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Abstract This chapter focuses on various transport phenomena in yield stress mate-
rials. After a brief introduction, an overview of the phenomenology of the solid–
fluid transition is given in Sect. 2. Section 3 introduces a microscopic theory able
to describe the solid–fluid transition in both thixotropic and non-thixotropic yield
stress materials. A discussion of the hydrodynamic stability of yield stress materials
is presented in Sect. 4. Some non-isothermal transport phenomena are discussed in
Sect. 5.

1 Introduction

A broad class of materials exhibits a dual response when subjected to an external
stress. For low applied stresses, they behave as solids (loosely speaking they may
deform but they do not flow) but, if the stress exceeds a critical threshold generally
referred to as the “yield stress”, they behave as fluids (typically non-Newtonian) and
a macroscopic flow is observed. This distinct class of materials has been termed as
“yield stress materials” and, during the past several decades, it attracted a constantly
increasing level of interest from both theoreticians and experimentalists. The moti-
vation behind this issue is twofold. From a practical standpoint, such materials have
found a significant number of applications in several industries (which include food,
cosmetical, pharmaceutical, oil field engineering, etc.) and they are encountered in
daily life in various forms such as food pastes, hair gels and emulsions, cement, mud,
etc. More recently, hydrogels which exhibit a yield stress have found a number of
future promising applications including targeted drug delivery (Jeong et al. 1997;
Qiu and Park 2001), contact lenses, noninvasive intervertebral disc repair (Hou et al.
2004) and tissue engineering (Beck et al. 2007).

From a fundamental standpoint, yield stress materials continue triggering inten-
sive debates and posing difficult challenges to both theoreticians and experimentalists
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from various communities: soft matter physics, rheology, physical chemistry and
applied mathematics. The progress in understanding the flow behaviour of yield
stress materials made the object of several review papers (Nguyen and Boger 1992;
Coussot 2014; Balmforth et al. 2014; Bonn et al. 2017). The best known debate
concerning the yield stress materials is undoubtedly that related to the very existence
of a “true” yield stress behaviour (Barnes 1999; Barnes and Walters 1985). During
the past two decades, however, a number of technical improvements of the rheomet-
ric equipment made possible measurements of torques as small as 0.1 n Nm and of
rates of deformation as small as 10−7 s−1). Such accurate rheological measurements
proved unequivocally the existence of a true yielding behaviour (Putz and Burghelea
2009; Bonn and Denn 2009; Denn and Bonn 2011). The physics of the yielding
process itself on the other hand remains elusive. The macroscopic response of yield
stress fluids subjected to an external stress, σ, has been classically described by the
Herschel–Bulkley model (Herschel and Bulkley 1926a, b):

σ = σy + K γ̇N . (1)

Here, σy is the yield stress, γ̇ is the rate of shear, i.e. the rate at which the material
is being deformed, σ is the macroscopically applied stress (the external forcing
parameter), K is a so-called consistency parameter that sets the viscosity scale in the
flowing state and N is the power law index which characterises the degree of shear
thinning of the viscosity beyond the yield point.

In spite of its wide use by rheologists, fluid dynamicists and engineers, the
Herschel–Bulkley model (and its regularised variants, e.g. Papanastasiou 1987) is in
fact applicable only for a limited number of yield stress materials, sufficiently far from
the solid–fluid transition, i.e. when σ > σy , and in the conditions of a steady-state
forcing, i.e. when a constant external stress σ is applied over a long period of time.
The behaviour of a large number of the yield stress materials encountered in daily life
applications cannot be accurately described by the simple Herschel–Bulkley model.
This fact has initiated the “quest” for a “model” yield stress fluid.

A “model” yield stress material should fulfil a number of quite restrictive condi-
tions:

1. As the externally applied stresses are gradually increased, a solid–fluid transition
occurs at a well-defined value of the applied stress, σ = σy .

2. Past the yield point the relationship between the applied stress σ and the macro-
scopic rate of shear γ̇ follows faithfully the Herschel–Bulkley model described
by Eq. (1).

3. The solid–fluid transition is reversible upon increasing/decreasing forcing, that
is, no thixotropic effects are present.

For nearly two decades, aqueous solution of Carbopol® has been chosen as the
best candidates as “model” yield stress materials (Curran et al. 2002; Ovarlez et al.
2013). Carbopol® is the generic trade name of an entire family of cross-linked poly-
acrylic acids with the generic chemical structure H − A. Upon dissolution in water,
the polyacrylic acid dissociates as H − A ⇐⇒ H+ + A−, resulting in a mixture
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with pH ≈ 3. Upon neutralisation with an appropriate basic solution (e.g. a sodium
hydroxide solution, NaOH) the micro-gel particles swell up to 2000 times and a
physical gel is obtained. The Carbopol gels are optically transparent, chemically sta-
ble over long periods of time which makes them ideal candidates for experimental
studies.

To illustrate the limitations of the classical Herschel–Bulkley picture in accurately
describing the solid–fluid transition even in the case of a Carbopol® gel, we discuss
below several experimental observations performed in kinematically “simple” flows
of aqueous solutions of Carbopol® that are at odds with the picture of a “model”
yield stress fluid.

1.1 Sedimentation of a Spherical Object in an
Elasto-Viscoplastic Material (Carbopol® 940)

The first experimental observation relates to the flow patterns around a spherical
object freely falling in an aqueous solution of Carbopol® 940 discussed in detail by
Putz et al. (2008).

The experiment consisted of measuring time series of the velocity fields around a
sphere freely falling in a container filled with a Carbopol® solution via digital particle
image velocimetry (DPIV). To test the reliability of the method, flow fields were first
measured in a Newtonian fluid (an aqueous solution of Glycerol), as shown in Fig. 1a.
As the Reynolds numbers (calculated using the size and the terminal speed of the
spherical object) did not exceed unity, a perfect fore-aft symmetry of the flow pattern
is observed and a quantitative agreement with the analytical solution (Landau and
Lifschitz 1987) is found, which fully confirms the reliability of both the experimental
procedure and data analysis technique.

For several cases involving different Carbopol® solutions and different sizes of
the spherical object, however, the flow patterns are strikingly different though the
Reynolds number was kept in the same range, as shown in Fig. 1b. As compared to
Newtonian flow patterns, two distinct features may be observed:

1. For each of the cases illustrated in Fig. 1b, the fore-aft symmetry of the flow
patterns is broken in spite of the laminar character of the flow.

2. For each of the cases illustrated in Fig. 1b, a negative wake manifested through a
reversal of the flow direction is clearly visible.

None of these distinctive features can be understood in the classical Bingham/
Herschel–Bulkley frameworks. Numerical simulations using either the Bingham or
the Herschel–Bulkley constitutive equations predict fore-aft symmetry of the flow
pattern (Beris et al. 1985; Fraggedakis et al. 2016). The second feature is even more
intriguing as the negative wake phenomenon has been observed in strongly elastic
shear-thinning solutions with no yield stress (Arigo and McKinley 1998).

We have proposed the following phenomenological explanations (Putz et al.
2008). Bearing in mind that the material in the fore region of the object is
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Fig. 1 Experimentally
measured flow field around a
sphere freely falling in a
Newtonian fluid (glycerol) at
Re < 1 (1a). Experimentally
measured flow fields around
a sphere freely falling in
Carbopol® solutions at
Re < 1 (1b). The radii of the
spheres and the yield stresses
of the solutions in each panel
are (1)—R = 3.2 mm,
σy = 0.5 Pa,
(2)—R = 1.95 mm,
σy = 0.5 Pa,
(3)—R = 3.2 mm,
σy = 1.4 Pa,
(4)—R = 1.95 mm,
σy = 1.4 Pa. The colour
maps in all panels refer to
the modulus of velocity and
the full lines are streamlines.
The acceleration of gravity is
oriented from right to left
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subjected to a forcing that gradually increases past the solid–fluid transition and
the aft region is subjected to a forcing that gradually decreases past the fluid–solid
transition, we have conjectured that the solid–fluid transition is not reversible upon
increasing/decreasing stresses. As the emergence of the negative wake is concerned,
we have conjectured that, around the solid–fluid transition, the elastic effects are
dominant which, in conjunction with the curvature of the streamlines, leads to the
emergence of a first normal stress difference that ultimately causes a “flow rever-
sal” or negative wake. Although quite debated for nearly a decade by part of the
viscoplastic community, these phenomenological explanations have been confirmed
by the recent numerical simulations (Fraggedakis et al. 2016).
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1.2 The Landau–Levich Experiment with an
Elasto-Viscoplastic Material (Carbopol® 980)

A second and equally simple experiment one can perform is to withdraw a vertical
plate at a constant speed U from a bath filled with a Carbopol® gel. This is referred
to in the literature as the “Landau–Levich” problem (Landau and Levich 1972). An
instantaneous flow field measured using DPIV is exemplified in Fig. 2. Similar to
the case of the sedimentation experiment previously illustrated, a negative wake is
clearly visible behind the moving plate. As in the previous case, the material located
in the wake region of the flow is subjected to a decreasing stress and gradually transits
from a fluid state to a solid one. The emergence of a negative wake is once again
associated to the presence of elasticity.

1.3 The Solid–Fluid Transition in a Carbopol® Gel Revisited

The “simple flows” examples presented above bear two common features:

1. The material is subjected to an external forcing (stress) around the solid–fluid
transition.

2. The material is forced in an unsteady manner. By this, we mean that the stress
locally applied changes with a characteristic time t0 set by the characteristic scale
of the speed U and a characteristic space scale L by t0 = L/U . In the case of the

Fig. 2 The Landau–Levich
flow problem: instantaneous
flow field around a rigid
plate being withdrawn at
constant speed from a bath
filled with a Carbopol® gel
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(a)

(b)

Fig. 3 a Schematic illustration of the controlled stress flow ramp. b Rheological flow curve mea-
sured via the controlled stress ramp illustrated in (a) for a 0.1% (wt) solution of Carbopol® 940. The
full line is a nonlinear fitting functions according to the Herschel–Bulkley model. The full/empty
symbols refer to the increasing/decreasing branches of the stress ramp schematically illustrated in
(a). The inset presents the dependence of the hysteresis area on the characteristic forcing time t0.
The full line in the inset is a guide for the eye Ph ∝ t−1

0

sedimentation problem, L is just the size of the spherical object L = R and U is
its terminal speed which, for the experiments illustrated in Fig. 1b, give t0 < 1s.

The points above prompted us to revisit the macroscopic solid–fluid transition.
The solid–fluid transition may be investigated during macroscopic rheological exper-
iments by subjecting the material to a controlled stress ramp and monitoring its
response (the rate of shear γ̇). Prior to yielding negligibly, small shear rates are mea-
sured whereas above the yield point non-zero values are recorded which allows one to
“guess” the yield point. We have implemented a rheological protocol that “mimics”
an unsteady forcing rather than following the rheological “golden rule” of imposing
a steady-state forcing (t0 →∞).

In Fig. 3b, we illustrate such measurements performed on a controlled stress
rheometer (Mars III from Thermo Fischer Scientific) equipped with a serrated plate–
plate geometry with a 0.1% (wt) solution of Carbopol® 940 by using the forcing
scheme illustrated in Fig. 3a with t0 = 0.5 s. As opposed to previous measurements
by others that seemed to indicate that the Carbopol® gels are “model” or “ideal” yield
stress fluids—i.e. free of thixotropic effects and with a rheological behaviour well
described by the Herschel–Bulkley constitutive law—the data presented in Fig. 3b
reveals the following features of the solid–fluid transition:

1. The solid–fluid transition is not direct (does not occur at a well-defined value of
the applied stress σ = σy) but gradual and spanning a finite interval of the applied
stresses.

2. The Herschel–Bulkley law describes well the rheometric response only in a range
of large applied stresses, the full line in Fig. 3b.
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3. The data corresponding to the increasing/decreasing branches of the controlled
stress ramps overlap only far above the solid–fluid transition. Additionally, a
cusp visible on the decreasing stress branch is visible. At this point, the rate of
shear γ̇ changes sign which indicates an elastic recoil effect typically observed
with viscoelastic fluids. This feature has not been reported before and may phe-
nomenologically explain the emergence of a negative wake in Figs. 2, 1b.

4. The degree of the irreversibility of the deformation states upon increasing/
decreasing forcing quantitatively described by the area of the hysteresis visible in
Fig. 3b scales as a power law with the degree of steadiness of the controlled stress
ramp t0—see the inset in Fig. 3b.

A natural question arises at this point: How universal is the irreversible flow
behaviour observed with a Carbopol® gel? To answer this question, we present
in Fig. 4 controlled rheological stress ramps performed with three microstructurally
distinct yield stress materials: a commercially available mayonnaise, a commercially

(a)

(b)

(c)

Fig. 4 Rheological flow curves measured via controlled stress ramps for various materials:
a mayonnaise (Carrefour, France) b mustard (Carrefour, France) c 0.08% (wt) aqueous solution of
Carbopol® 980. For each stress value, the response of the material was averaged during t0 = 10 s.
The range of applied stresses corresponding to the yielding transition is highlighted in each sub-
plot. The full lines are nonlinear fitting functions according to the Herschel–Bulkley model. The
full/empty symbols in each panel refer to the increasing/decreasing branches of the stress ramp
schematically illustrated in Fig. 3a
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available mustard and a different type of Carbopol® gel (Carbopol® 980). Each of
these rheological tests reveals a gradual solid–fluid transition characterised by a more
or less pronounced hysteresis that departs from the Herschel–Bulkley constitutive
relation. This indicates that, irrespective to the chemical identity of the material, the
solid–fluid transition follows a rather universal scenario. It is equally interesting to
monitor how the magnitude of the hysteresis depends on the degree of steadiness of
the external forcing—the time t0 the stress is maintained constant during the stress
ramp (see Fig. 3a).

We present in Fig. 5 the dependence of the magnitude of the rheological hysteresis
on the characteristic time t0 for each of the materials characterised in Fig. 4.

For the case of mayonnaise and mustard (the circles and the squares in Fig. 5), a
non-monotonic dependence of the magnitude of the hysteresis on the characteristic
forcing time t0 is observed. Corresponding to low values of t0 (fast forcing), the hys-
teresis area first increases and then, for large values of t0 (slow forcing), decreases
following a power law. This non-monotone behaviour agrees well with the mea-
surements of Divoux and his coworkers performed for several yield stress materials:
mayonnaise, Laponite gel and carbon black gel (Divoux et al. 2013). As pointed
out by Divoux et al. (2013), these non-monotone dependencies may be fitted by a
log-normal function (the dashed lines in Fig. 5). The presence of a local maximum
of these curves has been attributed to the existence of a critical timescale t�0 specific
to each material which describes the restructuration dynamics of the solid material
units.

It has been shown recently that a clear departure from the Herschel–Bulkley
behaviour can be observed even for “simple” yield stress fluids such as the Carbopol®

Fig. 5 Dependence of the hysteresis area on the characteristic forcing time t0 (see text for descrip-
tion) measured with several yield stress materials via controlled stress flow ramps: circle (◦)—
mayonnaise (Carrefour, France), square (�)—mustard (Carrefour, France), up triangle (	)—0.08%
(wt) aqueous solution of Carbopol® 980. The dashed lines are log-normal fitting functions (see text
for the discussion); the full lines are power law fitting functions indicated in the inserts
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gels particularly during unsteady flows taking place around the yield point (Putz and
Burghelea 2009; Weber et al. 2012; Divoux et al. 2013; Poumaere et al. 2014). The
yielding behaviour of a Carbopol® gel is illustrated here in Fig. 3b and in panel (c)
of Fig. 4. As compared to the mayonnaise and the mustard, no local maximum was
observed in the dependence of the hysteresis area on the characteristic forcing time
but a negative power law scaling which indicates that in the limit of very slow forcing
(large t0) the Carbopol® gels behave as non-thixotropic yield stress fluids.

2 Phenomenological Modelling of the Solid–Fluid
Transition in an Elasto-Viscoplastic Material

As argued in the previous section, the simple Herschel–Bulkley picture cannot accu-
rately describe the solid–fluid transition even in the case when the time-dependent
effect (thixotropy) are not very pronounced, e.g. for the case of a Carbopol® gel.
This prompted the development of more sophisticated phenomenological models. It
is widely believed that the macroscopic yield stress behaviour originates from the
presence of a microstructure which can sustain a finite local stress prior to breaking
apart and allowing for a macroscopic flow to set in. To illustrate this, we present in
Fig. 6 micrographs (acquired in a quiescent state) of several materials that exhibit
a yield stress behaviour. In spite of clear differences in the chemical nature (and,
consequently, physico-chemical properties) of these materials, heterogeneous and
soft-solid-like aggregates are visible in each of the micrographs presented in Fig. 6.
A microscopic experimental study of the yielding would require monitoring in real
time both the motion of such aggregates and the dynamics of their break-up (and,
possibly, reforming) during flow. This experimental approach is difficult to imple-
ment, and we are aware of very few previous works that describe the evolution of the
microstructure during yielding (Dimitriou and McKinley 2014). Although the struc-
tural heterogeneity and the characteristic space scales of a Carbopol® gel are quite
clearly probed by diffusion experiments (Oppong et al. 2006; Oppong and de Bruyn
2007), a detailed experimental description of the Carbopol® microstructure is still
missing. This is mainly due to practical difficulties in visualising the microstructure
without altering it Piau (2007). We present in the following a minimalistic model
that uses no explicit microstructural assumption but is yet able to describe both shear
and oscillation rheological experiments. As previously suggested by several authors
(Möller et al. 2006; Dullaert and Mewis 2006), the fluidisation process of a physi-
cal gel sample under shear can be interpreted in terms of a “dissociation” reaction,
S � S + F which can be modelled by the following kinetic equation:

dā(t)

dt
= Rd [ā(t), t, �] + Rr [ā(t), t, �] + δ, (2)

where S, F denote the solid and fluid phases, respectively, ā(t) = [S] is the concen-
tration of the solid phase, � = σ

σy
is the non-dimensional forcing parameter, Rd is
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Fig. 6 Micrographs of several yield stress materials: a commercial shaving gel (Gillette Series)
b mayonnaise (Carrefour, France) c 5% bentonite in water d suspension of Chlorella Vulgaris
unicellular microalga (reproduced from Souliès et al. 2013)

the rate of destruction of solid units, Rr is the rate of fluid recombination of fluid
elements into a gelled structure and δ is a small thermal noise term.

The exact form of the terms Rr and Rd is usually chosen on an intuitive basis: the
destruction of solid structural units increases monotonically with increasing applied
forcing, whereas the recombination probability may be even constant or monotoni-
cally decreasing with increasing forcing.

One of the simplest choices of a microstructural equation was introduced by
Coussot and coworkers (Coussot et al. 2002a).

It considers an evolution equation for a microstructural parameter λ in the fol-
lowing form:

dā

dt
= 1

τ
− αγ̇ā, (3)

where τ is a characteristic timescale of the aggregation of microstructural units and
α is a positive constant related to role of the external shear in destroying the solid
structural units. Furthermore, the model considers a viscosity function that depends
on the microstructure in the following form:
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η = η0
(
1 + ān

)
, (4)

where η0 is a constant asymptotic viscosity when the microstructure is entirely
destroyed, η0 = limā→0 η (ā).

The parameter ā can be loosely defined as the degree of flocculation for clays,
a measure of the free energy landscape for glasses or as the fraction of particles in
potential wells for colloidal suspensions (Coussot et al. 2002a). An obvious difficulty
of this microstructural approach relates to the fact that the parameter ā is not easily
accessible experimentally and, consequently, a direct comparison with rheometric
measurements remains elusive (Coussot 2007).

Due to its simplicity and formal elegance, this model is quite appealing to both
physicists and rheologists.

In a recent publication, it has been claimed that this simple microstructural model
is able to accurately fit rheological flow curves measured during a controlled stress
ramp (Dinkgreve et al. 2018)—see Fig. 7 therein. This result is highly questionable.
Even if one neglects the emergence of a hysteresis of the deformation states illustrated
in Fig. 3, far above the yield point Carbopol® gels are shear-thinning fluids. On the
other hand, in a fluid state (ā → 0) the above-mentioned model predicts a constant
viscosity η0 according to Eq. (4). This is at odds with any rheological tests performed
with Carbopol® gels we are aware of. As a cautionary note to the reader, we point
out that in spite of their appeal, phenomenological models that are too simple may
be deceptive when compared to experimental results.

We present in the following a minimalistic phenomenological model able to
describe the main features of the solid–fluid transition of a Carbopol® gel subjected
to stress (Putz and Burghelea 2009; Moyers-Gonzalez et al. 2011b).

We make the following assumptions concerning the terms Rr and Rd involved in
the microstructural equation Eq. (2):

1. Rd(ā(t), t, γ̇) is proportional to the relative speed of neighbouring solid units and
the existing amount of solid, i.e. Rd(ā(t), t, γ̇) = −g(�)ā(t) and g(�) = K1|�|
is a linear amplitude of shear-induced destruction.

2. Unlike in solutions of micelles or suspensions, where the external shear may
induce aggregation (Goveas and Olmsted 2001; Heymann and Aksel 2007), in
the case of a physical gel the rate of fluid recombination decreases with the
relative speed of neighbouring fluid elements being practically zero in a fast
enough flow. Therefore, we consider Rr (ā(t), t, �) = f (�)ā(t)(1 − ā(t)), where
f (�) = Kr

[
1 − tanh

(
�−1
w

)]
is a smooth decaying function of the applied forcing.

Here, we have considered that recombination of the gel network takes place via
binding of single polymer molecules to already existing solid blobs. Although we
are not aware of any theoretical prediction in this sense, different recombination
schemes (S + S→ S, L + L→ S, S + S + L→ S, etc.) are in principle possible
and we note here that they actually lead to a qualitatively similar behaviour of the
phase parameter ā(t).

With the assumptions above, the kinetic Eq. 2 may be written as
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dā

dt
= −Kd�ā + Kr

[
1 − tanh

(
� − 1

w

)]
ā(1 − ā) + δ. (5)

We would like to point out that a constant recombination term as previously employed
by several authors (Möller et al. 2006; Roussel et al. 2004) seems to us somewhat
unphysical in this context. Precisely, if one solves the phase equation (Eq. 5) with a
constant recombination term and a forcing parameter linearly increasing with time,
� ∝ t , one obtains a non-monotone dependence ā = ā(t) which we consider to be
unrealistic for a Carbopol® gel as it will further imply a non-monotone stress rate of
strain dependence.

The phase equation admits two steady-state solutions:

āSS1 =
{

1 − g
f , g < f

0 otherwise
, stable (6)

and

āSS2 =
{

1 − g
f , g ≥ f

0 otherwise
, unstable. (7)

It can be easily noted that the first steady state āSS1 is stable, whereas āSS2 is unstable
and their separation is insured by the small parameter δ.

As a constitutive equation, we use a thixoelastic Maxwell (TEM)-type model
(Quemada 1998a, b, 1999):

η (γ̇)

G
ā
dσ

dt
+ σ = η (γ̇) γ̇, (8)

where the viscosity is given by a regularised Herschel–Bulkley model, η =
K (ε + |γ̇|)N−1 + σy

ε+|γ̇| . Here, G is the static elastic modulus, K is the consistency,
N is the power law index and ε is the regularisation parameter (typically of order
of 10−12). A detailed discussion of several regularisation techniques is presented by
Frigaard and Nouar (2005).

The choice of this constitutive equation is motivated by the presence of elastic
effects in the intermediate deformation regime (see the cusp in decreasing stress
branch in Figs. 3b and 4c, and the corresponding discussion). It is easy to note that
in the limit ā → 1, Eq. (8) reduces to Hooke’s law, G = σγ, and in the limit ā → 0
it reduces to a regularised Herschel–Bulkley model.

A nonlinear fit of the controlled stress ramp presented in Fig. 3b is presented
in Fig. 7a (the full line). Quite remarkably, without any other adjustment of the fit
parameters, the model is able to fit controlled stress oscillatory tests performed with
the same material (Fig. 7b) and the corresponding Lissajoux figure (Fig. 7c).

A central conclusion of this part is that the usage of an evolution equation that
describes a smooth change of a microstructural parameter ā coupled to a constitutive
equation that contains information on both the viscous and the elastic behaviours
suffices to describe rheological measurements.
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(a) (b)

(c)

Fig. 7 a Rheological flow curve measured via the controlled stress ramp illustrated in Fig. 3a for
a 0.1% (wt) solution of Carbopol 940. The full/empty symbols refer to the increasing/decreasing
branches of the stress ramp schematically illustrated in Fig. 3a. b. Normalised strain measured
during a controlled stress oscillatory sweep. c Lissajoux figure corresponding to the controlled
stress oscillatory sweep. The full line in each panel is the prediction of the model

Though able to model sufficiently complex rheological data (ranging from con-
trolled stress/strain unsteady flow ramps, creep tests and oscillatory tests in a wide
range of frequencies and amplitudes), the phenomenological model has a number of
limitations:

1. As the functional dependence of the microstructural parameter Eq. (5) is generally
chosen on an intuitive basis rather derived from first principles, the model by Putz
and Burghelea (2009) can teach little about the microscopic-scale physics of the
yielding process.

2. The model involves a rather large number of parameters some of which are not
directly and easily measurable and can be obtained only by fitting the experimental
data, e.g. Kr , Kd , w.

3. The model is not inherently validated from a thermodynamical standpoint as
the choice of Rd , Rr is not made based on first principles. The second law of
thermodynamics is not necessarily satisfied and such a validation is not always
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straightforward as it requires the derivation of a thermodynamic potential (Picard
et al. 2002; Bautista et al. 2009; Hong et al. 2008).

To circumvent these limitations, we present in the next section a different and
more fundamental approach for the yielding of a soft material subjected to a varying
external stress based on principles of Statistical Physics and Critical Phenomena.

3 Microscopic Modelling for the Yielding of a Physical Gel
as a Critical Phenomenon

For a detailed account of these theoretical developments, the reader is referred to two
recent publications (Sainudiin et al. 2015b; Burghelea et al. 2017).

We propose in the following a microscopic model for the yielding or gelation,
corresponding to a approaching 0 or 1, respectively, of a physical gel using an essen-
tially bi-parametric family of a correlated site percolation that is inspired by the two-
dimensional Ising model for the +1 or −1 magnetization of a ferromagnet (Ising
1925; Stanley 1987). Our model builds on the analogy between the local agglomer-
ative interactions in terms of assembly/disassembly of neighbouring gel particles in
a microscopic gel network (see Slomkowski et al. 2011, (2.5, 2.6, 5.9, 5.9.1, 5.9.1.1,
8.1.4) and Jones (2009) for standardised nomenclature subjected to an external stress
and the local ferromagnetic interactions in terms of spin up (+1)/spin down (−1)
of neighbouring particles in a microscopic ferromagnetic network subjected to an
external magnetic field).

By the analogy with the Ising model for the ferromagnetism, we are placing the
problem of yielding of a soft solid under stress in the more general context of “Phase
Transitions and Critical Phenomena” and fully benefit from a number of theoretical
tools developed during the past five decades for gaining physical insights into the
solid–fluid transition.

This thermodynamically consistent microscopic model with only two parameters
that reflect the chemical nature of the gel and only two energy-determining con-
figuration statistics the number of gelled particles and the number of gelled pairs
of neighbouring particles is able to capture the macroscopic behaviours of yielding
and gelation for any stress regime given as a function of time, including hysteretic
effects, if any. This approach is fundamentally probabilistic and formalises Gibbs
fields as time-homogeneous and time-inhomogeneous Markov chains over the state
space of all microscopic configurations. It not only provides simulation algorithms
to gain insights but also allows one to derive an approximating nonlinear ordinary
differential equation for a(t), the expected volume fraction of the unyielded material
at a rescaled time t , which we show to be a robust qualitative determinant of the
probabilistic dynamics of the system.
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3.1 A Microscopic Gibbs Field Model for the Macroscopic
Yielding of a Yield Stress Material

Let us model an idealised yield stress material or viscoplastic fluid as a network of
microscopic constituents in an appropriate solvent that are capable of assembling
by “forming bonds” or disassembling by “breaking bonds” with their neighbours.
Without making any assumption about either the nature of the bonds or the physical
nature of the interactions among neighbouring microscopic constituents, we investi-
gate the model when the network of particles is the regular graph given by the toroidal
two-dimensional square lattice as illustrated in Fig. 8 and the bonds/interactions are
accounted for in a generic manner as detailed in the following.

Let the set of nodes or sites be

Sn = {1, 2, . . . , n}2 = {(1, 1), (1, 2), . . . , . . . , (n, n)} .

Let Ns = {r : ‖(r − s)n‖ = 1} denote the set of four nearest neighbouring sites of a
given site s ∈ Sn , where (r − s)n denotes coordinate-wise subtraction modulo n and
‖·‖ denotes the Euclidean distance. Then the set of edges between pairs of sites is

En =
⋃

s∈Sn
{〈s, r〉 : r ∈ Ns} ⊂ S

2
n .

Let |A| denote the size of the set A. Note that |Sn| = n2 and |En| = 2n2. Each site
s ∈ Sn can be thought to represent a microscopic clump of particles in a particular
region of the material and each edge 〈s, r〉 ∈ En represents a potential connection
between neighbouring clumps at sites s and r . At the finest resolution of the model,
each site can be a monomer molecule in the material and each edge can represent
a potential bond between neighbouring molecules. Let xs ∈ � = {0, 1} denote the

(a)

(b)

Fig. 8 a The regular graph represented for n = 5. The vertices labelled with 1/0 represent micro-gel
particles in a unyielded/yielded state, respectively. The labels 1/0 of the edges indicate whether two
sites are connected/unconnected. b 2D toroidal lattice suggesting the periodic boundary conditions
used through the simulations
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phase at site s. Phase 0 corresponds to being yielded or un-gelled and phase 1
corresponds to being unyielded or gelled. The phase at a site directly affects its
connectability with its neighbouring sites. We assume that only two gelled sites can
be connected with one another. Thus, the connectivity between sites s and r is given
by

y〈s,r〉 =
{

1 if r ∈ Ns and xr xs = 1

0 otherwise.
(9)

In other words, we say that sites s and r are connected, i.e. y〈s,r〉 = 1, if and only
if xs = xr = 1 and s and r are neighbours. Otherwise, we say s and r are uncon-
nected, i.e. y〈s,r〉 = 0. These definitions are schematically illustrated in Fig. 8a. Since
the phase of sites determines their connectedness, we refer to sites in phase 1 as
connectable and those in phase 0 as un-connectable. Thus, every site configuration
x ∈ Xn := �Sn has an associated edge configuration y ∈ Yn := �En which char-
acterises the connectivity information between all pairs of neighbouring sites. We
use X to denote a random site configuration and Y = Y (X) to denote the associ-
ated random edge configuration. Two extreme site configurations are 1 := {xs = 1 :
s ∈ Sn} ∈ Xn , with all sites gelled, and 0 := {xs = 0 : s ∈ Sn} ∈ Xn , with all sites
un-gelled. Their corresponding extreme edge configurations are 1 := {y〈s,r〉 = 1 :
〈s, r〉 ∈ En} ∈ Yn , with all neighbouring pairs of sites connected, thus making the
material to be in a fully solid state, and 0 := {y〈s,r〉 = 0 : 〈s, r〉 ∈ En} ∈ Yn , with all
neighbouring pairs of sites unconnected, thus making the material to be in a fully
fluid state, respectively. Note that Y (x) : Xn → Yn is neither injective nor surjective.

Let E(x) be the energy of a site configuration x , k be the Boltzmann constant
and T be the temperature. Then the probability distribution of interest on the site
configuration space Xn is

π(x) = 1

ZkT
exp

(
− 1

kT
E(x)

)
,

where ZkT is the normalising constant or partition function

ZkT =
∑

x∈Xn

exp

(
− 1

kT
E(x)

)
.

By X ∼ π, we mean that the random site configuration X has probability distri-
bution π, i.e.

Pr(X = x) =
{

π(x) if x ∈ Xn

0 otherwise .

Next we show that π is a Gibbs distribution by expressing the energy in terms of a
potential function describing local interactions. Due to {Ns : s ∈ Sn}, the neighbour-
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hood system, we have only singleton and doubleton cliques. Therefore, the Gibbs
potentials over the two types of cliques are

V{s}(x) = (σ − α)xs =
{

0 if xs = 0

σ − α if xs = 1 ,

and

V〈s,r〉(x) = −βxsxr =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if (xs, xr ) = (0, 0)

0 if (xs, xr ) = (1, 0)

0 if (xs, xr ) = (0, 1)

−β if (xs, xr ) = (1, 1) ,

where {s} is the singleton clique, 〈s, r〉 is the doubleton clique with r ∈ Ns , σ ≥ 0
is the external stress applied, α ≥ 0 is the site-specific threshold, and β ∈ (−∞,∞)

is the interaction constant between neighbouring sites. The parameters α and β can
be thought to reflect fundamental rheological properties of the material under study.

The energy function corresponding to this potential is therefore

E(x) =
∑

C

VC(x)

=
∑

s∈Sn
V{s}(x) +

∑

〈s,r〉∈En

V〈s,r〉(x)

=
⎛

⎝−β
∑

〈s,r〉∈En

xs xr + (σ − α)
∑

s∈Sn
xs

⎞

⎠ .

Since E(x), the energy of a configuration x , only depends on β and the difference
(σ − α), we can define this difference as the parameter σ̃ := σ − α ≥ −α in order
to reparametrize

E(x) =
⎛

⎝−β
∑

〈s,r〉∈En

xs xr + σ̃
∑

s∈Sn
xs

⎞

⎠ ,

through (σ̃,β) ∈ [−α,∞) × (−∞,∞).
Let the expectation of a function g : Xn → R, with respect to π, be

Eπ(g) :=
∑

x∈Xn

g(x)π(x)

then the internal energy of the system is

U = Eπ (E) =
∑

x∈Xn

E(x)π(x) ,
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and the free energy of the system is

F = −kT ln(ZkT ) .

Our model satisfies the standard thermodynamic equality:

− T 2 ∂

∂T

(F
T

)
= −T 2 ∂

∂T

(−kT ln(ZkT )

T

)
= kT 2 ∂

∂T
(ln(ZkT ))

= kT 2 1

ZkT

∂

∂T
(ZkT ) = kT 2 1

ZkT

∂

∂T

⎛

⎝
∑

x∈Xn

exp

(
− 1

kT
E(x)

)⎞

⎠

= kT 2 1

ZkT

⎛

⎝
∑

x∈Xn

exp

(
− 1

kT
E(x)

) E(x)

kT 2

⎞

⎠ =
∑

x∈Xn

E(x)π(x)

= U .

We sometimes emphasise the dependence of the energy and the corresponding
distribution upon α, β and σ by subscripting as follows:

E(x) = Eα,β,σ(x) and π(x) = πα,β,σ(x) .

Let the number of neighbours of site s that are in phase 1 be xNs :=
∑

r∈Ns
xr .

Then, Es(x), the local energy at site s of configuration x , is obtained by summing
the Gibbs potential VC(x) over all C � s, i.e. over cliques C containing site s, as
follows:

Es(x) =
∑

C�s
VC(x) = V{s}(x) +

∑

r∈Ns

V〈s,r〉(x)

= (σ − α)xs − β
∑

r∈Ns

xs xr

= xs

⎛

⎝(σ − α) − β
∑

r∈Ns

xr

⎞

⎠

= xs
(
(σ − α) − βxNs

)
.

Let (λ, x(S \ s)) denote the configuration that is in phase λ at s and identical to x
everywhere else. Then the local specification is

πs(x) = exp(− 1
kT Es(x))∑

λ∈� exp(− 1
kT Es(λ, x(S \ s)))

=
{

θ
1+θ

if xs = 0
1

1+θ
if xs = 1

, (10)
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where

θ = θ(s,α,β,σ) = exp

(
− 1

kT

(
βxNs − (σ − α)

))
. (11)

We focus on the effect of varying external stress σ at a constant ambient temperature,
and therefore without loss of generality, one may set kT = 1 and work with π(x) =
Z−1

1 exp(−E(x)).
We can think of this model as an Xn-valued Markov chain {X (m)}∞m=0, where

X (m) = (Xs(m), s ∈ Sn) and Xs(m) ∈ �, in discrete timem ∈ Z+ := {0, 1, 2, . . .}.
Let the initial condition, X (0) = x(0), be given by the initial distribution δx(0) over
Xn that is entirely concentrated at state x(0). Then the conditional probability of the
Markov chain at time step m, given that it starts at time 0 in state x(0), is

Pr { X (m) | X (0) = x(0) } = δx(0)

(
Pα,β,σ

)m
, (12)

where the |Xn| × |Xn| transition probability matrix Pα,β,σ over any pair of configu-
rations (x, x ′) ∈ Xn × Xn is

Pα,β,σ(x, x ′) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
n2

1
1+θ

if ||x − x ′|| = 1, 0 = xs �= x ′s = 1
1
n2

θ
1+θ

if ||x − x ′|| = 1, 1 = xs �= x ′s = 0
1
n2

1
1+θ

if ||x − x ′|| = 0, 1 = xs = x ′s = 1
1
n2

θ
1+θ

if ||x − x ′|| = 0, 0 = xs = x ′s = 0

0 otherwise .

(13)

θ = θ(s,α,β,σ) is indeed a function of the site s and the three parameters: α, β
and σ. By ||x − x ′|| = 1, we mean that the configurations x and x ′ differ at exactly
site s, i.e. xs �= x ′s . Similarly, by ||x − x ′|| = 0 we mean that the two configurations
are identical, i.e. x = x ′ or xs = x ′s at every site s ∈ Sn . We can think of our Markov
chain evolving according to the following probabilistic rules based on Eqs. (10) and
(11):

• Given the current configuration x , we first choose one of then2 sites in Sn uniformly
at random with probability n−2;

• Denote this chosen site by s and let the number of bondable neighbours of s be
i = Ns(x) ∈ {0, 1, 2, 3, 4}; and

• Finally, change the phase at s to 1, i.e. set xs = 1 with probability

pi := (1 + θ)−1 = (1 + θ(s,α,β,σ))−1 = 1/(1 + e(σ−α−iβ)) (14)

and set xs = 0 with probability 1 − pi .

We emphasise the dependence of pi on the parameters α, β and σ by pi (α,β,σ).
This is illustrated in Fig. 9 for different parameter values. Just as in the Ising model,
our model can be classified into three behavioural regimes depending on the sign of
the interaction parameter β. When the interaction parameter β > 0 the model is said
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Fig. 9 Plots of pi , the probability that site s with i = xNs neighbours in phase 1, is also in phase
1, as a function of external stress σ for different values of α, β. From the plots it is clear that α is a
location parameter while β controls the scale of the relative difference between pi ’s

to have “agglomerative interactions” analogous to the ferromagnetic interactions of
the Ising model whereby the probability of a site being in phase 1 increases with the
number of its neighbouring sites also being in phase 1, i.e. if β > 0, then 0 < p0 <

p1 < p2 < p3 < p4 < 1. When β = 0, the model is said to be “non-interactive”
since the probability of a site being in phase 1 is independent of the phase of the
neighbouring sites and identically p at each site, i.e. 0 < p = p0 = p1 = p2 = p3 =
p4 = 1/

(
1 + eσ−α

)
< 1. When β < 0, our model captures the “anti-agglomerative”

interactions that are analogous to the “anti-ferromagnetic” interactions of the Ising
model since the probability of a site being in phase 1 decreases with the number of
its neighbouring sites also being in phase 1, i.e. if β < 0 then 1 > p0 > p1 > p2 >

p3 > p4 > 0.

Note that our transition probabilities allow self-transitions, i.e. there is a positive
probability that we will go from a configuration x to itself. Although we think of
{X (m)}∞m=0 on the state space of all configurations Xn as a discrete-time Markov
chain, with transition probability matrix Pα,β,σ in Eq. (13), we can easily add expo-
nentially distributed holding times with rate 1 at each configuration and use Eq. (13)
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to choose a possibly new configuration and thereby obtain a continuous-time Markov
chain {X (t)}t≥0 in the usual way from {X (m)}∞m=0. This Markov chain over Xn is
nothing but our Gibbs field (or Markov random field) model (Brémaud 1999 see,
e.g. Chap. 7).

If the external stress varies as a function of discrete-time blocks of length
h = �hn2� and given by the function σ(m) for each time block m = 0, 1, . . . , M ,
then we have the time-inhomogeneous Markov chain {X (k)}Mh

k=0 with the transition
probability matrix at time k given by

P(k) = Pα,β,σ(�k/h�) , (15)

and the k-step configuration probability, with k < Mh under initial distribution δx(0),
given by

Pr
{
X (k) = x(k) | X (0) = x(0)

}

= δx(0)

⎛

⎝
�k/h�∏

m=0

(
Pα,β,σ(m)

)h
⎞

⎠ (
Pα,β,σ(�k/h�+1)

)(k)h . (16)

As before, (k)h is k modulo h.
We can use the local specification to obtain the Gibbs sampler, a Monte Carlo

Markov chain (MCMC), to simulate from {X (m)}. Let h denote the average number
of hits per site. Thus, �h |Sn|� = �hn2� gives the number of hits on all n2 sites in
Sn chosen uniformly at random. Given h and the parameters determining the local
specification, i.e. α, β and σ, GibbsSample(x(0),α,β,σ, h) produces a sample
path of configurations from the Markov chain {X (k)}mk=0 given by Eqs. (12) and (13)
and initialized at x(0) as it undergoes m = �hn2� transitions in Xn .

If we are interested in simulating configurations with stationary distribution πα,β,σ ,
then for large m = �hn2�, the m-step probabilities, Pr { X (m) | X (0) = x(0) }, by
construction will approximate samples from πα,β,σ Brémaud (1999, see, e.g. Chap. 7,
Sect. 6), i.e.

lim
m→∞ dTV

(
Pr { X (m) | X (0) = x(0) } ,πα,β,σ

) = 0 .

Here, dTV (�,π) = 2−1 ∑
x∈Xn

|�(x)− π(x)| is the total variation distance
between two distributions � and π over Xn .

Two informative singleton clique statistics of a configuration x(m) at time m are
the number and fraction of gelled sites given, respectively, by

a(x) :=
∑

s∈Sn
xs and a(x) := |Sn|−1a(x) = a(x)

n2
.
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Similarly, two informative doubleton clique statistics of a configuration x are the
number and fraction of connected pairs of neighbouring sites given, respectively, by

b(x) :=
∑

〈s,t〉∈En

y〈s,r〉 =
∑

〈s,r〉∈En

xr xs and

b(x) := |En|−1b(x) = b(x)

2n2
.

When the configuration is a function of time m and given by x(m), then the
corresponding configuration statistics are also functions of time and are given
by a(m) = a(x(m)), a(m) = a(x(m)), b(m) = b(x(m)) and b(m) = b(x(m)). The
energy of a configuration x can be succinctly expressed in terms of a(x) and b(x) as

E(x) = −βb(x) + (σ − α)a(x) = −β2n2b(x) + (σ − α)n2a(x) ,

and therefore

E(x) ∝ −2βb(x) + (σ − α)a(x) = −2βb(x) + σ̃a(x) , (17)

where β ∈ (−∞,∞) and σ̃ = σ − α ≥ −α for a given α ≥ 0. Since the energy of a
configuration x , given n, only depends on its a(x) and b(x), we can easily visualise
any sample path ( x(0), . . . , x(m) ) ∈ X

m+1
n in configuration space as the following

sequence of (m + 1) ordered pairs in the unit square:

( (
a(x(0)), b(x(0))

)
, . . . ,

(
a(x(m)), b(x(m))

) ) ∈ ([0, 1]2)m+1
.

Finally, we reserve upper case letters for random variables. Thus, A(X), A(X),
B(X) and B(X) are the statistics of the random configuration X . And the notation
naturally extends to A(m), A(m), B(m) and B(m) when X (m) is a random config-
uration at time m.

The macroscopic behaviour of a configuration x can be described by other statis-
tics of x . We can obtain the connectivity information in the site configuration x
through y, its edge configuration, according to (9). By representing the connectivity
in y and/or x as the adjacency matrix of the graph whose vertices are Sn , we can
obtain various alternative graph statistics:

1. Cx =
{
C (1)

x ,C (2)
x , . . . ,C

(ny)
x

}
, a partition of Sn that gives the set of connected

components of x ;
2. C (∗)

x = argmaxC (i)
x ∈Cx

|C (i)
x |, the first largest connected component;

3. |C (∗)
x |/n2, the size of the first largest connected component per site; and

4. F (∗)
x , the fraction of the rows of Sn that are permeated (from top to bottom)

by C (∗)
x .
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3.1.1 Equilibrium Behaviour Under Constant Stress

We are interested in the effect of applying constant external stress σ for a long period
of time to an yield stress material with rheological properties specified by parameters
α and β.

The subplot (a) of Fig. 10 approximates the time asymptotic behaviour of a when
the Monte Carlo simulation of Gibbs field was initialized from 1 ( h = 100 hits per
site were performed) and subplot (b) presents the same information when the Gibbs
field was initialized from 0. For both simulations, we have used n = 100 and (σ̃,β)

taken from a grid of linearly spaced points in [−10, 15] × [0, 4]. In both panels (a–b)
of Fig. 10, one can note that if the interaction parameter is smaller than a critical value
of the interaction parameter β < βc (βc ≈ 1.5), both the solid–fluid and fluid–solid
transitions are smooth. When the interaction parameter β is gradually increased past
this critical value both transitions become increasingly sharp.

To assess the reversibility of the deformation states in the time asymptotic limit,
we focus at the difference between the subplots (a) and (b) which is presented in
Fig. 10c. In the range β < βc, the steady-state transition from solid to fluid evolves
through the same intermediate states as the steady-state transition from fluid to solid
and no hysteresis effect can be observed. When the interaction parameter β exceeds
the critical value βc, a triangular hysteresis region may be observed in Fig. 10c.

This is an interesting result as it tells us that in the presence of strong interactions a
“genuine” hysteresis of the deformation states would be observed even in conditions
of a steady-state forcing. At a given applied stress σ̃, the size of the hysteresis region
increases when the strength of the interactions is increased.

Fig. 10 The value of a at rescaled time t = 100 from Monte Carlo simulations of the Gibbs field for
fixed parameters (σ̃,β) when initialized from 1 (panel (a)) and from 0 (panel (b)). The difference
in a between the subplots (a) and (b) is shown in panel (c). The horizontal dashed lines indicate the
critical value of the interacting parameter βc (see the discussion in the text)
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3.1.2 Configurations at the Solid–Fluid Interface

Let us now focus on the nature of the configuration x for a given β at the solid–
fluid interface, i.e. when a = 1/2, as σ̃ reaches a specific value. Site configurations
at the solid–fluid interface provide the random environment for restricted diffusion
of small tracer particles near gel transition. This phenomenon is of experimental
and theoretical interest (Oppong et al. 2006; Oppong and de Bruyn 2007; Putz and
Burghelea 2009) and has been recently studied for the case of β = 0 (de Bruyn 2013).
We are interested here in gaining insights on the nature of the site configurations at
the solid–fluid interface for values of β below, above and equal to zero.

Figure 11 shows two random site configurations at the solid–fluid interface when
a � 1/2 for three different values of β. Without loss of generality, we fixed α = 8 and
focus on the properties of the material that is capable of forming a gel in the absence
of external stress. Clearly, the site configurations are dependent on the magnitude
and sign of the interaction parameter β. Recall that a, the fraction of gelled sites, and
b, the fraction of pairs of neighbouring gelled sites, are the sufficient statistic of the
configuration, i.e. the energy of the configuration only depends on its (a, b).

Three distinct cases can be distinguished. If β = 0, the non-interactive case of the
classical site percolation model studied in de Bruyn (2013), and σ̃ is chosen so that
a = 1/2, then due to the site-filling probability being independently and identically
distributed across all n2 sites b = a2 = 1/4. Two typical configurations when β =
0, n = 100 and t = 100 at the solid–fluid interface are shown by the subplots in
the second row of Fig. 11. More configurations were visually explored, and their
distinguishing site configuration feature is characterised by the independence of the
site-filling probability over sites and is apparent by the concentration of their sufficient
statistics (a, b) about (a, a2) = (1/2, 1/4) at the solid–fluid interface. This is the
only case considered by de Bruyn (2013) when obtaining the random environment
for restricted diffusion of small tracer particles near gel transition.

When β is increased from 0 to 2, we have a very different distribution over site
configurations at the solid–fluid interface as shown by two samples in the first (top)
row of Fig. 11. It is easy to understand this “patchy” pattern in site configurations with
large positive β by realising that new gelled sites can occur with a higher probability
at sites neighbouring existing gelled sites that have a larger i = xNs , number of
neighbours in phase 1, than at sites surrounded by un-gelled sites with a smaller
i = xNs . As β gets larger, the probability of forming gelled sites around existing
gelled sites is much larger than that of forming gelled sites around un-gelled sites,
and this concentrates (a, b) about (a, a) = (1/2, 1/2) at the solid–fluid interface.

Finally, when β is decreased from 0 to −2, we have a “checkered” pattern of
site configurations at the solid–fluid interface as shown by two samples in the third
(bottom) row of Fig. 11. As β gets negative, the probability of forming gelled sites
around existing gelled sites gets much smaller (see top row of Fig. 9). In the extreme
asymptotic case, as β → −∞, we obtain configurations with increasingly checkered
patters with (a, b) → (1/2, 0), the sufficient statistics of the extreme “chessboard”
configuration (such patterns occur already for β = −8 with n = 100 but are not
shown here).
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Fig. 11 Effect of β on preferred energy minimising configurations. Two sample configurations are
shown for each β ∈ {−2, 0,+2} over a toroidal square lattice of 100 × 100 sites. Sites in phase 0
and 1 are shown in black and white, respectively, at the solid–fluid interface when a � 1/2
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Thus, from theβ-dependent site configurations at the solid–fluid interface depicted
in Fig. 11, it is clear that the trajectories of tracer particles (see Fig. 1 of Putz and
Burghelea 2009 from Oppong et al. 2006) that can only diffuse through the un-gelled
(black) contiguous regions are heavily dependent on whether there is interaction
between adjacent gelled sites. This interaction is captured in our correlated site
percolation model by the interaction parameter β.

3.1.3 Behaviour Under Varying Stress

The energy of X (t), the random site configuration at time t , depends on two of its
highly correlated statistics: A(t), the random fraction of gelled sites at time t , and
B(t), the random fraction of connected sites at time t . One of our primary interests
is to study A(t) and B(t) as X (t) is under the influence of time-varying externally
applied stress σ(t). This test will be the closest equivalent of a controlled stress ramp
typically used in experiments (see Fig. 3a in Sect. 1.3).

Using Monte Carlo simulations of the time-inhomogeneous Markov chain
{X (m)}Mh

m=0 given by Eqs. (15) and (16), under an initially increasing and subse-
quently decreasing time-dependent stress σ(m) given in the bottom panel of Fig. 12,
we obtained multiple independent trajectories of A(σ), the fraction of gelled sites as
a function of the external stress σ. Five such simulated trajectories are shown in the
first four panels of Fig. 12. In order to mimic an asymptotic steady state of deforma-
tion (which is typically what a rheologist would be interested in characterising during
a rheological measurement), the holding time per stress value has been chosen large,
h = 1000 hits per site. We note that regardless the value of the interaction param-
eter β the results of the five individual simulations overlap nearly perfectly which
indicates that the grid size of the simulation is sufficiently large and the simulated
trajectories are robust.

For low values of the interaction parameter (β ∈ {0, 1}, top row of Fig. 12), the
dependence a(σ) corresponding to the decreasing branch of the stress ramp overlaps
with that corresponding to the increasing branch and no hysteresis is observed. This
indicates that in the presence of weak interactions and provided that an asymptoti-
cally steady state is reached the deformation states are fully reversible upon increas-
ing/decreasing the external forces. In this case, a smooth solid–fluid transition is
observed.

As the value of the interaction parameter is increased (β ∈ {2, 4}, middle row of
Fig. 12), a significantly different yielding behaviour is observed. First, the deforma-
tion states are no longer reproducible upon increasing/decreasing stresses and a clear
hysteresis is observed. Second, the larger the value of the interaction parameter is,
the steeper the solid–fluid transition becomes.

To conclude this part, the realisations of the time-inhomogeneous Markov chain
under time-dependent stress σ(m) corresponding to an asymptotically steady forc-
ing reveal a smooth and reversible solid–fluid transition if the interactions are either
absent or weak and a steep and irreversible transition in the presence of strong inter-
actions. This result is consistent with the result presented in Fig. 10 where we have
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Fig. 12 Results of five distinct Gibbs field simulations corresponding to an increasing/decreasing
stress ramp (illustrated in the bottom panel) with α = 8 and β ∈ {0, 1, 2, 4} indicated on the top of
each panel). The stress was increased from 0 to 25 in units of 0.01 and decreased back to 0 with a
holding time of h = 1000 (nearly asymptotic state for each value of the applied stress) as the site
configuration varied from 1 to 0 and then back to 1. The arrows indicate the increasing/decreasing
branches of the stress ramp

seen that for β > βc a genuine irreversibility of the deformation state is observed
during the steady yielding process. An experimental validation of these conclusions
has been recently presented in Souliès et al. (2013). The rheological flow curves
measured for a suspension of spherical and electrically charged non-motile microal-
gae (Chlorella Vulgaris) reveal an abrupt solid–fluid transition and exhibit a strong
hysteresis even in the limit of very slow forcing, see Fig. 11 in Souliès et al. (2013).
In the case of a Carbopol gel where the microscopic interactions are presumably
weaker than the interactions between electrically charged Chlorella cells, a much
smoother solid–fluid transition is observed and, in the asymptotic limit of steady
forcing, the hysteresis effects become negligibly small, Putz and Burghelea (2009).
This is perhaps the main reason why Carbopol gels have been considered for decades
“model”, “simple” or “ideal” yield stress fluids.
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3.1.4 Effect of Holding Time (Steadiness of the External Forcing)
on the Hysteresis

A large number of flows of yield stress fluids are unsteady in the sense that the applied
stress is maintained for a finite time t0. For the case of a rheometric configuration, we
have illustrated the unsteady response of the material in Figs. 3b and 4. An important
feature of the deformation curves presented in these figures is the irreversibility of
the deformation states upon increasing/decreasing applied stresses. The magnitude
of this effect is found to depend systematically on the degree of steadiness of the
forcing, the time t0 the applied stress is maintained constant (Fig. 5).

The question we address in the following is to what extent is the Gibbs field
model able to describe the unsteady yielding behaviour observed in macroscopic
experiments, see the discussion in Sects. 1 and 2. To answer this question, we calcu-
late trajectories a similar to those presented in Fig. 12 which are realised during an
increasing/decreasing stress ramp (bottom panel).

To place ourselves in the conditions of an unsteady forcing, we chose during the
simulations finite values of the holding time (or average number of hits per site). We
note that the average holding time per site in our simulations is the closest equivalent
we could find for the characteristic forcing time t0 imposed during macroscopic
rheological measurements (Figs. 3b and 4 and the discussion in Sect. 1). To quantify
the degree of reversibility of the deformation states, we calculate after each run the
area of the hysteresis encompassed by the increasing/decreasing branches of the
dependence a = a(σ).

The dependencies of the hysteresis area on the holding time obtained from such
simulations performed for a fixed value of the site threshold α and several values of
the interaction parameter β are presented in Fig. 13.

Fig. 13 Effect of increasing
β on the relative hysteresis
area for a for different
holding times t0 per stress
level in a stress ramp from 0
to 25 in increments of 1
(with α = 8). The dash line
is a log-normal fit and the
full lines are the fitted power
laws indicated in the inserts.
The symbols refer to the
value of the interaction
parameter β: circles
(◦)—β = 0, up triangles
(	)—β = 1.5, down
triangles (�)—β = 3,
hexagons (�)—β = 3.5
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Regardless of the strength β of the interaction, a non-monotone dependence of the
hysteresis area on the holding time is obtained. By carefully inspecting the individual
dependencies a = a(σ), we have noticed that prior to the local maximum the lattice
yields only partially (a never reaches 0) corresponding to the largest value of the
applied stress σ. Corresponding to the local maxima t�0 of the dependencies presented
in Fig. 13, the lattice yields completely (the terminal value of a is 0) and the area of
the hysteresis starts decaying with the holding time t0. This behaviour of the degree
of irreversibility of deformation states as a function of the steadiness of the forcing
is qualitatively similar to the experimental results illustrated in Fig. 5. In the absence
of interactions (β = 0), the hysteresis area follows a log-normal correlation with the
holding time (see the circles and the dashed line in Fig. 13), which once more comes
into a qualitative agreement with the experimental results. For non-zero values of β,
we could not accurately fit the data by a log-normal function. Corresponding to the
largest values of the average number of hits per site we have tested, we have found a
power law decay of the hysteresis area, the full lines in Fig. 13), which is once again
similar to the behaviour illustrated in Figs. 3b and 4 and consistent with experimental
results obtained with Carbopol gels (Putz and Burghelea 2009; Poumaere et al. 2014).

It is equally interesting to note that the stronger the interaction is (larger the param-
eter β is), the weaker the decay of the hysteresis area with the characteristic forcing
time t0 is. This indicates that in the presence of strong interactions a full reversibility
of the deformation states cannot be achieved regardless of the degree of steadiness
of the external forcing. This is indeed the case of several highly thixotropic materials
such as bentonite gels, Laponite gels where steady-state rheological measurements
cannot be truly achieved even during very slow controlled stress flow ramps. Among
the data we illustrate in Figs. 4 and 5, the mayonnaise seems to behave as such as
well.

3.2 A Nonlinear Dynamical System Approach for the
Yielding Behaviour of a Viscoplastic Material

Though able to capture most of the relevant features of the solid–fluid transition
in a thermodynamically consistent manner and making use of solely two internal
parameters, the microscopic Gibbs field model presented in the previous section is
rather difficult to implement and requires a number of skills in both statistics and
programming. As practical applications regarding the dynamics of the solid–fluid
transition in a pasty materials are concerned, one would often prefer dealing with
a continuum microstructural equation with a general form given by Eq. (2) which,
unlike the simple phenomenological model described in the second part of Sect. 2,
is derived from first principles.
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Here, based on the microscopic Gibbs field model, we derive a nonlinear first-order
differential equation to asymptotically approximate E(A(t)), the expected fraction
of sites in the solid phase, in continuous time t that is measured in units of n2 discrete
time steps as the number of sites n2 →∞, under a fixed externally applied stress σ
and fixed rheological parameters α and β.

First, consider the discrete-time Markov chain {X (m)}∞m=0 of Eqs. (12) and (13)
and recall that X (m) is the random site configuration of the chain at discrete time
m and A(m) = ∑

s Xs(m) is the number of sites that are in phase 1. We will derive
the approximation first for the case when β = 0 in Eq. (13) and then for the general
setting of β �= 0.

3.2.1 Non-interactive Case with β = 0

If β = 0 then the probability of the phase in site s at the next time step is independent
of the current configuration, i.e.

Pr
{
Xs(m + 1) = xs(m + 1) | X (m) = x(m)

}

= Pr
{
Xs(m + 1) = xs(m + 1)

}

=

⎧
⎪⎨

⎪⎩

p = (
1 + eσ−α

)−1
if xs(m + 1) = 1

1 − p = 1 − (
1 + eσ−α

)−1
if xs(m + 1) = 0

0 if xs(m + 1) /∈ {0, 1} .

Therefore, the probability that the total number of sites in phase 1 increases by 1 in
one time step is obtained by adding the probability of a transition from phase 0 to
phase 1 over every uniformly chosen site s as follows:

Pr {A(m + 1) = a(m) + 1 | A(m) = a(m)}
=

∑

s∈Sn
Pr {Xs(m + 1) = 1, Xs(m) = 0, S = s | A(m) = a(m)}

=
∑

s∈Sn
Pr {Xs(m + 1) = 1 | Xs(m) = 0, S = s, A(m) = a(m)}︸ ︷︷ ︸

p

× Pr {Xs(m) = 0 | S = s, A(m) = a(m)}︸ ︷︷ ︸
(n2−a(m))/n2

× Pr {S = s | A(m) = a(m)}︸ ︷︷ ︸
1/n2

=
∑

s∈Sn
p

(
1 − a(m)

n2

)
1

n2
= p (1 − a(m)) .
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Dividing both sides of the equality that defines the above event by n2, we get

Pr
{
A(m + 1)/n2 = a(m)/n2 + 1/n2 | A(m)/n2 = a(m)/n2

}

= Pr
{
A(m + 1) = a(m) + 1/n2 | A(m) = a(m)

} = p (1 − a(m)) .

By an analogous argument, we can obtain the probabilities for the remaining two
possibilities

Pr
{
A(m + 1) = a(m)− 1/n2 | A(m) = a(m)

} = (1 − p)a(m) ,

Pr
{
A(m + 1) = a(m) | A(m) = a(m)

} = pa(m) + (1 − p)(1 − a(m)) .

Now we can define a continuous-time Markov chain {A(t)}t≥0 on the unit interval
[0, 1] by a rescaling of the discrete-time Markov chain {A(m)}∞m=0 and letting the
number of sites n2 →∞. These two Markov chains are notationally distinguished
only by their time indices. The rescaled time t is m in units of n2, i.e. m = �tn2� and
m + 1 = �(t + 1/n2)n2�. Then by taking �t = O(1/n2) and letting

�A = A(t + �t ) − a(t) = A(�(t +�t )n
2�) − a(�tn2�) ,

we get

Pr

{
�A

�t
= �a

�t

∣∣∣∣ A(t) = a(t)

}

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p (1 − a(t))+ O(�t ) if �a
�t

= 1

(1 − p)a(t) + O(�t ) if �a
�t

= −1

pa(t)+ (1 − p)(1 − a(t))+ O(�t ) if �a
�t

= 0

O(�t ) otherwise .

(18)

Finally, by considering the instantaneous rate of change of the expected fraction of
sites in phase 1

d

dt
a(t) := lim

�t→0
E

(
A(t +�t ) − A(t)

�t
| A(t)

)

,

we get the limiting differential equation approximation as

n2 →∞, �t → 0, �a → 0 ,

such that
Pr{�a/�t ∈ {0,−1,+1} } → 1
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based on Eq. (18) as follows:

ȧ = d

dt
a(t) = p(1 − a(t))− (1 − p)a(t) = p − a(t) ,

or simply by
ȧ = p − a = (1 + eσ−α)−1 − a . (19)

The simple relationship above is mathematically very similar to the so-called
“lambda-model” introduced by Coussot et al. (2002a, b) with the remark that we
consider the stress σ as a forcing parameter rather than the rate of deformation.
Given the initial condition a(0) = a0, the analytic solution is

a(t) = p + (a0 − p)e−t = (1 + eσ−α)−1 + (a0 − (1 + eσ−α)−1)e−t

with only one asymptotically stable fixed point

a∗ = p = (1 + eσ−α)−1 . (20)

Thus, a(t) in the above differential equation is the expected fraction of sites in phase
1 at time t in the limit of an infinite toroidal square lattice with |Sn| = n2 →∞ and
a realisation of the continuous-time Markov chain {A(t)}t≥0 is a(t). Since β = 0,
the probability of a site being in a given phase is independent of the phases of
its neighbouring sites. Thus, we can obtain b(t), the expected fraction of bonds,
by simply multiplying a(t), the probability of finding a randomly chosen site in
phase 1, by itself, i.e.

b(t) = a(t)2 and b
∗ = (

a∗
)2

. (21)

3.2.2 Interactive Case with β �= 0

If β �= 0, then the probability of site s being in phase 1 at time m + 1 depends
on the configuration of the neighbouring sites of s at time m through XNs (m) =∑

r∈Ns
Xr (m), the number of neighbouring sites of s in phase 1 at time m.

Pr
{
Xs(m+1) = xs(m + 1) | X (m) = x(m)

}

= Pr
{
Xs(m + 1) = xs(m + 1) | XNs (m) = i

}

=

⎧
⎪⎨

⎪⎩

pi =
(
1 + eσ−α−iβ

)−1
if xs(m + 1) = 1

1 − pi = 1 − (
1 + eσ−α−iβ

)−1
if xs(m + 1) = 0

0 if xs(m + 1) /∈ {0, 1} .
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Thus the probability that the phase changes from 0 to 1 in one time step at site s
given that a(m) is the total number of sites in phase 1 at time m is

Pr
{
Xs(m + 1) = 1, Xs(m) = 0 | S = s, A(m) = a(m)

}

=
4∑

i=0

Pr
{
Xs(m + 1) = 1, XNs (m) = i, Xs(m) = 0

| S = s, A(m) = a(m)}

=
4∑

i=0

Pr
{
Xs(m + 1) = 1 | XNs (m) = i,

Xs(m) = 0, S = s, A(m) = a(m)}︸ ︷︷ ︸
pi

×Pr
{
XNs (m) = i | Xs(m) = 0, S = s, A(m) = a(m)

}

× Pr {Xs(m) = 0 | S = s, A(m) = a(m)}︸ ︷︷ ︸
(n2−a(m))/n2=1−a(m)

.

Since there are 4!/((4 − i)!i !) distinct neighbourhood configurations with i of the
four nearest neighbours of site s in phase 1, one can make the following approximation
for Pr

{
XNs (m) = i | Xs(m) = 0, S = s, A(m) = a(m)

}
in the above expression and

obtain

Pr
{
Xs(m + 1) = 1, Xs(m) = 0 | S = s, A(m) = a(m)

}

=
4∑

i=0

pi (1 − a(m))

×Pr
{
XNs (m) = i | Xs(m) = 0, S = s, A(m) = a(m)

}

�

4∑

i=0

pi
(
1−a(m)

) (
4
i

)
(a(m))i (1 − a(m))4−i .

Therefore, the probability that the total number of sites in phase 1 increases by 1 in
one time step is obtained by adding the probability of a transition from phase 0 to
phase 1 over every uniformly chosen site s as follows:
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Pr
{
A(m + 1) = a(m)+ 1 |A(m) = a(m)

}

=
∑

s∈Sn
Pr

{
Xs(m + 1) = 1, Xs(m) = 0, S = s | A(m) = a(m)

}

=
∑

s∈Sn
Pr

{
Xs(m + 1) = 1, Xs(m) = 0 | S = s, A(m) = a(m)

}

×Pr {S = s | A(m) = a(m)}︸ ︷︷ ︸
1/n2

�

∑

s∈Sn

( 4∑

i=0

pi
(
1 − a(m)

) (
4
i

)
(a(m))i (1 − a(m))4−i

)
1

n2

= (
1 − a(m)

) 4∑

i=0

pi

(
4
i

)
(a(m))i (1 − a(m))4−i .

Dividing both sides of the equality that defines the above event by n2, we get

Pr
{
A(m + 1) = a(m)+ 1/n2 | A(m) = a(m)

}

� (1 − a(m))

4∑

i=0

pi

(
4
i

)
(a(m))i (1 − a(m))4−i .

By an analogous argument, we can obtain the probability that A(m + 1) decreases
by 1/n2 as

Pr
{
A(m + 1) = a(m)− 1/n2 | A(m) = a(m)

}

� a(m)

4∑

i=0

(1 − pi )

(
4
i

)
(a(m))i (1 − a(m))4−i .

Using the same limiting approximation in the previous section, we can obtain the
following differential equation approximation for a = a(t) one obtains:

ȧ = d

dt
a(t)

= (1 − a)
(
p0 (1 − a)4 + p1 4a(1 − a)3

+p2 6a2(1 − a)2 + p3 4a3(1 − a) + p4 a4)

− a
(
(1 − p0) (1 − a)4 + (1 − p1) 4a(1 − a)3

+ (1 − p2) 6a2(1 − a)2 + (1 − p3) 4a3(1 − a)

+ (1 − p4) a4)
)

.
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This simplifies after factoring and extracting coefficients of a as follows:

ȧ(t) = p0 − (4 p0 − 4 p1 + 1)a + 6 (p0 − 2 p1 + p2)a2

− 4 (p0 − 3 p1 + 3 p2 − p3)a3

+ (p0 − 4 p1 + 6 p2 − 4 p3 + p4)a4 . (22)

We can understand Eq. (22) directly as a quartic polynomial in a whose coefficients
are given by an alternating binomial series corresponding to the increase and decrease
in a based on a combinatorial averaging over the transition diagram of site configu-
rations at the four nearest neighbours of a given site.

We now focus on the stability of the fixed points of the evolution equation for the
volume of fraction of solid ā (Eq. 22). In the left panel of Fig. 14, we present three
different stability scenarios for the fixed points of Eq. (22) in the (σ̃,β) plane: (i) In
the blue-shaded region, the right-hand side of Eq. (22) has four real roots and only
one of them is in [0, 1]; this fixed point is stable. (ii) In the yellow region, starting
at point (2.589145, 1.2945725), we have four distinct real roots with three of them
in [0, 1]. Only one of the three distinct real roots is an unstable fixed point, while
the other two roots are stable fixed points. This naturally corresponds to a family of
pitchfork bifurcations and the associated hysteresis depending on where the system
is initialised from. (iii) The unshaded region in the left panel of Fig. 14 corresponds to
the parameter space where the quartic discriminant �4 is negative and thus implying
the existence of two real roots (with one of them in [0, 1], stable fixed point) and two
complex conjugate roots.

The real roots and their derivatives over each (σ̃,β) in a grid of parameter
values from [−8, 12] × [−4, 4] were obtained through interval analytic methods
(Hofschuster and Krämer 2003).

Figure 15 shows the set of fixed points a∗ of the dynamical system as a function
of (σ̃,β). The parameter space corresponding to the central shaded region of Fig. 14
containing the line β = σ̃/2 is evident in Fig. 15 with three fixed points in [0, 1]. The
pitchfork bifurcations along the plane σ̃ = 2β or β = σ̃/2 determined by the non-
negative sign of the cubic discriminant along the black line in Fig. 14 is displayed
to highlight the dynamics with one unstable fixed point at 1/2 and two other stable
fixed points that are equidistant on either side of 1/2.

We are interested in varying the externally applied stress σ for a given material
characterised by fixed rheological parameters α and β. This amounts to varying σ̃
for a fixed β since the fixed α is absorbed into σ̃ = σ − α. The asymptotic dynamics
when we apply a constant external stress for a long period of time are given by the
fixed points a∗ in Fig. 15. Note that the ODE model for β �= 0 is only in qualita-
tive agreement with a(t), the expected volume fraction of the unyielded material at
time t . This is because we are ignoring the dependent statistic b(t), the expected
fraction of bonds or pairs of neighbouring unyielded material at time t . Despite this
simplification, as we will see through this section, there is qualitative agreement
between the ODE and the Gibbs simulations presented in Sect. 3.1. Furthermore, an
admittedly ad hoc correction of the ODE through a translation of the vector field by
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Fig. 14 Four real roots of the quartic occur in the shaded regions (blue and yellow) over σ̃ = σ − α
and β is shown in the left panel. The black line is β = σ̃/2 started at (2.589145, 1.2945725). The
parameter space with only three distinct real roots in [0, 1] is shown in the right panel

(α0,β0) even improves the quantitative approximation. We postpone a formal quan-
titative approximation of the ODE using perturbation theoretic methods to the future
and focus here on obtaining insights from the Gibbs sampler that is in qualitative
agreement with the ODE approximation.

3.2.3 Comparison Between Microscopic Gibbs Field Model Described
in Sect. 3.1 and ODE Approximation Under Varying Stress

The energy of X (t), the random site configuration at time t , depends on two of
its highly correlated statistics: A(t), the random fraction of gelled sites at time t ,
and B(t), the random fraction of connected sites at time t . One of our primary
interests is to study A(t) and B(t) as X (t) is under the influence of time-varying
externally applied stress σ(t). Using Monte Carlo simulations from Algorithm 2
in Sainudiin et al. (2015a) of the time-inhomogeneous Markov chain {X (m)}Mh

m=0,
under a time-dependent stress σ ramp, we can obtain multiple independent trajec-
tories of A(σ), the fraction of gelled sites as a function of the external stress σ.
This is to emulate conditions of an unsteady forcing during macroscopic rheological
measurements. In the following, h is the average hits per site in the Gibbs sam-
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Fig. 15 The fixed points a∗ as a set-valued function of the parameters σ̃ = σ − α and β. The
blue, black and azure points are the stable fixed points, while the red and green points are the
unstable fixed points of the system. There is a pitchfork bifurcation along σ̃ = 2β that starts at
(2.589145, 1.2945725) where the fixed point at 0.5 becomes unstable with two stable fixed points
on either side

pler algorithm and we define it also as the characteristic forcing time t0 for the stress
ramp in our ODE simulations. We set h = 1000 in order to reach steady state for each
value of σ. In Fig. 16, the trajectories are shown as thin lines and the curves for the
ODE approximation have the� symbol on them. Note the reversibility of the response
of the material when β ∈ {0, 1} (top row of Fig. 16) upon increasing/decreasing
applied stresses. The microscopic model and the ODE approximation quantitatively
agree quite well when β < βc (βc ≈ 1.3), the threshold for three fixed points in [0, 1]
for the ODE model. As we increase β beyond the aforementioned threshold βc, we
see that irreversible behaviour in the material appears and the comparison between
the two models (discrete and continuous) is only qualitative in nature. This is due to
the fact that our ODE approximation only models a, instead of modelling the depen-
dent pair (a, b) that is sufficient for the energy, see Sect. 3.1. This effect can also be
seen if we compare the right panel of Fig. 14 with Fig. 10c. Clearly, the light region of
Fig. 10c corresponds to the yellow region where the hysteresis is always present. The
main discrepancy is the value of βc. In the ODE approximation, the calculated value
is βc ≈ 1.3, whereas from the Gibbs sampler simulations one obtains βGS

c ≈ 1.5. As
mentioned above this difference is due to the fact that in the ODE approximation
all bond interactions between neighbours have been disregarded. Further details on
improving the agreement between the predictions of the approximating nonlinear
dynamical system model with those of the Gibbs field model are given in Sect. 4.4
and in Fig. 9 of Sainudiin et al. (2014).

As a qualitative remark, one can note that even in the presence of strong inter-
actions β > βc, both models predict an increase of the steepness of the solid–fluid
transition (defined as the slope of the dependence ā(t) on σ around the point where
ā ≈ 1/2).
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Fig. 16 Gibbs field and ODE approximation simulations with α = 8 and β ∈ {0, 1, 3}. The stress
was increased from 0 to 25 in units of 0.01 and decreased back to 0 with a holding time of t0 = 1000
(nearly asymptotic state for each distinct stress) as the site configuration varied from 1 to 0 and then
back to 1. The curves with the symbol (�) are the ODE simulations

3.2.4 Comparison Between Model by Putz and Burghelea
Putz and Burghelea (2009) and ODE Approximation

In this section, we will consider the model developed by Putz and coworkers (Putz and
Burghelea 2009; Moyers-Gonzalez et al. 2011b). As already highlighted in Sect. 2,
this model is phenomenological in the sense that, unlike the Gibbs field model pre-
sented in Sect. 3.1 it is not derived from first principles. In this type of modelling, one
mimics the behaviour of the microstructure through the definition of a macroscopic
structural variable with range in [0, 1], where 0 means completely unstructured or
fluid and 1 means completely structured or solid. As explained in Sect. 2, the struc-
tural variable ap satisfies a kinematic equation and usually depends explicitly on the
stress and/or rate of strain. In the case of the model by Putz and Burghelea (2009),
we have
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Fig. 17 Comparison between ODE approximation and the model by Putz and Burghelea (2009)
detailed in Sect. 2 for different holding times t0. ODE model with α = 8 and β = 1, the model
by Putz and Burghelea (2009) with kd = kr = 0.3, w = 0.5 and σy = 10. Full lines are the ODE
approximation and broken lines the model by Putz and Burghelea (2009)

d

dt
ap(t) = kr

[
1 − tanh

(
σ − σy

w

)]
(1 − ap(t))

− kd

[
1 + tanh

(
σ − σy

w

)]
ap(t), (23)

where kr is the rate of recombination of microstructural units, kd is the rate of
destruction of the solid phase, σy is the yield stress and w is a constant that controls
how steep the change in the microstructure from solid to fluid and fluid to solid is.

In Fig. 17, we present the simulations of Eqs. (22) and (23) for three characteristic
forcing times t0. As expected we have very good agreement between the models.
This could be considered as a qualitative “proof ” that the phenomenological models
can actually approximate the behaviour of the microscopic models derived from first
principles.



206 T. Burghelea

3.2.5 Determination of the Yield Point in the Limit of a Steady-State
Forcing

A reliable estimation of the yield point is important to many practical applications
involving yield stress materials. This is typically done by fitting steady-state rheolog-
ical measurements with models with various degrees of complexity ranging from the
mathematically simple and classical Herschel–Bulkley correlation up to structural
models. Thus, it appears natural to attempt in the following to obtain an estimate of
the yield point for the case of a steady-state forcing from the nonlinear dynamical
system model presented herein.

To get an approximation for the yield point σy during a steady-state forcing pro-
cess, we will make the assumption (well supported by the results presented in Figs. 12
and 17) that, corresponding to the yield point, the absolute value of the slope of the
dependence ā∗(σ) passes through a maximum:

∣∣∣∣
dā∗

dσ

∣∣∣∣
σ≈σy�−→ Max . (24)

For simplicity, let us focus first on the non-interacting case, β = 0. From Eq. (20),
one can readily show that the condition given in Eq. (24) reduces to σy = α. Thus,
in the non-interactive case, the yield point obtained during a steady-state stressing
practically coincides with the site-specific threshold α of the Gibbs field model.

We now consider the interactive case β �= 0. To a leading order in ā∗ and assuming
that around the yield point ā∗ ≈ 1/2, it can be shown using Eq. (22):

dā∗

dσ̃

∣∣
∣∣
σ≈σy

≈ eσ̃

[
1

(
1 + eσ̃

)2 − 2
e−β

(
1 + eσ̃e−β

)2

]

. (25)

Fig. 18 Dependence of the
approximate yield stress
shifted by the site-specific
threshold σ̃y = σy − α on
the interaction parameter β.
The dashed line is σ̃y = β,
and the dash-dotted line is
σ̃y = 2β. The circles mark
the critical point
corresponding to βc ≈ 1.3
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The implicit dependence of the approximate yield stress σ̃y on the interaction
parameter β may be obtained by solving numerically

∣∣ dā∗
dσ̃

∣∣ = 0. The result is pre-
sented in Fig. 18. For interactions weaker than the critical threshold βc, the appar-
ent yield stress scales as σ̃y = σ − α = β (the dash-dotted line in Fig. 18). Beyond
this threshold, the scaling becomes steeper, σ̃y = σ − α = 2β (the dashed line in
Fig. 18). To conclude this part, the yield stress assessed via steady-state controlled
stress ramps is (according to our model) expected to depend linearly on both the
site-specific threshold α which may be intuitively understood as a measure of the
strength of the microscopic constituents of the fluid and the strength β of their inter-
action and the slope of this behaviour switches when the strength of the interaction
passes through the threshold β = βc.

In Fig. 19, we investigate the dependence of right-hand side of Eq. (25) with
respect to σ̃ (left panel) and with respect to β (the right panel).

Regardless of the value of the interaction parameter, the stress dependence of
the slope passes through a local maximum marked by a full symbol in Fig. 19a. As
previously explained, this may be considered as an indicator of the yield point. While
β increases, the location of this maximum shifts towards larger stress values as already
illustrated in Fig. 18. The value of this maximum slope increases monotonically
with β, as shown by the dashed line in Fig. 19a. As we approach βc, the slope
diverges Fig. 19b. This is consistent with the fact that our steady solution becomes
discontinuous as a function of σ̃. Recall that we have a pitchfork bifurcation with
stable fixed points {0, 1}; hence, the value of σy is not unique and depends on the
initial condition.

(a) (b)

Fig. 19 a Dependance of the slope of ā∗ on the applied stress on the yield stress for various values
of β ranging from 0 to 2 (β increases from bottom to top). b Dependance of the maximum value of

the slope dā∗
dσ̃

∣∣
∣
σ≈σy

given by Eq. 24 calculated around the yield point on the interaction parameter β
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3.2.6 Description of Linear Controlled Stress Flow Ramps

To demonstrate the practical usefulness of our approach, we focus in the following
on the description of an experimentally measured data set acquired during a linear
controlled stress flow ramp with a 0.2% (wt) aqueous solution of Carbopol 980,
the symbols in Fig. 20. The characteristic forcing time for the rheological test was
t0 = 2 s, and the empty/full symbols refer to the increasing/decreasing branch of
the stress ramp. As already pointed out, the control parameter of our model is an
energy supplied to the lattice rather than a true stress. Yet, in order to describe a
one-dimensional data set, one can interpret the stress as the energy supplied per unit
volume of material and attempt to couple the evolution equation for the number of
sites in a gelled state to a constitutive relation.

To describe the experimentally measured flow ramp, Eq. (22) describing the evo-
lution of the microstructural parameter ā(t) is complemented by a Maxwell-type
thixoelastic constitutive equation (as in the case of the model by Putz and Burghelea
(2009) discussed in Sect. 2):

η(γ̇)

G
ā
dσ

dt
+ σ = η(γ̇)γ̇, (26)

where G is the elastic modulus, γ̇ is the rate of shear and η(γ̇) = K γ̇N−1 + σy
1−e−m|γ̇|

|γ̇|
is a Papanastasiou regularised Herschel–Bulkley viscosity function.

The best fits using both the model by Putz and Burghelea (2009) and the current
approach are presented in Fig. 20 as full and dashed lines, respectively.

The fit parameters for the model (the full line in Fig. 20) are σu
y = 66.2 Pa, σd

y =
63.45 Pa, kud = kdd = 0.1s−1, kur = 0.263 s−1, kdr = 0.95 s−1, wu = 0.93 Pa, wd =
0.143 Pa, Nu = Nd = 0.31, Ku = 24.33 PasN , Kd = 27.12 PasN , Gu = 2036 Pa
and Gd = 457 Pa.

Fig. 20 Flow curve
measured for increasing
(empty symbols) and
decreasing (full symbols)
values of the applied stress.
The full line is a fit by the
model by Putz and
Burghelea (2009), and the
dashed line is the prediction
of the nonlinear dynamical
system model
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The fit parameters for the nonlinear dynamical system approach (the dashed line
in Fig. 20) are σu

y = 64.38 Pa, σd
y = 63.48 Pa, αu = 64.72, αd = 62, βu = 0.73,

βd = 0.98, Nu = 0.31, Nd = 0.3, Ku = 26.21 PasN , Kd = 27 PasN , Gu = 3929 Pa
and Gd = 451 Pa.

The goodness of the fit by the current model is comparable to that by the model (the
PMM , see Sect. 2) which demonstrates the practical usefulness of this approach. It is
equally worth noting that, for the Carbopol gel used in the rheological test illustrated
in Fig. 20, the interactive parameter β obtained for each branch of the stress ramp is
smaller than the critical value βc ≈ 1.3 that defines the cross-over from a reversible
to irreversible yielding scenario. This indicates that the Carbopol gels fall into the
class of weakly interactive viscoplastic materials that show no thixotropic effects in
the limit of a steady-state forcing.

To conclude this section, a fundamental understanding of the yielding of a vis-
coplastic material may be obtained via a probabilistic approach developed using
the main tools of the Statistical Physics similar to the Ising model of magnetisation.
Unlike the phenomenological approaches that typically involve a rather large number
of parameters some of which have an unclear physical meaning (and, consequently,
are difficult to assess experimentally), this approach involves only two internal param-
eters: a site-specific threshold and the strength of interaction of neighbouring building
blocks of the viscoplastic material. These two parameters are responsible for a num-
ber of experimentally observed features of the solid–fluid transition: its onset (the
yield stress), its reversibility upon increasing/decreasing stresses and its steepness.

4 Viscoplasticity and Hydrodynamic Stability

The flows discussed so far through this chapter were hydrodynamically stable and the
only source of nonlinearity in the momentum equation was related to the constitutive
relation describing the viscoplastic material. The aim of this section is to introduce
the reader into the hydrodynamic stability of yield stress materials. We discuss two
distinct types of instabilities involving viscoplastic materials. In Sects. 4.1, 4.2, we
discuss the inertial instability of flows of a viscoplastic material in a pipe flow and
in a plane channel flow, respectively. In Sect. 4.3, we discuss a low Reynolds num-
ber hydrodynamic instability triggered by a fast chemical reaction occurring at the
interface between two fluids which locally creates a yield stress material or, in other
words, a strong stratification of stresses.

4.1 Transition to Hydrodynamic Turbulence
in a Shear-Thinning Physical Gel

In this section, we summarise some key results of an experimental study of the
laminar, transitional and turbulent flows of a viscoplastic fluid in a cylindrical pipe
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(Hagen–Poiseuille flow). For a more comprehensive account of the main results, the
reader is referred to Güzel et al. (2009). As compared to the laminar flows previously
studied through this chapter, such flows are expected to be significantly more complex
as two sources of nonlinearity are present in the Navier–Stokes equation: inertial
(related to large Reynolds numbers) and rheological (related to the dependence of
the stresses on the rate of strain).

The motivation of studying the hydrodynamic stability of yield stress fluids is
threefold:

1. Fluids of shear-thinning type with a yield stress abound in industrial settings,
as well as some natural ones. The particular motivation here comes from both
the petroleum industry and the pulp and paper industry, where design/control
of the inherent processes often requires knowledge of the flow state at different
velocities. Similar fluid types and ranges of flows occur in food processing, poly-
mer flows, and in the transport of homogeneous mined slurries. Although many
of these industrial fluids exhibit more complex behaviour (e.g. thixotropy, vis-
coelasticity, etc.), as noted by Bird et al. (1977), the shear-dependent rheology is
often the dominant feature.

2. In line with the above, there is a demand from industrial application to predict the
Reynolds number (Re = UD/ν, where U is the average velocity, D is the diam-
eter of the pipe and ν is the kinematic viscosity), or other bulk flow parameter, at
which transition occurs, for a range of fluid types, so that different frictional pres-
sure closures may be applied to hydraulics calculations above/below this limit.
One of the such earliest attempts, and probably still the most popular, was that of
Metzner and Reed (1955). Perhaps, the most obvious weakness with such phe-
nomenological formulae is that turbulent transition occurs over a wide range of
Reynolds numbers and not at a single number. For example, in careful experi-
ments, Hof et al. (2003) report retaining laminar flows in Newtonian fluids up to
Re = 24000, whereas the common observation of transition initiating in pipe
flows is at Re ≈ 2000. Thus, there is a difficulty with interpreting the predictions
of phenomenological formulae, many of which we note were either formulated
before a detailed understanding of transitional phenomena has developed.

3. A third and most important motivation of such study is of a scientific nature. Since
Reynolds’ famous experiment (Reynolds 1883), transition in pipe flows has been
an enduring unsolved problem in Newtonian fluid mechanics. It is thus natural
that there have been far fewer studies of non-Newtonian fluids in this regime,
either experimental or numerical/theoretical. The intellectual challenge is related
to dealing with two sources of strong nonlinearity in the momentum equation dis-
cussed in the Introduction: inertial and rheological—coming from nonlinearity of
the stress rate of strain relationship. The existing studies that have been conducted
for shear-thinning viscoplastic fluids leave a large number of intriguing questions
unanswered. In the first place, experimental studies by Escudier and Presti (1996)
using Laponite suspensions and by Peixinho et al. (2005b) using Carbopol® solu-
tions have revealed interesting flow asymmetries in the mean axial velocity profile
during transition, which have been largely unexplained. These have been sum-
marised by Escudier et al. (2005).
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4.1.1 Experimental Setup and Procedures

All the results we report herein are from tests performed in a L = 10-m-long flow
loop with an inner diameter of 2R = 50.8 mm. The setup is illustrated schematically
in Fig. 21. The flow is generated by a variable-frequency-driven screw pump fed to a
carbon steel inlet reservoir R1 of approximately 120 L capacity to an outlet reservoir
R2 of the same capacity. The pump can provide a maximum flow rate of ≈22 l/s,
which is equivalent to a maximal mean flow velocity of ≈10 m/s. Two honeycomb
sections are placed inside the reservoir R1 before the tube inlet in order to suppress
any swirl or other fluid entry effects. We used a Borda style entry condition in which
the pipe extended backwards approximately 50 cm into the tank. Two honeycomb
elements were inserted into this section. The fluid reservoir R2 is pressurised to
damp mechanical vibrations induced by the pump motor and a flexible hose is used
between the pump and reservoir in order to diminish flow pulsations.

The flow structure has been investigated using the laser Doppler velocimetry
(LDV ) technique. A detailed description of the LDV optical arrangement is given
in Güzel et al. (2009). Two pressure transducers (PT1,2) are located near the inlet
and outlet of the flow channel (Model 210, Series C from www.gp50.com). These
are bonded strain gauge transducers with internal signal conditioning to provide a
Vdc output signal in direct proportion to the input pressure. The accuracy of each
transducer is 0.02% of the full scale, and they were calibrated with an externally
mounted pressure gauge. Pressure drop readings �p were averaged over 150 s and
used to estimate the radius of the plug according to

Fig. 21 Schematic view of the experimental setup: R1,2—fluid reservoirs, P—pump, FM—
flowmeter, PT1,2—pressure transducers, FT—fish tank, CCD—digital camera, PB—laser Doppler
velocimetry probe, PMT—photomultiplier, BSA—burst spectrum analyzer

www.gp50.com
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rp = 2L
σy

R�p
. (27)

Flow rates were estimated using two methods: (i) using an electromagnetic
flowmeter (FM) installed near the outlet reservoir, as shown in Fig. 21; (ii) by numer-
ically integrating the measured axial velocity profiles. The latter estimate is used to
calculate the relevant flow parameters reported through this section. The transversal
profiles of the axial velocity have been measured at a position Lm = 108D down-
stream where the flow is fully developed (corresponding to a Reynolds number
Re ≈ 3000 the entry length was estimated Le ≈ 100D).

The Reynolds number can be defined in a number of ways for a non-Newtonian
fluid. Here, we define a generalised number that accounts for the shear thinning of
the solution across the pipe by

ReG = 4ρ

R

∫ R

0

ū(r)

η [γ̇(r)]
rdr, (28)

where ρ and η are the density and the effective viscosity of the fluid. The latter
depends on the strain rate of the base flow γ̇(r) which is calculated locally from the
transversal profile of the time-averaged axial velocity ū(r). As a yield stress material,
we have used several aqueous solutions of Carbopol® 940. As a first approxima-
tion, we consider here for simplicity a Herschel–Bulkley constitutive relationship,
η = σy γ̇

−1 + K γ̇N−1. As already discussed in Sects. 1 and 2, the Herschel–Bulkley
constitutive relationship does not accurately describe the yielding of a Carbopol®

gel. In our context, the main problem arises from the term η(γ̇) which around the
solid–fluid transition diverges. The experimental measurements presented in Sect. 1
indicate that prior to yielding the viscosity is very large but finite. The Herschel–
Bulkley correlation, however, remains useful to get an estimate for the yield stress.

4.1.2 Transition to Turbulence in the Pipe Flow of a Shear-Thinning
Yield Stress Fluid: Phenomenological Observations

Before proceeding to the main findings, it is instructive to first examine representative
transversal profiles of the time-averaged velocity. To this end, we plot transversal
profiles of the time-averaged velocity ū as a function of ReG , see Fig. 22 measured
with a 0.1% Carbopol® solution at various ReG . At each radial position, over one-
hundred thousand instantaneous velocity measurements were used in the ensemble
average and the confidence interval for each point is very small. It should be noted
that the results have been made dimensionless by scaling the ensemble average with
the centreline velocity uc. Under laminar conditions, that is, with ReG < 1700, the
fully developed laminar profiles are included in these graphs as the solid lines. This
was performed in order to ascertain the validity of our results. For the higher flow
rates, we present cases for both transitional and turbulent flows. Dashed lines are
drawn to highlight an apparent asymmetry in the measurements. The dashed lines
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(a) (b)

Fig. 22 The transversal profiles of the time-averaged velocity ū for 0.1% (wt) Carbopol: a ReG=378
(©), 937 (�), 1160 (	), 1735 (�) and 2920 (�) b ReG=397 (©), 914 (�), 2001 (	), 2238 (�)
and 2612 (�). These data are from replicate tests obtained from similar experimental conditions

were constructed by averaging the data at equivalent radial positions on either side
of the central axis. The asymmetry is apparent and disappears once a fully turbulent
flow regime is achieved. It is worth noting that the asymmetry is systematic, i.e. these
data were taken from time-averaged data and the asymmetry is consistently in the
same part of the pipe for the same fluid. This persistent flow asymmetry runs contrary
to the intuitive notion that transitional flow structures, when ensemble averaged over
a suitably long time, should occur with no azimuthal bias. A similar asymmetry
has been reported by other groups in their experiments (Escudier and Presti 1996;
Peixinho et al. 2005b; Escudier and Presti 1996). The initial reaction to this rather
unexpected flow asymmetry was to look for and eliminate any directional bias in
the apparatus or in the flow visualisation technique. However, even after extensive
precautions the asymmetry still persists and is fully reproducible in subsequent tests
and for several concentrations of Carbopol®(a more comprehensive discussion and
additional data are presented in Güzel et al. 2009).

To characterise the transition to turbulence in a Carbopol® gel, the turbulence
intensity is monitored at various radial positions r/R. The turbulence intensity is
defined as I = urms

ū where urms stands for the root mean square of the fluctuations of
the point-wise velocity.

After a rapid increase through transition, the turbulent intensity relaxes as we enter
the fully developed turbulent regime, as shown in Fig. 23. An important experimental
observation is that transition does not involve a simultaneous and sharp increase in
turbulent intensity across the pipe radius. Instead, one may notice in Fig. 23 that the
turbulent intensity begins to increase at r/R = ±0.75 at markedly lower generalised
Reynolds numbers than at the centreline. This observation was systematically repro-
duced for several other Carbopol® solutions indicating that this transition scenario
is rather universal.

To get additional insights into the evolution of the flow structure around the onset
of the laminar–turbulent transition, we resort to a qualitative imaging of the flows.
For this purpose, the flow was seeded with a minute amount of Kalliroscope reflective
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Fig. 23 Turbulence intensity
measured at r/R = 0
(circles), r/R = −0.75 (up
triangles) and r/R = 0.75
(down triangles) for a 0.1%
(wt) solution of Carbopol®

940

flakes. Thus, turbulent “puffs” passing the point of observation cause mixing of the
tracer particles which result in “grainy” flow image due to local changes in mean
orientation (i.e. reflectance) of the seeding particles. Instant puff images obtained for
a 0.075% (wt) solution of Carbopol® at a ReG close to the onset of the instability are
illustrated in Fig. 24. With these images, we attempted to characterise the size and
velocity of the leading and trailing edges of the puff by an object tracking method. We
have also produced spatiotemporal plots of the images. Here, the images are filtered
and the variation of greyscale intensity at one axial position is reported as a function
of time, see Fig. 25. What is clear in this sequence of images is that an asymmetry
is once more evident. As compared to the Newtonian case (data not shown here but
shown in Fig. 10 of Güzel et al. 2009), the leading edge of the puff is elongated and is
located in the vicinity of the wall. Moreover, the puffs observed with the Carbopol®

solution will spread axially at a significantly slower rate than those typically observed
with Newtonian fluids. Another observation for the case of a Carbopol® solution is
that the elongation of the leading edge gets smaller with decreasing concentrations of
Carbopol®, i.e. the tip observed in Fig. 25 is both reduced in size and located closer
to the centre line of the pipe.

To summarise our observations, we measured the axial velocity as a function of
radial position using the LDV for several aqueous solutions of Carbopol® solutions
undergoing Hagen–Poiseuille flow within a wide range of Reynolds numbers. We
find that for all the fluids tested there exists a persistent asymmetry in the velocity
profiles present during transition. Symmetrical flows were found for both laminar and
fully turbulent cases. These observations were confirmed using high-speed imaging.
No physical explanation is given at this point. We do, however, attempt to quantify
the transition more precisely by presenting a more in-depth statistical analysis of
these results. To this is dedicated the next section.
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Fig. 24 Instant puff images taken for 0.075% solution of Carbopol® 940 at ReG = 1850 at different
time instants: a t = 130 ms, b t = 225.5 ms, c t = 255.5 ms, d t = 320 ms, e t = 422.5 ms, f t =
447.5 ms, g t = 497.5 ms, h t = 600 ms, i t = 755 ms, j t = 1117.5 ms, k t = 1155 ms and l t =
1187.5 ms

R

0

(a)

t(s)

0.8 0

(b)

Fig. 25 Space-time plot measured with a 0.075%(wt) Carbopol® at ReG = 1850 a obtained from
raw images b obtained from filtered, background subtracted and binarised images. The puff length
is ≈1.69 m. The images sequence consisted of 320 frames
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4.1.3 Statistics of Weak Turbulence

Landau and Lifschitz indicate that inertially turbulent flows are traditionally charac-
terised by random fluid motion in a broad range of spatial and temporal scales (Landau
and Lifschitz 1987). We have attempted to characterise these relevant scales using
several statistical measures as indicated by Frisch (1995).

A first statistical measure is the Eulerian autocorrelation of the velocity defined by

C(t) = 〈u(t)u(t + τ )〉τ
u2
rms

(29)

and determined using the LDV data. This quantity is a measure of the time over
which the instantaneous velocity u(t) is correlated with itself. In other words, C(t)
is bounded by unity as t approaches zero and by zero as t →∞, because a process
becomes un-correlated with itself after a long time.

We report measurements of the temporal autocorrelation function as a function of
both ReG and the radial position in the pipe, Fig. 26. Before we proceed to interpret
these figures, we must spend some time explaining how the data is represented. Each
figure is given as three panels, i.e. at three different radial positions. Within each
panel, four data sets are presented representing four different Reynolds numbers. The
data series labelled (1) and (2) represent laminar flow while (3) is in the transitional
regime and (4) in a turbulent regime. With regards to (1), which corresponds to
the lowest ReG , in each of the panels the velocity signal is probably dominated by
high-frequency noise which results in a fast decay ofC(t) with a characteristic decay
time which we find to be of the order of the inverse data rate of the LDV signal.
Proceeding through (4), we find the fully turbulent state characterised by rapid decay
of the autocorrelation to the noise level.

A striking difference is found in curve (2) in comparison to the other curves. We
observe that there are plateaus in these curves, for some radial positions for each of the
fluids, e.g. at C(τ ) ∼ 0.4 for both r/R = ±0.75. Although this data was obtained in
a region which we define as laminar, it is clear that there are some weakly correlated
structures at this radial position in the pipe. For the Newtonian fluid, the plateau in the
autocorrelation is at a lower value than for the non-Newtonian fluids and is visible
also at the centreline (data are not shown here but detailed in Güzel et al. 2009).
For the case of the Carbopol® solution illustrated in Fig. 26, the plateau is strongly
attenuated at the centreline but evident at the radial positions r/R = ±0.75. Using
Taylor’s frozen flow hypothesis (Taylor 1938), we may estimate the axial length scale
of these structures to be ∼10−1 m, being longer for the Newtonian fluids than for the
non-Newtonian fluids (again, for a full account of this issue the reader is referred
to Güzel et al. 2009). This is significantly lower than the size of the puffs and slugs
estimated via the high-speed imaging technique. We comment also that consistently
with the flow asymmetry of the velocity profiles illustrated in Fig. 22 an asymmetry
is observed in many of the autocorrelations curves as well.
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Fig. 26 Correlation functions measured for a 0.1% solution Carbopol® at three different radial
positions: a r/R = −0.75 b r/R = 0 c r/R = 0.75. The data sets in each panel are (1) ReG = 397,
(2) ReG = 914, (3) ReG = 2238, (4) ReG = 3309

4.1.4 Evolution of the Plug Region During Transition

For yield stress fluids, the role of the plug region in retarding transition is largely
unknown. If one interprets the yield stress fluid to be fully rigid below the yield
stress, then the laminar flow is analogous to that with the plug replaced by a solid
cylinder moving at the appropriate speed. Presumably, since the effective viscosity
becomes infinite at the yield surface, the flow should be locally stabilised. Two
different scenarios may be postulated at transition:

1. Transition may occur in the yielded annulus around the plug, leaving intact the
plug region;

2. Transition is retarded until the plug region thins to such an extent that the Reynolds
stresses (in the annular region) can exceed the yield stress.

In the first scenario (Peixinho 2004; Peixinho et al. 2005a), during the first stage of
transition the turbulence intensity level on the centreline is reported as being similar to
laminar levels. This is also the scenario assumed explicitly in some phenomenological
theories of transition (Slatter 1999) treats the plug as a rigid body in developing his
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Fig. 27 Axial Reynolds
stresses normalised by yield
stress for four different
concentration levels of
Carbopol®. The filled
symbols indicate points
where the flow becomes
transitional, with puffs/slugs
first observed

formula for transition. In Fig. 27, we present the ratio of averaged Reynolds stress
at the centreline (where the level of velocity fluctuations is minimum) to the yield
stress, as a function of the generalised Reynolds number ReG for the four different
Carbopol concentrations that we have used. The filled symbols in Fig. 18 mark the
lowest value of ReG for which puffs or slugs were detected in the experiments, for
each of the different concentrations of Carbopol.

One can observe that the mean Reynolds stress exceeds the yield stress in each
case. This remains true even if we subtract the laminar flow fluctuations from the
Reynolds stresses, interpreting them as instrumental noise. This suggests that the
second explanation given above is the more plausible, i.e. the viscoplastic plug has
broken when transition starts. This is further reinforced by the results of the previous
section on the structure functions, i.e. at these transitional/weak turbulent Reynolds
numbers we have observed very similar intermittency characteristics with Carbopol,
right across the pipe radius, as with Xanthan, where there is no yield stress. We
should also comment that for the concentrations of Carbopol that we have used, if
we calculate the (laminar) unyielded plug diameters using Eq. (27), for the largest
flow rates for which puffs or slugs are not detected (see Fig. 28) these plug diameters
are at most of the order 2 mm. Thus, we do not anyway have a strong plug close to
transition.

There is no contradiction with the data from other works (Peixinho 2004; Peixinho
et al. 2005a), simply with its interpretation. Even with this thinning and break-up of
the plug, in the Reynolds number range preceding transition flow instabilities are not
sustained. Peixinho et al. (2005a) report measuring low-frequency oscillations away
from the central region. Such low-frequency forcing, presumably with slow axial
variation, could easily be responsible for slow extensional straining that yields the
true plug of the base flow into a pseudo-plug. This type of psuedo-plug also occurs,
for example, in thin-film flows (Balmforth and Craster 1999), and in channels of
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Fig. 28 Plug radius
normalised by pipe radius for
four different concentration
levels of Carbopol®

indicated in the insert

slowly varying width (Frigaard and Ryan 2004). In such flows the velocity remains
asymptotically close to the base flow solutions, while shear and extensional stresses
combine to maintain the pseudo-plug at just above the yield stress. Such flows are
laminar but yielded and the psuedo-plug is characterised by large effective viscosity,
which would presumably give similar characteristics to the base laminar flow in
controlling fluctuation level, Peixinho (2004), Peixinho et al. (2005a). From our
measurements of the velocity profiles, the mean velocity remains very plug-like in
the centre of the pipe in this upper range of laminar Reynolds numbers and it is simply
not possible to discern whether what is observed is a true plug or not. Evidently, the
ideal situation would be to visualise transition within a plug region of significant size
in comparison to the pipe. Interestingly, this was the intention of our experiments.
Our study was started after discussions with C. Nouar about ongoing experiments
(Peixinho 2004; Peixinho et al. 2005a). These were conducted in a 30 mm pipe at
lower speeds, and for the flow rates at which transition occurred the plug region
had radius of the order of 1 mm: too small to detect if broken or not. This prompted
our interest in the role of the plug during transition, and we therefore designed our
experiments at a larger scale so that we could potentially achieve transition with
higher yield stress fluids, in larger diameter pipes and at higher speeds, hopefully
also with a larger plug radius at transition. This objective could not be attained, as the
small values of rp/R in Fig. 28 indicate. Together with these experiments (Peixinho
2004; Peixinho et al. 2005a), the results described above contribute to the evidence
that the plug region must thin to such an extent that the Reynolds stresses can break
it, before transition commences.
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4.2 Hydrodynamic Stability of a Plane Poiseuille Flow
of a Carbopol® Solution Within the PMM Framework

We have argued in Sect. 1 of this chapter that the yielding scenario of a Carbopol® gel
is somewhat more complex that one would have expected and it cannot be accurately
described by the classical Herschel–Bulkley framework. To circumvent these diffi-
culties, we have proposed in Sect. 2 a phenomenological model able to both account
for a gradual solid–fluid transition and describe the elastic effects observed in both
rheological (controlled stress ramps) and tabletop (e.g. the sedimentation problem
discussed in Sect. 1 and illustrated in Fig. 1b).

The fundamental question we address in this section is: To what extent the novel
yielding scenario proposed in Sect. 2 could influence our understanding of hydrody-
namic stability?.

At a first glance, this question might appear groundless: the yielding transition
occurs at very low Re (typically Re � 1), whereas the loss of hydrodynamic stability
due to the inertial term in the momentum equation occurs at significantly larger
Re (typically Re > 1000); therefore, what is the physical connection between the
two phenomena? Given a second thought, the relevance of the yielding scenario
to the hydrodynamic problem may be defended as follows. The base flows usually
considered in the linear analysis of the hydrodynamic stability of channel flows
of yield stress fluids are characterised by a significant stratification of the velocity
gradients: large values near the channel boundaries which are consistent with a
yielded flow region and vanishing values near the centre line, which are consistent
with a plug region. The experimental investigation of the laminar–turbulent transition
in the pipe flow of a yield stress fluids we have briefly presented in Sect. 4.1 (Güzel
et al. 2009) demonstrates that the transition to turbulence occurs when the Reynolds
stresses balance the yield stress of the fluid, that is, when the plug is broken. These
findings corroborate well with the idea that, contrary to our initial intuition, the nature
of the solid–fluid transition and the yielding scenario may actually play a role in the
hydrodynamic stability problem.

To test this, we briefly discuss in the following the linear stability of a plane
channel flow of an elasto-viscoplastic material described by the phenomenological
presented in Sect. 2 and compare our results with the results obtained from a Casson
regularised constitutive relationship. For the details of this analysis, the reader is
referred to Moyers-Gonzalez et al. (2011a).

The plane channel flow of the elasto-viscoplastic fluid is described by the follow-
ing set of equations depending on the variables (p, u,σ, ā):

ρ

(
∂u
∂t

+ (u · ∇) u
)
= −∇ p + ηs∇ · γ̇ +∇ · σ (30)

∇ · u = 0, (31)
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where ηs is the solvent viscosity and γ̇ is the rate of strain tensor. The constitutive
relation is the one we have proposed in Sect. 2 in the framework of the phenomeno-
logical yielding model but adapted to a tensorial form in order to be coupled to the
Navier–Stokes (Eq. 30):

σ + λ (γ̇, ā)∇−σ = η [γ̇(u)] γ̇, (32)

where ∇−· =
D·
Dt − ∇u · − · ∇uT is the upper convected derivative ( D·

Dt is the classi-

cal material derivative), λ (γ̇, ā) = η[γ̇(u)]
G ā is the relaxation time and G is the elastic

modulus. The concentration of the unyielded material ā satisfies the kinematic equa-
tion below:

∂ā

∂t
+ (u · ∇) ā = Rd [ā,σ(u)] + Rr [ā,σ(u)] . (33)

As detailed in Sect. 2, Rd , Rr are the rates of destruction and re-formation of solid
structural units, respectively. The hydrodynamic stability problem is governed by the
Reynolds (Re), the Weissenberg (Wi) and the Bingham (Bi) number defined as

Re = ρLUmax

η
(34)

Wi = λHUmax

L
(35)

Bi = σy L

ηUmax
(36)

The relaxation time λH is defined here as λH = η∞
G with η∞ being the infinite shear

viscosity and G the elastic modulus. The plasticity number, Pl = ReBi = σyρL
η2 , is

defined as the product between the Reynolds number and the Bingham number. Note
that Pl depends solely on the rheological properties of the fluid and the geometry of
the problem, thus as we increase Re in our analysis Pl will remain fixed. For this
reason, we chose Pl as control parameter through our analysis.

As is common in linear stability analysis, we consider an infinitesimal perturbation
(εu′, εp′) superimposed upon the base flow and linearise the momentum Eq. (30)
around the base flow solution. We do not show here the full development of the
linear stability analysis (for these mathematical details, the reader is referred to
Moyers-Gonzalez et al. 2011a) but solely focus on the main results. Unlike pipe
flows of Newtonian fluids which are linearly stable at all Re, the plane Poiseuille
flow becomes linearly unstable at ReNewt = 5772.

We have studied the onset of instability for two cases: the case of an yield stress
fluid described by the classical Herschel–Bulkley constitutive relation and the case
of a fluid described by the model by Putz and Burghelea (2009). The dependence
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Fig. 29 Normalised critical
Re for increasing Pl

of the normalised onset of the instability on the plasticity number for each case is
illustrated in Fig. 29.

As with the regularised Herschel–Bulkley model, the existence of a pseudo-plug
region (spatially stratified viscosity) is sufficient to greatly enhance the stability of
the flow. The critical Reynolds number appears to be a monotone increasing function
of plasticity number Pl, just as with the regularised viscoplastic model. We should
also note that the inclusion of a highly viscous viscoelastic fluid as a plug destabilises
the flow when comparing it with the regularised model (shown as the lower curve
in Fig. 29). In relative terms, when Pl = 1000 the critical Reynolds number for the
elasto-viscoplastic model is 2.66% smaller than the critical Reynolds number for
regularised model. For Pl = 105, this percentage increases to around 6%; this is due
to the fact that the pseudo-plug and solid–fluid regions increase and are closer to
the wall. Thus, the central conclusion of this study is that the presence of a solid–
fluid coexistence transitional regime marked by the presence of elastic effects which
is properly accounted for by the model by Putz and Burghelea (2009) proposed in
Sect. 2 has a destabilising role.

4.3 Unstable Flows Triggered by a Fast Chemical Reaction

Generating high Reynolds number flows as illustrated in Sect. 4.1 may sometimes
prove to be un-practical, e.g. in the case of highly viscous fluids flowing in spatially
confined environments. An alternative way of breaking the hydrodynamic stability
in the absence of any significant inertial contribution (Re � 1) is to “switch on”
another source of nonlinearity in the Navier–Stokes equation. This can be done by
inducing a strong spatial heterogeneity of the viscosity (and/or yield stress) in the
flow. Although the hydrodynamic stability of miscible shear flows with a strong
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Fig. 30 Schematic overview
of the reactive flow
configurations: a
displacement configuration b
Hele–Shaw parallel flow
configuration. The colours in
each panel refer to the pH of
the fluid—see text for
description

monotonic variation in viscosity has been analysed theoretically (Ern et al. 2003),
we have found no clear experimental demonstration of these instabilities. With flows
of simple Newtonian fluids, it is difficult to vary the viscosity locally to induce an
instability. With complex or “structured” fluids, however, the situation is significantly
different: the rheology is strongly coupled to the molecular-scale organisation of the
fluid. This opens a new possibility of locally controlling the viscosity by inducing
local changes in the molecular structure via a chemical reaction taking place at the
interface between two complex fluids as schematically illustrated in Fig. 30. The
advantage of such a method is that a chemical reaction may be controlled by either
mass transfer or by local heating or cooling.

Here, we demonstrate experimentally that a fast (acid–base) chemical reaction
taking place at the interface between two miscible fluids and resulting in the local
formation of a gel may indeed destabilise the flow in the absence of any relevant
inertial contribution. The chemical reaction takes place at the interface between a
Newtonian fluid (an aqueous of sucrose) at pH ≈ 13 and an un-neutralised aqueous
solution of Carbopol® 980 at pH ≈ 3.5. The neutralised Carbopol® located around
the interface of the reacting fluids exhibits an yield stress behaviour and thus a large
viscosity contrast is generated in the flow. The pH-dependent rheology is illustrated
in Fig. 31.

In a neutral state, the viscosity of the Carbopol® solution is two orders of mag-
nitude larger than in the initial acid state (pH ≈ 3), panel (b) in Fig. 31 and the
Carbopol® solution exhibits yield stress, panel (c) in Fig. 31.
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Fig. 31 a Strain rate dependence of the effective viscosity of the two reacting fluids: circle—
displaced Carbopol solution at pH = 3, squares—displacing sucrose solution at pH = 13,
triangles—neutralised Carbopol® solution(pH = 7). b pH dependence of the viscosity of the
Carbopol® solution measured at γ̇ = 1s−1. c pH dependence of the yield stress of the Carbopol®

solution

We show through this section that this spatially inhomogeneous fluid rheology
triggered by the acid–base reaction that locally neutralises the Carbopol® structural
units leads to an inertia free hydrodynamic instability. We have focused on two
distinct flow configurations:

1. a displacement flow configuration where the less viscous Newtonian fluid dis-
places the more viscous Carbopol® solution, as shown in Fig. 30a.

2. a parallel flow configuration where the two reacting fluids are injected side by
side, displayed in Fig. 30b.

Besides the fundamental interest in understanding how a stratification of the viscosity
influences the hydrodynamic stability of the flow, each of the aforementioned flow
configurations had a clearly defined practical motivation. The motivation for the
displacement flow configuration illustrated in Fig. 30a came from the construction
of oil and gas wells. Since the early 1990s, there have been an increasing number of
wells that are constructed with long horizontal sections. The worlds longest extended
reach wells have horizontal sections in the 10–15 km range, but these are exceptional.
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More routinely, wells are built with horizontal extensions of up to 7 km. One of the
key barriers in constructing longer wells comes from simple hydraulic friction. In a
vertical well, both the pore pressure of reservoir fluids and the fracture pressure of the
reservoir rock increase with depth, approximately linearly. Judicious choice of fluid
density and circulating flow rates keeps the well-bore pressure inside the so-called
“pore-frac envelope”, i.e. the region where the porous rock does not fracture. In a
horizontal well section, the pore-frac envelope is unchanged with length along the
well, but the frictional pressure increases with length, leading to eventual breaching
of the envelope.

To avoid large pressure drops but yet achieve an efficient displacement, our original
idea was to locally increase the viscosity of the fluid only in the vicinity of the
interface (see the sketch in Fig. 30a rather than using a high viscosity displacing
fluid over the entire length of the pipe. A brief discussion of the main experimental
findings for this flow configuration is given in Sect. 4.3.1. For a detailed account,
these findings the reader is referred to Burghelea et al. (2007).

The second flow configuration illustrated in Fig. 30b might find some useful appli-
cations in efficiently mixing viscous fluids in the absence of significant inertial contri-
butions, e.g. in micro-channels. A brief discussion of the main experimental findings
for this flow configuration is given in Sect. 4.3.2. For a detailed account of these
findings, the reader is referred to Burghelea and Frigaard (2011).

4.3.1 Unstable Displacement Flows in the Present of a Fast Chemical
Reaction

A typical stable displacement experiment performed with two Newtonian fluids at
low Re is illustrated in Fig. 32. A small amount of fluorescein has been added to
the displacing fluid in order to visualise the interface between the two fluids. The
fluid displacement process laminar, steady and dominated by a long finger of the
displacing fluid penetrating into the displaced fluid.

Fig. 32 Example fluorescent images of the interface in an experiment from control sequence:
displacing fluid 65% saccharose solution, displaced fluid −66% saccharose solution. The flow rate
Q̂ = 0.145 ml/s. The two images are separated in time by 5 s
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Fig. 33 a–f Fluorescent images of the interface in a reactive displacement: displacing fluid—-65%
saccharose solution, displaced fluid—0.1% Carbopol® in 66% saccharose solution. e–f Fluores-
cent flow images long after the entrance of the unstable interface in the field of view; the images
are separated in time by approximately 5 s. The dotted lines highlight gelled structures tumbling
downstream. The direction of the flow in each panel is from right to left

The flow behaviour was significantly different from the control experiments in the
reactive case, when the Carbopol® solution at pH = 3 was displaced by a saccharose
solution at pH = 11, at different flow rates. The initial interface penetrates in a sharp
spike as before, but this is destabilised and the finger rapidly widens to nearly fill the
pipe. A complex secondary flow develops at the interface between fluids. The flow
seems to be dominated by large vortices advected by the flow, with a typical size of
the order of the pipe radius. Typical images are shown in Fig. 33. As the front of the
finger passes, the secondary flow instabilities persist along the sides of the finger.
The secondary flow provides a feedback mechanism for the instability by bringing
into contact new unreacted fluid elements and taking away reacted highly viscous
fluid. The initial pass of the finger front does not remove all the fluid 2 from the walls.
However, the secondary flows result in a fairly rapid erosion of the residual layers.
After the initial instability, small parcels of fluid 2 pulled into the fluid 1 stream react
to form gelled solid regions that are advected along with the fluid. Close observation



Transport Phenomena in Viscoplastic Materials 227

Fig. 34 a Normalised width of the tip versus the normalised displacement distance, Û0 t̂/R̂, for
several values of the flow rate: Q̂ = 0.063 ml/s, Q̂ = 0.145 ml/s, Q̂ = 0.19 ml/s, Q̂ = 0.3 ml/s. The
experiments with the Newtonian fluids pair that undergoes a stable displacement flow. b Normalised
width of the tip versus the normalised displacement distance, Û0 t̂/R̂, for several values of the flow
rate: Q̂ = 0.13 ml/s, Q̂ = 0.18 ml/s, Q̂ = 0.2 ml/s, Q̂ = 0.31 ml/s, Q̂ = 0.47 ml/s. The experiments
belong to the reactive sequence

of video images reveals that some of these parcels appear to be in rigid motion as
shown in Fig. 33e and f.

To quantitatively assess the impact of the instability on the efficiency of the fluid
displacement, we monitor the dependence of the normalised width of the finger W

2R̂

(here R̂ stands for the radius of the pipe) versus the strain γ = Û0 t̂
R̂

. Here U0 stands

for the mean flow velocity and t̂ for the time.
When a Newtonian fluid pair is used, the displacement efficiency depends strongly

on the flow rate and, at the higher rate, does not exceed 0.9, as shown in Fig. 34. This
is what one would expect for a laminar flow and a displacing fluid less viscous
than the displaced one. The picture is quite different when a reactive fluid pair is
used. Due to the flow instability, efficient mixing occurs near the interface (Fig. 33).
As compared to the Newtonian case, two major differences are observed. First, the
temporal evolution of the displacement efficiency is little sensitive to the flow rates:
the points measured for various flow rates collapse onto a single master curve. Second,
the displacing efficiency reaches now 0.98 indicating that the instability leads to a
nearly complete displacement which the desirable case for the oil well engineering
context we described in the beginning of this section.

4.3.2 Unstable Parallel Flows in the Present of a Fast Chemical
Reaction

We now focus on reactive flows in a parallel flow configuration (Fig. 30b) where
the reacting fluids are injected side by side. As in the case of the displacement flow
configuration discussed in Sect. 4.3.1, in the absence of a chemical reaction, the flow
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Fig. 35 Space-time diagrams measured at a fixed driving pressure drop �p = 500 Pa at several
locations downstream: a y = 3.2 cm, b y = 14 cm, c y = 17 cm, and d y = 35 cm. The flow patterns
have been visualised using the laser-induced fluorescence (LIF) technique. LIF flow images acquired
in the horizontal plane corresponding to each space-time diagram are presented on the top row. The
dotted lines in the bottom row indicate the time instant when the LIF flow images have been acquired.
The concentration of Carbopol® in the acid fluid was 0.1%

is linear, laminar and steady. Thus, the mixing of the fluids is poor as it is carried on
by molecular diffusion alone.

The spatial development of the flow downstream in the channel for the reactive
fluid pair is presented in Fig. 35, at an intermediate pressure drop �p = 500 Pa.
Four positions downstream are selected. The top row presents a snapshot of the
spatial structure at each position, while the bottom row presents space-time dia-
grams for a time period of 500 s including the snapshot. The space-time diagrams
are obtained by monitoring a single brightness profile acquired at a fixed location
across successive laser-induced fluorescence (LIF) images evenly spaced in time.
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The interface between the two fluids is unstable from the very entry of the chan-
nel y = 3.2 cm (Fig. 35a). As one advances downstream, the interface between the
two fluids becomes increasingly unstable and the degree of mixing increases, panels
(b)–(d) in Fig. 35. The diffuse layer visible near the interface in Fig. 35a is sug-
gestive of a spreading reaction–diffusion front. We can observe unevenness of the
diffuse layer thickness at small spatial scales (which could correspond to a reactive–
diffusive instability), but we also see larger wavy variations in the interface itself
which are likely to have a hydrodynamic origin. This larger scale waviness is evident
in the spatiotemporal plot and appears to evolve spatially along the channel, while
the diffuse interfacial layer is lost. On the scale of the channel, the characteristic
diffusion timescale is much larger than the advection timescale. This implies that
the apparently random mixing patterns illustrated in panels (b)–(d) are not related
to molecular diffusion but rather to a (chaotic) advection phenomenon. The degree
of mixing increases, extending across the entire channel (Fig. 35c and d), but it is
remains intermittent with significant regimes of black and white showing in the LIF
images. This suggests that the mixing mechanism is interfacially controlled, rather
than by bulk fluid motion. Presumably, those interfacial regions that react quickly
on mixing will form highly viscous (or unyielded) layers. These layers may either
separate regions of pure fluid or may even encapsulate such regions through advec-
tive instability. Fluid which is bounded by highly viscous (or unyielded) layers will
respond much less to local stress gradients. At the same time, unstable motions
will continue to bring new unreacted fluids into contact. This probably explains the
preservation of some larger scale structures together with seemingly diffuse well-
mixed regions, as the flow progresses. In Fig. 35d, we see a more longitudinal spatial
structure developing. A plausible mechanism for this is that the regions of unreacted
fluid will move relatively fast along the channel and help to orient near rigid regions
with the flow. These regions may agglomerate, but in doing so will move slower and
hence have an increased possibility of further growth via agglomeration.

5 Non-isothermal Problems Involving Yield Stress
Materials

5.1 Thermo-Rheological Behaviour of a Shear-Thinning
Yield Stress Material

Whereas a clear progress towards understanding the isothermal deformation of vis-
coplastic materials has been made, there exist a limited number of studies dealing
with temperature-dependent viscometric and non-viscometric flows of Carbopol®

solutions. An experimental study of the heat transfer in the transitional pipe flow
of a Carbopol® solution is presented in Peixinho et al. (2008). The authors of this
study consider a Herschel–Bulkley-type yielding scenario and analyse their rheolog-
ical measurements accordingly. The hydrodynamic stability of the flow and the heat
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transfer problem are discussed in terms of the rheological properties of the material
and their temperature dependence.

The previous studies regarding the thermo-rheology of Carbopol® gels may be
divided into two classes. A first class of previous rheological studies found a “nor-
mal” temperature correlation of the rheological properties that can be modelled by
the Arrhenius law (Islam et al. 2004; Peixinho et al. 2008; Alain and Bardet 1982;
Fresno Contreras et al. 2001). Islam et al. (2004) found an Arrhenius scaling of the
viscosity of the Carbopol® gel with temperature which gave rather low values of
the activation energy, �Ea consistent with a low-temperature sensitivity. The gels
studied in this work were prepared in a glycerol solvent which behaves as a rheolog-
ically simple fluid and has a rather large flow activation energy (Magazu et al. 2007)
which could potentially “mask” a significantly weaker anomalous behaviour related
to the swollen gel network. Peixinho et al. (2008) found no temperature dependence
of the power law index and yield stress and an Arrhenius-type decay of the consis-
tency. They used a neutralised 0.2% (wt) aqueous solution of Carbopol® 940 and
a controlled stress rheometer (AR2000 from TA Instruments) equipped with a steel
0.5 deg cone/40 mm plate and truncation of 15µm. It is worth noting that the max-
imum temperature investigated in this work is as large as 85 ◦C (and therefore the
fluid evaporation could have played a significant role during the measurements) and
that the scatter of their yield stress measurements accounts for nearly 30% of the
measured values which makes the observation of a particular trend difficult. There
exists a second class of previous rheological studies which observe an anomalous
temperature–viscosity correlation, i.e. an increase of the viscosity with the tempera-
ture (Owen et al. 2003; Park and Jr. 1997; Park and Irvine 1997; Todica et al. 2010).

Barry and Meyer (1979a, b) were among the first to provide a very complete
description of the rheological properties of Carbopol® at various temperatures by
combined shear measurements, creep measurements and small amplitude oscillatory
measurements. Although the general conclusion is that the rheological properties of
Carbopol® gels are practically insensitive to temperature variations (their flow activa-
tion energy is small), the authors did observe an anomalous temperature dependence
of the viscosity (see the discussion in page 8 of Barry and Meyer 1979a) but they
discard the observation by noting “As an increase in apparent viscosity is inconsis-
tent with an activation energy for viscous flow these data were not used to derive
such values”. By using a Brookfield Model DV-III Digital Rheometer (Brookfield
Engineering Laboratories Inc., Stoughton, MA, USA) and a cone and plate configu-
ration, Owen et al. (2003) observed an anomalous temperature viscosity correlation
for two neutralised polyacrylic acid derivatives used in contraception under the trade
names “Advantage-S” and “KY-Plus”. In the same study, however, for two other
contraceptive gel formulations, “Ginol II” and “Conceptrol” and by using the same
rheological procedure, a “normal” (Arrhenius-like) temperature correlation of the
viscosity is observed. This indicates that the correlation between the temperature
and the rheological behaviour is intrinsically related to the physico-chemical prop-
erties of the gel mixture.

By using a falling needle viscometer, Park and Jr. (1997); Park and Irvine (1997),
an anomalous temperature dependence of the viscosity of Carbopol® 934 is at three
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distinct concentrations (which they express in parts per million): c = 5000 ppm,
c = 7500 ppm and c = 10000 pm. They did not elaborate any further on this rather
unexpected result but they did note, however, that “Perhaps this phenomenon orig-
inates from a structural change of the polymer molecules with concentration and
temperature”. The most recent observation of an anomalous behaviour we are aware
of is due to Todica et al. (2010). They performed their measurements on a Brook-
field DV II Pro viscometer, using cylindrical spindle. A detailed explanation for this
anomalous behaviour is not given in this paper either.

Both classes of previous works briefly discussed above have, most probably,
a limited number of things in common which makes a pertinent comparison quite
difficult. Although they use a variety of rheometric equipment (note that these studies
span the last four decades during which the rheometric devices have significantly
evolved), it is, in our opinion, unlikely that the differences in the observed temperature
correlations are due to this. This idea corroborates with the fact that sometimes,
within the same study (thus using the same device and rheological method) both
“normal” and “anomalous” behaviours are found, depending on grade of Carbopol®

used (Owen et al. 2003).
At a second analysis of the bibliography given above, one can find, however,

other significant differences between these studies: the physico-chemical properties
of the gels. Thus, various studies used various grades of Carbopol (934, 940, Ultrez
10, etc.) or even custom gel formulations (Owen et al. 2003). Additionally, many of
these studies do not discuss in detail the chemical nature of the cross-linking agent,
the ionic content and the interaction of the polyacrylic acid molecules with various
types of solvent used (water, water/ethanol mixtures, water ethylene/glycol mixtures
and glycerol).

To conclude this part, a pertinent comparison and analysis of the existing body of
literature on the thermo-rheological properties of Carbopol® is difficult to make based
on the published results. This is due in our opinion to an incomplete understanding
and control of the physico-chemical interactions that govern the cross-linking, ion-
isation, swelling and jamming dynamics of the individual molecules. Each of these
molecular-scale physico-chemical processes is temperature-dependent (and they are
characterised by their own chemical activation energies which are largely unknown)
and the overall temperature dependence observed in a macroscopic rheological exper-
iment is the result of a highly non-trivial “average” of these microscopic dependen-
cies. We discuss in the following the thermo-rheological properties of a Carbopol®

gel under shear. For a more comprehensive account of the main results, the reader is
referred to Weber et al. (2012).

5.1.1 Experimental Setup and Methods

To prevent the wall slip, a parallel plate geometry with cleated surfaces has been
used, Fig. 36a. The radius of the parallel plates is R = 40 mm, and the gap measured
by the rheometer is d = 1 mm. The cleats have an equal height H = 600µm and
are disposed in a rectangular grid over each plate. Several advantages of cleated
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Fig. 36 a Schematic illustration of the cleated parallel plate geometry. b Temperature calibra-
tion measurements. The symbols are circles—the top plate, squares—the bottom plate. A thermo-
rheologically simple silicon oil with a known activation energy has been used

geometries over other methods of preventing the wall slip effect (such as using a
sandblasted geometry or a vane tool) have been recently demonstrated experimentally
(Nickerson and Kornfield 2005). Among these advantages, the cleated geometry
allows suppression of the wall slip effect even in the absence of significant normal
forces and creates a well-defined shear.

The flow between neighbouring cleats is restricted and stops over a finite distance
� (the flow penetration length) along the vertical axis (see Fig. 36a) and thus, two
parallel no-slip surfaces are formed at an effective distance de = d + 2�. Conse-
quently, the stress measurements should be corrected according to σ = σa

de
d where

σa is the apparent stress value recorded by the rheometer. A second concern was
related to the possible artefacts introduced by fluid evaporation during long experi-
mental runs. In order to prevent this, a solvent trap has been placed around the free
fluid meniscus. The sealing of the solvent trap on the base plate of the rheometer
has been insured by a thin layer of vacuum grease. After each experimental run,
it has been carefully checked (by visual inspection) that no significant changes in
the shape of the meniscus occurred. Additionally, we have checked at the end of
each run that one can reproduce the viscosity measured during the pre-shear step
which indicated us that the evaporation effects were either minimal or absent. A
third concern is related to the temperature gradient which develops within the space
between the parallel plates of the measuring geometry. To monitor and account for
this effect, two temperature probes have been embedded in each of the parallel plates
of the geometry. The temperature of each plate (Tt , Tb) has been measured as a
function of the temperature set to the Peltier plate of the rheometer Tpp in the range
5–55 ◦C. Beyond this range of temperatures, we have found that the measurements
are not reproducible (a scatter of nearly 75% over several subsequent runs with fresh
samples was observed) and, consequently, unreliable. During these measurements,
a Carbopol® sample was loaded but the top plate of the rheometer was held static.
The transient temperature signals have been monitored using a digital oscilloscope
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Fig. 37 Validation of the
cleated geometry and stress
correction. The symbols are
circles—cone and plate
geometry; squares—the
cleated geometry illustrated
in Fig. 36b. A
thermo-rheologically simple
silicon oil with a known
activation energy has been
used

and each temperature reading has been made only after the temperature of each plate
has reached a steady state. Calibration measurements of the temperature at the top
and bottom plate of the rheometer as a function of the temperature set to the Peltier
plate are presented in Fig. 36b.

As the temperature set to the Peltier plate, Tpp, departs the room temperature,
a linear increase of temperature difference between the top and the bottom plates
is observed. By measuring the temperature difference between the plates at a fixed
temperature of the Peltier plate for various values of the distance d between the plates,
it was checked that the temperature varies linearly within the gap. This allowed
us to define an effective temperature of the sample as an arithmetic mean of the
temperatures of the top and the bottom plates of the rheometer, T = (Tt + Tb)/2.
The reliability of the stress and temperature corrections described above was assessed
by comparative thermo-rheological measurements performed on a calibrated silicon
using both the cleated geometry described above (together with the stress and the
temperature corrections) and a standard cone and plate geometry. The result of this
comparison is presented in Fig. 37.

The viscosity measurements performed on the two geometries come into a per-
fect agreement which indicates that both the stress correction related to the cleated
geometry and the temperature correction related to the temperature gradient between
the parallel plates are reliable and can be safely employed in the thermo-rheological
measurements concerning the Carbopol® gel.

5.1.2 Thermo-Rheological Properties of a Carbopol® Gel

Each of the thermo-rheological measurements performed with Carbopol® gels fol-
lowed the procedure in Sect. 1. More specifically, corresponding to each average
temperature T the material has been subjected to a controlled stress stepped ramp



234 T. Burghelea

similar to the one schematically illustrated in Fig. 3a, and flow curves qualitatively
similar to those illustrated in Figs. 3b, 4c and 7a were recorded. The characteristic
forcing time (see Sect. 1 for a detailed discussion) has been kept constant, t0 = 0.66 s.
For each ascending/descending controlled stress ramp, 1000 linearly spaced stress
values have been explored ranging between 0.1 and 20 Pa.

The advantage of this rheological protocol is twofold. First, it allows the simul-
taneous assessment of both elastic and viscous rheological parameters. Second, it
allows a more accurate measurement of the yield stress within the phenomenological
framework briefly introduced in Sect. 2 (and detailed in Putz and Burghelea 2009),
thus avoiding the inherent inaccuracies related to the classical Herschel–Bulkley
nonlinear fitting procedure.

At low values of the applied stress corresponding to the solid deformation regime
(ā → 1) the elasto-viscoplastic constitutive relation defined by Eq. 8 reduces to the
Hooke’s law, σ = Gγ. Bearing in mind that the controlled stress ramp is linearly
spaced in time, this provides us with a quick way of estimating the elastic mod-
ulus by monitoring the plateau observed in the solid range on each branch of the

(a)

(c)

(b)

Fig. 38 a Temperature dependence of the elastic moduli, measured from the increasing (the empty
symbols) and decreasing (the full symbols) branches of the controlled stress ramp. b Temperature
dependence of the consistency. c Temperature dependence of the power law index. The symbols
in each panel refer to different Carbopol® weight concentrations: squares—c = 0.1%; triangles—
c = 0.15%; circles—c = 0.2%
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stress ramp (increasing/decreasing stresses). The measured dependence of the elas-
tic moduli Gu,Gd measured on the increasing/decreasing branches of the flow ramp
(full/empty symbols) performed with Carbopol® is presented in Fig. 38a. The error
bars have been calculated to be repeating each test four times with a fresh sample.
Within the accuracy of the measurements, no sensitive temperature dependence of
the elastic moduli is observed (but only an obvious dependence on the concentra-
tion of Carbopol®). Thus, the solid-like deformation observed in a range of low
applied stresses is inconsistent with a rubber-like behaviour, which typically man-
ifests through a proportional increase of the elastic modulus with the temperature
(Larson 1999).

By fitting controlled stress ramps measured at various temperatures with the phe-
nomenological model presented in Sect. 2, one obtains the temperatures dependencies
of the consistency K , power law index n and the yield stress, σy . Similarly, neither
the consistency presented in Fig. 38b nor the power law index presented in Fig. 38c
depends on the temperature but solely on the polymer concentration. The invariance
of the consistency with the temperature is at odds with the observations by Peixinho
et al. (2008), which indicate an Arrhenius-type exponential decay of the consistency
with the temperature.

A strikingly different behaviour is observed for the temperature dependence of the
yield stress, σy (Fig. 39). Corresponding to a critical temperature Tc, a local minimum
of the dependence is observed. This unexpected behaviour has been observed for each
value of the Carbopol® concentration, and the non-monotone trend of the curves
clearly highlighted by the dashed line in Fig. 39 falls beyond the error bars of the
measurements. The critical temperature Tc marks the transition from a Arrhenius-like
behaviour described by σy = σ0

ye
�Ea
RT (the full lines in Fig. 39) to a anomalous non-

Arrhenius one and decreases with increasing Carbopol® concentration. Here, �Ea

and R stand for the activation energy and the universal gas constant, respectively.

Fig. 39 Temperature
dependence of the yield
stress measured for three
distinct values of the
Carbopol® concentration:
squares—c = 0.1%;
triangles—c = 0.15%;
circles—c = 0.2%. The
dashed line marks the
transition from an Arrhenius
temperature dependence to a
non-Arrhenius one
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As the observation of an anomalous temperature dependence of the yield stress
(and implicitly of the viscosity measured at a given applied stress, because the consis-
tency and the power law index are temperature invariant, as shown in Fig. 38b and c)
was quite unexpected and intriguing (particularly the increase of σy for T > Tc ), the
calibration measurements presented in Fig. 39 have been repeated several times and
subsequently reproduce this result. As the same stress calibration and temperature
correction have been employed for all the measurements performed on the various
Carbopol® gels as in the case of the calibration measurements illustrated in Fig. 37,
we may safely rule out the possibility that the anomalous temperature dependence
observed in Fig. 39 is the result of an experimental artefact.

Attempting to qualitatively understand the temperature dependence of the yield
stress above the critical temperature within the classical framework of the Arrhenius
law would quickly lead to an unphysical conclusion: the activation energy is negative
which apparently violates the second law of thermodynamics. This prompts one to
seek an explanation for the experimentally observed anomalous behaviour beyond the
“classical” Arrhenius framework. To this discussion, we dedicate the next subsection.

5.1.3 A Possible Qualitative Explanation for the Anomalous
Temperature Dependence of the Yield Stress

The Arrhenius viscosity–temperature correlation emerges as a particular case from
the more general theory developed by Henry Eyring which described the fluid flow
as an activation process (Eyring 1936; Ree and Eyring 1955). At its turn, the Eyring
theory of flow as an activated process emerged as a particular case of the Theory
of Rate Processes which has significantly reshaped the modern chemical physics
(Glasstone et al. 1941). We briefly present in the following the main results of the
Eyring theory.

For a detailed discussion, we refer the reader to the classical textbook by Bird
et al. (2002). Similarly to the excitation of atoms from their ground state to various
energetic levels, Eyring has interpreted the motion of a “flow unit” (we use the term
originally employed in Eyring 1936) along a given direction x as a tunnelling process
of an energy barrier. Although the Eyring flow activation theory has been employed by
several authors to explain the yielding in extension of amorphous polymers (Richeton
et al. 2005; Bauwens-Crowet et al. 1972), we are not aware of any similar work for
viscoplastic materials under shear.

In the absence of a shear force, the energy barrier associated to the displacement
of the neighbouring material layers along the x-direction is symmetric and, conse-
quently, the probabilities of hopping (or hopping rates) along and opposite to the
x-direction are equal, ν+ = ν− = ν0e

�Ea
RT . Here, ν0 is the equilibrium hopping fre-

quency, �Ea is the activation energy per mol of material and R is the universal gas
constant.
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When an external shear force f+ is applied onto the material layers along the
direction x , the symmetry of the activation energy barrier is broken, �E−,+ =
�Ea ± f+DNA) where NA stands for the Avogadro’s number and D is a charac-
teristic space scale (measured along the shearing direction, “+”) associated to the
gel network. Consequently, the hopping rates along and opposite to the direction of
the shearing force ν+, ν− are no longer equal and an effective hopping rate along the
direction of the imposed shear can be calculated by the difference:

ν = ν+ − ν− = 2ν0e
−�Ea

RT sinh

[
f+D

2kBT

]
. (37)

Denoting by A the characteristic shearing area between two neighbouring gel
elements and interpreting the effective hopping rate as a microscopic rate of shear
ν = γ̇, one can invert Eq. (37) and obtain the viscosity1:

η (γ̇, T ) = 2kBT

V ∗γ̇
sinh−1

[
γ̇

2ν0
e

�Ea
RT

]
, (38)

where V ∗ = AD stands for a characteristic volume of the gel network. In the case of
a Carbopol® gel, we expect V ∗ to be a non-trivial function of the molar mass of the
polyacrylic acid, the polymer concentration and the pH which controls the degree
of swelling of individual molecules (Gutowski et al. 2012).

For simple fluids, it is often assumed that

f+D
2kBT

� 1, (39)

and Eq. (38) reduces to the well-known Arrhenius law2:

η (γ̇, T ) = kBT

V ∗γ̇
e

�Ea
RT . (40)

To test the applicability of the simplifying condition given by the inequality
Eq. (39) for the case of a Carbopol® gel, one can consider as a typical space scale
related to the gel network D ≈ 1µm, A ≈ 1µm2, which are of the same order of
magnitude with the values assessed via diffusion measurements (Oppong et al. 2006;
Oppong and de Bruyn 2007), and σ = 1 Pa which leads to f+D

2kBT
≈ 240.

These simple numerical estimates indicate that, in the case of a percolated
Carbopol® gel structure, one should not expect the simplified Arrhenius law to apply
in the whole range of temperatures and one should consider instead the full Eyring
dependence given by Eq. (38).

1The derivation of Eq. (37) has been related to the shearing force via η (γ̇) = f+
Aγ̇ .

2This can be easily seen if one retains from the series expansion of the right-hand side of Eq. (37)
only the first-order term.



238 T. Burghelea

If one assumes that V ∗ is temperature invariant,3 it can readily be shown that there
exists a critical temperature Tc corresponding to which the viscosity given by Eq. (38)
passes through a local minimum. By solving numerically the equation ∂η(γ̇,T )

∂T = 0,
it can be readily shown that the critical temperature Tc which marks the transition
from a thermo-rheologically simple (Arrhenius-like) behaviour to a anomalous one
is a decreasing function of γ̇

ν0
at a fixed value of the activation energy �Ea .

We emphasise once more that the Eyring model does not directly refer to the
temperature dependence of the yield stress but to that of the viscosity. However,
within a Herschel–Bulkley framework and due to the temperature invariance of both
the consistency and the power law index (see the data presented in Fig. 38b and c), the
yield stress σy at a given temperature T is a linear function of the viscosity measured
at the same temperature and a fixed rate of shear, σy = η (γ̇, T ) γ̇ − K γ̇n . Thus,
one can conclude that the Eyring theory may qualitatively describe the anomalous
temperature dependence of the yield stress illustrated in Fig. 39.

We propose in the following a simplistic phenomenological interpretation for the
existence of a critical temperature Tc beyond which an anomalous temperature corre-
lation is observed. The microstructure of a polyacrylic micro-gel system statistically
described by the characteristic volume V ∗ is the result of two competing effects:
swelling of individual micro-gel particles and osmotic de-swelling.

Following Cloitre et al. (2003) and Borrega et al. (1999), the swelling behaviour
of a polyelectrolyte gel is governed by three contributions: the mixing entropy of
the polymer molecules, the balance of osmotic pressure exerted by the counter-
ions trapped within the micro-gel particles and the pressure of the ions present in
the solution and the elasticity of the gel network. At a neutral pH, the degree of
ionisation of individual polyacrylic acid molecules is high and, consequently, the
mixing entropy can be neglected in the swelling equation:

�in + �e = �out . (41)

Here, �e stands for the elastic pressure exerted upon the micro-gel particles and �in ,
�out stand for the osmotic pressures due to the mobile ions inside and outside the
micro-gel particles. The osmotic pressures are related to the concentrations of ions
Cin , Cout via �in,out = RTCin,out . Assuming that all ions are contained within the
micro-gel particles (which is reasonable provided that no salt is added to the system),
Eq. (41) reduces to �in = �e. The concentration of ions trapped into the micro-gel
particles may be written as Cin = αC0zQ−1 where C0 is the average concentration
of polyacrylic acid inside the micro-gel particles, α is the degree of ionisation, z is
the molar fraction of acidic groups and Q = V ∗/V0 is the swelling ratio (V0 is the
characteristic volume of the un-swollen micro-gel particles).

3This is for now only a plausible assumption and a direct experimental investigation by fluorescent
visualisation of the gel network as recently performed by Gutowski et al. (2012) would be highly
needed to test it.
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Because the macroscopic elastic modulus reflects the microscopic-scale elasticity
of the micro-gel structure, the temperature invariance illustrated in Fig. 38a indicates
that the elastic pressure of the gel network �e is temperature invariant. With these
considerations, a simple algebraic manipulation of Eq. (41) would lead to the con-
clusion that the swelling ratio is proportional to the temperature or, equivalently
V ∗ ∝ T . Thus, within this regime, the pre-factor in Eq. (38) is practically temper-
ature independent which explains why the temperature dependence of yield stress
(viscosity) can be fairly well described by an Arrhenius-type correlation, see the full
lines in Fig. 39. The osmotic de-swelling occurs when counter-ions may escape from
the core of micro-gel particles into the solution by penetrating the outer shell of the
particles where the local electro-neutrality condition is not fulfilled. The fraction � of
these counter-ions is proportional to the Debye length, � ∝ λD , (Cloitre et al. 2003;
Israelachvili 2010). Bearing in mind that the Debye length scales as T 1/2 one can
conclude that an increase of the temperature translates into an increase of the num-
ber of counter-ions that leave the micro-gel particles which promotes the de-swelling
process. According to Cloitre et al. (2003), if one accounts for the competing effects
of the swelling and osmotic de-swelling and if one denotes the volume fraction of
micro-gel particles by �, the concentrations Cin,out may be rewritten as

Cin = α (1 − �) zC0

Q
(42)

Cout = α�zC0

Q

�

1 − �
. (43)

A dynamical equilibrium between the swelling and the osmotic de-swelling may
be achieved when the concentration of ions trapped within the micro-gel particles
becomes comparable to that of the counter-ions that leave the micro-gel particles,
Cin ≈ Cout . This, together with Eq. (42) and with the square root temperature scaling
of �, indicates the existence of a critical temperature Tc and a critical characteris-
tic volume defied implicitly via �c = 1 − �c. Beyond this critical temperature Tc,
the osmotic de-swelling wins over the swelling and a further increase of the char-
acteristic volume V ∗ with the temperature is no longer possible. Consequently, the
pre-factor in Eq. (38) is proportional to the temperature which translates into the
anomalous behaviour observed in Fig. 39. For high polymer concentration, the range
of temperatures within which individual molecules can freely swell upon an increase
of the temperature becomes narrower and the critical condition will be fulfilled at a
lower temperature Tc. As a consequence, within this phenomenological picture, one
should expect a decrease of the critical temperature Tc with increasing Carbopol®

concentration. This trend is apparent in Fig. 39. A quantitative description of the data
presented in Fig. 39 by the Eyring model could not be obtained. The reason behind
this might be that Eq. (38) considered a single (plastic) “flow unit” characterised by
a single specific volume V ∗ related to the average size of the percolated gel network.
A more realistic model should account for the presence of the Newtonian solvent (in
our case the water trapped into the swollen polymer network) and a realistic statistical
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distribution of V ∗. Such a statistical distribution is difficult to predict theoretically
from first principles and, most probably should be tackled experimentally by direct
visualisation of the polymer network, as very recently performed (Gutowski et al.
2012).

5.2 Rayleigh–Bénard Convection in a Shear-Thinning Yield
Stress Material

The Rayleigh–Bénard convection in a fluid heated from below is a paradigm of
pattern-forming systems (Cross and Hohenberg 1993).

Imposing a vertical temperature gradient within a Newtonian fluid by heating it
from below translates into a vertical gradient of the fluid density or buoyancy which,
beyond a critical value of the temperature gradient �Tc, may overcome the viscous
dissipation and trigger an upward motion of the fluid elements. Within a finite-size
system and in the virtue of the mass conservation, this instability results in a regular
and steady fluid motion in the form of rolls or hexagons which is classically referred
to as the Rayleigh–Bénard thermal convection.

The transition to laminar Rayleigh–Bénard convection in Newtonian fluids has
been intensively studied during the past five decades both theoretically and exper-
imentally. Among a large amount of published work on the topic, we can refer the
reader to textbook of Koschmieder (1993) and the review article by Bodenschatz
et al. (2000).

A Newtonian fluid heated from below loses its hydrodynamic stability when the
stresses associated to the buoyancy forces exceed those associated to the viscous
dissipative forces.

The balance between the buoyancy and the viscous forces is quantified by the
Rayleigh number:

Ra = β�T gH 3

k · ν , (44)

where β is the coefficient of thermal expansion, g is the gravitational constant, k is
the thermal diffusivity, ν is the kinematic viscosity, �T is the temperature difference
measured between the plates and H is the distance between plates. It has been shown
both theoretically and experimentally that the onset of the convection corresponds
to Rac ≈ 1708.

Within the Boussinesq approximation, it has been demonstrated theoretically that
the Rayleigh–Bénard convection emerges via a backward bifurcation (which may
become an imperfect bifurcation in a finite system) and its onset can be described
via a linear theory (Joseph 1970; Sani 1964). Moreover, it is demonstrated that a
finite-amplitude bifurcation is not possible in this case.

If Q is the amount of heat transported between plates via the thermal convection,
the balance between the convective and conductive heat transfer is quantified by the
Nusselt number:
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Nu = QH

α�T
, (45)

where α is the thermal conductivity of the fluid.
Whereas there exist an overwhelming number of fundamentally important studies

of the Rayleigh–Bénard convection in Newtonian fluids, much less progress has
been achieved in understanding the thermal convection in non-Newtonian fluids. The
reason for this most probably originates in the highly non-trivial coupling between
the hydrodynamic problem, the rheological properties of the fluids and their thermal
dependence.

A systematic theoretical analysis of the Rayleigh–Bénard convection in shear-
thinning fluids is presented by Albaalbaki and Khayat (2011). Using the Carreau–
Bird rheological model, they show that although the onset of the thermal convection
is the same as in the Newtonian case, the non-Newtonian fluids can convect in the
form of rolls, squares or hexagons, depending on the degree of shear thinning. They
also predict that in the case of a strong enough degree of shear thinning the bifurcation
may turn sub-critical.

The experimental investigation presented by Lamsaadi and his coworkers for a
power law fluid revealed an increase of the Nusselt number with the shear-thinning
index (Lamsaadi et al. 2005). There exist several systematic studies of the Rayleigh–
Bénard convection in viscoelastic fluids focusing on the role of elasticity (quantified
by the Weissenberg number) on the onset of convection and on the main features of
the transition (Park and Ryu 2001; Park and Park 2004). The experimental investi-
gation presented by Martinez-Mardones and his coworkers for a viscoelastic fluid
has captured the influence of the rheological parameters on the critical conditions
(Martinez-Mardones et al. 2000). The experiments performed on viscoelastic shear-
thinning fluids by Liang and Acrivos (1970) indicate that the transition to convective
states emerges as a supercritical bifurcation. They also conclude that the experimen-
tally observed convective patterns are similar to the Newtonian ones. The main effect
of the non-Newtonian rheological behaviour on the Rayleigh–Bénard convection is
an increase of the Nusselt number as compared to a Newtonian fluid with the same
viscosity.

The practical interest in understanding thermo-convective instabilities in vis-
coplastic originates from the fact that such materials are relevant to various geophys-
ical flows such as magma flows within the Earth’s mantle (Griggs 1939; Meinesz
1947; Orowan 1965; Le Bars and Davaille 2004).

Systematic studies of the hydrodynamic stability of yield stress fluids have been
performed only recently (Frigaard et al. 1994; Landry et al. 2006; Metivier et al.
2005). In this context, there exist several fundamental mathematical and physical
problems yet to be understood. One of these problems concerns with the occurrence
of the Rayleigh–Bénard instability in yield stress materials.

The very first theoretical study of the Rayleigh–Bénard convection in a yield
stress fluid was performed by Zhang et al. (2006). Using a linear stability approach
formulated within the framework of the Bingham rheological model, they show that
base state is stable to infinitesimally small perturbations regardless the finite value
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of the yield stress. This is due to the fact that, corresponding to the stable base flow
state, the Bingham model predicts an infinite viscosity which cannot be destabilised
by infinitesimally small perturbations.

The weakly nonlinear stability analysis performed by Balmforth and Rust (2009)
carried out within the framework of the Bingham rheological model indicates that
a sufficiently large finite-amplitude perturbation of the base state of a viscoplastic
fluid may trigger Rayleigh–Bénard convection.

The experiments that complement their theoretical investigation confirm that the
presence of the yield stress generally suppresses the convection in the sense that the
fluids will not spontaneously convect unless a perturbation of a finite amplitude is
applied. The magnitude of the perturbation needed to initiate the convection increases
with the yield number Y which characterises the competition between the buoyancy-
induced stresses and the yield stress of the fluid.

A numerical simulation study of the Rayleigh–Bénard convection of a Bingham
fluid in a square enclosure is presented by Turan et al. (2012). By a systematic scaling
analysis Turan and his coworkers assess the scaling of the relevant non-dimensional
numbers corresponding to the onset of the instability and relate the results to the
strength of the gel.

An experimental study of the development of thermal plumes within a Carbopol®

gel due to local heating was recently presented by Davaille et al. (2013). Depending on
the yield number Y , they have observed three distinct dynamic regimes: stable, small-
scale convective (the convection is localised around the heater) and thermal plumes.
A systematic description of the morphology of the thermal plumes is provided as a
function of the yield number. The study by Davaille et al. (2013) reinforces the main
conclusion of the study by Balmorth and Rust that finite-amplitude perturbations
may indeed destabilise the base flow of fluids with a finite yield stress.

Darbouli et al. (2013) have studied experimentally the Rayleigh–Bénard convec-
tion within various Carbopol® gels confined in a cylindrical cavity and heated from
below. Although they did not intentionally applied a finite-amplitude perturbation,
they did observe convective states various values of the yield stress that cover a lim-
ited range (0.0047–0.104 Pa) (according to their Table 1). Bearing in mind that the
accuracy of the determination of the yield stress via classical rheometry is somewhat
limited and the uncertainties becomes increasingly larger when the yield stress is
diminished, it is not fully clear whether their materials truly possessed a yield stress
or they were merely shear-thinning fluids (which is the case when the concentration
of Carbopol® is smaller than the overlap concentration even at neutral pH ).

In the case of a viscoplastic fluid, the onset of the Rayleigh–Bénard convection
coincides with the onset of the solid–fluid transition (yielding) and thus, the viscous
stresses are infinite at the onset. This suggests that, in the case of a viscoplastic
fluid, the onset condition should be reconsidered. For this purpose, the force balance
criterion can be modified by considering that the thermal convection is triggered
when the stresses associated to the buoyancy overcome the yield stress τy of the gel
and by replacing the viscous timescale with a characteristic timescale associated to
the microstructure of the gel:
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Ra = ρβ�T gH

τy

td
tg
≥ Rac (46)

Here, td = H 2

κ
is the characteristic timescale associated to the thermal diffusion

and tg is a characteristic timescale associated to the gel microstructure near the onset
of the convection (i.e. near the yield point) which will be discussed in detail through
our paper in connection to the rheological properties of the Carbopol® gels. As the
yield stress has been considered as a scale for the stresses, the definition above is
valid only around the onset of the instability which coincides with the onset of the
solid–fluid transition (yielding). Far beyond the onset, the Rayleigh number should
be rewritten in terms of a shear-thinning viscosity.

From a phenomenological point of view and following the basic ideas of the
(energy) balance theorem initially introduced by Chandrasekhar (1961), one can
alternatively consider that the thermal convection in a yield stress fluid is initiated
when the energy dissipated per unit volume of material by the buoyancy forces
becomes comparable in magnitude to the maximal elastic energy that the gel network
can locally store per unit volume prior to yielding: Wb ≥ We. Here, We = ρgβ�T
is the energy dissipated per unit volume by the buoyancy forces and We = τy is the
elastic energy per unit volume. With these considerations, the energy criterion for the
convective instability in a yield stress fluid can be formulated in terms of the yield
number Y :

Y = τy

ρβgH�T
≤ Yc (47)

To the best of our knowledge, there exists no experimental assessment of the
validity of the force and energy balance criteria for the transition to thermal convective
states in a Carbopol® gel given by Eqs. (46) and (47).

The present study concerns with an experimental investigation of the Rayleigh–
Bénard convection in Carbopol® gels with various concentrations (yield stresses).
Among the primary goals of the study, we mention the accurate detection of the onset
of the instability in relation with the rheological properties of the gel (yield stress),
the characterisation of the convective flow patterns as a function of the control param-
eter. Of particular interest is the assessment of the nature of the bifurcation towards
convective states which is little documented by the existing body of experimental
work. In addition to these goals, we are interested in the scaling of the physical
parameters characterising the onset of the convective instability with the rheological
properties of the solutions which will allow one to probe the applicability of the force
and energy balance stability criteria discussed above.

5.2.1 Experimental Setup and Methods

The Rayleigh–Bénard convection cell is schematically illustrated in Fig. 40. It con-
sists of a rectangular cavity with acrylic-made flat transparent walls. The length of the
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Fig. 40 Schematic view of the experimental setup L—solid-state laser, CO—cylindrical optics
block, CP—copper plate, TP—top plate, BP—bottom plate, CFB—cooling fluid bath, A2D—
analogical to digital signal conditioning block, RB—reference box

fluid cavity is L = 386 mm, the width is W = 186 mm and its height is H = 20 mm.
The length-to-height aspect ratio of the cavity is L/W = 19.3. The bottom and the
top enclosures of the cavity are 3-cm-thick polycarbonate plates. The smooth surfaces
of the plates have not been treated neither chemically nor mechanically, and thus the
wall slip phenomenon was present during the experiments with Carbopol® gels. The
significant width of these two plates and their small thermal conductivity coefficient
have been purposely chosen in order to obtain a uniform temperature distribution
along the entire fluid cavity. The bottom plate was heated electrically by a resistive
circuit fed by a constant current I supplied by the stabilised current supply CS. The
heating power was calculated as P = RI 2 where R = 25.5 � is the resistance of the
electrical heater. To avoid the thermal damage of the bottom polycarbonate plate, a
copper plate CP is interposed in between the polycarbonate plate and the resistive
heater.

The top plate was uniformly cooled by means of a circulating fluid bath CFB.
The circulating fluid is a mixture of glycerin and anti-freeze, and its temperature is
maintained constant through our experiments, Twb = −10 ◦C.

The transition to the Rayleigh–Bénard convection was simultaneously investi-
gated by both integral measurements of the temperature difference �T between
plates and local measurements of the amplitude of the convective states.

Prior to characterising the transition to the Rayleigh–Bénard convection within
a Carbopol® gel, we have focused on a systematic validation of the experimental
system and the measuring techniques with a Newtonian fluid, pure Glycerin. The
experimentally measured values of the physical parameters for the Glycerin are
β = 5 · 10−4K−1, g = 9.8 m2/s, κ = 1.37 · 10−7 m2/s and ν = 872 · 10−6 m2 s−1.

Measurements of the temperature difference �T between the plates performed
with a Glycerin solution for both increasing and decreasing values of the heating
power P are presented in Fig. 41a. A linear increase of the integral temperature
difference between the plates �T with P which corresponds to a purely conductive
heat transfer regime (the slope of this dependence is proportional to the thermal
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(a)

(b)

Fig. 41 a Temperature measurements within the bottom plate BP (the empty circles) and within
the top plate TP (the empty squares). The full lines are linear fitting functions and the full symbols
are the linear extrapolations of the temperature measurement at the contact points with the fluid.
b Time series of the temperature difference �T . td stands for the characteristic thermal diffusion
time, and tc stands for the characteristic slowing downtime. The dependence of the thermal diffusion
time td on the heating power, P , measured for three Carbopol® solutions with the concentrations
c = 0.06, 0.075, 0.08% for both increasing (full symbols) and decreasing (empty symbols) heating
powers is presented in the inset. The full line is the theoretical estimate, td ≈ 2730 s (see text)

conductivity α of fluid) is observed below a critical value of the heating power Pc ≈
16.32 W. Beyond this onset, the dependence becomes nonlinear consistently with a
mixed conductive–convective heat transfer regime. Based on the material parameters
enumerated above, the critical Rayleigh number corresponding to the onset of the
thermal convection can be estimated Rac ≈ 1774 which is in a very good agreement
(within 4%) with the theoretical value Ratc = 1708 given in Chandrasekhar (1961).

The dependence of the reduced temperature difference �Tr = �T
�Tlin

− 1 on to
the reduced power Pr = P/Pc − 1 is presented in the top panel of Fig. 41b. Here
�Tlin represents the linear temperature difference measured within the conductive
regime (see the full line in Fig. 41a). It can be observed that the reduced temperature
difference �Tr increases linearly with the reduced heating power Pr consistent with
a supercritical bifurcation towards convective states.

Measurements of the convection amplitude obtained via the DPIV technique as
a function of the heating power are presented in Fig. 41b.

Around the onset of convection, the velocity amplitude follows the Landau theory
of imperfect bifurcations, Landau and Lisfshits (1980):

PrV − aV 3 + h = 0 (48)

Here, a is the amplitude coefficient and h is the imperfection coefficient which quan-
tifies the degree of smearing of the bifurcation. This result agrees with both theoreti-
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cal predictions (Newell and Whitehead 1969; Segel 1969) and previous experimental
findings, Dubois and Bergé (1978).

To conclude this part, the measurements illustrated and discussed above clearly
identify the transition to convective states within a Newtonian fluid as an imperfect
bifurcation.

After having probed by these measurements the reliability of our experimental
setup and measuring methods, we focus in the following section on the transition to
the Rayleigh–Bénard convection in various Carbopol® gels.

5.2.2 Experimental Observation of the Thermal Convection
in a Carbopol® Gel

To study the thermo-convective stability of a physical gel, we have used various
Carbopol® solutions with weight concentrations ranging in between 0.05 and 0.11%
as working fluids and the same experimental procedures as for the Newtonian test
case discussed in the previous section. The chosen polymer concentrations all lie
above the overlap concentration c∗ which ensures that our working fluids are indeed
yield stress fluids not just weakly shear thinning. A more systematic account of the
experimental observations is given in Kebiche et al. (2014).

As for the case of a Newtonian fluid, the transition to convective states within
various Carbopol® gels is simultaneously assessed by both local flow speed mea-
surements by the DPIV technique and integral measurements of the temperature
difference between the top and the bottom plates, �T (Fig. 42).

Fig. 42 a Dependence of the temperature gradient �T within Glycerin on the heat flux P . The
full/empty symbols refer to increasing/decreasing heat flux. The vertical dashed line marks the
transition between the conductive and convective regimes. A typical DPIV measured convection
pattern is illustrated in the inset. b (Top) Dependence of the reduced temperature �Tr on the reduced
power. The line is a linear fit. (Bottom) Dependence of the pattern amplitude V on the reduced
power Pr . The line is a nonlinear fit according to Landau’s theory of imperfect bifurcations, Eq. (48)
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Fig. 43 Evolution of the flow patterns corresponding to several values of the integral temperature
difference �T indicated in the inserts. The up/down arrows indicate the increasing/decreasing
branch of the heating ramp. The false colour map refers to the absolute value of the flow velocity. A
0.08% Carbopol® solution was used and the onset of the Rayleigh–Bénard convection corresponds
to �Tc = 2.58 ◦C

For each value of the concentration of the Carbopol® solution, no measurable flow
is observed if the integral temperature difference between plates does not exceed a
critical value, �T < �Tc. As the temperature difference is increased past this onset,
the energy dissipated per unit volume of material by the buoyancy forces overcomes
the elastic energy associated with the gel microstructure. Consequently, the gel locally
yields and roll flow patterns are observed. The unstable flow patterns are observed
in the absence of an external perturbation of a finite amplitude.

The evolution of the flow patterns as the control parameter is varied right above the
onset of the convection monitored within a 0.08% Carbopol® solution is illustrated
in Fig. 43.
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Fig. 44 Dependence of
temperature gradient on the
heat flux for six values of the
Carbopol® concentration:
(	, �)—c = 0.11%wt ,
(◦, •)—c = 0.1%wt ,
(�, �)—c = 0.08%wt ,
(�,  )—c = 0.075%wt ,
(�, �)—c = 0.06%wt ,
(�, �)—c = 0.05%wt . The
full/empty symbols refer to
increasing/decreasing heat
flux. The full line is a linear
fit

Right above the onset of the convection (�T = 3.18 ◦C), the flow pattern has a
slightly asymmetric appearance. This may be due to the large characteristic times tc
needed for the pattern to reach a steady state or the so-called critical slowing down
phenomenon which will be discussed in detail through the paper. Upon an increase
of the temperature difference between plates, the flow patterns become more regular
and the horizontal extent λ of the convection rolls decreases (equivalently with an
increase of the horizontal wave number qx = 2π

λ
). It is important to note that the flow

states are reversible upon a decrease of the heating power (or temperature difference)
which is a first indicator that, similarly to the Newtonian case, the transition to the
Rayleigh–Bénard convection in the Carbopol® gel is a continuous one and exhibits
no hysteresis. This qualitative similarity with the transition to convective states within
a Newtonian fluid that deserves being studied in depth.

Integral measurements of the dependence of the temperature difference between
plates �T performed for six values of the Carbopol® concentration and for both
increasing (the full symbols) and decreasing (the empty symbols) values of the heat-
ing power P are presented in Fig. 44.

For each value of the Carbopol® concentration, a linear conductive part of the
dependence is observed below a critical heating power Pc. The slopes of these lin-
ear dependencies are independent on the polymer concentration (see the full line
in Fig. 44) indicating that the polymer addition does not significantly alter the ther-
mal conductivity of the aqueous solutions. This result is fully consistent with direct
measurements of the thermal conductivity coefficient κ performed for each solution
separately (Kebiche et al. 2014). Beyond the onset Pc, the dependence of the tem-
perature difference between plates on the heating power becomes sub-linear and a
convective regime is observed.

Regardless of the yield stress of the Carbopol® solution, the transition from a
conductive to a convective regime is reversible upon increasing/decreasing values of
the heating power and a strong qualitative similarity of these integral measurements to
the similar ones performed with a Newtonian fluid previously discussed is observed.
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Fig. 45 a Dependence of the reduced temperature �Tr on the reduced power Pr for various
Carbopol concentrations, see Fig. 44. The full lines are linear fitting functions. b Dependence the
DPIV measured amplitude of the convection pattern V on the reduced power Pr . The line is
nonlinear fit function according to the Landau theory of imperfect bifurcation, Eq. 48

To gain a deeper insight into the nature of the bifurcation towards convective states
within the Carbopol® solutions, we present the same data in terms of the reduced
variables �Tr , Pr . The dependence of the reduced temperature �Tr on the control
parameter Pr for each Carbopol® solution is presented in Fig. 45a.

Above the onset of the bifurcation, the reduced temperature �Tr scales linearly
with the control parameter and this result is, as in the Newtonian case illustrated in
Fig. 42a, typical for a supercritical bifurcation. This fundamentally important con-
clusion on the nature of the bifurcation towards convective states is reinforced by
the local measurements of the convective amplitude V presented in Fig. 45b. Indeed,
above the onset of the bifurcation, the amplitude data can be well fitted by the
Landau prediction for a supercritical bifurcation. The smearing of the transition data
observed near the onset indicates that the bifurcation is an imperfect one. The degree
of smearing of the bifurcation is rather small (h ≈ 0.05), and the bifurcation is rather
close to a perfect one.

The dependence of the onset parameters on the yield stress of the Carbopol®

solution is illustrated in Fig. 46.
The critical heating power needed to trigger convective states increases

exponentially with the yield stress of the Carbopol® solution, Fig. 46a. This indi-
cates that in solutions with a sufficiently large yield stress the thermal convection
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(a) (b)

Fig. 46 a Dependence of the critical heating power Pc corresponding to the onset of the Rayleigh–
Bénard convection on the yield stress σy of the Carbopol® solution. The line is an exponential fit. b
Dependence of the critical yield number Yc (squares, bottom-left axis) and of the critical Rayleigh
number Rac (circles, bottom-right axes) on the yield stress σy

cannot be experimentally observed as it would require heating powers practically
unsustainable.

Another important issue relates to the right control parameter to describe the
transition towards convective states. In the case of Newtonian fluids, this is the
Rayleigh number (Chandrasekhar 1961). To test if this the case for a Carbopol®

gel, we have calculated the critical Rayleigh number corresponding to the onset of
convection according to Eq. (46). The result is displayed in Fig. 46b (the circles).
Quite remarkably, as the yield stress of the solution varies, the critical Rayleigh
number Rac spans nearly three orders of magnitude. This clearly indicates that,
unlike for the case of Newtonian fluids, Ra is not the right control parameter. On the
other hand, the yield number Y calculated at the onset of the instability according to
Eq. (47) remains of order of unity over the entire range of yield stresses explored.
This indicates that the right control parameter for the thermo-convective instability
in a Carbopol® gel is the yield number.

To conclude this section, we have demonstrated that, contrary to the existing the-
oretical predictions, thermal convection can be triggered in a Carbopol® gel in the
absence of any finite-amplitude perturbation and the bifurcation towards convective
states is an imperfect one (described by the Landau–Ginzburg formalism). A first
physical ingredient that probably needs to be accounted for in the theoretical studies
is related to the rather new scenario of the yielding illustrated in Sect. 2 that accounts
for a gradual yielding process characterised by both a solid–fluid phase coexis-
tence and elastic effects that are not captured by the classical rheological pictures.
Indeed, measurements of the second invariant of the rate of strain (not shown here
as shown in Figure 19 of Kebiche et al. 2014) indicate that the onset of convection
is practically located within the non-trivial solid–fluid coexistence zone (hysteresis)
visible in Figs. 3b and 4. Thus, any theoretical attempt to describe this instability
using the Herschel–Bulkley law that is applicable at much larger rates of strain is not
expected to accurately predict the transition. A second theoretical ingredient worth to
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be accounted for in future theoretical developments is related to the non-trivial (and
rather unexpected) thermo-rheological behaviour of the Carbopol® gel presented in
Sect. 5.1.

6 Concluding Remarks

During the past decade, the fluid dynamics of viscoplastic materials has emerged
as a distinct field of the hydrodynamics of complex fluids rivalling, perhaps, with
the well-established field of hydrodynamics of viscoelastic fluids. This intellectually
very rich discipline brings together several scientific communities: fluid dynamics,
rheology, applied mathematics, thermal science, engineering. The dynamics of yield
stress materials poses highly non-trivial problems even in isothermal flow conditions.

The first class of isothermal flows we have studied was that of low Reynolds
number flows and the main scope was understanding the physics of the solid–fluid
transition in a physical gel subjected to a gradually increasing external stress. The
physical complexity of this problem comes from a strong nonlinearity of the stress
term in the momentum conservation and a highly non-trivial coupling between the
flow field and the microstructure of the material. In this context, the Carbopol® gels
have been considered as “model” yield stress materials for over two decades and
their flows have been traditionally studied within the classical Herschel–Bulkley
model. Yet, it has been shown only recently that this classical picture is unable to
describe several “simple” fluid dynamics problems: the low Re sedimentation of
a spherical object (Sect. 1), the slow withdraw of a rigid plate at a constant speed
(Sect. 1). These rather unexpected experimental facts have prompted us to reconsider
the solid–fluid transition by careful and more systematic rheological tests, Sect. 1.
Contrary to the common belief that Carbopol® gels behave as “model” yield stress
fluids accurately described by the Herschel–Bulkley constitutive equation, we have
found a gradual and irreversible yielding scenario together with significant elastic
effects. Thus, the Herschel–Bulkley constitutive relationship is applicable only far
above the transitional region, i.e. at large enough rates of deformation. In an attempt
to “rationalise” these findings, we have proposed a phenomenological model that
we have coined “The Poor Man Model”, Sect. 2. These results initially published
in Putz and Burghelea (2009) have been received with a fair amount of scepticism
by the viscoplastic community which prompted us for an additional validation in
simple low Reynolds number pipe flow upon an increase/decrease of the driving
pressures (Poumaere et al. 2014). This particular experiment has finally dissipated
any doubts on the nature of the solid–fluid transition: a hysteresis of the deformation
states is equally observed in a pipe flow. Reassured by this result, we have started
to develop a scientifically more solid theoretical approach to explain the solid–fluid
transition, Sect. 3. This time we have resorted to the tools of Statistical Physics and
Critical Phenomena and derived from first principles a model somewhat similar to
the Ising model of the ferromagnetism. The model depends on solely two internal
parameters and, as it is formulated from first principles, it is inherently validated
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from a thermodynamic standpoint. The central conclusion of the approach is that,
when the magnitude of the interactions between the microscopic building blocks
of a yield stress material exceeds a threshold, an irreversible solid–fluid transition
will be observed regardless the manner the material is forced: steadily or unsteadily.
This threshold is the exact physical equivalent of theCurie temperature in a magnetic
system. For weakly interacting systems such as Carbopol® gels, a reversible yielding
scenario may be retrieved in the asymptotic limit of a steady-state external forcing.

An extra level of complexity is added to the flow problem of a yield stress mate-
rial if the Reynolds numbers are sufficiently high. Thus, a fundamental question how
does the viscoplasticity couples to the inertial hydrodynamic instability observed
at Re > 1000, Sect. 4. The complexity of this question comes from two sources
of nonlinearity in the momentum equation: inertial and due to the highly nonlin-
ear dependence of the stresses on the rate of strain. An experimental study of the
laminar–turbulent transition in a Carbopol® gel is presented in Sect. 4.1. The cen-
tral conclusion of this study is that the inertial instability sets in when the Reynolds
stresses become comparable in magnitude with the yield stress. This suggests that,
somewhat peculiarly, the loss of the hydrodynamic stability cannot be fully decou-
pled from the solid–fluid transition although the onset Reynolds number is large.
We have pursued this idea in Sect. 4.2 where we have addressed the question of how
the inertial instability of a plane Poiseuille flow is affected by the yielding scenario.
The central conclusion of this part was that switching from the classical Herschel–
Bulkley yielding scenario to the model by Putz and Burghelea (2009) framework
developed in Sect. 2 changes significantly the stability picture: the elasticity present
in the model by Putz and Burghelea (2009) has a destabilising role. In Sect. 4.3, we
show that if one generates strong spatial gradients of stresses via a chemical reaction
that locally produces a Carbopol® gel one obtains a sharp hydrodynamic instability
in the absence of any inertial contribution. We have shown that this novel instability
may turn useful in both efficiently displacing very viscous fluids from a flow channel
and obtaining efficient mixing in situations where increasing Re is un-practical, e.g.
micro-fluidics systems.

Yet, a third layer of complexity is added to the flow problem of a viscoplastic mate-
rial if one considers the non-isothermal case (Sect. 5). What looked at a first glance
the most basic and straightforward problem was related to the temperature depen-
dence of the rheological properties of a Carbopol®, Sect. 5.1. Quite surprisingly, the
thermo-rheology of a Carpobol® gel departs from the classical Arrhenius picture. We
provide a phenomenological explanation in terms of the physico-chemical properties
of a swollen system of polyacrylic acid spongy particles in conditions of neutral pH .

In Sect. 5.2, we have shown that, contrary to the existing theoretical predictions,
the Rayleigh–Bénard convection can be triggered in a Carbopol® gel in a wide range
of measurable yield stresses. Although we do not yet have a detailed theoretical
explanation for this fact, we believe this discrepancy originates from the non-trivial
yielding scenario observed experimentally in Sect. 1 and theoretically described in
Sects. 2 and 3.
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