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Abstract. We consider the problem of actively eliciting the prefer-
ences of a Decision Maker (DM) that may exhibit some versatility when
answering preference queries. Given a set of multicriteria alternatives
(choice set) and an aggregation function whose parameter values are
unknown, we propose a new incremental elicitation method where the
parameter space is partitioned into optimality polyhedra in the same
way as in stochastic multicriteria acceptability analysis. Each polyhedron
encompasses the subset of parameter values for which a given alternative
is optimal (one optimality polyhedron, possibly empty, per alternative
in the choice set). The uncertainty about the DM’s judgment is modeled
by a probability distribution over the polyhedra of the partition. At each
step of the elicitation procedure, the distribution is revised in a Bayesian
manner using preference queries whose choice is based on the current
solution strategy, that we adapt to minimize the expected regret of the
recommended alternative. We interleave the analysis of the set of alter-
natives with the elicitation of the parameters of the aggregation function
(weighted sum or ordered weighted average). Numerical tests have been
performed to evaluate the interest of the proposed approach.

Keywords: Incremental preference elicitation · Optimality
polyhedra · Bayesian updating · Expected regrets

1 Introduction

Preference elicitation is an essential part of computer-aided multicriteria deci-
sion support. Indeed, criteria being often conflicting, the notion of optimality is
subjective and fully depends on the Decision Maker’s (DM) view on the relative
importance attached to every criteria. Thus, the relevance of the recommenda-
tion depends on our ability to elicit this information and the way we model the
uncertainty about the DM’s preferences.

A standard way to compare feasible solutions in multicriteria decision prob-
lems is to use parameterized aggregation functions assigning a value (overall
utility) to every solution. This function can be fitted to the DM preferences
by eliciting the weighting coefficients that specify the importance of criteria in
the aggregation. In many real cases, it is impractical but also useless to precisely
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specify the parameters of the aggregation function. Given a decision model, exact
choices can often be derived from a partial specification of weighting parame-
ters. Dealing with partially specified parameters requires the development of
solution methods that can determine an optimal or near optimal solution with
such partial information. This is the aim of incremental preference elicitation,
that consists on interleaving the elicitation with the exploration of the set of
alternatives to adapt the elicitation process to the considered instance and to
the DM’s answers. Thus, the elicitation effort is focused on the useful part of
the preference information. The purpose of incremental elicitation is not to learn
precisely the values of the parameters of the aggregation function but to specify
them sufficiently to be able to determine a relevant recommendation.

Incremental preference elicitation is the subject of several contributions in
various contexts, see e.g. [3,4,7,16]. Starting from the entire set of possible
parameter values, incremental elicitation methods are based on the reduction
of the uncertainty about the parameter values by iteratively asking the DM to
provide new preference information (e.g., with pairwise comparisons between
alternatives). Any new information is translated into a hard constraint that
allows to reduce the parameter space. In this way, preference data are collected
until a necessarily optimal or near optimal solution can be determined, i.e., a
solution that is optimal or near optimal for all the possible parameter values.
These methods are very efficient because they allow a fast reduction of the
parameter space. Nevertheless, they are very sensitive to possible mistakes of
the DM in her answers. Indeed, in case of a wrong answer, the definitive reduc-
tion of the parameter space will exclude the wrong part of the set of possible
parameter values, which is likely to exclude the optimal solution from the set of
possibly optimal solutions (i.e., solutions that are optimal for at least one possible
parameter value). Consequently, the relevance of the recommendation may be
significantly impacted if there is no possible backtrack. A way to overcome this
drawback is to use probabilistic approaches that allow to model the uncertainty
about the DM’s answers, and thus to give her the opportunity to contradict
herself without impacting too much the quality of the recommendation. In such
methods, the parameter space remains unchanged throughout the algorithm and
the uncertainty about the real parameter values (which characterize the DM’s
preferences) is represented by a probability density function that is updated
when new preference statements are collected.

This idea has been developed in the literature. In the context of incremental
elicitation of utility values, Chajewska et al. [8] proposed to update a proba-
bility distribution over the DM’s utility function to represent the belief about
the utility value. The probability distribution is incrementally adjusted until the
expected loss of the recommendation is sufficiently small. This method does not
apply in our setting because we consider that the utility values of the alternatives
on every criterion are known and that we elicit the values of the weighting coef-
ficients of the aggregation function. Sauré and Vielma [15] introduced a method
based on maintaining a confidence ellipsoid region using a multivariate Gaussian
distribution over the parameter space. They use mixed integer programming to
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select a preference query that is the most likely to reduce the volume of the
confidence region. In a recent work [5], the uncertainty about the parameter
values is represented by a Gaussian distribution over the parameter space of
rank-dependent aggregation functions. Preference queries are selected by min-
imizing expected regrets to update the density function using Bayesian linear
regression. As the updating of a continuous density function is computationally
cumbersome (especially when analytical results for the obtention of the poste-
rior density function do not exist), data augmentation and sampling techniques
are used to approximate the posterior density function. These methods are time
consuming and require to make a tradeoff between computation time and accu-
racy of the approximation. In addition, the information provided by a continuous
density function may be much richer than the information really needed by the
algorithm to conclude. Indeed, it is generally sufficient to know that the true
parameter values belong to a given restricted area of the parameter space to
be able to identify an optimal solution without ambiguity. Thus, we introduce
in this paper a new model-based incremental elicitation algorithm based on a
discretization of the parameter space. We partition the parameter space into
optimality polyhedra and we define a probability distribution over the partition.
After each query, this distribution is updated using Bayes’ rule.

The paper is organised as follows. Section 2 recalls some background on
weighted sums and ordered weighted averages. We also introduce the optimality
polyhedra we use in our method and we discuss our contribution with regard to
related works relying on the optimality polyhedra. We present our incremental
elicitation method in Sect. 3. Finally, some numerical tests showing the interest
of the proposed approach are provided in Sect. 4.

2 Background and Notations

Let X be a set of n alternatives evaluated on p criteria. Any alternative of X
is characterized by a performance vector x = (x1, . . . , xp), where xi ∈ [0, U ] is
the performance of the alternative on criterion i, and U is the maximum utility
value. All utilities xi are expressed on the same scale; the utility functions must
be defined from the input data (criterion or attribute values), as proposed by,
e.g., Grabisch and Labreuche [10]. To refine the Pareto dominance relation and to
be able to better discriminate between alternatives in X , we use a parametrized
aggregation function denoted by fw. The weighting vector w of the function
defines how the components of x should be aggregated and thus makes it pos-
sible to model the decision behavior of the DM. In this paper, we consider two
operators: the weighted sum (WS) and the ordered weighted average (OWA).
We give some notations and recall some basic notions about this two aggregation
functions in the following.

Weighted Sum. Let x ∈ R
p
+ be a performance vector and w ∈ R

p
+ be a

weighting vector. The weighted sum is defined by:

WSw(x) =
p∑

i=1

wixi (1)
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Ordered Weighted Average. Introduced by Yager [17], the OWA is a rank-
dependent aggregation function, where the weights are not associated to the
criteria but to the ranks in the ordered performance vector, giving more or less
importance to good or bad performances. Let x ∈ R

p
+ be a performance vector

and w ∈ R
p
+ be a weighting vector. The ordered weighted average is defined by:

OWAw(x) =
p∑

i=1

wix(i) (2)

where x(.) is a permutation of vector x such that x(1) ≤ · · · ≤ x(p).

Example 1. Let x=(14, 9, 10), y =(10, 12, 10) and z=(9, 16, 6) be three perfor-
mance vectors to compare, and assume that the weighting vector is w = (14 , 1

2 , 1
4 ).

Applying Eq. (2), we obtain: OWAw(x) = 10.75 > OWAw(y) = 10.5 >
OWAw(z) = 10.

Note that OWA includes the minimum (w1 = 1 and wi = 0,∀i ∈ �2, p�), the
maximum (wp = 1 and wi = 0,∀i ∈�1, p−1�), the arithmetic mean (wi = 1

p ,∀i ∈
�1, p�) and all other order statistics as special cases.

If w is chosen with decreasing components (i.e., the greatest weight is
assigned to the worst performance), the OWA function is concave and well-
balanced performance vectors are favoured. We indeed have, for all x ∈ X ,
OWAw((x1, . . . , xi − ε, . . . , xj + ε, . . . , xp)) ≥ OWAw(x) for all i, j and ε > 0
such that xi − xj ≥ ε. Depending on the choice of the weighting vector w, a
concave OWA function allows to define a wide range of mean type aggregation
operators between the minimum and the arithmetic mean. In the remainder of
the paper, we only consider concave OWA functions. For the sake of brevity, we
will say OWA for concave OWA.

Example 2. Consider vectors x, y and z defined in Example 1 and assume
that the weighting vector is now w = ( 12 , 1

3 , 1
6 ). We have: OWAw(x) = 61

6 ,
OWAw(y) = 62

6 and OWAw(z) = 52
6 . The alternative y, which corresponds to

the most balanced performance vector, is the preferred one.

Using fw (defined with (1) or (2)) as an aggregation function, we call fw-
optimal an alternative x that maximizes fw(x). Eliciting the DM’s preferences
amounts to eliciting the weighting vector w. The rest of the section defines how
we deal with the imprecise knowledge of the parameter values in the optimization
process involved in the elicitation.

Optimality Polyhedra. We denote by W the set of all feasible weighting
vectors. Note that, to limit the scale of this set, one can add the additional
non restrictive normalisation constraint

∑p
i=1 wi = 1. Thus, W is defined by

W = {w ∈ R
p
+|∑p

i=1 wi = 1 and wi ≥ 0,∀i}. In the case of a concave OWA, the
additional constraint w1 ≥ · · · ≥ wp is enforced.
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Fig. 1. Optimality polyhedra for
x, y and z in Example 1 with WS.

Starting from W and the set X of alterna-
tives, we partition W into optimality polyhe-
dra: the optimality polyhedron associated to
an alternative x is the set of weighting vectors
such that x is optimal. Note that the aggre-
gation functions we use are linear in w (even
though OWA is not linear in x because of the
sorting of x before applying the aggregation
operation).

This explains why the sets of the partition
are convex polyhedra. Any preference state-
ment of the form “Alternative x is preferred
to alternative y” is indeed translated into a
constraint fw(x) ≥ fw(y) which is linear in w.

More formally, the optimality polyhedron
Wx associated to an alternative x ∈ X
is defined by Wx = {w ∈ W |fw(x) ≥
fw(y),∀y ∈ X}. Note that any empty set Wx (there is no w ∈ W such that
x is fw-optimal) or not full dimensional set (i.e., ∀w ∈ Wx,∃y ∈ X such
that fw(x) = fw(y)) can be omitted. An example of such partition is given
in Fig. 1 for the instance of Example 1, where the aggregation function is a
weighted sum. Note that w3 can be omitted thanks to the normalization con-
straint (w3 = 1 − w1 − w2).

In order to represent the uncertainty about the exact values of parameters,
a probability distribution is defined over the polyhedra of the partition. This
distribution is updated using an incremental elicitation approach that will be
described in the next section.

Related Works. The idea of partitioning the parameter space is closely related
to Stochastic Multiobjective Acceptability Analysis (SMAA for short). The
SMAA methodology has been introduced by Charnetski and Soland under the
name of multiple attribute decision making with partial information [9]. Given
a set of utility vectors and a set of linear constraints characterizing the feasible
parameter space for a weighted sum (partial information elicited from the DM),
they assume that the probability of optimality for each alternative is proportional
to the hypervolume of its optimality polyhedron (the hypervolume reflects how
likely an alternative is to be optimal). Lahdelma et al. [12] developed this idea
in the case of imprecision or uncertainty in the input data (utilities of the alter-
natives according to the different criteria) by considering the criteria values as
probability distributions. They defined the acceptability index for an alternative,
that measures the variety of different valuations which allow for that alterna-
tive to be optimal, and is proportional to the expected volume of its optimality
polyhedron. They also introduced a confidence factor, that measures if the input
data is accurate enough for making an informed decision. The methodology has
been adapted to the 2-additive Choquet integral model by Angilella et al. [2].
These works consider that the uncertainty comes from the criterion values or
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from the variation in the answers provided by different DMs. They also consider
that some prior preference information is given and that there is no opportunity
to ask the DM for new preference statements. Our work differentiates from these
works in the following points:

– the criterion values are accurately known and only the parameter values of
the aggregation function must be elicited;

– the uncertainty comes from possible errors in the DM’s answers to preference
queries;

– the elicitation process is incremental.

3 Incremental Elicitation Approach

Once the parameter space W is partitioned into optimality polyhedra as explained
above, a prior density function is associated to the partition. This distribution
informs us on how likely each solution is to be optimal. In the absence of a
prior information about the DM’s preferences, we define the prior distribution
such that the probability of any polyhedron is proportional to its volume, as
suggested by Charnetski and Soland [9]. The volume of Wx gives indeed a mea-
sure on the proportion of weighting vectors for which the alternative x is ranked
first. More formally, the prior probability of x to be optimal is P (x) = volWx

volW
where volW denotes the volume of a convex polyhedron W. We assume here a
complete ignorance of the continuous probability distribution for w within each
polyhedron. After each new preference statement, the probability distribution P
is updated using Bayes’ rule.

The choice of the next query to ask is a key point for the efficiency of the
elicitation process in acquiring enough preferential information to make a rec-
ommendation with sufficient confidence.

Query Selection Strategy. In order to get the most informative possible
query we use a strategy based on the minimization of expected regrets. Let us
first introduce how we define expected regrets in our setting:

Definition 1. Given two alternatives x and y, and a probability distribution P
on X , the pairwise expected regret PER is defined by:

PER(x, y,X , P ) =
∑

z∈X
max{0,PMR(x, y,Wz)}P (z)

where P (z) represents the probability for z to be optimal and PMR(x, y,W) is
the pairwise maximum regret over a polyhedron W, defined by:

PMR(x, y,W) = max
w∈W

{fw(y) − fw(x)}

In other words, the PER defines the expected worst utility loss incurred by
recommending an alternative x instead of an alternative y, and PMR(x, y,W)
is the worst utility loss in recommending alternative x instead of alternative y
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given that w belongs to W. The use of the PMR within a polyhedron is justified
by the complete ignorance about the probability distribution in the polyhedron,
thereby, the worst case is considered.

Definition 2. Given a set X of alternatives, the maximum expected regret of
x ∈ X and the minimax expected regret over X are defined by:

MER(x,X , P ) = max
y∈X

PER(x, y,X , P )

MMER(X , P ) = min
x∈X

MER(x,X , P )

In other words, the MER value defines the worst utility loss incurred by
recommending an alternative x ∈ X and the MMER value defines the minimal
MER value over X .

The notion of regret expresses a measure of the interest of an alternative.
At any step of the algorithm, the solution achieving the MMER value is a rel-
evant recommendation because it minimizes the expected loss in the current
state of knowledge. It also allows to determine an informative query to ask.
Various query selection strategies based on regrets and expected regrets have
indeed been introduced in the literature, see e.g. [6] in a deterministic con-
text (current solution strategy) and [11] in a probabilistic context (a probabil-
ity distribution is used to model the uncertainty about the parameter values).
Adapting the current solution strategy to our probabilistic setting, we propose
here a strategy that consists in asking the DM to compare the current rec-
ommendation x∗ = arg minx∈X MER(x,X , P ) to its best challenger defined by
y∗ = arg maxy∈X PER(x∗, y, P ). The current probability distribution is then
updated according to the DM’s answer, as explained hereafter. The procedure
can be iterated until the MMER value drops below a predefined threshold ε.

The approach proposed in this paper consists in interleaving preference
queries and Bayesian updating of the probability distribution based on the DM’s
answers. The elicitation procedure is detailed in Algorithm 1. At each step i of
the algorithm, we ask the DM to compare two alternatives x(i) and y(i). The
answer is denoted by ai, where ai = 1 if x(i) is preferred to y(i) and ai = 0 other-
wise. From each answer ai, the conditional probability P (.|a1, . . . , ai−1) over the
set of alternatives is updated in a Bayesian manner (Line 13 of Algorithm 1).

Bayesian Updating. We assume that answers ai are independent binary ran-
dom variables, i.e. P (ai|x(i), y(i)) only depends on the (unknown) weighting vector
w and on the performance vectors of x(i), y(i). This is a standard assumption in
Bayesian analysis of binary response data [1]. To alleviate the notations, we omit
the conditioning statement in P (ai|x(i), y(i)), that we abbreviate by P (ai). Using
Bayes’ rule, the posterior probability of any alternative z ∈ X is given by:

P (z|a1, . . . , ai) =
P (a1, . . . , ai|z)P (z)

P (a1, . . . , ai)
=

P (ai|z)P (a1, . . . , ai−1|z)P (z)
P (ai)P (a1, . . . , ai−1)

(3)

=
P (ai|z)P (z|a1, . . . , ai−1)

P (ai)
(4)
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Algorithm 1: Incremental Elicitation Procedure
Input: X : set of alternatives, ε: acceptance threshold; W : parameter space.
Output: x∗ : best recommendation in X

1 P (z) ← volWz
volW

, ∀z ∈ X
2 i ← 0
3 repeat
4 i ← i + 1

5 x(i) ← arg minx∈X MER(x, X , P (.|a1, . . . , ai−1))

6 y(i) ← arg maxy∈X PER(x(i), y, P (.|a1, . . . , ai−1))

7 Ask the DM if x(i) is preferred to y(i)

8 if the answer is yes then
9 ai ← 1

10 else
11 ai ← 0
12 for z ∈ X do
13 Compute P (z|a1, . . . , ai) using Bayesian updating

14 until MMER(X , P (.|a1, . . . , ai)) ≤ ε;

15 return x∗ selected in arg minx∈X MER(x, X , P (.|a1, . . . , ai))

The likelihood function P (ai|z) is the conditional probability that the answer is
ai given that z is optimal. Let us denote by Wx(i)�y(i) the subset of W containing
all vectors w such that fw(x(i)) ≥ fw(y(i)); the likelihood function is defined as:

P (ai = 1|z) =

⎧
⎨

⎩

δ if Wz ⊆ Wx(i)�y(i)

1 − δ if Wz ∩ Wx(i)�y(i) = ∅
P (ai = 1) otherwise

where δ∈( 12 , 1] is a constant. The corresponding update of the probability masses
follows the idea used by Nowak in noisy generalized binary search [14] and its
effect is simple; the probability masses of polyhedra that are compatible with
the preference statement are boosted relative to those that are not compatible,
while the probability masses of the other polyhedra remain unchanged. The
parameter δ controls the size of the boost, and can be seen as a lower bound on
the probability of a correct answer. The three cases are depicted in Fig. 2.

In the third case (on the right of Fig. 2), due to the assumption of complete
ignorance within a polyhedron, the new preference statement is not informative
enough to update the probability of z to be optimal. Therefore, for all alterna-
tives z such that Wz is cut by the constraint fw(x(i)) ≥ fw(y(i)) no updating
is performed and therefore P (ai|z) = P (ai); consequently P (z|a1, . . . , ai) =
P (z|a1, . . . , ai−1) by Eq. 4.

Regarding Eq. 4, note that, in practice, we do not need to determine
P (ai). For any alternative z ∈ X such that Wz is not cut by the constraint,
we have indeed P (z|a1, . . . , ai) ∝ P (ai|z)P (z|a1, . . . , ai−1). More precisely,
P (z|a1, . . . , ai) is obtained by the following equation:
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Wz ⊆ Wx(i)�y(i) Wz ∩ Wx(i)�y(i) = ∅ otherwise

Fig. 2. The polyhedron is Wz. The non-hatched area is the half-space Wx(i)�y(i) .

P (z|a1, . . . , ai)=
∑

y∈Y
P (y|a1, . . . , ai−1)

P (ai|z)P (z|a1, . . . , ai−1)∑
y∈Y

P (ai|y)P (y|a1, . . . , ai−1)
(5)

where Y is the subset of alternatives whose optimality polyhedra are not cut by
the constraint. The condition

∑
z∈X P (z|a1, . . . , ai) = 1 obviously holds.

If the optimal alternative x∗ is unique, the proposition below states that,
using Algorithm 1, the probability assigned to x∗ cannot decrease if the DM
always answers correctly.

Proposition 1. Let us denote by x∗ a uniquely optimal alternative. At any step
i of Algorithm 1, if the answer to query i is correct, then:

P (x∗|a1, . . . , ai) ≥ P (x∗|a1, . . . , ai−1)

Proof. Two cases can be distinguished:

Case 1. If Wx∗ �⊆ Wx(i)�y(i) and Wx∗ ∩Wx(i)�y(i) �= ∅, then, as mentioned above,
P (x∗|a1, . . . , ai) = P (x∗|a1, . . . , ai−1) by Eq. 4 because P (ai|x∗) = P (ai).

Case 2. Otherwise, whatever the answer α of the DM, we have P (ai = α|x∗) = δ
because the answer to query i is correct. By Eq. 5, it follows that:

P (x∗|a1, . . . , ai) =
δ
∑

y∈Y P (y|a1, . . . , ai−1)∑
y∈Y P (ai = α|y)P (y|a1, . . . , ai−1)

︸ ︷︷ ︸
ratio ρ

P (x∗|a1, . . . , ai−1)

We now show that ρ ≥ 1 for δ > 1
2 . Let us denote by Yδ the subset of alternatives

y ∈ Y such that P (ai = α|y) = δ. We have:
∑

y∈Y
P (ai = α|y)P (y|a1, . . . , ai−1)

= δ
∑

y∈Yδ

P (y|a1, . . . , ai−1) + (1 − δ)
∑

y∈Y1−δ

P (y|a1, . . . , ai−1)

because Y = Yδ ∪ Y1−δ and Yδ ∩ Y1−δ = ∅
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≤ δ
∑

y∈Yδ

P (y|a1, . . . , ai−1) + δ
∑

y∈Y1−δ

P (y|a1, . . . , ai−1)

because δ >
1
2

(the only case of equality is when Y1−δ = ∅)

= δ
∑

y∈Y
P (y|a1, . . . , ai−1)

Consequently, ρ ≥ 1 and thus P (x∗|a1, . . . , ai) ≥ P (x∗|a1, . . . , ai−1). 
�

Toward an Efficient Implementation. As mentioned above, in order to
update the probability of an alternative z, we need to know the relative position
of its optimality polyhedron Wz compared to the constraint induced by the new
preference statement fw(x(i)) ≥ fw(y(i)). In this purpose, we can consider the
Linear Programs (LPs) opt{fw(x(i))−fw(y(i))|w∈Wz}, where opt=min or max.

If the optimal values of both LPs share the same sign, then we can conclude
that the polyhedron is not cut by the constraint, otherwise it is cut. To limit
the number of LPs that need to be solved (determining the positions of all the
polyhedra would indeed require to solve 2n LPs), and thereby speed up the
Bayesian updating, we propose to approximate the polyhedra by their outer
Chebyshev balls (i.e., the smallest ball that contains the polyhedron). Let us
denote by r the radius of the Chebyshev ball and by d the distance between the
center of the ball and the hyperplane induced by the preference statement:

– if d ≥ r then the polyhedron is not cut by the constraint (see Fig. 3a). In
order to know whether the polyhedron verifies the constraint or not, we just
need to check whether the center of the ball verifies it or not. Thus, in this
case, only two scalar products are required.

– if d < r then an exact computation is required because the polyhedron can
either be cut by the constraint (Fig. 3b) or not (Fig. 3c). In this way, the use
of Chebyshev balls does not impact the results of the Bayesian updating but
only speeds up the computations.

Fig. 3. Example of an approximation of a polyhedron by an outer Chebyshev ball.
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4 Experimental Results

Algorithm 1 has been implemented in Python using the polytope library to man-
age optimality polyhedra, and tested on randomly generated instances. We per-
formed the tests on an Intel(R) Core(TM) i7-4790 CPU with 15 GB of RAM.

Random Generation of Instances. To evaluate the performances of
Algorithm 1, we generated instances with 100 alternatives evaluated on 5 criteria,
all possibly fw-optimal (i.e., Wx �=∅ ∀x∈X ). The generation of the performance
vectors depends on the aggregation function (WS or OWA) that is considered:

– WS instances. An alternative x of the instance is generated as follows: a
vector y of size 4 is uniformly drawn in [0, 1]4, then x is obtained by setting
xi = yi − yi−1 for i = 1, . . . , 5, where y0 = 0 and y5 = 1. The vectors thus
generated all belong to the same hyperplane (because

∑5
i=1 xi = 1 for all

x ∈ X ) and the set of possibly unique WS-optimal alternatives is therefore
significantly reduced (because the optimality polyhedra of many alternatives
are not full dimensional). To avoid this issue, as suggested by Li [13], we
apply the square root function on all components xi for all x ∈ X in order
to concavify the Pareto front. The set of performance vectors obtained is
illustrated on the left of Fig. 4 in the bicriteria case.

– OWA instances. An alternative x is possibly OWA-optimal in a set X if
its Lorenz curve L(x) defined by Lk(x) =

∑k
i=1 x(i)(k ∈ �1, 5�) is possibly

WS-optimal in {L(x) : x ∈ X}. We say that a vector z is Lorenz if there
exists a vector x such that z = L(x). Given a Lorenz vector z, we denote
by L−1(z) any vector x such that L(x) = z. For such a vector x, we have
x(i) = zi − zi−1 for all i = 1, . . . , 5, where z0 = 0. An alternative x of the
instance is generated as follows: we first generate a point y in the polyhedron
defined by the following linear constraints:

(P)

⎧
⎪⎪⎨

⎪⎪⎩

yi+1 ≥ yi ∀i ∈ �0, 4� (1)
(i + 1)2yi+1 − i2yi ≥ i2yi − (i − 1)2yi−1 ∀i ∈ �1, 4� (2)∑5

i=1 i2yi =
∑5

i=1 i2 (3)
y0 = 0

The set L = {(i2yi)i∈�1,5� : y ∈ P} contains vectors that are all Lorenz
thanks to constraints (1) and (2). Furthermore, they belong to the same
hyperplane due to constraint (3), and therefore they are all possibly WS-
optimal. Consequently, all the alternatives in the set {L−1(z) : z ∈ L} are
possibly OWA-optimal. As above, to make them all possibly unique OWA-
optimal, the square root function is applied on each component of vectors
z in L. The obtained set is L′ = {(i

√
yi)i∈�1,5� : y ∈ P}. All the vectors

in X ′ = {L−1(z) : z ∈ L′} are possibly unique OWA-optimal. Finally, to
generate an alternative x in X ′, we randomly draw a convex combination
y =

∑m
j=1 αj ŷ

j of vertices ŷ1, . . . , ŷm of P. The obtained alternative is then
defined by x = L−1((i

√
yi)i∈�1,5�). The set of performance vectors obtained

is illustrated on the right of Fig. 4 in the bicriteria case.
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Finally, for both types of instances, a hidden vector w is generated to simulate
the preferences of the DM.

Fig. 4. Example of WS (left) and OWA (right) instances with n = 20 and p = 2

Simulation of the Interactions with the DM. To simulate the DM’s answer
to query i, we represent the intensity of preference between alternatives x(i) and
y(i) by the variable u(i) = fw(x(i)) − fw(y(i)) + ε(i) where ε(i) ∼ N (0, σ2) is
a Gaussian noise modelling the possible DM’s error, with σ determining how
wrong the DM can be. The DM states that x(i) � y(i) if and only if u(i) ≥ 0.

Analysis of the Results. We evaluated the efficiency of Algorithm 1 in terms
of the actual rank of the recommended alternative. We considered different values
for σ in order to test the tolerance to possible errors. More precisely, σ = 0 gives
an error free model while σ ∈ {0.1, 0.2, 0.3} models different rates of errors in the
answers to queries. In the considered instances, these values led to, respectively,
3.6%, 10% and 22% of wrong answers for WS and to 3.2%, 16% and 25% of wrong
answers for OWA. We set δ = 0.8, which corresponds to a prior assumption of an
error rate of 20%. Thus, the value of δ we used in the experiments is uncorrelated
to the ones of σ. The computation time between two queries is less than 1 s in
all cases. Results are averaged over 40 instances.

We first observed the evolution of the actual rank of the MMER alternative
over queries (actual rank according to a hidden weighting vector representing the
DM’s preferences). Figure 5 (resp. Fig. 6) shows the curves obtained for WS (resp.
OWA). We observe that the mean rank drops below 2 (out of 100 alternatives)
after about 14 queries for WS with σ < 0.3, while the same happens for OWA
whatever value of σ. We see that, in practice, the efficiency of the approach can
be significantly impacted only when the error rate becomes greater than 20%.

We next compared the performance of Algorithm1 with a deterministic app-
roach described in [4], that consists in reducing the parameter space after each
query (assuming that all answers are correct). The results are illustrated by the
boxplots in Fig. 7 for WS, and in Fig. 8 for OWA. We can see that our proba-
bilistic approach is more tolerant to errors than the deterministic approach. As
the value of σ increases, the deterministic approach makes less and less rele-
vant recommendations. The deterministic approach indeed recommends, in the
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Fig. 5. Mean rank vs. queries (WS) Fig. 6. Mean rank vs. queries (OWA)

Fig. 7. Rank vs. error rate (WS) Fig. 8. Rank vs. error rate (OWA)

worst case, alternatives that are ranked around 90 while it is less than 40 for
Algorithm 1. More precisely, when σ = 0.3 (for both WS and OWA), in more
than 75% of instances, Algorithm 1 recommends an alternative with a better
rank than the mean rank obtained in the deterministic case.

5 Conclusion

We introduced in this paper a new model based incremental multicriteria elic-
itation method relying on a partition of the parameter space. The elements of
the partition are the optimality polyhedra of the different alternatives, relatively
to a weighted sum or an ordered weighted average. A probability distribution is
defined over this partition, where each probability represents the likelihood that
the true weighting vector belongs to the polyhedron. The approach is robust
to possible mistakes in the DM’s answers thanks to the incremental revision of
probabilities in a Bayesian setting. We provide numerical tests showing the effi-
ciency of the proposed algorithm in terms of number of queries, as well as the
interest of using such a probabilistic approach compared to a deterministic app-
roach. A short term research direction is to investigate if it is possible to further
speed up the Bayesian updating by using outer Löwner-John ellipsoids instead
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of Chebyshev balls. The answer is not straightforward because, on the one hand,
the use of ellipsoids indeed refines the approximation of the polyhedra, but on
the other hand, this requires the use of matrix calculations to establish whether
or not an ellipsoid is cut by the constraint induced by a preference statement.
Another natural research direction is to extend our approach to more sophisti-
cated aggregation functions admitting a linear representation, such as Weighted
OWAs and other Choquet integrals, to improve our descriptive possibilities.
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