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Preface

Complex fluids refer to a broad class of liquids and soft materials with complex
microstructure, which is characterised by length and timescales spanning over very
large ranges. Examples include polymer solutions and melts, particle suspensions,
colloidal gels, foams and emulsions. Unlike simple liquids, such as water, complex
fluids exhibit a strongly nonlinear response to external forcing, which can be
described by constitutive models where the stress tensor is a nonlinear function
of the deformation rate tensor. This has dramatic consequences on the dynamics of
complex fluids, at both microscopic and macroscopic levels, and on their ability to
transfer or exchange mass, momentum and energy.

The practical importance of complex fluids is rapidly growing in industrial,
pharmaceutical and life sciences applications as well as in everyday life. Whether
we spread mayonnaise on a sandwich, rinse off the shower gel, blow our nose or sip
a thick hot chocolate, we deal with complex fluids on a daily basis. Viscoplastic or
viscoelastic gels and dense particle suspensions constitute most foods and phar-
maceutical preparations, from pizza dough to painkiller tablets. Moreover, with a
better understanding of liquid microstructures, industries have realised that working
fluids can be tailored specifically to optimise existing processes, by altering their
formulation (e.g. by means of chemical additives) in such a way as to change their
dynamic behaviour and/or their properties.

This volume is based on the lectures delivered during the CISM Advanced
Course ‘Transport Phenomena in Complex Fluids’ (Udine, Italy, 7–11 May 2018),
which provide a thorough (although not exhaustive) overview of the topic, based on
the most recent research results and the most updated methods for their analytical
prediction and numerical simulation. The first chapter introduces the fundamental
transport equations and gives and the main features of the most common con-
stituents of complex fluids (polymers, surfactants and colloids), while the second
chapter reviews the main nonlinear constitutive models; Chap. 3 presents an
overview of the experimental methods to characterise the rheological and the
interfacial behaviour. Chapters 4 and 5 provide an extensive description of transport
phenomena in viscoelastic and viscoplastic fluids, respectively, with focus on the
transport of momentum and energy. In Chap. 6, the dynamics of colloidal particles
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suspended in a liquid medium is reviewed, while Chap. 7 provides an overview
of the phenomenology of complex fluids with free surfaces. Finally, Chap. 8
introduces advanced, mesh-free numerical methods particularly suitable to model
complex fluids from the macro- to the meso-scale.

The book is addressed to research scientists and professionals, engineers, R&D
managers and graduate students in the fields of Engineering, Chemistry, Biology,
Medicine, Applied and Fundamental Sciences, and can be used as support textbook
in graduate and postgraduate courses in complex fluids or non-Newtonian fluid
dynamics.

This book is dedicated to our lovely Mothers.

Liverpool, UK Volfango Bertola
Nantes, France Teodor Burghelea
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Introduction to Transport Phenomena
in Complex Fluids

Volfango Bertola

Abstract This chapter provides an overview of transport phenomena in fluids with
complexmicrostructure. The first section reviews the general conservation equations,
with focus on the issues arising when they are applied to complex fluids. The sec-
ond section introduces different types of elementary constituents of complex fluids
(polymers, surfactants and colloids).

1 Transport Phenomena

1.1 Advection and Diffusion

Simple transport processes (transport of mass, momentum and thermal energy) are
described by the following conservation equation:

α
∂φ

∂t
+ ∇ · Jφ = 0 (1)

where α is a phenomenological coefficient, φ is the characteristic potential of the
transport process under consideration and Jφ is the corresponding flux density. In
the case of transport by advection, i.e. passive entrainment by the carrying fluid, the
flux density is expressed as follows:

Jφ = φu (2)

where u is the fluid velocity. In the case of transport by diffusion, i.e. transport at
molecular level, Eq. (1) is usually completed by linear constitutive equations (Fick’s
law, Newton’s law and Fourier’s law, respectively), which define the phenomeno-
logical relationship between flux densities and the generalized forces expressed in

V. Bertola (B)
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2 V. Bertola

the form of potential field gradients characteristic of each process, i.e. concentration
gradient, velocity gradient and temperature gradient (Bird et al. 2007; Leal 2007):

Jφ = −λ∇φ = λFφ (3)

where λ is a phenomenological coefficient and Fφ is the generalized force inducing
the flow. The combination of Eqs. (1) and (3) leads to the well-known diffusion
equation:

α
∂φ

∂t
= λ

α
∇2φ (4)

It can be shown thatEq. (4) can be expressed inLiouville’s form (i.e. as a continuity
equation), after introducing a suitable intrinsic velocity, uφ, of the transport process
under consideration (Bertola and Cafaro 2010):

∂φ

∂t
+ ∇ · (φuφ) = 0

uφ = −β∇(ln φ)

(5)

The introduction of this formalism provides a straightforward proof of the equiva-
lence between the diffusion equation and other well-known equations of mathemat-
ical physics, such as the Burgers equation and the Kardar–Parisi–Zhang equation
(Bertola and Cafaro 2007).

Linear constitutive equations are particular cases of more general phenomenolog-
ical relationships between flux densities and forces:

Jφ = λ|Fφ|r Fφ

|Fφ| (6)

Examples of nonlinear phenomenological relationships are the Ostwald–de Waele
constitutive equation for non-Newtonian flows, and the constitutive equation derived
from the Prandtl–Taylor analogy used in modelling turbulent flows (Bird et al. 2007;
Leal 2007).

1.2 Generalized Conservation Equations (Multifield
Approach)

Conservation equations state that the evolution in time of a given specific quantity,
ρQ, is due to the contributions of its flux, J, and of its generation (or destruction)
rate, S, which correspond to a divergence term and to a source term, respectively.
Thus, they can be written in compact form (Banerjee and Chan 1980) as follows:
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Table 1 Meaning of the symbols Q, J and S used throughout Eqs. (7)–(14) u is the velocity, I is
the Kronecker tensor, p is pressure, � is the stress tensor, F is the body force, ei is the internal
energy and q is the heat flux. By replacing Q, J and S with the appropriate quantities, one obtains
the different conservation equations (either local and instantaneous or averaged)

Quantity Q J S

Mass 1 0 0

Momentum u pI − � F

Energy ei q + u · (pI − �) F · u

∂ρQ

∂t
+ ∇ · (ρuQ) = −∇ · J + ρS (7)

where ρ is density, u is the fluid velocity and the values for Q, J and S are given in
Table1.

These equations hold inside each domain Vk , so that one obtains a set of conser-
vation equations in differential form:

∂ρk Qk

∂t
+ ∇ · (ρkuk Qk) = −∇ · Jk + ρk Sk (8)

In order to put the problem into a treatable form, the local conservation equations
are averaged over the control volume and then ensemble averaged; the two operations
can be inverted without changing the final result (Delhaye and Achard 1977). Here,
averages are performed according to the following standard procedure (Banerjee and
Chan 1980), where ensemble (spatial) averaging is denoted by angle brackets, and
overbars indicate time-averaged quantities:

1

V

∫
Vk

{
∂ρk Qk

∂t
+ ∇ · (ρkuk Qk)

}
dV = 1

V

∫
Vk

{−∇ · Jk + ρk Sk} dV (9)

Using the Leibniz rule1 and to the Gauss theorem,2 one obtains

1Leibniz rule:
∂

∂t

∫
V (x,t)

FdV =
∫
V (x,t)

∂F

∂t
dV +

∫
∂V (x,t)

F(u · n)d A

It is analogous to the Reynolds transport theorem.
2Gauss theorem:

∫
V (x,t)

(∇ · F)dV = ∇ ·
∫
V (x,t)

FdV +
∫

∂V (x,t)
(F · n)d A

If V does not depend explicitly on x, the first term on the r.h.s. vanishes.
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Fig. 1 Example of two-field
modelling and notation used
throughout this section

∂εk,3 〈ρk Qk〉Vk

∂t
+ ∇ · εk,3 〈ρkuk Qk〉Vk

= εk,3 〈ρk Sk〉Vk
+

− 1

V

∫
∂Vki

nk · [(uk − ui )ρk Qk + Jk]d A − 1

V

∫
∂Vkw

(nk · Jk)d A (10)

where εk,3 is the volume fraction occupied by the k-th domain, nk is the outward unit
vector normal to the domain boundary, ∂Vki is the part of the domain boundary in
contact with other domains (interfacial boundary), ∂Vkw is the part of the domain
boundary in contact with the wall, uk and ui are the domain and the interface veloci-
ties, respectively; an example of averaging volume containing two domains is shown
in Fig. 1. Finally, Eqs. (10) are ensemble averaged:

∂εk,3 〈ρk Qk〉Vk

∂t
+ ∇ · εk,3 〈ρkuk Qk〉Vk

= εk,3 〈ρk Sk〉Vk
+

− 1

V

∫
∂Vki

nk · [(uk − ui )ρk Qk + Jk]d A − 1

V

∫
∂Vkw

(nk · Jk)d A (11)

Double averaging ensures the continuity of first derivatives, which otherwise
might be discontinuous; this could happen, for instance, in certain regions where
field interfaces move in a deterministic manner in time or are stationary, where
ensemble averaging alone leads to discontinuities.

Interface conditions Across the domain boundary, it is necessary to impose the
conservation of fluxes:

∑
k

1

V

∫
∂Vki

nk · [(uk − ui )ρk Qk + Jk]d A = 0 (12)

Since the calculation of fluxes at the interface is not easy, sometimes it is preferable
to cancel this term by adding up together the conservation equations in adjacent
domains, obtaining the so-called mixture models:
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∑
k

{
∂

∂t

(
εk,3 〈ρk Qk〉Vk

) + ∇ · εk,3 〈ρkuk Qk〉Vk
+ ∇ · εk,3 〈Jk〉Vk

}
=

=
∑
k

{
εk,3 〈ρk Sk〉Vk

− 1

V

∫
∂Vkw

(nk · Jk)d A
}

(13)

Although Eqs. (13) look simpler than Eqs. (11), all the information regarding
the interfaces have been lost. On the other hand, the interface behaviour is essential
in describing such phenomena as phase transitions or chemical reactions; thus, it
is necessary to reintroduce into the model the lost information, by means of the
so-called closure relationships.

Closure relationships The averaged conservation equations alone cannot be solved,
even with the appropriate interface and boundary conditions, because their number is
smaller than the number of unknowns. This happens because while double averaging
the conservation equations allows reducing two-phase flow modelling to a mathe-
matically treatable problem, at the same time it erases the local and instantaneous
details, which must be reintroduced into the model by means of the so-called closure
relationships or constitutive equations. These relationships provide additional equa-
tions in a sufficient number to equal the number of unknowns in order to ‘close’ the
problem; they include equations of state, stress–deformation relationships, etc., and
are often empirical or semi-empirical. Most closure relationships are flow-regime
dependent, so that the overall accuracy decreases if they are applied to different
flow patterns. A discussion on the different ways to solve the closure problem is
presented, for instance, in Yadigaroglu and Lahey (1976). Closure relationships are
usually sorted into two categories: interface closures, if they relate quantities across
the domain boundary, and internal closures, if they relate quantities inside a domain.

Interface closures involve mass, momentum and energy fluxes at the interfaces
between contiguous domains and between the domains and the pipe walls (the mass
flux and the energy flux vanish for impermeable and adiabatic walls, respectively).
For example, in case of evaporation or condensation, the mass flux at the interface
is related to the heat flux by the phase transition heat, �hLG :

∣∣∣∣ 1V
∫

∂Vki

ρknk · (uk − ui )d A

∣∣∣∣ = 1

�hLG

∣∣∣∣ 1V
∫

∂Vki

ρk(nk · qk)d A
∣∣∣∣ (14)

The main problems in developing interface closures arise due to the fact that
the interface geometry is generally very complex. As to wall conditions, the prob-
lem often reduces to the calculation of shear stresses, for which single-phase flow
correlations are used.

Besides interface closures, more equations can be specified inside the domain,
such as the equations of state. In particular, relations expressing the average value
of the product of fluctuating quantities are required: in fact, in Eq. (10), one can find
terms like 〈ρkuk〉 and 〈ρkukuk〉, which are analogous to Reynolds stresses in turbu-
lent flows. In two-phase flow, these quantities are even more difficult to be described,
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because their fluctuations with respect to the mean value depend both on the turbu-
lence inside each domain, and on the distribution of the phases over the averaging
volume: although there is a strong reciprocal interaction between turbulence and flow
pattern, their length scales are very different, so that modelling Reynolds stress-like
quantities is not trivial.

1.3 Complex Fluids Versus Simple Fluids

The solution of the transport equations outlined in Sects. 1.1 and 1.2 strongly depends
on the fluid structure, modelled through appropriate constitutive equations, and, in
particular, on the characteristic length, i.e. the typical size of the fluid elementary
constituents, and on the relaxation time, which is the time necessary to return to
thermodynamic equilibrium after the fluid has been perturbed.

In simple fluids (also called molecular fluids), the characteristic length is of the
order of molecular length scales (10−10–10−9 m), and the relaxation time is of the
order of the timescale of thermal fluctuations (≈10−15 s). Thus, simple fluids respond
almost instantaneously to an external forcing, such as an applied stress or deforma-
tion. In complex fluids, both the characteristic length and the relaxation time can
range over several orders of magnitude, depending on the size, shape and stiffness of
their elementary constituents, and on the short- and long-range interactions arising
among them. The qualitative chart displayed in Fig. 2 shows a comparison among
fluids with different micro-structures based on these two fundamental parameters.

Whilst the behaviour of simple fluids is adequately described by linear phe-
nomenological models, such as Fick’s Law, Newton’s Law and Fourier’s Law, fluids
with complex microstructure often require sophisticated phenomenological mod-
els that introduce strong nonlinearities in the conservation equations; in the case

Fig. 2 Characteristic space-
and timescales of complex
fluids
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of the equation of motion (momentum equation), these constitutive nonlinearities
supplement the inertial nonlinearity characteristic of simple fluids at high Reynolds
numbers.

2 Complex Fluids

2.1 Polymers

Polymers are highmolecularweightmolecules constituted by a large number of units,
calledmonomers, connected by covalent bonds. A common example is polyethylene,
(C2H6)n, where the basic ethylene unit is repeated n times to form a long linear chain.
Other common polymer structures are branched chains and chain networks.

Because of their structure, polymer molecules have a very large number of inter-
nal degrees of freedom, corresponding to rotations of C–C bonds3; thus, the same
molecule can exhibit different instantaneous spatial arrangements, or conformations,
which can be visualized schematically as a smoothed line segment. The longest
sequence of monomers that behaves like a rigid rod defines the persistence length,
L p, which is a function of the backbone stiffness and electric charges distributed
along the polymer chain. Thus, a simple way to describe linear chain polymers is to
break down the chain into N segments represented by the position vectors of their
end points, ai (i = 0...N ), as shown in Fig. 3.

The end-to-end vector,R = aN − a0, gives a measure of the actual molecule size;
averaging over all molecules yields the root-mean-square end-to-end distance:

RF =
√〈

R2
〉 =

√〈
(aN − a0)2

〉
(15)

A second quantity commonly used to measure the polymer molecule size is the
radius of gyration, or the root-mean-square distance between the joints between
consecutive vectors (Fig. 3) and the centre of mass. If the position of the centre of
mass is indicated by vector aG , the radius of gyration can be calculated as follows:

Rg =
√√√√

〈
1

N + 1

N∑
i=0

(aN − aG)2

〉
=

√√√√ 1

N + 1

N∑
i=0

〈
(aN − aG)2

〉
(16)

In real polymer chains, two monomers cannot overlap, even partially, and occupy
the same space; thus, a number of conformations that are ideally possible cannot be
realized physically. This effect is known as the excluded volume, and has important
consequences on the physics of polymer solutions (Strobl 1997; Teraoka 2002).

3Other internal degrees of freedom correspond to stretching of covalent bonds and oscillations of
valence angles; however, their small amplitudes do not affect the molecule shape significantly.
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Fig. 3 Schematic
representation of a linear
polymer chain as a sequence
of vectors

a0 

aN 

ai 

Because of excluded volume, real chains are bigger than ideal chains; in particular, for
ideal chains Rg ∝ (N − 1)1/2, while for real chains Rg ∝ (N − 1)3/5 (Flory 1953).

The length of a polymer chain is, of course, proportional to its molecular weight.
However, any polymer sample is a mixture of molecules with different degrees of
polymerization, and monodisperse polymers (those with a single molecular weight)
are exceptions. Polymers are usually polydisperse, and therefore their molecular
weight is always the average value of a certain molecular weight distribution. If
the polymer consists of ni chains of exact molecular weight Mi , one can define a
number-average molecular weight as

Mn =
∑

i ni Mi∑
i ni

(17)

and a weight-average molecular weight as

Mw =
∑

i ni M
2
i∑

i ni Mi
(18)

The ratio ofMw toMn, called polydispersity index (PDI), is often used to express
how polydisperse the polymer sample is

PDI = Mw

Mn
=

∑
i ni

∑
i ni M

2
i(∑

i ni Mi
)2 (19)

Many complex fluids are solutions of polymer molecules in a Newtonian sol-
vent. While in the solid state, polymer molecules pack the space either in a regular
array (crystalline phase) or at random (amorphous phase), in solutions each polymer
molecule interacts with the surrounding solvent molecules, and may exhibit different
conformations depending on the concentration.

For a given polymer, there are solvents that dissolve the polymer well (called good
solvents), solvents that do not dissolve the polymer at all (called nonsolvents) and
solvents with intermediate properties (called poor solvents) which can dissolve the
polymer only up to a limited concentration. Tables of solvents and nonsolvents for
different polymers can be found in the reference literature (Brandrup et al. 2005).
In a good solvent, the solvent molecules impregnate the polymer coil, which swells
increasing its volume; the solution remains clear and uniform even at concentrations
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Fig. 4 Examples of phase diagrams of polymer solutions in temperature versus volume fraction
coordinates. Left: phase diagram with upper critical temperature; right: phase diagram with lower
critical temperature

as high as 100%. In a poor solvent, there is little affinity between the solventmolecules
and the polymer coil, which, therefore, crumples reducing its volume. If a small
amount of a nonsolvent is added to a polymer solution in a good solvent, the polymer
precipitates as the nonsolvent mixes with the good solvent.

The quality of the solvent for a given polymer is strongly dependent on tempera-
ture. Thus, one can draw phase diagrams on the temperature versus volume fraction
coordinate plane (Fig. 4) to identify the conditions to have a homogeneous solution
and those to have phase separation. The qualitative phase diagrams of Fig. 4 indicate
that at low volume fractions one has a stable solution over a large range of temper-
atures. For each polymer solution, there is a particular temperature, called the theta
temperature, for which the solvent is poor just enough to compensate exactly the
increase of the coil size due to the excluded volume effect. In this condition, the
solution is called a theta solution, and polymer coils behave like ideal chains. For a
rigorous thermodynamic analysis of the stability of polymer solutions, one can refer
to Teraoka (2002).

A single polymer molecule interacting with the solvent takes a random coil con-
formation in order tomaximize its conformational entropy, which is representative of
the number of conformations with equivalent energy that is accessible to the polymer
chain at a given temperature, and is defined as S = kB ln(ω), where kB is Boltzmann’s
constant and ω is the total possible number of chain conformations. In the case of an
ideal chain, one finds (de Gennes 1979)

S(R) = S(0) − 3R2

2
〈
R2

〉 (20)

Equation (20) suggests that the more extended the chain, the lower its entropy,
because an extended chain can adopt a fewer number of possible configurations
as compared with the numerous possible equivalent conformations of a polymer
coil. It can be shown that the variation of conformational entropy is equal to the
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Fig. 5 Schematic illustration of the structure of polymer solutions as a function of the polymer
concentration

conventional macroscopic entropy, dS = δQ/T , where δQ is the heat exchanged
between the polymer chain and the environment, and T is temperature (Kittel and
Kroemer 1980).4

If the polymer coil is stretched, for example, because of an applied stress or
deformation, it reduces its conformational entropy, and therefore as soon as the con-
straint is removed, it will return to a maximum entropy conformation. This physical
mechanism results into the viscoelastic behaviour of polymer solutions observed
macroscopically, which is discussed in chapter “Transport Phenomena in Viscoelas-
tic Fluids”.

Figure5 shows schematically the structure of polymer solutions as a function
of the polymer concentration. At low concentrations, polymer coils are far from
one another, i.e. the average distance between two polymer coils is much larger than
their size, which defines the so-called dilute solutions. Thus, there are no interactions
among polymer coils, which can be regarded as particles suspended in the fluid, and
the solution viscosity can be estimated using Einstein’s relationship for hard sphere
suspensions:

η = ηs(1 + 2.5� + ...) (21)

where ηs is the viscosity of the pure solvent and � is the particle’s volume fraction.
One can also introduce a specific viscosity, or the ratio between the incremental
viscosity and the solvent viscosity:

ηsp = η − ηs

ηs
(22)

and an intrinsic viscosity, defined as

[η]0 = lim
c→0

η − ηs

cηs
(23)

4One can verify empirically the equivalence of conformational entropy andmacroscopic entropy by
stretching an elastic rubber band. If the stretched rubber band is placed above the upper lip, where
skin is most sensitive, and the pulling force is released, one feels cold: the stretched polymers return
to a coiled conformation, and therefore increase their entropy, absorbing heat.

http://dx.doi.org/10.1007/978-3-030-35558-6_4
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where c is the polymer mass concentration. The intrinsic viscosity is often calculated
using the Mark–Houwink correlation:

[η]0 = A × Mb (24)

whereM is themolecularweight of the polymer, and A andb are empirical constants.5

As the polymer concentration is increased, the average distance between two
coils progressively reduces until, at a critical concentration value c∗ (the overlap
concentration), it becomes approximately equal to the average size of coils, and the
whole volume of the solution is packedwith polymer coils. The overlap concentration
can be calculated as follows:

c∗ = 1

[η]0 (25)

Above the overlap concentration, interactions among polymer coils cannot be
neglected, especially for those monomers located on the outer surface of the coil.
In particular, electrostatic or hydrogen bonds between monomers belonging to the
same macromolecule might break to form new bonds between monomers belonging
to different chains. As a result, polymer coils unfold, and the solution structure
appears as a network of overlapped and entangled polymer chains, characteristic
of semi-dilute solutions, as illustrated schematically in Fig. 5. The change in the
solution structure corresponds to a significant increase of viscosity, because the chain
mobility is greatly reduced compared with the chains in dilute solutions; while in
dilute solutions η ∝ c, in semi-dilute solutions η ∝ c2.

At a higher concentration c∗∗, the solution enters the so-called concentrated regime
inwhich each segment of the polymer chain does not have a sufficient space available.
Typically, the volume fraction of the polymer at c** is between 0.2 and 0.3.

2.2 Surface-Active Agents (Surfactants)

Surfactants are molecules composed of a hydrophilic head group and a hydrophobic
tail group. In other words, this means one side of the surfactant molecule has an
affinity for the continuous phase (lyophilic), and the other side is incompatible with
the continuous phase (lyophobic); overall, the surfactant molecule is amphiphilic (or
amphipathic), i.e. it shows an affinity for different fluids at both ends.

The chemical structures suitable to act as either lyophilic or lyophobic sides of
a surfactant molecule vary with the nature of the continuous phase (the solvent).
If the solvent is a polar liquid such as water, which represents the most common
case in practical applications, the lyophilic (hydrophilic) head is highly polar or
ionic, while the lyophobic (hydrophobic) tail can be a hydrocarbon, fluorocarbon,

5For example, for polyethylene oxide A = 0.0125 and b = 0.78 (Brandrup et al. 2005).
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perfluorocarbon or siloxane chain (Rosen 1978). In particular, the hydrophilic head
can have different nature:

• Cationic, if the hydrophilic head has a positive charge;
• Anionic, if the hydrophilic head has a negative charge;
• Non-ionic, if the hydrophilic head has no apparent ionic charge;
• Zwitterionic, if the hydrophilic head has both positive and negative charges;
• Amphoteric, if the hydrophilic head can have either positive or negative charge
depending on the pH of the solvent.

The hydrophobic tail can have a range of different structures; however, differ-
ences are less marked than in the case of the hydrophilic group. Usually, one can
observe linear or branched hydrocarbon chains, or less frequently double chains or
gemini structures where two surfactant molecules are joint in correspondence of their
hydrophilic heads.

The relative strength of the hydrophilic and hydrophobic parts of a surfactant
molecule is expressed by the hydrophilic to lipophilic balance (HLB), which can be
calculated based on the molecular weight (Griffin 1949, 1954):

HLB = 20
Mh

M
(26)

whereMh is themolecularweight of the hydrophilic head andM that of thewhole sur-
factant molecule. An alternative approach to calculate the HLB number is to attribute
different values to specific chemical groups in the molecule (Davies 1957). Low val-
ues of the HLB number indicate the hydrophobic tail outweighs the hydrophilic
head, and vice versa high values indicate the surfactant behaviour is dominated by
the hydrophilic part. Thus, theHLBnumber can be used to determine the solubility of
a given surfactant in water, and the characteristics of oil–water emulsions containing
it (see Table2). Despite the use of the HLB number as a method to characterize sur-
factant systems has become common practice in academia as well as in the surfactant
industry, one must keep in mind it leads to purely indicative conclusions, because it
accounts only for the properties of the surfactant molecule rather than those of the
whole system under consideration.

Table 2 Solubility in water and emulsion morphology obtained within different ranges of the HLB
number

HLB number Solubility in water Emulsion morphology

1–4 Insoluble Water in oil

4–7 Poor dispersion Water in oil

7–9 Stable opaque dispersion −
10–13 Hazy solution Oil in water

>13 Clear solution Oil in water
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(a) (b) (c)

Fig. 6 Schematic picture of surfactant adsorption at fluid–fluid interfaces (a), on hydrophilic (b),
and on hydrophobic surfaces (c), for low (top) and high (bottom) bulk concentrations

When surfactants are present in a fluid system at low concentration, they tend to
adsorb onto free surfaces or interfaces between any two immiscible phases, oriented
according to the affinities of their head and tail groups. When surfactants accumulate
at an interface, they reduce its energy level,making itmore thermodynamically stable.
This makes surfactants essential components in several formulations, including inks,
dyes, lubricants, gellants, paints and many others. Figure6 displays examples of
surfactant adsorption at fluid–fluid interfaces, hydrophilic surfaces and hydrophobic
surfaces, at both low and high bulk concentrations. Remarkably, on hydrophilic
surfaces, one can observe the formation of a double layer to ensure hydrophilic
heads are exposed to the solvent.

A relation between the bulk surfactant concentration,C , and the surfactant adsorp-
tion, CS , is provided by the Langmuir adsorption isotherm (Langmuir 1918):

CS = CS
∞

C

C + a
(27)

where CS∞ is the maximum possible adsorption at the surface when C → ∞ and a is
a constant which can be related to the energy of adsorption per molecule. Equation
(27) can be generalized to account for the interaction between the adsorbed surfac-
tant molecules and, in case of ionic surfactant, for the electrostatic energy of the
surfactant ions (Borwankar and Wasan 1988). Other types of adsorption isotherms
can be obtained based on various equations of state (Jho and Burke 1983; van Hunsel
et al. 1986; Fainerman and Miller 1995). Figure7 displays an example of adsorption
isotherm as a function of the bulk concentration, together with sketches of typical
surfactant distributions observed at different surfactant concentrations.

In general, surfactant adsorption occurs in two stages: (i) diffusion of surfactant
from the bulk solution to the region near the interface and (ii) transfer of the surfactant
molecules from this region to the interface. Thus, depending on the relative kinetics of
the two stages, one can observe diffusion-controlled adsorption, where the surfactant
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Fig. 7 Qualitative
adsorption curve of a
surfactant onto a hydrophilic
surface as a function of the
bulk concentration
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diffusion is much slower than the second stage, and hence determines the rate of
adsorption, and barrier-controlled adsorption, where the second stage is much slower
than diffusion due to the presence of some kinetic barrier, which slows down the
transfer of the surfactantmolecules from the regionnear the interface to the adsorption
monolayer. The adsorption kinetics may also be affected by electrostatic interactions
in case of ionic surfactants and, if surfactant aggregates are present in the bulk, by
reactions of aggregate formation and decay.

When the surface or interface is nearly at maximum coverage, molecules begin
to aggregate in the bulk phase to minimize further free energy. This occurs at a
well-defined concentration, specific to each surfactant-fluid system, known as the
critical micellar concentration (CMC). Above the CMC, the system then consists
of an adsorbed monomolecular layer at the interface, and of free monomers and
surfactant aggregates (micelles) in the bulk, with all these three states in equilibrium
(see the sketch in Fig. 7).

Typically, micelles are clusters of ∼50–∼200 surfactant molecules, whose size
and shape are governed by geometric and energetic considerations (Israelachvili
2011). These self-assembled aggregates are structured in such a way so as to
expose the lyophilic (hydrophilic) part to the solvent, and to conceal the lyopho-
bic (hydrophobic) part inside, and therefore their shape is usually spherical or rod
like, as shown in Fig. 8a. If micelles are highly packed, they may rearrange into
ordered structures, generating hexagonal or lamellar phases (Fig. 8b).

The phase behaviour of a given surfactant system can be usefully portrayed in
binary or ternary phase diagrams, such as the example shown in Fig. 9a, which
displays the occurrence of different phases as a function of temperature and of the
surfactant concentration, for a well-known surfactant system, sodium dodecyl
sulphate–water (Kékicheff et al. 1989). Since surfactant phases can be strongly
anisotropic, such as in the case of hexagonal or lamellar phases, they may affect
significantly the behaviour of surfactant systems in shear flow; in particular, the tran-
sition from an isotropic phase (e.g. a dispersion of spherical micelles) to a lamellar
phase (or vice versa) can change the apparent shear viscosity of the system of orders
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hexagonal

lamellar

rod-like

spherical

(a) (b)

Fig. 8 Examples of surfactant aggregates or micelles (a), and examples of surfactant phases (b)

Fig. 9 Binary phase diagram of the sodium dodecyl sulphate–water system (Kékicheff et al. 1989)
displaying: micelles,M; hexagonal phase, H; cubic phase, C; lamellar phase, L; phase separation, S;
crystal phase, CR (a). Qualitative plot of shear viscosity as a function of surfactant concentration (b)

of magnitude, as shown in the example given in Fig. 9b, where viscosity drops in
the transition from hexagonal packing to lamellar phase because in the latter the
surfactant bilayers can shear on each other with the solvent acting as a lubricant.

The transition from isotropic to non-isotropic phases in surfactant systems may
occur even without changing the structure of surfactant aggregates; sometimes, it
is sufficient a change in the micelle conformation under shear flow. Shear-induced
phase transitions are very common in liquid crystals andworm-likemicellar solutions
(Fischer and Callaghan 2001; Cates and Fielding 2006). For example, a surfactant
system containing rod-like micelles with large aspect ratio will appear isotropic at
zero or low shear rates; however, at high shear rates, micelles will align parallel to
the flow direction, inducing a transition to a nematic phase.

Interfacial behaviour of surfactant solutions Interfaces between two immiscible
fluids represent a boundary across which there is a more or less abrupt change of the
fluid structure, and, in particular, of the intermolecular forces characteristic of the two
phases. To compensate this difference, an interfacial tension arises in the interfacial
region; in the case of interfaces between a liquid and a gas, where intermolecular
interactions are negligible, this is called the surface tension. Although fluid interfaces
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(a) (b)

Fig. 10 Schematic description of pressure anisotropy on a fluid element near the surface as opposed
to one in the bulk fluid (a), and normal cross section of a real fluid interface displaying the mutual
diffusion layer (b)

are usually represented as mathematical surfaces with no thickness, in reality, they
can be identified with a layer of small but finite thickness where the two fluids mix
due to Brownian diffusion.

From the point of view of classical mechanics, surface tension is understood as a
pressure anisotropy. With reference to Fig. 10a, pressure is isotropic in the bulk fluid,
i.e. px = py = pz ; however, the presence of the surface creates a local anisotropy,
and therefore near the surface px = py �= pz . Integrating the difference between the
tangential and normal pressure components over the interface thickness, 2z (i.e. the
thickness of the mutual diffusion layer, see Fig. 10b), yields the surface tension:

γ =
∫ +z

−z
|pn − pt | dξ (28)

where pt = px = py and pn = pz . Equation (28) shows its dimensions are force per
unit length.

From the point of view of thermodynamics, surface tension represents a Gibbs
excess property of the interface, namely, the energy per unit area of the interface.
Since energy is an extensive quantity, the surface energy is proportional to the surface
area; the larger the area, the larger the number of molecules that must be extracted
from the bulk to create the new surface, which requires more work against the inter-
molecular forces. If increasing the surface requires work, then in the plane tangent to
the surface there is a force opposing the expansion and perpendicular to the surface
boundary, as shown schematically in Fig. 11a. For a homogeneous surface, the force
per unit length is constant, and if a boundary of length L moves over a distance dx
in the direction of the force, the work required to increase the surface area is

dW = γLdx = γd A (29)

The Gibbs free energy of the surface then writes (Gibbs 1961):
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(a) (b)

Fig. 11 Work of forces acting on the boundary of a fluid interface (a), and schematic description
of molecular interactions in the bulk fluid and at the interface (b)

dG = −SdT + pdV + γd A (30)

and for a transformation at constant pressure and temperature, surface tension can
be defined as

γ =
(
dG

dA

)
T,P

(31)

Similarly, the surface tension can be defined in terms of the Helmholtz free energy
for a process at constant temperature and volume. A remarkable feature of the ther-
modynamic approach is that the Gibbs interface is a mathematical surface with no
thickness, whereas real surfaces extend over the mutual diffusion layer.

Finally, from the point of view of statistical mechanics surface tension arises from
the imbalance of intermolecular forces at an interface, which is represented schemat-
ically in Fig. 11b. Thus, surface tension can be computed directly, in principle at least,
by adding up all the mutual interactions between molecule pairs, by assuming, for
example, a Lennard-Jones interparticle potential. In any case, all statistical mechan-
ics approaches to calculate surface tension take as starting point either Eq. (28), i.e.
the classical mechanics definition (Kirkwood and Buff 1949), or Eq. (31), i.e. the
thermodynamic definition (Triezenberg and Zwanzig 1972), and express pressure
and free energy, respectively, as a function of the intermolecular potential and of the
interfacial density profile and the direct correlation function (Hansen andMcDonald
2013).

The surface tension of liquids decreases monotonically with increasing tempera-
ture, because intermolecular forces decrease with an increase of molecular thermal
activity. Theoretically, the value of surface tension should become zero at the criti-
cal temperature, TC , since at this temperature, the interface between a liquid and its
vapour disappears, although for some liquids the interface disappears a few degrees
below the critical temperature. According to the Eötvös correlation, the surface ten-
sion decreases with temperature as (Eötvös 1886)

γ = k

V
2
3

(TC − T ) (32)
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where k = 2.1 × 10−7 J/(K·mol2/3) is the Eötvös constant and the molar volume, V ,
is given by the ratio between the molar mass and density.

A direct consequence of interfacial tension is the existence of a pressure difference
across any curved interface between two fluids, also known as Laplace pressure
(Young 1805; Laplace 1805),which is proportional to the surface curvature according
to the Young–Laplace equation:

�p = γ =
(

1

R1
+ 1

R2

)
= −γ∇ · n (33)

where R1 and R2 are the principal radii of curvature at a given point of the interface
and n is the unit normal pointing out on the convex side of the interface in the same
point. The Laplace pressure is responsible, for example, of the capillary rise of liquids
in tubes of small diameter, and of the onset of nucleate boiling at temperatures higher
than the saturation temperature of a liquid.

Interfacial tension also determines the orientation of interfaces in the vicinity of a
three-phase contact line, which is of exceptional importance in the understanding of
wetting phenomena. The balance of interfacial tensions at a solid–liquid–gas contact
line yields the contact angle of a liquid drop deposited on a solid surface, θ, defined
as the angle between the solid surface and the liquid-air interface on the side of the
liquid phase (Young 1805):

γSG = γSL + γLV cos θ (34)

where γSG , γSL and γLV are, respectively, the solid–gas, solid–liquid and liquid–gas
interfacial tensions. Although Eq. (34) was originally understood as the balance of
three surface tensions, it can be derived more rigorously by interpreting γSG , γSL

and γLV as interfacial energies per unit area, and minimizing the total free energy of
the system (Gibbs 1961).

When surfactants are adsorbed at fluid interfaces, they lower the value of the
surface (or interfacial) tension, according to the Gibbs adsorption equation (Gibbs
1961; Ono and Kondo 1960; Adamson 1976):

dγ = −kBT
∑
i

C S
i d lnCi (35)

where kB is the Boltzmann constant, T is temperature,Ci andCS
i are, respectively, the

bulk concentration and the surface concentration (adsorption) of the i-th component in
the solution; the summation in Eq. (35) is carried out over all components. Integrating
Eq. (35), and recalling Eq. (27), yields the Frumkin equation (Frumkin 1925), which
relates the interfacial tension of a surfactant solution to the surfactant adsorption:

γ = γ0 + kBT ln

(
1 − CS

CS∞

)
(36)
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Fig. 12 Surface tension isotherm as a function of surfactant concentration

where γ0 is the surface tension of the solvent.
Figure12 displays a typical surface tension isotherm for an aqueous surfactant

solution as a function of the bulk surfactant concentration. Adsorption of surfactant
molecules at the surface causes an abrupt decrease of surface tension until the bulk
concentration reaches the critical micellar value. Above the CMC, surface tension
remains practically constant, and one can observe the formation of micellar aggre-
gates in the bulk fluid.

The interface adsorption kinetics of surfactants depends on several factors, includ-
ing diffusion, adsorption energy barriers, electrostatic interactions, as mentioned in
Sect. 2.2. In the case of small surfactants with high mobility and low adsorption
energy barrier, the time tomigrate to the interface can be as short and 10−6 s, whereas
for large surfactants, such as polymers and proteins, the migration time may range
between 1 second and several days. As an example, one can consider the aqueous
solution of a high molecular weight flexible polymer, polyethylene oxide (Glass
1968): at a bulk concentration of 0.001% (w/w), the surface tension is 68 mN/m
for a surface age of 30s; however, one must wait for more than 13h to reach the
equilibrium surface tension of 63.5 mN/m.

Increasing the bulk concentration of surfactant reduces the migration time,
because there are more surfactant molecules placed at a shorter distance from the
surface. Thus, the time to reach equilibrium varies considerably from system to sys-
tem, and can be very long in some cases. Figure13 displays typical surface tension
isotherms plotted as a function of time, for different bulk concentrations, as well as
a schematic description of the migration process. The time dependence of surface
tension at timescales shorter than the time to reach equilibrium implies that besides
the concept of equilibrium surface tension, which is an equilibrium thermodynamic
property and is time-independent, onemust introduce the concept of dynamic surface
tension, which should not be interpreted in terms of equilibrium thermodynamics.
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Fig. 13 Surface tension
isotherms plotted as a
function of time (top), and
sketch of surfactant
adsorption process (bottom)

The dynamic surface tension of polymer and surfactant solutions is relevant to
those situations where surfaces or interfaces are created at a rate much faster than that
of the adsorption kinetics. In these cases, the dynamic surface tension corresponding
to a surface age equal to the timescale of the process should be used instead of the
equilibrium value. A typical example is the impact of surfactant-laden droplets on
solid surfaces, where the free surface of drops expands rapidly during the inertial
spreading stage, with a timescale of ∼5ms (Mourougou-Candoni et al. 1997; Zhang
and Basaran 1997).

Dynamic surface tension effects should also be considered when measuring the
surface tension of polymer, surfactant or colloidal particle solutions. In fact, depend-
ing on the measurement technique used and on the adsorption kinetics, the measured
surface tension may not correspond to the equilibrium value, as discussed in Sect. 2
of chapter “Experimental Methods to Characterize Complex Fluids” about surface
tension measurement techniques.

2.3 Colloids

Colloids are small particles with size in the range between 1nm and 1µm; when
colloidal particles are suspended in a continuous medium, such as a fluid, they form
a colloidal system. The word colloid comes from the Greek κoλλα, which means
glue, and reflects the tendency of colloidal particles to irreversibly aggregate because
of attractive van der Waals interactions. Due to their intermediate (mesoscopic) size
between the atomic scale and the macroscopic scale, colloidal particles are large
enough to look at the solvent molecules as a continuum, but small enough to experi-

http://dx.doi.org/10.1007/978-3-030-35558-6_3
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ence Brownian fluctuations and to consider gravity negligible compared to interpar-
ticle and particle–solvent interactions (Einstein 1905). By tuning the interparticles
and particle–solvent interactions, colloidal systems can be used to reproduce phe-
nomena occurring at atomic or molecular scale; an example is the identity between
the barometric distribution in an ideal gas and the sedimentation profile of a colloidal
suspension (Perrin 1910).

Van der Waals forces originate from the interactions between the fluctuating elec-
tron distributions of atoms and molecules and are therefore present for any object,
including electrically neutral objects. For atomic systems, the van der Waals force
scales as ∼r6, where r is the distance between the two atoms; for spherical colloids,
similar expression can be derived by integrating over all atomic pair contributions,
which yields the following van der Waals potential:

UvdW (r) = − A

12

[
4R2

r2 − 4R2
+ 4R2

r2
+ 2ln

(
1 − 4R2

r2

)]
(37)

where r is the distance between the centres of the two particles, R is their radius
and A is the Hamaker constant (Israelachvili 2011). In the limit of large distances
between colloids, one finds

lim
r→∞UvdW (r) = −16

9
A

(
R

r

)6

(38)

while in the limit of very close particles, the interaction potential becomes

lim
r→0

UvdW (r) = − A

12

(
R

r − 2R

)
(39)

Thus, if the particles come close together their attraction becomes rapidly larger
than the thermal energy, kBT , which leads to irreversible aggregation. To prevent
particles from coming too close to one another, one must envelop each particle with
a repulsive shield, which can have either electrostatic nature (charge stabilization)
or mechanical nature (steric stabilization).

Charge stabilization is possible when colloidal particles have ionisable groups on
their surface, which dissociate when the particles are suspended in polar solvents.
The dissociated ions partially diffuse away in solution due to Brownian motion, but
tend to remain near the particle due to Coulomb attraction. Thus, the charged particle
is surrounded by a cloud of the dissociated ions and of any other electrolyte present
in solution, which forms a double layer of ions as shown schematically in Fig. 14a.
The charge distribution in the double layer results from the balance between the ions
diffusion and the attractive Coulomb force, and generates a potential described by
the Debye–Hückel equation:

UC(r) = (Qe)2

4πεε0r

exp [−(r − 2R)/λDH ]

(1 + R/λDH )2
(40)
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Fig. 14 Schematic of charge
stabilization (a) and steric
stabilization (b)

where Q is the number charge per particle, e is the electron charge, ε and ε0 are,
respectively, the vacuum permittivity and the solvent dielectric constant and λDH is
the Debye–Hückel length, defined as

λDH =
√

εε0kBT

e2
∑

i z
2
i ni

(41)

where kB is Boltzmann’s constant, T is temperature, zi is the valence of the i-th ion
species and ni is the corresponding number density; the sum is carried out over all
the ion species in solution (Israelachvili 2011). The Debye–Hückel length represents
the distance over which the electrostatic repulsion decays, and hence it defines the
double layer thickness.

Steric stabilization is obtained by coating the particle surface with a layer of
chemically grafted polymer molecules that stretch out into the solvent, as shown
schematically in Fig. 14b. This is possible if the polymer is in a good solvent, at
a temperature above the theta point (Strobl 1997). When two particles approach
each other, the two polymer layers begin to overlap, which reduces the number of
possible conformations of the single polymer chains due to Brownian motion, and
therefore reduces the entropy of the system increasing the free energy; this generates
a repulsive potentialUHS . If the thickness of the polymer layer is larger then the range
of van der Waals attraction, particles are fully stabilized. However, if temperature
falls below the theta point, polymer chains assume a random coil conformation and
the stabilizing action is lost.

The full interaction potential between colloidal particles in suspension, known
as Derjaguin–Landau–Verwey–Overbeek (DLVO) potential (Derjaguin and Landau
1993), is obtained by adding up all the contributions introduced above:

UDLV O(r) = UvdW (r) +UC(r) +UHS(r) (42)

Although the DLVO potential describes well many colloidal systems, its validity
is not universal (Ninham 1999).
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The simplest model colloidal system consists of a suspension of identical,
infinitely rigid spherical particles which have only elastic interactions; their rigid-
ity prevents any overlap or deformation, and therefore the interaction potential is a
Dirac delta function of the distance between the particle centres. As a consequence,
the phase behaviour of the system is determined only by the particles packing in a
given volume, expressed by the volume fraction,�. The phase diagram of ideal hard
spheres was calculated by numerical simulations (Wood and Jacobson 1957; Hoover
and Ree 1968), and can be summarized as follows:

• Below a volume fraction �F = 0.494, the stable phase is a fluid suspension of
colloidal particles; there is no long-range order, and the particles are free to explore
the full available space by Brownian random motion.

• For 0.494 < �F < 0.545, the equilibrium state is a coexistence of a fluid phase
and a crystalline phase. The ratio of the two phases is related to the volume fraction
by the lever rule.

• For 0.545 < �F < 0.58, all the suspensions are crystalline.
• For 0.58 < �F < 0.64, particles fail to crystallize, and remaining blocked in a
non-equilibrium phase known as the colloidal glass (Pusey and van Megen 1986).
As the volume fraction of the system increases, particles are more and more caged
by their neighbours, and structural rearrangements which relax the system towards
the equilibrium structure become so slow that particles are permanently caged by
their neighbours and the structure of the suspension is frozen. The maximum
packing fraction of a disordered arrangement of identical hard spheres is �RCP ≈
0.64 (Bernal 1959; Bernal and Mason 1960). In the glassy state, particles are
arranged in a structure analogous to the one of a dense liquid, and therefore no
long-range order is present in the system.

• For 0.64 < �F < 0.74, the system is crystalline up to the maximum crystalline
close packing fraction, �CP = 0.74.

The hard-sphere phase diagram can be modified if the interactions between the
particles deviate from the ideal case. In particular, the presence of charges shifts the
liquid–solid phase boundary and the value of �G towards lower values. In fact, the
presence of a charged double layer increases the effective size of particles, because a
particlewill start to feel the presence of another particle at a distancemuch larger than
its diameter due to the long-range Coulombic repulsion. By screening the charge, the
size of the double layer can be reduced to the point that the effective size is very close
to the actual particle size and the hard-sphere behaviour is almost fully recovered.

Polydispersity, defined as the ratio between the standard deviation and the mean
of the size distribution, also affects the phase behaviour of hard-sphere suspen-
sions (Evans et al. 1999). In particular, crystallization is suppressed for polydisper-
sities larger than a critical value of � = 0.12, since the size distribution distorts the
crystalline lattice. For polydispersities� < 0.06, the behaviour is similar tomonodis-
perse systems, while for intermediate ranges, the dynamics of crystallization is con-
siderably slower.
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(a) (b)

Fig. 15 Schematic description of the radial distribution function concept (a) and qualitative plot
of g(r) as a function of the dimensionless distance from a particle (b)

The packing structure of spheres is often characterized using the radial distribution
function or pair correlation function, g(r), which describes how the local, time-
averaged density ρ(r) varies as a function of the distance from a reference particle:

ρ(r) = N

V
g(r) (43)

where N and V are the total number of particles in the system and the system volume,
respectively. In a homogeneous and isotropic system, it represents the probability of
finding a particle in a shell of thickness dr at a distance r from a given reference
particle, as shown schematically in Fig. 15a.

If the positions of the particles are completely uncorrelated, such as in an ideal
gas, the probability is independent of the distance; if the system is arranged into
a crystalline lattice, then the probability will be peaked at the lattice spacings. For
liquids or amorphous systems like glasses, there is no long-range order, and therefore
g(r) decays to the ideal gas profile at long distances, but the presence of short-range
order produces peaks at short distances (a qualitative example plot is displayed in
Fig. 15b). Typically, the structure of a suspension is lost after 3–4 particle diameters
from the initial particles.

The dynamics of a colloidal particle in a dilute solution is determined by diffusion.
The characteristic timescale is theBrownian or diffusion time, τB = R2/6D0, defined
as the time that a particle takes to diffuse over a distance equal to its radius, where
D0 = kBT/6πηR is the Stokes–Einstein diffusion coefficient of a single particle
of radius R in a solvent of viscosity η at temperature T . For systems with large
τB , the role played by Brownian motion in events happening on shorter time scales
becomes less important. For example, in the simple case of a uniformly sheared
colloidal suspensions, two timescales are present in the problem: the diffusion time
and the timescale set by the flow equal to the inverse of the applied shear rate, γ̇.
The Péclet number, Pe = τB γ̇, is defined as the ratio of the two timescales, and
gives an indication of the relative importance of each mechanism. For Pe � 1,
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Brownian motion dominates the dynamics of the suspension, while for Pe  1, the
system behaves analogously to an a-thermal system, and therefore the dynamics is
determined only by the flow.
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Constitutive Models of Complex Fluids

Volfango Bertola

Abstract This chapter provides an overview of the most common constitutive mod-
els used to describe the behaviour of non-Newtonian flows. For practical purposes,
models are sorted into generalised Newtonian models, viscoelastic flow models and
models for viscoplastic flows.

1 Introduction

Constitutive models, or constitutive equations, express in general a relationship
between the force applied to amaterial and the consequent deformation; in the case of
a fluid, which does not have a reference shape, the relationship is between the applied
force and the rate of deformation. Since the applied force is always distributed over
the fluid, usually constitutive models relate, more conveniently, the applied stress to
the rate of deformation, or velocity gradient, which is expressed in tensorial form as

� = f (�) (1)

where � is the symmetric stress tensor, with six independent components:

� =
⎛
⎝

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎞
⎠ (2)

with σxy = σyx , σxz = σzx and σyz = σzy , and � is the deformation rate tensor, also
symmetric:
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(∇v + ∇vT
)

(3)

where u, v and w are the velocity components in the three Cartesian directions x , y,
z, and ∇v is the velocity gradient tensor.

Such constitutive equations can be obtained directly from first principles using a
statistical mechanics approach, such as in the case of the steady flow of a hard sphere
gas (Zwanzig 1979), from empirical measurements, or, more frequently, from purely
mathematical models that are able to reproduce certain behaviours observed either
at macroscopic or at molecular level.

In order to formulatemathematical models that are physically significant, it is nec-
essary to introduce at least two assumptions: (i) the system is local and causal, i.e.
the stress at a material point depends only on the history of that material point and its
neighbours, and cannot depend on future events; (ii) constitutive models should not
depend on the translation, rotation or acceleration of the reference frame (e.g. Carte-
sian), i.e. the stress at a material point does not change if calculated before and after
any transformation of the reference frame.Of course, these assumptions are necessary
but not sufficient, which explains why mathematical models can only approximate
the behaviour of a physical system within a limited range of the system parameters.
The assumption of material frame indifference has important consequences on the
mathematical formulation of constitutive models of viscoelastic flows, which will be
discussed in Sect. 3.

The simplest constitutive equation describes the so-calledNewtonian flows,where
the stress tensor is a linear function of the deformation rate:

� = −p I + 2η� (4)

where p is pressure, I is the identity matrix, and η is the Newtonian viscosity. The
Newtonian constitutivemodel given by Eq. (4) is commonly used to describe the flow
of simple fluids, such as water and air. Constitutive models that cannot be reduced to
Eq. (4) describe non-Newtonian flows. Since Eq. (4) expresses a relationship between
flow variables, the attributes “Newtonian” and “non-Newtonian” always refer to a
flowing fluid, therefore they are by nomeans attributes of the fluid itself. For example,
fluids that usually exhibit Newtonian behaviour may become shear-thinning at high
shear rates (Pipe et al. 2008).

Non-Newtonian constitutive models can be sorted into two main families: time-
independent fluids, if the response of thematerial to an applied stress is instantaneous
and fully reversible, and time-dependent, if the material response depends on its
previous history. It is important to remark that, depending on the flow parameters,
the behaviour of the same fluid can be described either by a time-independent or by
a time-dependent model.
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A comprehensive analysis of constitutive models can be found in a number of
excellent reference books (Larson 1999; Bird et al. 1987; Joseph 1990; Phan-Thien
2002). In the following sections, the most common constitutive models to describe
the flow of complex fluids are sorted into generalisedNewtonianmodels, viscoelastic
flow models and models for viscoplastic flows.

2 Constitutive Models for Generalised Newtonian Flows

In generalised Newtonian constitutive models, viscosity is a function of the second
invariant (or quadratic invariant) of the strain rate tensor, defined as

I2 = 1

2

[
(tr�)2 − tr (�)2

] =

= 1

4

[(
∂u

∂y
+ ∂v

∂x

)2

+
(

∂v

∂z
+ ∂w

∂y

)2

+
(

∂w

∂x
+ ∂u

∂z

)2
]

+

−
(

∂u

∂x

∂v

∂y
+ ∂u

∂x

∂w

∂z
+ ∂v

∂y

∂w

∂z

)
(5)

Similar to Newtonian flows, in generalised Newtonian flows the stress depends only
on the instantaneous flow and not on the flow history. In simple shear flow, Eq. (5)
reduces to

I2 = 1

4

(
∂u

∂y

)2

= 1

4
γ̇2 (6)

where γ̇ = ∂u/∂y is the shear rate.
The simplest type of generalised Newtonian flow behaviour occurs when the

viscosity coefficient is a monomial function of the shear velocity gradient (power
law, or Ostwald–De Waele model):

η = K γ̇n−1 (7)

where the consistency coefficient, K , and the power-law index, n, are empiri-
cal constants. The power-law index is indicative of the shear-thinning (n < 1) or
shear-thickening (n > 1) behaviour of the fluid, whereas for n = 1 the Newtonian
behaviour is retrieved. The consistency coefficient describes the fluid viscosity at
low shear rates, and coincides with the Newtonian viscosity for n = 1. The shear-
thinning, shear-thickening and Newtonian behaviours of the shear stress and of the
viscosity as described by the power-law constitutive model are shown, respectively,
in Fig. 1a, b.

In the limit n → 0, the shear stress has a constant value, irrespective of the
imposed shear rate. Although this picture may seem unphysical, stress plateaus can
be observed experimentally over limited shear rate intervals, for example in the flow
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(a) (b)

Fig. 1 Shear stress (a) and viscosity (b) obtained with the power-law model (Eq.7) with K = 1
and: n > 1 (shear-thickening, solid line); n = 1 (Newtonian, dotted line); n < 1 (shear-thinning,
dashed line)

of monodispersed polymer melts and solutions (Yang et al. 1998). For n < 0, the
shear stress decreases monotonically upon increasing the shear rate, which means
the flow is unstable.

Power-law fluids are time-independent, i.e. the shear stress does not depend on
the previous deformation history. Physically, shear-thinning is usually explained by
the breakdown of structure formed by interacting particles within the fluid, while
shear-thickening is often due to flow-induced jamming (Frith et al. 1996).

TheOstwald–DeWaele equation implies that viscositywill change indefinitely for
any values of the shear rate. In other words, in the case of shear-thinning fluid (n < 1)
viscosity tends to grow unlimited for γ̇ → 0, and to vanish for γ̇ → ∞; in these
limits, the power-law model fails to describe the behaviour of real fluids accurately.
To account for amore realistic behaviour, where viscosity varies between aminimum
and a maximum value, respectively, at very low and very high shear rates, a number
of constitutive equations have been proposed, such as the Cross model (Cross 1965):

η − η∞
η0 − η∞

= 1

1 + (C γ̇)1−n
(8)

and the Bird–Carreau–Yasuda model (Bird and Carreau 1968; Carreau 1972; Yasuda
and Cohen 1981), which was initially developed to describe shear-thinning observed
in many viscoelastic (i.e. time-dependent) flows:

η − η∞
η0 − η∞

= 1

[1 + (C γ̇)a](1−n)/a
(9)

where η0 and η∞ are the viscosities at zero shear and infinite shear, respectively,
a is a parameter with a default value of 2, and C is the Cross time constant. This
parameter is the reciprocal of the strain rate at which the zero-strain rate component
and the power-law component of the flow curve intersect.
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Fig. 2 Comparison between
the power-law model (dashed
line) with parameters
K = 2.5, n = 0.14 and the
Cross model (solid line) with
parameters C = 3, n = 0.05;
for γ̇ → 0 and γ̇ → ∞ the
Cross model tends to the
asymptotic values η0 = 10
Pa s and η∞ = 0.01 Pa s,
respectively, whereas the
power-law model continues
to grow or decrease
indefinitely

Figure2 shows a comparison between the viscosities calculated with the power-
law model (Eq.7) and the Cross model (Eq.8). Although the model parameters can
be adjusted so that the two constitutive equations coincide within a certain range of
shear rates, there is a significant deviation at low and at large shear rates.

Finally, the Ellis model is obtained by setting η∞ = 0 in the Cross model:

η

η0
= 1

1 +
(

σxy

σ1/2

)n−1 (10)

where σxy is the applied shear stress, and σ1/2 is the shear stress at which viscosity
is exactly half of the zero-shear viscosity value, η0.

3 Constitutive Models for Viscoelastic Flows

In viscoelastic fluids, such as polymer melts or solutions, a part of the deformation
energy is stored as elastic energy, and released with a certain delay depending on the
relaxation time of the fluid. The basic feature that essentially all viscoelastic fluids
share is the occurrence of elastic stress effects: when the shear rate is sufficiently
strong, the forces along the normals of a little cubical fluid element are different in
different directions, unlike what happens for a Newtonian fluid where the pressure
is isotropic. From the microscopic point of view, this behaviour is usually related
to conformational rearrangements of the macromolecules which compose the fluid
under the action of hydrodynamic forces. The entropic tendency of polymers that are
stretched by the flow to recover their equilibrium chain conformation generates an
elastic stress, themacroscopicmanifestation ofwhich is a difference in stress between
the flow direction and the direction normal to it. Viscoelasticity manifests itself in



32 V. Bertola

a variety of phenomena, including creep (the time-dependent strain resulting from
a constant applied stress), stress relaxation resulting from a steady deformation, the
Weissenberg rod-climbing effect due to nonzero normal stress difference, and many
others, as discussed in Chapters Introduction to Transport Phenomena in Complex
Fluids and Transport Phenomena in Viscoelastic Fluids.

The non-isotropic principal components of the stress tensor allow one to charac-
terise the elasticity of polymer solutions andmelts through normal stress differences:
the first normal stress difference, N1 = σxx − σyy , and the secondary normal stress
difference, N2 = σzz − σyy . In most cases, the magnitude of N2 is around 10% of N1

or less. The ratio N1/σ is often taken to be a measure of the severity of viscoelastic
behaviour, and can be used to classify a fluid as inelastic (N1 � σ) or as viscoelastic
(N1 � σ).

The dissipation of energy associated to the process of stretching and relaxation of
macromolecules is described by introducing the concept of elongational (or exten-
sional) viscosity, the ratio of the first normal stress difference to the rate of elongation
of the fluid:

ηE = σxx − σyy

εxx
(11)

where εxx = �1,1 is the rate of deformation in the direction of stretching. For a
Newtonian incompressible fluid, one can easily verify that the elongational viscosity
is three times the shear viscosity (Trouton 1906). For a polymer solution the ratio
ηE/η, also known as the Trouton ratio, can be of the order of 103–104.

If the relaxation time is small compared to the characteristic time of the flow
(τ = L/v, where L is a characteristic length scale and v a characteristic velocity),
the material structure rearranges almost instantaneously in response to any imposed
deformation, and consequently the stress decays abruptly once the material has been
deformed; this response is characteristic of simple liquids which exhibit Newtonian

Fig. 3 Schematic of
Newtonian, elastic, linear,
and non-linear viscoelastic
regimes as a function of
deformation and relaxation
time during deformation of
polymeric materials
(Phan-Thien 2002). (1)
Newtonian regime; (2) linear
viscoelasticity; (3) elastic
regime; (4) non-linear
viscoelasticity; (5) non-linear
elasticity/viscoplastic regime

http://dx.doi.org/10.1007/978-3-030-35558-6_1
http://dx.doi.org/10.1007/978-3-030-35558-6_4
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behaviour (Fig. 3).When the relaxation time increases, andbecomesof the sameorder
of the characteristic time of the flow, the material structure takes time to re-arrange,
therefore it is necessary to apply a stress in order to keep the material deformed;
as the material structure rearranges, the stress decays exponentially. This behaviour
is typical of viscoelastic materials, and one can distinguish a linear viscoelastic
behaviour in case of small deformations, and a non-linear viscoelastic behaviour in
case of large deformations. When the relaxation time becomes very large compared
to the characteristic time of the flow, the material structure takes such a long time
to rearrange that in practice it never rearranges; thus, in order to keep the material
deformed one must continuously apply a stress, which does not decay in time. If the
stress is removed, thematerial returns to its initial shape (i.e. the shape of thematerial
before the deformation). This behaviour is characteristic of elastic materials; again,
one can distinguish a linear elastic regime in case of small deformations, and a non-
linear elastic regime in case of large deformations; sometimes, large deformations
cause a permanent change of the material structure, resulting into plasticity.

3.1 Linear Viscoelasticity

In linear viscoelasticity, the elastic component of the material behaves like an ideal
Hookean spring, i.e. the elastic force is proportional to the spring extension through
the spring constant. Linear viscoelasticity applies only to materials undergoing small
deformations; non-linearities arise as soon as the deformation is large enough to alter
significantly the conformation of the polymer chains or more in general the material
microstructure. In the following sections, linear viscoelastic constitutive models are
discussed with reference to single shear stress and shear deformation components,
however, their extension to their tensorial equivalent is straightforward.

Lumped parameters models The earliest constitutive model to describe linear
viscoelastic fluids, which combined elastic and viscous effects, was introduced by
Maxwell (1867), and can be represented graphically by an instantaneous extension
of a spring and a time-dependent reaction of a dash-pot in series, as illustrated in
Fig. 4a. In this system, mechanical equilibrium is satisfied if the stress, σxy , is the
same in the elastic and in the viscous element, while the total rate of deformation,
γ̇xy , is the sum of the deformation rates in the two elements:

γ̇xy = d

dt

(σxy

G

)
+ σxy

η
(12)

where G is the elastic modulus, and η the fluid viscosity. This equation can be
rearranged as

λ
dσxy

dt
+ σxy = ηγ̇xy (13)

where λ = η/G is the relaxation time.
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(a) (b) (c)

Fig. 4 Lumped parameter schematic of simple linear viscoelastic constitutive models: a Maxwell
model; b Kelvin–Voigt model; c Burgers model

In a similar fashion to Maxwell’s approach, one can derive a constitutive model
where the elastic and the viscous element are connected in parallel (Voigt 1890),
which is known as theKelvin–Voigtmodel (Fig. 4b). In this case, the two components
experience the same deformation, but their reacting forces have different magnitude:

σxy = Gγxy + ηγ̇xy (14)

Linear viscoelastic models of increasing complexity can be built by combining
together an arbitrary number of elastic and viscous elements. For example, one can
connect in series one Maxwell element and one Kelvin–Voigt element as illustrated
in Fig. 4c (Burgers 1935). The resulting constitutive equation is

σxy +
(

η1 + η2

G1
+ η2

G2

)
dσxy

dt
+ η1η2

G1G2

d2σxy

dt2
= η2γ̇xy + η1η2

G1

dγ̇xy

dt
(15)

Another example is the generalised Maxwell model, where an arbitrary number of
Maxwell elements are combined in parallel, i.e. they are all subjected to the same
deformation. Since each element has a different viscosity and a different elastic
modulus, increasing the number of elements generates models featuring a spectrum
of relaxation times, which provide a more accurate description of real materials.

Response to Heaviside forcing The simplest way to analyse the dynamic response
of linear viscoelastic models to an external forcing is to apply a Heaviside stress
step, σ(t) = σ0H(t), or a Heaviside deformation step, γ(t) = γ0H(t), where the
Heaviside step function is defined as
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H(t) =
{
0 t < 0

1 t ≥ 0
(16)

When a constant stress, σ0, is applied to theMaxwell model (Eq. 13), the response
is

γxy = σ0

η
t + σ0λ

η
(17)

One can observe an instantaneous elastic deformation in the spring, followed by a
constant rate of deformation in the viscous element, γ̇xy = σ0/η, as shown schemati-
cally in Fig. 5a. If after a certain time the stress is removed, the elastic deformation is
entirely recovered, while the viscous deformation is permanent. When the Maxwell
model is forced by imposing a fixed deformation, γ0, solution of Eq. (13) yields

σxy = η

λ
γ0e

−t/λ (18)

As the deformation is applied, there is an instantaneous buildup of stress due to the
spring loading; however, when the viscous element starts to move the spring elonga-
tion reduces, which means the stress decays exponentially with time, a phenomenon
commonly referred to as stress relaxation. This behaviour is illustrated qualitatively
in Fig. 5b.

If a constant stress, σ0, is applied to the Kelvin–Voigt model at t = 0, the solution
of Eq. (14) is:

γxy = σ0

G

(
1 − e−t/λ

)
(19)

Initially, the spring cannot stretch, because it is held back by the viscous element,
which cannot react instantaneously and therefore takes up all the stress, while the
spring is unloaded. After some strain starts to take place, the stress starts to decrease
in the viscous element and increase in the spring, i.e. the stress is transferred from
the viscous element to the elastic element. In the limit t → ∞, the viscous element
is unloaded and the spring carries all the stress; thus, the maximum strain is γmax =
σ0/G. If after a certain time t = τ the applied stress is removed, the spring will not
be able to contract instantaneously due to the resistance of the viscous element, but
eventually pulls the viscous element back to its initial position. The Kelving–Voigt
response to a constant applied stress is depicted qualitatively in Fig. 5c. Unlike in
the case of the Maxwell model, it is not possible to apply a fixed deformation to a
Kelvin–Voigt element instantaneously.

Response to harmonic forcing The dynamic response of linear viscoelastic mod-
els to a harmonic forcing, either σ(t) = σ0 sin(ωt) or γ(t) = γ0 sin(ωt), is another
canonical case in the theory of linear dynamical systems (Casti 1987). In particular,
for a sinusoidal forcing the response is another sinusoid with the same frequency,
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(a) (b)

(c)

Fig. 5 Qualitative response of the Maxwell model (Eq.13) to a constant applied stress, where γE
and γV are the elastic and viscous deformations, respectively (a), and to a constant deformation,
where σE is the elastic stress buildup (b). Qualitative response of the Kelvin–Voigt model (Eq.19)
to a constant applied stress, σ0 (c)

but with a different amplitude and a phase shift; thus, the response to a sinusoidal
stress is

γxy(t) = γ0 sin(ωt + φ) (20)

and the response to a sinusoidal deformation is

σxy(t) = σ0 sin(ωt + φ) (21)

In the limit of a Hookean solid (purely elastic limit), the stress is related linearly to
strain, and the response to a shear deformation which varies sinusoidally with time,
γ(t) = γ0 sin(ωt), is

σxy(t) = Gγ0 sin(ωt) (22)

Thus, in elastic solids there is no phase shift between the shear stress and shear strain.
In the Newtonian fluid limit, the response to the same type of forcing is

σxy(t) = ηγ̇ = ηγ0 cos(ωt) = ηγ0 sin(ωt + π

2
) (23)
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In this case, the resulting shear stress is out of phase from the applied strain by
π/2. In a viscoelastic material, the phase angle can vary continuously between zero
(purely elastic response) and π/2 (purely viscous response), therefore, it provides a
quantitative indicator of the level of viscoelasticity. In particular, small values of the
phase angle represent predominantly elastic behaviour whereas large values of the
phase angle correspond to viscous behaviour.

In the general viscoelastic case, the elastic and viscous parts of the response can
be made explicit by expanding the harmonic terms in Eqs. (20) and (21):

γxy(t) = γ0 cosφ sin(ωt) + γ0 sin φ cos(ωt) (24)

σxy(t) = σ0 cosφ sin(ωt) + σ0 sin φ cos(ωt) (25)

For a harmonic imposed deformation, the amplitude of the component of the
response in phase with the forcing is expressed by introducing the storage modulus,
G ′ = σ0 cosφ/γ0, which reflects the elastic energy stored in the fluid, and the the
component out of phase by π/2 is expressed by the loss modulus, G ′′ = σ0 sin φ/γ0,
which reflects the energy loss by viscous dissipation. For a harmonic imposed stress,
the amplitude of the component in phase with the forcing is expressed by the stor-
age compliance, J ′ = γ0 cosφ/σ0, and the component out of phase is expressed by
the loss compliance, J ′′ = γ0 sin φ/σ0. Using these quantities Eqs. (24) and (25)
become, respectively,

γxy(t) = σ0
[
J ′ sin(ωt) + J ′′ cos(ωt)

]
(26)

and
σxy(t) = γ0

[
G ′ sin(ωt) + G ′′ cos(ωt)

]
(27)

The problemof harmonic forcing is often formulated in terms of complex numbers
using Euler’s formula:

e±iθ = cos θ ± i sin θ (28)

For a harmonic stress input σ(t) = σ0eiωt the response is:

γxy(t) = γ0e
iωt+φ = γ0e

φeiωt = γ0 (cosφ + i sin φ) eiωt =
= σ0

(
J ′ + i J ′′) eiωt (29)

while for a harmonic deformation γ(t) = γ0eiωt the response is

σxy(t) = σ0e
iωt+φ = σ0e

φeiωt = σ0 (cosφ + i sin φ) eiωt =
= γ0

(
G ′ + iG ′′) eiωt (30)
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(a) (b)

Fig. 6 Example of application of Boltzmann’s superposition principle (Eq.31); for a stepped ramp
of the applied stress (a), the response of the system is the sum of the responses to individual steps
(b)

Thus, the phenomenological coefficients related to the elastic and viscous proper-
ties of the substance can be expressed through a single complex number, either the
complex modulus, G∗ = G ′ + iG ′′, or the complex compliance, J ∗ = J ′ + i J ′′.

Superposition principle The linearity of Eqs. (12)–(15) implies their solutions can
be combined linearly. The Boltzmann superposition principle states that the response
of a material to a given load is independent of the response of the material to its pre-
vious loading history. For example, in the case of a loading consisting of a sequence
of Heaviside steps with different magnitudes of the applied stress, the total strain
may be expressed by

γxy = σ1

G
(t − τ1) + σ2 − σ1

G
(t − τ2) + · · · + σn − σn−1

G
(t − τn) (31)

A qualitative example of the behaviour described by Eq. (31) is displayed in Fig. 6.
In the limit of small stress increments, Eq. (31) becomes

γxy =
∫ t

−∞
1

G
(t − τ ) dσ(t) =

∫ t

−∞
1

G
(t − τ )

dσ(t)

dt
dt (32)

3.2 The Problem of Time Derivatives

The assumption of material frame indifference has important consequences on the
mathematical formulationof constitutivemodels of viscoelastic flows,whichdescend
from simple vector calculus, and which were addressed systematically in this context
by Oldroyd and Wilson (1950). In a generic reference frame, a material point is
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characterised by its position vector, r , its velocity, v = d r/dt , and its acceleration,
a = dv/dt . In a second reference frame in relative motion with respect to the initial
reference frame, the position vector is given by

r ′ = Q(t)r + c(t) (33)

where Q is an orthogonal matrix such that QQT = QT Q = I and |Q| = 1, and
c is a vector representing a linear displacement. Since orthogonal matrices preserve
isometries, one can easily verify that the distance between two points in the first
reference frame, |r2 − r1|, does not change in the second reference system:

|r ′
2 − r ′

1| = |Q(t)r2 + c(t) − Q(t)r1 − c(t)| =
= |Q(t) (r2 − r1) | = |r2 − r1| (34)

This conclusion does not apply to velocities and accelerations, which in the second
reference frame are written, respectively, as

v′ = d r ′

dt
= d

dt

[
Q(t)r + c(t)

] = Q
d r
dt

+ d Q
dt

r + dc
dt

=

= Qv + d Q
dt

r + dc
dt

(35)

and

a′ = dv′

dt
= d

dt

[
Qv + d Q

dt
r + dc

dt

]
=

= d Q
dt

v + Q
dv

dt
+ d Q

dt

d r
dt

+ d2Q
dt2

r + d2c
dt2

=

= Qa + 2
d Q
dt

v + d2Q
dt2

r + d2c
dt2

(36)

Thus, velocities and accelerations are invariant under a coordinate transformation
only if the time derivatives on the r.h.s. of Eqs. (35) and (36) are zero, i.e. the two
reference frames are not in relative motion. In other terms, velocity and acceleration
are not objective and depend on the motion of the observer.

When one considers a tensor representing a physical quantity (e.g. the stress
tensor) in a given coordinate system, it must be objective with respect to a change of
the coordinate system:

�′ = Q�QT (37)

However, one can easily verify its time derivative is not objective:

d�′

dt
= d

dt

(
Q�QT

) = d Q
dt

�QT + Q
d�

dt
QT + Q�

d QT

dt
(38)
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To preserve the objectivity of a tensor with respect to time derivation, it is neces-
sary to introduce a new definition of derivative operator (Jaumann 1905):

D∇
Dt

(·) = d

dt
(·) − (∇v)(·) − (·)(∇v)T (39)

In fact, the velocity gradient tensor transforms in the new coordinate system as

(∇v′) = Q(∇v)QT + d Q
dt

QT (40)

Thus, the upper convected1 derivative defined by Eq. (39) is objective with respect
to a transformation of the coordinate system:

D∇
Dt

(�′) = D∇
Dt

(
Q�QT

) =

= d

dt

(
Q�QT

) − Q(∇v)QT
(
Q�QT

) − d Q
dt

QT
(
Q�QT

) +

− (
Q�QT

)
Q(∇v)T QT − (

Q�QT
)
Q
d QT

dt
=

= Q
d�

dt
QT + d Q

dt
�QT + Q�

d QT

dt
− Q(∇v)�QT+

− d Q
dt

�QT − Q�(∇v)T QT − Q�
d QT

dt
=

= Q
d�

dt
QT − Q(∇v)�QT − Q�(∇v)T QT

(41)

Similarly, one can define a lower convected derivative as

D�

Dt
(·) = d

dt
(·) + (∇v)(·) + (·)(∇v)T (42)

Finally, the co-rotational derivative for a second-order tensor is formed from the
appropriate linear combination of the upper and lower convected derivatives:

D◦
Dt

(·) = d

dt
(·) + 1

2

[
(∇v)T − (∇v)

]
(·) + 1

2
(·) [

(∇v) − (∇v)T
] =

= d

dt
(·) − W(·) + (·)W

(43)

where W is the spin tensor.

1The name upper convected arises because the derivative represents the material derivative of the
upper (contravariant) components of a vector when convected with the motion.
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3.3 Oldroyd-B Model

Themost popular constitutive equation for viscoelastic fluids is theOldroyd-Bmodel,
which captures the main features of viscoelastic flows but at the same time is simple
enough to allow finding the analytical solution for the flow field in many circum-
stances. In this model, the total stress tensor, �, is decomposed into the Newtonian
solvent component, 2ηS�, where ηS is the solvent viscosity, and � is the velocity
gradient tensor (Eq.3), and the viscoelastic polymeric component,�P = � − 2ηS�,
for which one can write the relation with the velocity gradient as

(� − 2ηS�) + λ1
D∇
Dt

(� − 2ηS�) = 2ηP� (44)

where λ1 is the relaxation time, ηP the polymer viscosity, and D∇/Dt is the co-
deformational (or upper convected) derivative (Oldroyd and Wilson 1950). Re-
arranging Eq. (44) into a more compact form yields

� + λ1
D∇�

Dt
= 2 (ηS + ηP)

(
� + λ2

D∇�

Dt

)
(45)

where λ2 = λ1ηS/(ηS + ηP) is the retardation time. When λ2 = 0, the Oldroyd-B
model reduces to the Upper Convected Maxwell (UCM) model, which has the same
structure as Eq. (13) but uses a different derivative operator; when λ2 = λ1 the model
reduces to viscous Newtonian.

For the Oldroyd-B fluid in steady-state shear flow, the viscosity η = ηS + ηP

is constant, the second normal stress difference is zero, and the first normal stress
difference is a quadratic function of the shear rate:

N1 = 2η (λ2 − λ1) γ̇2 (46)

Themain limitation of theOldroyd-Bmodel is due to the fact that the coefficient of
the deformation rate in Eqs. (44) and (45) is constant; this means that its contribution
to the stress is the same independently of the deformation magnitude or, in other
words, a fluid element can be deformed indefinitely keeping its elasticity unchanged.
From the microscopic point of view, this means polymer molecules can be stretched
to an infinite length behaving like an ideal spring, which is clearly unphysical.

3.4 FENE Model

The Finitely Extensible Non-linear Elastic (FENE) constitutive model was devel-
oped to achieve a more realistic description of the long-chained polymers behaviour
(Bird et al. 1980). In particular, it accounts for the fact that, unlike ideal elastic
springs, polymer molecules can be stretched only up to a maximum length, and the
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required stretching force increases more than linearly as the molecule approaches
the maximum stretching. In the FENE model, polymers molecules are represented
by connecting a sequence of beads with non-linear springs; the elastic force between
two consecutive beads is

F = K r
1 − r2/r2max

(47)

where r is the connector vector between the beads, K is the spring constant, r and
rmax the instantaneous and maximum lengths of the stretched molecule, respectively.
At small extension, the spring is nearly Hookean, when further extended, it becomes
strongly non-linear. The connector force grows rapidly so that the spring cannot be
stretched beyond some maximal length.

The instantaneous position of a FENE dumbbell as a function of time is described
by the following Langevin stochastic differential equation:

d r =
[
(∇v)T · r − 2

ζ
F

]
+

√
4kBT

ζ
dW(t) (48)

where ζ is the friction coefficient of a bead, kB is Boltzmann’s constant, T is the
absolute temperature, and W(t) is a Wiener stochastic process (Soong 1973). In
this equation, the first term represents the distortion of the beads due to the velocity
gradient, the second term represents the effect of the restoring spring force, and the
stochastic term models the Brownian motion of the beads. The time evolution of
the connector vector of the dumbbell (i.e. the distance between the beads) must be
integrated and then averaged over all connectors to describe the macroscopic flow
behaviour.

The polymer contribution to the stress is given by

�P = −N 〈r F〉 + NkBT I (49)

where N is the total number of connectors, and I the identity matrix. Introducing
the expression of the connector force (Eq.47) yields:

�P = −NK

〈
r r

1 − r2/r2max

〉
+ NkBT I (50)

The ensemble average quantity in Eq. (50) can be calculated using Peterlin’s approx-
imation (Peterlin 1966):

〈
r r

1 − r2/r2max

〉
= 〈r r〉

1 − 〈
r2/r2max

〉 + r2max I (51)

Evaluating the ensemble averages yields the FENE-P constitutive equation for the
polymer contribution to the stress:
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Z�P + λ
D∇�P

Dt
− λ

[
�P + ηP

λ
I
] d ln Z

dt
= 2ηP �̇ (52)

where Z is a function of the spring constant and of the maximum stretching:

Z = 1 + 3kBT

Kr2max

[
1 + λ

3ηP
tr(�)

]
(53)

A modified version of the FENE-P model includes the effect of repulsive charges
between the beads in an attempt to incorporate the effect of charge repulsion between
ionizable groups on the polymer (Dunlap and Leal 1984). This leads to the same
constitutive equation but a different form of Z .

3.5 Other Constitutive Models for Viscoelastic Flows

Whilst the Oldroyd-B and the FENE models provide the most popular constitutive
equations used in modelling viscoelastic flows, many other constitutive equations
were derived to provide a better match with experimental data for particular fluids
and/or flow conditions.

White–Metzner model The White–Metzner model (White and Metzner 1963) was
developed for viscoelastic fluids that exhibit also shear-thinning. In summary, it is a
modifiedMaxwell model that allows incorporation of experimental data on viscosity
as a function of shear rate. The deviatoric stress is given by

� + η(γ̇)

G

D∇�

Dt
= 2η(γ̇)� (54)

The shear-thinning viscosity, η(γ̇), is often described by a power law. This model
can predict correctly the behaviour of nonpolar solutions and polymeric melts and
it may work well on polar systems in the range of high deformation rates, i.e. the
region of primary industrial interest.

Giesekus model The Giesekus model (Giesekus 1982) includes an additional
quadratic term. In this model, the deviatoric stress is divided into a solvent con-
tribution, ηS�, and a polymer contribution, which is given by

�P + λ1
D∇�P

Dt
+ αλ1

ηP
�2

P = 2ηP� (55)

Phan-Thien–Tanner model The Phan-Thien–Tanner constitutive equation (Phan-
Thien and Tanner 1977) has a similar structure to the Giesekus model, but has a
different non-linear term:

�P + λ1
D∇�P

Dt
+

{
exp

[
λ1

ηP
Tr (�P)

]
− 1

}
�P = 2ηP� (56)
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4 Constitutive Models for Viscoplastic Flows

An important type of non-Newtonian fluid is the viscoplastic or yield-stress fluid,
which responds like elastic solids for applied stresses lower than a certain threshold
value, called the yield stress, and flows only when the yield stress is overcome.
Practically, such flow behaviour occurs in many situations, including slurries and
suspensions, certain polymer solutions, lavas,muds and clays, heavy oils, avalanches,
cosmetic creams, hair gel, liquid chocolate, pasty materials, foams and emulsions.

Research into viscoplastic fluids, their measurement and characterization is exten-
sive and has been summarised in numerous reviews (Barnes 1999; Coussot 2007).
One matter still subject of debate is the definition of yield-stress fluid itself, that is,
whether fluids can actually exhibit such a physical property as the yield stress. The
review by Barnes (1999) examines the evidence for and against its existence, and
argues that whereas the concept of a definable yield stress has proven and continues
to prove useful in a whole range of applications, if viscosity is plotted as a function
of the shear stress, one can clearly identify a Newtonian plateau when the velocity
gradient tends to zero (typically less than 10−5 s−1), which implies that the material
continues to creep although this can be observed only on very long timescales. How-
ever, in many practical situations the time frame of observation is much shorter than
the time necessary for viscoplastic fluids to exhibit measurable flow characteristics.

Whilst several fluids exhibit an apparent yield stress, Carbopol dispersions are
probably the most thoroughly studied model viscoplastic fluid system. Carbopol
consists of highly cross-linked polymer particles, with dangling free ends of polymer
gel strands that strongly interact with adjacent microgel particles, resulting into to a
very high viscosity at low shear stress (Nguyen and Boger 1992; Roberts and Barnes
2001). Carbopol dispersions and gels are found in dozens of everyday products,
ranging from toothpastes, through hair and shower gels, to artificial tears.

The simplest constitutive model describing viscoplastic fluids was introduced by
Bingham to characterise the behaviour of paints (Bingham 1917), and represents the
shear stress component as a linear function of the velocity gradient, with the intercept
σc corresponding to the threshold yield point:

γ̇ = 0 σxy ≤ σc

σxy = σc + ηγ̇ σxy > σc
(57)

A more refined model is the Herschel–Bulkley equation (Herschel and Bulkley
1926), given by:

σxy = Gγ σxy ≤ σc

σxy = σc + K γ̇n σxy > σc
(58)

where G is the shear modulus, and γ is the shear deformation. This model is
well established and probably the most widely used when analysing yield-stress
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behaviour; another popular model, suitable to characterise the behaviour of particle
suspensions used in printing inks, was proposed by Casson (1959):

√
σxy = √

σc + √
ηγ̇ σxy > σc (59)

According to Eqs. (57)–(59), the transition from the elastic regime to the fluid regime
is abrupt, which means that the shear stress derivative with respect to the shear rate
exhibits a first-order discontinuity. This represents a major technical issue when the
yield-stress fluid constitutive equation is implemented to find analytical or (espe-
cially) numerical solutions of fluid flows. To remove this discontinuity, Papanasta-
siou proposed a constitutive equation featuring a smooth transition between the two
regimes (Papanastasiou 1987), which provides a better description of real materials:

σxy = σc
[
1 − exp (−mγ̇)

] + K γ̇n (60)

where m is a material-dependent constant with values of the order of 102. Figure7
shows the qualitative flow curves for Bingham fluids (Eq.57) and Herschel–Bulkley
fluids (Eq.58), as well as the effect of the Papanastasiou regularisation (Eq.60).
A detailed discussion of advanced and time-dependent constitutive models for vis-
coplastic flows is presented in ChapterTransport Phenomena in Viscoplastic Mate-
rials.

Fig. 7 Comparison between
the qualitative flow curves of
the Bingham model (solid
line) and of the
Herschel–Bulkley model
(dash-dot line); the inset
shows the effect of
Papanastasiou regularisation
(Eq.60) on the
Herschel–Bulkley flow curve

http://dx.doi.org/10.1007/978-3-030-35558-6_5
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Experimental Methods to Characterize
Complex Fluids

Volfango Bertola and Teodor Burghelea

Abstract This chapter presents an overview of measurement techniques to charac-
terize the properties of complex fluids, with focus on the rheological characterization
(both shear and extensional rheology), and on themost common surface tensionmea-
surement methods.

1 Rheological Characterisation of Complex Fluids

Rheology is one of the very few scientific disciplines whose emergence can be
precisely dated: 29 April 1929 (Bingham 1944). The term “Rheology” has been
coinedbyEugeneBingham, professor at theLafayetteCollege following a suggestion
of his colleague Markus Rainer and was inspired by an aphorism of Simplicius
(often but incorrectly attributed to Heraclitus) “panta rhei”—“everything flows”.
The main scope of rheology is the study of deformation and flow of fluids and
soft solids subjected to a varying external stress. The rheology is equally concerned
with establishing a correlation between the molecular structure of the materials and
their flow properties which is of paramount importance during polymer processing
operations.

1.1 Fundamentals of Shear Rheology

In order to relate the stresses and the deformations measured by a rheometer, we
refer to the Navier–Stokes equation

V. Bertola (B)
School of Engineering, University of Liverpool, Liverpool, UK
e-mail: Volfango.Bertola@liverpool.ac.uk

T. Burghelea
Laboratoire de Thermique et Energie de Nantes, University of Nantes, Nantes, France

© CISM International Centre for Mechanical Sciences, Udine 2020
T. Burghelea and V. Bertola (eds.), Transport Phenomena in Complex Fluids,
CISM International Centre for Mechanical Sciences 598,
https://doi.org/10.1007/978-3-030-35558-6_3

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35558-6_3&domain=pdf
mailto:Volfango.Bertola@liverpool.ac.uk
https://doi.org/10.1007/978-3-030-35558-6_3


50 V. Bertola and T. Burghelea

ρ
dv
dt

= ∇ · (−pδ + σ) + ρg (1)

where σ is the stress tensor, p is the pressure field, δ is the unitary tensor and the
body force g is just acceleration of the gravity. We note that the inertial term v∇v
has been omitted in the equation of motion (Eq.1).

For a steady flow, dv
dt = 0 and the momentum equation reduces to

∇ · (−pδ + σ) + ρg = 0 (2)

If one projects Eq. (2) onto a Cartesian system of coordinates, one obtains

∂σxx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z
= ∂ p

∂x
− ρgx

∂σxy

∂x
+ ∂σyy

∂y
+ ∂σyz

∂z
= ∂ p

∂y
− ρgy

∂σxz

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z
= ∂ p

∂z
− ρgz

(3)

If one projects Eq. (2) onto a cylindrical system of coordinates, one obtains

∂σrr

∂r
+ 1

r

∂σrφ

∂φ
+ ∂σr z

∂z
+ σrr − σφφ

r
= ∂ p

∂r
− ρgr

∂σrφ

∂r
+ 1

r

∂σφφ

∂φ
+ ∂σφz

∂z
+ 2σrφ

r
= 1

r

∂ p

∂θ
− ρgφ

∂σr z

∂r
+ 1

r

∂σzφ

∂φ
+ ∂σzz

∂z
+ σr z

r
= ∂ p

∂z
− ρgz

(4)

If one projects Eq. (2) onto a spherical system of coordinates, one obtains

∂σrr

∂r
+ 1

r

∂σrθ

∂θ
+ 1

r sin θ

∂σrφ

∂φ
+

+ 2σrr − σθθ − σφφ + σθθcotθ

r
= ∂ p

∂r
− ρgr

∂σrφ

∂r
+ 1

r

∂σθφ

∂θ
+ 1

r sin θ

∂σφφ

∂φ
+

+ 2σrφ − σφr + (σθφ + σφθ)cotθ

r
= 1

r

∂ p

∂θ
− ρgφ

∂σrθ

∂r
+ 1

r

∂σθθ

∂θ
+ 1

r sin θ

∂σθφ

∂φ
+

+ σθr + 2σrθ + (σθθ − σφφ)cotθ

r
= 1

r sin θ

∂ p

∂φ
− ρgθ

(5)
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Fig. 1 Schematic
representation of the
capillary rheometer

Capillary rheometry During the early days of the rheology, one of the most com-
monly used rheometric systemswas the capillary rheometer, schematically illustrated
in Fig. 1. The fluid to be tested initially contained in a reservoir flows through a cap-
illary of radius R and length L in conditions of a controlled applied pressure P that
can be supplied either by gravity (in the case of low viscosity fluids) or by the motion
of a piston inside the reservoir (in the case of highly viscous fluids, e.g. molten poly-
mers). The viscosity of the fluid may be inferred by simultaneous measurements of
the driving pressure P and of the flow rate Q through the capillary if the following
conditions are satisfied:

1. The flow is isothermal.
2. The flow is fully developed, linear and laminar.
3. The fluid is incompressible with a viscosity independent on the driving pressure.
4. There exists no slip at the wall, vz|r=R = 0.

The first condition above indicates that, in order to solve suchflowproblemand assess
the viscosity, one needs to refer solely to the momentum conservation equation as
there exists no transfer of heat. The linear and laminar nature of the flow translates
into the absence of any radial and azimuthal flow component, vr = vθ = 0. With
these remarks, the Navier–Stokes equation reduces to
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− ∂ p

∂z
+ 1

r

∂rσr z

∂r
= 0 (6)

Using the assumption that the flow is fully developed, the term ∂ p
∂z is constant

along the capillary tube and Eq. (6) may be integrated to

σr z = r

2

Pc
L

(7)

where Pc is the pressure drop along the capillary tube. The stress at the wall of the
die is σw = σr z|r=R = R

2
Pc
L . To compute the shear viscosity, one needs the rate of

shear in the capillary γ̇ = dvz
dr . This may be obtained from the measured flow rate Q

by noting that its relationship with the axial flow speed is

Q = 2π
∫ R

0
rvz(r)dr (8)

By integrating Eq. (8) and using the no slip boundary conditions, one may readily
show

Qσ3
w

πR3
= −

∫ σw

0
σ2
r z

(
dvz

dr

)
dσr z (9)

Finally, by differentiating the equation above with respect to σw according to
the fundamental theorem of calculus and rearranging the terms, one obtains the
Weissenberg–Rabinowitsch equation

− dvz

dr
|σw = γ̇w = 1

4
γ̇aw

[
3 + dlnQ

dlnσw

]
(10)

with the apparent shear rate given by γ̇aw = 4Q
πR3 .

By measuring the pressure drop Pc and the flow rate and if n = dlnQ
dlnσw

can be
reliably computed via numerical differentiation of the data, one can compute the
viscosity

η = σw

γ̇w

= πR4Pc
2QL

(
n

3n + 1

)
(11)

We note here that, in the case of a power law fluid, n is simply the power law index.
The capillary rheometer has some practical advantages. It is relatively easy to use and
provides accurate steady state viscosity measurements. However, entry corrections
require a more extensive data analysis procedure (Macosko 1994).

Concentric cylinders rheometry The first operational rotational rheometer was the
device built byMaurice Couette (Couette 1880). Couette used a system of concentric
cylinders containing within their gap the material to be tested, Fig. 2a. In the original
prototype of Couette, the outer cylinder of radius ro was rotating at a constant angular
speed and the inner cylinder of radius ri was suspended by a torsion wire. The torque
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Fig. 2 a Schematic representation of the Taylor–Couette setup. b Choice of the cylindrical coor-
dinates

acting on the inner cylinder was assessed bymeasuring the angular deflection using a
mirror rigidly attached on the torsional wire. Themodern Couette devices use similar
operating systems with the difference that, for practical reasons, the inner cylinder is
set in rotation by attaching it to the shaft of a rheometer while the outer one is static,
Fig. 2a. To describe the flow kinematics in a Couette device, we use the cylindrical
coordinates illustrated in Fig. 2b. One can readily show that the shear rate in a Couette
device is γ̇ = r d�

dr . Within the narrow gap approximation, ro−ri
r � 1, the following

approximation can be made

d�

dr
≈ ��

�r
= �

ro − ri
(12)

with �r = ro − ri and �� = �(ro) − �(ri ) = �0. With this approximation, the
shear rate becomes

γ̇ ≈ r
�0

�r
≈ ri + ro

2

�0

�r
= rav

�r
�0 (13)

with the average radius rav = ri+ro
2 . It can be shown that yet a better approximation

for the shear rate is

γ̇(r) ≈ �0

r2
r2i r

2
o

rav�r
(14)

Due to symmetry considerations, a number of terms in the equation of motion will
vanish: σφz = σzφ = σr z = σzr = 0.Moreover, in the laminar axisymmetric case, all
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partial derivatives with respect to the polar angle are zero, ∂
∂φ

= 0. The equations of
motion (Eq.4) reduce to

∂σrr

∂r
− (σφφ − σrr )

r
= 0 =⇒ ∂σrr

∂r
− N1

r
= 0 (15)

∂σrφ

∂r
− 2

σrφ

r
= 0 (16)

∂σzz

∂z
= −ρg (17)

From Eq. (15), one obtains r ∂σrr
∂r = N1. Within the narrow gap approximation,

∂σrr
∂r ≈ �σrr

�r = σrr (ro)−σrr (ri )
ro−ri

. Finally, the first normal stress difference may be approx-
imated by:

N1 ≈ �σrr

�r
rav (18)

By integrating Eq. (16) one obtains r2σrφ = C = constant. The torque acting on the
rotating cylinder may be written T = 2πr2Lσrφ = 2πCL . An important conclusion
is that the torque does not depend on the position in the liquid. The shear viscosity
can be readily computed

η = σrφ

γ̇
= T

4π�0L

r2o − r2i
r2o r

2
i

(19)

To conclude, the simultaneous measurements of the angular speed �0 and of the
torque T allow one to measure the viscosity (in the narrow gap limit).

Cone and plate rheometry In a cone–plate rheometric setup, the material under
investigation is confined within the gap between a cone with a large top angle (typ-
ically larger than 170◦) and a flat plate, as shown schematically in Fig. 3a. Conse-
quently, the angle between the cone and the plate is small, �� ≤ 5◦. The top part of
the cone is attached to a rotating shaft with the symmetry axis orthogonal to the plate
and positioned at its centre. To avoid contact friction, the cone tip is truncated. The
shearing surfaces are coaxial conical surfaces with top angles ranging in between π
and π − 2��. The natural coordinates one may use to describe the kinematics of
the motion are the spherical coordinates (Fig. 3b).

The shear rate may be computed (for the details of the calculation, the reader is
referred to Macosko (1994), Bird et al. (1977)):

γ̇ = sin θ
d�

dθ
≈ �0

��
(20)

According to Eq. (20), the shear rate is constant within the entire material under
investigation, which makes the cone–plate tool best suited for the measurements
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Fig. 3 a Schematic representation of the cone–plate setup. b Choice of the spherical coordinates

of viscosity and normal stress differences as a function of the applied shear. In
the absence of hydrodynamic instabilities, the flow field has a single component,
vφ = vφ(r) and the equations of motion described by Eq. (5) reduce to

∂σrr

∂r
− N1 + 2N2

r
= −ρg cos θ (21)

1

r

∂σθθ

∂θ
− N1

r
cot θ = ρg sin θ (22)

1

r

∂σθφ

∂θ
+ 2σθφ

r
cot θ = ρg sin θ (23)

Bearing in mind that cot θ ≈ 0, the integration of Eq. (23) leads to σθφ =
constant = C . Consequently, the torque T exerted on the top plate may be com-
puted

T =
∫ 2π

0

∫ R

0
r2σθφ|π/2drdφ (24)

which leads to σθφ = 3T
2πR3 . The viscosity may be calculated as:

η = σθφ

γ̇
= 3T

2πγ̇R3
≈ 3T��

2πR3�0
. (25)

According to the equation above, the viscosity measured with a cone–plate geometry
is proportional to the torque acting on the geometry and inversely proportional to
its angular speed. Besides the homogeneity of the rate of shear within the entire
volume of the sample under investigation, a second notable feature of the cone–plate
rheometric setup is that, within the small angle approximation, the result given by
Eq. (25) is independent of the constitutive equation of the material.
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The normal stress differences N1 = σφφ − σθθ, N2 = σθθ − σrr can be obtained
by measuring the normal force and the pressure distribution along the bottom plate.
Because cos θ ≈ 0, Eq. (21) may be approximated1 by

r
∂σrr

∂r
≈ N1 + N2 (26)

As the shear rate γ̇ is independent of the radial coordinate r , and N2 is a steady
material function depending only on γ̇, ∂N2

∂r = σθθ

∂r − σrr
∂r = 0 or σθθ

∂r = σrr
∂r . With these

remarks, Eq. (25) becomes
∂σθθ

∂lnr
≈ N1 + N2 (27)

The radial distribution of the stress σθθ may be measured using an array of pressure
transducers mounted on the bottom plate at various radial positions r . If we can
assume that the stress in the radial direction at the rim σθθ|r=R is balanced by the
atmospheric pressure pa (i.e. the surface tension and/or other edge effects may be
neglected), then σθθ(R) is just the second normal stress difference

N2 = σθθ(R) − σrr (R) = σθθ(R). (28)

From a technical standpoint, it simpler to measure the normal force Fz exerted on
the bottom plate of the geometry

Fz = −paπR
2 −

∫ 2π

0

∫ R

0
σθθ(r)drdφ. (29)

The integration of Eq. (29) yields

Fz = 1

2
πR2N1 (30)

To obtain the relationship above, one has assumed once more that the atmospheric
pressure balances the pressure exerted on the free fluid meniscus. To conclude, by
combining measurements of the thrust exerted on the bottom plate with measure-
ments of the radial distribution of the pressure, one can measure both normal force
differerences.

Parallel plate rheometry Yet another rheometric setup commonly used for the rhe-
ological characterisation of fluids is the parallel plate torsional rheometer, displayed
in Fig. 4a. The fluid to be investigated is confined in the gap between two parallel
plates separated by a finite distance z0 ranging from hundreds of micrometres to
several millimetres. The bottom plate is fixed while the top plate rotates at a constant
angular speed�0 around the common symmetry axis of the plates, as shown in Fig. 4.

1The relationship becomes exact only at the level of the plate, θ = π/2.



Experimental Methods to Characterize Complex Fluids 57

Fig. 4 a Schematic representation of the parallel plate setup. bChoice of the cylindrical coordinates

In the absence of hydrodynamic instabilities, the trajectories of individual material
elements are concentric circles. The natural coordinates one may use to describe the
kinematics are the cylindrical coordinates detailed in Fig. 4b. With this choice of
coordinates, vr = vφ = vz = 0.

The shear rate may be expressed as

γ̇ = lim�z→0
r�(z + �z) − r�(z)

�z
= r

d�

dz
(31)

Unlike in the case of the cone–plate geometry, the rate of shear is not constant
within the gap between the parallel plates. It increases linearly from γ̇ = 0 along the
symmetry axis of the device to γ̇(R) = �0

z0
at the rim. This is a significant drawback

of the plate–plate system as it can not be used for materials with properties that
depend strongly on the shear rate which is the case for a large number of materials
that exhibit shear thinning rheological properties.

The equations of motion may be written

∂σrr

∂r
= N1 + N2

r
(32)

∂σφz

∂z
= 0 (33)

∂σzz

∂z
= ρg (34)

From Eq. (33), it can be shown that

vθ(r, z) = r�0z

z0
(35)

γ̇(r) = r
d�

dz
= r

�0

z0
(36)
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The relationship between the shear stress σθz and the torque T acting on the top
plate is

σθz(γ̇R) = T

2πR3

[
3 + dlnT

dlnγ̇R

]
(37)

where the rim shear rate is γ̇R = R �0
z0
. The difference between the first and the second

normal stress differences is

N1(γ̇R) − N2(γ̇R) = Fz

πR2

(
2 + dlnFz

dln�0

)
(38)

where Fz is the normal force exerted on the bottom plate. Thus, by plotting both
the torque and the normal force versus the angular speed on a double logarithmic
scale, the dependencies of the slopes dlnT

dln�0
and dlnFz

dln�0
on the rim shear rate can be

determined. This procedure yields σθz and N1 − N2. The apparent (or Newtonian)
shear stress obtained with the parallel plate rheometric setup is

σa = 2T

πR3
(39)

1.2 Fundamentals of Extensional Rheology

A significant number of modern polymer processing operations which include (but
are not limited to) melt blowing, fibre spinning, compressionmoulding and extrusion
involve flows that combine both shear and extension. As compared to the case of
shear flows, the material elements undergo much higher strains during extensional
flows which typically leads to a strongly nonlinear dependence of the extensional
stresses on the strain. The knowledge of the rheological behaviour in shear does
not suffice to describe the behaviour during extension. The rheological response of
a complex fluid undergoing shear such as a polymer solution or melt injected into
a die or mould, drawn through an extrusion die, blow moulded, calendared, etc.
will not correctly predict the processing behaviour during such operations; inferring
the extensional flow behaviour from rheological tests performed in shear is usually
impossible.

Despite a clear need for extensional measurements of complex fluids, the devel-
opment of instrumentation evolved slower than the development of shear rheometry.
A first daunting task in this context is the generation of a spatially homogeneous
extensional flow field. To generate an extensional motion in a fluid, one needs to
bring the fluid in contact with a moving solid surface. This generally creates shear in
the vicinity of the solid surface which alters the kinematics of the extensional flow.
A second difficulty relates to the need of generating high strains during extension.



Experimental Methods to Characterize Complex Fluids 59

This requires the development of motion control systems able to operate within a
broad range of speeds and achieve significant travel distances.

Unlike in the case of shear rheometry, the design and instrumentation of an exten-
sional rheometric device depend on the range of extensional viscosities to be mea-
sured. After providing the reader with a basic description of the kinematics of exten-
sional flows, we will describe several such extensional rheometric devices highlight-
ing both their advantages and practical limitations.

Kinematics of extensional flows A pure extensional flow is an irrotational flow
which lacks both vorticity and shear (Bird et al. 1977). As compared to a laminar
shear flow where neighbouring fluid elements separate linearly with time, in an
extensional flow, the separation is exponential in time. Consequently, such flows
are very efficient in elongating and orienting the microscopic structural units of a
complex fluid which makes them a valuable tool for probing the microstructure of
complex fluids. A simple extensional flowmay be described by the following velocity
field:

vx = −1

2
(1 + b)ε̇x

vy = −1

2
(1 − b)ε̇y

vz = ε̇z

(40)

where b is a constant that affects the way the streamlines change with rotation about
the z axis and ε̇ is the rate of deformation of fluid elements. Three distinct types of
extensional flows may be obtained for different choices of the parameter b and of
the sign of the rate of deformation

1. b = 0, ε̇ > 0: uniaxial extension
2. b = 0, ε̇ < 0: biaxial stretching
3. b = 1: planar elongation

A typical extensional flow field obtained for b = 0 is illustrated in Fig. 5.
The deformation of a cubic fluid element of unitary volume by each of the three

types of extensional flows is schematically illustrated in Fig. 6.
In practical applications, even in the case when the deformation field is steady,

the response of the material is usually unsteady meaning that the material reaches
a steady dynamic regime only after a finite period of time. This is because fluids
are characterized by a finite response time. In the case of Newtonian fluid, the char-
acteristic timescale of the response is the viscous time whereas for non-Newtonian
fluids, it is a relaxation time which describes how fast the microstructure responds
to the externally applied deformation field. Bearing this in mind, it appears natural
that the material functions characterizing the response to an extensional flow should
be sought as time dependent (i.e. “transient”) even in the case when the deformation
field is steady

(
d ε̇
dt = 0

)
. Thus, the transient extensional viscosities may be defined

as
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Fig. 5 Steady elongational flow field (b = 0)

(a)

(b) (d)(c)

Fig. 6 Deformation of a cube of unitary volume a during the time interval �t by three types of
shear free flow: b uniaxial extension (b = 0, ε̇ > 0), c biaxial extension (b = 0, ε̇ < 0), d planar
elongation (b = 1)
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η+
1 (ε̇, t) = σzz − σxx

ε̇

η+
2 (ε̇, t) = σxx − σyy

ε̇

(41)

For the case of the uniaxial extension (b = 0) σxx = σyy and the response of the
material to deformation is characterized by a single transient extensional viscosity,
η+ = η+

1 .
The total strain accumulated by the material elements during the extensional

process may be computed by direct integration of the equations of motion (Eq.40).
In the case of the uniaxial extension (b = 0), the position of a material element
labelled by [j] varies exponentially in time, X j = X j

0e
ε̇t and the strain between two

neighbouring material elements is the Hencky strain defined logarithmically by

εH = ε̇t = ln

[
�X (t)

�X (0)

]
(42)

For a linear viscoelasticmaterial characterized by a discrete spectrumof relaxation
times {λk}k=1,N , the response during uniaxial extension can be solved analytically

η+(t) =
N∑

k=1

3ηk
[
1 − e− t

λk

]
(43)

In the asymptotic limit of long relaxation times t 	 max {λk}, the response of the
material approaches a steady state η+

SS = limt→∞η+(t) = 3η0, where η0 is the zero
shear viscosity of thematerial. This limiting value of the response is called the “linear
viscoelastic envelope” (LVE). The knowledge of the LVE is crucial for the validation
of extensional viscosity measurements because in a linear range of deformation, all
transient extensional viscosity curves should asymptotically approach the LVE. The
concept of LVE is equally useful in introducing the term of “strain hardening” which
is observed for a broad class of polymeric systems in the formof a substantial increase
(up to several orders ofmagnitude) of the transient elongational viscositywith respect
to the LVE. The magnitude of the strain hardening effect is quantified by the Trouton
ratio

Tr (ε̇, t) = η+(t)

η0
(44)

The strain hardening is a rather complex phenomenon which depends on both the
molecular architecture of the polymeric systems (e.g. branched polymeric systems
exhibit stronger strain hardening) and the rate of extension, ε̇. Thus, the quantification
of this effect bymeasuring the Trouton ratio is a rather sensitive probe of the branched
structure of molten polymeric systems.

Capillary breakup rheometry of low viscosity fluids The capillary breakup exten-
sional rheometry is a simple and reliable technique for assessing the extensional
rheological properties of low to moderate viscosity fluids. The technique was first
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Fig. 7 Schematic representation of the capillary breakup device: a initial fluid meniscus. b fluid
meniscus during the capillary thinning process

described by Bazilevskii et al. (1981) and later revisited in a number of subsequent
papers (Bazilevskii et al. 1997, 2001; Bazilevskii and Rozhkov 2015).

In this technique, a drop of liquid is confined between two rigid plates initially set
at a distance z0 apart as schematically illustrated in Fig. 7a. Next, by rapidly moving
the top plate to a higher position, an axial step-strain is imposed onto the liquid
bridge (Fig. 7b). The shape of the liquid bridge evolves under the combined action
of several physical processes; the capillary pressure which here plays the natural
role of a “force transducer”, viscous dissipation that delays the necking of the fluid
filament and, in the case of polymeric fluids, the elastic forces that equally oppose
the necking process.

Bazilevsky and coworkerswerefirst to propose a theoretical framework todescribe
the thinning of a Newtonian and an Oldroyd-B fluid filament in terms of measure-
ments of its radius (Bazilevskii et al. 1981, 2001). Their analysis has been extended
by Entov and Hinch to account for both the effect of a spectrum of relaxation times
and of the finite extensibility of the polymer chains (Entov and Hinch 1997).

For a Newtonian fluid of viscosity ηs and surface tension coefficient γ, a local
force balance together with the elimination of the pressure lead to the following
equation for the midpoint radius of the filament:

3ηs

(
− 2

Rmid(t)

dRmid(t)

dt

)
= γ

Rmid(t)
(45)

The derivation of Eq. (45) assumed the total longitudinal stress along the fluid
filament to be zero at all times. The term in the brackets may be understood as an
extensional deformation rate of a Lagrangian fluid element at the midplane of the
fluid column where the radius Rmid is measured. By integrating Eq. (45), a linear
decay of the midpoint radius of the filament with time is obtained

Rmid(t) = γ

6ηs
(tc − t) (46)
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Fig. 8 Schematic representation of the Meissner extensional rheometer

Here tc = 6ηs R0

σ
is a critical time associated to the filament breakup and R0 is the

initial radius of the filament.

Meissner rheometry of molten polymeric systems Meissner proposed a rotatory
clamp extensional rheometer (RME) (Meissner and Hostettler 1994), schematically
illustrated in Fig. 8. The basic concept of the device was proposed at the end of 1960s
at the Research and Development department of BASF, Ludwigshafen, Germany
(Meissner 1969).

The sample is clamped in between four counter-rotatory clamps. The sample is
both heated and buoyed by gas injected from below. When the rotatory clamps were
set in motion with a constant angular speed, the polymeric sample was experiencing
a uniaxial extensional deformation. The samples were carefully prepared by extru-
sion and their initial length was rather large, L0 = 50mm. The large initial length
of the sample might seem an unimportant detail but is not. One of the particular
concerns was related to the geometrical homogeneity of the sample which is of
paramount importance in assuring a purely uniaxial deformation. This was specif-
ically stated in page 20 of Meissner and Hostettler (1994): “When the elongation
becomes inhomogeneous (for homogeneous samples the reason often is an inhomo-
geneous temperature field), any data processing becomes questionable”. An initially
long sample together with an extremely careful and elaborated mechanical design of
the rotatory clamps insured a geometrical homogeneous deformation of the sample.
The RME device could reach Hencky strains εH = 7 and could operate at strain rates
of ε̇H = 1 s−1. The transient tensile force F(t) was measured by a force transducer
which was installed on the pairs of rotating clamps.

For a geometrically homogeneous sample, the cross-sectional area decays expo-
nentially with time

A(t) = A0

(
ρS

ρM

)2/3

e−εH (47)
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where A0 is the initial cross-sectional area measured in a solid state (at room tem-

perature) and εH = ε̇H t is the Hencky strain at time t . The prefactor
(

ρS

ρM

) 2
3
, where

ρS is the density of the sample in a solid state while ρM is its density in a molten,
accounts for the thermal expansion of the sample. The geometric homogeneity of
the sample is crucial for the applicability of Eq. (47). In the case of a geometrically
inhomogeneous sample, the cross-sectional area also depends on the position along
the sample leading to a rate of deformation that is no longer equal to the nominal
value ε̇H and depends on both the time and the position along the sample. As already
stated above, Meissner was particularly keen about this aspect (which nowadays,
unfortunately, no longer receives the deserved attention) and assessed the homo-
geneity of the sample during the extension by in situ visualisation of the sample (see
Fig. 19 in Meissner and Hostettler (1994)). The transient extensional viscosity may
be computed according to

μ+(t) = F(t)

A(t)ε̇H
(48)

Well ahead of its time, the RME device could operate in two distinct modes. The first
one as described above is a “stressing mode” which corresponds to a constant rate of
extension ε̇H . Alternatively, however, the device could operate in “creepmode”which
corresponds to a constant applied stress. Bearing in mind the limited technology
available at the end of the 60′s, this was a remarkable achievement hard to implement
even with today’s technological advancements as it requires a specially developed
controlled feedback system able to maintain the ratio F(t)

A(t)ε̇H
constant during the

extension.

Münstedt rheometry of molten polymeric systems Yet an another approach to the
extensional rheology of molten polymeric systemwas proposed byMünstedt (1979).
The Münstedt device is schematically illustrated in Fig. 9.

As opposed to the Meissner approach, the device proposed by Münstedt uses
an initially short sample (S) with a cylindrical cross section and an initial diameter
D0 attached in a vertical position to the plates P1, P2 and immersed in an oil bath
OB. The density of the oil is roughly equal to that of the sample thus minimizing
gravity and buoyancy effects which can cause inhomogeneous deformations of the
specimen. While the bottom plate P2 is fixed, the top plate P1 is moved vertically by
a ac-servo motor controlled by a personal computer. If L0 is the initial length of the
sample, and L(t) its length at time t , the nominal Hencky strain is defined as

εH = ln

(
L(t)

L0

)
(49)

The nominal rate of uniaxial deformation is

ε̇H = L0

L(t)

dL(t)

dt
(50)
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Fig. 9 Schematic
representation of the
Münstedt extensional
rheometer according to
Münstedt (1979) (not in
scale): (S)—sample,
(OB)—oil bath, (P1)—top
plate, (P2)—bottom plate

The bottom plate P2 is equipped with an accurate force transducer which measures
the transient tensile force F(t).

As the Meissner device, the Münstedt device may operate in two distinct modes
(Münstedt and Laun 1979): “stressing mode” (at constant rate of deformation ε̇) and
“creep” (at constant driving stress). In the stressing mode, a feedback loop insures
an exponential increase of the distance between plates with time, L(t) = L0eε̇H t and
the transient elongational viscosity is computed as

μ+(t) = F(t)

ε̇H A(t)
(51)

Here A(t) = πD2(t)/4 with D(t) being the diameter of the sample at time t is the
transient cross-sectional area of the sample.

As in the case of the Meissner device, the homogeneity of the deformation states
is crucial in reliably assessing the transient extensional viscosity of the material.
It has been demonstrated experimentally that if this condition is not fulfilled, the
Hencky strain is not uniform along the sample, and the interpretation of measure-
ments becomes questionable (Burghelea et al. 2009; Starý et al. 2015; Burghelea
et al. 2011, 2012). If the homogeneity condition is fulfilled, due to the incom-
pressibility of the polymer melt, it can be readily shown that D(t) = D0e−εH /2 and
Eq. (51) becomes

μ+(t) = 4F(t)

πε̇H D2
0e

−εH
(52)
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In a stressing operating mode, a different feedback loop maintains the ratio
σ+(t) = F/A(t) = FL(t)/(V ) constant where V is the volume of the sample.
Again, these measurements rely on the geometrical homogeneity of the sample and
its incompressibility.

Filmament stretching rheometry of molten polymeric systems The Filament
Stretching Extensional Rheometer (FISER) for viscous fluids was proposed by Tir-
taatmadja and Sridhar (1993). The original design of the FISER is schematically
illustrated in Fig. 10. Like the Münstedt device, the FISER uses a constant volume
sample with a small initial length L0 clamped in between two plates P1, P2 which
move in opposite directions with equal speeds u(t).

Variants of the device with the sample oriented vertically were later proposed
(Anna et al. 2001; McKinley and Sridhar 2002; Bach et al. 2002). Unlike in the
case of the Münstedt device, the sample is not immersed in an oil bath which, at
low deformation rates, makes the measurements problematic due to gravity sagging
effects, Anna et al. (2001). The theoretical background of the transient elongational
viscosity measurements using the FISER device is given by Szabo (1997). Due to the
lack of an oil bath, the force balance includes a non-negligible surface tension term
and, in a vertical configuration, a gravity term as well. In addition, depending on the
operating speeds, an extra inertial term may be involved. Thus, the stress difference
computed at the midpoint of the filament is

σzz(t) − σrr (t) = 4F(t)

πDmid(t)2
− 2γ

Dmid(t)
− ρMgL(t)

2
− ρM ε̇H (t)2L(t)2

8
(53)

where γ is the surface tension coefficient of the sample and ρM its viscosity. The last
term in the right-hand side of Eq. (53), which accounts for inertia, may be neglected
if

ρM ε̇H L

8μ+ � 1 (54)

This inequality is satisfied for highly viscous polymer melts but may break down for
materials with smaller viscosities tested at high rates of deformation. The transient
extensional viscosity may be calculated as

Fig. 10 Schematic
representation of the filament
stretching rheometer
according to Tirtaatmadja
and Sridhar (1993) (not in
scale)
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μ+(t) = σzz(t) − σrr (d)

ε̇H (t)
= 4F(t)

πε̇H (t)Dmid(t)2
− 2γ

ε̇H (t)Dmid(t)

−ρMgL(t)

2ε̇H (t)
− ρM ε̇H (t)L(t)2

8

(55)

The FISER device may be operated in two distinct ways. The first way is very similar
to the operating mode of the Münstedt device. First, the Hencky strain is computed
from the instantaneous length of the sample according to Eq. (50). If the deformation
of the sample is geometrically homogeneous, the midpoint diameter of the sample
may be computed as Dmid(t) = D0e−εH (t)/2. Finally, the transient elongational vis-
cosity is calculated according to Eq. (55).

Alternatively, rather than monitoring the instantaneous length L(t) of the sample
in order to compute the Hencky strain, one could measure the instantaneous diameter
of the sample Dmid(t) measured at the midpoint of the sample. Such measurements
may be performed either using a laser sheet and a photomultiplier or by imaging the
sample with a digital camera. The local Hencky strain may be computed as

εmid
H (t) = 2ln

(
D0

Dmid(t)

)
(56)

Consequently, the rate of deformation at the midpoint of the sample is

ε̇mid
H (t) = − 2

D(t)

dD(t)

dt
(57)

If the deformation is geometrically inhomogeneous, the rate of deformation at the
midpoint of the sample differs from the nominal value given by Eq. (50) and is not
necessarily constant in time. This issue may be addressed by employing a special
feedback loop which modifies in real time the separating speed of the plates based on
the local measurements of the midpoint diameter of the filament in order to maintain
the local rate of deformation given by Eq. (57) constant (Anna et al. 2001; Bach et al.
2002).

The FISER device has been recently become available commercially from Rheo
Filament.

Sentmanat rheometry ofmolten polymeric systemsAn ingeniousmethod of using
a commercial rotational rheometer to perform measurements of the transient elon-
gational viscosity was proposed by Sentmanat (2003a, b, 2004).

The idea consisted of designing a fixture that can be mounted on the shaft of a
rotational rheometer and “convert” the rotation at a constant angular speed �0 in
a uniaxial extension flow, as shown in Fig. 11. The Sentmanat extensional fixture
consists of two identical drums of radius R separated by a fixed distance L0 inter-
coupled by a system of gears (not shown in Fig. 11) such as the rotation of the
cylinder connected to the shaft triggers the rotation of the second cylinder at a same
angular speed but in an opposite sense. This counter-rotative motion of the cylinders
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Fig. 11 Schematic representation of the Sentmanat extensional fixture: a front view b top view

will induce a uniaxial deformation of a rectangular-shaped sample rigidly fixed by a
system of clamps onto the frontal surface of the cylinders, as illustrated in Fig. 11a.

For a constant angular speed of the shaft, the Hencky strain associated to the
uniaxial extension of the sample increases linearly with time

εH = 2�0R

L0
t (58)

Accordingly, the Hencky strain rate is given by

ε̇H = 2�0R

L0
(59)

The resistance of the sample to the extensional deformation manifests through a
transient tangential force F(t) acting on each cylinder and related to the transient
torque T (t) acting on the shaft of the rheometer via

F(t) = T (t)

2R
(60)

If an affine deformation of the specimen is assumed, its cross-sectional area A(t)
(see Fig. 11b) will decay exponentially with time according to

A(t) = A0

(
ρS

ρM

) 2
3

e−ε̇H t (61)

The prefactor
(

ρS

ρM

) 2
3
where ρS is the density of the sample in a solid state while

ρM is its density in a molten accounts for the thermal expansion of the sample.
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For a purely uniaxial extension at a constant Hencky strain rate, the transient
elongational viscosity can be expressed as

η+(t) = F(t)

ε̇h A(t)
(62)

As compared to the other techniques of measuring the transient elongational
viscosity of polymer melts, the Sentmanat rheometer has a number of advantages
as well as some potential disadvantages. A first major advantage of this technique
comes from its simplicity; the extensional fixture may be quickly coupled to any
commercially available rotational rheometer and the sample can be quickly loaded.
This is certainly not the case of the previously discussed methods which all require
sophisticated machining, instrumentation and digital control systems as well as a
more complicated loading procedure of the sample. Second, as compared to other
techniques, the Sentmanat solution is rather affordable.

However, this technique equally has some drawbacks. First, the sample is held in
air and, consequently, gravity sagging effects may bias the measurements of the tran-
sient elongational viscosity. These effects may become significant in a range of low
Hencky strain rates. A second drawback comes from the lack of visual information
on the evolution of the sample during extension: when used for molten polymeric
systems, the extensional fixture is enclosed in an oven which makes the visualization
of the sample impossible. Thus, if some undesired effects such as gravity sagging
or slippage of the sample at the contact points with the cylinders come into play,
the operator will only see spurious data after the end of the experiment. A third and
perhaps the most important drawback of this technique relates to the impossibility
of assuring a geometrical uniform deformation of the sample at all times. In terms
of flow kinematics, this means that the frontal shape of the sample must remain rect-
angular at all times during the extension (as hinted by the dotted lines in Fig. 11a).
Any deviation from this would translate a rate of deformation that differs from the
nominal value given by Eq. (59) and is a function of the horizontal coordinate x .
Equation (62), used to compute the transient extensional viscosity using the torque
measurements performed by the rotational rheometer, is applicable if and only if the
deformation is a purely uniaxial one which, of course, is no longer the case if the
shape of the sample deviates from a rectangular one.

This aspect is generally neglected while performing measurements with the Sent-
manat fixture. On the other hand, according to the Considère rule, an inhomogeneous
deformation will regularly appear at a finite Hencky strain, Considére (1885). This
inhomogeneous deformation is triggered by the presence of the rigid boundary con-
ditions at the clamping points of the sample and appears in the form of a primary
necking.
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2 Surface Tension Measurement Techniques

The interfacial tension between immiscible fluids can be measured using several
different techniques, many of which are commercially available (Rusanov and
Prokhorov 1996; Drelich et al. 2002). Such measurement techniques can be broadly
classified according to the physical process used to determine the surface or the inter-
facial tension magnitude: direct measurement of the force required to create new
surface; measurement of the pressure difference across a curved interface (Laplace
pressure); deformation of an interface due to an external force (e.g. gravity).

2.1 Direct Force Measurement

When a fluid interface at equilibrium is deformedmechanically, it tends to recover the
initial shape to minimize the surface energy, which is proportional to the interfacial
area. Thus, interfacial tensions can be measured directly by deforming the interface
with a simple probe (such as a wire, a rod or a plate), and measuring the restoring
force of the interface on the probe itself bymeans of a microbalance or a force sensor.
Dividing the measured force by the wetted length of the probe, one obtains the value
of the interfacial tension.

Du Noüy ring The du Noüy ring (du Noüy 1925) is one of the most common
methods to measure the interfacial tension between two fluids. The probe consists
of a wire ring, with a radius R of a few cm and usually made up of a platinum–
iridium alloy, which is placed exactly on the interface and then gently pulled in the
direction perpendicular to the interface. The wire radius, r , usually ranges between
R/60 and R/30 (Vold and Vold 1983). As the ring moves, it lifts a cylindrical liquid
film increasing the interfacial area, as shown schematically in the cross-sectional
view of the ring probe displayed in Fig. 12a. This creates a restoring force along the
three-phase line on the ring, F , which can be measured by a microbalance or a force
sensor and used to calculate the interfacial tension as

γ = F

4πR cos θ
C (63)

where θ is the contact angle of thefluid interfacewith respect to the ring surface, andC
is a correction factor to account for the weight of the liquid lifted by the ring, initially
introduced by Harkins and Jordan (1930), which depends on the ring geometry and
on the fluid densities, and can be calculated using the following expression (Zuidema
and Waters 1941):

C = 0.725 +
√

0.00363F

(πR)2(ρmax − ρmin)
+ 0.04534 − 1.679

r

R
(64)
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(a) (b)

Fig. 12 Schematic of the du Noüy ring (a) and qualitative behaviour of the measured force (b)

The value of the force F in Eqs. (63) and (64) corresponds to the maximum pull,
which is measured just before the film rupture, as shown schematically in Fig. 12b.
This value can bemeasured accurately by an automated instrument; however, manual
microbalances will measure the slightly smaller tear-off force instead.

The main sources of error of this method are accidental deformations of the
ring probe during handling or cleaning, poor alignment (the ring must be perfectly
parallel to the interface, and poor cleaning, which may change significantly the ring
wettability. For this reason, the ring probemust be cleaned fromorganic contaminants
by an organic solvent and then flamed to remove any organic molecules before each
test.

Wilhelmy plate In this method (Wilhelmy 1863), the probe used to deform the
interface is a thin vertical plate, made of platinum or platinum–iridium alloy. Unlike
in the du Noüy method, the plate is kept at a fixed position level with the interface,
and the liquid wets the plate as shown schematically in Fig. 13.

γ = F cos θ

2(L + t)
≈ F

2L
(65)

where L and t are, respectively, the width and the thickness of the plate, and θ is the
contact angle, which in case of complete wetting is negligibly small (cos θ ≈ 1). In
Eq. (65), no correction for liquid weight or buoyancy is necessary.

The Wilhelmy plate method is generally more accurate than the du Noüy ring
method, and does not require knowledge of the fluid densities. Adsorption of organic
molecules from the laboratory environment or test solutions can be a major source
of experimental error when measuring surface tensions using the Wilhelmy plate
method, therefore they must be removed by flaming the probe before tests.
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Fig. 13 Schematic of the
Wilhelmy plate method

2.2 Measurement of Laplace Pressure

One of the effects of interfacial tension is to generate a pressure difference between
fluids on either side of a curved interface (Laplace pressure), with the higher pressure
on the concave side of the interface. This pressure difference is responsible for phe-
nomena such as capillary rise, bubble and drop formation, etc., and can be calculated
using the Young–Laplace equation

�P = γ

(
1

r1
+ 1

r2

)
(66)

where r1 and r2 are the principal radii of curvature of the interface at a given point.
Thus, Eq. (66) can be used to find the interfacial tension when the pressure difference
and the system geometry are known.

Maximum bubble pressure This method yields the surface tension as a function
of the maximum pressure (p∗) to force a gas bubble out of a calibrated capillary
tube of radius r∗ into a liquid (Simon 1851; Sugden 1922, 1924), and is illustrated
schematically in Fig. 14. The measured pressure in the growing bubble is the sum of
the capillary (Laplace) pressure, �PL(r) caused by the interfacial tension and the
hydrostatic pressure caused by the liquid column above the orifice of the capillary:

p = �PL(r) + ρLgh (67)

where r is the bubble radius and h the depth of the orifice immersed into the liquid.
When the bubble starts to grow at the tip of the capillary, its radius, r , is larger

than the radius of the capillary, r∗ (Fig. 14a); as the bubble grows, its radius becomes
increasingly smaller until it becomes equal to the radius of the capillary hence the
Laplace pressure in Eq. (67) increases monotonically (Fig. 14b). If the bubble con-
tinues to grow beyond this point, its radius also grows therefore the Laplace pressure
in Eq. (67) decreases monotonically; as a consequence, the measured pressure in the
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(a) (b)

Fig. 14 Maximum bubble pressure method

bubble goes through a maximum (p = p∗) which corresponds to a hemispherical
bubble with radius r = r∗. In these conditions, the bubble is hemispherical, and the
surface tension force on the orifice is parallel to the tube axis, so that

γ = 1

2
(p∗ − ρLgh)r∗ (68)

To account for gravity effects, various corrections to Eq. (68) are discussed in
the literature (Sugden 1924; Fainerman and Miller 1998; Sonntag 1982; Drelich
et al. 2002). Usually multiplicative correction factors for Eq. (68) are expressed as
polynomials such as

C =
5∑

i=0

ai

(
r∗

a

)i

(69)

where a = √
2γ/(ρL − ρG)g is the capillary length, a0 = 0.99951, a1 = 0.01359,

a2 = −0.69498, a3 = −0.11133, a4 = 0.56447, a5 = −0.20156.
Since the bubble growth rate is an independent parameter of the process, the

maximum bubble pressure method is particularly suitable to measure the dynamic
surface tension. Figure15 shows the typical pressure oscillations observed during
the formation and detachment of two consecutive bubbles; the time interval between
two bubbles, tB , is the sum of the surface age (or surface lifetime), tL , where pressure
grows between a minimum and a maximum, and a dead time, tD , where pressure
decreases from a maximum to a minimum. By adjusting the time interval between
two bubbles, or the bubble frequency, one can change the surface age hence the rate
at which new surface is created. The characteristic bubble times, and in particular,
the surface age can be determined more accurately from the analysis of oscillations
of air flow fed into the system.

The surface tension values obtained at small lifetimes of the bubble are influenced
by hydrodynamic effects. These effects depend on the viscosity of the liquid and the
diameter of the capillary, and decrease with increasing lifetimes (Fainerman et al.
1993).
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Fig. 15 Pressure variation
during bubble growth and
detachment; the time interval
between two bubbles, tB , is
the sum of the surface age,
tL , and a dead time, tD

Fig. 16 Schematic of the
micropipette method

Micropipette method In the micropipette method (Yeung et al. 1998; Moran et al.
1999), a liquid droplet placed on the tip of a micropipette is gently drawn into the
micropipette tube until a hemispherical protrusion is formed, as shown in Fig. 16.
The pressure difference required to create the hemispherical protrusion is given by

�p = 2γ

(
1

rt
− 1

ro

)
(70)

where rt and ro are the radii of the micropipette tube and of the external spherical
cap of liquid, respectively.

2.3 Capillary–Gravity Balance

Capillary rise tensiometer When a vertical capillary tube makes contact with the
free surface of a liquid that wets the tube material (i.e. the contact angle is less than
90◦), the liquid is drawn into the tube by surface tension until the weight of the liquid
column inside the tube equals the surface tension force. Assuming the contact angle
is small (cos θ ≈ 1), the force balance writes

(ρL − ρG)gh = γ

(
1

r1
+ 1

r2

)
(71)

where ρL and ρG are the densities of the liquid and of the surrounding medium
(air), respectively, g is gravity, h is the height of the liquid column, r1 and r2 are
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the principal radii of curvature at the centre of the interface. For capillaries of small
diameter, r1 = r2 = r and the surface tension can be calculated as

γ = 1

2
(ρL − ρG)ghr (72)

The capillary rise method offers a very good accuracy at low cost, and is used
primarily to measure the surface tension of pure liquids. Commercial capillary tubes
for surface tension measurements are generally made of glass and diameter d < 1
mm. It is important the diameter is uniform along the capillary tube, which depends
on the manufacturing process; in particular, tubes manufactured by extrusion are of
higher quality than those produced by centrifugation. To achieve a higher accuracy,
or in case of capillary tubes of larger diameter, it is necessary to correct the radius
of curvature of the meniscus for the gravitational deformation (Strutt 1916)

γ = 1

2
(ρL − ρG)ghr

(
1 + r

3h
− 0.1288

r2

h2
+ 0.1312

r3

h3

)
(73)

Drop weight In the drop weight method, or stalagmometric method, a drop is gen-
erated at the tip of a vertical capillary nozzle, such as a blunt hypodermic needle.
The drop starts to detach from the nozzle when its weight equals the surface force at
the nozzle tip (Tate 1864)

V (ρL − ρG)g = 2πrγ (74)

where V is the drop volume, and r the radius of the wetted nozzle tip; it is important
to observe that since the wall of the capillary tube has a finite thickness, r is equal to
the inner radius if the drop liquid does not wet the nozzle tip, and to the outer radius
if the drop liquid wets the nozzle tip.

In practice, the weight of the falling drop is lower than the weight expressed in Eq.
(74), because some liquid remains attached to the tip of the capillary (experiments
show that up to 40% of the drop volume may be left on the stalagmometer tip).
Thus, one must introduce a correction factor for the drop weight to obtain the surface
tension from Eq. (74)

γ = V (ρL − ρG)g

2πr f ( r
V 1/3 )

(75)

where the correction factor is given by (Drelich et al. 2002)

f
( r

V 1/3

)
= 0.167 + 0.193

( r

V 1/3

)
− 0.0489

( r

V 1/3

)2 − 0.0496
( r

V 1/3

)3
(76)

To increase the measurement accuracy, it is a common practice to measure the
weight of several drops and calculate an average drop weight. Drop detachment
should be very slow (ideally quasi-static) to avoid inertial effects. The method is
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extremely sensitive to vibrations, which may cause early detachment of drop. While
themethod is good for pure fluids, it may not be suitable tomulticomponent solutions
if there is adsorption of one ormore chemical species on the stalagmometer tip, which
changes the wettability hence the adhesion of the liquid to the tip.

2.4 Gravity-Induced Deformation

In the absence of external forces, drops have a spherical shape to minimize the
excess interface energy; however, when an external force (e.g. gravity) is applied, the
equilibrium drop shape results from the combination of gravity and capillary forces.
Thus, the drop shape geometry can be used to find the surface tension magnitude.

The shape of an axisymmetric liquid drop deposited on a horizontal solid surface
(sessile drop) can be related to the surface tension by including gravity in the Laplace
equation (Bashforth and Adams 1883)

γ

(
1

r1
+ 1

r2

)
= (ρL − ρG)gz + C (77)

where C is a constant. With reference to Fig. 17a, which displays a cross section of
the interface including the axis of revolution, r1 is the radius of curvature in the cross-
sectional plane at any point P of the interface. If φ is the angle between the normal
to the surface and the axis of revolution, the second radius of curvature at point P is
r2 = x/ sin φ. To find the constant in Eq. (77), one can consider the curvature in the
origin (the drop apex), where r1 = r2 = b, so that C = 2γ/b. The same equation is
applicable to the case of hanging drops, but in that case the vertical coordinate, z, is
to be measured upwards from the vertex.

(a) (b)

Fig. 17 Schematic of the pendant drop (a) and sessile drop (b) methods
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Table 1 Coefficients of the correction factor F in Eq. (78)

Range of S A B4 B3 B2 B1 B0

0.401–0.46 2.56651 0.3272 0 0.97553 0.84059 0.18069

0.46–0.59 2.59725 0.31968 0 0.46898 0.50059 0.13261

0.59–0.68 2.62435 0.31522 0 0.11714 0.15756 0.05285

0.68–0.9 2.64267 0.31345 0 0.09155 0.14701 0.05877

0.9–1 2.84636 0.30715 −0.69116 −1.08315 −0.18341 0.20970

Methods based on the drop shape analysis are very popular because they require
a simple experimental setup, consisting of a digital camera and a suitable lens to
capture a magnified image of the drop. The interface tension can be easily calculated
from the geometry of either pendant drops, or sessile drops, or any liquid meniscii.

Pendant drop method In a simplified version of the pendant drop method, the
interfacial tension can be obtained from just two geometric parameters: the equatorial
diameter, D, and the neck diameter, d, which is measured at a distance from the
drop apex equal to the equatorial diameter, as shown schematically in Fig. 17b. The
corresponding interfacial tension is calculated as Andreas et al. (1938), Stauffer
(1965):

γ = (ρL − ρG)gD2F (78)

The correction factor F is a function of the shape parameter, defined as S = D/d,
and can be calculated using the following empirical formula (Misak 1968):

F = B4

SA
+ B3S

3 − B2S
2 + B1S − B0 (79)

where the numerical values of the coefficients are given inTable1, for different ranges
of the shape parameter. Similar to the drop weight method, the pendant drop method
may be affected by adsorption of one or more chemical species on the capillary (few
surface-active contaminants can change the drop shape significantly), which must be
extremely clean. It is recommended to select capillary tubes with diameter ≤d/2.

Sessile drop method A simplified version of the sessile drop method can be used
with large drops deposited on a poorly wettable substrate, so that the contact angle
is >90◦. In this case, the interfacial tension can be obtained from one geometric
parameters, the distance ze between the drop apex and the equatorial diameter (see
Fig. 17a), according to the following expression (Sonntag 1982):

γ = 1

2
(ρL − ρG)gz2e (80)

Other analytical formulae for computation of surface tension directly from the
characteristic dimensions are available (Couper 1993), however these methods
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require very accurate measurement of the dimensions for good results. For more
accurate results, methods that fit the entire shape of the edge of the drop to the
Laplace equation are recommended.

The Axisymmetric Drop Shape Analysis (ADSA) method In the Axisymmetric
Drop Shape Analysis method (ADSA), a solution of the Laplace equation is fitted to
the drop shape by minimizing the error between the theoretical and observed drop
boundaries (Rotenberg et al. 1983; Hoorfar and Neumann 2006). The theoretical
Laplacian curve, i.e. a curve representing a solution of the Laplace equation of
capillarity can be obtained from Eq. (77) expressing the radius of curvature in the
cross-sectional plane (see Fig. 17a) in terms of the curvilinear coordinate, s, along
the interface

dφ

ds
= 2

b
+ (ρL − ρG)g

γ
z − sin φ

x
(81)

where cosφ = dx/ds and sin φ = dz/ds.
The objective function which expresses the error between the physically observed

and theoretical boundaries is

E =
N∑
i=1

1

2
[(xi − Xi )

2 + (zi − Zi )
2] (82)

where Xi and Zi are the coordinates of the observed interface points and xi and zi
are the Laplace coordinates.

The objective function can be expressed in terms of four parameters, q1 = X0,
q2 = Z0, q3 = b and q4 = (ρL − ρG)gb2/γ. Thus, the set of parameters that mini-
mize the objective function can be used to find the surface tension as

γ = (ρL − ρG)gq2
3

q4
(83)

The method of solution is versatile and is not restricted by any particular drop
shape or drop size; whether the drop is a sessile drop or a pendant drop, the cases
are treated in a unified manner. The amount of physical input data that is required
consists of the values of the coordinate points of the discretized interface, the value
of the density difference across the interface and the value of the local acceleration
of gravity

The first version of ADSA was very inefficient from a computational point of
view, however it allowed for the first time the measurement of surface tension from
the analysis of pendant drops side views. The first ADSA was followed by several
newer versions, each improving some of the drawbacks of the original method (Río
and Neumann 1997):

• ADSA-P (the most used one) is probably the fastest implementation of ASDA for
pendant drops; however, numerical simplifications introduced uncertainty in the
result.
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• ADSA-D was the first version designed for contact angle calculation from sessile
drops images; in this case, surface tension is a required input parameter.

• ADSA-H and ADSA-HD were developed for simultaneous surface tension and
contact angle measurement from sessile drops images.

• LBADSA reduces the computational time required to solve the fitting problem by
considering a first-order approximation of the Young–Laplace equation; it calcu-
lates both the surface tension for pendant drops and the contact angle for sessile
drops (Stalder et al. 2010).

2.5 Forced Deformation

Spinning drop method The spinning drop method (Vonnegut 1942; Princen et al.
1967) is used to measure the interfacial tension between immiscible liquids A and
B of different densities, with ρB > ρA. A drop of the lower-density fluid is injected
into a horizontal tube filled with the higher-density fluid and spinning around its
longitudinal axis. Because of the pressure gradient induced by centrifugal forces, the
lower-density drop takes the shape of a coaxial cylinder, as shown in Fig. 18.

The cylindrical drop radius, r , results from the balance between centrifugal forces
and interfacial tension, therefore one can calculate the value of the surface tension
from the drop geometry and the angular velocity, ω (Slattery and Chen 1978)

γ = 1

2

( r

r∗
)3

(ρB − ρA)ω
2 (84)

where r∗ is a characteristic length depending on the aspect ratio of the deformed
droplet, r/h. The spinning drop method has a very high sensitivity and can measure
surface tension values as low as ∼10−4 mN/m.

Fig. 18 Schematic of the spinning drop method
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Transport Phenomena in Viscoelastic
Fluids

Teodor Burghelea

Abstract After a discussion of the molecular scale picture of viscoelasticity given
in Sect. 1, several macroscopic flow phenomena triggered by viscoelasticity are
described in Sect. 2. The hydrodynamic stability of flows of viscoelastic fluids is
discussed in Sect. 3. The rest of the chapter is dedicated to the phenomenon of Elas-
tic Turbulence in dilute polymer solutions. The main features of Elastic Turbulence
observed in a macroscopic von Karman swirling flow are detailed in Sect. 4. A sys-
tematic description of the Elastic Turbulence in a micro-channel is presented in
Sect. 5. The transport of mass (mixing) and heat by Elastic Turbulence are described
in Sects. 6, 7, respectively. The theory of Elastic Turbulence and its agreement with
the experimental observations are discussed in Sect. 8.

1 Molecular Origins of Viscoelasticity in Dilute Polymer
Solutions

A distinct class of complex fluids is represented by dilute solutions of high molecular
weight linear polymers. Thedilute limit refers to the situationwhenpolymer–polymer
interaction can be neglected. A typical linear polymer strand consists of a large
number of sequentially bonded monomer units of molecular weights typically of the
order of 102 Da with a total molecular weight M of the order 106 ÷ 107 Da.

The simplest picture of a highmolecularweight linear polymermolecule immersed
in a low molecular weight (Newtonian) solvent is that of an elastic spring with two
beads connected at its ends (elastic dumb-bell model). In the absence of flow and
external forces acting on the chain, the most probable state of the molecule is the
coiled state (Fig. 1a). In the presence of flow, each bead interacts hydrodynami-
cally with the solvent via Stokes like frictional forces (the Reynolds number based
on the size of the polymer molecule is negligibly small). If the magnitude of the
largest eigenvalue of the velocity gradient tensor becomes of the order of the inverse
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Fig. 1 Possible configurations of a linear polymer molecule in a flow: a coiled state and b stretched
state

characteristic relaxation time of the polymer molecule, the coil-stretch transition
occurs (Fig. 1b).

The coil-stretch transition was first predicted by P.-G. de Gennes in his seminal
1974 paper (de Gennes 1974). As the microscopic coil-stretch transition is naturally
associated to the emergence of a polymer component in the stress tensor, its dynam-
ics will consequently impact the macroscopic flow features discussed through this
chapter. For this reason, a brief discussion of the main elements and predictions of
the de Gennes’s theory is in order. A first subtle element of the theory was to realise
that the dynamics of the coil-stretch transition depends on the kinematics of the flow.
Thus, two cases are considered: shear flows and shear free (extensional) flows.A two-

dimensional flow field (Vx, Vy) is characterised by the vorticity ω = 1
2

(
∂Vx
∂y − ∂Vy

∂x

)

and the extensional partA = 1
2

(
∂Vx
∂y + ∂Vy

∂x

)
. The sketch presented in Fig. 2a exempli-

fies the coil-stretch transition for the case when the vorticity ω is gradually decreased
while A is maintained constant (but large). The transition is a second-order (imper-
fect) bifurcation and the width of the transitional region is approximately Z−1 where
Z is the number of monomers in the chain (de Gennes 1974).

The nature of the bifurcation from a coiled to a stretched state changes when a
shear free flow is considered: Vx = ε̇x, Vy = −ε̇y.

In this case, the dependence of the fractional extension of the polymer molecules
folds back and in a certain range of rates of extension ε̇ and a bistable equilibrium is
observed. There is one critical value of ε̇ = ε̇∗ at which the system (if it is operated
very slowly) will switch from a coiled state to a stretched one. A first-order phase
transition takes place at ε̇ = ε̇∗.

A first experimental confirmation of the de Gennes theory has been reported
by Schroeder and coworkers for the case of a planar extensional flow of a dilute
solution of highly flexible Escherichia coli DNA molecules (Schroeder et al. 2003).
By tracking a statistically relevant number of individual polymer molecules stained
with a fluorescent compound for various Deborah numbers De = λε̇ they confirm
the first-order bifurcation conjectured by de Gennes in 1974 for the case of a steady
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Fig. 2 a Sketch of a second-order coil-stretch transition in a two-dimensional flow when the
vorticity ω increases while A is large but constant. The width of the transition zone is Z−1 (where
Z is the number of monomers on one chain). b Sketch of a first-order coil-stretch transition in an
extensional flow. c Phase diagram corresponding to the coil-stretch transition: blue line—second
order; red line—first order. The sketches in each panel are reproductions of the sketches presented
in de Gennes (1974)

extensional flow. To our best knowledge, the prediction of a second-order bifurca-
tion for the case of a steady shear flow (see the sketch in Fig. 2a) still awaits an
experimental validation.

2 Macroscopic Flow Phenomena Triggered
by the Microscopic Coil-Stretch Transition

2.1 The Rod-Climbing Effect

The generation of a macroscopic elastic stress component associated to the micro-
scopic coil-stretch transition is responsible for a number of somewhat counterintuitive
flow phenomena. The best known such effect is, probably, the rod-climbing or the
Weissenberg effect (Weissenberg 1947).
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Fig. 3 a Schematic illustration of the Weissenberg effect. b Cross-sectional view illustrating the
physical mechanism of the Weissenberg effect

As schematically illustrated in Fig. 3a, a polymeric fluid possessing ‘enough’
elasticity climbs on a rod rotating at a constant angular speed � in the fluid rather
being repelled by the centrifugal force (which is obviously what would happen if the
fluid was Newtonian).

A simple phenomenological explanation of this effect may be formulated as fol-
lows. The individual polymer molecules get stretched along the streamlines which
are closed circles which generates an extra tension along these lines which gener-
ates an inwards fluid motion which makes the polymeric fluid climb the rod. This is
schematically illustrated in Fig. 3b.

More rigorously, it can be shown that actually the first normal stress difference
N1 = σθθ − σrr which is proportional to the square of the rate of shear and the largest
relaxation time of the polymer relaxation time and generally negative generates a
body force F = N1

r called hoop stress oriented inwards (Bird et al. 1977). In the
case of a Newtonian N1 = 0, the only acting force is the centrifugal one and the
liquid is pushed outwards. For dilute polymer solutions N1 > 0 and, subsequently,
the polymeric fluid climbs the rod.

2.2 Extrudate Swell Effect

If a Newtonian fluid exits a capillary of diameterD at low Reynolds number it forms
a jet of a smaller diameter DN < D as schematically illustrated in Fig. 4a. Typically
DN is up to ten percents smaller than the diameter of the capillary. This phenomenon
is called ‘vena contracta’ and was first described by Torricelli (1644).

The overall picture is dramatically different if the same experiment is performed
with a polymeric fluid, Fig. 4b. The diameter of the exiting fluid jet DP may be up to
three times larger than the diameter of the capillary. This phenomenon is called the
‘extrudate swell’. A simplified phenomenological interpretation of this effect may
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Fig. 4 a Newtonian fluid
exiting a capillary tube,
DN < D. b Polymeric fluid
exiting a capillary tube,
DP > D

be given if one resorts once again to the original idea of Weissenberg of tension
generation along the streamlines in flows of polymeric fluids. When the fluid exits
the capillary this extra tension cannot be accommodated and, as a result, the fluid
will contract axially and expand radially.

A more rigorous and quantitative result which relates the swelling ratio DP
D to the

ratio between the first normal stress difference N1 shear stress measured near the
wall at the capillary exit was given by Tanner (1970):

DP

D
= 0.1 +

[
1 + 1

2

(
1 +

(
N1

σxy

)2

w

)]1/6

(1)

2.3 Drag Reduction

In 1949Toms discovered that a small addition of a flexible linear polymer (roughly 10
ppm of polymethylacrylate) to an inertially turbulent leads to a substantial reduction
of the turbulent drag (defined by the pressure drop �P needed to maintain a given
flow rate) that may reach 40% (Toms 1949). This phenomenon has been coined the
drag reduction phenomenon. The reduction of the drag may be intuitively associated
to a decrease of the strength of the secondary flow as schematically illustrated in
Fig. 5.

The early studies of drag reduction in dilute polymer solutions revealed two types
of drag reduction in dilute polymer solutions (Hershey and Zalkin 1967). In dilute
polymer solutions, the drag reduction emerges in a fully developed turbulence regime
beyond a critical Reynolds number where the friction factor decreases below that for
an ordinary Newtonian turbulent flow. For Reynolds numbers smaller than the onset
value, no drag reduction is observed. In more concentrated polymer solutions, the
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Fig. 5 a Sketch of a turbulent pipe flow with no polymer added. b Sketch of a turbulent pipe flow
after a small amount of polymer has been added

drag reduction is observed near the upper bond of the laminar region. In this case,
the onset conditions are reached at low Reynolds numbers, that is, the laminar–
turbulent transition is not observed. The main difference between these two kinds
of drag reduction is the region where drag reduction occurs. The former begins in
the fully developed turbulent region. The latter is observed in the extended laminar
region. They were later labelled type A and type B drag reduction (Virk and Wagger
1990). Despite a large number of theoretical, numerical and experimental studies
(Lumley 1969; Yarin 1997) that span almost eight decades, the mechanism by which
the polymer addition inhibits the momentum transfer to the channel walls and the
drag reduction occurs it is still not fully understood.

3 Hydrodynamic Stability of Dilute Polymer Solutions

Stretching of individual polymer molecules in the flow leads to generation of addi-
tional elastic stresses that relax with a macroscopic characteristic time λ, are flow
history-dependent and grow in a strongly nonlinear fashion with the external forc-
ing. Thus, the stress tensor, σ, can be decomposed in two parts, σ = σs + σp. The
polymer part of the stress tensor depends in a strongly nonlinear fashion on the
field of velocity gradients which is a consequence of the strong nonlinearity of the
coil-stretch transition particularly in flows with an extensional component (Fig. 2).
The balance between the nonlinear elastic terms and the linear dissipative terms is
quantified by a second dimensionless quantity usually referred as the Weissenberg
number,Wi = λ · v

L . The mechanical properties of a dilute polymer solution become
increasingly nonlinear as Wi is increased.

In the context of two potential sources of nonlinearity in the hydrodynamic equa-
tions of a dilute polymer solution, inertial and elastic, a natural question arises: how
is the hydrodynamic stability affected by each nonlinear contribution. This question
can be only partially answered. Figure6 shows a sketch of a stability diagram in the
parameter space (Wi − Re).

If both Re and Wi are smaller than unity, the flow is steady and laminar. In the
limit of negligible Wi, the flow loses its stability only if the inertial nonlinearity is
large comparative to the viscous dissipation. Thus when Reynolds number exceeds
a threshold value, Re > Rec, the flow evolves to turbulent states (the region labelled
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Fig. 6 Sketch of
hydrodynamic stability
diagram: T—inertial
turbulence, ET—elastic
turbulence, DR—drag
reduction and PEFI—purely
elastic flow instabilities

IT in Fig. 6). This is, of course, an oversimplified picture. In most of the realistic
situations, the transition to fully developed turbulence does not occur directly but via
secondary instabilities. When Re is small but the values of Wi slightly exceed unity,
flows with curvilinear streamlines can undergo a purely elastic instabilities (Muller
et al. 1989; Larson 1992). As a result of these instabilities, secondary flows have
been observed experimentally (Muller et al. 1989) together with a sharp increase in
flow resistance (Magda and Larson 1988).

The onset of the purely elastic instability in flows of polymer solutions with
curvilinear streamlines is related to both the mean curvature of streamlines κ = R−1

(hereR stands for the radius of the curvature) and the rheological properties (polymer
relaxation time, zero shear viscosity) via the Pakdel–McKinley criterion (McKinley
et al. 1996): [

λvκ
σ11

η0γ̇

]1/2

≥ Mcr (2)

The first termλvκ (where v is a scale for the flowvelocity) represents the contribution
of the curvilinear geometry to the stretching of the polymer molecules. A second
term involved in the left-hand side of the Pakdel–McKinley criterion is the ratio
between the extensional stress component σ11 and the shear stress η0γ̇. The value of
the non-dimensional onset numberMcr depends on the rheological properties of the
solution and the topology of the base flow and can be computed via linear stability
analysis. For a Taylor–Couette geometry and a polymer solution described by the
upper convected Maxwell model, it was found Mcr = 8.37 ± 0.03 (Larson 1992).
For other flow configurations (parallel plate, cone-plate), Mcr remains of order of
unity.

When both Re and Wi numbers are large, the drag reduction effect is observed.
The region of the space diagram corresponding to a negligibly small Re but Wi
significantly larger than the onset of the primary elastic instabilities has particularly
interested both theoreticians and experimentalists during the past twodecades.Within
this regime, a fully developed chaotic flow solely driven by nonlinear elastic stresses
coined as ‘Elastic Turbulence’ has been observed. The rest of this chapter is dedicated
to this phenomenon.
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4 Elastic Turbulence in Dilute Polymer Solutions:
Turbulence Without Inertia

The first experimental observation of a chaotic flow state solely driven by the strongly
nonlinear elastic stresses coined as ‘Elastic Turbulence’ dates back to mid-1960s
(Vinogradov andManin 1965). This discovery by the group of late Prof. Vinogradov
in the former SovietUnion remained, however, unnoticed by the scientific community
and, it is fair to say the Elastic Turbulence has been practically rediscovered by
Groisman and Steinberg (2000).

The observations by Groisman and Steinberg have been performed in a von Kar-
man swirling flow, schematically illustrated in Fig. 7. The experimental setup consists
of an acrylic made cup FCmounted on the bottom plate of a commercial rheometer.
The flow was visualised from below through a flat mirrorM. The flow was driven by
a rotating discD connected to the shaft of the rheometer. By combinedmeasurements
of the dependence of the torque needed to drive the top disc at a constant angular
speed, point-wise velocity measurements performed via laser Doppler velocime-
try (LDV) and visualisation of a drop of ink in the flow, they highlighted several
important features of the Elastic Turbulence: sharp growth of flow resistance as the
Weissenberg number is increased past the onset of the primary elastic instability, a
power-law decay of the spectra of fluctuations of the point-wise velocity. The chaotic

Fig. 7 Schematic view of
the experimental setup:
FC—fluid container,
R—rheometer shaft,
D—rotating disc,
CCD—digital camera,
M—flat mirror, L—laser,
COB—cylindrical optics
block and LS—laser sheet
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nature of the flow has been qualitatively shown by monitoring the mixing of a drop
of ink initially located at the centre of flow system.

Following the (re)discovery of the Elastic Turbulence, a number of experimental
studies have revealed several of its key features in various flow macroscopic config-
urations (Burghelea et al. 2004c, 2005, 2006, 2007).

Below we detail several of the main features of the elastic turbulence observed in
a von Karman swirling flow similar to the one studied by Groisman and Steinberg.
In order to check the sensitivity of the results with respect to the geometrical aspect
ratio and to explore a broad range of Weissenberg numbers, two versions of the von
Karman swirling flow system are used: first one had Rc = 2.2 cm, Rd = 2 cm and
the distance between plates d = 1 cm and the second had Rc = 4.9 cm, Rd = 4.7
cm and d = 1 cm. The two setups will be further referred as setup 1 and 2. The
rheometer can be driven either in constant (within 0.5%) angular speed mode either
in constant (within 0.5%) torquemode.The two forcingmodeswill be further referred
as �-forcing and T -forcing. The momentum of inertia of the shaft of the rheometer
is Is ≈ 14µNms2 and the momentum of inertia of the upper plate, Id , was about
61µNms2 for setup 1, and about 84µNms2 for setup 2. The accuracy of the angular
speed measurements in constant torque mode is about 2% and the accuracy of the
torque measurements in the constant speed mode is about 1%. One has to point out
here that smallness of the fluctuations rate of the angular velocity is not a sufficient
criterion to have a constant speed forcing. Corresponding to the�-mode, (Ir + Id )

∂�
∂t

should be also much smaller than the typical values of torque, T .
The systemwas illuminated laterally by a thin(30µm in the centre of the setup and

about 120µm at the edges of the setup) laser sheet at the middle distance between
plates. The laser sheet was generated by passing a laser beam delivered by a 300 mW
argon-ion laser,L, through a block of two crossed cylindrical lenses,CO, mounted in
a telescopic arrangement. Flow images are acquired with a digital camera (PixelFly
from PCO with 12 bit quantisation and 640 × 512 pixels resolution) from below,
through a 45◦ flat mirror,M.

For a swirling flow between parallel plates, the Reynolds number can be defined as
Re = �·Rc·d ·ρ

η
. For all the experiments we discuss in the following the inertial contri-

bution was always low, Re < 16. The relevant control parameter is the Weissenberg
number, Wi = λ(γ̇) · γ̇ where the shear rate, γ̇, can be estimated1 as γ̇ = �·Rc

d . The
polymer used was polyacrylamide, PAAm (from Polysciences Inc.) with the molec-
ular weight Mw = 1.8 × 107 Da which was the same polymer used by Groisman
and Steinberg (2001). The polymer was dissolved at a concentration of 80 ppm in a
Newtonian solvent. The Newtonian solvent was about 65% saccharose in water.

The rheological properties of the solvent and the polymer solution were measured
with two different rheometers: AR-1000 (TA Instruments) and Vilastic 3 (Vilastic
Scientific). The viscosity of the solventwas ηs = 114mPas at 22 ◦C, and the viscosity
of the solutionwasη = 138mPas at a shear rate of 2 s−1. Thepolymer relaxation time,
λ, was measured in oscillatory tests at different shear rates, γ̇, ranging from 0.4 s−1

1Due to the strong non-homogeneity of the shear rates in a swirling flow, even in laminar regime,
this choice is somewhat arbitrary.



92 T. Burghelea

Fig. 8 Polymer relaxation
obtained from oscillation
measurements in a
Mooney–Ewart geometry
mounted on the AR-1000
rheometer. The full line is a
fit γ̇−0.29

to 3.6 s−1. The real and imaginary part of the complex viscosity (or the components
in-phase and out-of-phase with the applied shear), η′ and η′′, respectively, were
measured in long series at different angular frequencies ranging from 0.1 to 1 Hz.
Corresponding to each frequency, the results were averaged over six different runs.
The same procedure was applied with the solvent ant its viscosity components, η′

s
and η′′

s were measured as well. The values for the polymer in-phase and out-of-phase
viscosity were calculated as η′

p = η′ − η′
s and η′′

p = η′′ − η′′
p . The polymer relaxation

time was finally calculated λ = limω→0[ 1ω (
η′′
p (ω)

η′
p(ω)

)].
The dependence of the polymer relaxation time on the shear rate is presented in

Fig. 8.

4.1 Flow Resistance

One of the main features of the transition to Elastic Turbulence is the substantial
growth of flow resistance above the onset of the instability (Groisman and Steinberg
2000; Burghelea et al. 2004a, 2007). In the case of a von Karman swirling flow,
a measure of the flow resistance is either the power needed to spin the upper plate
a constant angular speed, P�, either the power needed to spin the upper plate in a
regime of constant torque, T , on the shaft of the rheometer, PT (Fig. 9).

The dependence of the time-averaged power measured in the � mode on the
control parameter Wi is presented in Fig. 10a. The data are normalised by the time-
averaged power measured prior to the onset of the primary elastic instability, Plam.
The transition to Elastic Turbulence is marked by a sharp increase of the flow resis-
tance. Within a fully developed elastic turbulent regime, the flow resistance scales
as P/Plam. ∝ Wi0.49. A slight hysteresis upon increasing/decreasing Wi is observed
Fig. 9a. As shown by Traore et al. (2015), this is not the signature of a first-order
bifurcation but merely related to the finite averaging time of the injected power.
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Fig. 9 a Dependence of the scaled time-averaged power P/Plam on the control parameter Wi.
The full line is guide for the eye Wi0.49. b Dependence of the scaled rms of the power fluctuations
Prms/Prms

lam onWi. The full line is guide for the eyeWi3.2. In both panels, the symbols are: squares—
increasing Wi; circles—decreasing Wi. Data were collected in setup 2 in the � mode. The data
were replotted from Burghelea (2005)

The transition to Elastic Turbulence is equally accompanied by a sharp increase
of the root mean square (rms) fluctuations of the injected power (Fig. 9b). In a regime
of Elastic Turbulence, the reduced rms of fluctuations scales as Prms/Prms

lam ∝ Wi3.2.
Time series of the injected power measured in the� forcingmode at severalWeis-

senberg numbers are shown in Fig. 10a. The corresponding probability distributions
(pdfs) of the power fluctuations are shown in Fig. 10b. For values of theWeissenberg
number below the onset of the primary elastic instability Wic ≈ 8.37, the power
fluctuations are solely related to the instrumental noise of the measurements and the
corresponding pdfs have a Gaussian shape. Strongly fluctuating power signals are
measured past the onset of elastic instability (curves (4, 5) in Fig. 10a) and the cor-
responding pdf’s deviate strongly from a Gaussian shape: strong intermittent events
are visible in the form of a right skewness—the diamonds and the circles in Fig. 10b.

4.2 Flow Structure in a Regime of Elastic Turbulence

In the case of inertial turbulence, the emergence of the flow resistance is typically
associated to a major reorganisation of the flow. The qualitative measurements of
Groisman and Steinberg performed by monitoring the time evolution of a drop of ink
injected into the flow indicated that this is equally the case for the Elastic Turbulence
(Groisman and Steinberg 2000). More systematic investigations of the flow structure
in a regime of Elastic Turbulence combining several experimental techniques (LDV,
PIV, laser-induced fluorescence) have been reported in several subsequent papers
(Burghelea et al. 2004c, 2005, 2006, 2007).

Examples of instantaneous and time-averaged flow fields measured at mid-
distance between the plates of setup 1 at three distinct Wi are presented in Fig. 11.
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Fig. 10 a Time series of the injected power measured in the � forcing mode at different Wi.
The labels are: (1)—Wi = 5, (2)—Wi = 19, (3)—Wi = 24, (4)—Wi = 31.5, and (5)—Wi = 40.
b Probability density distributions of the power fluctuations measured in the � forcing mode at
different Wi: squares—Wi = 5, left triangles—Wi = 19, up triangles—Wi = 24, diamonds—
Wi = 31.5 and circles—Wi = 40. Data were collected in setup 2 in the � mode. The data were
replotted from Burghelea (2005)

The upper row of Fig. 11 presents instantaneous flow fields while the bottom
row presents time-averaged flow fields. Above the onset of the elastic instability
Wic ≈ 6.95, one can clearly identify the core of a toroidal vortex and a spiral vortex
that additionally occurs in a regime of fully developed Elastic Turbulence.

Magnified flow fields (the size of the field of view is 1 cm × 1 cm) separated in
time by 50 s are presented in Fig. 12a and b).

Figures11 and 12 reveal an important features of the flow fields in a regime of
Elastic Turbulence: spatial smoothness manifested through the lack of small-scale
features. The sole dominant space scale of the flow is comparable in magnitude to
the size of the fluid container. For the case of inertial turbulence, the picture is very
different. Inertially turbulent flows are spatially smooth only beyond the Batchelor
scale. Another distinct feature of the flow fields in a regime of Elastic Turbulence
relates to their chaotic temporal evolution: the core of the vortex illustrated in Figs. 11
and 12 moves randomly in time which corroborates with the chaotic behaviour of
the time series of the power injected into the flow (Fig. 10a).

Yet another method of visualising the flow structure is via the laser-induced fluo-
rescence (LIF) technique. For this purpose, a drop of fluorescent die is injected near
the centre of the setup, illuminated with a thin horizontal laser sheet traversing the
fluid container at mid-distance between the plates and visualised from below. The
temporal evolution of the drop of die is illustrated in Fig. 13.

As advected by the randomly fluctuating vortex discussed above the blob of die
gets stretched and folded (panels b, c in Fig. 13) and, in about a minute, it becomes
perfectly mixed with the surrounding polymer solution. The topology of the vortex is
clearly visible in Fig. 13d. The change in the flow structure with Wi may be equally
observed by plotting the time-averaged in-plane velocity components V̄θ, V̄r .
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Fig. 11 Instantaneous (upper row) and time-averaged (lower row) velocity fields measured for
several values of Wi: a—Wi = 2.48, b—Wi = 9.88 and c—Wi = 18.9. Data were collected in
setup 1 (Wic = 6.95) at middle distance between plates and replotted from Burghelea (2005)

Below the onset of elastic instability (curves (1, 2) in Fig. 14), there exists no
radial flow component. The azimuthal flow component depends linearly on the radial
coordinate in the vicinity of the centre of the flow system which is consistent with a
rigid body rotation, see the inset in Fig. 14a.

Above the onset of the primary elastic instability, a major reorganisation of the
flow manifested through the emergence of a strong radial velocity component may
be observed, (curves (3, 5) in Fig. 14b). The presence of a non-zero radial component
is related to the formation of the vortical structure illustrated in Figs. 11, 12 and 13.

The flow reorganisation above the onset of the primary elastic instability is accom-
panied by a sharp increase of the level of velocity fluctuations. This point is well
supported by measurements of time series of the azimuthal velocity component Vθ at
Wi = 36.1 at several radial positions at mid-distance between the plates of setup 2
(Fig. 15a). In the central (r/Rc = 0) and peripheral region of the flow (r/Rc = 15/16)
the velocity signal displays no significant intermittency whereas at r/Rc = 2 it is
strongly intermittent. The radial dependence of the level of intermittency reflects the
presence of the randomly fluctuating spiral vortex and the position r = RC/2 most
probably corresponds to the arm of the spiral.

This behaviour is also reflected in the shape of the probability distribution func-
tions of the normalised azimuthal velocity presented in Fig. 15b: near the centre
and the vertical wall of the cell, the distributions are symmetric and single peaked
whereas around r = Rc/2 they become strongly skewed and doubly peaked.
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Fig. 12 a–b Instantaneous velocity fields separated in time by 50 s. c Time-averaged (over 120 s)
velocity field. The false colour map indicates the magnitude of the velocity and the full lines are
streamlines. The data have been acquired in setup 2 at Wi = 17.35 at the mid-distance between
plates and replotted from Burghelea (2005)

Next, we monitor the evolution of the turbulence intensity defined by It = V rms
θ

V̄θ

withWi at several radial positions in setup 2 (Fig. 16a). Regardless the radial position,
a sharp increase of the turbulence intensity is observedpast the onset of the primary ela
stic instability. In a fully developed elastic turbulent regime, the turbulence intensity
scales as It ∝ Wi0.5. This scaling is an indicator of an imperfect bifurcation.

The dependence of the turbulence intensity on the reduced radial coordinate r/Rc

measured for several Wi is presented in Fig. 16b. Within a fully developed elastic
turbulent regime, the turbulence intensity is the largest in the core of the main vortex.

4.3 Space-Time Correlations and Spectra in a Regime
of Elastic Turbulence

In Sect. 4.2 it has been shown that, in a regime of Elastic Turbulence, the flow fields
bear twokey features. First, they are spatially smoothmeaning that their characteristic
space scale is comparable to the size of the fluid container. Second, they have a chaotic
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Fig. 13 Representative laser-induced fluorescence snapshots acquired at mid-distance between the
plates at several time instants: a t = 0 s, b t = 16.8 s, c t = 26.52 s and d t = 55.92 s. The data
have been acquired in setup 2 (Wic ≈ 8.37) at Wi = 17.35 at the mid-distance between plates and
replotted from Burghelea (2005)

Fig. 14 a Radial profiles of the time-averaged azimuthal velocity component V̄θ , b measured for
severalWi. For reference, the inset shows a typical laminar velocity profile. b Radial profiles of the
time-averaged radial velocity component V̄r measured for severalWi. In both panels, the labels are:
(1)—Wi = 2.48, (2)—Wi = 4.4, (3)—Wi = 11.1, (4)—Wi = 15 and (5)—Wi = 18. The data
have been acquired in setup 1 (Wic ≈ 6.95) at Wi = 17.35 at the mid-distance between plates and
replotted from Burghelea (2005)
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Fig. 15 aTime series of the azimuthal velocity componentmeasured forWi = 36.1 at several radial
positions indicated in the inserts. b Probability distribution functions of the normalised azimuthal
velocity measured at Wi = 36.1 and several radial positions: squares—r = 0, circles—r = Rc/8,
up triangles—r = Rc/2, down triangles—r = 3Rc/4, diamonds—r = 7Rc/8 and left triangles—
r = 15Rc/16. The data were collected at mid-distance between the plates setup 2 (Wic ≈ 8.37)
and replotted from Burghelea (2005)

Fig. 16 a Dependence of the turbulence intensity It on the Weissenberg number measured at dif-
ferent radial positions: squares—r = 1 cm, up triangles—r = 0.7 cm, down triangles—r = 1.5
cm, diamonds—r = 1.74 cm and left triangles— r = 1.89 cm. The full line is a guide for the eye,
It ∝ Wi0.5. b Dependence of the turbulent intensity It on the reduced radial coordinate r/Rc mea-
sured for severalWeissenberg numbers: diamonds—Wi = 31.56, squares,—Wi = 27.73, circles—
Wi = 23.67, up triangles—Wi = 19.29, down triangles—Wi = 15.48, stars—Wi = 17.54 and
half filled triangles—Wi = 2.82. The inset shows the dependence of It on Wi measured at
r/Rc = 0.85 and the full line is a power-law fit It ∝ Wi0.49±0.06, the arrow marks the onset of
the primary elastic instability. The data were collected in setup 2 (Wic ≈ 8.37) and replotted from
Burghelea (2005)

appearancemeaning their temporal evolution is predictable solely during finite times.
The adequatemathematical tools for characterising suchflows are the statistical tools.
In this section, we focus on the description of several important physical quantities



Transport Phenomena in Viscoelastic Fluids 99

in a regime of Elastic Turbulence: spectra of velocity fluctuations, time correlations,
space correlations.

Groisman and Steinberg have first shown that the spectrum of the velocity fluctua-
tions decays algebraicallywith the frequencyP(f ) ∝ f α1 withα1 ≈ −3.3 (Groisman
and Steinberg 2000). They performed the spectral measurements by measuring via
the LDV technique long time series of the azimuthal velocity component in a single
point of the flow. To obtain the spatial frequency spectra of the velocity fluctuations
one needs to resort to the Taylor’s frozen flow hypothesis (Taylor 1938). As shown
in Burghelea et al. (2005) and latter discussed through this chapter, for the case of
Elastic Turbulence in a von Karman swirling flow this has to be done with caution.
On the other hand, the measurements of time series of full velocity fields exemplified
in Sect. 4.2 allow a direct computation of the space spectra without using the Taylor
hypothesis.

Figure17 displays space spectra of the velocity fluctuations for different values
of the control parameter within a regime of Elastic Turbulence. Prior to reaching a
plateau related to the level of instrumental noise of the PIVmeasurements, the spectra
decay algebraically, the full line in Fig. 17. In contrast to the inertial turbulence, the
spectrum of the velocity fluctuations is not related to an energy cascade (Fouxon and
Lebedev 2003). A phenomenological explanation for the shape of the velocity power
spectra displayed in Fig. 17 may be formulated as follows.

In a regime of Elastic Turbulence, the flow is dominated by a large-scale randomly
fluctuating velocity field. The passive advection of the stress field by the large-
scale velocity fields leads to generation of smaller scales stress fields, which are
permanently decaying to polymer relaxation. The situation is similar to the decay
of a passively advected tracer in the Batchelor regime of mixing. The small-scale
velocity fluctuations are a result of the small-scale fluctuations of the stress field.

A spatial typical scale at which elastic stresses are pumped can be estimated using
the power spectra shown in Fig. 17,

L = 2π

∫
P(k)dk∫

k · P(k)dk
(3)

Corresponding to fully developed chaotic flow states(Wi > Wiet), one obtains L =
2.4 cm for setup 1 and L = 5.9 cm for setup 2, suggesting that the main energy
dissipation takes place at large scale and the physics behind the spectra is similar to
the linearly decaying passive scalar problem. Thus, as already hinted by the topology
of the flow fields illustrated in Figs. 11, 12, 13 and 14 the statistically dominant space
scale of the elastic turbulent flow is comparable in magnitude to the size of the fluid
container.

Unlike in the case of high Re turbulence, here there exists no analogue of the
Kolmogorov scale (the apparent flattening of the spectra for large wave numbers is
only due to the finite spatial resolution of the PIV measurements) and the spectra
should terminate at wave numbers kdiff ≈ 1/

√
D · λ defined by the diffusivity D

of the polymer molecules and their relaxation time, λ. The simultaneous passive
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Fig. 17 Power spectra of the
fluctuations of tangential
velocity component at
different Wi:
circles—Wi = 4.41, up
triangles—Wi = 5.72, down
triangles—Wi = 8.32, left
triangles— Wi = 11.1, right
triangles—Wi = 12.7,
hexagons—Wi = 13.8,
diamonds—Wi = 16, half
filled squares—Wi = 18 and
empty circles—Wi = 19.
Data were collected in setup
1 and replotted from
Burghelea (2005)

advection and relaxation of the elastic stresses results in a fast decay of the stress
fluctuations at small scales, which should produce P(k) ∼ k−α velocity spectra with
α > 3. The data presented in Fig. 17 displays a decay region k−3.6 which agrees
rather well with the theoretical prediction (Fouxon and Lebedev 2003), and with
previous experimental results2 (Groisman and Steinberg 2000).

Unfortunately, an experimental technique that allowsmeasurements of the stresses
embedded in a fluid flow is not currently available. It was suggested that the stress
generation in the flow of a dilute polymer solution is directly related to the local Lya-
punov exponents of the flow (defined by the average logarithmic rate of separation of
two initially close Lagrangian trajectories) or, equivalently, to the rms of fluctuations
of the velocity gradients (Balkovsky and Fouxon 1999; Balkovsky et al. 2001). A
systematic Lagrangian frame description of the Elastic Turbulence in a macroscopic
von Karman swirling flow will be presented in Sect. 4.6.

An important quantity characterising a chaotic flowfield is its Eulerian correlation
time. The Eulerian correlation time can be defined as

τc =
∫

t C(t)dt/
∫

C(t)dt (4)

2In Groisman and Steinberg (2000) the spatial spectra of the velocity fluctuations have been derived
from point velocity measurements by using the Taylor hypothesis. For random flows of a dilute
polymer solution in a regime of Elastic Turbulence, this hypothesis generally fails (see Sect. 1.6).
The remarkable agreement between the spectra measured in Groisman and Steinberg (2000) and
the directly measured spectra deserves a brief discussion. Following Lumley (1965), the relation
between the spatial spectra, P(k) and the frequency domain spectra, P1(f ) can be written: P(k) =
V · P1(f ) − I2t

2 · d2(k2·P(k))
dk2

+ O(I4t ). If P(k) ∝ kα2 and P(f ) ∝ f α1 , the equation above leads to:

α2 − α1 ∝ log[1+ I2t
2 ·α2·(α2+2)]
log(k) . If one plugs in the last equation α2 ≈ −3.6, the difference between

the exponents is (for k ≈ 1000m−1) as small as α2 − α1 ≈ 0.2.

http://dx.doi.org/10.1007/978-3-030-35558-6_1
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Fig. 18 Eulerian correlation
times of the tangential
velocity component
measured at r = Rc/2 as
function of Wi:
squares—setup 1;
circles—setup 2. The data
were replotted from
Burghelea (2005)

Fig. 19 Schematic view of
the flow geometry:
(M)—mean flow line,
(L)—measured Lagrangian
trajectory and (C)—circular
arc

where C(t) is the Eulerian correlation function of the velocity in a regime of Elastic
Turbulence.

Measurements of the Eulerian correlation time performed at r = Rc/2 at mid-
distance between the plates are presented in Fig. 18. The transition to Elastic Turbu-
lence is accompanied by a significant decrease of the correlation times, τc, from
values of order of 15 s in the intermediate flow regime to values of about 1 s
(Fig. 18). An apparent saturation of the correlation time in the Elastic Turbulence
regime was observed in both setups, suggesting that some sort of dynamical equilib-
rium is reached. The saturation level is of the order of the polymer relaxation time λ
(Fig. 8).

Yet another important physical quantity needed to describe a chaotic flow is its
spatial correlation length. Its measurement is a non-trivial task as it requires moni-
toring the degree of correlation of the velocity of a fluid element as it is advected by
the flow. As a relevant advection path, we have several choices (Fig. 19): the mean
flow line (which inherently accounts for the topology of the flow field), a circular
trajectory or a Lagrangian path.

Figure20 displays velocity time series at three different locations along the mean
flow line (M). As one can see from panels (a) and (b), for sufficiently small separa-
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Fig. 20 Simultaneous
tangential velocity time
series (partially shown) at
Wi = 57.6 for three values
of the displacement along the
mean flow line (M): a s = 0
cm, b s = 1.5 cm and c
s = 3.2 cm. The data were
collected at mid-distance
between the plates setup 2
(Wic ≈ 8.37) and replotted
from Burghelea (2005)

tions, s, the two velocity time series are almost identical, up to a shift in time. For
larger separations (panel (c)), the velocity fluctuations are less correlated, and the
two time series display clear differences.

In order to check whether the velocity fluctuations are transported without evolv-
ing dynamically (the flow is frozen) and directly assess the degree of applicability of
the Taylor’s hypothesis, we measure the cross-correlation of the velocity fluctuations
between neighbouring points separated by the distance s, Cij(τ ,

−→
�r,−→r ) defined by:

Cij(τ ,
−→
�r,−→r ) = 〈vi(−→r , t) · vj(

−→r + −→
�r, t − τ )〉t

vrms
i1 · vrms

j2

(5)

where vrms
1,2 is the rms of velocity at the points−→r ,−→r + −→

�r and i, j = r, θ are the polar
coordinates (Fig. 19). It is worth noting that, since the mean flow is curvilinear, Cij

depends not only on themagnitude of the displacement between neighbouring points,
|−→�r|, but also on the path along which the displacement is considered and its length s.
Thus, in order to check the sensitivity of our results on the choice of the displacement
path, we have alternatively considered displacements along circular arcs (around the
centre of the setup), time average flow lines, and Lagrangian trajectories.
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The spatial smoothness demonstrated in Figs. 11, 12, 13 and 14 mathematically
translates into neglecting the high-order spatial derivatives of the fluctuating part of
the velocity components, ∂k−→v (

−→r ,t)
∂−→r k ≈ 0, k ≥ 3.

Within the approximation of vanishing high-order spatial derivatives and for small
displacements, s, and delay times, τ , one can easily decouple the space and time
dependencies in the definition of the cross-correlation function (Eq. 5):

Cij(τ , s,−→r )  〈vi(−→r , t) · vj(
−→r , t)〉t

vrms
i1 · vrms

j2

+ s · 〈vi(−→r , t) · ∂vj(
−→r ,t)
∂r 〉t

vrms
i1 · vrms

j2

−

τ · 〈vi(−→r , t) · ∂vj(
−→r ,t)
∂t 〉t

vrms
i1 · vrms

j2

− s · τ · 〈vi(−→r , t) · ∂2vj(
−→r ,t)

∂r∂t 〉t
vrms
i1 · vrms

j2

+

τ 2

2! · 〈vi(−→r , t) · ∂2vj(
−→r ,t)

∂t2 〉t
vrms
i1 · vrms

j2

+ s2

2! · 〈vi(−→r , t) · ∂2vj(
−→r ,t)

∂r2 〉t
vrms
i1 · vrms

j2

(6)

A typical space-time cross-correlation surface computed according to Eq. (6)
using as a principal direction of advection the mean flow line is shown in Fig. 21.

For sufficiently small time delays τ and displacements s along the mean flow
line, the correlation function surface can be well fitted by a paraboloidal surface.
Unfortunately, the limited time resolution of the PIV measurements did not allow
a full comparison of the coefficients of the expression above with those resulted
from the fit. However, the parabolic dependence of Cij(τ ,

−→r ,
−→s ) on the delay time

τ at a given spatial displacement s or at a given delay time τ has been verified
experimentally. In Fig. 22 we display several cross-correlation functions collapsed
onto a single curve being rescaled by the their maxima, Cmax

rr .

Fig. 21 Space-time
correlation surface. The data
were collected at
mid-distance between the
plates setup 2 (Wic ≈ 8.37)
and replotted from
Burghelea (2005)
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Fig. 22 Scaled
cross-correlation functions
for displacements s along the
mean flow line ranging from
7mm–4cm. The dotted line
is a parabolic fit. The data
were replotted from
Burghelea (2005)

Fig. 23 Space dependence
of cross-correlation
functions at fixed time
delays: squares—τ = 0;
circles—τ = τmax . The full
lines are parabolic fits. The
data were replotted from
Burghelea (2005)

Second, as resulted from the fit, the second-order spatial derivative is about one
order of magnitude smaller than the first-order one, which is a direct confirmation
of the flow smoothness hypothesis. One can notice that for small enough delay
times and space displacements the cross-correlations are well fitted by a parabola as
suggested by Eq. (6). Second, the weakly parabolic dependence of Cij(0,

−→r ,
−→s ) on

the displacement s has also been verified experimentally (Fig. 23).
Figure24 shows Crr(τ , s,−→r ) for few separations s along the mean flow line and

corresponding to −→r = ( 2·Rc
3 , 0).

As one can see in Fig. 24, for a given value of the displacement in space, s, the
temporal part of the cross-correlation displays a well-defined maxima at τmax(s,

−→r ),
defined by ∂Crr(τmax,s,

−→r )

∂τ
|s=const. = 0. If Taylor’s frozen flow hypothesis is valid and

the information on velocity fluctuations is not altered during the passage between
two points separated by s in the flow, then the peaks of the temporal part of the
cross-correlations are sharp and Cmax

rr (τmax) close to unity. Moreover, the values of
the delay time τ that maximise the correlations should scale linearly with the space
displacements, that is τmax = s

V . Here, as discussed above, in order to correctly
account for the flow non-homogeneity, one should consider the spatial dependence
of the velocity field, V = V (

−→r ).
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Fig. 24 The
cross-correlation of velocity
fluctuations, Crr(τ , s) versus
the delay time τ for different
values of the displacement s
along the mean flow line.
The data were replotted from
Burghelea (2005)

Validity of the Taylor hypothesis One way of quantifying the validity of the Taylor
hypothesis is to measure the deviation of the slope p1 of the dependence τmax =
τmax(

s
V ) from unity (Belmonte et al. 2000).

A typical dependence of the maximum delay time τmax on the spatial displace-
ment s is shown in Fig. 25. For this case, we have obtained from a linear fit
p1  0.73 ± 0.006.

As one can see from Fig. 26, in the central region of the flow the deviations from
the frozen flow assumption are significant.

The Taylor hypothesis is best verified towards the boundaries of the system.
However, p1 never exceeds 0.83.

Fig. 25 Bottom-left axis: the delay time τmax that maximises the cross-correlation functions versus
the length of the displacement along three different paths: squares—circular arcs, circles—mean
flow line and triangles–Lagrangian trajectory. The horizontal axis is normalised by themean velocity
at s = 0. The full lines are linear fits with slopes 0.6, 0.7 and 0.73, respectively. The dotted line has
slope 1. Top-right axis: the delay time τe (see text) versus the transit time τt . The full line is a linear
fit with slope 0.96. The initial position was �r = ( 2Rc3 , 0). The data were replotted from Burghelea
(2005)
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Fig. 26 Validity of the
Taylor hypothesis (see text
for discussion) versus the
radial coordinate. The data
were replotted from
Burghelea (2005)

Whereas the breakdown of the Taylor hypothesis in the central flow region can be
easily understood in the context of large (relatively to themean flow) velocity fluctua-
tions and practically zero mean flow, the applicability of the frozen flow assumption
in the off central flow region deserves a separate discussion. Although chaotic in
time, the flow is structurally different from high Re turbulent flows. As we have
already pointed out, the main difference is the absence of any analogue of the Kol-
mogorov length scale, absence of eddies of different sizes in the scaling range swept
by larger eddies, and the flow is smooth at all spatial scales. The main consequence
of the flow smoothness is the high space coherence of the velocity fluctuations (the
cross-correlations do not decay to 0 even over distances comparable to the size of
the container, as shown in Figs. 23 and 24).

This fact explains why three physically different choices of the path of particle
displacement (circular arcs, mean flow line, Lagrangian trajectories) (Fig. 19), lead
to similar values of the maximal delay times τmax (Fig. 25).

Second, it is worth noting that the validity coefficient p1 is always smaller than
unity (Figs. 25 and 26) for each of the three displacement choices we have considered
and the deviation from unity (which accounts at best for 20%) is clearly outside the
error bar of the linear fit. This suggests that the breakdown of the Taylor hypothe-
sis in the off-central flow region is not necessarily due to the level of fluctuations
(which is the case in the central region) but rather to an underestimation of the advec-
tion velocity. Similar results have been previously reported in experimental studies
of coherent structures in turbulent jets and turbulent boundary layers (Fisher and
Davies 1964; Zaman and Hussain 1981; Koeltzsch 1998; Krogstad et al. 1998). The
central conclusion of these studies was that the velocity transporting the fluctuation
information at scales comparable to the size of the coherent structure is substantially
different from the local mean flow velocity. This seems to be indeed the case of the
data presented in Fig. 25: if one rescales the displacements s with a velocity about
20% larger than the mean flow velocity V , the data would overlap with the unitary
slope line. Consistently with a different choice of the advection velocity (Fisher and
Davies 1964; Koeltzsch 1998), one can focus on the dependence of τe(s,

−→r ) defined
implicitly by ∂Crr(τe,s,

−→r )

∂s |τ=const. = 0 on the transit time τt between two points sepa-
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rated by s. If the Taylor hypothesis applies, this dependence is linear and has unitary
slope.

Thus, a second way to quantify the validity of the frozen flow assumption is to
measure the deviation of the slope p2 of the dependence τe = τe(τt) from unity.

Following a suggestion made by Koeltzsch (1998) one can define an additional
validity coefficient p3 = √

p1 · p2. As shown in Fig. 26, these corrections seem to
work rather well for regions away from the vortex core.

As an alternativemethod, the applicability of the Taylor hypothesis can be verified
by comparing directly measured spatial structure functions and spatial power spectra
of velocity fluctuations with the ones derived using the frozen flow assumption. We
focus in the following on the second-order structure function

S2(s) = 〈|vθ(
−→r , t) − vθ(

−→r + −→
�r, t)|2〉 (7)

and compare its values obtained fromdirect spatialmeasurementswith those obtained
using the Taylor hypothesis, s = V · t.

As shown in Fig. 27, corresponding to the characteristic scale L the structure
functions saturate at values roughly equal to 2 · v2

rms. Near the core of the main
vortex, the two structure functions are significantly different (Fig. 27a), indicating
oncemore a clear breakdown of the Taylor hypothesis whereas closer to the boundary

Fig. 27 Second-order
velocity structure functions:
squares—resulted from
direct measurements, circles
derived by using the Taylor
hypothesis. Here we have
considered displacements
along the mean flow line and
the initial position was: a
�r = (Rc/3, 0); b
�r = (2 · Rc/3, 0). The data
were replotted from
Burghelea (2005)
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(Fig. 27b) the difference diminished to about 20% of their saturation value that is
rather consistent with the result shown in Fig. 26.

4.4 Statistics of Velocity Gradients in a Regime of Elastic
Turbulence

As discussed in Sect. 1, the elastic stresses are generated in flows of viscoelastic
fluids by extension of individual polymer molecules past the onset of the coil-stretch
transition and, the extension of individual polymermolecules is a result of the velocity
gradients existing in the base flow. Thus, it appears natural to focus on the spatio-
temporal properties of the velocity gradients. As we are going to discuss in Sect. 8,
understanding the behaviour of the velocity gradients and their level of fluctuations
is a cornerstone for the theoretical understanding of the Elastic Turbulence.

One of the main advantages of the DPIV technique is that it provides a direct
access to this physical quantity whereas point-wise measurements (LDV, hot wire
anemometry require the use of the Taylor frozen flow hypothesis).

Time-averaged measurements of the radial gradients of the tangential velocity
component performed in setup 1 at mid-distance between plates are presented in
Fig. 28. The averaging time was significantly larger than the characteristic relaxation
time of the polymer solution in order for the ensemble average to be statistically
relevant.

Below the onset of the primary elastic instability, the velocity gradients are located
near the circular boundary of the setup, panel (a) in Fig. 28. Around the onset of the
primary elastic instability, two concentric rings of local maxima of the velocity
gradients are formed around the centre of the setup, panels (b–c). In a regime of
Elastic Turbulence, the two rings merge into a single ring which grow in width as
the Weissenberg number is further increased, panels (d–g). The evolution of spatial
distribution of the time-averaged velocity gradients with the Wi suggests a scenario
for the emergence of the Elastic Turbulence. Initially, the velocity gradients are
concentrated near the boundaries of the system indicating that the elastic stresses
originate from a boundary layer. As the system undergoes a purely elastic instability,
the velocity gradients extend towards the entire setup and, consequently, the elastic
stresses get homogeneously distributed in the system.

Radial profiles of the time-averaged gradient of the tangential velocity component
in the radial direction displayed in Fig. 29a reveal a rather uniform distribution of the
gradients in the bulk of the flow and a sharp increase near the boundary. The typical
dependencies of the gradients measured at different radial positions on the control
parameter are displayed in Fig. 29b.

The behaviour of the root mean square (rms) of the velocity gradients is illustrated
in Fig. 30. Below the onset of the primary elastic, the rms values are small and solely
related to the instrumental error of the measurements, Fig. 30a. Within the elastic
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Fig. 28 Average gradient of the tangential velocity component in the radial direction, ∂vθ
∂r , at

different Wi: a Wi = 8.32, b Wi = 9.88, c Wi = 11.1, d Wi = 12.72, e Wi = 13.83, f Wi = 17
and g Wi = 19. Data were collected in setup 1 at middle distance between plates. The squared
pattern slightly visible in panel (a) is a result of combined peak locking effect and numerical
differentiation and should be disregarded. The data are replotted from Burghelea (2005)

turbulence, the rms values are the largest around the centre of the setup which is due
to spiral topology of the time-averaged flow field (Fig. 12).

The dependence of the rms of the velocity gradients measured at several radial
positions is illustrated in Fig. 30b. Regardless the radial position, the rms of the
gradients increase significantly past the onset of the primary elastic instability. In a
regime of fully developed Elastic Turbulence, closer the observation point is to the
centre of the setup (the core of the vortex), larger the rms values are.

The rms of the fluctuations of the vorticity increases monotonically with the
radial position reaching a maximum value near the boundary of the fluid container,
Fig. 31a. This is another indication that the elastic stresses are mainly produced near
the boundary and chaotically advected through the bulk of the flow. The dependence
of the scaled rms of the fluctuations of vorticity λωrms on Wi presented in Fig. 31b
reveals an increase of the level of fluctuations close to the boundary of the fluid
container (the diamonds) and a saturation in the bulk of the flow.
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Fig. 29 a Profiles of the average radial gradient of the tangential velocity at different Wi: black—
Wi = 19, red—Wi = 18, green—Wi = 11, blue—Wi = 16, magenta—Wi = 13.83, olive—
Wi = 11.1, dark blue—Wi = 9.88, yellow—Wi = 8.32, orange—Wi = 5.73 and pink—Wi =
2.48. bDependence of the average radial gradient of the tangential velocity onWi at different radial
positions: squares—r/Rc=0.3, circles—r/Rc = 0.66, up triangles—r/Rc = 0.4, down triangles—
r/Rc = 0.2, left triangles—r/Rc = 0.1, right triangles—r/Rc = 0.7 and stars—r/Rc = 0.5. The
arrow indicates the onset of the elastic instability. Data were collected in setup 1 at middle distance
between plates and replotted from Burghelea (2005)

4.5 Boundary Layer in a Regime of Elastic Turbulence

The analysis of the velocity gradients and the rms of their fluctuations presented
in Sect. 4.4 indicate that the dynamics observed in the bulk of the flow is strongly
different from that observed near the boundary of the flow.This prompts us to perform
a systematic analysis of the boundary regions of the flow.

We distinguish three distinct relevant boundary regions (Fig. 32): vbl—a vertical
boundary region located in the vicinity of the lateral wall of the fluid container, bbl—
a bottom boundary region located near the bottom plate of the fluid container and
tbl—a top boundary region located near the top rotating disc.

To study the tbl and bbl, we use Laser Doppler Velocimetry (LDV ) to measure
the time-averaged azimuthal component of the velocity V̄θ at a fixed radial position
r = 3Rc/4 and several vertical positions z.
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Fig. 30 a Profiles of the rms of fluctuations of the radial gradient of the tangential velocity
at different Wi: black—Wi = 19, red—Wi = 18, green—Wi = 11, blue—Wi = 16, magenta—
Wi = 13.83, olive—Wi = 11.1, dark blue—Wi = 9.88, yellow—Wi = 8.32, orange—Wi = 5.73
and pink—Wi = 2.48. b Dependence of the rms of fluctuations of the radial gradient of the tan-
gential velocity on Wi at different radial positions: squares—r/Rc=0.3, circles—r/Rc = 0.66, up
triangles—r/Rc = 0.4, down triangles—r/Rc = 0.2, left triangles—r/Rc = 0.1, right triangles—
r/Rc = 0.7 and stars—r/Rc = 0.5. The arrow indicates the onset of the elastic instability. Data
were collected in setup 1 at middle distance between plates and replotted from Burghelea (2005)

The dependence of the normalised (by the speed of the top disc at r = 3Rc/4)
azimuthal velocity Ṽθ = V̄θ

Vmax
θ

on the reduced vertical coordinate z/H measured in a
regime of Elastic Turbulence at various Wi is presented in Fig. 33.

Several important points can be made based on the data presented in Fig. 33. First,
regardless the value of the Weissenberg number, in a regime of Elastic Turbulence
all normalised profiles collapse onto a single master curve.

Second, within regions of width �z/H ≈ 0.1 in the vicinity of top and bottom
plates the normalised profiles are linear (whereas in the bulk of the flow they are flat).
This indicates two velocity boundary layers, tbl, bbl of equal width are formed. As
all data collapse onto a single master curve, their width does not depend on Wi. By
repeating the same type of measurements with several different polymer solutions
we observed a power lax dependence of the width of tbl and bbl with the viscosity
w ∝ η0.26±0.05 (the inset in Fig. 33).
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Fig. 31 a Radial profiles of the rms of fluctuations of the vorticity measured at several Wi at z =
H/2. The labels are: (1)—Wi = 2.8, (2)—Wi = 5.4, (3)—Wi = 10, (4)—Wi = 15, (5)—Wi =
17.4, (6)—Wi = 19.3, (7)—Wi = 26, (8)—Wi = 25, (9)—Wi = 27.7 and (10)—Wi = 32.3. b
Dependence of the scaled rms of the vorticity ωrms on Wi at different radial positions r/Rc: full
squares—0.2, open squares—0.33, full circles—0.4, open circles—0.5, and diamonds—0.66. Data
were collected in setup 2 at middle distance between plates and replotted from Burghelea (2005)

Fig. 32 Cartoon illustrating
the topology of the relevant
flow regions. The
highlighted regions are the
velocity boundary layers:
vbl—vertical boundary layer
of width wθ , bbl—bottom
boundary layer located near
the bottom of the fluid
container and tbl—the top
boundary layer located near
the top rotating disc. The
figure is reproduced from
Burghelea (2005)

Third, one may note that velocity profiles are not symmetric with respect to the
midplane z = H/2 of the fluid container. This fact deserves a brief discussion. Due to
the principle of frame invariance, the polymer elasticity cannot break the symmetry
alone. This can be achieved only if some other sources of asymmetry are present in
the problem. We identify two possible sources of asymmetry in the problem: inertial
effects and the vertical distribution of hydrostatic pressure. In order to understand
which contribution is dominant in the flow, one has to calculate the Froude number
Fr = �Rc√

gH
. For� = 5 rad/s (which corresponds to the largestRe andWi investigated)

one obtains (for setup 2) Fr = 0.74. This numerical estimate suggests that, during
our experiments, the gravity contribution due to the vertical gradient of hydrostatic
pressure dominates the inertial contribution. We therefore conclude that the gravity
effects are responsible for the symmetry breaking in the vertical velocity profiles. To
conclude this section, the fully developed elastic turbulent flow is characterised by a
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Fig. 33 Dependence of the reduced time-averaged azimuthal component of the velocity measured
at r = 3Rc/4 and variousWi (all in a regime of fully developed Elastic Turbulence) on the reduced
vertical coordinate z/H . The symbols refer to the value of the Weissenberg number: full squares—
Wi = 39, circles-, up triangles—Wi = 27, down triangles—Wi = 24, diamonds—Wi = 20 and
open squares—Wi = 17. The top boundary layer (tbl) and the bottom boundary layer (vbl) are
highlighted. The inset presents the dependence of the width of the tbl on the viscosity of the
polymer solution

second (as previously shown in this chapter, the first characteristic length scale is the
size of the fluid container) length scale defined by the width of the top and bottom
boundary layer.

We now focus on the flow behaviour in the vbl region (Fig. 32). For this pur-
pose, we focus on the near-wall behaviour of the time-averaged azimuthal and radial
velocity components measured at z = H/2 by means of DPIV (Fig. 34).

As shown in Fig. 34a, the near-wall azimuthal velocity V̄θ depends linearly on the
radial coordinate. This agrees with the requirements of incompressibility, boundary
condition for the velocity and smoothness of the velocity field. In a regime of fully
developed Elastic Turbulence, the slopes of the linear fit functions increase mono-
tonically with Wi, the inset in Fig. 34a. The spatial extent of the linear part of the
near-wall azimuthal profiles defines the width of the vbl region, wθ.

As shown in Fig. 35, the width of the vbl decreases abruptly as Wi is increased
past the onset of the primary elastic instability and saturates in a fully developed
Elastic Turbulence. Unfortunately, the limited accuracy of the measurements of the
radial velocity component near the wall presented in Fig. 34b did not allow us to
assess beyond doubt the functional behaviour of the radial profiles there (note that
the radial velocities are about an order ofmagnitude smaller than the azimuthal ones).

In order to improve the spatial resolution of the velocity field measurements near
the wall, and particularly to resolve the horizontal boundary layer by looking at the
rms of the radial gradient of the azimuthal velocity

(
∂Vθ

∂r

)rms
the field of view of the

DPIV measurements has been reduced down to 10 mm in the radial direction.
The near-wall radial profiles of normalised rms of the near-wall velocity gradients(

∂Vθ

∂r

)rms
norm

measured at several Wi are presented in Fig. 36. The normalisation was

performed by fitting linearly the dependence of
(

∂Vθ

∂r

)rms
on the radial coordinate near
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Fig. 34 aNear-wall radial profiles of the time-averaged azimuthal velocity V̄θ measured at z = H/2
in setup 2 at differentWi. The full lines are linear fit functions and the inset presents the dependence
of their slope s on Wi. b Near-wall radial profiles of the time-averaged radial velocity V̄r measured
at z = H/2 in setup 2 at different Wi. In both panels, the symbols are: full squares—Wi = 2.4,
full up triangles—Wi = 4, full diamonds—Wi = 5.9, full right triangles—Wi = 7, full stars—
Wi = 10.6, empty circles—Wi = 16.6, empty squares—Wi = 20.3, empty up triangles—Wi =
23.8, empty diamonds—Wi = 23.8 and empty right triangles—Wi = 30.2. For a better visibility
of the behaviour near the wall region, a discontinuity at r/RC ≈ 0.87. The data are replotted from
Burghelea (2005)

Fig. 35 Dependence of the
width of the vbl on Wi
measured at z = H/2 in
setup 2. The data are
replotted from Burghelea
(2005)

the wall and subtraction of the linear part. Well-defined local maxima positioned
independently on Wi can be easily identified within the velocity boundary layer vbl
which indicates that the elastic stresses are produced within the boundary layer and
dissipated within the entire volume of the fluid.

The dependence of the maximal rms of the velocity gradient measured in the vbl
on Wi is presented in Fig. 37. In a regime of fully developed Elastic Turbulence
a linear increase of the λ

(
∂Vθ

∂r

)rms
measured at the edge of the vbl is observed in

contrast to the saturation observed in the bulk (Fig. 31).
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Fig. 36 Dependence of the
(

∂Vθ
∂r

)rms
norm

on the radial coordinate measured at z = H/2 in setup

2. The symbols are: full squares—Wi = 10.6, empty squares—Wi = 12.4, full up triangles—
Wi = 16.5, empty up triangles—Wi = 18, full circles—Wi = 20.3, full left triangles—Wi = 22,
empty circles—Wi = 23.8, empty left triangles—Wi = 25.4, full right triangles—Wi = 27, empty
right triangles—Wi = 28.6 and stars—Wi = 30.2. The data are replotted from Burghelea (2005)

Fig. 37 Dependence of the
maximum of the rms of
velocity gradients (see
Fig. 36) scaled by the
relaxation time of the
polymer λ on Wi. The data
are replotted from Burghelea
(2005)

4.6 Lagrangian Frame Dynamics in a Regime of Elastic
Turbulence

The discovery of a deterministic chaos has substantially changed the classical view-
point on the origin of randomness in a fluid flow and provided a considerable number
of powerful tools in understanding bifurcation phenomena in hydrodynamic systems
(Brandstäter et al. 1983). One of the quantitative measures of the degree of ran-
domness of a fluid flow is the largest Lyapunov exponent (LLE), which defines the
average rate of an exponential separation of two neighbouring trajectories:

LLE = lim
t→∞ lim

δ(0)→0

1

t
log

(
δ(t)

δ(0)

)
(8)
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where δ(t) = ‖x2(t) − x1(t)‖ is the Euclidian distance between two trajectories at
time t. The LLE is the main flow characteristics that determine both the local dynam-
ics and conformations of the polymer molecules (Balkovsky and Fouxon 1999;
Balkovsky et al. 2001; Gerashchenko et al. 2005). Thus, the knowledge of the LLE
togetherwith the knowledge of the singlemolecule polymer relaxation time τr defines
the criterion for the coil-stretch transition (Balkovsky and Fouxon 1999; Balkovsky
et al. 2001; Gerashchenko et al. 2005): λ · τr = 1. In most of the previous experi-
mental works, the LLE was measured by reconstruction of the phase portrait from
measurements of a single point observable. Although from technical point of view
this approach might look less demanding than a direct measurement of the parti-
cle pair separations, there are few rather sensitive issues that should be carefully
addressed: a proper choice of the time delays and the embedding dimension, length
and noise level of the data sets. We are aware of only one experimental work that
deals with direct measurements of the Lagrangian trajectories and the statistics of
pair separations (Boffetta et al. 1999). The main purpose of this Lagrangian frame
investigation is to understand the relation between LLEs and the relevant Eulerian
timescales of the flow: velocity correlation time, inverse velocity gradients and the
magnitude of their fluctuations. In experimental and numerical simulations the infi-
nite time limit required by Eq. (8) is unattainable. Besides, due to the finite size
of experimental setups, the dispersion of initially closely located particles cannot
reach a truly asymptotic regime due to interaction with boundaries. A way to over-
come these difficulties is to use the finite time Lyapunov exponents approach (FTLE)
(Boffetta et al. 2002; Lacorata et al. 2001; Artale et al. 1997; Boffetta et al. 2003),
that is to look on the average rate of separation of initially close particles during
finite times. This approach is particularly suitable in the case when the characteristic
scale of the velocity field, lu, is comparable with the system size, L, and it has been
recently employed in experiments and numerical simulations (Gerashchenko et al.
2005; Boffetta et al. 2002; Artale et al. 1997). The FTLE is defined by

γ(t) = 1

t
〈log δ(t)

δ(0)
〉e (9)

where the ensemble average is taken over all particle pairs initially contained in
clusters of radius δ(0) � lu. For sufficiently small initial particle separation, δ(0),
the FTLE becomes a rather good estimate of the LLE (Boffetta et al. 2002; Artale
et al. 1997).

We conducted our measurements above the elastic instability threshold at (Wi >

6) and higher (Groisman and Steinberg 2000; Larson 1992), where the chaotic flow
results from the elastic stresses only since inertial contribution is low (Re < 16).
The velocity field measurements presented in the previous section show that above
the onset of the elastic instability, the swirling flow is dominated by a randomly
fluctuating large-scale vortex. In contrast to the case of inertial turbulence, where the
flowcan be considered smooth only below theKolmogorov scale, the elastic turbulent
flow is smooth at all scales, and no analogue of the dissipation scale exists. The large
scale of the velocity field, on which energy pumping takes place, is defined by the
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Fig. 38 Numerical tracers at t = 0 (a) and t = 1 s (b) for Wi = 33. The false colour maps the
radial coordinate

elastic instability and is about the system size, i.e. lu ≈ Rd . Thus, the flow smoothness
over a broad range of scales fully justifies the use of the FTLE approach. Numerical
Lagrangian trajectories were obtained by integrating in time d−→x

dt = −→v (
−→x , t) with

a fifth-order adaptive step Runge–Kutta integrator (Shampine and Watts program
based on Fehlberg’s Runge–Kutta pair of order 4 and 5). Instantaneous velocity at
a tracer position was obtained by a trilinear space-time interpolation of the velocity
field measured by PIV at regularly gridded space-time points. The time step of the
interpolation was 40 ms. Figure38 shows the initial distribution of the numerical
tracers (Fig. 38a) and after 1 s (Fig. 38b).

Statistics of particle pair separations The statistics of particle pair separations was
carried out for all the particle pairs initially distributed (uniformly) inside clusters
of radius R = 0.1Rc during 0.4 s (this total integration time was smaller than a
half turnover time in the whole range of angular velocities). In order to collect
statistically sufficient separation data, this procedure was repeated 200 times until
the whole velocity field time series has been used. However, a major concern was
whether the average length of the numerical trajectories is consistent with that of real
particle trajectories. Thus, in order to check the correctness and consistency of our
approach, we have alternatively used particle tracking velocimetry (PTV ) technique
to measure the statistics of real particle pair separations. Direct measurements of
particle trajectories have shown that the average persistence time of real particles
in the observation plane was consistent with the average length of the numerical
trajectories. This additional check is fully justified in our case because above the
onset of the primary elastic instability, the flow is three-dimensional, and tracking
numerical tracers for too long times would be physically meaningless.

As shown in the previous section, theEulerian correlation time is τc ≈ 1 s (Fig. 18),
which is about 2.5 times larger than the integration time of the numerical trajectories
and about 240 times smaller than the total data acquisition time. For each angular
velocity investigated, we have defined FTLE by the position of the peak of the
probability distribution function (PDF), P(γ, t) of the separation rates. In Fig. 39 we
show the Cramer rate functions defined by
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Fig. 39 Cramer functions of
particle pair separation rates
for 25 different separation
times (ranging from 0.16 to
2.08 s) at Wi = 34. The full
line is the parabolic fit

S(γ) = −1

t
· log(P(γ, t)

Pmax
) (10)

where Pmax is the maximum of the PDFs.
TheFTLEs as function ofWi are shown in Fig. 40. Although the scale dependence

of the mean separation rates plotted in the inset of Fig. 40 does not show the expected
decay corresponding to the mean turnover time (Boffetta et al. 1999), its flatness in
the range of separation times considered is rather encouraging and suggesting that
FTLE approach works rather robustly for our random flow. The FTLE dependence
on Wi exhibits a sudden jump corresponding to the first flow reorganisation in the
intermediate regime, followed by a slower increase in the fully developed elastic
turbulent states.

Comparing the values of FTLE (Fig. 40) with the Eulerian correlation times
(Fig. 18) one notices that in fully developed random flow the following relation
holds: γav · τc ≈ 0.1. This discrepancy with the suggestion made in Balkovsky and

Fig. 40 Finite time Lyapunov exponents defined by the location of the minima of the Cramer rate
functions of the particle pairs separations versusWi: squares, from PTV approach, circles from PIV-
based approach. The arrow indicates the onset of the primary elastic instability. The inset shows
the dependence of FTLE on the separation time; the horizontal axis is normalised by the period of
rotation of the disc
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Fouxon (1999) is probably due to the long-range correlations3 existing in the flow
and to insufficient time statistics (which is one of the limitations of image-based flow
investigation techniques, such as PIV and PTV).

Comparison of FTLEs with rms of the velocity gradients led to the conclusion
that

(
∂vθ

∂r
)rms ≈ 7 · γav (11)

Lagrangian frame flow intermittency The FTLEs are the first moments of PDF,
and they give no information about the degree of intermittency. Equation (8) defines
the average rate of a separation of nearby trajectories but does not provide any
information about the fluctuations around this average. In order to characterise the
Lagrangian flow intermittency, one has to reconstruct PDF of the particle pair sepa-
rations by calculating the generalised Lyapunov exponents (GLE), which are related
to the high-order moments of the statistics of the particle pair separations (Paladin
and Vulpiani 1987). The GLE of order q is defined by

L(q) = lim
t→∞ lim

δ(0)→0

1

t
log(| δ(t)

δ(0)
|q) (12)

In the infinite time limit, when the Central Limit Theorem is expected to work, it
has been shown (Paladin and Vulpiani 1987) that for small values of q:

L(q) = λ · q + μ

2
· q2 (13)

where the second cumulant is defined as

μ = lim
t→∞ lim

δ(0)→0

1

t
[〈log | δ(t)

δ(0)
|2〉e − (λ · t)2] (14)

In Fig. 41 we show as a GLE as a function of the order q of the moments.
According to Paladin and Vulpiani (1987) the onset of intermittent behaviour

corresponds to μ
γav

≈ 1 that is well above of the value obtained in the experiment.
Although the parabolic dependence of the generalised Lyapunov exponents agrees
wellwith theory (Paladin andVulpiani 1987), the second cumulants obtained from the
fit (Fig. 41) display a rather big scatter being plotted versus the angular velocity of the
upper plate. This is probably related to the power-law propagation of the instrumental
errors in the calculation of L(q). Alternatively, one can characterise the intermittency
by measuring the deviation of PDFs from a Gaussian shape (as illustrated in Fig. 39,
around γav the Cramer function shows a parabolic behaviour). Recalling the scaling
of the even order moments of the Gaussian PDF with the variance, one should look
at the normalised moments:

3Themeasurements of the time space cross-correlation function presented in the next section support
this point.
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Fig. 41 Generalised
Lyapunov exponents as a
function of the order q of the
moments at different Wi:
squares—Wi = 33;
triangles—Wi = 2.82. The
full line is the parabolic fit,
which gives
μ = 0.0167 ± 0.00005

Fig. 42 Normalised (see
text) high-order moments at
different Wi:
squares—Wi = 1.9, up
triangles—Wi = 4.8,
diamonds—Wi = 29,
circles—Wi = 33.3,
crosses—Wi = 38, right
triangles—Wi = 56 and left
triangles—Wi = 58. The
inset shows an estimate of
the degree of the flow
intermittency versus Wi

M2k = M2k · 2
k · k!
(2k)! (15)

The deviation from the Gaussian shape can be quantified by the parameter defined
as

log(M2k)

log(M2)
= k − β · k2 (16)

The dependence of the right-hand side of Eq. (16) on the order of the moment is
shown in Fig. 42.

As the angular velocity of the upper plate increases, the flow intermittency exhibits
a sudden jump corresponding to the primary elastic instability followed by a second
discontinuity corresponding to the second flow reorganisation (see inset in Fig. 42).
As one can see from the plot in Fig. 42 at sufficiently large angular velocities the
deviation from a Gaussian linear dependence is rather significant indicating a flow
intermittency.
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5 Characterisation of Elastic Turbulence in Microscopic
Curvilinear Flows

During the past two decades, the microfluidics has emerged as a powerful technique
which interests various distinct scientific fields: physics, chemistry and biology. The
use of microfluidic devices has few key practical advantages such as the dramatic
reduction of the amount of reagents required for fine chemistry and biochemistry
(Hansen et al. 2002) applications, well-controlled manipulation and sophisticated
experiments on single cells (Li Jeon et al. 2002; Takayama et al. 2001; Mao et al.
2003) and macromolecules (Chou et al. 1999).

From a fluid dynamic standpoint, microscopic flows are generally linear, lami-
nar and steady because for flow channels with sizes of the order of micro-metres
the Reynolds number is small. Increasing Re sufficiently in order to trigger inertial
instabilities typically requires large driving pressure drops which, for most microflu-
idic devices, are not sustainable. The laminar nature of microscopic flows might be
a drawback for a number of practical applications including (but not limited to) effi-
cient mixing, efficient transport of heat and efficient chemical reactions. From this
perspective of efficient transport phenomena, the usefulness of microscopic flows of
Newtonian fluids is somewhat limited.

Few techniques have been suggested to generate stirring by a three-dimensional
flow in order to increase the mixing efficiency in micro-channel flows. They include
application of time-dependent external force fields (Oddy et al. 2001; Tsai and Lin
2002) and increasing Re to moderately high values in curvilinear three-dimensional
channels (Therriault et al. 2003; Vijayendran et al. 2003). An ingenious solution to
generate chaotic advection in a microscopic flow was suggested by Stroock et al.
(2002). It involves a special ‘herringbone’ patterning of a micro-channel wall which
enhances a secondary flownormal to themeanflowdirection. The continuous stretch-
ing and folding of the fluid elements (as they advance downstream) results in expo-
nential separation of initially close fluid particles and efficient mixing. However, the
flow was stationary in laboratory frame.

On the other hand, as demonstrated in Sect. 4, elastic instabilities and Elastic Tur-
bulence may be observed in flows of dilute polymer solutions at arbitrarily small Re
provided thatWi is sufficiently large. This indicates that Elastic Turbulence could be
observed in micro-channels and consequently, several practical applications related
to efficient transport of mass (mixing), momentum and heat could be envisaged in
microscopic flows of dilute polymer solutions. However, we point out that a direct
analogy with the behaviour observed in macroscopic channels previously discussed
in this chapter is not obvious. If the size of theflowchannel is reduced to amicroscopic
scale, the extension of polymer molecules in the flow may become comparable to
the size of the setup. Therefore, the question whether a microscopic flow of a dilute
polymer solution can undergo a purely elastic instability and evolve towards ran-
dom flow states (in a regime of Elastic Turbulence) cannot be answered by a simple
analogy with the macroscopic case and needed to be addressed experimentally.
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Fig. 43 a Schematic view of the serpentine micro-channel. b Schematic view of the experimental
setup (not in scale): MCC—micro-channel chip, I—micro-channel inlet, O—micro-channel outlet,
AT—adhesive tape, MO—microscope objective, DM—dichroic mirror, LP—led, EXF—excitation
filter, EMF—emission filter and CCD—digital camera

We dedicate this section to a systematic description of Elastic Turbulence in
curvilinear micro-channels.

The experiments have been performed with a serpentine micro-channel schemati-
cally illustrated in Fig. 43a. It consists of N = 200 smoothly interconnected half cir-
cular rings with the inner radius R1 = 50µm and the outer radius R2 = 250µm. The
width of themicro-channel isW = R2 − R1 = 200µm and its depth isH = 200µm.
The geometric aspect ratio relevant to the onset of the primary elastic instability
(McKinley et al. 1996; Zilz et al. 2012) is α = R1/W = 0.25.

The spatial and temporal features of the flow fields have been investigated by
means of a digital particle image velocimetry technique implemented in house. Par-
ticularly important herewere both the spatial resolution of the velocity fields (1.5µm)
and the total data acquisition time, Ttotal = 1200 s. This value is roughly 300 times
larger than the largest relaxation time of the polymer molecules, λ ≈ 4 s.
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5.1 Onset and Development of Elastic Turbulence
in Micro-channel, Flow Structure

A visual assessment of the hydrodynamic stability of the flow is illustrated in Fig. 44
by means of the streak imaging technique. Whereas a laminar flow is observed
for low values of the driving pressure �p = 63 Pa (Fig. 44a), a strongly irregular
fluid motion is observed corresponding to �p = 2.3 kPa (Fig. 44b). At this driving
pressure, a major reorganisation of the flow is apparent in the form of a large-scale
non-stationary spiral vortex in agreement with the observation performed by means
of laser scanning confocal microscopy reported in Burghelea (2005).

Measurements of the dependence of the time-averaged tangential velocity com-
ponent measured at the centre line of the channel (ξ = 0) on the driving pressure
(global Weissenberg numbers) are presented in Fig. 45. The average was performed
over 1200 s (a time roughly 320 times longer than the average relaxation time of the
polymer λ̄) which guarantees that the flow field information is statistically sufficient.

The dependence of time-averaged tangential flow component 〈Uθ〉t on the Weis-
senberg number remains roughly linear up to a critical value Wic ≈ 4. Beyond this
value, the dependence becomes sub-linear indicating a significant reorganisation of
the flow associated to an elastic flow instability. This is a signature of flow resistance
phenomenologically similar to that observed in a vonKarman swirling flow. It is note-
worthy that the transition to Elastic Turbulence is smooth and,within the instrumental
accuracy of the measurements, reversible upon increasing/decreasing pressure drops
(the full/empty symbols in Fig. 45). The value of the critical Weissenberg number
is comparable to the values reported in the literature (Burghelea 2005; Burghelea
et al. 2004a, b). However, a significantly larger discrepancy is found with the onset
value given in a recent paper (Jun and Steinberg 2011), Wic ≈ 200. This difference
cannot be explained by the different aspect ratios of the channel (R1/W = 1) using
the Pakdel–McKinley scaling (McKinley et al. 1996; Zilz et al. 2012). As they have
used a similar polymer solution, the reasons for this discrepancy remain elusive.

Fig. 44 Epifluorescent flowmicrographs acquired at a�p = 63 Pa (Wi = 0.36—laminar regime);
b �p = 2.3 kPa (Wi = 18—elastic turbulent regime). A X 10 magnification objective was used
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Fig. 45 Dependence of the
time-averaged tangential
velocity component on the
driving pressure (bottom
horizontal axis) and on the
integral Weissenberg number
(top horizontal axis). The
full/empty symbols refer to
the increasing/decreasing
branches of the pressure
ramp. The shaded regions
highlight the level of
fluctuations. The full line is a
linear fit

To get further insights into the evolution of the flow structure as the global Weis-
senberg number is increased we focus on the time-averaged transversal profiles of
each velocity component (Fig. 46).

At low driving pressures corresponding to the laminar flow regime, the profile of
the tangential velocity component 〈Uθ〉t is non-symmetric (the circles in Fig. 46a).
Due to the curvilinear geometry of the micro-channel, a non-zero time-averaged
radial component 〈Ur〉t is measured even in a laminar state (Fig. 46b). An increase of
the Weissenberg number past the onset of the primary elastic instability Wic results
in a significant reorganisation of the flow: the transversal profiles of the tangential
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Fig. 46 Time-averaged transversal profiles of the tangential velocity component (a) and of the radial
velocity component (b). The symbols in panel refer to the driving pressures (global Weissenberg
number): ◦—�p = 0.9 kPa (Wi = 1.1), �—�p = 5.7 kPa (Wi = 7.4),�—�p = 7.6 kPa (Wi =
9.5), �—�p = 10.2 kPa (Wi = 11.3) and �—�p = 23 kPa (Wi = 18.3). The shaded regions in
panel b indicate the level of fluctuations of the velocity around its mean
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Fig. 47 Time series of the tangential (a) and the radial velocity component (b) measured at the
midpoint of the channel (ξ = 0) at half depth. The symbols in panel refer to the driving pressure
(Weissenberg number): •—�p = 0.9 kPa (Wi = 1.1), �—�p = 5.7 kPa (Wi = 7.36), �—�p =
7.6 kPa (Wi = 9.5), �—�p = 10.2 kPa (Wi = 11.3) and �—�p = 23 kPa (Wi = 18.3) (Colour
figure online)

velocity component become more symmetric and a strong inward radial motion is
observed. The flow structure illustrated in Fig. 46 is qualitatively consistent with that
observed by the particle tracking velocimetry measurements presented in Burghelea
(2005). The time series of both the tangential and the radial components of the flow
velocity measured at the centre line of the curvilinear micro-channel (ξ = 0) are
presented in Fig. 47. Within a laminar regime (the time series labelled by a circle
and square, respectively), the fluctuations visible in the time series of each velocity
component are solely related to the instrumental error of the micro-DPIV technique.
As the Weissenberg number is increased, the velocity time series exhibit a chaotic
like behaviour which reproduces the early measurements reported in Burghelea et al.
(2004a) and Burghelea (2005). As the measurements illustrated in Fig. 47a and b are
performed over a total time 12 times larger than the acquisition time in Burghelea
et al. (2004a) and Burghelea (2005) we are now able to observe a new dynamical flow
feature in the form of rare ‘crash’ events manifested by a significant slowing down
of the flow (see the series labelled by a diamond and a down triangle in Fig. 47a).
These rare events emerge right above the onset of the primary elastic instability and
the frequency of their appearance increases with increasing control parameter.

A closer look into the emergence of rare events near the onset of the Elastic
Turbulence is presented inFig. 48 bymonitoring instantaneousflowfields (the bottom
line) before, during and after the emergence of a rare event. One can note that a
rare event is associated to a dramatic reorganisation of the flow which persists for
times significantly larger than the average polymer relaxation time,�T ≈ 250 s. The
emergenceof rare events has beenpreviously observedduring experiments performed
on a macroscopic von Karman swirling flow between two discs of a dilute polymer
solution (Burghelea et al. 2007). In contrast to the observation illustrated in Fig. 48, in
a von Karman flow the rare events are manifested through a local flow acceleration
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Fig. 48 Top: Time series of the tangential velocity component acquired at Wi = 9.5. The bottom
plots illustrate maps of the velocity modulus at several time instants indicated on the top. The full
lines in each bottom panel are streamlines

rather than a deceleration, see Figs. 20a and 21a in Burghelea et al. (2007). The
difference may originate in the different topologies of the mean flow.

5.2 On the Nature of the Bifurcation Towards Elastic
Turbulence

Anext important point relates to the nature of the bifurcation towards elastic turbulent
states. To address this point, we focus on the dependence of the rms of fluctuations
of each velocity component measured at the centre line of the micro-channel on
the Weissenberg number (Fig. 49). A strong increase of the level of fluctuations of
both the tangential velocity component (Fig. 49a) and the radial velocity component
(Fig. 49b) accounting for up to 35% of the mean flow speed is observed.

As already noted for theWeissenberg dependence of the time-averaged tangential
velocity component presented in Fig. 45, the transition is smooth and, within the level
of scatter of the data, reversible upon increasing/decreasing Wi. Moreover, the data
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Fig. 49 Dependence of the rms of fluctuations of the tangential velocity component (a) and of
the radial velocity component (b) measured at the midpoint of the channel (ξ = 0) on the global
Weissenberg number Wi. The full/empty symbols refer to the increasing/decreasing driving pres-
sures. The full line in each panel is a fit by the stationary Ginzburg–Landau equation (see text for
description)

can be fitted by the stationary Landau–Ginzburg equation with a field (the full lines
in Fig. 49a and b):

εUrms
i − a

(
Urms

i

)3 + h = 0 i = r, θ (17)

where ε = Wi/Wic − 1 is the reduced control parameter and a and h are fitting
parameters. One can conclude that the transition to Elastic Turbulence in a curvi-
linear micro-flow occurs via a supercritical bifurcation. This result is interesting in
itself, somewhat unexpected and it deserves being discussed. In a Taylor–Couette
geometry, the elastic instability is experimentally found to emerge via a subcritical
bifurcation (Groisman and Steinberg 1998) in agreement with the theoretical pre-
diction (Sureshkumar et al. 1994). A systematic and pedagogical description of the
subcritical elastic instability in parallel shear flows of viscoelastic fluids is presented
in Morozov and van Saarloos (2007). The early investigation of the transition to
Elastic Turbulence in a von Karman swirling flow between discs suggested a similar
subcritical bifurcation in the form of a hysteresis of the time-averaged injected power,
calculated as the product between the angular speed of the top disc and the torque
that drives it (Burghelea et al. 2006, 2007; Burghelea 2005). However, more recent
measurements of the injected power into a von Karman swirling flow averaged over
significantly longer times reported by Traore et al. (2015) revealed a smooth and
reversible transition consistent with a supercritical bifurcation, see Fig. 4 therein. To
conclude this part, the nature of the transition to Elastic Turbulence remains elusive
and future theoretical and numerical studies are needed to clarify this point.
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5.3 Statistics and Spatial Distribution of the Velocity
Gradients; Analysis of Boundary Layers

As pointed out in Sect. 8, the key physical quantities that need to be measured in
order to verify the predictions of the theory of Elastic Turbulence are the time-
averaged fields of the velocity gradients and their level of fluctuation. Particularly,
the production of the elastic stresses that destabilise the flow is directly related to
the magnitude of the velocity gradients and the level of their fluctuations and one
of the key ingredients of the theory of Elastic Turbulence relates to the saturation of
the rms of fluctuations of the velocity gradients due to a strong back reaction of the
polymers to the flow. This motivates us to take advantage of the excellent temporal
and spatial resolution of the DPIV method to provide a full description of the spatial
distribution of the velocity gradients and the long time statistics of their fluctuations.

The spatial distributions of the time-averaged second invariant of the rate of strain〈
γ̇
〉
t
measured for three distinct Weissenberg numbers are presented in Fig. 50. One

can note that the spatial distribution of the second invariant of the rate of strain is
strongly in-homogenous and exhibits pronounced local maxima of unequal mag-
nitude (except for the highest Wi illustrated in panel (d)) distributed at a constant
distance from the inner and outer boundaries of the channel (Fig. 50a). As the exten-
sion of the linear polymer chains is controlled by the local velocity gradients, we
attribute the observation of the localmaxima of the velocity gradients to the formation
of inner and outer boundary layers of the elastic stresses.

The primary elastic instability is accompanied by a sharp increase of the velocity
gradients particularly in the vicinity of the inner boundary of the channel (Fig. 50b).
The lack of symmetry of the spatial distribution of the velocity gradients with respect
to the centre line of the micro-channel indicates a strongly inhomogeneous distribu-
tion of elastic stresses along the transversal flow direction. Within a fully developed
elastic turbulent regime, the symmetry of the distribution of the elastic stresses with
respect to the centre line of the channel is restored. A more systematic investigation
of the transversal distribution of the time-averaged velocity gradients and of their
fluctuations as a function of the global Weissenberg number is presented in Fig. 51.

The emergence of a boundary layer of the elastic stresses when the global Weis-
senberg number is increased is clearly visible in Fig. 51a. As already noted in Fig. 50,
as one advances within the regime of fully developed Elastic Turbulence, the two
local maxima of the profiles of the time-averaged gradients tend to be become equal
in magnitude. Corresponding to the edge of the boundary layers, local maxima are
also observed in the transversal distributions of the rms of fluctuations of the second
invariant of the rate of deformation tensor (Fig. 51b).

The evolutionof thewidth of the inner andouter boundary layers determinedby the
location of the peaks of the spatial distribution of the time-averaged second invariant
of the rate of strain tensor (Fig. 51a) with the globalWeissenberg number is presented
in Fig. 52. Thewidth of the inner boundary layer (the squares) is systematically larger
than the width of the outer boundary layer (the circles) up to a Weissenberg number
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Fig. 50 Spatial distribution of the time-averaged second invariant of the rate of strain measured at
different Weissenberg numbers indicated in the top inserts. The units of the colour bars are s−1
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Fig. 51 Transversal profile of the time-averaged second invariant of the rate of deformation (a)
and of the rms of fluctuations of the second invariant (b) measured at various driving pressures
(global Weissenberg numbers): ◦—�p = 0.9 kPa (Wi = 1.1), �—�p = 5.7 kPa (Wi = 7.3),�—
�p = 7.6 kPa (Wi = 9.5), �—�p = 10.2 kPa (Wi = 11.3) and �—�p = 23 kPa (Wi = 18.3).
The shaded regions in panel a indicate the level of fluctuations around the mean value (Colour figure
online)
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Fig. 52 Dependence of the
reduced width of the inner
boundary layer (�,�) and of
the outer boundary layer
(•, ◦) on the global
Weissenberg number. The
full/empty symbols refer to
increasing/decreasing global
Weissenberg numbers,
respectively (Colour figure
online)
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Wi ≈ 15 corresponding to the fully developed elastic turbulent regime when the two
boundary layers become practically identical.

We note thatwithin a regime of Elastic Turbulence, thewidth of the inner and outer
boundary layers isWbl/W ≈ 0.1 and independent on the globalWeissenberg number.
This result is consistentwith themeasurements presented by Jun andSteinberg (2011)
andwith earliermeasurements performed in amacroscopic vonKarman swirlingflow
(Burghelea et al. 2007; Burghelea 2005).

The evolution of the time-averaged velocity gradients and of the localWeissenberg
number defined as Wiloc = λ̄γ̇rms measured at the edge of the inner/outer boundary

layers (corresponding to the localmaxima in Fig. 51a and b) and in the bulk of the flow
(averaged around the centre line of the micro-channel) with the global Weissenberg
number is presented in Fig. 53.

The primary elastic instability is accompanied by a sharp increase of both the time-
averaged velocity gradients (panel Fig. 53a) and of the local Weissenberg number
(panel Fig. 53b). For Wi ≤ 17 the time-averaged velocity gradients measured at
the edge of the inner boundary layer are systematically larger than those measured
at the edge of the outer boundary layer (Fig. 53a). The local Weissenberg number
measured at the edge of the inner boundary layer is systematically larger than the
one measured at the centre line of the flow (Fig. 53b). Within a fully developed
elastic turbulent regime, the local Weissenberg number measured at the edge of the
boundary layers increases linearly with the global Weissenberg number Wiblloc =
−25.58 + 3.54Wi (the dashed line in Fig. 53b). On the other hand, a linear fit of
the local Weissenberg number measured in the bulk of the flow gives Wibulkloc =
15.21 + 0.12Wi (the full line in Fig. 53b). Thus, one can conclude that in a fully
developed Elastic Turbulence regime Wiloc saturates in the bulk of the flow but
keeps increasing at the edge of the boundary layers. The result is in a qualitative
agreement with the theoretical prediction for the Elastic Turbulence (Fouxon and
Lebedev 2003; Balkovsky et al. 2001). Corresponding to the bulk measurements one
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Fig. 53 a Dependence of the time-averaged second invariant of rate of deformation on the global
Weissenberg number. b Dependence of the local Weissenberg number Wiloc on the global Weis-
senberg number. The full and dashed lines are linear fit functions (see text for description). In both
panels, the symbols refer to different radial locations ξ of the measurements: (�,�)—the edge of
the inner boundary layer, (•, ◦)—the edge of the outer boundary layer, (� and �)—average in the
bulk of the flow within the range ξ ∈ [−0.4, 0.4]. In both panels, the full/empty symbols refer to
increasing/decreasing global Weissenberg numbers, respectively (Colour figure online)

obtains Wibulkloc ≈ 15.5 which is significantly larger than the unitary value predicted
theoretically indicating that no quantitative agreement with the theory is found. A
similar conclusion has been reached for the case of an elastic turbulent flow in a
macroscopic von Karman swirling flow configuration (Burghelea et al. 2006, 2007;
Burghelea 2005). The local Weissenberg number was defined in these references
as Wiloc = ωrmsλ (here ω stands for the vorticity) saturates at the value Wiloc ≈ 2
(Fig. 19b in Burghelea et al. 2007, and inset of Fig. 2 in Burghelea et al. 2006) which
is twice larger than the value predicted by the theory. We conclude that the main
assumption of the theory of Elastic Turbulence concerning with the saturation of
the velocity gradients is verified only qualitatively. Quantitatively, the experiments
revealed a systematic discrepancy which is more pronounced in a microscopic flow
than a macroscopic one. This aspect may originate in the strong spatial confinement
of themicroscopic flowand needs to be addressed by further theoretical development.

The result on the saturation of the local Weissenberg number in the bulk of the
flow is at odds with recent measurements (Jun and Steinberg 2011), which indicate
a linear increase of Wiloc with Wi rather than a saturation.

Finally, we note that the measurements of the time-averaged velocity gradients
and of the rms of their fluctuations are reproducible upon increasing/decreasing Wi
proving oncemore the reversibility of the bifurcation towards Elastic Turbulence (the
full/empty symbols in Fig. 53) in a curvilinear micro-channel flow in full agreement
with the behaviour observed in Figs. 45 and 49.
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6 Efficient Microscopic Mixing by Elastic Turbulence

A main consequence of the laminar character of microscopic flows is the inefficient
mass transfer across the main flow direction which occurs mainly due to molecular
diffusion. Mixing of viscous fluids by diffusion is slow comparative to the mixing
that occurs in a random flow. Even for a moderate size protein, such as bovine serum
albumin (with a diffusion coefficient D ≈ 3 × 10−7 cm2/s in water), the diffusion
time d2/D across a micro-channel with a width of 100µm is of the order of 100 s.

Groisman and Steinberg have that a macroscopic curvilinear flow (in serpentine
channel with the width of 3 mm) of a viscoelastic fluid (a polyacrylamide–sucrose
mixture similar to the one used in Sect. 5) can lead to very efficient mixing in a regime
of Elastic Turbulence (Groisman and Steinberg 2001). In Sect. 5 we have shown that
Elastic Turbulence can be triggered in a serpentine micro-channel similar in shape
to the macroscopic channel used by Groisman and Steinberg (2001).

We study in the following the mixing of two viscoelastic in a curvilinear micro-
channel geometrically similar with the one used in Sect. 5 (Fig. 54).

The mixing experiments have been conducted by evenly injecting two streams of
dilute polymer solution one of which contained also a small amount of fluorescent
dye (Fig. 57a). The mixing efficiency is studied at different locations downstream
(or versus time, if one assumes that Taylor hypothesis is valid for this flow4) by
monitoring the brightness of the passive scalar field. A critical requirement during
the experiments was to visualise the mixing patterns in a narrow horizontal plane, in
order to avoid space averaging which could lead to wrong conclusions on the mixing
efficiency.

This is achieved by imaging the passive scalar fields through a Confocal Scanning
System (Fluoview FV500 by Olympus), an example of which is displayed in Fig. 55.
It was equipped with a 40X ,NA = 0.85 infinity-corrected objective and a 12-bit
photomultiplier. The scanning was done at a rate of 56 lines per second and 512
pixels per line corresponding to a step of 0.18µm per pixel.

Prior to discussing the decay regime of mixing in a random microscopic flow,
we illustrate the chaotic flow structure as revealed by confocal scanning microscopy
(Fig. 56).

As already discussed in detail in Sect. 5, the flow is dominated by a large-scale
vortex evolving randomly in time.

6.1 Decay Regime of Mixing in a Random Micro-Flow

Mixing of a low diffusivity passive tracer by a turbulent flow particularly in a region
of small scales, attracted recently significant attention from both theory (Shraiman

4A detailed discussion of the validity of the Taylor Hypothesis in a similar flow was presented in
Sect. 1.5.

http://dx.doi.org/10.1007/978-3-030-35558-6_1
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Fig. 54 a Photograph of the microfluidic device. The micro-channel was filled with ink for better
contrast. b Photograph of a section of the functional curvilinear element. The point where instan-
taneous flow velocity measurements (averaged over a 20 × 20µm square region) were made is
marked by a cross. The figure is reproduced from Burghelea (2005)

and Siggia 1994; Chertkov et al. 1995; Shraiman and Siggia 2000; Falkovich et al.
2001; Son 1999) and experiment (Jullien et al. 2000; Groisman and Steinberg 2001).

This so-called Batchelor regime of mixing exists in a viscous-convective range
of wave numbers, kK < k < kB, where the random-in-time velocity field can be
treated as smooth. Here kK = (ε/ν3)1/4 is the Kolmogorov dissipation scale, kB =
(ε/νD2)1/4 is the Batchelor wave number, ν and D are the kinematic viscosity and
the diffusion constant, respectively, and ε is the rate of energy dissipation (Batchelor
1959). The inverse injection scale should be used here instead of kK , if the former
is larger than kK . The range of the Batchelor regime is defined by the value of the
Schmidt number Sc = ν/D, which can be rather large for a viscous fluid with a
low diffusivity tracer. The smoothness of the velocity field for developed turbulence
below the Kolmogorov scale is explained by an exponential decay of the veloc-
ity spectrum there. The Batchelor–Kraichnan approach (Batchelor 1959; Kraichnan
1968) can be extended to an algebraic type velocity spectrum ∝ k−δ with δ > 3.
Then fluctuation spectrum of the velocity gradients scale as k−δ+2, so that the flow
becomes increasingly homogeneous on small scales, and the mixing occurs mainly
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Fig. 55 Confocal scanning system: PMT—photomultiplier, PH—pin hole, L1—focusing lens,
FF—fluorescence filter, DM—dichroic mirror, EF—excitation light selection filter, L—laser, Y-
SM—Y direction scanning mirror, X-SM—X direction scanning mirror, L2—objective lens and
M—micro-channel. The figure is reproduced from Burghelea (2005)

Fig. 56 Middle plane horizontal confocal snapshot. The flow is seeded with 0.2µm fluorescent
spheres. The driving pressure is 120 Pa per channel segment. The data are replotted fromBurghelea
(2005)

due to eddies corresponding to the border of the velocity smoothness. Batchelor
and Kraichnan (Batchelor 1959; Kraichnan 1968) considered a stationary regime of
turbulent mixing with a tracer continuously injected into a turbulent flow on a large
scale. Then the mixing is produced by stretching and folding of a tracer blob by



Transport Phenomena in Viscoelastic Fluids 135

the random velocity field creating components of higher and higher wave numbers
up to kB. A more recent theory of the passive scalar decay in the Batchelor regime
of mixing, which is more relevant to a real experiment, makes predictions about the
statistics of the passive scalar (Son 1999).

Various theoretical predictions for the stationary and decay cases of the Batch-
elor regime of mixing were verified recently in macro-systems (Jullien et al. 2000;
Groisman and Steinberg 2001). However, the theories mentioned (Batchelor 1959;
Chertkov et al. 1995; Son 1999) consider an unbounded case only. As shown by
Chertkov and Lebedev (2003), a non-uniform velocity distribution particularly close
to a wall can alter significantly the efficiency of mixing in the decay regime due to
turbulent advection. Indeed, due to a reduced velocity near the wall, the boundary
layer becomes a sink for the passive tracer. This excess of the tracer is intermittently
injected from the boundary layer into the bulk. Thus, the tracer decay, e.g. along a
channel, is controlled by the rate of tracer injection from the boundary layer that
caused a significant slow down of the decay compared with an unbounded case. As
a result, the scaling of the mixing length with the Péclet number, Pe = Vavd/D,
changes from logarithmic one to an algebraic, Lmix ∝ Pe1/4. Here Pe defines the
relative rate of advection versus diffusive transport in a flow, Vav is the average lon-
gitudinal velocity, and d is the channel width. Besides, the boundary layer width for
mixing in the decay regime in scales as W ∝ Pe−1/4.

As demonstrated in Sect. 5, above the onset of the elastic instability themicro-flow
is spatially smooth and dominated by a large-scale randomly fluctuating spiral vortex
(Fig. 56). The small-scale homogeneity of the micro-flow suggests that the mixing
of a passive tracer injected at large scale in the micro-flow should occur mainly due
to the large-scale eddies in a Batchelor regime.

6.2 Scaling of the Mixing Length with Pe

The small-scale homogeneity of the micro-flow emphasised in the previous subsec-
tion suggests that the mixing of a passive scalar injected at large scales in the flow
should occur mainly due to the large-scale eddies in a so-called Batchelor regime of
mixing.

Although the Batchelor regime in unbounded systems has been intensively stud-
ied theoretically, it has been shown only recently (Chertkov and Lebedev 2003) that
the mixing efficiency is significantly altered in bounded systems where the boundary
layer becomes a sink for the passive tracers. In order to check the theoretical pre-
dictions made in Chertkov and Lebedev (2003), we have varied Pe about 37 times
by using fluorescent tracers with different diffusion coefficients and by varying the
mean flow velocity. The mixing experiments have been carried out by injecting two
streams of polymer solution, one with and one without a fluorescent tracer. The
two streams of polymer solution have been injected at equal flow rates by a careful
adjustment of the driving pressures (Fig. 57a).
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Fig. 57 a Epifluorescent
microphotograph of the
entrance area of a
micro-channel. Wide
triangular region in front of a
curvilinear channel allows to
adjust equal flow rates for
polymer solutions with (from
the top) and without FITCD.
b Confocal micrograph of
the flow in the micro-channel
(at N = 30) without
polymers added. Left wall of
the channel is shown by a
dotted line. Confocal images
of mixing in a random
micro-flow of a dilute
polymer solution at different
locations downstream: c N
= 5, d N = 11 and e N
= 17. The data are replotted
from Burghelea (2005)

As a passive tracer, we have used dextran molecules labelled with fluorescein
isothiocyanate (FITCD). The molecular weights of the passive tracers used in dif-
ferent experiments were 10, 70, 500 kDa and 2 MDa. These different choices of
tracers together with variations of the mean flow velocity allowed us to modify Pe
about 37 times in the range 1.6 × 104 ÷ 4.14 × 105. As a result, the Batchelor scale,
ηB = d · Pe− 1

2 , changed from 1 × 10−4 down to 0.15 × 10−4 cm.
First, the setup was tested by running experiments with the plain solvents without

PAAm added. The flow appeared laminar and steady in the full range of driving
pressures, �ps, and the interface between the streams with and without FITCD
remained smooth and sharp along the whole channel with only a minor smearing by
diffusion (Fig. 57b).

The situation was similar when polymer solutions have been injected in the linear
regime corresponding to low values of the driving pressures,�ps. However, when the
driving pressure was raised above the nonlinear transition threshold, �p�

s = 50 Pa
(which corresponds to Wic  6.5), the randomly fluctuating flow velocity produced
significant stirring, complex and chaotically changing tracer fields. In Fig. 57c–e,
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Fig. 58 Distribution of tracer concentration in the vertical cross section of the micro-channel at
different locations downstream: a N = 5, b N = 7, c N = 9, d N = 11, e N = 13, f N = 15, g N
= 17 and h N = 25. The data are replotted from Burghelea (2005)

typical scalar fields at different locations downstream are displayed. One can easily
see that, as one advances downstream, the scalar field has an increasingly random
appearance.

Figure58 shows the distribution of tracer concentration in the vertical cross section
of the micro-channel at different locations downstream. Close to the entrance of the
channel (Fig. 58a–c), the mixing is mainly carried out at large scale by a randomly
fluctuating vortex. As one advances downstream, the random stretching and fold-
ing of fluid elements results in an increasingly efficient mixing at small scales. The
confocal scans in a horizontal plane (Fig. 57b–e) were made at a scanning rate of 56
lines per second, contained 750 individual lines and took about 13 s to complete. The
vertical scan in Fig. 57b–e was performed with a scanning rate of 24 lines per sec-
ond, contained 45 lines and took about 1.8 s to complete. The characteristic time of



138 T. Burghelea

Fig. 59 Time average of
FITCD concentration, c, as a
function of the normalised
coordinate across the
micro-channel at different
locations downstream:
red—N = 7,
green—N = 11 and blue—N
= 41. The data are replotted
from Burghelea (2005)

concentration variation was about 2.5 s. Therefore, although individual horizontal
lines in Fig. 57b–e and vertical lines in Fig. 58 represent virtually instantaneous pas-
sive tracer distributions, the 2D concentration diagrams in Figs. 57b–e and 58 should
not be considered as snapshots and are shown only for purpose of illustration. How-
ever, none of these diagrams was used for any quantitative measurements.

Corresponding to each value of Pe tested, mixing efficiency has been investi-
gated by focusing on the long-time statistics of the concentration distribution across
the micro-channel at different positions,N , downstream. Typical time-averaged con-
centration distributions across the micro-channel, c, are displayed in Fig. 59. One
can see that the concentration distribution close to the inlet, at N = 7, is strongly
influenced by the asymmetric conditions at the channel entrance. As one can learn
from the curve corresponding to N = 11, however, the imprint of the initial con-
ditions is clearly fading out as the liquid is advancing downstream and the stirring
becomes increasingly efficient. Further downstream, at N = 41, asymmetry in the
tracer distribution introduced by the initial conditions disappears completely.

Fading of the initial condition influence with time and restoration of symmetry in
flow in the statistical sense are both distinct features of chaotic and turbulent flows.
Therefore, the curves displayed in Fig. 59 provide further evidence for truly chaotic
nature of the microscopic flow. Variation of tracer concentration profiles with time
at different distances from the inlet is illustrated by the space-time plots displayed in
Fig. 60. One can see that the tracer concentration appears to fluctuate quite randomly
in time. Next, as one can see in Fig. 60a, which refers to N = 5, that the left side of
the channel, where the tracer was initially injected, looks much brighter and has a
higher average concentration of the tracer. Although also noticeable in Fig. 60b taken
further downstream at N = 18, this feature is clearly weaker here.

A quantitativemeasure of themixing efficiency is given by the ith-ordermoments,
Mi, of a probability distribution function (PDF) of FITCD concentration, c, defined
by Mi = 〈|c−c|i〉

ci
. Statistics of concentration has been carried out over about 6 × 106

points, that is over 104 individual concentration profiles across the micro-channel
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Fig. 60 Space-time plots of
FITCD distribution across
the channel at different
locations downstream: a N
= 5, b N = 13, c N = 21 and
d N = 35. Confocal
scanning was done along the
same line across the channel
in the midplane at equal
distances from the half-ring
interconnections, with even
time intervals of 0.0177 s.
The data are replotted from
Burghelea (2005)

(a) (b)

(c) (d)

(Fig. 60). In Fig. 61 are presented the dependencies of M1 and M2 on the position
along channel,N , corresponding to the largest value ofPewe investigated. As shown
in Fig. 61, both moments exhibit exponential decay up to N  40 as predicted by
theory (Son 1999; Chertkov and Lebedev 2003).

Fig. 61 The first- (squares) and second-order (circles) moments decay versus position, N, at Pe =
4.15 × 105; solid lines are the fit. Inset: the decay exponents of the moments, γi , as a function
of the moment order, i, at different Pe: diamonds, Pe = 1.6 × 104; up triangles, Pe = 3.3 × 104;
squares, Pe = 9.09 × 104; circles, Pe = 1.74 × 105; down triangles, Pe = 4.15 × 105. The data
are replotted from Burghelea (2005)
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Fig. 62 The mixing length,
measured in the number of
turns, Nmix , versus Pe:
squares are the data, the solid
line is the fit, and the dotted
line shows the logarithmic
dependence. The data are
replotted from Burghelea
(2005)

Second, the rate of decay of M2 is twice as high as that of M1. And third, M1 is
reduced more than 30 times and reaches the noise level at N > 40, as well asM2. In
the inset of Fig. 61 are shown the decay exponents of the higher order moments, γi,
as a function of their order, i, for each value of Pe. One can notice that the saturation
occurs for all curves at about the same value of i = 6, but the saturated value of the
decay exponents depends on Pe.

The mixing length, measured in the number of units, Nmix, and obtained from
the exponential rate of decay of M2, is presented in Fig. 62 as a function of Pe. The
data are well fitted by Nmix ∝ Pe0.26±0.01, which is in good agreement with theory
(Chertkov and Lebedev 2003).

The latter results indicates that the efficiency of the chaotic mixing is reduced
due to finite size effects, which increase the mixing length in an bounded system
compared to that in an unbounded one.

6.3 Analysis of the Mixing Boundary Layer

In order to establish the source of the algebraic dependence of the mixing length
instead of logarithmic, as predicted for an unbounded system, we have studied the
Pe dependence of the mixing boundary layer width, W . The latter was identified
from the spatial distribution across the micro-channel of the first- and second-order
moments of the probability distribution function of FITCDconcentration fluctuations
(Fig. 63).

We have associated well-defined peaks in a spatial dependence of the moments
with the boundary layer edge (note in Fig. 63 the asymmetry in the left and the right
peak locations due to the flow asymmetry). The average value of the right peak
location for the first moment (averaged along the micro-channel) as a function of Pe
is presented in the inset of Fig. 63 together with the fit:W ∝ Pe−0.28±0.06. This result
is once more in fair agreement with the theoretical prediction W ∝ Pe− 1

4 (Chertkov
and Lebedev 2003).



Transport Phenomena in Viscoelastic Fluids 141

Fig. 63 Spatial dependence
of the first- (blue line) and
second-order (black line)
moments of FITCD
concentration fluctuations
across micro-channel. Inset:
width of the boundary layer,
W , versus Pe. The solid line
is the fit. The data are
replotted from Burghelea
(2005) (Colour figure online)

6.4 Spatial and Temporal Correlations of the Passive Scalar
Fluctuations

The spatial correlation across the micro-channel and temporal correlation functions
of passive scalar concentration fluctuations in the bulk and in the boundary layer
were studied at different Pe. The spatial correlation functions decay logarithmically
at distances above the diffusion length (which was varied from 1 to 4µm) and
are almost independent on Pe (Fig. 64a). The relatively narrow spatial range of the
correlation function decay does not allow one to reliably distinguish between the
logarithmic and power-law behaviour, if the exponent is small, as predicted by theory
(Chertkov and Lebedev 2003) (the exponent ∼ Pe− 1

4 ). This logarithmic like decay
can be explained by the fact that the mixing in the bulk occurs rather efficiently. The
mixing boundary layer permanently supplies the passive scalar into the bulk which
mimics the Batchelor stationary regime of mixing (Batchelor 1959) and leads to
logarithmic decay.

The temporal correlation functions in the bulk and in the boundary layer (Fig. 64b
and c) show similar behaviour with about twice as large correlation time in the
boundary layer as in the bulk (t 1

2
≈ 13 s instead of 6 s in the bulk).

7 Macroscopic Heat Transport by Elastic Turbulence

The efficient transport of mass and heat within fluids is of paramount importance in
many industrial settings such as the development of efficient heat exchangers, cooling
the magnetic coils of particle accelerators and the central processing units (CPUs)
of personal computers. The natural mechanisms by which the mass and the heat are
transported within a fluid are the molecular diffusion and the thermal conduction,
respectively. Thesemechanisms, however, are the least efficient ones in the sense that
the characteristic times over which they take place are significantly large. As for the
case of mixing discussed in Sect. 6, an increase in the efficiency of the heat transport
can be obtained by generating flowswith divergent Lagrangian trajectories which are
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Fig. 64 a Correlation
coefficients for the tracer
concentration versus �x/d .
b Correlation coefficients for
the tracer concentration
versus t in the bulk of the
microscopic flow. c Time
autocorrelation functions for
the tracer concentration
versus near the boundary of
the microscopic flow. The
colours are:
black—Pe = 4.15 × 105,
red—Pe = 1.74 × 105,
blue—Pe = 9.09 × 104,
green—Pe = 3.37 × 104

and
orange—Pe = 1.68 × 104.
The data are replotted from
Burghelea (2005)

able to efficiently stretch, fold and break up the fluid elements down to sufficiently
small spatial scales when the molecular diffusion and the thermal conduction can
effectively homogenise the mass/temperatures distributions. One way of generating
randomfluidmotion and enhance the heat transport is to trigger inertial turbulent flow
states by ensuring sufficiently large values of the Reynolds number Re = ρUL/η.
Here ρ stands for the density of the fluid, L for the characteristic size of the flow
container, U for the scale of the fluid velocity and η for the viscosity of the fluid.

It has been demonstrated that inertial turbulent flows transport efficiently both
mass and heat (Gollub et al. 1991; Lane et al. 1993; Warhaft 2000; Shraiman and
Siggia 2000; Lee and Hyun 1999; Kim and Hyun 1997). As already pointed out
for the case of mixing, there exist various practical situations when increasing the
Reynolds number is a difficult task, particularly when the characteristic size of the
fluid container L is small, e.g. in a microchannel. In such situations, it is desirable
to replace the inertial nonlinearity in the momentum equation with other types of
nonlinearities. Exponentially divergent Lagrangian fluid trajectories can be gener-
ated by the laminar chaotic advection (Aref 1990; Ottino 1989) and, consequently,
such flows are able to efficiently transport both mass and heat (Toussaint et al. 1995,
2000; Hobbs and Muzzio 1997; El Omari and Le Guer 2010; Narasimha et al. 1992;
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Mota et al. 2007). Triggering the laminar chaotic advection at moderate Re requires,
however, a special design of the flow channel and/or a particular flow control, e.g.
controlled pulsations. This can also become quite challenging in the case of micro-
scopic flows due to technical limitations/difficulties in manufacturing elaborated
three-dimensional microstructures.

As we have shown that the Elastic Turbulence can enhance the mass transport
(Sect. 6) it seems reasonable to expect an increase in the efficiencyof the heat transport
by the Elastic Turbulence. The rest of this section is dedicated to this point.

The experimental setup is similar to the one used in Sect. 4 and schematically
illustrated in Fig. 65. The only difference is the addition of temperature sensors in
order to measure the spatio-temporal features of the temperature distribution in the
fluid. The flow is driven by a rotating top discDwith a radius Rd = 39 mmmounted
on the shaft of a commercial rheometer, Mars III (from Thermofischer). The use of
the commercial rheometer in driving the flow is justified by the accurate control of
both the rotation speed � and the driving torque M .

The temperature of the bottom of the fluid container is controlled via a circulating
fluid bath CFB fed with de-ionised water by a thermally stabilised fluid circulator
(Lauda, model Proline RP 855). To avoid triggering the thermal convection (which
does not make the object of this study), the temperature within the circulating fluid
bath CFB is set to Tb = 13 ◦C which is smaller than the room temperature T0 =
23 ◦C. To ensure a good repeatability and reproducibility of the experiments, the
room temperature has been regulated (with an accuracy of ±0.5 ◦C) at all times and
for each of the experiments reported herein by an air conditioning system installed
in the experimental room.

The distribution of the temperature into the flow is point-wise monitored by
an array of six thermocouples T1−6 (Chromel–Alumel, 100µm in size) disposed
equidistantly along the vertical direction z and positioned at the radial position
r = Rc/2 (Fig. 65). The thermocouples are mounted through thin metal tubes which
allows one to scan the temperature distribution along the radial direction. The signals
of the thermocouples are passed to the digitising block A2D via the reference box
RB. The subtraction of the reference temperature by the reference box RB dimin-
ishes the instrumental error of the temperature readings down to roughly 0.5% of the
measured value.

Together with the point-wise measurements of the temperature, the flow has been
investigated by local measurements of the flow fields by the digital particle image
velocimetry (DPIV ) technique. Time series of the velocity fields were obtained by
a iterative multi-grid DPIV algorithm implemented in house under Matlab (Raffel
et al. 2007; Scarano and Rhiethmuller 2001) and the flow states have been identified
by a statistical analysis of the flow fields.

The polymer solution was identical to that used in Sects. 4, 5 and 6. Its density
was measured at room temperature by accurately weighting fixed volumes of fluid,
ρ = 1200 kgm−3.

The thermal properties of the polymer solution have been investigated using a
hot-disc thermal conductivity analyser. The transient plane source (TPS), or the
Hot-Discmethod is a commonly used experimental technique for measuring thermal
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Fig. 65 Schematic view of the experimental setup: R—the shaft of the rheometer, D—rotating
disc, FC—fluid container, CFB—circulating fluid bath, T1−6—thermocouples, RB—reference
box,A2D—analogue to digital converter,L—solid-state laser,LS—laser sheet,COB—cylindrical
optics block, M—planar mirror, CCD—video camera and PC—personal computer

properties of materials in either a solid or fluid state proposed by Gustaffson in early
1990s (Gustafsson 1991; Gustavsson et al. 1994).

The thermal diffusivity of the pure solvent wasmeasured κs = 2.21 · 10−7m2 s−1.
The thermal diffusivity coefficient of the polymer solution was measured κ =
1.31 · 10−7m2 s−1 and the characteristic time associated to the thermal diffusion
may be estimated as td = H 2/κ ≈ 25714 s. We also note that within the temperature
range explored through our experiments no significant temperature dependence of
the thermal diffusivity coefficient was observed.

The temperature-dependent rheological properties of the solvent and of the poly-
mer solution were measured with the same Mars III rheometer around which the
complete experimental setup was built. The shear viscosity of the solution was mea-
sured with a cone and plate geometry (D = 60 mm, 2◦ truncation) via a controlled
rate flow ramp at three temperatures which are relevant during the heat transfer pro-
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(a) (b)

Fig. 66 a Flow curves measured during controlled rate flow ramps. The insert presents the tem-
perature dependence of the viscosity measured at γ̇ = 1s−1 and the full line is an Arrhenius fit. b
Stress relaxation data. The full lines are exponentially decaying functions characterising the slow
relaxation mode. The dashed-dotted line is a guide for the eye, σ/σ0 ∝ e−t/2.6(±0.2), highlighting
the fast decay mode. The temperature dependence of the longest relaxation time is presented in the
insert. The error bars are defined via the nonlinear fitting error. In each panel, the symbols refer
to different operating temperatures: squares (�)—T = 17 ◦C, circles (◦)—T = 19 ◦C, triangles
(�)—T = 21 ◦C (Colour figure online)

cess,T = 17 ◦C, 19 ◦C, 21 ◦C.Corresponding to each value of the imposed shear rate
the stress was allowed to equilibrate during 50 s and the averaging was performed
during the last 10 s. The choice of this temperature range was based on the value of
the room temperature and of the thermal equilibrium temperature achieved during
our experiments, Te ≈ 16.9 ◦C. The temperature was controlled during the rheolog-
ical measurements by a Peltier system. The geometry has been enclosed by a Teflon
made solvent trap in order tominimise the sample evaporation and insure the reliabil-
ity of the measurements. For each temperature, the viscosity measurement has been
repeated three times with a freshly loaded sample in order to check the reliability and
specify an error bar. The results of the shear viscosity measurements performed in a
range of shear rates and temperatures relevant to the heat transport experiments are
presented inFig. 66a.Theviscosity follows anArrhenius timedependenceon the tem-

perature (see the full line in the insert of Fig. 66a), η ∝ e
E
η
a

R T , where R is the ideal gas
constant. The viscosity activation energy is found Eη

a ≈ 40.625(±1.2)kJ/(mol K).
The largest polymer relaxation time has been assessed using the stress relaxation
method (Liu et al. 2007, 2009). For this purpose, a constant rate of shear γ̇ = 1s−1

has been maintained for 50 s. At the time instant t0 = 0 the rate of shear has been set
to 0 and the time decay of the stress has been monitored. As compared to the small
amplitude oscillatory measurements, the relaxation time assessed via this technique
is independent on the value of the initial shear (if the initial shear rate is sufficiently
small so the inertial effects associated to both the shaft of the rheometer and the
measuring geometry do not play a significant role) (Liu et al. 2007). In addition to
that, the largest relaxation time obtained via this method is directly comparable to
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the relaxation time measured via the relaxation of single molecules observed via
fluorescent microscopy (Liu et al. 2007). Relaxation measurements performed at the
same temperatures as the shear measurements are illustrated in Fig. 66b. At each
temperature, a two-mode exponential decay is observed. The fast mode highlighted
by the dashed-dotted line has a characteristic time λ1 = 2.6 s(±0.2 s) which is inde-
pendent on the operating temperature. The largest relaxation time λ associated to the
slowmode (see the full lines in Fig. 66b) depends on the temperature according to an

Arrhenius type lawλ ∝ e
Eλ
a

R T , the insert in Fig. 66b. Although it is commonly believed
that the viscosity activation energy should be close to the relaxation time activation
energy, we obtain a significantly larger value, Eλ

a ≈ 193.5(±4)kJ/(mol K). A possi-
ble explanation for this rather unexpected result is that the changes of the relaxation
time with the temperature for this polymer solution are triggered not only by the
changes of the solvent viscosity but some other changes in the molecular properties
of the polymer chains. By taking into account the shear-thinning of the viscosity

illustrated in Fig. 66a, the Reynolds number was calculated according to Re = �R2
cρ

η(γ̇)

where � is the angular speed of the top driving disc D. Corresponding to the largest
value ofWiwe have explored and considering an average value of the shear viscosity
within the relevant temperature range, we have found Re ≈ 26. The main conclusion
of the thermorheological analysis presented above is that in spite of a rather limited
temperature range non-negligible changes in both the shear viscosity and the largest
polymer relaxation time are observed. Thus, even in the absence of a buoyancy term
in the momentum equation (in which case the temperature acts as an active scalar
field), one cannot a priori establish a similarity between the dynamics of a passive
scalar in a random smooth flow and the transport of heat by elastic turbulence. This
further reinforces the motivation of our study. The Prandtl number Pr = η(γ̇)

ρκ
which

quantifies the balance between the viscous momentum diffusion and the thermal dif-
fusion varied during our experiments (because of the shear-thinning behaviour of the
viscosity and its T dependence) in the range Pr ∈ [744; 1336]. The balance between
natural and forced convection is quantified by the Richardson number which may be
defined asRi = gβ�T

Rc�2 h3 where g is the acceleration of gravity,β ≈ 2 · 10−4K−1 is the
thermal expansion coefficient,�T = T0 − Tb and h = H/Rc is the geometric aspect
ratio of the flow cell. By varying the angular speed of the top disc, the Richardson
number was varied during our experiments in the range Ri ∈ [4.7; 48.8].

7.1 Observation and Characterisation of Elastic Turbulent
Flow States

We focus in the following on a brief characterisation of the transition to elastic
turbulence and itsmainflow features in isothermal conditions at the room temperature
T0. One of the main issues to address here is to what extent is the elastic turbulent
flow modified by the presence of the thermocouples (Fig. 65).
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Fig. 67 aDependence of the normalised time-averaged injected power P̄/P̄lam on theWeissenberg
number Wi. The full line is a guide for the eye, P̄/P̄lam ∝ Wi0.67. b Dependence of the reduced
rms of the power fluctuations Prms/Prms

lam on theWeissenberg numberWi. The full line is a guide for
the eye, Prms/Prms

lam ∝ Wi3. The full/empty symbols refer to increasing/decreasingWi. The vertical
arrow indicates the onset of the primary elastic instability Wic

At an integral scale, the transition to elastic turbulence via a primary elastic insta-
bility can be monitored by measurements of the statistics power P injected into the
flow as a function of the Weissenberg number (a more systematic discussion of this
was provided in Sect. 4). The injected power is calculated for the case of a swirling
flow as P = M · � where M is the torque acting on the shaft of the rheometer.

The statistics of the power fluctuations measured with the polymer solution as a
function of theWeissenberg number is illustrated in Fig. 67. TheWeissenberg number
was calculated as Wi = γ̇ · λ. Based on the measurements presented in Fig. 66b, we
have chosen λ = 5.5 s which is the average value within the temperature interval
considered. Corresponding to a critical value of theWeissenberg numberWic ≈ 2, an
increase of the flow resistance is observed in the form of an increase of the averaged
injected power beyond its laminar value P̄lam, Fig. 67a. This corresponds to a primary
elastic instability that occurs in the flow. Simultaneously with this, an increase of the
rms of the power fluctuations is observed, Fig. 67b. The experimentally determined
scaling laws of both the flow resistance P̄/P̄lam ∝ Wi0.67 and of the reduced rms
of the fluctuations, Prms/Prms

lam ∝ Wi3, are consistent with previous measurements
(Burghelea et al. 2007; Burghelea 2005).

The evolution of the flow structure with the Weissenberg number is illustrated
in Fig. 68. The DPIV measurements are performed in an horizontal plane located
in the vicinity of the thermocouple T4 at z ≈ H/2 (Fig. 65). The top row of Fig. 68
presents the flowfields averaged over times typically 10 times larger than the polymer
relaxation time λ and the bottom row presents the time-averaged in-plane vorticity
〈ωz〉t .

The flow field measured below the onset of the primary elastic instability atWi =
0.8 is dominated by a stationary and off-centred Ekman vortex (Ekman 1905). This
flow structure is different from that of the laminar flow observed in Burghelea et al.
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Fig. 68 Top row: time-averaged flow patterns for various Weissenberg numbers indicated in the
top inserts. The colour map refers to the modulus of the in-plane velocity. For the clarity of the
presentation, the overlapped vector fields were down-sampled by a factor of 2 along each direc-
tion. Bottom row: time-averaged vorticity, 〈ωz〉t . The measurements were performed in isothermal
conditions at the room temperature T0

(2007) (see Fig. 10a therein), which was consistent with a rigid body rotation around
the symmetry axis of the fluid container FC and had no vertical velocity component.
This difference can be explained by the presence of the array of thermocouples
which perturb the base flow, see Fig. 65. The off-centred flow topology observed in
the laminar regime is consistentwith the presence of a steady vertical flow component
which may slightly enhance the heat transfer (as compared to the purely conductive
state) even below the onset of the elastic instability. The effect of the thermocouples
on the laminar flow can also be noticed in the map of the time-averaged vorticity
presented on the second row of Fig. 68. The topology of the mean flow and vorticity
field changes as one moves towards the transitional (Wi = 7.7) and fully developed
elastic turbulent (Wi = 15.4) flow regimes. Within the transitional regime, the flow
is dominated by an unsteady toroidal vortex. Within the elastic turbulent regime, the
flow topology changes to a randomly fluctuating spiral vortex, in agreement with
the previous results on the elastic turbulence in von Karman flows, Burghelea et al.
(2007), Burghelea (2005). Within the elastic turbulent regime, the flow is spatially
smooth, strongly correlated over space and its characteristic correlation length is
comparable to the radius Rc of the fluid container FC (Burghelea et al. 2004c, 2005).
The main flow illustrated above are consistent with previous experimental results
(Burghelea et al. 2007; Burghelea 2005) and recommend the elastic turbulence as a
potential candidate to efficiently transport the heat within the von Karman flow.
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7.2 Heat Transport by Elastic Turbulence

Prior to investigating the heat transfer process in a regime of elastic turbulence, we
focus on the heat transfer within the flow of the sucrose solvent at Re ≈ 125 which
is significantly larger than the largest Re number investigated during the experi-
mentswith the polymer solution. Transientmeasurements of the reduced temperature
θ = T0−T

T0−Tb
performed at various vertical positions z and r = Rc/2 are presented in

Fig. 69a. Each transient data set may be formally5 fitted by θ = A · erfc
(

B√
t

)C
(the

full lines in Fig. 69a) where erfc is the complementary error function, the parameter
A describes the equilibrium temperature and B = z

(4κ)1/2
describes the local intensity

of the heat transfer process. By fitting linearly the values obtained for the coefficient
B against the positions z of the thermocouples (see the insert in Fig. 69a) one obtains
for the thermal diffusivity of the solvent κs ≈ 2.6 · 10−7 m2s−1

(±2.3 · 10−8 m2s−1
)

which is fairly close to the measured value. The equilibrium reduced temperatures
reached by each thermocouple are strongly dependent on the vertical coordinate z
indicating that no efficient mixing occurs in the flow which is consistent with the
laminar and linear flow behaviour of the solvent alone. In addition to that, no fluc-
tuations of the reduced temperature can be noted in Fig. 69a which is once more
consistent with a laminar flow behaviour. To conclude, the tests performed with the
Newtonian sucrose solvent alone at the largest Reynolds number explored through
the experiments with the polymer solution revealed a conductive like heat transport
mechanism characterised by a strong spatial dependence of the equilibrium temper-
atures and a lack of temperature fluctuations. We now turn our attention to the case
when the polymer solution is used and the Elastic Turbulence is triggered.

Measurements of the time series of the reduced temperature θ performed within
each flow regime are presented in Fig. 69b. The horizontal axis is normalised by the
characteristic diffusion time td . Due to the presence of the secondary flow, one can
no longer resort to the complementary error function nonlinear fit used in the case
of the pure solvent illustrated in Fig. 69a. On the other hand it can be noted that,
regardless the value of the Weissenberg number and the measuring position, each
reduced temperature time series exhibits a logarithmic scaling part (note that the data
is plotted in lin–log coordinates) θ ∝ a + b · ln(t/td ) before reaching a steady state
plateau corresponding to t/td ≈ 1.

The six data sets acquired within the laminar regime at Wi = 0.8 never collapse
indicating that a temperature gradient along the vertical direction z exists at all
times, top panel in Fig. 69b. Second, the local slope b of the log scaling part of
the reduced temperature series decreases monotonically from the bottom plate (the
data set marked by a circle) to the top plate of the fluid container. This indicates
that the intensity of the heat transfer is strongly inhomogeneous along the vertical

5This functional dependence with C = 1 is an exact solution for the 1 − D transient heat transfer
problem only in the case of a semi-infinite planar domain with a constant temperature boundary
condition.Deviations from the analytically exact result related to finite size effectsmay be accounted
for by letting C vary as an extra fit parameter.
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Fig. 69 a Time series of the reduced temperature measured with the sucrose solvent at Re ≈ 125:
circle (◦)—T1, square (�)—T2, up triangle (�)—T3, down triangle (�)—T4, left triangle (�)—T5,
hexagon (�)—T6. All measurements were performed at a distance r = Rc/2 from the symmetry
axis of the flow container. The full lines are nonlinear fitting functions (see explanation in the
text). The dependence of the fit parameter B (see text for explanation) on the vertical coordinate is
presented in the insert. b Time series of the reduced temperature measured at three Weissenberg
numbers indicated in the inserts of each panel. The symbols in each panel refer to the vertical
position of the thermocouple (see Fig. 65): circle (◦)—T1, square (�)—T2, up triangle (�)—T3,
down triangle (�)—T4, left triangle (�)—T5, hexagon (�)—T6. All measurements were performed
at a distance r = Rc/2 from the symmetry axis of the flow container (Colour figure online)
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direction and it is the highest near the heat sink (the bottom plate) which is what one
would expect in the case of a conduction dominated heat transfer regime. Prior to
entering the logarithmic scaling regime, the time series of the reduced temperature
pass through a local minimum θmin < 0. The magnitude of this minimum decreases
as one moves from the top part of the fluid container to its cooled bottom and it
practically disappears at the level of the thermocouple T1. We interpret this effect in
terms of local viscous heating of the polymer solution.

The reduced temperature time series acquired within the transitional regime
(Wi = 7.7) are presented in middle panel in Fig. 69b. As compared to the laminar
case, several differences may be noted. First, within the logarithmic scaling range,
the separation between the measurements performed at the six vertical positions
is much smaller and so are the differences in the plateaus observed around t ≈ td .
This is an indication that the unsteady vortical flow observed within the transitional
regime (see Fig. 68) homogenises the vertical distribution of the temperature more
efficiently than the steady laminar vortex. Second, one can clearly observe in the
middle panel of Fig. 69b a fluctuating component of the temperature signal which is
most pronounced near the bottomplate of the flow container (the data set labelled by a
circle). Third, the local minimumof the temperature series acquired near the top plate
is more pronounced than in the laminar case and occurs earlier which corroborates
with our interpretation in terms of local viscous heating.

The six temperature time series acquired within the fully developed elastic turbu-
lent regime atWi = 15.4 nearly collapse onto a single master curve which indicates
a perfectly homogeneous distribution of the temperature within the system, bottom
panel of Fig. 69b. Together with this, an increased level of fluctuations is observed
within the logarithmic scaling range. No local minimum related to viscous heating
is observed which can be explained by an efficient transport of the heat from the top
of the flow cell (note the viscous heating is more effective near the top driving discD
due to the inhomogeneous shear in a von Karman flow configuration) to the colder
bottom via the randomly fluctuating spiral vortex. For a quantitative assessment of
the local intensity of the heat transfer at various Weissenberg numbers, we resort
to the logarithmic slope b introduced above. The dependence of the intensity factor
b obtained from the data acquired at various vertical positions on the Weissenberg
number Wi is presented in Fig. 70.

Because the base flow does have a non-zero vertical component, an increase of
the local intensity of the heat transfer related to the increase of the in-plane vorticity
is observed even below the onset of the primary elastic instability, Wi = Wic.

As compared to the purely conductive case, the transition to the elastic turbulence
is accompanied by a roughly 3.5−4 fold increase of the local intensity of the heat
transfer at the position of the thermocouplesT4−T6. At largeWi, the intensity reaches
a plateau which is related to the plateau of the mean flow vorticity.

We also note that an increase of the local intensity of the heat transfer is observed
in the vicinity of the top driving disc slightly below the onset of the primary elastic
instability. This is due to the presence of the laminar Ekman vortex induced by
the intrusive presence of the thermocouples and pictured in Fig. 68 (first column, top
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Fig. 70 Dependence of the
efficiency factor b obtained
at various vertical positions
indicated in the insert on the
Weissenberg number. The
symbols refer to the position
along the vertical axis z (see
Fig. 65): (�)—T1, (◦)—T2,
(�)—T3, (�)—T4, (�)—T5,
(�)—T6. The vertical dashed
line indicates the onset of the
primary elastic instability
Wic (Colour figure online)

row). Unfortunately, this effect can be neither removed nor decoupled from the elastic
turbulence contribution and this is a clear drawback of our experimental technique.

It is interesting to compare the increase in the intensity of the heat transport
by elastic turbulence with similar experiments performed with Newtonian fluids at
large Re in a regime of inertial turbulence. Gollub et al. (1991) assess the efficiency
of the heat transfer via the effective thermal diffusivity D∗ = K∗/ρcp where the
global heat transport coefficient K∗ is obtained from the ratio of the total measured
heat flux and the local temperature gradient, ρ is the density of the fluid, and cp
is its the heat capacity. As illustrated in Fig. 2 of their paper, an increase of the
efficiency of up to a factor of ten is observed at Re = 6000. The local increase in the
heat transport intensity of roughly 3.5−4 times we have measured within a regime
elastic turbulence atWi = 15.4 corresponds to the increase observed by Gollub et al.
(1991) at Re ≈ 1600. It is equally interesting to compare our results with numerical
simulations performed for the case of a von Karman flow of a Newtonian fluid. Prior
to discussing this, we note however that a rigorous and systematic comparison of
the increase of the heat transfer efficiency by elastic turbulence with the Newtonian
counterpart in a swirling flow is not possible for several reasons. First, unlike in
numerical simulations, we are unable to measure the Nusselt number and we have
provided only a local measure of the intensity of the transfer by the coefficient b.
Second, during our experiments, when theWeissenberg number is increased, both the
Richardson and the Prandtl numbers are varied and their range does not necessarily
match that studied in numerical simulations (both numbers are larger in our case). Last
but not least, the flow structure within a regime of elastic turbulence and its evolution
with theWeissenberg number depart significantly from theNewtonian case. For these
reasons, only a qualitative (and most probably incomplete) comparison with the case
of a Newtonian swirling flow will be attempted below. Corresponding to Pr = 1 and
Re = 2000 the numerical simulations presented by Iwatsu (2004) for the vonKarman
swirling flow of a Newtonian fluid predict a maximal increase of the heat transport
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efficiency (quantified by the space-averaged Nusselt number) of roughly 9 times
corresponding to Ri = 0.01. As they increase the Richardson number, however, the
increase in the transport efficiency atRe = 2000 decreases down to roughly 1.5 times
corresponding to Ri = 1, see Fig. 15 in Iwatsu (2004). Similar numerical results are
found by Kim and Hyun (1997) for Pr = 0.7, Re = 2000 and Ri ranging from 0.01
to 10.

The central conclusion of this part is that the efficiency of the heat transport by
elastic turbulence is comparable in magnitude to that of the Newtonian counterpart
studied by others although during our experiments both Ri and Pr were larger. In
addition to that, based on the data presented in Fig. 70 the intensity of the heat
transport by elastic turbulence is practically insensitive to these non-dimensional
numbers if Wi is sufficiently large. This is a significant difference (and perhaps an
advantage) with respect to the swirling flow of a Newtonian fluid where an increase
of both Pr and Ri translates into a decrease of the transport efficiency. As the elastic
turbulent flow field has a single relevant spatial scale set by the dimensions of the
fluid container FC and there exists no physical equivalent of the cascade towards
smaller scales observed in the inertial turbulence, a natural question to be answered
in the following is how does the intensity of the heat transfer depend on the position z
in the flow. To address this point, we plot in Fig. 71 the local intensity factor b versus
the vertical position z for various Weissenberg numbers spanning the relevant flow
regimes. In the absence of a flow (Wi = 0) when the heat is transported solely by
thermal conduction, a strong spatial dependence of the intensity factor is observed
(the diamonds in Fig. 71). As expected for a purely conductive case, the intensity
of the heat transport decreases monotonically as one moves away from the heat
sink located at z = 0 cm. A slight increase of the local intensity factor is observed
within the laminar and steady flow regime (Wi = 0.8), particularly in the proximity
of the top driving disc D (the squares). This slight increase in the intensity of the
heat transfer process may be explained by the presence of the steady Ekman vortex
induced by the array of the thermocouples (Fig. 68). A notable increase of the heat

Fig. 71 Dependence of the
intensity factor b on the
vertical coordinate. The
symbols refer to the
Weissenberg number:
diamonds (�)—Wi = 0,
squares (�)—Wi = 0.8,
triangles (�)—Wi = 7.7
and circle (◦)—Wi = 15.4
(Colour figure online)
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transport intensity is observed at any measuring position within the transitional and
the fully developed elastic turbulent regimes (the triangles and the circles). We point
out that within these flow regimes the intensity is independent on the flow coordinate
consistently with a full homogenisation of the temperature field. The largest increase
in the local intensity is observed near the top disc D and accounts for nearly four
times the intensity measured in a purely conductive state (Fig. 71).

7.3 Statistical and Scaling Properties of the Temperature
Fluctuations: Passive or Active Scalar?

In a random flow, the scalar temperature field may act either as a passive scalar when
it does not react back on the flow field or, if it does, as an active scalar. A classical
example where the temperature acts as an active scalar is that of a fluid heated from
below: the density gradient may induce a thermo-convective instability and thus the
temperature reacts back on the flow field. In the passive case, the homogenisation
of the temperature field by a random and spatially smooth flow field in a regime
of Elastic Turbulence is similar to the mixing problem (Burghelea et al. 2004a, b;
Burghelea 2005) and several fundamental features have been highlighted:

1. The probability distributions of the passive scalar fluctuations have exponential
tails and the second-order moment of these distributions decays exponentially in
time.

2. The temporal correlations of the passive scalar fluctuations decay over times of
the same order of magnitude with the correlation times of the flow field and the
largest relaxation time of the polymer molecules.

3. The spectra of the passive scalar fluctuations decay algebraically, P ∝ kδ , with
δ ≈ −1.

For all the experiments we reported above, the fluid has been cooled from below.
Thus, thermo-convective instabilities are ruled out and, at least at a first glance, one
would be tempted to believe that the temperature field acts as a passive scalarmeaning
that the heat transport process is physically equivalent to the mixing problem. At a
more careful inspection, this is actually not granted. As illustrated in Fig. 66, the
rheological properties (shear viscosity and relaxation time) are strongly dependent
on the temperature. Thus, the temperature field is directly coupled to the stress
tensor which may in turn act on the flow field. Thus, whether the temperature acts
as a passive or an active scalar remains to be investigated experimentally which sets
the main scope of this section.

To get a first insight into the statistics of the temperature fluctuations at various
Weissenberg numbers, we extract the fluctuating part of each time series of the
reduced temperature presented in Fig. 69b by subtracting from the original signal its
pedestalP obtained via a fifth-degree polynomial fit, θr (t/td ) = θ (t/td ) − P (t/td ).

As by in situ measurements of the apparent viscosity ηa of the polymer solution
during the heat transfer process we have observed that at high Weissenberg numbers
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(a)

(b)

(c)

(d)

Fig. 72 Time series of the fluctuating part of the reduced temperature θr obtained from themeasure-
ments of the thermocouple T4 (see Fig. 65) at variousWeissenberg numbers: aWi = 0, bWi = 0.8,
c Wi = 7.7 and d Wi = 15.4

the mechanical degradation occurs (manifested through a significant decrease of ηa)
at very late stages of the process (t/td > 0.5), thewhole statistical analysiswe present
below was restricted to time windows within the logarithmic scaling range, 0.1 <

t/td < 0.3andnoconclusionswere drawn from the temperature data acquiredbeyond
this range. In the absence of a flow (Wi = 0) the pedestal of the signal characterises
the purely conductive heat transport and in a laminar regime (0 < Wi < Wic) it
describes the summed contributions of the conduction and the laminar convective
transport carried on by the stable vortex illustrated in Fig. 68. Several time series of
the fluctuating part of the reduced temperature θr obtained according to the procedure
described above from the raw data acquired by the thermocouple T4 positioned at
r = Rc/2 (see Fig. 65) at various Weissenberg numbers increasing from the top to
the bottom are presented in Fig. 72.

In the absence of a flow (Wi = 0) and below the onset of the primary elastic
instability (Wi = 0.8), these fluctuations are of a purely instrumental nature. Upon
an increase of the Weissenberg number within the fully developed elastic turbulent
regime a significant increase of the level of fluctuations beyond the instrumental level
is observed (Fig. 72c and d).AtWi = 15.4 the randomly fluctuating temperature time
series also exhibits some intermittency.

The spatial distribution of the root mean squared of the fluctuations of the reduced
temperature within each flow regime is illustrated in Fig. 73.
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Fig. 73 Space distribution
of the rms of the fluctuations
of the reduced temperature,
θrmsr measured at various
Weissenberg numbers:
diamonds (�)—Wi = 0,
squares (�)—Wi = 0.8,
triangles (�)—Wi = 7.7
and circle (◦)—Wi = 15.4
(Colour figure online)

In the absence of a flow and within the laminar regime, no dependence of the
level of the fluctuations on the vertical coordinate z can be observed (which was
expected, as the six thermocouples are identical, i.e. the instrumental error of their
measurements is the same). Within the transitional regime and the fully developed
elastic turbulent regime a clear spatial dependence of the temperature fluctuations
can be observed (the triangles and the squares in Fig. 73). Due to the particular topol-
ogy of the randomly fluctuating spiral vortex illustrated in Fig. 68 at Wi = 15.4, the
fluctuations are the largest in the vicinity of the bottom plate of the flow container
FC and decrease monotonically as one approaches the level of the top driving disc
D. Near the bottom plate, the temperature fluctuations due to the advection of the
temperature field by the random flow field are about 3.5 times larger than the instru-
mental fluctuations observed in the laminar regime. We point out that in spite of the
clear anisotropy of the temperature fluctuations within the fully developed elastic
turbulent regime, the intensity of the heat transport quantified by the parameter b
introduced above is practically independent on the spatial coordinate (the circles in
Fig. 71).

The dependence of the level of fluctuationsmeasured in the fully developed elastic
turbulent regime near the bottom plate of the fluid container on the vertical coordinate
indicates the possible existence of a boundary layer for the heat transfer with its
edge roughly located around z = 15 mm (Fig. 71). As the spatial resolution of our
measuring technique along the vertical direction is limited and the construction of
the experimental apparatus does not allow one to move the thermocouples along
this direction, a systematic investigation of this fact similar to that performed for
the velocity boundary layer (Burghelea et al. 2007) or the passive scalar boundary
layer (Burghelea et al. 2004b) was not possible and should to be addressed by future
experimental studies.

The probability density functions (pdfs) of the fluctuations of the reduced tem-
perature measured by the thermocouple T4 are presented in Fig. 74a. In the absence
of a flow (the diamonds) and within a laminar flow regime (the squares) the pdfs can
be fitted by a Gaussian function (the full line).
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(a) (b)

Fig. 74 a Probability density functions (pdfs) of the fluctuations of the reduced temperature, Trms
r ,

obtained from the measurements of the thermocouple T4. The full line is a Gaussian fit, the dashed-
dotted lines are guides for eye highlighting the exponential tails of the pdfs. b Time dependence of
the second-order moment M2 of the distribution of the temperature fluctuations obtained from the
measurements of the thermocouple T4. The full line is an exponential decay fit, M2 ∝ e−t/7523. In
both panels, the symbols refer to different Wi: diamonds (�)—Wi = 0, squares (�)—Wi = 0.8,
triangles (�)—Wi = 7.7 and circles (◦)—Wi = 15.4 (Colour figure online)

Upon an increase of the Weissenberg number beyond the onset of the primary
elastic instability (the triangles and the circles) the distributions become significantly
broader and exhibit exponential tails (see the dashed-dotted lines).

A certain degree of asymmetry of the pdfswhichmay be associated to the intermit-
tency of the temperature fluctuations visible in Fig. 72c–d can be equally observed.

The decay of the second-order moments M2 of the probability density functions
is illustrated in Fig. 74b. Within the elastic turbulent regime (the circles), an expo-
nential decay of the second-order moment is observed, M2 ∝ e−t/tmix . Here tmix is a
characteristic timescale for the decay of the temperature fluctuations and is equiva-
lent to the mixing time in the passive scalar problem. By an exponential fit of the data
presented in Fig. 74b one obtains tmix ≈ 7523 s which is about 3.4 times smaller than
the characteristic time diffusion time td . This result corroborates with the 3.5 times
increase in the efficiency of the heat transfer quantified by the slope b and illustrated
in Figs. 70 and 71.

The pdfs of the fluctuations of the reduced temperature measured at each vertical
position for various Wi are presented in Fig. 75. In the absence of a flow and within
the laminar regime the pdfs acquired at each of the six vertical positions collapse
onto a single master curve which can be well fitted by a Gaussian distribution (panels
(a–b)).

Within the transitional regime (Wi = 7.7) a strongly intermittent distribution is
observed particularly in the vicinity of the bottom plate (the squares and the circles
in Fig. 75c). The degree of intermittency decreases as one approaches the top disc
but does not vanish.
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(a)
(b)

Fig. 76 a Temporal autocorrelation functions C of the fluctuations of the reduced temperature. b
Spectra of the fluctuations of the reduced temperature. The data weremeasured by the thermocouple
T4 (see Fig. 65). The symbols in both panels refer to various Weissenberg numbers: diamond (�)—
Wi = 0, square (�)—Wi = 0.8, triangle (�)—Wi = 7.7 and circle (•)—Wi = 15.4. The dashed-
dotted line is a guide for the eye, P ∝ f −1.1 (Colour figure online)

In the fully developed elastic turbulent regime, the pdfs exhibit an intermittent
behaviour and exponential tails regardless the vertical position (Fig. 75d).

These results on the statistics of the fluctuations of the reduced temperature pre-
sented above are in a good agreement with the theoretical prediction for the decay
of a passive scalar in a random smooth flow (Chertkov et al. 1995; Balkovsky and
Fouxon 1999), and with the experiments on themixing of a passive scalar in a macro-
scopic curvilinear channel (Groisman and Steinberg 2001), and in a microchannel
(Burghelea et al. 2004a, b).

The temporal autocorrelation functions of the fluctuations of the reduced temper-
ature measured within each relevant flow regime are presented in Fig. 76a.

In the absence of a flow and within the laminar regime the fluctuations of the
reduced temperature are solely related to the instrumental noise of the temperature
measurements and, consequently, the signals are short correlated (the curves labelled
by a diamond and a square in Fig. 76a).Within the transitional and the fully developed
elastic turbulent regimes the reduced temperature de-correlates over characteristic
times τc comparable to the relaxation time of the polymer λ. This behaviour is
quite similar to the behaviour of the time autocorrelation functions of the azimuthal
velocity component, see Fig. 24 in Burghelea et al. (2007) which is probably due to
the coupling between the flow field and the temperature field.

8 Hydrodynamic Theory of Elastic Turbulence

The existing theory of Elastic Turbulence of a dilute solution of polymers with linear
elasticity and the feedback reaction on the flow only deals with an unbounded flow
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system (Balkovsky et al. 2001; Fouxon and Lebedev 2003). As already pointed
out in the introduction of this chapter, the distinctive property of solutions of high
molar mass linear polymers is the dependence of the stresses on the flow history
(Bird et al. 1977). Thus, once the flow forcing is removed, the stress decays with a
macroscopic relaxation time λ (quite often as large as tens of seconds) rather than
instantly vanishing.

For clarity reasons, we briefly recall the Oldroyd-B model already discussed in
chapter “ConstitutiveModels of Complex Fluids”. By noting that for a dilute solution
the total stress tensor can be decomposed into a solvent and a polymer contribution
σ = σs + σp, the equation of motion takes the form:

∂ �V
∂t

+
( �V∇

) �V = −∇p

ρ
+ ηs

ρ
� �V + ∇σ

ρ
(18)

The mathematically simplest model accounting for the evolution of the stress
tensor in a flow is a single mode Maxwell type constitutive relation:

σp + λ
Dσp

Dt
= ηp

[
∇ �V +

(
∇ �V

)†
]

(19)

HereDσp/Dt stands for the material time derivative and ηp = η − ηs is the polymer
contribution to the solution viscosity. A commonly used definition of the material
time derivative is the upper convective time derivative:

Dσp

Dt
= dσp

dt
+

( �V∇
)

· σp −
( �V∇

)† · σp − σp ·
( �V∇

)
(20)

The nonlinear terms in the right-hand side of Eq.20 account for the translation,
rotation and stretching of fluid elements and are all of the order of λ V

L σp.
Equations (19) and (20) are referred to as the Oldroyd-B rheological model for

polymer solutions (Bird et al. 1977).
A key ingredient of the theory of the Elastic Turbulence is to relate the dynamics

of the elastic stress tensor σp to the dynamics of a vector field with a linear damping
(Fouxon and Lebedev 2003; Ogilvie and Proctor 2003; Chertkov 1998; Balkovsky
et al. 2001). This can be done by noting that if one neglects the thermal fluctuations
the elastic stress tensor is uniaxial,σi,j

p = BiBj which allows one to derive an equation
similar to the equation for the magnetic field in magnetohydrodynamics (MHD):

∂ �B
∂t

+
( �V∇

) �B =
(�B∇

) �V − �B
λ

,∇ · �B = 0 (21)

The stretching of the magnetic field lines is similar to the stretching of polymer
molecules in the flow and the sole difference with respect to the MHD case comes
from the linear relaxation term B

λ
which replaces the diffusion term. In the absence

of inertial contributions, Re << 1, the momentum conservation equation can be

http://dx.doi.org/10.1007/978-3-030-35558-6_2
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written:
∇P = ρ

(�B∇
) �B + ηs� �V ,∇ · �V = 0 (22)

In the absence of significant inertial contributions (Re � 1) which is the case for
the Elastic Turbulence, the kinetic energy of the polymer solution can be neglected
in comparison with the elastic one. The dissipation of the elastic energy is, however,
due to both viscous dissipation due to the solvent viscosity and polymer relaxation:

d

dt

∫
d�r B

2

2
= − 1

λ

∫
d�r B

2

2
− ηs

ρ

∫
d�r (∇jVi

)2
(23)

With the appropriate boundary conditions, Eqs. (21) and (22) exhibit an elastic
instability at Wi = Wic where Wi = λγ̇ and the instability results in a chaotic and
statistically stationary dynamics. Here γ̇ is the second invariant of the rate of strain
tensor.

The theory of Elastic Turbulence in an unbounded flow of a polymer solution is
upon two central assumptions:

1. The local feedback of the stretched polymer molecules on the flow field leads to
a statistically stationary state characterised by a saturation of both the polymer
contribution to the stress tensor τp and the rms of the fluctuations of the veloc-

ity gradients
(

∂Vi
∂xj

)rms
. Consequently, corresponding to a fully developed elastic

turbulent regime the local Weissenberg number defined as Wiloc = λ
(

∂Vi
∂xj

)rms

saturates and, in the bulk of the flow, its saturation value is Wiloc ≈ 1.
2. Both dissipative terms due to viscosity and polymer relaxation that appear in the

equation for the dissipation of elastic energy are of the same order of magnitude
σp

λ
≈ η

ρ

(
∇ �V

)2
or, equivalently, σpλ

η
≈ Wi2loc.

According to Balkovsky et al. (2001), the first assumption may be phenomeno-
logically understood in the context of a strong back reaction of the extended polymer
molecules to the flow as follows. If the instantaneous velocity gradients exceed the
reciprocal relaxation time 1/λ the polymer coils are stretched which results in an
increase of the elastic stresses that damps the velocity gradients. Conversely, if the
velocity gradients are much smaller than 1/λ, the polymer molecules retract and
produce no feedback to the flow. Thus, the velocity gradients tend to increase to the
characteristic value corresponding to the pure solvent which is significantly larger
than 1/λ above the onset of the transition. The second assumption is consistent with
a saturation of the elastic stresses far above the onset of the primary elastic instability.

Next, if one denotes by �V ′ and �B′ the small-scale fluctuating parts of the fields
�V and �B it can be shown that the Fourier components satisfy the linear relationship

�V ′ = iρ
(�k·�B

)

ηk2
�B′ which allows one to derive for the spherically normalised spectra of

fluctuations of �V ′ and �B the following relationships (Fouxon and Lebedev 2003):
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E(k) ∝ η2L(kL)−δ (24)

F(k) ∝ B2L(kL)2−δ (25)

With the assumptions∇V ′ � ∇V andB′ � B it can be shown that δ > 3 (Fouxon
and Lebedev 2003).

The algebraic decay of the velocity spectrum has been first observed by means
of LDV measurements (and using the Taylor’s frozen flow hypothesis was switch
from the frequency domain to the wave number domain) in a macroscopic von
Karman flow and, subsequently, in a macroscopic serpentine channel by Groisman
and Steinberg (2000, 2001). Direct measurements of the spectra in the space domain
by means of DPIV revealed a decay exponent δ ≈ 3.5. Contrary to the case of the
inertial turbulence, the algebraic scalings of the kinetic and elastic energy are not
related to any cascade of energy (or other conserved physical quantity). Because
the velocity spectrum decays faster than k−3, the dominant space scale is set by the
size of the fluid container L and the velocity fluctuations are strongly correlated over
distances comparable to L. The spatial smoothness of the flow has been probed by
measurements of the flow fields in both o macroscopic von Karman swirling flow
and in amicroscopic flow in a serpentinemicro-channel. The characteristic timescale
associated to thefluctuations of theflowfields in a regimeofElastic Turbulencewhich
is the Eulerian correlation time is found to be comparable in magnitude to the largest
relaxation time of the polymer molecules.

A k−1 like decay of the spectrum of the fluctuations is characteristic for the decay
of a passive scalar in a smooth random flow field in the so-called Batchelor regime of
mixing (Batchelor 1959). Such algebraic decay has been observed for the mixing of
a fluorescent tracer by an elastic turbulent flow in bothmicroscopic (Burghelea 2005;
Burghelea et al. 2004a, b) and macroscopic channel flows (Jun and Steinberg 2010).
More recently and somehow unexpectedly a similar spectral decay has been observed
for the fluctuations of the temperature in an elastic turbulent von Karman swirling
flow cooled from below (Traore et al. 2015). This indicates that, in spite of the strong
temperature dependence of the rheological properties (notably the relaxation time
and the shear viscosity) the temperature field behaves like a passive scalar. Thus, if
the decay exponent of velocity spectrum is δ ≈ 3 (Eq.25) suggests that the stress
is passively advected by the large-scale chaotic smooth flow in a regime of Elastic
Turbulence.

Although many fundamental features of elastic turbulent flows (such as flow
smoothness, the algebraic decay of spectra of fluctuations, the decay of the flow
correlation) have been investigated experimentally in various macroscopic flows
(Couette flow between rotating cylinders, von Karman swirling flow, curvilinear
channel flow), the main assumption of the theory concerning with the saturation of
velocity gradients has been demonstrated only recently. The experimental results
presented in this chapter revealed the emergence of a boundary layer for the elastic
stresses in both themacroscopic andmicroscopic setups. Thepresent theoryofElastic
Turbulence solely refers to an unbounded system. Thus, the scaling properties in the
boundary layer still await for future theoretical developments.
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Transport Phenomena in Viscoplastic
Materials

Teodor Burghelea

Abstract This chapter focuses on various transport phenomena in yield stress mate-
rials. After a brief introduction, an overview of the phenomenology of the solid–
fluid transition is given in Sect. 2. Section 3 introduces a microscopic theory able
to describe the solid–fluid transition in both thixotropic and non-thixotropic yield
stress materials. A discussion of the hydrodynamic stability of yield stress materials
is presented in Sect. 4. Some non-isothermal transport phenomena are discussed in
Sect. 5.

1 Introduction

A broad class of materials exhibits a dual response when subjected to an external
stress. For low applied stresses, they behave as solids (loosely speaking they may
deform but they do not flow) but, if the stress exceeds a critical threshold generally
referred to as the “yield stress”, they behave as fluids (typically non-Newtonian) and
a macroscopic flow is observed. This distinct class of materials has been termed as
“yield stress materials” and, during the past several decades, it attracted a constantly
increasing level of interest from both theoreticians and experimentalists. The moti-
vation behind this issue is twofold. From a practical standpoint, such materials have
found a significant number of applications in several industries (which include food,
cosmetical, pharmaceutical, oil field engineering, etc.) and they are encountered in
daily life in various forms such as food pastes, hair gels and emulsions, cement, mud,
etc. More recently, hydrogels which exhibit a yield stress have found a number of
future promising applications including targeted drug delivery (Jeong et al. 1997;
Qiu and Park 2001), contact lenses, noninvasive intervertebral disc repair (Hou et al.
2004) and tissue engineering (Beck et al. 2007).

From a fundamental standpoint, yield stress materials continue triggering inten-
sive debates and posing difficult challenges to both theoreticians and experimentalists
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from various communities: soft matter physics, rheology, physical chemistry and
applied mathematics. The progress in understanding the flow behaviour of yield
stress materials made the object of several review papers (Nguyen and Boger 1992;
Coussot 2014; Balmforth et al. 2014; Bonn et al. 2017). The best known debate
concerning the yield stress materials is undoubtedly that related to the very existence
of a “true” yield stress behaviour (Barnes 1999; Barnes and Walters 1985). During
the past two decades, however, a number of technical improvements of the rheomet-
ric equipment made possible measurements of torques as small as 0.1 n Nm and of
rates of deformation as small as 10−7 s−1). Such accurate rheological measurements
proved unequivocally the existence of a true yielding behaviour (Putz and Burghelea
2009; Bonn and Denn 2009; Denn and Bonn 2011). The physics of the yielding
process itself on the other hand remains elusive. The macroscopic response of yield
stress fluids subjected to an external stress, σ, has been classically described by the
Herschel–Bulkley model (Herschel and Bulkley 1926a, b):

σ = σy + K γ̇N . (1)

Here, σy is the yield stress, γ̇ is the rate of shear, i.e. the rate at which the material
is being deformed, σ is the macroscopically applied stress (the external forcing
parameter), K is a so-called consistency parameter that sets the viscosity scale in the
flowing state and N is the power law index which characterises the degree of shear
thinning of the viscosity beyond the yield point.

In spite of its wide use by rheologists, fluid dynamicists and engineers, the
Herschel–Bulkley model (and its regularised variants, e.g. Papanastasiou 1987) is in
fact applicable only for a limited number of yield stress materials, sufficiently far from
the solid–fluid transition, i.e. when σ > σy , and in the conditions of a steady-state
forcing, i.e. when a constant external stress σ is applied over a long period of time.
The behaviour of a large number of the yield stress materials encountered in daily life
applications cannot be accurately described by the simple Herschel–Bulkley model.
This fact has initiated the “quest” for a “model” yield stress fluid.

A “model” yield stress material should fulfil a number of quite restrictive condi-
tions:

1. As the externally applied stresses are gradually increased, a solid–fluid transition
occurs at a well-defined value of the applied stress, σ = σy .

2. Past the yield point the relationship between the applied stress σ and the macro-
scopic rate of shear γ̇ follows faithfully the Herschel–Bulkley model described
by Eq. (1).

3. The solid–fluid transition is reversible upon increasing/decreasing forcing, that
is, no thixotropic effects are present.

For nearly two decades, aqueous solution of Carbopol® has been chosen as the
best candidates as “model” yield stress materials (Curran et al. 2002; Ovarlez et al.
2013). Carbopol® is the generic trade name of an entire family of cross-linked poly-
acrylic acids with the generic chemical structure H − A. Upon dissolution in water,
the polyacrylic acid dissociates as H − A ⇐⇒ H+ + A−, resulting in a mixture



Transport Phenomena in Viscoplastic Materials 169

with pH ≈ 3. Upon neutralisation with an appropriate basic solution (e.g. a sodium
hydroxide solution, NaOH) the micro-gel particles swell up to 2000 times and a
physical gel is obtained. The Carbopol gels are optically transparent, chemically sta-
ble over long periods of time which makes them ideal candidates for experimental
studies.

To illustrate the limitations of the classical Herschel–Bulkley picture in accurately
describing the solid–fluid transition even in the case of a Carbopol® gel, we discuss
below several experimental observations performed in kinematically “simple” flows
of aqueous solutions of Carbopol® that are at odds with the picture of a “model”
yield stress fluid.

1.1 Sedimentation of a Spherical Object in an
Elasto-Viscoplastic Material (Carbopol® 940)

The first experimental observation relates to the flow patterns around a spherical
object freely falling in an aqueous solution of Carbopol® 940 discussed in detail by
Putz et al. (2008).

The experiment consisted of measuring time series of the velocity fields around a
sphere freely falling in a container filled with a Carbopol® solution via digital particle
image velocimetry (DPIV). To test the reliability of the method, flow fields were first
measured in a Newtonian fluid (an aqueous solution of Glycerol), as shown in Fig. 1a.
As the Reynolds numbers (calculated using the size and the terminal speed of the
spherical object) did not exceed unity, a perfect fore-aft symmetry of the flow pattern
is observed and a quantitative agreement with the analytical solution (Landau and
Lifschitz 1987) is found, which fully confirms the reliability of both the experimental
procedure and data analysis technique.

For several cases involving different Carbopol® solutions and different sizes of
the spherical object, however, the flow patterns are strikingly different though the
Reynolds number was kept in the same range, as shown in Fig. 1b. As compared to
Newtonian flow patterns, two distinct features may be observed:

1. For each of the cases illustrated in Fig. 1b, the fore-aft symmetry of the flow
patterns is broken in spite of the laminar character of the flow.

2. For each of the cases illustrated in Fig. 1b, a negative wake manifested through a
reversal of the flow direction is clearly visible.

None of these distinctive features can be understood in the classical Bingham/
Herschel–Bulkley frameworks. Numerical simulations using either the Bingham or
the Herschel–Bulkley constitutive equations predict fore-aft symmetry of the flow
pattern (Beris et al. 1985; Fraggedakis et al. 2016). The second feature is even more
intriguing as the negative wake phenomenon has been observed in strongly elastic
shear-thinning solutions with no yield stress (Arigo and McKinley 1998).

We have proposed the following phenomenological explanations (Putz et al.
2008). Bearing in mind that the material in the fore region of the object is
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Fig. 1 Experimentally
measured flow field around a
sphere freely falling in a
Newtonian fluid (glycerol) at
Re < 1 (1a). Experimentally
measured flow fields around
a sphere freely falling in
Carbopol® solutions at
Re < 1 (1b). The radii of the
spheres and the yield stresses
of the solutions in each panel
are (1)—R = 3.2 mm,
σy = 0.5 Pa,
(2)—R = 1.95 mm,
σy = 0.5 Pa,
(3)—R = 3.2 mm,
σy = 1.4 Pa,
(4)—R = 1.95 mm,
σy = 1.4 Pa. The colour
maps in all panels refer to
the modulus of velocity and
the full lines are streamlines.
The acceleration of gravity is
oriented from right to left
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subjected to a forcing that gradually increases past the solid–fluid transition and
the aft region is subjected to a forcing that gradually decreases past the fluid–solid
transition, we have conjectured that the solid–fluid transition is not reversible upon
increasing/decreasing stresses. As the emergence of the negative wake is concerned,
we have conjectured that, around the solid–fluid transition, the elastic effects are
dominant which, in conjunction with the curvature of the streamlines, leads to the
emergence of a first normal stress difference that ultimately causes a “flow rever-
sal” or negative wake. Although quite debated for nearly a decade by part of the
viscoplastic community, these phenomenological explanations have been confirmed
by the recent numerical simulations (Fraggedakis et al. 2016).
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1.2 The Landau–Levich Experiment with an
Elasto-Viscoplastic Material (Carbopol® 980)

A second and equally simple experiment one can perform is to withdraw a vertical
plate at a constant speed U from a bath filled with a Carbopol® gel. This is referred
to in the literature as the “Landau–Levich” problem (Landau and Levich 1972). An
instantaneous flow field measured using DPIV is exemplified in Fig. 2. Similar to
the case of the sedimentation experiment previously illustrated, a negative wake is
clearly visible behind the moving plate. As in the previous case, the material located
in the wake region of the flow is subjected to a decreasing stress and gradually transits
from a fluid state to a solid one. The emergence of a negative wake is once again
associated to the presence of elasticity.

1.3 The Solid–Fluid Transition in a Carbopol® Gel Revisited

The “simple flows” examples presented above bear two common features:

1. The material is subjected to an external forcing (stress) around the solid–fluid
transition.

2. The material is forced in an unsteady manner. By this, we mean that the stress
locally applied changes with a characteristic time t0 set by the characteristic scale
of the speed U and a characteristic space scale L by t0 = L/U . In the case of the

Fig. 2 The Landau–Levich
flow problem: instantaneous
flow field around a rigid
plate being withdrawn at
constant speed from a bath
filled with a Carbopol® gel
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(a)

(b)

Fig. 3 a Schematic illustration of the controlled stress flow ramp. b Rheological flow curve mea-
sured via the controlled stress ramp illustrated in (a) for a 0.1% (wt) solution of Carbopol® 940. The
full line is a nonlinear fitting functions according to the Herschel–Bulkley model. The full/empty
symbols refer to the increasing/decreasing branches of the stress ramp schematically illustrated in
(a). The inset presents the dependence of the hysteresis area on the characteristic forcing time t0.
The full line in the inset is a guide for the eye Ph ∝ t−1

0

sedimentation problem, L is just the size of the spherical object L = R and U is
its terminal speed which, for the experiments illustrated in Fig. 1b, give t0 < 1s.

The points above prompted us to revisit the macroscopic solid–fluid transition.
The solid–fluid transition may be investigated during macroscopic rheological exper-
iments by subjecting the material to a controlled stress ramp and monitoring its
response (the rate of shear γ̇). Prior to yielding negligibly, small shear rates are mea-
sured whereas above the yield point non-zero values are recorded which allows one to
“guess” the yield point. We have implemented a rheological protocol that “mimics”
an unsteady forcing rather than following the rheological “golden rule” of imposing
a steady-state forcing (t0 →∞).

In Fig. 3b, we illustrate such measurements performed on a controlled stress
rheometer (Mars III from Thermo Fischer Scientific) equipped with a serrated plate–
plate geometry with a 0.1% (wt) solution of Carbopol® 940 by using the forcing
scheme illustrated in Fig. 3a with t0 = 0.5 s. As opposed to previous measurements
by others that seemed to indicate that the Carbopol® gels are “model” or “ideal” yield
stress fluids—i.e. free of thixotropic effects and with a rheological behaviour well
described by the Herschel–Bulkley constitutive law—the data presented in Fig. 3b
reveals the following features of the solid–fluid transition:

1. The solid–fluid transition is not direct (does not occur at a well-defined value of
the applied stress σ = σy) but gradual and spanning a finite interval of the applied
stresses.

2. The Herschel–Bulkley law describes well the rheometric response only in a range
of large applied stresses, the full line in Fig. 3b.
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3. The data corresponding to the increasing/decreasing branches of the controlled
stress ramps overlap only far above the solid–fluid transition. Additionally, a
cusp visible on the decreasing stress branch is visible. At this point, the rate of
shear γ̇ changes sign which indicates an elastic recoil effect typically observed
with viscoelastic fluids. This feature has not been reported before and may phe-
nomenologically explain the emergence of a negative wake in Figs. 2, 1b.

4. The degree of the irreversibility of the deformation states upon increasing/
decreasing forcing quantitatively described by the area of the hysteresis visible in
Fig. 3b scales as a power law with the degree of steadiness of the controlled stress
ramp t0—see the inset in Fig. 3b.

A natural question arises at this point: How universal is the irreversible flow
behaviour observed with a Carbopol® gel? To answer this question, we present
in Fig. 4 controlled rheological stress ramps performed with three microstructurally
distinct yield stress materials: a commercially available mayonnaise, a commercially

(a)

(b)

(c)

Fig. 4 Rheological flow curves measured via controlled stress ramps for various materials:
a mayonnaise (Carrefour, France) b mustard (Carrefour, France) c 0.08% (wt) aqueous solution of
Carbopol® 980. For each stress value, the response of the material was averaged during t0 = 10 s.
The range of applied stresses corresponding to the yielding transition is highlighted in each sub-
plot. The full lines are nonlinear fitting functions according to the Herschel–Bulkley model. The
full/empty symbols in each panel refer to the increasing/decreasing branches of the stress ramp
schematically illustrated in Fig. 3a
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available mustard and a different type of Carbopol® gel (Carbopol® 980). Each of
these rheological tests reveals a gradual solid–fluid transition characterised by a more
or less pronounced hysteresis that departs from the Herschel–Bulkley constitutive
relation. This indicates that, irrespective to the chemical identity of the material, the
solid–fluid transition follows a rather universal scenario. It is equally interesting to
monitor how the magnitude of the hysteresis depends on the degree of steadiness of
the external forcing—the time t0 the stress is maintained constant during the stress
ramp (see Fig. 3a).

We present in Fig. 5 the dependence of the magnitude of the rheological hysteresis
on the characteristic time t0 for each of the materials characterised in Fig. 4.

For the case of mayonnaise and mustard (the circles and the squares in Fig. 5), a
non-monotonic dependence of the magnitude of the hysteresis on the characteristic
forcing time t0 is observed. Corresponding to low values of t0 (fast forcing), the hys-
teresis area first increases and then, for large values of t0 (slow forcing), decreases
following a power law. This non-monotone behaviour agrees well with the mea-
surements of Divoux and his coworkers performed for several yield stress materials:
mayonnaise, Laponite gel and carbon black gel (Divoux et al. 2013). As pointed
out by Divoux et al. (2013), these non-monotone dependencies may be fitted by a
log-normal function (the dashed lines in Fig. 5). The presence of a local maximum
of these curves has been attributed to the existence of a critical timescale t�0 specific
to each material which describes the restructuration dynamics of the solid material
units.

It has been shown recently that a clear departure from the Herschel–Bulkley
behaviour can be observed even for “simple” yield stress fluids such as the Carbopol®

Fig. 5 Dependence of the hysteresis area on the characteristic forcing time t0 (see text for descrip-
tion) measured with several yield stress materials via controlled stress flow ramps: circle (◦)—
mayonnaise (Carrefour, France), square (�)—mustard (Carrefour, France), up triangle (	)—0.08%
(wt) aqueous solution of Carbopol® 980. The dashed lines are log-normal fitting functions (see text
for the discussion); the full lines are power law fitting functions indicated in the inserts
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gels particularly during unsteady flows taking place around the yield point (Putz and
Burghelea 2009; Weber et al. 2012; Divoux et al. 2013; Poumaere et al. 2014). The
yielding behaviour of a Carbopol® gel is illustrated here in Fig. 3b and in panel (c)
of Fig. 4. As compared to the mayonnaise and the mustard, no local maximum was
observed in the dependence of the hysteresis area on the characteristic forcing time
but a negative power law scaling which indicates that in the limit of very slow forcing
(large t0) the Carbopol® gels behave as non-thixotropic yield stress fluids.

2 Phenomenological Modelling of the Solid–Fluid
Transition in an Elasto-Viscoplastic Material

As argued in the previous section, the simple Herschel–Bulkley picture cannot accu-
rately describe the solid–fluid transition even in the case when the time-dependent
effect (thixotropy) are not very pronounced, e.g. for the case of a Carbopol® gel.
This prompted the development of more sophisticated phenomenological models. It
is widely believed that the macroscopic yield stress behaviour originates from the
presence of a microstructure which can sustain a finite local stress prior to breaking
apart and allowing for a macroscopic flow to set in. To illustrate this, we present in
Fig. 6 micrographs (acquired in a quiescent state) of several materials that exhibit
a yield stress behaviour. In spite of clear differences in the chemical nature (and,
consequently, physico-chemical properties) of these materials, heterogeneous and
soft-solid-like aggregates are visible in each of the micrographs presented in Fig. 6.
A microscopic experimental study of the yielding would require monitoring in real
time both the motion of such aggregates and the dynamics of their break-up (and,
possibly, reforming) during flow. This experimental approach is difficult to imple-
ment, and we are aware of very few previous works that describe the evolution of the
microstructure during yielding (Dimitriou and McKinley 2014). Although the struc-
tural heterogeneity and the characteristic space scales of a Carbopol® gel are quite
clearly probed by diffusion experiments (Oppong et al. 2006; Oppong and de Bruyn
2007), a detailed experimental description of the Carbopol® microstructure is still
missing. This is mainly due to practical difficulties in visualising the microstructure
without altering it Piau (2007). We present in the following a minimalistic model
that uses no explicit microstructural assumption but is yet able to describe both shear
and oscillation rheological experiments. As previously suggested by several authors
(Möller et al. 2006; Dullaert and Mewis 2006), the fluidisation process of a physi-
cal gel sample under shear can be interpreted in terms of a “dissociation” reaction,
S � S + F which can be modelled by the following kinetic equation:

dā(t)

dt
= Rd [ā(t), t, �] + Rr [ā(t), t, �] + δ, (2)

where S, F denote the solid and fluid phases, respectively, ā(t) = [S] is the concen-
tration of the solid phase, � = σ

σy
is the non-dimensional forcing parameter, Rd is
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Fig. 6 Micrographs of several yield stress materials: a commercial shaving gel (Gillette Series)
b mayonnaise (Carrefour, France) c 5% bentonite in water d suspension of Chlorella Vulgaris
unicellular microalga (reproduced from Souliès et al. 2013)

the rate of destruction of solid units, Rr is the rate of fluid recombination of fluid
elements into a gelled structure and δ is a small thermal noise term.

The exact form of the terms Rr and Rd is usually chosen on an intuitive basis: the
destruction of solid structural units increases monotonically with increasing applied
forcing, whereas the recombination probability may be even constant or monotoni-
cally decreasing with increasing forcing.

One of the simplest choices of a microstructural equation was introduced by
Coussot and coworkers (Coussot et al. 2002a).

It considers an evolution equation for a microstructural parameter λ in the fol-
lowing form:

dā

dt
= 1

τ
− αγ̇ā, (3)

where τ is a characteristic timescale of the aggregation of microstructural units and
α is a positive constant related to role of the external shear in destroying the solid
structural units. Furthermore, the model considers a viscosity function that depends
on the microstructure in the following form:
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η = η0
(
1 + ān

)
, (4)

where η0 is a constant asymptotic viscosity when the microstructure is entirely
destroyed, η0 = limā→0 η (ā).

The parameter ā can be loosely defined as the degree of flocculation for clays,
a measure of the free energy landscape for glasses or as the fraction of particles in
potential wells for colloidal suspensions (Coussot et al. 2002a). An obvious difficulty
of this microstructural approach relates to the fact that the parameter ā is not easily
accessible experimentally and, consequently, a direct comparison with rheometric
measurements remains elusive (Coussot 2007).

Due to its simplicity and formal elegance, this model is quite appealing to both
physicists and rheologists.

In a recent publication, it has been claimed that this simple microstructural model
is able to accurately fit rheological flow curves measured during a controlled stress
ramp (Dinkgreve et al. 2018)—see Fig. 7 therein. This result is highly questionable.
Even if one neglects the emergence of a hysteresis of the deformation states illustrated
in Fig. 3, far above the yield point Carbopol® gels are shear-thinning fluids. On the
other hand, in a fluid state (ā → 0) the above-mentioned model predicts a constant
viscosity η0 according to Eq. (4). This is at odds with any rheological tests performed
with Carbopol® gels we are aware of. As a cautionary note to the reader, we point
out that in spite of their appeal, phenomenological models that are too simple may
be deceptive when compared to experimental results.

We present in the following a minimalistic phenomenological model able to
describe the main features of the solid–fluid transition of a Carbopol® gel subjected
to stress (Putz and Burghelea 2009; Moyers-Gonzalez et al. 2011b).

We make the following assumptions concerning the terms Rr and Rd involved in
the microstructural equation Eq. (2):

1. Rd(ā(t), t, γ̇) is proportional to the relative speed of neighbouring solid units and
the existing amount of solid, i.e. Rd(ā(t), t, γ̇) = −g(�)ā(t) and g(�) = K1|�|
is a linear amplitude of shear-induced destruction.

2. Unlike in solutions of micelles or suspensions, where the external shear may
induce aggregation (Goveas and Olmsted 2001; Heymann and Aksel 2007), in
the case of a physical gel the rate of fluid recombination decreases with the
relative speed of neighbouring fluid elements being practically zero in a fast
enough flow. Therefore, we consider Rr (ā(t), t, �) = f (�)ā(t)(1 − ā(t)), where
f (�) = Kr

[
1 − tanh

(
�−1
w

)]
is a smooth decaying function of the applied forcing.

Here, we have considered that recombination of the gel network takes place via
binding of single polymer molecules to already existing solid blobs. Although we
are not aware of any theoretical prediction in this sense, different recombination
schemes (S + S→ S, L + L→ S, S + S + L→ S, etc.) are in principle possible
and we note here that they actually lead to a qualitatively similar behaviour of the
phase parameter ā(t).

With the assumptions above, the kinetic Eq. 2 may be written as
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dā

dt
= −Kd�ā + Kr

[
1 − tanh

(
� − 1

w

)]
ā(1 − ā) + δ. (5)

We would like to point out that a constant recombination term as previously employed
by several authors (Möller et al. 2006; Roussel et al. 2004) seems to us somewhat
unphysical in this context. Precisely, if one solves the phase equation (Eq. 5) with a
constant recombination term and a forcing parameter linearly increasing with time,
� ∝ t , one obtains a non-monotone dependence ā = ā(t) which we consider to be
unrealistic for a Carbopol® gel as it will further imply a non-monotone stress rate of
strain dependence.

The phase equation admits two steady-state solutions:

āSS1 =
{

1 − g
f , g < f

0 otherwise
, stable (6)

and

āSS2 =
{

1 − g
f , g ≥ f

0 otherwise
, unstable. (7)

It can be easily noted that the first steady state āSS1 is stable, whereas āSS2 is unstable
and their separation is insured by the small parameter δ.

As a constitutive equation, we use a thixoelastic Maxwell (TEM)-type model
(Quemada 1998a, b, 1999):

η (γ̇)

G
ā
dσ

dt
+ σ = η (γ̇) γ̇, (8)

where the viscosity is given by a regularised Herschel–Bulkley model, η =
K (ε + |γ̇|)N−1 + σy

ε+|γ̇| . Here, G is the static elastic modulus, K is the consistency,
N is the power law index and ε is the regularisation parameter (typically of order
of 10−12). A detailed discussion of several regularisation techniques is presented by
Frigaard and Nouar (2005).

The choice of this constitutive equation is motivated by the presence of elastic
effects in the intermediate deformation regime (see the cusp in decreasing stress
branch in Figs. 3b and 4c, and the corresponding discussion). It is easy to note that
in the limit ā → 1, Eq. (8) reduces to Hooke’s law, G = σγ, and in the limit ā → 0
it reduces to a regularised Herschel–Bulkley model.

A nonlinear fit of the controlled stress ramp presented in Fig. 3b is presented
in Fig. 7a (the full line). Quite remarkably, without any other adjustment of the fit
parameters, the model is able to fit controlled stress oscillatory tests performed with
the same material (Fig. 7b) and the corresponding Lissajoux figure (Fig. 7c).

A central conclusion of this part is that the usage of an evolution equation that
describes a smooth change of a microstructural parameter ā coupled to a constitutive
equation that contains information on both the viscous and the elastic behaviours
suffices to describe rheological measurements.
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(a) (b)

(c)

Fig. 7 a Rheological flow curve measured via the controlled stress ramp illustrated in Fig. 3a for
a 0.1% (wt) solution of Carbopol 940. The full/empty symbols refer to the increasing/decreasing
branches of the stress ramp schematically illustrated in Fig. 3a. b. Normalised strain measured
during a controlled stress oscillatory sweep. c Lissajoux figure corresponding to the controlled
stress oscillatory sweep. The full line in each panel is the prediction of the model

Though able to model sufficiently complex rheological data (ranging from con-
trolled stress/strain unsteady flow ramps, creep tests and oscillatory tests in a wide
range of frequencies and amplitudes), the phenomenological model has a number of
limitations:

1. As the functional dependence of the microstructural parameter Eq. (5) is generally
chosen on an intuitive basis rather derived from first principles, the model by Putz
and Burghelea (2009) can teach little about the microscopic-scale physics of the
yielding process.

2. The model involves a rather large number of parameters some of which are not
directly and easily measurable and can be obtained only by fitting the experimental
data, e.g. Kr , Kd , w.

3. The model is not inherently validated from a thermodynamical standpoint as
the choice of Rd , Rr is not made based on first principles. The second law of
thermodynamics is not necessarily satisfied and such a validation is not always
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straightforward as it requires the derivation of a thermodynamic potential (Picard
et al. 2002; Bautista et al. 2009; Hong et al. 2008).

To circumvent these limitations, we present in the next section a different and
more fundamental approach for the yielding of a soft material subjected to a varying
external stress based on principles of Statistical Physics and Critical Phenomena.

3 Microscopic Modelling for the Yielding of a Physical Gel
as a Critical Phenomenon

For a detailed account of these theoretical developments, the reader is referred to two
recent publications (Sainudiin et al. 2015b; Burghelea et al. 2017).

We propose in the following a microscopic model for the yielding or gelation,
corresponding to a approaching 0 or 1, respectively, of a physical gel using an essen-
tially bi-parametric family of a correlated site percolation that is inspired by the two-
dimensional Ising model for the +1 or −1 magnetization of a ferromagnet (Ising
1925; Stanley 1987). Our model builds on the analogy between the local agglomer-
ative interactions in terms of assembly/disassembly of neighbouring gel particles in
a microscopic gel network (see Slomkowski et al. 2011, (2.5, 2.6, 5.9, 5.9.1, 5.9.1.1,
8.1.4) and Jones (2009) for standardised nomenclature subjected to an external stress
and the local ferromagnetic interactions in terms of spin up (+1)/spin down (−1)
of neighbouring particles in a microscopic ferromagnetic network subjected to an
external magnetic field).

By the analogy with the Ising model for the ferromagnetism, we are placing the
problem of yielding of a soft solid under stress in the more general context of “Phase
Transitions and Critical Phenomena” and fully benefit from a number of theoretical
tools developed during the past five decades for gaining physical insights into the
solid–fluid transition.

This thermodynamically consistent microscopic model with only two parameters
that reflect the chemical nature of the gel and only two energy-determining con-
figuration statistics the number of gelled particles and the number of gelled pairs
of neighbouring particles is able to capture the macroscopic behaviours of yielding
and gelation for any stress regime given as a function of time, including hysteretic
effects, if any. This approach is fundamentally probabilistic and formalises Gibbs
fields as time-homogeneous and time-inhomogeneous Markov chains over the state
space of all microscopic configurations. It not only provides simulation algorithms
to gain insights but also allows one to derive an approximating nonlinear ordinary
differential equation for a(t), the expected volume fraction of the unyielded material
at a rescaled time t , which we show to be a robust qualitative determinant of the
probabilistic dynamics of the system.
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3.1 A Microscopic Gibbs Field Model for the Macroscopic
Yielding of a Yield Stress Material

Let us model an idealised yield stress material or viscoplastic fluid as a network of
microscopic constituents in an appropriate solvent that are capable of assembling
by “forming bonds” or disassembling by “breaking bonds” with their neighbours.
Without making any assumption about either the nature of the bonds or the physical
nature of the interactions among neighbouring microscopic constituents, we investi-
gate the model when the network of particles is the regular graph given by the toroidal
two-dimensional square lattice as illustrated in Fig. 8 and the bonds/interactions are
accounted for in a generic manner as detailed in the following.

Let the set of nodes or sites be

Sn = {1, 2, . . . , n}2 = {(1, 1), (1, 2), . . . , . . . , (n, n)} .

Let Ns = {r : ‖(r − s)n‖ = 1} denote the set of four nearest neighbouring sites of a
given site s ∈ Sn , where (r − s)n denotes coordinate-wise subtraction modulo n and
‖·‖ denotes the Euclidean distance. Then the set of edges between pairs of sites is

En =
⋃

s∈Sn
{〈s, r〉 : r ∈ Ns} ⊂ S

2
n .

Let |A| denote the size of the set A. Note that |Sn| = n2 and |En| = 2n2. Each site
s ∈ Sn can be thought to represent a microscopic clump of particles in a particular
region of the material and each edge 〈s, r〉 ∈ En represents a potential connection
between neighbouring clumps at sites s and r . At the finest resolution of the model,
each site can be a monomer molecule in the material and each edge can represent
a potential bond between neighbouring molecules. Let xs ∈ � = {0, 1} denote the

(a)

(b)

Fig. 8 a The regular graph represented for n = 5. The vertices labelled with 1/0 represent micro-gel
particles in a unyielded/yielded state, respectively. The labels 1/0 of the edges indicate whether two
sites are connected/unconnected. b 2D toroidal lattice suggesting the periodic boundary conditions
used through the simulations
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phase at site s. Phase 0 corresponds to being yielded or un-gelled and phase 1
corresponds to being unyielded or gelled. The phase at a site directly affects its
connectability with its neighbouring sites. We assume that only two gelled sites can
be connected with one another. Thus, the connectivity between sites s and r is given
by

y〈s,r〉 =
{

1 if r ∈ Ns and xr xs = 1

0 otherwise.
(9)

In other words, we say that sites s and r are connected, i.e. y〈s,r〉 = 1, if and only
if xs = xr = 1 and s and r are neighbours. Otherwise, we say s and r are uncon-
nected, i.e. y〈s,r〉 = 0. These definitions are schematically illustrated in Fig. 8a. Since
the phase of sites determines their connectedness, we refer to sites in phase 1 as
connectable and those in phase 0 as un-connectable. Thus, every site configuration
x ∈ Xn := �Sn has an associated edge configuration y ∈ Yn := �En which char-
acterises the connectivity information between all pairs of neighbouring sites. We
use X to denote a random site configuration and Y = Y (X) to denote the associ-
ated random edge configuration. Two extreme site configurations are 1 := {xs = 1 :
s ∈ Sn} ∈ Xn , with all sites gelled, and 0 := {xs = 0 : s ∈ Sn} ∈ Xn , with all sites
un-gelled. Their corresponding extreme edge configurations are 1 := {y〈s,r〉 = 1 :
〈s, r〉 ∈ En} ∈ Yn , with all neighbouring pairs of sites connected, thus making the
material to be in a fully solid state, and 0 := {y〈s,r〉 = 0 : 〈s, r〉 ∈ En} ∈ Yn , with all
neighbouring pairs of sites unconnected, thus making the material to be in a fully
fluid state, respectively. Note that Y (x) : Xn → Yn is neither injective nor surjective.

Let E(x) be the energy of a site configuration x , k be the Boltzmann constant
and T be the temperature. Then the probability distribution of interest on the site
configuration space Xn is

π(x) = 1

ZkT
exp

(
− 1

kT
E(x)

)
,

where ZkT is the normalising constant or partition function

ZkT =
∑

x∈Xn

exp

(
− 1

kT
E(x)

)
.

By X ∼ π, we mean that the random site configuration X has probability distri-
bution π, i.e.

Pr(X = x) =
{

π(x) if x ∈ Xn

0 otherwise .

Next we show that π is a Gibbs distribution by expressing the energy in terms of a
potential function describing local interactions. Due to {Ns : s ∈ Sn}, the neighbour-
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hood system, we have only singleton and doubleton cliques. Therefore, the Gibbs
potentials over the two types of cliques are

V{s}(x) = (σ − α)xs =
{

0 if xs = 0

σ − α if xs = 1 ,

and

V〈s,r〉(x) = −βxsxr =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if (xs, xr ) = (0, 0)

0 if (xs, xr ) = (1, 0)

0 if (xs, xr ) = (0, 1)

−β if (xs, xr ) = (1, 1) ,

where {s} is the singleton clique, 〈s, r〉 is the doubleton clique with r ∈ Ns , σ ≥ 0
is the external stress applied, α ≥ 0 is the site-specific threshold, and β ∈ (−∞,∞)

is the interaction constant between neighbouring sites. The parameters α and β can
be thought to reflect fundamental rheological properties of the material under study.

The energy function corresponding to this potential is therefore

E(x) =
∑

C

VC(x)

=
∑

s∈Sn
V{s}(x) +

∑

〈s,r〉∈En

V〈s,r〉(x)

=
⎛

⎝−β
∑

〈s,r〉∈En

xs xr + (σ − α)
∑

s∈Sn
xs

⎞

⎠ .

Since E(x), the energy of a configuration x , only depends on β and the difference
(σ − α), we can define this difference as the parameter σ̃ := σ − α ≥ −α in order
to reparametrize

E(x) =
⎛

⎝−β
∑

〈s,r〉∈En

xs xr + σ̃
∑

s∈Sn
xs

⎞

⎠ ,

through (σ̃,β) ∈ [−α,∞) × (−∞,∞).
Let the expectation of a function g : Xn → R, with respect to π, be

Eπ(g) :=
∑

x∈Xn

g(x)π(x)

then the internal energy of the system is

U = Eπ (E) =
∑

x∈Xn

E(x)π(x) ,
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and the free energy of the system is

F = −kT ln(ZkT ) .

Our model satisfies the standard thermodynamic equality:

− T 2 ∂

∂T

(F
T

)
= −T 2 ∂

∂T

(−kT ln(ZkT )

T

)
= kT 2 ∂

∂T
(ln(ZkT ))

= kT 2 1

ZkT

∂

∂T
(ZkT ) = kT 2 1

ZkT

∂

∂T

⎛

⎝
∑

x∈Xn

exp

(
− 1

kT
E(x)

)⎞

⎠

= kT 2 1

ZkT

⎛

⎝
∑

x∈Xn

exp

(
− 1

kT
E(x)

) E(x)

kT 2

⎞

⎠ =
∑

x∈Xn

E(x)π(x)

= U .

We sometimes emphasise the dependence of the energy and the corresponding
distribution upon α, β and σ by subscripting as follows:

E(x) = Eα,β,σ(x) and π(x) = πα,β,σ(x) .

Let the number of neighbours of site s that are in phase 1 be xNs :=
∑

r∈Ns
xr .

Then, Es(x), the local energy at site s of configuration x , is obtained by summing
the Gibbs potential VC(x) over all C � s, i.e. over cliques C containing site s, as
follows:

Es(x) =
∑

C�s
VC(x) = V{s}(x) +

∑

r∈Ns

V〈s,r〉(x)

= (σ − α)xs − β
∑

r∈Ns

xs xr

= xs

⎛

⎝(σ − α) − β
∑

r∈Ns

xr

⎞

⎠

= xs
(
(σ − α) − βxNs

)
.

Let (λ, x(S \ s)) denote the configuration that is in phase λ at s and identical to x
everywhere else. Then the local specification is

πs(x) = exp(− 1
kT Es(x))∑

λ∈� exp(− 1
kT Es(λ, x(S \ s)))

=
{

θ
1+θ

if xs = 0
1

1+θ
if xs = 1

, (10)
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where

θ = θ(s,α,β,σ) = exp

(
− 1

kT

(
βxNs − (σ − α)

))
. (11)

We focus on the effect of varying external stress σ at a constant ambient temperature,
and therefore without loss of generality, one may set kT = 1 and work with π(x) =
Z−1

1 exp(−E(x)).
We can think of this model as an Xn-valued Markov chain {X (m)}∞m=0, where

X (m) = (Xs(m), s ∈ Sn) and Xs(m) ∈ �, in discrete timem ∈ Z+ := {0, 1, 2, . . .}.
Let the initial condition, X (0) = x(0), be given by the initial distribution δx(0) over
Xn that is entirely concentrated at state x(0). Then the conditional probability of the
Markov chain at time step m, given that it starts at time 0 in state x(0), is

Pr { X (m) | X (0) = x(0) } = δx(0)

(
Pα,β,σ

)m
, (12)

where the |Xn| × |Xn| transition probability matrix Pα,β,σ over any pair of configu-
rations (x, x ′) ∈ Xn × Xn is

Pα,β,σ(x, x ′) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
n2

1
1+θ

if ||x − x ′|| = 1, 0 = xs �= x ′s = 1
1
n2

θ
1+θ

if ||x − x ′|| = 1, 1 = xs �= x ′s = 0
1
n2

1
1+θ

if ||x − x ′|| = 0, 1 = xs = x ′s = 1
1
n2

θ
1+θ

if ||x − x ′|| = 0, 0 = xs = x ′s = 0

0 otherwise .

(13)

θ = θ(s,α,β,σ) is indeed a function of the site s and the three parameters: α, β
and σ. By ||x − x ′|| = 1, we mean that the configurations x and x ′ differ at exactly
site s, i.e. xs �= x ′s . Similarly, by ||x − x ′|| = 0 we mean that the two configurations
are identical, i.e. x = x ′ or xs = x ′s at every site s ∈ Sn . We can think of our Markov
chain evolving according to the following probabilistic rules based on Eqs. (10) and
(11):

• Given the current configuration x , we first choose one of then2 sites in Sn uniformly
at random with probability n−2;

• Denote this chosen site by s and let the number of bondable neighbours of s be
i = Ns(x) ∈ {0, 1, 2, 3, 4}; and

• Finally, change the phase at s to 1, i.e. set xs = 1 with probability

pi := (1 + θ)−1 = (1 + θ(s,α,β,σ))−1 = 1/(1 + e(σ−α−iβ)) (14)

and set xs = 0 with probability 1 − pi .

We emphasise the dependence of pi on the parameters α, β and σ by pi (α,β,σ).
This is illustrated in Fig. 9 for different parameter values. Just as in the Ising model,
our model can be classified into three behavioural regimes depending on the sign of
the interaction parameter β. When the interaction parameter β > 0 the model is said
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Fig. 9 Plots of pi , the probability that site s with i = xNs neighbours in phase 1, is also in phase
1, as a function of external stress σ for different values of α, β. From the plots it is clear that α is a
location parameter while β controls the scale of the relative difference between pi ’s

to have “agglomerative interactions” analogous to the ferromagnetic interactions of
the Ising model whereby the probability of a site being in phase 1 increases with the
number of its neighbouring sites also being in phase 1, i.e. if β > 0, then 0 < p0 <

p1 < p2 < p3 < p4 < 1. When β = 0, the model is said to be “non-interactive”
since the probability of a site being in phase 1 is independent of the phase of the
neighbouring sites and identically p at each site, i.e. 0 < p = p0 = p1 = p2 = p3 =
p4 = 1/

(
1 + eσ−α

)
< 1. When β < 0, our model captures the “anti-agglomerative”

interactions that are analogous to the “anti-ferromagnetic” interactions of the Ising
model since the probability of a site being in phase 1 decreases with the number of
its neighbouring sites also being in phase 1, i.e. if β < 0 then 1 > p0 > p1 > p2 >

p3 > p4 > 0.

Note that our transition probabilities allow self-transitions, i.e. there is a positive
probability that we will go from a configuration x to itself. Although we think of
{X (m)}∞m=0 on the state space of all configurations Xn as a discrete-time Markov
chain, with transition probability matrix Pα,β,σ in Eq. (13), we can easily add expo-
nentially distributed holding times with rate 1 at each configuration and use Eq. (13)
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to choose a possibly new configuration and thereby obtain a continuous-time Markov
chain {X (t)}t≥0 in the usual way from {X (m)}∞m=0. This Markov chain over Xn is
nothing but our Gibbs field (or Markov random field) model (Brémaud 1999 see,
e.g. Chap. 7).

If the external stress varies as a function of discrete-time blocks of length
h = �hn2� and given by the function σ(m) for each time block m = 0, 1, . . . , M ,
then we have the time-inhomogeneous Markov chain {X (k)}Mh

k=0 with the transition
probability matrix at time k given by

P(k) = Pα,β,σ(�k/h�) , (15)

and the k-step configuration probability, with k < Mh under initial distribution δx(0),
given by

Pr
{
X (k) = x(k) | X (0) = x(0)

}

= δx(0)

⎛

⎝
�k/h�∏

m=0

(
Pα,β,σ(m)

)h
⎞

⎠ (
Pα,β,σ(�k/h�+1)

)(k)h . (16)

As before, (k)h is k modulo h.
We can use the local specification to obtain the Gibbs sampler, a Monte Carlo

Markov chain (MCMC), to simulate from {X (m)}. Let h denote the average number
of hits per site. Thus, �h |Sn|� = �hn2� gives the number of hits on all n2 sites in
Sn chosen uniformly at random. Given h and the parameters determining the local
specification, i.e. α, β and σ, GibbsSample(x(0),α,β,σ, h) produces a sample
path of configurations from the Markov chain {X (k)}mk=0 given by Eqs. (12) and (13)
and initialized at x(0) as it undergoes m = �hn2� transitions in Xn .

If we are interested in simulating configurations with stationary distribution πα,β,σ ,
then for large m = �hn2�, the m-step probabilities, Pr { X (m) | X (0) = x(0) }, by
construction will approximate samples from πα,β,σ Brémaud (1999, see, e.g. Chap. 7,
Sect. 6), i.e.

lim
m→∞ dTV

(
Pr { X (m) | X (0) = x(0) } ,πα,β,σ

) = 0 .

Here, dTV (�,π) = 2−1 ∑
x∈Xn

|�(x)− π(x)| is the total variation distance
between two distributions � and π over Xn .

Two informative singleton clique statistics of a configuration x(m) at time m are
the number and fraction of gelled sites given, respectively, by

a(x) :=
∑

s∈Sn
xs and a(x) := |Sn|−1a(x) = a(x)

n2
.
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Similarly, two informative doubleton clique statistics of a configuration x are the
number and fraction of connected pairs of neighbouring sites given, respectively, by

b(x) :=
∑

〈s,t〉∈En

y〈s,r〉 =
∑

〈s,r〉∈En

xr xs and

b(x) := |En|−1b(x) = b(x)

2n2
.

When the configuration is a function of time m and given by x(m), then the
corresponding configuration statistics are also functions of time and are given
by a(m) = a(x(m)), a(m) = a(x(m)), b(m) = b(x(m)) and b(m) = b(x(m)). The
energy of a configuration x can be succinctly expressed in terms of a(x) and b(x) as

E(x) = −βb(x) + (σ − α)a(x) = −β2n2b(x) + (σ − α)n2a(x) ,

and therefore

E(x) ∝ −2βb(x) + (σ − α)a(x) = −2βb(x) + σ̃a(x) , (17)

where β ∈ (−∞,∞) and σ̃ = σ − α ≥ −α for a given α ≥ 0. Since the energy of a
configuration x , given n, only depends on its a(x) and b(x), we can easily visualise
any sample path ( x(0), . . . , x(m) ) ∈ X

m+1
n in configuration space as the following

sequence of (m + 1) ordered pairs in the unit square:

( (
a(x(0)), b(x(0))

)
, . . . ,

(
a(x(m)), b(x(m))

) ) ∈ ([0, 1]2)m+1
.

Finally, we reserve upper case letters for random variables. Thus, A(X), A(X),
B(X) and B(X) are the statistics of the random configuration X . And the notation
naturally extends to A(m), A(m), B(m) and B(m) when X (m) is a random config-
uration at time m.

The macroscopic behaviour of a configuration x can be described by other statis-
tics of x . We can obtain the connectivity information in the site configuration x
through y, its edge configuration, according to (9). By representing the connectivity
in y and/or x as the adjacency matrix of the graph whose vertices are Sn , we can
obtain various alternative graph statistics:

1. Cx =
{
C (1)

x ,C (2)
x , . . . ,C

(ny)
x

}
, a partition of Sn that gives the set of connected

components of x ;
2. C (∗)

x = argmaxC (i)
x ∈Cx

|C (i)
x |, the first largest connected component;

3. |C (∗)
x |/n2, the size of the first largest connected component per site; and

4. F (∗)
x , the fraction of the rows of Sn that are permeated (from top to bottom)

by C (∗)
x .
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3.1.1 Equilibrium Behaviour Under Constant Stress

We are interested in the effect of applying constant external stress σ for a long period
of time to an yield stress material with rheological properties specified by parameters
α and β.

The subplot (a) of Fig. 10 approximates the time asymptotic behaviour of a when
the Monte Carlo simulation of Gibbs field was initialized from 1 ( h = 100 hits per
site were performed) and subplot (b) presents the same information when the Gibbs
field was initialized from 0. For both simulations, we have used n = 100 and (σ̃,β)

taken from a grid of linearly spaced points in [−10, 15] × [0, 4]. In both panels (a–b)
of Fig. 10, one can note that if the interaction parameter is smaller than a critical value
of the interaction parameter β < βc (βc ≈ 1.5), both the solid–fluid and fluid–solid
transitions are smooth. When the interaction parameter β is gradually increased past
this critical value both transitions become increasingly sharp.

To assess the reversibility of the deformation states in the time asymptotic limit,
we focus at the difference between the subplots (a) and (b) which is presented in
Fig. 10c. In the range β < βc, the steady-state transition from solid to fluid evolves
through the same intermediate states as the steady-state transition from fluid to solid
and no hysteresis effect can be observed. When the interaction parameter β exceeds
the critical value βc, a triangular hysteresis region may be observed in Fig. 10c.

This is an interesting result as it tells us that in the presence of strong interactions a
“genuine” hysteresis of the deformation states would be observed even in conditions
of a steady-state forcing. At a given applied stress σ̃, the size of the hysteresis region
increases when the strength of the interactions is increased.

Fig. 10 The value of a at rescaled time t = 100 from Monte Carlo simulations of the Gibbs field for
fixed parameters (σ̃,β) when initialized from 1 (panel (a)) and from 0 (panel (b)). The difference
in a between the subplots (a) and (b) is shown in panel (c). The horizontal dashed lines indicate the
critical value of the interacting parameter βc (see the discussion in the text)
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3.1.2 Configurations at the Solid–Fluid Interface

Let us now focus on the nature of the configuration x for a given β at the solid–
fluid interface, i.e. when a = 1/2, as σ̃ reaches a specific value. Site configurations
at the solid–fluid interface provide the random environment for restricted diffusion
of small tracer particles near gel transition. This phenomenon is of experimental
and theoretical interest (Oppong et al. 2006; Oppong and de Bruyn 2007; Putz and
Burghelea 2009) and has been recently studied for the case of β = 0 (de Bruyn 2013).
We are interested here in gaining insights on the nature of the site configurations at
the solid–fluid interface for values of β below, above and equal to zero.

Figure 11 shows two random site configurations at the solid–fluid interface when
a � 1/2 for three different values of β. Without loss of generality, we fixed α = 8 and
focus on the properties of the material that is capable of forming a gel in the absence
of external stress. Clearly, the site configurations are dependent on the magnitude
and sign of the interaction parameter β. Recall that a, the fraction of gelled sites, and
b, the fraction of pairs of neighbouring gelled sites, are the sufficient statistic of the
configuration, i.e. the energy of the configuration only depends on its (a, b).

Three distinct cases can be distinguished. If β = 0, the non-interactive case of the
classical site percolation model studied in de Bruyn (2013), and σ̃ is chosen so that
a = 1/2, then due to the site-filling probability being independently and identically
distributed across all n2 sites b = a2 = 1/4. Two typical configurations when β =
0, n = 100 and t = 100 at the solid–fluid interface are shown by the subplots in
the second row of Fig. 11. More configurations were visually explored, and their
distinguishing site configuration feature is characterised by the independence of the
site-filling probability over sites and is apparent by the concentration of their sufficient
statistics (a, b) about (a, a2) = (1/2, 1/4) at the solid–fluid interface. This is the
only case considered by de Bruyn (2013) when obtaining the random environment
for restricted diffusion of small tracer particles near gel transition.

When β is increased from 0 to 2, we have a very different distribution over site
configurations at the solid–fluid interface as shown by two samples in the first (top)
row of Fig. 11. It is easy to understand this “patchy” pattern in site configurations with
large positive β by realising that new gelled sites can occur with a higher probability
at sites neighbouring existing gelled sites that have a larger i = xNs , number of
neighbours in phase 1, than at sites surrounded by un-gelled sites with a smaller
i = xNs . As β gets larger, the probability of forming gelled sites around existing
gelled sites is much larger than that of forming gelled sites around un-gelled sites,
and this concentrates (a, b) about (a, a) = (1/2, 1/2) at the solid–fluid interface.

Finally, when β is decreased from 0 to −2, we have a “checkered” pattern of
site configurations at the solid–fluid interface as shown by two samples in the third
(bottom) row of Fig. 11. As β gets negative, the probability of forming gelled sites
around existing gelled sites gets much smaller (see top row of Fig. 9). In the extreme
asymptotic case, as β → −∞, we obtain configurations with increasingly checkered
patters with (a, b) → (1/2, 0), the sufficient statistics of the extreme “chessboard”
configuration (such patterns occur already for β = −8 with n = 100 but are not
shown here).
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Fig. 11 Effect of β on preferred energy minimising configurations. Two sample configurations are
shown for each β ∈ {−2, 0,+2} over a toroidal square lattice of 100 × 100 sites. Sites in phase 0
and 1 are shown in black and white, respectively, at the solid–fluid interface when a � 1/2
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Thus, from theβ-dependent site configurations at the solid–fluid interface depicted
in Fig. 11, it is clear that the trajectories of tracer particles (see Fig. 1 of Putz and
Burghelea 2009 from Oppong et al. 2006) that can only diffuse through the un-gelled
(black) contiguous regions are heavily dependent on whether there is interaction
between adjacent gelled sites. This interaction is captured in our correlated site
percolation model by the interaction parameter β.

3.1.3 Behaviour Under Varying Stress

The energy of X (t), the random site configuration at time t , depends on two of its
highly correlated statistics: A(t), the random fraction of gelled sites at time t , and
B(t), the random fraction of connected sites at time t . One of our primary interests
is to study A(t) and B(t) as X (t) is under the influence of time-varying externally
applied stress σ(t). This test will be the closest equivalent of a controlled stress ramp
typically used in experiments (see Fig. 3a in Sect. 1.3).

Using Monte Carlo simulations of the time-inhomogeneous Markov chain
{X (m)}Mh

m=0 given by Eqs. (15) and (16), under an initially increasing and subse-
quently decreasing time-dependent stress σ(m) given in the bottom panel of Fig. 12,
we obtained multiple independent trajectories of A(σ), the fraction of gelled sites as
a function of the external stress σ. Five such simulated trajectories are shown in the
first four panels of Fig. 12. In order to mimic an asymptotic steady state of deforma-
tion (which is typically what a rheologist would be interested in characterising during
a rheological measurement), the holding time per stress value has been chosen large,
h = 1000 hits per site. We note that regardless the value of the interaction param-
eter β the results of the five individual simulations overlap nearly perfectly which
indicates that the grid size of the simulation is sufficiently large and the simulated
trajectories are robust.

For low values of the interaction parameter (β ∈ {0, 1}, top row of Fig. 12), the
dependence a(σ) corresponding to the decreasing branch of the stress ramp overlaps
with that corresponding to the increasing branch and no hysteresis is observed. This
indicates that in the presence of weak interactions and provided that an asymptoti-
cally steady state is reached the deformation states are fully reversible upon increas-
ing/decreasing the external forces. In this case, a smooth solid–fluid transition is
observed.

As the value of the interaction parameter is increased (β ∈ {2, 4}, middle row of
Fig. 12), a significantly different yielding behaviour is observed. First, the deforma-
tion states are no longer reproducible upon increasing/decreasing stresses and a clear
hysteresis is observed. Second, the larger the value of the interaction parameter is,
the steeper the solid–fluid transition becomes.

To conclude this part, the realisations of the time-inhomogeneous Markov chain
under time-dependent stress σ(m) corresponding to an asymptotically steady forc-
ing reveal a smooth and reversible solid–fluid transition if the interactions are either
absent or weak and a steep and irreversible transition in the presence of strong inter-
actions. This result is consistent with the result presented in Fig. 10 where we have
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Fig. 12 Results of five distinct Gibbs field simulations corresponding to an increasing/decreasing
stress ramp (illustrated in the bottom panel) with α = 8 and β ∈ {0, 1, 2, 4} indicated on the top of
each panel). The stress was increased from 0 to 25 in units of 0.01 and decreased back to 0 with a
holding time of h = 1000 (nearly asymptotic state for each value of the applied stress) as the site
configuration varied from 1 to 0 and then back to 1. The arrows indicate the increasing/decreasing
branches of the stress ramp

seen that for β > βc a genuine irreversibility of the deformation state is observed
during the steady yielding process. An experimental validation of these conclusions
has been recently presented in Souliès et al. (2013). The rheological flow curves
measured for a suspension of spherical and electrically charged non-motile microal-
gae (Chlorella Vulgaris) reveal an abrupt solid–fluid transition and exhibit a strong
hysteresis even in the limit of very slow forcing, see Fig. 11 in Souliès et al. (2013).
In the case of a Carbopol gel where the microscopic interactions are presumably
weaker than the interactions between electrically charged Chlorella cells, a much
smoother solid–fluid transition is observed and, in the asymptotic limit of steady
forcing, the hysteresis effects become negligibly small, Putz and Burghelea (2009).
This is perhaps the main reason why Carbopol gels have been considered for decades
“model”, “simple” or “ideal” yield stress fluids.



194 T. Burghelea

3.1.4 Effect of Holding Time (Steadiness of the External Forcing)
on the Hysteresis

A large number of flows of yield stress fluids are unsteady in the sense that the applied
stress is maintained for a finite time t0. For the case of a rheometric configuration, we
have illustrated the unsteady response of the material in Figs. 3b and 4. An important
feature of the deformation curves presented in these figures is the irreversibility of
the deformation states upon increasing/decreasing applied stresses. The magnitude
of this effect is found to depend systematically on the degree of steadiness of the
forcing, the time t0 the applied stress is maintained constant (Fig. 5).

The question we address in the following is to what extent is the Gibbs field
model able to describe the unsteady yielding behaviour observed in macroscopic
experiments, see the discussion in Sects. 1 and 2. To answer this question, we calcu-
late trajectories a similar to those presented in Fig. 12 which are realised during an
increasing/decreasing stress ramp (bottom panel).

To place ourselves in the conditions of an unsteady forcing, we chose during the
simulations finite values of the holding time (or average number of hits per site). We
note that the average holding time per site in our simulations is the closest equivalent
we could find for the characteristic forcing time t0 imposed during macroscopic
rheological measurements (Figs. 3b and 4 and the discussion in Sect. 1). To quantify
the degree of reversibility of the deformation states, we calculate after each run the
area of the hysteresis encompassed by the increasing/decreasing branches of the
dependence a = a(σ).

The dependencies of the hysteresis area on the holding time obtained from such
simulations performed for a fixed value of the site threshold α and several values of
the interaction parameter β are presented in Fig. 13.

Fig. 13 Effect of increasing
β on the relative hysteresis
area for a for different
holding times t0 per stress
level in a stress ramp from 0
to 25 in increments of 1
(with α = 8). The dash line
is a log-normal fit and the
full lines are the fitted power
laws indicated in the inserts.
The symbols refer to the
value of the interaction
parameter β: circles
(◦)—β = 0, up triangles
(	)—β = 1.5, down
triangles (�)—β = 3,
hexagons (�)—β = 3.5
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Regardless of the strength β of the interaction, a non-monotone dependence of the
hysteresis area on the holding time is obtained. By carefully inspecting the individual
dependencies a = a(σ), we have noticed that prior to the local maximum the lattice
yields only partially (a never reaches 0) corresponding to the largest value of the
applied stress σ. Corresponding to the local maxima t�0 of the dependencies presented
in Fig. 13, the lattice yields completely (the terminal value of a is 0) and the area of
the hysteresis starts decaying with the holding time t0. This behaviour of the degree
of irreversibility of deformation states as a function of the steadiness of the forcing
is qualitatively similar to the experimental results illustrated in Fig. 5. In the absence
of interactions (β = 0), the hysteresis area follows a log-normal correlation with the
holding time (see the circles and the dashed line in Fig. 13), which once more comes
into a qualitative agreement with the experimental results. For non-zero values of β,
we could not accurately fit the data by a log-normal function. Corresponding to the
largest values of the average number of hits per site we have tested, we have found a
power law decay of the hysteresis area, the full lines in Fig. 13), which is once again
similar to the behaviour illustrated in Figs. 3b and 4 and consistent with experimental
results obtained with Carbopol gels (Putz and Burghelea 2009; Poumaere et al. 2014).

It is equally interesting to note that the stronger the interaction is (larger the param-
eter β is), the weaker the decay of the hysteresis area with the characteristic forcing
time t0 is. This indicates that in the presence of strong interactions a full reversibility
of the deformation states cannot be achieved regardless of the degree of steadiness
of the external forcing. This is indeed the case of several highly thixotropic materials
such as bentonite gels, Laponite gels where steady-state rheological measurements
cannot be truly achieved even during very slow controlled stress flow ramps. Among
the data we illustrate in Figs. 4 and 5, the mayonnaise seems to behave as such as
well.

3.2 A Nonlinear Dynamical System Approach for the
Yielding Behaviour of a Viscoplastic Material

Though able to capture most of the relevant features of the solid–fluid transition
in a thermodynamically consistent manner and making use of solely two internal
parameters, the microscopic Gibbs field model presented in the previous section is
rather difficult to implement and requires a number of skills in both statistics and
programming. As practical applications regarding the dynamics of the solid–fluid
transition in a pasty materials are concerned, one would often prefer dealing with
a continuum microstructural equation with a general form given by Eq. (2) which,
unlike the simple phenomenological model described in the second part of Sect. 2,
is derived from first principles.
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Here, based on the microscopic Gibbs field model, we derive a nonlinear first-order
differential equation to asymptotically approximate E(A(t)), the expected fraction
of sites in the solid phase, in continuous time t that is measured in units of n2 discrete
time steps as the number of sites n2 →∞, under a fixed externally applied stress σ
and fixed rheological parameters α and β.

First, consider the discrete-time Markov chain {X (m)}∞m=0 of Eqs. (12) and (13)
and recall that X (m) is the random site configuration of the chain at discrete time
m and A(m) = ∑

s Xs(m) is the number of sites that are in phase 1. We will derive
the approximation first for the case when β = 0 in Eq. (13) and then for the general
setting of β �= 0.

3.2.1 Non-interactive Case with β = 0

If β = 0 then the probability of the phase in site s at the next time step is independent
of the current configuration, i.e.

Pr
{
Xs(m + 1) = xs(m + 1) | X (m) = x(m)

}

= Pr
{
Xs(m + 1) = xs(m + 1)

}

=

⎧
⎪⎨

⎪⎩

p = (
1 + eσ−α

)−1
if xs(m + 1) = 1

1 − p = 1 − (
1 + eσ−α

)−1
if xs(m + 1) = 0

0 if xs(m + 1) /∈ {0, 1} .

Therefore, the probability that the total number of sites in phase 1 increases by 1 in
one time step is obtained by adding the probability of a transition from phase 0 to
phase 1 over every uniformly chosen site s as follows:

Pr {A(m + 1) = a(m) + 1 | A(m) = a(m)}
=

∑

s∈Sn
Pr {Xs(m + 1) = 1, Xs(m) = 0, S = s | A(m) = a(m)}

=
∑

s∈Sn
Pr {Xs(m + 1) = 1 | Xs(m) = 0, S = s, A(m) = a(m)}︸ ︷︷ ︸

p

× Pr {Xs(m) = 0 | S = s, A(m) = a(m)}︸ ︷︷ ︸
(n2−a(m))/n2

× Pr {S = s | A(m) = a(m)}︸ ︷︷ ︸
1/n2

=
∑

s∈Sn
p

(
1 − a(m)

n2

)
1

n2
= p (1 − a(m)) .
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Dividing both sides of the equality that defines the above event by n2, we get

Pr
{
A(m + 1)/n2 = a(m)/n2 + 1/n2 | A(m)/n2 = a(m)/n2

}

= Pr
{
A(m + 1) = a(m) + 1/n2 | A(m) = a(m)

} = p (1 − a(m)) .

By an analogous argument, we can obtain the probabilities for the remaining two
possibilities

Pr
{
A(m + 1) = a(m)− 1/n2 | A(m) = a(m)

} = (1 − p)a(m) ,

Pr
{
A(m + 1) = a(m) | A(m) = a(m)

} = pa(m) + (1 − p)(1 − a(m)) .

Now we can define a continuous-time Markov chain {A(t)}t≥0 on the unit interval
[0, 1] by a rescaling of the discrete-time Markov chain {A(m)}∞m=0 and letting the
number of sites n2 →∞. These two Markov chains are notationally distinguished
only by their time indices. The rescaled time t is m in units of n2, i.e. m = �tn2� and
m + 1 = �(t + 1/n2)n2�. Then by taking �t = O(1/n2) and letting

�A = A(t + �t ) − a(t) = A(�(t +�t )n
2�) − a(�tn2�) ,

we get

Pr

{
�A

�t
= �a

�t

∣∣∣∣ A(t) = a(t)

}

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p (1 − a(t))+ O(�t ) if �a
�t

= 1

(1 − p)a(t) + O(�t ) if �a
�t

= −1

pa(t)+ (1 − p)(1 − a(t))+ O(�t ) if �a
�t

= 0

O(�t ) otherwise .

(18)

Finally, by considering the instantaneous rate of change of the expected fraction of
sites in phase 1

d

dt
a(t) := lim

�t→0
E

(
A(t +�t ) − A(t)

�t
| A(t)

)

,

we get the limiting differential equation approximation as

n2 →∞, �t → 0, �a → 0 ,

such that
Pr{�a/�t ∈ {0,−1,+1} } → 1
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based on Eq. (18) as follows:

ȧ = d

dt
a(t) = p(1 − a(t))− (1 − p)a(t) = p − a(t) ,

or simply by
ȧ = p − a = (1 + eσ−α)−1 − a . (19)

The simple relationship above is mathematically very similar to the so-called
“lambda-model” introduced by Coussot et al. (2002a, b) with the remark that we
consider the stress σ as a forcing parameter rather than the rate of deformation.
Given the initial condition a(0) = a0, the analytic solution is

a(t) = p + (a0 − p)e−t = (1 + eσ−α)−1 + (a0 − (1 + eσ−α)−1)e−t

with only one asymptotically stable fixed point

a∗ = p = (1 + eσ−α)−1 . (20)

Thus, a(t) in the above differential equation is the expected fraction of sites in phase
1 at time t in the limit of an infinite toroidal square lattice with |Sn| = n2 →∞ and
a realisation of the continuous-time Markov chain {A(t)}t≥0 is a(t). Since β = 0,
the probability of a site being in a given phase is independent of the phases of
its neighbouring sites. Thus, we can obtain b(t), the expected fraction of bonds,
by simply multiplying a(t), the probability of finding a randomly chosen site in
phase 1, by itself, i.e.

b(t) = a(t)2 and b
∗ = (

a∗
)2

. (21)

3.2.2 Interactive Case with β �= 0

If β �= 0, then the probability of site s being in phase 1 at time m + 1 depends
on the configuration of the neighbouring sites of s at time m through XNs (m) =∑

r∈Ns
Xr (m), the number of neighbouring sites of s in phase 1 at time m.

Pr
{
Xs(m+1) = xs(m + 1) | X (m) = x(m)

}

= Pr
{
Xs(m + 1) = xs(m + 1) | XNs (m) = i

}

=

⎧
⎪⎨

⎪⎩

pi =
(
1 + eσ−α−iβ

)−1
if xs(m + 1) = 1

1 − pi = 1 − (
1 + eσ−α−iβ

)−1
if xs(m + 1) = 0

0 if xs(m + 1) /∈ {0, 1} .
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Thus the probability that the phase changes from 0 to 1 in one time step at site s
given that a(m) is the total number of sites in phase 1 at time m is

Pr
{
Xs(m + 1) = 1, Xs(m) = 0 | S = s, A(m) = a(m)

}

=
4∑

i=0

Pr
{
Xs(m + 1) = 1, XNs (m) = i, Xs(m) = 0

| S = s, A(m) = a(m)}

=
4∑

i=0

Pr
{
Xs(m + 1) = 1 | XNs (m) = i,

Xs(m) = 0, S = s, A(m) = a(m)}︸ ︷︷ ︸
pi

×Pr
{
XNs (m) = i | Xs(m) = 0, S = s, A(m) = a(m)

}

× Pr {Xs(m) = 0 | S = s, A(m) = a(m)}︸ ︷︷ ︸
(n2−a(m))/n2=1−a(m)

.

Since there are 4!/((4 − i)!i !) distinct neighbourhood configurations with i of the
four nearest neighbours of site s in phase 1, one can make the following approximation
for Pr

{
XNs (m) = i | Xs(m) = 0, S = s, A(m) = a(m)

}
in the above expression and

obtain

Pr
{
Xs(m + 1) = 1, Xs(m) = 0 | S = s, A(m) = a(m)

}

=
4∑

i=0

pi (1 − a(m))

×Pr
{
XNs (m) = i | Xs(m) = 0, S = s, A(m) = a(m)

}

�

4∑

i=0

pi
(
1−a(m)

) (
4
i

)
(a(m))i (1 − a(m))4−i .

Therefore, the probability that the total number of sites in phase 1 increases by 1 in
one time step is obtained by adding the probability of a transition from phase 0 to
phase 1 over every uniformly chosen site s as follows:
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Pr
{
A(m + 1) = a(m)+ 1 |A(m) = a(m)

}

=
∑

s∈Sn
Pr

{
Xs(m + 1) = 1, Xs(m) = 0, S = s | A(m) = a(m)

}

=
∑

s∈Sn
Pr

{
Xs(m + 1) = 1, Xs(m) = 0 | S = s, A(m) = a(m)

}

×Pr {S = s | A(m) = a(m)}︸ ︷︷ ︸
1/n2

�

∑

s∈Sn

( 4∑

i=0

pi
(
1 − a(m)

) (
4
i

)
(a(m))i (1 − a(m))4−i

)
1

n2

= (
1 − a(m)

) 4∑

i=0

pi

(
4
i

)
(a(m))i (1 − a(m))4−i .

Dividing both sides of the equality that defines the above event by n2, we get

Pr
{
A(m + 1) = a(m)+ 1/n2 | A(m) = a(m)

}

� (1 − a(m))

4∑

i=0

pi

(
4
i

)
(a(m))i (1 − a(m))4−i .

By an analogous argument, we can obtain the probability that A(m + 1) decreases
by 1/n2 as

Pr
{
A(m + 1) = a(m)− 1/n2 | A(m) = a(m)

}

� a(m)

4∑

i=0

(1 − pi )

(
4
i

)
(a(m))i (1 − a(m))4−i .

Using the same limiting approximation in the previous section, we can obtain the
following differential equation approximation for a = a(t) one obtains:

ȧ = d

dt
a(t)

= (1 − a)
(
p0 (1 − a)4 + p1 4a(1 − a)3

+p2 6a2(1 − a)2 + p3 4a3(1 − a) + p4 a4)

− a
(
(1 − p0) (1 − a)4 + (1 − p1) 4a(1 − a)3

+ (1 − p2) 6a2(1 − a)2 + (1 − p3) 4a3(1 − a)

+ (1 − p4) a4)
)

.
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This simplifies after factoring and extracting coefficients of a as follows:

ȧ(t) = p0 − (4 p0 − 4 p1 + 1)a + 6 (p0 − 2 p1 + p2)a2

− 4 (p0 − 3 p1 + 3 p2 − p3)a3

+ (p0 − 4 p1 + 6 p2 − 4 p3 + p4)a4 . (22)

We can understand Eq. (22) directly as a quartic polynomial in a whose coefficients
are given by an alternating binomial series corresponding to the increase and decrease
in a based on a combinatorial averaging over the transition diagram of site configu-
rations at the four nearest neighbours of a given site.

We now focus on the stability of the fixed points of the evolution equation for the
volume of fraction of solid ā (Eq. 22). In the left panel of Fig. 14, we present three
different stability scenarios for the fixed points of Eq. (22) in the (σ̃,β) plane: (i) In
the blue-shaded region, the right-hand side of Eq. (22) has four real roots and only
one of them is in [0, 1]; this fixed point is stable. (ii) In the yellow region, starting
at point (2.589145, 1.2945725), we have four distinct real roots with three of them
in [0, 1]. Only one of the three distinct real roots is an unstable fixed point, while
the other two roots are stable fixed points. This naturally corresponds to a family of
pitchfork bifurcations and the associated hysteresis depending on where the system
is initialised from. (iii) The unshaded region in the left panel of Fig. 14 corresponds to
the parameter space where the quartic discriminant �4 is negative and thus implying
the existence of two real roots (with one of them in [0, 1], stable fixed point) and two
complex conjugate roots.

The real roots and their derivatives over each (σ̃,β) in a grid of parameter
values from [−8, 12] × [−4, 4] were obtained through interval analytic methods
(Hofschuster and Krämer 2003).

Figure 15 shows the set of fixed points a∗ of the dynamical system as a function
of (σ̃,β). The parameter space corresponding to the central shaded region of Fig. 14
containing the line β = σ̃/2 is evident in Fig. 15 with three fixed points in [0, 1]. The
pitchfork bifurcations along the plane σ̃ = 2β or β = σ̃/2 determined by the non-
negative sign of the cubic discriminant along the black line in Fig. 14 is displayed
to highlight the dynamics with one unstable fixed point at 1/2 and two other stable
fixed points that are equidistant on either side of 1/2.

We are interested in varying the externally applied stress σ for a given material
characterised by fixed rheological parameters α and β. This amounts to varying σ̃
for a fixed β since the fixed α is absorbed into σ̃ = σ − α. The asymptotic dynamics
when we apply a constant external stress for a long period of time are given by the
fixed points a∗ in Fig. 15. Note that the ODE model for β �= 0 is only in qualita-
tive agreement with a(t), the expected volume fraction of the unyielded material at
time t . This is because we are ignoring the dependent statistic b(t), the expected
fraction of bonds or pairs of neighbouring unyielded material at time t . Despite this
simplification, as we will see through this section, there is qualitative agreement
between the ODE and the Gibbs simulations presented in Sect. 3.1. Furthermore, an
admittedly ad hoc correction of the ODE through a translation of the vector field by
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Fig. 14 Four real roots of the quartic occur in the shaded regions (blue and yellow) over σ̃ = σ − α
and β is shown in the left panel. The black line is β = σ̃/2 started at (2.589145, 1.2945725). The
parameter space with only three distinct real roots in [0, 1] is shown in the right panel

(α0,β0) even improves the quantitative approximation. We postpone a formal quan-
titative approximation of the ODE using perturbation theoretic methods to the future
and focus here on obtaining insights from the Gibbs sampler that is in qualitative
agreement with the ODE approximation.

3.2.3 Comparison Between Microscopic Gibbs Field Model Described
in Sect. 3.1 and ODE Approximation Under Varying Stress

The energy of X (t), the random site configuration at time t , depends on two of
its highly correlated statistics: A(t), the random fraction of gelled sites at time t ,
and B(t), the random fraction of connected sites at time t . One of our primary
interests is to study A(t) and B(t) as X (t) is under the influence of time-varying
externally applied stress σ(t). Using Monte Carlo simulations from Algorithm 2
in Sainudiin et al. (2015a) of the time-inhomogeneous Markov chain {X (m)}Mh

m=0,
under a time-dependent stress σ ramp, we can obtain multiple independent trajec-
tories of A(σ), the fraction of gelled sites as a function of the external stress σ.
This is to emulate conditions of an unsteady forcing during macroscopic rheological
measurements. In the following, h is the average hits per site in the Gibbs sam-
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Fig. 15 The fixed points a∗ as a set-valued function of the parameters σ̃ = σ − α and β. The
blue, black and azure points are the stable fixed points, while the red and green points are the
unstable fixed points of the system. There is a pitchfork bifurcation along σ̃ = 2β that starts at
(2.589145, 1.2945725) where the fixed point at 0.5 becomes unstable with two stable fixed points
on either side

pler algorithm and we define it also as the characteristic forcing time t0 for the stress
ramp in our ODE simulations. We set h = 1000 in order to reach steady state for each
value of σ. In Fig. 16, the trajectories are shown as thin lines and the curves for the
ODE approximation have the� symbol on them. Note the reversibility of the response
of the material when β ∈ {0, 1} (top row of Fig. 16) upon increasing/decreasing
applied stresses. The microscopic model and the ODE approximation quantitatively
agree quite well when β < βc (βc ≈ 1.3), the threshold for three fixed points in [0, 1]
for the ODE model. As we increase β beyond the aforementioned threshold βc, we
see that irreversible behaviour in the material appears and the comparison between
the two models (discrete and continuous) is only qualitative in nature. This is due to
the fact that our ODE approximation only models a, instead of modelling the depen-
dent pair (a, b) that is sufficient for the energy, see Sect. 3.1. This effect can also be
seen if we compare the right panel of Fig. 14 with Fig. 10c. Clearly, the light region of
Fig. 10c corresponds to the yellow region where the hysteresis is always present. The
main discrepancy is the value of βc. In the ODE approximation, the calculated value
is βc ≈ 1.3, whereas from the Gibbs sampler simulations one obtains βGS

c ≈ 1.5. As
mentioned above this difference is due to the fact that in the ODE approximation
all bond interactions between neighbours have been disregarded. Further details on
improving the agreement between the predictions of the approximating nonlinear
dynamical system model with those of the Gibbs field model are given in Sect. 4.4
and in Fig. 9 of Sainudiin et al. (2014).

As a qualitative remark, one can note that even in the presence of strong inter-
actions β > βc, both models predict an increase of the steepness of the solid–fluid
transition (defined as the slope of the dependence ā(t) on σ around the point where
ā ≈ 1/2).
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Fig. 16 Gibbs field and ODE approximation simulations with α = 8 and β ∈ {0, 1, 3}. The stress
was increased from 0 to 25 in units of 0.01 and decreased back to 0 with a holding time of t0 = 1000
(nearly asymptotic state for each distinct stress) as the site configuration varied from 1 to 0 and then
back to 1. The curves with the symbol (�) are the ODE simulations

3.2.4 Comparison Between Model by Putz and Burghelea
Putz and Burghelea (2009) and ODE Approximation

In this section, we will consider the model developed by Putz and coworkers (Putz and
Burghelea 2009; Moyers-Gonzalez et al. 2011b). As already highlighted in Sect. 2,
this model is phenomenological in the sense that, unlike the Gibbs field model pre-
sented in Sect. 3.1 it is not derived from first principles. In this type of modelling, one
mimics the behaviour of the microstructure through the definition of a macroscopic
structural variable with range in [0, 1], where 0 means completely unstructured or
fluid and 1 means completely structured or solid. As explained in Sect. 2, the struc-
tural variable ap satisfies a kinematic equation and usually depends explicitly on the
stress and/or rate of strain. In the case of the model by Putz and Burghelea (2009),
we have
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Fig. 17 Comparison between ODE approximation and the model by Putz and Burghelea (2009)
detailed in Sect. 2 for different holding times t0. ODE model with α = 8 and β = 1, the model
by Putz and Burghelea (2009) with kd = kr = 0.3, w = 0.5 and σy = 10. Full lines are the ODE
approximation and broken lines the model by Putz and Burghelea (2009)

d

dt
ap(t) = kr

[
1 − tanh

(
σ − σy

w

)]
(1 − ap(t))

− kd

[
1 + tanh

(
σ − σy

w

)]
ap(t), (23)

where kr is the rate of recombination of microstructural units, kd is the rate of
destruction of the solid phase, σy is the yield stress and w is a constant that controls
how steep the change in the microstructure from solid to fluid and fluid to solid is.

In Fig. 17, we present the simulations of Eqs. (22) and (23) for three characteristic
forcing times t0. As expected we have very good agreement between the models.
This could be considered as a qualitative “proof ” that the phenomenological models
can actually approximate the behaviour of the microscopic models derived from first
principles.
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3.2.5 Determination of the Yield Point in the Limit of a Steady-State
Forcing

A reliable estimation of the yield point is important to many practical applications
involving yield stress materials. This is typically done by fitting steady-state rheolog-
ical measurements with models with various degrees of complexity ranging from the
mathematically simple and classical Herschel–Bulkley correlation up to structural
models. Thus, it appears natural to attempt in the following to obtain an estimate of
the yield point for the case of a steady-state forcing from the nonlinear dynamical
system model presented herein.

To get an approximation for the yield point σy during a steady-state forcing pro-
cess, we will make the assumption (well supported by the results presented in Figs. 12
and 17) that, corresponding to the yield point, the absolute value of the slope of the
dependence ā∗(σ) passes through a maximum:

∣∣∣∣
dā∗

dσ

∣∣∣∣
σ≈σy�−→ Max . (24)

For simplicity, let us focus first on the non-interacting case, β = 0. From Eq. (20),
one can readily show that the condition given in Eq. (24) reduces to σy = α. Thus,
in the non-interactive case, the yield point obtained during a steady-state stressing
practically coincides with the site-specific threshold α of the Gibbs field model.

We now consider the interactive case β �= 0. To a leading order in ā∗ and assuming
that around the yield point ā∗ ≈ 1/2, it can be shown using Eq. (22):

dā∗

dσ̃

∣∣
∣∣
σ≈σy

≈ eσ̃

[
1

(
1 + eσ̃

)2 − 2
e−β

(
1 + eσ̃e−β

)2

]

. (25)

Fig. 18 Dependence of the
approximate yield stress
shifted by the site-specific
threshold σ̃y = σy − α on
the interaction parameter β.
The dashed line is σ̃y = β,
and the dash-dotted line is
σ̃y = 2β. The circles mark
the critical point
corresponding to βc ≈ 1.3
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The implicit dependence of the approximate yield stress σ̃y on the interaction
parameter β may be obtained by solving numerically

∣∣ dā∗
dσ̃

∣∣ = 0. The result is pre-
sented in Fig. 18. For interactions weaker than the critical threshold βc, the appar-
ent yield stress scales as σ̃y = σ − α = β (the dash-dotted line in Fig. 18). Beyond
this threshold, the scaling becomes steeper, σ̃y = σ − α = 2β (the dashed line in
Fig. 18). To conclude this part, the yield stress assessed via steady-state controlled
stress ramps is (according to our model) expected to depend linearly on both the
site-specific threshold α which may be intuitively understood as a measure of the
strength of the microscopic constituents of the fluid and the strength β of their inter-
action and the slope of this behaviour switches when the strength of the interaction
passes through the threshold β = βc.

In Fig. 19, we investigate the dependence of right-hand side of Eq. (25) with
respect to σ̃ (left panel) and with respect to β (the right panel).

Regardless of the value of the interaction parameter, the stress dependence of
the slope passes through a local maximum marked by a full symbol in Fig. 19a. As
previously explained, this may be considered as an indicator of the yield point. While
β increases, the location of this maximum shifts towards larger stress values as already
illustrated in Fig. 18. The value of this maximum slope increases monotonically
with β, as shown by the dashed line in Fig. 19a. As we approach βc, the slope
diverges Fig. 19b. This is consistent with the fact that our steady solution becomes
discontinuous as a function of σ̃. Recall that we have a pitchfork bifurcation with
stable fixed points {0, 1}; hence, the value of σy is not unique and depends on the
initial condition.

(a) (b)

Fig. 19 a Dependance of the slope of ā∗ on the applied stress on the yield stress for various values
of β ranging from 0 to 2 (β increases from bottom to top). b Dependance of the maximum value of

the slope dā∗
dσ̃

∣∣
∣
σ≈σy

given by Eq. 24 calculated around the yield point on the interaction parameter β
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3.2.6 Description of Linear Controlled Stress Flow Ramps

To demonstrate the practical usefulness of our approach, we focus in the following
on the description of an experimentally measured data set acquired during a linear
controlled stress flow ramp with a 0.2% (wt) aqueous solution of Carbopol 980,
the symbols in Fig. 20. The characteristic forcing time for the rheological test was
t0 = 2 s, and the empty/full symbols refer to the increasing/decreasing branch of
the stress ramp. As already pointed out, the control parameter of our model is an
energy supplied to the lattice rather than a true stress. Yet, in order to describe a
one-dimensional data set, one can interpret the stress as the energy supplied per unit
volume of material and attempt to couple the evolution equation for the number of
sites in a gelled state to a constitutive relation.

To describe the experimentally measured flow ramp, Eq. (22) describing the evo-
lution of the microstructural parameter ā(t) is complemented by a Maxwell-type
thixoelastic constitutive equation (as in the case of the model by Putz and Burghelea
(2009) discussed in Sect. 2):

η(γ̇)

G
ā
dσ

dt
+ σ = η(γ̇)γ̇, (26)

where G is the elastic modulus, γ̇ is the rate of shear and η(γ̇) = K γ̇N−1 + σy
1−e−m|γ̇|

|γ̇|
is a Papanastasiou regularised Herschel–Bulkley viscosity function.

The best fits using both the model by Putz and Burghelea (2009) and the current
approach are presented in Fig. 20 as full and dashed lines, respectively.

The fit parameters for the model (the full line in Fig. 20) are σu
y = 66.2 Pa, σd

y =
63.45 Pa, kud = kdd = 0.1s−1, kur = 0.263 s−1, kdr = 0.95 s−1, wu = 0.93 Pa, wd =
0.143 Pa, Nu = Nd = 0.31, Ku = 24.33 PasN , Kd = 27.12 PasN , Gu = 2036 Pa
and Gd = 457 Pa.

Fig. 20 Flow curve
measured for increasing
(empty symbols) and
decreasing (full symbols)
values of the applied stress.
The full line is a fit by the
model by Putz and
Burghelea (2009), and the
dashed line is the prediction
of the nonlinear dynamical
system model
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The fit parameters for the nonlinear dynamical system approach (the dashed line
in Fig. 20) are σu

y = 64.38 Pa, σd
y = 63.48 Pa, αu = 64.72, αd = 62, βu = 0.73,

βd = 0.98, Nu = 0.31, Nd = 0.3, Ku = 26.21 PasN , Kd = 27 PasN , Gu = 3929 Pa
and Gd = 451 Pa.

The goodness of the fit by the current model is comparable to that by the model (the
PMM , see Sect. 2) which demonstrates the practical usefulness of this approach. It is
equally worth noting that, for the Carbopol gel used in the rheological test illustrated
in Fig. 20, the interactive parameter β obtained for each branch of the stress ramp is
smaller than the critical value βc ≈ 1.3 that defines the cross-over from a reversible
to irreversible yielding scenario. This indicates that the Carbopol gels fall into the
class of weakly interactive viscoplastic materials that show no thixotropic effects in
the limit of a steady-state forcing.

To conclude this section, a fundamental understanding of the yielding of a vis-
coplastic material may be obtained via a probabilistic approach developed using
the main tools of the Statistical Physics similar to the Ising model of magnetisation.
Unlike the phenomenological approaches that typically involve a rather large number
of parameters some of which have an unclear physical meaning (and, consequently,
are difficult to assess experimentally), this approach involves only two internal param-
eters: a site-specific threshold and the strength of interaction of neighbouring building
blocks of the viscoplastic material. These two parameters are responsible for a num-
ber of experimentally observed features of the solid–fluid transition: its onset (the
yield stress), its reversibility upon increasing/decreasing stresses and its steepness.

4 Viscoplasticity and Hydrodynamic Stability

The flows discussed so far through this chapter were hydrodynamically stable and the
only source of nonlinearity in the momentum equation was related to the constitutive
relation describing the viscoplastic material. The aim of this section is to introduce
the reader into the hydrodynamic stability of yield stress materials. We discuss two
distinct types of instabilities involving viscoplastic materials. In Sects. 4.1, 4.2, we
discuss the inertial instability of flows of a viscoplastic material in a pipe flow and
in a plane channel flow, respectively. In Sect. 4.3, we discuss a low Reynolds num-
ber hydrodynamic instability triggered by a fast chemical reaction occurring at the
interface between two fluids which locally creates a yield stress material or, in other
words, a strong stratification of stresses.

4.1 Transition to Hydrodynamic Turbulence
in a Shear-Thinning Physical Gel

In this section, we summarise some key results of an experimental study of the
laminar, transitional and turbulent flows of a viscoplastic fluid in a cylindrical pipe
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(Hagen–Poiseuille flow). For a more comprehensive account of the main results, the
reader is referred to Güzel et al. (2009). As compared to the laminar flows previously
studied through this chapter, such flows are expected to be significantly more complex
as two sources of nonlinearity are present in the Navier–Stokes equation: inertial
(related to large Reynolds numbers) and rheological (related to the dependence of
the stresses on the rate of strain).

The motivation of studying the hydrodynamic stability of yield stress fluids is
threefold:

1. Fluids of shear-thinning type with a yield stress abound in industrial settings,
as well as some natural ones. The particular motivation here comes from both
the petroleum industry and the pulp and paper industry, where design/control
of the inherent processes often requires knowledge of the flow state at different
velocities. Similar fluid types and ranges of flows occur in food processing, poly-
mer flows, and in the transport of homogeneous mined slurries. Although many
of these industrial fluids exhibit more complex behaviour (e.g. thixotropy, vis-
coelasticity, etc.), as noted by Bird et al. (1977), the shear-dependent rheology is
often the dominant feature.

2. In line with the above, there is a demand from industrial application to predict the
Reynolds number (Re = UD/ν, where U is the average velocity, D is the diam-
eter of the pipe and ν is the kinematic viscosity), or other bulk flow parameter, at
which transition occurs, for a range of fluid types, so that different frictional pres-
sure closures may be applied to hydraulics calculations above/below this limit.
One of the such earliest attempts, and probably still the most popular, was that of
Metzner and Reed (1955). Perhaps, the most obvious weakness with such phe-
nomenological formulae is that turbulent transition occurs over a wide range of
Reynolds numbers and not at a single number. For example, in careful experi-
ments, Hof et al. (2003) report retaining laminar flows in Newtonian fluids up to
Re = 24000, whereas the common observation of transition initiating in pipe
flows is at Re ≈ 2000. Thus, there is a difficulty with interpreting the predictions
of phenomenological formulae, many of which we note were either formulated
before a detailed understanding of transitional phenomena has developed.

3. A third and most important motivation of such study is of a scientific nature. Since
Reynolds’ famous experiment (Reynolds 1883), transition in pipe flows has been
an enduring unsolved problem in Newtonian fluid mechanics. It is thus natural
that there have been far fewer studies of non-Newtonian fluids in this regime,
either experimental or numerical/theoretical. The intellectual challenge is related
to dealing with two sources of strong nonlinearity in the momentum equation dis-
cussed in the Introduction: inertial and rheological—coming from nonlinearity of
the stress rate of strain relationship. The existing studies that have been conducted
for shear-thinning viscoplastic fluids leave a large number of intriguing questions
unanswered. In the first place, experimental studies by Escudier and Presti (1996)
using Laponite suspensions and by Peixinho et al. (2005b) using Carbopol® solu-
tions have revealed interesting flow asymmetries in the mean axial velocity profile
during transition, which have been largely unexplained. These have been sum-
marised by Escudier et al. (2005).
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4.1.1 Experimental Setup and Procedures

All the results we report herein are from tests performed in a L = 10-m-long flow
loop with an inner diameter of 2R = 50.8 mm. The setup is illustrated schematically
in Fig. 21. The flow is generated by a variable-frequency-driven screw pump fed to a
carbon steel inlet reservoir R1 of approximately 120 L capacity to an outlet reservoir
R2 of the same capacity. The pump can provide a maximum flow rate of ≈22 l/s,
which is equivalent to a maximal mean flow velocity of ≈10 m/s. Two honeycomb
sections are placed inside the reservoir R1 before the tube inlet in order to suppress
any swirl or other fluid entry effects. We used a Borda style entry condition in which
the pipe extended backwards approximately 50 cm into the tank. Two honeycomb
elements were inserted into this section. The fluid reservoir R2 is pressurised to
damp mechanical vibrations induced by the pump motor and a flexible hose is used
between the pump and reservoir in order to diminish flow pulsations.

The flow structure has been investigated using the laser Doppler velocimetry
(LDV ) technique. A detailed description of the LDV optical arrangement is given
in Güzel et al. (2009). Two pressure transducers (PT1,2) are located near the inlet
and outlet of the flow channel (Model 210, Series C from www.gp50.com). These
are bonded strain gauge transducers with internal signal conditioning to provide a
Vdc output signal in direct proportion to the input pressure. The accuracy of each
transducer is 0.02% of the full scale, and they were calibrated with an externally
mounted pressure gauge. Pressure drop readings �p were averaged over 150 s and
used to estimate the radius of the plug according to

Fig. 21 Schematic view of the experimental setup: R1,2—fluid reservoirs, P—pump, FM—
flowmeter, PT1,2—pressure transducers, FT—fish tank, CCD—digital camera, PB—laser Doppler
velocimetry probe, PMT—photomultiplier, BSA—burst spectrum analyzer

www.gp50.com
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rp = 2L
σy

R�p
. (27)

Flow rates were estimated using two methods: (i) using an electromagnetic
flowmeter (FM) installed near the outlet reservoir, as shown in Fig. 21; (ii) by numer-
ically integrating the measured axial velocity profiles. The latter estimate is used to
calculate the relevant flow parameters reported through this section. The transversal
profiles of the axial velocity have been measured at a position Lm = 108D down-
stream where the flow is fully developed (corresponding to a Reynolds number
Re ≈ 3000 the entry length was estimated Le ≈ 100D).

The Reynolds number can be defined in a number of ways for a non-Newtonian
fluid. Here, we define a generalised number that accounts for the shear thinning of
the solution across the pipe by

ReG = 4ρ

R

∫ R

0

ū(r)

η [γ̇(r)]
rdr, (28)

where ρ and η are the density and the effective viscosity of the fluid. The latter
depends on the strain rate of the base flow γ̇(r) which is calculated locally from the
transversal profile of the time-averaged axial velocity ū(r). As a yield stress material,
we have used several aqueous solutions of Carbopol® 940. As a first approxima-
tion, we consider here for simplicity a Herschel–Bulkley constitutive relationship,
η = σy γ̇

−1 + K γ̇N−1. As already discussed in Sects. 1 and 2, the Herschel–Bulkley
constitutive relationship does not accurately describe the yielding of a Carbopol®

gel. In our context, the main problem arises from the term η(γ̇) which around the
solid–fluid transition diverges. The experimental measurements presented in Sect. 1
indicate that prior to yielding the viscosity is very large but finite. The Herschel–
Bulkley correlation, however, remains useful to get an estimate for the yield stress.

4.1.2 Transition to Turbulence in the Pipe Flow of a Shear-Thinning
Yield Stress Fluid: Phenomenological Observations

Before proceeding to the main findings, it is instructive to first examine representative
transversal profiles of the time-averaged velocity. To this end, we plot transversal
profiles of the time-averaged velocity ū as a function of ReG , see Fig. 22 measured
with a 0.1% Carbopol® solution at various ReG . At each radial position, over one-
hundred thousand instantaneous velocity measurements were used in the ensemble
average and the confidence interval for each point is very small. It should be noted
that the results have been made dimensionless by scaling the ensemble average with
the centreline velocity uc. Under laminar conditions, that is, with ReG < 1700, the
fully developed laminar profiles are included in these graphs as the solid lines. This
was performed in order to ascertain the validity of our results. For the higher flow
rates, we present cases for both transitional and turbulent flows. Dashed lines are
drawn to highlight an apparent asymmetry in the measurements. The dashed lines
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(a) (b)

Fig. 22 The transversal profiles of the time-averaged velocity ū for 0.1% (wt) Carbopol: a ReG=378
(©), 937 (�), 1160 (	), 1735 (�) and 2920 (�) b ReG=397 (©), 914 (�), 2001 (	), 2238 (�)
and 2612 (�). These data are from replicate tests obtained from similar experimental conditions

were constructed by averaging the data at equivalent radial positions on either side
of the central axis. The asymmetry is apparent and disappears once a fully turbulent
flow regime is achieved. It is worth noting that the asymmetry is systematic, i.e. these
data were taken from time-averaged data and the asymmetry is consistently in the
same part of the pipe for the same fluid. This persistent flow asymmetry runs contrary
to the intuitive notion that transitional flow structures, when ensemble averaged over
a suitably long time, should occur with no azimuthal bias. A similar asymmetry
has been reported by other groups in their experiments (Escudier and Presti 1996;
Peixinho et al. 2005b; Escudier and Presti 1996). The initial reaction to this rather
unexpected flow asymmetry was to look for and eliminate any directional bias in
the apparatus or in the flow visualisation technique. However, even after extensive
precautions the asymmetry still persists and is fully reproducible in subsequent tests
and for several concentrations of Carbopol®(a more comprehensive discussion and
additional data are presented in Güzel et al. 2009).

To characterise the transition to turbulence in a Carbopol® gel, the turbulence
intensity is monitored at various radial positions r/R. The turbulence intensity is
defined as I = urms

ū where urms stands for the root mean square of the fluctuations of
the point-wise velocity.

After a rapid increase through transition, the turbulent intensity relaxes as we enter
the fully developed turbulent regime, as shown in Fig. 23. An important experimental
observation is that transition does not involve a simultaneous and sharp increase in
turbulent intensity across the pipe radius. Instead, one may notice in Fig. 23 that the
turbulent intensity begins to increase at r/R = ±0.75 at markedly lower generalised
Reynolds numbers than at the centreline. This observation was systematically repro-
duced for several other Carbopol® solutions indicating that this transition scenario
is rather universal.

To get additional insights into the evolution of the flow structure around the onset
of the laminar–turbulent transition, we resort to a qualitative imaging of the flows.
For this purpose, the flow was seeded with a minute amount of Kalliroscope reflective
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Fig. 23 Turbulence intensity
measured at r/R = 0
(circles), r/R = −0.75 (up
triangles) and r/R = 0.75
(down triangles) for a 0.1%
(wt) solution of Carbopol®

940

flakes. Thus, turbulent “puffs” passing the point of observation cause mixing of the
tracer particles which result in “grainy” flow image due to local changes in mean
orientation (i.e. reflectance) of the seeding particles. Instant puff images obtained for
a 0.075% (wt) solution of Carbopol® at a ReG close to the onset of the instability are
illustrated in Fig. 24. With these images, we attempted to characterise the size and
velocity of the leading and trailing edges of the puff by an object tracking method. We
have also produced spatiotemporal plots of the images. Here, the images are filtered
and the variation of greyscale intensity at one axial position is reported as a function
of time, see Fig. 25. What is clear in this sequence of images is that an asymmetry
is once more evident. As compared to the Newtonian case (data not shown here but
shown in Fig. 10 of Güzel et al. 2009), the leading edge of the puff is elongated and is
located in the vicinity of the wall. Moreover, the puffs observed with the Carbopol®

solution will spread axially at a significantly slower rate than those typically observed
with Newtonian fluids. Another observation for the case of a Carbopol® solution is
that the elongation of the leading edge gets smaller with decreasing concentrations of
Carbopol®, i.e. the tip observed in Fig. 25 is both reduced in size and located closer
to the centre line of the pipe.

To summarise our observations, we measured the axial velocity as a function of
radial position using the LDV for several aqueous solutions of Carbopol® solutions
undergoing Hagen–Poiseuille flow within a wide range of Reynolds numbers. We
find that for all the fluids tested there exists a persistent asymmetry in the velocity
profiles present during transition. Symmetrical flows were found for both laminar and
fully turbulent cases. These observations were confirmed using high-speed imaging.
No physical explanation is given at this point. We do, however, attempt to quantify
the transition more precisely by presenting a more in-depth statistical analysis of
these results. To this is dedicated the next section.
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Fig. 24 Instant puff images taken for 0.075% solution of Carbopol® 940 at ReG = 1850 at different
time instants: a t = 130 ms, b t = 225.5 ms, c t = 255.5 ms, d t = 320 ms, e t = 422.5 ms, f t =
447.5 ms, g t = 497.5 ms, h t = 600 ms, i t = 755 ms, j t = 1117.5 ms, k t = 1155 ms and l t =
1187.5 ms

R

0

(a)

t(s)

0.8 0

(b)

Fig. 25 Space-time plot measured with a 0.075%(wt) Carbopol® at ReG = 1850 a obtained from
raw images b obtained from filtered, background subtracted and binarised images. The puff length
is ≈1.69 m. The images sequence consisted of 320 frames



216 T. Burghelea

4.1.3 Statistics of Weak Turbulence

Landau and Lifschitz indicate that inertially turbulent flows are traditionally charac-
terised by random fluid motion in a broad range of spatial and temporal scales (Landau
and Lifschitz 1987). We have attempted to characterise these relevant scales using
several statistical measures as indicated by Frisch (1995).

A first statistical measure is the Eulerian autocorrelation of the velocity defined by

C(t) = 〈u(t)u(t + τ )〉τ
u2
rms

(29)

and determined using the LDV data. This quantity is a measure of the time over
which the instantaneous velocity u(t) is correlated with itself. In other words, C(t)
is bounded by unity as t approaches zero and by zero as t →∞, because a process
becomes un-correlated with itself after a long time.

We report measurements of the temporal autocorrelation function as a function of
both ReG and the radial position in the pipe, Fig. 26. Before we proceed to interpret
these figures, we must spend some time explaining how the data is represented. Each
figure is given as three panels, i.e. at three different radial positions. Within each
panel, four data sets are presented representing four different Reynolds numbers. The
data series labelled (1) and (2) represent laminar flow while (3) is in the transitional
regime and (4) in a turbulent regime. With regards to (1), which corresponds to
the lowest ReG , in each of the panels the velocity signal is probably dominated by
high-frequency noise which results in a fast decay ofC(t) with a characteristic decay
time which we find to be of the order of the inverse data rate of the LDV signal.
Proceeding through (4), we find the fully turbulent state characterised by rapid decay
of the autocorrelation to the noise level.

A striking difference is found in curve (2) in comparison to the other curves. We
observe that there are plateaus in these curves, for some radial positions for each of the
fluids, e.g. at C(τ ) ∼ 0.4 for both r/R = ±0.75. Although this data was obtained in
a region which we define as laminar, it is clear that there are some weakly correlated
structures at this radial position in the pipe. For the Newtonian fluid, the plateau in the
autocorrelation is at a lower value than for the non-Newtonian fluids and is visible
also at the centreline (data are not shown here but detailed in Güzel et al. 2009).
For the case of the Carbopol® solution illustrated in Fig. 26, the plateau is strongly
attenuated at the centreline but evident at the radial positions r/R = ±0.75. Using
Taylor’s frozen flow hypothesis (Taylor 1938), we may estimate the axial length scale
of these structures to be ∼10−1 m, being longer for the Newtonian fluids than for the
non-Newtonian fluids (again, for a full account of this issue the reader is referred
to Güzel et al. 2009). This is significantly lower than the size of the puffs and slugs
estimated via the high-speed imaging technique. We comment also that consistently
with the flow asymmetry of the velocity profiles illustrated in Fig. 22 an asymmetry
is observed in many of the autocorrelations curves as well.
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Fig. 26 Correlation functions measured for a 0.1% solution Carbopol® at three different radial
positions: a r/R = −0.75 b r/R = 0 c r/R = 0.75. The data sets in each panel are (1) ReG = 397,
(2) ReG = 914, (3) ReG = 2238, (4) ReG = 3309

4.1.4 Evolution of the Plug Region During Transition

For yield stress fluids, the role of the plug region in retarding transition is largely
unknown. If one interprets the yield stress fluid to be fully rigid below the yield
stress, then the laminar flow is analogous to that with the plug replaced by a solid
cylinder moving at the appropriate speed. Presumably, since the effective viscosity
becomes infinite at the yield surface, the flow should be locally stabilised. Two
different scenarios may be postulated at transition:

1. Transition may occur in the yielded annulus around the plug, leaving intact the
plug region;

2. Transition is retarded until the plug region thins to such an extent that the Reynolds
stresses (in the annular region) can exceed the yield stress.

In the first scenario (Peixinho 2004; Peixinho et al. 2005a), during the first stage of
transition the turbulence intensity level on the centreline is reported as being similar to
laminar levels. This is also the scenario assumed explicitly in some phenomenological
theories of transition (Slatter 1999) treats the plug as a rigid body in developing his
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Fig. 27 Axial Reynolds
stresses normalised by yield
stress for four different
concentration levels of
Carbopol®. The filled
symbols indicate points
where the flow becomes
transitional, with puffs/slugs
first observed

formula for transition. In Fig. 27, we present the ratio of averaged Reynolds stress
at the centreline (where the level of velocity fluctuations is minimum) to the yield
stress, as a function of the generalised Reynolds number ReG for the four different
Carbopol concentrations that we have used. The filled symbols in Fig. 18 mark the
lowest value of ReG for which puffs or slugs were detected in the experiments, for
each of the different concentrations of Carbopol.

One can observe that the mean Reynolds stress exceeds the yield stress in each
case. This remains true even if we subtract the laminar flow fluctuations from the
Reynolds stresses, interpreting them as instrumental noise. This suggests that the
second explanation given above is the more plausible, i.e. the viscoplastic plug has
broken when transition starts. This is further reinforced by the results of the previous
section on the structure functions, i.e. at these transitional/weak turbulent Reynolds
numbers we have observed very similar intermittency characteristics with Carbopol,
right across the pipe radius, as with Xanthan, where there is no yield stress. We
should also comment that for the concentrations of Carbopol that we have used, if
we calculate the (laminar) unyielded plug diameters using Eq. (27), for the largest
flow rates for which puffs or slugs are not detected (see Fig. 28) these plug diameters
are at most of the order 2 mm. Thus, we do not anyway have a strong plug close to
transition.

There is no contradiction with the data from other works (Peixinho 2004; Peixinho
et al. 2005a), simply with its interpretation. Even with this thinning and break-up of
the plug, in the Reynolds number range preceding transition flow instabilities are not
sustained. Peixinho et al. (2005a) report measuring low-frequency oscillations away
from the central region. Such low-frequency forcing, presumably with slow axial
variation, could easily be responsible for slow extensional straining that yields the
true plug of the base flow into a pseudo-plug. This type of psuedo-plug also occurs,
for example, in thin-film flows (Balmforth and Craster 1999), and in channels of
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Fig. 28 Plug radius
normalised by pipe radius for
four different concentration
levels of Carbopol®

indicated in the insert

slowly varying width (Frigaard and Ryan 2004). In such flows the velocity remains
asymptotically close to the base flow solutions, while shear and extensional stresses
combine to maintain the pseudo-plug at just above the yield stress. Such flows are
laminar but yielded and the psuedo-plug is characterised by large effective viscosity,
which would presumably give similar characteristics to the base laminar flow in
controlling fluctuation level, Peixinho (2004), Peixinho et al. (2005a). From our
measurements of the velocity profiles, the mean velocity remains very plug-like in
the centre of the pipe in this upper range of laminar Reynolds numbers and it is simply
not possible to discern whether what is observed is a true plug or not. Evidently, the
ideal situation would be to visualise transition within a plug region of significant size
in comparison to the pipe. Interestingly, this was the intention of our experiments.
Our study was started after discussions with C. Nouar about ongoing experiments
(Peixinho 2004; Peixinho et al. 2005a). These were conducted in a 30 mm pipe at
lower speeds, and for the flow rates at which transition occurred the plug region
had radius of the order of 1 mm: too small to detect if broken or not. This prompted
our interest in the role of the plug during transition, and we therefore designed our
experiments at a larger scale so that we could potentially achieve transition with
higher yield stress fluids, in larger diameter pipes and at higher speeds, hopefully
also with a larger plug radius at transition. This objective could not be attained, as the
small values of rp/R in Fig. 28 indicate. Together with these experiments (Peixinho
2004; Peixinho et al. 2005a), the results described above contribute to the evidence
that the plug region must thin to such an extent that the Reynolds stresses can break
it, before transition commences.
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4.2 Hydrodynamic Stability of a Plane Poiseuille Flow
of a Carbopol® Solution Within the PMM Framework

We have argued in Sect. 1 of this chapter that the yielding scenario of a Carbopol® gel
is somewhat more complex that one would have expected and it cannot be accurately
described by the classical Herschel–Bulkley framework. To circumvent these diffi-
culties, we have proposed in Sect. 2 a phenomenological model able to both account
for a gradual solid–fluid transition and describe the elastic effects observed in both
rheological (controlled stress ramps) and tabletop (e.g. the sedimentation problem
discussed in Sect. 1 and illustrated in Fig. 1b).

The fundamental question we address in this section is: To what extent the novel
yielding scenario proposed in Sect. 2 could influence our understanding of hydrody-
namic stability?.

At a first glance, this question might appear groundless: the yielding transition
occurs at very low Re (typically Re � 1), whereas the loss of hydrodynamic stability
due to the inertial term in the momentum equation occurs at significantly larger
Re (typically Re > 1000); therefore, what is the physical connection between the
two phenomena? Given a second thought, the relevance of the yielding scenario
to the hydrodynamic problem may be defended as follows. The base flows usually
considered in the linear analysis of the hydrodynamic stability of channel flows
of yield stress fluids are characterised by a significant stratification of the velocity
gradients: large values near the channel boundaries which are consistent with a
yielded flow region and vanishing values near the centre line, which are consistent
with a plug region. The experimental investigation of the laminar–turbulent transition
in the pipe flow of a yield stress fluids we have briefly presented in Sect. 4.1 (Güzel
et al. 2009) demonstrates that the transition to turbulence occurs when the Reynolds
stresses balance the yield stress of the fluid, that is, when the plug is broken. These
findings corroborate well with the idea that, contrary to our initial intuition, the nature
of the solid–fluid transition and the yielding scenario may actually play a role in the
hydrodynamic stability problem.

To test this, we briefly discuss in the following the linear stability of a plane
channel flow of an elasto-viscoplastic material described by the phenomenological
presented in Sect. 2 and compare our results with the results obtained from a Casson
regularised constitutive relationship. For the details of this analysis, the reader is
referred to Moyers-Gonzalez et al. (2011a).

The plane channel flow of the elasto-viscoplastic fluid is described by the follow-
ing set of equations depending on the variables (p, u,σ, ā):

ρ

(
∂u
∂t

+ (u · ∇) u
)
= −∇ p + ηs∇ · γ̇ +∇ · σ (30)

∇ · u = 0, (31)



Transport Phenomena in Viscoplastic Materials 221

where ηs is the solvent viscosity and γ̇ is the rate of strain tensor. The constitutive
relation is the one we have proposed in Sect. 2 in the framework of the phenomeno-
logical yielding model but adapted to a tensorial form in order to be coupled to the
Navier–Stokes (Eq. 30):

σ + λ (γ̇, ā)∇−σ = η [γ̇(u)] γ̇, (32)

where ∇−· =
D·
Dt − ∇u · − · ∇uT is the upper convected derivative ( D·

Dt is the classi-

cal material derivative), λ (γ̇, ā) = η[γ̇(u)]
G ā is the relaxation time and G is the elastic

modulus. The concentration of the unyielded material ā satisfies the kinematic equa-
tion below:

∂ā

∂t
+ (u · ∇) ā = Rd [ā,σ(u)] + Rr [ā,σ(u)] . (33)

As detailed in Sect. 2, Rd , Rr are the rates of destruction and re-formation of solid
structural units, respectively. The hydrodynamic stability problem is governed by the
Reynolds (Re), the Weissenberg (Wi) and the Bingham (Bi) number defined as

Re = ρLUmax

η
(34)

Wi = λHUmax

L
(35)

Bi = σy L

ηUmax
(36)

The relaxation time λH is defined here as λH = η∞
G with η∞ being the infinite shear

viscosity and G the elastic modulus. The plasticity number, Pl = ReBi = σyρL
η2 , is

defined as the product between the Reynolds number and the Bingham number. Note
that Pl depends solely on the rheological properties of the fluid and the geometry of
the problem, thus as we increase Re in our analysis Pl will remain fixed. For this
reason, we chose Pl as control parameter through our analysis.

As is common in linear stability analysis, we consider an infinitesimal perturbation
(εu′, εp′) superimposed upon the base flow and linearise the momentum Eq. (30)
around the base flow solution. We do not show here the full development of the
linear stability analysis (for these mathematical details, the reader is referred to
Moyers-Gonzalez et al. 2011a) but solely focus on the main results. Unlike pipe
flows of Newtonian fluids which are linearly stable at all Re, the plane Poiseuille
flow becomes linearly unstable at ReNewt = 5772.

We have studied the onset of instability for two cases: the case of an yield stress
fluid described by the classical Herschel–Bulkley constitutive relation and the case
of a fluid described by the model by Putz and Burghelea (2009). The dependence
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Fig. 29 Normalised critical
Re for increasing Pl

of the normalised onset of the instability on the plasticity number for each case is
illustrated in Fig. 29.

As with the regularised Herschel–Bulkley model, the existence of a pseudo-plug
region (spatially stratified viscosity) is sufficient to greatly enhance the stability of
the flow. The critical Reynolds number appears to be a monotone increasing function
of plasticity number Pl, just as with the regularised viscoplastic model. We should
also note that the inclusion of a highly viscous viscoelastic fluid as a plug destabilises
the flow when comparing it with the regularised model (shown as the lower curve
in Fig. 29). In relative terms, when Pl = 1000 the critical Reynolds number for the
elasto-viscoplastic model is 2.66% smaller than the critical Reynolds number for
regularised model. For Pl = 105, this percentage increases to around 6%; this is due
to the fact that the pseudo-plug and solid–fluid regions increase and are closer to
the wall. Thus, the central conclusion of this study is that the presence of a solid–
fluid coexistence transitional regime marked by the presence of elastic effects which
is properly accounted for by the model by Putz and Burghelea (2009) proposed in
Sect. 2 has a destabilising role.

4.3 Unstable Flows Triggered by a Fast Chemical Reaction

Generating high Reynolds number flows as illustrated in Sect. 4.1 may sometimes
prove to be un-practical, e.g. in the case of highly viscous fluids flowing in spatially
confined environments. An alternative way of breaking the hydrodynamic stability
in the absence of any significant inertial contribution (Re � 1) is to “switch on”
another source of nonlinearity in the Navier–Stokes equation. This can be done by
inducing a strong spatial heterogeneity of the viscosity (and/or yield stress) in the
flow. Although the hydrodynamic stability of miscible shear flows with a strong
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Fig. 30 Schematic overview
of the reactive flow
configurations: a
displacement configuration b
Hele–Shaw parallel flow
configuration. The colours in
each panel refer to the pH of
the fluid—see text for
description

monotonic variation in viscosity has been analysed theoretically (Ern et al. 2003),
we have found no clear experimental demonstration of these instabilities. With flows
of simple Newtonian fluids, it is difficult to vary the viscosity locally to induce an
instability. With complex or “structured” fluids, however, the situation is significantly
different: the rheology is strongly coupled to the molecular-scale organisation of the
fluid. This opens a new possibility of locally controlling the viscosity by inducing
local changes in the molecular structure via a chemical reaction taking place at the
interface between two complex fluids as schematically illustrated in Fig. 30. The
advantage of such a method is that a chemical reaction may be controlled by either
mass transfer or by local heating or cooling.

Here, we demonstrate experimentally that a fast (acid–base) chemical reaction
taking place at the interface between two miscible fluids and resulting in the local
formation of a gel may indeed destabilise the flow in the absence of any relevant
inertial contribution. The chemical reaction takes place at the interface between a
Newtonian fluid (an aqueous of sucrose) at pH ≈ 13 and an un-neutralised aqueous
solution of Carbopol® 980 at pH ≈ 3.5. The neutralised Carbopol® located around
the interface of the reacting fluids exhibits an yield stress behaviour and thus a large
viscosity contrast is generated in the flow. The pH-dependent rheology is illustrated
in Fig. 31.

In a neutral state, the viscosity of the Carbopol® solution is two orders of mag-
nitude larger than in the initial acid state (pH ≈ 3), panel (b) in Fig. 31 and the
Carbopol® solution exhibits yield stress, panel (c) in Fig. 31.



224 T. Burghelea

Fig. 31 a Strain rate dependence of the effective viscosity of the two reacting fluids: circle—
displaced Carbopol solution at pH = 3, squares—displacing sucrose solution at pH = 13,
triangles—neutralised Carbopol® solution(pH = 7). b pH dependence of the viscosity of the
Carbopol® solution measured at γ̇ = 1s−1. c pH dependence of the yield stress of the Carbopol®

solution

We show through this section that this spatially inhomogeneous fluid rheology
triggered by the acid–base reaction that locally neutralises the Carbopol® structural
units leads to an inertia free hydrodynamic instability. We have focused on two
distinct flow configurations:

1. a displacement flow configuration where the less viscous Newtonian fluid dis-
places the more viscous Carbopol® solution, as shown in Fig. 30a.

2. a parallel flow configuration where the two reacting fluids are injected side by
side, displayed in Fig. 30b.

Besides the fundamental interest in understanding how a stratification of the viscosity
influences the hydrodynamic stability of the flow, each of the aforementioned flow
configurations had a clearly defined practical motivation. The motivation for the
displacement flow configuration illustrated in Fig. 30a came from the construction
of oil and gas wells. Since the early 1990s, there have been an increasing number of
wells that are constructed with long horizontal sections. The worlds longest extended
reach wells have horizontal sections in the 10–15 km range, but these are exceptional.
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More routinely, wells are built with horizontal extensions of up to 7 km. One of the
key barriers in constructing longer wells comes from simple hydraulic friction. In a
vertical well, both the pore pressure of reservoir fluids and the fracture pressure of the
reservoir rock increase with depth, approximately linearly. Judicious choice of fluid
density and circulating flow rates keeps the well-bore pressure inside the so-called
“pore-frac envelope”, i.e. the region where the porous rock does not fracture. In a
horizontal well section, the pore-frac envelope is unchanged with length along the
well, but the frictional pressure increases with length, leading to eventual breaching
of the envelope.

To avoid large pressure drops but yet achieve an efficient displacement, our original
idea was to locally increase the viscosity of the fluid only in the vicinity of the
interface (see the sketch in Fig. 30a rather than using a high viscosity displacing
fluid over the entire length of the pipe. A brief discussion of the main experimental
findings for this flow configuration is given in Sect. 4.3.1. For a detailed account,
these findings the reader is referred to Burghelea et al. (2007).

The second flow configuration illustrated in Fig. 30b might find some useful appli-
cations in efficiently mixing viscous fluids in the absence of significant inertial contri-
butions, e.g. in micro-channels. A brief discussion of the main experimental findings
for this flow configuration is given in Sect. 4.3.2. For a detailed account of these
findings, the reader is referred to Burghelea and Frigaard (2011).

4.3.1 Unstable Displacement Flows in the Present of a Fast Chemical
Reaction

A typical stable displacement experiment performed with two Newtonian fluids at
low Re is illustrated in Fig. 32. A small amount of fluorescein has been added to
the displacing fluid in order to visualise the interface between the two fluids. The
fluid displacement process laminar, steady and dominated by a long finger of the
displacing fluid penetrating into the displaced fluid.

Fig. 32 Example fluorescent images of the interface in an experiment from control sequence:
displacing fluid 65% saccharose solution, displaced fluid −66% saccharose solution. The flow rate
Q̂ = 0.145 ml/s. The two images are separated in time by 5 s
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Fig. 33 a–f Fluorescent images of the interface in a reactive displacement: displacing fluid—-65%
saccharose solution, displaced fluid—0.1% Carbopol® in 66% saccharose solution. e–f Fluores-
cent flow images long after the entrance of the unstable interface in the field of view; the images
are separated in time by approximately 5 s. The dotted lines highlight gelled structures tumbling
downstream. The direction of the flow in each panel is from right to left

The flow behaviour was significantly different from the control experiments in the
reactive case, when the Carbopol® solution at pH = 3 was displaced by a saccharose
solution at pH = 11, at different flow rates. The initial interface penetrates in a sharp
spike as before, but this is destabilised and the finger rapidly widens to nearly fill the
pipe. A complex secondary flow develops at the interface between fluids. The flow
seems to be dominated by large vortices advected by the flow, with a typical size of
the order of the pipe radius. Typical images are shown in Fig. 33. As the front of the
finger passes, the secondary flow instabilities persist along the sides of the finger.
The secondary flow provides a feedback mechanism for the instability by bringing
into contact new unreacted fluid elements and taking away reacted highly viscous
fluid. The initial pass of the finger front does not remove all the fluid 2 from the walls.
However, the secondary flows result in a fairly rapid erosion of the residual layers.
After the initial instability, small parcels of fluid 2 pulled into the fluid 1 stream react
to form gelled solid regions that are advected along with the fluid. Close observation
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Fig. 34 a Normalised width of the tip versus the normalised displacement distance, Û0 t̂/R̂, for
several values of the flow rate: Q̂ = 0.063 ml/s, Q̂ = 0.145 ml/s, Q̂ = 0.19 ml/s, Q̂ = 0.3 ml/s. The
experiments with the Newtonian fluids pair that undergoes a stable displacement flow. b Normalised
width of the tip versus the normalised displacement distance, Û0 t̂/R̂, for several values of the flow
rate: Q̂ = 0.13 ml/s, Q̂ = 0.18 ml/s, Q̂ = 0.2 ml/s, Q̂ = 0.31 ml/s, Q̂ = 0.47 ml/s. The experiments
belong to the reactive sequence

of video images reveals that some of these parcels appear to be in rigid motion as
shown in Fig. 33e and f.

To quantitatively assess the impact of the instability on the efficiency of the fluid
displacement, we monitor the dependence of the normalised width of the finger W

2R̂

(here R̂ stands for the radius of the pipe) versus the strain γ = Û0 t̂
R̂

. Here U0 stands

for the mean flow velocity and t̂ for the time.
When a Newtonian fluid pair is used, the displacement efficiency depends strongly

on the flow rate and, at the higher rate, does not exceed 0.9, as shown in Fig. 34. This
is what one would expect for a laminar flow and a displacing fluid less viscous
than the displaced one. The picture is quite different when a reactive fluid pair is
used. Due to the flow instability, efficient mixing occurs near the interface (Fig. 33).
As compared to the Newtonian case, two major differences are observed. First, the
temporal evolution of the displacement efficiency is little sensitive to the flow rates:
the points measured for various flow rates collapse onto a single master curve. Second,
the displacing efficiency reaches now 0.98 indicating that the instability leads to a
nearly complete displacement which the desirable case for the oil well engineering
context we described in the beginning of this section.

4.3.2 Unstable Parallel Flows in the Present of a Fast Chemical
Reaction

We now focus on reactive flows in a parallel flow configuration (Fig. 30b) where
the reacting fluids are injected side by side. As in the case of the displacement flow
configuration discussed in Sect. 4.3.1, in the absence of a chemical reaction, the flow
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Fig. 35 Space-time diagrams measured at a fixed driving pressure drop �p = 500 Pa at several
locations downstream: a y = 3.2 cm, b y = 14 cm, c y = 17 cm, and d y = 35 cm. The flow patterns
have been visualised using the laser-induced fluorescence (LIF) technique. LIF flow images acquired
in the horizontal plane corresponding to each space-time diagram are presented on the top row. The
dotted lines in the bottom row indicate the time instant when the LIF flow images have been acquired.
The concentration of Carbopol® in the acid fluid was 0.1%

is linear, laminar and steady. Thus, the mixing of the fluids is poor as it is carried on
by molecular diffusion alone.

The spatial development of the flow downstream in the channel for the reactive
fluid pair is presented in Fig. 35, at an intermediate pressure drop �p = 500 Pa.
Four positions downstream are selected. The top row presents a snapshot of the
spatial structure at each position, while the bottom row presents space-time dia-
grams for a time period of 500 s including the snapshot. The space-time diagrams
are obtained by monitoring a single brightness profile acquired at a fixed location
across successive laser-induced fluorescence (LIF) images evenly spaced in time.
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The interface between the two fluids is unstable from the very entry of the chan-
nel y = 3.2 cm (Fig. 35a). As one advances downstream, the interface between the
two fluids becomes increasingly unstable and the degree of mixing increases, panels
(b)–(d) in Fig. 35. The diffuse layer visible near the interface in Fig. 35a is sug-
gestive of a spreading reaction–diffusion front. We can observe unevenness of the
diffuse layer thickness at small spatial scales (which could correspond to a reactive–
diffusive instability), but we also see larger wavy variations in the interface itself
which are likely to have a hydrodynamic origin. This larger scale waviness is evident
in the spatiotemporal plot and appears to evolve spatially along the channel, while
the diffuse interfacial layer is lost. On the scale of the channel, the characteristic
diffusion timescale is much larger than the advection timescale. This implies that
the apparently random mixing patterns illustrated in panels (b)–(d) are not related
to molecular diffusion but rather to a (chaotic) advection phenomenon. The degree
of mixing increases, extending across the entire channel (Fig. 35c and d), but it is
remains intermittent with significant regimes of black and white showing in the LIF
images. This suggests that the mixing mechanism is interfacially controlled, rather
than by bulk fluid motion. Presumably, those interfacial regions that react quickly
on mixing will form highly viscous (or unyielded) layers. These layers may either
separate regions of pure fluid or may even encapsulate such regions through advec-
tive instability. Fluid which is bounded by highly viscous (or unyielded) layers will
respond much less to local stress gradients. At the same time, unstable motions
will continue to bring new unreacted fluids into contact. This probably explains the
preservation of some larger scale structures together with seemingly diffuse well-
mixed regions, as the flow progresses. In Fig. 35d, we see a more longitudinal spatial
structure developing. A plausible mechanism for this is that the regions of unreacted
fluid will move relatively fast along the channel and help to orient near rigid regions
with the flow. These regions may agglomerate, but in doing so will move slower and
hence have an increased possibility of further growth via agglomeration.

5 Non-isothermal Problems Involving Yield Stress
Materials

5.1 Thermo-Rheological Behaviour of a Shear-Thinning
Yield Stress Material

Whereas a clear progress towards understanding the isothermal deformation of vis-
coplastic materials has been made, there exist a limited number of studies dealing
with temperature-dependent viscometric and non-viscometric flows of Carbopol®

solutions. An experimental study of the heat transfer in the transitional pipe flow
of a Carbopol® solution is presented in Peixinho et al. (2008). The authors of this
study consider a Herschel–Bulkley-type yielding scenario and analyse their rheolog-
ical measurements accordingly. The hydrodynamic stability of the flow and the heat
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transfer problem are discussed in terms of the rheological properties of the material
and their temperature dependence.

The previous studies regarding the thermo-rheology of Carbopol® gels may be
divided into two classes. A first class of previous rheological studies found a “nor-
mal” temperature correlation of the rheological properties that can be modelled by
the Arrhenius law (Islam et al. 2004; Peixinho et al. 2008; Alain and Bardet 1982;
Fresno Contreras et al. 2001). Islam et al. (2004) found an Arrhenius scaling of the
viscosity of the Carbopol® gel with temperature which gave rather low values of
the activation energy, �Ea consistent with a low-temperature sensitivity. The gels
studied in this work were prepared in a glycerol solvent which behaves as a rheolog-
ically simple fluid and has a rather large flow activation energy (Magazu et al. 2007)
which could potentially “mask” a significantly weaker anomalous behaviour related
to the swollen gel network. Peixinho et al. (2008) found no temperature dependence
of the power law index and yield stress and an Arrhenius-type decay of the consis-
tency. They used a neutralised 0.2% (wt) aqueous solution of Carbopol® 940 and
a controlled stress rheometer (AR2000 from TA Instruments) equipped with a steel
0.5 deg cone/40 mm plate and truncation of 15µm. It is worth noting that the max-
imum temperature investigated in this work is as large as 85 ◦C (and therefore the
fluid evaporation could have played a significant role during the measurements) and
that the scatter of their yield stress measurements accounts for nearly 30% of the
measured values which makes the observation of a particular trend difficult. There
exists a second class of previous rheological studies which observe an anomalous
temperature–viscosity correlation, i.e. an increase of the viscosity with the tempera-
ture (Owen et al. 2003; Park and Jr. 1997; Park and Irvine 1997; Todica et al. 2010).

Barry and Meyer (1979a, b) were among the first to provide a very complete
description of the rheological properties of Carbopol® at various temperatures by
combined shear measurements, creep measurements and small amplitude oscillatory
measurements. Although the general conclusion is that the rheological properties of
Carbopol® gels are practically insensitive to temperature variations (their flow activa-
tion energy is small), the authors did observe an anomalous temperature dependence
of the viscosity (see the discussion in page 8 of Barry and Meyer 1979a) but they
discard the observation by noting “As an increase in apparent viscosity is inconsis-
tent with an activation energy for viscous flow these data were not used to derive
such values”. By using a Brookfield Model DV-III Digital Rheometer (Brookfield
Engineering Laboratories Inc., Stoughton, MA, USA) and a cone and plate configu-
ration, Owen et al. (2003) observed an anomalous temperature viscosity correlation
for two neutralised polyacrylic acid derivatives used in contraception under the trade
names “Advantage-S” and “KY-Plus”. In the same study, however, for two other
contraceptive gel formulations, “Ginol II” and “Conceptrol” and by using the same
rheological procedure, a “normal” (Arrhenius-like) temperature correlation of the
viscosity is observed. This indicates that the correlation between the temperature
and the rheological behaviour is intrinsically related to the physico-chemical prop-
erties of the gel mixture.

By using a falling needle viscometer, Park and Jr. (1997); Park and Irvine (1997),
an anomalous temperature dependence of the viscosity of Carbopol® 934 is at three
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distinct concentrations (which they express in parts per million): c = 5000 ppm,
c = 7500 ppm and c = 10000 pm. They did not elaborate any further on this rather
unexpected result but they did note, however, that “Perhaps this phenomenon orig-
inates from a structural change of the polymer molecules with concentration and
temperature”. The most recent observation of an anomalous behaviour we are aware
of is due to Todica et al. (2010). They performed their measurements on a Brook-
field DV II Pro viscometer, using cylindrical spindle. A detailed explanation for this
anomalous behaviour is not given in this paper either.

Both classes of previous works briefly discussed above have, most probably,
a limited number of things in common which makes a pertinent comparison quite
difficult. Although they use a variety of rheometric equipment (note that these studies
span the last four decades during which the rheometric devices have significantly
evolved), it is, in our opinion, unlikely that the differences in the observed temperature
correlations are due to this. This idea corroborates with the fact that sometimes,
within the same study (thus using the same device and rheological method) both
“normal” and “anomalous” behaviours are found, depending on grade of Carbopol®

used (Owen et al. 2003).
At a second analysis of the bibliography given above, one can find, however,

other significant differences between these studies: the physico-chemical properties
of the gels. Thus, various studies used various grades of Carbopol (934, 940, Ultrez
10, etc.) or even custom gel formulations (Owen et al. 2003). Additionally, many of
these studies do not discuss in detail the chemical nature of the cross-linking agent,
the ionic content and the interaction of the polyacrylic acid molecules with various
types of solvent used (water, water/ethanol mixtures, water ethylene/glycol mixtures
and glycerol).

To conclude this part, a pertinent comparison and analysis of the existing body of
literature on the thermo-rheological properties of Carbopol® is difficult to make based
on the published results. This is due in our opinion to an incomplete understanding
and control of the physico-chemical interactions that govern the cross-linking, ion-
isation, swelling and jamming dynamics of the individual molecules. Each of these
molecular-scale physico-chemical processes is temperature-dependent (and they are
characterised by their own chemical activation energies which are largely unknown)
and the overall temperature dependence observed in a macroscopic rheological exper-
iment is the result of a highly non-trivial “average” of these microscopic dependen-
cies. We discuss in the following the thermo-rheological properties of a Carbopol®

gel under shear. For a more comprehensive account of the main results, the reader is
referred to Weber et al. (2012).

5.1.1 Experimental Setup and Methods

To prevent the wall slip, a parallel plate geometry with cleated surfaces has been
used, Fig. 36a. The radius of the parallel plates is R = 40 mm, and the gap measured
by the rheometer is d = 1 mm. The cleats have an equal height H = 600µm and
are disposed in a rectangular grid over each plate. Several advantages of cleated



232 T. Burghelea

Fig. 36 a Schematic illustration of the cleated parallel plate geometry. b Temperature calibra-
tion measurements. The symbols are circles—the top plate, squares—the bottom plate. A thermo-
rheologically simple silicon oil with a known activation energy has been used

geometries over other methods of preventing the wall slip effect (such as using a
sandblasted geometry or a vane tool) have been recently demonstrated experimentally
(Nickerson and Kornfield 2005). Among these advantages, the cleated geometry
allows suppression of the wall slip effect even in the absence of significant normal
forces and creates a well-defined shear.

The flow between neighbouring cleats is restricted and stops over a finite distance
� (the flow penetration length) along the vertical axis (see Fig. 36a) and thus, two
parallel no-slip surfaces are formed at an effective distance de = d + 2�. Conse-
quently, the stress measurements should be corrected according to σ = σa

de
d where

σa is the apparent stress value recorded by the rheometer. A second concern was
related to the possible artefacts introduced by fluid evaporation during long experi-
mental runs. In order to prevent this, a solvent trap has been placed around the free
fluid meniscus. The sealing of the solvent trap on the base plate of the rheometer
has been insured by a thin layer of vacuum grease. After each experimental run,
it has been carefully checked (by visual inspection) that no significant changes in
the shape of the meniscus occurred. Additionally, we have checked at the end of
each run that one can reproduce the viscosity measured during the pre-shear step
which indicated us that the evaporation effects were either minimal or absent. A
third concern is related to the temperature gradient which develops within the space
between the parallel plates of the measuring geometry. To monitor and account for
this effect, two temperature probes have been embedded in each of the parallel plates
of the geometry. The temperature of each plate (Tt , Tb) has been measured as a
function of the temperature set to the Peltier plate of the rheometer Tpp in the range
5–55 ◦C. Beyond this range of temperatures, we have found that the measurements
are not reproducible (a scatter of nearly 75% over several subsequent runs with fresh
samples was observed) and, consequently, unreliable. During these measurements,
a Carbopol® sample was loaded but the top plate of the rheometer was held static.
The transient temperature signals have been monitored using a digital oscilloscope
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Fig. 37 Validation of the
cleated geometry and stress
correction. The symbols are
circles—cone and plate
geometry; squares—the
cleated geometry illustrated
in Fig. 36b. A
thermo-rheologically simple
silicon oil with a known
activation energy has been
used

and each temperature reading has been made only after the temperature of each plate
has reached a steady state. Calibration measurements of the temperature at the top
and bottom plate of the rheometer as a function of the temperature set to the Peltier
plate are presented in Fig. 36b.

As the temperature set to the Peltier plate, Tpp, departs the room temperature,
a linear increase of temperature difference between the top and the bottom plates
is observed. By measuring the temperature difference between the plates at a fixed
temperature of the Peltier plate for various values of the distance d between the plates,
it was checked that the temperature varies linearly within the gap. This allowed
us to define an effective temperature of the sample as an arithmetic mean of the
temperatures of the top and the bottom plates of the rheometer, T = (Tt + Tb)/2.
The reliability of the stress and temperature corrections described above was assessed
by comparative thermo-rheological measurements performed on a calibrated silicon
using both the cleated geometry described above (together with the stress and the
temperature corrections) and a standard cone and plate geometry. The result of this
comparison is presented in Fig. 37.

The viscosity measurements performed on the two geometries come into a per-
fect agreement which indicates that both the stress correction related to the cleated
geometry and the temperature correction related to the temperature gradient between
the parallel plates are reliable and can be safely employed in the thermo-rheological
measurements concerning the Carbopol® gel.

5.1.2 Thermo-Rheological Properties of a Carbopol® Gel

Each of the thermo-rheological measurements performed with Carbopol® gels fol-
lowed the procedure in Sect. 1. More specifically, corresponding to each average
temperature T the material has been subjected to a controlled stress stepped ramp
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similar to the one schematically illustrated in Fig. 3a, and flow curves qualitatively
similar to those illustrated in Figs. 3b, 4c and 7a were recorded. The characteristic
forcing time (see Sect. 1 for a detailed discussion) has been kept constant, t0 = 0.66 s.
For each ascending/descending controlled stress ramp, 1000 linearly spaced stress
values have been explored ranging between 0.1 and 20 Pa.

The advantage of this rheological protocol is twofold. First, it allows the simul-
taneous assessment of both elastic and viscous rheological parameters. Second, it
allows a more accurate measurement of the yield stress within the phenomenological
framework briefly introduced in Sect. 2 (and detailed in Putz and Burghelea 2009),
thus avoiding the inherent inaccuracies related to the classical Herschel–Bulkley
nonlinear fitting procedure.

At low values of the applied stress corresponding to the solid deformation regime
(ā → 1) the elasto-viscoplastic constitutive relation defined by Eq. 8 reduces to the
Hooke’s law, σ = Gγ. Bearing in mind that the controlled stress ramp is linearly
spaced in time, this provides us with a quick way of estimating the elastic mod-
ulus by monitoring the plateau observed in the solid range on each branch of the

(a)

(c)

(b)

Fig. 38 a Temperature dependence of the elastic moduli, measured from the increasing (the empty
symbols) and decreasing (the full symbols) branches of the controlled stress ramp. b Temperature
dependence of the consistency. c Temperature dependence of the power law index. The symbols
in each panel refer to different Carbopol® weight concentrations: squares—c = 0.1%; triangles—
c = 0.15%; circles—c = 0.2%
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stress ramp (increasing/decreasing stresses). The measured dependence of the elas-
tic moduli Gu,Gd measured on the increasing/decreasing branches of the flow ramp
(full/empty symbols) performed with Carbopol® is presented in Fig. 38a. The error
bars have been calculated to be repeating each test four times with a fresh sample.
Within the accuracy of the measurements, no sensitive temperature dependence of
the elastic moduli is observed (but only an obvious dependence on the concentra-
tion of Carbopol®). Thus, the solid-like deformation observed in a range of low
applied stresses is inconsistent with a rubber-like behaviour, which typically man-
ifests through a proportional increase of the elastic modulus with the temperature
(Larson 1999).

By fitting controlled stress ramps measured at various temperatures with the phe-
nomenological model presented in Sect. 2, one obtains the temperatures dependencies
of the consistency K , power law index n and the yield stress, σy . Similarly, neither
the consistency presented in Fig. 38b nor the power law index presented in Fig. 38c
depends on the temperature but solely on the polymer concentration. The invariance
of the consistency with the temperature is at odds with the observations by Peixinho
et al. (2008), which indicate an Arrhenius-type exponential decay of the consistency
with the temperature.

A strikingly different behaviour is observed for the temperature dependence of the
yield stress, σy (Fig. 39). Corresponding to a critical temperature Tc, a local minimum
of the dependence is observed. This unexpected behaviour has been observed for each
value of the Carbopol® concentration, and the non-monotone trend of the curves
clearly highlighted by the dashed line in Fig. 39 falls beyond the error bars of the
measurements. The critical temperature Tc marks the transition from a Arrhenius-like
behaviour described by σy = σ0

ye
�Ea
RT (the full lines in Fig. 39) to a anomalous non-

Arrhenius one and decreases with increasing Carbopol® concentration. Here, �Ea

and R stand for the activation energy and the universal gas constant, respectively.

Fig. 39 Temperature
dependence of the yield
stress measured for three
distinct values of the
Carbopol® concentration:
squares—c = 0.1%;
triangles—c = 0.15%;
circles—c = 0.2%. The
dashed line marks the
transition from an Arrhenius
temperature dependence to a
non-Arrhenius one
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As the observation of an anomalous temperature dependence of the yield stress
(and implicitly of the viscosity measured at a given applied stress, because the consis-
tency and the power law index are temperature invariant, as shown in Fig. 38b and c)
was quite unexpected and intriguing (particularly the increase of σy for T > Tc ), the
calibration measurements presented in Fig. 39 have been repeated several times and
subsequently reproduce this result. As the same stress calibration and temperature
correction have been employed for all the measurements performed on the various
Carbopol® gels as in the case of the calibration measurements illustrated in Fig. 37,
we may safely rule out the possibility that the anomalous temperature dependence
observed in Fig. 39 is the result of an experimental artefact.

Attempting to qualitatively understand the temperature dependence of the yield
stress above the critical temperature within the classical framework of the Arrhenius
law would quickly lead to an unphysical conclusion: the activation energy is negative
which apparently violates the second law of thermodynamics. This prompts one to
seek an explanation for the experimentally observed anomalous behaviour beyond the
“classical” Arrhenius framework. To this discussion, we dedicate the next subsection.

5.1.3 A Possible Qualitative Explanation for the Anomalous
Temperature Dependence of the Yield Stress

The Arrhenius viscosity–temperature correlation emerges as a particular case from
the more general theory developed by Henry Eyring which described the fluid flow
as an activation process (Eyring 1936; Ree and Eyring 1955). At its turn, the Eyring
theory of flow as an activated process emerged as a particular case of the Theory
of Rate Processes which has significantly reshaped the modern chemical physics
(Glasstone et al. 1941). We briefly present in the following the main results of the
Eyring theory.

For a detailed discussion, we refer the reader to the classical textbook by Bird
et al. (2002). Similarly to the excitation of atoms from their ground state to various
energetic levels, Eyring has interpreted the motion of a “flow unit” (we use the term
originally employed in Eyring 1936) along a given direction x as a tunnelling process
of an energy barrier. Although the Eyring flow activation theory has been employed by
several authors to explain the yielding in extension of amorphous polymers (Richeton
et al. 2005; Bauwens-Crowet et al. 1972), we are not aware of any similar work for
viscoplastic materials under shear.

In the absence of a shear force, the energy barrier associated to the displacement
of the neighbouring material layers along the x-direction is symmetric and, conse-
quently, the probabilities of hopping (or hopping rates) along and opposite to the
x-direction are equal, ν+ = ν− = ν0e

�Ea
RT . Here, ν0 is the equilibrium hopping fre-

quency, �Ea is the activation energy per mol of material and R is the universal gas
constant.
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When an external shear force f+ is applied onto the material layers along the
direction x , the symmetry of the activation energy barrier is broken, �E−,+ =
�Ea ± f+DNA) where NA stands for the Avogadro’s number and D is a charac-
teristic space scale (measured along the shearing direction, “+”) associated to the
gel network. Consequently, the hopping rates along and opposite to the direction of
the shearing force ν+, ν− are no longer equal and an effective hopping rate along the
direction of the imposed shear can be calculated by the difference:

ν = ν+ − ν− = 2ν0e
−�Ea

RT sinh

[
f+D

2kBT

]
. (37)

Denoting by A the characteristic shearing area between two neighbouring gel
elements and interpreting the effective hopping rate as a microscopic rate of shear
ν = γ̇, one can invert Eq. (37) and obtain the viscosity1:

η (γ̇, T ) = 2kBT

V ∗γ̇
sinh−1

[
γ̇

2ν0
e

�Ea
RT

]
, (38)

where V ∗ = AD stands for a characteristic volume of the gel network. In the case of
a Carbopol® gel, we expect V ∗ to be a non-trivial function of the molar mass of the
polyacrylic acid, the polymer concentration and the pH which controls the degree
of swelling of individual molecules (Gutowski et al. 2012).

For simple fluids, it is often assumed that

f+D
2kBT

� 1, (39)

and Eq. (38) reduces to the well-known Arrhenius law2:

η (γ̇, T ) = kBT

V ∗γ̇
e

�Ea
RT . (40)

To test the applicability of the simplifying condition given by the inequality
Eq. (39) for the case of a Carbopol® gel, one can consider as a typical space scale
related to the gel network D ≈ 1µm, A ≈ 1µm2, which are of the same order of
magnitude with the values assessed via diffusion measurements (Oppong et al. 2006;
Oppong and de Bruyn 2007), and σ = 1 Pa which leads to f+D

2kBT
≈ 240.

These simple numerical estimates indicate that, in the case of a percolated
Carbopol® gel structure, one should not expect the simplified Arrhenius law to apply
in the whole range of temperatures and one should consider instead the full Eyring
dependence given by Eq. (38).

1The derivation of Eq. (37) has been related to the shearing force via η (γ̇) = f+
Aγ̇ .

2This can be easily seen if one retains from the series expansion of the right-hand side of Eq. (37)
only the first-order term.



238 T. Burghelea

If one assumes that V ∗ is temperature invariant,3 it can readily be shown that there
exists a critical temperature Tc corresponding to which the viscosity given by Eq. (38)
passes through a local minimum. By solving numerically the equation ∂η(γ̇,T )

∂T = 0,
it can be readily shown that the critical temperature Tc which marks the transition
from a thermo-rheologically simple (Arrhenius-like) behaviour to a anomalous one
is a decreasing function of γ̇

ν0
at a fixed value of the activation energy �Ea .

We emphasise once more that the Eyring model does not directly refer to the
temperature dependence of the yield stress but to that of the viscosity. However,
within a Herschel–Bulkley framework and due to the temperature invariance of both
the consistency and the power law index (see the data presented in Fig. 38b and c), the
yield stress σy at a given temperature T is a linear function of the viscosity measured
at the same temperature and a fixed rate of shear, σy = η (γ̇, T ) γ̇ − K γ̇n . Thus,
one can conclude that the Eyring theory may qualitatively describe the anomalous
temperature dependence of the yield stress illustrated in Fig. 39.

We propose in the following a simplistic phenomenological interpretation for the
existence of a critical temperature Tc beyond which an anomalous temperature corre-
lation is observed. The microstructure of a polyacrylic micro-gel system statistically
described by the characteristic volume V ∗ is the result of two competing effects:
swelling of individual micro-gel particles and osmotic de-swelling.

Following Cloitre et al. (2003) and Borrega et al. (1999), the swelling behaviour
of a polyelectrolyte gel is governed by three contributions: the mixing entropy of
the polymer molecules, the balance of osmotic pressure exerted by the counter-
ions trapped within the micro-gel particles and the pressure of the ions present in
the solution and the elasticity of the gel network. At a neutral pH, the degree of
ionisation of individual polyacrylic acid molecules is high and, consequently, the
mixing entropy can be neglected in the swelling equation:

�in + �e = �out . (41)

Here, �e stands for the elastic pressure exerted upon the micro-gel particles and �in ,
�out stand for the osmotic pressures due to the mobile ions inside and outside the
micro-gel particles. The osmotic pressures are related to the concentrations of ions
Cin , Cout via �in,out = RTCin,out . Assuming that all ions are contained within the
micro-gel particles (which is reasonable provided that no salt is added to the system),
Eq. (41) reduces to �in = �e. The concentration of ions trapped into the micro-gel
particles may be written as Cin = αC0zQ−1 where C0 is the average concentration
of polyacrylic acid inside the micro-gel particles, α is the degree of ionisation, z is
the molar fraction of acidic groups and Q = V ∗/V0 is the swelling ratio (V0 is the
characteristic volume of the un-swollen micro-gel particles).

3This is for now only a plausible assumption and a direct experimental investigation by fluorescent
visualisation of the gel network as recently performed by Gutowski et al. (2012) would be highly
needed to test it.
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Because the macroscopic elastic modulus reflects the microscopic-scale elasticity
of the micro-gel structure, the temperature invariance illustrated in Fig. 38a indicates
that the elastic pressure of the gel network �e is temperature invariant. With these
considerations, a simple algebraic manipulation of Eq. (41) would lead to the con-
clusion that the swelling ratio is proportional to the temperature or, equivalently
V ∗ ∝ T . Thus, within this regime, the pre-factor in Eq. (38) is practically temper-
ature independent which explains why the temperature dependence of yield stress
(viscosity) can be fairly well described by an Arrhenius-type correlation, see the full
lines in Fig. 39. The osmotic de-swelling occurs when counter-ions may escape from
the core of micro-gel particles into the solution by penetrating the outer shell of the
particles where the local electro-neutrality condition is not fulfilled. The fraction � of
these counter-ions is proportional to the Debye length, � ∝ λD , (Cloitre et al. 2003;
Israelachvili 2010). Bearing in mind that the Debye length scales as T 1/2 one can
conclude that an increase of the temperature translates into an increase of the num-
ber of counter-ions that leave the micro-gel particles which promotes the de-swelling
process. According to Cloitre et al. (2003), if one accounts for the competing effects
of the swelling and osmotic de-swelling and if one denotes the volume fraction of
micro-gel particles by �, the concentrations Cin,out may be rewritten as

Cin = α (1 − �) zC0

Q
(42)

Cout = α�zC0

Q

�

1 − �
. (43)

A dynamical equilibrium between the swelling and the osmotic de-swelling may
be achieved when the concentration of ions trapped within the micro-gel particles
becomes comparable to that of the counter-ions that leave the micro-gel particles,
Cin ≈ Cout . This, together with Eq. (42) and with the square root temperature scaling
of �, indicates the existence of a critical temperature Tc and a critical characteris-
tic volume defied implicitly via �c = 1 − �c. Beyond this critical temperature Tc,
the osmotic de-swelling wins over the swelling and a further increase of the char-
acteristic volume V ∗ with the temperature is no longer possible. Consequently, the
pre-factor in Eq. (38) is proportional to the temperature which translates into the
anomalous behaviour observed in Fig. 39. For high polymer concentration, the range
of temperatures within which individual molecules can freely swell upon an increase
of the temperature becomes narrower and the critical condition will be fulfilled at a
lower temperature Tc. As a consequence, within this phenomenological picture, one
should expect a decrease of the critical temperature Tc with increasing Carbopol®

concentration. This trend is apparent in Fig. 39. A quantitative description of the data
presented in Fig. 39 by the Eyring model could not be obtained. The reason behind
this might be that Eq. (38) considered a single (plastic) “flow unit” characterised by
a single specific volume V ∗ related to the average size of the percolated gel network.
A more realistic model should account for the presence of the Newtonian solvent (in
our case the water trapped into the swollen polymer network) and a realistic statistical
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distribution of V ∗. Such a statistical distribution is difficult to predict theoretically
from first principles and, most probably should be tackled experimentally by direct
visualisation of the polymer network, as very recently performed (Gutowski et al.
2012).

5.2 Rayleigh–Bénard Convection in a Shear-Thinning Yield
Stress Material

The Rayleigh–Bénard convection in a fluid heated from below is a paradigm of
pattern-forming systems (Cross and Hohenberg 1993).

Imposing a vertical temperature gradient within a Newtonian fluid by heating it
from below translates into a vertical gradient of the fluid density or buoyancy which,
beyond a critical value of the temperature gradient �Tc, may overcome the viscous
dissipation and trigger an upward motion of the fluid elements. Within a finite-size
system and in the virtue of the mass conservation, this instability results in a regular
and steady fluid motion in the form of rolls or hexagons which is classically referred
to as the Rayleigh–Bénard thermal convection.

The transition to laminar Rayleigh–Bénard convection in Newtonian fluids has
been intensively studied during the past five decades both theoretically and exper-
imentally. Among a large amount of published work on the topic, we can refer the
reader to textbook of Koschmieder (1993) and the review article by Bodenschatz
et al. (2000).

A Newtonian fluid heated from below loses its hydrodynamic stability when the
stresses associated to the buoyancy forces exceed those associated to the viscous
dissipative forces.

The balance between the buoyancy and the viscous forces is quantified by the
Rayleigh number:

Ra = β�T gH 3

k · ν , (44)

where β is the coefficient of thermal expansion, g is the gravitational constant, k is
the thermal diffusivity, ν is the kinematic viscosity, �T is the temperature difference
measured between the plates and H is the distance between plates. It has been shown
both theoretically and experimentally that the onset of the convection corresponds
to Rac ≈ 1708.

Within the Boussinesq approximation, it has been demonstrated theoretically that
the Rayleigh–Bénard convection emerges via a backward bifurcation (which may
become an imperfect bifurcation in a finite system) and its onset can be described
via a linear theory (Joseph 1970; Sani 1964). Moreover, it is demonstrated that a
finite-amplitude bifurcation is not possible in this case.

If Q is the amount of heat transported between plates via the thermal convection,
the balance between the convective and conductive heat transfer is quantified by the
Nusselt number:
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Nu = QH

α�T
, (45)

where α is the thermal conductivity of the fluid.
Whereas there exist an overwhelming number of fundamentally important studies

of the Rayleigh–Bénard convection in Newtonian fluids, much less progress has
been achieved in understanding the thermal convection in non-Newtonian fluids. The
reason for this most probably originates in the highly non-trivial coupling between
the hydrodynamic problem, the rheological properties of the fluids and their thermal
dependence.

A systematic theoretical analysis of the Rayleigh–Bénard convection in shear-
thinning fluids is presented by Albaalbaki and Khayat (2011). Using the Carreau–
Bird rheological model, they show that although the onset of the thermal convection
is the same as in the Newtonian case, the non-Newtonian fluids can convect in the
form of rolls, squares or hexagons, depending on the degree of shear thinning. They
also predict that in the case of a strong enough degree of shear thinning the bifurcation
may turn sub-critical.

The experimental investigation presented by Lamsaadi and his coworkers for a
power law fluid revealed an increase of the Nusselt number with the shear-thinning
index (Lamsaadi et al. 2005). There exist several systematic studies of the Rayleigh–
Bénard convection in viscoelastic fluids focusing on the role of elasticity (quantified
by the Weissenberg number) on the onset of convection and on the main features of
the transition (Park and Ryu 2001; Park and Park 2004). The experimental investi-
gation presented by Martinez-Mardones and his coworkers for a viscoelastic fluid
has captured the influence of the rheological parameters on the critical conditions
(Martinez-Mardones et al. 2000). The experiments performed on viscoelastic shear-
thinning fluids by Liang and Acrivos (1970) indicate that the transition to convective
states emerges as a supercritical bifurcation. They also conclude that the experimen-
tally observed convective patterns are similar to the Newtonian ones. The main effect
of the non-Newtonian rheological behaviour on the Rayleigh–Bénard convection is
an increase of the Nusselt number as compared to a Newtonian fluid with the same
viscosity.

The practical interest in understanding thermo-convective instabilities in vis-
coplastic originates from the fact that such materials are relevant to various geophys-
ical flows such as magma flows within the Earth’s mantle (Griggs 1939; Meinesz
1947; Orowan 1965; Le Bars and Davaille 2004).

Systematic studies of the hydrodynamic stability of yield stress fluids have been
performed only recently (Frigaard et al. 1994; Landry et al. 2006; Metivier et al.
2005). In this context, there exist several fundamental mathematical and physical
problems yet to be understood. One of these problems concerns with the occurrence
of the Rayleigh–Bénard instability in yield stress materials.

The very first theoretical study of the Rayleigh–Bénard convection in a yield
stress fluid was performed by Zhang et al. (2006). Using a linear stability approach
formulated within the framework of the Bingham rheological model, they show that
base state is stable to infinitesimally small perturbations regardless the finite value
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of the yield stress. This is due to the fact that, corresponding to the stable base flow
state, the Bingham model predicts an infinite viscosity which cannot be destabilised
by infinitesimally small perturbations.

The weakly nonlinear stability analysis performed by Balmforth and Rust (2009)
carried out within the framework of the Bingham rheological model indicates that
a sufficiently large finite-amplitude perturbation of the base state of a viscoplastic
fluid may trigger Rayleigh–Bénard convection.

The experiments that complement their theoretical investigation confirm that the
presence of the yield stress generally suppresses the convection in the sense that the
fluids will not spontaneously convect unless a perturbation of a finite amplitude is
applied. The magnitude of the perturbation needed to initiate the convection increases
with the yield number Y which characterises the competition between the buoyancy-
induced stresses and the yield stress of the fluid.

A numerical simulation study of the Rayleigh–Bénard convection of a Bingham
fluid in a square enclosure is presented by Turan et al. (2012). By a systematic scaling
analysis Turan and his coworkers assess the scaling of the relevant non-dimensional
numbers corresponding to the onset of the instability and relate the results to the
strength of the gel.

An experimental study of the development of thermal plumes within a Carbopol®

gel due to local heating was recently presented by Davaille et al. (2013). Depending on
the yield number Y , they have observed three distinct dynamic regimes: stable, small-
scale convective (the convection is localised around the heater) and thermal plumes.
A systematic description of the morphology of the thermal plumes is provided as a
function of the yield number. The study by Davaille et al. (2013) reinforces the main
conclusion of the study by Balmorth and Rust that finite-amplitude perturbations
may indeed destabilise the base flow of fluids with a finite yield stress.

Darbouli et al. (2013) have studied experimentally the Rayleigh–Bénard convec-
tion within various Carbopol® gels confined in a cylindrical cavity and heated from
below. Although they did not intentionally applied a finite-amplitude perturbation,
they did observe convective states various values of the yield stress that cover a lim-
ited range (0.0047–0.104 Pa) (according to their Table 1). Bearing in mind that the
accuracy of the determination of the yield stress via classical rheometry is somewhat
limited and the uncertainties becomes increasingly larger when the yield stress is
diminished, it is not fully clear whether their materials truly possessed a yield stress
or they were merely shear-thinning fluids (which is the case when the concentration
of Carbopol® is smaller than the overlap concentration even at neutral pH ).

In the case of a viscoplastic fluid, the onset of the Rayleigh–Bénard convection
coincides with the onset of the solid–fluid transition (yielding) and thus, the viscous
stresses are infinite at the onset. This suggests that, in the case of a viscoplastic
fluid, the onset condition should be reconsidered. For this purpose, the force balance
criterion can be modified by considering that the thermal convection is triggered
when the stresses associated to the buoyancy overcome the yield stress τy of the gel
and by replacing the viscous timescale with a characteristic timescale associated to
the microstructure of the gel:
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Ra = ρβ�T gH

τy

td
tg
≥ Rac (46)

Here, td = H 2

κ
is the characteristic timescale associated to the thermal diffusion

and tg is a characteristic timescale associated to the gel microstructure near the onset
of the convection (i.e. near the yield point) which will be discussed in detail through
our paper in connection to the rheological properties of the Carbopol® gels. As the
yield stress has been considered as a scale for the stresses, the definition above is
valid only around the onset of the instability which coincides with the onset of the
solid–fluid transition (yielding). Far beyond the onset, the Rayleigh number should
be rewritten in terms of a shear-thinning viscosity.

From a phenomenological point of view and following the basic ideas of the
(energy) balance theorem initially introduced by Chandrasekhar (1961), one can
alternatively consider that the thermal convection in a yield stress fluid is initiated
when the energy dissipated per unit volume of material by the buoyancy forces
becomes comparable in magnitude to the maximal elastic energy that the gel network
can locally store per unit volume prior to yielding: Wb ≥ We. Here, We = ρgβ�T
is the energy dissipated per unit volume by the buoyancy forces and We = τy is the
elastic energy per unit volume. With these considerations, the energy criterion for the
convective instability in a yield stress fluid can be formulated in terms of the yield
number Y :

Y = τy

ρβgH�T
≤ Yc (47)

To the best of our knowledge, there exists no experimental assessment of the
validity of the force and energy balance criteria for the transition to thermal convective
states in a Carbopol® gel given by Eqs. (46) and (47).

The present study concerns with an experimental investigation of the Rayleigh–
Bénard convection in Carbopol® gels with various concentrations (yield stresses).
Among the primary goals of the study, we mention the accurate detection of the onset
of the instability in relation with the rheological properties of the gel (yield stress),
the characterisation of the convective flow patterns as a function of the control param-
eter. Of particular interest is the assessment of the nature of the bifurcation towards
convective states which is little documented by the existing body of experimental
work. In addition to these goals, we are interested in the scaling of the physical
parameters characterising the onset of the convective instability with the rheological
properties of the solutions which will allow one to probe the applicability of the force
and energy balance stability criteria discussed above.

5.2.1 Experimental Setup and Methods

The Rayleigh–Bénard convection cell is schematically illustrated in Fig. 40. It con-
sists of a rectangular cavity with acrylic-made flat transparent walls. The length of the
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Fig. 40 Schematic view of the experimental setup L—solid-state laser, CO—cylindrical optics
block, CP—copper plate, TP—top plate, BP—bottom plate, CFB—cooling fluid bath, A2D—
analogical to digital signal conditioning block, RB—reference box

fluid cavity is L = 386 mm, the width is W = 186 mm and its height is H = 20 mm.
The length-to-height aspect ratio of the cavity is L/W = 19.3. The bottom and the
top enclosures of the cavity are 3-cm-thick polycarbonate plates. The smooth surfaces
of the plates have not been treated neither chemically nor mechanically, and thus the
wall slip phenomenon was present during the experiments with Carbopol® gels. The
significant width of these two plates and their small thermal conductivity coefficient
have been purposely chosen in order to obtain a uniform temperature distribution
along the entire fluid cavity. The bottom plate was heated electrically by a resistive
circuit fed by a constant current I supplied by the stabilised current supply CS. The
heating power was calculated as P = RI 2 where R = 25.5 � is the resistance of the
electrical heater. To avoid the thermal damage of the bottom polycarbonate plate, a
copper plate CP is interposed in between the polycarbonate plate and the resistive
heater.

The top plate was uniformly cooled by means of a circulating fluid bath CFB.
The circulating fluid is a mixture of glycerin and anti-freeze, and its temperature is
maintained constant through our experiments, Twb = −10 ◦C.

The transition to the Rayleigh–Bénard convection was simultaneously investi-
gated by both integral measurements of the temperature difference �T between
plates and local measurements of the amplitude of the convective states.

Prior to characterising the transition to the Rayleigh–Bénard convection within
a Carbopol® gel, we have focused on a systematic validation of the experimental
system and the measuring techniques with a Newtonian fluid, pure Glycerin. The
experimentally measured values of the physical parameters for the Glycerin are
β = 5 · 10−4K−1, g = 9.8 m2/s, κ = 1.37 · 10−7 m2/s and ν = 872 · 10−6 m2 s−1.

Measurements of the temperature difference �T between the plates performed
with a Glycerin solution for both increasing and decreasing values of the heating
power P are presented in Fig. 41a. A linear increase of the integral temperature
difference between the plates �T with P which corresponds to a purely conductive
heat transfer regime (the slope of this dependence is proportional to the thermal
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(a)

(b)

Fig. 41 a Temperature measurements within the bottom plate BP (the empty circles) and within
the top plate TP (the empty squares). The full lines are linear fitting functions and the full symbols
are the linear extrapolations of the temperature measurement at the contact points with the fluid.
b Time series of the temperature difference �T . td stands for the characteristic thermal diffusion
time, and tc stands for the characteristic slowing downtime. The dependence of the thermal diffusion
time td on the heating power, P , measured for three Carbopol® solutions with the concentrations
c = 0.06, 0.075, 0.08% for both increasing (full symbols) and decreasing (empty symbols) heating
powers is presented in the inset. The full line is the theoretical estimate, td ≈ 2730 s (see text)

conductivity α of fluid) is observed below a critical value of the heating power Pc ≈
16.32 W. Beyond this onset, the dependence becomes nonlinear consistently with a
mixed conductive–convective heat transfer regime. Based on the material parameters
enumerated above, the critical Rayleigh number corresponding to the onset of the
thermal convection can be estimated Rac ≈ 1774 which is in a very good agreement
(within 4%) with the theoretical value Ratc = 1708 given in Chandrasekhar (1961).

The dependence of the reduced temperature difference �Tr = �T
�Tlin

− 1 on to
the reduced power Pr = P/Pc − 1 is presented in the top panel of Fig. 41b. Here
�Tlin represents the linear temperature difference measured within the conductive
regime (see the full line in Fig. 41a). It can be observed that the reduced temperature
difference �Tr increases linearly with the reduced heating power Pr consistent with
a supercritical bifurcation towards convective states.

Measurements of the convection amplitude obtained via the DPIV technique as
a function of the heating power are presented in Fig. 41b.

Around the onset of convection, the velocity amplitude follows the Landau theory
of imperfect bifurcations, Landau and Lisfshits (1980):

PrV − aV 3 + h = 0 (48)

Here, a is the amplitude coefficient and h is the imperfection coefficient which quan-
tifies the degree of smearing of the bifurcation. This result agrees with both theoreti-
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cal predictions (Newell and Whitehead 1969; Segel 1969) and previous experimental
findings, Dubois and Bergé (1978).

To conclude this part, the measurements illustrated and discussed above clearly
identify the transition to convective states within a Newtonian fluid as an imperfect
bifurcation.

After having probed by these measurements the reliability of our experimental
setup and measuring methods, we focus in the following section on the transition to
the Rayleigh–Bénard convection in various Carbopol® gels.

5.2.2 Experimental Observation of the Thermal Convection
in a Carbopol® Gel

To study the thermo-convective stability of a physical gel, we have used various
Carbopol® solutions with weight concentrations ranging in between 0.05 and 0.11%
as working fluids and the same experimental procedures as for the Newtonian test
case discussed in the previous section. The chosen polymer concentrations all lie
above the overlap concentration c∗ which ensures that our working fluids are indeed
yield stress fluids not just weakly shear thinning. A more systematic account of the
experimental observations is given in Kebiche et al. (2014).

As for the case of a Newtonian fluid, the transition to convective states within
various Carbopol® gels is simultaneously assessed by both local flow speed mea-
surements by the DPIV technique and integral measurements of the temperature
difference between the top and the bottom plates, �T (Fig. 42).

Fig. 42 a Dependence of the temperature gradient �T within Glycerin on the heat flux P . The
full/empty symbols refer to increasing/decreasing heat flux. The vertical dashed line marks the
transition between the conductive and convective regimes. A typical DPIV measured convection
pattern is illustrated in the inset. b (Top) Dependence of the reduced temperature �Tr on the reduced
power. The line is a linear fit. (Bottom) Dependence of the pattern amplitude V on the reduced
power Pr . The line is a nonlinear fit according to Landau’s theory of imperfect bifurcations, Eq. (48)
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Fig. 43 Evolution of the flow patterns corresponding to several values of the integral temperature
difference �T indicated in the inserts. The up/down arrows indicate the increasing/decreasing
branch of the heating ramp. The false colour map refers to the absolute value of the flow velocity. A
0.08% Carbopol® solution was used and the onset of the Rayleigh–Bénard convection corresponds
to �Tc = 2.58 ◦C

For each value of the concentration of the Carbopol® solution, no measurable flow
is observed if the integral temperature difference between plates does not exceed a
critical value, �T < �Tc. As the temperature difference is increased past this onset,
the energy dissipated per unit volume of material by the buoyancy forces overcomes
the elastic energy associated with the gel microstructure. Consequently, the gel locally
yields and roll flow patterns are observed. The unstable flow patterns are observed
in the absence of an external perturbation of a finite amplitude.

The evolution of the flow patterns as the control parameter is varied right above the
onset of the convection monitored within a 0.08% Carbopol® solution is illustrated
in Fig. 43.
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Fig. 44 Dependence of
temperature gradient on the
heat flux for six values of the
Carbopol® concentration:
(	, �)—c = 0.11%wt ,
(◦, •)—c = 0.1%wt ,
(�, �)—c = 0.08%wt ,
(�,  )—c = 0.075%wt ,
(�, �)—c = 0.06%wt ,
(�, �)—c = 0.05%wt . The
full/empty symbols refer to
increasing/decreasing heat
flux. The full line is a linear
fit

Right above the onset of the convection (�T = 3.18 ◦C), the flow pattern has a
slightly asymmetric appearance. This may be due to the large characteristic times tc
needed for the pattern to reach a steady state or the so-called critical slowing down
phenomenon which will be discussed in detail through the paper. Upon an increase
of the temperature difference between plates, the flow patterns become more regular
and the horizontal extent λ of the convection rolls decreases (equivalently with an
increase of the horizontal wave number qx = 2π

λ
). It is important to note that the flow

states are reversible upon a decrease of the heating power (or temperature difference)
which is a first indicator that, similarly to the Newtonian case, the transition to the
Rayleigh–Bénard convection in the Carbopol® gel is a continuous one and exhibits
no hysteresis. This qualitative similarity with the transition to convective states within
a Newtonian fluid that deserves being studied in depth.

Integral measurements of the dependence of the temperature difference between
plates �T performed for six values of the Carbopol® concentration and for both
increasing (the full symbols) and decreasing (the empty symbols) values of the heat-
ing power P are presented in Fig. 44.

For each value of the Carbopol® concentration, a linear conductive part of the
dependence is observed below a critical heating power Pc. The slopes of these lin-
ear dependencies are independent on the polymer concentration (see the full line
in Fig. 44) indicating that the polymer addition does not significantly alter the ther-
mal conductivity of the aqueous solutions. This result is fully consistent with direct
measurements of the thermal conductivity coefficient κ performed for each solution
separately (Kebiche et al. 2014). Beyond the onset Pc, the dependence of the tem-
perature difference between plates on the heating power becomes sub-linear and a
convective regime is observed.

Regardless of the yield stress of the Carbopol® solution, the transition from a
conductive to a convective regime is reversible upon increasing/decreasing values of
the heating power and a strong qualitative similarity of these integral measurements to
the similar ones performed with a Newtonian fluid previously discussed is observed.
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Fig. 45 a Dependence of the reduced temperature �Tr on the reduced power Pr for various
Carbopol concentrations, see Fig. 44. The full lines are linear fitting functions. b Dependence the
DPIV measured amplitude of the convection pattern V on the reduced power Pr . The line is
nonlinear fit function according to the Landau theory of imperfect bifurcation, Eq. 48

To gain a deeper insight into the nature of the bifurcation towards convective states
within the Carbopol® solutions, we present the same data in terms of the reduced
variables �Tr , Pr . The dependence of the reduced temperature �Tr on the control
parameter Pr for each Carbopol® solution is presented in Fig. 45a.

Above the onset of the bifurcation, the reduced temperature �Tr scales linearly
with the control parameter and this result is, as in the Newtonian case illustrated in
Fig. 42a, typical for a supercritical bifurcation. This fundamentally important con-
clusion on the nature of the bifurcation towards convective states is reinforced by
the local measurements of the convective amplitude V presented in Fig. 45b. Indeed,
above the onset of the bifurcation, the amplitude data can be well fitted by the
Landau prediction for a supercritical bifurcation. The smearing of the transition data
observed near the onset indicates that the bifurcation is an imperfect one. The degree
of smearing of the bifurcation is rather small (h ≈ 0.05), and the bifurcation is rather
close to a perfect one.

The dependence of the onset parameters on the yield stress of the Carbopol®

solution is illustrated in Fig. 46.
The critical heating power needed to trigger convective states increases

exponentially with the yield stress of the Carbopol® solution, Fig. 46a. This indi-
cates that in solutions with a sufficiently large yield stress the thermal convection
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(a) (b)

Fig. 46 a Dependence of the critical heating power Pc corresponding to the onset of the Rayleigh–
Bénard convection on the yield stress σy of the Carbopol® solution. The line is an exponential fit. b
Dependence of the critical yield number Yc (squares, bottom-left axis) and of the critical Rayleigh
number Rac (circles, bottom-right axes) on the yield stress σy

cannot be experimentally observed as it would require heating powers practically
unsustainable.

Another important issue relates to the right control parameter to describe the
transition towards convective states. In the case of Newtonian fluids, this is the
Rayleigh number (Chandrasekhar 1961). To test if this the case for a Carbopol®

gel, we have calculated the critical Rayleigh number corresponding to the onset of
convection according to Eq. (46). The result is displayed in Fig. 46b (the circles).
Quite remarkably, as the yield stress of the solution varies, the critical Rayleigh
number Rac spans nearly three orders of magnitude. This clearly indicates that,
unlike for the case of Newtonian fluids, Ra is not the right control parameter. On the
other hand, the yield number Y calculated at the onset of the instability according to
Eq. (47) remains of order of unity over the entire range of yield stresses explored.
This indicates that the right control parameter for the thermo-convective instability
in a Carbopol® gel is the yield number.

To conclude this section, we have demonstrated that, contrary to the existing the-
oretical predictions, thermal convection can be triggered in a Carbopol® gel in the
absence of any finite-amplitude perturbation and the bifurcation towards convective
states is an imperfect one (described by the Landau–Ginzburg formalism). A first
physical ingredient that probably needs to be accounted for in the theoretical studies
is related to the rather new scenario of the yielding illustrated in Sect. 2 that accounts
for a gradual yielding process characterised by both a solid–fluid phase coexis-
tence and elastic effects that are not captured by the classical rheological pictures.
Indeed, measurements of the second invariant of the rate of strain (not shown here
as shown in Figure 19 of Kebiche et al. 2014) indicate that the onset of convection
is practically located within the non-trivial solid–fluid coexistence zone (hysteresis)
visible in Figs. 3b and 4. Thus, any theoretical attempt to describe this instability
using the Herschel–Bulkley law that is applicable at much larger rates of strain is not
expected to accurately predict the transition. A second theoretical ingredient worth to
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be accounted for in future theoretical developments is related to the non-trivial (and
rather unexpected) thermo-rheological behaviour of the Carbopol® gel presented in
Sect. 5.1.

6 Concluding Remarks

During the past decade, the fluid dynamics of viscoplastic materials has emerged
as a distinct field of the hydrodynamics of complex fluids rivalling, perhaps, with
the well-established field of hydrodynamics of viscoelastic fluids. This intellectually
very rich discipline brings together several scientific communities: fluid dynamics,
rheology, applied mathematics, thermal science, engineering. The dynamics of yield
stress materials poses highly non-trivial problems even in isothermal flow conditions.

The first class of isothermal flows we have studied was that of low Reynolds
number flows and the main scope was understanding the physics of the solid–fluid
transition in a physical gel subjected to a gradually increasing external stress. The
physical complexity of this problem comes from a strong nonlinearity of the stress
term in the momentum conservation and a highly non-trivial coupling between the
flow field and the microstructure of the material. In this context, the Carbopol® gels
have been considered as “model” yield stress materials for over two decades and
their flows have been traditionally studied within the classical Herschel–Bulkley
model. Yet, it has been shown only recently that this classical picture is unable to
describe several “simple” fluid dynamics problems: the low Re sedimentation of
a spherical object (Sect. 1), the slow withdraw of a rigid plate at a constant speed
(Sect. 1). These rather unexpected experimental facts have prompted us to reconsider
the solid–fluid transition by careful and more systematic rheological tests, Sect. 1.
Contrary to the common belief that Carbopol® gels behave as “model” yield stress
fluids accurately described by the Herschel–Bulkley constitutive equation, we have
found a gradual and irreversible yielding scenario together with significant elastic
effects. Thus, the Herschel–Bulkley constitutive relationship is applicable only far
above the transitional region, i.e. at large enough rates of deformation. In an attempt
to “rationalise” these findings, we have proposed a phenomenological model that
we have coined “The Poor Man Model”, Sect. 2. These results initially published
in Putz and Burghelea (2009) have been received with a fair amount of scepticism
by the viscoplastic community which prompted us for an additional validation in
simple low Reynolds number pipe flow upon an increase/decrease of the driving
pressures (Poumaere et al. 2014). This particular experiment has finally dissipated
any doubts on the nature of the solid–fluid transition: a hysteresis of the deformation
states is equally observed in a pipe flow. Reassured by this result, we have started
to develop a scientifically more solid theoretical approach to explain the solid–fluid
transition, Sect. 3. This time we have resorted to the tools of Statistical Physics and
Critical Phenomena and derived from first principles a model somewhat similar to
the Ising model of the ferromagnetism. The model depends on solely two internal
parameters and, as it is formulated from first principles, it is inherently validated
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from a thermodynamic standpoint. The central conclusion of the approach is that,
when the magnitude of the interactions between the microscopic building blocks
of a yield stress material exceeds a threshold, an irreversible solid–fluid transition
will be observed regardless the manner the material is forced: steadily or unsteadily.
This threshold is the exact physical equivalent of theCurie temperature in a magnetic
system. For weakly interacting systems such as Carbopol® gels, a reversible yielding
scenario may be retrieved in the asymptotic limit of a steady-state external forcing.

An extra level of complexity is added to the flow problem of a yield stress mate-
rial if the Reynolds numbers are sufficiently high. Thus, a fundamental question how
does the viscoplasticity couples to the inertial hydrodynamic instability observed
at Re > 1000, Sect. 4. The complexity of this question comes from two sources
of nonlinearity in the momentum equation: inertial and due to the highly nonlin-
ear dependence of the stresses on the rate of strain. An experimental study of the
laminar–turbulent transition in a Carbopol® gel is presented in Sect. 4.1. The cen-
tral conclusion of this study is that the inertial instability sets in when the Reynolds
stresses become comparable in magnitude with the yield stress. This suggests that,
somewhat peculiarly, the loss of the hydrodynamic stability cannot be fully decou-
pled from the solid–fluid transition although the onset Reynolds number is large.
We have pursued this idea in Sect. 4.2 where we have addressed the question of how
the inertial instability of a plane Poiseuille flow is affected by the yielding scenario.
The central conclusion of this part was that switching from the classical Herschel–
Bulkley yielding scenario to the model by Putz and Burghelea (2009) framework
developed in Sect. 2 changes significantly the stability picture: the elasticity present
in the model by Putz and Burghelea (2009) has a destabilising role. In Sect. 4.3, we
show that if one generates strong spatial gradients of stresses via a chemical reaction
that locally produces a Carbopol® gel one obtains a sharp hydrodynamic instability
in the absence of any inertial contribution. We have shown that this novel instability
may turn useful in both efficiently displacing very viscous fluids from a flow channel
and obtaining efficient mixing in situations where increasing Re is un-practical, e.g.
micro-fluidics systems.

Yet, a third layer of complexity is added to the flow problem of a viscoplastic mate-
rial if one considers the non-isothermal case (Sect. 5). What looked at a first glance
the most basic and straightforward problem was related to the temperature depen-
dence of the rheological properties of a Carbopol®, Sect. 5.1. Quite surprisingly, the
thermo-rheology of a Carpobol® gel departs from the classical Arrhenius picture. We
provide a phenomenological explanation in terms of the physico-chemical properties
of a swollen system of polyacrylic acid spongy particles in conditions of neutral pH .

In Sect. 5.2, we have shown that, contrary to the existing theoretical predictions,
the Rayleigh–Bénard convection can be triggered in a Carbopol® gel in a wide range
of measurable yield stresses. Although we do not yet have a detailed theoretical
explanation for this fact, we believe this discrepancy originates from the non-trivial
yielding scenario observed experimentally in Sect. 1 and theoretically described in
Sects. 2 and 3.
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Transport Phenomena in Particle
Suspensions: Sedimentation and
Thermophoresis

Roberto Piazza

Abstract This chapter deals with transport phenomena induced in colloidal suspen-
sions and complex fluids either by gravity, which is the well established but never-
theless still stimulating subject of sedimentation, or by thermophoresis, a subtler and
very intriguing effect that is still partly understood. Specifically, I shall highlight the
wealth of information one can get by investigating the particle concentration profiles
generated at equilibrium by sedimentation, or at steady-state by thermophoresis, and
discuss some novel optical techniques that have been fruitfully exploited to study
them.

1 Introduction

This chapter deals with particle transport driven by external forces, either due to a
real external field or induced by a thermal nonequilibrium condition. Specifically, we
shall discuss the equilibrium or steady-state particle concentration profiles induced
in colloidal suspensions by

(a) Sedimentation, arguably the most elementary transport process induced by a
simple field like gravity,

(b) Thermophoresis, amuch subtler and intriguing effect consisting of particle trans-
port along a temperature gradient that generates effective “thermal forces” on
disperse particles although no “real” external field is present.

Sedimentation, the progressive deposition of particles settling in afluid, iswidespread
in the natural environment. For instance, it begets majestic depositional landforms,
provides valuable energy supplies such as vast oil shales (Julien 2010), affects air-
borne particle pollution (Hind 1999), and controls the distribution of plankton in the
oceans (Kiørboe 2008). Besides, forced sedimentation (centrifugation) is extensively
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used as a separation tool in the extractive, chemical, nuclear, and food processing
industry (Woon-FongLeung1998), or as a preparative and analyticmethod in biology
and medicine (Lebowitz et al. 2002). The investigation of sedimentation processes
is, therefore, of primary importance in geophysics and environmental science, and
has countless technological applications.

Sedimentation studies in model colloidal systems have also played a seminal role
in the development of statistical physics thanks to the landmark experiments per-
formed by Jean–Baptiste Perrin, who by observing and accounting for the equilib-
rium concentration profiles that the settling process generates in dilute suspensions,
turned colloids from a subject of interest for chemists to a benchmark test for Ein-
stein’s theory of Brownian motion and, more generally, for the molecular theory of
matter (Perrin 1909). As amatter of fact, a lot more can be learnt from the equilibrium
sedimentation profiles, which in fact yield the whole phase diagram and the equation
of state of a colloidal fluid.

Possiblymore interesting and surelymuch less investigated are the effects of grav-
ity on soft disordered solids like colloidal gels. We shall indeed see that the stresses
associated with its own weight may lead to rupture and consistent restructuring of
a weak gel. Moreover, by “squeezing” a gel with natural gravity or in a centrifuge
one can obtain quite useful information about the compressional rheology of soft
solids. In this short review, I shall instead refrain from discussing the dynamics of
particle settling, which is far from being a closed matter. In fact, due to the presence
of hydrodynamic interactions between the settling particles, the kinetics of sedimen-
tation processes is a demanding subject often generating theoretical puzzles even
for model suspensions of equal-sized (“monodisperse”) particles. For the interested
reader, a rather recent discussion of these issues can be found in an extensive review
I wrote a few years ago (Piazza 2014).

In the presence of a temperature gradient, particles suspended in a fluid are driven
either to the cold or to the hot, fluidmixtures partially demix, colloidal structures rear-
range and anneal, thermoelectric fields build up. Besides, airborne particles deposit
on cold surfaces, fluids slip along inhomogeneously heated surfaces, selective trans-
port takes place through membranes separating reservoirs at different temperatures.
In other words, thermal gradients move matter. If the time evolution and the final
outcome of gravity settling processes are anything but trivial, the origin itself of these
“thermal forces” is elusive. In what follows, I shall first give a brief account of the
historical development of the investigation of thermal forces. Then, guided by the
experimental evidence obtained in the past two decades, I shall try and inquire about
the physical roots of these phenomena, which arguably play a subtle role in several
important processes ranging from membrane exchange in fuel cells to oil transport
in reservoirs, focusing in particular on thermophoresis, an exquisite interfacial effect
that can be profitably exploited to manipulate matter at the micro and nanoscale.
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2 Colloid Sedimentation

Some basic notions of colloid sedimentation can be introduced by considering the
landmark experiment by Perrin (1909), whose key result has been proving that, at
settling equilibrium, a dilute suspension of monodisperse particles of mass m (in
his experiment, carefully selected emulsion droplets) takes on an inhomogeneous
density profile along the vertical direction z that mirrors the barometric law for ideal
gases,

n(z) = n(0) e−z/�g , (1)

where n is the number of particles per unit volume and �g, called the gravitational
(or sedimentation) length, is given by the ratio of the thermal energy kBT to the
magnitude of net force acting on the particle which is the sum of the particle weight
−mgẑ with the buoyant force Fb provided by the surrounding fluid. Taking the latter
simply given by the weight of a volume of fluid equal to the particle volume Vp, as
stated by the Archimedes’ Principle1 and introducing the buoyant massm∗ = �ρVp,

where �ρ is the difference between the particle and solvent densities ρp and ρ0, we
have

�g = kBT

m∗g
. (2)

The gravitational length has a simple physical interpretation once we recall that a
colloidal particle, whatever its size, has a kinetic energy of the order of kBT . Hence,
�g is the typical height from the cell bottom at which a particle will rise, obtained
by equating the particle kinetic and potential energy. More precisely, the barometric
law (Eq.1) yields the probability distribution of finding a particle at height z, whose
expectation is 〈z〉 = �g.

A further very interesting meaning of �g is obtained by considering the stationary
sedimentation velocity vs (also called the Stokes speed) reached by an isolated col-
loidal particle, which can be found by equating the net driving force m∗g to the drag
f vs , where f is the viscous friction coefficient ( f = 6πηa for a spherical particle
of radius a). Indeed, taking into account that the (single) particle Brownian diffusion
coefficient D0 is related to f by the Einstein relation D0 = kBT/ f (which is the
simplest example of a fluctuation–dissipation theorem), we easily get �g = D/vs .

In fact, the physical meaning of the dimensionless ratio of the particle size to the
sedimentation length, a/�g , becomes immediately clear if we compare the relative
contribution of advective to diffusive transport, known in hydrodynamics as thePéclet
number. The latter can be taken as the ratio of the times tb ∼ a2/D0 and ts ∼ a/vs
it takes for the particle to diffuse and, respectively, to settle over its own size (the
“Stokes time”)

Pe = tb
ts

= avs

D0
= a

�g
. (3)

1Apparently, this is a rather innocent assumption. However, when the solvent is not a simple fluid,
the standard Archimedes’ Principle may not hold. See Piazza (2014).
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Therefore, when a � �g the contribution of gravity settling to the particle motion
is just a small perturbation with respect to thermal agitation, hence particles with
Pe � 1are usually dubbed “Brownian”.Asmentioned in the introductory section, the
theoretical analysis of the settling dynamics of non-Brownian particles is extremely
complicated because, when Pe � 1, hydrodynamic interactions substantially perturb
the equilibrium structure of the suspension. For spherical particles, the condition
Pe = 1 corresponds at room temperature to

a =
(

3kBT

4π�ρg

)1/4

�
(
0.1

�ρ

)1/4

× 10−4 cm. (4)

The transition between the two regimes takes, therefore, place for a in the quite nar-
row range 0.5µm < a < 1.5µm even if �ρ is varied between 0.02 and 2 g/cm3,
a density range covering most of the materials common colloidal particles are
made of.

Similar considerations apply to forced sedimentation provided the g stands for the
centripetal acceleration ω2r , where ω is the angular frequency of rotation of the cen-
trifuge. Of course, in this case, the force acting on the particle increases linearly with
the distance r from the axis of rotation, so that the “barometric” profile for a dilute
suspension is in this case an exponential in r2. In centrifugation studies, the particle
settling velocity is usually rescaled to the acceleration by defining a “sedimenta-
tion coefficient” s = v0/ω

2r , which has then the dimensions of time and is usually
measured in svedbergs (S), where 1 S = 0.1 ps, a particularly convenient unit for the
rotation speed achievable with ultracentrifuges (for ω2r = 106 g, a macromolecule
with s = 1 S settles at vs = 1µm/s). By using again Einstein’s relation, one easily
gets the Svedberg equation s = m∗D0/kBT .

2.1 Sedimentation Equilibrium and Equation of State

Let us find outwhat kind of informationwe can obtain from the vertical concentration
profile asymptotically reached in a settling process. While sedimentation proceeds,
particles concentrate at the cell bottom and a concentration gradient builds up. This
concentration gradient induces an upward osmotic flux Jd that progressively grows
until it equates the downward advective flux Js due to gravity.When the total flux J =
Js + Jd vanishes, an equilibriumstate (sometimes dubbed “sedimentation–diffusion”
equilibrium) is reached. This profile, however, follows the barometric law (Eq.1)
only for very dilute suspensions, namely for suspensions that satisfy the Van’t Hoff
law �(z) = kBT n(z), where � is the suspension osmotic pressure, down to the cell
bottom where n(z) attains its maximum.

What about the general case? Vanishing of the total fluxmeans that the hydrostatic
equilibrium condition dP/dz = −ρg, where P is the fluid pressure and ρ = ρ0 +
�ρφ is the density of the suspension, and φ(z) = Vpn(z) is the particle volume
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fraction at height z. Writing the total pressure as P(z) = P0(z) + �(z), where P0(z)
is the pressure due to the bare solvent, it is then easy to show that the osmotic pressure
profile must satisfy

d�(z)

dz
= −�ρgφ(z). (5)

Let us integrate this equation from a generic height z to the cell top z = h, taking into
account that,when the cell is sufficiently high, the top layerwill basically contain pure
solvent (the supernatant left beyond by the settled particles) so that, since φ(h) � 0,
the upper limit of the integral can be safely extended to +∞. We obtain

�(z) = �ρg

∫ ∞

z
φ(z′) dz′ = m∗g

∫ ∞

z
n(z′) dz′, (6)

which simply means that at equilibrium the osmotic pressure �(z) at a given height
z has to match the weight per unit surface of the particles lying above that level.

Suppose, therefore, that we find an experimental technique allowing us to accu-
rately measure the equilibrium concentration profile φ(z). Then, from a numerical
integration of the profile we can also evaluate, using Eq. (6), the local osmotic pres-
sure �(z) at each position z. But then, pairing �(z) and φ(z) at the same height z,
we can extract �(φ), which is the (osmotic) equation of state of the suspension. A
singlemeasurement of the equilibrium sedimentation profile provides, therefore, the
whole equation of state of a colloidal system up to a maximum volume fraction φ(0)
at the cell bottom.

The latter is surely an exciting possibility, in particular, because direct measure-
ments of the osmotic pressure in colloidal suspensions are usually prohibitive, unless
the particles are very small, due to the extremely small values of �. Yet, as I already
mentioned, this requires scanning along the sedimentation profile with a probe that
is strictly proportional to the local particle concentration c(z), which is not often
the case. For instance, unless the colloid is very diluted the intensity Is of the light
scattered by the sample not only depends on the local particle concentration but also
on interparticle interactions, since Is(q), where q is the scattering wave-vector, is
proportional to the suspension structure factor S(q). For the same reason, the optical
absorbance of concentrated dispersions is not proportional to c(z) unless the sam-
ple turbidity is purely due to optical absorption (namely, not to scattering). Other
probing techniques that are in principle immune from particle interaction effects like
fluorescence may suffer from practical problems such as bleaching.

Nevertheless, ingenious methods have been exploited to extract from equilibrium
sedimentation experiments the equation of state of several model colloidal systems.
Someof themost relevant studies are summarized inTable1 and extensively reviewed
in Piazza (2014).

Many of the studies mentioned in the table, however, required to engineer rather
peculiar colloidal particles, for instance, embedding a fluorescent dye or with a
crystalline core (see Sect. 2.3). For what follows, it might, therefore, be useful to say a
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Table 1 Equilibrium sedimentation studies of model colloidal suspensions

Colloidal system Method References

Charged colloids Direct sampling (Hachisu and Takano 1982)

Hard spheres Depolarized light scattering (Piazza et al. 1993)

Hard spheres X-ray absorption (Rutgers et al. 1996)

Sticky hard spheres Depolarized light scattering (Buzzaccaro et al. 2007)

Active colloids Confocal microscopy (Palacci et al. 2010)

Ferrofluids Absorption in ultracentrifuge (Luigjes et al. 2012)

Colloidal rods Confocal microscopy+ SAXS (Kuijk et al. 2012)

Emulsions and foams Electric conductivity (Maestro et al. 2013)

fewwords on a technique that is applicable to amuchwider class of colloidal systems,
also because, as we shall see, it was actually developed to investigate thermophoresis.

2.2 Useful Mirages: The Beam Deflection Technique (BD)

Theworking principle of beam deflection is the following. Consider amediumwhere
a refractive index gradient ∇n(z), originating for instance from a temperature gra-
dient or from the concentration profile generated by sedimentation, is set along a
given direction z. Then, a light beam propagating orthogonally to z will be bent in
the direction of ∇n(z), simply because the part of the beam facing the region with
higher refractive index travels slower than the opposite one (see Fig. 1). One easily
gets that the angle of deflection of a beam that travels by an optical path � through
such an optically inhomogeneous medium is given to first order by ϑ � (dn/dz)�.
This effect (which is basically the same by which mirages appear in desert regions)
is usually rather small, with deflection angles in the milliradian range, but can be
easily detected using a position-sensitive detector (PSD), a standard optical device,
extensively used in metrology and robotics, that yields the position of a beam spot
center with a typical resolution of a few microns. In a simple experimental setup, a
laser beam is mildly focused through the sedimentation cell, which can be translated
along the vertical direction z by a motorized actuator, and sensed by a PSD placed
at a distance L from the cell. When the setup is used to monitor the sedimentation
profile of particles that differ in refractive index by �n with the solvent, the beam
position deflection �z on the sensor is then approximately given by

�z � dn(z)

dz
�L = L��n

dφ(z)

dz
, (7)

where φ(z) is the particle volume fraction profile induced by sedimentation.
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Fig. 1 Sketch of the beam deflection effect (top) and of a simple BD setup (bottom)

Because Eq. (7) is proportional to the derivative of the concentration profile, BD
data must, however, be integrated twice to obtain the equation of state. While this is
not a problem for smooth profiles—on the contrary: the additional integration helps
smoothing noisy data—it is a clear disadvantage when dealing with discontinuous
jumps. Thus, the exact amount of the concentration jump at the meniscus separating
two phases where dn/dz is undefined cannot be extracted, and BD measurements
alone cannot yield quantitative phase equilibria. Yet, a crucial advantage of BD
compared tomost other optical methods is that it works even for quite turbid samples,
the sole requirement being that detectable amount of transmitted light reaches the
PSD, placed at sufficiently long distance from the cell to limit the collection of light
scattered at small angles.

As an example of the power of the BD technique, I discuss the results obtained
in our lab on suspensions of monodisperse PMMA (poly(methyl methacrylate) par-
ticles with a radius R = 180 nm and a density ρp = 1.19, dispersed in a racemic
mixture of cis- and trans-decalin (n = 1.474, density ρs = 0.896 g/cm3) at an ini-
tial volume fraction φ0 of about 20%. At this concentration, the PMMA suspension
shows appreciable multiple scattering, which would have rather seriously affected
light scattering measurements. The sample transmittance, however, was still amply
sufficient to allow accurate BDmeasurements to be performed. After about 3months,
approximately corresponding to a Stokes time ts = h/vs , the lower part of the set-
tled suspensions showed a thin turbid colloidal phase, with a thickness of less than
2mm, topping a strongly iridescent colloidal crystal phase extending down to the
cell bottom.

By numerically integrating the BD data, we have obtained the volume fraction
profile shown in the inset of Fig. 2. We can first notice that the upper part of the
profile shows indeed the barometric profile (Eq. 1) expected for a dilute suspension,
yet with an experimental lg � 75µm which is about 50% larger than the predicted
sedimentation length of the system. This result suggests an increase of the nominal
PMMA particle radius by about 13% due to swelling by decalin, a result consistent
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Fig. 2 Inset: Concentration profile, obtained by integrating the BD signal, of a PMMA suspension
left settling for about 3 months from an initial uniform state. Body: equation of state of the system,
obtained by integrating the profile and setting at φ f = 0.5 and φs = 0.55 the volume fractions of
the coexisting fluid and solid phases

with former observations (Phan et al. 1996). Using this experimental value of �g, one
obtains a value ρ f � 0.5 for the particle volume fraction at the interface separating
the fluid from the colloidal crystal phase, which is in excellent agreement with the
maximum packing fraction of an HS fluid. As already mentioned, however, BD does
not allow evaluating concentration jumps at the meniscus separating two coexisting
phases, hence we fixed the volume fraction of the colloidal crystal at coexistence
with the fluid phase in the inset of Fig. 2 at the value φc � 0.55 expected for hard
spheres.

A further numerical integration of the profile yields the equation of state shown
in the body of Fig. 2. The fluid branch can be rather accurately described by the
Carnahan–Starling equation of state for hard spheres:

�

nkBT
= 1 + φ + φ2 − φ3

(1 − φ)3
, (8)

where n = φ/vp is again the particle number density, which is drawn in Fig. 2 as a
full line. It is useful to stress that, once �g is experimentally fixed, no fitting parameter
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is needed. The osmotic pressure in the ordered phase, however, is consistently higher
and its dependence on φ consistently is steeper than the predictions for a colloidal
crystal of hard spheres. As discussed by Piazza et al. (1993) and Phan et al. (1996),
this is very presumably due to the fact that the time the sample has been allowed to
settle was sufficient to reach equilibrium for the fluid phase, but still too short for a
full equilibration of the colloidal crystal.

2.3 Gravity Effects on Colloidal Gels

Colloidal gels are the focus of an intensive research effort for both fundamental
and practical reasons. On the one hand, they are model systems to understand the
interplay betweenpercolation, phase separation, anddynamical arrest in systemswith
attractive interactions. On the other hand, colloidal gels are extensively exploited in
food, drug, personal care, and cosmetic products, where they are often used as a
means to stabilize a complex formulation against macroscopic phase separation.

The simplest and most common route to gelation in colloidal systems is arrested
phase separation (Zaccarelli 2007), which consists of the following. The phase dia-
gram of systems of colloidal particles interacting via a short-ranged attractive poten-
tial, due, for instance, to depletion forces (Lekkerkerker and Tuinier 2011), displays
a coexistence gap that, although metastable with respect to crystallization, is analo-
gous to the gas–liquid transition for a pure fluid (Miller and Frenkel 2004). Hence,
when the colloid is quenched inside this gap by increasing the strength of the attrac-
tive forces, the system starts to undergo phase separation into a colloid-rich and a
colloid-poor phase. Except for very shallow quenches, however, the phase separation
process does not reach completion, and the system gets arrested into a disordered
gel phase (Buzzaccaro et al. 2007).

Mechanically, colloidal gels are viscoelastic systems with a predominantly solid-
like behavior. However, they typically yield under modest stress, often including
the gravitational stress exerted by their own weight. It is, therefore, not surprising
that many studies have been devoted to the sedimentation behavior of colloidal gels,
revealing a wealth of fascinating phenomena. For instance, some colloidal gels show
a “delayed collapse”, namely they break, but only after an unpredictable delay time,
into clusters that rapidly settle until they form a slowly compacting dense phase.
Depending on particle concentration and on the strength of the attractive interparticle
forces that lead to gelation, other gels may conversely show amuch “quieter” settling
by compressing very slowly and uniformly (Secchi et al. 2014). Here I shall only
focus on the asymptotic concentration profiles observed when the gel has eventually
attained mechanical equilibrium to a concentration profile that does not apparently
show any further changes.

The specific colloidal systemwe consider is that of aqueous suspensions of spher-
ical colloidal particles made of a fluorinated copolymer (MFA) that have a refractive
index very close to water, which makes them transparent up to very high concen-
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tration, and a crystalline core.2 The latter feature is particularly useful: because of
the internal optical anisotropy of the particles the intensity of the light scattered by
an MFA suspension contains indeed a strong depolarized component that is strictly
proportional to the local particle volume, a peculiar optical property that allows the
sedimentation profile to be accurately measured (Degiorgio et al. 1994). A variable
amount of nonionic surfactant, Triton X100, is added to the suspensions to induce
attractive depletion interactions with a range comparable to the size of the surfactant
micelles. A detailed description of the phase behavior of this system can be found
in Buzzaccaro et al. (2007). In brief, the phase diagram of the system displays a
demixing region, where the suspension state would be the coexistence of two phases
at very different particle concentrations. Yet, as discussed above, when the amount of
added surfactant is sufficiently large to drive the colloidal suspension into the coex-
istence region phase separation, which proceeds through a spinodal decomposition
process, is hindered and arrested by the formation of a weak network, which how-
ever rapidly collapses under the gravitational stress. The “debris” of this collapsed
network, which are rather large particle clusters, accumulates at the cell bottom
yielding a denser structure that slowly compresses and consolidates until it reaches
a stationary profile that does not appreciably change any more.

We first consider the profiles obtained for depletion gels of MFA suspensions pre-
pared either at different initial particle volume fractionsφ0, or at different strengths of
the depletion interactions, which can be tuned by varying the surfactant concentration
c (Buzzaccaro et al. 2012). As one may expect, at constant c the final sediment has a
total height that is proportional toφ0. Nevertheless, Fig. 3a shows that the shape of the
concentration profiles does not depend on φ0, because the profiles can be collapsed
onto amaster curve by simply shifting them along the z-axis so as tomake the top part
coincide. This surprising scaling implies that gels prepared at different φ0 compress
in the same way and thus must have the same strength. This rather counterintuitive
result is probably due to the fact that the debris the original network breaks into to
have a similar structure regardless of φ0, so the compacted structures resulting from
their accumulation at the bottom of the cell have very similar mechanical properties.
But what is the shape that the asymptotic profile takes on? To understand this, we
should make a brief detour, and learn something about compressional rheology.

Compressive rheology and the gel yield stress. The distinctive property of all soft
materials is that they weakly resist to shear stress, while for what concerns volume
changes, they are basically incompressible like a simple fluid or solid. This does not
mean, however, that the dispersed phase cannot be squeezed to a smaller volume
by expelling part of the solvent. Squeezing can be applied by selective filtration,
by using special “vane rheometers” (Liddell and Boger 1996), or more simply by
subjecting the dispersed phase and the solvent to different forces, which is what
naturally happens in natural gravity or in a centrifuge when the two phases have
a different density. Natural or forced sedimentation can, therefore, be exploited to

2To be more specific, PFA particles can be seen as a collection of polytetrafluoroethylene crystals
embedded in a spherical matrix of an amorphous fluorinated comonomer.



Transport Phenomena in Particle Suspensions: Sedimentation and Thermophoresis 269

Fig. 3 a Asymptotic volume fraction profile of settled colloidal gels obtained by adding to fluori-
nated colloidal particles with a radius R � 90 nm a fixed concentration c = 12% of the nonionic
surfactant Triton X100, acting as a depletant. The profiles for different initial particle volume frac-
tion φ0 have been superimposed by shifting them along the z-axis, indicating the distance from the
cell bottom. b Scaled compressive yield stress obtained from Eq. (9) for gels at various surfactant
concentrations indicated by the labels. The full line is a power-law fit using Eq. (10). The scaling
factors �0 are shown in the panel inset

perform compressive rheology, a relatively recent term used to generically indicate
these “squeezing” techniques, which find applications in several fields (de Kretser
et al. 2003).

Very often, when the investigated material is a colloidal gel, the squeezing pro-
cess is irreversible even for quite small values of the compressive stress, namely, the
network undergoes a plastic deformation.Modeling the kinetics of the plastic consol-
idation process of a disordered colloidal solid requires as inputs both the mechanical
strength of the network, quantified by compressive yield stress �(φ), and the rate
of escape of the solvent, which is fixed by the permeability of the network (Buscall
and White 1987). The latter quantity, which is hard to figure out, is not, however,
required to evaluate the final stationary state of the network. Indeed, the strength of
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this network is solely quantified by the �(φ) because a portion of the gel at local
solid volume fraction φ does not undergo any deformations until the applied stress
on the network exceeds �(φ). When this happens, the structure collapses, structural
consolidation occurs, and the local volume fraction increases. This compaction pro-
cess goes on until, all over the sample, the local volume fraction reaches a value that
is large enough so that �(φ) is barely sufficient to sustain the compressive stress
due to the (natural or, in a centrifuge, effective) weight of the material lying above.
In the case of natural gravity, balancing the forces on a volume element yields an
expression for �(φ) which is fully analogous to Eq. (6) for the osmotic pressure
associated with the equilibrium sedimentation profiles,

�(z) = �ρg

∫ ∞

z
φ(z) dz. (9)

Concentration dependence of the gel yield stress. Let us then come back to the
depletion gels discussed in the previous section. As the depletant concentration
increases, the interparticle attractive forces grow and the gels become stronger, lead-
ing to smaller compaction under the action of gravity. The change in gel strength is
reflected by the fact that the shape of the asymptotic profiles depends on c, thus the
simple scaling shown in Fig. 3a does not hold anymore. As shown in Fig. 3b, how-
ever, the data for the compressive yield stress �(z) at different values of c obtained
by Eq. (9) do collapse one on top of the other provided that they are simply scaled
by a c-dependent amplitude �0. Since the scaled values approximately fall onto a
straight line in a log–log plot, this means that the yield stress grows as a power law
of the particle volume fraction,

�(φ) = �0φ
α, (10)

where α � 4 and A grow approximately as an exponential of the depletant concen-
tration (see the inset in Fig. 3b).

However, there is something fishy in the previous result. Spheres can pack ran-
domly up to a maximum volume fraction φrcp � 0.64 (the “random close packing”
limit, r.c.p.3). In this limit, the systems cannot be further squeezed, so �(φ) must
diverge: hence, the power-law growth expressed by Eq. (10) cannot continue indef-
initely. Unfortunately, to reach values of φ larger than 50% using natural gravity
would require extremely tall cells and, more than that, an extremely long waiting
time. Recently, however we have performed compression rheology experiments on
depletion gels pretty similar to those discussed above using an analytical centrifuge,
which allowed us measuring the sedimentation profiles up to relative centrifugal
forces (defined as RCF = ω2r/g, where ω is the angular speed of the centrifuge and
r the distance from its axis of rotation) larger than 2 × 103.

3Although it is not easy to define the r.c.p. limit, experimentally it is found to be very close to 64%,
which is well below the ordered close packing limit of a FCC crystal, φocp = √

2pi/6 � 0.74.



Transport Phenomena in Particle Suspensions: Sedimentation and Thermophoresis 271

In forced gravity, Eq. (9) is easily generalized to

�(z) = ω2�ρ

∫ R−h

R−z
xφ(x) dx, (11)

where h is the final height of the gel, z is the distance from the cell bottom, and R
is the distance of the cell bottom from the center of rotation. The log–log plot in
Fig. 4, which displays the full dependence of the compressive yield stress �(φ) on φ
obtained from the stationary profiles according to Eq. (11), shows that data obtained
at different values of φ0 collapse once again onto a single master curve. Note that
each curve is obtained by joining without any adjustment the results for the profiles
obtained at several values of RCF. For φ � 0.4 − 0.45, the yield stress is indeed
found to grow as a power law with an exponent α � 4.2 that is quite close to the
value obtained in natural gravity. Provided that the compressive stress is high enough,
however, consistently higher values of the sediment volume fraction, approaching
the r.c.p. value, can actually be reached with a centrifuge. As evident from Fig. 4, the
behavior of �(φ) drastically deviates for φ � 0.5 from the aforementioned power-

Fig. 4 Analytical centrifuge measurements of the compressive yield stress �(φ) of depletion gels
at a fixed surfactant concentration of about 13% and different values of φ0. Each curve is obtained
by joining the results calculated, using Eq. (1), from the profiles obtained at 7 different values of
RCF ranging from 6 to 2300. The full line is a power-law fit with an exponent α = 4.2 and an
amplitude �0 = 1265 Pa
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law behavior to a much more rapidly increasing trend, which apparently diverges for
a volume fraction that is of the order of φrcp. The experiment I have just described
opens up the opportunity of using a centrifuge as a “compressional rheometer”.

There would be many more things to say about gels, in particular, concerning the
relaxation of frozen-in internal stresses that accumulate during the formation of soft
solids, which is surely fostered by the presence of gravity. This would unfortunately
take too much space, so it is time to turn our attention to the other topic of this
chapter, thermal forces.

3 Thermal Forces and Thermophoresis

As stated in the introductory section, thermal gradients move matter. To try and
understand why, I shall first briefly retrace a long journey, along which we shall meet
scientists like Maxwell, Reynolds, Tyndall, Soret, and Derjaguin. By specifically
focusing on thermophoresis, I will then show how recent experiments have allowed
us to get some general ideas about the physical roots of thermal forces. Finally, I plan
to show how, in spite of our still partial understanding, we can profitably exploit these
effects to manipulate matter. For instance, thermal forces can be used to concentrate
colloids, anneal colloidal crystals and gels, fractionate proteins, build up traps for
DNA replication, thermo-charge nanoparticles, mix fluids in microgravity, and even
simulate the collapse of a supernova. Moreover, they arguably play a subtle role
in several important processes such as soot formation in combustion, membrane
exchange in fuel cells, oil transport in reservoirs.

3.1 Thermal Forces: A Bit of History

The Ludwig–Soret effect.Thefirst evidence of thermal effects onmass transportwas
collected around the middle of the nineteenth century by Carl Ludwig, the founder
of experimental cardiovascular physiology, who observed in 1856 that a sodium
sulphate solution placed in a U-shaped tube, whose two ends were maintained in ice
and boiling water, tends to concentrate near the cold end (Ludwig 1856). Yet, this
mostly qualitative observation by Ludwig went unluckily unnoticed4 until Charles
Soret, a Swiss physicist published those that can be considered the first quantitative
studies of thermodiffusion or, as it is correctly called, the Ludwig–Soret effect. In
his first seminal work (Soret 1879) Soret writes

4Another anecdotal fact that went mostly unnoticed is that Ludwig had for many years as a lab
assistant Alfred Fick, a scientist whose name is, of course, known to anyone who has studied
diffusion processes….
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I propose to investigate if the final equilibrium state is the same when the temperature is
varying from one point to another in the liquid. In other words, considering an initially
homogeneous solution placed in a container, for example, a vertical cylindrical tube with
the upper part maintained at a high temperature and a lower part at a low temperature, the
question arises to know if the concentration will remain uniform everywhere, or will increase
in some part at the expenses of another part? This question was, to my knowledge, never
treated before and a priori the answer cannot be given and could be important for the still
obscure theory of diffusive phenomena of solutions.

These words clearly show that he fully appreciated the basic and general interest of
the investigation he had performed. He first investigated NaCl and KNO3 solutions
contained in 30cm long tubeswhose extremitieswere kept at a temperature difference
of about 60◦ for a period extending up to 25days.Although this timewas not sufficient
for the solutions to reach a steady-state condition, Soret was nevertheless able to
conclude that, in his words:

…the two salts on which I worked tend to concentrate at the cold side at expenses of the hot
side, and this effect rapidly increases with the initial concentration.

Soret than discusses whether his results with the diffusion equation proposed by
Fick two decades earlier showing, with appreciable mathematical insight,5 that this
requires to generalize the flux of mass by introducing an additional term that, at first
order, can be taken as linear in the temperature gradient. Subsequently, by extending
his measurements to longer periods, Soret managed to probe the stationary state that,
as we shall shortly discuss, arises from the balance of thermodiffusive with osmotic
flow (Soret 1880). Soon it was realized that thermodiffusion takes place not only in
solutions, but also in simple liquid mixtures (for a dated but still useful review see
review, see Tyrrell 1961).

The Ludwig–Soret effect in a dilute solution at initial homogeneous concentration
c can then be quantified by the Soret coefficient

ST = 1

c

∇c

∇T
= d(ln c)

dT
, (12)

which physically looks as a susceptibility with the dimensions of the reciprocal
of temperature, giving the response to the temperature gradient. Here we already
encounter one of the main conceptual problems concerning thermal forces. It is
indeed usual to introduce susceptibilities to quantify the response to an external
perturbation, like an electric or magnetic field: yet, a thermal gradient is not a real
external field. How can we then account for it? We shall later see that this question
is far from being trivial.

Thermal transpiration and particle thermophoresis in gases. The first evidence
that thermal inhomogeneities can affect the motion of airborne particles is due to
Tyndall, who observed that a dust-free region of space develops around a heated wire

5Soret was not only a good experimentalist, but also a skilled theorist: In fact he got a degree in
mathematics at the Sorbonne in a 1876, a year when the examinations had been so hard that only a
single student besides Soret managed to pass them. And that student was Henri Poincaré….
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Fig. 5 a A series of Crookes’ radiometers at the royal society in London. A sketch of Maxwell’s
working mechanism is shown in (b), while the flow in a radiometer is schematized in (c)

in an otherwise dusty gas (Tyndall 1870). This evidence, which was little more than
an en passant observation, was further studied by Lord Rayleigh (Strutt Rayleigh
1882), and extensively investigated by Lodge and Clark, who also discussed the
opposite (and technologically much more important) effect of particle deposition on
cold surfaces (Lodge and Clark 1884). Due to the unavoidable presence of natural
convection, however, the effect was too complicated to be given at that time a sound
explanation.

Rather curiously, important hints for the understanding of particle transport by
thermal gradients, i.e., thermophoresis, came from the investigation of an apparently
unrelated subject, namely of “radiometric” forces in rarefied gases. In 1873, William
Crookes developed a special tool, consisting of a vertical low-friction rotor with four
vanes blackened on one side and silvered on the other, originally meant to detect light
pressure(see Fig. 5a). In fact, when illuminated, this “radiometer” turns. Contrary to
the Crookes’ belief, however, the radiometer does not spin because of radiation
pressure, which is far too small to account for the effect. Besides, the vanes turn the
wrong way around, with the black side pushed away by the light.

We, therefore, provided that the gas pressure in the radiometer is sufficiently
low, the vanes turn? The argument given in several books (including Encyclopædia
Britannica) goes as follows: the black side of the vane heats up the surrounding
gas molecules, which therefore acquire kinetic energy and “kick” the black side
stronger. Unfortunately, this is wrong. To have a stationary gas, we need equalization
of pressure: therefore, near the black side we have a hotter, but less dense gas, giving
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the same normal component of momentum transfer to the vane. Even in the presence
of convection things do not change: convection patterns around a vertical heated
surface do not display transverse pressure gradients, and there is no pressure drop
between the thermal boundary layers and the bulk, stationary gas.

It wasMaxwell that, in his last paper published in 1879 (Maxwell 1879), unraveled
the correct mechanism. By reasoning on the discovery made by Osborne Reynolds
of gas “thermal transpiration” through porous membranes, which we discuss more
in what follows, Maxwell concluded that the radiometer turns because of tangential
stresses on the edges of the vanes.

Let us try and recastMaxwell’s argument inmodern terms.Consider a gas bounded
by a solid planar surface S, with a temperature gradient along the plane, and those
molecules that lie within a mean free path λ from S. The clever intuition byMaxwell,
largely stemming from the discussion with the “anonymous” reviewer of his paper
(who was Kelvin, as he actually knew), is that molecular impacts with a solid surface
are not specular reflections and that the momentum distribution after an impact are
partly thermalized by the interaction with the surface. Since molecules coming from
the hot side carry more momentum than those coming from the cold, this leads to a
longitudinal transfer of momentum from the gas molecules to the solid surface. The
amount of transferred momentum can by gauged by introducing a suitable “accom-
modation” coefficient that, although hard to evaluate, still plays a key role in kinetic
theory (see Fig. 5b).6

This mechanism, besides qualitatively accounting for Crookes radiometer motion
and explaining gas “thermal creep” in pores, was invoked by Epstein (1929) to
give a first explanation of particle thermophoresis in gases, at least in the hydrody-
namic near-continuum limit.7 For an accommodation coefficient close to one (corre-
sponding to full thermalization upon an impact, as usually occurs on metal surfaces)
Epstein’s expression for the steady-state thermophoretic velocity vth acquired by a
particle of thermal conductivity κP embedded in a gas with thermal conductivity κg

and molecular mass m can be written as

vT = 3

2

√
kBT

2πm
λ

(
κg

2κg + κP

) ∇T

T
, (13)

where the term in brackets accounts for the particle-induced change of the externally
imposedgradient∇T . SincevT is proportional toλ, thermophoresis is the stronger the
lower the gas pressure. Notice also that we canwrite vT ∝ (λ/�T )vth , where vth is the
thermal velocity of the gasmolecules and �T = ∇T/T is the typical length scale over
which temperature varies. Epstein approach was further refined by other researchers

6It is however important to point out that using an equilibrium Maxwell–Boltzmann distribution
f0(v), this longitudinal momentum transfer vanishes. Indeed, one must take into account the first
correction to f0(v), which can be obtained from the Boltzmann equation and explicitly contains
∇T (Kennard 1938).
7The mechanism is very different in the extremely dilute, or “Knudsen”, regime, where the gas
mean free path is large compared to the particle size.
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to include higher order terms and extend the solution to the near-continuum regime
of higher Knudsen number (Zheng 2002).

For what follows, it is useful to stress some key aspects of Maxwell’s mechanism:

• The gas exerts on the surface (or vice versa) of a tangential stress. This means that
the pressure tensor near the surface, which is anisotropic in the direction of the
thermal gradient.

• The inhomogeneous gas region where the velocity distribution differs from the
equilibrium value is confined within a surface layer with a thickness of the order
ofλ. Themean free path acts, therefore, as a characteristic length scale controlling
the amplitude of the effect.

• Macroscopically, thermophoresis can be seen as an effective slip of the particle,
namely as a violation of the hydrodynamic stick boundary condition confined
within a mean free path from the surface.

• The thermophoretic velocity does not depend on particle size a (at least when
a � λ). In fact, particle bulk properties enter the problem only through the thermal
conductivity κP that, in relation to κg, yields the local distortion of the temperature
field.

Aswe shall see, these points bear strong resemblanceswith similar features of particle
thermophoresis in liquids.

From thermal transpiration in gases to thermo-osmosis in liquids. As we men-
tioned, Maxwell was driven to conceive his longitudinal momentum transfer mecha-
nism by Reynolds’ investigation of “thermodiffusion” (today better known as “ther-
mal transpiration”) in gases (Reynolds 1879), which had recently been discovered
by Wilhelm Feddersen (Feddersen 1873). Reynolds was actually motivated to study
thermal transpiration by his interest in the Crookes radiometer and his clever idea
was investigating whether the opposite phenomenon takes place, namely the flow of
a gas driven by a thermally inhomogeneous surface that is kept still, an effect later
known as thermal creep.

Reynolds realized that this effect should have depended on the size of the surface
compared to themean free path of themolecules so that, in his words, “by using vanes
of comparatively small size the forces should be perceived at comparatively greater
pressures of the gas. This however meant that, to obtain any result at moderately high
pressure, the vanes would have to be very small indeed, “too small almost to admit
an experiment”.8 This is, however, the moment when Reynolds had a real stroke of
genius:

And it was while thinking of some means to obviate this difficulty that I came to perceive
that if the vanes were fixed, then instead of the movement of the vanes we should have the
gas moving past the vanes – a sort of inverse phenomenon – and then instead of having small
vanes, small spaces might be allowed the gas to pass. Whence it was obvious that in porous
plugs I should have the means of verifying these conclusions.

8Remember that, to increase the mean free path of air at room temperature to 1mm, pressure must
be lowered to about 7 Pa.
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So, what it did was building what he called a “thermodiffusiometer” connecting
two gas chambers kept at different temperatures through porous plugs and measure
by means of a differential gauge the pressure difference between the two cham-
bers that builds up while the gas “transpires” through the plug until a stationary
state is reached. By performing careful and extensive experiments on several gases
(air, hydrogen, carbon dioxide) at various equilibrium pressure using plugs made
of different materials (stucco, bisque, meerschaum), Reynolds, in fact, opened up
the investigation of thermal stresses in rarefied gas dynamics, which also lead to
useful applications like a “thermal transpiration pump” tested by NASA in micro-
gravity (Sone 2000). For a clever student demonstration of thermal creep see Sone
(1991).

Fluid flow driven by thermally inhomogeneous surfaces is not limited to gases, but
takes place in liquids too, as discovered in 1907 by Lippman, who studied the flow
of water through a membrane of gelatin separating two volumes held at different
temperatures. A few years later, a more systematic study by Aubert (1912), who
gave this effect the name of “thermo-osmosis”, showed that, at variance with gases
(where the direction of flow is always from the cold to the hot side), some kinds of
membranes, made, for instance, of parchment or viscose, drive a water flow from the
hotter to the colder reservoir.

The observations by Lippman and Aubert went almost unnoticed, until the inves-
tigation of thermo-osmotic phenomena was resumed by Derjaguin (Derjaguin and
Sidorenkov 1941; Derjaguin et al. 1987), who performed further experiments and
reported remarkable effects for porous plugs of sintered glass in water and other
liquids. What is more interesting is that Derjaguin attempted to develop a theoreti-
cal model of thermo-osmosis by first considering the reciprocal “mechano–caloric”
effect, namely the buildup of thermal gradients due to fluid flow in capillary pores,9

using then the Onsager reciprocal relations to obtain the slip velocity of the fluid
with respect to a horizontal surface, which he found to be

vT = −2

η

(∫ ∞

0
z�h(z)dz

) ∇T

T
, (14)

where η is the viscosity and �h(z) is the local excess enthalpy at a height z above
the surface, a quantity that, for short-ranged liquid/surface interactions, is confined
within a thin layer close to the surface.

Equation (14) provides a qualitative understanding of the direction of the thermo-
osmotic flow: when the liquid/solid interactions are attractive (so that the liquid
wets the surface) the excess enthalpy in the internal region is everywhere negative,
and the fluid moves to the hot side, whereas the opposite takes place for repulsive
fluid/surface interactions. The main problem with this expression, however, is that
there is some ambiguity in the microscopic definition of the local excess enthalpy,

9This ideas may have been suggested by Landau, who regarded the thermomechanical effect to be
not solely restricted to superfluid helium (where, however, it is far larger!).
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since it is not at all a slow-varying function of z. A quantitative assessment of �h(z)
(not to say its experimental determination) is then extremely hard.

Extensive work on thermo-osmosis, providing useful results concerning, in par-
ticular, the steady-state condition and the temperature dependence of the effect, was
later made by the group of F. Gaeta in Italy (Pagliuca et al. 1987). In the recent
past, there has been a renewed interest in thermo-osmotic phenomena because of
its potential applications to fuel cells, water management, and water recovery. For a
recent review, see Barragán and Kjelstrup (2017). For the purposes of this work, the
most interesting aspect is the strong relation between thermo-osmosis and particle
thermophoresis in liquids, which is the main subject of what follows.

3.2 Thermophoresis in Liquids: Some Useful Definitions

When compared to all the studies of thermal forces we just discussed, the experi-
mental investigation of thermophoresis in liquids began rather late, mostly because
the standard techniques to investigate thermal transport of large particles available
till the past decades of the past century were extremely time-consuming and often
plagued by spurious effects. The first attempts were a natural extension of the investi-
gation of the Soret effect in simple liquid mixtures to macromolecular solutions, and
have actually been performed by two giants of polymer science like Peter Debye and
Bruno Zimm (Debye and Bueche 1948; Hoffman and Zimm 1955), but were mostly
capable of showing that the Soret coefficient is much larger for macromolecules than
for small molecules.

Arguably, the first investigation of thermophoresis in a colloidal fluid, specifically
for a suspension of 1µm polystyrene particles, was published in 1972 by McNab
and Meisen (McNab and Meisen 1972), who ingeniously used an ultramicroscope
to detect changes in the particle sedimentation velocity due to the presence of a
thermal gradient. Yet, they tried to interpret their data using various expressions for
thermophoresis in gases, obtaining a very poor agreement: as we shall see, the mech-
anisms causing thermophoresis in liquids and gases are indeed quite different. The
experimental situation improved considerably when novel powerful optical methods
like the laser beam deflection (Giglio and Vendramini 1977; Zhang et al. 1999) and
transient grating (Köhler et al. 1995) techniques became available. These powerful
laser techniques originated a real boom in the number and quality of studies of ther-
mophoresis that started at the turn of the century and is still exponentially growing:
Just to get a figure, in the past two decades the number of papers concerning particle
thermophoresis has increased from about 50 per year to more than 100 per month.
Before we review the evidence obtained from these studies and the application stem-
ming from them, let me first frame thermophoresis more precisely by providing some
useful definitions.
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When a colloidal suspension or a macromolecular solution is placed in a temper-
ature gradient, the dispersed particles display, on top of Brownian motion, a steady
drift velocity given by

vT = −DT∇T,

where DT , which is actually a mobility coefficient, is often (and rather improperly)
dubbed “thermodiffusion coefficient”. Besides the usual diffusion term, the mass
flux J contains, therefore, an additional contribution due to thermophoresis10:

J = −D∇c − cDT∇T

In a closed system, this leads to the buildup of a concentration gradients eventually
leading to a stationary concentration profile that, taking∇T along the z-axis, is given
by

dc

dz
= cST

dT

dz
, (15)

where

ST = DT

D
(16)

has exactly the same meaning as the Soret coefficient defined in Eq. (12), but can
also be given a ‘dynamic’ meaning as the ratio between the thermophoretic mobility
and the particle diffusion coefficient. We can indeed draw a close analogy between
thermophoresis and sedimentation by introducing an intrinsic length scale (a ‘ther-
mophoretic length’)

�T = D

vT
= (ST∇T )−1 (17)

which plays the same role as the gravitational length in sedimentation. In fact, when
the Soret coefficient depends very weakly on concentration and temperature, the
steady-state profile is simply c(z) = c(0) exp(−z/�T ).

It is, however, worth recalling that, like for thermophoresis in gases, there is a
crucial difference between the two situations.Whereas sedimentation is the response
to gravity, the thermophoretic mobility DT is not associated with a real external field,
but rather than the nonequilibrium condition of thermal inhomogeneity. This subtle
distinction makes grasping the origin of thermophoresis very hard. Nevertheless,
recalling that the �g is the ratio between the thermal energy kBT and the magnitude
of the external force (gravity), this analogy allows us to set out an interesting fact: if
we assume that a thermal gradient acts as an effective “thermal force”, the magnitude
of that force has to be, for consistency, FT = kBT/�T or, vectorially,

FT = −kBT ST∇T . (18)

10In the following expressions, the concentration c, taken equivalently as a mass or a volume
fraction, is assumed to be small.
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As we shall see, this expression is easily justified by a microscopic approach to
thermophoresis.

3.3 Experimental Methods to Investigate Thermophoresis

Thermogravitational columns. The traditional experimental methods for studying
the Soret effect in simple liquid mixtures were based on applying a thermal gradient
to a suitable diffusion cell and devising ingenious ways to detect the concentration
gradients induced by thermodiffusion. The simplest way to do it is placing the sample
between two horizontal plates across which a constant temperature difference �T is
maintained, and comparing the composition of the solution close to the two plates
at steady state. However, the separation of the components is generally small and
sampling is not trivial.

Much better results can be obtained by exploiting the concurrent action of thermal
diffusion and natural convection in thermogravitational columns, where a horizontal
temperature gradient is imposed between two vertical closely spaced plates. Com-
ponents that, because of thermal diffusion, preferentially drift to the cold (hot) plate
becomes enriched at the bottom (top) of the column. Thermogravitational columns,
which lead to much larger (and stabler) component separation, have also been used
to study thermophoresis in solutions of polymers with moderately large molecu-
lar weight (Ecenarro et al. 1994), but they are rather inefficient when dealing with
colloidal suspensions of large particles, since the timescale needed to obtain a suf-
ficient separation ratio may be extremely long. The recent design of micro-columns
coupled with a optical detection methods may, however, lead to a revival of these
techniques (Naumann et al. 2012).

Application of Beam Deflection to thermophoresis. Optical probing of a concen-
tration gradient is a very convenient way to overcome some of the basic limitations
of the traditional methods, since it allows one measuring concentration differences
that are far smaller than those detectable by common analytic methods. Moreover
no sampling is required, thermal gradients can be imposed on small spatial scales
using lasers, and absolute values for ST can often be obtained by direct comparison
with optical effects on the pure solvent.

All the previous valuable features are fully exploited by the Beam Deflection
method already described in Sect. 2.2, which my group extensively used to obtain
results on a wide class of complex fluids ranging from surfactant and protein solu-
tions to polyelectrolytes and colloids (Piazza 2008). In measurements of the Soret
effect, the BD effect is obtained by placing the sample between two closely spaced
plated metal plates across which a temperature difference is applied, usually by
thermoelectric modules. After a fast initial deflection ϑth , due to the temperature
dependence of the refractive index, the beam undergoes further bending due to the
progressive buildup of the Soret-induced concentration gradient, leading to an addi-
tional steady-state deflection ϑs that can be easily singled out since it takes place on
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Fig. 6 Typical BD signals when dn/dc and dn/dT have the same (bullets) or the opposite sign
(open dots, which is usually the case when ST < 0), plotted as a function of the scaled time t/τ ,
where τ = h2/(π2D) is the diffusion time over the interplate distance

the much longer time scale of particle diffusion. The Soret coefficient can then be
simply evaluated from the ratio ϑs/ϑth at steady-state as

ST = −1

c

∂n/∂T

∂n/∂c

ϑs

ϑth
, (19)

where ∂n/∂T and ∂n/∂c are, respectively, the temperature and concentration depen-
dence of the refractive index of the solution. In addition, the time dependence of the
signal ϑs(t), which reaches its steady-state value exponentially with a time constant
τ = h2/(π2D), where h is the interplate spacing, allows one to evaluate the parti-
cle diffusion coefficient, and therefore the thermophoretic mobility DT = ST D (see
Fig. 6).

The main limitation of the BD method is that the interplate gap h can hardly be
reduced below aminimal value of a few tenths of a millimeter, since the beam cannot
be focused within the cell to an arbitrarily small spot size w0 without consistently
reducing the length over which the beam remains reasonably focused, given by the
Rayleigh range zR = πw2/λ. Hence, the BD technique allows us to extend the size
range that can be investigated up to 100–200 nm, but larger particles unavoidably
requires the all-optical methods described in the next subsection.

All-optical methods: FRS. A very efficient reduction of the spatial region where
particle diffusion is probed, and therefore of the measurement time, can be obtained
by inducing localized thermal gradients via laser beams. This can be done either
by exploiting a moderate optical absorption of the sample at the frequency of the
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incoming beam, or by adding a small quantity of a suitable dye acting as an absorber.
At variance with BD, these all-optical methods do not require an ingenious design
allowing a uniform thermal gradient to be rapidly imposed and then kept constant for
a long time, but on the other hand require careful consideration of spurious convection
problems that can seriously limit their performance.

Let me first briefly discuss a rather elaborate all-optical schemes that bears many
points in common with similar techniques, commonly dubbed Forced Rayleigh
Scattering (FRS), used, for instance, for hydrodynamic flow visualization, parti-
cle velocimetry, or colloidal electrophoresis. Basically, they consist of reading, via
a probing beam, the transient diffraction grating created in a sample by two mutu-
ally coherent excitation (pump) beams propagating through the sample with slightly
different incident wave-vectors. If the pump wavelength is partially absorbed by the
fluid or, as more commonly made, if a suitable absorbing dye is added to the sample,
a diffraction grating due to the temperature dependence of the refractive index builds
up on a time scale set by the thermal diffusivity. In the presence of thermal diffusion,
the associated sinusoidal temperature field leads to the progressive buildup of a con-
centration gradient, which in turn modifies the grating diffraction efficiency and the
refractive index profile, whose time dependence is read by monitoring the intensity
of the Bragg-diffracted probing beam (Köhler and Schäfer 2000).

In FRS, the periodic structure of the temperature field unavoidably entails the
occurrence of “inverted” temperature gradients, namely of colder fluid regions stand-
ing abovewarmer ones,whichmayeasily inducenatural convectionunless the grating
wavelength is very small. This can easily be obtained by increasing the crossing angle
between the pump beams, which, however, generally leads to a substantial reduction
of the diffraction efficiency. FRS is nevertheless a powerful technique, but requires
a rather complicated and expensive optical setup. This is not the case for the simple
method described in the next subsection, which allowed us to study thermophoresis
in suspensions of large particles, and more recently to start investigating the effect
of thermal forces on soft solids.

All-optical methods: Thermal Lensing. Thermal lensing (TL) is a self-effect on
beam propagation that takes place when a laser beam heats up a partially absorb-
ing medium, generating a locally inhomogeneous refractive index profile. Thermal
expansion induces indeed a local density distribution in the sample that, in its turn,
produces a refractive index profile acting as a negative lens that increases the diver-
gence of the transmitted beam. Consider then a laser beam of optical power P ,
incident on a sample of thickness �with absorption coefficient b, thermal conductiv-
ity κ, and thermal diffusivity χ. The heat equation yields, close to the optical axis, to
a parabolic local refractive index profile, so that the sample acts as a simple diverging
lens with inverse focal length

1

fth
= −ϑth

λ

πw2(1 + τth/2t)
, (20)
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where τth = w2/4χ is the heat diffusion time over the beam-spot size w, and ϑth is
a dimensionless “thermal lens number”.

ϑth = − Pb�

κλ

∂n

∂T
, (21)

The TL effect can be accurately measured by focusing the incident beam on the
sample with a lens and detecting the time-dependence of the light intensity I (t)
at the beam center (namely, on the optical axis) with a photodiode. The effect is
actually maximal when the cell, assumed to be thin, is displaced from the lens focus
(the position of the “beam waist”) by

√
3zR , where zR is the Rayleigh range. For this

position of the cell, I (t) is given by

I (t) = I (0)

1 + ϑth f (t; τth)
, (22)

where the function

f (t; τ ) = π

6

1

1 + τ/t
. (23)

is evaluated for τ = τth = w2/4χ, which is the characteristic heat diffusion time
over the beam spot size. The time-dependence of the TL signal yields, therefore, a
simultaneous measurement of the sample thermal conductivity and diffusivity.

Thermal Lensing can be profitably exploited to investigate thermophoresis.
Indeed, the particle thermophoretic drift along the laser-induced temperature pro-
file leads to a progressive buildup of a concentration gradient within the heated
region acting as an additional lens-like element. This “Soret lens” can be divergent
or convergent depending on the preferential direction of motion of the component
with the largest index of refraction and, as a result, the spreading of the transmitted
beam further increases, or conversely lessens. For instance, in a suspension of parti-
cles with a refractive index larger than the solvent, thermophoresis leads to a larger
or smaller beam spreading depending on whether ST is positive or negative.

Equation (22) can be readily extended to the simultaneous presence of thermal
and Soret lensing effects as

I (t) = I (0)

1 + ϑth f (t; τth) + ϑs f (t; τS)
, (24)

where τS = w2/4D is the mass diffusion time, with diffusion coefficient D, over the
beam spot size and we have defined the “Soret lens number”

ϑs = − Pb�

κλ

∂n

∂c
ST c, (25)

where we have again assumed c � 1. Similarly to what happens in Beam Deflection
measurements, the “thermal” and “Soret” lensing effects usually take place onwidely
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separated time scales due to the different order of magnitudes of thermal diffusivity
and mass diffusion. Besides, since

ϑs

ϑth
= −ST c

∂n/∂c

∂n/∂T
, (26)

an independent determination of the temperature and concentration dependence of
the refractive index permits a differential measurement of ST that neither depends
on the thermal conductivity and optical absorbance of the medium, nor on the values
chosen for P and �.

A seminal investigation of the Soret effect in an aniline/cyclohexane mixture
close to the critical point (Giglio and Vendramini 1974) showed that TL can be
regarded as an all-optical technique combining accuracy in generating localized
thermal gradients to experimental simplicity. At variancewith this strongly absorbing
mixture, however, water is highly transparent through the whole visible range. In
aqueous solutions, substantial TL effects can nevertheless be obtained in a convenient
near-IR spectral region by exploiting a specific vibrational overtone peaked around
λ � 970 nm, where water has an absorption coefficient b ≈ 0.55 cm−1. This strategy
has been originally exploited by our group to successfully measure thermophoresis
in several systems (Rusconi et al. 2004). Recently (Lattuada et al. 2019), we have
also shown that TL can be profitably exploited to investigate thermophoresis in
solutions of block copolymers that undergo temperature-induced self-association
processes (see Fig. 7). A note of caution should nevertheless be raised for what
concerns convective effects. Since a radially symmetric excitation beam generates
horizontal temperature gradients, on the long time scales required for thermophoretic
studies TL measurements may indeed be influenced by weak natural convection
effects that unavoidably set in for any value of the incident power. Disturbance of the
Soret-induced concentration profile can, however, be made negligible provided that,
over the beam-spot length scale, convection is much slower than mass diffusion. A
useful trick to ensure this is using a very thin cell and place the optical axis of the setup
vertically (see Fig. 7). For a thorough discussion of this delicate issue, see Rusconi
(2007).

3.4 Particle Thermophoresis in Liquids: The Roots

Which are the physical properties that set out the strength of thermophoretic effects?
All experimental results obtained on aqueous colloidal suspensions and complex
fluids witness an exquisite sensitivity of thermophoresis to the nature and strength
of the interfacial particle/solvent interactions. The crucial role of solvation forces in
setting the strength of thermophoresis was originally evidenced in a study of micellar
solutions of sodium dodecyl sulfate (SDS), a simple charged (anionic) surfactant,
where the Soret coefficient was found to decrease by more than one order of magni-
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Fig. 7 Thermal Lens number ϑ(t) = ϑth(t) + ϑs(t) from a micellar solution of a poloxamer P407
block copolymer. The log time scale easily allows the “thermal” and “Soret” lens contributions to
be set apart. The inset shows the basic optical scheme of a TL apparatus and a picture of the setup
built in our lab, vertically mounted to reduce spurious convective effects

tude by increasing the concentration of added salt from 10 to 300 mM (Piazza and
Guarino 2002).

The strict relation between thermophoresis and the nature of particle surface has
been successively confirmed by many experiments. For instance, while in SDS solu-
tions ST > 0 (namely, SDS micelles are “thermophobic”, in solutions of dodecy-
maltoside (DM), a surfactant that differs form SDS only in the head group, which
is neutral, ST < 0 (i.e., DM micelles are “thermophilic”). Now, if one mixes the
two surfactants in different molar ratios, ST can be continuously varied between the
limiting values for the pure compounds (Iacopini et al. 2006).

Similarly, the Soret coefficient of a large colloidal particle is mainly set by the
nature of its interface with the solvent. For instance, by adsorbing different moieties
(surfactants, polymers) on standard latex particles, the strength and even the direction
of the thermophoretic motion can be controlled. Interactions with the solvent seem
to be less relevant for polymers in organic liquids (as discussed below, DT seems to
depend mostly on the solvent viscosity), but become noticeable when the quality of
the solvent changes from good to bad by changing, for instance, temperature.

In any case, particle bulk properties seem to be much less important, if an excep-
tion is made for thermal conductivity that of course fixes the temperature field around
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the particle (metal particles, for instance, generally display negligible thermophore-
sis). Recalling that thermophoresis in liquids is strictly related to thermo-osmosis,
this evidence fully agrees with Derjaguin’s view of the latter and suggests that ther-
mophoresis is basically an interfacial effect. In other words, as originally pointed out
by Ruckenstein (1981), thermophoresis stems, therefore, from the inhomogeneity
brought in by the thermal gradient in the thin layer that physically constitutes the
interface between particle and solvent, whose thickness δ is of the order of the range
of particle/solvent interactions (hence typically in the few nanometer range, except
for charged particles at very low ionic strength) More specifically, interfacial tension
gradients parallel to ∇T lead, very close to the particle surface, to an anisotropic
pressure tensor whose net effect is generating in the inhomogeneous layer a slip
velocity with respect to the surrounding fluid.

The strong analogy with thermo-osmosis also provides a hint about the depen-
dence of thermophoretic effects on the particle size a, at least when a � δ. If the
interfacial layer is small compared to the particle size, one easily concludes that, to
have a finite thermophoretic velocity (or, correspondingly, a finite thermo-osmotic
flow), the thermophoretic mobility DT should not depend on particle size (which
is the case of polymers too). Therefore, since the Brownian diffusion coefficient
D ∝ a−1 one expects ST ∝ a, as very often (but not always) found in experiments.
For a discussion, see Braibanti et al. (2008).

At this point, you may easily see that these general features, which are actu-
ally shared by several other kinds of “phoretic” motion (Anderson 1989), strongly
resemble those we have pointed out in Sect. 3.1 for particle thermophoresis in gases,
provided that we consider δ as the analogous of the mean free path in a gas.

These considerations can be made more quantitative by a hydrodynamic model,
whose basic strategy is trying and seek an effective thermal force FT that leads to an
equilibrium particle concentration profile that coincides with the steady-state profile
condition induced by the thermal gradient. If FT is found, then it is easy to show
that the Soret coefficient is exactly related to FT by the expression in Eq. (18) that
we guessed from the analogy with sedimentation.

To find FT is, however, the really hard task, which requires to solve the Navier–
Stokes equations, with appropriate boundary conditions, coupled to the Fokker–
Planck (or Langevin) equation for the Brownian particle motion. This is analytically
feasible only in a limited number of special cases (for instance, charged spherical
colloids in the Debye–Hückel approximation), but some general properties of the
solution can nevertheless be pointed out. In particular, the Soret coefficient is in gen-
eral proportional to the temperature derivative of the product between the interfacial
tension tension γ between particle and solvent and the width δ of the thin interfacial
layer, where due to the effect of the interactions with the particle surface, the solvent
is characterized by an anisotropic pressure. A further interesting result is that, pro-
vided that both γ and δ depend on T only through the fluid density, ST turns out to
be proportional to the thermal expansivity of the solvent, a feature often suggested
by the experimental results.

The hydrodynamic model yields, therefore, some important clues about ther-
mophoresis. In fact, thanks to the huge value of the ratio of the particle size to the
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molecular size, allowing for a continuum hydrodynamic description of the solvent,
we arguably grasp particle thermophoresis better than the Soret effect in simple
liquid mixtures, although several questions are still completely open. For instance,
while the temperature dependence of DT for polymers in non-polar solvents is rather
weak, the thermophoretic mobility of many aqueous complex fluids behaves as
DT (T ) = A(T − T ∗), where T ∗ is a system-dependent temperature at which the
thermophoretic motion switches from thermophilic to thermophobic (Iacopini et al.
2006). So far, the origin of this rather universal behavior is totally unknown.

However, it would be very useful to go beyond a semi-phenomenological model
based on hydrodynamics coupled to a stochastic equation for the particle motion,
and develop amicroscopic description based on correlation functions of well-defined
microscopic quantities that may provide a unified view of thermal forces both in
gases and in dense fluids. A very interesting attempt in this direction has recently
been made by Anzini et al. (2019), who presented a microscopic description of
thermo-osmosis based on linear response theory generalized to inhomogeneous and
anisotropic environments yielding the thermo-osmotic slip in terms of static and
dynamic equilibrium properties of a fluid near a surface. Notably, this approach
leads in the appropriate limits to the expressions obtained from kinetic theory for
gases and to Derjaguin result (Eq.14) for liquids, showing however that these two
regimes are indeed governed by different physical mechanisms.

3.5 Thermoelectricity in Liquids

Notwithstanding our partial understanding of the microscopic origin of thermal
forces, new interesting effects of thermal gradients on complex fluids, which may
lead to very interesting applications, have lately been evidenced. Besides, thermal
forces are at the roots of several novel strategies useful in microfluidic applications
(Geelhoed et al. 2006; Vigolo et al. 2010b) and for particle trapping and manipula-
tion (Cuche et al. 2013; Cong et al. 2018), which are at the core of the new field of
thermo-optofluidics (Chen et al. 2019). Finally, thermophoresis has allowed highly
selective investigation of biomolecular interactions (Wienken et al. 2010; Seidel et al.
2006), or even to the manipulation of single biomolecules inside a cell. Reichl and
Braun (2014), to be developed. In this introduction to thermal forces, there is little
room to discuss in detail these exciting advancements, but I really prod my readers
into taking a look at the original literature.

To conclude our short survey, I shall just mention one of these developments in
which my group has specifically been involved. We began our discussion of thermal
forces by mentioning the seminal studies of thermodiffusion in a salt solution by
Ludwig and Soret, which originated a large amount of works on the same subject
because of its interest in many electrochemical applications. When the investigation
was extended to electrolyte mixtures, however, a strange behavior emerged: some
electrolytes that, taken alone, concentrated (as usual) at the bottom of a thermograv-
itational column did exactly the opposite in the presence of additional ionic species.
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Fig. 8 A little cartoon picturing the investigation of Seebeck effect in liquids made in Vigolo et al.
(2010a)

This anomaly was brilliantly explained by Guthrie et al. (1949) who showed that, in
mixtures of ions that have a different thermophoretic mobility, a steady-state electric
field may build up in a closed cell, which may “compete” with the thermal forces
acting on a given ionic species and even drives it along the opposite direction.11

Similarly to what happens with the Seebeck effect in solids, the sample behaves,
therefore, as a thermocell.

A few years ago, Vigolo et al. (2010a) provided clear evidence for the presence
of thermoelectric fields in liquids by detecting and quantifying their strong effects
on colloid thermophoresis. Specifically, they showed that the presence of highly
thermally responsive ions such as OH− may easily lead to the reversal of parti-
cle motion. As a matter of fact, one can see the colloidal particle as a probe that
“senses” and allows to measure the thermoelectric field (see Fig. 8). Besides, this
methodology allows the particle charge to be obtained without applying any electric
field. Thermoelectric measurements may, therefore, support standard electrophoretic
techniques under conditions of high ionic strength, where the latter are known to per-
form rather poorly. Recently, the investigation of thermoelectric effects in liquids has
gained interest because of the large Seebeck coefficient in ionic liquids, suggesting
that these electrolytes could enable the development of thermoelectric devices to
generate electrical energy from low-grade heat (Abraham et al. 2011).

One century and a half after the original observations by Ludwig, Soret, Tyndall,
and Reynolds, there is still a lot to be discovered and investigated in thermal forces:
the future, of course, is left to the ingenuity of my readers.

11It is useful to point out the solution remains of course neutral.
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Transport Phenomena Across Interfaces
of Complex Fluids: Drops and Sprays

Volfango Bertola and Günter Brenn

Abstract This chapter gives an overview of the interfacial dynamics of complex
fluids, with focus on non-Newtonian drop impact phenomena and non-Newtonian
sprays. After a general introduction about Newtonian drops and sprays, the impact
dynamics of viscoelastic and viscoplastic drops on both homothermal and heated
surfaces is discussed. Finally, capillary instabilities and the atomisation process of
non-Newtonian fluids are described.

1 Introduction

Since the pioneering works of Plateau (1867), Worthington (1876) and Rayleigh
(1879), drop impact phenomena and liquid atomisation processes have been the
subject of extensive investigations, which had a huge impact on several industrial
and everyday applications, from spray cleaning or painting to internal combustion
engines, and so on.

The morphology of drop impact on solid surfaces is well known (Rein 1993;
Yarin 2006; Josserand and Thoroddsen 2016). Upon impact, the liquid spreads on
the surface taking the form of a disc; for low impact velocity, the disc thickness is
approximately uniform, while for higher impact velocities, the disc is composed of
a thin central part, the so-called lamella, surrounded by a toroidal rim. This initial
spreading stage is typically very fast and has a duration of about 5 ms. After the drop
has reachedmaximumspreading, two qualitatively different outcomes are possible. If
the initial kinetic energy exceeds a threshold value, capillary forces are insufficient to
maintain the integrity of the drop, which disintegrates into smaller satellite droplets
jetting out of its outermost perimeter; this phenomenon is usually referred to as
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splashing, or less frequently as drop breakup. If splashing does not occur, the drop
is allowed to retract under the action of capillary forces, which tend to minimise the
contact with the surface; in some cases, retraction is so fast that the liquid rises in the
middle forming a Worthington jet, which may subsequently result in the complete
rebound of the drop.

Impacts onto smooth and chemically homogeneous surfaces, for low or moderate
impact kinetic energy, are controlled by three key factors: inertia, viscous dissipa-
tion and interfacial energy. During the initial stages of impact with the surface, the
vertical inertia of the falling drop is converted into the horizontal motion of the fluid,
and as the drop spreads, kinetic energy is partially stored as surface energy. This
process is characterised by the Weber number, We = ρU 2D0/σ, where ρ and σ are
the fluid density and surface tension, respectively, D0 is the equilibrium drop diam-
eter and U is the normal impact velocity. As the fluid spreads across the surface,
the kinetic energy of the fluid is partly dissipated by viscous forces in the fluid,
which is described using the Reynolds number, Re = ρUD0/μ, where μ is the fluid
viscosity; this is sometimes used in combination with the Weber number to yield
the Ohnesorge number, Oh = √

We/Re. Finally, the retraction stage is governed
by the balance between interfacial energy and viscous dissipation, expressed by the
Capillary number, Ca = μUr/σ, where Ur is the retraction velocity.

Thus, the spreading behaviour of impacting drops is mainly characterised by the
Weber and by the Ohnesorge numbers, which portray the driving and the resist-
ing/dissipative forces of the process, respectively. The corresponding asymptotic
spreading behaviours are (Schiaffino and Sonin 1997) as follows:

• High We, low Oh (inviscid, impact-driven). The spreading is primarily driven by
dynamic pressure. The characteristic time scale of the inertial spreading is very
short. Viscous effects are negligible during the initial stage of spreading, however
damp the subsequent drop oscillations.

• LowWe, low Oh (inviscid, capillarity-driven). The spreading is mainly driven by
the capillary forces at the contact line and the impact velocity effects are negligible.
Spreading is followed by interfacial oscillations with the timescale of the same
order as the spreading.

• Low We, high Oh (highly viscous, capillarity-driven). The spreading is driven
by capillary forces and resisted by viscous forces. Impact velocity has negligible
effects. The inertial oscillations are overdamped by high viscosity.

• High We, high Oh (highly viscous, impact-driven). The spreading is driven by
inertial forces and resisted by viscous forces. Capillarity has negligible effects.
Drop oscillations are absent.

There are a number of empirical, semi-empirical and theoretical models to predict
the maximum diameter of the drop, Dm , at the end of the inertial spreading stage.
These models are based either on scaling considerations (Clanet et al. 2004) or, more
frequently, on the energy balance, which can be written as follows:

d

dt
(Ek + Eg + Es) + Ẇ = 0 (1)
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where Ek denotes the kinetic energy of the drop, Eg is the gravity potential energy, Es

is the surface energy, Ẇ is the rate of total energy loss during drop impact, including
viscous dissipation and the energy transmitted to the substrate due to deformation.
However, the energy absorbed by the substrate is often neglected and only the viscous
dissipation is considered for the energy loss rate. The viscous dissipation is the most
difficult quantity to estimate precisely due to the limited information about the flow
field inside the drop. Another difficult quantity to estimate is surface energy, because
the precise calculation of the surface energy at the end of spreading strongly depends
on the shape of the liquid free surface. In particular, if the drop shape at maximum
spreading is approximated as a disc (Ford and Furmidge 1967) its surface energy can
be written as follows:

Es = π

4
D2

mσ(1 − cosθa) = 0 (2)

where θa is the advancing contact angle; if the drop shape is approximated as a
spherical cap (Bechtel et al. 1981), the surface energy is

Es = π

3
D2

0σ[ξ−1
m + 2ξ2m − (ξ−1

m − ξ2m)cosθs] = 0 (3)

where θs is the static contact angle and ξm = hmin/D0 is the minimum height factor.
Models based on the energy conservation approach were proposed, among oth-

ers, by Bechtel et al. (1981), Chandra and Avedisian (1991), Pasandideh-Fard et al.
(1996), Mao et al. (1997), Attané et al. (2007). However, although these models give
reasonably accurate predictions in case of low-viscosity fluids, they almost systemat-
ically fail when the importance of the viscous dissipation term is increased (German
and Bertola 2009b).

More recently, the analytical self-similar solution which satisfies the full Navier–
Stokes equations was obtained for the viscous flow in the spreading drop (Roisman
et al. 2009; Roisman 2009). The boundary layer thickness was used for the estimation
of the residual film thickness formed by normal drop impact and the maximum
spreading diameter. A very similar approach was later used by Eggers et al. (2010)
to obtain equivalent results.

Drop splashing occurs as the inertial forces overcome those due to capillarity,
expressed by the Laplace pressure:

ρU 2
0 >

σhL

D2
0

(4)

where hL is the thickness of the lamella. When Eq. (4) is re-formulated in terms of
dimensionless numbers, the splashing criterion can be written as αOhβWeγ > K
(Stow and Hadfield 1981; Mundo et al. 1995), where α,β, γ and K are constants.
A comprehensive review of existing splashing correlations is reported by Moreira
et al. (2010), while basic hydrodynamic modelling is discussed by Yarin (2006).
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When the target surface is heated, the drop impact phenomenology is charac-
terised by a close interplay of hydrodynamics with different heat transfer modes,
under large spatial and temporal gradients of the state variables (Rein 2003). Early
studies of these phenomena focused on the heat transfer characteristics (Wachters
and Westerling 1966; Gottfried et al. 1966), and less attention was paid to drop
impact morphology due to the limitations of stroboscopic imaging (Pedersen 1970).
Later on, the development of high-speed imaging allowed researchers to visualise
and analyse more quantitatively the various impact regimes, and to get a deeper
insight into the physical mechanisms behind different impact outcomes (Fujimoto
et al. 2010).

After impact, the drop spreads on the heated surface in a short lapse of time
(typically a fewmilliseconds in case of drops of millimetric size), increasing the area
exposed to heat transfer. This induces a heat transfer regime that can be related to the
well-known boiling curve, in particular, one can observe: (i) convection heat transfer
for surface temperatures below the boiling point of the liquid; (ii) nucleate boiling
for surface temperatures just above the boiling point; (iii) film boiling, observed
above the critical heat flux (CHF), where the drop is separated from the surface by
a vapour layer and (iv) transitional boiling, where the said vapour layer is unstable
and the liquid may locally get into contact with the surface. However, the association
between heat transfer and impact regimes is not always clear (Wang et al. (2000)).

The classification of impact regimes, reviewed by Moreira et al. (2010), is still
somewhat controversial. To rationalise the rich variety of impact morphologies
observed for Newtonian drops impinging on heated surfaces, it was proposed to iden-
tify simple impact regimes, displaying one distinctive feature (deposition, rebound,
splashing/breakup) and mixed regimes, resulting from the combination of simple
regimeswith secondary atomisation (Bertola 2015), as shown in Fig. 1. Such unifying
classification, on one hand, embraces the different impact morphologies reported in
the existing literature, and on the other hand is simple enough to be used for practical
purposes; in addition, it allows one to derive simple models for transition boundaries
between different impact regimes.

The breakup of a liquid jet into smaller droplet is another process of fundamen-
tal importance, because it maximises the free surface of a given volume of liquid,
increasing significantly mass, momentum and heat transfer rates, as well as chemical
reaction rates, between the fluid and a surrounding medium. Observing the decay of
fluid jets travelling through a medium of the same density, Plateau (1867) recognised
that perturbations would become unstable if their wavelength λ was greater than a
critical value λcr/R0 = 2π, where R0 is the capillary tube radius; however, the wave-
length corresponding to the fastest breakup was λcr/R0 = 8.76, significantly higher
than the critical value. Upon introducing his method of linear stability, Rayleigh
(1879) recognised that the dynamics of the jet had to be taken into account; in partic-
ular, he determined that for all unstable wavelengths with λ > λcr , the one with the
fastest growth rate is selected. For inviscid jets, the analysis yields λopt/R0 = 9.01,
in close agreement with Plateau.
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Fig. 1 Newtonian drop impact regimes on heated surfaces: a–c simple regimes (deposition,
rebound, breakup); d–f mixed regimes (secondary atomisation, rebound with secondary atomi-
sation, breakup with secondary atomisation)

According to Rayleigh’s approach, an initial disturbance in a jet,α, will exhibit an
exponential growth with amplitude of the form α(t) = α0e−iωt , where the inviscid
dispersion relation is given by

ω2 = − σ

ρR3
0

[1 − (kR0)
2]kR0

I1(kR0)

I0(kR0)
(5)

and ω(k) is the growth rate. In Eq.5, σ is the surface tension, k is the longitudinal
wave number, ρ is the fluid density and In(kR0) is a modified Bessel function of
the first kind. The largest growth rate occurs at kR0 = 0.697, which corresponds to
λopt = 9.01R0 (k = 2π/λ); this however does not account for viscous effects.

The effects of viscosity on capillary breakup were first investigated by Plateau
(1867) and Weber (1931). Plateau found that as viscous forces become increasingly
dominant with respect to inertial forces, the most unstable wavelength increases,
corresponding to the greatest reduction in surface area. The growth rate is eventually
determined by a balance between surface tension and viscous forces, most simply
characterised by the Reynolds number. Chandrasekhar (1961) analysed the problem
using the full Navier–Stokes equations, and found an implicit equation that in the
limit of both small kR0 and Re can be written as follows:

ω = ω0([1
2
x2(1 − x2) + 9

4
Re−2x4] 1

2 − 3

2
Re−1x2) (6)
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where x = kR0. The viscous dispersion relation for the fastest growingmode is given
by

ω = 1

6
ων(1 − kR0) (7)

where ων = σ/R0ρν is the viscous growth rate and ν is the kinematic viscosity.
Close to drop pinch-off, the classical linear stability breaks down and the fluid

behaviour enters a regime of self-similar flow, wherein flow lacks a typical scale and
the balance of inertial, surface tension and viscous forces become independent of the
minimum thickness of the neck filament attaching the falling drop to the capillary
(Eggers 1997). In other words, the flow dynamics of viscous fluids in this regime
can be characterised by universal scaling functions. In the last stages of detachment,
viscous fluid drops can exhibit long and thin threads. After the breakdown of the
linear instability, the fluid enters a regime of viscous dominated self-similar Stokes
flow (Papageorgiou 1995). Temporal variations inminimum axisymmetric drop neck
thickness vary as

DN = χ
σ

νρ
(t0 − t) (8)

whereχ = 0.0709 is the universal scaling parameter determined fromχ = 1/12(1 +
δ) and δ = 0.175 is a positive constant to control the extent of the similarity region.

In practice, the breakup of a liquid jet generated by a plain orifice nozzle is also a
function of the fluid velocity at the nozzle outlet, as shown in Fig. 2, which displays
the different atomisation regimes along with the jet stability curve, which represents
the distance from the orifice where jet breakup first occurs (Lin and Reitz 1998;
Lefebvre 1988). At very low speed, the jet is essentially affected by gravity, which
results in a dripping regime. As the jet speed increases, capillary forces dominate
the atomisation process in a regime typically referred to as the Rayleigh breakup
regime. For both dripping and Rayleigh regimes, droplet pinching occurs reasonably
axisymmetrically at the centreline of the jet, producing drops that are comparable in
size to the orifice diameter. At higher velocities, aerodynamic interactions with the
ambient gas lead to additional instability of the surface in what is known as wind-
induced regime. The jet breakup occurs also on the jet surface and periphery and
forms drop substantially smaller than the diameter of the orifice. At higher velocities,
one finds the atomisation regime, characterised by the appearance of a spray, i.e. a
collection of very small drops around a liquid core that vanishes at some distance
downstream of the orifice.

Whilst there is a significant volume of literature about single drop impacts and
atomisation of simple (Newtonian) fluids, the number of works about fluids with
complex microstructure (polymer melts or solutions, gels, pastes, foams, emulsions,
etc.) is comparatively very small. However, these fluids are frequently used in com-
mon applications, such as painting, food processing andmany others.Moreover, with
a better understanding of the microscopic structure of complex liquids, working flu-
ids can be tailored specifically to optimise existing industrial processes, by altering
their formulation (e.g. by means of chemical additives) in such a way as to change
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Fig. 2 Atomisation regimes arising from a plain orifice nozzle. Adapted from Bonhoeffer et al.
(2017)

one or more physical properties. In the following, the main results about drop impact
and atomisation of non-Newtonian fluids are reviewed.

2 Impact of Viscoelastic Drops on Solid Surfaces

2.1 Impact on Homothermal Surfaces

The impact dynamics of viscoelastic drops on solid surfaces did not receive signifi-
cant attention until about 20 years ago,when highmolecularweight flexible polymers
were introduced to improve agrochemical formulations (Bergeron et al. 1998, 2003).
It was found that very small amounts (of the order of 100ppm) of high molecular
weight flexible polymers, such as polyethylene oxide (PEO), can reduce the tendency
of drops to rebound after impacting on low surface energy (hydrophobic) surfaces,
which can be exploited to control many spray applications and, in particular, the
distribution of agrochemicals (Williams et al. 2008).
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Fig. 3 Impact ofwater (top) and 200ppmpolymer solution (bottom) drops (D0 ≈ 3mm) impacting
on a PTFE surface (release height: 20 mm)

This phenomenon is illustrated in Fig. 3,which compares the impactmorphologies
of two drops, one of de-ionised water and one of a 200ppm PEO solution in the same
water, impactingwith the same velocity on a PTFE surface (equilibrium contact angle
with water: ≈110◦). After the initial inertial spreading, which is similar for both
drops, water drops exhibit fast recoil (≈30 ms) under the action of surface forces,
which evolves into almost complete dewetting, and rebounds on the impact surface.
On the contrary, the recoil of polymer solution drops is very slow and terminates
in a sessile equilibrium state only after several seconds. This is somewhat counter-
intuitive because the shear viscosity and surface tension of such drops are almost
identical to those of pure water (Crooks et al. 2001).

Indeed, it took several years to develop a correct understanding of this phe-
nomenon. Initially, the effect of polymer additives on drop rebound was interpreted
in terms of the bulk rheology of the fluid, namely, the fluid elongational viscos-
ity, which was thought to provide a large resistance to drop retraction after impact,
thereby suppressing droplet rebound (Bergeron et al. 2000; Crooks et al. 2001).
However, this interpretation has an obvious weakness, because the large velocity
gradients to achieve significant magnitudes of elongational viscosity are observed
during the inertial expansion, which has a timescale of ≈5 ms, while their effect on
drop retraction spans over several seconds. In addition, if energy dissipation occurs
during inertial spreading, both the spreading velocity and the maximum spreading
diameter of polymer solution drops should be smaller than those of water drops,
whereas experimental data suggest there is little or no difference. Later on, it was
demonstrated that some of the elongational viscosity data used to support this inter-
pretation of the phenomenon exhibit very poor reproducibility as the same researchers
attempted to repeat measurements on the same polymer solutions (Bertola 2013), as
shown in Fig. 4.
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Fig. 4 Elongational viscosity versus elongation rate measurements made with a Rheometrics RFX
opposing nozzle for two dilute PEO polymer solutions: 0.25 g/l, molecular weight 4 × 106 (circles);
1.0 g/l, molecular weight 2 × 106 (triangles). a Comparison between data by Bergeron et al. (2000),
open symbols, and Lindner et al. (2003), filled symbols. b A direct comparison in linear scale shows
data by Bergeron et al. (2000) are sometimes identical, sometimes up to twice as large as those by
Lindner et al. (2003)

More recently, it was suggested that the contact line dynamics is ruled by the
competition between the surface tension that drives the retraction and the elastic
normal stresses that counter it (Bartolo et al. 2007). In particular, using a generalised
lubrication equation accounting for capillarity and normal stresses in addition to shear
stresses, it was found that the retraction velocity, vr , is related to the first normal stress
coefficient, �, as vr ∼ 1/�−1/2. The main argument against this approach is that
dilute polymer solutions do not exhibit appreciable normal stresses in the range of
shear rates observed in impacting drops during the retraction stage (Lindner et al.
2003; Bartolo et al. 2007), and therefore the proposed theory cannot explain the
slowing down of recoil observed in dilute polymer solution drops. Unfortunately, the
theory was naïvely (or perhaps cleverly) validated with experimental data relative to
solutions with a content of polymer well above the overlap concentration, i.e. in the
semi-dilute regime, and still receives much credit to date, see e.g. Chen et al. (2018)
or Wang et al. (2017). Other flaws and mistakes of this work are discussed in detail
by Bertola (2013).

Several independent experiments provide evidence that the slowing down of drop
retraction is not related to the bulk rheological behaviour of the fluid. A study of drops
impacting on small targets,which remove the influence of the substrate, demonstrated
that polymer additives do not change the retraction velocity in comparisonwith water
drops (Rozhkov et al. 2003). This suggests that the polymeric additives do not have
any effect on the bulk elongational deformations of the drop but instead they influence
the interaction of the lamellawith the substrate at the retraction stagewhen the impact
happens on a plane, smooth and solid substrate.

Another way to completely remove the influence of the substrate is heating the
impact surface to create a thin vapour filmbetween the drop and the substrate,which is
known as dynamic Leidenfrost phenomenon (Rein 2003; Quéré 2013). Experiments
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on Leidenfrost drops of dilute polymer solutions showed that polymer additives
cause only a slight reduction of the maximum spreading diameter and of the retrac-
tion velocity with respect to water drops (Bertola 2009b, 2014; Black and Bertola
2013), which is by no means comparable with the large reduction of the retraction
velocity observed during the impact on solid surfaces. Because in these experiments
wetting effects are absent or negligible, onemust conclude that the retraction velocity
reduction observed in drops containing flexible polymers impacting on solid surfaces
is due to the drop–surface interaction rather than to an increased energy dissipation
connected to the elongational viscosity of the fluid. In addition, the maximum bounc-
ing height of viscoelastic drops can be significantly higher than that of Newtonian
drops; since this quantity represents the fraction of the initial kinetic energy which is
not dissipated during impact, these experiments suggest that in some cases polymer
additives indeed reduce instead of increasing the overall energy dissipation. A more
detailed analysis of viscoelastic Leidenfrost drops is discussed in Sect. 2.2.

These results indicate that the impact dynamics of viscoelastic drops impacting
on solid surfaces is mainly driven by wetting rather than by the bulk rheology of
the fluid such as the elongational viscosity or the normal stress coefficient. A deeper
understanding of the underlying physical mechanism can be obtained through the
analysis of four apparently independent aspects (Smith and Bertola 2010b): (i) the
velocity field inside the impacting drop; (ii) the apparent dynamic contact angle; (iii)
the microscopic contact line morphology and (iv) the polymer conformation near the
receding contact line.

Fluid velocity inside impacting droplets The simplest way to quantify the effects
of bulk viscous dissipation on fluid flows is to measure velocities and velocity gradi-
ents; in the case of impacting droplets, these measurements are not simple because
of the small length- and timescales of the process. Recent particle velocimetry mea-
surements inside impacting drops showed that the local velocities measured during
expansion and retraction are similar for the drops of polymer solution and for those
of pure water (Smith and Bertola 2010a, 2011). Drops were seeded with fluores-
cent colloids (2 µm diameter), with a concentration of approximately 0.001 wt.%.
Movies for particle velocimetry were collected at 2000 fps and, using stroboscopic
illumination at a frequency of 8 kHz, each particle was captured four times along its
radial trajectory in a single frame. The particles trajectories were then extrapolated
to estimate the position of the drop centre and correspondingly the radial distance
of each particle, within a negligible error. The velocity at each radial position (i.e.
the Eulerian velocity field) was calculated as the distance between two images of the
same particle divided by the time interval between two pulses of the stroboscopic
illumination.

Figure5 compares the local, instantaneous velocities measured in a water drop
and in a 200ppm polyethylene oxide solution drop, showing that the velocity fields
in the two drops are similar both qualitatively and quantitatively during the inertial
expansion as well as during the drop retraction. The velocity gradient in the fluid,
obtained from the slope of radial velocity profiles, gives an indication of the rate of
deformation of fluid elements within the drop, hence the effects of the elongational
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Fig. 5 Fluid velocity measured inside impacting drops at different radial positions during inertial
spreading and retraction; a water; b 200ppm polyethylene oxide (molecular weight: 4,000 kDa)
solution. The impact velocity is about 1.4 m/s, and the plane of focus is set at a distance of about
10 µm above the impact surface

viscosity. Figure6a shows that the velocity gradients measured in the water and
polymer solution drops during the inertial spreading are almost identical; although
the magnitude of these velocity gradients is of the order of 102 s−1, it is not sufficient
to induce polymer molecules’ stretching, which require velocity gradients of the
order of 102 s−1 and above (Crooks et al. 2001). During retraction, radial velocity
gradients are significantly smaller than those observed during inertial spreading, and
fluid elements are in compression rather than extension, which makes the stretching
of molecules inside the drop very unlikely (de Gennes 1974).

Whilst velocities and velocity gradients measured inside the droplet are almost
identical for water and dilute polymer solutions, a comparison of the fluid velocity in
the bulk of the droplet during retraction with the velocity extracted frommacroscopic
observations of the contact line (i.e. the rate of change of the drop base diameter)
shows a dramatic difference between water and PEO drops. Figure6b shows that the
velocity of the contact line for droplets of pure water at the onset of retraction is
similar to that of the bulk fluid. By contrast, the motion of the contact line for PEO
drops is one order of magnitude slower than that of the corresponding bulk velocity
measurements, and further confirms that the difference between the behaviours of
the two fluids occurs only at the droplet edge.

Dynamic contact angle The apparent contact angle is perhaps the most significant
quantity used to characterise the wetting behaviour of liquids on solid surfaces and
the dynamics of drop recoil following inertial spreading. Surprisingly, all of the early
attempts to explain the phenomenology of dilute polymer solution drop impact com-
pletely ignore dynamic contact angle measurements (Bergeron et al. 2000; Crooks
et al. 2001; Bartolo et al. 2007).

A qualitative picture of the contact angle dynamics of water drops and polymer
solution drops impacting on the same surfacewith the same impactWeber number can
be obtained from the side views displayed in Fig. 3, which suggest that the polymer
additive significantly reduces the dynamic contact angle with respect to pure water;
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Fig. 6 Velocity gradients measured inside impacting drops during inertial spreading (a); compari-
son between the fluid velocities measured at the largest radial position (r/R0 ≈ 3.5) and the contact
line velocities of a water drop and a 200ppm polyethylene oxide (molecular weight: 4,000 kDa)
solution drop (b). Adapted from Smith and Bertola (2011)

however, the change is localised in the wedge near the contact line, as if the contact
line was pinned on the surface, while the bulk fluid seems to flow back towards the
drop centre without encountering the same resistance.

Systematic comparativemeasurements of the apparent dynamic contact angle dur-
ing drop impact (Bertola 2010; Bertola and Wang 2015) demonstrated that while no
differences can be observed between water drops and polymer solution drops during
inertial spreading, there are significant differences during the retraction stage. The
typical behaviours of the base diameter and of the dynamic contact angle obtained
from digital image processing (Biolè and Bertola 2015a, b; Biolè et al. 2016) are
displayed in Fig. 7, for two drops impacting on a PTFE surface at lowWeber number
(We ≈ 15). The base diameter of water drops (Fig. 7a) grows and decreases approx-
imately at the same rate, and becomes equal to zero at the moment of drop rebound,
about 50 ms after impact. After rebound, it reaches the final equilibrium value after
a few oscillations, typically in a very short time (20–30 ms). With the exception of
a discontinuity in correspondence of the drop rebound, the apparent contact angle
has an oscillatory behaviour around the equilibrium value and its magnitude remains
bounded between the values of the advancing and receding contact angles.

In polymer solution drops, both the base diameter and the dynamic contact angle
are significantly different, as shown in Fig. 7b. The base diameter initially grows at
the same rate as in water drops and reaches a maximum approximately of the same
magnitude; however, the retraction phase is much slower, and the base diameter takes
several seconds to reach the equilibrium value. The retraction phase is characterised
by stick-slip dynamics of the drop edge, which corresponds to rapid fluctuations of
the base diameter in phase with the dynamic contact angle minima. Unlike in the case
of water drops, the dynamic contact angle initially decreases significantly as the drop
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(a) (b)

Fig. 7 Base diameter and dynamic contact angle of a a water drop and b a 200ppm polyethy-
lene oxide solution drop, impacting on a PTFE surface with We ≈ 15. The horizontal solid line
corresponds to the equilibrium contact angle (θe = 119◦), while the long- and short-dashed lines
correspond to the advancing (θa = 130◦) and receding (θr = 107◦) contact angles, respectively

(a) (b)

Fig. 8 Base diameter and dynamic contact angle of a 200ppm polyethylene oxide solution drop
impacting on a PTFE surface with a We ≈ 55 and b We ≈ 110

retracts, and then slowly returns to the equilibriumvalue in an oscillatory fashion. The
local minima of these oscillations correspond to the stick-slip fluctuations of the base
diameter. During the approach to the equilibrium value, the dynamic contact angle
of dilute polymer solution drops remains smaller than the contact angle measured
with water drops under the same experimental conditions.

For increasing impactWeber numbers (Fig. 8), the contact line stick-slip is limited
to the first contact angle oscillation, and the recoil velocity becomes increasingly
smaller. The initial decrease of the dynamic contact angle can attain very small
values (�20◦), while the contact angle oscillations gradually die out as the impact
Weber number increases.
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A simple interpretation of this behaviour can be given in terms of the Young–
Laplace force balance: a small contact angle corresponds to a large horizontal com-
ponent of the liquid–vapour interfacial force that drives the drop retraction. Thus,
since the contact angles observed during the retraction of polymer solution drops are
significantly smaller than those observed in drops of pure water, one can conclude
that the receding movement of the contact line of polymer solution drops requires
a larger driving force than in the case of water. It must be remarked that, strictly
speaking, the Young–Laplace equation should not be applicable even if the radial
velocity is zero because the system is out of equilibrium; however, this approach
is still justified because the timescale of the phenomenon is still much longer than
molecular timescales (∼ 107 ÷ 109 s) (Barnes et al. 1995; Borodin and Smith 2000).

Because the advancing contact angle (during drop spreading) is similar for all
drops, one can also conclude that polymer solution drops show larger contact angle
hysteresis. Contact angle hysteresis around the equilibrium value is generally under-
stood in terms of roughness and/or chemical heterogeneity of the surface (de Gennes
1985). However, more recently, it has been proposed that the contact angle hys-
teresis may be caused by a liquid film left behind the contact line during retraction
(Chibowski 2003, 2007). Since both drops of pure water and those of polymer solu-
tion impact on identical surfaces, the difference observed in the contact angle hys-
teresis cannot be interpreted in terms of surface roughness or chemical heterogeneity.
Thus, it can be argued that the polymer additive changes either the chemical structure
of the surface, or the properties of the liquid film left behind the contact line during
retraction, or both.

The advancing or receding contact line of a liquid drop moving on a solid surface
is often described by introducing the concept of line tension (Tadmor 2011):

� = σ
D

2
(cosθ − cosθeq) (9)

where D is the drop base diameter, and θeq and θ are the equilibrium and the appar-
ent contact angles, respectively; this approach is equivalent to Furmidge’s equation
(Dussan 1985). When the radial force per unit length due to polymer stretching, FP ,
is taken into account, Eq. (9) becomes

� + FP
D

2
= σP

D

2
(cosθP − cosθeq,P) (10)

whereσP is the surface tension of the polymer solution, and θeq,P and θP are the equi-
librium and the apparent contact angles of the polymer solution drop, respectively;
since σP ≈ σ and θeq,P ≈ θeq , one finds

FP/σ ≈ (cosθP − cosθ) (11)
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Fig. 9 Microscopic contact linemorphology during drop retraction after impact on a hydrophobised
glass substratewithWeber numberWe ≈ 110: a purewater;b 200ppmpolyethylene oxide solution.
Images are enhanced by background subtraction, histogram equalisation and conversion to binary.
Each frame has a size of 700 µm

Using Eq. (11), one can estimate the additional contact line tension arising in
dilute polymer solutions from dynamic contact angles of water and polymer solution
drops.

Contact line morphology An example of the microscopic contact line morphology
during drop retraction on a hydrophobised glass substrate is displayed in Fig. 9,which
compares the contact lines of drops of pure water and of a dilute polymer solution in
the same experimental conditions. While the contact line of the water drop appears
almost perfectly smooth, the contact line of the polymer solution drop exhibits large
local deformations, and leaves behind microscopic liquid filaments as it sweeps the
surface. Filaments are distributed uniformly around the contact line and their width
ranges between approximately 2 µm and 30 µm. The structure and density of these
filaments depend on the polymer concentration in the fluid: for c < 100ppm, one
can observe linear filaments oriented in the radial direction and their density being
increased with the polymer concentration; for c � 100ppm, there are less but thicker
filaments, displaying numerous dendritic ramifications.

Filaments evolve following a capillary instability mechanism, until they locally
break up into secondary microscopic droplets, in a similar fashion to the well-
known beads-on-a-string breakup mechanism characteristic of many viscoelastic
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Fig. 10 Contact line morphology during drop impact on a hydrophobised glass substrate with
Weber number We ≈ 110: a pure water; b 200ppm polyethylene oxide solution

fluids (Oliveira et al. 2006). At higher polymer concentrations, filaments are more
stable, and therefore the breakup mechanism is less noticeable on the timescale of
the experiment.

This complexmorphology,which can be observed only at themicroscale, suggests
that even from the macroscopic point of view, the term contact line is not appropriate
to indicate the drop edge, but one should rather use the expression apparent contact
line, similar to the convention used for contact angles. Figure9 also demonstrates
the importance of image processing in the identification of the thinner filaments and
the smaller beads, which could hardly be observed in raw images.

If the contact line is observed from a macroscopic point of view, the microscopic
contact line features peculiar of dilute polymer solution drops are no longer visible.
On the contrary, the contact line of polymer solution drops appears smoother than
the contact line of water drops, as shown in Fig. 10.

The microscale analysis of the contact line morphology provides a key to under-
standing the peculiar behaviour of polymer solution drops as compared with water
drops. In particular, the liquid filaments left behind by the receding contact line sug-
gest that the conformational change of polymer coils, which originates viscoelastic
behaviour is localised near the contact line, while in the rest of the droplet non-
Newtonian effects are negligible. In this framework, the reaction force of the stretched
polymer coils on the contact line represents an additional contribution to the line
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(a) (b)

Fig. 11 Polymer conformation observed on the substrate behind the receding contact line of a dilute
polymer solution drop containing fluorescent λ-DNA. a Image of stretched λ-DNA molecules
collected at a frame rate of 1000 fps with an exposure time of 400 µs; the white reference bar
corresponds to the length of a fully stretched DNAmolecule. b Pictorial description of the polymer
dynamics during drop retraction: as the meniscus recedes, polymer molecules in the liquid wedge
are stretched by molecular combing. Copyright (2010) by The American Physical Society

tension, which causes the reduction of the apparent dynamic contact angle during
drop recoil, as discussed above.

Polymer conformation near the contact line The nature of the dissipative phenom-
ena arising near the contact line during drop retraction was revealed by visualisation
experiments aiming at the direct observation of the polymer conformation as well
as the contact line morphology at the microscopic scale (Smith and Bertola 2010a;
Bertola 2013; Biolè and Bertola 2015c).

To investigate the dynamics of polymer molecules during drop retraction, and its
potential effect on the velocity of the receding contact line, fluorescent λ-DNA (a
linear biopolymer with a random coil conformation, a diameter of about 1.4 µm, a
stretched length of about 22µm, and thus visible using a fluorescentmicroscope)was
added to the impacting drop and observed through an optical microscope equipped
with image intensifier (Smith and Bertola 2010a, b). After the passing of the con-
tact line, stretched DNA molecules can be observed on the substrate, oriented in the
direction perpendicular to the contact line, as shown in Fig. 11a. Independent exper-
iments on forced dewetting showed that polymer deposited on the substrate results
in a velocity-dependent force at the contact line (Smith and Sharp 2014). This bears
strong similarities with other DNA stretching methods, such as molecular combing
or air blowing techniques (Kim et al. 2007); in these techniques, DNA molecules
are stretched using combination of hydrodynamic and surface forces arising when a
liquid meniscus moves on a solid surface. For example, in molecular combing such
meniscus is created by slowly pulling out a plate from a solution containing DNA.
The same conditions occur when an impacting droplet retracts on the target surface
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(a) (b)

Fig. 12 Schematic of the liquid wedge near the contact line (a) and schematic of supercritical
coil–stretch transition (de Gennes 1974) (b)

after maximum spreading, the only difference being that this process is orders of
magnitude faster than molecular combing, where the typical velocity of the menis-
cus is 0.2 mm/s. This mechanism is illustrated qualitatively in Fig. 11b, and can be
easily modelled as a supercritical coil–stretch transition induced by the shear flow
in the liquid wedge near the contact line (de Gennes 1974).

The hydrodynamics of the liquid wedge near the contact line can be modelled
as the flow between a fixed horizontal surface (the substrate) and a plate inclined
at an angle θ (corresponding to the instantaneous value of the apparent dynamic
contact angle), moving at velocity U , as shown schematically in Fig. 12a. The min-
imum thickness of the liquid film, h0, must be no less than the unperturbed size
of the polymer coils, R0; for polyethylene oxide molecules in water, one finds
R0 = 0.0888M0.5 = 178 nm, where M is the molecular weight (Brandrup et al.
2005), and hence one can take an order of magnitude h0 ≈ 0.2 µm. Polymer coils
are subject to hydrodynamic interaction with the solvent, with a characteristic Zimm
time τ0 ≈ 0.2ηs R3

0/kBT = 0.27ms and a Rouse time τR ≈ 2Rhηs R2
0/πkBT = 0.41

ms, where ηs is the solvent viscosity.
At this point, it is important to note that the magnitude ofU , i.e. the main param-

eter of the process, is not necessarily equal to the contact line velocity during drop
retraction. Previous works (Bertola 2013; Smith and Bertola 2010a, 2011) show that
while in water drops the fluid velocity is the same as the velocity of the receding
contact line, in dilute polymer solution drops, the contact line velocity is two or three
orders of magnitude smaller than the bulk velocity of the fluid during retraction.

In a reference frame originating on the contact point, the velocity components
parallel and perpendicular to the substrate during drop retraction are, respectively,
u ≈ Uy/h(x) and v ≈ ξ(θ)x , where h(x) ≈ θx is the liquid film thickness and
ξ(θ) is a positive function of the apparent contact angle (see Fig. 12a). The velocity
gradient of this flow field can be split into its symmetrical part, A = 1

2 (uy + vx ) =
1
2 (U/h + ξ), associated with a pure deformation, and its anti-symmetrical part ω =
1
2 (uy − vx ) = 1

2 (U/h − ξ), associated with a pure rotation. Since ξ(θ) > 0, ω/A <

1, therefore it is possible to have strong distortions of the polymer coils, even in
the absence of elongational flow (Lumley 1973). This corresponds to a second-order
transition from coil to stretch conformation state, i.e. with a constantly positive slope
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of the stretching ratio, l = r/L , where r is the polymer elongation and L is the length
of the fully stretched chain, with respect to the order parameter ξ(θ) (i.e. dl/dξ > 0),
as illustrated schematically in Fig. 12b (de Gennes 1974).

Following the classical finite extensibility approach Peterlin (1966), the stretching
ratio is related to the velocity gradient as

l = 3

ZL−1(l)

⎧
⎨

⎩
1 + 1

6

(
U
h + ξ

)2
τ 2

9l2

[L−1(l)]2
− U

h ξτ 2

⎫
⎬

⎭
(12)

where τ is the relaxation time, which is given by de Gennes (1974)

τ (l) ≈ τR

1 + 1
l

(13)

and L−1(l) is the inverse Langevin function, which can be estimated, for example,
using Kroger’s approximation Kroger (2015):

L−1(l) = 3l − (l/5)(6l2 + l4 − 2l6)

1 − l2
(14)

The resulting recall force of a stretched polymer coil is

F = kBT L

R2
0

L−1(l) (15)

The ensemble of polymer molecules stretching as the drop edge sweeps the sur-
face provides the dissipative force necessary to slow down the displacement of the
contact line. This can be interpreted, from a macroscopic point of view, as an addi-
tional, dissipative force acting on the contact line and opposed to its movement, or an
effective contact line friction. This also explains the reduction of the dynamic contact
angle observed in experiments: to overcome the action of polymer molecules on the
contact line, the horizontal component of the surface force driving the droplet retrac-
tion must be larger than in a Newtonian fluid, and therefore the apparent dynamic
contact angle must be smaller.

2.2 Impact on Heated Surfaces

Early studies about the impact of viscoelastic drops on heated surfaces focused
primarily on dilute polymer solution drops and found significant differences with
respect to the impact morphology of Newtonian drops (Bertola 2004); in particular,
it was observed that adding small amounts of a flexible polymer to the aqueous phase,
secondary atomisation can be suppressed completely (Bertola and Sefiane 2005), and
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droplet rebound in the Leidenfrost regime, i.e. when a stable vapour film separates
the drop from the impact surface, is significantly enhanced (Bertola 2009b). More
recently, it was shown that Leidenfrost rebounds are only weakly affected by the
polymer concentration (i.e. by the fluid rheology) (Bertola 2014), but can be related
to the symmetry of the rebound process (Chen and Bertola 2016b).

Since the fluid properties (surface tension, viscosity and relaxation time), and
consequently the dimensionless parameters, are strongly dependent on temperature,
it is necessary to estimate the drop temperature accurately. In particular, the drop
temperature depends on nature of the liquid–surface interface and on the contact
duration. If the liquid wets the surface for a sufficiently long time, it can reach the
boiling point, after which temperature remains constant; vice versa, if the contact
time is very short and the liquid does not wet the surface, the drop heating can be
negligible.

Suppression of secondary atomisation and splashing The most evident effect of
the fluid viscoelasticity on the morphology of drops impacting on heated surfaces
is perhaps the suppression of secondary atomisation and the significant limitation
of the range of experimental conditions where drop breakup occurs (Bertola 2004).
Figure13 shows an example of comparison between the impact morphology of a
water drop and a dilute polymer solution (200ppm PEO in water) drop having the
same diameter and impacting with the sameWeber number on a surface kept at con-
stant temperature; while the water drop exhibits breakup with secondary atomisation
upon impact, the polymer solution drops exhibit only a small rebound without any
liquid mass loss.

In Newtonian drops, secondary atomisation can also be observed during drop
rebound (see Sect. 1); for a given value of the impact Weber number, dry rebound
(i.e. without secondary atomisation) occurs only above a certain temperature, which
is often referred to as dynamic Leidenfrost temperature (Wang et al. 2000); its value
has been shown to increase with the Weber number (Yao and Cai 1988).

It should be observed that both the inhibition of drop breakup and the suppression
of secondary atomisation cannot be explained onlywith the increase of theOhnesorge
number, because the shear viscosity of these polymer solutions is only 20–50%higher
than the viscosity of the solvent. Thus, their origin must be related at least partially to
the fluid elasticity. In particular, one can identify three independent mechanisms that
affect either drop breakup or secondary atomisation, or both. First, the elongational
viscosity is known to change substantially the breakup dynamics of free-surface flows
and their decay into drops (Bazilevskii et al. 1981; Rozhkov 1983); thus, elongational
viscosity opposes the scattering of secondary droplets from the free surface of the
impacting drop, as well as the detachment of satellite drops from the rim during
corona splashing. Second, polymer additives improve the stability of the surface
between the drop and the surrounding atmosphere and, in case of Leidenfrost drops,
also the surface in contact with the vapour cushion that separates the drop from the
hot wall; this reduces the chances that the liquid may locally touch the wall and
start boiling. Third, even in cases when the liquid makes contact with the wall with
consequent bubble nucleation, the presence of the polymer can significantly affect
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Fig. 13 Comparison between the impacts of a water drop (top) and PEO solution (concentration:
200ppm; molecular weight: 4 MDa) drop (bottom) impacting on a polished copper surface at
T = 160 ◦C and We=220

the process of growth, detachment and rise of vapour bubbles (Hartnett and Hu 1986;
Kim et al. 2004), and hence prevent their bursting on the drop free surface.

If one accepts the current definition of dynamic Leidenfrost temperature (the min-
imum temperature to observe dry rebound without secondary atomisation), one must
conclude the dynamic Leidenfrost temperature of viscoelastic drops is significantly
lower than that of Newtonian drops of similar viscosity.

Figure14 compares the dynamic Leidenfrost temperatures, determined by exper-
imental observation (Bertola and Sefiane 2005), of a water and a polymer solution
drops with D0 ≈ 3.8 mm impacting on a polished aluminium surface. The dynamic
Leidenfrost temperature of the polymer solution drop is significantly lower than that
of the water drop, and is a weakly growing function of the impact Weber num-
ber; in addition, extrapolating experimental data to the limit We → 0 one finds the
conventional value of Leidenfrost temperature for sessile water drops on polished
aluminium (Bernardin and Mudawar 2002).

As a conclusive remark, it should be observed that in the case of viscoelastic
fluids, the definition of a dynamic Leidenfrost temperature is less significant than
in case of simple liquids. In fact, for drops of pure water, secondary atomisation
actually disappears when a continuous and stable vapour cushion prevents the drop
from making contact with the hot surface, which is indeed analogous to the Leiden-
frost phenomenon in sessile drops. This is no longer true when polymer additives
are dissolved into the impacting drop: in fact, even if the film is unstable and the
liquid locally touches the hot wall, there are other physical mechanisms that prevent
scattering of satellite droplets from the free surface of the liquid, as discussed above.
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Fig. 14 DynamicLeidenfrost temperature ofwater (open symbols) and200ppmpolyethylene oxide
solution (filled symbols) drops with D0 ≈ 3.8 mm impacting on a polished aluminium surface. The
horizontal dash-dot line indicates the Leidenfrost temperature of sessile water drops on polished
aluminium (TL0 = 162 ◦C)

In this case, the expression ‘dynamic Leidenfrost temperature’ may be misleading,
because it suggests the impacting drop never wets the surface, whereas wettingmight
occur without the development of secondary atomisation.

Viscoelastic Leidenfrost drops Above the dynamic Leidenfrost point, the vapour
film between the drop and the hot surface is stable, and therefore the liquid is not in
contact with the wall; thus, one can neglect the effects of wetting and wall friction
(Bertola 2009b, 2014; Black and Bertola 2013). A rough estimate of the average
temperature of the drop can be obtained from a lumped capacitance energy balance;
neglecting the heat exchange between the liquid drop and the surrounding plume of
hot air, i.e. considering only the conduction heat flux from the surface to the liquid
through the liquid film, the energy balance equation can be written as

mCdT = πD2kv

4δ
(TS − T )dt (16)

where m is the drop mass, C is the specific heat of water, D is the diameter of the
drop bottom, δ is the thickness of the vapour layer, kv its thermal conductivity, TS
is the surface temperature and T the average temperature of the drop. Integration of
Eq. (16) allows one to estimate the time required for the drop to reach a certain average
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temperature. The most favourable heating conditions occur when the heated surface
is largest (i.e. the drop is at maximum spreading, where D ≈ 3D0) and the vapour
film thickness is minimum (δmin ≈ 10µm) (Rein 2003); under these assumptions,
the time necessary to heat a drop up to a certain temperature T is

tmin = 2ρD0Cδmin

27kv

ln
TS − Tamb

TS − T
(17)

According to Eq. (17), a 3 mm diameter water drop would reach the saturation tem-
perature in 87 ms, which is a significantly longer time than the maximum duration
of the contact observed experimentally, which is around 20 ms (Bertola 2009b). If
Eq. (16) is solved with respect to temperature, one can also estimate the average drop
temperature after a certain time; in particular, after 20 ms, the temperature increase
of a 3mm drop is only 10 ◦C. Thus, one can use the fluid properties calculated at
ambient temperature without introducing significant errors.

Themainmacroscopic quantities that characterise the impact of Leidenfrost drops
are themaximumdiameter at the end of inertial spreading, the drop retraction velocity
after maximum spreading and the maximum height reached by the drop centre of
mass during rebound. The maximum spreading diameter indicates how much of the
initial impact kinetic energy is stored as surface energy as the drop is deformed,
while the maximum bouncing height indicates how much energy remains after the
impact or, alternatively, can give a measure of the total energy dissipation during
impact when subtracted from the impact kinetic energy.

Simple drop impact models on dry surfaces based on energy conservation show
that the maximum spreading diameter scales with the Weber number as Dmax/D0 ∼
We1/2 or, more precisely (Rein 2003):

Dmax

D0
=

√
α2

6
We + 2 (18)

where α = vi/vr is the ratio between the rebound and the impact velocities (resti-
tution coefficient). An alternative approach suggests that for We > 1 and negligible
viscous dissipation, the momentum equation combined with volume conservation
yields Dmax/D0 ∼ We1/4 (Clanet et al. 2004; Biance et al. 2006). However, the
latter approach implicitly assumes that upon impact, the drop deforms like a disc,
ignoring the formation of a central lamella surrounded by a toroidal rim, which is
observed already at moderate Weber numbers.

Themaximum diameter of water and polyethylene solution drops at different con-
centrations after the inertial spreading is plotted in Fig. 15 as a function of the impact
Weber number. As expected, the maximum spreading diameter growsmonotonically
with the Weber number; however, neither Eq. (18) nor the momentum conserva-
tion approach (Dmax/D0 = We1/4) provides an accurate prediction of experimental
data, although they indeed suggest some scaling when plotted in logarithmic scale
(Fig. 15b).
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(a) (b)

Fig. 15 Maximum spreading diameter of water and polyethylene oxide solution drops at different
concentrations with D0 ≈ 3 mm impacting on a polished aluminium surface at 400 ◦C. a Linear
scale; the dash-dot line corresponds to Dmax/D0 = We1/4, while the solid and dashed lines corre-
spond to Eq. (18) with α = 1 (no energy dissipation) and α = vi/vr , respectively. b Logarithmic
scale; the dash-dot line corresponds to Dmax/D0 = 0.85We1/4, while the solid line corresponds to
Dmax/D0 = 0.34We1/2

For We � 20, the maximum spreading diameter of viscoelastic drops is system-
atically smaller than that of water drops having the same impact Weber number, i.e.
the fraction of impact kinetic energy (which is proportional to the Weber number)
converted into surface energy (which is proportional to the area of the drop surface
at maximum spreading) is also smaller. Since the viscosity of polymer solutions is
higher than the viscosity of the solvent (in this case, water), the viscous dissipa-
tion during the inertial spreading stage is higher in polymer solution drops, hence
the observed reduction of the maximum spreading diameter. However, this does not
exclude that the surface energy difference between Newtonian and viscoelastic drops
at maximum spreading may be stored (at least partially) elsewhere, for example, as
elastic energy.

The total energy dissipation during impact and rebound can be obtained from
the difference between the drop release height, H0 = v2

i /2mg, and the maximum
bouncing height, Hmax = v2

r /2mg.During rebound, surface energy is converted back
to kinetic energy and propels the drop off the surface; thus, themaximumheight of the
drop centre ofmass allows one to calculate the fraction of surface energy recovered as
mechanical energy during rebound. Figure16 shows that forWe � 40, themaximum
bouncing height of viscoelastic drops is significantly larger than that of Newtonian
drops, irrespective of the polymer concentration (Bertola 2014) and of the drop
diameter (Bertola 2009b), whereas forWe � 40 differences are not significant. This
shows viscoelastic drops can recover a higher fraction of the initial impact kinetic
energy even if they store less in the form of surface energy.

Although these results are consistent with a scenario where the fluid elasticity
causes higher rebounds in polymer solution drops, a comparison with shear-thinning
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Fig. 16 Maximum bouncing height of water and polyethylene oxide solution drops at different
concentrations with D0 ≈ 3 mm impacting on a polished aluminium surface at 400 ◦C

drops, where the fluid elasticity is negligible, demonstrated this interpretation is not
correct. In fact, shear-thinning drops bounce much higher than polymer solution
drops, even when they have a larger shear viscosity, as shown in Fig. 17 (Black and
Bertola 2013).

A more systematic comparison of Newtonian, shear-thinning and viscoelastic
drops with matching flow curves revealed that high rebounds (i.e. high restitution
coefficients) are axisymmetric throughout the process, while low bouncing heights
are observed whenever the rebound is not axisymmetric (Chen and Bertola 2016b).
Examples of the drop morphology during rebound for the three fluids considered
are displayed in Fig. 18a–c, which shows that while the higher viscosity viscoelastic
and shear-thinning drops preserve axisymmetry during rebound, the lower viscosity
water drop exhibits non-axisymmetric oscillations. The symmetry breaking observed
in lower viscosity water drops is related to the formation of finger-like protrusions
on the rim during impact (Fig. 18d), which indicate the onset of the well-known rim
instability eventually leading to splashing (Rein 1993; Yarin 2006). These protru-
sions grow during the inertial spreading stage, and form an axisymmetric crown at
maximum spreading; however, at the onset of recoil one can observe that some of the
protrusions coalesce to create bigger fingers during retraction, while others do not.
Thus, the mass distribution in the retracting droplet becomes non-uniform, which
induces asymmetries both in the drop shape and in the internal flows, and eventually
causes the drop to rotate around its centre of mass during rebound.
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Fig. 17 Comparison of themaximumbouncing heights ofwater, polyethylene oxide (PEO) solution
and xanthan gum (XG) solution drops with D0 ≈ 3 mm impacting on a polished aluminium surface
at 400 ◦C

Fig. 18 Rebound morphology of a water, b 200ppm polyethylene oxide solution, and c 250ppm
xanthan gum solution drops with D0 ≈ 3mm impacting on a polished aluminium surface at 400 ◦C.
The symmetry breaking during the water drop rebound is related to the formation of a crown during
impact, which is not observed for the other fluids (d–f)

When drops exhibit axisymmetric oscillations during rebound (Fig. 18b, c), their
kinetic energy converts periodically into surface energy and vice versa, with some
dissipation depending on the fluid viscosity. However, if oscillations are not axisym-
metric and the drop rotates around its centre of mass (Fig. 18a), a significant part of
the kinetic energy is used to sustain the rotation reducing the maximum bouncing
height. The rotational kinetic energy of tumbling drops can be estimated as follows:
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Erot = 1

2
Iω2 (19)

where I is the moment of inertia; assuming the elongated drop can be approximated
as a cylinder, one obtains

I = m

(
R2

4
+ l2

12

)

= 1

72
πρD5

0

(
1 + 2k3

2k

)

(20)

where l = kD0 is the cylinder length, measured from images, and R is the cylinder
radius, calculated imposing volume conservation.

Since the rotational kinetic energy is not recoverable as potential energy, its value
per unit weight must correspond to the bouncing height reduction observed in tum-
bling drops with respect to drops with the same rheology (viscosity, flow curve) that
remains axisymmetric during rebound:

�h

D0
= Erot

mgD0
= D0ω

2

24g

(
1 + 2k3

2k

)

(21)

where ω denotes the mean angular velocity and g denotes the gravity acceleration.
Figure19 compares themaximum bouncing heights of Newtonian, shear-thinning

and viscoelastic drops of fluids withmatching flow curves. In particular, the viscosity
of Newtonian fluids corresponds to the infinite-shear rate and the zero-shear rate
viscosities of the non-Newtonian fluids, obtained by fitting the flow curve with the
Carreau–Yasuda model (Chen and Bertola 2016b). The bouncing heights of non-
Newtonian drops and of the Newtonian drop with viscosity equal to the zero-shear
rate viscosity are almost identical, while the bouncing height of the Newtonian drop
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Fig. 19 Maximum bouncing height of Newtonian drops (glycerol solutions), shear-thinning drops
(100ppm xanthan gum solution), viscoelastic drops (80ppm polyacrylamide solution) with D0 ≈ 3
mm impacting on a polished aluminium surface at 400 ◦C: a measured heights; b measured heights
corrected for the rotational kinetic energy (Eq. 21)
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with viscosity equal to the infinite-shear rate viscosity is significantly smaller, similar
to water drops in Figs. 16 and 17. However, when the bouncing height of the low-
viscosity drop is corrected adding the contribution of the rotational kinetic energy
(Eq.21), it becomes almost identical to the bouncing heights of non-Newtonian drops,
as shown in Fig. 19b.

This suggests that the maximum bouncing height (i.e. the restitution coefficient),
corresponding to the fraction of the impact kinetic energy recovered after impact,
is not affected by non-Newtonian effects, but depends essentially on the zero-shear
rate viscosity (i.e. on the viscous dissipation) and on the drop symmetry during
rebound. In particular, tumbling drops cannot recover the rotational kinetic energy,
and therefore display a significantly smaller bouncing height.

Other impact regimes Besides the conventional impact regimes observed in New-
tonian drops (Bertola 2015), dilute polymer solution drops may exhibit other impact
morphologies, depending on the Weber number, the impact surface temperature, the
polymer concentration and molecular weight. At low polymer concentrations, there
is a range of Weber numbers where a single satellite drop separates in the vertical
direction during rebound, shortly after the drop has bounced off the surface; this
drop is tethered to the main drop body by a thin liquid filament, which is subject to
uniaxial stretching, and does not break up until the two droplets re-coalesce into a
single drop, as shown in Fig. 20. The diameter of the single satellite drop is between
40 and 50% of the equilibrium drop diameter, D0; this means that the mass of the
satellite drop is about 10 of the total mass of the drop, and therefore the equivalent
drop diameter of the drop after the satellite droplet separation is about 96% of the
initial equilibrium diameter.

Fig. 20 Single satellite drop morphology observed during the impact of a PEO solution drop
(concentration: 100ppm; molecular weight: 4 MDa) impacting on a surface at T = 400 ◦C with
We = 80; the time origin is the moment of impact
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Fig. 21 Semi-splash morphology observed during the impact of a PEO solution drop (concentra-
tion: 300ppm; molecular weight: 4 MDa) impacting on a surface at time origin is the moment of
impact

A second impact morphology peculiar of polymer solution drops can be observed
at highWeber numbers.When thedrop reachesmaximumspreading, satellite droplets
are formed around the disc perimeter due to the rim instability; in Newtonian drops,
this instability eventually evolves into drop splashing. In the case of polymer solu-
tions, a liquid bridge prevents the separation of the satellite droplets from the lamella,
as shown in Fig. 21; although the stretching of the liquid bridge is less than in the case
of the single satellite drop filament, its elasticity is sufficient to recall the satellite
droplets and prevents splashing or breakup. This impact morphology is not observed
in Newtonian drops, and can be labelled as partial splashing (or semi-splashing).

The formation of liquid bridges preventing the separation of satellite droplets also
affects the secondary atomisation regime, as shown in Fig. 22. In this case, satellite
droplets are sprayed out of the spreading drop free surface due to the bursting of
vapour bubbles produced at nucleation sites on the impact surface; however, shortly
after their ejection, all satellite droplets forming the spray are pulled back into the
main drop, and hence this morphology can be labelled semi-spray. The phenomenon
has an overall duration of a few milliseconds, and therefore it is very difficult to
detect and analyse.

Figure23 shows the impact regime map relative to a dilute PEO solution with
concentration of 200ppm and molecular weight of the PEO of 4 MDa. In the range
of parameters considered, the impact regimes observed are secondary atomisation
(SA), rebound with secondary atomisation (RSA), dry rebound (R) and semi-spray
(R*). Thus, the map is significantly different with respect to the map obtained for
drops of pure water (Bertola 2015); the dominant impact morphology, observed
for most combinations of surface temperature and Weber number, is dry rebound,
meaning that the polymer additive strongly inhibits both secondary atomisation and
splashing.

The effect of polymer concentration is clearly seen upon comparing the map in
Fig. 23 with the impact regime maps for a molecular weight of 4 MDa and PEO
concentrations of 100 and 400ppm, displayed in Fig. 24. Reducing the polymer
concentration increases the number of different impact morphologies, while for the
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Fig. 22 Semi-spraymorphology observed during the impact of a PEO solution drop (concentration:
200ppm; molecular weight: 4 MDa) impacting on a surface at T = 250 ◦C with We = 100; the
time origin is the moment of impact

Fig. 23 Impact regime map obtained for a concentration of 200ppm and a molecular weight of 4
MDa; regimes shown: SA (�), RSA (�), R (◦) andR∗ (∗)

higher polymer concentration, dry rebound is observed almost everywhere, with the
semi-spray regime confined to a small region. Upon keeping the molecular weight
constant at 4 MDa and gradually increasing the concentration from 100 to 200ppm,
all breakup and splashing are completely overcome; with the exception of small-
scale secondary atomisation which is prevalent at a surface temperature of 160 ◦C.
However, upon increasing the concentration to 400ppm, no secondary atomisation
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Fig. 24 Impact regimemaps obtained for amolecularweight of 4MDaat concentrations of 100ppm
(left) and 400ppm (right); regimes shown: SA (�), B (+), R (◦), R∗ (∗) and S (×)

Fig. 25 Impact regime maps obtained for a concentration of 200ppm and molecular weights of 2
MDa (left) and 8 MDa (right); regimes shown: SA (�), B (+), R (◦), R∗ (∗) andS (×)

is observed even at surface temperature of 160 ◦C. For all surface temperatures con-
sidered, rebound is the primary impact outcome.

Similarly, the effect of the molecular weight of the polymer can be seen upon
comparing the map in Fig. 23 with the impact regime maps for a concentration of
200ppm and molecular weights of 2 MDa and 8 MDa, displayed in Fig. 25. Within
the 2MDa (200ppm) impact regimemap, secondary atomisation (SA), rebound with
secondary atomisation (RSA), rebound (R), semi-spray (R*) and drop breakup (B)
regimes are observed. Upon gradual increase of molecular weight from 2 MDa to 4
MDa, the breakup regime is completely suppressed; however, some secondary atom-
isation is still present at a surface temperature of 160 ◦C. Increasing the molecular
weight to 8 MDa, all secondary atomisation is completely suppressed.

Thus, from a qualitative standpoint, the effect of molecular weight is similar to
that of the polymer concentration; low molecular weights enable the development of
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different impact morphologies, while increasing the molecular weight progressively
suppresses secondary atomisation and breakup/splashing, until only the dry rebound
regime can be observed.

The similarity between the effects of the molecular weight and of the polymer
concentration on the impact morphology is justified because both of these parameters
affect the relaxation time of polymer solutions (Kalashnikov and Askarov 1989).
When the relaxation time is shorter than the characteristic hydrodynamic timescales
corresponding to the various impact morphologies, the effect of the polymer additive
is negligible; however, when the relaxation time and the hydrodynamic timescales
are of the same order, the behaviour of polymer solutions becomes significantly
different from that of the pure solvent.

3 Impact of Viscoplastic Drops on Solid Surfaces

3.1 Impact on Homothermal Surfaces

Although viscoplastic (or yield stress) fluids have been studied for about one century,
and despite their relevance in several applications, the first investigation of yield-
stress drops was published only recently (Nigen 2005). This work studies the impact
of a model viscoplastic fluid (Vaseline) on a plexiglass surface, for different impact
velocities. The rheological behaviour of the fluid was described using a Cross model,
modified to include a yield-stress component. The variation of the final drop shape
with respect to the impact velocity was characterised with respect to the Bingham
number, Bm = τ0D0/μ0vi , where vi is the impact velocity and μ0 is the zero-shear
rate viscosity; however, such definition is not well posed because whilst the Bingham
number characterises the ratio of viscous to yield-stress forces, viscous dissipation
only occurs during fluid motion, and therefore the Bingham number definition given
above is only valid at zero-shear rate, i.e. when the drop is at maximum spreading.

Because surface forces play an important role in all drop impact phenomena, it is
interesting to observe what happens when the yield-stress magnitude is comparable
with the capillary (Laplace) pressure. This leads to the definition of a capillary regime
and a viscoplastic regime, which can be characterised through the Bingham-capillary
number (Bertola 2009a):

B̌ = τ0D0

σ
(22)

Whilst in the capillary regime, the impact morphology is qualitatively similar
to that of simple liquids, in the viscoplastic regime, one can sometimes observe
permanent deformations that do not disappear upon impact or under the action of
surface forces. For example, if drops are produced from a capillary nozzle, the prolate
shape that is created during the fluid extrusion (Coussot and Gaulard 2005; German
and Bertola 2009a, 2010a, b) remains partly visible after impact, as shown in Fig. 26,



Transport Phenomena Across Interfaces of Complex Fluids … 325

Fig. 26 Base diameter and dynamic contact angle of commercial hair gel (Carbopol gel) drops
with different magnitudes of the yield stress and D0 ≈ 2.5 ÷ 3 mm impacting on a hydrophobic
surface (Parafilm) from a fall height of 25 mm

which displays the impact morphology of hair gel-water drops for different yield-
stress magnitudes. This phenomenon is also influenced by inertia, and becomes less
and less pronounced at higher impact Weber numbers. The droplets symmetry can
be improved significantly if the dispensing nozzle has a very small diameter (Saidi
et al. 2010); however, for high yield-stress magnitudes and low impact velocities,
drops still preserve the initial shape they have after detachment from the capillary.

In viscoplastic drops, the maximum spreading diameter at the end of inertial
spreading decreases linearly with the yield-stress magnitude (German and Bertola
2009a), while in Newtonian drops, the same quantity depends on viscosity according
to a power law (Rein 1993;Chandra andAvedisian 1991;German andBertola 2009b),
as shown in Fig. 27.

The influence of surfacewettability on viscoplastic drop impacts is only noticeable
after the end of the inertial expansion stage. In the viscoplastic regime (B̌ > 1), drops
impacting on hydrophobic surfaces exhibit only small retractions similar to those
observed for high-viscosity Newtonian fluids; impacts on hydrophilic surfaces show
no significant retraction, and slowcapillary-driven spreading follows directly on from
the fast spreading of inertial expansion at low impact velocities. At higher Weber
numbers, drop diameters remain nearly constant after maximum spreading (German
andBertola 2009a). These results are substantially confirmedby amore detailed study
of the effect of surface wettability and roughness on viscoplastic drop impacts (Saïdi
et al. 2011), which compares two smooth substrates with distinct surface energies
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Fig. 27 Maximum spreading diameters of Newtonian glycerol–water mixture (a) and viscoplas-
tic commercial hair gel (Carbopol gel) drops (b) impacting on a hydrophobic surface (Parafilm).
Adapted from German and Bertola (2009a)

and three substrates with similar surface energy but different roughness. The same
work also attempts at a quantification of the effects of apparent wall slip (Bertola
2009a; Barnes 1995) on drop impact, however without being conclusive since it was
not possible to disentangle the effects of wall slip and surface wettability during
experiments. It is speculated that at low inertia, where a gravitational subsidence is
observed, the creeping movement amplitude is governed by interfacial effects rather
than wall slip, while at high impact velocities, wall slip effects become appreciable
only in the last moments of the recoil, when shear rates become very low.

When the drop radius ismuch larger than the capillary length, a = √
σ/ρg, surface

tension effects can be neglected in comparison with those of gravity; furthermore,
large diameters also imply large Weber numbers, so that impacts are dominated by
inertia and by the rheological properties of the fluid only. Such experimental condi-
tions are explored in a recent work, which describes the impact of relatively large
bits (characteristic sizes between 10 and 30 mm) of various viscoplastic fluids, with
yield-stress magnitudes ranging from 4 to 124 Pa, and capillary lengths of the order
of a few millimetres (Luu and Forterre 2009). Although these fluids include many
aqueous Carbopol dispersions, it must be observed that their yield-stress magnitudes
are significantly smaller than the values reported in the open literature for Carbopol
dispersions with the same concentrations (Rogers and Barnes 2001). This suggests
the Carbopol dispersions used in that work were not prepared following the standard
protocol which prescribes fluid neutralisation to ensure it has the highest yield-stress
magnitude.

By comparing impacts on a glass surface and on a superhydrophobic surface
(contact angle of nearly 180 ◦), these experiments confirm that the maximum spread-
ing diameter of viscoplastic drops is weakly dependent on the surface wettability,
and smaller than the capillary limit as defined by Saïdi et al. (2011); unfortunately,
similar results are also obtained with high-viscosity Newtonian fluids (German and
Bertola 2009b), so that it is not possible to establish whether the yield stress has an
independent influence. The most interesting finding of this work is the strong and
rapid recoil, which may even be followed by a complete rebound, observed after
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the spreading phase of Carbopol drops impacting on the superhydrophobic surface.
Since both a recoil driven by surface tension and a purely elastic rebound (the flow
threshold corresponds to a shear deformation of about 25%, whereas deformations
during impact vary between 100 and 500%) must be ruled out, it is suggested that at
such high velocity gradients (We ≈ 1400) Carbopol dispersions may exhibit a vis-
coelastic behaviour: during the rapid spreading phase, the flow is faster than the fluid
relaxation time, resulting in giant elastic deformations on short timescales. This con-
jecture is supported by the comparison of experimental results with a minimal model
of elasto-viscoplastic inertial spreading, where elasticity is tentatively accounted for
by the storage modulus measured below the flow threshold (indeed, a very rough
approximation). However, it appears that in order to obtain independent evidence
in support of this picture, dynamic rheometric tests with characteristic frequency
comparable with the inverse of the impact timescale are necessary.

3.2 Impact on Heated Surfaces

The study of viscoplastic drops impacting on heated surfaces is limited to the case
of Leidenfrost drops (Chen and Bertola 2016a). In this context, the Leidenfrost drop
impact represents a model system to investigate the behaviour of a viscoplastic fluid
where the yield stress is of the same order of magnitude as the Laplace pressure in
the absence of wetting.

At the end of the inertial spreading following impact, the liquid lamella is static
(i.e. there is no inertial force); thus, retraction results from the competition between
the driving surface tension forces (or the Laplace pressure) and the resisting yield
stress, and can be expressed in terms of the Bingham-Capillary number, B̌, defined
in Eq. (22). At low values of the Bingham-capillary number (B̌ < 1), the Laplace
pressure exceeds the yield stress, and therefore the drop recoils to restore the spherical
shape minimising the surface energy; however, for B̌ � 1, the surface tension can
no longer overcome the yield stress, and causes only little retraction resulting in

B = 0.052 0.16 0.52 0.88 1.2 1.3

!

Fig. 28 Images of Carbopol gel drops with D0 ≈ 3mmat maximum bouncing height after impact-
ing on a polished aluminium surface at 400 ◦C, for different magnitudes of the yield stress and a
We ≈ 15 and b We ≈ 110
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Fig. 29 Maximum spreading diameter (a) and maximum bouncing height (b) of viscoplastic drops
with D0 ≈ 3mmimpacting on a polished aluminium surface at 400 ◦C, for different magnitudes of
the yield stress and different impact Weber numbers (Chen and Bertola 2016a)

an oblate drop shape. Consequently, rebound is possible only when B̌ < 1, and not
when B̌ � 1, as shown in (Fig. 28), which displays images of viscoplastic drops at
maximum bouncing height for different values of B̌, for the same impact Weber
number.

The maximum spreading diameter, which is proportional to the surface energy of
the drop at the end of spreading, hence it can be used to estimate the energy dis-
sipation during the spreading process for a given initial kinetic energy of the drop,
which is displayed in Fig. 29a as a function of the impact Weber number. For a given
magnitude of the yield stress (i.e. for a given B̌), the maximum spreading diam-
eter scales approximately as Dmax/D0 ∼ We1/3,which is in between the scalings
resulting from energy conservation (Dmax/D0 ∼ We1/2) and momentum conserva-
tion (Dmax/D0 ∼ We1/4). The maximum spreading diameter decreases monotoni-
cally with respect to the Bingham-capillary number since larger values on the yield
stress cause larger viscous dissipation of energy.

The maximum bouncing height of the drop centre of mass during rebound, which
indicates how much of the initial impact kinetic energy remains after the impact,
hence it can be used to calculate the total energy dissipation during impact when
subtracted from the impact kinetic energy, which is displayed in Fig. 29b as a
function of the Bingham-capillary number. For drops with a relatively low yield
stress (B̌ = 0.052; B̌ = 0.16; B̌ = 0.52), the rebound behaviour is similar to high-
viscosity Newtonian drops. When the yield stress is larger than the Laplace pressure
(B̌ = 1.2; B̌ = 2.3), the rebound behaviour of drops becomes totally different from
the others, and the maximum bouncing height is equal to 0.5D0 within experimental
error; in addition drops keep a permanent deformation resulting into an oblate shape.

Although the rebound of Leidenfrost drops is usually explained as a consequence
of the rapid release of the surface energy stored during inertial spreading, similar to
drop rebound on non-heated, hydrophobic surfaces, where there is no vapour film,
some authors suggest that the rebound is also due to the formation of a high-pressure
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vapour layer between the liquid and solid surface during impact, which acts as an
elastic cushion which contributes to propelling the drop off the surface (Rein 2003).
However, according to the above results, drops do not rebound when surface forces
cannot restore the spherical shape, and therefore one must conclude the contribution
of the vapour cushion to rebound is negligible.

4 Atomisation of Non-Newtonian Fluids

In many technical applications, fluids atomised are non-Newtonian in their response
to deformation. Examples are paints used for coating purposes and polymer solutions
in spray drying processes for polymer powder production. Other fields of application
are crop spraying in agriculture,where polymeric compounds are used to suppress the
formation of very small drops (anti-drift agents), and rocket propulsion, where solid
propellants are being replaced by gel-like fluids. The advantage of such propellants
is that they are similarly shelf-stable as solids, while thrust is controllable, which
is not the case with solid propellants. In all cases, it is important to predict the
drop size spectrum produced by the atomisation process, which depends both on the
atomiser and its state of operation, and on liquidmaterial properties. Inmost cases, the
viscous or elastic properties of the liquid depend on the rates of deformation, where
viscoelastic liquids may exhibit a memory effect, so that their material properties
may additionally depend on the deformation history.

In this section, we first present a review of published research on spray formation
from non-Newtonian liquids (Brenn and Plohl 2017).

4.1 Non-Newtonian Jet Breakup and Spray Formation

We first discuss the breakup of laminar jets of non-Newtonian liquids. Mun et al.
(1998) showed that in laminar capillary jet breakup, both the breakup length of the jet
and the size of the main and satellite drops formed are functions of the concentration
and the molecular weight of the polymer in the solution. The authors investigated
solutions of poly(ethylene oxide) (PEO) in mixtures of water and glycerol. The com-
position of the solvent was designed so as to maintain a constant shear viscosity of 5
mPa·s for all the experiments. The extensional viscosity of the liquids, represented
by the Trouton ratio, was determined with an opposing-jets rheometer. The exper-
iments showed that, at low molecular weight of the order of 8–100 kDa and low
concentration of the polymer between 0.1 and 1 wt%, the jet may be destabilised by
the dissolved substance. At higher molecular weight, the jet breakup length increases
with the polymer concentration and reaches a plateau. These results explain the dif-
ferent trends in jet breakup length found by Kroesser and Middleman (1969) and by
Goldin et al. (1969). Drop size measurements show that the formation of satellites is
suppressed only when the jet breakup length increases due to the dissolved polymer.



330 V. Bertola and G. Brenn

The increase of drop size due to the polymer is explained by the formation of fewer
drops with fluids showing larger breakup lengths.

The breakup of laminar viscoelastic liquid jets was further studied by Christanti
andWalker (2001). The jets are produced by a Spraying Systems twin-fluid atomiser
without an airflow, essentially using the cylindrical tube in the atomiser for liquid
supply to the orifice. The liquid flow rate was kept constant throughout the experi-
ments, with a jet velocity of about 2m/s and a jet diameter of about 500 µm. The
liquids were the glycerol–water mixtures with dissolved PEO of Mun et al. (1998),
where three different molecular weights of the polymer and mass fractions up to
0.3% were studied. The extensional viscosity of the solutions was again charac-
terised by an opposing-jets rheometer. The jet breakup experiments show that the
polymer content delays the onset of jet surface deformation and, due to the formation
of the beads-on-a-string structure, raises the breakup length considerably, up to more
than a factor of two as compared to the Newtonian case. Drop size distributions show
that the main and satellite drop sizes on average agree with predictions by Rayleigh
(1878) and by Bousfield et al. (1986), respectively. Drop size spectra do not change
significantly as the concentration of PEO with the molecular weight of 300 kDa
is increased from 0.1% to 0.33%. Drop formation from solutions of two different
molecular weight PEOs shows to be dominated by the PEOwith the highermolecular
weight. The smaller PEO helps to suppress the formation of small-size drops. The
stretching rates are attempted to be estimated but do not lead to a characterisation
of the drop sizes formed as functions of characteristic numbers involving the stress
relaxation time.

Christanti andWalker (2002) studied the breakup of laminar jets of PEO solutions
investigated by Christanti and Walker (2001), going to higher molecular weights of
the PEO up to 5000 kDa and applying defined disturbances to the jet. The focus
is on the formation of satellite droplets in the jet breakup. Relaxation times of the
solutions were determined from the rates of thinning of filaments formed between
the main drops in the breakup process. For dilute solutions, the results agree with
the prediction from the Zimm model. Satellite droplet formation may be suppressed
due to the polymer action, even at small disturbance amplitudes. The drop size
distributionmay be controlled by themolecularweight of the polymer. The parameter
determining the drop formation process is the product of liquid stress relaxation time
to the disturbance growth rate.

Teske and Bilanin (1994) investigated sprays produced from Newtonian liquids
by various types of atomisers, representing a non-dimensional drop size by means
of characteristic numbers. The authors account for the influences from the velocity
ratio between liquid and ambient air, the spraying angle, as well as the Reynolds
number Re = Uj Djρ/μ (jet velocity and diameter Uj and Dj , liquid density and
dynamic viscosity ρ and μ), the ratio of rotary and axial velocities in rotary atom-
isation, the liquid Weber number We = U 2

j D jρ/σ (surface tension σ of the liquid
against the ambient air), as well as the liquid Deborah number, which is defined
as the ratio De = τnU j/Dj of time scales of stress relaxation and flow, τn and
Dj/Uj , and ratio of elastic to viscous stresses �s = cnD j/(μUj ) (stress relax-
ation amplitude cn , viscous stressμUj/Dj ). Forwater sprays, three non-dimensional
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characteristic sizes of the cumulative drop size spectrum are represented as functions
A + B Re Web. This correlation is different for rotary atomisation. The values of
A and B are found different (A even with different sign) in the different sprays stud-
ied, while the exponent b is constant for each atomiser type (b = 0.42 for flat-fan and
b = 0.38 for pressure-swirl atomisers. The correlation is different for every atomiser
geometry, represented by the spray opening angle.

A pressure-drop-based method for measuring the extensional viscosity of dilute
polymer solutions was presented by Dexter (1996). The solution to be characterised
flows through a packed bed of screens, driven by varying pressure difference. The
extensional viscosity is derived directly from the ratio of applied pressure difference
to the resulting liquid volume flow rate. The pressure drop is assumed to be due
to contributions from shear, elongation and inertia. The equation for the extensional
viscosity of the polymer solution derived and evaluated by themeasurements does not
claim to provide accurate values, but rather a measure for it. A correlation between
this quantity and the median drop size in the sprays from a Spraying Systems TeeJet
flat-fan atomiser shows that the median drop size increases by a factor of 5 due to
a tenfold increase of the extensional viscosity. At the same time, the percentage of
drops smaller than 102 µm drops from 30 to 1.

Zhu et al. investigated the effectiveness of anti-drift agents used in agricultural
pesticide formulations for suppressing small drop size fractions in pesticide sprays
(Zhu et al. 1997). In order to simulate the process of liquid flow through atomisers
for agricultural applications, the liquids were exposed to shear. Aqueous solutions
of different polymers with different molecular weights and anionicities were studied
at different concentrations. The high-shear dynamic and extensional viscosities of
liquid samples were determined after different numbers of passes through the test
piping. The apparatus used for extensional rheometry was the one by Dexter (1996).
The liquids were then atomised by a flat-fan pressure atomiser and drop sizes mea-
sured with a phase-Doppler anemometer. The liquid rheometry showed a significant
decrease in the shear viscosity against the fresh solution after 11 passes through the
apparatus. At that state of the liquid, the drop size Dv0.5 of the cumulative volume
distribution in the sprays decreased by 25%. The authors concluded from this finding
that formulations containing polymers of the kinds studied increase in susceptibility
to drift as the solution passes several times through the sprayer. This effect is partially
suppressed with anionic poly(acrylamide)s by increasing the polymer concentration.
Increasing the concentration, however, does not help with non-ionic polymers. The
reason for this difference is seen in the different conformations of the molecules in
the solution.

Mun and co-workers investigate the atomisation of dilute solutions of PEO for
four different molecular weights in the same mixtures of glycerol and water as above
(Mun et al. 1999). The solutions were supplied at a constant pressure to several
Spraying Systems full jet and cone jet nozzles allowing for a constant liquid volume
flow rate. The liquids were characterised for their shear and extensional viscosities,
as in Mun et al. (1998), and for the surface tension against air. The volume mean
drop size in the sprays increases by a factor of 4 due to 0.095 wt% of 600 kDa PEO
in the solution. The exact value depends on the atomiser geometry. At the same time,
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the content of drops smaller than 105 µm in the sprays decreases by a factor of
5 or more. From these, follow implications on liquid characterisation, agricultural
chemical formulation and atomiser design.

The effect of polymer rigidity and concentration on the atomisation of aqueous
polymer solutions by a pressure-swirl atomiser was studied by Harrison et al. (1999).
The focus of the study is on the opening angle of the spray cone as a function of
the concentration of the polymers. The non-monotonous behaviour of the spray cone
angle with varying polymer concentration for flexible (poly(acrylamide)), semi-rigid
(CMC) and rigid polymers (Xanthan gum) is related to the extensional viscosity of the
solutions. The spray cone formation and sheet breakup are enhanced at low polymer
concentrations and retarded with increasing concentration. The drop sizes produced
are not reported.

Romagnoli et al. (2000) study the spraying of solutions of PEOand hydroxypropyl
guar gum (HPG) in water and in aqueous solutions of poly(ethylene glycol). Atom-
isers were flat-fan TeeJet nozzles from Spraying Systems. The liquid extensional
viscosity was rheologically characterised, and their surface tension was measured.
Drop sizes were measured with a Malvern instrument at a constant distance from the
atomiser orifice. Drop size spectra in sprays from two solutions with very similar
extensional viscosities, but surface tensions differing by 17%, are found to be very
different. This finding allows for the conclusion that, in the cases investigated, the
extensional viscosity is not the most important factor determining the drop size.

In their experiments on viscoelastic fluids atomisation, Thompson and Rothstein
(2007) used solutions containing worm-like micelles of CTAB, with sodium sali-
cylate at the same molarity. The nozzles were flat-fan and pressure-swirl atomisers
from the company McMaster-Carr. Oscillatory and steady shear rheometry revealed
the shear viscosity as a function of the shear rate and the storage and loss moduli
as functions of the oscillation frequency. Zero-shear viscosities up to 68Pa s are
reached, accompanied by stress relaxation times of the order of 30 s. For the flat-
fan atomisers, the authors present a chart for the pairing of the Weber and elasticity
numbers,We and El, of regimes of stable sheet or sheet breakup mechanisms where
the elasticity number is defined as El := λ1ν0/R2 (stress relaxation time λ1, zero-
shear rate liquid kinematic viscosity ν0, jet radius R) and isO(106) in the study.
The regimes seem very similar for two atomisers with opening angles differing by
a factor of 2. As a dominant breakup mechanism, the formation of perforations in
the fan-shaped sheets is found. The corresponding nomogram for the pressure-swirl
atomiser accounts for the various shapes of liquid systems formed for varyingWeber
and elasticity numbers from a jet to a ruptured cone. Drop size dependencies on
liquid properties and setting of atomiser operation are not reported.

Williams et al. (2008) investigated the influence of different poly(acrylamide)s
dissolved inwater at various concentrations on the Sauter-mean drop size in sprays of
the solutions produced by an agricultural spray nozzle from Lurmark. The polymers
were non-ionic, anionic or cationic. A characterisation of the solutions included
shear and extensional rheometry, as well as tensiometry. The Sauter-mean drop size
in the sprays was measured with a Malvern Spraytec RS instrument. Bouncing of
1mm drops impacting an inclined plant leaf at a set velocity was characterised by
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the bouncing distance. The polymer solutions exhibited shear-thinning and strain-
hardening behaviour. The shear viscosities at low shear rates reported are O(1 Pa s)
at polymer concentrations O(0.07 wt%). The flow curves exhibit a hump around
shear rates of 500 s−1. The strain hardening is seen by an increase of the apparent
extensional viscosity with the Hencky strain. The thinning curves of the filament
diameter in the extensional rheometry show a transition from a viscoelastic to a
Newtonian behaviour, as seen in other studies also (Stelter et al. 2002a). Spray Sauter-
mean drop sizes increase by approximately 10% while the extensional viscosity of
the liquid increases by a factor of four.

Park and Harrison (2008) studied the effects of elasticity of the liquid on the
performance of the spray produced with a Spraying Systems Turbo TeeJet nozzle.
The context is spraying of pesticide formulations and spray painting. An increased
extensional viscosity raises the breakup lengths of sheets. In the sheet breakup,
filaments connecting the nascent drops are formed. The stability of these filaments
leads to increased drop sizes and suppresses the fine droplet fractions in the sprays.
The polymer employed was PEO. The solvents used were different mixtures of water
and glycerol, and the largest polymer mass fraction in the solutions was 0.6 wt%.
The resulting shear viscosity was around 5 mPa for all the solutions studied. The
extensional characteristics of the solutions are not reported. The volumetric mean
drop diameter in the sprays increases by 40% as 0.6 wt% of PEO with a molecular
weight of 100 kDa are added to the Newtonian solvent.

Negri and Ciezki (2015) investigated the spraying behaviour of 13 Boger fluids,
with an impinging-jet injector. The application is rocket propulsion with gelled pro-
pellants. The formation of spray drops by breakup of liquid sheets formed by the
mutual impact of two inclined cylindrical liquid jets is ligament mediated. For char-
acterising the ligaments, the authors defined a thread parameter as the ratio of the
sum of the third powers to the sum of the second powers of the major axis lengths
of the filaments visualised in the process. The definition, therefore, is analogous to
that of a Sauter-mean drop diameter. It is assumed that the thread parameter is rel-
evant for quantifying the drop size distribution in the spray. The data show that the
thread parameter is correlated with the stress relaxation time of the Boger fluids. It
is shown that the elasticity number El = λ1ν/D2

j (liquid kinematic viscosityν, jet
diameterDj ), representing the ratio of the stress relaxation time to a viscous diffu-
sive timescale, correlates well with the thread parameter. The thread parameter itself,
however, is presented in dimensional form.

The group of Keshavarz et al. (2015) studied the formation of drops in an air-
assisted spraying process of aqueous PEO solutions with dynamic shear viscosities
around 3m Pa s, polymer mass fractions between 0.01 and 0.1% and small molecular
weights between 300 and 1000 Da. Careful extensional rheometric characterisation
of the solutions includes the presentation of a jet-thinning-based method originally
proposed bySchümmer andTebel (1983), nowcalledROJER.Thismethod allows the
stress relaxation time even of dilute solutions to be measured, where the limitations
of the CaBER method do not allow this. Findings by Marmottant and Villermaux
(2004), as well as estimates on time to breakup of a filament producing the drops
and a time scale characteristic for the influence from the atomising air, lead to a
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correlation of the mean drop size with the influencing characteristic numbersWe, Oh
and De. Here, Oh = μ/ (σDρ)1/2 is the Ohnesorge number, representing a ratio of
a capillary to a viscous timescale. The accuracy of predictions of this model remains
to be verified. We name this paper despite the twin-fluid atomisation process since
it presents a mean drop size model.

In the following, we discuss the instability of liquid jets and sheets formed for
producing sprays by well-known types of atomisers. For reasons of relevance for the
application, we then go into the details of spray formation by sheet breakup.

4.2 Instability of Non-Newtonian Jets and Sheets

Due to the instability of jets and sheets in contact with an ambient gaseous medium,
deformations of the free surface of the liquid system, which are caused by dynamic
influences, may grow either in space or time, or both. The deformations, therefore,
lead to the breakup of the system into drops. The mechanism of instability may be
either capillary (theRayleighmechanism), due to a tangential acceleration of the gas–
liquid interface (the Kelvin–Helmholtz mechanism), or due to a normal acceleration
of the interface (the Rayleigh–Taylor mechanism), or due to more than one of these
mechanisms. For jets, we concentrate our discussion on the capillary instability,
while for sheets, we look at the Kelvin–Helmholtz mechanism. We discuss details of
the linear stability analysis of jets and sheets in a vacuum and in a gaseous ambient
medium, respectively.

Linear stability analysis of a laminar liquid jet We sketch the linear temporal
capillary instability analysis of a liquid jet. The jet is assumed to be axisymmetric
around the z-axis of the cylindrical coordinate system. The liquid is treated as incom-
pressible and linearly viscoelastic. Dynamic influences from an ambient medium, as
well as body forces, are not accounted for.

The jet surface in Fig. 30 is described as rs(z, t) = a + η(z, t),where η is the
deformation against the undisturbed cylinder of radiusa. The variables and equa-
tions of change are non-dimensionalised with the undeformed jet radius a, the
capillary timescale (ρa3/σ)1/2, the capillary pressure σ/a and the reference stress

Fig. 30 Surface of an axially symmetric capillary jet with sinuous deformation of wavelength λ
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μ0(σ/ρa3)1/2 for length, time, pressure and extra stress, respectively. Here, ρ is the
liquid density, σ is the surface tension and μ0 is the liquid zero-shear viscosity.

For the problem at hand, the linearised equation of continuity and the two lin-
earised components of themomentumequation in the radial (r)andaxial (z)directions
read

1

r

∂

∂r
(rur ) + ∂uz

∂z
= 0 (23)

∂ur
∂t

= −∂ p

∂r
+ Oh0

[
1

r

∂

∂r
(rτrr ) − τθθ

r
+ ∂τr z

∂z

]

(24)

∂uz

∂t
= −∂ p

∂z
+ Oh0

[
1

r

∂

∂r
(rτr z) + ∂τzz

∂z

]

(25)

where Oh0 = μ0/(σaρ)1/2. As the rheological constitutive equation (RCE), we use
the linearised form of the Oldroyd-B model, which reads
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where the symbols τ andD denote the extra-stress and the rate-of-deformation ten-
sors, respectively. De1 andDe2 are the Deborah numbers corresponding to the stress
relaxation and deformation retardation times,λ1 and λ2, respectively.

This set of equations is solved subject to linearised boundary and initial condi-
tions. The first boundary condition is the kinematic condition that the radial rate
of deformation of the jet surface equals the radial velocity component evaluated at
the position of the undeformed cylindrical jet. The second condition is the dynamic
condition stating that there is no transfer of shear stress across the jet surface. The
third condition is the dynamic condition that the (r, r) component of the total stress
tensor must be zero. The two latter conditions imply that the dynamic influence from
an ambient medium is disregarded. The three boundary conditions, which are to be
evaluated at r = 1, read

ur = ∂η

∂t
(27)

τr z = 0 (28)

−p + Oh0τrr −
(

η + ∂2η

∂z2

)

= 0 (29)

The term in the last equation depending on the deformation η represents the linearised
jet surface curvature. Furthermore, the initial conditions are

η(0, z) = cos kz and
∂η

∂t
(0, z) = 0 (30)



336 V. Bertola and G. Brenn

indicating that the jet is initially deformed from the cylindrical shape according to a
cosine function, and that the surface is initially at rest.

These equations describe the linear problem. They exhibit solutions which are
well known from the literature (Goldin et al. 1969; Brenn et al. 2000). For finding
the solutions of the equations of motion, we first solve the RCE. All the flow field
variables depend on time as per the exponential function exp(−αt). The quantity α
in the exponent of this function is a complex angular frequency which may reduce
to a growth or damping rate of the jet surface deformation in aperiodic cases. Given
this time dependency, we find for the extra-stress tensor, the solution

τ = 2
1 − De2α

1 − De1α
D =: 2βD (31)

This means that the extra-stress tensor of the linear viscoelastic fluid differs from
the form for a Newtonian material just by a frequency-dependent factor β in front of
the rate-of-deformation tensor. This fluid is, therefore, formally identical to a New-
tonian one, so that all the results obtained for Newtonian liquids may be transcribed
immediately to the present linear viscoelastic case, just with the Ohnesorge number
Oh of the Newtonian case replaced byOhv := βOh0.The velocity field in the jet
due to the deformation reads

ur = η̂Ohv

[
(
l2v + k2

) I1(kr)

I1(k)
− 2k2

I1(lvr)

I1(lv)

]

exp (ikz − αt) (32)

uz = i η̂Ohv

[
(
l2v + k2

) I0(kr)

I1(k)
− 2klv

I0(lvr)

I1(lv)

]

exp (ikz − αt) (33)

where l2v = k2 − α/Ohv defines a modified wave number and η̂ is the deformation
amplitude. In all complex solutions of the real differential equations, we mean the
real parts of the solutions only. For the pressure field, we obtain

p = η̂
α

k

(
2k2Ohv − α

) I0(kr)

I1(k)
exp (ikz − αt) (34)

The dispersion relation of the jet is found by introducing the velocity and pressure
fields in the jet into the dynamic zero normal stress boundary condition (29). The
result is the well-known relation

α2 − 2αk2Ohv

[

1 − 1

k

I1(k)

I0(k)
− 2klv

l2v + k2
I1(k)

I0(k)

(
I0(lv)

I1(lv)
− 1

lv

)]

= (35)

= k
(
1 − k2

) I1(k)

I0(k)

l2v − k2

l2v + k2

which was first presented by Goldin et al. (1969) and for the Newtonian liquid by
Rayleigh (1892). For zero liquid viscosity (Ohv → 0), this relation reduces to the
Rayleigh (1878) result for the inviscid jet in a vacuum.
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Fig. 31 Dispersion relations of Newtonian and linear viscoelastic jets for varying De1 at a Oh =
0.1 and b Oh = 1.The ratio De2/De1 = 10−3 is kept constant

The dispersion relation (35) emerging from the linear stability analysis is depicted
in Fig. 31 for viscoelastic jets together with the corresponding curves for the New-
tonian jet with the same value of Oh. For the ratio De2/De1, we set the value of
10−3, corresponding to findings by Brenn and Plohl (2015). This value deviates by
several orders of magnitude from the ones often used in the literature. It was found
to be the correct value following from oscillating drop experiments for measuring
the deformation retardation time.
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For disturbance wave numbers 0 ≤ k ≤ 1and for Newtonian fluid, the relation
has two real solutions, one positive and one negative. Due to the formulation of
the time dependency by the exponential function with a minus sign in front of the
exponent αt , the unstable behaviour of the jet is associated with the negative value.
For wave numbers k > 1, the relation has two complex conjugate solutions with a
positive real part. The two values ofα represent twowaves on the jet surface travelling
in different directions and with different phase velocities. In contrast to this, for the
linear viscoelastic fluid, the structure of the solutions may be different. At the smaller
Oh in Fig. 31a, we find two real solutions with different signs for the viscoelastic
case as well as for the Newtonian. At the higher Oh in Fig. 31b, however, the real
solutions are replaced by complex ones at k ≥ 0.28 already. This is an important
finding for the viscoelastic jet stability behaviour.

It is seen in Fig. 31 that, at a given Oh, for both De1 depicted, the viscoelastic
jets exhibit larger growth rates of disturbances than their Newtonian counterparts.
This would mean that we expect the viscoelastic jet to break up more rapidly than
a corresponding Newtonian jet, which is in clear contradiction to the experimental
observation showing beads-on-a-string structures with filaments of long lifetime.
This discrepancy can be explained by the nonlinear nature of the formation of the
latter structure.Adescription of the dynamics of that phenomenon, therefore, requires
a nonlinear stability analysis with account for the strain-hardening behaviour of the
liquids.

Linear stability analysis of a sheet The corresponding analysis for a plane liquid
sheet is analogous to the analysis for the jet. The geometry of a sheet, however, sug-
gests formulation of the equations of motion in Cartesian coordinates. Furthermore,
in the description of the sheet surface deformation, the possibility of the formation
of two different shapes of the sheet surface must be accounted for: the deformation
may be sinuous or varicose, depending on the relative phases of the wave-like defor-
mations of the two surfaces. The sinuous case is sketched in Fig. 32. We look at this
deformation only, since in terms of the order of magnitude of disturbance growth, it
is the more ‘dangerous’ case for the sheet. The resulting dispersion relation for the
sinuous sheet deformation reads

Oh2vs
[(
l2 + k2

)2
tanh k − 4k3l tanh l

]
+ α2 ρg

ρ
+ k3 = 0 (36)

where the Ohnesorge number for the viscoelastic sheet

Ohvs = μ0

(σHρ)1/2

1 − (α − ikU0)λ2

1 − (α − ikU0)λ1
(37)

and, in contrast to the jet, the length scale for non-dimensionalisation is the half thick-
ness H of the sheet and ρg is the density of the gas ambient to the liquid sheet. The
dispersion relation is depicted for five different combinations of Ohnesorge, Debo-
rah and gas Weber number in Fig. 33. It is seen that high Deborah and Weber num-
bers enhance the sheet instability. Comparing the disturbance growth rates predicted
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Fig. 32 Surface of a plane liquid sheet with sinuous deformation of wavelength λ

Fig. 33 Dispersion relation of linear viscoelastic sheets for sinuous surface deformation. The ratio
De2/De1 = 10−3

by these data, it is seen that, corresponding to theKelvin–Helmholtz instabilitymech-
anism, the gas Weber number has the strongest influence on the destabilisation of
the sheet. While for a given set of parameters, the increase of De1 by one order of
magnitude has a very small influence only, and increasing the gas Weber number
from 1 to5destabilises the sheet significantly.

In the following section, we discuss experimental studies on the breakup of liquid
jets.

4.3 Experimental Studies on Jet Breakup

Experiments on the breakup of laminar jets showmarked differences betweenNewto-
nian and viscoelastic liquids: while Newtonian jets exhibit the well-known behaviour
of spatial and/or temporal growth of surface deformation amplitudes until drops pinch
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off, viscoelastic, in particular, strain-hardening liquids form the so-called ‘beads-on-
a-string’ structure, exhibiting drops connected by fine filaments which can live very
long and retard the pinch-off of drops.

In drop formation by viscoelastic liquid jet breakup, the importance of stress
relaxation in the liquid jet and its timescale were quantified in the literature. As
mentioned in Sect. 4.1, Christanti and Walker (2001) investigated the breakup of
laminar liquid jets into drops via the beads-on-a-string structure, using solutions of
poly(ethylene oxide) (PEO) of varying molecular weight in different mixtures of
glycerol and water. The solutions were designed to keep the dynamic viscosity of 5
mPa·s throughout.Drop sizesweremeasured by image analysis. The drop size spectra
measured exhibit bimodal shapes, as depicted in Fig. 34. The size spectrum for the
solutions of low molecular PEO exhibits peaks at the size predicted by Rayleigh’s
inviscid, linear stability analysis (Rayleigh 1878) (the main drops), and at a size
smaller by a factor 3 than the main drops (satellite droplets) in agreement with the
computational results for inviscid liquid by Bousfield et al. (1986). Given the small
Ohnesorge number O(10−2) of the jets in these experiments, the good match of
the experimental findings with inviscid analytical and computational results is not
surprising. The experiments with higher molecular weight of the dissolved polymer
in Fig. 34b, however, show that the peak at the smaller size in the drop size spectrum
may be suppressed if, at the polymer concentrations at hand, the molecular weight
exceeds a value around 103kDa.This finding is explained by the stress relaxation
time λ1 of the liquid, which increases with the molecular weight of the polymer in
a given solvent. The values of λ1 of the test liquids presented by Christanti and
Walker (2002) are derived from the Zimm model and the Flory–Fox equation and
accurate enough to relate their non-dimensional equivalent, the Deborah number
De1 = λ1(8σ/ρd3)1/2, to the suppressed satellite droplet formation. The result is
that, for De1 � 1, satellite droplets are suppressed (Christanti and Walker 2002).

For the reason of this phenomenon, the related jet breakup length is difficult to
predict. An experimental study by Stelter (2001) showed that the relation found
by Kroesser and Middleman (1969) may be generalised by forming the Ohnesorge
number with an elongational viscosity. The scaling behaviour of this quantity is
derived from the elongational characterisation of the liquid.

4.4 Rheological Characterisation of Viscoelastic Liquids

For the evaluation of deformation and breakup models for liquid jets and sheets for
spray formation, viscoelastic liquids must be characterised rheologically so as to
account for their viscous and elastic behaviour. In many applications, the polymer
content is low, so that the shear viscosity does not appreciably deviate from the
viscosity of the solvent. The elongational viscosity caused by the deformation of the
polymer macromolecules in the solvent, however, may nonetheless be substantially
higher than the Trouton viscosity of the Newtonian solvent in uniaxial elongational
flow, which is three times the shear viscosity.
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Fig. 34 Drop size spectra measured by image processing in viscoelastic jet breakup (Christanti and
Walker 2001). a—100 kDa PEO at 0.3%wt. (open triangles) and 1%wt. (filled triangles); b—1000
kDa PEO at 0.05%wt (open triangles down) and 0.14%wt. (filled triangles down). Reprinted from
Christanti and Walker (2001) with permission from Elsevier

Complex fluids with a polymeric dissolved component at an appreciable con-
centration may exhibit shear-thinning behaviour, i.e. their shear viscosity decreases
with increasing shear rate. This material property is measured in the steady flow
of a shear rheometer. Furthermore, viscoelastic liquids exhibit a viscosity which
is formulated as a complex conjugate quantity μ∗ = μ′ − iμ′′, where the real part
corresponds to a viscosity, and the imaginary part to an elasticity. This material
property relates an extra stress to a rate of deformation. An alternative for describing
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the viscoelastic behaviour of a material at small deformations is to relate the extra
stress to a deformation. The material property in this relation is a complex modulus
G∗ = G ′ + iG ′′, where G ′ is the storage and G ′′ is the loss modulus. The former
quantifies elasticity and the latter the viscous loss. Consequently, in a deformation
varying harmonically with time at the angular frequency α, complex viscosity and
modulus are related as perG∗ = iαμ∗. Comparing the real and imaginary parts of the
two quantities G∗ and μ∗, the storage modulus is related to the imaginary viscosity
(the elasticity) as per G ′ = αμ′′ and the loss modulus is G ′′ = αμ′.

Sufficiently elastic liquids may be characterised by analysing liquid filaments
in a filament-stretching elongational rheometer, now termed as the CaBER-type
instrument. This device forms a filament between two plates by a step-strain process
andmeasures the thinning of the filament with time. The drainage flow in the filament
flow corresponds closely to the actual filament thinning flow in liquid jet and sheet
breakup, so that liquid characterisation on the basis of this process is appropriate for
spray formation modelling and produces liquid properties relevant to atomisation.

The thinning of the filament is predicted theoretically. Assuming that inertia and
body forces are unimportant in this flow, the balance equations ofmass andofmomen-
tum in the direction of the symmetry (z) axis of the filament are integrated over the
filament cross section to obtain a quasi-one-dimensional description of the slender
system at hand. The rheological constitutive equation (RCE) of the viscoelastic liq-
uid for formulating the axial normal extra stress is taken from a micro-rheological
approach (Yarin 1993). The result is the set of equations

∂a2

∂t
+ ∂Va2

∂z
= 0 (38)

0 = ∂

∂z

⎧
⎨

⎩
σzza

2 + 2σa

[

1 +
(

∂a

∂z

)2
]−1/2

⎫
⎬

⎭
(39)

where a is the filament radius and V is the axial velocity component. In viscoelastic
liquid filaments, the axial normal stress

σzz = σ/a (40)

is of the order of the stress imposed by the capillary pressure. The axial normal
stress is composed of a capillary and a polymeric contribution. Using a microscopic
material model relying on macromolecular deformations, we may write

σzz = −σ/a + ck Azz (41)

where c is the concentration of the polymer molecules in the solution, k is the elastic
constant of the coiled molecules in the solution and Azz is the zz-component of
the orientation–deformation tensor (Stelter et al. 2000; Yarin 1993). The stress is,
therefore, related to the deformation of the polymer molecules in the solution. In
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the present uniaxial stretching flow, the deformation is dominated by the tensor
component Azz , which in the material model is governed by the equation

d Azz

dt
= 2Azz

∂V

∂z
− Azz

λ1
(42)

From Eqs. (40) and (41), it follows that Azz = 2σ/cka. Substituting this result into
(42), we obtain the differential equation

d

dt

(
1

a

)

= − 4

a2
da

dt
− 1

aλ1
(43)

for the filament radius a(t). The solution representing the evolution of the diame-
terd(t) = 2a(t) of a viscoelastic filament with time reads

d(t) = d0 exp (−t/3λ1) (44)

The analogous analysis for the Newtonian fluid is based on the composition of the
stress σzz in a Newtonian filament

σzz = −σ

a
+ 3μ

∂V

∂z
(45)

from the capillary pressureσ/a and the viscous normal stress governedby theTrouton
viscosity 3μ. Assuming that this stress is zero in a Newtonian filament (Stelter et al.
2000; Entov and Hinch 1997), the differential equation for the Newtonian filament
diameter emerging from Eq. (45) has the solution

dN (t) = d0 − σ

3μ
t (46)

This equation, however, bases on the assumption that the filament diameter does
not depend on the z-coordinate. It therefore predicts the wrong filament diameter
evolution if the filament is not cylindrical. An image like Fig. 35 shows that this may
be the case in a viscous, Newtonian liquid filament (Stelter 2001). For this case,
Papageorgiou (1995) developed a self-similar description of the jet surface shape,
from which he derived the corrected filament diameter evolution with time

dN ,P(t) = d0 − 0.4254
σ

3μ
t (47)

The filament diameter evolution reveals the straining rate

ε̇ ≡ ∂V

∂z
= −2

a

da

dt
(48)
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Fig. 35 Filament of the
Newtonian silicon oil
Wacker W1000 (σ = 21.2
mN/m, μ = 970 mPas) in a
CaBER-type
filament-stretching
elongational rheometer
(Stelter 2001)

The elongational viscosity in uniaxial straining flow follows from the relation

σzz = μel ε̇ (49)

For the viscoelastic liquid, the viscoelastic elongational viscosity is

μel(t) = 3σλ1

d0
exp (t/3λ1) (50)

while for theNewtonian fluid in uniaxial elongational flow, the elongational viscosity
is certainly the Trouton viscosity

μel,N = 3μ (51)

The corresponding strain rate in the viscoelastic case is obtained as

ε̇ = 2

3λ1
(52)

and in the Newtonian case

ε̇N (t) = 2σ

3μd(t)
(53)
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Fig. 36 Setup of an elongational rheometer of the CaBER type (Stelter et al. 2002b)

Fig. 37 Data d(t) from the elongational rheometer in Fig. 36 for aqueous Praestol 2500 solutions
of three different polymer concentrations (Stelter 2001)

It is interesting to note that, in contrast to the Newtonian liquid, the strain rate
of the viscoelastic liquid does not depend on time. The Deborah number De1 =
λ1ε̇, therefore, exhibits the constant value of 2/3,which is in favour of a comparability
of results from various experiments with this technique.

The experimental realisation of this characterisation technique yields a device
as presented by Stelter et al. (2002b) and sketched in Fig. 36. Measurements of the
filament diameter as a function of time with aqueous various polymer solutions, such
as shown in Fig. 37, showed that the viscoelastic filament thinning does not follow the
predicted exponential law throughout its lifetime, but changes its behaviour before
pinching. The reason is that the stretching of the polymer macromolecules in the
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Fig. 38 Elongational viscosity of the filaments shown in Fig. 37 for aqueous Praestol 2500 solutions
of three different polymer concentrations (Stelter 2001)

solutions is limited by a maximum achievable molecular deformation (Yarin 1990).
From the instant on when this state of maximum deformation is reached, the liquid
behaves no longer as elastic, but as a Newtonian fluid with a very high elongational
viscosity termed as the ‘steady terminal elongational viscosity’ (STEV), as shown
in Fig. 38. These curves correspond to the data shown in Fig. 10 of Tirtaatmadja and
Sridhar (1993), which also show an increase of the elongational viscosity with time
and a limitation of the increase by a terminal value. At this state, the thinning of
the filament turns from exponential to linear, i.e. the liquid dynamic response upon
deformation turns from fully elastic to viscous, Newtonian. This is seen clearly in
the measurement data in Fig. 37. In the thinning of liquid filaments in the course
of a ligament-mediated spraying process, this same process occurs, so that we may
assume that drop formation is dominated by this terminal viscosity.

A systematic study of the steady terminal elongational viscosity (STEV) of solu-
tions of flexible and rigid, rod-like polymers in various solvents was carried out by
Stelter et al. (2002a). It was seen that, for a given polymer in its solvent, the value of
this material property increases with the polymer concentration. The same trend is
seen for the stress relaxation time λ1. It is an evident option now to depict the former
material property of the solutions as a function of the latter in a diagram. This dia-
gram is shown in Fig. 39. In this study, the mass fraction of Praestol 2500 in water, in
ethylene glycol and in a methanol–water mixture varied between 62.5 and 500ppm,
and in two different glycerol–water mixtures between 50 and 500ppm. The mass
fractions of poly(ethylene oxide) (PEO) in water were 25 and 50ppm, and of the
copolymer of carboxy-methylcellulose with poly(acrylamide) varied between 1000
and 4000ppm. For the hydrolysed Praestol 2540 and two poly(acrylamides) named
Sedipur (BASF), the mass fraction in water varied between 31.25 and 500ppm, and
for xanthan gum between 1000 and 4000ppm (Stelter et al. 2002a). The STEV of
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Fig. 39 Non-dimensional steady terminal elongational viscosity of solutions of polymers in various
solvents. The data collapse into two groups, one for the flexible and another for the rigid, rod-like
polymers (Stelter et al. 2002a)

PEO solutions at higher concentrations could not be measured due to the forma-
tion of beads-on-a-string structures which prevent the measurement of the filament
thinning in the late stages of the draining. It is interesting to note that there exists a
dependency of the steady terminal elongational viscosity on the stress relaxation time
of the liquid. One other finding is that the flexible and the rigid, rod-like polymers
behave differently in the stretching process of filament thinning. All the data group
along two different lines in the diagram, where the upper line is formed by the flexi-
ble and the lower one by the rigid, rod-like polymers. The two terminal elongational
viscosities for the aqueous solutions are given as functions of the stress relaxation
time by the equations

μel,t, f lex = 3074.9λ1 + 0.003 (54)

μel,t,rigid = 1288.1λ1 + 0.003 (55)

where the elongational viscosities are obtained in Pa·s if the stress relaxation time
is entered in s (Stelter et al. 2002b). The ratio of the factors in front of λ1 flexible
to rigid exhibits the value of2.39.This empirical value will gain big importance for
the characterisation of spray formation processes from solutions of flexible or rigid,
rod-like polymers in water, as will be pointed out later.

Forming non-dimensional numbers with this viscosity to characterise drop for-
mation may be a promising approach to a universal description of ligament-mediated
drop formation from Newtonian and viscoelastic liquids.
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4.5 Non-Newtonian Sprays

For the design of sprays, the description of their formation should include a pre-
diction of the drop size appropriate for the application, either in a spectral, local
or in an integral, global manner. Due to the complicated liquid breakup and flow
processes producing the spray drops, the most promising approach is to formulate
a normalised mean drop size of the spray as a function of a product of powers of
non-dimensional numbers relevant to the process. The correct representation, i.e.
the correct set of non-dimensional numbers, follows from a dimensional analysis
and turns out to be, e.g., of the form D32/d = f (Reel ,We). In this function, the
Reynolds number Reel formulated with an equivalent elongational viscosity turns
out crucial for a universal representation of the formation of sprays from Newtonian
and non-Newtonian viscoelastic liquids.

Mechanical degradation of polymers in strong flows Molecular properties of
macromolecular compounds may be subject to changes under strong mechanical
loads. Strong straining and shearing flows tend to deform the macromolecules of
(flexible) polymeric substances and to turn the molecules of rigid, rod-like poly-
mers. Flexible macromolecules are uncoiled and stretched in straining and shear-
ing flows (de Gennes 1974). The mechanical strength of the molecules is limited.
Strong straining and shearing flows may, therefore, lead to mechanical degradation
of the polymer in the solution, breaking themacromolecules into smaller pieces. This
reduction of the molecular weight of the polymer changes the stress relaxation time.
Since this material property is important in the modelling of the rheological material
behaviour of the polymer solutions, the potential of the flows through the atomisers
for breaking the macromolecules was investigated. Varying the flow rate through
various flat-fan atomisers, the strain and shear rates in the nozzle flow were varied
(Stelter et al. 2002b). Liquid samples were taken from the sprays and allowed to rest
long enough so that foam and air bubbles in the liquid disappeared. Measuring the
liquid stress relaxation time of these sprayed liquid samples revealed values which
were systematically less than the relaxation times of the fresh solutions. The results
for aqueous solutions of four different polymers at varying mass fraction are shown
in Fig. 40, where λ1 and λ1,0 are the stress relaxation times of the sprayed and of the
fresh solution, respectively. The independent variable

De∗ = λ1,0
U

de

dmin

dmax
(56)

is a modified convective Deborah number accounting for the contraction of the cross
section in the atomiser and for the flow rate through the nozzle. The diameters
characterising the bore geometries of the flat-fan atomisers used in the present study
are listed in Table1. The fact that the time elapsed between the spraying of the test
liquids and the measurements of the relaxation time indicates that the molecular
process reducing the relaxation time led to a permanent change of the molecular
properties of the dissolved polymer. This is seen in contrast to the (reversible) break
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Fig. 40 Decrease of the stress relaxation time λ1 against the values of the fresh solution due to
mechanical degradation of the polymers in the nozzle flow. Aqueous solutions of a—Praestol 2500
at 200ppm wt., b—PEO at 100ppm wt., c—CMC-g-PAM at 1500ppm wt., d—Praestol 2540 at
the mass fractions in the legend (Stelter et al. 2002b)

down of micelles in micellar solutions by straining or shearing. The micelles are
re-established after some time when the solution is kept at rest. This is not the case
in the present polymer solutions.

Sprays from flat-fan sheet breakup Pressure atomisers of the flat-fan type are used
in many fields, among them for pesticide spraying in agriculture. The shape of the
bore in the atomiser produces a flat-fan liquid sheet at the atomiser exit. The sheet
is Kelvin–Helmholtz unstable and develops waves on its surface, which are unstable
and break the sheet into ligaments. The ligaments finally break down into the spray
drops (Dombrowski and Johns 1963). Spray formation by flat-fan pressure atomisers
is, therefore, ligament mediated and belongs to the group of processes we presently
discuss.

Figure41 shows a flat-fan sheet of a 100ppm wt. aqueous poly(acrylamide) solu-
tion Praestol 2500 produced by an atomiser Lechler 632.304 at the flow rate of
40 l/h. The zoom-in photograph shows beads-on-a-string structured ligaments and
drops which clearly indicates the importance of the ligament-thinning process found
in the rheometric characterisation above in the formation of drops. The approach to
represent drop formation by properties of the ligament in its late stages of thinning,
in particular, by its steady terminal elongational viscosity, is therefore promising.
For developing this universal characterisation of the atomisation result, series of
drop size measurements in flat-fan sprays were carried out with a phase-Doppler
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Fig. 41 Flat-fan-shaped sheet of a 100ppm wt. aqueous Praestol 2500 solution from the flat-fan
atomiser Lechler 632.304 (Stelter 2001). The zoom-in shows that the sheet breakup goes along with
the formation of beads-on-a-string structures originating from ligament thinning

anemometer (PDA) by Stelter et al. (2002b). The measurements were carried out in
a spray region close to the breakup zone so as to characterise the primary atomisa-
tion result without influence from drop–drop interactions and evaporation. Global
mean drop sizes are derived from the measured local drop sizes, weighted by the
local spray cross-sectional areas and the local drop number fluxes. In this manner,
the global mean Sauter-mean drop size of a spray characterised by phase-Doppler
measurements may be deduced from the local measurement data as per

D32 =

J∑

j=1

I∑

i=1
d3
i, j ṅi, j�A j

J∑

j=1

I∑

i=1
d2
i, j ṅi, j�A j

(57)

In this equation, di, j is the drop size and ṅi, j is the number flux of drops of size class
i detected at position j in the spray and �A j is the partial area of the spray cross
section represented by the local measurements at position j .
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Table 1 Properties of flat-fan atomisers and test liquids in the experiments of Fig. 42

# Nozzle type de [mm] dmin
[mm]

dmax
[mm]

Flow
rates [l/h]

Polymer mass
fraction [ppm]

1 Spraying systems
TEEJET 80015

0.76 0.5 1.16 20–55 0–400
P2500, P2540

2 Spraying systems
TEEJET 80015

0.74 0.4 1.16 30–50 0

3 Lechler 632.301 0.7 0.52 0.93 30–41 0–400
P2500

Table1 lists the geometrical properties of the three flat-fan atomisers used in the
study, together with the flow rates covered by these experiments and the polymers
with the range of their mass fractions in the aqueous solutions.

In physical processes as complicated as spray formation, dimensional analysis is
a way to find a universal representation of the dependencies of the process result
on the various influencing parameters. For a dimensional analysis of the atomisation
process, we start from the list of relevant parameters, which is the globalmean Sauter-
mean drop diameter D32, a length scale d of the atomiser, for which we take the area-
equivalent orifice diameter, the volume flow rate-equivalent liquid velocityU as well
as the liquid properties σ,ρandμel,e f f ,where the latter is an effective elongational
viscosity which we formulate as Dedkσλ1/d,with the convective Deborah number
Ded = λ1U/d and the empirical factor k allowing for the representation of the spray
property at hand.Given the three basic dimensions involved in the problem, this list of
six relevant parameters results in three non-dimensional numbers characterising the
spray formation process,which are Reel=Udρ/μel,e f f ,We=U 2dρ/σ andD32/d.We
therefore seek to represent the normalised global mean Sauter-mean diameter of the
spray drops as a function D32/d= f (Reel ,We) (Stelter et al. 2002b).

In doing so, we start from the representation of the normalised D32 of pure sol-
vent, i.e. water sprays, by a function D32/d = CRemelWen . Fitting the function to the
experimental data means determining the parameters C , m and n. The next step
is to fit the data for the solutions of flexible polymers in water to those of the
water sprays by appropriately selecting the empirical factor k, while keeping C ,
m and n constant. We arrive at a universal representation of these two groups of
sprays by selecting k = k f lexible = 1/1500. In doing the same for the data from
the rigid, rod-like polymers dissolved in water, we find that the empirical factor
k f lexible must yield a ratio to k = krigid for these polymers of 2.39, which equals the
ratio of (dμel,t/dλ1) f lexible/(dμel,t/dλ1)rigid from the rheometric characterisation.
This finding applies to the representation of all the spray properties investigated here.
The factor k for the solutions of rigid polymers, therefore, is krigid = 1/3581 (Stelter
et al. 2002b).

Thediagram inFig. 42 shows the non-dimensional global Sauter-meandrop size of
sprays ofwater, togetherwith aqueous solutions of flexible and of rigid, rod-like poly-
mers produced by flat-fan atomisers. Given the three different atomiser geometries
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Fig. 42 Normalised global Sauter-mean drop size of water and polymer solution sprays from three
different flat-fan atomisers (Stelter et al. 2002b)

and the four different polymers plus the water sprays involved, the universality in
the representation of the mean drop size is excellent. This approach is, therefore,
promising for a universal representation of drop sizes in sprays of viscoelastic liq-
uids produced by flat-fan pressure atomisers. The data show the expected effect
that a decrease of the characteristic number Reel We makes the mean Sauter-mean
drop size in the flat-fan sprays increase. This is plausible and observed in Newto-
nian sprays also, where an increase of, e.g., the liquid velocity makes mean spray
drop sizes decrease and vice versa. It is interesting to note that, for the viscoelastic
sprays, the Reynolds number newly defined with the effective elongational viscosity
μel,e f f turns equivalent to the inverse of a capillary Deborah number squared as
per Reel = 1/(kDe2c )withDec = λ1/(σ/ρd3)1/2.The characteristic number deter-
mining the global mean Sauter-mean drop size in the flat-fan sprays, therefore, rather
corresponds to a ratioWe/De2c . The convective influence on the sheet breakup is rep-
resented by the Weber number, where the thermodynamic state of the ambient air
was not varied in the above experiments, so that it does not appear in the analysis,
despite its influence through the Kelvin–Helmholtz instability (Stelter et al. 2002b).

In the experimental study discussed here, the above-presented characterisation of
sprays from flat-fan atomisers was found to hold for spectral properties of the spray
drop ensembles also. The design of liquids to be atomised, e.g., for crop spraying in
agriculture, aims to minimise the formation of small drops in the atomisation pro-
cess, which are transported by wind to undesired places and may harm cultures. The
polymeric compounds used for this purpose are called ‘anti-drift agents’. It is, there-
fore, desirable to predict the influence of polymeric ingredients in the liquid recipes
on the drop size spectra. In investigating this potential of the present characterisation
method, the data in Fig. 43 were found.
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Fig. 43 Volume fractions of drops with sizes less than 100 and 50 µm in the global drop size
spectra of various sprays from flat-fan spray atomiser 1 (Stelter et al. 2002b)

Table 2 Properties of pressure-swirl atomisers and test liquids in the experiments of Fig. 44

Atomiser # Atomiser type de[mm] Flow rates
[l/h]

Polymer mass fraction
[ppm]

1 Schlick model 121 V 0.45 6–14 0–100 P2500, PEO

2 Schlick model 121 V 0.72 10–22 0–100 P2500, PEO

Sprays from hollow-cone sheet breakup Pressure atomisers producing sprays of
the hollow-cone type, called pressure-swirl atomisers, are used in many applications,
among them spray drying and spray painting. The atomiser type stands out for the
production of fine droplets at a moderate liquid flow rate. This is due to the forma-
tion of a conical liquid sheet at the atomiser exit with an air core. The sheet thins
downstream and due to its Kelvin–Helmholtz instability, it develops waves on the
surface which grow and break the sheet into ligaments. The ligaments finally break
down into the spray drops. The sheet differs geometrically from the flat-fan case in
that it is closed in the circumferential direction, thus avoiding the formation of a
free rim at a sheet edge since this does not exist. Spray formation by pressure-swirl
atomisers is ligament mediated and belongs to the group of processes we presently
discuss. A series of experiments with PDA drop size measurements were carried out
using various aqueous polymer solutions for this atomiser type also. Table2 lists the
geometrical properties of the two pressure-swirl atomisers used in the study, together
with the flow rates covered by these experiments and the polymers with the range of
their mass fractions in the aqueous solutions.

The dimensional analysis of the atomisation process by a pressure-swirl atom-
iser differs from the flat-can case in that the liquid sheet thickness at the atomiser
orifice is an additional parameter, which is fixed by the atomiser bore geometry in
flat-fan atomisers. This additional parameter is represented by quantifying the ratio
of the pressure drop across the atomiser to the kinetic energy (or dynamic pressure)
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Fig. 44 Normalised global Sauter-mean drop size of water and aqueous polymer solution sprays
from two different pressure-swirl atomisers (Stelter et al. 2002b)

of the liquid produced, which is called the Euler number Eu. This number adds
to the set of numbers found for flat-fan atomisation. The non-dimensional numbers
representing the atomisation process with pressure-swirl atomisers are, therefore,
Reel=UDρ/μel,e f f , We=U 2dρ/σ, Eu = �p/ρU 2 and D32/d. We seek to repre-
sent the normalised global Sauter-mean diameter of the spray drops as a function
D32/d = f (Reel ,We, Eu).

The diagram inFig. 44 shows the non-dimensional global Sauter-meandrop size of
sprays of water and aqueous polymer solutions produced by pressure-swirl atomisers
(Stelter et al. 2002b). For spray formation by pressure-swirl atomisers, solutions of
flexible polymerswere investigated only.Given the two different atomiser geometries
and the two different aqueous polymer solutions plus the water sprays involved, the
universality in the representation of the mean drop size is excellent. This approach
is promising for a universal representation of drop sizes in sprays of viscoelastic
liquids produced by pressure atomisers.

4.6 Concluding Remarks

The study on spray formation from viscoelastic liquids presented shows that, for the
modelling of spray formation by viscoelastic liquid sheet breakup, an appropriate
characterisation of the liquid rheological behaviour upon deformation is needed. For
spray formation by pre-filming atomisers, which break down to form the spray drops,
mediated by ligaments, the property of particular importance is the behaviour in uni-
axial elongational flow. Inmeasurements of the elongational viscosity, it turns out that
the ligament lifetime and the final drop size formed by their breakup are determined
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by a steady terminal value of the elongational viscosity, which we managed to relate
to the stress relaxation time of the liquid. Further research in this field will replace the
empiricism of the model presented by fundamental knowledge about the molecular
deformation and alignment processes in the filament-stretching flow.
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Advanced Particle-Based Techniques
for Complex Fluids and Multiscale Flow
Processes

Marco Ellero

Abstract Particle-basedmethods represent a general multiscale framework to study
complex flow problems at different space- and timescales. Whereas they rely on a
general set of Newton’s equations of motion for a system of interacting elements, the
very concept of ‘particle’ can assume different physical realizations depending on
the targeted level of description and the physics of interest. At microscopic scales,
particles can represent real molecules/atoms interacting with conservative classical
potentials; at the mesoscale, a ‘particle’ represents a thermodynamic system con-
taining potentially thousands of atoms/molecules and its dynamics is governed by a
set of ordinary stochastic differential equations where the interaction forces are of
conservative, dissipative and random nature. Finally, at the continuum macroscopic
scales, it is possible to derive a suitable set of Newton’s equations such that the
corresponding particle configurations represent an adaptive Lagrangian discretiza-
tion of arbitrary sets of partial differential equations (e.g. Navier–Stokes), that is, a
computational fluid dynamics technique. All the different levels can be integrated
in a general thermodynamic framework for discrete systems which satisfies basic
physical laws such as energy conservation, entropy increase or—in the case of Brow-
nian systems—the fluctuation–dissipation theorem at the very discrete level. In this
chapter, we review the use of mesoscopic and macroscopic particle techniques for
the modelling and simulation of complex fluids such as polymer or particle suspen-
sions. It will be shown how complex microstructural properties can be incorporated
in different ways, i.e. from micro-mechanical to field-based equations, depending
on the available information and computational requirements. The development of
hybrid particle methods coupling simultaneously dynamics occurring at different
scales will be also discussed in relation to the problem of cellular transport/adhesion
in biofluidics.
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1 Introduction

Numerical modelling and simulation of complex fluid dynamics and soft matter rep-
resent an established field in computational science, often denoted as computational
rheology (Owens and Phillips 2002). To this class belong simulation tools specifi-
cally addressing the dynamics of so-called complex liquids, that is, all those fluids
which do not follow the standard Newtonian approximation, i.e. a simple propor-
tionality between stress and velocity-gradient tensors. These fluids are, therefore,
denoted as non-Newtonian and their simulation poses an entirely new class of chal-
lenges both in theory and numerics. From a modelling point of view, the search of
suitable continuum closures for the dynamical evolution of the stress field in non-
Newtonian fluids (e.g. viscoelastic, plastic, etc.) is a long-standing issue in rheology
(Bird et al. 1987). The classical approach consists in deriving suitable field evolution
in the form of partial differential equations and their discretizations using conven-
tional finite differences (FD), finite volumes (FV), finite elements (FE) methods used
in computational fluid dynamics (CFD) (Ferziger and Perić 1999). This top-down
pathway represented, and still represents to date, the major modelling/simulation
approach in the field.

In recent years, however, following the theoretical progress and numerical devel-
opment made in mesoscopic techniques, a different paradigm has been proposed,
whereas, instead of solving continuum macroscopic PDEs, the microstructure defin-
ing the complexity of these liquids is solved directly at the mesoscopic level, with
the complex hydrodynamic behaviour emerging naturally at the macroscopic scale.
From a modelling point of view, this bottom-up approach represents an appealing
strategy as direct mesoscopic modelling allows to bypass the needs of approximated
continuum closures. Moreover, the mesoscopic simulation framework takes directly
into account non-continuum effects which generally limit the validity of PDE-based
models, especially under microflow conditions where the size of external geometries
can be of the same order of the real mesoscopic units. On the other hand, bottom-up
mesoscopic approaches are computationally demanding and, therefore, are currently
limited to study the dynamics of small liquid samples and/or for complex fluid rheo-
metrical characterizations under simple viscometric conditions.

In this chapter, an overview of some of the most popular particle methods for the
description of complex fluids is offered. They include, both, bottom-up mesoscopic
particle techniques and top-down macroscopic particle discretizations of prescribed
sets of PDEs. A detailed discussion on the two approaches will be given together
with prototypical applications in the area of complex fluids, i.e. polymeric/particle
suspensions. Finally, possible hybrid strategies to couple different levels of descrip-
tion in particle-based methods will be discussed within the general framework of
multiscale simulation of blood flow.
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2 Mesoscopic and Macroscopic Particle Methods

In this section, we outline the so-called dissipative particle dynamics (DPD) method
and its refinements—i.e. the smoothed dissipative particle dynamics (SDPD)—for
the simulation of mesoscopic fluid flows as well as macroscopic particle techniques
for the solution of partial differential equations. In Sect. 1, the methods are criti-
cally reviewed. In Sect. 2, an overview of applications in the area of complex fluid’s
modelling is offered. In particular, bottom-up mesoscopic, top-down macroscopic,
as well as hybrid multiscale approaches are discussed.

2.1 The Dissipative Particle Dynamics Method

As many other numerical techniques specifically designed for mesoscopic flows
(such as Brownian Dynamics (Ermak and McCammon 1978), Lattice Boltzmann
(Ladd and Verberg 2001) or multi-particle collision dynamics (Ripoll et al. 2005),
in the classicalDissipative Particle Dynamics (DPD) (Hoogerbrugge and Koelman
1992; Koelman and Hoogerbrugge 1993; Español and Warren 1995, 2017), thermal
noise is incorporated in the equations of motion of particles in order to model Brow-
nian fluctuations, crucial to recover the correct physics at the mesoscopic scales.
DPD represents a grid-off method in which the fluid is modelled by means of inter-
acting particles which represent coarse-grained elements of fluids containing poten-
tially thousands of atoms/molecules. An illustrative sketch is shown in Fig. 1. Real
constituents are lumped into few fluid elements (DPD particles) which interact via
special conservative, dissipative, stochastic forces. The evolution equations for DPD
particles follow Newton’s equations of motion:

Fig. 1 Mesoscopic fluid description. Real molecules/atoms are lumped into few fluid elements
(DPD particles) which interact via special conservative, dissipative, stochastic forces Fi j defined
in Eq. (2). Arrows denote velocity vectors
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ṙi = vi

mv̇i =
∑

j

Fi j (1)

where ri and vi are, respectively, the position and velocity of the centre of mass of
particle i and Fi j are pairwise interactions between particles i and j . UnlikeMolecu-
lar Dynamics, where particles represent real molecules and conservative interaction
is modelled by specific potentials (e.g. Lennard-Jones type) (Allen and Tildesley
1987), in DPD, the ‘coarse’ fluid particles interact via a combination of soft con-
servative, dissipative and stochastic forces, the latter ones being originated by the
reduction of degrees of freedom when moving from a detailed microscopic descrip-
tion towards a coarse-graining one. Moreover, dissipative and stochastic forces need
to be connected by a fluctuation–dissipation theorem (FDT) in order to guarantee
the correct thermodynamic equilibrium of the system (Español and Warren 1995).

More specifically, in classical DPD, we have

FC
i j = ai jω

C
(
ri j
)
ei j

FD
i j = γωD

(
ri j
) (
ei j · vi j

)
ei j

FR
i j = σωR

(
ri j
)
ξi jei j (2)

Here ai j is the strength of the repulsive potential, γ is a friction coefficient, σ is the
strength of the thermal noise and ξi j is a normally distributed random number with
zero mean and unit variance, ei j = ri j/ri j is the unit vector joining particles i and
j , whereas vi j = vi − v j is the particle velocity difference. ωC

(
ri j
)
is a compact

support weighting function for the conservative force, whereas ωD
(
ri j
)
and ωR

(
ri j
)

are two additional weighting functions. In order for the thermal noise to satisfy
exactly the FDT, the input parameters must be constrained, in particular, they need
to satisfy σ2 = 2γkBT and, at the same time, the weighting functions need to be
chosen such that ωD

(
ri j
) = [ωR

(
ri j
)]2 (Español and Warren 1995). It was shown

that hydrodynamic behaviour is recovered on larger spatio-temporal scales, that is,
by applying arguments of kinetic theory, the governing equations approximating
the dynamics of a Newtonian fluid with specific transport coefficients (viscosity,
compressibility, etc.) related to DPD model parameters can be obtained (Español
1995).

The advantage of this bottom-up approach to hydrodynamics is that no specific
reference to any set of partial differential equations is needed. An approximately
Newtonian solvent with incorporated Brownian fluctuations is recovered, which pro-
vides the hydrodynamic basis of more complex fluid models (see Sect. 2).

Although this set of equations (Eq.2) are very appealing, the price to pay for this
simplicity is that no direct connection exists between the DPD model parameters
and the physical parameters of the liquid system one tries to simulate. As mentioned
above, in order to define the fluid transport coefficients, one needs to rely on kinetic
theory (Marsh et al. 1997) or map and calibrate the parameters in ways that are
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not always systematic (Backer et al. 2005; Qiao and He 2008). Moreover, transport
coefficients have a complex dependence on the DPDmodel parameters in such a way
that a precise and independent definition of hydrodynamic regimes is a challenging
task. Perhaps, the most serious problem is the lack of a thermodynamics particle
volume entering into the equations of motion (Eq.2) and the resulting inability to
specify the spatial scale at which a DPD simulation operates. The same issue poses
also somedifficulties on the separate identification of resolution andfinite-size effects
in the output results (Vázquez-Quesada et al. 2009b; Español and Warren 2017). In
other words, there is no concept of numerical convergence in DPD and it is difficult
to assess the dependence of the number of computational particles on the simulated
dynamics (Ellero and Español 2018).

The previous drawbacks in modelling liquids have been addressed and solved
in a modification of the DPD method denoted as Smoothed Dissipative Particle
Dynamics (SDPD) (Español and Revenga 2003; Ellero et al. 2003). The new particle
model is entirely embedded in the GENERIC framework (general equation for non-
equilibrium reversible–irreversible coupling) (Grmela and Öttinger 1997; Öttinger
and Grmela 1997; Öttinger 2005), and therefore it maintains the thermodynamic
consistency of the original DPDmethod, but in addition allows for a direct specifica-
tion of the transport coefficients as input parameters. In fact, it has been shown that
SDPD can be interpreted as a generalization of the well-known Smoothed Parti-
cle Hydrodynamicsmethod (SPH) (Español and Revenga 2003; Vázquez-Quesada
et al. 2009b) which is a Lagrangian meshless Navier–Stokes solver proposed by
Monaghan (Gingold and Monaghan 1977; Monaghan 2005), albeit with consistent
introduction of thermal fluctuations. Let us see in detail how the new SDPD particle
model works and in what it differentiates from the classical DPD.

2.2 The ‘Smoothed’ Dissipative Particle Dynamics method

SDPD is a Lagrangian particle method for the numerical solution of thermal flow
problems able to address both the macroscale and the mesoscale. Roughly, the
mesoscale involves timescales from 1 ns to 106 ns and space scales from 10 nm
to 104 nm. In SDPD, a set of fluid particles i = 1, .., N are distributed homoge-
neously over the domain and move according to forces estimated from their local
neighbourhood. The set of ordinary stochastic differential equations for the particle
positions, velocities follows the same equation of motion (Eq.2) with a modified
definition of the inter-particle interactions. In SDPD, they read (Ellero and Español
2018)
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ṙi = vi

mv̇i = −
∑

j
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i jei j
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j
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]
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+
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j

FR
i j︷ ︸︸ ︷

Ai j
dξ̂i j

dt
· ei j (3)

Here, the mass density is calculated as ρi = mi/φi , where φi = 1/di is the vol-
ume associated to a SDPD fluid particle i and di =∑ j Wi j is the local num-
ber density. Here, Wi j = W (ri j , rc) is a kernel function with compact support rc,
W ′

i j = ∂W (r)/∂r |r=ri j its derivative. ξ̂i j = (1/2)[ξi j + ξT
i j ] is the symmetric part

of ξi j which is a matrix of independent increments of the Wiener process. Each
component may be simulated as ξi j (�t)1/2 with ξi j being, as in the DPD equation
(Eq.2), an independent Gaussian random number and �t the numerical time step.
Ai j represents the strength of thermal noise which is constrained by the FDT. The
remaining notation is the same as in standardDPD.More importantly, Pi = P(ρi , Ti )
is a given pressure associated (by using an input equation of state) to the particle i and
η is the input shear viscosity of the simulated fluid. If we neglect the last stochastic
term in Eq. (3), it can be shown that the previous equations represent a Lagrangian
discretization of the Navier–Stokes equations (NSE) using the so-called Smoothed
Particle Hydrodynamics (SPH) interpolation (Liu and Liu 2010; Violeau and Rogers
2016; Ellero et al. 2010; Ellero and Adams 2011). In other words, the overall con-
servative force can be interpreted as an SPH discretization of the pressure gradient
in the NSE, whereas the dissipative force approximates the Laplacian of the velocity
(Litvinov et al. 2009). Finally, the last random term FR

i j is constructed in such a way
that the fluctuation–dissipation theorem (FDT) is also exactly satisfied at the discrete
level. This is guaranteed by the fact that the model is GENERIC compliant (Öttinger
2005).

As it can be seen, although the structure of the SDPD equations is very similar to
DPD, their physical interpretation is different. The SDPDmethod represents a proper
stochastic extension of the deterministic continuum SPH method to the regime of
fluctuating hydrodynamics (Landau and Lifshitz 1987). Thanks to the clear connec-
tion to the underlying set of partial differential equations describing the fluid flow
(e.g. the NSE in the case of Newtonian fluids), SDPD enables a direct specification of
the fluid transport coefficient as input parameters and a proper numerical resolution
study as in standard computational fluid dynamics (CFD) techniques, albeit with a
thermodynamically consistent incorporation of Brownian fluctuations. In addition,
by enabling an input choice of the pressure equation of state and speed of sound,
SDPD allows to handle liquid’s incompressibility in a better way compared to clas-
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sical DPD (Alizadehrad and Fedosov 2018). Finally, SDPD allows also to connect
naturally the classical bottom-up DPD technique (defined in the mesoscopic realm)
with specific top-down discretization of partial differential equations using SPH
meshless interpolations (Ellero and Español 2018).

3 Modelling Complex Fluids with Particle Methods

In this section, we will describe several possibilities to incorporate microstructural
complexity in fluids simulated using either DPD or SDPD approaches. To illustrate
the problems, we will consider several classes of non-Newtonian fluids, such as
polymeric or particle suspensions, and show how their relevant complex features can
be modelled at different levels.

Complex non-Newtonian fluids are characterized by the presence of supramolec-
ular structures suspended in a simple solvent liquid. As a result, in many cases (but
not all), the solvents can be generally described by a Newtonian fluid model. On the
other hand, the dispersed complexmesostructure can be represented, for example, by
suspended solid/soft particles, high molecular weight flexible polymers, deformable
cells or droplets. The essential feature shared by all these complex fluid systems
is that the typical spatial scale of the suspended mesostructure is generally orders
of magnitude larger than the size of the solvent molecular constituents (e.g. in the
case of water molecules ≈0.2nm), see Fig. 2. Not only this, relaxation timescales

Fig. 2 Multiple spatial scales involved in a complex liquid. Paints, for example, are formed by
a concentrated suspension of colloidal particles (pigments and other fillers) responsible for the
opacity, colour and anti-corrosive properties



368 M. Ellero

for the mesostructure can be also in the order of seconds or larger for many complex
fluids, in such a way that the mesoscopic dynamics occur on temporal scales much
slower than the microscopic ones characterizing the solvent medium. This makes
the use of direct microscopic simulation techniques, such as molecular dynamics
(Allen and Tildesley 1987), unpractical to capture the slow mesodynamics and the
resulting hydrodynamics behaviour. Mesoscopic methods, such as (S)DPD, allow to
bypass the microscopic details lumping them into a coarse-graining/hydrodynamics
description of the solvent. This allows to focus, from a numerical point of view, on an
efficient model for the mesostructure defined uniquely on the spatio-temporal scales
of physical interest.

There is another possible differentiation within this coarse-graining description
of complex fluids. As it will be seen in the next section, whereas in classical DPD, the
only way to model fluid complexity is by direct model of the suspended mesostruc-
ture and analysing a posteriori the ‘output’ complex hydrodynamic response (see
Sect. 2.1), in SDPD also the inverse approach is possible. In fact, thanks to the estab-
lished link to proper set of partial differential equations (PDEs), it is possible to use
the Lagrangian meshless formalism of SDPD (and SPH) to discretize general con-
stitutive equations (see Sect. 2.2). Provided that an accurate continuum constitutive
equation for the complex fluid can be formulated in the framework of PDEs, the
classical top-down CFD approach can be also considered.

In the next section, wewill consider examples of several complex fluidsmodelling
by using, both, bottom-up and top-down particle-based descriptions.

3.1 Bottom-Up Mesoscopic Approach

In this approach, themesostructure is directlymodelled. This can be done in a number
of ways depending on the nature of the suspended objects. In the following part of
this section, we will discuss two prototypical examples for complex suspensions,
which are the case of polymer molecules and rigid particles suspended in a liquid.

3.1.1 Polymeric Fluids

Flexible polymer molecules (see Fig. 3) have been modelled in DPD and SDPD
by means of coarse-graining spring-bead chain models. The polymer beads have
the same mass and interact hydrodynamically with each other in the same way as
the fluid particles, i.e. via Eqs. (1)–(3). The effect of the chemical bonds between
monomers is taken into account through an additional potential acting only between
neighbouring polymer beads (Fan et al. 2006; Litvinov et al. 2008).

Spring-bead models range from simple harmonic chain to Gaussian chain, Rouse
chain, etc. A popular model to simulate a realistic polymer molecule is the finite
extensible nonlinear elastic (FENE) potential (Bird et al. 1987), which reads
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Fig. 3 Mesoscopic (S)DPD polymer model. Left: single flexible polymer chain suspended in a
Newtonian thermal solvent. Reproduced with permission from S. Litvinov, M. Ellero, X. Hu, N.A.
Adams, ‘Smoothed dissipative particle dynamics model for polymer molecules in suspension’
Physical Review E 77 (6), 066703 (2008). © 2008 American Physical Society. Right: bottom-
up mesoscopic model of a concentrated polymer solution/melt. Reproduced with permission from
S. Litvinov, Q. Xie, X. Hu, N. Adams, M. Ellero, ‘Simulation of individual polymer chains and
polymer solutions with smoothed dissipative particle dynamics’, Fluids 1 (1), 7 (2016)

UFENE (r) = −1

2
kR2

0 ln

[
1 −

(
r

R0

)2
]

, (4)

where r = ‖ri j‖ is the distance between neighbouring beads of the polymer chain,
R0 is themaximumallowed spring length and k is the effective spring constant. In this
model, since the solvent is also represented by (S)DPD particles, the hydrodynamic
interactions within the polymer are included explicitly by means of the interacting
forces acting between the solvent particles (light blue points in Fig. 3, left) and the
polymer beads (dark blue points in Fig. 3, left). Moreover, the correct Brownian
fluctuations on the polymer beads are guaranteed by the presence of the random
terms in Eqs. (1)–(3) which satisfy the FDT. Therefore, in DPD/SDPD mesoscopic
models, the dynamics of the polymer bead i reads

mi
dvi
dt

= Fhydro
i + FFENE

i,i1 + FFENE
i,i2 , (5)

where mi is the mass of the bead i , Fhydro
i is the total sum of the resulting (S)DPD

forces acting on particle i given in Eqs. (1–3) and i1, i2 are the next two neighbouring
beads of i in the polymer chain which interact via the non-hydrodynamic elastic
forces derived by the potential (Eq. 4), i.e.
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FFENE
i j = kri j

1 − (r/R0)2
(6)

The static and dynamic conformational properties of a single polymer suspended in
a Brownian Newtonian mediummodelled via SDPD have been validated in Litvinov
et al. (2008, 2016). The effect of confinement on the conformational properties of
the polymer molecule was also investigated by considering a microchannel with gap
H varying between 1 and 5µm, for a polymer with average free gyration radius
of comparable size, leading to results in agreement with the de Gennes’ theory
(de Gennes 1979). In Litvinov et al. (2010), simulation of a polymer tethered to a
planar wall undergoing shear flow was also studied. Depending on the magnitude
of the imposed shear flow, the polymer aligns and stretches in the flow direction.
Provided that an amorphous model for the SDPD solid wall is used, excellent results
for the average polymer extension in the flow direction compared to experimental
data for a tethered DNA are obtained.

In Litvinov et al. (2016), it was shown that the mesoscopic model can be extended
to capture the collective dynamics of diluted and concentrated polymer solutions and
rheology of an entangled network, i.e. a polymer melt.

Bottom-up derived hydrodynamics of polymers liquids and/or melts can be
obtained by considering a large sample of polymer molecules (Fig. 3, right). This
approach allows to bypass the choice of any approximate constitutive model for the
polymeric liquid, where the only simulation input to be specified is the effective
intra-monomer elastic interaction, Eq. (6). On the other hand, the computational
load of this bottom-up simulation approach becomes significant as it scales with the
number of suspended molecules, which in turn are typically made of several com-
putational fluid particles. With this approach, it might be indeed difficult to reach
numerically macroscopic spatial scales, i.e. much larger than the size of the single
molecular constituent. However, in flow situations where the ratio between the size
of the external geometry and the polymer length (e.g. in the order of tens of μm for a
DNA or stretched PAA molecules) is not too large, the present approach represents
a valuable option.

An application is represented by microfluidics where a single or a collection of
molecules are actuated by accurate control of very small amounts of liquid (<1 ml)
flowing through complex micro-devices. A challenging aspect in the modelling of
high molecular weight polymer liquids on these micro-scales (�1 mm), in fact, is
that no more scale separation exists between the size of the microstructure and that
of the device (i.e. channel width), in such a way that a homogenization assumption
for the complex fluid cannot be made and, consequently, no continuummodel can be
used. As a specific example, the complex fluid dynamics andmicrostructural changes
in a polymeric fluid flowing through a microfluidics-based rheometer (Fig. 4) have
been simulated using mesoscopic models in Litvinov et al. (2014). In its classical
version, thesemicrofluidics rheometers are essentially represented by amicrochannel
which is used to characterize the rheological properties of complex liquids flowing
through it (Pipe andMcKinley 2009). Steady rheology of complex biofluids (e.g. the
non-Newtonian viscosity η(γ̇)) can be easily experimentally assessed by measuring
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Fig. 4 Setup of themicrofluidic channel. A preliminary contraction flow forces the suspended poly-
mers to enter the straight square channel in an initially stretched configuration. Theirmicrostructural
configuration relax downstream in the purely shearing part of the flow and provides a spatial decay
mechanism for the macroscopic velocity profile

the fully developed velocity profile (e.g. via PIV techniques) and fitting it with an
analytical one derived by a power-law model. It is, however, unclear whether micro-
rheometers can provide accurate information also on the dynamical properties of
the liquid sample, e.g. relaxation times. In Klessinger et al. (2013), a preliminary
extensional flow in the micro-device was considered, forcing the polymer molecules
to uniformly pre-stretch before entering the following straight channel. The idea is
that an externally induced out-of-equilibrium initial configuration for the polymer
liquid at the channel entry will relax and will affect the flow downstream. From the
PIVmeasurement of the spatially relaxing velocity profile, the longest relaxation time
of polymer solution could be, therefore, inferred. Recent mesoscopic simulations
performed in this microfluidic setup (Fig. 4) allowed to clarify the link between the
relaxation time of the macroscopic velocity profile with the specific heterogeneous
relaxation processes of the flowingmolecules (the inset of Fig. 4). In particular, it was
observed that the shape of the velocity profile varies along the channel, froman almost
parabolic at the entry region to classical centre-flattened type typical of shear-thinning
fluids. The fully developed velocity profile downstream in the channel is accurately
described by the Carreau–Yasuda rheological model and can serve as accurate tool
for the characterization of the steady-state rheology (Litvinov et al. 2014). Moreover,
the decay length for the profile shape leads to a specific timescale which is equal
to the largest relaxation time of the polymer extension in the flow direction, and
therefore it justifies the application of the above-mentioned microfluidics devices for
transient rheometry.

3.1.2 Colloidal Suspensions

Accurate prediction of the dynamics andmechanical properties ofmicro/nanoparticle
suspensions interactingwith simple and complexmedia andunder complexmicroflow
conditions is critical formany industrial processes.Also, in this case, directmodelling



372 M. Ellero

Fig. 5 SPH/SDPD Lagrangian model for a particle suspension. Left: rigid (grey) particles are
suspended in a liquid discretized by small (blue) fluid particles which explicitly mediate long-range
hydrodynamic interactions (inset) (Vázquez-Quesada et al. 2015; Vázquez-Quesada and Ellero
2016a). Right: scheme of the location of the boundary particles (white spheres) within a solid grey
region. The resolution depicted is five boundary particles per sphere’s radius corresponding roughly
to 500 computational elements per solid sphere. Reproduced with permission from A. Vázquez-
Quesada,M. Ellero, ‘Rheology andmicrostructure of non-colloidal suspensions under shear studied
with smoothed particle hydrodynamics’ Journal of Non-Newtonian Fluid Mechanics 233, 37–47
(2016). Elsevier © 2016

of the mesostructure (i.e. the dispersed solid phase) by means of mesoscopic tech-
niques can allow to improve our understanding of the macroscopic rheological prop-
erties of complex suspensions as well as their dynamics. Moreover, mesoscopic sim-
ulations of particulate systems can allow also to develop more accurate continuum
PDE-based models which can be efficiently applied on macroscopic scales.

Here, we are interested in hard particles suspended in simple Newtonian solvents.
Solid inclusions of arbitrary shape can be modelled using boundary particles located
inside the solid region (Bian et al. 2012) (Fig. 5, right). Boundary particles interact
withfluid particles bymeans of the same forces described inEq. (3).No-slip boundary
condition at the liquid–solid interface is enforced during each interaction between
fluid particle i and boundary particle j by assigning an artificial velocity to the
boundary particle j , which satisfy zero interpolation at the interface (Ellero and
Tanner 2005). The same approach is also used to model any arbitrary wall. Once all
the forces acting on every numerical boundary particle j belonging to a solid sphere
(labelled by Greek indexes α) are calculated, the total force Fsph

α and torque T sph
α

exerted by the surrounding fluid (modelled by SPH/SDPD) on the solid sphere can
be obtained as

Fsph
α =

∑

j∈α

F j , T sph
α =

∑

j∈α

(
r j − Rα

)× F j (7)

where Rα is the centre of mass of the solid suspended particle α (grey spheres,
Fig. 5, left). When properly integrated, Fsph

α and T sph
α allow to obtain the new linear

velocity Vα, angular velocity �α and position of the solid inclusion. Positions of
boundary particles inside a solid sphere α are finally updated according to a rigid
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Fig. 6 Sketch of the inter-particle short-range lubrication model. Below a specific resolution-
dependent inter-particle distance sc, HIsmediated by the solvent are poorly represented.At distances
smaller than sc (red circles—left and vertical dotted line—right ), exact lubrication corrections are
considered. Reproduced with permission from A. Vázquez-Quesada, M. Ellero, ‘Rheology and
microstructure of non-colloidal suspensions under shear studied with smoothed particle hydrody-
namics’ Journal of Non-Newtonian Fluid Mechanics 233, 37-47 (2016). Elsevier © 2016

body motion (Vázquez-Quesada et al. 2015; Vázquez-Quesada and Ellero 2016a).
The present SPH/SDPD model captures accurately the long-range hydrodynamic
interactions (HIs) between solid particles (Bian et al. 2012).

As discussed in detail in Bian and Ellero (2014) and Vázquez-Quesada and Ellero
(2016a), when two solid particles (e.g. α and β) get very close to each other, the HIs
mediated by the SPH/SDPD fluid are poorly represented. This is due to the limited
number of particles used to discretize the NSE in the vanishing gap s between two
solid spheres and it needs to be corrected. In particular, when simulating two spheres
approaching each otherwith constant velocity, the normal hydrodynamic force acting
on themand computed uniquely from theSPH/SDPDdiscretization of the suspending
fluid deviates from the divergent behaviour predicted by the Stokes theory. This
typically occurs at a gap distance sc in the order of the cutoff radius rc of theweighting
function in Eq. (3) (i.e. few fluid particles sizes) and remains approximately constant
at smaller distances (see Fig. 6, right). Analytical normal/tangential lubrication forces
can be, therefore, used at distances below sc, by properly removing the residual
force contribution obtained from the explicit description of the fluid. This allows to
obtain a well-defined and accurate transition between the far/short-range HIs. The
normal/tangential lubrication correction forces read, therefore (Vázquez-Quesada
and Ellero 2016a),

Fn
αβ(s) = fαβ(s)Vαβ · eαβeαβ

Ft
αβ(s) = gαβ(s)Vαβ · (1 − eαβeαβ

)
(8)

where the scalar functions fαβ(s) and gαβ(s) are defined as
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For comparison, the merged theoretical solution between the close and far-field
approaches calculated in Jeffrey and Onishi (1984) is used. As it can be seen, the
correct normal HIs (red line, Fig. 6, right) are reproduced at every inter-particle
distance.

Short-range lubrication forces correct, therefore, the poor description of the HIs
between solid particles when they are located at relative distances s comparable to the
numerical resolution used for the discretization of the solvent. Figure6 (left) shows
an illustrative picture of the problem. Red circles represent the range of activation of
the lubrication correction for the two spheres. Outside that region, hydrodynamics
is fully captured by the explicit description of the SPH/SDPD solvent. It should be
remarked that the lubrication range depends on the resolution used to describe the
solvent. In the limiting case of fully resolved simulation, no lubrication would be
needed. This is, however, practically difficult to achieve in simulations (especially
for dense particle systems) as near contacts can occur frequently.

It should be also borne in mind that, due to the singular dependence on 1/s
in Eq. (8), the lubrication forces acting between approaching or departing parti-
cles under nearly touching conditions can be very large and the numerical problem
becomes stiff. Effective implicit-splitting techniques have been recently developed
which allows to bypass the strict time-step limitation associated to these diverging
lubrication contributions (Bian and Ellero 2014).

Using similar models, it is possible to incorporate also more refined lubrication
expression which is not restricted to a constant viscosity Newtonian solvent. Novel
analytical expressions for the short-range lubrication interactions between spheres
suspended in complex shear-thinning (Vázquez-Quesada andEllero 2016b) or shear-
thickening fluids (Vázquez-Quesada et al. 2018) have been recently derived. These
lubricationmodels can in principle enable the simulation of dense particulate systems
suspended in complex non-Newtonian media.

Rheological data for mesoscopic simulation of complex suspensions can be
obtained by applying steady or oscillatory shear flows and determining their mechan-
ical response (i.e. the viscometric functions) by measuring overall forces exerted
on the plates of a virtual rheometer. These have been studied for particulate sys-
tems under constant shear flow with Newtonian matrices (e.g. glycerol-based liq-
uids) (Vázquez-Quesada and Ellero 2016a), weakly shear-thinning matrices (e.g.
lowmolecular weight silicon oils) (Vázquez-Quesada et al. 2016, 2017a) and highly
elastic polymer matrices (e.g. Boger liquids) (Vázquez-Quesada et al. 2019), obtain-
ing excellent comparison with experimental data for these systems. Figure7 shows
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Fig. 7 Relative viscosity versus volume fraction. Results of SPH/SDPD are compared with the
experiments by Zarraga et al. (2000) (�). and the simulations by Sierou andBrady (2002) (©). Low-
shear rate (•) and large-shear rate (•) SPH viscosities. Einstein and Batchelor solutions (Einstein
1906; Batchelor and Green 1972) valid in the dilute/semi-dilute regimes are shown in the inset.
Reproduced with permission from A. Vázquez-Quesada, M. Ellero, ‘Rheology and microstructure
of non-colloidal suspensions under shear studied with smoothed particle hydrodynamics’ Journal
of Non-Newtonian Fluid Mechanics 233, 37–47 (2016). Elsevier © 2016 (Color figure online)

the comparison of the relative suspension viscosity using the SDPD/SPH Newtonian
method with the Einstein theory in the dilute regime (i.e. for solid volume fraction
φ � 0.1—grey line (Einstein 1906)), higher orderBatchelor theory in the semi-dilute
regime (i.e.φ ≤ 0.2—pink line (Batchelor andGreen 1972)), previous numerical cal-
culations using Stokesian Dynamics (SD) simulations (Sierou and Brady 2002) and
experimental data from Zarraga et al. (2000) (green line). The particle model cap-
tures very well the theoretical/experimental data in the dilute and semi-concentrated
regime, i.e. for solid volume fractions φ ≤ 0.4. In the concentrated regime—above
45% solid volume fraction—purely hydrodynamic models (both SD or SDPD) are
not able to reach the large suspension viscosity values observed in experiments. In
order to obtain them, additional inter-particle contact friction forces are necessary
(Seto et al. 2013).

Starting fromvalidatedmesoscopic particlemodels for colloidal and non-colloidal
fluids, one can explore the possibility to perform virtual design of new particle for-
mulations, that is, by precise characterization of their input microstructure (particle
shape, suspending medium rheology, non-hydrodynamic inter-particle interactions,
etc.) to study the corresponding bulkmechanical response. Complex-shape solid par-
ticles, for example, canbemodelled byfilling specified interior regionswith boundary
SPH/SDPD particles (see Fig. 8) and estimating the overall drag force/torque exerted
by the surroundingfluid in a similarway towhat discussed for the spheres.More atten-
tion, however, should be paid to the definition of solid–liquid interface. Enforcement
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Fig. 8 Complex-shape solid particles can be modelled by filling specified interior regions with
boundary SPH/SDPD particles and estimating the overall drag force/torque exerted by the sur-
rounding fluid in a similar way to what discussed for the spheres

of no-slip boundary condition must be generalized in the case of a known predefined
interface exist, for example, using techniques for the artificial-velocity assignment
developed in Adami et al. (2012). Alternatively, frozen boundary particles inside
solid regions with no artificial-velocity prescription could be used, but the resulting
hydrodynamic interface should be estimated a posteriori by analysing the decay of
the velocity field near the suspended particle. Moreover, a refined modelling of lubri-
cation interaction should be linked to the local interface curvature (Bertevas et al.
2009).

This bottom-up numerical approach reduces at minimum the number of physical
approximation used in the model characterization, and therefore can allow to explore
the rheological and dynamical behaviours of complex suspensions in a realistic and
controlledway. On the other hand, as alreadymentioned previously, direct simulation
of the mesostructure limits the size of the overall simulated sample, and therefore
large-scale particulate systems are hindered by finite computational resources. In
order to bypass these limitations, an alternative is tomathematically derive continuum
models for complex fluids based on a set of partial (or integral) differential equations
and use CFD numerical schemes to solve them on a discrete space. This alternative
strategy represents the top-down approach. In the next section, we outline a popular
particle-based model for the discretization of continuum PDEs for complex fluids.

3.2 Top-Down Continuum Approach

Mathematical derivation of constitutive equations for complex fluids in the form of
partial differential equations is a subject of long-standing investigation (Bird et al.
1987). For many complex fluids, derivation of accurate closure relations can be a
hard task, whereas exact solutions can be found only in a limited set of cases. On
the other hand, being aware of the physical assumptions involved in the derivation
of continuum PDE-based models and of the related limitations, one can use efficient
top-down discretization techniques to solve them accurately and target continuum
large-scale flow problems in a natural way. In the following of this section, different
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continuum non-Newtonian models are reviewed in connection to top-down particle-
based discretizations of PDEs.

Inelastic Non-Newtonian Models In the simplest case of inelastic non-Newtonian
fluids, the general hydrodynamic behaviour based on the Navier–Stokes equations
can be retained (for example, the discrete Eq. 3), where the viscosity coefficient η is
no longer a constant but it is allowed to vary as a function of the local velocity gradi-
ent γ̇. Here, we have two general behaviours: (1) complex fluids characterized by a
decreasing viscosity with increasing shear rate are denoted as shear-thinning fluids:
this behaviour describes reasonably well the hydrodynamics of polymer solutions,
melts, emulsions, etc.; (2) complex fluids characterized by an increasing viscosity
with increasing local shear rate are denoted as shear-thickening fluids; these mod-
els describe well some particulate systems undergoing liquid–solid transitions and
jamming (Mewis and Wagner 2011).

As an example, in the following, a continuum model for the so-called discontin-
uous shear-thickening (DST) fluid is discussed. Although complex models for DST
fluids exist (Singh et al. 2018), a simplified inelastic framework for DST fluids can
be used based on an ‘inverse’ bi-viscous matrix with the viscosity coefficient in the
NSE (e.g. Eq. 3) defined as

η(γ̇) =
⎧
⎨

⎩

η0, if γ̇ ≤ γ̇c − δγ̇
mγ̇ + n, if γ̇c − δγ̇ < γ̇ ≤ γ̇c + δγ̇

η1, if γ̇ > γ̇c + δγ̇
(10)

where γ̇ is the local shear rate, γ̇c is a critical shear rate defining the viscous transition
and δγ̇ determines the width of the range of shear rates where the viscosity changes
smoothly from η0 to η1. In contrast to the standard bi-viscous model, η1 > η0 is
considered here. The liquid/solid-like transition observed in DST fluids at high shear
rates is modelled by a linear liquid–liquid transition between two regimes character-
ized by a large viscosity ratio occurring over a small but finite range of shear rates
with thickness� = δγ̇/γ̇c � 1 (see Eq.10). For δγ̇ → 0, the singular discontinuous
model is obtained.

By introducing the discrete viscosity function, ηi = η(γ̇i ), in the SPH-SDPD
equations (Eq.3), a Lagrangian meshless discretization of the generalized NSE for
inelastic shear-thickening fluids is recovered. Here, γ̇i = ‖γ̇i‖ = (1/2)(γ̇ i : γ̇ i )

1/2

and the local particle shear rate tensor γ̇ is estimated on each fluid particle i as
(Vázquez-Quesada et al. 2017b)

γ̇ i = − 1

di

∑

j

W ′
i j ei jvi j . (11)

The inverse bi-viscous model (Eq. 10) is therefore used to calculate the local particle
viscosity ηi .

The hydrodynamic behaviour of the DST model fluid is shown in Fig. 9. Here,
different steady-state velocity profiles in a two-dimensional Poiseuille-like channel
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Fig. 9 Comparison of the theoretical velocity profiles (lines)with the SPH simulations (points) for a
DST fluid flowing in a channel at different pressure gradients. Only steady-state velocity profiles are
shown. Reproduced with permission from A. Vázquez-Quesada, N.J. Wagner, M. Ellero, ‘Planar
channel flow of a discontinuous shear-thickening model fluid: Theory and simulation’ Physics of
Fluids 29(10), 103–104 (2017). © 2016 AIP Publishing

flow are reported. Comparison of the converged SPH simulations (i.e. SDPDwithout
stochastic terms) with analytical theories shows excellent agreement. Note that at
low applied pressure gradient, the DST model essentially exhibits Newtonian-like
behaviour at low-viscosity η0 and, correspondingly, the classical parabolic profile is
obtained. At larger pressure gradient, a transition to the thickened state (→ η1 � η0)
is triggered, and the velocity field exhibits a complex shape with a non-parabolic (i.e.
nearly linear) profile towards the centre of the channel with the classical cusp in the
middle at z = Lz/2 (Vázquez-Quesada et al. 2017b). At larger pressure gradients,
almost the entire fluid (except in a very narrow central region) undergoes shear rates
γ̇ ≥ γ̇c and the velocity profile is again parabolic nearly everywhere with viscosity
η1. As in the case of a DST fluid, different inelastic models can be considered within
the Lagrangian particle-based discretization framework of Eq. (3). Provided that
a given viscosity function η(γ̇) accurately match experimental data, SDPD/SPH
models can be used to describe the corresponding liquid’s dynamics under complex
flow conditions where no analytical results are available (Martys et al. 2010).

Viscoelastic Models The previous non-Newtonian continuum model incorporates
complexity through the unique use of a non-constant viscosity function η(γ̇). The
framework is the same as the NSE and, as a result, the viscous stress reacts instan-
taneously to an applied deformation. In particular, stress is a temporal point-wise
function of the local velocity gradient, and no memory effects are present. In this
sense, these fluids are inelastic or also called memory-less. In many complex fluids,
this represents, however, a crude approximation of their hydrodynamic behaviour. In



Advanced Particle-Based Techniques for Complex Fluids … 379

Fig. 10 SDPD/SPH modelling of polymer suspension (Vázquez-Quesada et al. 2009a). The whole
blue sphere represents an SDPD particle containing many polymer molecules. c =∑α qαqα is the
conformation tensor which represents the average state (elongation and orientation) of the polymer
molecules inside a SDPD particle. Reproduced with permission from A. Vázquez-Quesada, M.
Ellero, P. Español, ‘Smoothed particle hydrodynamic model for viscoelastic fluids with thermal
fluctuations’ Physical Review E 79(5), 056707 (2009). © 2009 American Physical Society

fact, polymeric liquids or suspensions are generally characterized by a stress depend-
ing on its entire past flow history along the Lagrangian trajectory, where memory
can persist over large macroscopic temporal windows. In order to introduce memory
effects, viscoelasticity must be considered in non-Newtonian continuum models.

In the context of polymeric fluids, for example, a popular continuum viscoelastic
model is represented by the so-called Oldroyd-B fluid. This is a coupled set of PDEs
involving macroscopic flow velocity field (and its gradients), pressure field and, in
addition, an average coarse-graining tensor c =∑α qαqα (denoted as conformation
tensor). The latter tensor represents the average state (elongation and orientation)
of the polymer molecules (qα is the end-to-end vector of polymer molecule α) sus-
pended within a given continuum element of fluid (Fig. 10).

The conformation tensor is governed by an additional partial differential equation
which is coupled to the momentum conservation equation as follows. In particular,
the discrete SPH/SDPD form reads Vázquez-Quesada et al. (2009a, 2012)

ċi =
⎛

⎝−
∑

j

1

d j
vi j ei jW ′

i j

⎞

⎠

︸ ︷︷ ︸
κi=(∇v)Ti

· ci + ci ·
⎛

⎝−
∑

j

1

d j
vi j ei jW ′

i j

⎞

⎠
T

︸ ︷︷ ︸
κT
i =(∇v)i

+ (12)

+ 1

λ
(1 − ci )
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where λ is a model parameter representing the longest polymer relaxation time, i.e.
quantifying the memory of the fluid. It can be showed that the resulting momentum
equation is the same as Eq. (3), where the isotropic pressure tensor Pi on a given fluid
particle is replaced by a general anisotropic viscoelastic tensor taking into account
the additional contribution due to the presence of the polymers, i.e. the conformation
tensor ci , in the form

Pi1 −→ πi = Pi1 − ηp

λ
(ci − 1) (13)

The first two terms in Eq. (12) take into account local flow-induced stretching
effects on the polymer molecules, the third term is an irreversible relaxation contri-
bution.A last random term can be present in the case of fluctuating viscoelasticity (not
shown here) which is connected to the Brownian motion of the polymer molecules
contained in an SDPD fluid particle (Fig. 10). Here, ηp is the polymeric contribu-
tion to the total fluid viscosity (in addition to the solvent viscosity η considered
in Eq. (3)). The deterministic part of Eq. (12) can be interpreted as a specific SPH
discretization of the classical Oldroyd-B constitutive model for a dilute suspension
of Hookean dumbbells. Generalization to more complex polymeric models, such as
finitely extensible nonlinear elastic springs, with the proper introduction of thermal
fluctuations is straightforward (Vázquez-Quesada et al. 2009a).

The viscoelasticity contained in the evolution of the conformation tensor allows to
incorporate memory effects in the polymeric fluid model. For example, in a start-up
channel flow for an Oldroyd-B fluid, stress will not depend temporally point-wise
on the instantaneous gradient of the velocity (as in the NSE framework), but on all
its past values in a temporal range consistent with its relaxation time λ. An example
of dynamical evolution of the velocity field in a start-up channel flow is given in
Fig. 11. Numerical results are spatially converged. Analytical time-dependent refer-
ence results for the Oldroyd-B fluid are obtained in Waters and King (1970). The
agreement with the analytical solution is good as it is confirmed by the comparison of
the time-dependent peak velocity at the centreline. Figure11 left (top/bottom) shows
results for an Oldroyd-B fluid with a finite solvent viscosity η in the momentum
(Eq.3). Figure11 right (top/bottom) shows results with a vanishing solvent viscosity
η = 0 in themomentum (Eq.3). In the latter resulting viscoelasticmodel—denoted as
Upper Convected Maxwell (UCM)—the effective viscous contribution ηp is, there-
fore, due only to the polymer-stress model governed by Eq. (13). As a consequence,
in mathematical terms, the corresponding momentum equation changes type pass-
ing from a parabolic (in the case of a Newtonian or an Oldroyd-B fluid, i.e. η = 0)
to a hyperbolic partial differential equation and the resulting fluid model is called
purely elastic. As discussed in detail in Xue et al. (2004), the UCM fluid intro-
duces remarkable difficulties for its numerical simulation under transient conditions.
Indeed, it is generally acknowledged that the absence of an explicit dissipation term
in the momentum equation is responsible for the growth of small numerical subgrid
fluctuations, producing instabilities and divergent results. In the last decade, many
techniques for steady-state calculations have been proposed which are able to sta-
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bilize the simulations without affecting the accuracy of the steady results. Most of
these numerical strategies (e.g. BSD, EVSS, AVSS (Xue et al. 2004)) aim at enforc-
ing the parabolic character of the momentum equation by suitable introduction of an
elliptic operator. However, it has been noticed that, if one is interested not only in
the final steady state, but also in an accurate representation of the transient regime,
such measures lead to falsely diffuse dynamics with the consequent production of
fictitiously smooth fields and spurious diffusion. The proper way to proceed is, there-
fore, only through an exact treatment of the hyperbolic character of the equations.
In particular, in the context of the start-up channel flow of a UCM fluid, it has been
shown that the correspondent problem is described by a wave equation for the poly-
mer stress. The presence of a discontinuity in the velocity field at the boundary at
the initial time t = 0 is recognized as source of shear waves propagating from the
wall towards the centreline. An accurate description of the wave-like character of
this problem cannot be obtained through the use of standard stabilizing techniques
based on the introduction of elliptic operators. These indeed act as damping out
numerically dangerous high-frequency oscillations from the hydrodynamics but, at
the same time, over-smoothing the results with consequent loss of accuracy (Ellero
and Tanner 2005).

The results for the velocity profile obtained using the fully Lagrangian SPH-UCM
model are shown in Fig. 11 (right-top) for different times and compared with the
relative analytical solution. The results are interesting to evaluate the level of accuracy
of the present method. Indeed, it is possible to see how accurately the SPH method
captures the discontinuity in the gradient of velocity. Although the numerical solution
for the velocity field is a little smeared out as effect of the numerical smoothing kernel
W (Eq. 12) active on size comparable to particle spacing, a satisfactory agreement
with the theory is obtained. Better results can be obtained by refining the particle
discretization in the cross-stream direction.

The numerical solution reproduces well the analytical theory as it is confirmed
also from the evolution of the centreline velocity plotted in Fig. 11 (right-bottom).
Here, the behaviour of the fluid near the first two peaks is also shown in enlarged
scale. Compared to the case of an Oldroyd-B fluid, the evolution of the centreline
velocity exhibits here stronger under-damped oscillations. Oppositely, in that case,
the additional viscous term in the momentum equation contributes to physically
over-damp the velocity field with a factor inversely proportional to the Weissenberg
number producing a monotonic decay for the velocity.

As an application of the current simulation framework, SPH Lagrangian vis-
coelastic models have been recently used to simulate the flow of highly elastic fluids
through a modulated microchannel (Vázquez-Quesada and Ellero 2012; Grilli et al.
2013). In this flow process, nonlinear instabilities of the polymeric material might
appear at sufficiently large values of the Weissenberg number (Wi = λγ̇ quantifying
the fluid elasticity), leading to a drastic change of its flow dynamics and, eventually,
onset of a chaotic unsteady state even in absence of inertia (zero Reynolds number):
a phenomenon denoted as elastic turbulence (Groisman and Steinberg 2000). In the
area of biomicrofluidics, elastic instabilities triggering micro-turbulence have been
recently exploited for the design of novel mixing devices operating with biological
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Fig. 11 Left: Velocity profile Vx (Y ) for the Oldroyd-B fluid with finite solvent viscosity η (top);
evolution of the centreline velocity and comparison with analytical results (bottom). Right: Velocity
profile Vx (Y ) for the upper convectedMaxwell fluid with zero solvent viscosity η (top); evolution of
the centreline velocity and comparison with analytical results (bottom). Reproduced with permis-
sion from M. Ellero, R.I. Tanner, ‘SPH simulations of transient viscoelastic flows at low Reynolds
number’ Journal of Non-Newtonian Fluid Mechanics 132 (1-3), 61–72 (2005). Elsevier © 2005

liquids (Pathak et al. 2004; Gan et al. 2007), whereas in manufacturing engineer-
ing (e.g. polymer extrusion) elastic instabilities represent a source of artefacts to be
avoided (Meulenbroek et al. 2003).

Despite the large technological importance of the problem, the flow of highly elas-
tic liquids through complex geometries has been investigated in the past with contro-
versial results (Talwar andKhomami 1995; Chmielewski and Jayaraman 1993;Arora
et al. 2002; Howe et al. 2015). The main issue is related to a typical sudden large
increase in the flow resistance and unsteadiness which cannot be predicted based on
existing models. In Vázquez-Quesada and Ellero (2012) and Grilli et al. (2013), the
continuum flow of a polymeric liquid around a linear micro-array of cylinders was
considered using the above-mentioned Lagrangian particle technique for the solu-
tion of viscoelastic partial differential equations (e.g. Oldroyd-B models). Evidence
of unsteady elastic behaviour and enhanced resistance was proven, in quantitative
agreement with experimental observations (Arora et al. 2002) and theoretical predic-
tions of the energy spectrum (Fouxon and Lebedev 2003). Simulations indicate also
that for a sufficiently large level of fluid elasticity, a chaotic self-sustained state cor-
responding to inhomogeneous near-wall structures of polymer over/under-extension
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Fig. 12 Viscoelastic flow through a periodic array of cylinders. Top: a steady mean velocity field
(streamwise direction x); b steady mean polymer conformation tensor (xx-component); c Reynolds
stress (xx-component); d snapshot main unsteady mode conformation tensor (xx-component)
obtained via dynamic mode decomposition analysis. Bottom: space–time diagram of mass mixing
in the top near-wall layer with no elastic instability (left) and with instability (right). Reproduced
with permission fromM. Grilli, A. Vázquez-Quesada, M. Ellero, ‘Transition to turbulence and mix-
ing in a viscoelastic fluid flowing inside a channel with a periodic array of cylindrical obstacles’,
Physical Review Letters 110(17), 174501 (2013). © 2013 American Physical Society

(Fig. 12, top) can be established where enhanced mixing of mass takes place (Fig. 12,
bottom).

Elastic instabilities and micro-turbulence in biological liquids might be partic-
ularly relevant to optimize devices involving transport of solute under microflow
conditions where passive mixing is strongly hindered by the slow molecular diffu-
sion. The study of passive strategies to controlmicro-mixing based on fluid elasticity
is an active current area of research in computational rheology.

3.3 Multiscale Particle Approach

In the previous section, the potential use of different particle-based schemes for the
description of hydrodynamic flow occurring in separate spatio-temporal scales, i.e.
mesoscopic to macroscopic, has been discussed. In this section, possible hybrid
particle-based approaches are considered in which the aforementioned different
scales are handled altogether within a simulation. As a prototypemultiscale problem,
the case of cellular transport/adhesion in the macro-vasculature is considered.
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A popular topic in cardiovascular CFD is based around the modelling of complex
cellular dynamics and biofluidics. Blood, for example, is a multi-component mixture
of cellular elements suspended in plasma. The latter represents approximately 55%
of the entire volume occupied by blood and can be approximately considered as a
Newtonian fluid. The remaining part is represented by the suspended cells which
include red blood cells (RBCs), white blood cells (WBCs) and platelets.

In many biological processes, it is critical to predict accurately the cellular trans-
port and deposition close to vessel walls in presence of a complex, unsteady flow.
This is important to control drug delivery but also for the understanding of several
cardiovascular diseases. As an example, atherosclerosis is a degenerative disease
of the arterial wall that is thought to be initiated due to inflammation of the arte-
rial endothelium, promoting the over deposition of white blood cells (WBCs). This
anomalous WBC accumulation is site specific and can lead to initial stage lesions or,
on a long-term timescale, atherosclerotic plaques.

Due to their flexibility in handling complex transient flow processes and fluid–
structure interactions, particle methods have been frequently used to simulate blood
flow, either at continuum macroscopic level (e.g. via SPH) (Shahriari et al. 2012;
Caballero et al. 2017) or at the mesoscopic level by direct modelling (e.g. via SDPD)
of the suspended cells (Ye et al. 2016; Fedosov et al. 2014), in a similar way to what
is discussed in Sect. 2 for particulate systems. In these approaches, however, either
the exact microscopic cellular information is missed (macro-level) or the large-scale
separation existing between biological components (order of microns) and typical
vessel size in the macrovascular network (order of cm) prevents the use of detailed
mesoscopic particle methods (mesolevel) for realistic blood samples. To study these
problems in full fashion, a multiscale transport model for leukocytes (Gholami et al.
2015) has been developed and coupled to an endothelial cell receptor binding model
in order to link the transport and surface biology. The multiscale Lagrangian particle
tracking (LPT) strategy proposed in Gholami et al. (2014) is based on a continuum
viewpoint coupled with a discrete representation of the leukocytes as ‘test parti-
cles’ rather than real cells. Leukocyte dynamics is handled based on a continuum
advection–diffusion equation for a concentration field in the bulk domain (i.e. far
from arterial walls), whereas discrete cells interacting with precise hydrodynamic
and biological adhesion-mediated forces are considered only in proximity of the
vessel walls. In particular, the following three levels of description are considered
(Fig. 13).

3.3.1 Macroscopic Continuum Bulk-Flow Modelling:

The hydrodynamic equations for a Newtonian fluid are described by the discrete SPH
Navier–Stokes equations discussed in Sect. 2. In addition, transport of small tracers
suspended in the bulk (the WBCs) can be modelled on a continuum basis by using
a bulk concentration field C (r, t). The SPH discrete advection–diffusion equation
therefore reads
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Fig. 13 Multiscale Lagrangian particle tracking (LPT) scheme for leukocytes in flow: leukocyte
dynamics in the bulk is described by a continuum concentration field governed by an advection–
diffusion equation; near-wall layer is filled with test particles undergoing detailed LPTwith realistic
lubrication and biologically derived adhesion forces. The new model allows for the simulation of
clinically significative numbers of leukocytes as encountered in macroscopic arteries. Reproduced
with permission from B. Gholami, A. Comerford, M. Ellero, ‘SPH simulations of WBC adhesion
to the endothelium: the role of haemodynamics and endothelial binding kinetics’, Biomechanics
and Modeling in Mechanobiology 14 (6), 1317–1333 (2015). © 2015 Springer

Ṅi = 2D
∑

j

W ′
i j

di d j

1

ri j

(
Nidi − N jd j

)
(14)

where Ni is the number of cells containedwithin a SPHfluid particle andCi = Ni/φi ,
φi being the fluid particle volume (see Eq.3).

3.3.2 Mesoscopic Discrete Near-Wall Modelling

Transport of WBCs in blood is governed by significantly smaller timescales (τp =
ρpd2

p/18η) compared to that of the bulk blood flow (τflow = d/U ), with ρp and dp

being tracers density and diameter, d the diameter of the artery, U the flow velocity
and η the liquid’s viscosity. As a result, a discrete definition of tracers only in the
near-wall region is required where, due to the complex tracer–wall interactions, a
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continuum description based on evolution equations for a concentration field is not
feasible. A standard LPT scheme can be used to model dynamics of discrete tracers
in the near-wall regions. Within each SPH fluid iteration step dtsph, the equations of
motion for each tracer k are integrated with an appropriately smaller time step dt in
the range of τp:

u̇k = fk,drag + fk,lubr + fk,li f t + fk,coll (15)

ẋk = uk (16)

where fk,drag is the Stokes drag acting on the leukocyte and fk,lubr is the wall drag
modification in the limit of Rep = ρpUdp/μ � 1 (Cox and Brenner 1967; Goldman
et al. 1967a, b; Loth 2000). fk,li f t is Saffman particle lift (Saffman 1965) and fk,coll is
a stochastic force which takes into account collisions with red blood cells. Derivation
of each of these terms is explained in detail in Gholami et al. (2014).

Consistency of the global solution is guaranteed by coupling of quantities at
the near-wall interface to enforce conservation of mass. Several continuum-particle
hybrid coupling methods have been developed during the past decades (Koumout-
sakos 2005;Delgado-Buscalioni andCoveney 2003;DeFabritiis et al. 2006; Fedosov
and Karniadakis 2009), many of which have received significant attention. This cou-
pling scheme is based on communication of tracer concentration data at the near-wall
interface, which is highly efficient while staying dynamic and well tuned for a range
of realistic vascular setups. Full details of the implementation are given in Gholami
et al. (2014).

3.3.3 Microscopic Stochastic Adhesion Modelling

Adhesion behaviour of WBC changes significantly under different flow conditions,
e.g. disturbed flow conditions (Chiu and Chien 2011). Furthermore, different cell
types in blood exhibit specific adhesion characteristics. In this way, an overly simple
adhesion criterion, based on cell-endothelium separation distance, does not capture
the realistic receptor–ligand adhesion behaviour. Therefore, a more physiologically
realisticmodel needs to be adopted in order to reproduce findings of in vitro studies.A
number of cell adhesion models take coupling of mechanical and chemical quantities
into account through definition of association rate, k f , and dissociation rate, kr as a
function of dislodging force (Bell 1978; Evans et al. 1991). These coefficients define
the rate of formation and breakage of bonds between a pair of receptor–ligand. The
overall tendency of the pair to be in the bound state is called binding affinity and is
defined as the ratio of formation to breakage rates, i.e. Ka = k f /kr . Inmore advanced
models, the binding affinity is proposed by Bell et al. (1984) and Piper et al. (1998)
to be

Ka

(
f

n

)
= K 0

a

[
1 + c

(
a f

nkBT

)d
]−1

exp

[
−
(

a f

nkBT

)b
]

, (17)
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where K 0
a is the ratio of association to dissociation rates in absence of force and n

is the number of bonds between two cells. kBT/a serves as a reference scale for
force term f . Parameters b and c are used to determine a power law (Evans et al.
1991) or exponential law (Bell 1978), and parameter d is associated with flexibility
of formed bonds. Equation (17) links the likelihood of cell–cell bond formation due
to mechanical quantities such as hydrodynamic force.

Findings from a number of experimental studies, such as Florin et al. (1994) and
Alón et al. (1995), suggest that the formation of a single bond, regardless of the
overall number of adhesions, is significant in determining the dynamics of the cell
(Piper et al. 1998), making the adhesion process a stochastic phenomenon on small
scales (Chesla et al. 1998; Zhu 2000). Hence, a probabilistic model based on the
attaching/detaching kinetic equation developed by Piper et al. (1998) is targeted. In
particular, a straightforward modification of the deposition criterion for WBCs can
be been considered for the steady-state attachment probability distribution. In this
way, instead of considering a deposition event certain (attachment probability Pa = 1
for all WBCs within a sub-layer of one cell diameter from the wall), a Monte Carlo
acceptance–rejection method can be used to reproduce the following distribution:

Pa = 1 −
[
1 +

∞∑

n=1

1

n!
n∏

m=1

mrml AcKa

(
f

m

)]−1

, (18)

which is the probability of having at least one bond. Parametersmr (density of recep-
tors), ml (density of ligands) and Ac contact area are regarded as phenomenological
fitting parameter. Themodel has been validated against experimental data fromHinds
et al. (2001) where the deposition profiles have been measured for the steady gravity-
driven flow of U937 cells in an E-selectin-coated geometry (see Fig. 13 bottom).

The multiscale SPH approach allows particle methods for hemodynamics simu-
lations to be achieved in a tractable manner. As an example, Longest et al. (2004)
use a maximum of 500,000 tracers in full domain in a realistic femoral anastomosis
geometry to reach convergence. Considering the normal concentration of leukocytes
in blood, approximately 104/mm3, and typical size of large vessels, a fully con-
verged near-wall profile would require computation of trajectories for hundreds of
millions of tracers. In contrast, the number of simulated tracers is reduced through
specific tracking of leukocytes only in close vicinity of walls. The reduced number of
tracked test particles which can be achieved by distributing them within a thin near-
wall region only (Fig. 13 top) allows considerable speed-up of simulation for these
systems, preserving the accuracy of the deposition profiles (Gholami et al. 2014).

In summary, the Lagrangian nature of SPH particle solver automatically takes
into account WBC concentration advection in the bulk region, whereas in the near-
wall region a microscopic LPT dynamics including lubrication as well as biological
adhesion effects is considered. The multiscale method is not restricted to leukocyte
dynamics but it could be applied to model a wide range of problems in biomedical
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engineering characterized by large spatial separation between flow scales and sub-
micron constituent size, where the relevant physical processes occur only in specific
regions of space.

4 Conclusions

In this chapter, we have reviewed a class of advanced particle-based methods for
the multiscale simulation of the rheology and hydrodynamics of complex fluids.
All methods rely on a particle framework based on a general set of Newton’s equa-
tions of motion for a system of interacting particles. This general framework allows
to describe discrete systems of ‘particles’ defined at very different spatio-temporal
levels ranging, in principle, from the classical Molecular Dynamics methods for
atomistic systems interacting via realistic potentials, to mesoscopic coarse-graining
methods—such as Dissipative Particle Dynamics and its refined versions at the
mesoscopic realm, up to Lagrangian particle discretizations of sets of continuum
partial differential equations, such as the popular Smoothed Particle Hydrodynamics
method. Upon proper definition of interaction potentials and particle variables (as
well as their discrete evolution equations), it is possible to describe the hydrody-
namic of complex fluids at different scales in a very efficient way, depending on
the physics of interest, frommicro-mechanical models until macroscopic continuum
models where microstructural relaxation processes are governed by field equations.
We have critically assessed the advantages/limitations of each of this description in
the context of modelling of complex non-Newtonian fluids, such as those represented
by polymeric or particulate systems. A set of applications has been also discussed
with particular emphasis on multiscale hybrid approaches in the context of cellular
transport processes and biofluids.
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