they are
not the same. Here we recommend Iivari [23,24] and Sein (et al.) [41]. Another
contribution on the topic of AR and DSR is the work by Lee that combines
action and design research methods into a single framework for design [27].

Guideline 4: Consider the role of the artefact in DSR and the different views
on design theory.

Central to DSR is the artefact or an artificial and man-made object. The first
mention of different types of artefacts is by March and Smith as constructs,
models, methods and implementations [29]. Winter gives examples of constructs
that include modelling primitives implemented by meta-models of modelling
tools, process models implemented as workflows, models and project methods
used during software package introduction as a method [53]. Purao claimed in
2002 that the artefact created in DSR is software or a system [37]. Hevner and
Chatterjee as well as Vaishnavi (et al.) also give as examples of the artefact
algorithms, human/computer interfaces, languages, and system design method-
ologies [21,48]. In 2010 Offerman (et al.) wrote a literature review on the types
of artefacts in IS design science and suggested a topology with eight types of
artefacts [33]: these included a system design, method, language (notation), algo-
rithm, guideline, requirements, pattern and metric.

In 2003, Rossi and Sein (in acknowledged collaboration with Purao) added
‘better theories’ as artefacts [40], however, not all experts agreed. Winter argued

Guidelines for Conducting Design Science Research in Information Systems 173

that, although theory building is not design science research, theories as inter-
mediate artefacts need to be included in the system of relevant artefacts for IS
design science research [53] (p. 472). Baskerville (et al.) emphasised that DSR
brings about both practical relevance by developing useful artefacts and scientific
rigour by the formulation of design theories [4].

The topic of design theories was discussed in the early introduction of DSR
into IS. Many of the later publications build on the work of Walls (et al.) who
distinguished between a design product and a design process in their classifi-
cation of the components of an information systems design theory (ISDT) [52].
They characterise design theories as (1) dealing with goals as contingencies, (2)
never involving pure explanation or prediction, (3) being prescriptive, (4) being
composite theories that encompass kernel theories from natural science, social
science and mathematics. They claim that whereas “explanatory theories tell
what is, predictive theories tell what will be, and normative theories tell what
shall be, design theories tell how to/because” [52] (p. 40). It should be noted
that Walls (et al.) regard ‘theory’ as the design of an artefact and the method
followed. This is evident when they propose ISDT as an output of design science.

Gregor contributed to the discussion on theory by defining five classes of
theory [16]. Design theory is the last of this set of classes, which includes “(1)
theory for analysing, (2) theory for explaining, (3) theory for predicting, (4) the-
ory for explaining and predicting, and (5) theory for design and action”. In their
seminal work on design theory published in 2007, Gregor and Jones emphasised
that “we need to pay attention to how design knowledge is expressed as theory”
[18]. They extended the work of [52] and identified eight separate components
of design theories.

Theory development will remain topical in DSR and several publications are
recommended, such as the work by Kuechler and Vaishnavi [26], and Baskerville
and Pries-Heje [5]. Also [4] should be considered as it reflects on the balance
between contributions in science (theory) and technology (artefacts). Accord-
ingly, in DSR some degree of design theorising should be expected, where the
initial conceptualisation of the artefact is the first step in theorising; however,
design theory (prescriptive, scientific knowledge) is a desirable goal as theorising
around a class of artefacts progresses [4] (p. 369).

Guideline 5: Select an appropriate DSR method the research project.

Originally March and Smith argued that design science consists of two basic
activities, namely building and evaluating [29]. Here we therefore give an
overview of the subsequent pertinent works with regard to the methodology
for DSR construction, and then discuss the evaluation of DSR.

All methods described in the literature on conducting DSR consist of a com-
bination of the general design and development phases, namely identification,
design, development and testing. Vaishnavi (et al.) published one of the often
used and referenced methods that they call a DSR process model [48], which was
based on [45] and is illustrated in Fig. 3. In this model they illustrate that a DSR
project goes through cycles of awareness, suggestion, development, evaluation,

174 A. van der Merwe et al.

Fig. 3. DSR process model according to [22]

and conclusion. The knowledge or theory contribution is through circumscrip-
tion illustrated on the left-hand side as an exit point to development, evaluation
or conclusion. They also argue that the outputs for each phase range from the
proposal during awareness, the tentative design during the suggestion phase, the
artefact during development, performance measures for the evaluation and then
lastly the results in the conclusion.

Another popular DSR process model often used is the work by Peffers (et
al.) [36]. In their process model (Fig. 4) the DSR cycles through “problem identi-
fication and motivation, objectives of solution, design and development, demon-
stration, evaluation and communication”. They provide for different entry points
into the process model, depending on the type of development to be conducted.
It might be that one has an existing artefact that needs refinement, which will
not necessarily need to go through all the phases, but might for example enter
only at the design and development phase.

Other significant publications on methods for DSR include Baskerville (et
al.) wherein they propose a seven-phase ‘soft’ DS methodology [6], vom Brocke
and Buddendic who that suggest that the DSR cycle consists of six phases [8],
as well as Alturki (et al.) [2]. Vahidov presented an innovative way of developing
the artefact [46] based on Zachman’s Framework [54].

For the evaluation of the artefact, the pioneers working in this field were
Pries-Heje, Baskerville and Venable, who published several papers [38,39,49]
building up towards their framework for evaluation in design science, FEDS
[50]. The FEDS was designed to assist DSR researchers in deciding on a way
to evaluate the outcomes during development. They highlight two dimensions
in their framework, namely the “functional purpose of the evaluation (formative
or summative) and the paradigm of the evaluation (artificial or naturalistic)”.
In their framework they identified four different possible strategies, namely the
“quick and simple strategy, the human risk and effectiveness evaluation strat-

Guidelines for Conducting Design Science Research in Information Systems 175

Fig. 4. DSR process model according to [36]

egy, the technical risk and efficacy evaluation strategy, and the purely technical
artefact strategy”. Accordingly they provided a four-step process for choosing an
approach for a particular DSR, namely: (1) explicate the goals of the evaluation,
(2) choose the evaluation strategy or strategies, (3) determine the properties to
be evaluated, and (4) design the individual evaluation episode(s).

Other significant work on evaluation includes Cleven (et al.), Peffers (et al.),
as well as Sonnenberg and vom Brocke [10,35,44]. A ‘roadmap’ to conduct DS
research was published by Alturki (et al.) [2] which adopts the three DS research
cycles of [20], namely: rigour, relevance, and design. Their contribution is a 14-
step procedure that novices can follow to do DSR.

Guideline 6: Strategise on how DSR research (results) should be communicated
in a report (paper or thesis).

The last guideline for DSR is applicable when one needs to strategise on how
to communicate research results. Gregor and Hevner give advice on publishing
papers in DSR [17], whereby they propose a publication schema for recording
results. They argue that the four questions that reviewers will ask are whether
the problems discussed in a paper are of substantial interest, whether the prob-
lems are solved or a contribution is made to a solution, whether the methods
are new, and whether a paper increases understanding of the area of research.

Kotze (et al.) used the guidelines of [22] for DSR and commented on questions
to be asked for each of the guidelines [25]. Some of the considerations are: to be
clear from the start about the type of artefact that will be designed, to reconsider
the uniqueness of the artefact, to think about how one will do the evaluation,
what the contribution will be, how one will collect information needed to ‘build’
the artefact or evaluate the artefact, and what the value of the artefact is.

In [31] we described a method that a student can use to write a thesis in
DSR according to the steps of [48]. We argue that the introduction and litera-
ture review of a thesis map to the ‘awareness phase’, the literature review and

176 A. van der Merwe et al.

research design map to the ‘suggestion phase’, the research design and body of
the thesis give an overview of ‘development’, while the body of the thesis should
also describe the ‘evaluation phase’. The last phase, ‘conclusion’, will then be
presented in the conclusion of a thesis [31].

4 Conclusion

In this paper we provide an overview of DSR as a guide for a novice IS researcher
embarking on a DSR project. After having identified the major themes relevant
to a DSR project, and after having proposed a set of six guidelines for the novice
researcher, we corroborated our guidelines by referring to the seminal works of
the DSR field.

We believe that the value of this paper is two-fold. Firstly, a researcher unfa-
miliar with the field can follow our guidelines to prepare him/herself for a DSR
project. Secondly, the seminal DSR works to date (within IS) are listed and
summarised such as to serve as a reference guide for postgraduate students.

References

1. AIS: Information Systems Basket of Eight (2019). https://aisnet.org/general/
custom.asp?page=SeniorScholarBasket

2. Alturki, A., Gable, G.G., Bandara, W.: A design science research roadmap. In:
Jain, H., Sinha, A.P., Vitharana, P. (eds.) DESRIST 2011. LNCS, vol. 6629, pp.
107–123. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20633-
7 8

3. Bader, G.E., Rossi, C.A.: Focus Groups: a Step-by-Step Guide. Bader Gr. (1999)
4. Baskerville, R., Baiyere, A., Gergor, S., Hevner, A., Rossi, M.: Design science

research contributions: finding a balance between artifact and theory. J. Assoc.
Inf. Syst. 19(5), 358–376 (2018)

5. Baskerville, R., Pries-Heje, J.: Explanatory design theory. Bus. Inf. Syst. Eng. 2(5),
271–282 (2010)

6. Baskerville, R., Pries-Heje, J., Venable, J.: Soft design science methodology. In:
Proceedings of DESRIST 4th International Conference on Design Science Research
in Information Systems and Technology. ACM (2009)

7. Bayazit, N.: Investigating design: a review of forty years of design research. Des.
Issues 20(1), 16–29 (2004)

8. vom Brocke, J., Buddndick, C.: Reusable conceptual models – requirements based
on the design science research paradigm. In: Proceedings of DESRIST. Springer
(2006)

9. Carlsson, S.A.: Towards an information systems design research framework: a crit-
ical realist perspective. In: Proceedings of DESRIST, p. 21 (2006)

10. Cleven, A., Gubler, P., Höner, K.M.: Design alternatives for the evaluation of
design science research artifacts. In: Proceedings of DESRIST. ACM (2009)

11. Cross, N.: Designerly ways of knowing: design discipline versus design science. Des.
Issues 17(3), 49–55 (2001)

12. Cross, N.: Science and design methodology: a review. Res. Eng. Des. 5(2), 63–69
(1993)

https://aisnet.org/general/custom.asp?page=SeniorScholarBasket
https://aisnet.org/general/custom.asp?page=SeniorScholarBasket
https://doi.org/10.1007/978-3-642-20633-7_8
https://doi.org/10.1007/978-3-642-20633-7_8

Guidelines for Conducting Design Science Research in Information Systems 177

13. Deng, Q., Ji, S.: A review of design science research in information systems: con-
cept, process, outcome, and evaluation. Pac. Asia J. Assoc. Inf. Syst. 10(1), 36
(2018)

14. Goes, P.B.: Design science research in top information systems journals. MIS Q.
38(1), iii–viii (2014)

15. Goldkuhl, G.: Design research in search for a paradigm: pragmatism is the answer.
In: Helfert, M., Donnellan, B. (eds.) EDSS 2011. CCIS, vol. 286, pp. 84–95.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33681-2 8

16. Gregor, S.: The nature of theory in information systems. MIS Q. 30(3), 611 (2006)
17. Gregor, S., Hevner, A.R.: Positioning and presenting design science research for

maximum impact. MIS Q. 37(2), 337–355 (2013)
18. Gregor, S., Jones, D.: The anatomy of a design theory. J. Assoc. Inf. Syst. 8(5),

312–335 (2007)
19. Gregory, R.W.: Design science research and the grounded theory method: charac-

teristics, differences, and complementary uses. In: Heinzl, A., Buxmann, P., Wendt,
O., Weitzel, T. (eds.) Theory-Guided Modeling and Empiricism in Information
Systems Research, pp. 111–127. Physica-Verlag, Heidelber (2011)

20. Hevner, A.R.: A three cycle view of design science research. Scand. J. Inf. Syst.
19(2), 87–92 (2007)

21. Hevner, A.R., Chatterjee, S.: Design science research in information systems. In:
Hevner, A.R., Chatterjee, S. (eds.) Design Research in Information Systems, pp.
9–22. Springer, Boston (2015). https://doi.org/10.1007/978-1-4419-5653-8 2

22. Hevner, A.R., Ram, S.M., Park, J.: Design science in information systems research.
MIS Q. 28(1), 75–105 (2004)

23. Iivari, J.: Distinguishing and contrasting two strategies for design science research.
Eur. J. Inf. Syst. 24(1), 107–115 (2015)

24. Iivari, J.: Information systems as a design science. In: Vasilecas, O., Wojtkowski,
W., Zupančič, J., Caplinskas, A., Wojtkowski, W.G., Wrycza, S. (eds.) Informa-
tion Systems Development, pp. 15–27. Springer, Boston (2005). https://doi.org/
10.1007/0-387-28809-0 2

25. Kotze, P., van der Merwe, A., Gerber, A.: Design science research as research
approach in doctoral studies. In: Proceedings of AMCIS (2015)

26. Kuechler, W., Vaishnavi, V.: A framework for theory development in design science
research: multiple perspectives. J. Assoc. Inf. Syst. 13(6), 29 (2012)

27. Lee, A.S.: Action is an artifact. In: Kock, N. (ed.) Information Systems Action
Research, pp. 43–60. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-
36060-7 3

28. Levy, M., Hirschheim, R.: Removing the positivist straight jacket from information
systems design science research. In: Proceedings of ECIS, p. 13 (2012)

29. March, S.T., Smith, G.F.: Design and Natural Science Research on Information
Technology. Decis. Support Syst. 15(4), 251–266 (1995)

30. Markus, L., Majchrzak, A., Gasser, L.: A design theory for systems that support
emergent knowledge processes. MIS Q. 26(3), 179–212 (2002)

31. van der Merwe, A., Gerber, A., Smuts, H.: Mapping a design science research cycle
to the postgraduate research report. In: Liebenberg, J., Gruner, S. (eds.) SACLA
2017. CCIS, vol. 730, pp. 293–308. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69670-6 21

32. Nunamaker, J.F., Chen, M., Purdin, T.D.M.: Systems development in information
systems research. J. Manag. Inf. Syst. 7, 89–106 (1991)

https://doi.org/10.1007/978-3-642-33681-2_8
https://doi.org/10.1007/978-1-4419-5653-8_2
https://doi.org/10.1007/0-387-28809-0_2
https://doi.org/10.1007/0-387-28809-0_2
https://doi.org/10.1007/978-0-387-36060-7_3
https://doi.org/10.1007/978-0-387-36060-7_3
https://doi.org/10.1007/978-3-319-69670-6_21
https://doi.org/10.1007/978-3-319-69670-6_21

178 A. van der Merwe et al.

33. Offermann, P., Blom, S., Schönherr, M., Bub, U.: Artifact types in information
systems design science – a literature review. In: Winter, R., Zhao, J.L., Aier, S.
(eds.) DESRIST 2010. LNCS, vol. 6105, pp. 77–92. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13335-0 6

34. Okoli, C.: A guide to conducting a standalone systematic literature review. Com-
mun. Assoc. Inf. Syst. 37, 879–910 (2015)

35. Peffers, K., Rothenberger, M., Tuunanen, T., Vaezi, R.: Design science research
evaluation. In: Peffers, K., Rothenberger, M., Kuechler, B. (eds.) DESRIST 2012.
LNCS, vol. 7286, pp. 398–410. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29863-9 29

36. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science
research methodology for information systems research. J. Manag. Inf. Syst. 24(3),
45–77 (2007)

37. Purao, S.: Design research in the technology of information systems: truth or dare.
Techncal report, GSU Department of CIS (2002)

38. Pries-Heje, J., Baskerville, R.: The design theory nexus. MIS Q. 32(4), 731 (2008)
39. Pries-Heje, J., Baskerville, R., Venable, J.R.: Strategies for design science research

evaluation. In: Proceedings of ECIS (2008)
40. Rossi, M., Sein, M.K.: Design research workshop: a proactive research approach.

Technical report (2003)
41. Sein, M.K., Henfridsson, O., Purao, S., Rossi, M., Lindgren, R.: Action design

research. MIS Q. 35(1), 37 (2011)
42. Simon, H.A.: The Sciences of the Artificial, 3rd edn. MIT Press, Cambridge (1996)
43. Smith, G.F., Browne, G.J.: Conceptual foundations of design problem solving.

IEEE Trans. Syst. Man Cybern. 23(5), 1209–1219 (1993)
44. Sonnenberg, C., vom Brocke, J.: Evaluation patterns for design science research

artefacts. In: Helfert, M., Donnellan, B. (eds.) EDSS 2011. CCIS, vol. 286, pp.
71–83. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33681-2 7

45. Takeda, H., Veerkamp, P., Tomiyama, T., Yoshikawa, H.: Modeling design pro-
cesses. AI Mag. 11(4), 12 (1990)

46. Vahidov, R.: Design researcher’s is artifact: a representational framework. In: Pro-
ceedings of DESRIST. Springer (2006)

47. Vaishnavi, V., Kuechler, W.: Design Science Research Methods and Patterns:
Innovating Information and Communication Technology. CRC Press, Boca Raton
(2015)

48. Vaishnavi, V., Kuechler, B., Petter, S.: Design Science Research in Information
Systems (2004). http://desrist.org/design-research-in-information-systems/

49. Venable, J., Pries-Heje, J., Baskerville, R.: A comprehensive framework for eval-
uation in design science research. In: Peffers, K., Rothenberger, M., Kuechler, B.
(eds.) DESRIST 2012. LNCS, vol. 7286, pp. 423–438. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29863-9 31

50. Venable, J., Pries-Heje, J., Baskerville, R.: FEDS: a framework for evaluation in
design science research. Euro. J. Inf. Syst. 25(1), 77–89 (2016)

51. Vincenti, W.: What Engineers Know and How They Know It: Analytical Studies
from Aeronautical History. Johns Hopkins University Press, Baltimore (1990)

52. Walls, J.G., Widmeyer, G.R., El Sawy, O.A.: Building an information systems
design theory for vigilant EIS. Inf. Syst. Res. 3(1), 36–59 (1992)

53. Winter, R.: Design science research in Europe. Eur. J. Inf. Syst. 17(5), 470–475
(2008)

54. Zachman, J.: About the Zachman Framework (2008). https://www.zachman.com/
about-the-zachman-framework

https://doi.org/10.1007/978-3-642-13335-0_6
https://doi.org/10.1007/978-3-642-29863-9_29
https://doi.org/10.1007/978-3-642-29863-9_29
https://doi.org/10.1007/978-3-642-33681-2_7
http://desrist.org/design-research-in-information-systems/
https://doi.org/10.1007/978-3-642-29863-9_31
https://www.zachman.com/about-the-zachman-framework
https://www.zachman.com/about-the-zachman-framework

Our Students, Our Profession

Making Sense of Unstructured Data:
An Experiential Learning Approach

Sunet Eybers(B) and Marie J. Hattingh

Department of Informatics, University of Pretoria, Pretoria, South Africa
{sunet.eybers,marie.hattingh}@up.ac.za

Abstract. The need for competent data scientists is recognised by
industry practitioners worldwide. Currently tertiary education institu-
tions focus on the teaching of concepts related to structured data (fixed
format), for example in database management. However, the hidden
value contained in unstructured data (no fixed format) motivated the
need to introduce students to methods for working with these data sets.
Therefore, an experiential learning approach was adopted to expose stu-
dents to real-life unstructured data. Third year students were given an
assignment whereby they could use any publicly available un-structured
data set or an unstructured dataset supplied to them following a set
methodology (CRISP-DM) to discover and describe the hidden mean-
ing of the data. As part of the assignments students had to reflect on
the process. Twenty student assignments were analysed in an attempt
to identify the effectiveness of the experiential learning approach in the
acquisition of skills pertaining to unstructured data. Our findings indi-
cate that the experiential learning approach is successful in the teaching
of the basic skills needed to work with unstructured data. We discuss
the appropriateness of the prescribed methodology, the students’ perfor-
mance, and lessons learnt. On the basis of these lessons we conclude with
some recommendations for educating future data scientists.

Keywords: Experiential learning · Big data · Unstructured data ·
CRISP-DM methodology · Data scientists

1 Introduction

Data has always been a key asset to organisations. Nowadays this asset has
become even more important due to the potential value contained in big datasets
[11,33]. Big Data refers to data with unique characteristics such as the three V:
volume, velocity and variety [12,25,33]. Some scholars even include an additional
characteristic, namely value [11,33,36]. Volume refers to the size and subsequent
quantity of data sets which are often measured in terabytes or even petabytes
[16,33]. Velocity refers to the continuous generation of data by applications such
as social media whilst variety refers to different kinds of data such as opera-
tional data from various business systems, xml files and text messages [16,33].

c© Springer Nature Switzerland AG 2020
B. Tait et al. (Eds.): SACLA 2019, CCIS 1136, pp. 181–196, 2020.
https://doi.org/10.1007/978-3-030-35629-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35629-3_12&domain=pdf
http://orcid.org/0000-0002-0545-3688
http://orcid.org/0000-0003-1121-8892
https://doi.org/10.1007/978-3-030-35629-3_12

182 S. Eybers and M. J. Hattingh

These different kinds of data are further classified as structured (fixed format),
semi-structured (consisting of both fixed format and free text or no fixed for-
mat data), and unstructured (no fixed format) [33]. Value refers to the untapped
potential worth of the meaning hidden in large data sets [12], which might be eco-
nomically or financially significant [11,36]. Unfortunately, unleashing the value
contained in these data sets can be challenging due to reasons pertaining to
technologies, processes and human aspects [12]. For example, working with tech-
nologies such as advanced data mining tools requires specialised statistics tools;
processes to combine data sources from various locations might be unclear; data
scientists working with big datasets require a combination of business-, technical
and analytical skills which is rarely found in today’s human resources [34].

Despite the current scarcity of data scientists the position is said to be a
“most exciting career opportunity of the 21st century” with above-average remu-
neration packages [2]. The demand for data scientists and data engineers is pro-
jected to grow with 39% [27]. The challenge from an educational perspective is
to ensure that students studying in the areas of informatics, information science
and computer science (ICT) are ready to meet the demands of industry prac-
titioners upon graduation [3,32]. Although the majority of educational institu-
tions currently focus on skills to work with data, the curriculum has a strong
focus on working with structured data such as databases, data marts and data
warehouses; for comparison see [20,21].

A current challenge in the curriculum, in particular the institution under
study, is to introduce students to ways and methods of working with unstruc-
tured data obtained from social media platforms. Also, students often, as part
of their post-graduate research projects (or fourth-year projects), are faced with
challenges to work with unstructured data—a skill they have often not been
exposed to during undergraduate studies. Therefore, our third-year semester
module aimed at introducing students to working with unstructured data from
social media platforms. A set methodology was prescribed to guide students
through the assignment (namely the CRISP-DM Cross-Industry Standard Pro-
cess for Data Mining explained later in this paper).

We followed an experiential learning approach where students could select
their own set of unstructured data from any social media source and subsequently
any tool or technique to extract meaning from those data. Our aim was to
evaluate how effective the learning process was. The research question was: how
effective is an experiential learning approach in the teaching of basic skills to
work with unstructured data?

This paper continues with a brief introduction to the experiential learning
approach, followed by related work focused on the topic of data science educa-
tion. The CRISP-DM methodology is explained followed by a description of the
case study and proposed research method. The analysis and discussion section
describes the findings after evaluating the student assignments in relation to the
phases of the experiential learning approach and the six steps of CRISP-DM.
The discussion also includes the lecturers’ reflection.

Making Sense of Unstructured Data 183

Fig. 1. Kolb’s experiential learning cycle [15]

2 Experiential Learning

Experiential learning theory was introduced by Kolb in 1984 [18] and widely
adopted in various educational environments [19] across fields such as medical
and health [14], information systems [10], and marketing [4] (to name a few).
The theory postulated that learners acquire new knowledge through practically
completing tasks, i.e. their experience of interaction with the construct under
discussion [18]. Figure 1 illustrates how learning is perceived as a continuous
process that consists of four cycles, namely: experiencing (i.e. interaction with
the construct), reflecting (review and evaluate the experience), thinking (drawing
conclusions after reflecting on the experience), and acting (apply what has been
learned from the process).

Learning can start at any point in the cycle. The benefits associated with
experiential learning are: (1) increased opportunities for ‘analytical’ reflection on
tasks completed — in particular ‘short term experiential learning’ where, similar
to our study, the task do not have a long duration [28,38]; (2) ‘substantive’
benefits which refer to the ability of students to relate theoretical constructs to
the practical exposure on a deeper level than just theoretical exposure [38]; (3)
‘methodological’, which refers to practically applying concepts in a structured
way [38]; (4) ‘pedagogical’, which refers to active participation of the learners
in their own and peer learning [38]; (5) ‘transition’, which refers to bridging
the gap between applying concepts during theoretical studies and the practical
requirements of industry practitioners. Lee identified lower-level benefits after a
comparison between in-classroom learning and field-based experiential learning
activities [23], which included an increase in ‘soft’ sills (e.g. the ability to adopt
to change), ‘leadership’ and ‘financial management’ skills. Accordingly, learners
could establish their own networks of practitioner contacts [4].

3 Education in Data Science

Davenport and Patil describe a data scientist as a “hybrid” of “data hacker,
analyst, communicator and trusted adviser” [8] with the abilities to: write

184 S. Eybers and M. J. Hattingh

program code, understand contextually the environment in which they func-
tion, communicate well in order to convey the message contained in the data to
various audiences [8,25]. These skills can only be acquired through the exposure
to real-life scenarios.

Goh and Zhang acknowledged the challenge of exposing students to real-life
scenarios when working with data [13]. They referred to current educational
efforts to teach students about data analytics as artificial and simplified due to
the utilisation of ‘canned’ data (a term used to refer to clean, structured data).
They, too, adopted an experiential learning approach whereby they offered stu-
dents an opportunity to work on a data analytics project in partnership with a
large ‘Fortune 500’ company (as a live case study). The objectives of their study
were: to investigate the influence of the adoption of an experiential learning app-
roach on the teaching of data analytics; to evaluate students’ perceptions and
attitudes towards the experiential learning approach; and to identify challenges
associated with their experience when working with big data. Their findings
suggested that, although learning outcomes were met and student motivation
increased, the students were overwhelmed by the task of statistical analysis
of big datasets. Their project entailed additional time challenges as students
required more communication with the instructors as well within their groups.
Their groups also experienced many failures which—although part of the normal
learning process—had to be explained to the (disappointed) students.

Serrano (et al.) adopted experiential learning methods as part of an ongo-
ing data science teaching project focusing on deep learning [9]. An ‘incremental’
teaching approach was used to allow students to adequately reflect their expe-
riences when engaging with the content presented. From the ‘lessons learned’
they proposed the development of a platform for experiential learning that will
act as a repository for capturing and storing students’ experiences, to be used
by both other students and instructors. They furthermore provided a detailed
list of functionalities that such a repository should offer, such as a rating system
to gauge the ‘difficulty’ of students’ experiences as well as an anonymous peer
review functionality to facilitate students’ reflections.

As part of their investigation of the utilisation of predictive analytics in a
supply chain management environment, Schönherr and Speier-Pero evaluated the
curriculum of data scientists [29]. They found that in one particular instance,
where an experiential learning approach was adopted (in which students had to
complete a ‘corporate analytics project’ within an organisation), students were
immediately employable by organisations at above-average remuneration (in line
with industry requirements).

4 CRISP-DM: The Cross-Industry Standard Process
for Data Mining

The CRISP-DM methodology was introduced by a consortium of manufactur-
ing companies, as well as software and hardware organisations in an attempt
to standardise and formalise a method for data mining [26]. Their result was

Making Sense of Unstructured Data 185

an independent conceptual model which proposed data as central to a six-step
process to be followed during a data mining cycle. These six steps started with a
clear understanding of the business under investigation, the data to be analysed,
the preparation of those data (e.g. cleansing), the application of specific models
to analyse the data (e.g. linear regression models), the evaluation of the results
as a consequence of modelling, and finally the deployment or distribution of the
results and/or the model to the stakeholders.

The CRISP-DM methodology is similar to other data mining approaches
such as the Knowledge Discovery Databases (KDD) process model or the Sam-
ple, Explore, Modify, Model, Assess (SEMMA) model [30]. Although the num-
bers of data mining steps differ amongst those (9 in KDD, 6 in CRISP-DM, 5 in
SEMMA), the meanings of the steps are similar. For example, the ‘data under-
standing’ step (2) of the CRISP-DM methodology corresponds to the ‘selection
of a data sample set’ and the ‘exploration of the data sample set’ in SEMMA as
well as to the ‘selection and preprocessing of data’ in KDD [1].

The CRISP-DM methodology was furthermore chosen for the purpose of
this experiential learning exercise for the following reasons: (1) it was concep-
tual and therefore applicable to any scenario in working towards understanding
data; (2) it is a complete and workable methodology [30,37]; (3) the method-
ology was already prescribed in fourth-year postgraduate studies and therefore
seemed appropriate for preparatory purposes also at undergraduate level; (4)
the SEMMA method is tightly linked to the SAS enterprise software suite and
is thus too software-tool-specific [30].

5 Case Study Description

123 students were enrolled in our third-year second-semester course ‘Trends in
Information Systems’. The course offered an introduction to a variety of novel
concepts such as IS security and bitcoin technologies (to name a few). As part
of the course, students were also exposed to the concept of Big Data and the
subsequent challenge of working with unstructured data. The learning outcomes
specifically for these sessions were:

– Understand the Data Lifecycle as part of the Software Development Lifecycle;
– Describe the characteristics of unstructured data;
– Overcome challenges associated with unstructured data;
– Understand and implement the six steps of the CRISP-DM methodology.

At the end of the sessions students were given a practical assignment to complete.
The main objective of the practical assignment was to use the current concepts
explained during the sessions and apply it in order to work with unstructured
data. The task instruction was to follow the CRISP-DM methodology to identify,
clean and interpret data from any publicly available, unstructured social media
platform (for example Twitter or Facebook) or to select one of the unstructured
datasets supplied by the instructors. Students who chose their own datasets
were free to use any publicly available source, whereby no further information

186 S. Eybers and M. J. Hattingh

was supplied to them (for example about how to use Twitter or what topics or
‘threads’ to use). Students were allowed to use any free tool to assist them in the
process of data acquisition, data cleansing, analysis and presentation. To help
them on the way, a practical example of what the intended outcome should look
like was presented in class.

Table 1. Practical assignment rubrics

CRISP-DM Step

1. Business understanding:
What type of business will benefit from this analysis? What are the goals of the
business, i.e. what do they want to achieve as a business? What question would
you like to answer with the exercise? How will you go about to answer the
business question (high level plan)?

2. Data understanding:
Collect unstructured data (from any source). Tip: Twitter might be the easiest.
Describe, explore, verify data

3. Data preparation:
ETL: extract, transform (i.e. clean), load data into another structure (flat file,
table, etc.). Include copies of your screen where you prepared your data

4. Data modelling:
Decide what you are going to do with the data: apply complex statistical
algorithms, or do basic modelling, for example categorisation. Include copies of
your screen where you modelled your data

5. Evaluation:
What does the results mean? Do I need to repeat the analysis? Include copies of
your screen where you show your results

6. Deployment:
If you were to share your results with the other students: how would you do
that? What was your experience working with the datasets (good or bad)? Was
the dataset appropriate for what you wanted to achieve? What challenges did
you face?

7. Conclusion:
Did you enjoy the assignment? What did you like? What did you dislike? What
did you learn?

As part of the assignments the students had to write a report using the six
steps of the CRISP-DM methodology. Table 1 outlines the details of each step.
Students were also instructed to include copies of the screen(s) where the actual
process of data preparation, modelling and evaluation was followed. There was
no need to actually deploy or implement their proposed solutions, though the
students had to make plausible suggestions about how an organisation could
possibly use the results of their analyses.

A conclusion section (7: not originally in CRISP-DM) was added for our
students to summarise and reflect what they have learned. Marks were allocated
to each of these sections. Table 1 also shows a summary of the rubric used for
evaluating the assignments.

Making Sense of Unstructured Data 187

6 Method

We followed an interpretive approach to analyse a sample of 20 (out of 123)
assignment submissions. Saturation was reached with 15 assignments (i.e., no
new concepts emerged), but another 5 assignments were analysed to confirm
saturation. All data sets used by these students were publicly available and not
password-protected. Although the individual data records used by the students
did not disclose any identifying attributes, the organisations associated with
these data sets were in some instances revealed. We followed the ethical proce-
dure recommended by Langer and Beckman who suggested that if public data,
that is not password-protected, is used, researchers do not need to obtain any
usage permission [22]. Anyway, the anonymity and privacy of the users were
guaranteed as we anonymised particular organisation names by grouping them
into ‘industries’.1 All assignments followed the structure of the rubrics of Table 1.

Thematic content analysis was used to analyse the students’ project reports.2

Thereby we followed the six steps proposed by Braun and Clarke [6]. Initial
codes were captured as they emerged and were recorded under every step of the
CRISP-DM methodology. As the analysis continued and themes emerged (and
were reviewed and named), it was easy to see how the six steps of the CRISP-
DM methodology mapped to the four stages of the experiential learning approach.
The following section presents the analysis and discussion of these findings.

7 Analysis and Discussion

The analysis and discussion outline section followed the phases of the experien-
tial learning approach, namely: abstract conceptualisation, concrete experience,
reflective observation, and the lecturers’ reflection. Each of the six CRISP-DM
steps could be related to the four phases of the experiential learning approach.

7.1 Abstract Conceptualisation: Business Understanding

The abstract conceptualisation stage is concerned with learners trying to make
sense of a problem at hand. For our particular assignment the students could use
any publicly available data set from social media or a variety of unstructured
datasets supplied to them, (see above). The objective was to understand the
message(s) the data can communicate to various audiences, and questions that
can be formulated which can be answered with the help of the gathered data.
Most students chose data from Twitter from diverse industries namely: Gaming,
Finance, Music, Government/Activism, Government/Treasury, App Store, Fast-
moving consumer goods (Beverage), Marketing/Communications.
1 For this paper we obtained the consent from our participating students as well as a

permission from our faculty’s ethics committee.
2 The 1st author (S.E.) was the examiner of the assignment and was thus familiar

with the content of the assignment. The 2nd author (M.J.H.) familiarised herself
with the content by reading two assignments before the analysis began.

188 S. Eybers and M. J. Hattingh

It turned out that our students were able to contextualise those data and
could identify the parties that might be interested in answers to questions that
relate to the data. For example, Participant #5: “These businesses want to know
their market/customers better while situating themselves to a favourable position
in their operating markets”. Contextualising results is a very important skill of
any data scientist [8,17,25]. Also Kennan stated that in a business environment
it is important for a data scientist to know what the organization does, who its
customers are, and what the operating environment is [17]. She further stated
that the context is different for different countries due to different governments’
regulations. Hence it is not required for graduates to know all the contextual
details; nonetheless they must be aware that “the contexts in which data and
information are used are highly varied”; they must also “understand examples,
and where to look for specific contexts, and be prepared to continue learning on
the job” [17].

In order to contextualise their potential results, the students were required
(as part of the CRISP-DM methodology) to find out more about the companies,
understand their ‘missions’, ‘visions’ and goals. This aspect of the assignment
was very important, as the students were exposed to real-life companies and
had to make sense of how a data set supports an organisation’s purposes. A
few students did this very well by studying a business, understanding its goals
and how the social media data relate to those goals. This exposure to real-
life scenarios is important in delivering industry-ready graduates [13,32]. For
example, participant #3 noted: “it is very important that the academy has a
strong social media presence to attract potential donors, spread the word about
the music programs on offer, and to promote any upcoming events”. Accordingly,
Kennan states that in order to understand data within its context one has to
understand the intended audience of the information [17].

7.2 Active Experimentation: Data Understanding and Preparation

The active experimentation stage is concerned with planning the “forthcoming
experience” [15]. In this instance the students had to plan, in accordance with the
CRISP-DM methodology, how to approach the collecting, extracting, cleaning,
loading and storing of their chosen data sets. Part of this Extract-Transform-
Load (ETL) process was the verification of the sources.

The students used a number of techniques to clean the data sets, such as split-
ting datasets into smaller parts according to the original date into day, month and
year, then combining those attributes into a new column. The columns were fur-
thermore labelled with meaningful names, classified according to types of Tweets
(for example RT for retweet, OR for original tweet), and classified according to
keywords. The ‘noise’ of hyperlinks was removed. All of these activities are essen-
tial for their ability to work with data [8,25].

Furthermore, students understood the importance of recognising missing data
and the potential implications it might have on the analysis results—or that it
might not affect the result depending on the way the data is analysed. Through
the ETL process the students were also able to identify and discard redundant

Making Sense of Unstructured Data 189

Fig. 2. Example of data set before cleansing

Fig. 3. Data set from Fig. 2 after cleansing

data as they recognised that it would have no purpose in the analysis. Figures 2
and 3 illustrate examples of a data set before and after cleaning.

As mentioned above, one of the challenges for a data scientist is the require-
ment to work with various technologies [12]. In this assignment our students were
exposed to a variety of tools to complete the ETL tasks, for example: RapidMiner,
ParallelDots AI in MS Excel (sentiment analysis), the Twitter API in RapidMiner,

190 S. Eybers and M. J. Hattingh

Twitter Analytics, Zoho Reports (now Zoho Analytics), Tableau, MS Excel Azure
Machine Learning add-in, and Jupyter Notebook in Python. The variety of tools
available to students indicated the evolving nature of data science. Accordingly,
exposure to a variety of such tools will increase the students’ abilities.

7.3 Concrete Experience: Data Modelling, Evaluation
and Deployment

The concrete experience stage is concerned with the actual completion of the
activity. During this assignment, this stage refers to the modelling, evaluation
and deployment of the results.

During this stage we observed that the students used a variety of visualisa-
tion methods to communicate their results, for example: bar charts, pie charts,
scatter plot, bubble chart, ring graph, line chart, and location map. One student
used a histogram to indicate how brand sentiment changed over a period of time.
Some students used more than one visualisation method to communicate differ-
ent messages. One student used a more advance modelling technique, namely
the ‘predict’ and ‘simulate’ functions of RapidMiner, to build a Deep Learning
Simulator based on the data set. Accordingly, Kennan stated that there is a
great need for graduates to have such visualisation skills [17], which allow them
to present the data in such a way that it enables managers to make better and
quicker decisions and to communicate messages more clearly to stakeholders
outside an organisation.

A second observation at this stage was the students’ ability to interpret the
visualised results. The majority of the students were able to correctly interpret
the meaning behind the visualisation. The power of big data lies indeed in the
interpretation of analysis results. McAfee and Brynjolfsson stated accordingly:
“Big data’s power does not erase the need for vision or human insight” [25]. Our
assignment was not too complex, and some of the analyses were quite basic, but
nonetheless contained powerful messages. For example, participant #3 found
that “the company does not have to change what it is tweeting; rather when
it is tweeting. In addition, gaining more followers should increase impressions
and engagement rate. If they do these two things, they should see an improved
Twitter performance”. Students were thus able to derive meaning from the data,
such as: “the rebranding campaign was not well received” (based on the tweets
analysed) “as the audiences did not understand the campaign concept when it
came to the brand messaging and intent. Some found it offensive and insensitive
whilst others either engaged positively or were indifferent” to what the company
had communicated.

An important component of the methodology was to evaluate the results to
verify if they were plausible. This requires students to critically double-check
their initial findings. Whilst most students reported that their results were in
line with their expectations, participant #12 found that a sentiment analysis
done by Azure were not correct, as sometimes there was a colloquial misun-
derstanding which skewed the results. Participant #7 evaluated the data post
modelling and concluded that the results were not accurate because re-tweets

Making Sense of Unstructured Data 191

skewed the analysis. This illustrates a level of awareness about the nature of the
data set which is very important for any data scientist. Accordingly, Costa and
Santos describe data scientists as having an ‘inquisitive mind’ with which they
‘interrogate’ the data to understand their deeper meaning [7].

Finally, students recognised that the dataset can potentially answer different
questions depending on the analysis. For example, participant #7 generated nine
different visualisations from the dataset which included a pie chart, five different
bar charts, a scatter plot and two line charts. The scatter plot was used to indi-
cate location. Participant #8 developed a generalised linear model between the
categories. However, the fact that one data set can communicate different mes-
sages is something students struggle with. Our assignment, that prescribed the
adopted CRISP-DM methodology, allowed students to do an arbitrary number of
modelling iterations whereby a result obtained after the completion of one cycle
of the methodology introduced a new question or problem to be investigated.

7.4 Reflective Observation

The reflective observation stage is concerned with the students’ reflection on
their completed activity. This stage offered students the opportunity to indicate
what aspects of the assignment as well as experiential approach they enjoyed
and what they found challenging. From the lecturer’s perspective, the reflective
observation stage allowed her to make a judgement about the success of the
exercise, (see Subsect. 7.5). Some positive feedback by the students regarding
the assignment included the following points:

– Students enjoyed the ‘mining’ aspect of the assignment. This refers to prac-
tically using an identified software tool, (see Subsect. 7.2). Accordingly, Kolb
explained that students prefering a practical approach to solving problems
refer to the ‘converging’ learning style [18].

– The practical component of the assignment also extended to learning new
software. Participant #10 stated: “Overall, I enjoyed working on the assign-
ment because I enjoy working with new software, and the learning that comes
with it, especially when it allows you to apply your theory, making it interac-
tive”. Learning how new software works whilst completing an assignment is
an example of ‘incidental’ learning which is imperative in assisting students
to get ‘hands-on’ experience and to prepare them for the information age.
Incidental learning is a ‘side effect’ of learning whereby the students were
initially not aware of the fact that they would have to learn new software,
but then suddenly had to acquire new skills in order to complete the entire
CRISP-DM lifecycle [31].

– Students learnt about the potential impact of data. Participant #4 said that
he could “see the potential impact of big data” whereby “it was best to see
this when it was done practically”. Participant #2 confirmed this by stat-
ing: “I enjoyed seeing how the steps are done practically and I learnt a great
deal about how unstructured data can be used to make better business deci-
sions”. Participant #1 indicated that “simple data can give good answers to
important questions”.

192 S. Eybers and M. J. Hattingh

– Students learnt about a variety of options to visualise data as well as the power
of tools to manipulate data. Participant #7 stated: “I was amazed how these
tools could formulate meaningful graphs and charts based on unstructured
data. Even if a field was null, the tool was able to identify it without mixing it
with the rest of the data”. Accordingly, Wang (et al.) stated that the adoption
of good visualisation methods can transform the challenges introduced by big
data (such as the vast volumes of seemingly unrelated data) into meaningful
‘pictures’ [35].

– The assignment allowed for Self-Motivated Incremental Learning (SMIL) [5].
SMIL is concerned with the intrinsic motivation by a person which will allow
him/her to learn a hierarchy of skills freely by repeating three phases: explor-
ing the environment, identifying interesting situations, and obtaining skills
to cope with these situations. Participant #15 reported that “we were never
really taught how to actually do a full data analysis. We were only ever shown
the theory behind data analysis and data modelling, and we had to use the
information along with all the other knowledge we have from Statistics, Math-
ematics, IT, etc., and figure out ourselves how to work with data and anal-
yse the raw data. I learned that Excel is a much more powerful tool than I
first anticipated, but it cannot compete with how strong Python is and how
easily you can achieve the same results”. The assignment furthermore intro-
duced students to the area of data science, whereby one participant noted:
“It sparked an interest in Python in me and I already enrolled in two short
online courses on Python and R in data analytics”.

Some challenges observed by the students included the following points:

– Data preparation took a long time due to the volume of data they had to
work with. The majority of the students indicated that this was their least
favourite part of the assignment. Participant #10 indicated that “having to
read through the data, and generating a question or problem statement, took
a while”.

– Some students struggled to understand the data set. Participant #3 said
that it was a “challenge to understand what data I was working with, and the
relevance it might have” to the company in question. However, after doing
plenty of research I was able to overcome this”. This case is another example
of SMIL [5], as the student has to analyse the environment in order to solve
the data problem.

– One student indicated that he would have preferred more direction in the
assignment, and “often felt lost and unsure of whether I was doing things
correctly”.

– A few students reported that it was difficult to identify the correct technology
for the task. Participant #7 stated that “finding a data analyser tool which
would best fit the dataset was challenging”. Participant #20 stated that “being
able to choose the right model, and making the data fit the model, was also
a challenge”. Participant #16 struggled with the method: “I did not know
which algorithms to use and how to correctly use the datasets”. Obviously this
challenge was two-fold:

Making Sense of Unstructured Data 193

• firstly w.r.t. the students’ ability to identify the technology with the cor-
rect functionality to obtain the envisaged results,

• secondly w.r.t. the students’ ability to use the chosen software (as some
software requires deeper knowledge for its proper utilisation).

– Finally, some students also had problems to identify an appropriate visuali-
sation method.

The above-mentioned challenges are linked to key competencies of data scientists
[7]. Exposing the students early to these challenges should give them an oppor-
tunity to continue with SMIL in preparation for a workplace after graduation.

7.5 The Lecturer’s Reflection

This subsection presents the reflection of the lecturer during and after the assign-
ment. We consider (1) the appropriateness of the prescribed methodology, (2)
the students’ performance, and (3) ‘lessons learnt’. Each of these will be briefly
discussed.

Appropriateness of the CRISP-DM Methodology. Prescribing the
CRISP-DM methodology was appropriate, as students easily grasped the six
steps of the process while working with data. The methodology guided students
through the process and provided a structure for approaching an assignment
that seemed daunting to some students at first. Due to its conceptual nature,
students can hopefully reuse this methodology when working on similar projects
in the future.

Students’ Performance. 11% of our 123 students obtained an assignment
mark between 80% to 89%. About half of all students obtained a mark between
70% to 79%. About a quarter of the students obtained a mark between 60%
to 69%. The remaining students obtained a mark between 50% to 59%. The
average mark for the assignment was 68%, the highest 88%. The students who
obtained a mark between 50% and 59% did either not provide enough detail in
their reports, or misinterpreted their found results. For example, two students
discovered the most prominent words associated with their data but failed to
synthesise the findings to draw a meaningful conclusion. As a consequence, they
did not adequately answer the initial question. Overall, given the performance of
the students, the assignment was successful in teaching students the basic skills
necessary to work with unstructured data.

Lessons Learnt, and Recommendations. Our experience can be summarised
as follows.

– Working with social media data was enjoyed by our students, as they are
already familiar with these platforms. On the basis of this experience we
recommended that educators use data sets that students can relate to (such
as social media).

194 S. Eybers and M. J. Hattingh

– Students found the extracting, cleaning and transforming of data very chal-
lenging and time-consuming. This was their biggest and to some extent over-
whelming tasks. Therefore we recommended that students be provided with
more practical demonstrations of how to extract, clean and transform data,
as the ETL process is the biggest task when working with any form of data.

– The lecturer should cater for and accommodate students with different learn-
ing styles. Our assignment was best suited for students with the ‘converging’
learning style (who prefer to solve problems and apply their knowledge to
practical implementations) as well as to students with the ‘accommodating’
learning style (who prefer to ‘do things’ practically) [18]. Students with the
‘diverging’ style of learning (who prefer to watch rather than do) as well as
with the ‘assimilating’ style (strong analysts when given good information)
should be accommodated by group-work opportunities.

– The lecturer should offer students more consultation time when students have
more questions particularly at the beginning of the assignment; for compari-
son see Goh and Zhang [13].

8 Conclusion

This paper describes the effectiveness of teaching basic skills to third year under-
graduate students to work with unstructured data by following an experiential
learning approach (ELA). We found that the ELA enabled ‘novices’ to acquire
basic skills in working with unstructured data. The students were exposed to
a structured methodology that allowed them to tie the data sets to the goals
of a business. They used a variety of tools and technologies to obtain, prepare,
model and interpret unstructured data sets. Our assignment enabled the stu-
dents to experience the ‘nature of data’, the influence of missing or redundant
items on the analysis results, and how one data set can provide different answers
to a variety of questions. The students reported that they enjoyed the ‘(data)
mining’. The students reported that they also enjoyed the acquisition of skills to
work with new software and tools. They realised the impact social media data
has on an organisation. The challenges experienced by the students in complet-
ing this assignment do not outweigh the benefits that students derived from it.
As more organisations become data-driven, graduates need to be prepared to
assist organisations in their data needs [3]. With our educational efforts we also
gave our undergraduate students an initial preparation for possible postgraduate
studies [24] in this new field.

References

1. Azevedo, A., Santos, M.F.: KDD, SEMMA and CRISP-DM: a parallel overview.
In: Proceedings European Conference on Data Mining, p. 6 (2008)

2. Baškarada, S., Koronios, A.: Unicorn data scientist: the rarest of breeds. Program
51(1), 65–74 (2017)

Making Sense of Unstructured Data 195

3. van Belle, J.P., Scholtz, B., Njenga, K., Serenko, A., Palvia, P.: Top IT issues for
employers of South African graduates. CCIS 963, 108–123 (2019)

4. Bobbitt, L.M., Inks, S.A., Kemp, K.J., Mayo, D.T.: Integrating marketing courses
to enhance team-based experiential learning. J. Mark. Educ. 22(1), 15–24 (2000)

5. Bonarini, A., Lazaric, A., Restelli, M.: Incremental skill acquisition for self-
motivated learning animats. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam,
J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS
(LNAI), vol. 4095, pp. 357–368. Springer, Heidelberg (2006). https://doi.org/10.
1007/11840541 30

6. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol.
3(2), 77–101 (2006)

7. Costa, C., Santos, M.Y.: The data scientist profile and its representativeness in the
European e-Competence framework and the skills framework for the information
age. Int. J. Inf. Manage. 37(6), 726–734 (2017)

8. Davenport, T.H., Patil, D.J.:The Sexiest Job of the 21st Century.Harvard Business
Rev. (October), 8 (2012)

9. Emilio, S., Martin, M., Daniel, M., Luis, B.: Experiential learning in data science:
from the dataset repository to the platform of experiences. In: Ambient Intelligence
and Smart Environments, pp. 122–130 (2017)

10. Eybers, S., Hattingh, M.J.: The last straw: teaching project team dynamics to
third-year students. CCIS 963, 237–252 (2019)

11. Fosso Wamba, S., Akter, S., Edwards, A., Chopin, G., Gnanzou, D.: How big data
can make big impact: findings from a systematic review and a longitudinal case
study. Int. J. Prod. Econ. 165, 234–246 (2015)

12. Gantz, J., Reinsel, D.: Extracting Value from Chaos. IDC, p. 12 (2011)
13. Goh, S., Zhang, X.: Incorporating experiential learning into big data analytic

classes. In: Proceedings 21st Americas Conference on Information System, p. 10
(2015)

14. Grace, S., Innes, E., Patton, N., Stockhausen, L.: Ethical experiential learning
in medical, nursing and allied health education: a narrative review. Nurse Educ.
Today 51, 23–33 (2017)

15. Healey, M., Jenkins, A.: Kolb’s experiential learning theory and its application in
geography in higher education. J. Geogr. 99(5), 185–195 (2000)

16. Janvrin, D.J., Watson, M.W.: Big data: a new twist to accounting. J. Account.
Educ. 38, 3–8 (2017)

17. Kennan, M.A.: In the eye of the beholder: knowledge and skills requirements for
data professionals. Inf. Res. 22(4), 1–21 (2017)

18. Kolb, D.A.: Experiential Learning: Experience as the Source of Learning and Devel-
opment. Prentice Hall, New Jersey (1984)

19. Kolb, Y.A., Kolb, D.A.: Learning styles and learning spaces: enhancing experiential
learning in higher education. Acad. Manage. Learn. Educ. 4(2), 193–212 (2005)

20. Kotzé, E.: A survey of data scientists in South Africa. CCIS 730, 175–191 (2017)
21. Kotzé, E.: Augmenting a data warehousing curriculum with emerging big data

technologies. CCIS 730, 128–143 (2017)
22. Langer, R., Beckman, S.C.: Sensitive Research Topics: Netnography Revisited

(2005)
23. Lee, S.A.: Increasing student learning: a comparison of students’ perceptions of

learning in the classroom environment and their industry-based experiential learn-
ing assignments. J. Teach. Travel & Tourism 7(4), 37–54 (2008)

https://doi.org/10.1007/11840541_30
https://doi.org/10.1007/11840541_30

196 S. Eybers and M. J. Hattingh

24. Marshall, L., Eloff, J.H.P.: Towards an interdisciplinary master’s degree programme
in big data and data science: a South African perspective. CCIS 642, 131–139
(2016)

25. McAfee, A., Brynjolfsson, E.: Big Data: The Management Revolution, vol. 9. Har-
vard Business Review, Brighton (2012)

26. North, M.: Data Mining for the Masses. CreateSpace Independent Publication
Platform, Scotts Valley (2016)

27. Piatetsky, G.: How many Data Scientists are there and is there a Shortage?
Technical Report, (2019). https://www.kdnuggets.com/2018/09/how-many-data-
scientists-are-there.html

28. Scarce, R.: Field trips as short-term experiential education. Teach. Sociol. 25(3),
219 (1997)

29. Schöherr, T., Speier-Pero, C.: Data science, predictive analytics, and big data in
supply chain management: current state and future potential. J. Bus. Logistics
36(1), 120–132 (2015)

30. Shafique, U., Qaiser, H.: A Comparative study of data mining process models
(KDD, CRISP-DM and SEMMA). Int. J. Innov. Sci. Res. 12(1), 217–222 (2014)

31. Sleight, D.: Incidental Learning from Computerized Job Aids. Technical Report
(1994). https://msu.edu/∼sleightd/inclearn.html

32. Smuts, H., Hattingh, M.J.: Towards a knowledge conversion model enabling pro-
gramme design in higher education for shaping industry-ready graduates. CCIS
963, 124–139 (2019)

33. Tanwar, M., Duggal, R., Khatri, S.: Unravelling Unstructured Data: A Wealth of
Information in Big Data. In: Proceedings ICRITO 4th International Conference
on Reliability, Infocom Technologies and Optimization, pp. 1–6, IEEE (2015)

34. Tole, A.: Big Data Challenges. Database Syst. J. IV(3), 31–40 (2013)
35. Wang, L., Wang, G., Alexander, C.A.: Big data and visualization: methods. Chal-

lenges Technol. Progress. Dig. Techn. 1(1), 33–38 (2015)
36. Wang, S., Yeoh, W., Richards, G., Wong, S.F., Chang, Y.: Harnessing business

analytics value through organizational absorptive capacity. Inf. Manage. 56, 103–
152 (2019)

37. Wirth, R., Hipp, J.: CRISP-DM: towards a standard process model for data min-
ing. In: Proceedings 4th International Conference on the Practice Application of
Knowledge Discovery and Data Mining, pp. 29–39 (2000)

38. Wright, M.C.: getting more out of less: the benefits of short-term experiential
learning in undergraduate sociology courses. Teach. Sociol. 28(2), 116 (2000)

https://www.kdnuggets.com/2018/09/how-many-data-scientists-are-there.html
https://www.kdnuggets.com/2018/09/how-many-data-scientists-are-there.html
https://msu.edu/~sleightd/inclearn.html

Connecting Generation Z Information
Systems Students to Technology Through

the Task-Technology Fit Theory

Adriana A. Steyn(B) , Carina de Villiers , Joyce Jordaan,
and Tshegofatso Pitso

Department of Informatics, University of Pretoria, Pretoria, South Africa
riana.steyn@up.ac.za

Abstract. This study investigated how an interactive e-resource could
be used to increase students’ performance for a specific Information Sys-
tems assignment given. As academics we are struggling to find sources
that really talk to ‘Generation Z’ in the way they prefer to learn. We
wanted to determine if we can create such a resource to increase students’
performance. This study investigates the usefulness of a self-created e-
textbook for Systems Analysis and Design through the task-technology
fit theory lens. A quantitative data analysis was conducted on a group
of undergraduate Information Systems students. A significant associa-
tion between the characteristics of the tasks and the technology used to
perform the specific task was found. A significant association between
the students’ understanding of the work and improving their knowledge
as well as their contributions to a team was also found. Generation Z
relies heavily on peers for assistance even though literature says that
their social skills are under-developed. As academics we need to under-
stand the Generation Z, and how they prefer to study, and then create
content and tools for them so that they can broaden their knowledge and
become life-long learners. Higher education institutions should become
more student-centered and less lecturer-centered.

Keywords: E-textbook · E-resource · Interactive textbook ·
Generation Z · Millennials · Task-technology fit theory · Information
systems education

1 Introduction

Throughout the years, many authors have tried to answer the question: how
do students learn [12,17,18]? Already in 1987, Chickering and Gamson wrote
a paper entitled Seven principles for good practice in undergraduate education
[6]. They acknowledged that there was a problem in undergraduate teaching
and emphasised the importance of having commitment from faculty members

c© Springer Nature Switzerland AG 2020
B. Tait et al. (Eds.): SACLA 2019, CCIS 1136, pp. 197–210, 2020.
https://doi.org/10.1007/978-3-030-35629-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35629-3_13&domain=pdf
http://orcid.org/0000-0002-9841-2497
http://orcid.org/0000-0003-1467-3508
https://doi.org/10.1007/978-3-030-35629-3_13

198 A. A. Steyn et al.

and students. Their seven principles are: (1) encouraging contact between stu-
dents and faculty members, (2) developing reciprocity and cooperation among
students, (3) encouraging active learning, (4) giving prompt feedback, (5) empha-
sising time on task, (6) communicating high expectations, (7) respecting diverse
talents and ways of learning. Though [6] was already published in 1987, the same
question is still asked and the problem is still relevant [20].

One of the mechanisms identified to adapt the ‘old’ education system is
‘technology’, a tool in which we can engage more with students as they are
exposed to and used to technology from a fairly young age [19]. They are almost
‘born with a phone in the hand’ [17]. This is the generation sitting on our
campuses today. Gone are the ‘millennials’; now we are engaging Generation
Z [14,15,20]. And yet it is believed that the education system caters for the
‘old’ generation of millennials, and even prior to them, and not necessarily for
Generation Z [14], because these students are changing annually. However not a
lot of evidence shows that the technology we use on a daily basis can even be
used for education and learning as students need to be engaged in the learning
process [3]. New students enter our campuses annually, which makes adaption
of our teaching approaches difficult. Technology, too, is changing so rapidly that
one can hardly keep up. Even the ‘powerful’ PowerPoint presentations are already
considered outdated [12,15]. We need to find the best-fit technology for the
specific task at hand and see how it works and hopefully that it works. Several
publications recommend that more visual tools should be explored as they proved
to enhance the learning experience and make students more excited about their
studies [12,15,17], such as YouTube, infographics, colorful images, and the like.
Shatto and Erwin went so far as to say that one should limit reading to only
relevant information [15]. How students use the textbook and its features as well
as the instructor’s usage should be investigated to see if there is a possible link
between the two [7].

This paper explores the notion of a lecturer-designed interactive e-resource—
some call it an ‘interactive textbook’—and how students used the textbook to
carry out a specific task. Thereby we followed the task-technology fit theory. In
this paper we will call it an ‘interactive textbook’. Our aim is to investigate
the usefulness of the resource specifically for our Systems Analysis and Design
module. Thus this paper suggests that there is a positive association between
the interactive textbook and the actual task which the students had to do.

2 Background

2.1 Millennials Versus Generation Z

Although many authors differ as to when generation Z was born and who should
be included, it seems as if they agreed on individuals born from 1995 onwards
[4,5,8,9,13–15]. Monaco and Martin’s study can already be regarded as ‘old’
as they still talk about the ‘millennials’ [12], but they make some interesting
arguments about how students learn and, more specifically, their characteris-
tics. They list seven general characteristics, most of which correlate with [6].

Connecting Generation Z Students 199

These are: (1) they feel ‘special’—we are all winners just by participating; (2)
they feel sheltered—baby on board signs, parent-driven schedules, little free-time,
hence not much free thought on daily planning (limitation for educators); (3)
they are team-oriented and less comfortable working alone; (4) they are confi-
dent and highly optimistic, with instant access to information at any time, and
modest commitment to homework; (5) They are or feel pressured, which leads
to a longing for ‘instant feedback’; (6) They havd a strong desire to ‘achieve’;
(7) They are ‘conventional’ again with a new respect for ‘culture’.

According to [5], by contrast, generation Z is connected and craving for a
digital world, but their social skills are underdeveloped and they do not feel safe,
which is strongly different from the millennials. They are more individualistic and
have an increased risk of isolation, anxiety and depression. But they also want
feedback immediately and conveniently [15]. They are also more accepting of and
open-minded about difference [15]. This different picture should be considered
by educators, as we cannot assume the same character traits of millennials and
think we are still ‘engaging’ our students. These changes in the students’ mind-
sets are forcing higher education institutions to become more student-centered
and less lecturer-centered.

As academics, according to [12], we need to take a step back, out of the so
called ‘lime-light’, understand the students entering our gates, and ask them
how they prefer to learn and what they want to see [12], because our education
system was never designed with them in mind.

Shatto and Erwin as well as Vikhrova note that as educators, we have to
understand that generation Z see their technology and gadgets as integral to
their lives and that they actively use technology in all spheres of their lives
[15,20]. Therefore they are also multitaskers, but not the way we think they
are. They have the ability to skip quickly between tasks, even if the activities
are unrelated to one another. Generation Z wants to learn by observing, with
practical applications [15], in a more ‘hands-on’ approach [14]. These students
also prefer to learn independently on their own [14]. They see peers and educators
as valuable ‘resources’, but they will engage on their own terms. And lastly,
Vikhrova stated that they are ‘clip-thinkers’ [20]—in other words: they view
fragments of images, facts, videos, and process these as a whole so that they
can form the big picture. It is noted that clip-thinking helps the brain from
congestion and thus acts almost as a filter of information.

Seemiller and Grace noted that there are four things campuses can do to
engage with generation Z students [14]: (1) utilize video-based learning; (2)
incorporate intrapersonal learning into class and group work, thereby breaking a
bigger project into smaller manageable sections; (3) offer community engagement
opportunities; (4) connect generation Z students to internship opportunities. Of
these four approaches only the first two (1–2) will be considered in this paper.

2.2 E-Textbooks

Key aspects of an e-textbooks are its ‘mobility’ [3] and how it can ‘carry’ more
resources than a traditional book. Due to these features, educators can create

200 A. A. Steyn et al.

Fig. 1. E-textbook design example

Fig. 2. Task-technology fit theory according to [10]

more customized interactive textbooks [3]. This allows the creator of such text-
books to focus more on their contexts of delivery. Bikowski and Casal acknowl-
edged that a large amount of research has already gone into textbook design—
however: “little has been done on customised, interactive textbooks designed
within a specific content and with specific course outcomes in mind” [3]. This
paper aims to change this. When investigating e-textbook affordability for stu-
dents, Baek and Monaghan stated that the textbook must be of a high quality
and must also be easy to use [2]. Our interactive textbook, which we describe
in this paper, was designed using a tablet ‘look and feel’, such that its usability
appeared familiar to our students. We also ensured that the design was ‘clean’
for the sake of a better quality textbook, (see Fig. 1).

2.3 Task-Technology Fit Theory

According to Goodhue and Thompson one of the strongest indicators for indi-
viduals to use technology is if there is a ‘system/work fit’ [10], i.e.: what I want
to use the system for will determine whether I will use it. Giving the specific
textbook to the students to perform a specific task gives us a plausible reason
for applying the task-technology fit theory. This theory states that a user should
willingly use the technology for a specific task before we can say that it was
‘effective’ [1,10], (see Fig. 2)

Connecting Generation Z Students 201

Fig. 3. E-textbook’s theory section

In our work, this theory was adapted to find out if students could use a
specific technology tool, the interactive-textbook, to improve their knowledge of
the subject, apply the various components of the technology to their specific task
and, in the end, if they felt it in-creased their performance. The purpose of this
study was thus to see if the students found the textbook useful in completing
their assignment on use cases according to the task-technology fit theory [11,21].

Task Characteristics: students were given a case study, published as a ‘project
guide’ via our online learning management system. Students had to work in
groups of 4 or 5; they had to model a use case diagram, as well as write its
use case narrative accordingly, for each of the use cases of the study.

Technology Characteristics: our e-textbook’s first version was launched that
focused specifically on the components needed to complete the assignment. It
contained a section that explained in detail the ‘theory’ behind the use case
diagrams and narratives, through which students navigated themselves: see
Fig. 3.

In the practical part of our e-textbook were two business cases. Case one shows
students how to technically draw a diagram based on a specific case study. It
connected to a ‘memorandum’ on a Google drive; thus connectivity was required
to access this part of the textbook. There was also a second case study, created
by students and published in [16], which showed an audio-video about how one
will technically draw a use case diagram (Fig. 4). The idea was to see if students
felt that the e-textbook assisted them in completing their assignment and/or
improved their performance.

202 A. A. Steyn et al.

3 Method

Fig. 4. E-textbook’s practical section

One of the key problems of an undergraduate module in our context is the
absence of a proper textbook that focuses on all the aspects of the module of
interest. This module is a first-year systems analysis and design course with 340
participating students. The students enter the university assuming there is a
specific textbook for each module.

The thought of creating our own e-book emerged, and the starting point
of the textbook was by getting the students to contribute to its contents [16].
The textbook would be cost-effective to develop, and module-specific. The first
version of the textbook was launched in July 2018.

After the students completed a specific assignment, where they had to utilise
our textbook, they were asked to complete an online survey. No marks were allo-
cated for completion of the survey. The survey data were exported to Microsoft
Excel and statistically analysed with IBM Statistics SPSS tool (version 25).

The methods used during the analysis of the data are: frequency analysis
per question; multiple response frequency analysis; descriptive statistics such as
median, and standard deviation; cross-sectional analysis; graphical analysis such
as pie charts and bar charts.

4 Findings and Discussion

4.1 Participants

The total number of responses received from the survey was 171, of which 170
were completed in full. However, as this paper’s focus is specifically on generation

Connecting Generation Z Students 203

Z, it is important to look at the age of the respondents. As this study took place
in 2018, and literature stated that generation Z students were born more or less
from 1995 onwards, these students should now be at most 23 years old. However,
we did not force our students to disclose their date of birth. Only 142 participants
answered this question; they fell indeed into generation Z’s birth date range.
Upon closer analysis we also found that a few students entered ‘2018’ as their
date of birth. These useless answers were discarded, such that only 117 usable
responses were obtained. All in all our survey had a 34% response rate.

Accordingly, the average age of the students is 20.5 years (mean), with the
majority of responses from participants who are 19 years of age (mode). The
majority of the students were born in 1998 (35) and 1999 (50) thus correlating
with the mean.

Looking at the degrees for which the students study, the majority (76.8%)
studies either BIS Information Science (14,5%), BIT Information Technology
(18,8%), or BCom Informatics Information Systems (43,5%). Fewer students
studied BSc Information Technology Information & Knowledge Systems (11,1%)
or BCom Financial Science (1,7%). BCom General, BCom Statistics, BEd FET
General, and BSc Computer Science students together were 3% of the respon-
dents, and BSc Geoinformatics 7%.

As the e-textbook was made available through our university’s online learning
management system, students could download it to their devices; some of the files
however were located on Google Drive, (Fig. 4). Thus internet connection had
to be queried. Only 8 students indicated that they had no internet connection
at all at home. However, all students indicated that they have Wifi on campus;
thus it seems that there was no internet access barrier to using the e-textbook.

W.r.t. their learning styles and preferences, the students had to indicate
how they prefer to learn and who they will go to first for assistance. As shown
in Fig. 5, most students prefer case studies; this makes sense as this part of
the assignment was practical modelling, and by actually doing it one will learn
better. Attending tutor sessions was also a popular learning style, as well as
collaboration with fellow students.

In connection with the learning styles, when we asked the students whom they
approached first when in need of help, ‘group members’ was the most frequent
answer; (indeed the assignment was a group assignment). This correlates with
[14] who stated that students are independent workers but will engage with their
‘resources’—fellow students, Youtube or a lecturer—on their own terms.

W.r.t. the ‘call’ in the literature to make academic tools ‘more visual’, also
in our case most of the answers indicated that the students prefer visual aids.
Although our interactive textbook ranked last (Table 1), we hope that this was
mainly due to the fact that this was the first time these students were exposed
to such a device. As shown in Fig. 6, however, the students used our interactive
textbook quite regularly although they previously indicated that they did not
used it as first point of reference. Hence it seems that our provision was at least
somewhat helpful to them.

204 A. A. Steyn et al.

Fig. 5. Learning style preferences

Table 1. Who do you ask first for assistance?

Rank Source

1 Project group members

2 Prescribed textbook

3 YouTube

4 Assistant lecturers

5 Main lecturer

6 Other students

7 Library

8 Interactive e-textbook

4.2 E-Textbook-Specific Characteristics and Usefulness

As one of the main purposes of our interactive textbook is to provide students
with more options to gain knowledge, students were asked to tell: If I were given
practical examples in an electronic format, I would rather study using... Figure 7
shows that students still prefer classroom interaction with their lecturer, but
most of them also like electronic examples. Half of the students said that they
prefer the textbook. The rest were rather neutral with only 10% stating they do
not prefer using the tool.

One has to understand the students’ experience of using the textbook for
the specific assignment, based on the various diagrams required to complete the
assignment task. Figure 8 shows that students felt that our e-textbook was easily
usable for both the UML use case diagrams and the theory sections. They also felt
that the e-textbook provided a holistic view of systems. However, most students
felt neutral towards this question. Understanding the scope of the system as well

Connecting Generation Z Students 205

Fig. 6. Usage of various tools for completing assignment

Fig. 7. I would rather study using...

as the e-textbook itself were ‘easy’. What is clear from the results in Fig. 8 is
that very few students (no response more than 10%) did not like the textbook
in terms of the use case diagrams, narratives, creating a holistic view of systems,
understanding the scope of the system or the textbook itself.

206 A. A. Steyn et al.

Fig. 8. Experience using the e-textbook

Fig. 9. The interactive e-textbook is/can...

Continuing on the previous questions, students were also asked how they
experienced the e-textbook as a whole. All in all they felt the e-textbook was
useful, easy to use, and also helpful for the completion their assignment task.
They also indicated that it could be used in preparations for tests and exams,
as shown in Fig. 9. Few respondents disagree with its usefulness, ease of use, or
whether they could use it in the future.

Connecting Generation Z Students 207

Fig. 10. Student’s feelings towards using textbook

4.3 Task-Technology Fit Theory

As mentioned above, the idea behind the task-technology fit theory is to see if
using the technology for a specific task did indeed increase our students’ per-
formance: see Fig. 10. To determine if our interactive textbook is really linked
with actual usefulness and students’ performance, a cross-tabulation analysis
was done: see Table 2. The standardised residual—if it is 2 (or higher) or −2 (or
lower)—is an indication of which cell in the table contributes most to the corre-
sponding χ2 value. For all the cross tabulation analysis, there was a significant
association between the corresponding statements: see the following interpreta-
tions (§1–§8) for further explanations related to Table 2.

§1 There is a significant association between use case diagrams in the interactive
textbook and improving the knowledge of the subject. Standardized Residual
is 2.6; thus it was expected to find 11.2—but found 20—responses for the
correlation between neutral feeling towards technology for the use case dia-
grams and neutral feeling towards knowledge improvement. Hence more than
expected indicated that they have a neutral feeling that technology would
improve their knowledge of the subject. Continuing on this statement, the
Standardized Residual of 4.2 indicated that it was expected to find 0.4—but
found 3—responses in the correlation between ‘did not like the use case dia-
grams’ and disagreeing that the technology improved their knowledge. Hence
more than expected indicated that they did not like the technology and that
it did not improve their knowledge of the subject.

§2 There is a significant association between use case narratives in the inter-
active textbook and improving the knowledge of the subject. Standardized

208 A. A. Steyn et al.

Table 2. Cross tabulation w.r.t. the task-technology fit theory

Experience with using
the e-textbook to
complete assignment
for:

Cross tabulation
statement

Fisher Exact Interpretation

Use case diagrams Improve my knowledge
of the subject

<0.001 See §1

Use case narratives Improve my knowledge
of the subject

<0.001 See §2

Creating a holistic view
(understanding how
systems fits into the
real world)

Improve my knowledge
of the subject

0.022 See §3

Understanding the
scope of the system

Improve my knowledge
of the subject

0.001 See §4

Use case diagrams Improved my contribution
to the team

<0.001 See §5

Use case narratives Improved my contribution
to the team

0.006 See §6

Understanding the
scope of the system

Improved my contribution
to the team

0.006 See §7

The textbook itself Improved my contribution
to the team

0.019 See §8

Residual is 2.4; thus it was expected to find 10.9—but found 19—responses
for the correlation between neutral feeling towards technology for the use
case narratives and neutral feeling towards knowledge improvement. Hence
more than expected indicated that they have a neutral feeling that technol-
ogy would improve their knowledge of the subject. However the Standardized
Residual is −2.0, thus it was expected to find 26—but only found 16—for
the correlation between neutral feeling towards technology for the use case
narratives and agreeing that their knowledge improved with the technology.
Hence less than expected agreed that technology improved their knowledge
of the subject. Continuing on this statement, the Standardized Residual of
3.1 indicated that it was expected to find 0.3—but found 2—responses in
the correlation between ‘did not like the use case narratives’ and disagreeing
that the technology improved their knowledge. Hence more than expected
indicated that they did not like the technology and that it did not improved
their knowledge of the subject.

§3 There is a significant association between ‘creating a holistic view (under-
standing how systems fits into the real world)’ and improving the knowledge
of the subject.

Connecting Generation Z Students 209

§4 There is a significant association between understanding the scope of the
system and improving the knowledge of the subject.

§5 There is a significant association between understanding the use case dia-
grams and improving the students’ contribution towards the team.

§6 There is a significant association between understanding the use case narra-
tives and improving the students’ contribution towards the team.

§7 There is a significant association between understanding the scope of the
system and improving the students’ contribution towards the team.

§8 There is a significant association between the textbook itself and improving
the students’ contribution towards the team.

From the analysis of above it appears that there are significant associations
between the characteristics of the tasks and the technology used to perform
the specific task, as well as between the students’ understanding of the work,
improving his/her knowledge, and contributing to a team. Thus it seems as if
our e-textbook did indeed lead to an increased performance by the students—at
least as far as their own opinions are concerned. We also saw that generation Z
relies strongly on their peers for assistance even though some literature claims
that their social skills would be underdeveloped.

5 Conclusion

Generation Z thrives on technology. They are always connected to the world
around them, and yet, as educators we often do not realize the potential this
connectivity can bring to our courses. If we are needed to guide them in filtering
the correct information but also to guide them in challenging them to use their
connected time on something that will make them grow and become successful
individuals, rather than only purposelessly flipping through various screens and
apps.

Bikowski and Casal acknowledged that a large amount of research has already
gone into textbook design, but “little has been done on customised, interactive
textbooks designed focusing on specific content” [3]. With this paper we have
responded to the call of [3]. Though our prototype e-textbook is not yet fully-
fledged and not yet unanimously accepted by our students, we believe that it is
a step in the right direction to connect ourselves and our knowledge with the
next generation (Z) of students.

References

1. d’Ambra, J., Wilson, C.S., Akter, S.: Application of the task-technology fit model
to structure and evaluate the adoption of E-books by academics. J. Am. Soc. Inf.
Sci. Technol. 64(1), 48–64 (2013)

2. Baek, E., Monaghan, J.: Journey to textbook affordability: an investigation of
students’ use of eTextbooks at multiple campuses. Int. Rev. Res. Open Dist. Learn.
14(3), 1–26 (2013)

210 A. A. Steyn et al.

3. Bikowski, D., Casal, J.E.: Interactive digital textbooks and engagement: a learning
strategies framework. Lang. Learn. Technol. 22(1), 119136 (2018)

4. Bradford, S.: Alternative social media as a recruiting tool for generation Y and
generation Z. Int. J. Innov. Educ. Res. 6(10), 253–264 (2018)

5. Chicca, J., Shellenbarger, T.: Connecting with Generation Z: approaches in nurisng
education. Teach. Learn. Nurs. 13, 180–184 (2018)

6. Chickering, A.W., Gamson, Z.F.: Seven principles for good practice in undergrad-
uate education. The Wingspread J. 1–7, 3–7 (1987)

7. Dennis, A.R., Abaci, S., Morrone, A.S., Plaskoff, J., McNamara, K.O.: Effects of e-
Textbook instructor annotations on learner performance. J. Comput. High. Educ.
28, 221–235 (2016)

8. Eckleberry-Hunt, J., Lick, D., Hunt, R.: Is medical education ready for generation
Z? J. Graduate Med. Educ. 10(4), 378–381 (2018)

9. Gardner, J.K., Ronzio, C., Snelling, A.: Transformational learning in undergrad-
uate public health education: course design for generation Z. Pedagogy Health
Promot. 4(2), 95–100 (2017)

10. Goodhue, D.L., Thompson, R.L.: Task-technology fit and individual performance.
MIS Quart. 19(2), 213–236 (1995)

11. Hisrich, R.D., Peters, M.P.: Entrepreneurship, 4th edn. McGraw-Hill, New York
(1998)

12. Monaco, M., Martin, M.: The millennial student: a new generation of learners.
Athletic Train. Educ. Journ. 2, 42–46 (2007)

13. Moore, K., Jones, C., Frazier, R.S.: Engineering education for generation Z. Am.
J. Eng. Educ. 8(2), 111–126 (2017)

14. Seemiller, C., Grace, M.: Generation Z: educating and engaging the next generation
of students. About Campus 22(3), 21–26 (2017)

15. Shatto, B., Erwin, K.: Moving on from millennials: preparing for generation Z. J.
Contin. Educ. Nurs. 47(6), 253–254 (2016)

16. Steyn, R., Millard, S., Jordaan, J.: The use of a learning management system to
facilitate student-driven content design: an experiment. In: Huang, T.-C., Lau, R.,
Huang, Y.-M., Spaniol, M., Yuen, C.-H. (eds.) SETE 2017. LNCS, vol. 10676, pp.
75–94. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71084-6 10

17. Steyn, R., Botha, A., Mennega, N.: Is a picture truly worth a thousand words?
infographics for undergraduate teaching. In: Hao, T., Chen, W., Xie, H., Nadee,
W., Lau, R. (eds.) SETE 2018. LNCS, vol. 11284, pp. 69–78. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03580-8 8

18. Taylor, E., van Aswegen, K.: Students’ learning approaches: are they changing?
CCIS 730, 37–47 (2017)

19. Turpie, J.: Creative Engineers. In: CreativityMoneyLove: Learning for the 21st
Century (2012)

20. Vikhrova, O.: On some generation Z teaching techniques and methods in higher
education. Information 20(9a), 6313–6324 (2017)

21. Zigurs, I., Buckland, B.K.: A theory of task/technology fit and group support
systems effectiveness. MIS Quart. 22(3), 313–334 (1998)

https://doi.org/10.1007/978-3-319-71084-6_10
https://doi.org/10.1007/978-3-030-03580-8_8

Detecting Similarity in Multi-procedure
Student Programs Using only Static

Code Structure

Karen Bradshaw(B) and Vongai Chindeka

Department of Computer Science, Rhodes University, Grahamstown, South Africa
k.bradshaw@ru.ac.za

Abstract. Plagiarism is prevalent in most undergraduate programming
courses, including those where more advanced programming is taught.
Typical strategies used to avoid detection include changing variable
names and adding empty spaces or comments to the code. Although these
changes affect the visual components of the source code, the underlying
structure of the code remains the same. This similarity in structure can
indicate the presence of plagiarism.

A system has been developed to detect the similarity in the structure
of student programs. The detection system works in two phases: The first
phase parses the source code and creates a syntax tree, representing the
syntactical structure of each of the programs, while the second takes as
inputs two program syntax trees and applies various comparison algo-
rithms to detect their similarity. The outcome of the comparison allows
the system to report a result from one of four similarity categories: iden-
tical structure, isomorphic structure, containing many structural similar-
ities, and containing few structural similarities. Empirical tests on small
sample programs show that the prototype implementation is effective
in detecting plagiarism in source code, although in some cases manual
checking is needed to confirm the presence of plagiarism.

Keywords: Plagiarism detection · Code structure · Student code

1 Introduction

Plagiarism occurs when one person tries to pass off someone else’s work as his/her
own [6]. This can mean large-scale copy-pasting or merely copying phrases or
sentences in the work, which if done without quoting and/or citing the origina-
tor of the work, results in plagiarism. This is a common occurrence in academic
environments. In undergraduate programming courses, once one student obtains
a solution to an assigned programming task, it is often replicated by other stu-
dents.

Assignments for more advanced programming courses typically involve more
complex programs that can be constructed in a variety of ways. Students in these
course should be aware of a wider variety of programming constructs available
c© Springer Nature Switzerland AG 2020
B. Tait et al. (Eds.): SACLA 2019, CCIS 1136, pp. 211–226, 2020.
https://doi.org/10.1007/978-3-030-35629-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35629-3_14&domain=pdf
http://orcid.org/0000-0003-3979-5675
https://doi.org/10.1007/978-3-030-35629-3_14

212 K. Bradshaw and V. Chindeka

in the programming language being used. Therefore, if there is similarity in the
structure of large segments of code it can be a sign that plagiarism has taken
place.

Plagiarism of code often involves techniques that try to hide the plagiarism,
such as various code obfuscation techniques. Students commonly resort to simple
techniques, such as statement reordering, instruction splitting or aggregation,
loop unwinding or introducing white spaces and comments [16]. Although these
changes affect the visual appearance of the source code, they do not alter the
syntactic structure thereof.

A functional plagiarism detection system is a possible solution to preventing
plagiarism in an academic environment by encouraging students to avoid the
penalties attached to plagiarism [13]. The main obstacle, however, in detect-
ing plagiarism in an undergraduate programming course is the sheer volume of
student programs that need to be assessed. Thus, the probability of detecting
similar programs is reduced with larger class sizes and more complex programs.

The aim of this research is to generate a similarity detection system that
bases its similarity comparison solely on the static structure of the programs
being compared without any pre-processing of the source code or dynamic anal-
ysis thereof. Such a system can be useful in the detection of plagiarism in an
academic setting and specifically in more advanced programming courses with
more complex programming assignments. Such a plagiarism detection system
would not be useful in introductory courses, where the structure of the simple
programs tends to be much the same even without the occurrence of plagiarism.
The effectiveness of the similarity detection system in detecting plagiarism is
also investigated.

The rest of this paper is organized as follows: Sect. 2 introduces and discusses
related studies in plagiarism detection and tree comparison. Section 3.1 gives
a high level overview of the similarity detection system developed. Section 4
explains the various algorithms used in the comparison of the program structure,
while Sect. 5 discusses the results of simple test cases. Section 6 concludes the
paper and also mentions future work to improve the similarity detector.

2 Related Work

2.1 Plagiarism Detection

Most existing similarity detection systems for source code use either a metrics-
driven or syntax-based approach to determine the degree of similarity between
programs [6]. The metrics used in the former approach can come from a software
engineering perspective, such as the number of each data structure type used or
the cyclomatic complexity of the program’s control flow. Cyclomatic complexity
is a metric based on the number of linearly independent paths in the program’s
control flow. Metrics can also come from a linguistic or technical aspect such
as variable names, indentations and other layout conventions used as well as
the number of comments in the code and their quality. These types of metrics
can help determine a student’s program authoring style. The linguistics centered

Detecting Similarity in Multi-Procedure Student Programs 213

metrics tend to be more useful for smaller and simpler programs such as those
written in introductory programming courses.

The methods used in systems adopting a syntax-based approach can be cat-
egorised into static source code comparison, static executable code comparison,
dynamic control flow based, dynamic API based methods as well as dynamic
value based methods. JPlag, YAP3 and MOSS are three well-known systems
that detect similarities in source code by using a static source code comparison.
MOSS (Measure of Software Similarity)1 is a system developed in 1994 that
uses fingerprinting to detect similarity in programs by using a fingerprinting
algorithm called winnowing [9]. This algorithm makes detection faster, but at
the expense of sacrificing some detection capabilities.

YAP3 [15] works in two phases. In the first phase it removes comments and
string constants, changes all letters to lowercase, maps statements that do the
same things, reorders the functions in the code to their calling orders by expand-
ing them to their full token sequences and removes all the tokens that are not
in the lexicon of the language used. The second phase is the comparison phase,
which uses an algorithm that caters for the scrambling of independent segments
of code called the Running-Karp-Rabin Greedy-String-Tiling (RKR-GST) algo-
rithm. This is a similar algorithm to that used by the UNIX utility “sdiff”.

In JPlag [7], the first phase scans and parses the program and converts it into
token strings based on the program structures. In the second phase the tokens
of the two programs are compared using the “Greedy String Tiling” algorithm.
Token strings are compared according to the following rules: any token from
one program must match with only one token in the other program, substrings
are matched without relating to their positions (so that changing the positions
of code segments is ineffective) and the matching of long substrings is more
indicative than the matching of short substrings so they are favoured more.

The JPlag system is a web-based application so the result is given as a set of
HTML pages providing an in-depth description of the similarity. Assuming a pair
of programs as input, the system provides results (in the form of a histogram) for
each possible match found in the files. Percentages less than 5% do not indicate
plagiarism, while a similarity of 100% shows definite plagiarism. Any percentage
in between requires further manual investigation to determine if it is plagiarism.

Systems like MOSS, YAP3 and JPlag were designed to work with a number
of languages and generally provide good results. However, small changes in the
source code such as reordering statements in the case of JPlag and slightly more
complex reorderings in the case of MOSS, cannot be detected.

CSPLAG [8] is a solution that attempts to eliminate these shortcomings by
using both syntax and semantic knowledge to detect copied code. CSPLAG how-
ever, focuses only on languages compiled within the .NET framework. Compar-
isons of the source code, the abstract syntax trees, as well as the .NET produced
intermediate code are carried out to produce results that are superior to those
of JPlag and MOSS in detecting a variety of different plagiarism scenarios.

1 https://theory.stanford.edu/∼aiken/moss/.

https://theory.stanford.edu/~aiken/moss/

214 K. Bradshaw and V. Chindeka

2.2 Tree Comparison Studies

A tree is a special form of a graph, with only one edge connecting any two
nodes, that is, without cycles or loops [14]. Tree structures are typically used to
represent hierarchical data. A tree is considered rooted if it has a node that is
selected to be a root node and is ordered if the children of each node are in a
specific order, for example, increasing values of the nodes from left to right.

Isomorphism is a useful concept in comparing trees; two trees are isomorphic
if the nodes in one tree can be mapped to the nodes in the other tree [1].
This means that an isomorphic tree can be obtained by switching around the
children of the nodes of another tree. For example, the two trees shown in Fig. 1
are isomorphic.

Fig. 1. Example of isomorphic trees

An algorithm to determine whether two trees are isomorphic was developed
by Aho et al. [1]. The algorithm applies to trees that are rooted and unordered.
In the algorithm, an integer is allocated to each node, beginning at the leaf nodes
of the trees, in such a way that the trees are isomorphic if and only if the same
integer is assigned to the roots of the trees. This algorithm works in O(n) time
for n nodes.

Itokawa et al. [4] proposed an algorithm for tree pattern matching using
succinct data structures. Succinct data structures are a representation of data
that takes a minimal amount of space but remains usable. This representation
(of which there are many forms) is an efficient encoding that does not require
decoding so that it may be used in query operations. The succinct representation
for trees defined in the algorithm proposed by Itokawa et al. uses matching pairs
of parentheses to represent a node’s information. This depth-first unary degree
sequence (DFUDS) representation is a succinct representation for ordered trees.
For a tree with n nodes, the representation is a sequence of 2 ∗ n opening and
closing parentheses, where an opening parenthesis is emitted when a node is

Detecting Similarity in Multi-Procedure Student Programs 215

first encountered, and the closing parenthesis is emitted when returning to this
node after the depth first traversal of the respective subtree. Moreover, given
the DFUDS representation of two trees p and t, the algorithm returns true if a
substitution θ of one tree, called pθ, exists so that t and pθ are isomorphic.

Fig. 2. Graph comparison using maximum agreement subtrees

There are a multitude of graph comparison algorithms based on a variety of
methods, including set based, frequent sub-graph based, and kernel based algo-
rithms [10]. Set based algorithms treat graphs as a set of edges and a set of
nodes. Candidate graphs are then compared by looking at the similarity of the
respective sets. Although these algorithms are readily available, transforming
graphs into sets ignores the hierarchical topology thereof. Frequent sub-graph
mining algorithms seek to identify sub-graphs that appear frequently in the
graphs being compared. Feature selection is then used to isolate the most selec-
tive sub-graphs. However, these algorithms have an exponential computational
complexity making them less desirable when used with large graphs. Graph
kernels change the topology of a graph in a way that does not ignore what it
represents. They then compare substructures of the graphs in polynomial time.
Kernels have been developed that look at different substructures such as subtrees
and shortest paths.

This research makes use of one of the so-called consensus comparison methods
that computes a new tree containing the maximum agreement subtree (MAST)

216 K. Bradshaw and V. Chindeka

of the trees being compared. The MAST is a tree that includes all possible
matching nodes of the trees based on common ancestors, as illustrated in Fig. 2.
Since the problem was first posed by Finden and Gordon in 1985 [3], much
research has been focused on solving the MAST problem. One of the best known
and fastest algorithms for finding a MAST was proposed by Bryant [2] with a
reported time complexity of O(kn3 + nd). Kao et al. [5] presented an algorithm
for tree comparison using the MAST, which was claimed to be faster than the
existing ones. However, their algorithm was applicable to graphs with labelled
nodes only, although the method for labelling the graphs was not restricted to
any specific way for the algorithm to work. More recently, Wang and Swenson [12]
extended Bryant’s algorithm to reduce both the time complexity and the number
of MASTs found by introducing the kernel agreement subtree, computed as the
intersection of the MASTs.

3 Proposed Similarity Detection System

3.1 Design Overview

For the prototype implementation of the proposed detection system, an exper-
imental language Parva [11] with a small set of programming constructs, was
used as the source language. Similar to YAP and JPlag, the proposed system
comprises two phases, but unlike these systems, syntax trees are used as the
representation of the source programs.

In the first phase, a parser translates the given input programs into their
respective syntax trees, which are subsequently input to the second phase, where
various comparison algorithms are applied to determine the similarity score of
the input programs.

To implement the first phase, a Parva parser, written in C#, was developed
using a compiler generator, Coco/R2. The output from this parser is a con-
crete syntax tree, which is serialised and stored in eXtensible Markup Language
(XML) format. XML was chosen due to its suitability for use in phase two of
the similarity detection system, as well as for ease of viewing the tree struc-
tures during manual validation of the similarity of the test programs. Although
there are C# libraries that implement XML serialising and deserialising, the
proposed system uses a custom implementation, which allowed a more flexible
and accurate representation of the hierarchical format of the tree structures.

The similarity detection phase takes in the XML representations of the Parva
source code files and deserialises these into the Tree<string> data structure
form consisting of a collection of nodes of type TreeNode. Each node has a value
field of a generic type, a property indicating the level in the tree where the node
is located, a pointer to its parent node and finally, a list of its children nodes.

During the deserialisation, a new node is created by providing the value of
the node as well as the node’s parent node. This creates a level 0 node with the
given value and parent, as well as an empty list of children. Functionality for

2 http://www.ssw.uni-linz.ac.at/coco/.

http://www.ssw.uni-linz.ac.at/coco/

Detecting Similarity in Multi-Procedure Student Programs 217

adding a child to the node, using the AddChild(TreeNode<T> child) method,
is provided for. The tree can also be represented in a string form using the
ToString() method, which does a depth first traversal of the tree rooted at the
current node and returns a string containing the values of the node itself, its
parent node and its children nodes, for each node that is encountered during the
traversal. This string form is a version of succinct representation that is useful
because simple string handing operations can replace handling bulky tree data
structures during the comparison.

The resulting trees are compared using three algorithms: a brute force algo-
rithm, an isomorphism algorithm as well as an algorithm based on succinct
representation. An overview of the similarity detection phase is illustrated in
Fig. 3.

Fig. 3. Similarity detection phase

3.2 Example Program

The minimal example Parva code in Listing 1 contains a main function with
only one component, a constant variable declaration. The string representation
of the parse tree generated by parsing this declaration, shown in Listing 2, gives
a list of the nodes of the tree iterated through in a depth-first order. Each node
is represented by the level and value of the node followed by the value of the
parent node as well as values of the children nodes if they exist. The XML
representation of the parse tree is illustrated in Fig. 4.

218 K. Bradshaw and V. Chindeka

void Main ()

{ const votingAge = 18; }

Listing 1. Minimal Parva program

0 Node Value: Program Parent Value: null Children:

FuncOrGlobalVarDeclarations

1 Node Value: FuncOrGlobalVarDeclarations Parent Value: Program

Children: Type Identifier Function

2 Node Value: Type Parent Value: FuncOrGlobalVarDeclarations

Children: Void

3 Node Value: Void Parent Value: Type Children:

2 Node Value: Identifier Parent Value:

FuncOrGlobalVarDeclarations Children:

2 Node Value: Function Parent Value: FuncOrGlobalVarDeclarations

Children: FormalParameters Body

3 Node Value: FormalParameters Parent Value: Function Children:

3 Node Value: Body Parent Value: Function Children: Statement

Statement Statement Statement Statement Statement Statement

Statement

4 Node Value: Statement Parent Value: Body Children:

ConstDeclarations

5 Node Value: ConstDeclarations Parent Value: Statement Children:

OneConst

6 Node Value: OneConst Parent Value: ConstDeclarations Children:

Identifier AssignOp Constant

7 Node Value: Identifier Parent Value: OneConst Children:

7 Node Value: AssignOp Parent Value: OneConst Children:

7 Node Value: Constant Parent Value: OneConst Children:

IntegerConstant

8 Node Value: IntegerConstant Parent Value: Constant Children:

Listing 2. String representation of the syntax tree for the minimal Parva program

4 Comparison Algorithms

The report on the similarity output by the similarity detection phase involves
one of four categories: category 1 (identical), category 2 (isomorphic), category 3
(contains many similarities) and category 4 (contains few similarities). The three
chosen comparison algorithms give results that classify the program similarity
into these categories.

In addition to the basic string representation, a succinct representation was
also created for use in some of the comparison algorithms. As discussed in
Sect. 2.2, a succinct data structure represents the data in a way that takes up
minimal space, but allowing operations on the data to be possible without the
requirement of decoding the data. The succinct representation that was chosen
is a string that represents each node as a pair of opening and closing parentheses
preceded by the value of the node and the succinct representations of the chil-
dren nodes, enclosed in the parentheses. A depth-first traversal is done through

Detecting Similarity in Multi-Procedure Student Programs 219

Fig. 4. XML representation of part of the parse tree for the minimal Parva program

the tree, starting at the root. When a leaf node is reached, its representation
is passed back up the tree resulting in the encoded version of the tree. For the
example tree shown in Fig. 5, the resulting encoding is: 1(2(4(5())6())7()8()).

Fig. 5. Example showing use of the succinct representation

220 K. Bradshaw and V. Chindeka

The succinct string encoder recursively does a depth-first traversal of the tree
returning the encoding of each node. The result is a string, which means that nor-
mal string operations can be applied to the representation. This representation
takes up less space, compared with the basic string and XML representations of
the syntax tree.

4.1 Brute Force Comparison

The brute force algorithm compares the basic string representations of the trees
rooted at the given nodes; it returns true if the strings are identical and false if
they are not. The string representation is obtained using a method that recur-
sively does a depth-first traversal of the tree rooted at the current node. The
depth-first traversal means that if the resulting strings are identical, the trees
that are traversed are identical. A true result output by this algorithm gives a
category 1 result.

4.2 Isomorphism

The succinct string encoder first sorts the children of a node before recursively
traversing them. This is done so that the rearranging of statements, which results
in the rearranging of nodes in the tree, is ineffective in obscuring the similarity.
This sorting is done using a method that compares two nodes by checking if the
basic string representing the current node is alphabetically less than, equal to
or greater than the string representation of the next node. This means that the
children of a node are sorted according to the alphabetical order of the respective
string representations.

What is achieved by sorting the children before traversing through them, is
that the order of the nodes in the tree is inconsequential. Trees are isomorphic
if one tree can be obtained by switching the order of siblings, that is, nodes at
the same level. By removing order as a factor, the isomorphism of the trees can
be exposed. Given the root nodes of two trees being checked for isomorphic sim-
ilarity, the algorithm encodes both the trees and checks if the resulting trees are
identical. Classifying the trees as being isomorphic means that the two trees con-
tain the same elements structurally and if they do not return true for the brute
force algorithm it means that the statements of one program were rearranged to
produce the other program.

4.3 Individual Node Comparison

If the programs being compared have not been declared identical or isomor-
phic, additional comparisons using the succinct representation are carried out.
Consider two syntax trees temp0 and temp1, where temp0 has fewer nodes than
temp1. First temp1 is encoded and for each node of temp0, the encoding of temp1
is checked to see if it contains an encoding of the node. If the encoding of one
tree contains the encoding of a node in the other tree it means that a similar

Detecting Similarity in Multi-Procedure Student Programs 221

node has been found in the trees. The system keeps track of all the similar nodes
and if the node is a global level node, that is, either a global variable declaration
or function declaration, this is also noted.

Based on the percentage of similar nodes that are found, a category 3 or
category 4 result is given. A category 3 result is given for similarity greater that
60% (more than 60% of nodes are similar) for either tree. A category 4 result
is given for similarity less than 60%. For either category, if a global level node
is similar it is reported as such. The threshold percentage between categories 3
and 4 was decided arbitrarily, purely to distinguish the two categories.

5 Experimental Results

The measure of similarity that is used to give the result, is based on four cate-
gories as mentioned in Sect. 4. Listing 3 shows an example of the result produced
by programs that are structurally the same and return true for the brute force
algorithm described in Sect. 4.1. The Parva translator disregards white spaces
and comments. When the syntax tree is generated by the parser, identifier names,
string literals, character literals and other values are disregarded. This means
that making simple visual changes, such as changing identifier names and string
literals as well as adding or removing comments or white spaces, does not trick
the similarity detection system.

Result

Category 1:

Programs are identical

Similarity is 100%

Listing 3. Output showing a category 1 result

Listing 4 shows an example of the result produced by trees that are isomor-
phic. This means that the obfuscation technique of rearranging statements does
not prevent the similarity check from working correctly.

Result

Category 2:

Programs are the same; statements have been switched around

Similarity is 100%

Listing 4. Output showing a category 2 result

Result

Category 3:

The programs contain large/many similar parts

Program 1 (the 1st argument) contains: 85.06% similar nodes

Program 2 (the 2nd argument) contains: 52.85% similar nodes

Listing 5. Output showing a category 3 result

222 K. Bradshaw and V. Chindeka

Additional comparisons using the succinct representation results in either a
category 3 result shown in Listing 5 or a category 4 result shown in Listing 6.
Category 3 and 4 results also record the existence of a global level node that is
structurally the same, if present.

Result

Category 4:

The programs contain few similar parts

At least one global level element (function of variable) is the

same

Program 1 (the 1st argument) contains: 32.51% similar nodes

Program 2 (the 2nd argument) contains: 53.70% similar nodes

Listing 6. Output showing a category 4 result

void voter ()

{ int votingAge = 18;

writeLine("Voting age = ", votingAge);

}

void voter1 (){

// voter.pav

// Simple voter example

voter (); //Write voting age

const votingAge = 18;

int age , eligible = 0, total = 0;

bool allEligible = true;

int[] voters = new int [100];

read(age);

while (age > 0) {

bool canVote = age > votingAge;

allEligible = allEligible && canVote;

if (canVote) {

voters[eligible] = age;

eligible = eligible + 1;

total = total + voters[eligible - 1];

}

read(age);

}

if (allEligible) write("Everyone was above voting age");

write(eligible , " voters. Average age is ", total /

eligible , "\n");

}

void Main ()

{ voter1 (); }

Listing 7. Test0.pav source code

Detecting Similarity in Multi-Procedure Student Programs 223

5.1 Test Cases

Experiments using three source code files were used to validate the results given
by the system. The first file used is Test0.pav shown in Listing 7. The second file,
Test1.pav shown in Listing 8, was produced by copying the code in the first
program and applying obfuscation techniques that rely on semantic meaning
such as, changing the type of loop used, expanding variable declarations and
assignments and using a chain of redundant functions to call a function.

void voter()

{ writeLine("Voting age = ", 18); }

void voter1 (){

// voter.pav -- Simple voter example

voter(); //Write voting age

int votingAge = 18;

int age , eligible = 0, total = 0;

bool allEligible;

allEligible = true;

int[] voters;

voters = new int [100];

read(age);

loop {

bool canVote = age > votingAge;

allEligible = allEligible && canVote;

if (canVote) {

voters[eligible] = age;

eligible = eligible + 1;

total = total + voters[eligible - 1];

}

read(age);

if(age < 0) break;

}

if (allEligible) write("Everyone was above voting age");

write(eligible , " voters. Average age is ", total /

eligible , "\n");

}

void calling () { voter1(); }

void calling1 () { // spurious code

calling (); }

void calling2 () { // more useless code

calling1 (); }

void Main()

{ calling (); }

Listing 8. Test1.pav source code

224 K. Bradshaw and V. Chindeka

The third file, Test2.pav shown in Listing 9, was obtained by applying obfus-
cation techniques that affect the visual appearance of the code, such as changing
white spaces and comments, changing variable names and shuffling statements
around or hiding blocks of copied code in other functions.

void validVoters () {

// validVoters -- Simple voter example

const AgeOfVoting = 18;

int age , eligibleCount = 0, total = 0;

bool allEligible = true;

int[] voters = new int [100];

writeLine("Voting age = ", AgeOfVoting); // Output voting age

read(age);

while (age > 0) { // Descriptions

bool canVote = age > AgeOfVoting;

allEligible = allEligible && canVote;

if (canVote) { // Descriptions

voters[eligibleCount] = age;

// Abitrary comments

eligibleCount = eligibleCount + 1;

total = total + voters[eligibleCount - 1];

}

read(age);

}

if (allEligible) write("Everyone was above voting age");

write(eligibleCount , " voters. Average age is ", total /

eligibleCount , "\n");

}

void Main ()

{ validVoters (); }

Listing 9. Test2.pav source code

Result

Category 3:

The programs contain large/many similar parts

At least one global level element (function of variable) is the

same

Program 1 (the 1st argument) contains: 90.05% similar nodes

Program 2 (the 2nd argument) contains: 82.27% similar nodes

Listing 10. Result of comparing Test0.pav and Test1.pav

The output given when comparing Test0.pav and Test1.pav is shown in
Listing 10. Test0 has 90.05% of its nodes similar to those in Test1, while 82.27%
of Test1’s nodes are similar to those in Test0.

Listing 11 shows the results when comparing Test0.pav and Test2.pav.
Test0 has 89.05% similar nodes while Test2 has 96.24% of its nodes the same.
The average of the percentages given indicates that the similarity is higher in
the Test0 and Test2 comparison than the Test0 and Test1 one.

Detecting Similarity in Multi-Procedure Student Programs 225

Result

Category 3:

The programs contain large/many similar parts

At least one global level element (function of variable) is the

same

Program 1 (the 1st argument) contains: 89.05% similar nodes

Program 2 (the 2nd argument) contains: 96.24% similar nodes

Listing 11. Result of comparing Test0.pav and Test2.pav

5.2 Discussion of the Results

As is the case for JPlag [7], a result of 100% similarity such as that given in
categories 1 and 2 is indicative of plagiarism whereas low percentages of similarity
show the absence of plagiarism. For results in between, however, a manual check
is required to confirm the presence of plagiarism. Category 3 and 4 results,
therefore, require manual intervention.

The test cases shown above compare the effects of semantic-based and visual-
based obfuscation techniques on the system. Semantic-based obfuscation tech-
niques appear to be detected correctly by the system; however, in these examples,
the presence of similar nodes may also be due to the minimal number of con-
structs available in the Parva programming language, or to the simplicity of the
examples used. The same statements may be chosen by programmers due to lack
of choice of alternative constructs, resulting in unintentional similarity. The per-
centage of similarity detected is generally higher for the visual-based techniques;
this is most likely because semantic-based techniques change the structure of
the program and require the inclusion of semantic meaning in the process of
detecting similarity.

6 Conclusion

The aim of this research was to produce a prototype similarity detection system
that compares programs for similarity using only the syntactic structure of the
programs. The system consists of a parsing phase, which outputs a syntax tree
represented as XML, and a comparison phase. The XML tree representation is
converted into both a string and a succinct representation for use in the second
phase.

The usefulness of this prototype system in detecting plagiarism was tested
using simple, yet realistic student code examples. Results for all four categories
of plagiarism were correctly given. Thus, the system could be used both to detect
100% similarity as well as to narrow down the submissions from a large group
of students that need to be manually checked.

Future work involves extensive testing on larger code samples and samples
taken from real programming languages, as well as optimising the comparison,
serialising and encoding algorithms to make the system more efficient. In addi-
tion, comparisons with other plagiarism detection systems need to be completed.

226 K. Bradshaw and V. Chindeka

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley, Boston (1974)

2. Bryant, D.: Building trees, hunting for trees, and comparing trees: theory and
methods in phylogenetic analysis. Ph.D. thesis, University of Canterbury (1997)

3. Finden, R., Gordon, A.: Obtaining common pruned trees. J. Classification 2, 255–
276 (1985)

4. Itokawa, Y., Wada, M., Ishii, T., Uchida, T.: Tree pattern matching algorithm
using a succinct data structure. Proc. Int. MultiConf. Eng. Comput. Sci. 1, 206–
211 (2011)

5. Kao, M.Y., Lam, T.W., Sung, W.K., Ting, H.F.: An even faster and more unifying
algorithm for comparing trees via unbalanced bipartite matchings. J. Algorithms
40(2), 212–233 (2001). https://doi.org/10.1006/jagm.2001.1163

6. Paris, M.: Source code and text plagiarism detection strategies. In: 4th Annual
Conference of the LTSN Centre for Information and Computer Sciences, pp. 74–
78. LTSN Centre for Information and Computer Sciences (2003)

7. Prechelt, L., Malpohl, G., Phillippsen, M.: JPlag: finding plagiarisms among a set
of programs. Technical report, Karlsruhe Institute of Technology (2000)

8. Puflović, D., Gligorijević, M.F., Stoimenov, L.: CSPlag: a source code plagiarism
detection using syntax trees and intermediate language. In: Proceedings of the 52nd
International Scientific Conference on Information, Communication and Energy
Systems and Technologies (ICEST 2017), pp. 102–105 (2017)

9. Schleimer, S., Wilkerson, D.S., Aiken, A.: Winnowing: local algorithms for doc-
ument fingerprinting. In: Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, pp. 76–85. SIGMOD 2003, ACM, New York,
NY, USA (2003). https://doi.org/10.1145/872757.872770

10. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Effi-
cient graphlet kernels for large graph comparison. In: Artificial Intelligence and
Statistics, pp. 488–495 (2009)

11. Terry, P.: Compiling with C# and Java. Pearson Education, London (2005)
12. Wang, B., Swenson, K.M.: A faster algorithm for computing the kernel of maxi-

mum agreement subtrees. IEEE/ACM Trans. Comput. Biol. Bioinform. 1 (2019).
https://doi.org/10.1109/TCBB.2019.2922955

13. Whale, G.: Identification of program similarity in large populations. Comput. J.
33(2), 140–146 (1990). https://doi.org/10.1093/comjnl/33.2.140

14. Wilson, R.J., Watkins, J.J.: Graphs: an Introductory Approach: A First Course in
Discrete Mathematics. John Wiley & Sons Inc, Hoboken (1990)

15. Wise, M.J.: YAP3: improved detection of similarities in computer program and
other texts. SIGCSE Bull. 28(1), 130–134 (1996). https://doi.org/10.1145/236462.
236525

16. Zhang, F., Wu, D., Liu, P., Zhu, S.: Program logic based software plagiarism detec-
tion. In: IEEE 25th International Symposium on Software Reliability Engineering
(ISSRE), pp. 66–77. IEEE (2014)

https://doi.org/10.1006/jagm.2001.1163
https://doi.org/10.1145/872757.872770
https://doi.org/10.1109/TCBB.2019.2922955
https://doi.org/10.1093/comjnl/33.2.140
https://doi.org/10.1145/236462.236525
https://doi.org/10.1145/236462.236525

Enhancing Computer Students’
Academic Performance Through

Explanatory Modeling

Leah Mutanu and Philip Machoka(B)

Department of Information Systems,
United States International University Africa, Nairobi, Kenya

{lmutanu,pmachoka}@usiu.ac.ke

Abstract. A key challenge facing nowadays universities is the growing
attrition rate of computer studies students, attributed to poor academic
performance. While extensive research has been conducted on how to
enhance students’ performance in computer programming, fewer research
investigates other computer courses, especially in sub-Saharan Africa.
This paper addresses this gap by describing experiments that revealed
some of the factors that influence a student’s overall academic perfor-
mance at university through explanatory modeling. Our results showed
that students’ background in mathematics and their performance in the
Introduction to Information Systems course were key in determining per-
formance. Unexpectedly, prior computer skills or secondary school grades
had less impact. The strategies identified for enhancing students’ per-
formance include an emphasis on building students’ mathematics back-
ground, providing a stringent teaching approach to foundational com-
puting courses, re-structuring of courses in the computer program, and
linking courses across the curriculum. Thus, explanatory modeling cre-
ates an opportunity to adopt a proactive approach to enhancing the
performance of computer studies students.

Keywords: Computer science higher education · Academic
performance · Explanatory modeling

1 Introduction

Globally, Higher Education is the fastest growing segment of post-secondary
education. However, this sector faces a myriad of challenges. Key among them
is student retention. The challenges, however, vary from region to region. In
the USA, for example, the challenge is retaining more women and people from
under-represented minorities (Afr.-Am., Hisp., Native Am.) in computer-related
studies. In Kenya, by contrast, education quality is cited as one of the key
challenges facing public university education [19]. Universities also face low
enrolment numbers in computer-related degree programs as compared to other
degree programs. Another challenge is the high number of student dropout rates.
c© Springer Nature Switzerland AG 2020
B. Tait et al. (Eds.): SACLA 2019, CCIS 1136, pp. 227–243, 2020.
https://doi.org/10.1007/978-3-030-35629-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35629-3_15&domain=pdf
http://orcid.org/0000-0001-5164-6424
http://orcid.org/0000-0001-7008-7111
https://doi.org/10.1007/978-3-030-35629-3_15

228 L. Mutanu and P. Machoka

While various reasons exist why students drop out, students’ academic perfor-
mance has been identified as one of the biggest drivers [8]. A study by Njoroge
(et al.) on student attrition rates in private universities in Kenya showed that
academic performance contributed to increased attrition rates [18]. The study
recommended mechanisms to be put in place for early detection of attrition risk
supported by technology to ensure students pursue their studies to completion;
for comparison see [3].

Our objective was to pursue [18]’s recommendation, that is, to identify factors
in students’ learning environment that can serve as indicators of students’ aca-
demic performance. We focused on academic factors that impede students’ per-
formance in computer-related studies. The remainder of the paper is organized
as follows: Sect. 2 outlines related work; Sect. 3 discusses our research method;
Sect. 4 presents the findings and discussions; Sect. 5 highlights the main limi-
tations of our study; Sect. 6 concludes and makes recommendations for future
work.

2 Related Work

High dropout rates are common in Computer-related degree programs at univer-
sities. Two main causes of the problem pointed out by [7] are students’ motivation
and the complexity of these courses. In determining these problems, however, [7]
did not consider the students’ prior education background before university. The
assumption was that any student who has enrolled in a computer-related pro-
gram was qualified to undertake the course. However, our study shows that there
are prior academic background factors that can influence a student’s academic
performance. This study did not consider students’ social, economic, cultural,
and geographic factors, because their treatment requires a different approach.
Kumar found that different demographic groups (economic status, gender, race,
major, and type of institution) required different intervention approaches in
Computer Science [13]. This study, therefore, attempts to explore students’ prior
academic background before university rather than their demographic groups.

Al Murtadha (et al.) investigated the key factors that influenced ICT stu-
dents’ academic performance in Saudi Arabia [2]. A number of factors were
identified, including age, gender, student major, means of transport to school,
parents’ education level, English proficiency level, sitting position, fear of exam,
study schedule, drug abuse, daily sleeping hours, Twitter use, sports engagement,
hobbies, and community service engagements. These factors can be categorized
into ‘social’, ‘economic’, and ‘academic’. While all those factors are significant,
our study focuses only on those factors that academic institutions themselves can
influence, namely the academic factors, through the provision of remedial courses
or alternative teaching approaches. These factors include the students’ academic
background in Mathematics, Computer and English courses. Nash pointed out
that students joining tertiary education are not always sufficiently equipped [17].
For example, university students are expected to use computers to access course
materials, write assignments with good grammar, and to carry out calculations.

Enhancing Computer Students’ Academic Performance 229

To be able to cope with these demands, students need a general competence
in computer usage, language, and mathematics. Additionally considered in our
study is the students’ academic performance at university.

A study by Garcia and Al-Safadi on factors affecting students’ academic per-
formance in computer programming found that classroom management skills
were key to improving student performance [6]. Their study, however, focused
only on the performance in computer programming—not the entire curricu-
lum. More recently, Wang (et al.) conducted a similar study that also focused
on enhancing students’ computer programming performance [24]. They recom-
mended a more comprehensive investigation focused on other courses in the
degree program, rather than only on one subject. While there are many pub-
lications on how technology enhances students’ performance in general, little
research focusses on how to enhance students’ performance in computer-related
studies (ICT). To the best of our knowledge, most of the existing papers in this
area identified factors influencing only a single subject, computer programming
[11], ignoring other subjects in the curriculum. Our work addresses this gap
by looking at performance in all courses in our entire degree program. Further-
more, there are limited studies in the area focusing on institutions in sub-Saharan
Africa.

The results of [6] were based on students’ own perceptions. Accordingly,
instructors’ classroom management skills, such as preparation for the topic and
teaching techniques, influenced performance. Instructional materials did not
have a big influence. A related study that also sought students’ opinions indicated
that education pedagogy (didactics) was a key factor in influencing students’ per-
formance in computer-related courses [20]. In [4], Barlow-Jones and Westhuizen
show the relationship between university pre-entry attributes and students’ per-
formance in computer programming: There was a correlation between previous
programming experience and performance in programming modules while there
was no correlation between the socio-economic status, educational background,
highschool Mathematics, and English scores. Their study, however, also collected
data from students’ opinions rather than examining actual students’ scores. Our
research follows an approach that does not focus on students’ perceptions but
on their actual performance. Thus we hope to paint a more accurate picture of
the background factors that influence performance.

Computer students often require a special set of digital skills that other
degree programs do not demand. This is especially challenging in developing
countries where the ‘digital divide’ gap is large. The lack of infrastructure and
low household income often deny students the opportunity to engage with tech-
nology adequately especially during their formative years of schooling. Chikumba
highlights the extent of the problem in Malawi where private secondary schools
performed better in computer studies than public secondary schools due to poor
investment in computers, teaching materials, and staff required to deliver the
subject [5]. For this reason it is not a requirement for students joining many
universities in developing countries offering computer-related degree programs
to have this prerequisite technical background. However, some courses can be

230 L. Mutanu and P. Machoka

recommended for students intending to take computer related studies. For exam-
ple, Akinola and Nosiru recommend a priori knowledge of Physics and Mathe-
matics as essential for students to excel in computer-related studies [1]. They also
mention that better teaching methods and techniques can enhance students’ per-
formance by changing their perception of computer-related courses. A different
study on factors promoting success in Computer Science revealed the Computer
Science performance predictive factors as the students’ comfort level and math-
ematical background [25]. No significant difference was based on gender. The
performance in the introduction to programming courses also had a positive
influence on success. Research on how language influences performance revealed
that—contrary to the generally accepted view that achievement in highschool
mathematics courses is the best individual predictor of success in undergraduate
Computer Science—success in English correlates better with the actual perfor-
mance [22]1. Importantly, their study was conducted in a social context in which
many students were not native English speakers.

In [1], Akinola and Nosiru used a fuzzy sets approach to yield the factors that
influence performance. They posit that selecting the factors that influence stu-
dents’ performance in computer programming is not an easy task as it involves
human decision-making which can be imprecise or subjective. This problem can-
not be handled effectively by probability theories. Fuzzy sets are suitable for
problems that involve the need to seek consensus among many decision makers.
Students gave their opinions according to their own criteria for each factor by
selecting a value. The union of their evaluations to all the currently available
alternatives was represented in the form of a fuzzy set. They state that the app-
roach helped to eliminate outlier decision-making which lead to a more accurate
and reliable result. Although faculty members (instructors) have traditionally
found ways of identifying performance challenges ‘intuitively’, there is a need to
enhance this process through innovative ways of modeling data. The objective
of the research was to model student data, captured over a period of time, with
the aim of providing causal explanations of (poor) performance for purposes of
early intervention. Data mining techniques have been used extensively to develop
early warning systems for risk aversion. In the health domain, for example, early
warning systems have been defined as surveillance systems that collect informa-
tion on epidemic-prone issues such as diseases in order to trigger prompt public
interventions [16]. Fuzzy logic is used to map risk patterns. Our work therefore
aimed at modeling computer students’ academic performance in order to find
ways of enhancing it.

3 Method

Our study was conducted at a private university in Kenya. This university offers
two computer-related degree programs, Computer Science and Information Sys-
tems. Both had the same pre-entry admission requirements for secondary school
1 I.e.: being able to read and understand textbooks and assignment specifications

written in high-level academic language.

Enhancing Computer Students’ Academic Performance 231

final exam grade point average (GPA); however the Computer Science program
required higher secondary school scores in Mathematics and Physics. Secondary
school data was collected on students taking these programs for a period of
five years. Only data recorded in the university’s Student Information System
(SIS) could be used—i.e.: the students’ GPA at secondary school, placement test
scores (skills assessment on admission to university), chosen major subject, gen-
der, current year of study, year of admission, current GPA for courses taken so
far at the university, and the country of origin. We focused on academic factors
that the institution itself could influence or use to influence practices at the uni-
versity to enhance the students’ academic performance. We aimed at modeling
computer students’ academic performance in order to find ways of enhancing it.
We achieved this through two research objectives:

1. Identification of academic factors influencing students’ academic performance
in computer-related studies;

2. Establishing ways of enhancing the computer-related degree curricula to
address academic factors influencing students’ academic performance in
computer-related studies.

Our data set related to 6000 students who had joined the university over a five-
year period (2014–2018). A random sample was required for analysis. We used
the following formula to calculate the study’s sample size S as:

S =
z2xp(1−p)

e2

1 + z2xp(1−p)
e2N

whereby N = population size, e = margin of error (percentage in decimal form),
z = the statistical Z-score,2 and p = sample proportion. A confidence level of
95% was aimed for, which requires a Z-score of 1.96. A 3% margin of error was
chosen. The sample size was therefore 907. Therefore we picked 1000 entries from
a population of 6000 records. This sample was picked as a test set for experi-
ments in predictive modeling. However, future experiments shall use the entire
sample size. Through the data cleaning process, several records were discarded
as not suitable, yielding a final sample size of 858 entries. This number was still
acceptable, as it still yielded the desired 3% margin of error.

For ethical purposes our data set was anonymized. An SQL script was writ-
ten to extract only the necessary data from the data base. The resultant data
was saved in an excel spreadsheet for ‘cleaning’ and subsequent analysis. To
ensure that the data was an accurate representation of the five years, the year of
admission was also retrieved. During ‘cleaning’ we eliminated 142 records that
contained obvious errors or had missing (empty) fields. Data analytics was then
conducted with the data mining tools Weka [9] and R [21]. The IBM SPSS sta-
tistical analysis tool [14] was also used to explore and validate the results. The
use of several tools enriched our insights in validating the results obtained. Clus-
tering and decision tree algorithms were used to classify the data. From the data
2 https://www.investopedia.com/terms/z/zscore.asp.

https://www.investopedia.com/terms/z/zscore.asp

232 L. Mutanu and P. Machoka

mining exercise, patterns in the data were identified and used for explanatory
modeling. Our research design was descriptive where the characteristics of corre-
lations between two or more entities were explored and visualization techniques
were used to represent the data. Quantitative research techniques were applied
to emphasize objective measurements. In our work, data was gathered and used
to generalize across groups of students to explain academic performance.

4 Findings

This section identifies patterns in the data for purposes of modeling the perfor-
mance of students taking undergraduate computer-related degree programs at
our university. We describe the techniques used and the results obtained3.

4.1 Factors Influencing Cumulative GPA

Our research set out to identify some academic factors that influence students’
performance based on the literature which we have reviewed. Specifically we
analyzed factors such as the students’ final GPA at secondary school, placement
test scores on admission to university, students’ chosen major, gender, current
year of study, year of admission, test scores for courses done at university, and
the country of origin. Placement tests were given to students upon joining the
university. Scores from these tests are used to assess students’ prior knowledge
in Mathematics, English, and computing skills upon admission. Students who
do not meet the requirements must take remedial classes for a semester in the
respective courses. The prior mathematics knowledge that computer programs
require include basic algebra and statistics. The degree programs also offer addi-
tional mathematics courses such as discrete mathematics and algebra. Most of
the computer courses offered at the university have Mathematics courses as pre-
requisites. These include courses such as data structures, decision analysis, and
data analytics. However, the first computer programming course, Fundamentals
to Programming Logic, assumes no prior knowledge of programming and does
not have any mathematics prerequisites. The focus of the course is on imparting
procedural programming skills.

Distribution of the frequencies for the data used in this study is shown in
Fig. 1. The figure shows that there were more male students in both programs.
Given a ‘pass’ mark of 60%, the majority of the students were able to pass the
placement tests in IST (computer placement) and English. The performance
in Mathematics was not as good, however, it should be noted that Computer
Science competes with other Science and Engineering disciplines for students
with a good Mathematics Background.

3 Due to shortage of page-space in this conference paper we cannot reproduce in this
section all the data tables and graphical figures which our research has yielded.
Readers who wish to obtain those tables and figures, which are not shown in this
paper, may contact us via e-mail.

Enhancing Computer Students’ Academic Performance 233

Fig. 1. Sample frequency distributions of the data sets used

The data was analyzed using clustering algorithms to give an indication of
which factors influenced the cumulative GPA. For this paper the Expectation
Maximization (EM) clustering technique of [10] was preferred, because it pro-
vides better optimization than distance-based or hard membership algorithms
like K-Means [15]. EM easily accommodates categorical and continuous data
fields, thus making it the most effective technique available for proper proba-
bilistic clustering. K-Means clustering is a method of vector quantization that
partitions observations into clusters based on the nearest mean, serving as a
prototype of the cluster. K-Means was also used for purposes of validating the
results. The data had to be converted into numeric representations to perform
K-mean clustering.

234 L. Mutanu and P. Machoka

Fig. 2. Significance analysis for gender and degree program

Cluster analysis showed that some variables have a bigger impact on the
students’ cumulative GPA than others. For example, a higher math placement
score resulted in a higher students’ cumulative GPA. Both EM and K-Means
clustering algorithms gave the same results. Similar results were also observed
for the students’ year of study where students at their third and fourth years of
study had higher cumulative GPAs than those in their first and second years of
study.

However, similar tests showed that the English and Information Systems
Technology (IST) placement scores had less impact on the students’ cumulative
GPA. This showed that students do not require prior knowledge in computers
to do well in computer-related degree programs. Prior knowledge in comput-
ers refers to computer literacy skills. The cluster centers of high cumulative
GPA scores were close to the 50% test scores. However, further investigation to
understand why factors such as previous computer knowledge were not influen-
tial contrary to popular belief is required. Similar results were also observed for
the students’ secondary school final exam GPA despite the expectation that stu-
dents who did well in highschool would also do well at university. The secondary
school final GPAs did not have a big impact on the cumulative GPA scores at
university. This is expected given that the students selected for the program had
similar highschool final GPA scores based on the pre-entry requirements.

Enhancing Computer Students’ Academic Performance 235

Table 1. Impact of gender and degree program on cumulative GPA

male female Inform. Syst. Comp. Science

Mean cumulative GPA 2.465 2.892 2.659 2.387

Total 673 185 535 323

Other factors examined, such as the students’ gender, degree program (Com-
puter Science or Information Systems), and country of origin, had almost no
visible impact at all when a cluster analysis was done. These findings concur
with [25]. However, further investigation to understand why factors such as
gender were not influential contrary to popular belief is required. The Inde-
pendent Samples T-test [12] was used to compare the difference in cumulative
GPA means where two independent groups existed such as male and female stu-
dents, or Computer and Information Systems degrees. The purpose of the T-test
was to determine whether the difference between the two groups was statisti-
cally significant. A T-test conducted on the students’ cumulative GPA versus
students’ gender showed that the difference in cumulative GPAs was not statis-
tically significant between the two groups as tabulated in Fig. 2a. The results—
t(323.035) = −7.300 with p = 0.000—show that there is no statistically signifi-
cant difference in the variances between the two groups. The p-value is below the
critical significance level of 0.05. Conducting a similar T-test on the students’
degree program versus their cumulative GPA also confirmed that there was no
statistically significant difference in the GPA reported between the two groups:
Fig. 2b. The results—t(664.239) = 5.017 with p = 0.000—show that there is no
statistically significant difference in the variances between the two groups. The
p-value is below the critical significance level of 0.05. The results statistically
confirmed that gender and the degree program had no significant influence on
the students’ cumulative GPA.

It is worth noting that further analysis showed that there were more male
students admitted in the two programs, although female students had compara-
tively higher cumulative GPAs as illustrated in Table 1a. The difference, however,
was not statistically significant. Both computer-related degree programs had low
female enrolments. Additionally, students in the Information Systems program
were more than those in the Computer Science program. This was expected
because the former program had been offered for a longer period. However, we
observed that the Computer Science program had students with slightly higher
cumulative GPA than those from the Information Systems program as illustrated
in Table 1b, although the difference was also not statistically significant.

To assess the significance of each of these factors a Pearson Correlation anal-
ysis [23] was conducted. The bivariate Pearson Correlation produces a sample
correlation coefficient, r, which measures the strength and direction of linear
relationships between pairs of continuous variables. The Pearson Correlation was
used to present the statistical evidence for variables that impact the cumulative
GPA or not. The results of the correlation confirmed the observations made from

236 L. Mutanu and P. Machoka

the clustering tests that mathematics placement test scores influenced the stu-
dents’ cumulative GPA. There is a statistically significant correlation between
Mathematics placement test scores and a student’s cumulative GPA. The Pear-
son’s r is positive, indicating that when one variable increases the second variable
also increases. The Sig (2-Tailed) value is less than or equal to 0.05, showing that
the relationship is statistically significant. However, the correlation between a
student’s IST placement test score and a student’s cumulative GPA was not
statistically significant, because the value of the Pearson’s coefficient r is close
to zero. The correlation between a student’s country of origin and a student’s
cumulative GPA was not statistically significant.

The results obtained so far identified variables that were significant in
determining a student’s cumulative GPA and the extent to which each vari-
able impacted the cumulative GPA. They, however, do not describe patterns
in the data showing how all the variables jointly impacted the cumulative
GPA. This is useful when modeling relationships between variables. In order to
describe patterns in the data, further analysis of all the variables was required
to show how they influence each other. For this task, clustering and decision
tree algorithms were applied to the data. When a cluster analysis was con-
ducted with the EM clustering algorithm, three large clusters were identified. The
results presented in Fig. 3 show three significant clusters labelled 2 (GPA-2.6), 6
(GPA-2.5), and 8 (GPA-2.1) as having the highest cluster densities, i.e.: 22%,
25%, and 22%. These clusters represent groups of students with similar charac-
teristics. The math placement scores for each cluster were observed to be 59%,
53%, and 70% (Fig. 3). The high densities showed that majority of the students
had these characteristics. Figure 3 further shows two clusters labeled 1 and 3
with high cumulative GPA scores of 2.9 and 3.1. The Mathematics placement
scores are also higher at 71% and 68%. This confirms the earlier results that math
placement score influenced the cumulative GPA. Although clustering showed the
existence of relationships, it is difficult to tell at a glance what the relationships
were. Additional analysis was required to describe the factors that formed each
cluster.

Running decision tree algorithms on the data revealed the relationship
between different variables as illustrated in Fig. 4. From the results it can be
observed that the Introduction to Information Systems course (IST1020), the
year of study (cl), and the math placement test played the most significant role
in determining a student’s cumulative GPA. The Introduction to Information
Systems course imparts general computer literacy skills to students. It does not
include any computer programming. A few second level courses were also found
to have an impact, namely Computer Organization (taken by the Information
Systems degree students) and Computer Networks (taken by the Computer Sci-
ence degree students). The Computer Organization course exposed students to
computer architecture and assembly language while the Computer Networks
course introduced students to data communication protocols and devices. Both
courses were taken by students as soon as they completed the introduction to
Information Systems course. The higher-level courses had no impact. The find-

Enhancing Computer Students’ Academic Performance 237

Fig. 3. Mining patterns through clustering

ings brought out the importance of laying a strong foundation for students during
their initial courses in computing. The approach to the foundation classes served
to either propel students to success or failure. It was observed that seasoned
instructors who were professors in the department taught higher-level courses
or graduate programs while early career instructors and part-time instructors
were left to handle introductory level courses in the department. This approach
needed to change to enhance students’ performance.

Our study also sought to establish how courses taught at various levels influ-
enced each other. To achieve this a Pearson Correlation test was done across
the various courses offered. The courses are mapped against each other and
the Pearson Correlation values are provided. The lower-level courses are courses
offered in year 1 and year 2, indicated in green in the column and row headings
in Fig. 5. The higher-level courses are courses offered in years 3 and 4, indicated
in blue in the column and row headings. The results presented by the correla-
tion matrix in Fig. 5(a) showed that for the Computer Science program lower
level courses appeared to influence each other positively (Pearson Correlation
value above 0.4), such that a high grade in one would most likely mean a high
grade in the other. A closer examination revealed that this occurred between
related courses such as Computer Organizations and Operating Systems or Web
Design and Computer Programming. Related courses in this context are con-
sidered as courses that are a pre-requisite of the other. For example, Computer
Organizations is a pre-requisite course for Operating systems and Computer
Programming is a pre-requisite for Web Design. Unexpected relationships iden-
tified were between Computer Organization and Computer Programming which

238 L. Mutanu and P. Machoka

Fig. 4. Decision tree classification of factors influencing the cumulative GPA

are courses that are not indicated as prerequisites of each other. This, however,
might be attributed to the fact that Assembly Language Programming was part
of the Computer Organization course.

For the Information Systems program, fewer courses seemed to influence each
other, as depicted by the presence of more white cells in Fig. 5b (Pearson Cor-
relation value less than 0.2). This was a possible indication of the lack of proper
linking when teaching courses across the curriculum. Some significant relation-
ships, however, were found among related higher-level courses such as System
Analysis and Design, Object Oriented Programming, and Database Manage-
ment Systems, as well as Decision Analysis, Data Structures and Algorithms,
and Mobile Programming. These relationships were expected because the courses
were related and, therefore, had been stated as pre-requisites of each other in the
curriculum. One unexpected relationship, however, was identified between the
Digital Laboratory and Object-Oriented Programming where students who did
well in Digital Laboratory also did well in Object-Oriented Programming and
vice versa. The two courses had distinct content and, therefore, had not been
indicated as pre-requisites of each other in the curriculum. Further research is
required to investigate the cause of this relationship.

4.2 Strategy for Enhancing Performance

The experiments described in the previous sub-section provided insights into
weaknesses in the current degree programs offered at our university. Our results
can thus provide an opportunity to review the programs and to align courses
properly to enhance students’ academic performance in computer-related pro-
grams. Strategies on the courses to be considered when admitting students into
the program, the courses to be emphasized or restructured in the curriculum,
and ways of reducing attrition rates through performance are discussed in the
following paragraphs.

Enhancing Computer Students’ Academic Performance 239

Fig. 5. Relationship between the courses in the degree programs (Color figure online)

Preference on Students’ Mathematics Background. Our findings show
that the results of the Mathematics placement test scores had a positive impact
on the students’ cumulative GPA. Students with a strong Mathematical back-
ground did better than students who were weaker in the subject. This was, how-
ever, not the case with the computing and English skills backgrounds. Courses in
computer-related studies, therefore, need to admit students with a strong math-
ematical background. As mentioned earlier, Computer Science and Information
Systems compete with Science and Engineering disciplines for students with a
good Mathematics background. Therefore, an alternative strategy to attract stu-
dents with excellent Mathematics background must be sought. Additionally,
there is a need to add mathematics courses such as Discrete Mathematics, For-
mal Logic, Differential and Integral Calculus to compensate students’ weaknesses
in these required areas.

Emphasis on Introduction to Computers Course. Another key area that
influenced the students’ cumulative GPA is their performance in our Introduc-
tion to Information Systems course. Students who did well in this course also
had good overall cumulative GPA scores. Emphasis, therefore, needs to be put

240 L. Mutanu and P. Machoka

on how the courses are taught to develop students’ interest as well as to lay
a solid foundation for our two computing programs. Basic skills that will be
required in advanced courses should be instilled at the foundation level. Further
research on the specific skills required at this level is required. Such skills should,
therefore, be integrated into the Introduction to Information Systems course.
Senior and experienced instructors, who traditionally teach higher level courses
and (post)graduate courses, should be encouraged to participate in lower-level
courses to prepare and mentor the students well during their foundation phase.

Structure of the Curriculum. Our results further show that there was a sig-
nificant positive correlation among courses in our Computer Science degree. Stu-
dents who did well in the introductory programming courses also did well in the
advanced programming course. This was, however, not the case in our Informa-
tion Systems degree program. This was attributed to the fact that our Computer
Science curriculum was developed after the Information Systems degree and,
therefore, structured already better to accommodate ‘lessons learned’ from the
Information Systems degree. The structure of the Information Systems degree
program has since been revised to address some of these challenges. It is envis-
aged that the effects of these changes will appear in future studies.

Linking Courses Across the Curriculum. We also noted the need to relate
courses when teaching the program as well as re-considering prerequisites within
the program. While relationships were observed among programming courses,
the same was not apparent among networking courses or computer security
courses. Students who did well in the lower-level networking and security courses
should also be able to do well in similar courses at the advanced level. This
absence of well-defined module relationships could, however, be due to the
absence of courses at a higher level to continue their matching lower-level courses
in those tracks. Further research is required to establish the reason for the lack
of such relationships.

Prediction Modeling for an Early Warning System. Machine learning
and data mining techniques can be combined to identify weaknesses in a degree
program that may not be easy to detect without such tools. Through predic-
tion modeling, forecasts on students’ performance can enable stakeholders to
proactively take measures to enhance students’ performance. Automation of the
process also eliminates human biases that can interfere with the process. It pro-
vides an opportunity for instructors to identify with minimal effort weaknesses in
the programs offered. Through the provision of early warnings, student attrition
rates can be reduced and subsequently the quality of education can be improved.

5 Limitations

Our study investigated the academic performance of students taking computer-
related degree programs at university. The general objective of this study was

Enhancing Computer Students’ Academic Performance 241

finding out whether factors influencing students’ academic performance can
be modeled to provide explanations for students’ performance with a view of
enhancing their performance. Although the study was conducted in a single pri-
vate university, the results have the potential to be generalized for other institu-
tions. Further research in this area should include a comparative study among
several institutions to provide recommendations for enhancing our approach.

Traditionally many universities emphasize that mathematics and physics
skills are required for admission into computer-related degree programs. Our
findings confirmed that background skills in mathematics were a key factor in
determining a student’s performance. Our results provide a basis for investigating
students’ performance. Further research is required to describe the correlations
with a view of establishing whether they are pointers to actual correlations or
merely spurious. Further, we did not investigate the relationship between the
students’ background knowledge in physics and their academic performance.
This is because physics knowledge was not assessed by the university, and no
records of the students’ secondary school scores for physics were captured in the
university’s Student Information System.

Students’ academic performance is influenced by several factors originating in
their social, economic, and academic backgrounds. Our research, however, only
focused on academic factors arising from students’ educational backgrounds as
well as their current academic performance in courses taken at our university.
These were factors that could easily be collected from the Student Information
System. Additionally, they are factors that the institution itself can address to
enhance the students’ academic performance. Our study revealed the need to
improve the teaching approaches for lower-level courses as they have an impact
on the students’ cumulative GPA later in the program. However, we did not
investigate how to do this. Further research is required to explore how different
teaching approaches influence the cumulative GPA.

6 Conclusions and Future Research Directions

In our study we carried out explanatory modeling to reveal some of the fac-
tors that influence students’ academic performance in computing. The suggested
strategies are based on anecdotal evidence. Nonetheless they provide a basis for
further research to investigate the effectiveness of the suggested approaches.

A review of existing literature revealed that few similar studies had been
done. Most of the research focused on enhancing the performance of specific
courses in computing programs rather than all courses across the curriculum.
Several studies used students’ perceptions which is important but might not
always yield the actual picture. Our study set out to address this gap by analyz-
ing performance across all courses in a program with an emphasis on factors that
the institution can influence. Further, we used actual student scores to evaluate
factors that influence performance. Data analytics techniques were used to clas-
sify data and to provide explanations. The results obtained showed that students’
mathematics background and their performance in their introductory computing

242 L. Mutanu and P. Machoka

course were key in determining performance in their computer studies. Unex-
pectedly, prior computer skills or secondary school grades had less influence on
a student’s performance. The non-academic factors measured, such as country of
origin and gender, were also not significant in determining a student’s academic
performance. We also suggested strategies for enhancing students’ performance
in computer-related degree programs.

Further research in this area should be conducted to validate the effectiveness
of the suggested strategies. More extensive research should also be conducted
among both private and public universities in the region as well as among other
degree programs. Other factors that influence students’ academic performance,
such as their social, cultural, and economic backgrounds, would also enhance the
findings of research in this area. Investigating the influence of other academic
factors, such as students’ background in physics, could further enhance the study.
In our study, explanatory modeling laid the foundation for our current research
in predictive modeling. Our goal was to show that explanatory modeling can be
used to identify factors that influence performance—hence setting the case for
predictive modeling of academic performance. The use of prediction models such
as Regression Analysis and Neural Networks can provide a proactive approach
to the problem. While our research is not exhaustive it presents an opportunity
for other researchers in computer studies education to find ways of enhancing
students’ academic performance through explanatory and predictive modeling
techniques.

References

1. Akinola, O.S., Nosiru, K.A.: Factors influencing students’ performance in computer
programming: a fuzzy set operations approach. Int. J. Adv. Eng. Technol. 7(4),
1141–1149 (2014)

2. Al Murtadha, Y.M., Alhawiti, K.M., Elfaki, A.O., Abdalla, O.A.: Factors influenc-
ing academic achievement of undergraduate computing students. Int. J. Comput.
Appl. 146(3), 23–28 (2016)

3. Azcona, D., Smeaton, A.F.: Targeting at-risk students using engagement and effort
predictors in an introductory computer programming course. In: Lavoué, É., Drach-
sler, H., Verbert, K., Broisin, J., Pérez-Sanagust́ın, M. (eds.) EC-TEL 2017. LNCS,
vol. 10474, pp. 361–366. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66610-5 27

4. Barlow-Jones, G., van der Westhuizen, D.: Pre-entry attributes thought to influ-
ence the performance of students in computer programming. In: Liebenberg, J.,
Gruner, S. (eds.) SACLA 2017. CCIS, vol. 730, pp. 217–226. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-69670-6 15

5. Chikumba, P.A.: Student performance in computer studies in secondary schools
in Malawi. In: Popescu-Zeletin, R., Rai, I.A., Jonas, K., Villafiorita, A. (eds.)
AFRICOMM 2010. LNICST, vol. 64, pp. 113–121. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-23828-4 11

6. Garcia, R.A., Al-Safadi, L.A.: Comprehensive assessment on factors affecting stu-
dents’ performance in basic computer programming course towards the improve-
ment of teaching techniques. Int. J. Infonomics 6, 682–691 (2013)

https://doi.org/10.1007/978-3-319-66610-5_27
https://doi.org/10.1007/978-3-319-66610-5_27
https://doi.org/10.1007/978-3-319-69670-6_15
https://doi.org/10.1007/978-3-642-23828-4_11

Enhancing Computer Students’ Academic Performance 243

7. Gárcia-Mateos, G., Fernández-Alemán, J.L.: A course on algorithms and data
structures using on-line judging. ACM SIGCSE Bull. 41(3), 45–49 (2009)

8. Giannakos, M.N., Pappas, I.O., Jaccheri, L., Sampson, D.G.: Understanding stu-
dent retention in computer science education: the role of environment, gains, bar-
riers, and usefulness. Educ. Inf. Technol. 22(5), 2365–2382 (2017)

9. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1),
10–18 (2009)

10. Kim, H., Song, H.Y.: Formulating human mobility model in a form of continuous
time Markov chain. Proc. Comput. Sci. 10, 389–396 (2012)

11. Khomokhoana, P.J., Nel, L.: Decoding source code comprehension: bottlenecks
experienced by senior computer science students. In: Tait, B., et al. (eds.) SACLA
2019. CCIS, vol. 1136, pp. 17–32. Springer, Cham (2019)

12. Kim, T.K.: T-test as a parametric statistic. Korean J. Anesth. 68(6), 540 (2015)
13. Kumar, A.N.: Need to consider variations within demographic groups when eval-

uating educational interventions. ACM SIGCSE Bull. 41(3), 176–180 (2009)
14. Kremelberg, D.: Practical Statistics: A Quick and Easy Guide to IBM SPSS Statis-

tics, STATA, and other Statistical Software. SAGE, Thousand Oaks (2010)
15. MacQueen, J.: Some methods for classification and analysis of multivariate observa-

tions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, pp. 281–297 (1967)

16. Namuye, S., Platz, M., Okanda, P., Mutanu, L.: Leveraging health through early
warning systems using mobile and service-oriented technology. In: Proceedings of
IEEE IST-Africa Conference, pp. 1–10 (2015)

17. Nash, J.: Computer skills of first-year students at a South African University. In:
Proceedings of SACLA 2009 Annual Conference of the Southern African Computer
Lecturers’ Association, pp. 88–92 (2009)

18. Njoroge, M.M., Wang’eri, T., Gichure, C.: Examination repeats, semester defer-
ments and dropping out as contributors of attrition rates in private universities in
Nairobi County Kenya. Int. J. Educ. Res. 4(3), 225–237 (2016)

19. Odhiambo, G.O.: Higher education quality in Kenya: a critical reflection of key
challenges. Qual. High. Educ. 17(3), 299–315 (2011)

20. Pretorius, H.W., Hattingh, M.J.: Factors influencing poor performance in sys-
tems analysis and design: student reflections. In: Liebenberg, J., Gruner, S. (eds.)
SACLA 2017. CCIS, vol. 730, pp. 251–264. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-69670-6 18

21. R Core Team: R: a Language and Environment for Statistical Computing (2013).
https://cran.r-project.org/doc/manuals/fullrefman.pdf

22. Rauchas, S., Rosman, B., Konidaris, G., Sanders, I.: Language performance at
high school and success in first year computer science. ACM SIGCSE Bull. 38(1),
398–402 (2006)

23. Sedgwick, P.: Pearson’s correlation coefficient. BMJ 345, e4483–e4483 (2012)
24. Wang, X.M., Hwang, G.J., Liang, Z.Y., Wang, H.Y.: Enhancing students’ computer

programming performances, critical thinking awareness and attitudes towards pro-
gramming: an online peer-assessment attempt. J. Educ. Technol. Soc. 20(4), 58–68
(2017)

25. Wilson, B.C.: A study of factors promoting success in computer science including
gender differences. Comput. Sci. Educ. 12(1/2), 141–164 (2002)

https://doi.org/10.1007/978-3-319-69670-6_18
https://doi.org/10.1007/978-3-319-69670-6_18
https://cran.r-project.org/doc/manuals/fullrefman.pdf

The Use of Industry Advisory Boards
at Higher Education Institutions

in Southern Africa

Estelle Taylor1(B) and Andre P. Calitz2

1 Department of Computer Science and Information Systems, North-West University,
Potchefstroom, South Africa
estelle.taylor@nwu.ac.za

2 Department of Computing Sciences, Nelson Mandela University,
Port Elizabeth, South Africa
andre.calitz@mandela.ac.za

Abstract. An Industry Advisory Board (IAB) can provide useful feed-
back to academic schools or departments, relating to topics such as indus-
try graduate requirements, IT trends, programme quality and curricu-
lum development. Though the existing literature already provides general
guidelines for the role and responsibilities, membership, composition and
functioning of IABs, literature on the use of IABs specifically in south-
ern Africa is limited, especially as far as best practices and perspectives
for the use of IABs for Computer Science (CS), Information Systems
(IS) or related IT departments (IT) are concerned. Hence, the ques-
tion addressed in this paper is: How are IABs used by CS/IS/IT/ICT
departments in higher education in Southern Africa? An IAB question-
naire was compiled and sent to the Heads of Departments (HODs) of
32 universities in southern Africa. Accordingly, feedback received from
IABs could have a direct impact on the ICT curricula and could also
assist ICT lecturers in their efforts to update relevant course contents in
a continuously changing computing environment. This paper might also
help academic CS/IS/IT/ICT departments to implement and maintain
IABs and to follow the standards of best practice.

Keywords: Industry advisory boards · ICT curriculum development ·
Quality management

1 Introduction, Research Problem, and Research Design

Academic departments in Computer Science (CS), Information Systems (IS),
Information Technology (IT) and other related departments (subsequently also
abbreviated collectively as ICT) at Higher Education Institutions (HEI) should
offer programmes and curricula that are relevant in a fast-changing environ-
ment, where students should be prepared for a continuously changing workplace1.
1 For comparison see parts II-III of [17].

c© Springer Nature Switzerland AG 2020
B. Tait et al. (Eds.): SACLA 2019, CCIS 1136, pp. 244–259, 2020.
https://doi.org/10.1007/978-3-030-35629-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35629-3_16&domain=pdf
http://orcid.org/0000-0003-2848-7829
http://orcid.org/0000-0002-2555-9041
https://doi.org/10.1007/978-3-030-35629-3_16

Industry Advisory Boards at Higher Education Institutions 245

Organisations like the IEEE Computer Society and the ACM have made efforts
to specify requirements or content for programmes in CS (CS2016), IS (IS2010)
and IT (IT2017), though there is no clear specification on the graduate attributes
required by the ICT industry [19]. Communication and collaboration between
academics and stakeholders from industry therefore should play an important
part in this effort. “Today, more than ever, a powerful and influential advisory
board is essential for the success of an educational institution” [24].

Maintaining contact with Industry Advisory Board (IAB) members and
obtaining feedback from the IAB members on the quality of academic pro-
grammes have become an important activity at ICT departments at HEIs and
comprehensive universities offering vocational diplomas and academic degree
programmes [13]. IABs provide perspective and are a valuable source of advice
about matters such as curricular issues, career choices and guidance for aca-
demic department members and students [15,22,24]. According to the litera-
ture, departments may use IABs to provide diverse perspectives, to gain input
or advise to customise or strengthen programmes [21,24] or programme quality
[10], and to uniquely shape course content [19]. Additionally, IABs are used to
monitor the effectiveness of curricula or the performance of graduates, to enable
academic departments to keep in touch with the trends and the needs of the
industry, or to help academic departments to meet accreditation requirements
[21]. Thus the feedback obtained from IABs should be used by management
as well as lecturers to keep ICT curricula and module contents up-to-date and
relevant.

Accreditation boards in most cases require the existence and use of IABs by
academic schools or departments. Even though it is clear from the above that
having and using an IAB is to the advantage of HEIs, there is not sufficient
data available on whether all ICT departments at HEIs in southern Africa have
IABs, or—if they do—whether they use their IABs in the most effective way.
Departments that do not have any IAB ought to profit from guidelines for the
establishment and use of IABs. Departments that have an IAB ought to use
standard practices and guidelines to ensure that they use their IAB in the most
effective way.

Zahra (et al.) referred to advisory boards as an under-researched contributor
to education and indicated that it has become essential to gather more data
about these boards, as academic literature on the role and composition of advi-
sory boards is sparse [25]. Therefore, this paper describes the current practices
by ICT departments in southern Africa on the use of IABs as well as the roles
and responsibilities of the IAB members and topics relating to meetings. Our
research problem, research questions and the IAB survey are outlined in the
subsequent paragraphs. Related work on IAB composition, meetings, roles and
responsibilities is recapitulated in Sect. 2. Our IAB survey results are presented
in Sect. 3. Our conclusions and recommendations (relevant to ICT departments
using IABs) as well as future work are described in Sect. 4.

246 E. Taylor and A. P. Calitz

Problem Description. Söderlund (et al.) warned that a recent decline in schol-
arly interest in advisory boards may limit the understanding of the advantages
and complications of IABs [23]. They further refer to a lack of studies on best
practices and perspectives relating to the use of IABs. According to [25], fur-
ther research on IABs would help departments to better understand the role
and attributes of advisory boards, as well as how to best realise their potential.
Management, as well as lecturers, should be informed of the importance of feed-
back from industry IAB members, especially in the fast-changing field of ICT.
Lecturers must deliberate the feedback obtained from an IAB and evaluate the
impact it may have on the curriculum and module contents [14,24]. Thereby it
is important that lecturers are involved in the process, as they are required to
consider the feedback from the IAB and to make changes to the courses they
teach. These changes could lead to the institution delivering graduates who were
taught an improved, relevant programme in the field of ICT [9].

Literature differs on the factors of effective and efficient IABs, such as size,
members, number of meetings per year, and the like [11]. The problem investi-
gated for this paper is based on the recognition that there is insufficient recent
literature on the use of IABs by HEIs in southern Africa. Only a small number
of CS and IS curricula are currently accredited in the Republic of South Africa,
whereby their HEIs must comply with an accreditation body’s IAB requirements.
Further, there is also a lack of guidelines for academic ICT departments on the
best use of IABs in southern Africa. Therefore, our paper addresses the following

Research question: How are IABs used by ICT departments at HEIs in south-
ern Africa?

The aim of our study is to investigate the use, functioning and practices used by
ICT schools and departments at HEIs in southern Africa that already appoint
an IAB.

Method. An IAB questionnaire was compiled on the basis of similar earlier
studies [7,10]. In order to obtain honest personal perceptions, we decided to
keep the survey anonymous. Our IAB questionnaire consisted of the following
sections:

– Biographical details;
– Twelve open-ended questions relating to the use of an IAB by the specific

department/school; and
– Likert scale questions relating to IAB membership, IAB meetings and docu-

mentation, roles and responsibilities, and functioning.

The questionnaire was captured with the Nelson Mandela University’s online sur-
vey tool, QuestionPro. Thereafter we contacted the heads of ICT departments
(HODs) from all 32 universities in southern Africa. The first call for partici-
pation was distributed via e-mail to the HODs listed in the SACLA HOD list.
A second call was sent to various HODs individually. 23 HODs (or deputies)

Industry Advisory Boards at Higher Education Institutions 247

completed our questionnaire during a two-week period. Their answers were sta-
tistically analysed with the help of the Statistica tool, whereby the non-numeric
(qualitative) results were thematically analysed with AtlasTi.

2 Related Work

2.1 Definition and Role of Industry Advisory Boards

A paper entitled “Reversing the Landslide in Computer-Related Degree Pro-
grammes” [4] suggested that the introduction of an IAB should be the first
response to declining student numbers. Accreditation of programmes should be
shaped in a process that involves alumni, IABs, faculty members and students
[19]. According [14], advisory boards in the IS environment date back to the
1960s and can be defined as a group of qualified volunteers whose goals include
providing direction, content and resources, professional development, research,
curriculum, resources and strategic direction. An advisory board can also be
defined as a group of professionals brought together with the aim of helping an
academic centre to accomplish its mission [25]. In this paper, the term ‘IAB’ has
the following
Definition: An IAB is an independent body established by an academic depart-

ment in order to enable it to form and implement its vision and mission.

Universities provide general guidelines and policies regarding the functioning
of an academic department’s IAB [6]. For example, the objectives of an IAB
indicated in the Nelson Mandela University’s IAB Policy include:
– Building relationships between relevant businesses and the department;
– Providing guidance and giving advice on, for example, strategic direction with

regard to trends, professional, business and management practice;
– Providing practical requirements; and
– Providing advice on graduate skill requirements.

Other literature sources indicate as objectives or purposes of IABs:
– Research and programmes [14];
– To act as advocate for the programme [23];
– To provide guidance on academic issues and planning [8];
– To advise on matters relating to new degree programmes and options, long term

planning, community relations, development and policy matters [8,23,24];
– To operate at the strategic level in analysing industry needs and trends, as

well as in reviewing and monitoring programme objectives [12];
– To monitor learning and research quality and impact, as well as the progress

in fulfilling mission and plans [25];
– To act as a link between an academic department and its industrial and

professional partners [8];
– To mentor students [23];
– To assess the quality and skill of graduates [21]; and
– To assist with internships (students) and job placement (graduates) [23];

The important role of IABs is highlighted in [16]: according to this study, 46% of
the departments of ICT (from 23 HEI in South Africa) used IABs at that time.

248 E. Taylor and A. P. Calitz

2.2 Different Requirements: Members, Size, and Meetings

The selection of members for an IAB is important. The Institute for IT Profes-
sionals in New Zealand indicate that IAB members can assist with developing the
body of knowledge in an academic programme as they are potential employers
of the programme graduates [12]. According to [24], members should be selected
from business, industry, government with variety. El Refae (et al.) additionally
mention alumni, students, leaders of the profession, different genders, and ethnic
minorities [10].

Literature sources differ on factors such as size, members, number of meetings
per year, and the like, of IABs. If a board is too small, it lacks critical mass, but
if it is too large it is difficult to take everyone’s opinion into account when dealing
with complex issues. Smaller boards are more efficient in decision-making, whereas
larger boards provide more resources [14]. According to [21], the board should con-
sist of 20 to 25 individuals. Mandviwalla (et al.) refer to four separate cases in
which the boards consisted of 17 members (≈44% alumni), 35 members (≈10%
alumni), 60 members (≈15% alumni) and 11 members (≈50% alumni) [14].

In another case the advisory board consisted of 17 members (6 faculty mem-
bers, 1 student representative and 10 external advisers) [9]. In [25], 31 advisory
boards were studied: they had between 7 and 16 members. In [23] with 10 cases,
the number of members varied from 4 to over 20 from case to case. In general,
literature sources indicate a minimum of 10 members with an average of 20
members [11,18]. Affiliations of IAB members varied between exclusively from
industry, a mixture from industry and academia, as well as from industry, faculty,
plus student representatives.

Leadership of the IAB differs from, for example, an externally appointed chair
to an internally appointed chair [14]. Members can be chosen from companies
which frequently hire graduates from the specific institutions [21]. In other cases
the membership choice is focused on senior executives [14].

The scheduling of meetings also differs, for example twice per year [21], or
three 2.5-h evening meetings per year, two 1.5-day meetings plus an annual
meeting with a director and sub-committee meetings, or two half-day meetings
[14]. In [25], the average for 31 advisory boards was 4–6 meetings a year with
each meeting lasting about 2 h. In the 10 cases of [23], the frequency of meetings
varied from 1 to 6–12 per year.

The purpose of IAB meetings can be to discuss pending issues (for exam-
ple the content and breadth of the curriculum) and to ‘brainstorm’, or to ‘net-
work’ and report changes [21]. In addition, a meeting should ideally generate sig-
nificant input to establishing strategies for monitoring the development of tech-
nical competence as well as personal and professional skills for each particular
programme [12].

2.3 Benefits and Challenges of IABs

The use of an IAB can be to the benefit of the industry, the academic institutions,
and their students.

Industry Advisory Boards at Higher Education Institutions 249

Benefits for the Industry include:

– Interaction with faculty members during meetings, sustaining strategic rela-
tionships [14,24];

– Influence on academic curricula, programmes and research towards industrial
needs [9,14,24];

– Interaction with other industry representatives [9,14,24];
– Access to faculty members for short further-education courses [24];
– Development of talent [9,14];
– Access to competent graduates for employment [6];
– Development of insights [14];
– Social prestige by ‘giving back’ to higher learning in general and by fulfilling

societal responsibilities [9,14,23].

Benefits for the Academic Departments include:

– Latest industrial ‘best practice’ can inform research and curriculum, which in
turn entails that the programmes can remain at the forefront of technological
innovation [8,9,14,25];

– Improved curricula [8,9,14,25];
– Improved programme quality assurance [10];
– Validation of direction and plans, as well as recommendation of initiatives

[8,14,24];
– Higher visibility and better public relations as well as funding or donations

of equipment [8,9,14,24,25];
– Increasing student-enrolment [24];
– Contact networks, resources and data for research [14,25];
– Increased reputation [14];
– Increased influence beyond the institution [14];
– Connection to various influential stakeholders [25].

Benefits for the Students include:

– A timely curriculum that prepares them well for employment [9];
– Mentorship obtained from board members [9,14];
– Job placement and recruitment opportunities [3,9];
– Interesting guest lectures given by industrial speakers [3];
– Industry visits and internships [7].

Challenges. Söderlund (et al.) described challenges experienced by various
institutions with the use of advisory boards [23]. Mentioned are the ‘logistics’ of
setting up the advisory boards, facilitating meetings, scheduling and conducting
meetings, the intensity of meetings becoming tedious for the stakeholders, over-
whelming amounts of advice that must be acted upon, as well as differences in
personality and/or opinions.

250 E. Taylor and A. P. Calitz

2.4 Accreditation Board Requirements for Industry Advisory
Boards

According to the Technology Accreditation Commission (TAC) of the US
Accreditation Board for Engineering and Technology (ABET), accredited pro-
grammes must have an industrial advisory committee including industry repre-
sentatives [1]. Accreditation counts as proof that a programme meets the essen-
tial standards to produce graduates to enter the critical professions of science,
technology, engineering, and mathematics (STEM). Accreditation bodies like the
British Computer Society (BCS) [5], the Accreditation Board of the Australian
Computer Society [2], or the IT Professionals New Zealand [12] operate the IT
industries’ degree accreditation processes, endorse degree programmes, and sup-
port the international portability of qualifications. The use of IABs is endorsed
by these organisations.

SACAB, the newly established South African Computing Accreditation
Board, consists of senior academic and industry representatives. It evaluates and
endorses ICT degree programmes and diploma programmes at South African
HEIs to meet international standards. It supports international portability of
degree programmes and provides graduates with information about the career
paths and skills required by the regional IT industry [20]. SACAB is currently
in the process of establishing best practice guidelines for the functioning of IABs
for academic ICT departments seeking accreditation of their programmes along
the above-mentioned lines of international practice.

2.5 IAB Guidelines from the Literature

It is important that advisory boards make the best use of the valuable time
industry and faculty members spend at meetings: “If you want it to be valuable,
you’ve got to put in the effort” [23]. The following guidelines can be found in [14]:

– Mission and objective statements are essential for forming the direction and
structuring conversations for the board. Keep the mission statement simple.
This can include educational goals (curriculum design), research goals, fund-
ing and reputational activities2;

– Schedule regular meetings to maintain continuity;
– Establish dates a year in advance;
– Stick to the agenda;
– Give feedback on action items from previous meetings;
– Distribute the minutes soon after the meeting;
– Establish policies on attendance by conference calls, number of missed meet-

ings and substitutes;
– Provide opportunities to socialise (see Footnote 2);
– Engage students, because interaction with students is an incentive for active

participation in an advisory board (see Footnote 2).

2 This aspect is also emphasised in [23].

Industry Advisory Boards at Higher Education Institutions 251

Additional guidelines from other literature sources include:

– Exercise care in the selection of companies from which members are taken:
The business relevance to the programme objectives must be considered [8];

– Choose members from companies that understand higher education [8];
– Find members from a diverse representation of the relevant profession [23];
– Start with a small board, which is more manageable, and expand as necessary

or if advised to do so [23];
– Efficient planning of the agenda of meetings is very important, which also

shows respect for members’ time: Meetings should be focused on specific
issues which are selected in advance [23];

– Supplement regular meetings with occasional e-mails and reports [23];
– Ensure that members understand exactly what is expected from them [23].

Conclusion. Our literature review of above has shown differences in opinions on
issues surrounding IABs, including their objectives, membership, benefits, size,
leadership, meetings and guidelines. In the following section the results from our
own IAB survey in southern Africa are described.

3 Advisory Board Survey Results

Our IAB survey questionnaire was completed by representatives from universi-
ties in South Africa, Namibia and Zambia. 32 universities were initially ‘listed’
for the survey questionnaire which was eventually completed by 18 HODs and 5
HOD-representatives from 23 ICT departments at 17 universities. The respon-
dents represented departments or schools of Computer Science (6), Information
Systems or Informatics (9), combined CS&IS (3), other schools of ICT (2), and
other similar departments (2). 44 persons initially ‘viewed’ the questionnaire
(online), 32 started to provide answers, whilst 23 completed it. As the ques-
tionnaire had been initially emailed to 70 people on the SACLA HOD list, the
response rate was 33%.

17 departments (74%) indicated that they had an IAB. 6 departments indi-
cated that they had none. The departments without IAB indicated either that
they were currently busy establishing a board, or had informal arrangements
with companies, or that IABs would not serve departmental needs. No school or
department compensated IAB members for serving on the board.

An analysis of the responses (Table 1) shows that the average size of an IAB
is approximately 20 members. This includes academics and industry members.
9 departments indicated that they have on average 12 academics from their own
school/department on the IAB. The difference in the number of members (1–50)
correlates with our literature review of above3. 6 departments indicated that
they have 2–3 students on their IABs, whereas another 6 departments indicated
they do not include any student representatives.

3 More research might be needed on the optimal number of members.

252 E. Taylor and A. P. Calitz

4 departments indicated that they do not have alumni on their IABs. 6
departments indicated to have an average of 6 alumni on their IABs. 4 schools or
departments include academics from other HEIs on their IABs. 12 departments
indicated that they have had an IAB for an average of 12 years. 8 schools’ or
departments’ IABs meet once per year; 4 meet twice per year. The average IAB
meeting duration indicated by 11 departments was 3 h4.

Table 1. IAB membership

Question mean median min. max.

How many members are on your IAB? 19 17 1 50

How many departmental members serve on
your IAB?

11 8 0 30

How many students serve on your IAB? 2 3 0 4

How many Alumni serve on your IAB? 4 3 0 19

How many years has your
School/Department had a IAB?

11 9 5 20

How often does your IAB meet per annum? 1 1 1 2

What is the average duration (hours) of an
IAB meeting?

3 3 1 5

The professional roles of the IAB members include senior IT managers, IT
consultants, senior managers and IT managers from the manufacturing industry;
one department mentioned managers from governmental entities (Fig. 1a). 4 IS
departments indicated that they include senior managers from auditing firms on
their IAB.

The criteria (Fig. 1b) used by schools or departments to select and appoint
IAB members included: being senior managers in industry (n = 6), or IT spe-
cialists (n = 5), or alumni (n = 3), as well as knowledge and experience in
the IT industry (n = 3). Also mentioned were involvement with department, IT
qualifications, employees of graduates, as well as availability (in correlation with
our literature review).

The topics discussed at IAB meetings mainly focus on the curriculum (n =
7), departmental activities (n = 6), teaching issues (n = 5), industry trends
(n = 4), as well as departmental strategy, achievements and graduate employ-
ability (Fig. 2a). The teaching issues discussed most recently also included topics
such as student protests and contingency planning. Additional were South Africa’s
changing education landscape, guest lectures, internships, project days and joint
project benchmarking in comparison with other institutions.

4 For comparison: Most of the studies described in the literature also referred to 1–2
meetings per year, even though in [25] the average for 31 boards was 4–6 meetings
per year.

Industry Advisory Boards at Higher Education Institutions 253

Fig. 1. (a) Businesses represented. (b) IAB member selection criteria

Fig. 2. (a) Topics discussed on IABs. (b) Advantages of IABs

Respondents indicated that the advantages of having an IAB (Fig. 2b) were
to remain up-to-date with industry requirements (n = 7) and IT trends (n = 3),
secure employment of graduates (n = 6), receiving industry advice w.r.t. the cur-
riculum (n = 5), and quality control (n = 4). Respondents also emphasised the
importance of maintaining partnerships with industry and of receiving industry
feedback on the skills required of graduates.

The challenges faced by having an IAB included attendance (n = 5), recruit-
ing members (n = 4), “to make sure they feel it is worth their time to attend
the meeting”, “getting the same people from industry to consistently attend”,
“distance to the meeting venue and conflicting dates with members’ calendars”.
One respondent remarked: “We initially focused on national organisations, but
found that it was challenging to get the members to regularly attend meetings,

254 E. Taylor and A. P. Calitz

and decided to shift our focus to local members”—for comparison see the litera-
ture review of above.

The main purpose of having an IAB was explained as follows by respondents:

– “Provide industry links and collaboration”
– “To keep up to date with the needs from industry and to have ambassadors

for your department in industry”
– “Partnerships with industry”
– “Understanding industry requirements and trends”
– “Check/maintain quality”
– “Industry graduate requirements”
– “Provide working experience for students and student-corporate engagements”
– “Advising and coherence on curriculum issues”
– “Funding and advice on current IS/CS trends”.

Advice given by respondents to institutions wanting to establish an IAB
included: “Choose members with correct qualifications”, “choose senior man-
agers”, “choose alumni in senior positions”, “choose your industry members
carefully: they must be executives who can make decisions”, “having an IAB is
not negotiable”, “select senior IT people who have the time” as well as “set clear
expectations and do proper planning”.

About 77% (n = 12) of the respondents were familiar with the IAB require-
ments specified by accreditation bodies like ABET, BCS, or SACAB. One respon-
dent indicated specifically that having the IAB was “because of accreditation
requirements”. However the universities outside South Africa were not familiar
with the IAB requirements specified by international accreditation bodies.

The 18 responses received on Likert scale statements regarding IAB member-
ship, meetings and documentation, roles and responsibilities, as well as having
success with IABs are presented below. In the subsequent discussion, the Likert
scale categories ‘Strongly Disagree’ and ‘Disagree’, resp. ‘Strongly Agree’ and
‘Agree’, are combined for the sake of simplicity.

The majority of the respondents (≈83%, n = 15) indicated that members
of the IAB must have a relevant IT qualification (Fig. 3). About half of the
respondents (n = 9) disagreed that members of the IAB must have studied at
their institution; and only 6 departments or schools agreed. About 78% (n = 14)
agreed that the IAB must include alumni, and all participants agreed that the
IAB must be aware of the latest IT trends. The majority of respondents (n = 12)
agreed that members of the IAB must be aware of the latest curriculum trends,
and all agreed that members of the IAB must be active in the IT industry.

7 departments or schools indicated that the IAB must meet once per
semester. Only 4 departments or schools indicated that the IAB minutes must
be available on the departmental website (Fig. 4). 7 departments indicated that
the IAB members’ names and documentation must be available on the depart-
mental website. All respondents agreed that the IAB members must be made
aware of their roles and responsibilities. The majority (n = 16) of the respon-
dents agreed that the IAB agenda must include a discussion of new IT trends.

Industry Advisory Boards at Higher Education Institutions 255

13 departments indicated that the agenda must include an item on new curricu-
lum developments. Reporting on graduate employment figures is a requirement
of accreditation bodies, and 12 departments agreed to include an item on the
employment figures of graduates.

The majority of the respondents from universities in South Africa agreed that
IAB members must be familiar with the programmes offered in their schools
or departments. About 61% (n = 11) agreed that IAB members must have
knowledge about where graduates are employed after completion of their stud-
ies. About 67% (n = 12) indicated that IAB members must have knowledge
about the job opportunities available for graduates (Fig. 5). The majority (≈79%,
n = 14) indicated that the IAB members must have knowledge about the depart-
mental staffing situation and requirements. All agreed that the IAB members
must be aware of the departmental strategy, mission and vision. 7 departments
indicated that the IAB must monitor the annual alumni survey conducted by
the schools or department.

Fig. 3. IAB membership

Fig. 4. IAB meetings and documentation

256 E. Taylor and A. P. Calitz

About 61% (n = 11) of the respondents indicated that the IAB assists in
maintaining academic standards (Fig. 6). All participants agreed that the IAB
provides a link to the industry. About 72% (n = 13) agreed that IABs assist
with quality assurance for a department or school. A ‘mixed’ response—with
≈44% (n = 8) agreement and ≈33% (n = 6) disagreement—indicated that IABs
might possibly highlight issues faced by a department or school with university
management. The majority agreed (≈89%, n = 16)—and nobody disagreed—
that IABs can specify industry requirements, and (≈89% n = 16) that IABs can
assist with curriculum and programme requirements. Finally, all respondents
agreed that IABs can assist with the employability of graduates.

Fig. 5. IAB roles and responsibilities

Fig. 6. IAB Successful IABs

Industry Advisory Boards at Higher Education Institutions 257

4 Conclusions

Our literature study indicated that there are differences in opinions on issues
surrounding IABs, such as the objectives, membership, benefits, size, leadership,
meetings and guidelines. IABs have an important role for academic departments
in maintaining academic standards and links to industry. Academics departments
are required by accreditation bodies to have IABs.

Metkover and Murphy stated that ≈46% of the departments of ICT have
IABs [16]—compared to ≈74% in our study. Only 6 out of 23 participating
departments indicated that they did not have any IAB. The reasons mentioned
were that they were establishing a board, or had informal arrangements with
companies, or that the IAB was not serving departmental needs. Meetings are
held 1–2 times per year whereby the duration of the average meeting is about 3 h.
Topics discussed include the curriculum, activities, strategies, industry trends,
graduate employability, and contingency planning.

Our analysis indicates that the average size of an IAB is about 20 members—
including school or departmental members, alumni and other industry members,
as well as one under-graduate and one post-graduate student representative.
Thus our findings are similar to the ones of other studies which indicate a min-
imum of 10 members and an average of 20 members [11,18]. The IABs include
senior management members in the IT industry (e.g.: managers, consultants,
and specialists). It is important that ICT lecturers are aware of the advantages
of IABs, as this will encourage them to make themselves available for mem-
bership of IABs, and to network with the industry to enlist industry members
for the IAB at their institution. The challenges mentioned by respondents were
attendance (e.g.: conflicting dates on members’ calendars and the distance to the
venue), recruitment of members, and ensuring that it is worthwhile for members
to attend.

Several advantages of having and maintaining an IAB were mentioned. These
advantages included that IABs assist departments in keeping up to date with
industry requirements and IT trends, secure employment of graduates, give
advice on the curriculum and provide quality control. All of these advantages
directly impact the lecturers as well as students. Lecturers in ICT face a con-
stant challenge in keeping up to date with changes in the field and the modules
they present. They themselves are, in most cases, not engaged with the industry.
Lecturers are guided by IAB members on what they should be teaching to best
prepare graduates to enter the workplace, whilst students receive the benefit of
learning industry-relevant course content.

This first study on the use of IABs in southern Africa has provided a founda-
tion for the continuous functioning of IABs as well as stakeholder management
and engagement. Valuable opinions and information regarding IAB operations,
procedures and composition were obtained from various ICT schools and depart-
ments in southern Africa. A list of guidelines for the use of IABs can now be
formulated by combining the guidelines from previous literature with the guide-
lines emerging from our work. Such a list is currently being compiled. Future
work shall include the development of a model together with guidelines for IABs’

258 E. Taylor and A. P. Calitz

effectiveness at HEIs in South Africa to be applied by the SACAB. More research
can also be conducted on how the feedback from IABs ought to be used to update
a curriculum, a module’s contents, and—ultimately—the teaching and learning
at HEIs.

References

1. ABET: Accreditation (2019). www.abet.org/accreditation/
2. ACS: Administration guidelines: Accreditation management manual (2016). www.

acs.org.au/content/dam/acs/acs-documents/ACS-Accreditation-Document-1-
Administrative-Guidelines-V2.0.pdf

3. Albarody, T.M., Mohsen, A.S., Hussein, A.R., Melor, P.S., Yusoff, B.M.: Sustaining
a synergistic industrial advisory board and academic collaboration. In: Proceedings
of WEEF 7th IEEE World Engineering Education Forum, pp. 728–731 (2017)

4. Becerra-Fernandez, I., Elam, J., Clemmons, S.: Reversing the landslide in
computer-related degree programs. Commun. ACM 53(2), 127–133 (2010)

5. British Computer Society: Guidelines on Course Accreditation: Information for
Universities and Colleges (2018). https://www.bcs.org/media/1209/accreditation-
guidelines.pdf

6. Calitz, A.P.: A Model for the Alignment of ICT Education with Business ICT Skills
Requirements. Doctoral Dissertation. (Business Adm.) Nelson Mandela Metropoli-
tan University Business School, Port Elizabeth (2010)

7. Calitz, A.P., Greyling, J., Glaum, A.: CS and IS alumni post-graduate course and
supervision perceptions. In: Gruner, S. (ed.) SACLA 2016. CCIS, vol. 642, pp.
115–122. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47680-3 11

8. Craig, W.O.: Industry advisory board: a partnership between industry and aca-
demic department. In: Proc. Conf. for Industry and Educ. Collaboration, pp. 1–4
(2009)

9. Dorazio, P.: Professional advisory boards: fostering communication and collabora-
tion between academe and industry. Bus. Commun. Quart. 59(3), 98–104 (1996)

10. El-Refae, G.A., Askari, M.Y., Alnaji, L.: Does the industry advisory board enhance
education quality? Int. J. Econ. Bus. Res. 12(1), 32–43 (2016)

11. Genheimer, S.R., Shehab, R.: The effective industry advisory board in engineering
education: a model and case study. In: Proceedings of 37th ASEE/IEEE Frontiers
in Educational Conference (2007)

12. ITP New Zealand: Application Guidelines: ITP New Zealand Degree Accreditation
(2017). https://itp.nz/Activities/Degree-Accreditation

13. Lending, D., Mathieu, R.G.: Workforce preparation and ABET assessment. In: Pro-
ceedings of the 2010 Special Interest Group on Management Information System’s
48th Annual Conference on Computer Personnel Research on Computer Personnel
Research, pp. 136–141 (2010)

14. Mandviwalla, M., Fadem, B., Goul, M., George, J.F., Hale, D.H.: Achieving
academic-industry collaboration with departmental advisory boards. MIS Quart.
Exec. 14(1), 17–37 (2015)

15. Marshall, J.A.: Maximizing your industrial advisory board. J. Ind. Technol. 15(2),
2–5 (1999)

16. Merkofer, P., Murphy, A.: The e-skills landscape in South Africa. Zeitschr. für
Politikberatung 2(4), 685–695 (2010)

www.abet.org/accreditation/
www.acs.org.au/content/dam/acs/acs-documents/ACS-Accreditation-Document-1-Administrative-Guidelines-V2.0.pdf
www.acs.org.au/content/dam/acs/acs-documents/ACS-Accreditation-Document-1-Administrative-Guidelines-V2.0.pdf
www.acs.org.au/content/dam/acs/acs-documents/ACS-Accreditation-Document-1-Administrative-Guidelines-V2.0.pdf
https://www.bcs.org/media/1209/accreditation-guidelines.pdf
https://www.bcs.org/media/1209/accreditation-guidelines.pdf
https://doi.org/10.1007/978-3-319-47680-3_11
https://itp.nz/Activities/Degree-Accreditation

Industry Advisory Boards at Higher Education Institutions 259

17. Motta, G., Wu, B. (eds.): Software Engineering Education for a Global E-Service
Economy – State of the Art, Trends and Developments. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-04217-6

18. Pugh, S., Grove, M.J.: Establishing industrial advisory boards using a practice
transfer model. New Direct. Teach. Phys. Sci. 10, 20–25 (2014)

19. Reif, H.L., Mathieu, R.G.: Global trends in computing accreditation. Computer
42(11), 102–104 (2009)

20. SACAB: South African Higher Education Computing Accreditation Board (2018).
www.sacab.org.za/

21. Schuyler, P.R., Canistraro, H., Scotto, V.A.: Linking industry & academia: effec-
tive usage of industrial advisory boards. In: Proceedings of American Society for
Engineering Education Annual Conference Exposition, vol. 6, pp. 1–5 (2001)

22. Sener, E.M.: Incorporating industrial advisory boards into the assessment process.
In: Proceedings of American Society for Engineering Education Annual Conference
Exposition, pp. 1–9 (1999)

23. Söderlund, L., Spartz, J., Weber, R.: Taken under advisement: perspectives on
advisory boards from across technical communication. IEEE Trans. Prof. Commun.
60(1), 76–96 (2017)

24. Summers, L.M.: Developing a college-industry relationship: the use of industrial
advisory boards. In: Proceedings of American Society for Engineering Education
Annual Conference Exposition, pp. 1–7 (2002)

25. Zahra, S.A., Newey, L.R., Shaver, J.M.: Academic advisory boards’ contributions
to education and learning: lessons from entrepreneurship centers. Acad. Manag.
Learn. Educ. 10(1), 113–129 (2011)

https://doi.org/10.1007/978-3-319-04217-6
www.sacab.org.za/

Author Index

Ade-Ibijola, Abejide 3

Bangani, Sifiso 35
Bradshaw, Karen 211

Calitz, Andre P. 244
Chindeka, Vongai 211

de Villiers, Carina 197

Eybers, Sunet 181

Futcher, Lynn 35, 50

Gerber, Aurona 163

Harneker, Roshan 64
Hattingh, Marie J. 181

Jordaan, Joyce 197

Kabaso, Sonny 3
Kafa, Violet 112
Khomokhoana, Pakiso J. 17

Machoka, Philip 227
Mutanu, Leah 227

Nel, Liezel 17
Ngwenya, Sandile 50

Pilkington, Colin 131, 147
Pitso, Tshegofatso 197
Pretorius, Laurette 131

Schütz-Schmuck, Marko 96
Siegburg, Marcellus 112
Smuts, Hanlie 163
Stander, Adrie 64
Steyn, Adriana A. 197

Taylor, Estelle 244

Uys, Walter F. 79

van Biljon, Judy 147
van der Merwe, Alta 163
van der Merwe, Ronell 147
van Niekerk, Johan 35
Voigtländer, Janis 112

	Preface
	Organization
	Contents
	Computer Programming Education
	Synthesis of Social Media Messages and Tweets as Feedback Medium in Introductory Programming
	1 Introduction
	1.1 Motivation
	1.2 Research Questions
	1.3 Contribution
	1.4 Context-Free Grammars

	2 Related Work
	3 Grammar Design for Tweet Synthesis
	3.1 Structure of a Tweet
	3.2 Building Blocks
	3.3 Tweet
	3.4 Broadcast Tweet
	3.5 Inbox Tweet

	4 Implementation
	5 Evaluation: Students' Perception of Tweet Synthesiser
	6 Conclusion and Future Work
	References

	Decoding Source Code Comprehension: Bottlenecks Experienced by Senior Computer Science Students
	1 Introduction
	2 Related Work
	2.1 Bottleneck Identification Approaches
	2.2 SCC Difficulties

	3 Research Methods
	3.1 Design
	3.2 Phase 1
	3.3 Phase 2

	4 Results and Interpretation
	4.1 Array-Related Difficulties
	4.2 Programming Logic Difficulties
	4.3 Programming Control Structure Difficulty

	5 Identification of Six SCC Bottlenecks
	5.1 Bottleneck 1
	5.2 Bottleneck 2
	5.3 Bottleneck 3
	5.4 Bottleneck 4
	5.5 Bottleneck 5
	5.6 Bottleneck 6

	6 Conclusions and Future Work
	References

	System Security Education
	An Approach to Teaching Secure Programming in the .NET Environment
	1 Introduction
	2 Related Work
	3 Computing Education in the South African Context
	4 Research Approach
	4.1 Step 1: Identification of Relevant Application Risks (ARs)
	4.2 Step 2: Identification of Secure Coding Practices (SPs)
	4.3 Step 3: Identification of Basic Programming Concepts (PCs)
	4.4 Step 4: Mapping Application Risks (ARs) to Basic Programming Concepts (PCs)
	4.5 Step 5: Mapping Basic Programming Concepts (PCs) to Secure Coding Practices (SPs)
	4.6 Step 6: Mapping Application Risks (ARs) to Identified Secure Coding Practices (SPs)

	5 Discussion and Conclusion
	References

	A Framework for Integrating Secure Coding Principles into Undergraduate Programming Curricula
	1 Introduction
	2 Related Work
	3 Secure Coding Principles
	4 Challenges and Approaches to Integrating Secure Coding Principles into Programming Curricula
	5 A Phased Approach for Integrating Secure Coding Principles into Undergraduate Programming Curricula
	5.1 Identification Phase
	5.2 Buy-In Phase
	5.3 Implementation Phase

	6 Conclusion and Outlook
	References

	Developing a Digital Forensics Curriculum: Exploring Trends from 2007 to 2017
	1 Introduction
	2 Related Work
	2.1 Digital Forensics
	2.2 Higher Education Institutional Curricula and Challenges

	3 Method
	4 Results
	4.1 The Most Important Trends
	4.2 Data Analysis of Papers by Years

	5 Conclusions and Outlook to Future Work
	References

	Software Engineering Education
	Hackathons as a Formal Teaching Approach in Information Systems Capstone Courses
	1 Introduction
	2 Central Concepts and Related Work
	3 Methods and Materials
	4 Case Study
	4.1 Aims and Objectives
	4.2 Phases
	4.3 Projects
	4.4 Results

	5 Discussion
	5.1 Curricular Hackathons
	5.2 Teaching Approach

	6 Conclusion
	References

	Modernizing the Introduction to Software Engineering Course
	1 Introduction
	2 Related Work
	3 Initial Situation
	4 Revised Course
	4.1 2017–2018: Semester 2
	4.2 2018–2019: Semester 1

	5 Reception
	5.1 From Students' Blogs
	5.2 Student Surveys

	6 Lessons Learned, and Future Work
	7 Conclusion
	References

	Exercise Task Generation for UML Class/Object Diagrams, via Alloy Model Instance Finding
	1 Introduction
	2 Background on UML's CDs and ODs
	3 Didactic Considerations
	4 Background on Alloy Usage
	5 Approach to Counterexample Generation
	6 Strategy and Implementation
	7 Related and Future Work
	References

	Education of Post-Graduate Research-Students
	A Connectivist View of a Research Methodology Semantic Wiki
	1 Introduction
	2 Related Work
	2.1 Connectivism
	2.2 Connectivist Learning
	2.3 Research Methodology Education

	3 A Semantic Wiki for Research Methodology
	3.1 Our Semantic Wiki
	3.2 Students' Evaluation

	4 Discussion
	4.1 Nodal Structure
	4.2 Learning

	5 Conclusion
	References

	Cohort Supervision: Towards a Sustainable Model for Distance Learning
	1 Introduction
	2 Related Work
	3 Research Design
	4 Results
	4.1 Evaluation Based on the Students' Responses
	4.2 Evaluation Based on the Supervisors' Responses

	5 Discussion and Recommendations
	5.1 Discussion of the Results
	5.2 Proposed Cohort Supervision Model
	5.3 Recommendations

	6 Conclusion and Outlook to Future Work
	A Students' Reflective Questionnnaire
	B Supervisors' Reflective Questionnaire
	References

	Guidelines for Conducting Design Science Research in Information Systems
	1 Introduction
	2 Method
	3 An Information Systems Design Science Research Roadmap
	3.1 Phase 1: DSR Guidelines and Themes
	3.2 Phase 2: Relevant DSR Content According to Guidelines and Themes

	4 Conclusion
	References

	Our Students, Our Profession
	Making Sense of Unstructured Data: An Experiential Learning Approach
	1 Introduction
	2 Experiential Learning
	3 Education in Data Science
	4 CRISP-DM: The Cross-Industry Standard Process for Data Mining
	5 Case Study Description
	6 Method
	7 Analysis and Discussion
	7.1 Abstract Conceptualisation: Business Understanding
	7.2 Active Experimentation: Data Understanding and Preparation
	7.3 Concrete Experience: Data Modelling, Evaluation and Deployment
	7.4 Reflective Observation
	7.5 The Lecturer's Reflection

	8 Conclusion
	References

	Connecting Generation Z Information Systems Students to Technology Through the Task-Technology Fit Theory
	1 Introduction
	2 Background
	2.1 Millennials Versus Generation Z
	2.2 E-Textbooks
	2.3 Task-Technology Fit Theory

	3 Method
	4 Findings and Discussion
	4.1 Participants
	4.2 E-Textbook-Specific Characteristics and Usefulness
	4.3 Task-Technology Fit Theory

	5 Conclusion
	References

	Detecting Similarity in Multi-procedure Student Programs Using only Static Code Structure
	1 Introduction
	2 Related Work
	2.1 Plagiarism Detection
	2.2 Tree Comparison Studies

	3 Proposed Similarity Detection System
	3.1 Design Overview
	3.2 Example Program

	4 Comparison Algorithms
	4.1 Brute Force Comparison
	4.2 Isomorphism
	4.3 Individual Node Comparison

	5 Experimental Results
	5.1 Test Cases
	5.2 Discussion of the Results

	6 Conclusion
	References

	Enhancing Computer Students' Academic Performance Through Explanatory Modeling
	1 Introduction
	2 Related Work
	3 Method
	4 Findings
	4.1 Factors Influencing Cumulative GPA
	4.2 Strategy for Enhancing Performance

	5 Limitations
	6 Conclusions and Future Research Directions
	References

	The Use of Industry Advisory Boards at Higher Education Institutions in Southern Africa
	1 Introduction, Research Problem, and Research Design
	2 Related Work
	2.1 Definition and Role of Industry Advisory Boards
	2.2 Different Requirements: Members, Size, and Meetings
	2.3 Benefits and Challenges of IABs
	2.4 Accreditation Board Requirements for Industry Advisory Boards
	2.5 IAB Guidelines from the Literature

	3 Advisory Board Survey Results
	4 Conclusions
	References

	Author Index

