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S1P Signaling in the Tumor 
Microenvironment

Gabriela Schneider

Abstract
Sphingosine-1-phosphate (S1P), together with 
other phosphosphingolipids, has been found 
to regulate complex cellular function in the 
tumor microenvironment (TME) where it acts 
as a signaling molecule that participates in 
cell–cell communication. S1P, through intra-
cellular and extracellular signaling, was found 
to promote tumor growth, angiogenesis, che-
moresistance, and metastasis; it also regulates 
anticancer immune response, modulates 
inflammation, and promotes angiogenesis. 
Interestingly, cancer cells are capable of 
releasing S1P and thus modifying the behav-
ior of the TME components in a way that con-
tributes to tumor growth and progression. 
Therefore, S1P is considered an important 
therapeutic target, and several anticancer ther-
apies targeting S1P signaling are being devel-
oped and tested in clinics.
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7.1	 �Introduction

The tumor microenvironment (TME) plays an 
important role in cancer biology contributing to 
tumor initiation, progression, metastasis, and 
responses to treatment. Cancer cells within a solid 
tumor influence the surrounding microenviron-
ment through the release of extracellular signals 
in the form of cytokines, chemokines, and lipid 
mediators. These signals work to control immune 
responses, inflammation, as well as angiogenesis. 
Sphingosine-1-phosphate (S1P), a bioactive 
sphingolipid, has emerged over the last few 
decades as a new player in the TME and cancer 
progression. It can be produced and released into 
the TME from cancerous and noncancerous tis-
sues and acts to regulate the interactions between 
tumor, immune, and mesenchymal cells that are 
present within the TME. In this chapter, we sum-
marize the mechanisms through which S1P, pres-
ent in the TME, participates in tumor progression, 
inhibits antitumor immune response, modulates 
inflammation, regulates response to hypoxic con-
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ditions, and facilitates the recruitment of mesen-
chymal cells to increase tumor angiogenesis. 
Additionally, we will discuss therapeutic strate-
gies that target S1P signaling in cancer patients.

7.2	 �Metabolism of S1P

S1P is generated by the conversion of ceramide 
to sphingosine, which is catalyzed by cerami-
dase, and subsequent phosphorylation of sphin-
gosine by sphingosine kinases (SphK1 and 
SphK2) (Fig. 7.1). SphK1 is localized mainly in 
the cytosol [1], whereas SphK2 can be found in 
the nucleus and internal membranes of the endo-
plasmic reticulum, Golgi, and mitochondria [2, 
3] which suggest the distinct function of gener-
ated S1P.  Both enzymes can be translocated to 
different cell compartments in response to spe-
cific signals. For example, SphK1 can be recruited 
to the plasma membrane in response to growth 
stimulating factors such as epidermal growth fac-
tor (EGF) or phorbol 12-myristate 13-acetate [4, 
5] and targeted to Golgi apparatus by phospha-
tidic acid [6], whereas SphK2 can be translocated 
from the nucleus to the cytoplasm dependent on 
PKD-mediated phosphorylation [7].

Interestingly, S1P levels and SphK1/2 expres-
sion and/or activity were found to be increased in 
distinct cancer types including acute lymphoblas-
tic leukemia [8], astrocytoma [9], breast cancer 
[10, 11], colon cancer [12, 13], gastric cancer 
[14], glioblastoma [15, 16], lung cancer [17], 
non-Hodgkin’s lymphoma [18], prostate cancer 
[19], thyroid cancer [20, 21], and many others 
[22–24]. Several reports also indicate that 
increased expression of SphK1 correlated with 
disease progression, cancer recurrence, and 
reduced patient survival [9, 10, 14, 15, 23, 24] as 
well as invasion and lymph node metastasis [25]. 
In contrast, reduced expression of SphK1 and 
subsequently lower level of S1P in plasma were 
found in prostate cancer patients [26]. Moreover, 
S1P level correlates with patients’ survival, and 
downregulation of SphK in erythrocytes could 
have implication in cancer-induced anemia [26].

It has been shown that S1P can also be gener-
ated by autotaxin (ATX) through hydrolysis of 
sphingosylphosphorylcholine (SPC) [27]; how-
ever, it is uncertain whether this pathway is active 
in vivo. First of all, the reported Km value of ATX 
for SPC (~23  mM) [27] is much higher than 
normal SPC levels in plasma/serum (0.03–
0.13 μM) [28, 29]. Moreover, in mice with down-
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Fig. 7.1  Metabolism of 
sphingosine-1 phosphate 
(S1P). Enzymes and 
substrates involved in 
the synthesis and 
degradation of 
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regulated Autotaxin, the level of S1P was not 
changed when compared with wild-type animals, 
in contrast to the main autotaxin metabolite, lyso-
phosphatidic acid, which was decreased by ~50% 
[30]. This suggests that the in vivo contribution 
of Autotaxin to the total pool of S1P is limited.

S1P levels are the result of the balance between 
its synthesis and reversible conversion to sphin-
gosine or irreversible degradation. 
Dephosphorylation of S1P is catalyzed by spe-
cific S1P phosphatases (SPP1 and SPP2), or lipid 
phosphate phosphatases (LPP1–3) and subse-
quent sphingosine conversion to ceramide by 
ceramide synthase [31] or through irreversible 
degradation by S1P lyase (SPL) that cleaves S1P 
to hexadecenal and phosphoethanolamine [32]. 
Similarly to SphK, enzymes responsible for S1P 
degradation were also found to be dysregulated 
in malignant tissues; lower expression of SPL 
was found in colon [33, 34], prostate [35], and 
pancreatic cancers [35], and was shown to have 
implications in chemo and radiotherapy resis-
tance and cancer cells metastasis [35]. 
Downregulation of SPP was found in colon can-
cer [31], gastric cancer [31], and glioblastoma 
[16], and its expression was correlated with 
lymph node metastasis and gastric cancer 
patient’s survival [31].

7.3	 �Sources of S1P in TME

S1P is present in the components of the TME 
such as blood, lymph, and interstitial fluid. In cir-
culation, S1P is bound to plasma proteins, mainly 
high-density lipoprotein (HDL) [36] apolipopro-
tein M [37], and to a lesser extent to albumin 
[38]. The main source of plasma S1P was thought 
to be platelets, which are characterized by high 
SphK activity and lack of SPL which allows them 
to accumulate large amounts of S1P, up to nine- 
fold more than erythrocytes. Although erythro-
cytes produce less S1P than platelets, at the same 
time they constitute about 95% of total blood cell 
number, thus their contribution to the S1P pool in 
the blood is considerably much higher and is esti-
mated to be 75%. Other important contributors of 
plasma S1P are the vascular endothelium and 

endothelial cells, and in lymph, lymphatic endo-
thelial cells, thus suggesting that stromal cells, 
could synthesize and release endogenous S1P 
also to TME.  Recently, it has been shown that 
cancer cells themselves can also secrete high lev-
els of S1P [39–41] hence contributing to the total 
S1P pool present in TME, which could explain 
high level of S1P in ascites fluids from ovarian 
cancer [42, 43] and additional observation that 
plasma S1P level decrease in patients after ovar-
ian cancer surgery [44]. Moreover, S1P can also 
be released from dying cells (necrotic or apop-
totic) and damaged tissues [45–48]. This can 
have important implication in anticancer thera-
pies since it was shown that S1P levels were 
increased in several organs after γ-irradiation or 
chemotherapy, creating an unwanted prometa-
static environment as a side effect of the treat-
ment [46] (Fig. 7.2).

The structure of S1P and its relatively high sol-
ubility in water unable S1P to diffuse over the 
membranes to the extracellular compartments. 
Therefore to act as a signaling molecule, S1P has 
to be either generated in extracellular compart-
ments directly or synthesized intracellularly and 
transported outside the cells by specific transport-
ers. SphK1 was found to be constitutively released 
from endothelial cells in quantities that allow for 
the synthesis of extracellular S1P and obtain its 
physiologically relevant concentrations [49, 50]. 
Moreover, SphK1 was also found to be released 
from histiocytic lymphoma U937 cells in response 
to stimulation with oxidized LDL immune com-
plexes [51] thus indicating that extracellular syn-
thesis of S1P might be regulated by additional 
signaling factors. Several transporters of S1P that 
allows for the autocrine/paracrine signaling of S1P 
have been identified including Spinster 2 (SPNS2) 
[52, 53] and several members of the ABC-type 
lipid transporters family, namely ABCC1, ABCC2, 
and ABCA1 [54]. This diversity in the type of 
transporters might suggest their importance in the 
regulation of S1P levels in different tissues. 
Indeed, recently, it has been shown that SNPS2 
transporter was necessary for secretion of S1P to 
the lymph, but it did not play an important role in 
the regulation of S1P levels in plasma [53, 55]. 
Moreover, Spns2 is not expressed in murine eryth-
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rocytes, and the level of S1P in the blood is not 
affected in Spns2 knockout mice [56]. On the 
other hand, several in vitro studies have revealed 
that ABC transporters mediate S1P release in dif-
ferent types of cells, including mast cells [57], 
erythrocytes [58], breast cancer cells [59], astro-
cytes [60], and also platelets [61]. Additionally, 
since S1P is present in the circulation, mainly in 
complex with HDL particles [38], it might suggest 
that the S1P export may be coupled with ABCA1-
dependent lipoprotein formation [60].

What is worth to note, changes in SPNS2 
expression were found in non–small cell lung 
cancer (NSCLC) patients’ samples, and in vitro 
studies indicate that the overexpression of SPNS2 
induced apoptosis, whereas its knockdown 
enhanced NSCLC cells migration [62]. Moreover, 
alterations of SPNS2 affected the expression of 
several enzymes involved in S1P metabolism, 
including SphK, SPP, and SPL1 [62], thus indi-

cating a cross talk between the pathways involved 
in S1P synthesis/degradation and extracellular 
transport of S1P.

7.4	 �S1P Signaling

S1P has been shown to regulate cellular functions 
both via intracellular (Fig. 7.3) and extracellular 
(Fig. 7.4) mechanisms. Intracellular S1P was first 
identified as an activator of intracellular calcium 
channels via an inositol triphosphate-independent 
pathway [63], but a target ion channel has not 
been identified. However, several studies support 
this observation by demonstrating that increased 
level of S1P also upregulates intracellular calcium 
concentrations [64]. In the nucleus, S1P was 
found to play a role in the regulation of gene 
expression by binding to histone deacetylases 
(HDAC1 and HDAC2), and inhibiting their activ-
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Fig. 7.2  Sphingosine-1 phosphate (S1P) plays a role in 
the formation of the prometastatic environment as a side 
effect of radio/chemotherapy. S1P released from damaged 
tissues (malignant and nonmalignant) induces migration 

of tumor cells that survive initial anticancer treatment. 
Such cells metastasize to distant locations where they can 
form secondary tumors
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ity thus regulating transcription of several genes 
including the cyclin-dependent kinase inhibitor 
p21 [65] (Fig. 7.3). In mitochondria, the interac-
tion of S1P with the prohibitin 2 (PHB2) protein 
was found to be important for cytochrome c oxi-
dase assembly and mitochondrial respiration [66]. 
Interestingly, in both cases, SphK2 was found to 
be the main enzyme involved in the synthesis of 
S1P in a particular cellular compartment [65, 66]. 
On the other hand, S1P generated by SphK1 was 
found to act as a cofactor for the TNF receptor-
associated factor 2 (TRAF2) E3 ubiquitin ligase 
complex by which it regulates the activity of the 
nuclear factor-κB (NF-κB) signaling involved in 
inflammatory, antiapoptotic, and immune pro-
cesses [67]. NF-κB activation was observed also 
in response to endoplasmic reticulum (ER) stress 
which resulted in S1P increase and subsequent 
interaction with HSP90 and/or GRP94 protein to 
form a signaling complex with an ER stress 

responsive protein, IRE1α, TRAF2, and RIP1 
[68]. Of note, NF-κB activation may also be 
induced by extracellular S1P [69, 70], suggesting 
that S1P acts upon several stages within the same 
signaling cascade. S1P has also been shown to 
enhance the cellular inhibitor of apoptosis 2 
(cIAP2)-mediated K63-linked polyubiquitination 
of interferon regulatory factor-1 (IRF-1), which is 
essential for IL-1-induced production of chemo-
kines CXCL10 and CCL5 [71]. Moreover, S1P 
interacts with the transcription factor peroxisome 
proliferator-activated receptor γ (PPARγ) through 
which it can regulate angiogenesis [72].

Extracellular S1P acts through binding to 
G-protein-coupled receptors (S1PR1–S1PR5) by 
which it regulates several cell processes, includ-
ing cell survival and migration [73] (Fig.  7.4). 
Expression patterns of S1PRs vary between 
tissues and can change during development and 
aging. S1PR1–S1PR3 are essentially ubiquitously 
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Fig. 7.3  Intracellular sphingosine-1 phosphate (S1P) 
signaling. Intracellular S1P regulates the nuclear 
factor-κB (NF-κB) signaling pathway by targeting TNF 
receptor-associated factor 2 (TRAF2) or heat shock 
protein 90 (Hsp90)/glucose-regulated protein 94 

(GRP94). In mitochondria, it interacts with prohibitin 2 
(PHB2) thus regulating mitochondrial respiration, 
whereas in the nucleus it regulates the activity of his-
tone deacetylases (HDACs) and nuclear transcription 
factor PPARγ
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expressed, whereas expression of S1PR4 and 
S1PR5 is restricted to distinct cell types [74]. 
S1PRs can activate several different signaling 
pathways. S1PR1 is coupled with Gi protein and 
activates Ras, mitogen-activated protein kinase 
(MAPK), phosphoinositide 3-kinase (PI3K), pro-
tein kinase B (AKT), and phospholipase C (PLC) 
pathways. Both S1PR2 and S1PR3 are coupled to 
Gi, Gq, and G12/13 and can activate Ras, MAPK, 
PI3K, AKT, PLC, and Rho-dependent pathways 
[75]. Through coupling with Gi and G12/13, S1PR4 
mediates cell shape change and motility via a 
Rho-dependent pathway [75], whereas S1PR5 
appears to activate the G12/13 protein and the sub-
sequent Rho/ROCK signaling pathway [76] and 
through coupling with Gi inhibits adenyl cyclase 
(AC) [77]. These studies strongly suggest that 
S1P can mediate diverse functions through acti-
vation of different signal transduction pathways 
in different cell types, as well as within the same 
cell, depending on the patterns of S1PR expres-

sion. What is worth noting, it has been suggested 
that only S1P generated by SphK1 and not SphK2 
can activate S1PRs [78].

7.5	 �S1P as a Modulator of Cancer 
Biology

Extra- and intracellular S1P can activate various 
signaling cascades that are implicated in cancer 
cell proliferation, survival, migration, inhibition 
of apoptosis, and chemoresistance. SphK1 was 
found to be involved in the regulation of S1P-
dependent proliferation of several cancers, 
including gastric [79] and colorectal cancers 
[80]. In contrast to SphK1, the role of SphK2 in 
the regulation of cell growth seems to be more 
context-dependent. In some cells, upregulation of 
SphK2 levels was found to cause cell cycle arrest, 
caspase-3 activation, cytochrome c release, and 
thus inhibited cell growth [78, 81]. Whereas in 
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Fig. 7.4  Extracellular sphingosine-1 phosphate (S1P) 
signaling. Intracellularly generated S1P is exported to the 
extracellular compartments by Spinster 2 (SPNS2) and 
members of the ABC transporter family thus allowing for 
autocrine/paracrine signaling of S1P.  Extracellular S1P 

binds to the specific G-coupled S1P receptors designated 
as S1PR1–5, regulating mitogen-activated protein kinase 
(MAPK), Rac, Rho, phosphatidylinositol 3-kinase (PI3K), 
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others, such as glioblastoma, colorectal cancer, 
or prostate cancer, downregulation of SphK2 was 
associated with decreased proliferation of malig-
nant cells in  vitro and in  vivo [82, 83]. 
Surprisingly, a study testing new SphK inhibitors 
on a wide variety of cancer cell lines including 
breast cancer, glioblastoma, melanoma, cervix, 
and colon cancers revealed that SphK activity 
was not required for tumor cell viability both 
in vivo and in vitro [84]. Thus, these discrepan-
cies with opposing findings require further inves-
tigation. Several studies were able to identify 
receptors through which S1P affects cancer cell 
proliferation. In human prostate cancer PC-3 
cells and glioma cells S1P attenuates cell prolif-
eration through activation of S1PR5 [85, 86], 
S1PR2 is involved in growth of hepatocellular 
carcinoma and Willim’s tumor [87, 88], down-
regulation of S1PR1 was associated with 
decreased growth of rhabdomyosarcoma xeno-
grafts [46], whereas in breast cancer higher 
S1PR1 expression correlates with decreased cell 
proliferation [89]. Interestingly, in glioblastoma 
S1PR1–3 were found to be involved in the stimu-
lation of proliferation [90], while activation of 
S1PR5 has an opposite effect [91]. Taken 
together, these observations suggest that both 
exogenous and intracellular S1P are important 
for tumor growth and indicate that attenuation of 
S1P signaling pathway could be a promising 
strategy in cancer treatment.

Extracellular S1P has been found to act a 
potent chemoattractant or chemokinetic factor 
for different types of cancers, including gastric 
cancer [92], leukemia [93], lung cancers [94], 
glioblastoma [95], ovarian cancer [96], or rhab-
domyosarcoma [46], thus indicating the role of 
S1P in tumor metastasis. In the majority of cells, 
S1P stimulates the motility of cancer cells 
through S1PR1 or S1PR3, mainly through activa-
tion of the ERK1/2 signaling pathway. However, 
some evidence also indicates that a S1PR1–
RAC1–CDC42-dependent pathway involving the 
tyrosine phosphorylation of membrane-type 
matrix metalloproteinase 1 might play a role [97, 
98]. Moreover, in some cells, such as ovarian 
cancer, calcium mobilization might accompany 
S1P-mediated invasion [96]. By contrast, S1P 

can inhibit cancer cell motility through a S1PR2-
dependent regulation of Rho [95]. The specific 
effect of S1P is partially determined by the type 
of the receptors expressed in particular tumors, 
e.g., exposure to S1P of gastric cancer cell lines 
that dominantly expressed S1PR3 induced their 
migration, whereas the opposite effect was 
observed in gastric tumor cells that mainly 
expressed S1PR2 [92]. The effects of S1P on the 
motility of cancer cells can also be context-
dependent. For example, activation of the S1P–
S1PR2 axis increased glioma invasiveness by 
enhancing the expression of secreted, angiogenic 
matricellular protein CCN1 [99]. The metastatic 
behavior of tumor cells can also depend on S1P 
metabolic enzymes’ pattern of expression. It has 
been found that SphK levels positively correlated 
with migration and invasion of ovarian cancer 
[100], breast cancer, and kidney carcinoma cells 
[101]. In addition to S1P-induced motility of can-
cer cells, this sphingolipid was also found to be 
involved in the regulation of invasion processes. 
S1P was found to induce overexpression of 
MMP-2 through the MAPK/ERK1/2 and NF-κB 
pathways and is responsible for cancer cell inva-
sion in endothelial cells [102]. Upregulation of 
S1P can also lead to overexpression of MMP2, 
which has a major role in initiating cell invasion 
via H-Ras signaling in human breast cancer 
[103]. In the same cells, S1P was also found to 
induce MMP9, and this effect was 
S1PR3-dependent.

Angiogenesis, a process of formation of new 
blood vessels, which is necessary for tumor 
growth and invasion, can also be regulated by 
S1P signaling. Increased angiogenesis in tumor 
tissue can be at least partially explained by the 
S1P-induced migration of endothelial cells [104] 
and vascular smooth muscle cells [105, 106] 
which participate in the formation of new blood 
vessels in cancerous tissue. However, it was also 
shown that cross talk between S1P and VEGF 
signaling can additionally contribute to increase 
angiogenesis. S1P was found to upregulate VEGF 
in human prostate cancer [75] and thyroid cancer 
[107], whereas in bladder cancer, VEGF was 
found to stimulate SphK1 leading to the increase 
of intracellular levels of S1P [107]. S1PR1 was 
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found to be involved in S1P-induced regulation 
of vascularization in thyroid cancer [107], breast 
cancer cells [108], and Lewis lung carcinoma 
[106]. Angiogenesis of tumors was also found to 
correlate with SphK1 level in hepatoma cells 
[109], Lewis lung carcinoma [106], as well as in 
glioma cells [110].

Accumulating evidence indicates that factors 
present in the TME, including S1P, might play a 
role in acquiring of chemoresistance by cancer 
cells. Overexpression of SpK1 was found to be 
associated with the chemoresistance of leukemic 
cells to imatinib [111] and daunorubicin [112], 
prostate cancer to docetaxel [113], renal cancer 
to sunitinib [114], and gastroesophageal cancer 
to oxaliplatin, cisplatin, and docetaxel [115]. It 
has been suggested that at least part of this effect 
is the result of an imbalance between ceramide 
and S1P [116]. Also, other S1P metabolizing 
enzymes were shown to be involved in chemore-
sistance, e.g., overexpression SphK2 has been 
correlated to gefitinib chemoresistance in non-
small cell lung cancer cells [117] and hormone-
independent breast cancer [118], whereas 
depletion of SPL caused cisplatin resistance 
[119]. Interestingly, the treatment of prostate 
cancer cells with camptothecin upregulates both 
SK1 and S1P receptors, suggesting that resis-
tance to camptothecin could involve autocrine/
paracrine mechanisms [120]. Some studies also 
indicate the involvement of specific S1P recep-
tors in the acquired chemoresistance of cancer 
cells; for example, the use of S1PR1 antagonist 
was found to sensitize neuroblastoma cells to eto-
poside [121].

Taken together, these data strongly indicate 
that modulation of S1P-related signaling may 
constitute a promising anticancer therapy; how-
ever, due to high heterogeneity between the 
tumors and observed opposing effects in response 
to S1P stimulation, more work has to be done to 
better understand the mechanisms of its action in 
cancer cells.

7.6	 �S1P as a Modulator 
of the Immune Response

The composition and characteristics of the TME 
vary between different types of tumors, but it is 
crucial in determining the antitumor response. 
Several different populations of immune cells are 
capable of playing a role in antitumor immune 
response, including macrophages, natural killer 
cells (NKs), dendritic cells (DCs), and effector T 
cells. However, at the same time, tumor cells pro-
tect themselves from destruction by induction of 
an immunosuppressive microenvironment, thus 
promoting the development of immunosuppres-
sive cells such as myeloid-derived suppressor 
cells (MDSCs) and regulatory T cells. 
Accumulating evidence indicates that S1P might 
be one of the components of the TME that can 
regulate this interplay between cancer and 
immune cells (Fig. 7.5). The best-studied effect 
of S1P on immune cells includes its role in the 
regulation of migration and polarization of mac-
rophages. Macrophages originate from the 
myeloid lineage and belong to the innate immune 
system. They are derived from blood monocytes 
that migrate into cancer tissue in response to spe-
cific chemokines present in the TME.  One of 
their main functions is the removal of microbes 
and cell debris through phagocytosis, but they 
also play a crucial role in the initiation of inflam-
mation [122, 123]. Based on signals from the 
microenvironment, macrophages can exhibit dif-
ferent phenotypes, and the process of acquiring 
different functional programs is known as polar-
ization. Two major subsets have been proposed: 
M1 and M2 macrophages which correspond to 
the extreme phenotypes of the opposite spectrum. 
M1 macrophages (classically activated macro-
phages) are aggressive and highly phagocytic, 
produce large amounts of reactive oxygen and 
nitrogen species, secrete high levels of IL-12 and 
IL-23, and induce the activation, and clonal 
expansion of T-helpers cells thus contributes to 
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Fig. 7.5  Sphingosine-1 phosphate (S1P) is a key regula-
tor of cell–cell interaction and modulator of the anticancer 
immune response in the tumor microenvironment (TME). 
S1P released from cancer cells chemoattract monocytes 
and induce their polarization into TAM/M2 macrophages, 
which in turn secrete growth factors and cytokines that 
stimulate tumor growth. S1P also inhibits cytotoxic activ-
ity of natural killer (NK) cells and promotes regulatory 
T-cell (Treg) expansion, migration, and accumulation in 
malignant tissue which results in immunosuppression of 
anticancer response. In the presence of S1P, NK-mediated 
cell lysis of immature monocyte-derived dendritic cells 

(DCs) is inhibited. Moreover, S1P enhances endocytosis 
and induces migration of mature DCs which could poten-
tially increase immune response toward cancer cells. Mast 
cells respond to S1P stimulation with increased motility 
and degranulation which result in the release of growth 
factors and cytokines that depending on the context can 
stimulate or inhibit tumor growth and progression. 
Similarly, fibroblasts, in the presence of S1P, secrete 
growth factors, proteases, and also S1P that accelerate 
tumor growth, angiogenesis, and invasion. Additionally, 
S1P induces angiogenesis and tumor growth by enhancing 
migration of endothelial cells
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inflammation. In contrast, M2 macrophages 
(alternatively activated macrophages) are anti-
inflammatory and aid in the process of angiogen-
esis and tissue repair. In the TME, M1 
macrophages are involved in the elimination of 
tumor cells, whereas M2 macrophages stimulate 
tumor growth by releasing angiogenic factors and 
anti-inflammatory cytokines [124]. Tumor-
associated macrophages (TAMs) display an 
M2-like phenotype, and several studies indicate a 
correlation between TAM density and poor prog-
nosis of cancer patients. Moreover, new evidence 
connect TAMs with chemotherapy resistance.

S1P has been identified to be a potent che-
moattractant for many different types of normal 
and malignant cells. Interestingly, S1P released 
from apoptotic leukemic cells not only was found 
to attract monocytes, but its effect was compara-
ble with monocyte chemoattractant protein-1 
(MCP-1/CCL2) [45]. These results were con-
firmed in several other models including breast 
cancer [47, 48] and acute T-cell leukemia [125, 
126], and more detailed studies indicate the 
involvement of S1P-S1PR1 axis in monocyte 
migration [125]. There are also some suggestions 
that SphKs are involved in the release of S1P 
from apoptotic cells; however, the results are 
contradictory; some studies showed that activa-
tion of SphK1 is necessary to facilitate this pro-
cess [45, 126], whereas the other pointed out to 
the involvement of SphK2 [126].

Accumulating evidence point to a crucial role 
of S1P in macrophage polarization. In several 
models, including breast cancer, S1P was found 
to induce a M2 phenotype in macrophages which 
was characterized by decreased tumor necrosis 
factor (TNF)-alpha, IL-12, and nitric oxide syn-
thase production, but increased formation of 
IL-4, IL-8, IL-10, TGF-β1, and, interestingly, 
SphK1 [47, 48, 127, 128]. More detailed studies 
indicated that this process involved suppression 
of NF-κB, p38 MAPK, and JNK signaling path-
ways [47, 128, 129], as well as activation of tyro-
sine kinase receptor A and ERK1/2 [48, 128]. 
Moreover, S1P activity was dependent on the 
expression of SphK2, S1PR1/3 but not S1PR2 
[47, 126, 129, 130]. Additionally, IL-10, a potent, 
anti-inflammatory cytokine was found to stimu-

late macrophages to secrete prostaglandin E2 
(PGE2) that induced migration of endothelial 
cells and increased angiogenesis, a seal of tumor 
progression [130]. S1P released from cancer cells 
also induced Bcl-X(L) and Bcl-2 upregulation, 
which protected macrophages from cell death 
[126].

The identification of S1P function in mono-
cyte recruitment and polarization of macrophages 
toward the less aggressive M2 phenotype suggest 
that S1P present in the TME can have a positive 
effect on tumor growth not only by direct stimu-
lation of cell proliferation, invasiveness, and che-
moresistance but also by allowing them to evade 
the tumor-killing response elicited by cytotoxic 
macrophages. Therefore, a better understanding 
of S1P role in the regulation of macrophage pro-
duction and polarization could lead to the devel-
opment of new therapies allowing for the 
reprogramming of TAMs toward an M1 pheno-
type and activation of their antitumor response.

Even though most of the literature focus on 
the crucial role of S1P in monocyte/macrophage 
recruitment, survival, and polarization, it was 
also found that this phosphosphingolipid can 
modulate the function of other immune cells 
present in the TME such as regulatory T cells 
(Tregs) or natural killer cells (NK). Tregs are a 
subpopulation of T cells that act to suppress the 
immune response, thus maintaining homeostasis 
and self-tolerance. In cancers, however, their 
suppressive activity toward other immune cells 
promotes tumor progression. S1PR1 was found 
to be involved in the regulation of Tregs functions 
since the permanent deletion of this receptor 
from Treg cells resulted in autoimmunity [131]. 
Moreover, activation of S1PR1 signaling leads to 
Tregs accumulation in cancerous tissues and pro-
motes tumor growth, through activation of STAT3 
[132]. However, in other studies, S1PRs agonist 
FTY720 (fingolimod) was found to inhibit IL-2-
induced STAT-5 phosphorylation, paralleled by a 
loss of forkhead box protein 3 (FoxP3) expres-
sion, which resulted in decreased Treg cells pro-
liferation, both, in vitro and in vivo [133, 134]. 
FTY720 is an agonist of four S1PRs (S1PR1, 
S1PR3, S1PR4, and S1PR5) [135], therefore the 
discrepancy between studies might indicate that 
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although S1PR1 can stimulate the suppressive 
nature of Tregs, this effect can be counteracted by 
stimulation of other S1P receptors. Therefore 
more studies have to be done to better character-
ize the role of S1P and its receptors in Tregs 
regulation. Interestingly, S1PR1 present on can-
cer cells was found to regulate a cross talk 
between bladder cancer cells and Tregs. 
Overexpression of this receptor in bladder cancer 
cells promoted the generation of bladder cancer-
induced Tregs by activation TGF-β signaling 
pathway, leading to the secretion of TGF-β and 
IL-10 from tumor cells [134].

Recently S1P was identified as a potent che-
moattractant for natural killers cells (NK) that 
play a crucial role in antitumor immunity [136, 
137]. However, at the same time it was shown 
that S1P stimulation activates the phosphati-
dylinositol 3-kinase (PI3K)-dependent signaling 
pathway, protein kinase A (PKA), protein kinase 
B (PKB/AKT), glycogen synthase kinase-3beta 
(GSK-3beta) and increases the level of cAMP, 
thus inhibiting the cytotoxic activity of NK cells 
[136]. Further studies confirmed that S1P can act 
as an anti-inflammatory molecule that signifi-
cantly reduced the release of IL-17A and IFN-
gamma from NK cells in an S1PR1-independent 
manner [138]. At the same time, it was found that 
S1P can modulate the interaction between NK 
and tumor cells since activation of S1PR1 on 
human myeloid leukemia K562 cells protected 
them from NK cells-induced lysis [138]. 
Interestingly, S1P was also found to modulate the 
interaction of NK cells with immature dendritic 
cells (DCs) [138]. DCs are antigen-presenting 
cells that play a central role in the initiation of 
adaptive immune responses. In the presence of 
S1P, NK-mediated cell lysis of immature 
monocyte-derived DCs was inhibited, which may 
favor antigen presentation to T cells [138]. 
Moreover, S1P enhances endocytosis and induce 
migration of mature DCs in an S1PR3--dependent 
but not S1PR1-dependent manner [139], which 
could potentially increase immune response 
toward cancer cells. This duality in S1P action 
cells requires more studies to better understand 
the effect of its signaling on migration and phe-
notypic modulation of NK and DCs cells.

One of the best-studied effects of S1P is its 
role in migration and egress of lymphocytes from 
lymphoid organs. However, less attention was 
put in resolving the role of S1P in the regulation 
of B and T lymphocytes in cancer progression. In 
diffuse large B-cell lymphoma (DLBCL) cell 
lines, expression of S1PR2 inversely correlated 
with the oncogenic transcription of FOXP1, 
resulting in reduced tumor growth in S1PR2 
overexpressing cells [140]. Moreover, low S1PR2 
expression was found to be a strong negative 
prognostic factor of patient survival, especially in 
combination with high FOXP1 expression [140]. 
Interestingly, different B-cell populations express 
different combinations of S1PRs; S1PR1 was 
found to promote migration, whereas S1PR4 
modulates and S1PR2 inhibits S1PR1 signals 
[141]. Moreover, the expression of CD69 in acti-
vated B lymphocytes and B cells from patients 
with chronic lymphocytic leukemia (CLL) inhib-
ited S1P-induced migration [141]. Studying 
B-cell lines, normal B lymphocytes, and B cells 
from patients with primary immunodeficiencies, 
Bruton’s tyrosine kinase, β-arrestin 2, LPS-
responsive beige-like anchor protein, dedicator 
of cytokinesis 8, and Wiskott-Aldrich syndrome 
protein were found to be critical signaling com-
ponents downstream of S1PR1 [141]. S1PR1 is 
expressed at low levels in CLL lymph nodes as 
compared with normal B cells [142], increased 
expression of S1PR1 correlates with STAT3 acti-
vation and survival of B-cell lymphoma cells 
[143]. Furthermore, downregulated expression of 
S1PR1 in CLL B cells impairs their egress from 
the peripheral lymphoid organs and enhances 
their survival [144]. S1P was also identified as a 
molecule that inhibits T-cell proliferation [145].

Mast cells (MCs) are immune cells of the 
myeloid lineage and are present in connective 
tissues throughout the body. The activation and 
degranulation of mast cells modulate many 
aspects of physiological and pathological condi-
tions in various settings [146]. Immuno-
modulating action of mast cells is related to the 
production and release of several multi-potent 
molecules including S1P [147, 148], 
Interestingly, MCs have been found to act as 
both tumor promotors and tumor suppressors 
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[147, 149, 150], and this effect can differ within 
the same tumor depending on the tissue com-
partment, e.g., in prostate tumors intratumoral 
MCs negatively regulate angiogenesis and tumor 
growth, whereas peritumoral MCs stimulate the 
expansion of cancer cells [150]. High numbers 
of mast cells have been found in several tumors 
including colorectal [151], pancreatic [152], 
melanoma, [153], NSCLC [154], squamous cell 
carcinomas (SCC) of the esophagus [155], 
mouth [156], and lip [157]. Interestingly, an ele-
vated number of MCs was correlated with good 
[150, 158, 159] and poor prognosis [158, 160]. 
Fr example, in prostate cancer, patients with 
higher MCs counts had a better prognosis than 
the patients with lower MSc counts [159, 160]. 
Moreover, the MCs numbers correlated well 
with the clinical stages of tumors [160]. Similarly 
to other immune cells, S1P was found to stimu-
late motility of MCs [161], and this effect was 
S1PR1-dependent [161]. On the other hand, 
S1PR2 showed an inhibitory effect on MCs 
migration; however, it was necessary for S1P-
induced degranulation [161]. Moreover, SphK1 
but not SphK2 was found to be critical in MCs 
for antigen-induced degranulation, chemokine 
secretion, and migration, while both isozymes 
are essential for cytokine secretion [162]. Studies 
with MCs also led to the discovery that ABCC1 
promotes the export of S1P across the plasma 
membrane independent of MCs degranulation 
[57]. Interestingly, exposure of MCs to S1P can 
lead to increased release of proteinases involved 
in tumor growth and metastasis, as well as pro-
angiogenic VEGF [92, 148].

The complexity of S1P signaling that regu-
lates immune cells in the TME (Fig. 7.5) requires 
further studies especially that not only S1P can 
directly act on different subpopulations of cells 
but also modulate cross talk between immune 
cells and tumor. Nevertheless, some of the stud-
ies indicate that the modulation of S1P-dependent 
signaling to increase the antitumor response of 
the immune system can be a promising target for 
anticancer therapies.

7.7	 �S1P as a Modulator 
in Inflammatory Pathways

Several studies indicate the involvement of S1P 
or enzymes controlling its metabolism in the reg-
ulation of inflammation. As mentioned earlier, 
intracellular S1P can activate NF-κB; however, 
recent studies indicate that this activation can 
also be mediated by S1PR (mainly S1PR1–3), 
thus involving an extracellular pool of S1P [69, 
163, 164]. Interestingly, some results indicate a 
link between TNF signaling and NF-κB activa-
tion that involves S1P as a signaling molecule 
and/or as a cofactor of TRAF2 E3 ubiquitin ligase 
[67]. In melanoma cells, activation of NF-κB by 
extracellular S1P was found to be irreversibly 
correlated with expression of actin-binding pro-
tein FlnA [164], an interacting partner of SphK1 
[165] and TRAF2 [166]. Moreover, it was also 
found that TRAF-interacting protein (TRIP), a 
binding partner of TRAF2, abrogated TNF-
induced NF-κB activation by inhibiting binding 
of S1P to TRAF2 and thus suppressing its E3 
ubiquitin ligase activity [67]. In inflammation-
associated colon cancer, S1P was found to be 
essential for the production of the NF-κB-
regulated cytokine, IL-6, crucial for persistent 
activation of transcription factor STAT3. This 
leads to upregulation of S1PR1 and reciprocally, 
enhanced S1PR1 expression activates STAT3 and 
upregulates IL-6 gene expression, thus accelerat-
ing tumor growth and metastasis in a STAT3-
dependent manner [167]. The connection 
between S1PR1 and STAT3 activation was found 
to be crucial in distinct tumors, including lym-
phoma, adenocarcinoma, melanoma, breast, and 
prostate cancers [167] and decreased expression 
of STAT3-regulated genes by targeting S1PR1 
was found to inhibit tumor progression [143]. 
What is interesting is S1P-induced STAT3 activa-
tion in colitis-induced colon cancer was corre-
lated with upregulation of SphK1 or decreased 
level of SPL. A similar association was observed 
in animal models of inflammation, as S1P levels 
were increased in mice with dextran sulfate-
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induced colitis, but not in mice lacking the SphK1 
gene [168, 169]. The connection between S1P-
metabolized enzymes and S1P-induced activa-
tion of STAT3 was also observed in 
cholangiocarcinoma cells where inhibition of 
SphK2 abrogated STAT3 phosphorylation and 
decreased cells’ proliferation [170]. Also, in 
ER-negative breast cancer cells, SphK1 knock-
down led to a significant reduction in 
leptin-induced STAT3 phosphorylation [171]. 
SphK1 and S1P were also found to be required 
for TNF-α-induced cyclooxygenase 2 (COX2), 
and prostaglandin E2 (PEG2) production [172]. 
Additionally, S1P in cooperation with lipopoly-
saccharide (LPS) was found to increase the 
expression of pro-inflammatory molecules such 
as IL-6, cyclooxygenase-2 (COX2), and prosta-
cyclin in human endothelial cells [163]. 
Moreover, S1P was able to induce COX2 expres-
sion in Wilms tumor and this effect was mediated 
by S1PR2 [173].

Increased levels of S1P suggesting its 
involvement in controlling inflammation was 
observed in several nonmalignant conditions 
such as inflammatory arthritis [174, 175] mul-
tiple sclerosis [176], or asthma [177]. In con-
trast, increased expression of SPL and SPP2, 
thus indicating a decreased level of S1P, was 
found in the skin of patients and animals with 
psoriasis [178] and atopic dermatitis [179, 
180], which could suggest that S1P exert anti-
inflammatory actions in the skin. This hypoth-
esis was confirmed in animal models of 
dermatitis or psoriasis, where the topical appli-
cation of S1P reduced skin hyperproliferation 
and swelling [181, 182]. This mechanism of 
suppression involved inhibition of Langerhans 
cells migration to the lymph nodes or reduced 
antigen processing through S1PR2 activation 
[183]. Additionally, in a model of allergic 
asthma, inhalation of S1P suppressed airway by 
altering dendritic cell function [184]. 
Interestingly, only HDL-bound S1P, but not 
albumin-bound S1P, restrained lymphopoiesis 
and neuroinflammation in mice [185]. Although 
the described mechanisms were found in non-
cancerous tissues, one cannot exclude that S1P 
can regulate similar processes in tumors.

7.8	 �S1P as a Regulator of Cells’ 
Interaction

The role of S1P signaling in the regulation of the 
interaction between tumor and the immune sys-
tem has been described in previous paragraphs; 
however, S1P can also modulate the interaction 
between other cell types present in the TME 
(Fig. 7.5). In S1PR2 knockout mice, the lack of 
this receptor on endothelial, vascular smooth 
muscle, and DC11b-positive bone marrow cells 
resulted in accelerated angiogenesis and growth 
of Lewis lung carcinoma and B16 melanoma 
cells [186]. The opposite effect was observed for 
S1PR1, whose downregulation in endothelial 
cells resulted in inhibited endothelial cell migra-
tion in  vitro and the growth of neovessels into 
subcutaneous implants of Matrigel in vivo, thus 
leading to dramatic suppression of tumor growth 
[106]. In a model of melanoma, inhibition of 
SphK1 activity in dermal fibroblast enhanced 
tumor growth, whereas factors released from 
Sphk1 expressing melanoma cells were neces-
sary for fibroblast differentiation into myofibro-
blasts [67, 187]. Moreover, myofibroblasts were 
found to release S1P and metalloproteinases that 
additionally increased melanoma growth and 
metastasis [67, 187]. Similarly, SphK1 expressed 
in the tumor stroma of serous ovarian cancer was 
required for the differentiation and the tumor-
promoting function of cancer-associated fibro-
blasts through activation of TGF-β-signaling 
pathways via transactivation of S1PR2 and 
S1PR3 [188]. The importance of stromal 
SphK1 in tumorigenesis was confirmed in vivo in 
SphK1 knockout mice, where reduced tumor 
growth and decreased metastasis were observed 
[188]. S1P also mediate interactions in the pan-
creas between tumor and stromal cells where 
pancreatic cancer cell-derived S1P activates pan-
creatic stellate cells to release paracrine factors, 
including matrix metalloproteinase-9 (MMP9), 
which in turn promotes tumor cell migration and 
invasion, both in  vitro and in  vivo [189]. 
Interestingly, it has been proposed that communi-
cation between the host organism and cancer 
cells in a lung cancer model is transduced by S1P 
generated systemically rather than via tumor-
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derived S1P, and that lung colonization and can-
cer metastasis requires S1PR2 activation [190]. 
Recently, some additional mechanism has also 
been described where stromal–cancer interaction 
has been facilitating through microvesicles [191]. 
It has been found that S1PR2 can be shed from 
breast cancer cells in exosomes present in condi-
tioned medium. Moreover, when combining with 
fibroblast, S1PR2 was proteolyzed to produce a 
constitutively active form which promoted prolif-
eration of these cells through activation of the 
ERK1/2 pathway [191]. S1PR2 was also found to 
be important in the regulation of epithelial 
defense against cancer (EDAC), a process in 
which epithelial cells eliminate neighboring can-
cer cells [192]. Altogether, these results strongly 
support the hypothesis that S1P in the TME may 
regulate the communication between cancerous 
and stromal cells to enhance tumor development 
(Fig. 7.5).

7.9	 �S1P and Hypoxia

Hypoxia is a non-physiological low level of oxy-
gen in a tissue, and this phenomenon is observed 
in a majority of malignant tumors. It is the result 
of intensive proliferation and expansion of tumor 
tissue in which oxygen demand is surpassed by 
oxygen supply [193]. Decreased oxygenation 
may lead to either cancer cell death or cancer cell 
survival, and the type of response partially 
depends on the time of exposure to hypoxia 
[193]. Hypoxia induces several intracellular sig-
naling pathways, including the hypoxia-inducible 
factor (HIF) pathway. The SphK1 promoter has 
two hypoxia-inducible factor-responsive ele-
ments (HREs) and both hypoxic-inducible fac-
tors HIF1α and HIF2α have been shown to 
regulate transcription of SphK1 [194, 195] 
(Fig.  7.6). Interestingly, in glioma cells, HIF1α 
and HIF2α had the opposite effect on SphK1 
expression; while downregulation of HIF2α 
decreased expression of SphK1 and S1P levels, 
silencing of HIF1α increased SphK1 synthesis 
[196]. At the same time, both SphK1 and SphK2 
were found to be necessary to stabilize HIF1α in 
normal and malignant cells [197, 198] and SphK1 

was also found to control HIF1α expression 
through a phospholipase D-driven mechanism 
[196]. In lung cancer, hypoxia was found to 
enhance SphK2 activity and lead to sphingosine 
1-phosphate-mediated chemoresistance through 
an autocrine/paracrine mechanism that includes 
activation of S1PR1 and S1PR3  in cancer cells 
[199]. Hypoxia-induced SphK1 also promotes 
endothelial cell migration in [195] and increases 
S1P production and release from glioma cells 
[200]. Additionally, conditioned medium from 
hypoxia-treated tumor cells resulted in neoangio-
genesis in human umbilical vein endothelial cells 
in a S1PR-dependent manner thus providing evi-
dence of a link between S1P production as a 
potent angiogenic agent and the hypoxic pheno-
type observed in many tumors [200]. S1P was 
also found to be involved in the activation of 
HIF1α in macrophages [201], and migration of 
endothelial cells [202]. Taken together, presented 
results indicate that regulation of S1P signaling 
in response to hypoxic conditions could be a 
potential therapeutic target leading to decreased 
angiogenesis in growing tumors.

7.10	 �S1P-Targeting Anticancer 
Therapies

Several strategies have been applied to the inhibi-
tion of S1P signaling in cancers targeting either 
metabolizing enzymes (mainly SphK1 and 
SphK2), specific S1P receptors, or S1P itself. 
The majority of SphK-targeting inhibitors either, 
rapidly and reversibly, inhibit catalytic activity 
[203] of SphK or induce ubiquitin-proteasomal 
degradation of SphK [204, 205], which results in 
a significant reduction in SphK levels in cancer 
cells. Unfortunately, some of them were found to 
be not isoform-specific, inhibit enzymes other 
than SphK (e.g., protein kinase C and ceramide 
kinase) [206, 207] or, despite showing efficacy in 
cancer models [208–212], were characterized 
with high toxicity [209]. Interestingly, some nat-
ural products like B-5354c [213], S-15183a, and 
S-15183b [214] have been shown to inhibit SphK 
in vitro and were found to reduce tumor growth 
in vivo [120]. Nevertheless, the efficacy and tox-
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icity of three compounds that target SphK have 
been or are being assessed in clinical trials. 
Safingol (L-threo-dihydrosphingosine), which 
decreases the activity of SphK1, but also acts on 
protein kinase C [215], was shown to effectively 
downregulate the levels of S1P.  However, 
although reversible, dose-dependent hepatic tox-
icity was observed. Currently, Safingol is being 
tested in patients with relapsed malignancies. 
Good tolerance and effectiveness in decreasing 
S1P levels were also shown for the selective 

SphK2 inhibitor ABC294640 (YELIVA) in Phase 
I studies in patients with advanced solid tumors 
[216]. Now, YELIVA is being evaluated in Phase 
II studies for the treatment of cholangiocarci-
noma and hepatocellular carcinoma. A third com-
pound, phenoxodiol, which was shown to reduce 
the activation of SphK1 [217] was assessed in 
clinical trials for the treatment of ovarian and 
prostate cancers [218–220]. However, the effect 
of phenoxodiol on SphK is indirect, and it also 
downregulates antiapoptotic proteins, induces 
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Fig. 7.6  Role of sphingosine-1-phosphate (S1P) in 
hypoxia. At the molecular level (lower panel), hypoxia 
induces expression of hypoxia-inducible factor 1α 
(HIF1α) that regulates expression of sphingosine kinase 1 
(SphK1). At the same time, SphK1 stabilizes HIF1α and 
controls its expression through a phospholipase D-driven 
mechanism. At the cellular level (upper panel), S1P 

released from cancer cells promotes endothelial cell 
migration and subsequent angiogenesis. S1P was also 
found to induce TAM/M2 macrophage polarization and is 
involved in the activation of HIF1α in macrophages. 
Moreover, stabilization of HIF1α in macrophages induces 
vascular endothelial growth factor (VEGF) release that 
additionally stimulates angiogenesis
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AKT downregulation, and inhibits topoisomer-
ase II.

Multiple S1PR-selective agents are available 
on the market [135], and although some of them 
were tested in animals models, none of them 
were or are being evaluated in clinical trials as 
anticancer treatments. One of the explanations 
might be the heterogeneous pattern of S1PR 
expression in cancer, which can differ not only 
between the same types of cancer from different 
patients but also between cells within the same 
tumor, thus limiting the efficacy of S1PR 
treatments.

Another approach for inhibition of S1P-
related signaling includes the development of 
monoclonal antibodies (mAbs) that bind and 
neutralize S1P from blood and other compart-
ments. Sphingomab (LT1009), an S1P-specific 
antibody, was found to reduce tumor progression, 
metastasis and, in some cases, eliminated tumors 
in mouse xenograft and allograft models [221]. 
This effect was attributed to its anti-angiogenic 
properties since in  vitro studies indicated that 
anti-S1P mAbs blocked endothelial cell migra-
tion and resulting capillary formation and in vivo 
observation indicated a reduction in tumor blood 
flow [221]. On the other hand, in in vivo prostate, 
Sphingomab blocked the activity of HIF-1α in 
cancer exposed to hypoxia and modified vessel 
architecture, thus increasing intratumoral blood 
perfusion [222]. This transient vascular normal-
ization of tumor vessels sensitized it to chemo-
therapeutic treatment leading to decreased tumor 
growth and metastasis [222]. Two monoclonal 
S1P-specific antibodies, LT1002 and 
Sonepcizumab (Asonep), a humanized form of 
sphingomab, were shown to have high specificity 
for S1P but not to other structurally related lipids 
[223]. Sonepcizumab has recently completed 
Phase I clinical trials for the treatment of solid 
tumors, but results are not yet available. However, 
results from Phase II clinical study of 
Sonepcizumab in patients with metastatic renal 
cell carcinoma showed encouraging overall sur-
vival and favorable safety profile suggesting fur-
ther investigation of this agent in combination 
with VEGF-directed agents or checkpoint inhibi-
tors [224].

Binding and sequestering of S1P from the 
environment can be also obtained using 
Spiegelmers (Spiegel = German word for mirror) 
which are biostable oligonucleotides made from 
nonnatural mirror-image l-nucleotides that adopt 
complex three-dimensional structures and bind 
targets in a fashion comparable to antibodies 
[225]. NOX-S93, a high-affinity inhibitor of S1P, 
was shown to reduce angiogenesis in in  vitro 
assay [225]. Moreover, in in  vivo experiments, 
administration of NOX-S93 decreased S1P-
induced spread of rhabdomyosarcoma cells [46].

7.11	 �Conclusions

There is no doubt that S1P plays an essential role 
in the regulation of the TME and modulates inter-
actions between its components. S1P released 
from tumor cells allows them to inhibit antican-
cer immune response, increase angiogenesis, and 
adapt to hypoxic conditions. Cells stimulated by 
S1P within the TME can, in turn, secrete growth 
factors and cytokines that orchestrate cancer pro-
gression and chemoresistance. Thus, S1P signal-
ing in the TME should be taken into account 
when designing novel therapeutic strategies for 
cancer patients.
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