
Constitutive Models of Complex Fluids

Volfango Bertola

Abstract This chapter provides an overview of the most common constitutive mod-
els used to describe the behaviour of non-Newtonian flows. For practical purposes,
models are sorted into generalised Newtonian models, viscoelastic flow models and
models for viscoplastic flows.

1 Introduction

Constitutive models, or constitutive equations, express in general a relationship
between the force applied to amaterial and the consequent deformation; in the case of
a fluid, which does not have a reference shape, the relationship is between the applied
force and the rate of deformation. Since the applied force is always distributed over
the fluid, usually constitutive models relate, more conveniently, the applied stress to
the rate of deformation, or velocity gradient, which is expressed in tensorial form as

� = f (�) (1)

where � is the symmetric stress tensor, with six independent components:

� =
⎛
⎝

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎞
⎠ (2)

with σxy = σyx , σxz = σzx and σyz = σzy , and � is the deformation rate tensor, also
symmetric:
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where u, v and w are the velocity components in the three Cartesian directions x , y,
z, and ∇v is the velocity gradient tensor.

Such constitutive equations can be obtained directly from first principles using a
statistical mechanics approach, such as in the case of the steady flow of a hard sphere
gas (Zwanzig 1979), from empirical measurements, or, more frequently, from purely
mathematical models that are able to reproduce certain behaviours observed either
at macroscopic or at molecular level.

In order to formulatemathematical models that are physically significant, it is nec-
essary to introduce at least two assumptions: (i) the system is local and causal, i.e.
the stress at a material point depends only on the history of that material point and its
neighbours, and cannot depend on future events; (ii) constitutive models should not
depend on the translation, rotation or acceleration of the reference frame (e.g. Carte-
sian), i.e. the stress at a material point does not change if calculated before and after
any transformation of the reference frame.Of course, these assumptions are necessary
but not sufficient, which explains why mathematical models can only approximate
the behaviour of a physical system within a limited range of the system parameters.
The assumption of material frame indifference has important consequences on the
mathematical formulation of constitutive models of viscoelastic flows, which will be
discussed in Sect. 3.

The simplest constitutive equation describes the so-calledNewtonian flows,where
the stress tensor is a linear function of the deformation rate:

� = −p I + 2η� (4)

where p is pressure, I is the identity matrix, and η is the Newtonian viscosity. The
Newtonian constitutivemodel given by Eq. (4) is commonly used to describe the flow
of simple fluids, such as water and air. Constitutive models that cannot be reduced to
Eq. (4) describe non-Newtonian flows. Since Eq. (4) expresses a relationship between
flow variables, the attributes “Newtonian” and “non-Newtonian” always refer to a
flowing fluid, therefore they are by nomeans attributes of the fluid itself. For example,
fluids that usually exhibit Newtonian behaviour may become shear-thinning at high
shear rates (Pipe et al. 2008).

Non-Newtonian constitutive models can be sorted into two main families: time-
independent fluids, if the response of thematerial to an applied stress is instantaneous
and fully reversible, and time-dependent, if the material response depends on its
previous history. It is important to remark that, depending on the flow parameters,
the behaviour of the same fluid can be described either by a time-independent or by
a time-dependent model.
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A comprehensive analysis of constitutive models can be found in a number of
excellent reference books (Larson 1999; Bird et al. 1987; Joseph 1990; Phan-Thien
2002). In the following sections, the most common constitutive models to describe
the flow of complex fluids are sorted into generalisedNewtonianmodels, viscoelastic
flow models and models for viscoplastic flows.

2 Constitutive Models for Generalised Newtonian Flows

In generalised Newtonian constitutive models, viscosity is a function of the second
invariant (or quadratic invariant) of the strain rate tensor, defined as

I2 = 1

2

[
(tr�)2 − tr (�)2

] =

= 1

4

[(
∂u

∂y
+ ∂v

∂x

)2

+
(

∂v
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∂y

)2

+
(
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]

+

−
(

∂u
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∂z
+ ∂v

∂y

∂w

∂z

)
(5)

Similar to Newtonian flows, in generalised Newtonian flows the stress depends only
on the instantaneous flow and not on the flow history. In simple shear flow, Eq. (5)
reduces to

I2 = 1

4

(
∂u

∂y

)2

= 1

4
γ̇2 (6)

where γ̇ = ∂u/∂y is the shear rate.
The simplest type of generalised Newtonian flow behaviour occurs when the

viscosity coefficient is a monomial function of the shear velocity gradient (power
law, or Ostwald–De Waele model):

η = K γ̇n−1 (7)

where the consistency coefficient, K , and the power-law index, n, are empiri-
cal constants. The power-law index is indicative of the shear-thinning (n < 1) or
shear-thickening (n > 1) behaviour of the fluid, whereas for n = 1 the Newtonian
behaviour is retrieved. The consistency coefficient describes the fluid viscosity at
low shear rates, and coincides with the Newtonian viscosity for n = 1. The shear-
thinning, shear-thickening and Newtonian behaviours of the shear stress and of the
viscosity as described by the power-law constitutive model are shown, respectively,
in Fig. 1a, b.

In the limit n → 0, the shear stress has a constant value, irrespective of the
imposed shear rate. Although this picture may seem unphysical, stress plateaus can
be observed experimentally over limited shear rate intervals, for example in the flow
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(a) (b)

Fig. 1 Shear stress (a) and viscosity (b) obtained with the power-law model (Eq.7) with K = 1
and: n > 1 (shear-thickening, solid line); n = 1 (Newtonian, dotted line); n < 1 (shear-thinning,
dashed line)

of monodispersed polymer melts and solutions (Yang et al. 1998). For n < 0, the
shear stress decreases monotonically upon increasing the shear rate, which means
the flow is unstable.

Power-law fluids are time-independent, i.e. the shear stress does not depend on
the previous deformation history. Physically, shear-thinning is usually explained by
the breakdown of structure formed by interacting particles within the fluid, while
shear-thickening is often due to flow-induced jamming (Frith et al. 1996).

TheOstwald–DeWaele equation implies that viscositywill change indefinitely for
any values of the shear rate. In other words, in the case of shear-thinning fluid (n < 1)
viscosity tends to grow unlimited for γ̇ → 0, and to vanish for γ̇ → ∞; in these
limits, the power-law model fails to describe the behaviour of real fluids accurately.
To account for amore realistic behaviour, where viscosity varies between aminimum
and a maximum value, respectively, at very low and very high shear rates, a number
of constitutive equations have been proposed, such as the Cross model (Cross 1965):

η − η∞
η0 − η∞

= 1

1 + (C γ̇)1−n
(8)

and the Bird–Carreau–Yasuda model (Bird and Carreau 1968; Carreau 1972; Yasuda
and Cohen 1981), which was initially developed to describe shear-thinning observed
in many viscoelastic (i.e. time-dependent) flows:

η − η∞
η0 − η∞

= 1

[1 + (C γ̇)a](1−n)/a
(9)

where η0 and η∞ are the viscosities at zero shear and infinite shear, respectively,
a is a parameter with a default value of 2, and C is the Cross time constant. This
parameter is the reciprocal of the strain rate at which the zero-strain rate component
and the power-law component of the flow curve intersect.
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Fig. 2 Comparison between
the power-law model (dashed
line) with parameters
K = 2.5, n = 0.14 and the
Cross model (solid line) with
parameters C = 3, n = 0.05;
for γ̇ → 0 and γ̇ → ∞ the
Cross model tends to the
asymptotic values η0 = 10
Pa s and η∞ = 0.01 Pa s,
respectively, whereas the
power-law model continues
to grow or decrease
indefinitely

Figure2 shows a comparison between the viscosities calculated with the power-
law model (Eq.7) and the Cross model (Eq.8). Although the model parameters can
be adjusted so that the two constitutive equations coincide within a certain range of
shear rates, there is a significant deviation at low and at large shear rates.

Finally, the Ellis model is obtained by setting η∞ = 0 in the Cross model:

η

η0
= 1

1 +
(

σxy

σ1/2

)n−1 (10)

where σxy is the applied shear stress, and σ1/2 is the shear stress at which viscosity
is exactly half of the zero-shear viscosity value, η0.

3 Constitutive Models for Viscoelastic Flows

In viscoelastic fluids, such as polymer melts or solutions, a part of the deformation
energy is stored as elastic energy, and released with a certain delay depending on the
relaxation time of the fluid. The basic feature that essentially all viscoelastic fluids
share is the occurrence of elastic stress effects: when the shear rate is sufficiently
strong, the forces along the normals of a little cubical fluid element are different in
different directions, unlike what happens for a Newtonian fluid where the pressure
is isotropic. From the microscopic point of view, this behaviour is usually related
to conformational rearrangements of the macromolecules which compose the fluid
under the action of hydrodynamic forces. The entropic tendency of polymers that are
stretched by the flow to recover their equilibrium chain conformation generates an
elastic stress, themacroscopicmanifestation ofwhich is a difference in stress between
the flow direction and the direction normal to it. Viscoelasticity manifests itself in
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a variety of phenomena, including creep (the time-dependent strain resulting from
a constant applied stress), stress relaxation resulting from a steady deformation, the
Weissenberg rod-climbing effect due to nonzero normal stress difference, and many
others, as discussed in Chapters Introduction to Transport Phenomena in Complex
Fluids and Transport Phenomena in Viscoelastic Fluids.

The non-isotropic principal components of the stress tensor allow one to charac-
terise the elasticity of polymer solutions andmelts through normal stress differences:
the first normal stress difference, N1 = σxx − σyy , and the secondary normal stress
difference, N2 = σzz − σyy . In most cases, the magnitude of N2 is around 10% of N1

or less. The ratio N1/σ is often taken to be a measure of the severity of viscoelastic
behaviour, and can be used to classify a fluid as inelastic (N1 � σ) or as viscoelastic
(N1 � σ).

The dissipation of energy associated to the process of stretching and relaxation of
macromolecules is described by introducing the concept of elongational (or exten-
sional) viscosity, the ratio of the first normal stress difference to the rate of elongation
of the fluid:

ηE = σxx − σyy

εxx
(11)

where εxx = �1,1 is the rate of deformation in the direction of stretching. For a
Newtonian incompressible fluid, one can easily verify that the elongational viscosity
is three times the shear viscosity (Trouton 1906). For a polymer solution the ratio
ηE/η, also known as the Trouton ratio, can be of the order of 103–104.

If the relaxation time is small compared to the characteristic time of the flow
(τ = L/v, where L is a characteristic length scale and v a characteristic velocity),
the material structure rearranges almost instantaneously in response to any imposed
deformation, and consequently the stress decays abruptly once the material has been
deformed; this response is characteristic of simple liquids which exhibit Newtonian

Fig. 3 Schematic of
Newtonian, elastic, linear,
and non-linear viscoelastic
regimes as a function of
deformation and relaxation
time during deformation of
polymeric materials
(Phan-Thien 2002). (1)
Newtonian regime; (2) linear
viscoelasticity; (3) elastic
regime; (4) non-linear
viscoelasticity; (5) non-linear
elasticity/viscoplastic regime

http://dx.doi.org/10.1007/978-3-030-35558-6_1
http://dx.doi.org/10.1007/978-3-030-35558-6_4
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behaviour (Fig. 3).When the relaxation time increases, andbecomesof the sameorder
of the characteristic time of the flow, the material structure takes time to re-arrange,
therefore it is necessary to apply a stress in order to keep the material deformed;
as the material structure rearranges, the stress decays exponentially. This behaviour
is typical of viscoelastic materials, and one can distinguish a linear viscoelastic
behaviour in case of small deformations, and a non-linear viscoelastic behaviour in
case of large deformations. When the relaxation time becomes very large compared
to the characteristic time of the flow, the material structure takes such a long time
to rearrange that in practice it never rearranges; thus, in order to keep the material
deformed one must continuously apply a stress, which does not decay in time. If the
stress is removed, thematerial returns to its initial shape (i.e. the shape of thematerial
before the deformation). This behaviour is characteristic of elastic materials; again,
one can distinguish a linear elastic regime in case of small deformations, and a non-
linear elastic regime in case of large deformations; sometimes, large deformations
cause a permanent change of the material structure, resulting into plasticity.

3.1 Linear Viscoelasticity

In linear viscoelasticity, the elastic component of the material behaves like an ideal
Hookean spring, i.e. the elastic force is proportional to the spring extension through
the spring constant. Linear viscoelasticity applies only to materials undergoing small
deformations; non-linearities arise as soon as the deformation is large enough to alter
significantly the conformation of the polymer chains or more in general the material
microstructure. In the following sections, linear viscoelastic constitutive models are
discussed with reference to single shear stress and shear deformation components,
however, their extension to their tensorial equivalent is straightforward.

Lumped parameters models The earliest constitutive model to describe linear
viscoelastic fluids, which combined elastic and viscous effects, was introduced by
Maxwell (1867), and can be represented graphically by an instantaneous extension
of a spring and a time-dependent reaction of a dash-pot in series, as illustrated in
Fig. 4a. In this system, mechanical equilibrium is satisfied if the stress, σxy , is the
same in the elastic and in the viscous element, while the total rate of deformation,
γ̇xy , is the sum of the deformation rates in the two elements:

γ̇xy = d

dt

(σxy

G

)
+ σxy

η
(12)

where G is the elastic modulus, and η the fluid viscosity. This equation can be
rearranged as

λ
dσxy

dt
+ σxy = ηγ̇xy (13)

where λ = η/G is the relaxation time.
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(a) (b) (c)

Fig. 4 Lumped parameter schematic of simple linear viscoelastic constitutive models: a Maxwell
model; b Kelvin–Voigt model; c Burgers model

In a similar fashion to Maxwell’s approach, one can derive a constitutive model
where the elastic and the viscous element are connected in parallel (Voigt 1890),
which is known as theKelvin–Voigtmodel (Fig. 4b). In this case, the two components
experience the same deformation, but their reacting forces have different magnitude:

σxy = Gγxy + ηγ̇xy (14)

Linear viscoelastic models of increasing complexity can be built by combining
together an arbitrary number of elastic and viscous elements. For example, one can
connect in series one Maxwell element and one Kelvin–Voigt element as illustrated
in Fig. 4c (Burgers 1935). The resulting constitutive equation is

σxy +
(

η1 + η2

G1
+ η2

G2

)
dσxy

dt
+ η1η2

G1G2

d2σxy

dt2
= η2γ̇xy + η1η2

G1

dγ̇xy

dt
(15)

Another example is the generalised Maxwell model, where an arbitrary number of
Maxwell elements are combined in parallel, i.e. they are all subjected to the same
deformation. Since each element has a different viscosity and a different elastic
modulus, increasing the number of elements generates models featuring a spectrum
of relaxation times, which provide a more accurate description of real materials.

Response to Heaviside forcing The simplest way to analyse the dynamic response
of linear viscoelastic models to an external forcing is to apply a Heaviside stress
step, σ(t) = σ0H(t), or a Heaviside deformation step, γ(t) = γ0H(t), where the
Heaviside step function is defined as
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H(t) =
{
0 t < 0

1 t ≥ 0
(16)

When a constant stress, σ0, is applied to theMaxwell model (Eq. 13), the response
is

γxy = σ0

η
t + σ0λ

η
(17)

One can observe an instantaneous elastic deformation in the spring, followed by a
constant rate of deformation in the viscous element, γ̇xy = σ0/η, as shown schemati-
cally in Fig. 5a. If after a certain time the stress is removed, the elastic deformation is
entirely recovered, while the viscous deformation is permanent. When the Maxwell
model is forced by imposing a fixed deformation, γ0, solution of Eq. (13) yields

σxy = η

λ
γ0e

−t/λ (18)

As the deformation is applied, there is an instantaneous buildup of stress due to the
spring loading; however, when the viscous element starts to move the spring elonga-
tion reduces, which means the stress decays exponentially with time, a phenomenon
commonly referred to as stress relaxation. This behaviour is illustrated qualitatively
in Fig. 5b.

If a constant stress, σ0, is applied to the Kelvin–Voigt model at t = 0, the solution
of Eq. (14) is:

γxy = σ0

G

(
1 − e−t/λ

)
(19)

Initially, the spring cannot stretch, because it is held back by the viscous element,
which cannot react instantaneously and therefore takes up all the stress, while the
spring is unloaded. After some strain starts to take place, the stress starts to decrease
in the viscous element and increase in the spring, i.e. the stress is transferred from
the viscous element to the elastic element. In the limit t → ∞, the viscous element
is unloaded and the spring carries all the stress; thus, the maximum strain is γmax =
σ0/G. If after a certain time t = τ the applied stress is removed, the spring will not
be able to contract instantaneously due to the resistance of the viscous element, but
eventually pulls the viscous element back to its initial position. The Kelving–Voigt
response to a constant applied stress is depicted qualitatively in Fig. 5c. Unlike in
the case of the Maxwell model, it is not possible to apply a fixed deformation to a
Kelvin–Voigt element instantaneously.

Response to harmonic forcing The dynamic response of linear viscoelastic mod-
els to a harmonic forcing, either σ(t) = σ0 sin(ωt) or γ(t) = γ0 sin(ωt), is another
canonical case in the theory of linear dynamical systems (Casti 1987). In particular,
for a sinusoidal forcing the response is another sinusoid with the same frequency,
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(a) (b)

(c)

Fig. 5 Qualitative response of the Maxwell model (Eq.13) to a constant applied stress, where γE
and γV are the elastic and viscous deformations, respectively (a), and to a constant deformation,
where σE is the elastic stress buildup (b). Qualitative response of the Kelvin–Voigt model (Eq.19)
to a constant applied stress, σ0 (c)

but with a different amplitude and a phase shift; thus, the response to a sinusoidal
stress is

γxy(t) = γ0 sin(ωt + φ) (20)

and the response to a sinusoidal deformation is

σxy(t) = σ0 sin(ωt + φ) (21)

In the limit of a Hookean solid (purely elastic limit), the stress is related linearly to
strain, and the response to a shear deformation which varies sinusoidally with time,
γ(t) = γ0 sin(ωt), is

σxy(t) = Gγ0 sin(ωt) (22)

Thus, in elastic solids there is no phase shift between the shear stress and shear strain.
In the Newtonian fluid limit, the response to the same type of forcing is

σxy(t) = ηγ̇ = ηγ0 cos(ωt) = ηγ0 sin(ωt + π

2
) (23)
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In this case, the resulting shear stress is out of phase from the applied strain by
π/2. In a viscoelastic material, the phase angle can vary continuously between zero
(purely elastic response) and π/2 (purely viscous response), therefore, it provides a
quantitative indicator of the level of viscoelasticity. In particular, small values of the
phase angle represent predominantly elastic behaviour whereas large values of the
phase angle correspond to viscous behaviour.

In the general viscoelastic case, the elastic and viscous parts of the response can
be made explicit by expanding the harmonic terms in Eqs. (20) and (21):

γxy(t) = γ0 cosφ sin(ωt) + γ0 sin φ cos(ωt) (24)

σxy(t) = σ0 cosφ sin(ωt) + σ0 sin φ cos(ωt) (25)

For a harmonic imposed deformation, the amplitude of the component of the
response in phase with the forcing is expressed by introducing the storage modulus,
G ′ = σ0 cosφ/γ0, which reflects the elastic energy stored in the fluid, and the the
component out of phase by π/2 is expressed by the loss modulus, G ′′ = σ0 sin φ/γ0,
which reflects the energy loss by viscous dissipation. For a harmonic imposed stress,
the amplitude of the component in phase with the forcing is expressed by the stor-
age compliance, J ′ = γ0 cosφ/σ0, and the component out of phase is expressed by
the loss compliance, J ′′ = γ0 sin φ/σ0. Using these quantities Eqs. (24) and (25)
become, respectively,

γxy(t) = σ0
[
J ′ sin(ωt) + J ′′ cos(ωt)

]
(26)

and
σxy(t) = γ0

[
G ′ sin(ωt) + G ′′ cos(ωt)

]
(27)

The problemof harmonic forcing is often formulated in terms of complex numbers
using Euler’s formula:

e±iθ = cos θ ± i sin θ (28)

For a harmonic stress input σ(t) = σ0eiωt the response is:

γxy(t) = γ0e
iωt+φ = γ0e

φeiωt = γ0 (cosφ + i sin φ) eiωt =
= σ0

(
J ′ + i J ′′) eiωt (29)

while for a harmonic deformation γ(t) = γ0eiωt the response is

σxy(t) = σ0e
iωt+φ = σ0e

φeiωt = σ0 (cosφ + i sin φ) eiωt =
= γ0

(
G ′ + iG ′′) eiωt (30)
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(a) (b)

Fig. 6 Example of application of Boltzmann’s superposition principle (Eq.31); for a stepped ramp
of the applied stress (a), the response of the system is the sum of the responses to individual steps
(b)

Thus, the phenomenological coefficients related to the elastic and viscous proper-
ties of the substance can be expressed through a single complex number, either the
complex modulus, G∗ = G ′ + iG ′′, or the complex compliance, J ∗ = J ′ + i J ′′.

Superposition principle The linearity of Eqs. (12)–(15) implies their solutions can
be combined linearly. The Boltzmann superposition principle states that the response
of a material to a given load is independent of the response of the material to its pre-
vious loading history. For example, in the case of a loading consisting of a sequence
of Heaviside steps with different magnitudes of the applied stress, the total strain
may be expressed by

γxy = σ1

G
(t − τ1) + σ2 − σ1

G
(t − τ2) + · · · + σn − σn−1

G
(t − τn) (31)

A qualitative example of the behaviour described by Eq. (31) is displayed in Fig. 6.
In the limit of small stress increments, Eq. (31) becomes

γxy =
∫ t

−∞
1

G
(t − τ ) dσ(t) =

∫ t

−∞
1

G
(t − τ )

dσ(t)

dt
dt (32)

3.2 The Problem of Time Derivatives

The assumption of material frame indifference has important consequences on the
mathematical formulationof constitutivemodels of viscoelastic flows,whichdescend
from simple vector calculus, and which were addressed systematically in this context
by Oldroyd and Wilson (1950). In a generic reference frame, a material point is
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characterised by its position vector, r , its velocity, v = d r/dt , and its acceleration,
a = dv/dt . In a second reference frame in relative motion with respect to the initial
reference frame, the position vector is given by

r ′ = Q(t)r + c(t) (33)

where Q is an orthogonal matrix such that QQT = QT Q = I and |Q| = 1, and
c is a vector representing a linear displacement. Since orthogonal matrices preserve
isometries, one can easily verify that the distance between two points in the first
reference frame, |r2 − r1|, does not change in the second reference system:

|r ′
2 − r ′

1| = |Q(t)r2 + c(t) − Q(t)r1 − c(t)| =
= |Q(t) (r2 − r1) | = |r2 − r1| (34)

This conclusion does not apply to velocities and accelerations, which in the second
reference frame are written, respectively, as

v′ = d r ′

dt
= d

dt

[
Q(t)r + c(t)

] = Q
d r
dt

+ d Q
dt

r + dc
dt

=

= Qv + d Q
dt

r + dc
dt

(35)

and

a′ = dv′

dt
= d

dt

[
Qv + d Q

dt
r + dc

dt

]
=

= d Q
dt

v + Q
dv

dt
+ d Q

dt

d r
dt

+ d2Q
dt2

r + d2c
dt2

=

= Qa + 2
d Q
dt

v + d2Q
dt2

r + d2c
dt2

(36)

Thus, velocities and accelerations are invariant under a coordinate transformation
only if the time derivatives on the r.h.s. of Eqs. (35) and (36) are zero, i.e. the two
reference frames are not in relative motion. In other terms, velocity and acceleration
are not objective and depend on the motion of the observer.

When one considers a tensor representing a physical quantity (e.g. the stress
tensor) in a given coordinate system, it must be objective with respect to a change of
the coordinate system:

�′ = Q�QT (37)

However, one can easily verify its time derivative is not objective:

d�′

dt
= d

dt

(
Q�QT

) = d Q
dt

�QT + Q
d�

dt
QT + Q�

d QT

dt
(38)
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To preserve the objectivity of a tensor with respect to time derivation, it is neces-
sary to introduce a new definition of derivative operator (Jaumann 1905):

D∇
Dt

(·) = d

dt
(·) − (∇v)(·) − (·)(∇v)T (39)

In fact, the velocity gradient tensor transforms in the new coordinate system as

(∇v′) = Q(∇v)QT + d Q
dt

QT (40)

Thus, the upper convected1 derivative defined by Eq. (39) is objective with respect
to a transformation of the coordinate system:

D∇
Dt

(�′) = D∇
Dt

(
Q�QT

) =

= d

dt

(
Q�QT

) − Q(∇v)QT
(
Q�QT

) − d Q
dt

QT
(
Q�QT

) +

− (
Q�QT

)
Q(∇v)T QT − (

Q�QT
)
Q
d QT

dt
=

= Q
d�

dt
QT + d Q

dt
�QT + Q�

d QT

dt
− Q(∇v)�QT+

− d Q
dt

�QT − Q�(∇v)T QT − Q�
d QT

dt
=

= Q
d�

dt
QT − Q(∇v)�QT − Q�(∇v)T QT

(41)

Similarly, one can define a lower convected derivative as

D�

Dt
(·) = d

dt
(·) + (∇v)(·) + (·)(∇v)T (42)

Finally, the co-rotational derivative for a second-order tensor is formed from the
appropriate linear combination of the upper and lower convected derivatives:

D◦
Dt

(·) = d

dt
(·) + 1

2

[
(∇v)T − (∇v)

]
(·) + 1

2
(·) [

(∇v) − (∇v)T
] =

= d

dt
(·) − W(·) + (·)W

(43)

where W is the spin tensor.

1The name upper convected arises because the derivative represents the material derivative of the
upper (contravariant) components of a vector when convected with the motion.
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3.3 Oldroyd-B Model

Themost popular constitutive equation for viscoelastic fluids is theOldroyd-Bmodel,
which captures the main features of viscoelastic flows but at the same time is simple
enough to allow finding the analytical solution for the flow field in many circum-
stances. In this model, the total stress tensor, �, is decomposed into the Newtonian
solvent component, 2ηS�, where ηS is the solvent viscosity, and � is the velocity
gradient tensor (Eq.3), and the viscoelastic polymeric component,�P = � − 2ηS�,
for which one can write the relation with the velocity gradient as

(� − 2ηS�) + λ1
D∇
Dt

(� − 2ηS�) = 2ηP� (44)

where λ1 is the relaxation time, ηP the polymer viscosity, and D∇/Dt is the co-
deformational (or upper convected) derivative (Oldroyd and Wilson 1950). Re-
arranging Eq. (44) into a more compact form yields

� + λ1
D∇�

Dt
= 2 (ηS + ηP)

(
� + λ2

D∇�

Dt

)
(45)

where λ2 = λ1ηS/(ηS + ηP) is the retardation time. When λ2 = 0, the Oldroyd-B
model reduces to the Upper Convected Maxwell (UCM) model, which has the same
structure as Eq. (13) but uses a different derivative operator; when λ2 = λ1 the model
reduces to viscous Newtonian.

For the Oldroyd-B fluid in steady-state shear flow, the viscosity η = ηS + ηP

is constant, the second normal stress difference is zero, and the first normal stress
difference is a quadratic function of the shear rate:

N1 = 2η (λ2 − λ1) γ̇2 (46)

Themain limitation of theOldroyd-Bmodel is due to the fact that the coefficient of
the deformation rate in Eqs. (44) and (45) is constant; this means that its contribution
to the stress is the same independently of the deformation magnitude or, in other
words, a fluid element can be deformed indefinitely keeping its elasticity unchanged.
From the microscopic point of view, this means polymer molecules can be stretched
to an infinite length behaving like an ideal spring, which is clearly unphysical.

3.4 FENE Model

The Finitely Extensible Non-linear Elastic (FENE) constitutive model was devel-
oped to achieve a more realistic description of the long-chained polymers behaviour
(Bird et al. 1980). In particular, it accounts for the fact that, unlike ideal elastic
springs, polymer molecules can be stretched only up to a maximum length, and the
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required stretching force increases more than linearly as the molecule approaches
the maximum stretching. In the FENE model, polymers molecules are represented
by connecting a sequence of beads with non-linear springs; the elastic force between
two consecutive beads is

F = K r
1 − r2/r2max

(47)

where r is the connector vector between the beads, K is the spring constant, r and
rmax the instantaneous and maximum lengths of the stretched molecule, respectively.
At small extension, the spring is nearly Hookean, when further extended, it becomes
strongly non-linear. The connector force grows rapidly so that the spring cannot be
stretched beyond some maximal length.

The instantaneous position of a FENE dumbbell as a function of time is described
by the following Langevin stochastic differential equation:

d r =
[
(∇v)T · r − 2

ζ
F

]
+

√
4kBT

ζ
dW(t) (48)

where ζ is the friction coefficient of a bead, kB is Boltzmann’s constant, T is the
absolute temperature, and W(t) is a Wiener stochastic process (Soong 1973). In
this equation, the first term represents the distortion of the beads due to the velocity
gradient, the second term represents the effect of the restoring spring force, and the
stochastic term models the Brownian motion of the beads. The time evolution of
the connector vector of the dumbbell (i.e. the distance between the beads) must be
integrated and then averaged over all connectors to describe the macroscopic flow
behaviour.

The polymer contribution to the stress is given by

�P = −N 〈r F〉 + NkBT I (49)

where N is the total number of connectors, and I the identity matrix. Introducing
the expression of the connector force (Eq.47) yields:

�P = −NK

〈
r r

1 − r2/r2max

〉
+ NkBT I (50)

The ensemble average quantity in Eq. (50) can be calculated using Peterlin’s approx-
imation (Peterlin 1966):

〈
r r

1 − r2/r2max

〉
= 〈r r〉

1 − 〈
r2/r2max

〉 + r2max I (51)

Evaluating the ensemble averages yields the FENE-P constitutive equation for the
polymer contribution to the stress:
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Z�P + λ
D∇�P

Dt
− λ

[
�P + ηP

λ
I
] d ln Z

dt
= 2ηP �̇ (52)

where Z is a function of the spring constant and of the maximum stretching:

Z = 1 + 3kBT

Kr2max

[
1 + λ

3ηP
tr(�)

]
(53)

A modified version of the FENE-P model includes the effect of repulsive charges
between the beads in an attempt to incorporate the effect of charge repulsion between
ionizable groups on the polymer (Dunlap and Leal 1984). This leads to the same
constitutive equation but a different form of Z .

3.5 Other Constitutive Models for Viscoelastic Flows

Whilst the Oldroyd-B and the FENE models provide the most popular constitutive
equations used in modelling viscoelastic flows, many other constitutive equations
were derived to provide a better match with experimental data for particular fluids
and/or flow conditions.

White–Metzner model The White–Metzner model (White and Metzner 1963) was
developed for viscoelastic fluids that exhibit also shear-thinning. In summary, it is a
modifiedMaxwell model that allows incorporation of experimental data on viscosity
as a function of shear rate. The deviatoric stress is given by

� + η(γ̇)

G

D∇�

Dt
= 2η(γ̇)� (54)

The shear-thinning viscosity, η(γ̇), is often described by a power law. This model
can predict correctly the behaviour of nonpolar solutions and polymeric melts and
it may work well on polar systems in the range of high deformation rates, i.e. the
region of primary industrial interest.

Giesekus model The Giesekus model (Giesekus 1982) includes an additional
quadratic term. In this model, the deviatoric stress is divided into a solvent con-
tribution, ηS�, and a polymer contribution, which is given by

�P + λ1
D∇�P

Dt
+ αλ1

ηP
�2

P = 2ηP� (55)

Phan-Thien–Tanner model The Phan-Thien–Tanner constitutive equation (Phan-
Thien and Tanner 1977) has a similar structure to the Giesekus model, but has a
different non-linear term:

�P + λ1
D∇�P

Dt
+

{
exp

[
λ1

ηP
Tr (�P)

]
− 1

}
�P = 2ηP� (56)
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4 Constitutive Models for Viscoplastic Flows

An important type of non-Newtonian fluid is the viscoplastic or yield-stress fluid,
which responds like elastic solids for applied stresses lower than a certain threshold
value, called the yield stress, and flows only when the yield stress is overcome.
Practically, such flow behaviour occurs in many situations, including slurries and
suspensions, certain polymer solutions, lavas,muds and clays, heavy oils, avalanches,
cosmetic creams, hair gel, liquid chocolate, pasty materials, foams and emulsions.

Research into viscoplastic fluids, their measurement and characterization is exten-
sive and has been summarised in numerous reviews (Barnes 1999; Coussot 2007).
One matter still subject of debate is the definition of yield-stress fluid itself, that is,
whether fluids can actually exhibit such a physical property as the yield stress. The
review by Barnes (1999) examines the evidence for and against its existence, and
argues that whereas the concept of a definable yield stress has proven and continues
to prove useful in a whole range of applications, if viscosity is plotted as a function
of the shear stress, one can clearly identify a Newtonian plateau when the velocity
gradient tends to zero (typically less than 10−5 s−1), which implies that the material
continues to creep although this can be observed only on very long timescales. How-
ever, in many practical situations the time frame of observation is much shorter than
the time necessary for viscoplastic fluids to exhibit measurable flow characteristics.

Whilst several fluids exhibit an apparent yield stress, Carbopol dispersions are
probably the most thoroughly studied model viscoplastic fluid system. Carbopol
consists of highly cross-linked polymer particles, with dangling free ends of polymer
gel strands that strongly interact with adjacent microgel particles, resulting into to a
very high viscosity at low shear stress (Nguyen and Boger 1992; Roberts and Barnes
2001). Carbopol dispersions and gels are found in dozens of everyday products,
ranging from toothpastes, through hair and shower gels, to artificial tears.

The simplest constitutive model describing viscoplastic fluids was introduced by
Bingham to characterise the behaviour of paints (Bingham 1917), and represents the
shear stress component as a linear function of the velocity gradient, with the intercept
σc corresponding to the threshold yield point:

γ̇ = 0 σxy ≤ σc

σxy = σc + ηγ̇ σxy > σc
(57)

A more refined model is the Herschel–Bulkley equation (Herschel and Bulkley
1926), given by:

σxy = Gγ σxy ≤ σc

σxy = σc + K γ̇n σxy > σc
(58)

where G is the shear modulus, and γ is the shear deformation. This model is
well established and probably the most widely used when analysing yield-stress
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behaviour; another popular model, suitable to characterise the behaviour of particle
suspensions used in printing inks, was proposed by Casson (1959):

√
σxy = √

σc + √
ηγ̇ σxy > σc (59)

According to Eqs. (57)–(59), the transition from the elastic regime to the fluid regime
is abrupt, which means that the shear stress derivative with respect to the shear rate
exhibits a first-order discontinuity. This represents a major technical issue when the
yield-stress fluid constitutive equation is implemented to find analytical or (espe-
cially) numerical solutions of fluid flows. To remove this discontinuity, Papanasta-
siou proposed a constitutive equation featuring a smooth transition between the two
regimes (Papanastasiou 1987), which provides a better description of real materials:

σxy = σc
[
1 − exp (−mγ̇)

] + K γ̇n (60)

where m is a material-dependent constant with values of the order of 102. Figure7
shows the qualitative flow curves for Bingham fluids (Eq.57) and Herschel–Bulkley
fluids (Eq.58), as well as the effect of the Papanastasiou regularisation (Eq.60).
A detailed discussion of advanced and time-dependent constitutive models for vis-
coplastic flows is presented in ChapterTransport Phenomena in Viscoplastic Mate-
rials.

Fig. 7 Comparison between
the qualitative flow curves of
the Bingham model (solid
line) and of the
Herschel–Bulkley model
(dash-dot line); the inset
shows the effect of
Papanastasiou regularisation
(Eq.60) on the
Herschel–Bulkley flow curve

http://dx.doi.org/10.1007/978-3-030-35558-6_5
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